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BSTRACT 

Nuclear Magnetic Resonance (NMR) is a  branch of  

spectroscopy that is based on the fact that many 

atomic  nuclei may be oriented by a strong magnetic  

field and will absorb radiofrequency radiation at  

characteristic frequencies . The parameters that can be measured on 

the resulting spectral lines (line pos itions, intensities, line widths ,  

multiplici ties  and transients in time-dependent experiments)  can be 

interpreted in terms of molecular structure, conformation, molecu-

lar motion and other  rate processes. In this way, high resolution  

(HR) NMR allows performing qualitative and quantitative analys is  

of samples in solution, in order to determine the structure of mol e-

cules in solution and not only. In the past, high-field NMR spec-

troscopy has mainly concerned with the elucid ation of chemical  

structure in solution, but today is emerging as a powerful e xplora-

tory tool  for probing biochemical and physical processes . It  repre-

sents a versatile tool for the anal ysis of  foods. In li terature many 

NMR studies have been reported on di fferent type of  food such as 

wine, olive oil,  coffee, fruit juices,  milk,  meat,  egg, starch granules ,  

flour, etc using di fferent NMR techniques .  

Traditionally, univariate analytical methods have been used to e x-

plore spectroscopic data. This method is useful to measure or to se-

lect a  single descriptive variable from the whole spectrum and , at  

the end, only this  variable is  analyzed.  This univariate methods ap-

proach, applied to HR-NMR data, lead to different problems due 

especia lly to the complexity of an NMR spectrum. In fact, the la t-

ter is composed of different signals belonging to different mole-

cules, but it is also true that the same molecules can be represented  

by different s ignals, general ly strongly correlated. The univariate 

methods, in this case, tak es in account only one or a few variables ,  

causing a loss of information.  

Thus, when dealing with complex samples like foodstuff,  univariate 

analysis of spectra data results not enough powerful. Spectra need  
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to be considered in their wholeness and, for analysing them, i t  

must be taken in consideration the whole data matrix : chemometric  

methods are designed to treat such mult ivariate data.  

Multivariate data analysis is used for a number of di stinct, differ-

ent purposes and the aims can be divided  into three main groups :  

 data description (explorative data structure modelling of any g e-

neric n-dimensional data matrix, PCA for  example) ;  

 regression and prediction (PLS) ;  

 classification and prediction of class belongings for new samples  

(LDA and PLS-DA and ECVA).  

The aim of this  PhD thes is was to verify the poss ibili ty of identify-

ing and classifying plants or foodstuffs , in different classes , based  

on the concerted variation in m etabol ite levels, detected by NMR 

spectra and using the multivariate data analysis as a tool to inter-

pret NMR information.  

It is important to underline that the r esults obtained are useful to 

point out the metabolic consequences of a specific modif ication on 

foodstuffs , avoiding the use of a targeted  analysis for the dif fe rent 

metabolites. The data analysis is performed by applying chemomet-

ric multivariate techniques to the NMR dataset of spectra  acquired.  

The research work presented in this thesis is the result of a three 

years PhD study. This thesis reports the main results obtained  

from these two main activities :  

A1) Evaluation of a data pre-process ing system in order to min i-

mize unwanted sources of variations, due to different instrumental  

set up, manual spectra processing and to sample preparations art e-

facts;  

A2) Application of multivariate chemiometric models in data anal y-

sis.  
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INTRODUCTION 

To define the total quality of food becomes really hard  

because involves several aspects including both social -

economical (S. U. O’Hara et al. ,  2001) and scientific-

technological ones , like organoleptic  and sensory 

attributes (N. A. Abumrad,  2005), food safety (A. Al imelli et al. ,  

2007), nutritional value (I. Andersona et al. ,  1992), functionality 

(A. Becalsky et al. ,  2003), service and stability (A. E. Bender,  

1987),  psychological  factors (A.  J.  Blood et  al. ,  1999). Thus, when 

the term “quality” is defined, it must be taken in consideration the 

“consumers-producers” needs together with the “science-

technological” contributes. So, at the end,  the total food quality 

(TFQ ) is a sum of different characteristics and they can be 

represented by a subjective and  objective  concepts.  

From a subjective concept point of view, “the consumer is the main  

instrument of appraisal of the sensory properties of the product ,  

immediately perceived by the human senses” (A.  M. Giusti et al. ,  

2007). Thus, quality has become of utmost importance to society 

especia lly in the last decades during which consumers have b ecome 

more conscious of quality and organizations are judged more on 

their overall quality performance instead  of their financial perfo r-

mance alone. During this period, the most drastic change in quality 

thinking is the change from production -or iented to customer-

oriented concepts. This moving is also strictly connected to the en-

trance of large countries  like China, India, South America in to the 

global marketing. A consequence of this  entrance is the introdu c-

ing of own traditions, new raw materials ,  new transformation tec h-

nologies,  and different fashions to gastronomic preparations (D.  

Roger  et al. ,  2000). This new territories moving towards the Wes t-

ern countries brought the consumers to manifest a new awareness  

of the influence of food on mood, efficiency at work and li fe -style 

but above al l on health. This especia l ly holds after the latest  

events, like the detection of  the industrial chemical melamine in  

1
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contaminated chinese formula milk (G. S . Becker, 2008). Together  

with the consumers, on the other side of the chain, there are the 

producers who are demanding more protectionism from supran a-

tional organizations, especial ly for local specia lt ies.  

From an object ive concept point of view, characteristics  not related  

to the human senses like nutritional quali ty (E. M. Mojduszka et  

al. ,  1999) , safety of use (B-H Cho et al. ,  2008), shelf- life (M. Bill et  

al. ,  1998) and technological proprieties of foods (M. Servil li et al. ,  

2004) are function of their composition. In fact, the capabili ty to be 

transformed and the nutrit ional  value  (K. Dewettinck et al. ,  2008)  

are strictly related to the chemical composi tion and concentration  

of certain metabolites and as consequence to the quality (objective-

ly intended);  the presence,  the absence or even the bio-technology 

modification of  particularly metabol ites  can hardly altered  the in-

ner composit ion , increas ing or not the biological/nutritional value 

of food; a  typical example in this way is  genetically modified food 

(P. Tenbült et al. ,  2008).  For this reason,  considering the whole t o-

tal molecular profile  can be the right tool for the evaluation of  

food’s chemical-nutrit ional quality (D. Barber et al. ,  2008).  

 

1.1 THE MOLECULAR PROFILE OF FOOD 

Considering the objective concepts of TFQ, f oods are complex 

structure derived from plants, carcasses of animals, and single -cel l  

organisms. In this structure water (R. R. Ruan et al. ,  1998) , sac-

charides (V. M. F. Lai et al . ,  2004), proteins (M. A. Lluch et al. ,  

2001), l ipids (P. Benatti  et  al. ,  2004),  and mineral compounds  (N.  

Micha ł ,  2007) constitute the main building materia ls  (Table 1.1)  

and are responsible for the nutritional  value and most sensory 

properties of foodstuffs  (Z. E. Sikorski, 2007). All these nutrients  

are highly correlated with each other in their effect and many di s-

play interactive and synergist ic effects  and provide the human body 

with the necessary building materia l and source of energy, as well  
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as elements and compounds indispensable for  metabolism like col o-

rants, flavor compounds, vitamins, prebiotics,  probiotics and add i-

tives.  

Table 1.1: typical Products as Rich Sources of the Main Food Components (Table from 
Z. E., Sikorski (2007). Chemical and Functional Properties of Food Components, Third Edi-
tion. Ed., CRC Press Taylor & Francis Group, Boca Raton (FL), London, New York, In-
troduction 

Water Saccharides Proteins Lipids Minerals Vitamins 

Ju ices Saccharose Soybean Oils Nuts Fish 

Fruits 
Honey Beans  Lard Fish prod-

ucts 

Vegetables  

Milk Cereals  Meat  Butter  Cereals  Meat  

Vegetables  Chocolate  Fish Pork Vegetables  Fruits 

Jel l ies  

 

Potato  Wheat  Chocolate  Dairy 

products 

Cereals  

Lean Fish Manioc  Cheese Nuts Fruits Fish l iver 

Lean Meat  Fruits Eggs Egg yolk Meat  Yeast 

These constituents ,  present in lower quantities ,  also contribute to 

perform and to complete the foodstuff ’ s  structure.  Some of them 

are nutritionally essential and they are presented in the raw mat e-

rials like vitamins. In addition, others either  serve no role in hu-

man metabolism or for which the role has not yet been eluc idated  

(C. J.  Seal et al. ,  2007).  

Although some of these nutrients are not indispensable they  can be 

utilized by the body, including most free amino acids, or impart d e-

sirable sensory properties to food products  (E. A. Decker et al. ,  

2000). Other minor components  are useless or even harmful i f  

present in excess ive amounts. A variety of compounds are added in-
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tentionally during processing, to be used  as  preservatives, antioxi-

dants,  colorants, flavorings, sweeteners, and emulsifying agents, or  

to fulfi l l other technological purposes (E.  S. Zdzis ław et al. ,  2007).  

The nutritional value of foods depends, thus, primarily on the l e-

vels of nutrients present in the raw materials , from freshness, es-

pecially in the case of numerous species  of vegetables,  fruits, and  

seafood and then from components added during the transforma-

tion processing. In this  last  case,  the industry processing  may also 

increase the biological  value of  food by inducing chemical and ge-

netic changes (A.  M. Giusti et al. ,  2007)  whose extent depends on 

the chemical properties  of  food c omponents, on the conditions of  

storage and on the parameters of freezing, salting, drying, smo k-

ing, marinating, frying, cooking, and other methods of preserv ation  

or processing.  

On the other s ide, there are a lso nutritionally undesirable side ef-

fects, such as destruction of essential food comp onents as a result  

of heating,  chemical treatment,  oxidation and interactions among 

all the components.  In facts, these compounds undergo various bio-

chemical  and chemical changes during postharvest storage and 

processing of raw mater ials.  

Last but not the least, nutritionally alteration due to metabolic  

profile changes can be induced by biotechnology (genetic) modifi-

cation. The Convention on Biological Diversity (CBD 2000) defines  

biotechnology as “any technological appl ication that uses biologi-

cal systems, liv ing organisms or derivatives thereof, to make or  

modify products or processes for specif ic  use”. It thus includes a c-

tivities such as traditional food fermentations, waste treatment,  

drug development, fish farming and crop development.  

Food biotechnology has been defined as “ the application of biolog i-

cal techniques to food crops, animals and microorganisms to i m-

prove the quality, quantity,  safety,  ease of processing and produ c-

tion economics of food. It thus includes the traditional manufactur-
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ing processes used for bread, beer, cheese and various fermented  

milk products” (IFST 2004).  

1.2 MOLECULAR PROFILING TECNIQUES 

FOR FOOD QUALITY AND SAFETY AS-

SESMENT 

To ensure healthy and tasty food, to increase consumer trust and 

provide competivity to the food industry and a competit ive food 

sector , more information about food qual ity is required. Also these 

kind of information can be represented by a subjective and  objec-

tive  concepts. In this last case, t he heterogeneous food mater ia l  

and its production is complex so the research process itself is fu r-

ther difficult. If to define the term “quali ty and safety” mean to i n-

volve chemical, biochemical , agronomic  and technologic aspects ,  

also researcher techniques must take in con sideration them. It does  

not exist an unic “standard of measure” , but several  of them are  

combined together to define the entire concept of TFQ .  Thus, the 

profile methods can be completed only if  it has been taken in con-

sideration the following aspects:  

1. Proteomics  

2. Metabonomics 

3. Chemometrics (data analysis)   

In case of biotechnology (genetic ) modification it also important 

and fundamental take in consideration the fol lowing fourth a spect  

4. Genomics (detection of altered gene expression) 

Even if genomics is  listed as the fourth elements to consider  in the 

entire concept of the TFQ, i t represents the beginning of the met a-

bolic pathways (Figure 1.1) , along which is possible to take in con-

sideration all the aspects that define the concept of quality in food.  
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Figure 1.1: evolution of Genomics to Metabolomics through Proteomics. Genomics: 
mapping the entire genome (DNA and RNA sequences). Proteomics: identifying, se-
quencing and characterizing the functional protein network (the “proteome” or protein 
complement generated from the genome). Metabolomics: the comprehensive analysis of 
the whole metabolome under a given set of conditions (Figure is adapted from R. M., 
Adibhatla, J., Hatcher and R., Dempsey (2006). Lipids and Lipidomics in Brain Injury and 
Diseases. AAPS Journal, 8, E314-E321) 

1.2.1 Genomics (Detection  of al tered  gene  expre ss ion) 

The Webster's New World™  Medical Dictionary (A. a.  v. v. ,  2008)  

defines genomics  as “ the study of genes and their function. G e-

nomics aims to understand the structure of the genome, includi ng 

the mapping genes and sequencing the DNA […]”. Genomics in-

cludes:  

1. functional genomics :  the characterization of genes and their  

mRNA and protein products;   

2. structural genomics :  the dissection of  the architectural fea-

tures of genes and chromosomes ;   

3. comparative genomics :  the evolutionary relationships between 

the genes and proteins of different species   

This new discipline is born “from a marriage of molecular and cel l  

biology with classical genet ics" (V. A. McKusick et al. ,  1987), and,  

at the end, it represents the beginning of  the information to define 
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the molecular prof ile  a biological system: from men, to animals  

across plants and foods.  While in medical research, genomics had  

been a fast evolution, in nutrition and especially in food research it  

is almost a brand new approach. In fact, in the past, nutrition and 

food research focused the attention almost exclusively on measur-

ing the presence or  absence of metabol ites or their concentration.  

However,  as  there are important levels  of b iological regulation  

beyond gene and protein expression (protein–protein interactions  

and alterations of protein activity by metabol ic intermediates), the 

final stage along the line , from gene to mRNA, to protein to func-

tion, is,  therefore, the analys is of the pat tern and the concentra-

tions of the metabolites that flow between the proteins,  orga nelles,  

cells and organs (M. J. Rist et al. ,  2006).  In this way nutrition and 

food scientists wil l analyze metabolites but this time the analys is  

of the metabolome will comprise the su m of all detectable low- and 

intermediate-molecular-weight compounds rather than individual 

metabolites.  Anyway, this kind of approach is not unilateral, but 

measuring metabolites ’ levels can give functional  elucidation of  

genes ’ role and it becomes a powerful tool for the comprehension of  

the metabol ic pathways into bacterial systems, yeast and plants  –  

both wild type and transgenic organisms . In the first case (bac-

terial systems and yeasts ),  the functional genomics is above al l  

adopted for the genetic  screening of a large range of microorgan-

isms (O. P. Kuipers, 1999); in fact, genomics of food microbes ge-

nerates valuable knowledge that can be used for metabolic eng i-

neering, improving cell factories and development of novel prese r-

vation methods.  This method can provide an understanding of  how 

microorganism genes respond to environmental influences (i .e.  by 

their  expression)  in different situations  or  ecologies , and should  

therefore al low adaptation of conditions to improve food technolo-

gical processes. Functional genomics can, for example, shed light 

on common genetic mechanisms which enable microorganisms to 

use certain sugars during fermentation, as well as on genetic  di f-

ferences  allowing some strains to perform better  than others. I t  

holds great potential  for defining and modifying elusive metabolic  
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mechanisms used by microorganisms. Mo ving from the gene to the 

protein level, i t should als o be mentioned that proteomics and is  

also a very active area of research which offers potentia l for i m-

proving fermentation technologies (FAO, 2004).  

In the second case (plants ) genomics is used to refers the study of  

the way genes and genetic information are organized within the 

genome, the methods of collecting and analyzing this info rmation ,  

and how this organization de termines their biological  functionali ty  

(H. Campos-de Qiroz, 2002). Plant genomics is reversing the pre-

vious paradigm of  identi fying genes behind biological functions  

and instead focuses on finding biological  functions behind genes .  

This can leads to create a  data bank of  useful genes  that can be 

employed to improve plants such as crops  and trees. It  also reduces  

the gap between phenotype and genotype and helps to comprehend 

not only the isolated ef fect of a gene, but also the way i ts genetic  

context and its genetic networks , it interacts with, can modulate 

its activity. In this way is possible to understand gene-gene itera-

tions, but above all  how environmental or biotechnolog ical  changes  

on a gene can influenced the whole genetic context and networks 

and as consequence the molecular/metabolic profil ing.  

1.2.2 Proteomics  

Proteomics  is the study of the entire set of proteins present in a  

cell,  organism or t issue under defined cond itions (K. Belhajjame et  

al . ,  2005)  with the aim of understanding the behavior of  these pro-

teins under varying environments and conditions.  This kind of ap-

proach, at the beginning, has been used in medical environment; i t  

was developed to identify proteins associated with a disease and  

then potentia l new drugs for the treatment of disease. The study,  

in summary, try to design drugs to interfere with the action of  a  

protein on the base of its 3D structure with the help of  computer  

technique which attempts to fit millions  of small mol ecules to the 

three-dimensional structure of  a protein . This approach is  called  
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"virtual ligand screening" (G. Klebe, 2005) and it  is represented  

in Figure 1.2.  

 

Figure 1.2: large libraries of available, often purchasable, compounds are docked into 
the structure of receptor targets by a docking computer program. Each compound is 
sampled in thousands to millions of possible configurations and scored on the basis of its 
complementarity to the receptor. Of the hundreds of thousands of molecules in the 
library, tens of top-scoring predicted ligands (hits) are subsequently tested for activity 
in an experimental assay (Figure is taken, with concession from the author, from the 
following article: B. K.,  Shoichet (2004). Virtual screening of chemical libraries. Nature 432, 
862-865) 

The computer rates the quali ty of the f it to various sites in the 

protein, with the goal of either enhancing or disabling the function  

of the protein, depending on its function  in the cell.  A good exa m-

ple of this is the identi fication of new drugs to target and inact i-

vate the HIV-1 protease (W. Wang et al. ,  2001). Nowadays, the po-

tential  of  proteomics is adopted also in  nutrition and food research ,  

where i t is increasingly being recognized. Proteomics is employed 

to address questions of  nutrition and health, based on the concept 

that foods and drinks affect ind ividual consumers different ly (B.,  de 

Roos et al. ,  2008).  Questions  like “why does a  food well  tolerated  

by one individual cause violent gastric  discomfort in another? ” ,  
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“are there biomarkers for food preference?”, “what genes are acti-

vated by specif ic foods in procuring health and wellness? ” can find 

an answer in protein markers that indicate such predisposition b e-

fore disease symptoms arise . This is the basis of new nutritional-

discovery tools,  also indicated by the term nutrigenomics  (R. M.  

Elliott et al . ,  2006). The main focus of nutrigenomics is on how d i-

et regulates gene function (transcription  and translation) and m e-

tabol ism (i.e.  diet →  gene interactions) and its aim is to find new 

specific nutritional diet  to inactivate proteins involved in diseas.   

In food chemistry, proteomic techniques  offer a new very promis-

ing approach to identify protein in food matrix and to study pr o-

tein–protein interactions in raw and processed foods, as well as in-

teractions between proteins and other food components (M. Carbo-

naro, 2004) . In Table 1.2 are listed speci fic applications of proteo-

mics in analysis of food  quality. 

Table 1.2: examples of application of proteomics to food quality assessment (From:  M., 
Carbonaro (2004). Proteomics: present and future in food quality evaluation. Trends in Food 
Science & Technology 15, 209–216) 

Application study  Reference 

 Comparison of meat species 
 Post mortem changes in porcine meat 
 Determination of wheat quality 
 Analysis of wheat kernel amphiphilic pro-

teins 
 Glutenin subunit mapping 
 Metabolic pathways in rice 
 Tomato protein expression under heat 

stress 
 Identification of hazelnut 11 S allergen 
 Markers of sesame seed allergens 
 Immunological analysis of shrimp aller-

gens 
 Map of commercial bovine milk 
 Collection of bioactive peptides of b-casein 
 Reference map of fat globule membrane 

proteins 
 Bioavailability of milk proteins 

 P. Roncada et al., 2002 
 R. Lametsch et al.., 2001 
 D. M. Gottlieb et al., 2002 
 N. Amiour et al., 2002 

 
 R. Cozzolino et al., 2001 
 A. Koller et al., 2002 
 Y. Iwahashi et al., 2000 

 
 K. Beyer et al., 2002 
 K. Beyer et al., 2002 
 C. J. Yu et al., 2003 

 
 M. Galvani et al., 2001 
 P. G. Righetti et al., 1997 
 S. Quaranta et al., 2001 

 
 M. Carbonaro et al., 2003 

In food quality ,  proteomics researches focus the attent ion espe-

cially on the alteration of  food due to specif ic condit ions. I t is  

largely applied especial ly in meat science .  In fact, because muscle 

is mainly composed of water and proteins, it is  evident that prote-
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ome analysis can give much information on structures and fun c-

tions of proteins involved in several mechanisms which determine 

meat quali ty. Furthermore, as meat quality is str ictly  connected to 

the meat tenderness,  understanding the factors involved in the d e-

velopment of tenderness , like the post-mortem glycolysis and pro-

teolysis (X. Jia et al . ,  2006), in muscle t issues is a major concern 

for the beef-producing industry and for consumers requests.   

Like meat  science, also cereal science  finds proteomics  as a  usefu l  

instruments to understand physiological and technological function  

of proteins of wheat kernels  (N. Amiour et al . ,  2002). This ap-

proach provides some very useful information about  proteic com-

ponents linked to bread wheat quality and , therefore, to predict  the 

quality of bread.  Particularly interesting is the application of pr o-

teomics in food allergy prevention  (K.  Beyer, et al . ,  2002): this  

kind of  study allows to identify  several a llergenic proteins in sa m-

ples, indicating the potential of proteomic approaches to  survey 

food samples with regard to the occurrence of  a llergens.  This me-

thod has been applied systematical ly to identify and  profile pro-

teins expressed above all during seed development (K. R. Kottapal li  

et al. ,  2008) or in the mature seed of model plant species like soy-

bean (M. Hajduch et al. ,  2005), rapeseed (M. Hajduch et al. ,  2006),  

Medicago (K. Gallardo et al . ,  2003), Arabidopsis (K. Gallardo et  

al . ,  2002), wheat (D.  J.  Skylas  et al . ,  2001) and barley (T. Majoul ,  

et al. ,  2003).  

In all food cases, the main technological approach (experimental  

proteomics ) currently applied provides  at least five steps  (H. A.  

Kuiper et al . ,  2003) including one or often  two-dimensional gel  

electrophoresis  (M. Berth et al . ,  2007) followed by excision of pro-

tein spots from the gel, digestion into fragments by specif ic pr o-

teases, analysis  by mass spectrometry (J .  S . ,  Anderson et al. ,  2000)  

as represented in Figure 1.3 and subsequent bioinformatics tools,  

to match the resulted fragments with information about known 

proteins.  
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Figure 1.3: the typical proteomics experiment consists of five stages: 1, the proteins to 
be analyzed are isolated from cell lysate or tissues by biochemical fractionation or 
affinity selection. This often includes a final step of one-dimensional or two dimensional 
gel electrophoresis. Therefore, proteins are degraded enzymatically to peptides in stage 
2, usually by trypsin, In stage 3, the peptides are separated by one or more steps of 
HPLC and eluted into an electrospray ion source where they are nebulized in small, 
highly charged droplets. After evaporation, multiply protonated peptides enter the mass 
spectrometer and, in stage 4, a mass spectrum of the peptides eluting at this time point 
is taken. The computer generates a prioritized list of these peptides for fragmentation 
and a series of tandem mass spectrometric or 'MS/MS' experiments ensues (stage 5). 
These consist of isolation of a given peptide ion, fragmentation by energetic collision 
with gas, and recording of the tandem or MS/MS spectrum. The MS and MS/MS 
spectra are typically acquired for about one second each and stored for matching against 
protein sequence databases. The outcome of the experiment is the identity of the 
peptides and therefore the proteins making up the purified protein population (Figure is 
taken, with concession from the author, from the following article: R., Aebersold and 
M., Mann (2003). Mass spectrometry-based proteomics. Nature 422, 198-207) 

1.2.3 Metabonomics   

Metabonomics is the study of metabol ites and their role in various  

physiological states; it is a novel methodology arising from the 

post-genomics era and has extensive biomedical application.  It  can  

be expressed as “the quantitative measurement of the dynamic mu l-

ti-parametric metabol ic response of living systems to pathophysi o-

logical stimuli or genetic  modif ications” ( J. K.  Nicholson et al. ,  

1999) and, as a  holistic  approach, it detects, quantifies and cat a-

logues the time related metabolic processes of an integrated bi o-
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logical system, ultimately, relates such processes to the traject o-

ries of the physiological and pathophysiological  events (H. Tang,  

2006); however, a metabonomic study can provide significant r e-

sults only if  the metabolic  changes in a  target group is significan t-

ly different from the biological variation of the relat ive control  

group (I.  B. Abdel -Farid  et  al. ,  2007).  Different from metabolom-

ics ,  that  focuses on high-throughput characterization of small m o-

lecule metabolites in biological matrices  (D. S. Wishart, 2008), in  

order to have a complete set  (molecular profile) of the molecules  

characterizing the matrices , metabonomics try to find out how the 

molecular prof ile responds (changes) to certain external factors .  

Complementary to proteomics  and genomics, metabonomics has  

been first widely applied to a wide range of problems in diverse 

biomedical research areas with the a im to understand the me tabo-

lites ’s behavior under certain exogenous conditions. Dif ferent a p-

plications of the metabonomic approach have been documented, e s-

pecially in toxicity screening (Z. Xiaoyu et al. ,  2006), drug meta-

bolism (H. C. Keun, 2006) and functional genomics (C. L. Gavaghan 

et al. ,  2002). In summary,  “Metabonomics thus allows real-world,  

medical observations to be related to data from all the other 

'omics' technologies, which are less directly related to actual  

biological outcomes than metabolism is (Figure 1.4)” (J.  K.,  Ni-

cholson et al. ,  2008).  

 

Figure 1.4: three broad areas that might benefit from metabonomics. (Figure is taken, 
with concession from the author, from the following article: J. K., Nicholson and J. C., 
Lindon (2008). Systems biology: Metabonomics. Nature 455, 1054-1056) 
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As nutrients and non-nutrients, amongst many exogenous factors,  

in food have also important effects on the biochemistry of hu man 

and associated micro f lora,  as well as proteomics, metabonomics  

finds an increasing development also in  nutr itional  science  (K. S .  

Solanky et  al. ,  2005; M. J . Gibney et al. ,  2005)  and in recent time 

in food chemistry (C. Castro et al. ,  2007) . From a nutritional point 

of view, the extension of this  approach to human nutrition offers  

enormous potentia l (evaluation of different biofluids in nutritional  

metabonomics,  of non nutrient chemicals  and large-bowel metabo-

lites) and it opens the door to studying different aspects of ‘ ‘mole-

cular nutrition’ ’  more strictly connected to food quality , including:  

1. food component analysis;   

2. food quality/authentic ity detection;  

3. food consumption monitoring;  

4. physiological monitoring in food intervention or diet challenge 

studies.  

In fact, traditionally food component analysis involves identifying 

and classifying food constituents into very broad categories such as  

proteins, fats, carbohydrates,  f iber, v itamins, trace elements, solids  

and/or ash. However,  with the advent of metabolomics and meta-

bonomics, foods and beverages are now being analyzed with cons i-

derably more chemical detai l  (D. S.  Wishart, 2008) with hundreds  

or even thousands of distinct  chemical  identities being detected  

and/or identified in certain foods.  From this perspective (metabo-

lomics researcher) most foods can essentially be viewed as com-

plex chemical mixtures consist ing of various metabol ites and chem-

ical additives  in a solid, semi-solid or liquid matrix as shown in the 

following examples:  

1. the milk metabolome contains  more than 200 different ol igosac-

charides (M. R. Ninonuevo et al. ,  2006);  
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2. the edible plant metabolome likely consists  of more than 10,000 

different detectable compounds  with more than 2000 nutrient 

metabolites and more than  8000 non-nutrient phytochemicals  

having already been identified (T. M. Ehrman et al. ,  2007).  

These examples want to underline the high capacity from one side 

of metabolomics  to identi fy hundreds of metabolites in highly  com-

plex biological matrix; moreover,  on the other side,  the capability  

of metabonomics, for this intrinsic characteristic , to assess pertur-

bations in metabolic pathways . In this way, metabonomics becomes 

a powerful tool to examine underlying biology and mechanisms of  

disease, for drug development and toxic ity studies, for assess ing 

the ef fects of environmental changes and even for the development 

of control methods for both food adulteration and food quality  (D.  

S. Wishart, 2008) .  For instance, orange  juice can be blended with 

lower-cost grapefruit juice without  any obvious changes  to flavor  

or color.  However, the  presence of grapefruit juice in a presump-

tively pure orange  juice product can have serious consequences  to 

individuals  on certain medications . In particular, the detection of  

adulterated or contaminated food products  (frauds),  often very  di f-

ficult to detect via taste or color ,  is possible for the presence of  

characteristic chemicals  or certa in concentrations of  chemicals  in  

certain types of juices,  extracts and oils  (N. Ogrinc et al . ,  2003) .  

Food quality assessment a lso impacts food quality control. In fact ,  

metabonomic techniques may find their greatest use in the  food in-

dustry in monitoring quality control or batch -to batch  product re-

producibility.   Both in human nutrit ion and in food  chemistry, the 

metabonomics approach is widely developing above all for the i m-

provement of advanced analytical technologies (I .  D. Wilson ,  

2007).  Different platform have been employed to investigate on 

the metabolites ’ profi le such as:   

 Nuclear Magnetic Resonance (NMR );   

 Gas Chromatography Mass Spectrometry  (GC-MS) ;   

 Liquid Chromatography Mass Spectrometry (LC-MS).  
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In Table 1.3 are listed the main advantages and disadvantages that 

can be detected using above listed analytical techniques , whilst in 

Figure 1.5 are il lustrated the sensitivities  of the tec hniques . 

Table 1.3: comparison of different metabolomics technologies (From D. S. Wishart 
(2008). Metabolomics: applications to food science and nutrition research. Trends in Food 
Science & Technology, 19, 482–493) 

Metabonomics Technologies 

Technology Advantages 
 

Disadvantages 

 

 

NMR 

 Quantitative 
 Non-destructive 
 Fast (2-3 min/sample) 
 Requires no derivitization 
 Requires no separation 
 Detects all organic classes 
 Allows ID of novel chemicals 
 Robust, mature technology 
 Can be used for metabolite imaging 

(fMRI) 
 Large body of software and databas-

es for metabolite ID 
 Compatible with liquids and solids 

 Not very sensitive 
 Expensive instrumentation 
 Large instrument footprint 
 Cannot detect or ID salts 

and inorganic ions 
 Cannot detect non-

protonated compounds 
 Requires larger (0.5 mL) 

samples 
 

 
  

 
 
 
 
 

GC 
MS 

 

 Robust, mature technology 
 Relatively inexpensive 
 Quantitative (with calibration) 
 Modest sample size need 
 Good sensitivity 
 Large body of software and databas-

es for metabolite ID 
 Detects most organic and some in-

organic molecules 
 Excellent separation reproducibility 

 Sample not recoverable 
 Requires sample derivitiza-

tion 
 Requires separation 
 Slow (20-30 min/sample) 
 Cannot be used in imaging 
 Novel compound ID is diffi-

cult 
 

   
 
 
 
 
 

LC 
MS 

 

 Superb sensitivity 
 Very flexible technology 
 Detects most organic and some in-

organic molecules 
 Minimal sample size requirement 
 Can be used in metabolite imaging 

(MALDI) 
 Can be done without separation (di-

rect injection) 
 Has potential for detecting largest 

portion of metabolome 

 

 Sample not recoverable 
 Not very quantitative 
 Expensive instrumentation 
 Slow (20-30 min/sample) 
 Poor separation resolution 

and reproducibility (vs. GC) 
 Less robust instrumentation 

than NMR or GC-MS 
 Limited body of software 

and databases for metabolite 
ID 

 Novel compound ID is diffi-
cult 
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In particular, the NMR technique has the advantage to supply d e-

tailed information on the molecular structure of the biological m a-

terial observed, ref lect ing at the end the metabonomic status of a  

biological living system, without losing important information on 

the system.  

 

Figure 1.5: a comparison of the relative sensitivities of various metabolomic tools. 
NMR has rapid analysis times but suffers from lower sensitivity thus allowing visualiza-
tion only of the more concentrated metabolites (i.e. the tip of the iceberg). GC/MS and 
HPLC/MS provide good selectivity and sensitivity (Figure is adapted from L. W., 
Sumner, P., Mendes and R. A., Dixon (2002). Plant metabolomics: large-scale phytochemistry 
in the functional genomics era. Review. Phytochemistry, 62, 817–836) 

NMR is generally used to detect hydrogen atoms in metabol ites  

(1H NMR); thus, in a typical sample (biological fluid in medical re-

search or organic extract in food research) all hydrogen-containing 

molecules (a lmost all metabol ites) will give an 1H NMR spectrum, 

as long as they are present in concentrations above  the detection  

limit (NMR characteristics are going to be discussed in par 1.3) .  
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The NMR spectrum results to be in this way the superposition ,  

commonly cal led a lso fingerprint  (I .  F. Duarte et al. ,  2002; F. M.  

Amaral et al. ,  2005), of the spectra of all  of the metabolites in the 

sample. An advantage of NMR is that the sample doesn't require 

any physical or chemical treatment prior  to the analysis , but only 

the solution conditions such as the temperature, pH and  salt con-

centration have to be adjusted so as to closely mimic a given phy-

siological f luid, especially in the case of proteins’ s tudy (K.  

Wüthrich, 2002). On the other  side,  the MS studies usually require 

the metabolites to be separated from the sample before detection,  

by using HPLC (I.  D. Wilson et  al. ,  2005)  or the metabolites can be 

chemical ly modified  to make them volatile, so to be used in GC–MS 

(R. Goodacre et al. ,  2004).   

1.2.4 Data analysis (chemometrics methods) 

As has been told in previous paragraph,  a metabonomics study can 

provide significant results only if the metabolic  changes  in a  target 

group is significantly different from the biological variation of the 

relative control group (I. B. Abdel -Farid  et al . ,  2007).  This means 

that the spectra of samples  of interest are compared with those 

from controls, so that the spectral features caused by external fac-

tors can be determined.  

This approach leads to ignore the importance of the concentration  

of the metabolites. This is  in part true: p recise metabolite concen-

trations are not always necessary to formulate hypotheses about 

the mechanism of changes, especial ly when it talks about diseases ;  

so metabonomics analys is becomes a way to clusterized or classify  

(Y. Wang et al. ,  2004)  on the base of dif ferences  ( in term of pres-

ence or not of metabolites) between control and target samples.  

But, however,  if only a few metabolites  turn out to be important  

then knowledge of their  concentrations might be instruc tive.  Thus,  

after their identi fications, they can subsequently be measured  and 

used like bio-chemical markers .  In this way metabonomics (also 
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called quantitative metabolomics  or targeted profiling ) becomes  

a predictive  tool to predict property of  interest (typically adhe-

rence to a performance standard) and in the same a time an instru-

ment that can provide elements for the distinction among samples  

that show same characteristics ( O. Moreira Sampaio et al. ,  2008) .  

This predictive tools, has its advantages and disadvantages, but ,  

given the importance attached to bioactive  compound identifica-

tion, there is a growing preference  for  quantitative metabolomics  

in many areas of food science and nutrition research (M. J. Gibney 

et al. ,  2005; S. Moco et al. ,  2006).  

Pattern recognition  (A. K.  Jain et al . ,  2000) is the common name 

used to identi fy methods that lead to organize the metabonomics  

data in order to classify samples in classes and to predict or c lass i-

fy unknown samples in one of the known classes on the bas is of its  

pattern of measurements (L. A. Berrueta  et al. ,  2007). It is mainly 

based on mathematical and statistical procedures (multivariate 

analysis  or chemometrics ) that a llow to analyze the great 

amounts of information from even few samples (variables or fea-

tures),  produced by modern analytical instruments  (like NMR), in  

relatively short time (I. F. Duarte et al. ,  2004).  

This leads to the avai labili ty of compressed multivariate data ma-

trices from which is possible to extract  the maximum useful infor-

mation. Thus, multivariate analysis becomes a good tool  to explore 

all data come from the “-omics” technologies, because, as i t has  

been said in previous paragraphs,  the “–omics” raw data are gener-

ally from spectroscopic measurements  (M. A.  Al-Holy et al. ,  2006;  

M. Bunzel et al. ,  2006; B. Cavaliere et al . ,  2008) that give a lot of  

information.   

At the end, from a spectroscopic measurement, for example an 1H 

NMR spectrum, is possible to select  one or more spectral regions 

or specif ic signals that  often provide better results in classific a-

tions or prediction than the use of the entire spectra (Figure 1.6).   
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Figure 1.6: metabonomics data analysis: a, typical procedure might start with the NMR 
spectrum of a sample, which contains signals from hundreds of metabolites. b, The 
individual spectra for each metabolite are identified. c, This enables the structure of the 
metabolites to be determined. d, Pattern-recognition techniques can be used to work out 
how the spectra from two groups differ each other. (Figure is adapted from the 
following article: J. K., Nicholson and J. C.,  Lindon (2008). Systems biology: Metabonomics. 
Nature, 455, 1054-1056) 

These statistical o multivar iate statistical comparisons and feature 

identificat ion techniques usually involve unsupervised cluster ing  

as Principal Component Analysis (PCA) (L. I .  Smith, 2002) ,  or  

supervised classification as Linear Discriminant Analysis  (LDA )  

(S. J.  Dixon et al ,  2007), Partial  Least Squares Discriminant 
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Analysis (PLS-DA) (J.  A. Westerhuis et al. ,  2008) or Partial Least  

Sqaures  (PLS) (D. M. Pirouz, 2006).  

Formally, PCA  is  a way of identifying patterns in data, expressing 

them in such a way as to highlight  their similarities and/or differ-

ences (M-A Rodríguez-Delgado et al. ,  2002; B. M. Si lva et al . ,  

2006). The advantage of this techniques is  the capabili ty to reduce  

multidimensional data set  (a data matrix) into a new set of uncor-

related (i .e. ,  orthogonal) variables  by performing a covar iance 

analysis (ANCOVA) between factors .  

The PCA works by decomposing the X-matrix (containing the orig-

inal data set)  as the product of two smaller matrices, which are 

called loading  and score  matrices (Figure 1.7).   

The loading matrix (V) contains information about the var iables: i t  

is composed of a few vectors (Principal  Components, PCs) which 

are (obtained as)  linear  combinations of  the original  X-variables .  

The score matrix  (U)  contains information about the objects. Each 

object is described in terms of i ts projections onto the PCs, (i n-

stead of the original variables) (Eq. 1 .1).  

X = VT*U (Eq.1.1)  

The information not contained in these matrices remains as "une x-

plained X-variance" in a  residual matrix (E) which has  exactly the 

same dimensionality as the original X -matrix.   

The PCs, among many others, have two interesting prope rties:   

1. they are extracted in decreasing order  of  importance.  The first  

PC always contains more information than the second, the 

second more than the third and so on.. .  

2. they are orthogonal to each other. There is absolutely no corr e-

lation between the information contained in different PCs.  
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In PCA, is  possible to decide how many PCs should be extracted  

(the number of  significant components, i .e.  the dimensionality of  

the model).  

 

Figura 1.7: the two matrices V and U are orthogonal. The matrix V is usually called the 
loadings matrix and the matrix U is called the scores matrix. There are a few common 
plots which are always used in connection with PCA: 1) the scores/scores plot (left part 
of the Figure below)and 2) the corresponding loading/loading plot (right part of the 
figure below) (Figures is adapted from H., Lohninger (1999). Teach/Me Data Analysis. 
Springer-Verlag, Berlin-New York-Tokyo) 

Each new PC extracted increases further the amount of information 

(variance) explained by the model. However, usually the first four  

of five PCs explain more than 90% of  the X -variance.  Anyway,  

there is not a simple nor unique criterion to decide how many PC 

to extract and two kinds of considerations should be taken into a c-

count. From a theoretical point of view, i t is possible to use cross -

validation techniques  (H. Kubinyi et al. ,  1993)  to decide the num-

ber of PCs to include. Since data patterns  can be hard to f ind in da-

ta of  high dimension, like spectroscopic  ones,  where most of the 
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time the information is redundant, PCA is a powerful tool for ana-

lyzing them. In 1H NMR, redundancy means that some of the  va-

riables are correlated with one another, because they are measuring 

the same construct (different picks for the same molecule). Because 

of this redundancy, is  possible to reduce the observed variables in-

to a smaller number of art ificial variables (principal components  

or  latent factors ) that are a linear combination of the original  

ones and will account for most of the var iance in the observed va-

riables, without much loss of information . In this way, by using a  

few components,  each sample (spectrum) can be represented by rel-

atively few numbers  instead of  by values for thousands of variables  

(spectral data points) . Samples can then be plotted, making it pos s-

ible to visually assess similarities and di fferences between samples  

and determine whether samples can be grouped  (M. Ringnér,  2008) .  

As a clustering technique, PCA is most commonly used to identify  

how one sample is different from another, which variables  contr i-

bute most to this difference, and whether those variables  contri-

bute in the same way (i .e.  are correlated)  or  independently (i .e .  un-

correlated) from each other . In contrast  to PCA, LDA ,  PLS and 

PLS-DA (O. E. De Noord, 1994; D. Kleinbaum et al. ,  1988; H. Mar-

tens et al. ,  1989)  are supervised classification technique  that can be 

used to enhance the separation between  groups of observations by 

rotat ing PCA components such that a maximum separation among 

classes is obtained (S. Chevallier et al. ,  2006).  

The purpose of Discriminant Analysis is to classify objects (people,  

customers,  foods, genes,  things, etc.) into one of  two or more 

groups based on a set of features that describe the objects  (e.g .  

gender, age, income, weight, preference score,  genotypes, metabo-

lites ’ content etc.).  In general, we assign an object to one of a  

number of predetermined groups based on observa tions made on 

the object. For example, we want to know whether a soap product 

is good or bad based on several measurements on the product such 

as weight, volume, people's preferential score, smell,  color contrast  

etc. The object here is soap. The class category or the group 
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(“good” and “bad”) is what we are looking for (it is also called d e-

pendent variable). Each measurement on the product is called fe a-

tures that describe the object (it is also called independent vari a-

ble).  Thus, in discriminant analysis, the dependent variable (Y) is  

the group and the independent variables (X) are the object features  

that might describe the group. The dependent variable is always 

category (nominal scale) variable while the independent variables  

can be any measurement scale (i .e.  nominal, ordinal, interval or r a-

tio) . If we can assume that the groups are linearly separable, we 

can use linear discriminant model (LDA). Linearly separable su g-

gests that the groups can be separated by a linear combination of  

features that describe the objects (K. Fukunaga, 1990; R. Duda et  

al. ,  2000;  T. Hastie et al. ,  2001).  If only two features, the separa-

tors between objects group will  become lines. I f the features are 

three, the separator is a plane and the number of features (i .e.  i n-

dependent variables) is more than 3, the separators become a h y-

per-plane.  

Partial Least Squares (PLS) is useful when a (very) large set of in-

dependent variables have to be predicted.  It originated in the socia l  

sciences (H. Wold, 1966) but became popular also in all branches  

based on  in chemometrics methods, including food science ( A.  

Szydlowska-Czerniak, 2007; J.  M. Poveda et  al. ,  2006) . It  is a  mul-

tivariate regression method allowing to establish a relationship b e-

tween one or more dependent variables ( U) and a group of descrip-

tors (T). T- and U-variables are modelled simultaneously to find  

the latent var iables (LVs) in T that will predict the latent variables  

in U and at the same time account for the  largest possible informa-

tion present in T; Figure 1.8 gives a schematic outline of the me-

thod. The overall goal (shown in the lower box  of Figure 1.8) is to 

use the factors to predict the responses in the population.  This is  

achieved indirectly by extracting latent variables  T and U from 

sampled factors and responses,  respectively. The extracted factors  

T (also referred to as X-scores) are used to predict the Y-scores U,  
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and then the predicted Y-scores are used to construct  predictions  

for the responses (D. T. Randall ,  2004).  

 

Figure 1.8: schematic outline of PLS method. Hence the PLS method is popular in in-
dustries that collect correlated data on many x-variables, known as predictors. For ex-
ample, multivariate calibration in analytical chemistry; spectroscopy in chemometrics. 
The PLS method extracts orthogonal linear combinations of predictors, known as fac-
tors (T or X-Scores), from the predictor data that explain variance in both the predictor 
variables and the response (U or Y-Scores) variable(s) (Figure is adapted from D. T., 
Randall D. Tobias (2004). An Introduction to Partial Least Squares Regression. SAS Insti-
tute Inc., Cary, NC and S., Wold (1994). PLS for Multivariate Linear Modeling QSAR: 
Chemometric Methods in Molecular Design. Methods and Principles in Medicinal Chemistry. 
Van de Waterbeemd H (Editor) Verlag-Chemie) 

So, in this case the latent variables are selected on the basis of ex-

plaining contemporarily  both descriptors  and predictors. These l a-

tent variables are similar to the principal components calculated  

from PCA - the first one accounts for the largest am ount of infor-

mation fol lowed by the other  components  that account  for the max-

imum residual variance. As for PCs,  the last  LVs  are mostly re-

sponsible for random var iations and experimental  error. The op-

timal number of LVs, i .e.  modelling information  in X useful to pre-

dict the response Y but avoiding overfi tting, is determined on the 

basis of the residual variance in prediction.  

Cross-validation techniques  are adopted for evaluating the pre-

dictive ability and select the optimal  number of latent variables.  
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PLS was contrived to model continuous responses but it  can be ap-

plied even for classificat ion purposes by establishing  an appropri-

ate Y related to the belonging of each sample  to a c lass. In this  

case it is called Partial Least Squares  – Discriminant Analysis  

(PLS-DA).  

In the case of  proteomic  data,  one response variable for  each group 

of samples  is usually  adopted.  Each response variable is  assigned a  

1 value for the samples belonging to the corresponding class and a  

0 value for the samples belonging to the other classes.  

In general, a PLS analysis consists of the stages:  

1.  calculate a  PLS model  using a high number of factors (more 

than is likely to be required) ;  

2. determine the number of factors to include in a fi tted model by 

either:  

•  analysing information calculated during the process of extrac t-

ing factors;  

•  calculating a prediction accuracy estimate based on, e.g. ,  cross -

validation;  

3.  fit the model with the determined number of factors by calc u-

lating parameter estimates of the  linear regression;  

4.  given a set of predictors and responses used to fit a PLS mo d-

el, and a suitable number of factors  to use to calculate parame-

ter est imates, estimate response values to new predictor data.  

As it  has been told at the beginning of the paragraph, chemometric  

approaches like PCA and PLS-DA, on their own,  do not permit the 

direct identificat ion or quantificat ion of  compounds. In the other  

approach to metabonomics (quantitative metabolomics or tar-

geted profil ing )  the focus is  on  attempting to identify and/or 

quantify as many compounds  in the sample as possible.  
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This usually done by comparing the spectroscopic data (obtained  

from sample’s NMR or MS ones) spectroscopic data reference l i-

brary obtained from pure compounds (N. J. Serkova et al. ,  2007; A.  

M. Weljie, et al. ,  2006; D. S. Wishart et al. ,  2001). Once the const i-

tuent compounds are identified and quantified, the data are then 

statistically processed (using PCA or PLS-DA) to identify the mos t 

important biomarkers or informative metabolic  pathways (A. M. 

Weljie et al. ,  2006).  

Depending on the objectives  and instrumental capacity, quantita-

tive metabolomics may be either targeted (selective to certa in  

classes of compounds) or comprehensive (covering  all or almost al l  

detectable metabolites) .  

1.2.5 Conclusions 

The appl ication of the whole “high throughput molecular profi l-

ing strategy”  (HTMPs ,  for convenience) , that start from genomics  

through proteomics  and metabolomics/metabonomics and ends 

with chemometrics (Figure 1.9), together with range of spectros-

copic methods that were linked to pattern-recognition techniques ,  

such as Nuclear Magnetic Resonance, is being appl ied with increas-

ing frequency in all human sciences. In recent time, the strategy 

also took place both in the food industry and in the agriculture sec-

tor. Beyond them, the strategy is  contributing to the improvement 

of food processing, food safety and quality as surance from “farm to 

fork” (C. Almeida et al. ,  2006).  

In the same time, the improvement of food quality and technology 

brought to innovate also the nutrition aspect of  food. In fact,  from 

a nutritional point of view, the HTMPs is allowing the  develop-

ment of functional food and  personalized food products for indi-

vidual and customized diet,  based on genomic, proteomic and thus  

metabolic personal  information, so to optimize health and prevent 

disease.  
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Figure 1.9: four genetically different plants are indicated by different colours in part a. 
Although there are clear differences in the sizes, these morphological distinctions cannot 
be used to make inferences about the status of metabolic pathways. Part b shows a 
schematic representation of the intensities of six peaks that were chromatographily 
separated and measured. The peaks are colour coded to correspond to the plants shown 
in part a. There is a seventh peak labelled in red in the blue plant chromatogram that 
represents a novel metabolite present only in this mutant. Quantitative comparison of 
each of the six normally detected compounds from the four plants (part c). The asterisk 
indicates statistically significant differences in amounts of specified compounds from 
each plant. In this example, wild-type and high-temperature tolerant mutant plants 
were continuously grown at 23°C or were shifted to 37°C (part d). Part e shows the 
results of principal components analysis of metabolites from these samples. The data 
reveal that the 23°C grown wild-type sample (yellow circles) is phenotypically distinct 
from the remaining samples. By contrast, the high-temperature tolerant mutant 
(turquoise and red) samples from both temperatures are similar to 37°C-treated wild-
type plants (purple) (Figure is adapted from R. L., Last, A. D., Jones and Y., Shachar-
Hill (2007). Towards the plant metabolome and beyond. Nature Reviews Molecular Cell 
Biology 8, 167-174) 

1.3 NMR AS A METHOD FOR FOODS’ MOLE-

CULAR PROFILING 

The application of nuclear magnetic  resonance (NMR)  spectroscopy 

to the analysis and quality control of foods has shown great deve l-

opment in the last few years.  The increase of new application and 
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the attention to this technique by scientists, off icial control inst i-

tutions and food industries can be attributed both to the high sp e-

cifity  and versatility of the NMR technique and to the improv e-

ment of NMR instrument performances  and availability.  In food 

chemistry, NMR becomes a specific analytical techniques to assess  

food quality and verify in an objective way the “food’s hist ory” (R.  

Sacchi et al. ,  2007).  

With the respect to the objective definition of food quality param e-

ters (par. 1.1) , all NMR techniques can give p otential information 

(directly or indirectly) related to the molecular composition, the 

physical status of water and fat, the starch and protein in emu l-

sions, the internal structure of solid foods and so on.  The ability of  

high-resolution NMR to monitor in a n on invasive way all  abun-

dant molecules present in a row materia ls or in a complex system 

is a major drive for NMR appl ications in food science. Thus, a lot  

of applications use the NMR spectra as a “ fingerprint” of foods.  

1.3.1 NMR Spectroscopy: the very basic principles  

The principles of NMR spectroscopy are well known nowadays and 

it will be easily available in many textbook (I.  P. Gerothanassis  et  

al. ,  2002) and for these reasons it will be not deeply discussed here 

but only the main parameters  that are u sed in treating the NMR 

data in food analysis.  NMR relevant parameters are:  

1. chemical shi ft ((R. J .  Abraham et al. ,  2005);  

2. relaxation times .  

Chemical shifts , generally referred to in terms of ppm , describe the 

dependence of nuclear magnetic energy levels  on the electronic en-

vironment in a  molecule. For  proton the usual range falls  between 

0 and 12 ppm, as referred to the TMS (tetramethylsi lane). Other  

nuclei such as 1 3C, 3 1P and 1 5N have distinct advantages  in terms of  

chemical shifts range in order of more than 100 ppm (Figure 1.10)  

but also a disadvantages due to their much weaker sensitivity.  
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Figure 1.10: chemical shifts for 1H (upper spectrum) and for 13C (lower spectrum). The 
references are from samples in CDCl3 solution. The (ppm) scale is relative to TMS at 
=0=ppm. For 1H Spectrum: The broad ranges shown at the bottom of the chart 
(orange color) are typical of hydrogen bonded protons (OH and NH). These signals are 
concentration and temperature dependent. Note that in DMSO-d6 solution, alcohol OH 
signals are shifted to lower field (4.0 to 6.0ppm), and usually display vicinal coupling; 
for the 13C spectrum: Conjugation of a double bond with a carbonyl group perturbs the 
carbon resonances of both groups. The β-carbon of the double bond is shifted to lower 
field by 20 to 30 ppm, and the carbonyl carbon is shifted to higher field by 5 to 15 ppm 
(Figure is adapted from www.cem.msu.edu) 

In the NMR spectrum of an organic compound, peaks appear at the 

positions of absorption, also called the positions of resonance ,  al-

so called the positions of resonance or precession frequencies ,  

for different nuclei in the molecule. The exact chemical shi ft of a  

particular nucleus in a molecule gives information about how the 

atom with that nucleus  is bonded in the molecule. The x -axis of the 

spectrum is  called the delta scale () with units of ppm and the y -

axis is an intensity scale  (Figure 1.11).  
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The height of the peak on the y -axis is proportional to the number 

of 1H nuclei in the molecule with  the same chemical shi ft.  The in-

tensity of a  1 3C resonance is,  however,  not propor tional  to the 

number of carbons.  

 

Figure 1.11:  the 1H NMR spectrum of methyl acetate shows two peaks: one at = 2.1 
ppm for the three equivalent methyl protons and one at = 3.7 ppm for the three equiva-
lent methoxy protons. The methoxy protons are said to resonate downfield from the 
methyl protons. Each of the three methyl protons are equivalent to each other and each 
of the three methoxy protons are equivalent to each because of rapid rotation about the 
carbon-carbon and carbon-oxygen single bonds. 1H or 13C nuclei are said to be chemical 
shift equivalent if they have exactly the same chemical shift (Figure is adapted from 
http://orgchem.colorado.edu) 

The chemical  shift  is a relevant parameter especial ly in high-

resolution NMR (HR-NMR).  Among all the NMR techniques, HR -

NMR has a very high sensitivity and it makes use of high -magnetic  

field that permit the observation of very detailed spectral param e-

ters. These two factors  are indeed quite important in assign com-

ponent and measuring their intensities ratio.  This leads the HR-

NMR, for i ts inner nature, to be employed with the best results in  

food chemistry. Recent li terature of fers examples of interesting a p-

plication of  the method in differentiat ing foods  obtaining in differ-

ent processing condit ions  or technologies (A. Koller et al . ,  2008) ,  

to assess adulterations of low-grade foods in mixtures (R. Sacchi et  

al . ,  1997) and to characterize typical food products (M. D’ Imperio 

et al. ,  2007).  
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From a qualitative  point of view, in term of linearity and select iv i-

ty, NMR is definitely the best analytical method from the linear ity 

point of view since the intensity of resonance is strictly propo r-

tional  to the number of nuclei  resonating at a certain  frequency.  

Selectivity is also good because NMR differentiates all the isotopes  

of elements  and even for a given isotope is able to yield measurable 

differences in chemical  shift for different chemical environme ntal .  

From a quantitative  point of view, sensitivity depends on the sig-

nal-to-noise-ratio,  which can be considered acceptable when it is  

higher than 10. Precision and accuracy can be determinate from 

means standard deviation on replicates .  

Relaxation describe the physical pathways by which perturbed nu c-

lei return to their original equilibrium state. In a three dimension-

al space, two types of  relaxation t ime can exist: the spin-lattice  or  

longitudinal  that brings the nuclei aligned along the z axis (where 

the magnetic field is applied) and the spin-spin  or trasverse  that is  

concerned with the physical phenomena occurring within the xy 

plane (Figure 1.12), both characterized  by a specific relaxation 

time (T 1 and T 2).   

Assessment of proton relaxation behavior  is a frequently used ap-

plication of the Low Field NMR (LF-NMR) technique, so both T1  

and T2  relaxation time are use as parameter for this method.  

Unlike conventional NMR spectrometers  equipped with strong  su-

perconductive magnets, LF-NMR instruments have a  relatively 

weak permanent magnet. Consequently, the instrumen t cannot re-

solve different spectral components  in  the frequency domain, thus  

the LF-NMR technique can only deal with time-domain informa-

tion. LF-NMR is a technique largely employed in food chemistry 

for the classical evaluation of fat content (X. Sun et al. ,  1995), pro-

tein aggregation (L. Indrawati et al. ,  2007), viscosity (M. H. Rah-

man et al. ,  2002) and water (H. Lechert et al. ,  1980; F. Mariette, 

2008), in different foods. In the last case, water being a more m o-
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bile molecules has a longer relaxation time and it easily monitored  

against less mobile larger molecules such as fats or proteins.  

The application of  the technique in this direction is rather  impo r-

tant in food processing and aging (R. Ginaferri et al. ,  2007),  where 

it gives fast responses on the wa ter/compounds relative rat io.  

Figure 1.12: NMR Relaxation. On the left side a hypothetical situation is shown where 
four protons are aligned parallel to the external magnetic field, and four excited protons 
are aligned anti-parallel. The magnetic sum vector is zero at this stage. Excited protons 
then return progressively to their lower energy state. The result is a re-establishment of 
the longitudinal magnetization (longitudinal or spin-lattice relaxation) in an 
exponential manner characterized by a time constant, called T1. On the right side a 
second hypothetical situation is illustrated where three protons are aligned parallel and 
three anti-parallel, in phase coherence with each other. The other panels in the Figure 
illustrate a progressive loss of coherence that is characterized by this form of relaxation, 
where the transverse magnetization decreases to zero (trasverse relaxation). The 
transverse relaxation decreases in an exponential manner characterized by a time 
constant, called T2* - also called T2 Star (Figure is taken, with concession from the 
author, from http://en.wikibooks.org) 

Since the measure of T2  is more rapid than the longitudinal  ones   

(typical data acquisit ion t imes for pure aqueous sol utions are about 

3 and 40 min, respectively) and because transversal relaxation data  

may contain more information as well ,  sometimes only transversal  

relaxation data are reported.  

1.3.2 Methods for metabolite  approach by HR-NMR in food 

chemistry  

In Table 1.4 are listed the main  possible metabolic approaches  

based on the HR-NMR spectroscopy in food science.  
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Table 1.4 :  classification of metabolomic approaches (table is adapted from R., Gooda-
cre, S., Vaidyanathan, W. B., Dunn, G. G., Harrigan and D. B., Kell (2004). Metabolomics 
by numbers: acquiring and understanding global metabolite data. TRENDS in Biotechnology, 
22, 245–252) 

Approach Function 

Metabolite profiling 

 
 

Analysis focused on a group of metabolites, 
for example, a class of compounds such as carbohydrates, amino 

acids or those associated with a specific pathway  
(F. D. Gunstone, 1994) 

 

Metabolomics 

 
 

Comprehensive analysis of the whole metabolome 
under a given set of conditions  

(H. Vidarto et al., 2006) 

Metabolic fingerprinting 

 
 

Classification of samples on the basis of 
provenance of either their biological relevance or origin 

(C. Hyung-Kyoon et al., 2004) 
 
 

Metabolic profiling 

 
 

Often used interchangeably with ‘metabolite 
profiling 

 
 
 

Metabonomics 

 
Measure of the fingerprint of biochemical perturbations 

caused by natural or technologist changes 
(C. Xiao et al., 2008) 

 

All these approaches focus on the metabolic content  of samples,  

moving the attention from the level of gene transcription (trascri p-

tome) and protein modification (proteome) to the determination 

and evaluation ( in term of  concentra tion) of metabolites (mole-

cules). But, as it has been told in par 1.2.3, while metabolomics  

leads to obtain a “complete set of metabolites/low-molecular-

weight intermediates, which are context dependent, varying a c-

cording to the physiology, developmental or pathological state of  

the cell ,  tissue, organ or organism” (S. G. Oliver, 2002),  metabo-

nomics  measures the dynamic multiparametric metabolic r esponse 

of living systems to pathophysiological  st imuli or genetic modifica-

tion. Both metabolomics and metabonomics approaches can coexist  

in same researcher and one is  strictly connected to the other in a  
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double sense: the metabolomic exploration (metabolomics profile )  

can help to understand the response of a biological system to e x-

tern stimuli (metabonomics profile ) and vice versa .  

In par 1.2.3 it has been also illustrated the range of sensitivity  of  

spectroscopic techniques used in  metabonomics researches; howev-

er, NMR-based metabonomics has proven to be particularly appo-

site for  the rapid  analysis of complex biological  samples like food 

stuff .  The NMR spectral results so generated yield a unique meta-

bolic fingerpr int for each complex biological mixture:  if i ts  status,  

such as in food processing, the unique metabol ic fingerprint or  sig-

nature reflects this change.  This is the main characteristic that 

make the NMR one of the optimal technique for food analysis from 

a simple metabolites screening till  the characteriza tion of foods.  

The foods’ molecular profile method, based o NMR technique, is  

schematically represented  by the Figure 1.13, in which a red square 

points out  the possible results  that can be obtained from the m e-

thod. Referred always to the food analysis, these results are:  

1. classification of food (metabonomics study) :  based on I. B.  

Abdel-Farid et al . ,  concept for whom metabonomic study can 

provide significant results only i f the metabolic changes in a  

target group is signi ficantly different from the biological  va r-

iation of  the relative control group .  Examples in this  way are 

the class ification of tradit ional foods (L. Viggiani et al. ,  2008;  

E. Schievano et al. ,  2008) and discrimination between wild  

type and genetically modified foods (M. Defernez et al. ,  2004)  

based on differences ;  

2. metabolites characterization  (metabolomics study) :  aim to 

describe foods from a metabol ites ’ content point of view (G.  

Le Gall et  al. ,  2003; Z.  Fang et  al. ,  2006;  C. W. Wilson et al. ,  

1978);  

3. metabolites’ identification (metabon(l)omics study) :  in or-

der to identify those metabolites (biomarkers) able to explain  
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the reasons of differences among groups. This leads under-

stand better possible effects on foods due to technologist and 

biotechnologist processes , to assess food  quality (S. Yoo-Soo 

et al. ,  2007) and to fight foods frauds and adulterations (K. G.  

Penman et al. ,  2006).  

 

Figure 1.13: methods for metabolite profiling by NMR. In red the molecular profiling 
pathways (Figure is taken, with concession from the author, from A., Charlton, T., All-
nutt, S., Holmes, J., Chisholm, S., Bean, N., Ellis, P., Mullineaux and S., Oehlschlager 
(2004). NMR profiling of transgenic peas. Plant Biotechnology Journal, 2, 27–35) 

1.3.3 NMR and chemometrics  

Once again, is import to point on evidence that metabon(l)omics  

combines  the techniques of high resolution NMR  with pattern  rec-

ognition technology to rapidly evaluate the metabolic status of the 

biological matrix. When using spectroscopic techniques  for  chemi-

cal quantification, have been used univariate data analytical  me-

thods (par 1.2.4). this application is called chemometrics .   

Actual definit ions of chemometrics are:  
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 “ the chemical discipline that  uses  mathematical and sta tistical m ethods ,  

(a) to design or select opt imal measurement procedures and exper iments ,  

and (b) to provide maximum chemical information by analyzing chemical  

data” (B. Kowalski, 1997) (Figure 1.14) .  

 

Figure 1.14: chemometrics definition (Figure is adapted from http://fullindex.net/) 

“The discipline that uses mathematical and statistical methods to o btain  

relevant information on material systems ”  (I .  Frank et al. ,  1982) (Fig-

ure 1.15).  

 

Figure 1.15: chemometrics definition (Figure is adapted from http://fullindex.net/) 
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The discipline of chemometrics originates in chemistry ; thus,  typi-

cal applications of  chemometric methods are the development  of  

quantitative structure activity relationships or the evaluation of  

analytical–chemical data. The data flood generated  by modern ana-

lytical  instrumentation  (like spectroscopic technologies)  is one rea-

son that analytical  chemists in particular develop applications of  

chemometric methods. While most other types of spectroscopic da-

ta can be subjected to chemometric analysis directly from the spe c-

trometer,  NMR data often need to be preprocessed in  several ways 

in order to conform to the prerequisites for  chemometric data anal-

ysis:  

1. Fourier transformation (J.  Keeler, 2002)  (Figure 1.16) .   

 

Figure 1.16: Fourier transformation of a FID obtained from a grape fruit (Vitis vinifera) 
sample’s extract. The FT process takes the time domain function (the FID) and converts 
it into a frequency domain function (the spectrum). The 1H-NMR spectra was recorded 
at T= 300K on a Varian Mercury-plus spectrometer, operating at 1H frequency of 400 
MHz; 2048 scans were acquired, with data collected into 16K data points with a spectral 
width of 16 ppm, a pulse angle of 60°, a recycle delay of 1.0 s, and acquisition time of 
2.561 s with a constant receiver gain. Free induction decay (FID) was Fourier trans-
formed, with the MestReC Software (http://www.mestrec.com/), by performing an ex-
ponential multiplication with a 1 Hz line broadening 
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In NMR spectroscopy a  Fourier transformation  (FT ) is required to 

convert the time domain data (free induction decay  or FID ,  an elec-

trical signal oscil lating at the NMR frequency ), obtained from the 

spectrometer,  to the frequency domain (NMR spectrum). Naturally ,  

quantitative methods require that parameter settings for the 

Fourier transform (choice of zero-filling and apodization function)  

are equal for  all  samples to be evaluated, as they may infl uence the 

finer details in the spectra.  

2. Phase errors (J.  Keeler, 2002)  (Figure 1.17) .   

 

Figure 1.17: phase Correction of a spectrum obtained from a grape fruit (Vitis vinifera) 
sample’s extract. The 1H-NMR spectra was recorded at T= 300K on a Varian Mercury-
plus spectrometer, operating at 1H frequency of 400 MHz; 2048 scans were acquired, 
with data collected into 16K data points with a spectral width of 16 ppm, a pulse angle 
of 60°, a recycle delay of 1.0 s, and acquisition time of 2.561 s with a constant receiver 
gain.  The phase error correction was made with the MestReC Software by performing a 
manual correction on both zero and first errors orders (http://www.mestrec.com/) 

A difficult problem encountered with NMR data is  the existence of  

phase errors of two orders: one and zero.  In real experiment, a fter  

FT the spectrum line shapes are mixture of absorpitive and dispe r-

sive signals and are related  to the delayed FID acquisition  and is 
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commonly cal led f irst order phase.  The delayed acquisition is a  

consequence of the minimum time required to change the spec tro-

meter from transmit to receive mode, during this delay the magn e-

tization vectors process according to their chemical shift freque n-

cies. The zero order phase error arises because of the phase diffe r-

ences between the magnetization vectors  and the receiver . Manual  

phase correction is usually implemented in the instrument sof t-

ware, but this process  is very time consuming, especially for the 

large data  sets that are often analyzed using chemometrics. More 

importantly, manually phase-correcting a  series  of  spectra wil l lead  

to suboptimal results due to the subjective evaluation of the co r-

rection necessary for individual spectra .  

3. Data normalization  (Figure 1.18).  

4.  

Figure 1.18: normalization of a set of spectra obtained from a grape fruit (Vitis vinifera) 
samples’ extract. In this Figure is shown part of the midfield 1H NMR region (from 5.2 
to 2.8 ppm).  The 1H-NMR spectra were recorded at T= 300K on a Varian Mercury-
plus spectrometer, operating at 1H frequency of 400 MHz; for each spectrum  2048 
scans were acquired, with data collected into 16K data points with a spectral width of 16 
ppm, a pulse angle of 60°, a recycle delay of 1.0 s, and acquisition time of 2.561 s with a 
constant receiver gain. The normalization was made with the MestReC Software 
(http://www.mestrec.com/) 
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Data normalization is an important step for any statistical analysis .  

The objective of  data normalization is to allow meaningful compa r-

isons of samples within the dataset.   

It is  a row operation that is applied to the data from each sample 

and comprises  methods to make the data  from all samples directly 

comparable with each other (A. Craig et al . ,  2006). In this way i t is  

possible to minimize most of the differences introduced with the ef-

fect of variable di lution and spectral data acquisition  and 

processing.  

Normalization can be done using an internal “housekeeping” met a-

bolite, for example an inner standard like TMS or, in our case,  

normalize each spectrum to (divide each variable by) the sum of the 

absolute value of all variables for the given sample. It returns a 

vector with unit area (area = 1) "under the curve" (B. M. Wise et  

al. ,  2006).  

5. Chemical shift variations :  the last preprocessing problem to 

be mentioned here and which occurs  only in HR-NMR spectroscopy 

is the chemical shift variations that may occur from sample to sam-

ple or even from peak to  peak. The overall sample-to-sample varia-

tions are due to small varia tions in spectrometer fr equency, whilst  

the peak to peak chemical  shift variations  are due to variations in ,  

for example, pH. In this last case, a data reduction in the form 

called binning (A. Craig et al. ,  2006) is a pragmatic solution  to the 

problem.  

6. Spectral  binning (Figure 1.19) is a widely-used technique where 

the spectrum is subdivided into a number of  r egions, and the tota l  

area within each bin is used as an abstracted representation of the 

original spectrum.  

A typical 64k  NMR spectrum would be reduced using bin widths of  

0.04 ppm, resulting in ~250 bin integral va lues.  
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Figure 1.19: binning on a spectrum obtained from a grape fruit (Vitis vinifera) sample’ s 
extract. In this Figure is shown the midfield 1H NMR region (from 5.2 to 2.8 ppm) and 
part of the upfield 1H NMR region (from 2.8 to 0.5 ppm). The 1H-NMR spectra was rec-
orded at T= 300K on a Varian Mercury-plus spectrometer, operating at 1H frequency of 
400 MHz; 2048 scans were acquired, with data collected into 16K data points with a 
spectral width of 16 ppm, a pulse angle of 60°, a recycle delay of 1.0 s, and acquisition 
time of 2.561 s with a constant receiver gain. The binning was made with the MestReC 
Software (http://www.mestrec.com/) 
 

In order to better  understand the consequences of pre-processing 

of NMR data, in  Figures 1.20 and 1.21 are illustrated, as  an exam-

ple, the improvement of a PC analysis  after the pre-processed me-

thods described above on grape samples data set used in the 

present researcher work .  

As it can be seen , in this case, normalization and binning approach 

(Figures 1.21 C and D) improve the results, allowing to separate 

two grape cultivar  and among cultivar is possible to see a tendency 

to separate genotypes  
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Figure 1.20: improvement of PC Analysis according to processed Spectral NMR Data 
(Part One) due to alignment . PCA on raw (A) and aligned (B) NMR spectral data set, 
including all the Thompson and Silcora samples. Samples are labelled as follows: ● 
Thompson Wild Type (T-WT), ○ Thompson Genetically Modified (T-GM1), ▲ Silcora 
Wild Type (S-WT),     Silcora Genetically Modified 1 (S-GM1) and  □ Silcora Geneti-
cally Modified 2 (S-GM2). According to the total variance (Tv), PC1 and PC 2 explain  
18.6% and 15.2% respectively in the raw data PC plot.  
The same values are even for the aligned data. As it can be seen, except for PC2 along 
which is possible to point out a separation among cultivars, genotypes are not differen-
tiated (the Figures were prepared by using R program; see appendix A, chapter 4) 
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Figure 1.21 improvement of PC Analysis according to processed Spectral NMR Data 
(Part One) due to normalized (C) and binned (D) NMR spectral data set, including all 
the Thompson and Silcora samples. Samples are labelled as follows: ● Thompson Wild 
Type (T-WT), ○ Thompson Genetically Modified (T-GM1), ▲ Silcora Wild Type (S-
WT),     Silcora Genetically Modified 1 (S-GM1) and  □ Silcora Genetically Modified 2 
(S-GM2). According to the total variance (Tv), PC1 and PC 2 explain  19% and 9% re-
spectively in the normalized data PC plot, whilst in binned data the values of both PCs 
are 26% and 12%. As it can be seen, both cultivars and genotypes, except for T-WT and 
T-GM1, are differentiated (the Figures were prepared by using R program; see appen-
dix A, chapter 4) 
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 MATERIAL 

All the materials  (from the equipments to the 

instruments) lis ted in this chapter and used for this  

research work are conformed to the most rigorous 

European and International standards (http://www.msds-

europe.com).  

 

2.1 EQUIPMENTS 

2.1.1 Lab supplies  

 Pipett ing Standard - Gilson's Pipetman ®  P (P10, P20, P100,  

P200 and P1000. Range of  volumes from 10 µL to 1000 µL )  

with suitable tips (Diamond®  prec ision tip)  

 SARSTEDT Polypropylene 50 and 15 mL Conical and Round 

Bottom Centrifuge Tubes, Falcon™ Type 

 Spatula and spoons stainless steel ,  (VWR international)  

 Square, polystyrene and anti -static  weighing Dishes (volume 

7, 100 e 250 mL) 

 Electronic pipet fi ller Eppendorf Easypet®  for graduated and 

one-mark pipettes from 0.1 mL to 100 mL  

 Eppendorf ®  Safe-Lock®  microcentrifuge tubes volume 0.5 and 

1.5 mL 

 Laboratory ceramic mortar grinder with pestle  

 "High-speed" bottles, for High-Performance Centr ifuge ®  by 

Beckman Coulter™, with screw stopper for reinforced  

tightness (capacity 500 and 50 mL)  

2
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 AMPOL NMR sample Tubes for use up to 700 MHz NMR, 

(203 mm, round bottom)  

 Laboratory glassware: Beakers, low form, with spout  (50, 250 

and 600 mL) by Simax;  

 Corning®  Disposable Pasteur Pipettes, Bulk Pack, Non -Sterile ,  

SIGMA-ALDRICH ®  

 Pasteur pipette rubber bulbs  

2.1.2 Safety  and protection supplies  

 Safety Eyewear Glasses  

 Natural Latex Powdered and Powder-Free Exam Gloves  

 White lab coat  

 

2. 2  REAGENTS 

 Acetic acid (glacia l) 100% anhydrous (CH 3COOH, 

60.05 g/mol), MERCK 

 Methanol (CH3OH, 32.04 g/mol, 99,5% purity) , MERCK  

 Deuterium oxide (D2O, 20.04 g/mol, 99.9% purity), MERCK 

 Milliq demineralized water  

 Potassium Hydroxide (KOH, 56.11 g/mol) in flave, MERK 

 Perchlor ic acid  (HClO4 ,  100.46 g/mol,  70% solution),  SIGMA-

ALDRICH ®  

 Potassium dihydrogen phosphate (KH 2 PO4 ,  136.09 g/mol),  

Panreac 

 Potassium  Hydrogen phosphate anhydrous (K2HPO4 ,  174.18  

g/mol), Panreac  
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 21 L-Amino Acids plus glycine, 1  g of each, SIGMA-

ALDRICH ®  

 L-Anserine Nitrate Salt  (C1 0H1 6N4O3 ,  303.3 g/mol), SIGMA-

ALDRICH 

 Taurine in powder (C2H7NO3S, 125.15 g/mol), SIGMA-

ALDRICH ®  

 Creatine in powder (C4H9N3O2 ,  131.13 g/mol),  ACROS 

ORGANICS 

 Betaine in powder (C5H1 1N1O2 ,  117.14634 g/mol) , FLUKA 

 Trimehylamin Hydrochlor id  98%, TMA, in powder 

(C3H9N.HCl, 95.57 g/mol), SIGMA-ALDRICH 

 Adenosine diphospahte ADP (C 1 0H1 5N5O1 0P2 ,  427.201 g/mol) ,  

SIGMA-ALDRICH 

 Hypoxanthine, 99.5% (C5H4N4O, 136.11 g/mol), ACROS 

ORGANICS 

 

2. 3 BUFFER SOLUTIONS 

In this work, two di fferent solutions, due to the different biological  

matrices (fruits and vegetables),  have been used. 

 Phosphate Buffer , 100mM and pH 7.00 

 Acetic acid/acetate buffer (CH3COOH/CH3COONa),  50mM 

and pH 5.00 

2.3.1 Practical ways to make a buffer  

Generally, three methods can be used to obtain a buffer solution:  

1. The buffer pK a  method;  
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2. the two solutions method ; 

3. acid and Basic titration  method .  

For the phosphate buffer , the two solutions method were used .  

This method consists to make separate solutions of  the acid form,  

potassium dihydrogen phosphate (KH 2PO4) and base form of the 

buffer, potassium phosphate dibasic  (K 2HPO4),  both solutions  

having the same buffer concentration (1M), and ionic strength i f  

required, as the concentration of total buffer in the final solution.   

To obtain the desired pH, one solution is added to the other while 

monitoring the pH with a pH meter.   

For the Acetic  acid/acetate buffer the buffer pK a  method was used.  

In water,  acetic acid  establishes an equilibrium between the weak 

acid, acetic acid, and the conjugate base, acetate ion.  

For acetic acid, the value of K a equals 1 .76 x 10 -5  and pK a equals  

4.75. The magnitudes of the K a and pK a  values of different weak 

acids give us a  comparison of  their relative strength.  A weaker acid  

has less dissociation to the conjugate base and the equilibrium 

favors the undissociated weak acid form.  This results in a smaller  

Ka value. A smaller K a value corresponds to a larger pKa. In other  

words, the weaker the acid, the larger the pK a value.   

For experimental work in aqueous solutions, it is fundamentally 

important to be able to prepare a buffer  solution at a desired pH.  

The pKa methods is based on the Henderson-Hasselbalch 

relationship (R. H. C. Strang, 1981) written in Equation 2.1. 

][
]][[

HA
AHK A



  (Eq. 2.1) 

the equation allows to calculate the correct ratio of basic form to 

acidic form which can be mixed to achieve the desired buffered pH.  

For the acetic acid/acetate buffer the Equation 2.1, considering the 

definition of Ka and pH, is rearranged as shown in Equation 2.2: 
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  (Eq. 2.2) 

Note that the Henderson-Hasselbalch relationship indicates that 

the pH of  a buffer solution does not depend on the total  

concentration of the buffer ing acid and conjugate base but only on 

the pKa and the ratio of the concentration of these two species.  

On the other hand, the buffering capacity of  a  solution quantifies  

the amount of H3O+  or OH - the solution  is capable of neutral izing 

before the acid or conjugate base form is saturated and the pH 

begins to fa ll or rise precipitously.  

This will  depend on the total concentration of  the acid and 

conjugate base buffer ions. Also, the buffering capacity may be 

different towards addition of ac id than towards base.  This will be 

true unless the pH of the buffer solution is identical to the pKa of  

the buffering acid-base equilibrium.  

 

2. 4 STANDARD SOLUTIONS 

All the standard solutions used for this research work were 

prepared since chemical reagents of  analytical grade.  Each 

standard was 0.5M in 1 mL of D2O and the amount of reagents is  

obtained by applying the fol lowing equation (Eq. 2.3) 

VolStdMWm Std  ][  (Eq. 2.3) 

where m  is the final amount of the standard, MW S t d  is the molecular  

weight, [Std] the f inal concentration (0.5M) and Vol  the final  

volume (1 mL).    

In Table 2.1 are listed all the standards used for the present work .  
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Table 2.1 –  first part : l ist  of  standards used in this researcher work  

Standard 

 

Molecular Weight 

g/mol 

Final  Concentration 

[M] 

Taurine 125.15 0.5 

Trimeti lammina 95.57 0.5 

Anserine Nitrate Salt  303.3 0.5 

Hypoxantine  136.11 0.5 

Betaine  135.16 0.5 

Taurine 125.15 0.5 

L-Serine 105.09 0.5 

L-Alanine  89.09 0.5 

L-Cystine  121.16 0.5 

L-Prol ine 115.13 0.5 

L-Hystidine  209.63 0.5 

L-Arginine 210.7 0.5 

L-Tryptophan  204.23 0.5 

L-Phenylalanine  165.19 0.5 

L-Methionine  149.21 0.5 

Malic  Acid 134.09 0.5 

Citic  Acid 192.13 0.5 

Tartar ic  Acid 150.09 0.5 
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Table 2.2 –  second part :  l ist  of  standards used in this researcher work  

Standard 

 

Molecular Weight 

g/mol 

Final  Concentration 

[M] 

L-Lysine 182.65 0.5 

L-Asparagine 132.12 0.5 

L-Val ine  117.15 0.5 

L-Tyrosine 181.19 0.5 

L-Leucine 131.18 0.5 

L-Aspartic  Acid 133.1 0.5 

L-Glutamine  146.15 0.5 

L-Glycine 75.07 0.5 

L-Glutamic  Acid 147.13 0.5 

L-Cysteine 

hydroclor ide  

157.61 0.5 

 

2. 5 INSTRUMENTS 

 Eletronic digital technical Balance (max 2200 g, d= 0.01 

g), SCALTEC (SBA 52)  

 Eletronic digital analytical Balance (max 220g, d = 

0.0001g) , SCALTEC (SBA 31)  

 IKA® ULTRA-TURRAX®  homogenizer  T 18, basic, AC 

input 115 V   
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 JENWAY Model 3310 pH Meter  with glass bodied  

combination electrode, swing arm electrode holder & ATC 

probe.  

 Heating magnetic stirrer mod. ARE, VELP Scientifica ®   

 Heating magnetic stirrer mod. ARED, by VELP 

Scientif ica®   

 Beckman Coulter™ Microfuge®  18 Microcentri fuge (max 

14000 rpm adjustable in 500 increments)  

 Avanti®  J-25 High-Performance Centrifuge®  by Beckman 

Coulter™ equibed by Beckman Coulter’s  aluminum rotors  

JA10 RPMm ax  10000, JA14 RPMm ax  14000, JA25.50,  

RPMm ax  25000 

 NMR Varian Mercury-plus AS400/54 (400MHz)  

spectometer equipped with a 5mm PFG gradient 4 nuclei  

(1H/1 9F/1 3C/3 1P) probehead, with a 400MHz (9.4 Tesla)   

superconducting magnatic system by Oxford Active 

Shielded and equipped with Sun BLADE 150 Host 

Workstation with Solaris 10 OS (80 GB Hard Disk, 512 

MB Ram, CD ROM SCSI Drive and VnmrJ 1.1D Software)   

 

2. 6 SOFTWARE 

2.6.1 NMR  data processing  

MestRec  (www.mestrec.com), Magnetic Resonance Companion,  “is  

a software package that  offers state-of-the-art facili ties for data  

processing, visualization, and analysis of high  resolution nuclear  

magnetic resonance (NMR) data, combined with a robu st, user-

friendly graphical interface that fully  exploits the power and 

flexibil ity of the Windows platform. The  program provides a  

variety of conversion fac ilit ies  for  most NMR spectrometer formats  
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and includes all the conventional processing, displaying,  and 

plotting capabi lities of an NMR program,  as well as more advanced  

processing techniques” (J. C. Cobas, et  a l . ,  2003).  

A pdf format tutoria l designed to help to become familiar with 

MestRe-C’s features is available at http://nmr-aci.uni  

hd.de/Anleitungen/mestrec/mestrec.pdf  

2.6.2 Chemometrics data processing 

The multivariate statistical analysis were carried out using 

different statist ical software due to the di fferent kind of analysis:  R 

programm, Matlab and Latentix were the software used for these 

porpoises.  

R  (http://www.r-project.org) is  a language and environment for  

statistical computing and graphics .  The language provides  a wide 

variety of statist ical (l inear and nonlinear modelling, classical  

statistical tests, t ime-series analysis, c lassification, cluster ing, etc)  

and graphical techniques, and is highly extensible. One of its  

strengths is the ease with which well -designed publication-quality 

plots  can be produced, including mathematical symbols and 

formulae where needed. R is available as Free Software under the 

terms of the Free Software Foundation's GNU General Public 

License in source code form.  

Matlab (http://www.mathworks.com)  is a high-performance 

language for technical computing. The name stands for matrix  

laboratory and was originally written to provide easy access to 

matrix software . It integrates computation, v isualization, and 

programming in an easy-to-use environment where problems and 

solutions are expressed in familiar mathematical notation ; this  

allows to solve many technical computing problems, especia lly  

those with matrix and vector formulations, in a fraction  of  the time 

it would take to write a program in a scalar noninteractive 

language such as C or Fortran.  
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Latentix  (http://www.latentix.com) is a  new user -friendly stand-

alone program for chemometric data analysis. It offers a  raw data  

plot faci lity as well as comprehensive PCA and PLS modeling.  
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A METABOLIC PROFILE OF 

TRANSGENIC GRAPE  

The present work proposes two analytical approaches,  

based on the nuclear magnetic resonance spectroscopy:  

1. PART ONE :  comparing and measuring the global  difference in  

the chemical composition of table grapes  wild type with respect 

to their genetically modified  derivative (metabonomic ap-

proach );  Part one is submitted  

2. PART TWO :  attempting to identify and/or quantify as  many 

compounds as possible in order to find out the most important 

molecular markers responsible of the dif ferences between grape 

wild type and grape genetical ly modif ied (metabolomic ap-

proach ).  Manuscript is in preparation  

These kinds of approach evaluate the metabolic profi le of grapes ,  

as determined on their hydroalcoholic extracts, and exploits the 

principles of metabon(l)omics (as described in Chapter 1, par. 1.2.3)  

to analyze the changes induced by genetic modifications.  

 

3.1 INTRODUCTION 

Food safety assessment of a transgenic plant or  product is  strictly  

defined by international rules, and European  Union and United  

States regulators had formerly adopted  as main concept the a p-

proach of  substantial  equivalence:  if  a new food or food component 

is found to be substantially  equivalent to an existing food or  food 

component, it can be treated in the same manner with respect to 

safety (L. Levidow et al. ,  2007). Substantial equivalence might be 

used to demonstrate similar ity, and therefore, safety, mainly 

through tests of physicochemical composition. However, many cri t-

icisms were addressed to the concept of s ubstantial equivalence be-

3 
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tween transgenic and traditional foods : it emphasizes chemical  

composition at  the expense of  biological,  toxicological,  and imm u-

nological tests; i t does not def ine the point at which a food is no 

longer substantially equivalent ; and the concept actually impedes  

risk research (E. Mil lstone et al. ,  1999).  Presently , substantia l  

equivalence is st ill considered a key step in the safety assessment 

process  of transgenic foods, and it  is not a safety assessment in  i t-

self.  The concept of  substantial  equivalence should be improved by 

the development and application of new techniques, which can help 

to identify unintended and potentially  harmful changes (Anon,  

2000). Such techniques should provide a general profile of the bi o-

chemical  composition in order to detect  unknown changes. When 

comparing a  transgenic  food and the conventional counterpart,  “i f  

the differences exceed natural variations, a nutritional and toxic o-

logical assessment is required for the transgenic food” (Worl d  

Health Organization, 2000). This became relevant when the diffe r-

ences from natural variations are not expected by knowing the 

modifications induced by the inserted gene.  

In general,  not only for  GMO, i t should be noted  that a change of  

foodstuff composit ion is quantifiable even in the absence of a clear  

identificat ion of each individual molecule undergoing the change of  

concentration. For example, a change of the area of an unidentified  

peak in a  chromatogram corresponds to a proportional  change of  

the concentration of its corresponding molecule. Moreover, a  

change may have a  negative sign and therefore does not arouse 

toxicological alarm, but poses a  nutritional problem. In this per s-

pective, the entire molecular prof iles should be compared in order  

to evaluate whether the variat ion observed for the transgenic d e-

rivative is higher than the one found in the conventional line. The 

next step identi fies only those molecules  undergoing the change of  

concentration. The alarm arouses i f the change may have effects  on  

health, such as an increased concentration of potential ly toxic su b-

stances or a decreased concentration, under a critical threshold, of  

substances with high nutritional  importance.  Several strategies  
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have been developed to identify  unintended alterations in the com-

position of  genetical ly modified (GM) food crops that may occur as  

a result of the genetic modification process (H. A. Kuiper et al. ,  

2003). These include comparative chemical analysis of s ingle co m-

pounds in GM food crops and their conventiona l non-GM counter-

parts, and profiling methods. Three main cell  constituent groups 

are targeted by profiling technologies: RNA - microarray technol-

ogies (R. Batista et al. ,  2008), proteins  – proteomics (Chapter 1 ,  

par 1.2.2) and metabolites –  metabonomic (Chapter 1, par 1.2.3) .  

Different analytical platform have been employed to investigate on 

the metabolites ’ prof ile such as magnetic resonance (NMR) and 

mass spectrometry. In particular, the NMR technique has the a d-

vantage to provide at  least one signal  for  each molecule,  present in  

the mixture at a detectable concentration, and for this reason is o f-

ten indicated as the universal detector. The spectroscopic data are 

then explored by chemometric  techniques , such as the unsupervised  

Principal Component Analysis (PCA), in order to simplify and con-

densate in few parametric descriptors the global information given 

by the spectra  that describe the whole chemical  composition ( K.  V.  

Mardia et al. ,  1979).  

 

3.2 MATERIALS AND METHODS 

3.2.1 Plant Material  

In grape and other species, fruit set and growth is usually tri g-

gered by pollination,  and correlates with elevated endogenous au x-

in (IAA) levels. In this regard, genes either increasing auxin sy n-

thesis or sensit ivity and altering auxin signal transduction allow 

fruit set in the absence of pol lination (parthenocarpy) (G. L. Rotino 

et al. ,  1997;  N. Ficcadenti et al. ,  1999; N. Acciarri et al . ,  2002;  T .  

Pandolfini et al. ,  2002; N. Carmi et al . ,  2003; B. Mezzetti et al . ,  

2004; H.  Wang et al. ,  2005;  Z. Yin et al . ,  2006).  Thus, auxin might 
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improve fruit set and consequently the fruit number per plant. In  

perennial species, auxin also affects inflorescence development.  

This is indicated by the increased number of inflorescences on 

raspberry and strawberry plants genetically engineer ed with an  

ovule-speci fic auxin-synthes ising gene (B. Mezzett i et al . ,  2004) .  

The DefH9-iaaM gene construct (Figure 3.1) consists of  the ovule-

specific regulatory regions from DefH9 isolated by Antirrhinum ma-

jus  and the iaaM coding region from Pseudomonas savastonoi .   

 

Figure 3.1: the chimeric DefH9-iaaM gene construct  

The iaaM codes for a tryptophan-2-monooxygenase enzyme tha t 

converts tryptophan to indole-3-acetamide which is then hydro-

lyzed to the auxin indole acetic acid (IAA) (G. L. Rotino et al. ,  

1997) (Figure 3.2).  

 

Figure 3.2: biosynthetic intermediates and pathways for IAA biosynthesis. The path-
way from tryptophan (Trp) to IAA via indole-3-acetamide (thick arrows) has been dem-
onstrated so far only in bacteria. Indole-3-acetonitrile, which is converted to IAA by ni-
trilase, is thought to be a biosynthetic intermediate for IAA in Arabidopsis and may be 
formed from Trp and by Trp-independent pathways (Figure is taken from P., Hedden 
and A. L., Phillips (2000). Manipulation of hormone biosynthetic genes in transgenic plants. 
Current Opinion in Biotechnology 11, 130-137) 
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DefH9- iaaM was introduced into the genome of two grape cul tivars 

with different levels of fecundity mainly due to different shoot 

fruitfulness (B. Mezzetti et al. ,  2004):  

Thompson Seedless ,  a  well known table grape cultivar  has  a  low 

shoot fruitfulness;  

Silcora ,  another table grape cultivar, has  a shoot fruitfuln ess high-

er than Thompson Seedless .  

The open field experimental trial  with transgenic  and control  

clones was established at the Experimental Farm of the Marche P o-

lytechnic University in March 2001, by following the EC (CE 

2001/18) rules for GM plants.  

For Si lcora cultivars two kind of modified lines were created: one 

with one DefH9-iaaM gene copy and a second with three copies of  

the same gene.   

The Silcora three copies  of gene modif ied lines didn’t  give signif i-

cant results, whilst the (one gene copy) transgenic clones of both 

Thompson and Silcora were identif ied, propagated and compared in  

field trial with their corresponding controls not GM. Transgenic  

DefH9- iaaM l ines of both cultivars have been cul tivated  under 

open field conditions to compare their fecundity to that one of con-

trol non-transgenic plants. Shoot fruitfulness and other relevant 

parameters were recorded over a 3 year -long production cycle last-

ing from 2004 to 2006 (E. Costantini et  al. ,  2007). In Thompson  

cultivar the DefH9-iaaM gene causes a two-fold increase of shoot 

fruitfulness, whilst shoot fruitfulness was unaf fected in genetically  

modified Silcora. Both genetically modified  cultivars showed an in-

creased number of berries per cluster  (Table 3.1), but with an  

higher entity for the Thompson (30%) in comparison with Si lcora  

(15%). Berries of the GM cultivars maintained a substantial equiv a-

lent nutritional quality (Table 3.2) (E. Costantini et al. ,  2007).  
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Table 3.1: comparison of shoot fruitfulness, bunches and berry number data between cultivars wild type (Thompson and Silcora) and DefH9-iaaM genetically  
modified ones. The Figure was adapted from E., Costantini, L., Landi, O., Silvestroni, T., Pandolfini, A., Spena and B. Mezzetti (2007). Auxin synthesis-encoding 
Transgene Enhaches fecundity. Plant Physiol, 143, 1689-94 
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Table 3.2: comparison of nutritionl values  data between cultivars wild type (Thompson and Silcora) and DefH9-iaaM genetically  modified ones. The Figure 
was adapted from E., Costantini, L., Landi, O., Silvestroni, T., Pandolfini, A., Spena and B. Mezzetti (2007). Auxin synthesis-encoding Transgene Enhaches fecundity. 
Plant Physiol, 143, 1689-94 
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3.2.2 Experimental design  for NMR analysis  

Fourty-five NMR samples were prepared from the extracts of the 

two cultivars and their modified lines. At the 2007 harvest, berries  

of Thompson Seedless control (Thompson-WT) and of the DefH9-

iaaM  Line (Thompson-GM1), were sampled. At the same time ber-

ries of Silcora from control plants  (Si lcora -WT) and from two 

DefH9-iaaM  modified lines ,  one containing a single copy of  the 

gene (Silcora-GM1), the other containing 3 copies of it (Silcora -

GM2), were also sampled (E. Costantini  et al. ,  2007). At harvest,  

samples were freeze dried at -80° and then shipped in dry ice at  the 

laboratory of analyses.  

3.2.3 Sample Preparation  

For each genotype (control and transgenic lines of both cultivars)  

was prepared a bulk of 100 grams of berries picked randomly from 

grape clusters of plants growing in different plots of the exper i-

mental vineyards. Both skin  and pulps of each sample were homo-

genised under ice chilling using an ultra turrax T18 basic disper s-

ing tool (IKA® ).  Three aliquots of about 10,0 g of homogenate,  

poured in 50 ml Falcon tubes, were separately vortexed with 10,0 

ml of a mixture of methanol  and 50mM CH3COOH/ Na+  buffer pH 

5.0 (2:1) in order to perform the solvent extraction. The suspe n-

sions were centrifuged at 10,000 rpm for 20 minutes at 4° C. The 

resulting hydro-alcoholic solution was dispensed in different E p-

pendorf tubes, as 1 ml aliquots, and stored at -80° C.  

Before the FID acquisition, 10% (v/v)  D 2 O was added to each 1 ml 

extract, thus centr ifuged at 14,000 rpm for 5 minutes at room te m-

perature. A volume of 800 µl was transferred to a 5-mm NMR tube 

in order to acquire a s ingle NMR FID. Three extracts (E1-3) for  

each homogenate (H1-3) obtained from all genotypes (G1-5)  were 

subjected to NMR analysis, by alterna ting samples so that the five 

extracts E1:H1:G1-5 were firstly analyzed, thus fol lowed by the 
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series E2:H2:G1-5. When the last s eries E3:H3:G1-5 was analyzed ,  

totally 45 spectra were acquired. With this sampling scheme , il lu-

strated in Table 3.3,  accuracy and prec ision of the instrumental  

analysis, as well as the storage effects were a ssessed.  

3.2.4 NMR Spectroscopy  

The 1H-NMR spectra were recorded at T= 300K on a Varian Mer-

cury-plus spectrometer, operating at 1H frequency of 400 MHz; for  

each spectrum, 2048 scans were acquired , with data col lected into 

16K data points with a spectral width of  16 ppm, a pulse angle of  

60°, a recycle delay of 1.0 s, and acquisition time of 2.561 s. The 

water and methanol singlets  were suppressed using the WET pr e-

saturation sequence, with irradiat ion at  the water and methanol  

frequencies. Methanol sate llites were suppressed by irradiation on 

the 1 3C frequency of the solvent. The data were acquired under an 

automatic procedure, requiring about 2 hours per sample.  

Free induction decays (FID) were Fourier transformed, with the 

MestReC Software, by performing an exponential  multiplicat ion  

with a 1 Hz line broadening.  

The glucose’s -anomeric signal at 4.4 ppm was taken as chemical  

shift reference for al l spectra.  Phase and multipoint manual bas e-

line corrections were performed in duplicate for each FID in order  

to evaluate the errors due to the processing st eps. Spectral data  

points were reduced from 16 K (16384) to 8000 points, by delet ing 

the edge parts of the spectra , containing any signal above the 

noise, and by cutting off the solvents ’ and buffer signals (water ,  

methanol and acetic acid).  

The spectral information was further condensed by subdividing the 

spectra into 80 bins, each integrating 100 data points.  

The resulting binned spectra were saved as ASCII file for the su b-

sequent statistical analysis.  
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G1(Thompson-WT) G2(Thompson-GM1) G3(Silcora-WT) G4(Silcora-GM1) G5(Silcora-GM2) 

 

Homogeneization (H) 

100 grams of berr ies  homogenized from which 3 al iquots  o f 10 grams were separately subjected to  extraction  

 

Extraction (E) 

3 extractions (E1-3) from 10 g of each homogenized (H1-3) for each genotype (G1-5) 

 

G1 G1 G1 G2 G2 G2 G3 G3 G3 G4 G4 G4 G5 G5 G5 

H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 

E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 

1 7 13 4 10 16 19 28 37 22 31 40 25 34 43 

2 8 14 5 11 17 20 29 38 23 32 41 26 35 44 

3 9 15 6 12 18 21 30 39 24 33 42 27 36 45 

 
Table 3.3: sampling scheme for grape fruits sample. For each genotypes, 3 extract from three 10 grams aliquots of 100 grams of homogenized berries were 
performed 
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3.2.5 Data Analysis  

The ASCII  files corresponding to the 1 H-NMR spectra were  sub-

jected to multivariate analysis by using home-made algorithms  

(Appendix A) written in the R program language (version 2.4.0) .  

PCA, ANOVA, T-Student test and LDA were carried out on each 

spectrum by using built in commands in the R program enviro n-

ment, i .e.  prcomp  (centered and scaled data), anova ,  t . t est   and ld re-

spectively.  

 

3.3  RESULTS AND DISCUSSION  

3.3.1 NMR Spectra 

Forty-five Free induced decay (FID) acquired on the same number 

of grape fruit’s  extracts were Fourier transformed in duplicate,  o b-

taining 90 spectra, in order to evaluate the effect of the processing 

on the reproducibi lity  of  the data . In Table 3 .4 are lis ted all the 

spectra samples with their relat ive names and pH values, whilst in  

appendix B are illustrated all the spectra subdivided in two three 

groups according to the three main spectral region  (downfield,  

midfield and upfield regions).  Figure 3.3 shows a typical  proton 

spectrum (1H-NMR spectrum), recorded at 400 MHz, of a Thomp-

son seedless wild type (T-WT) sample.  For clarity the downfield  

region (< 5.5 ppm) and the upfield region (<2.9 ppm) were ampli-

fied in order  to better  point out the signals belonging to these r e-

gions. Strong resonances, assigned to residual water (4.66 ppm),  

labelled with number 2,  methanol (3.16 ppm) labelled with number 

4 and acetic  acid (1.86 ppm), label led with number 5, are easily  

identified and excluded from the subsequent chemometr ic analysis .  

Among several hundred signals, belonging to grape’s metabolites ,  

the most intense ones arise from glucose (α-Glu-H1 at 5.01 ppm 

(label #1), β-Glu-H1 at 4.4 ppm (label #3) and H2-H6 in the range 

3.5-4.0 ppm).  
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Table 3.4: data set of grape fruits’  spectra (part one)  

Cultivar 

 

Extract 

 

Samples ’   

names 
Spectra’s  names pH 

 
 
 
 
 

Thompson Seed-
less  Wild Type 

(T-WT) 
 
 
 
 
 

 1TW 1TW-1TWbis  4.25 

1 2TW 2TW-2TWBIS 4.29 

 3TW 3TW-3TWbis  4.27 

 4TW 4TW-4TWbis  4.21 

2 5TW 5TW-5TWbis  4.21 

 6TW 6TW-6TWbis  4.18 

 7TW 7TW-7TWbis  4.30 

3 8TW 8TW-8TWbis  4.16 

 9TW 9TW-9TWbis  4.18 

 
 
 
 

Thompson 
DefH9-iaaM gene 

modified line 
(T-GM1) 

 
 
 

 10TG 10TG-10TGbis  4.28 

1 11TG 11TG-11TGbis  4.29 

 12TG 12TG-12TGbis  4.27 

 13TG 13TG-13TGbis  4.27 

2 14TG 14TG-14TGbis  4.26 

 15TG 15TG-15TGbis  4.18 

 16TG 16TG-16TGbis  4.18 

3 17TG 17TG-17TGbis  4.27 

 18TG 18TG-18TGbis  4.27 

 

Si lcora 
Wild Type 

(SIL) 
 
 

 1SW 1SW-1SWbis  4.27 

1 2SW 2SW-2SWBIS 4.27 

 3SW 3SW-3SWbis  4.27 

 4SW 4SW-4SWbis  4.29 

2 5SW 5SW-5SWbis  4.29 

 6SW 6SW-6SWbis  4.29 

 7SW 7SW-7SWbis  4.30 

3 8SW 8SW-8SWbis  4.27 

 9SW 9SW-9SWbis  4.25 

Silcora 
DefH9-iaaM gene 

modified line 
(GM1-SIL)  

one copy gene 

 10SG1 10SG1-10SG1bis  4 .27 

1 11SG1 11SG1-11SG1bis  4 .21 

 12SG1 12SG1-12SG1bis  4 .24 

 13SG1 13SG1-13SG1bis  4 .32 

2 14SG1 14SG1-14SG1bis  4 .29 

 15SG1 15SG1-15SG1bis  4 .29 

 16SG1 16SG1-16SG1bis  4 .43 

3 17SG1 17SG1-17SG1bis  4 .46 

 18SG1 18SG1-18SG1bis  4 .45 
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Table 3.4: data set of grape fruits’  spectra (part two) 

Cultivar 

 

Extract 

 

Samples ’   

names 
Spectra’s  names pH 

Silcora 
DefH9-iaaM gene 

modified line 
(GM2-SIL)  

three copies  
gene 

 19SG2 19SG2-19SG2bis  4 .30 

1 20SG2 20SG2-20SG2bis  4 .31 

 21SG2 21SG2-21SG2bis  4 .31 

 22SG2 22SG2-22SG2bis  4 .39 

2 23SG2 23SG2-23SG2bis  4 .38 

 24SG2 24SG2-24SG2bis  4 .42 

 25SG2 25SG2-25SG2bis  4 .44 

3 26SG2 26SG2-26SG2bis  4 .45 

 27SG2 27SG2-27SG2bis  4 .44 

3.3.2 Spectral Data Pre-treatment  

As it has been told in par 1.3.3 NMR spectral data often need to be 

preprocessed in  several ways in order to conform to the prerequ i-

sites for chemometric data analysis. Thus, prior to multivariate 

analysis, data underwent pre-statistical  improvement, aiming at  

minimizing unwanted sources of variation due to s lightly dif ferent 

instrumental condit ions, imperfect baseline and phase corrections ,  

and sample preparation artefacts . Such operations include first the 

choice of a pH independent signal (peak)  to which  refer all spectra  

(alignment),  than the   normalization ,  which mostly minimizes the 

differences due to dilution errors during samples preparation, as  

well as to small differences in the tuning conditions of the spe c-

trometer. Moreover, the s ignals belonging to some titrable organic  

acids still show some variations of chemical shift among different 

spectra, due to small differences (<0.05 units) in the pH of the e x-

tract being analyzed.  

To avoid such a detrimental effect, the spectral d ata underwent to 

a binning ,  thus converting each spectrum in a collection of 80 bins,  

each consisting of the integral area over  100 consecu tive spectral  

data points.  
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Figure 3.3:  1H-NMR spectrum of hydro-alcoholic extract of Thompson seedless Wild Type (T-WT) grape  (Vitis vinifera). Downfield and upfield regions 
were expanded on the vertical scale in order to appreciate the presence of small signals. Some signals, easily assigned, are labelled: 1, α-D glucose; 2, resi-
dual water; 3, β-D glucose; 4, residual methanol and 5, Acetic Acid (the Figure was prepared by using MestReC software) 
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3.3.3 Multivariate Analysis   

The multivariate analysis was  carried out onto binned spectra  

through the principal component analys is (PCA). The latter has  

been chosen as the standard gold for comparison, since i t is an u n-

supervised method able to descr ibe the total  sample variance by 

projecting it  in a condensed space  (Chapter 1,  par 1.2 .4) . According 

to Chapter 1, par 1.3.3 and par 3.3.2, the spectral data  set  has been 

subjected to a prior pre processing in order to improve the PC 

analysis. Moreover, the PCA screening was applied using a correl a-

tion method in which each single data bin is standardized by cen-

tering i ts area integrals with respect to the mean value among all  

spectra (mean centering), and by scaling the variance of each bin  

integral by express ing it in terms of standard deviation units.  

Commonly this method is called autoscaled analysis .  In this way,  

the resulting PC scores take into accounts each bin in the same 

manner independently of the fact that it represents major or minor 

constituents  of  the mixture.   This choice is in agreement with the 

principle that the nutritional value or the toxicological  ef fect  of a  

substance or referred to food chemical  composition  may not be re-

lated only on its absolute amount and minority species should be 

considered in the same manner as the majority one.  Since the 

present study is aimed at  evaluating the effect of the genet ic muta-

tion on the metabolite content of grapes’ extracts  (metabonomic 

approach ),  i t has been f irstly performed separately the PC analysis  

on two subsets of the NMR spectra: the ones recorded on the Silc o-

ra seedless cult ivar, including the wild type (S-WT) as well as the 

first (S-GM1) and the second genetic variant (S-GM2), and the 

ones relative to the Thompson seedless cultivar (both T-WT and 

T-GM).  

3.3.4 PCA of the Silcora cultivar subset  

The application of the principal component analysis, on the Si lcora  

subset, originates the PC plot shown in Figure 3 .4, where the first  
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principal component (PC1) describes 25% and the second one (PC2) 

13% of the total subset variance.  

 

Figure 3.4: autoscaled (meancentered and scaled data) PCA of  binned NMR spectral 
data set, including all the Silcora samples. According to the total variance (Tv), PC1 and 
PC2 explain  25% and 13% respectively. As it can be seen, all the genotypes are differen-
tiated (the Figure was prepared by using R program; see Appendix A) 

As emerging from the visual inspection of the PC plot, the variance 

among the genetically modified grapes and the wild type samples is  

higher than the variance internal to each group. Moreover, the d i-

rection of separation between S-GM1 and S-WT is different (main-

ly along PC1) from the one along which S-GM2 is separated from 

S-WT (mainly PC2). This result is mainly interpreted by assuming 

that the spectral  features responsible for the differentiation of  

GM1 group from the natural  species are different from the ones  

differentiating GM2. The further details  arise from the inspection  

of the PC loadings of  the most meaningful components. In fact, t he 

contribution of each variable (a single NMR signal) to a  PC can a l-

so be calculated, giving a  loading .  A high loading indicates  a  

strong contr ibution of the original NMR signal to the investigated  
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PC. Loadings can be displayed in several manners , like the follow 

pictures. In Figure 3.5, the PC1 loadings are shown as a barplot in  

which are described as lines then,  with a position equal to the  pos i-

tion of the group of var iables (bins)  in the original spectra. The 

height of the lines-bars indicates the contribution of the variables -

bins to the investigated direction . In summary, the loadings report 

the weight with which each bin influ ences the position of the sam-

ple within the PC plot. For instance, in the same picture are re-

ported the main bins, clusterized into three groups.  

 
 
Figure 3.5: loading plots along PC1. Each bar corresponds to a spectral bin of 100 spec-
tral points of length. Groups labeled with #1 and #2, located in the downfield region, 
and #3, in the upfield region, underlined with a colored circles, are responsible of sam-
ples’ separation along PC1. Both y=a and y=-b lines indicate for convenience the maxi-
mum and minimum values to choose the most representative bins (the Figure was pre-
pared by using R program; see Appendix A) 

Increasing areas  of  the bins in the group labelled with #1 and 3 ,  

push the sample scores (S-WT and S-GM1) towards higher values  

of PC1. The opposite occurs with group labelled with #2, for which  

lower values  of PC1 corresponding to an increasing areas  of sam-

ples S-GM2 relative bins . At the same manner, according to PC2 

loadings plot  shown in Figure 3.6, increasing area of the bin la-

belled with #4 raises the PC2 score.  
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Figure 3.6: loading plots along PC2.  Groups labeled with #4, located in the midfield 
region, underlined with a blue circle, is responsible of samples separation along PC2 (the 
Figure was prepared by using R program; see Appendix A) 

It is worth noting here that the source of variation is not confined  

to few bins, thus few signals and then molecules. Rather, the whole 

metabolites ’ profile is subjected to changes. The absolute extent of  

such changes is, however,  not directly interpretable from the anal-

ysis of PC loadings. In order to understand the extent of changes  

in the amount of metabol ites, the absolute area of the bins’ groups 

labelled in Figures 3.5 and 3.6  is reported in Figure 3.7 (A, B, C 

and D).  

 

Figure 3.7 A: absolute area of the bins’ groups labelled with # 1 in PC1 loadings plot. It 
corresponds to a bins’ groups belonging to the downfield region characterized by the 
presence of aromatic compounds’ signals. Standard errors are also shown as black lines 
on the top of each bar 
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Figure 3.7 B: absolute area of the bins’ groups labelled with # 2 in PC1 loadings plot. 
Like the previous bins’ group, even these bins belong to the downfield region and thus 
to aromatic compounds. Standard errors are also shown as black lines on the top of each 
bar 

 

Figure 3.7 C: absolute area of the bins’ groups labelled with # 3 in PC1 loadings plot. 
These bins belong to the upfield region and thus to organic compounds such as organic 
acids like citric and malic acid. Standard errors are also shown as black lines on the top 
of each bar 

Bins’ group #1 ( including signals from aromatic substances) is  

clearly smaller in the second variant of the Silcora grapes  than in  

the other two genotypes of the same cultivar. The same genotype,  

however,  has higher amount of other aromatic compounds, grouped 

in bins labelled with #2, compared with S-WT and S-GM1. A dif-

ferent trend is observed for bins’ group #3, including signals from 

organic acids, since its area decreases in  the first v ar iant (S-GM1) 

and even more in the second variant (S-GM2).  
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The bin labelled with #4 (Figure 3.9  D), including signals from the 

midfield spectra region such as those belonging to sugars, is i n-

volved in the separation along PC2. This bin, indeed, has area  

slightly higher in the f irst variant GM1 than in the other  gen o-

types, and collects signals belonging to sugars.  

 

Figure 3.7 D: figure shows the absolute area of the bins’ groups labelled with #4 in PC2 
loadings plot. It corresponds to bin 40th. Standard errors are also shown as black lines 
on the top of each bar 

A further step in the chemometric analys is of the effect induced by 

genetic modification of grape berries is represented by the stat i s-

tical description of the discrimination ability covered by each PC 

dimension. The result of the t-student test, applied on the PC1 and 

PC2 scores of all variant, with respect to the WT genotype, is r e-

ported in Table 3.5.  

The p-value represents the probability of being correct  to assume 

that the two compared populations are equivalent on the basis of  

their PC score.  

For the Silcora cultivar, it emerges that the two genetically mo d-

ified variants are both statistically  different form the wild type g e-

notype, at least along one dimension of  the PC space, the latter  

representing a large portion of the total  variance attached to the 

metabolic profile described by the NMR spectrum.  
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Table 3.5: summary of t-student test for PC1 and PC 2 applied to Silcora and Thomp-
son subsets (T-test was performed using R program; see appendix A) 

 
PCs 

 

 
Cultivars  

 

 
| t |  

 

 
df 
 

 
p-value 

 

1 Silcora (WT vs GM1)  4.19 34 1.8e-4 
Silcora (WT vs GM2)  24.16 34 2.2e-16 

2 Silcora (WT vs GM1)  10.59 34 2.6e-12 
Silcora (WT vs GM2)  3.35 34 1.9e-3 

1 Thompson (WT vs GM) 4.6804 34 4.4e-5 
2 Thompson (WT vs GM) 0.6228 34 5.4e-1 

| t | is the absolute t value observed in the statistical analysis; df means degrees of free-
dom 

3.3.5 PCA of the Thompson cultivar subset  

The PCA approach was a lso applied to the Thompson cultivar su b-

set, and the results can be summarized through the correspo nding 

PC plot shown in Figure 3.8.  

 

Figure 3.8: PCA autoscaled (meancentered and scaled data) of  binned NMR spectral 
data set, including all the Thompson samples. According to the total variance (Tv), PC1 
and PC2 explain 15% and 12% respectively. As it can be seen, only along PC1 is possible 
to observe a tendency to the separation of WT from GM (the Figure was prepared by 
using R program; see Appendix A) 
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The first consideration arise from the fact that only 27% of the t o-

tal variance is  described  by the first  two principal components ,  

while up to 38% was obtained from the same number of PCs in the 

Silcora case. Such a result implies a lower descriptive power ass o-

ciated to the chosen PC plot which, however, can be raised by i n-

specting other dimensions of the PC spac e.  

PC plot of Figure 3 .8 allows us to assume that only PC1 has some 

tendency to discriminate between berries belonging to T-WT and 

T-GM1 genotypes, although such a tendency is not as clear as in  

the other cult ivar.  

The t-student test, indeed, gives resul ts, reported in Table 3.5,  

with higher p-values (4.4e-5 vs. 2.2e-16 or 2.6e-12).   

Also for the PC space calculated on the Thompson subset, the PC 

loadings give the weight of each bin in determining the extent of  

the separation along PC1 (Figure 3.9) and PC2 dimension (Figure 

3.10).  

 
 
Figure 3.9: loading plots along PC1. Each bar corresponds to a spectral bin of 100 spec-
tral points of length. Groups #1 and #2, located in the downfield region, and #3, in the 
upfield region, underlined with a colored circles, are responsible of samples separation 
along PC1.  
Both y=a and y=-b lines indicate for convenience the maximum and minimum values to 
choose the most representative bins (the Figure was prepared by using R program; see 
Appendix A) 
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Figure 3.10: loading plots along PC2. Groups # 4, located in the midfield region, un-
derlined with a blue circle, is responsible of samples’ separation along PC2 (the Figure 
was prepared by using R program; see Appendix A) 

In this way, bins’ groups labelled with #1 and #2 (both in the aro-

matic region) are responsible of the even poor separation along 

PC1, so that a higher area is associated to the transgenic variant.  

This finding is also confirmed by integrating areas of such bins  

(Figures 3.11 A and B).  

 

Figure 3.11 A: absolute area of the bins’ groups labelled with # 1 in PC1 loadings plot. 
Bins are characterized by the presence of aromatic compounds’ signals. Standard errors 
are also shown as black lines on the top of each bar 
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Figure 3.11 B: absolute area of the bins’ groups labelled with # 2 in PC1 loadings plot. 
Like the previous bins’ group, even these bins belong to the downfield region and thus 
to aromatic compounds. Standard errors are also shown as black lines on the top of each 
bar 

Bins’ group with label #3 exerts a s light decrease of i ts area , thus  

suggesting that the amount of organic acid is lower in the tran s-

genic line than in its control group  (Figure 3.11 C). On the con-

trary, although bins’ group labelled with #4, containing sugar sig-

nals, has high weight on  PC2, its cumulative area shows no mea-

ningful difference when comparing transgenic and control lines  

(Figure 3 .11 D). This is also expected on the basis of the fact that 

PC2 is, indeed, not able to discriminate between the two lines of  

the Thompson cultivar.  

 

Figure 3.11 C: absolute area of the bins’ groups labelled with # 3 in PC1 loadings plot. 
It corresponds to a group of bins in the downfield region, where organic acids’ signals 
are abundant. Standard errors are also shown as black lines on the top of each bar 
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Figure 3.11 D: absolute area of the bins’ groups labelled with #4 in PC2 loadings plot, 
falling into the midfield region. Standard errors are also shown as black lines on the top 
of each bar 
 

3.3.6 PCA applied to all cultivars and genotypes  

A global PCA, consider ing all samples belonging to both cult ivars,  

is shown in Figure 3.12, together with the relative loadings  shown 

in Figures 3.13 (PC1 loadings) and 3 .14 (PC2 loadings).  

This further analysis  has not the purpose to explore the difference s  

between cultivars but , rather , is aimed at  determining whether the 

genetic modification shifts the metabolites profile towards the 

same direction of the PC plot, independently of the cultivar.  

By looking at the PC plot, i t appears that the first  genetic  modifi -

cation occurring in the Si lcora cultivar (S-GM1) shifts the meta-

bolic profile along the PC1 direction in the same manner as it ha p-

pens for the Thompson cultivar, although the latter at a less e x-

tent.   
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Figure 3.12: autoscaled PCA (meancentered and scaled data) of  binned NMR spectral 
data set, including all samples. According to the total variance (Tv), PC1 and PC2 ex-
plain  26% and 12% respectively (the Figure was prepared by using R program; see Ap-
pendix A) 
 

 

Figure 3.13: the loading plots for spectral bins along PC1 (the Figure was prepared by 
using R program; see Appendix A) 
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Figure 3.14: loading plots for spectral bins along PC2 (the Figure was prepared by us-
ing R program; see Appendix A) 

Some further consideration can be extracted from the inspection of  

the integral areas of selected bins’ groups .  

Aromatic compounds of bins’ group with #1 have higher concentra-

tions in Silcora than in  Thompson cultivars  (Figure 3 .15 A),  and 

the GM variants contain higher amounts than the corresponding 

WT genotype, except for GM1 of the Thompson variety, for which 

integrals show comparable amounts.  

The opposite trend appears for the organic acids collected in bins’  

group with label  #2 (Figure 3 .15 B),  since Silcora berries contain  

lower concentrations and WT higher ones.   

Again, the same trend was found in the chemical determination of  

total acids, although mostly due to tartaric acid variations rather  

than to changes  in malic  and citric acids concentration ( E.  Costan-

tini et al . ,  2007).  

It is interesting to n ote that Si lcora GM2 have decreased amounts  

of the aromatic compounds grouped in bins labelled with #3 (Fig-

ure 3.15 C), whilst dif ferent aromatic compounds, grouped in bins  

#1, were subjected to an increase consequent to the same type of  

genetic mutation. 
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Figure 3.15 A: absolute area of the bins’ groups labelled with #1 in PC1 loadings plot. 
It corresponds to bins from 24th to 25th. Standard errors are also shown as black lines on 
the top of each bar 
 

 
 
Figure 3.15 B: absolute area of the bins’ groups labelled with #2 in PC1 loadings plot. 
It corresponds to bins from 60th to 62th. Standard errors are also shown as black lines on 
the top of each bar 
 

 
 
Figure 3.15 C: absolute area of the bins’ groups labelled with #3 in PC2 loadings plot. 
It corresponds to bins from 6th to 10th. Standard errors are also shown as black lines on 
the top of each bar 



 
3 - Metabolic Profile of Transgenic Grape  
 

105 
 

According to the present results  it  is possible to identify some 

NMR spectral regions collecting signals from metabolites that 

show some statistically significant  differences when comparing the 

genetically  modified lines  and their respective control samples.  

Such differences are mainly in the aromatic region, where trypt o-

phan and its metabolites together with polyphenols have their si g-

nals. Since the inserted gene acts on the triptophane pathways, i t  

would be plausible to assign some of the varying aromatic signals  

to such a molecule or  its  derivatives.  However, meaningful  vari a-

tions are a lso observed in the organic acid regions. The latter have 

already been shown to change their concentration in a previous  

study based on chemical analysis. The critical role of auxin in plant 

growth and fruit development is a well known issue ( A. W. Wood-

ward et al. ,  2005; B. Molesini et al. ,  2008), and these results ar e 

evidencing the perspective of fered by the NMR technology in iden-

tifying the entity of metabolic variation in specific tissue with 

modified auxin metabolism.  

Further quantitative considerations need a more detailed study 

that must be based also on the assignment of thos e NMR signals  

which are mainly responsible for the global profi le changes here 

observed.  

3.3.7 LDA applied to all  cultivars and genotypes  

LD analysis  (Chapter 1, par.  1.2.4) has been performed on PC 

Loadings obtained  by PCA appl ied on al l samples binned s pectral  

data set. Before starting with the LD analysis, the one way ANOVA 

(J. J ionghua et al. ,  2004) was applied on the f irst 14 PCs, together  

explaining 80% (Figure 3.16)  of the total  variance in order  to f ind  

out those PCs having the highest discriminative power.  

In this way, i t has been possible to select the PCs to be used for  

the subsequent LD analysis in order to gain a better classification  

compared to the one already caught by Principle Components  

Analysis .  
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Figure 3.16: representation of the variation of TV according to the number of PC used. 
The first 14 PCs explain the 80% of the total variance (Figure was prepared by using R 
program; see Appendix A) 

In Table 3.6 is lis ted the main results obtained from the ANOVA 

analysis performed used R.  

Table 3.6: results from ANOVA analysis on the first 14 PCs (ANOVA was per-
formed using R program; see Appendix A) 

Number of PCs p Value Number of PCs p Value 

1 < 2.2e-16 *** 8 0.0008309 ***  

2 < 2.2e-16 *** 9 1.704e-05 *** 

3 0.1363  10 0.004832 **  

4 4.05e-05 *** 11 0.1170  

5 1.016e-06 *** 12 0.9194  

6 0.0615  ^ 13 0.9644  

7 0.7329  14 0.3117  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '^' 0.1 ' ' 1 

Figures 3.17 from A to D explain and illustrate the results of LDA  

applied on the 7 selected PCs  (1, 2 , 4, 5, 8, 9 and 10) resulting from 

the PCA of 90 spectra acquired on 45 grape samples ( Thompson 
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and Silcora).  The representation is  by a box plot ( J . ,  Devore et  al. ,  

1990; F. Daly et al. ,  1995) .  

 
Figure 3.17 A: Figure shows the separation among groups according to LD1 values 
based on the seven PCs chosen from the analysis of variance (ANOVA).  A boxplot, or 
box and whisker diagram, provides a simple graphical summary of a set of data. It shows 
a measure of central location (the median), two measures of dispersion (the range and 
inter-quartile range), the skewness (from the orientation of the median relative to the 
quartiles) and potential outliers (marked individually), in this case with a white dot. 
Samples are well grouped according to cultivars and related to Silcora, according to ge-
notypes (the Figure was prepared by using R program; see appendix A) 
 
 

 
Figure 3.17 B: Figure shows the separation among groups according to LD2 values 
based on the seven PCs chosen from the analysis of variance (ANOVA). The Silcora 
GM2 shows a higher variance compared to the other groups (the Figure was prepared 
by using R program; see appendix A) 
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Figure 3.17 C: Figure shows the separation among groups according to LD3 values 
based on the seven PCs chosen from the analysis of variance (ANOVA) (the Figure was 
prepared by using R program; see appendix A) 
 

 
 
Figure 3.17 D: Figure shows the separation among groups according to LD4 values 
based on the seven PCs chosen from the analysis of variance (ANOVA) (the Figure was 
prepared by using R program; see Appendix A) 
 

The examination of each LD and eigenvector loadings is useful to 

understand the basis of clustering behavior.  

The combination of LD1 with LD2 better differentiates the two 

cultivars (Thompson from Silcora) and separates the wild type cul-

tivars of Silcora from the other two genetically  modified lines  of  

the same cultivar . On the other variable of the plot, LD2 clearly al-

locates S-GM2 dif ferently from the other two lines  of  the Silcora 

cultivar (Figure 3.18).  
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On the other  side, the combination of  LD3 with LD4 separates,  in a  

slightly manner, T-WT from T-GM1 (Figure 3.19), especially  

along LD3.  

 
 
Figure 3.18: LD1 vs LD2 plot performed on PC Loadings obtained by PCA applied on 
all samples binned spectral data set (the Figure was prepared by using R program; see 
Appendix A) 

 

Figure 3.19: LD3 vs LD4 plot performed on PC Loadings obtained by PCA applied on 
all samples binned spectral data set. For a better visualization, Silcora samples were co-
lored in grey (the Figure was prepared by using R program; see Appendix A) 
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Figure 3.20 shows the contribution of each spectral b in on LD, a l-

ready weighted by their respective loading coeff icient found in the 

seven selected PCs (Table 3.7) according to the Equation 3.1 below 

 





7

1
80

7

1
1801 ,...,)...(1

n
n

n
n PCvcPCvciiLD                  (Eq 3.1) 

 

in which vc1 represents the canonical var iable ’s value taken in con-

sideration for bin #1 of LD1; vc80 is ,  on the other side, the canon i-

cal variable ’s value of bin #80 always belonging to LD1; n is the 

number of PCs taken in consideration according to Table 3.6 (see 

Appendix A).  

Table 3.7: coefficients of linear discriminant for each main PC selected on the base of 
ANOVA 

Number of 

PCs 
LD1 LD2 LD3 LD4 

1 -1.19465559  0.05578327  0.02425739  0.02478813  

2 0.09604888  0.65596033  -0.11150008  -0.01066208  

4 0.17389633   0.11496348  -0.37502033  0.25615319  

5 -0.16385861  -0.54232059  -0.30811770  0.28685386  

8 -0.50760487  -0.38127295  -0.48677809  -0.49535749  

9 -0.23438227  0.16122044  -0.42430681  0.09231256  

10 -0.01937333  0.04063683  -0.27781272  -0.46917014  

Such weighted contributions, here represented as a bar -plot, are 

useful to find out those bins that are the most responsible for the 

subdivision among categories, both cult ivars and genotypes  (as i t  

has been also for PC analysis).   

This representation allows to expla in better  the reasons of  the s e-

paration between groups and between different genotypes on the 

basis of bins’ content.  
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Figure 3.20 – first part: bar-plot representing the bins’ weight on the culti-
var/genotype separation along the four LD dimension. Each bar corresponds to a bin of 
100 points of length 
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Figure 3.20 - second part: bar-plot representing the bins’ weight on the culti-
var/genotype separation along the four LD dimension. Each bar corresponds to a bin of 
100 points of length 

Combining the analysis of the loadings plot of LD1 and LD2 to-

gether with the plot of the loadings of LD3 and LD4 (Figure 3.20),  

it comes out that the most responsible bins involved above al l in  

the separation between the two cu ltivars, and among genotypes ,  

are bin 60 th  and bin 62n d  together with bin 22n d  and bin 26 th ,  66 t h  

and 44 th .   

It is found that the discriminant bins are spread over the whole 

spectral  window. Negative contributions  a ssociated to a given bin  

means that a higher area for it push the LD towards negative va l-

ues and vice versa. For  example,  the analysis of  the portion of pr o-

ton spectrum corresponding to region between posit ive bins 22 n d  

and 26 th  (from 6.86 ppm to 6.27 ppm) in LD2 bin plot  reveals an  

higher presence of the relative compounds (in this case, the range 

is characterized by the presence of aromatic com pounds’ signal  

such as polyphenols) for samples located along positive va lues of  

LD2.  

So, the positive values,  along LD2 in Figure 3.18,  of S-GM2 means 

a more presence of these compounds, on the contrary it corres-

ponds to a minor concentration of aromatic compounds for S-GM1 

and S-WT. These bins points out the di f ference between cul tivars,  

underlining also the difference among genotypes.  
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The same considerations can be done for the others bins; in parti c-

ularly bin 60 th  and bin 62n d  are more discriminant between cult i-

vars: both of them show a larger integra ls’ intensity for those sig-

nals belonging to Thompson Seedless’ samples.  

Particularly interesting is the observation of  the corresp ondent 

spectrum area. In fact, this  area  is characterized by the presence of  

signals belonging to organic acids such as malic and citric acid.  

Related to berry quality and nutritional values, malic and citric a c-

ids are two of the most important organic acids presented together  

with succinic and tartaric acids. The first two, on the basis of our  

observations, are more discriminant between cultivars then the 

others. Then, Thompson Seedless results to be the cultivar with 

the most percentage of total organic acids (malate + citrate)  as i t  

can be seen in Figure 3 .21. Moreover, the two acids are presented  

in berry in different concentration. From the spectrum analysis, i t  

emerges that the rate between malate and citrate is 1:10 that m eans 

that the concentration of malate is exactly about 10x the conce n-

tration of citrate (Figure 3.22).  

 

Figure 3.21: total organic acids (malic and citric acids) distribution among genotypes 
and between cultivars. Thompson seedless shows an higher concentration of these acids 
resulting most acid then Silcora cultivar. Standard errors are also shown as black lines 
on the top of each bar 

In the end, consider ing the total organic acids S-GM1 is lightly 

less acid than S-WT, but more than S-GM2. At the end, the analy-

sis of bins plot along LD3 and LD4 points out bins 66 th  for the 
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first one and 44 th  for the second. The importance of these bins are 

exclusively for the distinction  from T-GM1 to T-WT. 

 

Figure 3.22: comparison between Malic and Citric acids. Malic’s ratio is about 10 times 
Citric’s one. Standard errors are also shown as black lines on the top of each bar 

 

3.4 CONCLUSION 

The chemometric analys is, based on the metabonomic approach,  

shows that a grape cultivar, more than one other, exert some st a-

tistically significant differences of their metabolites content, above 

the natural variabili ty, induced by modif ications introduced by g e-

nome’s artificia l a lteration.  

According to the genetic modif ication, the results were supposed to 

be relative mainly to metabolites involved in the ripening process .  

On the contrary, a global screening of the metabolites ’ profile  

shows changes not immediately expected  as the gene modification  

consequences.  

The combination of NMR spectroscopy together with the chem o-

metric technique for data analysis becomes an important tool able 

to identify  unexpected dif ferences in  the metabol ic profile. Of  

course, NMR spectroscopy together with chemometrics, should not 

be taken alone as analytical tools for the description of substantia l  

equivalence between GMO and not-GMO foodstuff.  However , ap-

plications such as the one explored in the present research work,  
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may contribute to the definit ion of a more complete description of  

the food content. In the light of such considerations, the metab o-

nomic approach applied to food science may result as  a further tool  

in the hands of the scientists that need more and more food d e-

scriptors to be taken under control during the risk assessment 

strategy. Moreover, the presented approach may be used to define,  

together with other statistical  and analytical tools, the point at  

which a GM-food is no longer substantially equivalent to the one 

that has not been modif ied.  

Further developments of the present study should be addressed t o-

wards the characterization of the c hemical nature of  metabolites  

undergoing major concentration changes, in order to rationalize 

and, possibly, to understand the main metabol ic pathways being i n-

fluenced by the genetic modifications.  
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PPENDIX A AND B 

 
 
 
 
 
 
 

 

Appendix A 
 
######################################################## 

rm(list=ls(all=TRUE)) 

################################################################# 
 
# Thompson Wild Type Samples         
 
G19<-scan("1TW.txt", dec=".") 
G20<-scan("1TWbis.txt", dec=".") 
G21<-scan("2TW.txt", dec=".") 
G22<-scan("2TWbis.txt", dec=".") 
G23<-scan("3TW.txt", dec=".") 
G24<-scan("3TWbis.txt", dec=".") 
G25<-scan("4TW.txt", dec=".") 
G26<-scan("4TWbis.txt", dec=".") 
G27<-scan("5TW.txt", dec=".") 
G28<-scan("5TWbis.txt", dec=".") 
G29<-scan("6TW.txt", dec=".") 
G30<-scan("6TWbis.txt", dec=".") 
G31<-scan("7TW.txt", dec=".") 
G32<-scan("7TWbis.txt", dec=".") 
G33<-scan("8TW.txt", dec=".") 
G34<-scan("8TWbis.txt", dec=".") 
G35<-scan("9TW.txt", dec=".") 
G36<-scan("9TWbis.txt", dec=".") 
  
# Thompson Genetically Modified 1 Samples 
 
G37<-scan("10TG.txt", dec=".") 
G38<-scan("10TGbis.txt", dec=".") 
G39<-scan("11TG.txt", dec=".") 
G40<-scan("11TGbis.txt", dec=".") 
G41<-scan("12TG.txt", dec=".") 
G42<-scan("12TGbis.txt", dec=".") 
G43<-scan("13TG.txt", dec=".") 
G44<-scan("13TGbis.txt", dec=".") 
G45<-scan("14TG.txt", dec=".") 
G46<-scan("14TGbis.txt", dec=".") 
G47<-scan("15TG.txt", dec=".") 
G48<-scan("15TGbis.txt", dec=".") 
G49<-scan("16TG.txt", dec=".") 
G50<-scan("16TGbis.txt", dec=".") 
G51<-scan("17TG.txt", dec=".") 
G52<-scan("17TGbis.txt", dec=".") 
G53<-scan("18TG.txt", dec=".") 
G54<-scan("18TGbis.txt", dec=".") 
 
# Silcora wild Type Samples            
 
G55<-scan("1SW.txt", dec=".") 
G56<-scan("1SWbis.txt", dec=".") 
G57<-scan("2SW.txt", dec=".") 
G58<-scan("2SWbis.txt", dec=".") 
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G59<-scan("3SW.txt", dec=".") 
G60<-scan("3SWbis.txt", dec=".") 
G61<-scan("4SW.txt", dec=".") 
G62<-scan("4SWbis.txt", dec=".") 
G63<-scan("5SW.txt", dec=".") 
G64<-scan("5SWbis.txt", dec=".") 
G65<-scan("6SW.txt", dec=".") 
G66<-scan("6SWbis.txt", dec=".") 
G67<-scan("7SW.txt", dec=".") 
G68<-scan("7SWbis.txt", dec=".") 
G69<-scan("8SW.txt", dec=".") 
G70<-scan("8SWbis.txt", dec=".") 
G71<-scan("9SW.txt", dec=".") 
G72<-scan("9SWbis.txt", dec=".") 
 
# Silcora Genetically Modified 1 Samples 
 
G73<-scan("10SG1.txt", dec=".") 
G74<-scan("10SG1bis.txt", dec=".") 
G75<-scan("11SG1.txt", dec=".") 
G76<-scan("11SG1bis.txt", dec=".") 
G77<-scan("12SG1.txt", dec=".") 
G78<-scan("12SG1bis.txt", dec=".") 
G79<-scan("13SG1.txt", dec=".") 
G80<-scan("13SG1bis.txt", dec=".") 
G81<-scan("14SG1.txt", dec=".") 
G82<-scan("14SG1bis.txt", dec=".") 
G83<-scan("15SG1.txt", dec=".") 
G84<-scan("15SG1bis.txt", dec=".") 
G85<-scan("16SG1.txt", dec=".") 
G86<-scan("16SG1bis.txt", dec=".") 
G87<-scan("17SG1.txt", dec=".") 
G88<-scan("17SG1bis.txt", dec=".") 
G89<-scan("18SG1.txt", dec=".") 
G90<-scan("18SG1bis.txt", dec=".") 
 
# Silcora Genetically Modified 2 Samples                
 
G91<-scan("19SG2.txt", dec=".") 
G92<-scan("19SG2bis.txt", dec=".") 
G93<-scan("20SG2.txt", dec=".") 
G94<-scan("20SG2bis.txt", dec=".") 
G95<-scan("21SG2.txt", dec=".") 
G96<-scan("21SG2bis.txt", dec=".") 
G97<-scan("22SG2.txt", dec=".") 
G98<-scan("22SG2bis.txt", dec=".") 
G99<-scan("23SG2.txt", dec=".") 
G100<-scan("23SG2bis.txt", dec=".") 
G101<-scan("24SG2.txt", dec=".") 
G102<-scan("24SG2bis.txt", dec=".") 
G103<-scan("25SG2.txt", dec=".") 
G104<-scan("25SG2bis.txt", dec=".") 
G105<-scan("26SG2.txt", dec=".") 
G106<-scan("26SG2bis.txt", dec=".") 
G107<-scan("27SG2.txt", dec=".") 
G108<-scan("27SG2bis.txt", dec=".") 
 
################################################## 
# Delete Water, Methanol and Acetic Acid Signals # 
################################################## 
 
G19<-G19[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G20<-G20[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G21<-G21[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G22<-G22[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G23<-G23[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G24<-G24[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G25<-G25[c(1:6200,6700:7970,8100:9200,9450:12295)] 
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G26<-G26[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G27<-G27[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G28<-G28[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G29<-G29[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G30<-G30[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G31<-G32[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G32<-G32[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G33<-G33[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G34<-G34[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G35<-G35[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G36<-G36[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G37<-G37[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G38<-G38[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G39<-G39[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G40<-G40[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G41<-G41[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G42<-G42[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G43<-G43[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G44<-G44[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G45<-G45[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G46<-G46[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G47<-G47[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G48<-G48[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G49<-G49[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G50<-G50[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G51<-G51[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G52<-G52[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G53<-G53[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G54<-G54[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G55<-G55[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G56<-G56[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G57<-G57[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G58<-G58[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G59<-G59[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G60<-G60[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G61<-G61[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G62<-G62[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G63<-G63[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G64<-G64[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G65<-G65[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G66<-G66[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G67<-G67[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G68<-G68[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G69<-G69[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G70<-G70[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G71<-G71[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G72<-G72[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G73<-G73[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G74<-G74[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G75<-G75[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G76<-G76[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G77<-G77[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G78<-G78[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G79<-G79[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G80<-G80[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G81<-G81[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G82<-G82[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G83<-G83[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G84<-G84[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G85<-G85[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G86<-G86[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G87<-G87[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G88<-G88[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G89<-G89[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G90<-G90[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G91<-G91[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G92<-G92[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G93<-G93[c(1:6200,6700:7970,8100:9200,9450:12295)] 
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G94<-G94[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G95<-G95[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G96<-G96[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G97<-G97[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G98<-G98[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G99<-G99[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G100<-G100[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G101<-G101[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G102<-G102[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G103<-G103[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G104<-G104[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G105<-G105[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G106<-G106[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G107<-G107[c(1:6200,6700:7970,8100:9200,9450:12295)] 
G108<-G108[c(1:6200,6700:7970,8100:9200,9450:12295)] 
 
######################################## 
# Delete Points from the Spectrum Tails# 
######################################## 
 
g19<-G19[c(2001:10000)] 
g20<-G20[c(2001:10000)] 
g21<-G21[c(2001:10000)] 
g22<-G22[c(2001:10000)] 
g23<-G23[c(2001:10000)] 
g24<-G24[c(2001:10000)] 
g25<-G25[c(2001:10000)] 
g26<-G26[c(2001:10000)] 
g27<-G27[c(2001:10000)] 
g28<-G28[c(2001:10000)] 
g29<-G29[c(2001:10000)] 
g30<-G30[c(2001:10000)] 
g31<-G31[c(2001:10000)] 
g32<-G32[c(2001:10000)] 
g33<-G33[c(2001:10000)] 
g34<-G34[c(2001:10000)] 
g35<-G35[c(2001:10000)] 
g36<-G36[c(2001:10000)] 
g37<-G37[c(2001:10000)] 
g38<-G38[c(2001:10000)] 
g39<-G39[c(2001:10000)] 
g40<-G40[c(2001:10000)] 
g41<-G41[c(2001:10000)] 
g42<-G42[c(2001:10000)] 
g43<-G43[c(2001:10000)] 
g44<-G44[c(2001:10000)] 
g45<-G45[c(2001:10000)] 
g46<-G46[c(2001:10000)] 
g47<-G47[c(2001:10000)] 
g48<-G48[c(2001:10000)] 
g49<-G49[c(2001:10000)] 
g50<-G50[c(2001:10000)] 
g51<-G51[c(2001:10000)] 
g52<-G52[c(2001:10000)] 
g53<-G53[c(2001:10000)] 
g54<-G54[c(2001:10000)] 
g55<-G55[c(2001:10000)] 
g56<-G56[c(2001:10000)] 
g57<-G57[c(2001:10000)] 
g58<-G58[c(2001:10000)] 
g59<-G59[c(2001:10000)] 
g60<-G60[c(2001:10000)] 
g61<-G61[c(2001:10000)] 
g62<-G62[c(2001:10000)] 
g63<-G63[c(2001:10000)] 
g64<-G64[c(2001:10000)] 
g65<-G65[c(2001:10000)] 
g66<-G66[c(2001:10000)] 
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g67<-G67[c(2001:10000)] 
g68<-G68[c(2001:10000)] 
g69<-G69[c(2001:10000)] 
g70<-G70[c(2001:10000)] 
g71<-G71[c(2001:10000)] 
g72<-G72[c(2001:10000)] 
g73<-G73[c(2001:10000)] 
g74<-G74[c(2001:10000)] 
g75<-G75[c(2001:10000)] 
g76<-G76[c(2001:10000)] 
g77<-G77[c(2001:10000)] 
g78<-G78[c(2001:10000)] 
g79<-G79[c(2001:10000)] 
g80<-G80[c(2001:10000)] 
g81<-G81[c(2001:10000)] 
g82<-G82[c(2001:10000)] 
g83<-G83[c(2001:10000)] 
g84<-G84[c(2001:10000)] 
g85<-G85[c(2001:10000)] 
g86<-G86[c(2001:10000)] 
g87<-G87[c(2001:10000)] 
g88<-G88[c(2001:10000)] 
g89<-G89[c(2001:10000)] 
g90<-G90[c(2001:10000)] 
g91<-G91[c(2001:10000)] 
g92<-G92[c(2001:10000)] 
g93<-G93[c(2001:10000)] 
g94<-G94[c(2001:10000)] 
g95<-G95[c(2001:10000)] 
g96<-G96[c(2001:10000)] 
g97<-G97[c(2001:10000)] 
g98<-G98[c(2001:10000)] 
g99<-G99[c(2001:10000)] 
g100<-G100[c(2001:10000)] 
g101<-G101[c(2001:10000)] 
g102<-G102[c(2001:10000)] 
g103<-G103[c(2001:10000)] 
g104<-G104[c(2001:10000)] 
g105<-G105[c(2001:10000)] 
g106<-G106[c(2001:10000)] 
g107<-G107[c(2001:10000)] 
g108<-G108[c(2001:10000)] 
 
#################################################### 
#    Collecting Spectra Data in a Matrix 90x8000   #           
####################################################  
 
tabella<-matrix(0, nrow=90, ncol=8000) 
 
tabella[1,]<-g19 
tabella[2,]<-g20 
tabella[3,]<-g21 
tabella[4,]<-g22 
tabella[5,]<-g23 
tabella[6,]<-g24 
tabella[7,]<-g25 
tabella[8,]<-g26 
tabella[9,]<-g27 
tabella[10,]<-g28 
tabella[11,]<-g29 
tabella[12,]<-g30 
tabella[13,]<-g31 
tabella[14,]<-g32 
tabella[15,]<-g33 
tabella[16,]<-g34 
tabella[17,]<-g35 
tabella[18,]<-g36 
tabella[19,]<-g37 
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tabella[20,]<-g38 
tabella[21,]<-g39 
tabella[22,]<-g40 
tabella[23,]<-g41 
tabella[24,]<-g42 
tabella[25,]<-g43 
tabella[26,]<-g44 
tabella[27,]<-g45 
tabella[28,]<-g46 
tabella[29,]<-g47 
tabella[30,]<-g48 
tabella[31,]<-g49 
tabella[32,]<-g50 
tabella[33,]<-g51 
tabella[34,]<-g52 
tabella[35,]<-g53 
tabella[36,]<-g54 
tabella[37,]<-g55 
tabella[38,]<-g56 
tabella[39,]<-g57 
tabella[40,]<-g58 
tabella[41,]<-g59 
tabella[42,]<-g60 
tabella[43,]<-g61 
tabella[44,]<-g62 
tabella[45,]<-g63 
tabella[46,]<-g64 
tabella[47,]<-g65 
tabella[48,]<-g66 
tabella[49,]<-g67 
tabella[50,]<-g68 
tabella[51,]<-g69 
tabella[52,]<-g70 
tabella[53,]<-g71 
tabella[54,]<-g72 
tabella[55,]<-g73 
tabella[56,]<-g74 
tabella[57,]<-g75 
tabella[58,]<-g76 
tabella[59,]<-g77 
tabella[60,]<-g78 
tabella[61,]<-g79 
tabella[62,]<-g80 
tabella[63,]<-g81 
tabella[64,]<-g82 
tabella[65,]<-g83 
tabella[66,]<-g84 
tabella[67,]<-g85 
tabella[68,]<-g86 
tabella[69,]<-g87 
tabella[70,]<-g88 
tabella[71,]<-g89 
tabella[72,]<-g90 
tabella[73,]<-g91 
tabella[74,]<-g92 
tabella[75,]<-g93 
tabella[76,]<-g94 
tabella[77,]<-g95 
tabella[78,]<-g96 
tabella[79,]<-g97 
tabella[80,]<-g98 
tabella[81,]<-g99 
tabella[82,]<-g100 
tabella[83,]<-g101 
tabella[84,]<-g102 
tabella[85,]<-g103 
tabella[86,]<-g104 
tabella[87,]<-g105 
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tabella[88,]<-g106 
tabella[89,]<-g107 
tabella[90,]<-g108 
############################################################# 
# PCA auotoscaled on a Raw Spectral Data Matrix with Simbols# 
############################################################# 
 
analisi<-prcomp(tabella[,],center=T,scale=T)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
 
plot(x,y) 
colorigruppi<-c(rep("dark 
green",18),rep("orange",18),rep("red",18),rep("blue",18),rep("pur
ple",18)) 
 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(16,18), 
rep(1,18), rep(17,18), rep(6,18), rep(22,18)), cex=2, 
col=colorigruppi) 
 
title(xlab=list("PC1 (18.4%)",cex=1.3, font=1)) 
title(ylab=list("PC2 (15%)",cex=1.3, font=1)) 
title(main=list("PCA on Raw Data", cex=2, font=1)) 
 
legend(locator(2), c("T-WT", "T-GM1","S-WT","S-GM1", "S-GM2"), 
pch=c(16,1,17,6,22),cex=1.3,col=c("dark 
green","orange","red","blue", "purple")) 
 
####################################### 
# Evaluation of % Cumulative Variance #                     
####################################### 
 
x<-0 
varcum<-rep(0,90) 
propvarcum<-rep(0,90) 
for (i in 1:90) { 
j<-i-1 
varcum[i]<-analisi$sdev[i]^2+x 
x<-varcum[i] 
propvarcum[i]<-(varcum[i]/sum(analisi$sdev^2))*100 
} 
plot(propvarcum, xlab=" PCs", ylab="Cumulative % variance") 
propvarcum 
 
############################################################# 
# Refer all Spectra on Beta Anomeric Glucose                # 
############################################################# 
 
ncamp<-90 
punti<-8000 
centro<-4265 #(refered to the best representativ spectrum N°2) 
maxvet<-matrix(data=0, ncol=1, nrow=ncamp) 
reganomer<-c(4255:4280) 
for (i in 1:ncamp){ 
for (j in reganomer){ 
if (tabella[i,j]==max(tabella[i,reganomer])) maxvet[i,]<- centro-
j 
} 
} 
allineati<- matrix(data=0, ncol=punti, nrow=ncamp) 
for (i in 1:ncamp) { 
shift<-maxvet[i,1] 
if (shift>0) allineati[i,(1+shift):punti]<-tabella[i,1:(punti-
shift)] 
if (shift==0) allineati[i,]<-tabella[i,] 
if (shift<0) allineati[i,1:(punti+shift)]<-tabella[i,(1-
shift):punti] 
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} 
plot(maxvet) 
 
########################## 
#   Plotting All Spectra # 
########################## 
 
z<-c(4200:4300) 
plot(allineati[1,z], type="l", ylim=c(0,110000), 
ylab="Intensity", xlab="number of points") 
for (i in 1:ncamp) { 
lines(allineati[i,z]) 
} 
 
z<-c(5600:8000) 
plot(allineati[1,z], type="l", ylim=c(0,1000)) 
for (i in 1:ncamp) { 
lines(allineati[i,z]) 
} 
 
################################################################# 
# PCA auotoscaled on Aligned Spectral Data Matrix with Simbols # 
################################################################# 
 
analisi<-prcomp(allineati[,],center=T,scale=T)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
 
plot(x,y) 
colorigruppi<-c(rep("dark 
green",18),rep("orange",18),rep("red",18),rep("blue",18),rep("pur
ple",18)) 
 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(16,18), 
rep(1,18), rep(17,18), rep(6,18), rep(22,18)), cex=2, 
col=colorigruppi) 
 
title(xlab=list("PC1 (18.6%)",cex=1.3, font=1)) 
title(ylab=list("PC2 (15.2%)",cex=1.3, font=1)) 
title(main=list("PCA on Aligned Data", cex=2, font=1)) 
 
legend(locator(2), c("T-WT", "T-GM1","S-WT","S-GM1", "S-GM2"), 
pch=c(16,1,17,6,22),cex=1.3,col=c("dark 
green","orange","red","blue", "purple")) 
 
######################################################## 
#   Normalization on a Significant Peak Area          # 
######################################################## 
 
#riferiti<-allineatibis 
riferiti<-allineati 
coeff<-rep(1,ncamp) 
area2<-sum (riferiti[2,4500:5500]) 
 
for (i in 1:ncamp) { 
somma<-sum(riferiti[i,4500:5500]) 
coeff[i]<-somma/area2 
} 
for (i in 1:ncamp) { 
riferiti[i,]<-riferiti[i,]/coeff[i] 
} 
 
########################################################    
# Coeficient of Normalization on Total Spectrum Area   # 
######################################################## 
 
ncamp<-nrow(allineati) 
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coefmat<-matrix(data=0, nrow=ncamp, ncol=1) 
for(i in 1:ncamp){ 
coefmat[i,]<-sum(allineati[i,]) 
} 
media<-sum(coefmat)/ncamp 
 
########################################## 
#  Normalization on Total Specrtum Area  # 
########################################## 
 
ncamp<-nrow(allineati) 
npunti<-ncol(allineati) 
riferiti<-matrix(data=0, ncol=npunti, nrow=ncamp) 
area<-matrix(data=0, ncol=1, nrow=ncamp) 
for (j in 1:ncamp){ 
area[j,]<-sum(allineati[j,]) 
for (i in 1:npunti){ 
riferiti[j,i]<-allineati[j,i]/area[j,] 
} 
} 
riferiti<-riferiti*media 
 
########################## 
#   Plotting All Spectra # 
########################## 
 
z<-c(4200:4300) 
plot(riferiti[1,z], type="l", ylim=c(0,110000), ylab="Intensity", 
xlab="number of points") 
for (i in 1:ncamp) { 
lines(riferiti[i,z]) 
} 
 
z<-c(5600:8000) 
plot(riferiti[1,z], type="l", ylim=c(0,1000)) 
for (i in 1:ncamp) { 
lines(riferiti[i,z]) 
} 
 
################################################################# 
#PCA auotoscaled on Normalized Spectral Data Matrix with Simbols# 
################################################################# 
 
analisi<-prcomp(riferiti[,],center=T,scale=T)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
 
plot(x,y) 
colorigruppi<-c(rep("dark 
green",18),rep("orange",18),rep("red",18),rep("blue",18),rep("pur
ple",18)) 
 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(16,18), 
rep(1,18), rep(17,18), rep(6,18), rep(22,18)), cex=2, 
col=colorigruppi) 
 
title(xlab=list("PC1 (19%)",cex=1.3, font=1)) 
title(ylab=list("PC2 (9%)",cex=1.3, font=1)) 
title(main=list("PCA on Normalized Data", cex=2, font=1)) 
 
legend(locator(2), c("T-WT", "T-GM1","S-WT","S-GM1", "S-GM2"), 
pch=c(16,1,17,6,22),cex=1.3,col=c("dark 
green","orange","red","blue", "purple")) 
 
########################################### 
#        More PCs Combination Plotting    # 
########################################### 
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pcvalues<-as.data.frame(analisi$x) 
pairs(pcvalues[1:4],col=colorigruppi) 
 
#oppure solo riferito ai gruppi 
analisi<-prcomp(riferiti,center=T,scale=T) 
y<-c(1,3) 
plot(analisi$x[,y]) 
plot(analisi$x[,y], main="PC1 vs PC3", pch="*") 
text(analisi$x[,y], labels=c("*"),col=colorigruppi) 
pcvalues<-as.data.frame(analisi$x) 
pairs(pcvalues[1:3],col=colorigruppi, pch="*") 
 
############# 
# Smoothing # 
############# 
 
ncamp<-nrow(riferiti) 
sm<-edit (riferiti [1:5,1:10]) 
 
smooth<-matrix(data=0, nrow=ncamp, ncol=8000) 
for (z in 1:ncamp) { 
for (i in 3:(ncol(riferiti)-2)) { 
w1<-(i-2) 
w2<-(i+2) 
w<-c(w1:w2) 
a<-mean(riferiti[z,w]) 
smooth[z,i]<-a 
} 
} 
tabella<-smooth 
sm<-edit (tabella [1:5,1:10]) 
 
############################ 
#   Specral Derivate       # 
############################ 
 
ncamp<-nrow(tabella) 
 
derivata<-matrix(data=0, nrow=ncamp, ncol=8000) 
for (z in 1:ncamp) { 
for (i in 1:(ncol(tabella)-1)){ 
j<-i+1 
a<-(tabella[z,j]-tabella[z,i]) 
derivata[z,i]<-a 
} 
} 
edit (derivata[1,1:10]) 
windows() 
plot(derivata[1,], type="l") 
 
########################## 
#  PeakPick Matrix       # 
########################## 
 
ncamp<-nrow(derivata) 
sm<-edit(ncamp) 
peakpick<-matrix(data=0, nrow=ncamp, ncol=8000) 
i<-0 
j<-0 
for (z in 1:ncamp) { 
for (i in 5:(ncol(derivata)-6)){ 
j<-i+1 
a<-(derivata[z,i]) 
b<-(derivata[z,j]) 
c<-(tabella[z,j]) 
d<-derivata[z,(j+4)]-derivata[z,(i-4)] 
if (a>0) 
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if (a*b<0) 
if (abs(d)>=2) 
peakpick[z,j]<-c 
} 
} 
plot(peakpick[1,], type="l") 
 
############################## 
# Binning Spectra 100 Points # 
############################## 
 
#length(peakpick[1,]) 
ncamp<-nrow(riferiti) 
intervallo<-matrix(data=0, nrow=ncamp, ncol=80) 
for (z in 1:ncamp) { 
i<-1 
for (i in 1:80){ 
for (j in 1:100){ 
k<-((i-1)*100)+j 
a<-riferiti[z,k]# Here the name of the matrix to be binned 
intervallo[z,i]<-intervallo[z,i]+a 
} 
intervallo[z,i]<-intervallo[z,i]/100 
} 
} 
 
############################################################### 
# PCA auotoscaled on Binned Spectral Data Matrix with Symbols # 
############################################################### 
 
analisi<-prcomp(intervallo[,],center=T,scale=T)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
 
plot(x,y) 
colorigruppi<-c(rep("dark 
green",18),rep("orange",18),rep("red",18),rep("blue",18),rep("pur
ple",18)) 
 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(16,18), 
rep(1,18), rep(17,18), rep(6,18), rep(22,18)), cex=2, 
col=colorigruppi) 
 
title(xlab=list("PC1 (26%)",cex=1.3, font=1)) 
title(ylab=list("PC2 (12%)",cex=1.3, font=1)) 
title(main=list("PCA on Binned Data", cex=2, font=1)) 
 
legend(locator(2), c("T-WT", "T-GM1","S-WT","S-GM1", "S-GM2"), 
pch=c(16,1,17,6,22),cex=1.3,col=c("dark 
green","orange","red","blue", "purple")) 
 
####################################### 
# Evaluation of % Cumulative Variance #                     
####################################### 
 
x<-0 
varcum<-rep(0,80) 
propvarcum<-rep(0,80) 
for (i in 1:80) { 
j<-i-1 
varcum[i]<-analisi$sdev[i]^2+x 
x<-varcum[i] 
propvarcum[i]<-(varcum[i]/sum(analisi$sdev^2))*100 
} 
 
y<-c(propvarcum) 
x<-c(1:80) 
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plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ")  
title(xlab=list("Number of PC",cex=1.3, font=1)) 
title(ylab=list("Cumulative Variance (%)",cex=1.3, font=1)) 
abline(h= 78.57981, col="red") 
abline(v=14, col="red")# to add a x=a line 
 
################################################################# 
# PCA auotoscaled on Binned Spectral Silcora Data Matrix with   #    
# Simbols                                                       # 
################################################################# 
 
analisi<-prcomp(intervallo[37:90,],center=T,scale=T)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
 
plot(x,y) 
colorisilcora<-c(rep("red",18),rep("blue",18),rep("purple",18)) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(17,18), 
rep(6,18), rep(22,18)), cex=2, col=colorisilcora) 
 
title(xlab=list("PC1 (25%)",cex=1.3, font=1)) 
title(ylab=list("PC2 (13%)",cex=1.3, font=1)) 
title(main=list("Silcora PCA Binned Data", cex=2, font=1)) 
 
legend(locator(2), c("S-WT","S-GM1", "S-GM2"), pch=c(17,6,22), 
cex=1.3, col=c("red","blue", "purple")) 
 
################################### 
#   BarPlot Loadings Values PC1   # 
################################### 
 
barplot(analisi$rotation[,1], axes=FALSE, col=c(rep("green",37), 
rep("light blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Silcora PC1 Loadings", cex=2, font=1)) 
abline(h= 0.2)#to add a y=a line 
abline(h=-0.2)#to add a second y=-a  line 
 
####################################################### 
#   BarPlot most representative Loadings Values  PC1  # 
####################################################### 
 
a<-rep(0,5) 
b<-analisi$rotation[6:10,1] 
c<-rep(0,11) 
d<-analisi$rotation[22:26,1] 
e<-rep(0,32) 
f<-analisi$rotation[59:61,1] 
g<-rep(0,19) 
i<-c(a,b,c,d,e,f,g) 
barplot(i, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Silcora Main Loandings PC1 Bins", cex=2, 
font=1)) 
abline(h= 0.1)#to add a y=a line 
abline(h=-0.11)#to add a second y=-a  line 
 
################################### 
#   BarPlot Loadings Values PC2   # 
################################### 
 
barplot(analisi$rotation[,2], axes=FALSE, col=c(rep("green",37), 
rep("light blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
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title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Silcora PC2 Loadings", cex=2, font=1)) 
abline(h= 0.2)#to add a y=a line 
abline(h=-0.16)#to add a second y=-a  line 
 
###################################################### 
#   BarPlot most representative Loadings Values PC2  # 
###################################################### 
 
a<-rep(0,39) 
b<-analisi$rotation[40,2] 
c<-rep(0,40) 
i<-c(a,b,c) 
barplot(i, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Silcora Main Loandings PC2 Bins", cex=2, 
font=1)) 
abline(h= 0.2)#to add a y=a line 
abline(h=-0.16)#to add a second y=-a  line 
 
################################################################# 
# Representation of the mean Area for Each bins Silcora Samples # 
################################################################# 
 
z<-c(3900:4000) 
riferitibis<-riferiti[1:90,] 
integrale<-matrix(data=0, nrow=90, ncol=1) 
for(i in 1:90){ 
integrale[i,]<-sum(riferitibis[i,z]) 
} 
 
mean(integrale[37:54,1]) 
mean(integrale[55:72,1]) 
mean(integrale[73:90,1]) 
 
sd3<-sd(integrale[37:54,1]) 
sd4<-sd(integrale[55:72,1]) 
sd5<-sd(integrale[73:90,1]) 
 
sd3 
sd4 
sd5 
 
################################################################# 
# PCA auotoscaled on Binned Spectral Thompson Data Matrix       #  
# with Simbols                                                  # 
################################################################# 
 
analisi<-prcomp(intervallo[1:36,],center=T,scale=T)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
 
plot(x,y) 
colorithompson<-c(rep("dark green",18),rep("orange",18)) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(16,18), 
rep(1,18)), cex=2, col=colorithompson) 
 
title(xlab=list("PC1 (15%)",cex=1.3, font=1)) 
title(ylab=list("PC2 (12%)",cex=1.3, font=1)) 
title(main=list("Thompson PCA Binned Data", cex=2, font=1)) 
legend(locator(2), c("T-WT","T-GM1"), pch=c(16,1), cex=1.3, 
col=c("dark green","orange")) 
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################################### 
#   BarPlot Loadings Values PC1   # 
################################### 
 
barplot(analisi$rotation[,1], axes=FALSE, col=c(rep("green",37), 
rep("light blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Thompson PC1 Loadings", cex=2, font=1)) 
abline(h= 0.095)#to add a y=a line 
abline(h=-0.175)#to add a second y=-a  line 
 
 
################################### 
#   BarPlot Loadings Values PC2   # 
################################### 
 
barplot(analisi$rotation[,2], axes=FALSE, col=c(rep("green",37), 
rep("light blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Thompson PC2 Loadings", cex=2, font=1)) 
abline(h= 0.18)#to add a y=a line 
abline(h=-0.19)#to add a second y=-a  line 
 
####################################################### 
#   BarPlot most representative Loadings Values PC1   # 
####################################################### 
 
a<-rep(0,23) 
b<-analisi$rotation[24:25,1] 
c<-rep(0,9) 
d<-analisi$rotation[35:37,1] 
e<-rep(0,21) 
f<-analisi$rotation[59:61,1] 
g<-rep(0,19) 
i<-c(a,b,c,d,e,f,g) 
barplot(i, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Thompson Main Loandings PC1 Bins", cex=2, 
font=1)) 
abline(h= 0.095)#to add a y=a line 
abline(h=-0.175)#to add a second y=-a  line 
 
###################################################### 
#   BarPlot most representative Loadings Values PC2  # 
###################################################### 
 
a<-rep(0,38) 
b<-analisi$rotation[39:41,2] 
c<-rep(0,39) 
i<-c(a,b,c) 
barplot(i, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Thompson Main Loandings PC2 Bins", cex=2, 
font=1)) 
abline(h= 0.18)#to add a y=a line 
abline(h=-0.19)#to add a second y=-a  line 
 
################################################################# 
# Representation of the mean Area for Each bins Thompson        # 
# Samples                                                       # 
################################################################# 
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z<-c(3800:4100) 
riferitibis<-riferiti[1:90,] 
integrale<-matrix(data=0, nrow=90, ncol=1) 
for(i in 1:90){ 
integrale[i,]<-sum(riferitibis[i,z]) 
} 
 
mean(integrale[1:18,1]) 
mean(integrale[19:36,1]) 
 
sd1<-sd(integrale[1:18,1]) 
sd2<-sd(integrale[19:36,1]) 
 
sd1 
sd2 
 
################################################################# 
# PCA auotoscaled on Binned Spectral Data Matrix with Simbols   #                     
################################################################# 
 
analisi<-prcomp(intervallo,center=T,scale=T)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
 
plot(x,y) 
colori<-c(rep("dark 
green",18),rep("orange",18),rep("red",18),rep("blue",18),rep("pur
ple",18)) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(16,18), 
rep(1,18), rep(17,18), rep(6,18), rep(22,18)), cex=2, col=colori) 
 
title(xlab=list("PC1 (12%)",cex=1.3, font=1)) 
title(ylab=list("PC2 (26%)",cex=1.3, font=1)) 
title(main=list("PCA Binned Data all Samples", cex=2, font=1)) 
 
legend(locator(2), c("T-WT", "T-GM1", "S-WT","S-GM1", "S-GM2"), 
pch=c(16,1,17,6,22), cex=1.3, col=c("dark green", 
"orange","red","blue", "purple")) 
 
################################### 
#   BarPlot Loadings Values PC1   # 
################################### 
 
barplot(analisi$rotation[,1], axes=FALSE, col=c(rep("green",37), 
rep("light blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("All Samples PC1 Loadings", cex=2, font=1)) 
abline(h= 0.17)#to add a y=a line 
abline(h=-0.18)#to add a second y=-a  line 
 
################################### 
#   BarPlot Loadings Values PC2   # 
################################### 
 
barplot(analisi$rotation[,2], axes=FALSE, col=c(rep("green",37), 
rep("light blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("All Samples PC2 Loadings", cex=2, font=1)) 
abline(h= 0.1)#to add a y=a line 
abline(h=-0.14)#to add a second y=-a  line 
 
####################################################### 
#   BarPlot most representative Loadings Values PC1   # 
####################################################### 
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a<-rep(0,23) 
b<-analisi$rotation[24:25,1] 
c<-rep(0,33) 
d<-analisi$rotation[59:61,1] 
e<-rep(0,19) 
i<-c(a,b,c,d,e) 
barplot(i, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("All Samples Main Loandings PC1 Bins", cex=2, 
font=1)) 
abline(h= 0.17)#to add a y=a line 
abline(h=-0.18)#to add a second y=-a  line 
 
###################################################### 
#   BarPlot most representative Loadings Values PC2  # 
###################################################### 
 
a<-rep(0,5) 
b<-analisi$rotation[6:10,2] 
c<-rep(0,70) 
i<-c(a,b,c) 
barplot(i, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("All Samples Main Loandings PC2 Bins", cex=2, 
font=1)) 
abline(h= 0.1)#to add a y=a line 
abline(h=-0.14)#to add a second y=-a  line 
 
################################################################# 
# Representation of the mean Area for Each bins All Samples     # 
################################################################# 
 
z<-c(4700:5000) 
riferitibis<-riferiti[1:90,] 
integrale<-matrix(data=0, nrow=90, ncol=1) 
for(i in 1:90){ 
integrale[i,]<-sum(riferitibis[i,z]) 
} 
 
mean(integrale[1:18,1]) 
mean(integrale[19:36,1]) 
mean(integrale[37:54,1]) 
mean(integrale[55:72,1]) 
mean(integrale[73:90,1]) 
 
sd1<-sd(integrale[1:18,1]) 
sd2<-sd(integrale[19:36,1]) 
sd3<-sd(integrale[37:54,1]) 
sd4<-sd(integrale[55:72,1]) 
sd5<-sd(integrale[73:90,1]) 
 
sd1 
sd2 
sd3 
sd4 
sd5 
 
########################### 
# T Student or T-test     # 
########################### 
 
plotpc<-matrix(data=0, ncol=5, nrow=18) 
 
plotpc[,1]<-analisi$x[1:18,2] # on PC2 
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plotpc[,2]<-analisi$x[19:36,2] 
plotpc[,3]<-analisi$x[37:54,2] 
plotpc[,4]<-analisi$x[55:72,2] 
plotpc[,5]<-analisi$x[73:90,2] 
 
# Confronto tra Varianza di due Popolazioni 
 
var(plotpc[,1]) 
var(plotpc[,2]) 
var(plotpc[,3]) 
var(plotpc[,4]) 
var(plotpc[,5]) 
 
#Var test per Confermare l'Uguaglianza tra le Varianze: Calcolo 
dell'intervalo di Confidenza al 95% 
 
var.test(plotpc[,1],plotpc[,2])$conf.int 
var.test(plotpc[,3],plotpc[,4])$conf.int 
var.test(plotpc[,3],plotpc[,5])$conf.int 
 
#se l'Intervallo di confidenza contiene 1 Allora le 2 Varianze 
sono Uguali 
 
t.test(plotpc[,1],plotpc[,2], var.equal=T) # per Var Uguali 
t.test(plotpc[,3],plotpc[,4], var.equal=T) # per Var Uguali 
t.test(plotpc[,3],plotpc[,5], var.equal=T) # per Var Uguali 
 
#t.test(plotpc[,1],plotpc[,2], var.equal=F) #Welch test per Var 
Diverse 
 
qt(o.975, 34) # Quartile con confidenza dello 0,05% 
 
######################### 
#     ANOVA One Way     # 
######################### 
 
livelli<-rep(c("A","B","C","D","E"), c(18,18,18,18,18)) 
livelli<-as.factor(livelli) 
levels(livelli) 
table(livelli) 
 
sm<-edit (analisi$x[,1]) 
 
y<-c(analisi$x[,2]) # referred to PC1.  
mean(y) 
 
tapply(y,livelli,mean) 
tapply(y,livelli,length) 
boxplot(y~livelli) 
 
plot.design(y~livelli) # To see distances’s groups 
 
mod<-lm(y~livelli)  
summary(mod) 
anova(mod) 
 
########### 
#  LDA    # 
########### 
 
#Download MASS package 
 
pc<-c(1,2,4,5,8,9,10)# Main PCs chosen from ANOVA 
colori<-c(rep("dark 
green",18),rep("orange",18),rep("red",18),rep("blue",18),rep("pur
ple",18)) 
 
pcvalues<-as.data.frame(analisi$x[,pc]) 
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attach(pcvalues) 
livelli<-rep(c("T-WT","T-GM1","S-WT","S-GM1","S-GM2"), 
c(18,18,18,18,18)) 
livelli<-as.factor(livelli) 
levels(livelli) 
table(livelli) 
ldauva<-lda(livelli~.,pcvalues, prior=c(1,1,1,1,1)/5) # con 
"prior" dò probabilità a priori uguale a tutti i gruppi 
 
lduva<-predict(ldauva) #al predict assegno un nome diverso 
plot(lduva$x,type="n") 
text(lduva$x, labels=as.character(livelli), col=colori, 
main="LDA") 
 
plot(ldauva, dimen=4, col= colori)  
 
plot(ldauva, dimen=2, col= colori) 
 
######################################## 
# Coefficients of linear discriminants # 
######################################## 
 
# To find out the PC chosen coefficients for each LD 
 
ldauva 
 
###################### 
# Plot LD1 vs LD2    # 
###################### 
 
LD1<-predict(ldauva)$x[,1] 
LD2<-predict(ldauva)$x[,2] 
 
plot(LD1,LD2, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(16,18), 
rep(1,18), rep(17,18), rep(6,18), rep(22,18)), cex=2, col=colori) 
 
title(xlab=list("LD1",cex=1.3, font=1)) 
title(ylab=list("LD2",cex=1.3, font=1)) 
title(main=list("LDA Binned Data all Samples", cex=2, font=1)) 
 
###################### 
# Plot LD3 vs LD4    # 
###################### 
 
LD3<-predict(ldauva)$x[,3] 
LD4<-predict(ldauva)$x[,4] 
 
colorigruppi2<-c(rep("dark green",18),rep("dark 
orange",18),rep("grey",18),rep("grey",18),rep("grey",18)) 
 
plot(LD3,LD4, cex.axis=1.3, xlab=" ",ylab=" ", pch=c(rep(16,18), 
rep(1,18), rep(17,18), rep(6,18), rep(22,18)), cex=2, 
col=colorigruppi2) 
 
title(xlab=list("LD3",cex=1.3, font=1)) 
title(ylab=list("LD4",cex=1.3, font=1)) 
title(main=list("LDA Binned Data all Samples", cex=2, font=1)) 
 
###################### 
#   LD Box Plot      # 
###################### 
 
livel<-rep(c("0-T-WT","1-T-GM1","2-S-WT","3-S-GM1","4-S-GM2"), 
c(18,18,18,18,18)) 
y<-c(lduva$x[,2]) 
colbox<-c(rep("dark 
green",1),rep("orange",1),rep("red",1),rep("blue",1),rep("purple"
,1)) 
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boxplot(y~livel,col=colbox, cex.axis=1.3) 
title(xlab=list("Groups",cex=1.3, font=1)) 
title(ylab=list("Variance",cex=1.3, font=1)) 
title(main=list("LD4 Representation", cex=2, font=1)) 
 
######################################### 
#    Contribution of each PC on each LD #                                                       
######################################### 
 
#xLD1: PCn (all samples) for n coefficient obtained by the com-
mand ldauva 
 
PC1LD1<-analisi$rotation[,1]*-1.19688174   
PC2LD1<-analisi$rotation[,2]* 0.09604888   
PC4LD1<-analisi$rotation[,4]* 0.17389633   
PC5LD1<-analisi$rotation[,5]* -0.16385861 
PC8LD1<-analisi$rotation[,8]* -0.50760487 
PC9LD1<-analisi$rotation[,9]* -0.23438227   
PC10LD1<-analisi$rotation[,10]* -0.01937333   
 
summa<-PC1LD1+PC2LD1+PC4LD1+PC5LD1+PC8LD1+PC9LD1+PC10LD1 
 
barplot(summa, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin on LD1", cex=1.3, 
font=1)) 
abline(h= 0.2)#to add a y=a line 
abline(h=-0.2)#to add a second y=-a  line 
 
#xLD2 
 
PC1LD2<-analisi$rotation[,1]* 0.05578327  
PC2LD2<-analisi$rotation[,2]* 0.65596033 
PC4LD2<-analisi$rotation[,4]* 0.11496348  
PC5LD2<-analisi$rotation[,5]* -0.54232059  
PC8LD2<-analisi$rotation[,8]* -0.38127295  
PC9LD2<-analisi$rotation[,9]* 0.16122044  
PC10LD2<-analisi$rotation[,10]* 0.04063683   
 
summa<-PC1LD2+PC2LD2+PC4LD2+PC5LD2+PC8LD2+PC9LD2+PC10LD2 
 
barplot(summa, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin on LD2", cex=1.3, 
font=1)) 
abline(h= 0.2)#to add a y=a line 
abline(h=-0.2)#to add a second y=-a  line 
 
#xLD3 
 
PC1LD2<-analisi$rotation[,1]* 0.02425739  
PC2LD2<-analisi$rotation[,2]* -0.11150008 
PC4LD2<-analisi$rotation[,4]* -0.37502033    
PC5LD2<-analisi$rotation[,5]* -0.30811770    
PC8LD2<-analisi$rotation[,8]* -0.48677809  
PC9LD2<-analisi$rotation[,9]* -0.42430681    
PC10LD2<-analisi$rotation[,10]* -0.27781272   
 
summa<-PC1LD2+PC2LD2+PC4LD2+PC5LD2+PC8LD2+PC9LD2+PC10LD2 
 
barplot(summa, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin on LD3", cex=1.3, 
font=1)) 
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abline(h= 0.2)#to add a y=a line 
abline(h=-0.1)#to add a second y=-a  line 
 
#xLD4 
 
PC1LD2<-analisi$rotation[,1]* 0.02478813 
PC2LD2<-analisi$rotation[,2]* -0.01066208 
PC4LD2<-analisi$rotation[,4]* 0.25615319 
PC5LD2<-analisi$rotation[,5]* 0.28685386 
PC8LD2<-analisi$rotation[,8]* -0.49535749 
PC9LD2<-analisi$rotation[,9]* 0.09231256 
PC10LD2<-analisi$rotation[,10]* -0.46917014 
 
summa<-PC1LD2+PC2LD2+PC4LD2+PC5LD2+PC8LD2+PC9LD2+PC10LD2 
 
barplot(summa, axes=FALSE, col=c(rep("green",37), rep("light 
blue",19), rep("red",24))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin on LD4", cex=1.3, 
font=1)) 
abline(h= 0.2)#to add a y=a line 
abline(h=-0.1)#to add a second y=-a  line 
 
###################################################### 
# Representation of the mean Area for Organic Acids  # 
###################################################### 
 
z<-c(5800:6200) 
riferitibis<-riferiti[1:90,] 
integrale<-matrix(data=0, nrow=90, ncol=1) 
for(i in 1:90){ 
integrale[i,]<-sum(riferitibis[i,z]) 
} 
 
mean(integrale[1:18,1]) 
mean(integrale[19:36,1]) 
mean(integrale[37:54,1]) 
mean(integrale[55:72,1]) 
mean(integrale[73:90,1]) 
 
sd1<-sd(integrale[1:18,1]) 
sd2<-sd(integrale[19:36,1]) 
sd3<-sd(integrale[37:54,1]) 
sd4<-sd(integrale[55:72,1]) 
sd5<-sd(integrale[73:90,1]) 
 
sd1 
sd2 
sd3 
sd4 
sd5 
 
############################################# 
# comparison between Malic and Citric Acids # 
############################################# 
 
# Malic Acid 
z<-c(5870:5970,6070:6170)  
riferitibis<-riferiti[1:90,] 
integrale<-matrix(data=0, nrow=90, ncol=1) 
for(i in 1:90){ 
integrale[i,]<-sum(riferitibis[i,z]) 
} 
mean(integrale[,1]) 
sd1<-sd(integrale[,1]) 
 
sd1 
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# Citric Acid 
 
z<-c(5970:6070)  
riferitibis<-riferiti[1:90,] 
integrale<-matrix(data=0, nrow=90, ncol=1) 
for(i in 1:90){ 
integrale[i,]<-sum(riferitibis[i,z]) 
} 
mean(integrale[,1]) 
sd1<-sd(integrale[,1]) 
 
sd1 
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Appendix B.1 Thompson Seedless Wild Type (T-WT) spec-
trum  

 

ppm (t1) 6.07.08.09.010.0  
 
Figure Appendix B1: T-WT: Downfield Region (> 5.5 ppm) 
 

ppm (t1) 3.003.504.004.505.00  
 
Figure Appendix B2: T-WT: Midfield Region (5.5 < ppm < 2.9) 
 

ppm (t1) 1.001.502.002.50  
 
Figure Appendix B3: T-WT: Upfield Region (< 2.9 ppm) 
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Appendix B.2 Thompson Seedless Genetically Modified (T-
GM1) spectrum 

 

ppm (t1) 6.07.08.09.010.0  
 
Figure Appendix B2: T-GM1: Downfield Region (> 5.5 ppm) 
 

ppm (t1) 3.003.504.004.505.00  
 
Figure Appendix B2: T-GM1: Midfield Region (5.5 < ppm < 2.9) 
 

ppm (t1) 1.001.502.002.50  
 
Figure Appendix B2: T-GM1: Upfield Region (< 2.9 ppm) 
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Appendix B.3 Silcora Wild Type (S-WT) spectrum 

ppm (t1) 6.07.08.09.010.0  
 
Figure Appendix B3: S-WT: Downfield Region (> 5.5 ppm) 
 

ppm (t1) 3.003.504.004.505.00  
 
Figure Appendix B3: S-WT: Midfield Region (5.5 < ppm < 2.9) 
 

ppm (t1) 1.001.502.002.50  
 
Figure Appendix B3: S-WT: Upfield Region (< 2.9 ppm) 
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Appendix B.4 Silcora Genetically Modified 1 Type (S -GM1) 
spectrum 

ppm (t1) 6.07.08.09.010.0  
 
Figure Appendix B4: S-GM1: Downfield Region (> 5.5 ppm) 
 

ppm (t1) 3.003.504.004.505.00  
 
Figure Appendix B4: S-GM1: Midfield Region (5.5 < ppm < 2.9) 
 

ppm (t1) 1.001.502.002.50  
 
Figure Appendix B4: S-GM1: Upfield Region (< 2.9 ppm) 
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Appendix B.5 Silcora Genetically Modified 2 Type (S-GM2) 
spectrum 

ppm (t1) 6.07.08.09.010.0  
 
Figure Appendix B5: S-GM2: Downfield Region (> 5.5 ppm) 
 

ppm (t1) 3.003.504.004.505.00  
 
Figure Appendix B5: S-GM2: Midfield Region (5.5 < ppm < 2.9) 
 

ppm (t1) 1.001.502.002.50  
 
Figure Appendix B5: S-GM2: Upfield Region (< 2.9 ppm) 
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METABONOMICS AS A TOOL OF 

INVESTIGATION OF QUALITY IN FISH 

FARMING 

 

4.1 INTRODUCTION 

Since last decade, several scientific studies on  fish and seafood ,  

including wild and farmed fish and shellfish, both of marine and 

freshwater origin, have shed light on  the importance of these 

products in human diet as healthy products (C. M. Oomen et al. ,  

2000; H. Senzaki et al. ,  2001; M. De Lorgeril et al . ,  2002; C. Cahu 

et al . ,  2004).  

The main quality aspect derives from the nutritional value due 

especia lly to the presence of essentia l amino acids (arginine,  

histidine, isoleucine, leucine, lysine, methionine,  plenylalanine,  

threonine, tryptophan and valine), highly digestible proteins (M. 

M. Friedman, 1997), vitamins (A, D and B complex), minerals and a  

high content of polyunsaturated fatty acids (PUFA) . These latter  

represent the only source of ω-3 fatty acids, whose importance in  

prevention of human diseases has been largely discussed and 

abundantly presented in li terature (A. L.  Stol l et al . ,  1999; C. H. S.  

Ruxton et  al . ,  2004; A. Bhise et  al. ,  2005; R.  S. Pardini  et  al . ,  

2005).  

The importance of seafood becomes so relevant that in less than 

fifty years the global demand for fish product had doubled and up 

today it is st ill rising (E. Engelhaupt, 2007). This aspect together  

with the development of new technologies in fishing activities and 

massive production through select ive breeding, hybridization, and 

the application of biotechnology (D. W. Cole et al . ,  2008) leads to 

substitute the traditional fishing with the fish farming.  

4 



4 -  Metabonomics in Fish Farming  

148 

 

For its increasing importance on the global economical scene,  

aquaculture becomes an important subject on which focus  

particularly attention especial ly from both safety and quality point 

of view, as  the quality of farmed f ish depends not only on i ts  

intrinsic characteristics such as species,  age and sex, but also on 

factors  such as the developmental  phase,  environmental  

temperature,  feed regime and composition of lip ids in the diet ( M. 

Krajnovic-Ozretic et al . ,  1994).  

In this way, the global quality of fish is determined also by the 

harvesting and post-harvesting procedures (aquaculture) as they 

represent today the higher percentage of the total amount of f ish 

consumed (L. Senso et al . ,  2007). The definition of quality related  

to seafood, thus, becomes really complex.  

Generally  it  can be defined as “a combination of such  

characteristics as wholesomeness, integrity and freshness ” (R.  

Martin, 1988). These three characteristics include only an  

objective point of  view of the term quali ty, and are specific to the 

seafood fi t to eat (K. Grigorakis, 2007). Low in microbiological  (B .  

T. Lunestad et al . ,  2008) and inorganic contamination (C. R.  

Santerre  et  al. ,  2001; R. A.  Snyder, 2008),  packaging and storage in  

a sanitary environment, taste, texture and appearance are al l  

intrinsic parameters that def ine the quality.  

From a subjective point of view, the quality perceived by the 

consumers is str ictly connected to the nutritional value, flavor of  

and others sensory components (R. Jonsdottir et al . ,  2004) based on 

the chemical composition  of fish. Additionally, the complexity of  

fish quality increases even more if the different practice of fish 

farming are taken in consideration. Thus, it becomes really  

important, in order to evaluate such a different increas e in quality ,  

to compare the whole metabolic profil e in  fish muscle between wild  

and farmed fish and among different methods of farming.  
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The Gilthead seab ream (Sparus aurata ) is  an example of economical  

fish species  whose market has  rapidly increased in the last  decade.  

It has tradit ionally been cultured in Mediterranean coastal  lagoons  

and salt water ponds or in the northern Adriatic lagoons (a.k.a .  

valle)  in Italy (L. Sola et al . ,  2007). Due to the increasing demand,  

sea breams are farmed, up to day, extensively in lagoons, or  

intensively in tanks or cages (L. Sola et al . ,  2007).  

This intensive production , especially in “artificial” conditions, has  

raised the problem of quality of farmed fish in comparison with 

wild fish. In the same time, because of different aquacultures ’  

systems, the attention is also focused on these new rearing 

systems,  trying to find which is the best  one from the nutritional  

point of view.  

Several works in literature report the composition of the fish lipid  

fraction through classical analysis l ike gas chromatography (C.  

Alasalvar et al . ,  2005) and, in the last decade, by  NMR 

spectroscopy. The latter has been exploited  for  the 

characterization of f ishes  with an high economical relevance  like 

Atlantic salmon (Salmon salar ) (M. Aursand et al . ,  1992), Atlantic  

halibut (Hippoglossus hippoglossus L ) (B. Sitter et al . ,  1999) and cod 

(Gadus morhua ) (I .  Martinez et al . ,  2005).  

Despite Gilthead Sea bream (Sparus aurata ) is an important and 

largely marked fish (L. Sola et al. ,  2007), only a few works have 

been carried aiming at characterizing its composition  (S . D.  

Klaoudatos,  1989;  N. Kalogeropoulos et al. ,  1992; C.  Alasalvar et  

al . ,  2005; S. Rezzi  et al . ,  2007). Thus, the work here introduced try 

to fi ll up the description of the metabolic profi le of this fish 

species, by analyzing the composition of perchloric acid extract  and 

by evaluating the metabolic  changes  due to different kind of  

aquaculture conditions and to different t ime of storage.  

NMR spectroscopy is considered a key tool for understanding the 
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effect of  perturbations on metabolic processes in living systems (F.  

F. Brown et al . ,  1997) as defined by the metabonomics  concept (J. K.  

Nicholson et al . ,  1999). Conversely,  metabolomics  is “targeted at  

identifying and quantifying al l metabolites in  a given biological  

context” (T. Kind et al . ,  2006) and it is  preferably based on mass  

spectrometry.  

The NMR technique generates spectral data, representing a  

“unique metabolic fingerprint for each complex biological mixture”  

(F. F. Brown et al . ,  1997). In fact, if the physiologic equilibrium of  

an organism changes, its unique metabol ic fingerprint ref lects this  

change (F. F.  Brown et al . ,  1997). This work is  based on data  

collected by application of NMR spectroscopy, subsequently  

subjected to multivariate stat istical analysis  in order to evaluate 

the metabol ic changes  as an ef fect of  rearing conditions and 

storage t ime.  In this chapter,  three kinds of  aquaculture practices  

have been considered , namely cage (GB),  sink (VS) and lagoon (VL )  

environments. For each one, the effect of ice storage time on the 

metabolites evolution has been considered. In fact, samples  

captured, sacrificed and immediately stored under ice (t0) have been 

compared to samples stored under ice for sixteen days after fish  

sacrifice (t1 6).  

 

4.2 MATERIALS AND METHODS 

4.2.1 The Gilthead sea bream (Sparus aurata)  

The Gilthead sea bream  (Sparus aurata ) is a  fish of  the bream 

family Sparidae  (A. Davidson, 1972).  It shows a  typical  oval body,  

rather deep and compressed of s ilvery grey colour. A large black 

blotch at origin of lateral line extends on upper margin of op ercl e 

(the uppermost and largest of the bones that form the gill cover). A 

golden frontal band between eyes edged by two dark areas and a  

dark longitudinal lines often present on sides of body (Figure 4.1) .  
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Figure 4.1: representation of Gilthead sea bream (Sparus aurata). The picture was 
adapted from http://www.fishingcy.com/ 

It grows to about 60 cm long and is generally considered the best -

tasting of the breams and has given the whole family of Sparidae 

its name.  Found in sea grass beds and sandy bottoms as  well as in  

the surf zone commonly to depths of about 30 m, but adults may 

occur to 150 m depth. A sedentary fish, either soli tary or in small  

aggregations.  In spring, they often occur  in brackish water coastal  

lagoons and estuaries (A., Davidson, 1972) . 

It is mainly carnivorous, feeding on shellfish, including mussels  

and oysters.  

It can be found wildly in the Mediterranean Sea and the eastern  

coastal regions of the North Atlantic Ocean (Figure 4.2) (R. Froese 

et al . ,  2006), but up today, it represents one of the most important 

fishes in saline and hypersaline aquaculture, with a global  

production around 90,995 tonnes (L. Sola  et  al,  2007),  especially in  

Mediterranean coastal lagoons where they are extensively farmed 

in lagoons, or intensively in tanks or cages and brackish/salt water  

ponds in the northern Adriatic  val li  in Italy and the Egyptian  

hosha .  
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Figure 4.2: representation of Gilthead sea bream (Sparus Aurata).  It occurs naturally in 
the Mediterranean and the Black Sea (rare), and in the Eastern Atlantic, from the British 
Isles, Strait of Gibraltar to Cape Verde and around the Canary Islands. The picture was 
adapted from http://www.fishingcy.com/ 

At present, most production is  from intensive farming,  whilst  

extensive farming, though still remains a traditional activity in  

some regions, has a very low impact on the market  

4.2.2 Biological Material for the experimental work  

Only the white right muscle coming from fish samples were 

analyzed. The fishes are the same used in a previous research work 

performed by the group of Aquaculture of  the Univers ity of  

Bologna, leaded by Professor Anna Badiani.  

Three groups of farmed Gilthead sea bream (Sparus aurata )  were 

studied, each one coming from a different aquaculture system:  

1. sink for intensive fish farming:  developed at the laboratories  

of Aquaculture in Cesenatico (Italy)  (Figure 4.3).  All batches  

consisted of three, two-years old,  individuals , fed with a  

commercial feed composed by 46% protein s and 21% lipids . 

Fishes were sacrif iced in October 2006, when their body weight 

was ranging between 300 and 400 grams (commercial size) .  

Before sacrifice , all fishes were fast ing for 24 hours;  
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Figure 4.3: sinks for intensive fish farming located in the aquaculture’s laboratories of 
the University of  Bologna, located in Cesenatico, via dei Mille, 160, Italy (Figure is 
adapted from  

2. lagoon or “valle” for extensive fish farming: developed  at 

Valle Smarlacca S.r .l .  in Ravenna (Italy)  (Figure 4.4). All  

batches consisted of three, two-years old,  individuals having 

the above mentioned commercial size. These fishes were not fed  

by a commercial feeding, but were allowed to feed  with natural  

environmental resources, mainly constituted  by benthos (K.  

Govindan, 2002);  

 

Figure 4.4: lagoons or “valli” extensive fish farming (Figure and legend are adapted 
from www.venetoagricoltura.org) 
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3. cage for extensive fish farming:  gilthead sea bream were 

fished from cages in Monfalcone (Italy)  (Figure 4.5). Samples  

were excised  from two-years  old fishes  fed with commercial  

feed (composed by a 45% protein and 16 -18% lipids). In order  

to avoid Winter disease ,  due to low water temperature,  fishes  

were fasting for two months before their capture, occurred in  

January 2006 (M. Manera et al. ,  2003).  

 

Figure 4.5 cages extensive fish farming (Figure and legend are adapted from 
http://cache.daylife.com) 

After capture all samples underwent the same treatment and stored  

under ice before excision of samples that were finally stored in  

-80°C refr igerators .  

4.2.3 Experimental design for NMR analysis  

Fifty-four NMR samples were prepared  from the extracts of the 

white r ight caudal muscle’s tissue, exci sed from Gilthead sea bream 

(Sparus aurata),  reared according to the three kinds of aquaculture 

(sink, lagoon and cage) systems already described, and at two 

different t ime of storage (t0  and t1 6).   

In this work, two thesis consisting of different ice storage time (T0  

and T1 6) included 9 animals, whose three for each aquaculture type 

(Figure 4.6).  
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Figure 4.6:  Gilthead sea bream sampling.  For each time, 9 animals were required: three for each aquaculture thesis (VS: sink fish farming; VL: lagoons fish 
farming and GB: cages fish farming). At the end, a total of 54 NMR samples were prepared in order to perform the experimental work 
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4.2.4 Sample preparation  and NMR data acquisition  

All the steps were performed in cold room (4°C) in order to avoid  

degradation phenomena.  

Four grams of white right caudal muscle from each sample were 

pulverized in a mortar under liquid nitrogen. Eight millili ters of  

7% perchloric ac id (i .e. ,  2 ml per gram of sample)  were added to the 

muscle and mixed until complete homogenization is reached (I. S .  

Gribbestad et al. ,  1994). The homogenized, transferred into a  

centrifuge tubes, was neutralized with 9M KOH to a final pH of  

7.8. Samples were centr ifuged to remove potassium perchlorate at  

8000 rpm, for 20 minute at 4°C. The resulting supernatant was 

dispensed in 1 ml aliquot in Eppendorf tu bes and stored at -80°C.  

The solutions were thawed just before NMR analysis.  

Before Fourier transformation, a line broadening of 1.60 Hz was 

applied to each FID. All spectra were aligned each other by 

referring to the Creatine signal, the latter calibrated  to 3.04 ppm 

with respect to TSP (0.00 ppm). MestReC  Software (version 

4.9.8.0)  was used  to phase and correct the basel ine of  all  the 

spectra before performing the successive statistical analysis.  

Some spectral regions were eliminated because not includi ng 

signals above the noise or being affected by the presence of the 

solvent signals which can interfere in the statist ical analysis. The 

removed ranges are chosen between 12.60 and 10.16 ppm, between 

4.89 and 4.40 ppm, and between -0.52 and -3.38 ppm. In this way,  

spectral data  points were reduced from 32 K (32768) to 18000 

points.  

The spectral information was further condensed by subdividing the 

spectra into 150 bins, each integrating 120 data points. The 

resulting binned spectra were saved  as ASCII file f or the 

subsequent statistical analysis.  



4 – Metabonomics in Fish Farming  

157 

 

4.2.5 Chemometric techniques  

Except for several classic chemometr ic tools , described in Chapter  

1 par. 1.2.4, as PCA and PLS-DA and applied on the processed  

matrix using home-made algorithms (Appendix A) written in the R 

program language (version 2.4.0) , also advanced tool have been 

used for extracting relevant information out of the acquired NMR 

data and they are briefly described below:  

Interval Partial Least Square (iPLS) .  iPLS (L. Nørgaard et al . ,  2000)  

is based on a recursive a lgorithm that builds PLS models of user-

defined intervals in which the dataset  has been split.  Performances  

of these interval models  are then compared to each other and with 

that of the model built using the ful l -length data (global model) ,  by 

the iPLS plot. The method is particularly useful to identi fy  

important regions in NMR spectroscopic  data (F. H. Larsen et al. ,  

2006) with large intensity differences and it therefore becomes a  

powerful tool for variables (regional) selection. In the present 

application, the entire dataset  was subdivided into 100 s egments of  

equal size. It is important to point out that this segmentation does  

not lead to a reduction of data, like binning does, but provides “an  

overall picture of the relevant information in dif ferent spectral  

subdivisions, focusing on important spect ral regions” ( L. Nørgaard  

et al . ,  2000) . iPLS models were carried  out in Matlab using the 

iPLS toolbox available at http://www.models.life.ku.dk/source/.  

Extended Canonical Variable Analysis  (ECVA) and Interval Extended  

Canonical Variable Analysis  (iECVA) .  ECVA (L.  Nørgaard et al .  

2006) is a recent chemometric classification tool  representing a  

new approach for grouping samples  based on the standard  

Canonical Variates Analysis, but with a PLS engine underneath. I t  

is able to cope with several different classes yielding powerfu l  

separations. Careful val idation is required in order to avoid  

overfitt ing.  iECVA  (L.  Nørgaard et  al . ,  2000)  is an extension of  

the iPLS concept to ECVA designed to provide meaningful  
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information about which spectral regions hold the main relevance 

responsible for the separation among groups. In the present 

research work ECVA and iECVA were applied for the c lassi fication  

of the three aquaculture groups and were carried out in Matlab 

using the ECVA toolbox available at  

http://www.models.l ife .ku.dk/source/.  A Venetian bl inds cross  

validation system was used in both the cases.  

4.2.6 Chemicals  

All chemical reagents, purchased from SIGMA-ALDRICH, Inc.(St .  

Louis, MO), were of analytical grade and are listed in Chapter 2.  

 

4.3 RESULTS AND DISCUSSION 

4.3.1 NMR Spectra and identification of samples’ metabolic  

compounds 

The 1H-NMR spectrum of the perchloric acid extract of  right white 

caudal muscle of Gilthead Sea bream recorded at 400 MHz, is  

shown in Figure 4.7. Appendix B reports the spectra of some 

representative samples used in this work,  one for each category (t0 ,  

t1 6  x VS, VL, GB), each spectrum being shown with the downfield ,  

midfield and upfield  spectral regions presented separately for a  

better vision. In order to visually appreciate signals belonging to 

minority species the upfield region (<2.9 ppm)  and the downfield  

region (>5 ppm) were expanded on the vertical scale, and Table 4.1  

lists the assignments of the NMR peaks.  The assignment attained  

in this research work is the first one reported for an aqueous 

extract of Gilthead Sea bream, since only NMR spectra  recorded on 

the lipid fraction have been published up to now  (S. Rezzi et  al . ,  

2007).  

Moreover, this study reports on the evolution of fish hydrosoluble 
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metabolites ,  mainly nucleotides, during storage under ice.  

Assignment of twenty-nine peaks  in the NMR spectra were done by 

adding standard compounds to the samples  and by comparing 

chemical  shifts  with previous published data collected on different 

fish species (I.  Martinez et al . ,  2005).  

Most intense signals belong to lactate (1.33 ppm), creatine and 

phosphocreatine (3.04 and 3.94 ppm, both) and trimethylamine n-

oxide (TMAO; 3.27 ppm).  

Table 4.1: list of metabolites assigned in perchloric acid extracts of Gilthead Sea bream. 
Their chemical shift are referred to TSP (0,00 ppm).  

Peak 
1H Chemical Shi ft  

(ppm) Compound 

1 0.96 Leucine  
2 1.33 Lactate  
3 1.48 Alanine and Lysine  
4 1.72 Lysine and Leucine  
5 1.89 Lysine  
6 2.89 TMA 
7 3.04 Creatine and Phosphocreatine  
8 3.12 Histidine 
9 3.24 Taurine  

10 3.27 TMAO 
11 3.42 Taurine  
12 3.56 Glycine  
13 3.77 Glutamate  
14 3.90 Betaine  
15 3.94 Creatine and Phosphocreatine  
16 4.12 Lactate  
17 6.10 Inosine  
18 6.14 Inosine MP 

19A 7.00 Histidine in Anserine  
19B 7.05 Histidine 
20A 7.73 Histidine in Anserine  
20B 7.77 Histidine 
21 8.19 Hypoxantine  
22 8.22 Hypoxantine  
23 8.22 Inosine and Inosine MP 
24 8.27 ADP 
25 8.34 Inosine  
26 8.46 Formiate  
27 8.52 ADP 
28 8.57 Inosine MP 
29 8.61 ADP 
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Figure 4.7:  1H-NMR spectrum of perchloric acid extract of white right caudal muscle of Gilthead Sea bream (Sparus aurata) after 16 days of storage under ice. 
Downfield and upfield regions were expanded on the vertical scale in order to appreciate the presence of small signals. All labelled signals are referred to TSP 
(0 ppm) (the figure was performed using MestRec software) 
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White muscle represents the main muscle in fi sh and it is  

characterized by a low concentration of lipids and a high 

concentration of amino acids. In fact, the 1H-NMR shows several  

signals belong to amino acids, including leucine, lysine, a lanine,  

glycine, glutamine and histidine. Most of the amino ac ids are free 

although some might be bound to peptides. Large proteins are not 

visible because their  slow tumbling gives origin to broad signals .  

Other signals like taurine (3.24 and 3.42 ppm), betaine (3.90 ppm) 

and nucleotides like ADP were assigned.   

Creatine and phosphocreatine represent an important energy deposit  

in skeletal muscle. Phosphocreatine is used to anareobically generate 

ATP from ADP, forming creatine. This reversible reaction is  

catalyzed by the phosphocreatine kinase (Figure 4.8).  

 

Figure 4.8: the phosphocreatine kinase reaction. Phosphocreatine kinase catalyzed the 
transfer of the phosphoryl group from phosphocreatine to ADP, originating ATP and 
creatine 

In Figure 4.7, signals labelled with #7 an #15, at 3.04 and 3.94,  

respectively, are due mainly to creatine because of a rapid conversion 

of phosphocreatine to creatine occurring early during post mortem 

phase. Also taurine is important due to i ts  relative abundance in fish 

metabolic profi le. In fact, aquatic food are the major source of this  

metabolite, essentia l for the growth and it has been demonstrated   

that it is closely related to cholesterol metabolism (H. Yokogoshi et  

al . ,  1999; H. Yokogoshi et al . ,  2002) . It  is important to underline a  

low presence of TMA (2.89 ppm) in spectra acquired on samples  

stored for 16 days under ice. TMA is the degradation product of  
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TMAO and it confers the c lassical “fish malodor” .  Its presence is due 

to both bacterial act ivity and enzymatic reaction. We hypothesize 

that bacterial act ivity is minimized under ice storage; thus, the 

endogenous TMAOase enzyme is  mainly responsible for the TMAO 

metabolization to TMA.  

4.3.2 Data pre-treatment 

Prior to chemometric data analysis, the data matrix (54x18K) 

consisting of raw NMR spectra, underwent to a harmonizing pre-

treatment in order to reduce as low as possible the artefacts due to 

sample preparation and instrumental errors . The first step is a  

normalization of  the data to minimize all unwanted sources of  

variation due to slightly different instrumental conditions as small  

differences in the tuning conditions of the spectrometer, imperfect  

baseline and phase corrections, and sample preparation artefacts due 

to dilution errors during sample preparation. Further pre -treatment,  

like alignment of the data and spectral  data binning, proved to be 

necessary to reduce variations of chemical shift among different 

spectra,  generated  by small di fferences in the pH of the extract bein g 

analyzed.  The binning application provides both the reduction of  the 

pH effect on spectrum’s  chemical shi ft and the reduction of the data  

points to facili tate the chemometrics analysis.  

4.3.3 Multivariate data analysis  

Principal component analysis  (PCA) (H. Hotelling,  1993) is  a  

fundamental method in chemometrics and it has been chosen as the 

unsupervised method able to describe the total sample variance by 

projecting it in a  condensed space. In PCA, the data collected on a set  

of samples  is located in  a space whose dimensions are defined  as  

principal components (H.  Winning et  al . ,  2008). The first  principal  

component describes most of the variance, the second principal  

component is the profile  describing the second most of the variance 

orthogonal to the f irst one, and so on; at the end , the last components  
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describe negligible variance, mainly noise, and for this reason they 

are not taken in consideration.  The principal components are 

described by scores and loadings. In the data set, loadings represent 

the condensed information on the NMR variables (spectral point or  

chemical shifts or ppm), al lowing to f ind out which bins of the 

spectrum account for the main variat ion amongst the samples. On the 

other hand, scores summarized all the information on samples  

composition, providing information about the extent to which the 

spectral information , represented by the loadings , are high or  low for  

each particular sample (H. Winning et al. ,  2008) . In this work, the 

PCA screening was applied using a correlation method  in which each 

single data bin is standardised by centring its area  integrals with 

respect to the mean value among all spectra (mean centr ing).  Since 

the present study is aimed at evaluating the ef fect of the aquaculture 

system on the metabolic profile of fish and, simultaneously, the effect of  

the storage time on its biochemical  profile, we firstly  performed a  

global PC analysis on spectra recorded on all samples.  

4.3.4 PCA of the different fish farming at both storage times  

The PC plots,  originated by the principal component analysis  

performed on the whole  sample set, are shown in Figures 4.9 and 

4.10. In the first  case (Figure 4.9 ),  the PC plot is the result of the 

analysis on the normalized binned spectral data. The combination of  

the first two PCs explains 80% of the total variance,  and it is  able to 

spontaneously cluster the samples according to the farming 

conditions.  A good discrimination is observed among the three 

aquaculture groups, both for fresh samples (open coloured symbols)  

and for those stored under ice for 16 days (filled coloured symbols) .  

By taking PC1 into account, a good separation is obtained between 

the t0  samples group belonging to lagoon category (VL -T0) and al l  

the other t0  samples (VS-T0 and GB-T0). On the other hand, along 

PC2 sink farming system (VS-T0) is separated from lagoon and cage 

categories  (VL-T0 and GB-T0). Thus,  a combination of  PC1 and PC2 
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allows discrimination of farming categories at t 0 .  The inspection of  

the PC plot gives rise also to similar consideration for sampl es at t1 6 .  

In fact, PC1 better discriminates the cage group from the other two 

categories , while PC2 separates sink farming conditions from the 

other two categories.  

 
Figure 4.9: mean centered PCA of binned spectral data set, including all fish samples. 
According to the total variance, PC1 and PC2 explain 51% and 29% respectively. As it can 
be seen, all kinds of aquaculture systems are differentiated (the Figure was prepared by 
using the R program; see Appendix A) 

The PC plot shown in Figure 4.9  gives r ise to some considerations in  

terms of general quality of fish , as af fected by storage t ime and 

farming condit ions. First of a ll,  t ime evolution of metabolites shi fts  

fish scores towards a right-up direction (on the bisector of PC1-PC2 

axes). The same dislocation is observed between lagoon and sink 

categories at t0 ,  as if the latter had the same metabolic composition of  

older samples of the first one.  Conversely, cage category at  t 0  i s  

located in a posit ion of the PC plot that may reflect a metabolic  

composition not related to t ime-dependent degradation. This  result is  

compatible with the fact that they are also fed with different feeding.  

As the midfield region is characterized by the presence of much more 
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intense s ignals, compared to those falling in the othe r two regions 

(i .e. ,  downfield and upfield ones) we decided to apply a  regional  

normalization algorithm to the spectral dataset . The algorithm 

operates in such a way that the most intense peak in the upfield  

region is scaled to the same intensity of the most intense peak in the 

midfield region. The same operation is applied also to the downfield  

region, which is again scaled on the intensity of the highest peak in  

the midfield region.  This regional scal ing is appl ied because of  the 

necessity to give the same importance to minor and major  

components,  since there is no reason to assign greater  nutritional  

value to substances only because are more abundant.  Before 

application of the PC analysis to the regionally scaled data set , we 

performed a preliminary step consisting of the binning operation that 

transforms the spectra in a collection of 150 bins, each integrating 

120 data points . The new regionally amplified binned data set  

underwent the PC analysis  (Figure 4.10) .  

 
Figure 4.10: meancentered PCA of regionally amplified binned data set, including all fish 
samples. Downfield region and upfield region were amplified in order to have the same 
maximum value. According to the total variance, PC1 and PC2 explain 46% and 18% 
respectively. As it can be seen, all samples are differentiated on the base of time storage (the 
Figure was prepared by using R program; see Appendix A) 
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The new data transformation gives origin to a well defined time 

separation, clearly visible along PC1, where t0  samples are located at  

negative values , while the t1 6  ones are in  the positive side of the PC1 

axis. Within these two major clusters, the distinction among different 

aquaculture systems for t0  samples is less evident but, again, is  

confirmed for t1 6  samples belonging to the cage category .  

As the comparison of 1H-NMR spectra acquired one aqueous extracts  

of t0  samples with those of  t1 6  ones shows differences especially  for  

the nucleotides content,  whose signal  are mainly located in the 

downfield spectral region,  a different multivariate data analysis  was  

applied to three different data sets, each containing separately , the 

three spectral regions (i .e. ,  downfield, midfield and upfield) . This  

application can highlight which part of the spectrum is mainly 

responsible for separation of clusters .  

The PC plots in Figure 4.11  A is the result  of  the PCA on the 

downfield spectral region of all samples and  points out that the 

signals here included (mainly belonging to nucleotides) a llow  

separation of samples on the basis of the storage t ime. The total  

variance explained by the first two principal component s generated  

on the downfield region is  the lowest (74%) with respect to the 

variance expressed with the same number of PCs generated on the 

other two regions.  

In Figure 4.11 B, the separation ref lects  what already seen whit  the 

PCC performed on spectral data not regionally scaled, where the 

midfield region has the highest weight , and will not be further  

discussed. PC plot related to the upfield spectral r egion (Figure 4.11  

C) points out that the samples are well differentiated on the basis of  

the farming conditions soon after sacrifice, while there is large 

overlap when analyzed  after 16 days. I t is worth noting here that 

such a region includes signals form organic acids, as lactic acid, and 

amino acids. 
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Figure 4.11: mean centered PCA of binned spectral data set divided into three main 
spectral regions: A) downfield; B) midfield and C) upfield region (the Figures were  
prepared by using R program; see Appendix A)  
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4.3.5 PCA applied to the downfield spec tral region 

More detai ls arise from the analysis  of PC loadings, by which it is  

possible to find out the bins of the spectrum, and then the groups of  

compounds, representing the main source of  variat ion amongst 

categories . Thus, the representation reports the weight with which 

each bin influences the pos ition of the sample along PC1  or PC2 axes .  

As above discussed with the preliminary PC analysis, mainly 

downfield and midfield regions may include spectral bins explaining 

the reasons of the separation.  Figure 4.12 shows the loadings plot  

relative to the downfield region.  

 
Figure 4.12: Downfield region loadings plot along PC1. Each bar corresponds to the 
importance of each spectral bin in determining the PC1 score. Both y=a and y=-b lines 
indicate, for convenience, the threshold of the absolute value of loadings adopted to choose 
important bins. Bins labelled with #2 and #4 belong to the same metabolite (IMP) as bins 
#1 and #3 to INO (the Figure was prepared by using the R program; see Appendix A) 

According to the previous assignments  (Table 4.1), b ins labelled with 

#1 and #3, corresponding to the 6 th  and 47 th  bin in the whole 

spectrum, include the two signals of inosine monophosphate (IMP) 

falling at  8.57 ppm and 6.14 ppm.  Bins label led with #2 and #4,  

(corresponding to the 10 th  and 48 t h  bin),  include the inos ine’s  (INO) 

signals falling at 8.34 and 6.14 ppm.  

PC loadings have the abili ty to point to spectral features possessing 

high discriminative power. However, the actual amount of  substances  
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responsible of d ifferentiation is deducible by the integration of the 

signals included in the evidenced bin and by comparing such integrals  

among the spectra of different samples.  

For this purpose, the areas of the bins labelled  #1 and #2 in Figure 

4.12, averaged separately on all t0  and t1 6  samples , are reported in  

Figure 4.13 A and B, respectively . As bins #1 and #3 belong to the 

same metabolite (IMP), as well as bins #2 and #4 belongs to inos ine ,  

only average values of integrals relat ive to bin #1 and #2 are shown.  

Inspection  of  Figure 4.13 points out that the IMP concentration is  

inversely proportional to the amount of INO, and there is a  

significant decrease of IMP concentration during ice storage,  

parallel ized by the same increase exerted  by INO. This is the obvious  

consequence of the fact that INO is a catabolite of IMP .  

What cannot be trivial ly evinced without the inspection of  the results  

is that the total amount of IMP and INO, together, remain constant 

during ice storage,  because all  the oxidative deamination of AMP, 

with formation of the hypoxanthine moiety of the nucleoside, is  

completely terminated just few hours after fish death  (M. T.  Veciana-

Nogues et al. ,  1996). The catabolism of ATP is controlled by native 

enzymes, such as  those involved in the adenosine tr iphosphate (ATP) 

breakdown process (J . M.  Kennish et al. ,  1986), quickly occurring 

post mortem since there is no more reformation of ATP.  For this  

reason only ADP is detected, at low concentration, in the NMR 

spectra, while AMP and ATP are not detectable even in the t0  

samples.  
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Figure 4.13: A) the histogram shows the absolute area of the bin labelled with #1 in PC1 
loadings plot corresponding to the IMP integral peak; as it can be seen, immediately after 
the fishes’ sacrifice, IMP content is higher and after 16 days most of the IMP is converted 
into INO as shown in figure B) that represents the absolute area of the bin  labelled with 
#2 in PC1 loadings plot. It corresponds to INO integral peak. Standard errors are also 
shown as black lines on the top of each bar 

IMP/INO ratio becomes a good indicator of fish freshness when it is  

stored under ice, s ince the enzymatic  conversion of TMAO to TMA 

does not occur so rapidly at such temperature. The reason of change 

in the IMP/INO ratio, occurring during ice storag e of fish tissues, is  

to be attr ibuted to autolytic reactions. In  fact, it is reported that IMP 

increases sharply around 5-24 h after death and decreases gradually 

by convers ion to inosine (INO) (T. Saito et al . ,  1959; I .  S. Park et al . ,  

1999). IMP is  known to contr ibute to the pleasant flavour of fresh 

fish.  

The pathway of ATP catabolism in fish muscle has  been extensively 
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documented as a  degradative sequence to adenosine diphosphate 

(ADP),  adenosine monophosphate (AMP), inosine mono phosphate 

(IMP) and inosine (INO) (Figure 4.14) .  

 

Figure 4.14: ATP enzymatic catabolism pathway in fish muscle. The post-mortem 
degradation products are important parameters for fish quality assessment (B. Sitter et al., 
1999) 

After t ime,  a further  conversion of INO to hypoxanthine (HX) occurs ,  

which is  strictly related and  involved  in the progressive loss of  

desirable fresh fish flavour (M. D. Huynh et  al. ,  1992;  F.  Özoğul  et  

al . ,  2002).  

On account of this, nucleos ide degradation products have been widely 
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used as indicators of storage age or freshness (R. Mendes et al. ,  

2001).  

It is worth noting here that the rates and patterns of changes in the 

level of adenine nucleotides, and their  related compounds , during 

storage time dif fer according to f ish species  (J.  N. Dingle et al. ,  

1971), and, within the same species, also on storage conditions (H.  

Uchiyama et  al. ,  1970)  and muscle types  (M. Murata  et al . ,  1986; F.  

A. Vazquez-Ortiz et al. ,  1997; J.  M. Ryder et al . ,  1984).  

4.3.6 PCA applied on the midfield spectral region  

According to Figure 4 .10 B, the metabol ites al lowing the separation  

of samples  on the basis of  farming system lay in the midfield region .  

By looking at the PC plot, it appears that along PC1, lagoon samples  

(VL) are differentiated from the other two categories , at t0 ,  while are 

the cage samples (GB) to be separated from the other two groups 

when longer storage time (t 1 6) is considered . 

PC2 gives a complementary discrimination so that sink system is  

differentiated from the other two groups, at both time of storage .  

Thus, a combination of PC1 and PC2 allows discrimination among 

farming system, when the same time of storage is considered.  

PC1 loadings are illustrated in Figure 4 .15 whilst PC2 loadings are 

reported in Figures 4.16. For both PCs, b ins labelled with #1, #2, #3 

and #4 (corresponding to the 77 th  ,  83 r d  ,  88 t h  ,  and 92n d  spectral  

bins) include metabolites involved in separation among the three 

farming systems.  

On the basis of the previous peaks assignments, the corresponding 

metabolites are creatine and phosphocreatine (bin #1 and #4,  

centered at  3.94 ppm and 3.04 ppm, respectively ), glycine (bin #2,  

centered at 3.56 ppm) and TMAO (bin #3, centrered at 3.27 ppm),  

(Figure 4.18).  
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Figure 4.15:  Bins located in the midfield region, responsible for samples separation along 
PC1 (the Figure was prepared by using R program; see Appendix A) 

 

Figure 4.16: Bins located in the midfield region, responsible for samples separation along 
PC2 (the Figure was prepared by using R program; see Appendix A) 

 

Since PC loadings are proportional to the importance of a bin to 

explain variance along the principal components,  the further step 

consists of analyzing the integral of the highlighted bins in order to 

appreciate their change of concentration  by passing from a category 

to another one. The average integrals of  bins #1, #2 and #3, within  

each category, are reported in Figure 4.17, 4 .18 and 4.19 ,  

respectively. Integrals of bin #4 are omitted since they refer to the 
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same metabolite (creatine) included in bin #1.  

Creatine or phosphocreatine (having coincident signals in the 
1H-NMR spectrum) are able to discriminate among cage farming 

system and the other two groups, at both storage time, as seen by PC 

plot and PC2 loadings shown in Figure 4 .11 B and 4.16, respectively.  

The average areas, as  well as their standard deviations, for the 

creatine/phosphorcreatine signals are reported in Figure 4 .17. Here 

is confirmed that the amount of creatine/phosphocreatine is higher  

and higher by passing along the sequence sink -lagoon-cage farming 

systems,  and the same order remains constant after 16 days of time 

storage. The latter group, however, has lower content of this  

metabolite, suggesting a  moderate degradation of creatine during 

storage under ice.  

 

Figure 4.17: Average integral area of the bin labelled with #1 in the PC2 loadings plot 
reported in Figure corresponding to the creatine/phosphocreatine integral peak. Standard 
errors are also shown as black lines on the top of each bar 

It has been reported that  during post-mortem phase, a lso under ice 

storage, the amount of creatine phosphate decreases less rapidly then  

ATP, even though the latter star ts to decrease only when its  

concentration equals the amount of creatine phosphate  (S . Watabe et  

al ,  1990). Since signals of creatine and creatine phosphate are 

coincident in the 1H-NMR spectrum, i t is  not possible to quantify the 
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relative amount of  each species . However , it  is reported that creatine 

phosphate donates its phosphate group to the ADP to regenerate ATP  

(Figure 4.8) , and converting i tself  in creatine (M. Wyss et al. ,  2000) .  

Since the amount of adenine containing nucleotides is very low in the 

analyzed fishes, i t is presumable that al l  the creatine present in the 

samples is not bound to phosphate, according to the hypothesis that 

the muscles have already consumed their  energy sources early during 

post-mortem.  

Particularly interesting is the TMAO (trimethylamine oxide) changes  

occurring during storage (Figure 4 .18).  The relat ive bin has got a  

high weight along PC1 (Figure 4.15) and is responsible for the 

separation due to both time of storage and aquaculture system.  

Usually, i ts amount is  taken as  parameter for  evaluating the storage 

time;  in fact, TMAO is converted to TMA (trimethylamine)  by 

endogenous enzymes and later by bacteria when microbial  activity 

begins (N. Church, 1998).  

 

Figure 4.18: Absolute area of the bin labelled #2 in the PC1 loadings plot of Figure 4.15, 
corresponding to the TMAO integral peak. Standard errors are also shown as black lines 
on the top of each bar 

According to Kyrana et al . ,  initia l levels of TMAO are related to the 

composition of feed for reared fish, and this argument can explain the 

reasons of i ts concentration differences among groups  (V. R. Kyrana 
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et al. ,  2002). Furthermore, the values of TMAO decreased  during 

storage in ice , maintaining anyway the same time difference among 

the three fish farming systems.  

No significant differences in TMA levels have been detected between 

gropus, so that the small  increase in TMA during the shel f li fe of  

Gilthead Sea bream prevent this parameter to be used as a freshness  

indicator for  this  species.  Previous work reported the same results  

(T. Civera et al . ,  1995; A. Huidobro et al. ,  2001).  

About glycine (bin #2), its integral area  is reported in Figures 4.19 .  

Except for samples farmed in sinks, the tendency of this free amin o 

acid is to slightly increase during post -mortem under ice storage.  

The total amount of glycine, higher than the area of other amino 

acids, has been proposed to derive from the acidic hydrolysis  

consequent to the perchloric acid extraction  step, that forms glycine 

starting from purine nucleotides and their derivates  (ATP,  ADP, 

AMP and INO, J . Arakaki et al. ,  1974).   However,  this hypothesis  

does not expla in the higher content of glycine presented by fishes  

reared in cage farming system, compared to the other two categories.  

 

Figure 4.19: figure shows the absolute area of the bin labelled with #3 in PC1 loadings 
plot corresponding to the glycine integral peak. Standard errors are also shown as black 
lines on the top of each bar 
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For the latter observation, the explanation is  attributable to the fish 

feeding activity.  

In fact, fish starvation considerably  reduces the uptake of that amino 

acid, and for this reason, the glycine ratio has been proposed to be 

assumed as an index related to the general nutritional state , instead  

of being considered a  freshness parameter  (C. M. Smagula et al. ,  

1980).  

All results  above discussed rely on binned spectral data. Binning 

application can solve most of the chemical shift problem due to pH 

variations but, at the same time, i t generates  overlap problems. In  

fact, many signals are col lected in the same bin, covering 0.06 pp m, 

so that they are characterized by a broad range of intensities.  

For this reason,  some signals, although belonging to molecules with 

concentration highly depending on the category of fish farming 

and/or time of storage, can be hidden by other more intense signals  

that, in turn, belong to molecules  not meaningful for the 

discrimination purposes .  

To avoid this problem, raw matrix data set (54x18000) underwent to 

multivariate data analysis  after a coshift  application that eliminate s  

the pH problems.  

4.3.7 Multivariate data analysis of 1H NMR spectra without the 

binning operation  

After the referring of  all the spectra  to creatine s ignal, several  shifts  

in peak positions were still observed , especially for those metabolites  

hardly dependent on the pH differences.  

A correlation optimized shifting (Coshift)  was applied to those 

intervals in which signals were not aligned, obtaining a considerable 

reduction of shi fting (Figure 4.20) .  
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Figure 4.20: (a) zoom of taurine signal in uncorrected 1H-NMR spectra to show the 
chemical shift problem due to the effect of lower pH variation on sensible metabolites and 
(b) the same zoom after coshifting optimization 

After the application of the coshi ft method, it  has been first  

considered the PCA applied on the whole spectral dataset,  in order  to 

evaluate the possibility of a discrimination based on the ice storage.  

From Figure 4.21 is  poss ible to observe that PC1 and PC2 do not 

give a good separation.  

For this reason, the subsequent step was the analys is of the loading 

in order to evaluate which part of the spectrum is able to discriminate 

all samples according to the time of ice storage.  

The loadings analysis  reported in Figures 4.22 A and 4.22 B suggests  

that the main  discriminative spectral region is the downfield one,  

from 10.5 to 5.5  ppm, in which i t is possible to find out several  

discriminative signals belonging to the nucleotide metabolites .  

A PC analysis on this region exhibits a s ignificant abili ty to separate 

samples according to time storage with an expla ined  variance 

increased from 50.97% for PC1 in the whole spectral data set analysis  

to 61.32% considering only the downfield  region  (Figure 4.23)  
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Figure 4.21: PCA scores plot of coshifted data set consisting of 54 1H-NMR sample 
spectra. PCA is not able to separate samples according to time storage (PCA was performed 
by using Latentix program) 

 

Figure 4.22: A) loadings plot of midfield and upfield region and B) loadings plot of 
downfield region. The most interesting region able to discriminate according to time of ice 
storage is the downfield one (PCA was prepared by using Latentix program) 
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.  

 

Figure 4.23: PCA scores plot on coshifted data set of 54 1H-NMR fish spectra considering 
only the midfield region. The analysis on this region exhibits a significant ability to 
separate samples according to time storage pushing samples at t16 on the positive side of 
PC1 axis and samples at t0 towards the negative side of the same axis (PCA was prepared 
by using Latentix program) 

The examination of PC1 loadings, expla ined  in Figure 4.24, allows 

the identi fication of the metabolites responsible of the separation . 

The positive values of the peaks in the loadings plot are related to  

metabolites  with a high intensity  in samples clustered along positive 

PC1. These peaks,  clearly identifiable by plotting the opportune 

range of the spectrum, belong to the inosine, whose concentration  

increases during conservation (Figure 4.25).  

On the contrary, at t0  inosine monophosphate becomes to be the main  

metabolite in samples.  
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Figure 4.24: PCA loadings plot of downfield region 
 

 

Figure 4.25: A) and B) signals belonging to the two metabolites responsible to the 
separation of samples according to time storage. Inosine increases during storage, whilst 
inosine monophosphate decreases for its completely metabolization into inosine 

As above discussed in the paragraph describing the binned spectral  

data,  the IMP/INO ratio becomes a  good indicator of  fish freshness .  

The same approach analysis has been used to verify the possibility  for  

a classification of  samples according to the aquaculture  system.  
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Differently from the appl ication of PCA on binned spectra, in the 

point data set PCA was appl ied separately on  a first set of 27 samples  

at t0  and on a second set, including the same number of samples at t1 6  

(Figure 4.26 A and B). 

 

Figure 4.26: A) PCA scores plot of 27 1H-NMR fish spectra at t0. PC1 shows a good 
separation only for samples bred in cages (GB) and B) PCA scores Plot of 27 1H-NMR fish 
spectra at t16. Even in this plot, PC1 shows a good separation only for samples bred in 
cages (GB), whilst along PC2 lagoon (VL) and sink (VS) aquaculture systems are good 
defined 
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PCA is able to classify samples according to the dif ferent aquaculture  

system both at t0 ,  and, better, at t1 6   It is worth noting here that the 

first two principal  components in PC plot , after 16 days, discriminate 

all categories with components  that together explain 85% of the total  

variance. For this reason PC scores are able to condensate, with only 

two parameters,  the whole different composition of  fish due to their  

farming system.  

To improve separation among aquaculture, and to veri fy the 

possibil ity  of  a better separation especia lly at  t0 ,  a  PLS2-DA, with a  

relative cross validation , has been applied on the spectral dataset.   

The cross validation results (Table 4.2)  confirms that only samples  

belonging to cages  aquaculture  system,  at both storage time,  can be 

predicted from the model .  

Table 4.2: PLS2-DA Calibration model based on the cross validation 

 t 0  t 1 6  

 VS VL GB VS VL GB 

RMSE 0,2486  0,2405  0,0846  0,361  0,3962  0,09396  

R2 0,749  0.7837  0,971  0,4666  0,4151  0.9608  

RMSE= Root Mean Squared Error of Cross Validation, R2= squared correlation coefficient 

The best model representation (Figure 4 .27 A and B) is obtained at  

t1 6  in which only two factors , or latent variables , are used to descr ibe 

it,  obtaining a  squared correlation coefficient of predicted data close 

to one.  

Conversely,  the same correlation coefficient for the predictive model  

is obtained at t0  by using 5 factors or latent variables .  
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Figure 4.27: A) PLS2-DA prediction model at t0.  Cages samples are good predicted with 5 
factors or latent variables and B) PLS2-DA prediction model at t16. The result is the same 
but only with 2 factors or latent variables 

Finally, an extended version of the canonical variates analysis  

(ECVA) (L. Nørgaard et al. ,  2007)  has been used, analyzing the three  

aquaculture systems.  

In Figure 4.28 A the canonical  variates of ECVA for samples ,  



4 – Metabonomics in Fish Farming  

185 

 

calculated using a cross val idation method, at  t 0  are shown.  At least  

two canonical directions have been used, i .e.  one less than the number 

of the aquaculture systems.  

The number of misclassified samples , according to the number of  

canonical variates , is shown by a barplot in Figure 4.28 B. 

 

Figure 4.28: A) ECV#1 and ECV#2 scores plot for 27 1H-NMR fish spectra at t0 and B) 
number of misclassifications according to the number of PLS components used. At t0, ten 
PLScs are used in order to have 2 misclassified samples. 

Compared to the PCA plot of Figure 4.26 A, the ECV analysis shows 

a deeper discriminant solution for samples at t0 .   

The same representation can be done at t1 6 .  Also in this case the 
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number of  canonical directions that are necessary for separation is  at  

least two and, compared to the corresponding PC plot, the separation  

is more pronounced, especially along ECV#1. Again, the number of  

misclassified samples decreases  to 0 by using 4 PLS components  

(Figure 4.29).  

 

Figure 4.29: A) ECV#1 and ECV#2 scores plot for 27 1H-NMR fish spectra at t16 and B) 
number of misclassifications according to the number of PLS components used. At t16, four 
PLScs are used in order to have 0 misclassified samples 

Another way to graphically represent the ECV analysis is  the iECVA. 

Similar to iPLS, the iECVA approach tr ies to f ind the regions in the 
1H-NMR spectrum that best describes the whole model.  
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In this way, it is possible to remove, from the spectra , tha t  

information ( i .e.  regions) not significant  for the description of  

variance, thus reducing the number of data points able to describe the 

entire model.  

In this work,  iPLS (Figure 4.30) at t1 6  has been compared  to iECVA 

(Figure 4.31) at the same time, because only after 16 days of ice 

storage the main differences among groups come out  (L. Nørgaard et  

al. ,  2000). The spectrum has  been divided into  intervals. From the 

iPLS plot, emerges that the most discriminative  interval is the #62.  

It is possible to aff irm that this interval possess the abi lity to better  

describe the entire dataset in the same manner as the whole spectrum 

is able to do. In fact,  only two factors ( latent variables)  are used in  

the PLS model, whilst five of them are necessary if we consider al l  

the intervals  (entire spectrum dataset).  On the contrary, the iECVA 

plot shows several intervals able to descr ibe the model with same 

number of factors , misclassifying 0 samples. Four intervals are best  

discriminant: 25, 50, 62 and 82.  

 

Figure 4.30:  partially iPLS plot of 27 1H-NMR fish spectra at t16. The intervals are 
described with a different number of LV in order to compare the prediction performance of 
the main interval (Black dot line) with the global one (Red dot Line) 
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Figure 4.31: partially iECVA plot of 27 1H-NMR fish spectra at t16. The interval number 
are plotted versus the number of misclassified. In this case all the intervals are described 
with the same number of LV. Four discriminant intervals have been found out 

Plotting the relative intervals shown in F igure 4.31 (labelled from #1 

to #5)  of the 1H-NMR fish spectrum at t1 6 ,  we obtain metabolites  

responsible of the separation among aquaculture.  In Figure 4.32 al l  

the spectra  were superimposed in order to clearly see the di fferences  

in concentration of the discriminant metabolites.  Alanine, glycine,  

histidine and an unknown metabolite become to be  the representative 

discriminant factors.  

 

Figure 4.32 – part one: peaks plot of superimposed spectra divided according to 
aquaculture systems. Alanine, representing the interval #5 and glycine, interval #4 of 
Figure 4.31, are the most discriminant metabolites according to aquaculture systems 
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Figure 4.32 – part two: peaks plot of superimposed spectra divided according to 
aquaculture systems. Histidine, interval #1 and #2, and an unsigned compound, interval #3 
of Figure 4.31, are the most discriminant metabolites according to aquaculture systems 

 

4.4 CONCLUSION 

Consumers today set restr ict ive demands for their foods; key words 

are health ,  naturalness ,  quality ,  and safety  (Anon, 1998) and above 

all food should have a pleas ing appearance, odor, taste and te xture.  

Fish present a good start ing point because it  represents  healthy and 

natural food. It is therefore a great  challenge for the fish industry to 

develop delicious, convenient and high quality  f ish products in order  

to improve the competitiveness of thi s industry towards other  

commodities such as chicken,  beef and pork in order  to satis fy the 

consumer.  

As it has  been told in Chapter 4, par. 4 .1,  the term of quali ty included 

several  aspects both from an objective and subjective point of view.  

On the base of our studies, ideally, if we want to have an unique 

indicator of the freshness, i t should be  able to integrate the effects of  

time and temperature at the same levels as the changes that occur  in  

the fish. It should derive from a good correlation between its  

evolution and freshness decline or time of storage, should be  non-

subjective and independent of slaughter  (sacrifice) conditions, and of  

physiological status of the fish . Thus, it  is really important to have 

versatile and easy instruments able to detec t those features  

characterizing the freshness in fish.  From this point of v iew,  the 
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NMR approach can give a lot of information in one step on the 

physiological status of fish,  connected to the aquaculture systems,  

and taking in consideration both time and temperature ef fects .  

The results obtained in  this work affirm that NMR together with the  

multivariate statistics  (ordination, classification and prediction)  

support the conclusion that  from one s ide time of ice storage is a  

critical l imit ing variable for  the Gilthead Sea bream but in the same 

time also the nutritional conditions and thus fish farming systems can 

affect the status of samples .  

Even if all the information on the status  of samples  are condensed in  

few variables represented by metabolites  like  inos ine, creatine, TMA 

and aminoacids, is really difficult to find a single indicator sufficient 

to evaluate sea food quality . On the contrary,  is necessary to 

combining indicators and differentiating those that determine loss of  

freshness from those that  detect the nutr itional status of fish . In fact,  

the ratio between INO/IMP can give information on  post-mortem 

time of storage, whilst the amount of  aminoacids, in particularly 

glycine, on the status of samples  ante mortem. Anyway, other post-

mortem aging index like TMAO/TMA, depends on many ante mortem 

(the starting concentration of TMAO) and post-mortem factors  

(enzymatic conversion of TMAO in TMA)  so that dif ficulty can be 

considered as a  univocal  quality markers. However, it remains  

necessary to establ ish useable criteria  for fish freshness  and spoilage 

that are practical  both for  the fish industry and the consumer ,  

reflecting their demand for fish freshness (C. Delbarre-Ladrat et al. ,  

2006).  

Moreover, the results of this work point on relevance the importance 

of the combination of several multivar iate data analysis . Further  

elaboration, expect for PCA, PLS2-DA, ECVA and iPLS allowed to 

find other part of  the spectrum and  thus other  metabolites that can  

better express the terms of  differentiation . As it can be seen, other  

metabolites  are involved in the discrimination among aquaculture 
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systems like Histidine and an unknown peak, but also alanine whose 

signals lay in the upfield  region, the ones  that from the previous  PCA 

analysis was excluded.  
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PPENDIX A AND B 

 
 
 
 
 
 

Appendix A 
 
######################################################## 
 
rm(list=ls(all=TRUE)) 
 
################################################################# 
 
#Sink fish Farming Samples 
 
p1<-scan("1.txt", dec=".") 
p2<-scan("2.txt", dec=".") 
p3<-scan("3.txt", dec=".") 
p4<-scan("4.txt", dec=".") 
p5<-scan("5.txt", dec=".") 
p6<-scan("6.txt", dec=".") 
p7<-scan("7.txt", dec=".") 
p8<-scan("8.txt", dec=".") 
p9<-scan("9.txt", dec=".") 
p10<-scan("10.txt", dec=".") 
p11<-scan("11.txt", dec=".") 
p12<-scan("12.txt", dec=".") 
p13<-scan("13.txt", dec=".") 
p14<-scan("14.txt", dec=".") 
p15<-scan("15.txt", dec=".") 
p16<-scan("16.txt", dec=".") 
p17<-scan("17.txt", dec=".") 
p18<-scan("18.txt", dec=".") 
 
#Lagoon Fish Farming Samples 
 
p19<-scan("1.txt", dec=".") 
p20<-scan("2.txt", dec=".") 
p21<-scan("3.txt", dec=".") 
p22<-scan("4.txt", dec=".") 
p23<-scan("5.txt", dec=".") 
p24<-scan("6.txt", dec=".") 
p25<-scan("7.txt", dec=".") 
p26<-scan("8.txt", dec=".") 
p27<-scan("9.txt", dec=".") 
p28<-scan("10.txt", dec=".") 
p29<-scan("11.txt", dec=".") 
p30<-scan("12.txt", dec=".") 
p31<-scan("13.txt", dec=".") 
p32<-scan("14.txt", dec=".") 
p33<-scan("15.txt", dec=".") 
p34<-scan("16.txt", dec=".") 
p35<-scan("17.txt", dec=".") 
p36<-scan("18.txt", dec=".") 

A 
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#Cages Fish Farming Samples 
 
p37<-scan("1.txt", dec=".") 
p38<-scan("2.txt", dec=".") 
p39<-scan("3.txt", dec=".") 
p40<-scan("4.txt", dec=".") 
p41<-scan("5.txt", dec=".") 
p42<-scan("6.txt", dec=".") 
p43<-scan("7.txt", dec=".") 
p44<-scan("8.txt", dec=".") 
p45<-scan("9.txt", dec=".") 
p46<-scan("10.txt", dec=".") 
p47<-scan("11.txt", dec=".") 
p48<-scan("12.txt", dec=".") 
p49<-scan("13.txt", dec=".") 
p50<-scan("14.txt", dec=".") 
p51<-scan("15.txt", dec=".") 
p52<-scan("16.txt", dec=".") 
p53<-scan("17.txt", dec=".") 
p54<-scan("18.txt", dec=".") 
 
######################### 
#  Delete Water Signals # 
######################### 
 
p1<-p1[c(0:15800,16800:32768)] 
p2<-p2[c(0:15800,16800:32768)] 
p3<-p3[c(0:15800,16800:32768)] 
p4<-p4[c(0:15800,16800:32768)] 
p5<-p5[c(0:15800,16800:32768)] 
p6<-p6[c(0:15800,16800:32768)] 
p7<-p7[c(0:15800,16800:32768)] 
p8<-p8[c(0:15800,16800:32768)] 
p9<-p9[c(0:15800,16800:32768)] 
p10<-p10[c(0:15800,16800:32768)] 
p11<-p11[c(0:15800,16800:32768)] 
p12<-p12[c(0:15800,16800:32768)] 
p13<-p13[c(0:15800,16800:32768)] 
p14<-p14[c(0:15800,16800:32768)] 
p15<-p15[c(0:15800,16800:32768)] 
p16<-p16[c(0:15800,16800:32768)] 
p17<-p17[c(0:15800,16800:32768)] 
p18<-p18[c(0:15800,16800:32768)] 
p19<-p19[c(0:15800,16800:32768)] 
p20<-p20[c(0:15800,16800:32768)] 
p21<-p21[c(0:15800,16800:32768)] 
p22<-p22[c(0:15800,16800:32768)] 
p23<-p23[c(0:15800,16800:32768)] 
p24<-p24[c(0:15800,16800:32768)] 
p25<-p25[c(0:15800,16800:32768)] 
p26<-p26[c(0:15800,16800:32768)] 
p27<-p27[c(0:15800,16800:32768)] 
p28<-p28[c(0:15800,16800:32768)] 
p29<-p29[c(0:15800,16800:32768)] 
p30<-p30[c(0:15800,16800:32768)] 
p31<-p31[c(0:15800,16800:32768)] 
p32<-p32[c(0:15800,16800:32768)] 
p33<-p33[c(0:15800,16800:32768)] 
p34<-p34[c(0:15800,16800:32768)] 
p35<-p35[c(0:15800,16800:32768)] 
p36<-p36[c(0:15800,16800:32768)] 
p37<-p37[c(0:15800,16800:32768)] 
p38<-p38[c(0:15800,16800:32768)] 
p39<-p39[c(0:15800,16800:32768)] 
p40<-p40[c(0:15800,16800:32768)] 
p41<-p41[c(0:15800,16800:32768)] 
p42<-p42[c(0:15800,16800:32768)] 
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p43<-p43[c(0:15800,16800:32768)] 
p44<-p44[c(0:15800,16800:32768)] 
p45<-p45[c(0:15800,16800:32768)] 
p46<-p46[c(0:15800,16800:32768)] 
p47<-p47[c(0:15800,16800:32768)] 
p48<-p48[c(0:15800,16800:32768)] 
p49<-p49[c(0:15800,16800:32768)] 
p50<-p50[c(0:15800,16800:32768)] 
p51<-p51[c(0:15800,16800:32768)] 
p52<-p52[c(0:15800,16800:32768)] 
p53<-p53[c(0:15800,16800:32768)] 
p54<-p54[c(0:15800,16800:32768)] 
 
######################################## 
# Delete Points from the Spectrum Tails# 
######################################## 
 
p1<-p1[c(8001:26000)] 
p2<-p2[c(8001:26000)] 
p3<-p3[c(8001:26000)] 
p4<-p4[c(8001:26000)] 
p5<-p5[c(8001:26000)] 
p6<-p6[c(8001:26000)] 
p7<-p7[c(8001:26000)] 
p8<-p8[c(8001:26000)] 
p9<-p9[c(8001:26000)] 
p10<-p10[c(8001:26000)] 
p11<-p11[c(8001:26000)] 
p12<-p12[c(8001:26000)] 
p13<-p13[c(8001:26000)] 
p14<-p14[c(8001:26000)] 
p15<-p15[c(8001:26000)] 
p16<-p16[c(8001:26000)] 
p17<-p17[c(8001:26000)] 
p18<-p18[c(8001:26000)] 
p19<-p19[c(8001:26000)] 
p20<-p20[c(8001:26000)] 
p21<-p21[c(8001:26000)] 
p22<-p22[c(8001:26000)] 
p23<-p23[c(8001:26000)] 
p24<-p24[c(8001:26000)] 
p25<-p25[c(8001:26000)] 
p26<-p26[c(8001:26000)] 
p27<-p27[c(8001:26000)] 
p28<-p28[c(8001:26000)] 
p29<-p29[c(8001:26000)] 
p30<-p30[c(8001:26000)] 
p31<-p31[c(8001:26000)] 
p32<-p32[c(8001:26000)] 
p33<-p33[c(8001:26000)] 
p34<-p34[c(8001:26000)] 
p35<-p35[c(8001:26000)] 
p36<-p36[c(8001:26000)] 
p37<-p37[c(8001:26000)] 
p38<-p38[c(8001:26000)] 
p39<-p39[c(8001:26000)] 
p40<-p40[c(8001:26000)] 
p41<-p41[c(8001:26000)] 
p42<-p42[c(8001:26000)] 
p43<-p43[c(8001:26000)] 
p44<-p44[c(8001:26000)] 
p45<-p45[c(8001:26000)] 
p46<-p46[c(8001:26000)] 
p47<-p47[c(8001:26000)] 
p48<-p48[c(8001:26000)] 
p49<-p49[c(8001:26000)] 
p50<-p50[c(8001:26000)] 
p51<-p51[c(8001:26000)] 
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p52<-p52[c(8001:26000)] 
p53<-p53[c(8001:26000)] 
p54<-p54[c(8001:26000)] 
 
 
 
 
#################################################### 
#    Collecting Spectra Data in a Matrix 54x18000   #           
#################################################### 
 
tabella<-matrix(0, nrow=54, ncol=18000) 
 
tabella[1,]<-p1 
tabella[2,]<-p2 
tabella[3,]<-p3 
tabella[4,]<-p4 
tabella[5,]<-p5 
tabella[6,]<-p6 
tabella[7,]<-p7 
tabella[8,]<-p8 
tabella[9,]<-p9 
tabella[10,]<-p10 
tabella[11,]<-p11 
tabella[12,]<-p12 
tabella[13,]<-p13 
tabella[14,]<-p14 
tabella[15,]<-p15 
tabella[16,]<-p16 
tabella[17,]<-p17 
tabella[18,]<-p18 
tabella[19,]<-p19 
tabella[20,]<-p20 
tabella[21,]<-p21 
tabella[22,]<-p22 
tabella[23,]<-p23 
tabella[24,]<-p24 
tabella[25,]<-p25 
tabella[26,]<-p26 
tabella[27,]<-p27 
tabella[28,]<-p28 
tabella[29,]<-p29 
tabella[30,]<-p30 
tabella[31,]<-p31 
tabella[32,]<-p32 
tabella[33,]<-p33 
tabella[34,]<-p34 
tabella[35,]<-p35 
tabella[36,]<-p36 
tabella[37,]<-p37 
tabella[38,]<-p38 
tabella[39,]<-p39 
tabella[40,]<-p40 
tabella[41,]<-p41 
tabella[42,]<-p42 
tabella[43,]<-p43 
tabella[44,]<-p44 
tabella[45,]<-p45 
tabella[46,]<-p46 
tabella[47,]<-p47 
tabella[48,]<-p48 
tabella[49,]<-p49 
tabella[50,]<-p50 
tabella[51,]<-p51 
tabella[52,]<-p52 
tabella[53,]<-p53 
tabella[54,]<-p54 
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################################################## 
# PCA auotoscaled on a Raw Spectral Data Matrix  # 
################################################## 
 
sm<-edit(tabella) 
 
analisi<-prcomp(tabella,center=T,scale=T) 
y<-c(1,2) 
plot(analisi$x[,y]) 
colorigruppi<-c(rep(2,18),rep(3,18),rep(4,18)) 
plot(analisi$x[,y], main="PCA", pch=" ") 
text(analisi$x[,y],labels=c(1:54),col=colorigruppi) 
 
###################### 
#    Mean Spectrum   # 
###################### 
 
# for the next Step 
 
medio<-apply(tabella,2,mean) 
plot(medio, type="l") 
 
which.max(medio[14400:14600]) 
 
# chiedo qual'è il valore massimo nell'intervallo scelto riferito 
allo spettro medio 
 
# il valore che ottengo lo aggiungo al primo valore dell'intervallo 
sopra indicato 
 
#################################### 
# Refer all Spectra on a Peack     # 
#################################### 
 
ncamp<-54 
punti<-18000 
centro<-14496 #(rispetto al campione medio) 
maxvet<-matrix(data=0, ncol=1, nrow=ncamp) 
reganomer<-c(14400:14600) 
for (i in 1:ncamp){ 
for (j in reganomer){ 
if (tabella[i,j]==max(tabella[i,reganomer])) maxvet[i,]<- centro-j 
} 
} 
allineati<- matrix(data=0, ncol=punti, nrow=ncamp) 
for (i in 1:ncamp) { 
shift<-maxvet[i,1] 
if (shift>0) allineati[i,(1+shift):punti]<-tabella[i,1:(punti-
shift)] 
if (shift==0) allineati[i,]<-tabella[i,] 
if (shift<0) allineati[i,1:(punti+shift)]<-tabella[i,(1-
shift):punti] 
} 
plot(maxvet) 
 
########################################## 
#  Normalization on Total Specrtum Area  # 
########################################## 
 
ncamp<-nrow(allineati) 
npunti<-ncol(allineati) 
riferiti<-matrix(data=0, ncol=npunti, nrow=ncamp) 
area<-matrix(data=0, ncol=1, nrow=ncamp) 
for (j in 1:ncamp){ 
area[j,]<-sum(allineati[j,]) 
for (i in 1:npunti){ 
riferiti[j,i]<-allineati[j,i]/area[j,] 
} 
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} 
 
#################################################################### 
#Calcolo Coef. da moltiplicare a tutti gli spettri dopo normaliz   # 
#################################################################### 
 
ncamp<-nrow(allineati) 
coefmat<-matrix(data=0, nrow=ncamp, ncol=1) 
for(i in 1:ncamp){ 
coefmat[i,]<-sum(allineati[i,]) 
} 
mediab<-sum(coefmat)/ncamp 
 
riferiti<-riferiti*mediab 
 
########################### 
#  Regional Coeficient    # 
########################### 
 
# to obtain a coeficient toh ave a same maximum peack level 
 
medio2<-apply(riferiti,2,mean) 
plot(medio2, type="l") 
 
#Max dowfield 
max(medio2[0:7000]) 
 
#Max midfield 
max(medio2[7001:11200]) 
 
#Max upfield 
max(medio2[11200:18000]) 
 
 
max(medio2[7001:11200])/max(medio2[0:7000]) 
 
max(medio2[7001:11200])/max(medio2[11200:18000]) 
 
spettroamplificato<-matrix(data=0, ncol=18000, nrow=54) 
 
for(i in 1:54){ 
spettroamplificato[i,0:7000]<-
riferiti[i,0:7000]*(max(medio2[7001:11200])/max(medio2[0:7000])) 
spettroamplificato[i,7001:11200]<-riferiti[i,7001:11200] 
spettroamplificato[i,11200:18000]<-
riferiti[i,11200:18000]*(max(medio2[7001:11200])/max(medio2[11200:18
000])) 
} 
 
########################################################### 
#  PCA Meancentered Whole Spectrum with coeficient Region # 
########################################################### 
 
analisi<-prcomp(spettroamplificato,center=T,scale=F) 
y<-c(1,2) 
plot(analisi$x[,y], main="PCA", pch=" ") 
colorigruppi<-c(rep(2,18),rep(3,18),rep(4,18)) 
plot(analisi$x[,y], xlab="PC1 (38%)",ylab="PC2 
(19%)",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
legend(locator(2), c("VST0","VST16","VLT0","VLT16","GBT0","GBT16"), 
pch=c(1,16,2,17,22,15), col=c(2,2,3,3,4,4)) 
 
########################## 
# Cumulative Variance %  # 
########################## 
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x<-0 
varcum<-rep(0,54) 
propvarcum<-rep(0,54) 
for (i in 1:54) { 
j<-i-1 
varcum[i]<-analisi$sdev[i]^2+x 
x<-varcum[i] 
propvarcum[i]<-(varcum[i]/sum(analisi$sdev^2))*100 
} 
propvarcum 
 
############################ 
#  To make noise value =0  # 
############################ 
 
ncamp<-nrow(riferiti) 
tabella2<-matrix(0, nrow=ncamp, ncol=ncol(riferiti)) 
for (i in 1:ncamp){ 
for (j in 1: ncol(riferiti)){ 
a<-(riferiti[i,j]) 
if (a<=0.8) tabella2[i,j]=0 
if (a>0.8) tabella2[i,j]=riferiti[i,j] 
} 
} 
 
################################################# 
#  PCA Meancentered Whole Spectrum with noise=0 # 
################################################# 
 
analisi<-prcomp(tabella2,center=T,scale=F) 
y<-c(1,2) 
plot(analisi$x[,y], main="PCA", pch=" ") 
colorigruppi<-c(rep(2,18),rep(3,18),rep(4,18)) 
plot(analisi$x[,y], xlab="PC1 (49%)",ylab="PC2 
(31%)",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
 
############################################### 
#  PCA Meancentered Downfield Region Riferiti # 
############################################### 
 
analisi<-prcomp(riferiti[,0:7000],center=T,scale=F) 
y<-c(1,2) 
plot(analisi$x[,y], xlab="PC1 (43%)",ylab="PC2 
(23%)",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
 
legend(locator(2), c("VST0","VST16","VLT0","VLT16","GBT0","GBT16"), 
pch=c(1,16,2,17,22,15), col=c(2,2,3,3,4,4)) 
 
############################################## 
#  PCA Meancentered Midfield Region Riferiti # 
############################################## 
 
analisi<-prcomp(riferiti[,7001:11200],center=T,scale=F) 
y<-c(1,2) 
plot(analisi$x[,y]) 
plot(analisi$x[,y], xlab="PC1 (54%)",ylab="PC2 
(31%)",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
 
legend(locator(2), c("VST0","VST16","VLT0","VLT16","GBT0","GBT16"), 
pch=c(1,16,2,17,22,15), col=c(2,2,3,3,4,4)) 
 
############################################# 
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# PCA Meancentered Midfield Region Riferiti # 
############################################# 
 
analisi<-prcomp(riferiti[,11200:18000],center=T,scale=F) 
y<-c(1,2) 
 
plot(analisi$x[,y]) 
plot(analisi$x[,y], xlab="PC1 (55%)",ylab="PC2 
(18%)",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
 
########################## 
#  PCA Autoscaled Time 0 # 
########################## 
 
t0<-c(1:9,19:27,37:45) 
 
coloT0<-c(rep(2,9),rep(3,9),rep(4,9)) 
analisi<-prcomp(riferiti[t0,],center=T,scale=T) 
y<-c(1,2) 
plot(analisi$x[,y], xlab="PC1 (46%)",ylab="PC2 
(15%)",pch=c(rep(1,9), rep(2,9),rep(22,9)), cex=2.5, col=coloT0) 
 
legend(locator(2), c("VST0","VLT0","GBT0"), pch=c(1,2,22), 
col=c(2,3,4)) 
 
########################### 
#  PCA Autoscaled Time 16 # 
########################### 
 
t16<-c(10:18,28:36,46:54) 
 
coloT0<-c(rep(2,9),rep(3,9),rep(4,9)) 
analisi<-prcomp(riferiti[t16,],center=T,scale=T) 
y<-c(1,2) 
plot(analisi$x[,y], xlab="PC1 (36%)",ylab="PC2 
(25%)",pch=c(rep(16,9), rep(17,9),rep(15,9)), cex=2.5, col=coloT0) 
 
legend(locator(2), c("VST0","VLT0","GBT0"), pch=c(16,17,15), 
col=c(2,3,4)) 
 
############################################ 
#  Binning Normalized and Refered Data Set # 
############################################ 
 
ncamp<-nrow(riferiti) 
intervallo<-matrix(data=0, nrow=ncamp, ncol=150) 
for (z in 1:ncamp) { 
i<-1 
for (i in 1:150){ 
for (j in 1:120){ 
k<-((i-1)*120)+j 
a<-riferiti[z,k] # to bin riferiti Matrix 
intervallo[z,i]<-intervallo[z,i]+a 
} 
intervallo[z,i]<-intervallo[z,i]/120 
} 
} 
 
########################################### 
#  Meancentered Binned PCA All Samples    # 
########################################### 
 
analisi<-prcomp(intervallo,center=T,scale=F) 
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
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plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
title(xlab=list("PC1(51%)",cex=1.3, font=2)) 
title(ylab=list("PC2(29%)",cex=1.3, font=2)) 
title(main=list("PCA Binned Data all Samples", cex=2, font=1)) 
########################## 
# Cumulative Variance %  # 
########################## 
 
x<-0 
varcum<-rep(0,54) 
propvarcum<-rep(0,54) 
for (i in 1:54) { 
j<-i-1 
varcum[i]<-analisi$sdev[i]^2+x 
x<-varcum[i] 
propvarcum[i]<-(varcum[i]/sum(analisi$sdev^2))*100 
} 
 
propvarcum 
 
########################################################## 
#  Binning Normalized and Refered Data Set Without noise # 
########################################################## 

ncamp<-nrow(riferiti) 
intsenzarum<-matrix(data=0, nrow=ncamp, ncol=150) 
for (z in 1:ncamp) { 
i<-1 
for (i in 1:150){ 
for (j in 1:120){ 
k<-((i-1)*120)+j 
a<-tabella2[z,k] # così binno la matrice riferiti (se voglio binnare 
altre cambio il nome di a) 
intsenzarum[z,i]<-intsenzarum[z,i]+a 
} 
intsenzarum[z,i]<-intsenzarum[z,i]/120 
} 
} 
 
########################################### 
#  PCA Meancentered Binned without noise  # 
########################################### 
 
analisi<-prcomp(intsenzarum,center=T,scale=F)  
y<-c(1,2) 
plot(analisi$x[,y], xlab="PC1 (51%)",ylab="PC2 
(29%)",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
  
#################################################################### 
# Binning Normalized and Refered Data Set With Regional Coeficient # 
#################################################################### 

ncamp<-nrow(riferiti) 
intconcoef<-matrix(data=0, nrow=ncamp, ncol=150) 
for (z in 1:ncamp) { 
i<-1 
for (i in 1:150){ 
for (j in 1:120){ 
k<-((i-1)*120)+j 
a<-spettroamplificato[z,k] # così binno la matrice 
spettroamplificato (se voglio binnare altre cambio il nome di a) 
intconcoef[z,i]<-intconcoef[z,i]+a 
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} 
intconcoef[z,i]<-intconcoef[z,i]/120 
} 
} 
 
 
 
################################################## 
#  Meancentered Binned amplified PCA All Samples # 
################################################## 
 
analisi<-prcomp(intconcoef,center=T,scale=F)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
title(xlab=list("PC1(46%)",cex=1.3, font=2)) 
title(ylab=list("PC2(18%)",cex=1.3, font=2)) 
title(main=list("PCA Amplified Binned Data all Samples", cex=2, 
font=1)) 
 
############################################ 
# PCA Meancentered Binned Downfield Region # 
############################################ 
 
Downfield<-intervallo[,0:58] 
analisi<-prcomp(Downfield,center=T,scale=F) 
y<-c(1,2) 
 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
title(xlab=list("PC1(54%)",cex=1.3, font=2)) 
title(ylab=list("PC2(20%)",cex=1.3, font=2)) 
title(main=list("PCA Binned Data Downfield Region", cex=2, font=1)) 
 
##################################################### 
# BarPlot most representative Loadings Values  PC1  # 
# Downfield Region                                  # 
##################################################### 
 
barplot(analisi$rotation[,1], axes=FALSE, col=c(rep("green",58))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Downfield Region PC1 Loadings", cex=2, font=1)) 
abline(h= 0.2)#to add a y=a line 
abline(h=-0.2)#to add a second y=-a  line 
 
################################################################# 
# Representation of the mean Area for Each bins All Samples     # 
################################################################# 
 
z<-c(10920:11040) 
riferitibis<-riferiti[1:54,] 
integrale<-matrix(data=0, nrow=54, ncol=1) 
for(i in 1:90){ 
integrale[i,]<-sum(riferitibis[i,z]) 
} 
 
t0<-c(1:9,19:27,37:45) 
t16<-c(10:18,28:36,46:54) 
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mean(integrale[t0,1]) 
mean(integrale[t16,1]) 
 
sd1<-sd(integrale[t0,1]) 
sd2<-sd(integrale[t16,1]) 
 
 
sd1 
sd2 
 
########################################### 
# PCA Meancentered Binned Midfield Region # 
########################################### 
 
Midfield<-intervallo[,59:93] 
analisi<-prcomp(Midfield,center=T,scale=F) 
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
title(xlab=list("PC1(60%)",cex=1.3, font=2)) 
title(ylab=list("PC2(29%)",cex=1.3, font=2)) 
title(main=list("PCA Binned Data Midfield Region", cex=2, font=1)) 
 
##################################################### 
# BarPlot most representative Loadings Values  PC1  # 
# Midfield Region                                   # 
##################################################### 
 
barplot(analisi$rotation[,1], axes=FALSE, col=c(rep("blue",35))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Midfield Region PC1 Loadings", cex=2, font=1)) 
abline(h= 0.15)#to add a y=a line 
abline(h=-0.2)#to add a second y=-a  line 
 
##################################################### 
# BarPlot most representative Loadings Values  PC2  # 
# Downfield Region                                  # 
##################################################### 
 
barplot(analisi$rotation[,2], axes=FALSE, col=c(rep("blue",35))) 
axis(2, cex.axis=1.5)# to increas ylab values 
title(ylab=list("Contribution of each Bin", cex=1.3, font=1)) 
title(main=list("Midfield Region PC2 Loadings", cex=2, font=1)) 
abline(h= 0.25)#to add a y=a line 
 
################################################################# 
# Representation of the mean Area for Each bins All Samples     # 
################################################################# 
 
z<-c(10560:10680) 
riferitibis<-riferiti[1:54,] 
integrale<-matrix(data=0, nrow=54, ncol=1) 
for(i in 1:90){ 
integrale[i,]<-sum(riferitibis[i,z]) 
} 
 
mean(integrale[1:9,1]) 
mean(integrale[10:18,1]) 
mean(integrale[19:27,1]) 
mean(integrale[28:36,1]) 
mean(integrale[37:45,1]) 
mean(integrale[46:54,1]) 
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sd1<-sd(integrale[1:9,1]) 
sd2<-sd(integrale[10:18,1]) 
sd3<-sd(integrale[19:27,1]) 
sd4<-sd(integrale[28:36,1]) 
sd5<-sd(integrale[37:45,1]) 
sd6<-sd(integrale[46:54,1]) 
 
 
sd1 
sd2 
sd3 
sd4 
sd5 
sd6 
 
########################################### 
# PCA Meancentered Binned Upfield Region  # 
########################################### 
 
Upfield<-intervallo[,94:150] 
analisi<-prcomp(Upfield,center=T,scale=F) 
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
title(xlab=list("PC1(60%)",cex=1.3, font=2)) 
title(ylab=list("PC2(20%)",cex=1.3, font=2)) 
title(main=list("PCA Binned Data Upfield Region", cex=2, font=1)) 
 
############################################## 
#  PCA Autoscaled All samples binned data t0 # 
############################################## 
 
t0<-c(1:9,19:27,37:45) 
 
analisi<-prcomp(intervallo[t0,],center=T,scale=T) 
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" 
",pch=c(rep(1,9),rep(2,9),rep(22,9)), cex=2.5) 
title(xlab=list("PC1(45%)",cex=1.3, font=2)) 
title(ylab=list("PC2(14%)",cex=1.3, font=2)) 
 
legend(locator(2), c("VST0","VLT0","GBT0"), pch=c(1,2,22)) 
 
############################################## 
# PCA Autoscaled All samples binned data t16 # 
############################################## 
 
t16<-c(10:18,28:36,46:54) 
 
analisi<-prcomp(intervallo[t0,],center=T,scale=T) 
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" 
",pch=c(rep(1,9),rep(2,9),rep(22,9)), cex=2.5) 
title(xlab=list("PC1(36%)",cex=1.3, font=2)) 
title(ylab=list("PC2(25%)",cex=1.3, font=2)) 
 
legend(locator(2), c("VST16","VLT16","GBT16"), pch=c(16,17,15)) 
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################################################# 
# Meancentered amplified Binned PCA All Samples # 
# Down and Midfield Regions                     # 
################################################# 
 
analisi<-prcomp(intconcoef[,0:93],center=T,scale=F)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
title(xlab=list("PC1(46%)",cex=1.3, font=2)) 
title(ylab=list("PC2(18%)",cex=1.3, font=2)) 
title(main=list("PCA Amplified Binned Data all Samples", cex=2, 
font=1)) 
 
####################################### 
# Meancentered Binned PCA All Samples # 
# Down and Midfield Regions           # 
####################################### 
 
analisi<-prcomp(intervallo[,0:93],center=T,scale=F)  
y<-c(1,2) 
x<-c(analisi$x[,1]) 
y<-c(analisi$x[,2]) 
plot(x,y) 
plot(x,y, cex.axis=1.3, xlab=" ",ylab=" ",pch=c(rep(1,9), 
rep(16,9),rep(2,9),rep(17,9),rep(22,9),rep(15,9)), cex=2.5, 
col=colorigruppi) 
title(xlab=list("PC1(46%)",cex=1.3, font=2)) 
title(ylab=list("PC2(18%)",cex=1.3, font=2)) 
title(main=list("PCA Binned Data all Samples", cex=2, font=1)) 
 
 
#plot spettro down 
 
x<-c(1:6960) 
y<-c(riferiti[50,0:6960]) 
plot(x,y) 
plot(x,y, type="l",cex.axis=1.3, xlab=" ",ylab=" ", col="green") 
 
title(xlab=list("Specrtal Points",cex=1.3, font=2)) 
title(ylab=list("Intensity",cex=1.3, font=2)) 
title(main=list("Downfield Spectral Region", cex=2, font=1)) 
 
#plot spettro mid 
 
x<-c(7080:11160) 
y<-c(riferiti[50,7080:11160]) 
plot(x,y) 
plot(x,y, type="l",cex.axis=1.3, xlab=" ",ylab=" ", col="blue") 
 
title(xlab=list("Specrtal Points",cex=1.3, font=2)) 
title(ylab=list("Intensity",cex=1.3, font=2)) 
title(main=list("Midfield Spectral Region", cex=2, font=1)) 
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Appendix B.1 Gilthead Sea bream – Sink – T 0  (VS-T0) spec-
trum 

 

ppm (t1) 6.07.08.09.0  
 
Figure Appendix B1: VS-T0: Downfield Region (> 5 ppm) 
 

ppm (t1) 3.003.504.004.50  
 
Figure Appendix B1: VS-T0: Midfield Region (5 < ppm < 2.5) 
 

ppm (t1) 0.501.001.502.00  
 
Figure Appendix B1: VS-T0: Upfield Region (< 2.5 ppm) 
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Appendix B.2 Gilthead Sea bream – Sink – T 1 6 (VS-T16) spec-
trum 

 

ppm (t1) 6.07.08.09.0  
 
Figure Appendix B2: VS-T16: Downfield Region (> 5 ppm) 
 

ppm (t1) 3.003.504.004.50  
 
Figure Appendix B2: VS-T16: Midfield Region (5 < ppm < 2.5) 
 

ppm (t1) 0.501.001.502.00  
 
Figure Appendix B2: VS-T16: Upfield Region (< 2.5 ppm) 
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Appendix B.3 Gilthead Sea bream – Lagoon – T 0  (VL-T0) spec-
trum 

 

ppm (t1) 5.506.006.507.007.508.008.509.009.50  
 
Figure Appendix B3: VL-T0: Downfield Region (> 5 ppm) 
 

ppm (t1) 3.003.504.004.50  
 
Figure Appendix B3: VL-T0: Midfield Region (5 < ppm < 2.5) 
 

 
Figure Appendix B3: VL-T0: Upfield Region (< 2.5 ppm) 
 

ppm (t1) 0.501.001.502.00
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Appendix B.4 Gilthead Sea bream – Lagoon – T 1 6  (VL-T16) 
spectrum 

 

ppm (t1) 6.07.08.09.0  
 
Figure Appendix B4: VL-T16: Downfield Region (> 5 ppm) 
 

ppm (t1) 3.003.504.004.50  
 
Figure Appendix B4: VL-T16: Midfield Region (5 < ppm < 2.5) 
 

ppm (t1) 0.501.001.502.00  
 
Figure Appendix B4: VL-T16: Upfield Region (> 2.5 ppm) 
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Appendix B.5 Gilthead Sea bream – Cage – T 0  (GB-T0) 
spectrum 

 

ppm (t1) 6.07.08.09.0  
 
Figure Appendix B5: GB-T0: Downfield Region (> 5 ppm) 
 

ppm (t1) 3.003.504.004.50  
 
Figure Appendix B5: GB-T0: Midfield Region (5 < ppm < 2.5) 
 

ppm (t1) 0.501.001.502.00  
 
Figure Appendix B5: GB-T0: Upfield Region (< 2.5 ppm) 
 
 



4 – Metabonomics in Fish Farming  

218 

 

Appendix B.6 Gilthead Sea bream – Cage – T 1 6 (GB-T16) 
spectrum 

 

ppm (t1) 5.506.006.507.007.508.008.509.009.50  
 
Figure Appendix B6: GB-T16: Downfield Region (> 5 ppm) 
 

ppm (t1) 3.003.504.004.50  
 
Figure Appendix B6: GB-T16: Midfield Region (5 < ppm < 2.5) 
 

ppm (t1) 0.501.001.502.00  
 
Figure Appendix B6: GB-T16: Upfield Region (> 2.5 ppm) 
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