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Nomenclature

ab longitudinal and lateral rotor flapping

e command-attitude transfer function gain Gorsnt
e(t) white noise

g (9.81 mA acceleration of gravity

P, q roll, pitch rates

y(t) noise in velocity signals

u, v, w longitudinal, lateral and vertical speed

Aons B, Xu, Yo, Xa on-axis derivatives

Yo, Lo, Ma, Zeor, on-axis derivatives

My, My, L., Ly speed derivatives

At , Bon s My, La, Mcan off-axis derivatives

F(q) auto regressive polynomial filtering functio

Ko, Ki, Ky baseline inner loop PID parameters — Longitudinal
Kov, Kiv, Koy baseline outer loop PID parameters — Longitaid

KpLata KiLata KdLat
vaLata KivLata Kdeat

baseline inner loop PID parameters — Lateral
baseline outer loop PID parameters — Lateral

Kom, Kim feedforward inner loop PI parameters — Lardjnal

Kpvm, Kivm feedforward outer loop Pl parameters — Luuutjnal
KpmLat, KimLat feedforward inner ioop Pl parameters — Latera
Kpvmtat: Kivmat feedforward outer loop Pl parameters — Latera

Tiite, Titphi feedforward filter constants — Longitudinal téal

6 ¢ longitudinal and lateral attitude angles

o command-attitude transfer function dampiagficient
Aon » dats ol cyclic longitudinal, lateral, collective coatinputs

A main rotor time constant

GWhp » g lateral, longitudinal fuselage-rotor-bar matdrequencies

Acronyms

AHRS Attitude and Heading Reference System
AR Auto Regressive

AV Air Vehicle

CAPECON Civil uav APplications & Economic effectiyiof potential CONfiguration solutions
COTS Commercial Off-The-Shelf

CRIO CompactRIO

DL Data Link

EU European Union

FCS Flight Control System

FF Feedforward

FFA Feedforward Action

FMS Flight Management System

FPGA Field Programmable Gate Array

GPS Global Positioning System

GCS Ground Control Station

GS Ground Segment



GV Ground Vehicle

HIL Hardware In the Loop

ILOS In Line Of Sight

I/O Input/Output

MGCS Mobile Ground Control Station

MGS Mobile Ground Segment

MMP Mission Modular Payload

NGCS Navigation Guidance & Control System
NI National Instruments

PID Proportional Integral Derivative

Pl Proportional Integral

PWM Pulse Width Modulation

R/IC Radio Controlled

RF Radio Frequency

RUAV Rotary Wing Unmanned Aerial Vehicle
SISO Single Input / Single Output

SS States space

TPP Tip-Path Plane

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System
UNIBO University of Bologna

uUsB Universal Serial Bus

Wp Waypoint



1 Motivation and Background

It is well known that Unmanned Air Vehicles (UAVB)ay represent a promising and
cost-effective alternative to manned aircraft forlamge number of civil applications.
Compared to traditional air vehicles, UAVs mayfant, offer significant advantages in terms
of human safety (especially in dull, dirty and darggis missions), operational cost reduction
and work rate efficiency. In particular RotorcrafdV (RUAV) systems, due to their versatile
flight modes, maneuverability and vertical take-afid landing capabilities, represent even a
more promising solution than fixed wing UAVSs.

In the last years UNIBO has developed an unmanmedl scale helicopter that is now
capable of autonomous flight and that can be usside the Universities as a platform for
researches in control and navigation laws, meamwhiould be proposed as a technological
prototype for industries interested in UAV develaggrhand manufacturing. In order to take
advantage of existing and cost effective technqglagijIBO has used Commercial Of The
Shelf (COTS) sensors and electronics for its RUAW@ics package.

The analysis and design of a good flight contratem requires the knowledge of an
accurate model of vehicle dynamics [1]: such madel be obtained using the known System
identification techniques used for bigger machima#) some simplifications.

In this thesis a simple System Identification Pthae for Control Design is presented.
In particular the identified system shall be usedhe following, to compare performances of
a traditional PID controller that will be referrems Baseline controller [2,3], versus a
Feedforward control algorithm based on dynamic rhodersion of longitudinal and lateral
dynamics. The proposed time-domain identificatioocpdure is entirely developed in
Matlab-Simulink environment, and requires no oternal software applications.

The control of small scale helicopter (Rotorcraa\J RUAV), in order to maintain a
stable attitude and to follow a desired trajectagyparticularly critical since it is well known
that helicopters are inherently unstable systemgo@d number of papers have been written
in the last years about methodologies for increptie limited performances of this class of
small scale helicopters, but only few of them use ilentified dynamic models to support
advanced control design [1].

The validation of this innovative model-based feediard (FF) controller for the

UNIBO RUAYV, as well as comparison in terms of periances with a Baseline controller
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will be performed in a Hardware In the Loop (HIEpst bench.

In a first step the two control systems will beddrwith the same basic gains in order to
assess the effect of the FF term, then in a sestep two sets of automatically tuned
parameters (one for the Baseline and another antadoFF) will be used. These two sets of
gains will be automatically tuned in order to makeimpartial analysis by superimposing that
the two controllers have similar performances (tise, settling time).

Hardware In the Loop tests, as well as stabilitygms analysis, will demonstrate how,
tuning the two systems to achieve the same perfores the feedforward controller allows
to work with greater stability and, hence, withdeasscillating attitudes. Finally, in the last
section, it will be shown how the FF control arebture improves the tracking performances

of a given guidance logic.

1.1 UNIBO RUAYV Project Overview

The increasing interest in military Unmanned Airhitdes (UAVS) is fuelling an
equally ambitious build-up in the civil communityis well known that UAVs may represent
a promising and cost-effective alternative to mahaacraft for a large number of civil
applications [4]. Compared to traditional air véés; UAVS may offer significant advantages
in terms of human safety (especially in dull, disgilyd dangerous missions), operational cost
reduction and work rate efficiency. Nevertheleskilevresearch activities in UAV or Rotary
Wing UAV systems are very advanced in the Unitedte€st, UAV interest in Europe has
begun only in the last years. As a result, the peao Union has sponsored the UAV
development program CAPECON, to attempt to kicktsdacivil UAV industry in Europe
and try to fill the gap with the United States.the last years, the University of Bologna
(UNIBO) has carried out several research projeatscerning the development and
manufacturing of fixed wing UAV systems for the itaviation market.

The goal to be achieved with the UNIBO RUAV reskaprogram was to develop a
helicopter capable of autonomous flight which coogdused inside the university as platform
for researches in control and navigation laws; mdsle it should be proposed as

technological prototype to industry interested l\MJdevelopment and manufacturing.



An UAV system is generally constituted by at leBmir main integrated sub-systems (see

figurel): the air vehicle (AV), the ground suppeyistem, the data link (DL) and the data
distribution (DD) [5].

Ground Support System

Mission Data Link
Simulation
Emnronment
Air Vehicle SO
j— L.

I________________

I

]
/.
{

Q egment \ - )
J

END " Data.

L SERS Distribution

Figure 1: UAV System

The AV includes all the airborne systems: theidaslicopter platform, the onboard
computer and sensors, the mission payload andalboftware necessary to guide,
navigate and control the helicopter.

The ground support system includes all the gdomfrastructures and equipments to
enable the AV operations, such as a mobile growmdral station (GCS), a logistic

and maintenance segment and a Ground Vehicle.

The Data Link supports video, data and telemetmmunications between the AV
and the Ground Support Systems, while the DataribBigion is able to transmit

annotated significant data, collected at the GG pptential users at remote locations.

The subsystem hardware and software equipmentde&anuch or less sophisticated,

depending on the RUAV system size and complexity.

For the purpose of the RUAV program, a small s¢elbby model helicopter was used as

flying platform, which was certainly a significarghysical constraint for the RUAV

subsystem equipment choice and development.

The work performed to develop the RUAV platform wasried out following a series of

subsequent logical steps:

first the RUAV hardware (including the onboard anegs, the air vehicle and the data
link system) was selected and interfaced, placitignaon to vibration isolation,
electromagnetic interference and accessibility

following the hardware set-up, sensor data aitjom software was developed and

tested in flight in order to ensure sensor measen¢meliability. This step plays a
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crucial role in a RUAV development because, if thelicopter has to fly
autonomously, reliable information about its stateseeded by the onboard control
and navigation system.

- parallel to the hardware set-up, simulation playsnaportant role in the development
of an autonomous helicopter. A simulation model @eageloped, based on helicopter
dynamics identification flight tests, to be used tfioe design of the onboard control
and navigation algorithm

- once the previous task were completed, the onbbardware and software were
integrated into the simulation loop using a Hardwir the Loop (HIL) simulator. In
this scenario, performance and possible errore@bhboard software can be detected
during intensive ground safe and risk free tests

- in the endautopilot flight test were performed for final ezation and tuning of the

control and navigation system.

One important aspect to be taken into accounterdévelopment of a RUAV system is
that it is, actually, an aerial robot. The set-upaocapable task-worthy aerial robots is
essentially an integration effort and, always, megpu knowledge of several different
disciplines and experimentation on new system dgwveént. In the past years most of the
research efforts in miniature autonomous helicopne lost for hardware integration and for
obtaining reliable sensor measurement. For thaorea taken also into account the outcomes
of the CAPECON program, it was decided to evaltia¢efeasibility of using COTS sensors
and electronics for the RUAV avionics package. Bibth hardware and the software were
integrated placing attention to modularity, growtitential, versatility and possibility for ease
reconfiguration and software implementation. Resatthieved in this work showed that the
selected hardware and the onboard software were t@blprovide accurate flight data
measurement and good helicopter control capalsiliibanks to its modular architecture and
accurate flight data measurement capabilities, RAV system may become a useful
research test bench in several different field sasch
-aircraft /rotorcraft dynamic model identification
-researches in control and navigation laws (fast ease software implementation could
results also in a speed up of the research time)

-researches in man machine interface and air systigration which is addressed as one of
the most critical technology aspect for the futdeelopment of the civil UAVs and their

integration into the airspace [6,7].
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2 UNIBO RUAY System description

The UNIBO RUAYV, shown in Figure 2, is built arouadmodified Hirobo Eagle 1l 60
hobby helicopter which was modified to accommodageavionics hardware, equipped with
a more powerful engine, longer fiberglass bladesh for the main and the tail rotor, and
longer tail boom. The new main rotor is a 2 bladegs-saw type rotor with Bell-Hiller
stabilizer bar, which augments servo torque witto@gnamic moment to change the blades
cyclic pitch and adds lagged rate feedback to imptbe helicopter handling qualities, and a
1.84 m diameter; the helicopter total mass is abbl® kg. A National Instruments
CompactRIO system has been selected as flight ciempund performs both the task of
Autopilot and Flight Management System (FMS). Floght data acquisition a Crossbow
NAV420 GPS-aided Attitude and Heading Referencae®y§AHRS) and ultrasonic sensors
have been installed to provide accurate signalgelocity, altitude and helicopter attitude.

Details of airframe set-up and performance calautatan be found in [8,9].

The on-board computer NI compactRio is programmedguLabwiev coding language
that allows quick set up of different control logitgorithms. In a first step a traditional PID
controller [2,3,10] has been implemented, whileergly the proposed advanced controller

based on feed-forward compensation has been coded.

- _-GPS Antenna - Hirobo Eagle Il

% XBow Nav 420™ [ |
~ CompactRIO™

\

B
Figure 2: UNIBO Rotary wing UAV
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The main helicopter characteristics are:

1. main rotor diameter: 1840 mm

tail rotor diameter: 330 mm

total helicopter mass: 11.2 kg

engine: OS 91 Engine 15 cc; power 2.9 CV
main rotor rpm: 1200-1300

tail rotor rpm: 5000 -6000

payload carrying capabilities: 5-6 kg

S o

1.1 Flight Computer

The CRIO system from NI was selected as flight cot@pdue to its ability to fulfill
many among the stated design requirements. Pantiguthe most important CRIO features
that encouraged its choice as onboard computéhéUNIBO RUAV system were:
modular and versatile architecture
easily reconfigurable with minimal time investment
ultrahigh performance and low power consumption
relatively low cost system

ease and open access to low level hardware resource

o gk w DN RE

rapid embedded control and acquisition system dewveént that rival the performance
and optimization of custom-designed circuitry

7. possibility to use LabView graphical programmingltto develop a variety of different
applications

8. relatively small size and weight compared to itstoa and data acquisition capabilities

The CRIO platform includes the CRIO-9004 real timentroller endowed with an
industrial Penthium 200 MHz floating —point proses a four slot reconfigurable chassis
featuring three million gate FPGAs chipset and dewariety of analog\digital N\O module

types.
Figure 5 shows the CRIO configuration actually medron the UNIBO RUAV system.
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Real Time Core:
® Penthium 200 MHz
® Serial Port

® Ethernet 100 Mb/s

FPGA Modules:
® 16 DO Channels
® 12 DI Channels

Figure 3: National Instruments CRIO Onboard Compute r

The real time controller also features a 100 MbiheEet port for network

communication with an host computer and a 9 PINakport.

The FPGA module currently used are:
9. CRIO 9411 mounted in slot 1 having 6 digital inpbannels
10.another CRIO 9411 mounted in slot 2 having 6 digmaut channels
11.CRIO 9474 mounted in slot 3 having 8 digital outp&nnels
12.another CRIO 9474 mounted in slot 4 having 8 digitaput channels

Each CRIO module contains already build in sigmalditioning.

FPGA devices are very useful and powerful sincey thembine the versatility of a

reconfigurable digital architecture with a matrixoconfigurable-logic blocks surrounded by a

periphery of I/O channels. This way, signal canrteted within the FPGA matrix in any

arbitrary manner by programmable interconnectedctws and wire routes (figure 4).

PROGRAMMAELE
INTERCONNECT

CONFIGURABLE LOGIC BLOCK {CLE)

Source: Xifinx

Figure 4: CRIO Field Programmable Gate Array (FPGA)  Structure

Control loops can be also implemented inside th&ARnvironment using “while

loops” up to 40 MHz (25 ns). Moreover, these FPGddales are ease programmable with NI

LabView without need to know specialized hardwagesigh languages such as VHDL (the

LabView code is directly compiled in VHDL before ibg downloaded on the FPGA

devices).
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2.1 CRIO Real Time Application Design

The real time control and acquisition system wihscpossible to develop with the CRIO
system typically contains four main components (gpee 5):
1. RIO FPGA core application for input, output, interead communication and control
2. Time critical loop for floating point control, sighprocessing, analysis and point-by-point
decision making
3. Normal priority loop for embedded data logging, oten panel interfaces and
Ethernet/serial communication
4. Networked host PC for remote graphical user intexfahistorical data logging and

postprocessing

Host PC CompactRIO Real-Time
Controller

Morm al Priority
Loop

[(Communication,

[TCPIP, UDP) Datalogging)

User

Interface

[GuI Time Critical

Loop
[F PGA ReadWrite)

Figure 5: CRIO Programming Structure

Depending on the application requirements, it'ssgme to implement one or all of these
application components.
The onboard software currently implemented on thghtf computer follows this standard

approach.
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2.2 Sensors

If a UAV has to fly autonomously or needs stabibtygmentation in remote controlled
flight, its flight control algorithms need informah about its state, which can be obtained by
means of onboard sensors. Depending on the vetyigle and its mission, sensors can be
different. For the purpose of this work, sensores/pave been split into Attitude Heading and
Reference System (AHRS) and altitude sensors.

2.3 Attitude Heading and Reference System (AHRS)

Most common attitude sensors are based on gyrdsctra be either mechanical,
piezoelectric or optical. A three axis gyro platfomeasures angular rates along all axes of
the vehicle and is usually contained in an Ineri@asurement Unit (IMU) which also
provides data from accelerometers. Magnetometeralao used to determine heading of the
air vehicle by measuring the Earth magnetic fiélditude and position can be then calculated
in a state estimator by integrating IMU measuresadbwever the high accuracy, simplicity
and availability of the Global Positioning Syste@RS) makes it the emerging standard
positioning system for UAVs as well as for genematl commercial aviation. Depending on
the quality of the GPS receiver, the achievableiamy and the GPS update rate varies. Since
common GPS update rate is usually once a secoisdgdh result in a limited bandwidth of
the UAV controller. A common way of solving thatoptem is to fuse data from all the flight
sensors into a navigation filter in a state estiman addition altitude data (coming from a
radar or sonar altimeter) and magnetometers measuts can be also used to improve the
navigation filter. Usually an extended Kalman filesgproach is used to integrate data from all
the navigation sensors.

Unibo, using rapid prototyping approach, has adbmecomplete AHRS like the
CrossBow NAV 420, which was chosen as navigati@af@m for the purpose of this work.
This kind of unit is able to directly deliver velecattitude, GPS velocity and position data,
acceleration and rates at a rate up to 100 Hzk¢hém a high performance Kalman filter
algorithm implemented on an internal digital sigpadcessing modulé&/elocity data includes
aiding from the inertial instruments such reducthg latency associated with stand-alone

GPS measurements.
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Particularly, the NAV 420 uses the latest in salidtes sensor technology and consists of the
following subsystems (see figure 6):

1) Inertial Sensor Array: This is an assembly afe¢haccelerometers, three gyros (rate
sensors) and four temperature sensors.

2) A three axis fluxgate magnetometer board usedtopute heading.

3) A WAAS capable GPS receiver for position ande#l measurement.

4) A digital signal processing (DSP) module, whigteives the signals from the inertial
sensors and magnetometers. This unit convertsigimals to digital data, filters the data,
computes the attitude solution, monitors and preeesall BIT data, and transmits the results
to the user.

The NAV420 analog sensor signals are sampled andected to digital data at 1 kHz. The
sensor data is filtered and down-sampled by a DSP.

Digital Outputs

:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII: % 1Y | Z Acceleration
™ XIYizZ High-Speed n Roll / Pitch / Yaw Rate
: Gyros . Sampling & _’ RS-232 L] XY 1 Z Magnetic Field
= (MEMS) DL m  Roll/Pitch/ Yaw Angle
: * u Position / Velocity

[Y/ Sensor = .
m XYz 16-BIT m  Buit-n-Test
: Accelerometers [ AD Lt Compensation u

n

] (MEMS) * [
: Full-State u

(v n
™ XiyYiz ) Kalman Filter -
B | Magnetometers | ]
] n
n (Flux Gate) T n GPS Antenna
| |
- y .
u T t ]
n Clul el GPS Receiver Power g8 Power Input
] S [ ] = VRe
= Conditioning - +8T0O+30 VDC
] n
[ ]
IIIIIIIIIIIIIIIIIIIIlllllllllllllllf

Figure 6: NAV420CA System Architecture

The choice of this kind of platform significantlgduced development time in signal
processing and sensor fusion, greatly improves uneagent reliability and guarantees sensor
stability and performance in a high vibration opeig environment, like the one of a small
rotary wing platform.

Preliminary flight tests have showed it adequatetrodiability and robustness for the

maneuvers required in hover-like flight. [8, 9]
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3 Development of Dynamic Model
Structure

The foundations for the development of the linearameterized model are equations of
motion derived form the first principle [1]

Using system identification, we want to achieve liest possible fit of the flight-data
with a model that is consistent with the physiaabwledge and intuition. The first part of the
problem consists of the derivation of the dynangaations that will define the state-space
model with the unknown parameters. Once accomplisthe parameters of the model can be
identified. Based on the results obtained, the msilecture will be refined until satisfactory

results are achieved

3.1 Equation of Motion

The helicopter model has been built by combiniregdix degrees of freedom rigid body
equations of motion (in body axis) with the lateaatl longitudinal flapping dynamics and the

rotorspeed dynamics [1,11].

Figure 7: AV reference frame, forces & moments
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The rigid body equations of motion for a helicopdee given by the Newton-Euler equations

shown below. Here the cross products of inertianagdected.

u=vr-wq -gsing + (X, +X..)/m
V=wp-ur+ gsingcosd + (Y, +Y, +Y, +Y,)/m
W =UQ- VP+g COSP COSE +(Z,, + Zyyg + Z,,)IM

. )
p:qr(lyy - Izz)/lxx +(Lmr +va +Ltr) /Ixx

q=pr(l,, - L)y + M, + M) /1,

r..:pqoxx - Iyy)/lzz +(-Qe + Nvf + Ntr) /lzz

The set of forces and moments acting on the hdkc@ye organized by components;: fpr

the main rotor; ¢) for the tail rotor; ()s for the fuselage (including fuselage aerodynamic
effects); () for the vertical fin and {) for the horizontal stabilizer. These forces andmants
are also shown in Figure 8 along with the maindoglier variables.

Qe is the torque produced by the engine to countdtactaerodynamic torque on the main
rotor blades. @is considered 0 when the helicopter blades rotate clockwisewer from
above). In the above equations it is assumed bwafuselage center of pressure coincides
with the c.g.; therefore, the moments created gy filselage aerodynamic forces were

neglected.

3.2 Rotor/Stabilizer-Bar Dynamics

The simplest way to represent the rotor dynami@sia rigid disc which can tilt about
the longitudinal and lateral axis. The resultingpreequations of motions are two first order

differential equations, for the lateral and londinal flapping:

r‘.“b =-b-— T‘rP + Ba“ + Bfar(;;l'ar + Bio.rr'ﬁicn

r‘."(i =—dad- rfq + Abb + ‘45::?5."5:1' + ‘i"p.lié‘."ovr (2)

3)

Mettler and Al, in the initial application of systeidentification to the modelling of the R-50
[12],. were treating the rotor/stabilizer bar asumped system. The resulting model was
accurate. However because the stabilizer bar magjar influence on the helicopter’s flight-
dynamic characteristics, they decided to explicitipdel the stabilizer bar system. This
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allowed better study of the effects of the stabilizar during flight control design or handling
guality evaluations.

The stabilizer bar can be regarded as a seconaimy attached to the rotor shaft above
the main rotor, through an unrestrained teeterimgen The blades consist of two simple
paddles. The stabilizer bar receives cyclic inguds the swash-plate in a similar way as the
main blades. Because of the teetering hinge analibence of restraint, the stabilizer bar is
virtually not subject to cross axis effects (thabdizer bar restoring forces are entirely
centrifugal, resulting in a resonant frequency tbe flapping motion which is identical to the
rotor rotation speed. Therefore, independentlyhef amount of damping in the system, the
phase lag between the control input and the dynaesiponse is exactly 90°). In general it
can written the lateral ( d ) and longitudinal (stabilizer bar dynamic equations using the
same equations as for the single rotor systenmkart uncoupled form:

T:d =—d —T;p+ DO (4)

T;f_; =—c—T,q+ (-_‘.rﬂ.li(gfﬂﬂ‘

WhereD;:andCionare the input derivatives, andis the stabilizer bar’s time constant, which
is a function of the paddle lock numberand the rotor speenl

The stabilizer bar does not exert any forces or eramon the shaft. The bar dynamics are
coupled to the main rotor via the bell mixer. Thadl mixer is a mechanical mixer, which
superposes a cyclic command proportional to theuamof stabilizer bar flapping to the
cyclic commands coming from the swash-plate. Thsulteng augmented lateral and

longitudinal main rotor cyclic commands can be t&rnitas:
(;":;_r :5.":;! +Kad alld glfcr: :(S."O.'i +K:C (5)

The gainKy andK. are the stabilizer bar gearing, which are functiohthe geometry of the
bell mixer. Applying the Laplace transformationthe stabilizer bar lateral flapping equations
(EQ. 4) we obtain:

=T D.""_r Iy

d= + - Orm-
r,s-+1p T.s+1 (6)

which shows that the stabilizer bar does indee@dset lagged rate feedback.
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Using the same tip-path plane model formulationtifir single rotor flapping equations, and

introducing the augmented cyclic commands gives:

T‘r‘b = _b - T‘;’JU‘ + Baa + Bl"a_r ((S‘l"a_r + Kﬂ'f’?) + BL'-?H(S‘."O.'?

Tfl’.? =—a— qu + Abb + Jdiar((g.-‘a.‘ + K_ff) + 44‘.‘9_.i550” (7)

whereBa; ,Bion andAn ,Aatare the input derivatives,is the main rotor time constant, which
is a function of the main blade lock numlend the rotor speed. B, andA, account for the

cross-coupling effects occurring at the level @& tbtor itself.

In the final state-space model, the control augatent is determined through the system’s
states. Therefore, we need to define the derivatBg=B»Ky and A. =AonKc. The relation

between the derivatives and the gearing of therbeder are:

Kd-:ﬁ and K. = Ae

lar <1jon

(8)

In reality, since the bell-mixer operates the sawwy independently of the rotor
azimuth, the gearing is the same for both axes. @baring value was determined
experimentally. This relation of Eq. 8 could bedises a constraint between the derivatives
Biat and By ( Aon andA¢ ) to reduce the number of unknown parameters. Heweimnce we
were not certain about our approach to the modgbirthe stabilizer bar, we decided to leave

them free (we will compare the identified valudhe value obtained experimentally).

3.3 Heave Dynamics

The frequency response of the vertical accelerabocollective shows [12] that a first
order system should adequately capture the heavanugs. This agrees with the rigid body

eqguations from the Newton-Euler equations:

W = l:—'l',:,p"‘ﬂgff)"_z\.:“‘—'_ ZCOLI{SCGII (9)

The term in parenthesis corresponds to the cegaiftorces that a relevant exclusively for

the cruise conditions.
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3.4 Yaw Dynamics

The yaw dynamics of the bare helicopter airframe usually be modelled as the simple
first order system:
F ‘?\"Tp ed (1 0)

5 ] a 5= _-'1\."1-?_

ped

whereN; is the bare airframe yaw damping coefficient &fjgliis the sensitivity to the pedal

control.
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3.5 Unibo RUAW dynamics linear model

The system presented in this paragraph descrilemtuel used for the identification
tests that will be presented in chapter 6. The wops of this system present both the On-
Axis parameters values and new Off-axis derivatiyfeee RUAV Dynamic model

Identification chapter) and can be written as folo

u=X,lu-gléd+ X, la
v=X,Oh+glp+Y, [b
p=L,b+L, B+L, L+L, Ov
g=M_,m@+M, b+M_ L+M,6 r+M_ Dol

p=p (11)
6=q
A

a:—q—i+ ® b + — Mlon + — Dlat

z-f Tf z-f Tf
. B B B
b:—p—b+ 2 B+ — Wlat + — Mlon

Tf Tf Tf Tf

w=2z,0v+Z., [Dcoll

This system is similar to the one used by Metttefli,11,12] and the hypothesis that
lead to the linearization can be found in [1]. Thiedel differs from the ones reported in
literature for the absence of pedal input and ygmadic: in small scale helicopters, the cross
effects due to yaw are close to zero and thereffiem negligible (values equal to zero in [6]).
Moreover here the stabilizer bar has not been @xyglimodeled as the results of
identification (see chapter 6) were found to beugioaccurate. As in [12Mcoll derivative
have been added in B matrix to account also crffesteof collective input into helicopter
longitudinal dynamic.

The system can be written in the State Space ferm a

X=Alx+Blu (12)

y=CIx+DIlu (13)
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where the input command vector is:
(14)

the state vector is:

the output vector is:

(15)

and the matrixes are:

[Xu 0 0 0 0 -g Xa
0O Yvw 0 0 g O 0
lLu Lv 0 O O O La
Mu Mv 0 O O O Ma
A= 0 0 1 0 0 O 0
0O 0O O 1 0 O 0
0O 0 O -1 0 0 -1r,
0O 0O -1 0 0O 0 Balr
0 0 0 0 0 O 0
1 00000 0 0 O]
01 000O0O0OO0ODO
00100O0O0O00O0
C=0 001 00O0O00O0
00001 O0O0O00D0O0
000O0O0O1O0O00O0
0 000O0O0O0O0 1]

u = [don, dat, &oll]

x =[u,v, p.a,%.6,a,b,w[

y=[uv,p.q,06,w

Yb
Lb
Mb

Ab/T,
-1/7,

O O OO o o o o

Zw |

o O O o o

0

Alon/r,
Blon/r,

0

O O O O o o o

O O O O O o o

o O O o o

0
Alat/r,
Blat/r,

0

O O O O oo o o

(16)

23



24



4 Baseline and FF controllers architectures

In both the Baseline and in FF controllers, twoejpeindent SISO control systems are
used for the lateral and longitudinal dynamics wmantThe adopted SISO controllers are
based on PID regulators and have a nested stru¢h@eouter control loop uses helicopter

longitudinal and lateral velocities errors to produhe attitude referenceg (¢, ) for the
inner attitude loop and the inner attitude loop pates commandsdy,,d, ) using outer
loop’s attitude referencesd(.,¢..) and measured helicopter attitude feedbaekg)( The

vertical position and the heading are controlled dilger two separate PID single loop

controllers.

4.1 Baseline controller description

Baseline controller for longitudinal and lateraihdynics consists in a SISO PID control
with a two levels nested loop structure (see fig.L&teral and longitudinal track velocities
errors are used in tH@V blocksets to generate respectively demands fordhég) and the
pitch (@) attitude control moduleJA blocksets),

A block diagram of a SISO controller for the Baselcontrol system is represented in Fig. 9.

— - -~ —_
[ )—-—-b@_)-b\‘e\ocily_ rrrrr F'\D_AmludETarge[wm_)-.'ﬁl(iwde_error PID_Cmd —#{Cmd Attitude W|Attitude  Velocity 1

&
V_setpoint Iy Velocity

cv cA P =

Figure 8: Block diagram of the Baseline controller for longitudinal or lateral dynamics

In previous schematicCV is the outer Velocity loop PID blockset described the

following transfer function:

_ K, B +K,, B+K,

S

CV(S) — PID Velocity Controller in Baseline control syst (17)
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where K,, is the derivative term gain, whil&K ,and K;, are respectively the

proportional and the intergral terms gains. Agamnfig.9, the CA blockset describes the

inner Attitude loop PID implementing the followitigansfer function:

Ky 5° + K, 5+K,

Q

<

CA(S) =

— PID Attitude Controller in Baseline control syist (18)

where K, is the derivative term gain, whil& and K; are again respectively the

proportional and the intergral terms gains. Theckdet P represents the transfer function of
the command-to-attitude plant identified dynamiattis enclose in the State Space model (see

cap.4 about Identification), whereas i& the attitude-to-velocity transfer function:

o(s) As)

P(s)= , P(s)= — Longitudinal, Lateral command-attitude TF, fro® Sodel 19

Jlon (S) 5Iat (S) ( )
_n ) = M) | onaitudi itude-veloci :

G, (s)— 180.3(a)" G, (s)— 180% Longitudinal, Lateral attitude-velocity TF, derévéom SS model(20)

4.2 Feed-Forward controller description

The proposed FF control architecture (see figs 9ery simple and it is based on SISO

nested control loops.

- Attitude_sp FF_Cmd
FFA
D Ny > » |47 b cmd Attitude » >

o -®{Velocity_error PI_AttitudeTarget{-B{in  AttitudeTarget ()P Attitude_error PID_Cmd B Attitude  Velocity 1)

V_setpoint Velocity
cvmM £ CAM 3 G2

Figure 9: Block diagram of the FF controller for lo ngitudinal or lateral dynamics

Once again it consists of a velocity outer oG M blockset) based on a PI controller

with no Derivative term:

- K pvm s+ Kivm
CVM (S) =——————— =PI Velocity controller in Feedforward controlssgm 21)

S
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whereK ,.and K;, are again respectively the proportional and thergnal terms gains
(22)

The inner loop is, instead, composed by a FeedRFdrteam + Proportional and Integral
controller FFA+CAM blockset): the attitude feedforward terfFQ) is obtained by the

inversion of the attitude identified linear modas, described in the next paragraph:

Oy —T, SHUT B +w,
FFA= = E > — Feedforward action, Longituding[23)
6 AOH a)nq
Kom B+K;, _ )
CAM(S) = — PI Attitude controller in Feedforward control sy (24)

S

The output of the PI velocity controlle€EKV blockset) is filtered by means of a first
order filter § blockset) with dedicated time constants for lamgjihal and lateral controllers
(Tfilt, TfiltPhi).

1
1+T,, 5 — first order filter in Feedforward control syste(25)

In both cases, the discrete sampling time has fieet in 0.020 seconds both for lateral and

longitudinal dynamics.

4.3 Transfer Functions

The analysis of structures of Baseline and Feedtdior controllers requires the
computation of following transfer functions, thatllvbe used in next chapters to compute

Phase and Gain margins and to perform stabilitgssssent.

BLG = CV(s)[G, (s) G, (s) — Baseline Loop Gain (BLG )Transfer Function (TF) (26)
Ky 3%+ K, +K,
CA(s) =—¢ . ' — PID Attitude Controller in Baseline control syst (27)
s
K, B+K, _ .
CAM(s)=—Pm —__m — PI1 Attitude controller in Feedforward contrgbtem (28)

S
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— Kdv Ez + va|:$+ Kiv

cv(s) — PID Velocity Controller in Baseline control syst (29)
s
CVM(s) :M — PI Velocity controller in Feedforward contrgistem (30)
1 ' o
T, 5 — first order filter in Feedforward controlssgm  (31)
By _ ~T. S HUT B+, 3 , L
FFA=-on = &[] > — Feedforward action, Longitudinal (32)
e AOI’\ a)nq
o 1 SHUr, B +w,’ 5 .
FFA= L =__¢ ] — — Feedforward action, Lateral (33)
(0 Blat a)np
FLG(s)=G (s)rcvM(s) — FF Loop Gain (34)
FTF(s)= FLG(s) — FF Transfer Function (35)
1+ FLGESi
G,(s)= _CAlS)IP(s) (36)
CAs)P(s)+1
Gz(s):i (S) , Gz(s):i V(S) — Longitudinal, Lateral attitude-velocity TF, degitv from SS model
180 (s 180%
(37)
Gff(5)= G yyu(5) G, (5) (38)
G,(9)= f CEAM (s)tP(s)+ FFA(s)LP(s) (39)
CAM(s)P(s) +1
P(s)= o(s) , P(s)= as) Longitudinal, Lateral command-attitude TF, fr&8 model (40)
Gon ) 9 (5)
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4.4 Vertical Down Velocity Controller

Both in FF and Baseline control architectures \¢aitdown velocity (Vd) control is

implemented using a simple Pl module [9]; its genstructure is shown in Figure 10.

(Vd)emd 0,
+ + = vd Vd

— - —m K, - -
e i + f Dynamics
JK,

Y

Figure 10: Vertical down velocity control module

The PI gains have been calculated using the wellvknZiegler-Nichols rules.
We have found:

+ K =-1.1rad/(m/s)

« K,,=-0.09 rad/m

The Vd module tracking performance are shown iufad1

reference
: response | |
-158 : i
a a 10 14
0.03
DDE ..................................................................................... .
=
i
: D 04 B R R T R | o o o e R R R R i R R R R R s <
[=]
o
=
DDz ................................................................................... .
. ; ;
a 5 10 15

Time (sec)

Figure 11: Vertical down velocity controller tracki ng performance
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4.5 Heading Controller

Heading control is achieved using the onboard W&S (Angular Velocity Control
System). Therefore, the implemented algorithm [®eg a reference yaw rate to the gyro
AVCS, based on the heading error, calculated vegipect to the reference heading set point.
The heading tracking performance during a fliglt tge shown in Figure 12

180 ; ) ; !

160 ........ — ......... - i
140 F ........ ......... ......... ........ i

120k ....... .......... ......... ......... ........ -

Heading (deg)

100

reference
CE L

a0 J'f ....... ......... ......... ......... 4

ED | I | i 1
10 15 20 28 30 34 40 45 a0 55
Time [sec)

Figure 12: Heading controller tracking performance

4.6 Engine Governor

The engine governor manages helicopter throttlerder to maintain constant rotor
RPM. In the absence of manufacturer data, the goveran be modeled as a proportional-
integral feedback controller [13], maintaining coamded rotorspeed by changing the
throttle:

5, =K, lu+K; [
w=Q, —-Q
(41)
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where Q_ is the rotorspeed command,, and K; are proportional and integral feedback

gains. Throttle servo dynamics is much faster titlae rotorspeed dynamics, and was
neglected in the model. Using Ziegler and Nicholsthrod [14] and fine tuning we have
found:

K,=0.1

K,=0.02

Figure 13 shows the throttle response and the sp¢ed tracking (96.3 rad/s) after a

commanded climb at 2 m/s.

“h (mis)
i

Collective (rad)
=
m
i

Throttle

omeqga (radfs)

0.5 1 155 2 25 3 35 4 4.5 ]
Tirme [sec)

Figure 13: Engine governor tracking performance
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4.7 Discrete-time implementation of Baseline controller

Regarding Baseline control system, in the casbefdngitudinal, for example, the
attitude PID controller, it can be written in contous domain:

K B +K B+K,
PO g, ek, i = p S+K
E S S (42)

CA(s)=

where E(s) is the transfer function of the erraff¢dence between set-point and measured

attitude) and where PID(s) has been written usbitpwing constants:K, =K [T, and

K_ :&
T
that links the PID proposed representation to aansommon one [15].
Discrete time domain implementation of PID con&plas been done using Backward

approximation through which, representation oftftlsrivative is done using finite difference:

dx(t) 0 X(t) = x(t-T,)

Moreover, remembering that in digital controls damaperatorz™ is used to compute
the ‘old’ value (value of variable computed or s#edp at previous sampling task,

x(t-T.) =X, =X &™), using z-transform representation, discrete PAD loe written in the

form:

_PID _ (K, M +K, 07 +K ) @2 + (-K,, [0, - 2[K,) 2 +K,
CAlz)= E T.Z-T.2

(44)

The same backward approximation has been usedédomiplementation of all the 5

PID controllers that are present in Baseline cdmtrchitecture.

Following schematic shows the implementation in @ink of the PID discrete

controller:
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discrete _|
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Figure 14: Schematic of the inner loop Attitude PID controller implementation

It can be noticed that each of the contributionthefPID, as well as the total sum of the
three terms, have been saturated between a miniamgha maximum value that has been
fixed in 40 deg.

As for the inner Attitude controller (CA), the Velty controller CV can be written in
continuous domain:

_PID K, KB +K, B+K,

cV(s) = TKa K, (45)

S S
whereas using z-transform representation can ktewiin the form:

- PID — (va |:rs + Kiv EI-52 + Kdv) QZ +(_va |:rs _ZDKdv) [z + Kdv

i (46)
E T.X-T.x

cV(z)

Also in this case each of the contributions of BHB, as well as the total sum of the
three terms, have been saturated between a miniamgha maximum value that has been

fixed in 27 deg that is the maximum allowable comtha
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4.8 Discrete-time implementation of FF+PI control model

In FF+PI controller, the feed forward attitude (FFA) teras, already mentioned, can
been obtained by inverting the plant identified coamd-to-attitude transfer function.
Neglecting cross-effects, this transfer functiomithird order system formed by the product

of a pure integrator term and a second order tearfighction [1]:

2

2
0 — B Aon D']: B a)nq . (0 - Blat D']: B a)np (47)
o) T S g2+ .2 F T. S s®+ +. 2
lon e S S/Te wnq lat e S S/Te wnp

A unique formulation, valid for longitudinal andémal dynamics, can be expressed by:

2
P(9) =S, th

5 (48)
s s +2[03+w,

where deltadis the damping coefficiengn is the natural frequency amds the gain of the
second order transfer function.

Comparing relations (1) and (2), for longitudinghdmic following relations can be written:

Aon 1
ez ——lon o=—— w 49
T 207 [ nd (49)

e e ng

0
e

whereas for lateral dynamic:

2, e )

Hence in the continuous time domain, the feed foaveantribute FFA) will be written as the

inverse ofP(s)

SS+20%° +w,° (5 (51)
e’

FFA=P(s)™ =
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while turning into the discrete time domain, usiBgckward approximation [16], the

commandd; to be actuated can be computkih@ex is related to the sample time instant):

200 w,?
O = — (uy — 30, +30,, _uk—3)+_|__2(uk—1 -2y, + uk—3)+.|._n(uk—2 ~Uy3)

n s s S

(52)

In the longitudinal control, for example, if, =6, |, or, in other words, if the inputk is

the filtered attitude set-point generated by ®¥M blockset, then eq. 52 computes the

commandd,,g ¢ =9 that would bring the modeled system to perfectygk its original set-
point G , in total absence of disturbances.

Note that, the sampling timés for feedfoward term has been selected in 0.040 s,
whereas all the other variables continue to be teodavery 0.020 s. This choice has been
driven by the necessity of bounding the derivativeseq. 52 as a consequence of the
relatively poor resolution of the velocity signabngputed by the inertial unit Crossbow
NAV42

In FF+PI1 controller a first order filter has beanplemented in discrete time domain

using following representation:
Yi = Yia t Koy [ﬂuk - yk—l) (53)
whereuy is a generic input signal an is the filter output ands; is the discrete first order

filter constant that is related to the continuaosetconstanty; from the following relation:

T

R — 54
T+ Ty &9

Ko =

As already mentioned, in longitudinal FF architeeta simple Pl (without derivative term)
was considered instead of a complete PID contr@dielongitudinal and lateral controls.
This Attitude PI controller (CAM, M stands for Mddeased in FF architecture) can be

deducted from PID discrete form the by impogiagO,:
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(55)

Equation 55 reports, for example, the continuoagetiTF of Pl controller for longitudinal

dynamic.
1o > Kov =J_ =
el e E
Velocity Set Point T discrete_P Attitude sat1
(2> 1)
Controlled valocity » KivTo e Aftodesat | Dattiude
» » ;
=11

discrete_| Attitude sat2

Figure 15: Schematic of the inner loop Attitude PI controller implementation

Once more, in discrete time domain, Backward appratton was used to implement the 4

different PI controllers, whose z-trasform repréagan is given by:

K. [T.+K_[T.°)Z+(-K__[T.
CAM(Z):ﬂz( pm —'s im s) ( pm s)
E T.Z-T,

(56)

The CVM transfer function can be deducted, as éncidse of the Attitude controller, from

PID discrete form the by impositgn=0,:

PlD K vm |:rs +Kivm ‘:rsz &2 + _K vm D-s ‘1
CVM(z)= = _ = &2)—T Ez( pun 1) (57)

The vertical velocity PID implemented in FF+PI cmtier is exactly the same of the

vertical velocity PID implemented in the Baselirmntoller.
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5 Guidance

The guidance system is composed by two main péwéstateral track control and the
altitude controller. In this case the same lodiase been implemented for the Baseline and

the FeedForward controllers. In the following seas same

5.1 Altitude Controller

The altitude-hold is a simple proportional integaantroller. It takes as input the
destination waypoint altitude and the current viehaititude and gives as output the vertical
velocity to maintain or reach the reference aletudsing Ziegler and Nichols method [14]

and fine tuning we have found the values of thegprtoonal and integral gains in:

b Kp =1.2
«Ki=0.05

Figure 16 shows an example of altitude tracking.

1000 | :

= 850

200

850 i
0

%h (m/fs)

1 i 1 i i I
a 10 20 a0 40 50 G0 70 a0
Tirne (sec)

Figure 16: Altitude controller tracking performance
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In this simulation, the initial helicopter altitudeas been fixed in 900 m while the
commanded altitude has been chosen equal to 1000harefore the altitude controller
commands a vertical velocity (saturated at 2 mAs)l the reference altitude is captured. The

commanded vertical velocity will be actuated asortgal in paragraph 3.4.

5.2 Lateral Track Controller

The primary design objective of the lateral conémwis to intercept and track a specified
flight plan segment by means of a yaw rate comnjarit

Let’'s consider the helicopter in level flight at arbitrary position relative to the track
line between way points Wand W, and flying on an arbitrary headiiy We are interested
to obtain the position and velocity componentshie Xack Ytrack reference frame (see Figure
17). The transformation will be a rotation of argken(¥'1» — n/2) and the associated rotation
matrix is given by:

T = {cos(l/12 -7ml2) -sing, - IT/Z)}

: (58)
sinw,, —ml2) cos(,,—m/2)

The Xrack and Yiack helicopter position can be found solving the ddéfgial equation

system reported above with initial conditions:

Y!Q.nhh

Virack &
|

l' w

'| :.-’ ‘ Korak

e Wp i xi..
Figure 17: Track reference frame
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Applying the above rotation to the North and Eadidopter ground speed vector(¥g) we

obtain:

' V
X track — T,,, |: N :| (59)
Ytracx VE

The Xrack @nd Yiack helicopter position can be found solving the défgral equation system

reported above with initial conditions:

e
Ytrach

Knowing the current track position ¢« Ywack Of the helicopter from the destination
way point W), the control strategy is to point the vehicle grdspeed vector in the direction
of the track intercepting the track-line at point The intercept point C is determined by a
design parameter k where the distance on the tiaeKrom the intercept point C to the way
point W, is at any instant of time equal to (1-kjack. From the geometry of the similar

triangles OAB and OCD (Figure 18), a new controatelgy is proposed based on establishing
the helicopter position and velocity according fiblowing relationship:

X track __ Ytrack
kX

(61)

track track

'

Figure 18: Guide control strategy

To achieve this objective, the error E given by:
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E = kX Ytrack_ X trackY

track track

(62)

has to be driven to zero, using the proportionatlback control law that expresses yaw-rate

commands as:
rcmd = Kr E = Kr (kxtrack Ytrack - Xtrack Ytrack) (63)

The proportional gain Kis determined iteratively through simulation ugilod tracking is
achieved with virtually no overshoot. A value 0f¥K-0.0005 and a value of k=0.1 were
found to be satisfactory in our lateral track cohtaw. The yaw rate command has been
saturated at +0.2 rad/s and filtered to eliminhgelimit-cycle problem.

A Simulink™ block diagram that realizes the consocheme described is shown in Figure 19

0.1 -
k
e
psi U_trachk
{2 " wlpsi_wP -0.0005
pa_ur W . —
U s=f _ref
u
{3 —e{PosD_track
ol rad Pos_track
(5 —ReT >
RET
2
U_track Pos_track
_track
L&
N_track

Figure 19: Simulink guide implementation

The simulation reported in Figures 20, 21 and 28wshan example of guide tracking
performance.

The helicopter is supposed to be in hovering at01®0altitude and 44.01 N and 12.01 E
position with heading North. Then the RUAYV is askedly at 20 m/s, constant altitude and
to follow the track described by:

e Wp=(44 N,12 E)
« W,=(44.03 N,12.05 E)
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Figure 20: Guide tracking performance — Speed,Altit  ude
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Figure 21: Guide tracking performance — Latitude,Lo  ngitude
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Figure 22: Guide tracking performance — X  gack, Ytrack, Yaw Rate

The proposed design lateral track control handlses wind cases in a simple manner and

ensures track stability over a wide set of initiahditions [17].
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5.3 Fixed-Heading Navigation

The guidance system that has been implementectiorthoard computer includes also
a fixed yaw navigation modality. This special natign modality allows to set the yaw target
parameter to a constant value for each track ofligjie plan. For each segment of the flight
plan connecting two consequent waypoints, togethigh the usual parameters of the
waypoint (N, E, H), the yaw attitude can be sa ttesired value as well.

Next table reports an example of flight plan parergefor a ‘8-like’ circuit. This
particular flight plan will be used in following son to perform other comparisons between

the Baseline and the FF controllers performances.

Way point n. | Delta N Delta E H Velocity
1 0 0 50 0
2 20 -20 50 2
3 60 20 50 2
4 80 0 50 2
5 60 -20 50 2
6 20 20 50 2
7 0 0 50 2

Table 1: Waypoints parameters input

The target yaw is updated each time a new wayp®irgached and it is kept constant

till the next one. For example in the ‘8-like’ airit we will have the following Target Yaws:

Way points track Target Yaw
1 2 -45 deg

2 3 45 deg

3 4 -45 deg

4 5 -135 deg

5 6 -225 deg

6 7 -135 deg

7 8 -45 deg

Table 2: Waypoints yaw
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Next figure reports the logic implemented for theefl yaw navigation.

A KYtrack

Ytrack

Rirack

|
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Figure 23: Target velocity computation

In this case the total velocity setpoint of theidmbter is formed by the velocity V
towards the waypoint, that is taken from Tableafether with the other flight information
(Waypoints positions), and by the real-time comg@utg,.x velocity whose effect is to bring
the rotorcraft trajectory as near as possible dggrent connecting Wand WR;.

WP @ ]
Wpi-1

Figure 24: Target velocity computation
In a second step, as depicted in figure 24, thal talocity setpoint is decomposed in its

components in the Body frame, ¥nd \{. These latter velocities will be used as inpugear

velocities by the control systems (see par 4.14a2)1
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5.4 Baseline controller In-Flight Autopilot Tests

In this paragraph it is shown how the onboard Basealontrol software has been tested

in flight trials starting from basic maneuvers todsamore complicated flight plans..

The complete flight campaign for the Baseline calngystem has been done following five

major subsequent steps:

First only the attitude ¢( and 8) Pl controllers were tested. During these tests
collective and tail commands were left to the RilGtgor safety reasons. As shown in
Table 3, the final proportional Pl gains find bynsilation results were almost correct
while the integral gains were increased of an oadenagnitude. This may be due to
the fact that attitude controller are of courseyveensible to external unknown

disturbances which cannot hardly be simulated.

Attitude PI Gains
Kpo Kig Kpo Kip
[deg/deg]| [deg/(deg s)]| [deg/deq]| [deg/(deg s)]
Calculated | -0.77366 -0.22078 -1.0418 -0.11346
Experimental -1 -1 -1 -1
Table 3: Calculated vs Experimental attitude Pl gai ns
Velocity Pl Gains
KpV>< KIv>< KpVy KIvy Ksz KIVz
[deg s/m]| [deg/m] | [deg s/m]| [deg/m] | [deg s/m]| [deg/m]
Calculated -12.89 -4.03 -11.43 -3.55 -3.622 -4.96
Experimental -10 -1 -10 -1 -10 -10

Table 4: Calculated vs Experimental velocity Pl gai  ns

More details on the parameters computation camwined to R.Pretolani’s Phd Thesis [9]

Once the attitude controllers were with fist-attémaplues calibrated, the nested Pl
Velocity — Attitude controllers were tested. Duritigese tests, collective and tail

commands were still left to the R/C pilot for sgfeeasons. As shown in Table 4, the
final gains were much closer to the one found byusations.

The third step was to test the heading control tteegewith the nested PI velocity

controller. During these flight tests only colleetiwas left to the R/C pilot for safety

reasons. The value to be calibrated during thégletsl was the yaw rate to be sent to

the gyro AVCS system. For this kind of helicopter laave found adequate a yaw rate
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of 10 deg/s. This value was kept intentionally léov safety reason but can be
increased (or varied) if necessary.

In the fourth step the full PI controller was testecluding the vertical velocity
control. During these tests no commands was letheopilot and the helicopter was
flying completely autonomously. As shown in tab&sand 4, the final calibrated PI
gains were higher with respect to the one calcdlate simulations. This was due to
the fact that, during simulations, the gains weeptkintentionally low for the
helicopter to have a very slow response. Vertiadbaity flight tests can be very
dangerous since small helicopters are very resperisi collective inputs and hence
the helicopter can crash to the ground without lamgye to recover it. Therefore, the
helicopter team decided to keep the gains smathatbeginning and increase them
once it was sure that the helicopter was flyinglyafThe first test performed with the
simulated gains showed that the helicopter was #@blmaintain hover conditions.
However, the rate of climb/descent was quite vew land the Pl gains were,
therefore, increased.

Finally, after each controller was fine tuned, thk control system was tested over a
squared flight pattern. The distance tracked byhélleeopter was kept within the R/C
transmitter range and pilot good line of sight ey to recover the helicopter if
needed. As shown in Figures 25 and 26, the hdkcowas able to perform

autonomously and successfully the preprogrammedrpat

12 ! : : ; ) ' ; ! ' .

1 : SetPaoint
w Simulation
E b5 : Flight Test
= : :
= :
2 4 B g 10 12 14 16 18 20

Dlong (deg)

Time (sec)

Figure 25: Simulate vs Experimental longitudinal co ntroller tracking performance
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As an example Figure 26 shows good Vx @nulacking performance and good agreement

between simulation and real flight tests.
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Figure 26: Recorded data during autonomous square p  attern
In Figure 27:
. in Red> autopilot ON(1) or OFF(0)
. in Blue> flight data
. in Greer>autopilot commanded values
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Figure 27: Autonomous square pattern RUAV ground tr  ack

The flight data that have been collected duringehiéight tests will be used in next chapter to
perform the rotorcraft dynamics identification. $haentification is fundamental to determine
the parameters that will be used to compute theefk (cap. 4), that for the longitudinal

dynamic are:
e= —M o= ; Wh = g (64)
T 217, Lév,g
Whereas for lateral:
B
o=t 5=t @, = oy (65)
T, 2[1, Ltvy,
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6 RUAV Dynamic model Identification

Aim of this chapter is to present a simple Systedentification Procedure for Control
Design. In particular the identified system will bged, in next chapters, as plant to compare
performances of a traditional PID controller verauged-forward control algorithm based on
dynamic model inversion (both for longitudinal aladeral dynamics). The proposed time-
domain identification procedure is entirely develdpgn Matlab-Simulink environment, and
requires no other external software applicationg.[2

This chapter is composed of three parts; in the @pen-Loop (OL) identification
without cross-effects is presented, the seconddnires cross-effects while in the last section
parameters refinement is performed using a ClosedpL(CL) identification technique.
Results will demonstrate how the proposed idemtiiocn procedure provides a model
showing good agreement with the recorded flightdaspecially in closed loop validation

where cross-axis effects are accounted.

6.1 On-Axis Identification

At the beginning, the helicopter longitudinal araderal dynamics were considered as
totally separated without any off-axis effect. Tlheopted Time-domain identification
procedure is based on the comparison between ¢h (neasured signal and the simulated
one. Measured angular rates signal have been pidyibiltered using a low pass filter with a
cut-off frequency of 10 Hz.

Figure 28 shows a schematic representation of tleeedure for longitudinal

dynamics on-axis identification in Open loop chain.

agular rate

ERROR

({*E: X (1)

Measured Delta_Command Input Command Simulated Atttude Rats

L 4

EXPERIMENTAL DATA

HELICOPTER LONGITUDINAL or LATERAL
DYMAMIC MODEL
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Figure 28: Open Loop On-axis Identification
The cost function (1) is the sum of the errors leetwthe measured and simulated

signals and is minimized in order to find the optimtransfer function parameters.
CostFunctn=»_ (Ymeas- Ysim? (66)
whereYmeasandYsimare, respectively, the measured and simulated data.

The sum is performed every computing task, withraukation step time equal to 0.01 s,

both for longitudinal and lateral dynamics.

Proprietary scripts have been used in order totfiedunknown model parameter values
using MATLAB@ function [18]:

FMINSEARCH: Multidimensional unconstrained nonlinear minimiaat

Once these parameters have been computed, by mingnCostFunctionover a
training data set, a cross-validation test is gheriormed using totally new a data set (unused
data, [19]).

In order to test fitting performances, the follogigoodness of fiindex [19] has been

computed: Z(Ymeas— Ysim?

2 _

T > (Ymeas- mear{fYmea) 67)

It must be noted thatRndex value is strictly related with the data sséd (Ymeas) for
testing the model performance, and that its valresignificantly change using different data
sets. For this reason, it's more correct to useeex to compare the performance of different
models, using the same input, rather than to atsegserformance of the same model using

different inputs.
Moreover R can also assume negative values (typically wherethe is, on average,

greater then the amplitude of signal) but, in aage; the greater R’ the better is the fitting

goodness of the model.
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6.2 Pitch and roll rate

Following a classical approach [1], second ordamdfer functions for the pitch and roll
rate responses to pilot inputs have been consid@ie8), and the relative parameters have

been identified for several frequency sweeping camufs [20].

2
- )
q _ Alon ha : (68)
don I, s*+1/1.s+w,
2
)
P _ Blat ho (69)

dat 1, S*+1/7,5+,’

Using the cost function defined in (1), for longiimal dynamic the following values were

identified in:
w, =121 (rad/s) Alon=0.2488 (rad/rad) r,=0.132 (s)
while for lateral dynamic:
w,, =18.1 (rad/s) Blat = 022 (rad/rad) 7, =0132 (s)

More details and initial values computation areorégd in [20].

Figure 29 gives evidence of training data and Fg8® of cross-validation data. The
figures on the left column show the RUAV longitualinlynamics behavior, while on the right
show the lateral one. In both figures, the commadnst®ries are reported in the bottom boxes

while the helicopter responses (angular ratesinattee upper ones.
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Figure 29: Longitudinal (left) and Lateral (right) sweeping input commands (below)
and relative angular rates (upper) used for system training

T T
15
10} k
3 st
T oY o / oh (O \
. /] v W
- \ \ |
-0k \
| |
70 75

Figure 30: Longitudinal (left) and Lateral (right) validation input commands (below)
and relative angular rates (upper) used for system validation

For cross-validation goodness of fit, the longihadiindex have been computed in
R?=0.8586 while for lateral in ®0.6085. A better agreement of the longitudinal eiod

validation can effectively be seen by a simple labkhe figures above.

Then, in body-frame reference, first order attitweéocity transfer functions (4) have
been chosen, and relative parameters have beetifi@tkrusing different recorded flight
maneuvers (near hovering conditions [3]).

u_ -g Vv g (70)

6 s- X, @ s-Y,
In both casesg parameter was assumed to be equal to 9.8% (giavity acceleration)

and the remaining parameters have been identified.
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As above, figures 31 and 32 sharaining andcross-validation datasets for attitude-
velocity transfer functions (left column: longitudil dynamic; right column: lateral dynamic;
upper figures; body frame velocity response; bdigwres: input command history).

€ a5l _//

Phi (deg)

Figure 31: Input commands (below) and relative spe  eds (upper) for Longitudinal (left) and
Lateral (right) velocity model Identification
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Figure 32: input commands (below) and relative spee  ds (upper) for Longitudinal (left) and
Lateral (right) velocity model Validation

Again, using the cost function defined in (1), tfwlowing identified parameters were

computed:

Xu=-0.052 (1/s) Yv=-0.046 (1/s)

with respectively validated goodness of fit inddxR5=0.9366 for longitudinal dynamic and
R?=0.9586 for lateral.
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6.3 Vertical speed dynamic

Vertical speed dynamic have been modeled usingsadrder transfer function from

command to velocity [1]:

w _ Zcoll
ceoll s-2Z,

(71)

Figure 33 showsraining andcross-validatiordata sets used for heave dynamic transfer

functions identification.

L L L I L
735 7% 737 738 739 740

deall (%)

PR S-S -}
T T T T

deall (%)

L

20 -
FAMMMTE o /‘“‘
e NVVVW\A\A WJAW i |
3 L L L L e L EY 1 | | | | I I L I
735 736 737 738 739 740 ™ 742 743 744 756 758 760 762 764 766 768 770 72 774 776
time @

Figure 33: Training (left) asnd validation (right) d  ata sets for heave dynam‘imE: transfer functions
(upper: vertical velocity, below: collective input command)
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The relative derivatives have been identified in:

Z.., =—7.7330 (m/(s® [fad))
Z,=-03567 (sV)
with a validated goodness of fit index of=R.7127.

Table n.1 summarizes the values found for the Ois-Amrameters using Open Loop

identification only:

Xu Yv Alon Blat tf Xa Yb g Lb Ma Zcoll Zw
0.052 0.046 0.2488 0.22 0.132 9.81 9.81 9.81 327.6 146.4 -7.733 -0.3567
/s /s rad/rad | rad/rad s mi($rad) | mi(Srad) | m/S 1/¢ 1< mi(sra 1/s
d)

Table 5: On-axis Open Loop Identified Values using a pure longitudinal or lateral maneuver
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6.4 OFF-Axis ldentification in open loop

As already shown in chapter 3, the system belowdé8gribes the model used for Off-
axis Open Loop (OL) identification tests. The equa of this system present both the known
On-Axis parameters values (reported in Table 5)raewl 11 Off-axis derivatives (reported in

right column of eq.72 with a question mark) not igeintified

u=X,lu-glé+Xx,la L. ?
v=X, +glp+Y, b My, ?
p=L,b+L,A+L, +L, Lo ?
g=M_,@+M, b+M,L+M, L+M,_ [&coll L. ?
9=0p M. ?
gzq '\/Iv7
A A A Ay, ?
a=-q-—2+ 0 b+ Do gon + Do gt °
T, T, T, T, B. ?
: B B B a ?
b:—p—£+ a [+ —2 [Plat + — [Blon At
Iy Ty Ty Ty Bon ?
W=2Z,w+Z, Beoll Mo ?

(72)

The first 7 parametesb, Ba, Alat, Blon, Ma, Lb, Mcdlave been identified using again
several frequency sweeping inputs near hoveringition [1].

After many tests, it was found that, as suggesyel&ttler [21], it can be sétb=Ba=0.
Furthermore, since MATLAB@minsearchfunction seems to work better with a maximum

of 5 parameters, reducing the number of parameddys identified it is also desirable.
For off-axis derivatives identification proceduwmd| unknown parameters were set to
‘zero’ at first. In all test cases, in order to ifyerthat a true global minimum of the cost

function was found, all the runs were repeated whitferent initial conditions.

A new cost function, reported in Fig. 34, that ®kato account both errors in

longitudinal and in lateral attitude, was then addp

CostFunctdon = Y ((Phi_meas- Phi_sim)® + (Theta_meas-Theta_sim)?) 73)

55



HELICOPTER STATE SPACE
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Figure 34: Off-axis Derivatives Open Loop Identific  ation

The same recorded frequency sweeping input commizants been again used in input
to the model for both longitudinal and lateral dynes analysis and, as expected, a great
improvement has been noticed in reducing attituggsdcompared to the No-Cross-effect-
Model (NCM).

Figures 35 and 36 report training experiments vathgitudinal (Fig.36) and lateral
(Fig.37) excitements; blue lines depict the expental recorded data (command history)
used in input, while red ones belong to the crdfezemodel response and green ones to the
NCM. It can be noticed how the cross identificati@duce errors in helicopter attitude

estimation for both the dynamics.
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Figure 35: Off-axis Derivatives Open Loop Identific  ation - Training data set: longitudinal inputs
(Left: pitch angle, Right: roll angle.)
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theta (deg)

For the longitudinal test, the goodness of fit giv@= 0.7353 vs R= -5.5632 for NCM

in pitch and for roll B= -1.5551 vs B= -12.5321 for NCM: the fit function show a clear

increase in attitude estimation.
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Figure 36: Off-axis Derivatives Open Loop Identific
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(Left: pitch angle, Right: roll angle.)

25 30

ation - Training data set: lateral inputs

35

Also for the lateral sweeping test, a good improgettan be seen in signals fitting,

and it can be noticed how certain helicopter dymranasire now present in the cross-effects

model response (e.g. Fig. 36, left, red vs gregnasifor the roll angle, t=[20+25s]). In this
case, for pitch tests, goodness of fit fs3,4643 whereas R-6.5254 for NCM and, for roll

tests, B=0.7616 whereas?R0.6636 if no cross effects area accounted.

All the identified parameters are reported in TaBld.ooking at the values, it can be

seen that they assume different values if idewkifiéth longitudinal or lateral test case and,

sometimes, present also a change in sign.

!

Derivative Longitudinal Test Lateral Test OL Mean
Value Value value
Alat (-) 0.2023 -0.0446 0.0789
Blon (-) 0.0655 -0.0648 3.5000e-004
La () -0.5404 173.4853 86.4724
Mb (-) -37.4823 -69.9203 -53.7013
Mcoll (1/5) -21.8085 -12.3811 -17.0949
Mu,Mv,Lu, Lv (rad/(m s)) Setto 0 Setto 0 Setto 0

Table 6: Off-axis Open Loop Identified Values using

a pure longitudinal or lateral maneuver
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As to proceed, it was decided to assume mean vébngbese parameters obtaining a
sort of ‘mean system’ and to measure goodnesst aff fihis new model only with cross-
validation tests.

Using mean values fohlat, Blon, Ma, Lband Mcoll derivatives makes the model to
assume anean behaviobetween the one optimized with longitudinal testeconly and the
one with lateral one. This behavior has been natibg the authors, in all the validation tests
they have performed.

Figure 37 shows the cross-validation of the fingteam with longitudinal and lateral
real flight data.

The goodness of fit for longitudinal cross-validatitest is R=0.7549 versus & -
0.2332 for NCM for pitch and for roll & -0.7291 whereas®R -0.7301 for NCM.

The goodness of fit for lateral cross-validatiostténstead, gives R -0.3219 vs R= -
2.0041 for NCM for pitch and for roll®& 0.1903 for roll whereas®R 0.1058 for NCM.

Again, cross-effect model shows a better agreentbah NCM especially in
longitudinal dynamic, and it can be seen (Fig &htrcolumn, phi signal e.g. t=74s) that the

final model captures some off-axis helicopter dyitam

theta (deg)

hi (deg)

o

Dlong (%)
8 o8 8
T

Dlat(%)

W 8 o
o 8 g

Figure 37: Open Loop Validation - Longitudinal (lef  t column) and Lateral (right column)

The OL identification procedure for speed derivesiMu, Mv, Lu, Ly was performed
using zero as starting values for the optimizaadgorithm, given that the data used were
relative to flights near hovering condition.

However, probably due to too big drifts in simuthtpeed signals, it was not possible to
find a set of values different from zero providmdpetter agreement in cross-validation tests.

Therefore, zero values fdlu, Mu, Lu, Ly have been used as starting point for closed
loop identification tests (next section).
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6.5 OFF-Axis ldentification in Closed Loop

During closed loop (CL) identification the aboventiened 9 unknown parameteiat,
Blon, La, Mb, Mu, Mv, Lu, Lv, Mcaelere initialized usinghe OL mean values (Table 6).

The proposed CL identification procedure is basedhe control architecture depicted
in Figure 38. In this procedure, real measuredpsett values and the relative off-axis
commands are the inputs to the model (dJg.set point+dlat+dcoll for longitudinal
maneuversy_set_point+dlong+dcolifor lateral ones), while the attitude error (diéfece
between real and predicted output of the outer robribop) and the command error
(difference between real and predicted output efitimer control loop) are used to compute
the new cost function.

For longitudinal maneuvers the cost function is:

CostFuncton= Z ((Theta_meas-Theta_sim)® + (dlong_meas-dlong_ sim)?) (74)

while for lateral maneuvers:

CostFuncton= Z ((Phi_meas- Phi__sim)? + (dlat_meas- dlat_sim)?) (75)
aL—:D
T.-‘
‘1}"_- ety e wﬂlj CONTROL INNER LOOP |_._ '\_-:('.u:\ﬁo;p
oooooooooo 7 LoOF Cr= W'—::%'np .L}—::“;Dcﬁ
o=+

Figure 38: Closed Loop Identification logic

The table 7 reports the identified values duringpdike cross-validation velocity

maneuvers.
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Derivatives OL (Mean) | CL longitudinal CL lateral CL Mean
Alat (-) 0.0789 0.1328 0.0777 0.1053
Blon (-) 3.5000e-004 2.9896e-004 3.4119e-004 3.2008e-004
La (-) 86.4724 157.4712 89.2649 123.3681
Mb (-) -53.7013 -108.0648 -55.6379 -81.8513

Mu (rad/(m s)) 0 -0.0053 6.4525e-005 -0.0026
Mv (rad/(m s)) 0 -0.0018 -1.6989e-005| -9.0849e-004
Lu (rad/(m s)) 0 -8.9655e-004 1.2198e-004| 3.8729e-004
Lv (rad/(m s)) 0 -0.0026 -8.7996e-006 -0.0013
Mcol (rad/(ms))| -17.0949 -17.0854 -17.1030 -17.0942

Table 7: Values Identified in Off-axis Closed Loop (CL)

It can be noticed that the final values are simitathose reported in [11] and [12] for
the X-cell helicopter (a small scale model veryiEmto Unibo RUAV), except for La and
Mb that, in authors case, are greater than expdmtieéctorrectly smaller than the on-axis

corresponding derivatives Lb, Ma (see Table 6 tonparison).

About speed derivativelglu, Mv, Lu, Ly it can be seen how the final values are much
smaller than those found in literature for simitatorcrafts; anyway in our opinion, this
confirms that the influence of speed near hoveditmm can be neglected. In fact, Mu=-
0.0026 means that a speed change of u=2 m/s induceally poor contribution (0.0052
rad/€) to pitch acceleration with respect to the contiitn of Ma (e.g. 2.54 radfswith a=1

deg.) Mv andLu (the off-axis speed derivatives) are even smalbertherefore negligible.

Validation tests of the identified parameters iffedent closed loop controls are shown

in Fig.39 both for longitudinal (left column) anakéral (right column) inputs.
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Figure 39: Comparison between predicted (solid) and
Control Systems responses for longitudinal (column
velocity steps.
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GIF index | Longitudinall Longitudinal NCM GIF index | Lateral Lateral NCM
R?u 0.9525 0.9447 Rv 0.9689 0.9662
R® theta 0.7886 0.7699 Rohi 0.8288 0.8250
R dlong, 0.6449 0.6229 Rdlat -0.3617 -0.4065

Last of all, Table 8 gives final evidence that agting cross-effects into the dynamic

model brings to a better agreement of the modelfitegarding speeds, attitude and closed

Table 8: Closed loop Goodness of Fit Indexes compar

ison

loop commands and that this improvement is showh iondongitudinal and lateral dynamics.

This simple and innovative identification procedtinat has been fully developed in a
Matlab-Simulink environment, has been presenteatder to obtain a representative dynamic

model of a small rotorcraft UAV near hovering fltgtondition. In following paragraphs, the

identified model will be used for control designrposes, for example by using MATLAB@
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signal constraint blockseif will be possible to pre-tune controller gairmggying a set of
control target performances i@sse time, maximum overshaatdfinal error.

The complete derived models will be used also tofop®m comparison between
advanced control architecture, based on feed-farwactions, with common control
architecture (like PID).

6.6 Flight Validation of the Baseline Control System
Model

In this paragraph, before the analysis and comparetween the performance of the
feed-forward and the baseline control system, ponted the verification of how well the
model of the baseline control predicts the closexgp|behaviour of UNIBO autonomous
helicopter dynamics. As already mentioned Basetioietrol system has been implemented
and tested in UNIBO RUAYV in National InstrumentsR@& computer using NI Labview
Programming Code and flight trials were used toniifig dynamics. Since closed loop
verification involves all components of the helitap control system, from the flight-
mechanics to the computer systems, it allows teaigbossible anomalies or un-modeled
dynamics.

Next table resumes the gains values adopted ihtfegperiments for UNIBO RUAV

(baseline) controller.

Baseline Longitudinal  Baseline Lateral

Attitude Proportional | Kp=-1 KpLat=1
Attitude Integral Ki=-1 KiLat= 1
Attitude Derivative Kd=0 KdlLat=0
Velocity Proportional | Kpv=-10 KpvlLat=10
Velocity Integral Kiv=-1 KivLat=1
Velocity Derivative Kdv =0 Kavlat =0
Filter time constant -- --

Table 9:Basic Gains for Baseline Flight tests
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This set of gains has been tested in a great nuailfight trials and it has been showed
that the system tuned with this set of parametasssufficient controllability and robustness
for the maneuvers required for slow hover-likelitig8,9]

For closed loop model validation, the helicopteswaven a step-like velocity reference
command in the longitudinal ( Vxref=2 m/s ) andateral directions ( Vyref=1.5 m/s ). The
actual helicopter responses were recorded duriegflibht-test; meanwhile the predicted
helicopter responses were obtained from the modethe closed loop system. The
comparisons between the real and predicted resporige the lateral and longitudinal
directions, have been shown in figure 39 in presiparagraph. All key variables, the control
signals, the attitude angles and the longitudindl lateral velocities, show a good agreement.
Notice in particular how the model accurately folfo real responses during velocity
transients. This is a quite important requiremeantthe simulation model, since the feed-

forward compensation will be very important, aballeduring such transients.
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6.7 Disturbances and sensor noise model

The dynamic model described in the previous seghi@dlicts only the low frequency
response of the helicopter (approximately under)btthile real signals acquired by onboard
sensors present also higher frequency noise vahmglyzing the power spectral density
(PSD) of speed signals acquired during severahtfligsts (fig. 40), it can be noticed the
presence of well distinct peaks at 34 Hz, corredpanto the double of main rotor revolution

frequency @, J17Hz corresponding to about 1000 rpm).
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Figure 40: Power spectral density of longitudinal a nd lateral velocity signals

This high frequency noise in attitude and speedagycan downgrade the controller
performances. In order to have a more realisticlipten of the controller behavior during
simulation tests that will be performed in Hardwaré¢he loop test bench (see HIL in Chapter

8), a model of these disturbances should be addethe state space model helicopter
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% setpoint Fy

dynamics. The effect of noise attitude and spegulass has been predicted by calculating the
closed loop transfer functions between a injectestiuthbance on attitudené(s) or speed

(nu(s) and the consequent speed disturban¢s)(

Attt _sp FF_Cmd

FFA na nu
e ochy & ror Pl Attt Target —pelll Attt Tamet attttnck_e rror PID_Cmd cmd Attitnce i pelatiiice ekt e —i 1)
u

[=r ] 1] CAh P G2

Figure 41: Block diagram of the FF controller with noise injec tion

Referring to figure 41, the transfer function betwénoise on attitude” and speed is:

u(s) _ Gy(s)
na(s) 1+P(s)[{CAM(s){1+G,(s) [CVM(s)LT (s)) + FFA(S) [G,(S) [CVM(s) LT (3))
(76)

and the transfer function between “noise on spaed’speed output is:

u(s) _ 1+ CAM(s) [P(s)
nu(s) 1+ P(s) [CAM(s)+G2(s)[P(s) LCVM(s) [ (s) {FFA(s) + CAM(s)II

(77)

Same relations are valid both for Feedforward amdife Baseline controller setting, but, for

the latter, it has to be set:

f(s)=1, FFA(S) =0 (78)

Bode plots of Equations 76 and 76 have been repantFig.43 and Fig.44.
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Figure 43: Bode plot of velocity -‘noise on velocity’ transfer function ( u(s)/nu(s))

As it can be seen in fig. 42, all the disturbaneagdiencies in the attitude signal are
heavily damped by the system and will have onlylsmiiuence on controller performances.
In the case of noise injected in velocity, instefglire 43 shows that the high frequencies
remain unaltered and can still disturb the corgrolThis analysis leads to the conclusion that
it is necessary to model the high frequencies eedmoise in order to have a more realistic
prediction of the controller performances during thal flight tests, while noise on attitude in
not necessary. Moreover modeling ‘noise on veld@typears to be critical especially for
Feedforward controller which operates derivativieg. (52) with velocity speed error signals
without tunable gains.

The PSD of the speed signals shows that there iscaorcelation between the noise
characteristics and the flight command inputsiiis reason Auto Regressive structure (AR )

[19] has been chosen to model these disturbances.
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In general, the AR model can be written as:

F(a)[y(t) =e(t)

79
F(g)=1+f,g™ +..+ f g™ (79)

where y(t) is the output signal at tinte e(t) is a white noise and is a delay operator.
Identification of f,......f, parameters has been performed using a least sopethed starting

from flight data previously filtered in order toirainate the low frequency values, which are
still modeled by state space model. The polynomdér, which is the only free parameter in
this approach, has been fixed equal to 30, because@pus tests have revealed that this value
represents a good compromise between accuracyoamgutational effort.

Fig 44 shows the result of the identification pixeData used for the identification
process were the one with the higher power at 3@kttt test with longitudinal speed at
3m/s). As it can be seen, all the main charactesigif the noise PSD have been predicted

with high accuracy, bringing to a good statisticeddel of the noise.
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<7 Comparison of controllers tuned with the
basic gains

In order to assess the different performancesefilo proposed control architectures, a
preliminary analysis on stability margins and ostulibances rejection has been conducted.
Since the aim of this first comparison is to tdst influence of the presence of the feed
forward term, the same PID gains were adopted lmthBaseline and for Feedforward
controllers. The set of basic gains, whose valuesdarived from the ones that have been

used in flight experiments of UNIBO RUAV Baselinentroller, is reported in next table.

Baseline Longitudinal Baseline Lateral FF Longitudinal FF Lateral
Attitude Proportional Kp=-1 KplLat=1 Kpm =-1 KpmlLat=1
Attitude integral Ki=-1 KiLat= 1 Kim=-1 KimLat=1
Attitude derivative Kd=0 Kdlat=0 Kdm=0 KdmLat=0
Velocity Proportional Kpv=-10 Kpvlat=10 Kpvm=-10 KpvmlLat=10
Velocity integral Kiv=-1 Kivlat=1 Kivm=-1 KivmLat=1
Velocity derivative Kdv =0 Kadvlat =0 Kdvm=0 KdvmLat=0
Filter time constant -- -- Thilt=0.15 ThiltLat=0.15

Table 10:Basic PID gains

Moreover, for Feedforward controller, a time consiaf 0.15 s. has been adopted for the first

order filter both for longitudinal and lateral dynes.

7.1 Stability margins

The analysis of Baseline and FF control systemisilgyahave been conducted using
Gain and Phase margin analysis [22] The transfactions BLG and FLG, reported in
paragraph 4.3 for Baseline and FeedForward syshews been used to plot Bode gain and
Phase Margins. Following table reports stabilitygnas computed or baseline and FF control

systems computed with this basic set of parameters.

Gain margin (dB) Phase margin (deg)
Baseline Longitudinal 14.15dB (@ 4.55 rad/sec) 33.5 deg (@1.9 rad/sec)
Lateral 24.53 dB (@ 13.57 rad/sec) 30.9 deg (@1.79 rad/sec)
Feedforward Longitudinal 17.58 dB (@ 14.70 rad/sec) 74.2 deg (@1.66 rad/sec)
Lateral 18.47 dB (@ 16.08 rad/sec) 74.1 deg (@1.65 rad/sec)

Table 11:Stability margins of the FF and Baseline ¢ ontrollers for longitudinal and lateral

dynamics
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Compared with the specifications used for flighttrtol design (MIL-F-9490), which
require a gain margin of 6 dB and a phase marg#bafieg, it can be seen how the baseline
system tuned with basic gains of table 10 lackgjaatee Phase margins for longitudinal and
lateral dynamics control [23].

On the contrary, it must be noticed that FF tunéith whe same PID gains is already
compliant to the stability margins required by timms, and thus it means that just adding
the feedforward term to the Baseline controlletha inner loop, can bring the system to a
higher stability level.

7.2 Three-axis control and cross effects disturbances.

Another important aspect in controllers design asachieve a good disturbances
rejection. In present paragraph we study the meidbetween disturbances and their effects on
controlled variables (longitudinal and lateral \@l®@s) and we compared the behavior of the
FF and the Baseline control systems in the frequdnmain
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Figure 45: cross effects and external disturbance

In both baseline and proposed FF+PI control systémsontrol model is composed by
three SISO controllers working at the same timeldagitudinal (Utargey), lateral (Viargey, and

vertical (Wiarged dynamics control.
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In this way it is possible to give three differeset-points time-histories for longitudinal,
lateral and vertical velocities and make them varg total independent way, for example it is
possible to give a velocity step to longitudinaloogty and zero as set-point for lateral and
vertical velocities.

This contemporaneous control over three axis, stheeidentified model takes into
account cross-effects (long-lateral, vert-long)luces disturbances on each of the three
controlled velocities. This kind of disturbanceaulkebbe considered as internal in order to
distinguish them form external disturbances asekample, wing gusts.

Simulation model used in following simulations taka to account also wind gust that
are modeled as command input disturbances (vd &gitll52) and are represented as inputs
wd ,wd1, wd2 in figure 45. As already mentioned asdsuggested in ref. (liboro Mettler) a
wind gust disturbs the direction and the speedchefdirflow encountered by the helicopter.
This changes the aerodynamic load of the rotordyrimg an uncommanded rotor flapping
response which will, in turn, disturb the helicopatitude. If we ignore the forces produced
by the gust on the fuselage, a wind gust, sinchanges the aerodynamic angle of attack at
the blade (in a cyclic manner), has effect on thlcbpter similar to that of a sudden change
in the cyclic controls. Thus wind gust are effeeljvmodeled as command input disturbances.

Wind gust model used is the Discrete Wind Gust NMadéhe form of the standard "1-
cosine" shape in conformity with mathematical repregation in the Military Specification
MIL-F-8785C [24]. The gust is applied to each axidividually, or to all three axes at once.
It can be specified the gust amplitude (the ina@aaswind speed generated by the gust), the
gust length (length, in meters, over which the dustds up) and the gust start time [18]

Figure 47 shows a control structure scheme vaiith for FF lateral and longitudinal
velocity control. We can see that the wind distadeis modeled as an input and that its
contribution is summed to FF action (FFA) term &m&| Attitude controller term (CAM).

attitude_sp FF_Ccmd

FFA

(1 +——w{*_ {vatocity_sror PI_AtttudeTargst{{in  AtfitudeTarget] (& F#] attituda_srror PID_cma 1—{F {1, B cma Afituds »{attitude  Velaclty » 1)
V_setpoint 3 - Velocity
CVM f cam P G2

Wind Disturbance
(2

Figure 46: FF controller architecture with Wind Disturbance mo deled as command input

It can be demonstrated that, referring for examplelongitudinal control system

71



reported in Fig.46 the transfer function betweemdwidisturbances D and controlled

longitudinal velocity U for longitudinal FF contrelystem is:

u_ G,[P
D 1+PCAMl+G2[CVM ) + FFAIG2CVM I )

(80)

while for longitudinal Baseline control system:

_ G,[P

u._ (81)
D 1+P[CA{l+G2[TV)

Where the transfer functions (CA, G2, CV, P, ettave been already showed in
paragraph 4.3

Analogue relations can be found for lateral dynamic

_ G, [P

= (82)
1+ PCAM Q1+ G2[CVM [ ) + FFALG2 [CVM [ )

v
D

Vv G, I[P

g (83)
D 1+P[CAQL+G2[TV)

Where this time the transfer functions (CA, G2, (R, etc.) refers to the lateral
dynamic.

Bode gain diagramsf disturbance-velocity transfer function are rdedrin figure
below for Baseline and FF control systems tunech viaasic gains (table 10) both for

longitudinal and for lateral case.

It must be noticed that the feedforward term impsothe rejection to disturbances
especially for those disturbances with frequenbietsveen about 1 and 3 Hz, while for the
other frequencies the behavior of the FF contraigpretty much the same of the Baseline

one.
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7.3 Time domain comparison with basic gains set

Next figure represents a simulation in time donadia unitary step response performed
by the Baseline (dotted line) and by the FF (cardirs line).
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Figure 48: Simulated responses to a unitary longitu dinal velocity set point of

Baseline and Feedforward controllers tuned with the same gains values

It can be easily seen how the FF response presertighly reduced overshoot.
Remembering that the two controllers share the sgaires for PID, it means again that they
only differ for the presence of the FFA (FeedForvAction) in the FF inner loop. Hence, the
presence of the FFA term makes the FF inner coldog to work with smaller errors in FF
controller than in Baseline (see Fig. 39 , secotiurd row, attitudes) and this highly reduce
overshoot and settling time. Moreover it can beiceot how the FFA terms reduce the
oscillations due to the lightly damped rotor-fugglacoupled dynamic (mettler articolo
optimization) Finally it can be observed thatyway, the rise time is very similar for the

two controllers if measured at the 90% of the step.
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In the same simulation reported in figure 39 it vealsled a gust disturbance starting
from simulation time t=14 s, it must be noticed htwe behavior of the two controller is
almost identical on the response to this disturbafite disturbance added to longitudinal
command was, in this case, modelled as a discretsihe gust in vertical direction with
amplitude of 7 m/s that corresponds to a commastlidiance of about 5 deg. computed at

0.75 R (Rotor radius R=0.92 m) and consideringgukan rotor speed of about 1200 rpm.
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8 Hardware in the Loop (HIL) Test bench

To asses the performance of the two different ctletis, a Hardware In the Loop test

bench was developed and its architecture is ititistk in figure 49 (right side).

It is composed by:

- A CRIO, equal to the onboard one, which runs th&rob software;

- an FPGA module which acquires PWM commands (PXL}83

- a computer which emulates the helicopter plantthadnboard sensor outputs.
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i |
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(B Simulation
4 Ij Computer

Figure 49 Real control loop (left) and Hardware in  the loop test bench (right)

CompactRIO digital outputs, that usually drive Hegvo actuators, are acquired, in the
HIL test bench, by the PXI FPGA module and conwkmedegrees of servo control actuation.
On the simulation computer a NI Labview softwarepliements the state space and noise
models illustrated before. That module computeseal time, the helicopter response due to
control input. A NAV420 emulator simulates the aneg serial data packet format and is used
to send information to the main controller.
Since PC serial port uses RS232 signals and CRi@alinputs accept TTL voltage levels,
an integrated circuit board has been placed betwesputer output and CRIO input.
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The helicopter ground station can be connectetiddiL for sending to the controller
the desired speed profile, or any kind of commaiaais] to save helicopter outputs: these
outputs are then used for assessing the contp#léormances.

The HIL global model is composed of a state spageéainwhich predicts only the signal

frequencies under 5Hz and of an Auto Regressive) (ABdel which simulate the remaining
frequencies between 5Hz and 50Hz.
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9 Baseline and FF controllers parameters
automatic tuning

In order to make an impartial analysis of contmsllgoodness, in terms of stability and

performances, an automatic tuning strategy, in @aleveloped and based on step response

characteristics, has been adopted. In this wayelB&sand Feedforward controllers have

been automatically tuned in order to have sameop®ences in the response to a unitary (1

m/s) velocity step.

Table 2 reports the adopted constraints values .

Rise Time | % Rise | Settling Time| % Settling| % Overshot | % Undershoot
Longitudinal/Lateral | 1.0/1.2 (s) 90% 25 2% 2% 2%
Table 12: Response characteristics for longitudinal and lateral dynamics

The meaning of the constraints reported in tablesli?ore clearly defined in figure

50.

Step Final Value .

Undershoot %

Overshoot %

Settling %
M

L=

Rise Time ttling Time Time

Figure 50: Unitary step response characteristics

Referring to table 12, it has to be noticed thakey small overshoot requirement has

been chosen to fulfill the ADS33 [24] hover and Ispeed specification (citThere shall be
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no noticeable overshoots in the response of traiasial rate to control) and that settling
percentage has been set to the same value of oetlislorder to obtain a first order response

as prescribed by the norms.

With the adopted automatic tuning procedure andaiheve constraints it has been

possible to find the controllers gains reportethinie 13.

Baseline Longitudinal Baseline Lateral FF Longitudnal FF Lateral
Attitude Proportional Kp =-2.0062 KpLat =2.4 Kpm =1.0336 KpmLat = 1.9068
Attitude integral Ki=—-4.5837 KiLat =1.44 Kim=2.1015 KimLat = 1.2618
Attitude derivative Kd =0 KdLat = 0.06 - --
Velocity Proportional Kpv =-11.3730 KpvLat = 7.9685 Kpvm-=9.5234 KpvmLat =9.5498
Velocity integral Kiv = —0.6914 Kvtat=0.410 Kivm=—0.3864  KivmLat = 0.3442
Velocity derivative Kdv =-1.1017 KdvLat = 0.0077 -- --
Filter time constant - -- Tfilt = 0.1117 TfiltLat = 0.2187

Table 13: Controllers parameters computed under per  formances constraints
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10 Comparison of equal-performances
controllers

In this chapter the comparison between the Basedingé FF controllers will be
performed by using the tuning parameters that bhaes computed in previous chapter. These
parameters allow to achieve very similar perfornesnand have been automatically tuned
under the performances constraints that have Hdemmesl in table 12 of previous section. It
appears obvious that comparing two systems witl sinilar performances, the best of the

two controllers is the one that maintains the gr&lagtability margins.

10.1Stability analysis

Stability analysis has been performed by compu@agn and Phase stability margins
[1,23] for the Baseline and the Feedforward consiydtems. The two Loop Gain transfer
functions for longitudinal and lateral controllensve been derived from control schemes

depicted in fig. 9 and fig. 10 and automaticallynguted tuned parameters have been used
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Figure 51: Bode Diagrams for Stability analysis, Lo  ngitudinal dynamic:
Baseline (continuous line) and Feedforward (dashed line) controller
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Figure 52: Bode Diagrams for Stability analysis, La  teral dynamic:
Baseline (continuous line) and Feedforward (dashed line) controller

Bode magnitude and phase diagrams are reportaduref52 for Baseline Loop Gain
(BLG) and the FF Loop Gain (FLG) transfer functidrth for longitudinal (left) and lateral
(right) dynamics in which stability margins haveeshendicated by means of circular markers.
As can be easily noticed, they appear to be venylasi to those reported in literature [1].

Looking at these figures it can be seen thatoith lsases, the feedforward architecture
assures an improvement of phase and stability margn fact, for the Baseline controllers
the critical frequencies for stability (11.8 rad/sler the longitudinal, 17.1 rad/sec for the
lateral dynamic) almost coincide with the natur&gliency of the lightly damped coupled
rotor/stabilizer/fuselage group caused by the krabibar (12.1 rad/sec for the longitudinal
and 18 rad/sec for the lateral dynamic [23]) arid brings to a great reduction in the gain

margin.
The effect of the FF compensation brings to a redaidn the lightly damped coupled

rotor/stabilizer/fuselage influence and, hencgrtamprovement of gain margin.

Gain and Phase stability margins are finally regubrh table 14.
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Gain margin (dB) Phase margin (deg)

Basel Longitudinal 5.24 dB (@ 11.8 rad/sec) 71.6 deg (@ 2.88 rajl/se
aseline
Lateral 5.54 dB (@ 17.1 rad/sec) 69.8 deg (@ 1.47 rad/sec)
Longitudinal 16.9dB (@ 15 rad/sec) 80.2 deg (@1.61 rad/sec)
Feedforward
Lateral 12.1 dB (@ 16.2 rad/sec) 71.6 deg (@1.54 rad/sec)

Table 14: Stability margins of the FF and Baseline  controllers for longitudinal and lateral

dynamics

It has to be noticed that only FF controller fulfthe specifications for flight control design
[24], which require a gain margin of 6 dB and agghmargin of 45 deg, whereas the Baseline
control system lacks adequate Gain margin.

This stability analysis, moreover, doesn’'t takeiatcount noise effects and problems
due to quantisation of the analogue signals tightty affect final performances and that will

be analyzed in next section.

10.2 HIL tests

The Baseline and Feedforward control systems tuwiibdthe parameters reported in the
previous section, have been tested in the Hardwalde Loop test bench described in fig.
49. The dynamic model has been used coupled wéhvéhocity signal noise model (ref.
Chapter 6).

HIL tests results are reported in next figures emafirm the stability analysis described
in previous paragraphs. In figure 53 are depictedaxial velocity, pitch attitude (baseline
and FF) and the longitudinal command, related tondary velocity step for the two
controllers. Whereas the controllers have beennaatioally tuned in order to attain the same
velocity performances, a small difference in perfance can be anyway observed, like, for
example, a smaller rise time for the Baseline vigjaesponse. This is probably due to the
automatic tuning procedure that has set up a §ligaster solution for Baseline controller.
Another reason for this difference can be foundgnmall differences between the Simulink
dynamic and control models used during tuning sessand in the HIL test bench that is
entirely coded in Labview. Contrary result occurried lateral controller tuning where
Baseline controller resulted slightly lower than B, anyway, the differences between the

velocity responses are small and they do not ida#gi our comparison.
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In the second and third strips of the same figtirgan see that the Baseline attitude and
actuation command signals oscillate, whereas thdféeward ones are much more stable.
This appears to be consistent with the consideragported in previous paragraph, about the

smaller gain margin of Baseline system.
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Figure 53: HIL simulation; Longitudinal velocity 1 m/s step

Same considerations can be applied to the 5 migafdrand lateral velocity steps (fig
54 and 56) and to 1 m/s lateral velocity step $&g. In the 5 m/s step velocity cases (fig 54
and fig.56), it has to be noticed that the feedodvcontroller achieves a reduced overshoot
amount even if the Baseline can count on the Deviaerm of the PID. This can be
explained considering that, during transients, Festructure allows smaller errors in the
inner attitude control loop.
Finally, in all performed tests, it has been obedra less oscillating behavior in the
feedforward controller responses, justified by gineater stability margins that are, at least in

this case, well better than the norm requiremezs [
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11 Sensitivity analysis of Stability upon
plant identified parameters

The Feedforward compensators, both for longitudaral lateral dynamics, have been
designed starting from the knowledge of the ideditommand-attitude transfer functions.
Thus, it is very important to rely on a very goaoentification model and to understand how
much stability and performances of feedforward aulgrs are depending upon the goodness
of identified parameters. In order to assess tklationship, we studied how much the
stability margins change as a consequence of doiftsdentified parameters from their
nominal values (identification values).

Considering, for example, longitudinal dynamics, mae seen in paragraphs 4.2 and

4.8 that it necessary to know the values of follayvidentified key parameters:
Aon’ a’nq’ Te

in order to compute the longitudinal feedforwandrt€FFA).

In this paragraph, we will check, using a propngtMatlab script, what happens to
stability margins and to other performances indexiasn each of the three parameters change
of +/-20% in total independent way. In this way wish to simulate the case that a +/-20%
error was done in the identification of each keyapaeter. Obviously, during each test, the
plant identified model remains the same (identifoedameters equal to nominal values) and
only the controllers key parameters are increagediminished of 20% of their nominal
values.

Following conventional names will be adopted fey kparameters degraded values,
these names are obtained by adding a plus or rsiymabol to key parameters name in order

to refer to the increased or diminished value.d@mple:

Aion+= Aion +20%A 0n (84)
Aon- = Aion -20% A on (85)
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Referring to Longitudinal dynamic, nominal values key parameters are:

Aon=0.2488 on=12.1 1~0.132

Following table has been computed considering lal possible combinations between

increased and diminished key parameters values:

Test N° Aion Un Te GM PM Stability
Nominal = Aen o Te 16.9 dB (@ 15 rad/sec) 80.2 deg (@1.61 rad/sec) ves
1 Aor- G Te 102177 dB (@15.2402)  78.6373 deg.(@1.5372 rad/s) ves
2 Aor- O Tet 9.8140 dB (@15.7979) 93.7258 deg.(@1.3224 rad/s) ves
3 Aon G Te- 17.1225dB (@13.5070)  80.5648 deg.(@1.6152 rad/s) Yes
4 Ao Ghe Ter 16.1279 dB (@13.0511)  96.9602 deg.(@1.3732 rad/s) Yes
> Aone G Te- 14.1145 dB (@15.3074)  62.5827 deg.(@1.7712 rad/s) ves
6 Aons On Ter 13.6220 dB (@15.8632)  79.4297 deg (@1.5846 rad/s) Yes
7 Aons s Te- 22,0459 dB (@13.4606)  62.9814 deg.(@1.8348 rad/s) Yes
8 Aore  Ghe Ter 205392 dB (@12.7534)  80.8309 deg.(@1.6456 rad/s) ves

Table 15: Stability margins of the FF (longitudinal ) with deviation of feedforward key
parameters of 20%

Stability of the feedforward controller is repatten the table above in the rightest
column and it has been computed as a Boolean shaté if all real parts of close loop
transfer function poles are all positive number® ¥dn see that the FF system is still stable
for a variation of +/-20% of key parameters frommmoal values. Obviously, the same thing
could have been derived also from the fact thah@ad Phase margins are still positive, but
it has been done in this way to have a redundastkch

Even some combinations (e.g. the n.3) appedre toore stable (higher gain margin,
same phase margin), it can be easily assessethéhaine response of the FF controller with
these key parameters set is less performing treandminal FF controller. In fact, looking at
fig.57 it can be seen that the degraded FF syspaimt{(dash line) has higher rise time and
higher assessment time. This is due to the fattRthgains were not optimized in each every
different test (1-8), but the same PI gains valined were optimized for the nominal case
were adopted.

From figure 58 we can also see better how FF namaontroller presents no

overshoot at all and, moreover, that differencegpeénformances appear to be small and,
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hence, that degraded FF controller seems to ba gfdod controller.
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Figure 57:Baseline, FF (testcase n.3) responses to  a unitary longitudinal velocity step

In the following table the same kind of analysevé been reported for lateral dynamic

stability margins computation:

Test N° Biat Wnp Te GM PM Stability
Nominal Bt Gnp Te 12.1dB (@ 16.2 rad/sec) 71.6 deg (@1.54 rad/sec) Yes
1 Ba: G Te 16.6759 dB (@17.4863) 71.8338 deg (@1.5218) Yes
2 Bt - Cnp- Ter 28.3864 dB (@25.1427) 85.0821 deg (@1.5910) Yes
3 Bar-  Chpw Te 8.1766 dB (@16.0879) 71.6584 deg (@1.5481) Yes
4 Bat-  Wpr Ter 5.1997 dB (@16.0519) 84.7408 deg (@1.6300) Yes
> Bats Oy Te 26.2649 dB (@18.9148) 62.1976 deg (@1.5438) Yes
6 Batr G Te+ 32.7217 dB (@26.0324) 71.6292 deg (@1.5372) Yes
7 Batr G Te 13.2472 dB (@15.9932) 62.1120 deg (@1.5595) Yes
8 Bas  Gnpr  Te 9.7695 dB (@15.9841) 71.5565 deg (@1.5553) Yes

Table 16: Stability margins of the FF for lateral d

of 20%

ynamics varying feedforward key parameters
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Also for lateral dynamic, it can be observed tlnt $ystem is still stable under all the
possible combinations of 20% deviated key parameter
Finally maximum allowable Deviations have been categ for the FF control system:

0 Longitudinal Dynamic :Evaluation of max allowableWations for Norms and
Stability:

42% for Stability

29% for ADS33 compliancy (GM>6dB, PM> 45 deg)

O Lateral Dynamic :Evaluation of max allowable Deioat for Norms and Stability:
38% for Stability
17% for ADS33 compliancy (GM>6dB, PM> 45 deg)

The FF controller appears to be stable till a deviaof key parameters of about the
42% while for lateral maximum parameters deviatiotihout instability is 38%.

This is an important achievement as it means thanh en presence of great drifts in
system dynamics (e.g. due to payload variationgl ftonsumption) the feed-forward
controlled system remains stable.

Moreover, the maximum deviation of key parameteosnf their nominal values that
assures that FF system has Phase Margins and Gagingl greater than the minimum values
specified by MIL-F-9490, have been valuated in 2986 for Longitudinal dynamic and in
17% for lateral dynamic. In presence of greateiat@ns, the critical Gain Margin limit of 6
dB was exceeded both for longitudinal and lateyalagnics.

This appears, again, as a good achievement bedausans that even in presence of
sensible drifts of the key parameters of the sysdaatheven if the controller gains are kept to
their nominal values, the control performances Wl still compliant to norms prescriptions

in terms of stability margins.
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12 Performances comparisons in
Navigation

In this paragraph, HIL simulations of navigatiostseare presented. The aim of these
tests is to assess the influence of the controtesysarchitecture upon the navigation
performances in terms of deviation of the rotorcpaiition from the target trajectory.

The Baseline and FeedForward Controllers are tumidld the gains of table 13 in
chapter 9 and, hence, the two controllers shoule lsamilar performances to unitary step,
these performances are those reported in tablé di3apter 9.

Next figure reports a comparison of tracking perfances of the two controllers in a ‘8-

like’ circuit. In this test the longitudinal targeelocity is kept at the constant value of 2 m/s.

80

I
Flight plan
Baseline
Feed forward

Figure 58: Comparison: HIL simulations of ‘8-like’ circuit with velocity of 2 m/s
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The flight path is the same already reported itet@band ,hence, the tracking velocity
is equal to 2 m/s but in this test the yaw orieatahas been kept fixed to O deg (North).

80

e o .................. o ...................... .............

. : : : ——— Flight plan
B0 KEE s . TR a— ———Baseline
i : ' : —-—-Feed forward

o1 R e e B i .................... .............

dtphsss puseasugg ...................... ................. : ..........

Figure 59: Zoom of figure 58

Figure 59 shows a zoomed view of figure 58. Heream be easily noticed that the
Feedforward controller improve the tracking perfamoes of navigation, reducing the
tracking oscillations that are much more preserg@aseline system. Moreover here it can be
observed that the feedforward controller almostenebrings the rotorcraft beyond the
subsequent trajectory line since it allows a fastenge of trajectory. In fact, even if the
change of setpoint trajectory occurs, for both ¢batrollers, at the same distance from the
subsequent waypoint, as the Baseline exhibit aesi@mnd more oscillating response whereas
the Feedforward change of trajectory appears mumte mapid and hence seems to anticipate
the target trajectory.

Last figure of this chapter reports a comparisat performed with a target velocity of
4 m/s in a ‘8-like’ circuit. As in previous testelyaw orientation has been kept fixed to North
direction for the entire path. In this case it bees apparent how the Baseline Tracking
control becomes almost unstable and, as a consegjuée performances are of course
unacceptable.

Remembering that the rotorcraft starts form thenpd0,0) toward the (20,-20)
waypoint, it is possible to track the trajectory tbe Baseline controller; it seems that the

biggest issues occurs when the RUAV leave the wayga0,-20) towards the waypoint of
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coordinates (40,0). The Baseline RUAV begins taekraircles around the waypoints and

gradually loose its path.

The feedforward controller, instead, attains penfmnces very similar to those of the

2m/s ‘8-like’ circuit reported in figure 58 and 59.

90 I
Flight plan
—————— Baseline
80 st Feed forward

70+

60 -

50+

40|

30

20

10+

40 50

Figure 60: Comparison: HIL simulations of ‘8-like’ circuit with velocity of 4 m/s

Of course the implemented fixed heading navigai®rvery simple and could be

improve, and perhaps, navigation gains tuning cbeldnproved as well, but, in our opinion,

what should be focused is that the same navigalgorithm, if used in conjunction with two

different attitude and velocity control systemsngs to completely different results.

Moreover it must be remarked that the Baseline ERRdcontroller used in these

navigation tests were automatically tuned in orenttain same performances in a 1 m/s

velocity step. Hence from this latest simulationjsi evident how the Baseline controller

presents performances that highly downgrade withirtisreasing speed of test, whereas the

FF seems to achieve good performances also foehigdocities.
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13 Conclusions and Outlook

In this thesis latest results of the RUAV activatghieved at Bologna University have
been presented. In particular a model-based femeafd controller designed for a small scale
Helicopter has been illustrated and its performari@a/e been assessed and compare to those
of a traditional Baseline controller. This Feedward controller has a very simple control
architecture based on nested proportional-integeahtrol loops with feedforward
compensation in the inner loop. This feedforwantntés obtained by the inversion of the
command-attitude identified plant models and itsadndiscrete-time implementation has
been shown as well.

The accuracy of the model has been initially vedfby showing that it successfully
predicts the behaviour of the baseline controleysthat is currently used for the UNIBO
RUAV.

In subsequent chapters, it has been shown howctimsrol combines benefits of
feedforward and feedback controllers, where peréorres are achieved with feedforward
action and robustness is achieved with feedbacH, reow feedforward action make the
system to work with smaller errors and thereforthwess saturation problems and so makes
parameters easier to be tuned.

A good number of comparisons upon performance aablilisy has been illustrated
between the proposed feedforward controller andbteeline controller. The comparisons
have been done using, in a first step, the sarmie tuesng parameters for the controllers, then
different sets of parameters has been adoptedeTh#sr parameters have been derived, in
order to make an impartial analysis, by mean ohatomatic tuning strategy. Moreover, in
dedicated section, the sensitivity analysis of shability margins upon the identified plant
parameters has been evaluated and it has been shownthe proposed model based
controller remains stable even in presence of bigertainties on plant identified parameters.

The presented analysis has been done by usingdwhBia In The Loop systems with
mathematical model of helicopter dynamics iderdifia low speed flight conditions. This
identified dynamic has been derived by using a Bmand innovative identification
procedure, developed in a Matlab-Simulink environmeén order to obtain a representative
dynamic model of a small rotorcraft UAV near howeriflight condition. Preliminary
parameters identification based on a open-loopi@edsave been shown both with and
without cross-effects; then a parameters refinenterdugh a closed loop identification
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technique was performed. For each test, indexeselative goodness of fit have been
presented demonstrating the benefits of the immlonvedel.

In the sequel, the identified model has been useddntrol design purposes, so it has
been possible, using Matlab scripts, to pre-turr@rofier gains, giving a set of control target
performances as raise time, maximum overshootiaatdrror.

As already mentioned the comparisons upon perfoceand stability between the
proposed FF controller and the Baseline one haea lobene using set of calibrations that
have been automatically tuned in order to makengpartial analysis. Results have shown
that, tuning the two systems for achieving the speréormances, the feedforward controller
works with higher stability margins and, hence hwéss oscillating attitudes.

Finally, after illustrating guidance algorithmscamparison of the tracking abilities of
the Baseline and FF controller is presented inpac#y ‘8-like’ circuit. In this test it has been
demonstrated how the FF controller allows a smadthagctory tracking as well.

As already mentioned, the presented analysis has iene by using a mathematical
model of helicopter dynamics identified in low s@eight conditions. Anyway, since the
dynamic model in forward flight conditions can kesdribed by transfer functions of the same
kind [1], it would be interesting in the future agses if the benefits of this control technique

are present also in forward flight.

Unfortunately in the last period of this activityet IMU has been found to be faulty and
issues has been discovered in velocity signals andpnsequence, it hasn’t been possible to
perform a comparison of the two controllers in riéight test. A flight trials campaign and a
deep investigation upon the performances of thelBesand FF controller will be done once

the IMU has been restored.
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