
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN INGEGNERIA ELETTRONICA,

INFORMATICA E DELLE TELECOMUNICAZIONI

Ciclo XXI

Settore Scientifico Disciplinare di afferenza: ING/INF01 Elettronica

TECNICHE DI PROGETTAZIONE

TOLLERANTE ALLE VARIAZIONI PER

CIRCUITI DIGITALI IN TECNOLOGIE

NANOMETRICHE

Tesi di Dottorato di: Relatore :

GIACOMO PACI Chiar. mo Prof. Ing. LUCA BENINI

Coordinatore Dottorato:

Chiar. ma Prof.ssa Ing. PAOLA MELLO

Esame finale anno 2009

VARIATION RESILIENT DESIGN

TECHNIQUES OF

NANOMETER-SCALE DIGITAL

INTEGRATED CIRCUITS

A dissertation submitted to the

DEPARTEMENT OF ELECTRONICS, COMPUTER SCIENCE AND SYSTEMS

OF UNIVERSITY OF BOLOGNA

for the degree of Doctor of Philosophy

presented by

GIACOMO PACI

born June 27, 1979

March 2009

Keywords

Process Variation

Ultra-Low-Power

MultiProcessor System-on-Chip (MPSoC)

Hot Spot

Thermal Management

Self-timed Logic

Network-on-Chip (NoC)

Variation Compensation

Contents

List of Figures VII

List of Tables IX

1 Abstract 1

Abstract 1

2 Reliability and Manufacturability Challenges 5

Reliability and Manufacturability Challenges 5

2.1 Design For Manufacturability . 7

2.1.1 Compensation Technique 9

2.1.2 Error Detection Technique 11

2.1.3 Completion Detection Technique 13

2.2 Design For Reliability . 17

2.2.1 Thermal Management . 19

2.2.2 Thermal Aware Design . 20

2.3 Thesis contribution . 21

3 Exploring temperature-aware design in low-power MPSoCs 23

Exploring temperature-aware design in low-power MPSoCs 23

3.1 Overview . 23

3.2 Introduction . 23

3.3 Related work . 25

3.4 A typical LP-MPSoC . 26

3.5 Power/thermal analysis . 26

3.5.1 Power estimation . 28

3.5.2 Modelling the heat flow 29

3.6 Experimental results . 36

3.6.1 Thermal properties of the die 36

3.6.2 Steady-state thermal analysis 37

I

II CONTENTS

3.6.3 Transient thermal analysis 38

3.7 Conclusions . 39

4 HW-SW Emulation Framework for Temperature-Aware Design in MP-

SoCs 43

HW-SW Emulation Framework for Temperature-Aware Design in MP-

SoCs 43

4.1 Overview . 43

4.2 Introduction . 44

4.3 Related Work . 45

4.4 MPSoC Emulation Architecture 48

4.4.1 Processing Elements . 49

4.4.2 Memory Hierarchy . 50

4.4.3 Interconnection Mechanisms 51

4.5 Statistics Extraction Subsystem 52

4.5.1 HW Sniffers . 52

4.5.2 Virtual Platform Clock Manager (VPCM) 54

4.6 MPSoC SW Power/Thermal Modeling 55

4.6.1 Power estimation . 56

4.6.2 Thermal estimation . 56

4.7 HW-SW MPSoC Emulation Flows 59

4.8 Experimental Results . 60

4.8.1 MPSoC emulation vs simulation performance evaluation 61

4.8.2 MPSoC thermal modeling using cycle-accurate simula-

tion vs HW-SW emulation 62

4.8.3 Evaluation of dynamic thermal strategies in MPSoCs . . 63

4.8.4 Floorplan selection exploration in MPSoCs 64

4.8.5 Effect of different packaging technologies and SW ther-

mal libraries . 65

4.9 Conclusions . 67

5 Exploit the performance benefits of self-timed logic in synchronous

design 69

Exploit the performance benefits of self-timed logic in synchronous

design 69

5.1 Overview . 69

5.2 Introduction . 69

5.3 Related Work . 70

5.4 Delay variation resilient . 71

CONTENTS III

5.4.1 Completion detection using Dual Rail Logic 72

5.5 4-way handshaking protocol vs. clock gating 73

5.6 Evaluation Framework . 75

5.6.1 Library Design . 75

5.6.2 Synthesis . 75

5.6.3 Evaluation under process variations 76

5.7 Experimental Results . 77

5.7.1 Handshaking vs. clock-gating 77

5.7.2 From synchronous to dual rail logic 78

5.7.3 A hybrid self-timed/synchronous approach demonstrated

on the VEX VLIW . 80

5.8 Conclusions . 81

6 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Com-

munication Channels 83

Effectiveness of ASV and ABB for Full-Swing and Low-Swing Com-

munication Channels 83

6.1 Overview . 83

6.2 Introduction . 84

6.3 Related Work . 85

6.4 Communication channel design 87

6.4.1 Communication circuitry characterization 89

6.4.2 32bit synthesized channel characteristic 90

6.4.3 Crosstalk interference . 91

6.5 Robustness to process variations 93

6.6 Post-silicon compensation . 95

6.6.1 Experimental framework 96

6.6.2 Compensation efficiency in full-swing links 100

6.6.3 Compensation efficiency on low-swing links 100

6.6.4 Role of random variations 102

6.6.5 Compensation technique with crosstalk 102

6.7 Conclusions . 103

Conclusions 105

Bilbliography 109

List of Figures

2.1 ITRS roadmap. 5

2.2 Source of variability. 6

2.3 Sub-wavelength Lithography. 8

2.4 Single Well P-MOS Body Bias. 10

2.5 Triple Well CMOS Body Bias. 10

2.6 Razor Flip-Flop. 11

2.7 Razor:The Qualitative Relationship Between Supply Voltage, En-

ergy and Pipeline Throughput (for a fixed frequency). 12

2.8 Crystal Ball Flip-Flop. 12

2.9 Handshake Pipe Stage. 13

2.10 Clock Gated Pipe Stage. 14

2.11 Current Sensing Completion Detection. 15

2.12 Dynamic Cascode Voltage Switch Logic. 16

2.13 Heat flux in a Intel Microprocessor. 17

2.14 Temperature variation in a Intel Microprocessor. 18

2.15 Temperature Distribution Inside a Multiprocessor System. . . . 20

3.1 Floorplan of a multi-processor system on a chip in a 130nm tech-

nology: 16 ARM7 processors each connected to a 2-way associa-

tive 8kB data cache and a direct mapped 8kB instruction cache;

16 memory tiles of 32kB; a NoC connecting processors and mem-

ories. Thermal cells are 150µm × 150µm. 27

3.2 Power/thermal model integrated in a cycle-accurate LP-MPSoC

simulator [25]. 28

3.3 Chip packaging solution. 29

3.4 Dividing the chip into a finite number of cells. 30

3.5 Equivalent RC circuit of a cell. 30

3.6 Silicon thermal conductivity can be approximate its Taylor series. 33

V

VI LIST OF FIGURES

3.7 Steady-state temperature distribution for three different resolu-

tions in the 3.2 × 3.2mm2 silicon surface with 0.64 × 0.64mm2

heat source at 819mW . 34

3.8 Temporal temperature distribution for three different resolutions

and powers in the 3.2×3.2mm2 silicon surface with 0.64×0.64mm2

heat source. 34

3.9 Comparison of the spatial (up) and temporal temperature (down)

distribution evaluated with 3D finite element package (light line)

vs. equivalent RC model (bold line). 35

3.10 Temperature differences on chip (6mm × 7.2mm). It contains in

the centre a single source of which the area and power is varied. 36

3.11 Temperature differences on chip for two different dimension of

the die (3.2mm × 3.2mm vs 12mm × 12mm). 37

3.12 Temperature differences of a multi-processor system-on-a-chip.

(top) 4 processors running at 100MHz; (middle) 10 processors

at 100Mhz; (bottom) 10 processors at 1GHz on a scaled die size. 40

3.13 Temporal behaviour of the die: (top) average die temperature;

(middle) temperature differences on chip; (bottom) thermal cy-

cles on chip. 41

4.1 Overview HW architecture of emulated MPSoCs. 49

4.2 Overview of the statistics extraction subsystem. 53

4.3 MPSoC floorplan with (a) 4 ARM7 cores and (b) 4 ARM11 cores. 58

4.4 Complete HW-SW flows included in the FPGA-based thermal

emulation framework. 60

4.5 Average temperature evolution of Matrix-TM in a 4-core MPSoC

at 500 MHz or using a two-choice DFS (500-100MHz). 63

4.6 MPSoC floorplan with cores (a) scattered in the corners and (b)

clustered together in the center of the chip. 64

4.7 Average temperature evolution with different floorplans for Matrix-

TM at 500 MHz with DFS on. 65

4.8 Thermal behavior for an MPSoC floorplan using low-cost, stan-

dard and high-cost packaging solutions. 66

5.1 DCVSL NAND. 73

5.2 Throughput of self-timed logic (with clock gating) depends on

clock speed. 74

5.3 Synthesis of self-timed design. 76

5.4 Performance characterization under process variation. 77

5.5 Exploiting variations - PUT. 78

LIST OF FIGURES VII

5.6 Relative Energy Using Asynchronous Logic Based on DCVSL

(MOPS). 79

5.7 VEX VLIW: We have converted the execute stage into a self-

timed one to increase the throughput by taking advantage of

process and data-dependent input variations. 81

5.8 Better throughput/energy consumption for a partly asynchronous

design of the VEX VLIW. VEX WC X design is a typical syn-

chronous design instance. Its operating frequency is determined

by worst-case conditions. VEX AVG X is an instance of the VEX

designed for the average-case. To limit circuit overhead, only the

ALU has been made self-timed logic rather than converting the

entire design into an asynchronous one. The design was tested

for two versions of the ALU: one where the ALU consists of a

64-bit ripple adder and one where it contains a 64-bit CLA. . . . 82

6.1 a) CMOS full-swing interconnect. b) Low-swing interconnect.

c) PDIFF low-swing receiver from [100]. d) Optimized PDIFF

low-swing receiver. 87

6.2 Power breakdown at 1.68 GHz, i.e. the maximum performance

achievable by full-swing signaling. 89

6.3 Channel Delay vs line length. 90

6.4 32-bit communication channel layout. 91

6.5 Composition of the flit28 capacitance. 92

6.6 Composition of the flit7 capacitance. 92

6.7 Sensitivity to systematic variations. 93

6.8 Sensitivity to random variations. 95

6.9 Working samples after compensation of full-swing channels. x-

axis indicates the channel (sub-)circuits to which compensation

has been applied. 96

6.10 Working samples after compensation of PDIFF low-swing chan-

nels. x-axis indicates the channel (sub-)circuits to which com-

pensation has been applied. 97

6.11 Framework for assessing the effectiveness of variability com-

pensation techniques. 99

6.12 Working samples after ASV compensation with random, sys-

tematic variations and crosstalk. 102

6.13 Working samples after p-mos n-mos ABB compensation with

random, systematic variations and crosstalk. 103

List of Tables

2.1 Dual Rail Encoding. 16

3.1 Technology bifurcation in the 2003 ITRS roadmap. Leakage is

significantly lower in low standby power than high performance

technologies. 24

3.2 Power for the most important components of a LP-MPSoC in a

130nm bulk CMOS technology. 28

3.3 Thermal properties. 31

3.4 Maximum temperature and simulation time for three different

resolutions in the 3.2×3.2mm2 silicon surface with 0.64×0.64mm2

heat source at 819mW . 33

3.5 Comparison of the maximum temperature reached with a 3D

model and our equivalent RC model. 34

4.1 Power for the most important components of an MPSoC design

using a 0.13 µm bulk CMOS technology. 56

4.2 Thermal properties. 59

4.3 Timing comparisons between our MPSoC emulation framework

and MPARM. 62

5.1 Dual Rail Encoding. 72

5.2 Area Penalty of DCVSL. 75

6.1 Statistic pattern dependent power analysis of the full- low-swing

link with the 32 bit synthesized channel. 90

IX

Chapter 1

Abstract

The digital electronic market development is founded on the continuous re-

duction of the transistors size, to reduce area, power, cost and increase the

computational performance of integrated circuits. This trend, known as tech-

nology scaling, is approaching the nanometer size.

The lithographic process in the manufacturing stage is increasing its uncer-

tainty with the scaling down of the transistors size, resulting in a larger param-

eter variation in future technology generations. Furthermore, the exponential

relationship between the leakage current and the threshold voltage, is limiting

the threshold and supply voltages scaling, increasing the power density and

creating local thermal issues, such as hot spots, thermal runaway and thermal

cycles. In addiction, the introduction of new materials and the smaller devices

dimension are reducing transistors robustness, that combined with high tem-

perature and frequently thermal cycles, are speeding up wear out processes.

Those effects are no longer addressable only at the process level.

Consequently the deep sub-micron devices will require solutions which

will imply several design levels, as system and logic, and new approaches

called Design For Manufacturability (DFM) and Design For Reliability. The

purpose of the above approaches is to bring in the early design stages the

awareness of the device reliability and manufacturability, in order to introduce

logic and system able to cope with the yield and reliability loss.

The ITRS roadmap [1] suggests the following research steps to integrate the

design for manufacturability and reliability in the standard CAD automated

design flow: i) The implementation of new analysis algorithms able to predict

the system thermal behavior with the impact to the power and speed perfor-

mances. ii) High level wear out models able to predict the mean time to failure

of the system (MTTF). iii) Statistical performance analysis able to predict the

impact of the process variation, both random and systematic.

2 Abstract

The new analysis tools have to be developed beside new logic and system

strategies to cope with the future challenges, as for instance: i) Thermal man-

agement strategy that increase the reliability and life time of the devices acting

to some tunable parameter,such as supply voltage or body bias. ii) Error detection

logic able to interact with compensation techniques as Adaptive Supply Voltage

ASV, Adaptive Body Bias ABB and error recovering, in order to increase yield

and reliability. iii) architectures that are fundamentally resistant to variabil-

ity, including locally asynchronous designs, redundancy, and error correcting

signal encodings (ECC). The literature already features works addressing the

prediction of the MTTF [2], papers focusing on thermal management in the

general purpose chip as [3], and publications on statistical performance analy-

sis as [4].

In my Phd research activity, I investigated the need for thermal manage-

ment in future embedded low-power Network On Chip (NoC) devices.I de-

veloped a thermal analysis library, that has been integrated in a NoC cycle ac-

curate simulator [5] and in a FPGA based NoC simulator [6]. The results have

shown that an accurate layout distribution can avoid the onset of hot-spot in

a NoC chip. Furthermore the application of thermal management can reduce

temperature and number of thermal cycles, increasing the system reliability.

Therefore the thesis advocates the need to integrate a thermal analysis in the

first design stages for embedded NoC design.

Later on, I focused my research in the development of statistical process

variation analysis tool that is able to address both random and systematic vari-

ations. The tool was used to analyze the impact of self-timed asynchronous

logic stages in an embedded microprocessor. As results we confirmed the

capability of self-timed logic to increase the manufacturability and reliability.

Furthermore we used the tool to investigate the suitability of low-swing tech-

niques in the NoC system communication under process variations. In this

case We discovered the superior robustness to systematic process variation of

low-swing links, which shows a good response to compensation technique as

ASV and ABB. Hence low-swing is a good alternative to the standard CMOS

communication for power, speed, reliability and manufacturability. In sum-

mary my work proves the advantage of integrating a statistical process varia-

tion analysis tool in the first stages of the design flow.

The thesis is structured as follows: Chapter I provides an exhaustive in-

troduction to the future reliability and manufacturability challenges and solu-

tions. Chapter II explores the temperature-aware design in low-power MP-

SoCs whereas Chapter III describes a HW-SW emulation framework for tem-

perature aware design in MPSoCs. Chapter IV explains how to exploit the

performance benefits of self-timed logic in synchronous design affected by

Abstract 3

process variation. Chapter V advocates the effectiveness of adaptive supply

voltage and body bias as post-silicon variability compensation techniques for

full-swing and low-swing On-Chip communication channels.

Chapter 2

Reliability and

Manufacturability Challenges

Medium High Very HighVariability

Energy scaling will slow down>0.5>0.5>0.35Energy/Logic Op

scaling

0.5 to 1 layer per generation8-97-86-7Metal Layers

11111111RC Delay

Reduce slowly towards 2-2.5<3~3ILD (K)

Low Probability High ProbabilityAlternate, 3G etc

128

11

2016

High Probability Low ProbabilityBulk Planar CMOS

Delay scaling will slow down>0.7~0.70.7Delay = CV/I

scaling

256643216842Integration

Capacity (BT)

8162232456590Technology Node

(nm)

2018201420122010200820062004High Volume

Manufacturing

Figure 2.1: ITRS roadmap.

The digital electronic market is characterized by the continuous shrinking

of the devices. Focusing on the growing handheld segment, the small size and

high battery operation time are the must characteristics, whereas the applica-

tions are requiring more and more computational performance as are happen-

ing for the mobilephone, smartphone, camcorder, gps system. To solve the

above requirements the research and industry are developing high integrated

6 Reliability and Manufacturability Challenges

Circuit

simulation

Chemical

Mechanical

polishing

Process filesMultiple input

switching

InterconnectsDoping

Cell modelingCoupling

capacitance

Overlap

capacitance

Resist thickness,

Etching

I-V CurvesAging

PBTI/NBTI

Threshold

voltage

Focus, Dosage

RC extractionSupply voltageChannel widthAlignment,

Tilting

Timing analisysTemperatureChannel lengthMask

Imperfection

CAD AnalysisCircuit operationCircuit

Parameters

Manufacturing

process

Figure 2.2: Source of variability.

system with microcontroller, general purpose processors, digital signal proces-

sor (DPS), dedicated hardware and interfaces in only one chip. This solution

will provide the performance required by the applications, with small power

consumption and small dimensions. The above system are classified as System

On Chip (SoC) or Network On Chip (NoC) depending to their complexity and

communication strategy among the various components. The SoC and NoC

are therefore composed by an higher transistors number and require a big chip

area, rising to them problems already present in the microprocessor segment.

In fact the big area increase the probability of manufacturing errors, decreasing

the chip yield, and provides the space necessary to the rise of high temperature

point called hot-spot, able to reduce the reliability of the systems. Those effect

will be exacerbated in the future transistors technology. The ITRS roadmap

(Fig. 2.1) [7] foresees the continuous doubling of the integration capacity ev-

ery 2 years with a smaller energy per operation reduction. Those factors will

produce an higher power density, which will increase the local temperature

and the probability of hot spot. Furthermore, the future transistors will have

an higher parameter variability, that will decrease the production yield and

device reliability. The source of variability (Fig. 2.2) [8] are inherent to the

manufacturing process, operation condition and CAD analysis:

Manufacturing process uses a lithographic system that realizes an integrate

circuit in a silicon die by photo impression, chemical etching and dopant

diffusion. The lithographic precision is related to the wavelength and

to the minimum size of the transistors. Smaller the minimum size is ,

2.1 Design For Manufacturability 7

smaller the wavelength should be to keep constant the process resolu-

tion. In the future technology will not be possible to reduce the litho-

graphic wavelength, hence the resolution will decrease, augmenting the

transistor dimension variation , as the channel length.

Operation condition is critical for the transistor performance and life. In fact

the commutation time is related to the temperature, supply voltage and

aging. Moreover the leakage current increases exponentially with the

increase of the temperature, and several wearing out processes are corre-

lated to the thermal cycling. In the future technology there will be an

higher power density, which may increase the local temperature (hot

spot) and leakage currents, conducing to a possibly thermal run away.

The power density may even exacerbate the thermal cycles causing a con-

sequently faster wear out.

CAD analisys has to simulate the future behavior of the device. The simula-

tion uses models which have their approximate precision, that will affect

the results, with a consequent imprecision to the analyzed device. Fur-

thermore the standard analysis takes in account several effect, as oper-

ation condition and process variations, as worst case, that strongly con-

straint the power and speed performance of the device. Such limitation

will not be sustainable for the future technology where the process vari-

ation will be really high. In fact the higher variation will pull the worst

case so far away that the consequently constraint may compromise the

advantage related at the use of the new technology.

In the following sections will be further analyzed the impact of the cited vari-

ations to the manufacturability and reliability, with the possibly design resolu-

tion.

2.1 Design For Manufacturability

The technology scaling is approaching the nanometer size, rising new design

challenges, especially for the increase of the manufacturing variation. The

lithography process is not able to reduce the wavelength (see fig. 2.3) for the fu-

ture transistors technology. Therefore the diffraction of the beam will become

worst and worst, reducing the process precision more in deep the technology

goes. Such effect will afflict the static variability of the transistor parameter,

which is composed by random and systematic variations. The random varia-

tion is due to the uncertainty of the mask and the process in general, whereas

the systematic variation is due to the different position of the transistor onto

the silicon wafer. At the change of the beam hitting angle changes the way that

8 Reliability and Manufacturability Challenges

0,01

0,1

1

1980 1990 2000 2010 2020

micron

10

100

1000

nm

193nm
248nm

365nm

Lithography

Wavelength

65nm

90nm

130nm

Generation

Gap

45nm

32nm

13nm

EUV

180nm

Source: Borkar, Intel

Figure 2.3: Sub-wavelength Lithography.

the mask is impressed, causing transistor size variation correlated to the posi-

tion covered by the transistor itself. Therefore the systematic variation is pre-

dictable and it is composed in two components; Within Die (WID), that afflict

the transistors inside a chip; and Die To Die (DTD), which sets different aver-

age systematic variation to different dies inside the wafer. The increase of the

diffraction will reduce the process precision, that will enlarge the random and

systematic variations. At the design level the random and WID variation has

always been addressed with the worst case approach. But their enlargement

is pushing the worst case so far that the future technology may not be able to

improve the power and speed performance. Therefore is becoming mandatory

to address those static variation at the design level, rising a new better than

worst case design. Obviously the new design has to develop the capability to

keep an higher yield, providing a good power and speed performance. This

kind of design is called Design For Manufacturability (DFM) and aims to pro-

vide the devices with circuitry and system able to cope with variations, acting

to some circuit parameters or providing a resilient characteristic to the critical

stages. The robustness to process variation can be achieved with compensa-

tion technique, error detection technique and completion detection technique

as illustrated below.

2.1 Design For Manufacturability 9

2.1.1 Compensation Technique

The static variations change the transistor channel length and threshold volt-

age, varying the performance of the devices. A way to compensate the varia-

tion therefore is to pull back the performance of the transistors changing their

supply voltage or body bias voltage.

Adaptive Supply Voltage

The Adaptive Supply Voltage (ASV) is a compensation technique that changes

the circuit supply voltage to calibrate and recover the performance lost due to

the variation action. In fact the commutation speed of the transistor is linearly

related to the supply voltage, providing a good knob to calibrate the perfor-

mance. However the increase of the supply voltage will increase the power

consumption, where the voltage is quadratically related to the power, limiting

the application of ASV to the only critical area. To address this problem, the

researcher are realizing the voltage isles, which provide different supply voltage

to different circuit area. The voltage isles set an hierarchy to the supply distri-

bution, in which there are local supply and global supply lines. The local supplies

the power to the transistors inside the isle, while the global provide the power

to the isles and then to the local lines. Usually the connection with the global

to the local is done by a multiplexer or charge pump, depending if the global

lines have one or multiple voltages. The charge pump is an high efficient cir-

cuit able to vary the voltage, whereas the multiplexer provides the capability of

the local line to pick one of the few voltages carried by the global lines. The use

of ASV is not without of troubles. In fact the communication between different

voltage isles has to use circuit able to switch the swing of the signals from a

voltage domain to another (level shifter). Especially if a lower voltage isle has

to send data to an higher voltage domain, where the swing of the signal has to

be managed by a level shifter to avoid static power consumption. Furthermore

the clock distribution has to go to different voltage domains passing through

several level shifters, exacerbate the global clock synchronization.

Adaptive Body Bias

The Adaptive Body Bias (ABB) is a compensation technique that changes the

transistor threshold voltage to calibrate and recover the performance lost due to

the variation action. In fact the change of the body bias changes the thresh-

old voltage that changes the transistor commutation speed, providing a knob

to calibrate the performance. However the variation of body bias to increase

the performance will increase the leakage currents, that are exponentially cor-

related to the threshold voltage. Therefore is suggested to apply the forward

10 Reliability and Manufacturability Challenges

N+ P+ P+ N+ N+ P+

Bulk

Nwell

Input

Output

VddNwell
Bias

Figure 2.4: Single Well P-MOS Body Bias.

body bias only to the critical area. Since the P-MOSs are placed in a N-WELL

(Fig. 2.4), it is possible to easily separate their body bias designs several N-

WELLs. Whereas to guaranty different N-MOS biasing we have to use a triple

well technology (Fig. 2.5), which its realization is more expensive then a single

well technology. The use of the ABB to the only P-MOS will reduce the capa-

N+ P+ P+ N+ N+ P+

Bulk

Deep-Nwell

Input

Output

VddNwell
Bias

Pwell

Pwell

Bias

Figure 2.5: Triple Well CMOS Body Bias.

bility to tune the device performance, while the utilization of the both P and

N-MOS in the ABB process will increase the manufacturing cost. Therefore

will be mandatory to analyze during the design which ABB has to be applied

to compensate the static variation.

ASV and ABB Issues

The ABB has all the isles with the same supply voltage, avoiding the use of

level shifter and the consequent problem to the clock synchronization as in

the ASV. Furthermore the ABB require lower extra power to compensate the

same variation than ASV, but it has weaker capability to tune the device per-

formance. Therefore the application of the ASV and ABB has to be addressed

during the design phase with a support of a static variation analysis tool. In

2.1 Design For Manufacturability 11

that way is possible to understand which compensation technique will be more

suitable in terms of power and yield. Moreover the setting of the above com-

pensations has to be done by another system, that could act at the test or oper-

ation time. The setting system has to be decided during the design and it could

be an error detection system or a performance estimator allocated inside the

device or in the test machine.

2.1.2 Error Detection Technique

The Error Detection Technique communicates the onset of some critical timing

events or computation errors to the system, that activates a procedure to restore

the correct data or operation environment. The detection is done using error

detection circuitry as razor and crystal ball flip flop.

Razor

Figure 2.6: Razor Flip-Flop.

The razor detects when the input signal of a pipe stage register violets the

flip-flop setup time. In this case the register latches a wrong data, causing a

pipeline failure. The detection is based to the comparison of the outputs of

two flip flops, which one of them has delayed clock. In fact the violation of

the setup time will cause the wrong register latching while the clock delayed

flip flop will register the correct data, and the comparison of the both flip flop

outputs will notice the error(Fig. 2.6). Furthermore the data stored in the be-

side flip flop could be used to restore the correct value as follow [9]. When the

system receives the error signal, the pipeline will be stalled, providing the time

necessary to insert the correct value to the faulty pipe register. Moreover the

system can act to the ABB or ASV to increase the performance, reducing the

error probability. In [9] the system set the supply voltage to have the optimal

error probability for a minimum power consumption and maximum through-

put. Fig. 2.7 denotes as the razor has a lower power consumption then the

12 Reliability and Manufacturability Challenges

worst case approach, power that could be spent to increase the manufactur-

ing yield. However the use of the razor requires special attention to the logic

Decreasing Supply Voltage

Energy

Energy of Adder
Operations, Eadditions

Energy of

Pipeline
Recovery,

Erecovery

Total Adder Energy,
Eadder = Eadditions + Erecovery

Optimal Eadder

Pipeline
Throughput

IPC

Energy of Adder
w/o Razor Support

Decreasing Supply Voltage

Energy

Energy of Adder
Operations, Eadditions

Energy of

Pipeline
Recovery,

Erecovery

Total Adder Energy,
Eadder = Eadditions + Erecovery

Optimal Eadder

Pipeline
Throughput

IPC

Energy of Adder
w/o Razor Support

Figure 2.7: Razor:The Qualitative Relationship Between Supply Voltage, Energy and
Pipeline Throughput (for a fixed frequency).

operation time. In fact the logic before the razor register has to have the mini-

mum computation time bigger then the delay applied to the clock, to avoid to

sign as an error a correct operation. Moreover the logic can not operate with

a clock period smaller then the worst case minus the clock delay, in order to

keep detectable all possible errors. Hence the razor require an extensive tim-

ing analysis in the design phase, where will be evaluated its applicability to the

specific device.

Crystal Ball Flip Flop

Figure 2.8: Crystal Ball Flip-Flop.

The crystal ball recognizes the insurgency of a critical condition that will

violate pipeline register setup time [10]. The Fig. 2.8 shows two similar flip flop

which one of them has a delayed input. In this way the delayed input flip flop

2.1 Design For Manufacturability 13

will miss to latch the data every time the input signal will be near to the register

setup time violation. Then the comparison of the two flip flop outputs will set

the error signal, that will inform the system of its possible failure. Usually

the device react to the crystal ball alert tunning some compensation system, as

ASV or ABB. The crystal ball does not provide the support for a possibly error

recovering as in the razor, but only an alert when the circuit is too near to the

critical timing condition. The crystal ball does not need the evaluation of the

minimum operation time of the logic as razor, but requires the same analysis

for the clock period, that here can not be inferior to the worst case.

2.1.3 Completion Detection Technique

The Completion Detection Technique senses the complete operation execution and

can be used by the system either to synchronize the various pipe stages (Hand-

shake), or to stall the pipe to provide the right time to complete the operation

(Clock Gating).

Input
Register

Output
Register

Completion
Neutral

Detector

Asynchronous Adder

HandShake
Controller

HandShake
Controller

A B

not A A B not B

En1

En2

Completion

Neutral
not SumSum

not SumSum

A
ck

n
o

w
le

d
g

e Precharge

R
eq

u
es

t

Figure 2.9: Handshake Pipe Stage.

The handshake regulates the pipeline flow, posing a controller every pipe

register (Fig. 2.9). Each controller checks the arising of both logic completion

and follow stage data request. When all of them occur, the controller activates

the pipe register to latch the data, sends a new data request to the previous

stage and sends the acknowledge to the follow controller. Hence the pipeline

works asynchronously. This imply the use of the completion detection logic

to the whole circuit, with an higher power cost. However the absence of the

clock tree remove all the clock design concerns, as the clock skew and the high

14 Reliability and Manufacturability Challenges

clock electromagnetic interferences. Moreover the asynchronous pipeline per-

formance is related to the average computation speed, that is faster and less

affected by process variation then the worst case. Therefore the handshake

pipeline has a better resilience to the variation, and its faster performance can

be spent to decrease the completion power cost.

Input

Register

Output

Register

Completion

Neutral
Detector

Asynchronous Adder

Clock
Gating

A B

not A A B not B

not SumSum

Sum

Clk

Precharge

Completion

Figure 2.10: Clock Gated Pipe Stage.

The clock gating controller (Fig. 2.10) checks the operation completion and

stall the clock when the operation needs more than one period to be executed.

The use of a completion detection logic gives to the device a resiliency to the

variation. In fact the clock gating can work with process variation, that will

change only the average pipeline throughput. Furthermore the clock gating

performance is related to the average throughput, that is less affected by pro-

cess variation then the worst case design, increasing the manufacturing yield.

Moreover the clock gating permit to integrate a completion detection pipe

stage in a traditional pipeline. In this way is possible to substitute the crit-

ical stage with a completion detection one, improving the manufacturability

and reliability, and avoiding the detection logic power expense to the whole

pipeline.

The detection of the operation completion can be done by current sensing or

dual rail logic as illustrated below.

Current Sensing

The CMOS devices have a static current near to zero. The variation of one input

drastically increases the current flows through the device, which will return to

the static value only when the entire logic has complied the operation. There-

2.1 Design For Manufacturability 15

Figure 2.11: Current Sensing Completion Detection.

fore the current sensing completion detection profiles the current flows through

the logic to detect the operation completion [11]. In fig. 2.11 the completion

has been done by two current sensors. In fact the CMOS commutation involves

either capacitance charging or discharging, causing respectively current to the

P-MOS or N-MOS, which are detected from the both current sensors. Therefore

the current sensors provide to the standard CMOS the completion detection

signal, which can be used to realize asynchronous or clock gated circuit. How-

ever the impact of the current sensor to the CMOS design is not null. The volt-

age drop due to the current sensor will reduce the commutation performance

of the device. Furthermore the current profiling requires biased transistors,

which dissipate static power. Moreover some device commutations generate

a smaller current variation that can not be easily detected and a few publica-

tion have resolved this problem inserting a timing out counter [11]. Then the

clock gating solution is more suitable for the current sensing technique than

asynchronous realization.

Dual Rail Logic

The Dual Rail Logic embeds the information of the operation compilation inside

the logical signal, that is encoded in two wires as shown in the table 2.1. One

wire carries the true logic value while the other one encode the false value.

The logical information is provided when one of the two wires has a voltage

16 Reliability and Manufacturability Challenges

True Wire False Wire State Logic Value

gnd gnd Neutral -
gnd vdd Valid False
vdd gnd Valid True
vdd vdd Not Allowed -

Table 2.1: Dual Rail Encoding.

equal to vdd, while the valid state informs to the advent of the operation com-

pletion. Usually a dual rail circuit start e new operation when it has all the

logic components to the neutral state. The execution flows through the circuit

changing the state of every cell from neutral to valid, and the completion of

the global operation is detected when all the outputs are in a valid state. Af-

terward the circuit will be brought back to the neutral state, to become ready

for another operation. The implementation of the dual rail logic require the

presence of both true and false evaluation stages. They can be done using a

traditional CMOS circuit with a special attention to avoid the glitches occur-

rence [12], that can cause a false completion detection. However a logic op-

erator realized in the above way, will take more then a double space of the

standard CMOS. Another dual rail implementation uses the Dynamic Cascode

Go

True

function

NMOS Tree

Input

Out Out

InputNegative

function

NMOS Tree

Figure 2.12: Dynamic Cascode Voltage Switch Logic.

Voltage Switch Logic (DCVSL) (Fig. 2.12. In this case the true and false stages

are realized with the only n-mos branches, that are connected each other with

a p-mos transistor. Such topology permits a smaller realization and the intro-

duction of the precharge and footer transistors gives the way to bring the cell

in the neutral state. The dual rail logic is therefore high suitable for handshake

and clock gating pipeline, providing an higher robustness to process variation

due to the self timed characteristic. However this kind of logic requires larger

2.2 Design For Reliability 17

area for the duplication of the signal wires, the introduction of the comple-

tion detector and the presence of the precharge wire. Furthermore the constant

switching from neutral to valid states and vice versa causes an higher power

consumption, which can be balanced by the faster computation performance,

that is related to the average computational speed instead to the worst one as

happens in the CMOS logic. Moreover the dual rail is not supported by the

commercial design tools and test approaches, obstructing its utilization in the

future devices.

2.2 Design For Reliability

The continuous shrinking of the technology dimension is increasing the power

density and transistor weakness, rising reliability challenges. The density and

0

50

100

150

200

250

H
e

a
t

F
lu

x
 (

W
/c

m
2

)

Source: Borkar, Intel

Figure 2.13: Heat flux in a Intel Microprocessor.

not well distribution of the power(Fig. 2.13) generate high temperature point

called hot spot (Fig. 2.14). Since the transistor commutation speed is inversely

proportional to the temperature, the insurgency of hot spot may unbalance the

propagation time of the signals increasing the failure rate. Furthermore many

wear out processes are proportionals to the temperature as Electromigration,

18 Reliability and Manufacturability Challenges

40

50

60

70

80

90

100

110

T
e

m
p

e
ra

tu
re

 (
C

)

Source: Borkar, Intel Source: Borkar, Intel

Figure 2.14: Temperature variation in a Intel Microprocessor.

Stress migration, Time dependent dielectric breakdown and Thermal cycling, causing

a relation between mean time to failure (MTTF) and temperature as explained

below [13]:

Electromigration The momentum transfer in a wire transports metal atoms

from one end to the other, eventually leading to increased resistance and

shorts. The temperature relates the electromigration’s MTTF as in the

equation 2.1.

MTTFEM ∝ (J)
−n

e
EaEM

kT (2.1)

Stress migration. In this phenomenon, mechanical stress causes metal atoms

in the interconnect to migrate, much as they do in electromigration. Ma-

terials differ in their thermal expansion rate, and this difference causes

thermomechanical stress that is related to the temperature as in the equa-

tion 2.2

MTTFSM ∝ |T0 − T |
−n

e
EaSM

kT (2.2)

Time dependent dielectric breakdown. Also known as gate-oxide breakdown,

time dependent dielectric breakdown (TDDB) is the result of the gate di-

2.2 Design For Reliability 19

electrics gradual wear out, which leads to transistor failure and is related

to the temperature as in the equation 2.3.

MTTFTDDB ∝

(

1

V

)a−bT

e
[X+(Y/T)+ZT]

kT (2.3)

Thermal cycling. The accumulation of permanent damage experienced by the

circuit for temperature cycles may lead to failure. Moreover the presence

of hot spot increase the temperature difference (Td), exacerbating the ac-

tion of this wear out process as shown in the equation 2.4.

MTTFTC ∝

(

1

Td

)q

(2.4)

Therefore the future systems will have to manage the temperature to keep

acceptable reliability and failure rate levels, using Thermal Management and

Temperature Aware Design of the system.

2.2.1 Thermal Management

The thermal management acts to some tunable parameter as voltage and fre-

quency, processors states and workload distribution to keep the temperature

under a fixed threshold, or to limit the extension of the thermal cycle. The tem-

perature is sensed in few strategic points inside the die surface. The usually

action of the thermal management is to cool down the area that exceeds the

temperature limit acting either to the circuit activity (a), supply voltage (Vdd)

or operative frequency (f) to reduce the power consumption (P) as shown in

the follows equation.

P ∝ a · f · V dd2 (2.5)

The voltage and frequency scaling is an efficient way to reduce the power con-

sumption. In fact the power is quadratically related to the supply voltage and

linearly related to the frequency as shown in the equation 2.5. However the re-

duction of the supply voltage implies a slower transistor switching speed, with

a consequent slower operative frequency. Furthermore the change of the fre-

quency needs a settlement time to stabilize the clock generator, affecting even

more the computational performance. Therefore the voltage and frequency

scaling has to be used carefully, avoiding an excessive computational perfor-

mance penalty. The reduction of the power consumption can be also done

freezing the processor activity, setting the idle state. But due to the excessive

performance penalty, this procedure is suitable in the rarely presence of really

high temperature that may damage the circuit. However in the multiprocessor

20 Reliability and Manufacturability Challenges

system, the thermal management can distribute the workload to the various

processors in the way to keep constant or limited the temperature. In order to

do such kind of thermal management, the system has to know the tempera-

ture of each processor and adopt a distribution job logic, that causes the minor

thermal impact. Furthermore, the realization of the thermal management at

the operative system level, could include the estimation of the application per-

formance requirement, providing the possibility to set the desired operative

frequency and supply voltage to the processor unit most suitable for the right

thermal behavior. Hence the thermal aware design is required to develop system

able to support complex thermal management as illustrated above.

2.2.2 Thermal Aware Design

Figure 2.15: Temperature Distribution Inside a Multiprocessor System.

The increasing power density in the future transistors technology is rising

thermal problem that are no longer addressable to the only packaging point of

view. In fact the insurgency of hot spot will reduce the reliability of the system

2.3 Thesis contribution 21

and increase the failure rate. Therefore the temperature has to be analyzed in

the design phases, to evaluate different layout solutions, system organization

and typology. The position of the different components strongly influence the

thermal behavior of the chip. Then a better placement with an awareness of the

future thermal behavior could avoid the insurgency of the hot spot increasing

the reliability of the devices. Furthermore the analysis in the design stages

permits to find the best position for the temperature sensors. Moreover the

system simulation with temperature aware provides the support for thermal

management implementation, and in conjunction with a wear out estimator,

the support for reliability management development.

2.3 Thesis contribution

My Phd research activity has focused on design and analysis techniques for

tackling the variations in the embedded low-power digital circuits. I devel-

oped a thermal and static variation analysis tools, to investigate the need and

impact of manufacturability and reliability design techniques. The evolution

of the embedded devices in System on Chip (SoC) and Network on Chip (NoC) is

enlarging the area of the die, that in conjunction with the higher power density

and parameter variability of the new transistor technologies, may increase the

hot spot occurrence and will decrease the manufacturing yield. Such condition

are pushing the designer to address both temperature and process variations at

the first design stages, as system and logical, to keep good reliability and man-

ufacturability levels. Therefore I developed a thermal analysis library able to

predict the thermal behavior of a silicon die with traditional packages, suitable

to work with system simulators. Then the library has been integrated in a NoC

cycle accurate simulator [5] and in a FPGA based NoC simulator [6]. There-

after both simulators were utilized to analyze hot spot insurgence in several

NoC designs, evaluating the impact of the components placement, processor

typologies and thermal managements. All the analyses have confirmed the

need of a thermal analysis at the firsts design stages to provide a good reliabil-

ity level in the future embedded system.

Later on I developed a static variation analysis tool, that is integrable into

commercial design CAD flows, able to address both systematic and random

variations. The tool was used to evaluate the benefit of a self-timed logic inser-

tion in the critical stage of an embedded processor pipeline, where the commer-

cial design flow was adapted to support the synthesis of DCVSL circuits. The

results proved the benefit of the self-timed insertion, providing new paradigm

to exploit the self timed benefit in a synchronous pipeline. Moreover the static

variation analysis tool was used to extensively analyze the suitability of low

22 Reliability and Manufacturability Challenges

swing technique for NoC communication networks. Low swing communica-

tion showed a good resilience to systematic and random variation, with low

power consumption and good performance. As last, the static variation anal-

ysis tool was adapted to analyze the efficiency of the adaptive supply voltage

and adaptive body bias in NoC communication. The results showed as ASV

is the best solution to recover static variation in low swing links with a small

power cost, whereas the ABB is the best choice for the traditional full swing

communication channel in terms of power and efficiency. Moreover the use of

the static analysis tool has proved its utility in the first stages of a low-power

NoC design.

Chapter 3

Exploring temperature-aware

design in low-power MPSoCs

3.1 Overview

The power density in high performance systems continues to rise with every

process technology generation, thereby increasing the operating temperature

and creating “hot spots” on the die. As a result, the performance, reliability

and power consumption of the system degrade. To avoid these “hot spots”,

“temperature-aware” design has become a must. For low-power embedded

systems though, it is not clear whether similar thermal problems occur. These

systems have very different characteristics from the high performance ones:

E.g., they consume hundred times less power. Therefore, I provide in this chap-

ter guidelines to delimit the conditions for which temperature-aware design is

needed.

3.2 Introduction

In recent years, the power densities in high performance microprocessors have

doubled every three years [16]. Moreover, most power is consumed in a few

localized spots which heat up much faster than the rest of the chip (e.g., the

CELL processor [29]). These hot spots potentially increase leakage currents,

cause timing errors and/or even result in physical damage. Heating has also

become a big issue because expensive cooling solutions are not acceptable for

consumer products. Several authors have therefore advocated the need for

“temperature-aware” design techniques (see [33] for an overview). Some of

them have already found their way in industrial designs (E.g., in the Intel Ita-

nium processors [30]).

24 Exploring temperature-aware design in low-power MPSoCs

It is less clear whether such techniques are required for low-power multi-

processors systems-on-a-chip (LP-MPSoC). These systems dissipate two orders

of magnitude less power (max 3W instead of 100W). Since portable systems

(such as mobile phones) are the main target for LP-MPSoCs, they are built in a

low standby power technology instead of a high performance one. The main

difference is that subthreshold leakage is engineered to remain low, even at the

expense of a higher power supply and thus more dynamic power (see table

3.1). Due to the smaller contribution of leakage power, the impact of tem-

perature on the total power dissipation is limited [22]. However, packaging

solutions for consumer electronics are much cheaper and rely on natural con-

vection for removing the heat. As a result, the die is thermally more isolated

and may still heat up.

65nm technologies VDD(V) VT (V) Ioff(µA/µm)
high performance 0.9 0.18 7e − 2

low power 0.8 0.26 5e − 3
low standby power 1.1 0.5 2.5e − 5

Table 3.1: Technology bifurcation in the 2003 ITRS roadmap. Leakage is significantly
lower in low standby power than high performance technologies.

The existence of hot spots on the die is even harder to predict (as shown

in [18]). LP-MPSoCs for instance are built with a different computer archi-

tecture than high performance systems. E.g., multiple power-efficient proces-

sors instead of few complex super-scalar processors (compare a Intel P4 with

a Philips Nexperia). Secondly, they operate at a lower power density: the pro-

cessors run at a lower speed (typically around 500Mhz instead of 3GHz) and

contain a large amount of embedded memory. Finally, the die of a LP-MPSoC

is typically smaller than that of a high performance computer. Therefore, the

generated heat can more easily reach the corners of the chip, resulting in less

temperature variations across the die. Several factors thus seem to indicate

that hot spots are less likely on LP-MPSoCs than on high performance systems.

However, this has to be verified.

The contribution of this chapter is to delimit the conditions for which hot

spots become a critical problem in LP-MPSoCs. To investigate this problem, we

have built an accurate thermal/power model of a multi-processor system-on-

a-chip. Our thermal model is different from those of high performance systems

because we investigate the thermal behaviour of multiple cores and embedded

memories on a single die and we look at package solutions for LP-MPSoCs

which have a much higher thermal resistance.

For modelling the heat flow, we rely on an equivalent electrical RC model

(similar to HotSpots [33]) which we have calibrated against a 3D-finite ele-

3.3 Related work 25

ment analysis. To obtain realistic traces of the activities on the die, we have

integrated our thermal model in a multi-processor system-on-a-chip simula-

tor. Experimental results for a typical LP-MPSoC show that the temperature

differences on chip are limited and that the temperature changes only slowly

with time.

3.3 Related work

Three problems arise due to an elevated operating temperature. First, the

higher the temperature becomes, the more leakage currents occur and thus the

more power is consumed. This has been investigated for instance by [34] [36]

[24]. Secondly, a higher temperature also reduces the mean-time-to-failure of

the system. For instance, the physical processes that trigger electromigration

and stress migration become more active if temperature rises (see [28] [27]).

Thirdly, a higher temperature impacts the performance of the transistors. On

one hand it reduces the mobility of the charge carriers (electron and holes),

but on the other hand it decreases the VT [22]. Usually, higher temperatures

decreases the performance of circuits. Timing violations then become more

likely.

To investigate the above issues in detail, the authors of [33] have developed

a thermal/power model for super-scalar architectures. It not only predicts the

temperature variations between the different components of a processor, but

also accounts for the increased leakage power and reduced performance. Their

results clearly prove the importance of hot spots in high performance systems.

Based on this and/or similar models, many architectural extensions have

been proposed to reduce the impact of hot spots and/or to prevent the die from

breaching a critical temperature. The power density in super-scalar processors

can be reduced with fetch toggling, decode throttling, frequency and/or volt-

age scaling (e.g., [15] [20] [32] [17] [30]). Except for frequency/voltage scaling,

the above techniques are only applicable on super-scalar processors. Another

approach for reducing the impact of hot spots is adding redundancy to the ar-

chitecture. [33] advocates that a spare register-file and migrating computation

between register files is the best in response to heating. Similarly, [19] exam-

ines the benefits of moving computation between multiple replicated units of

a super-scalar processor.

Besides architectural solutions, the temperature can also be reduced at the

system level. E.g., [31] stops scheduling hot tasks when the temperature reaches

a critical level. In this way the system is idling and the CPU spends more time

in low-power states, such that the temperature either locally or globally is de-

creased.

26 Exploring temperature-aware design in low-power MPSoCs

The related work discussed above is targeting high performance systems,

where the power density hampers scaling. However, the context is different

in low-power systems, which run at a lower speed and are subjected to less

leakage power. [34] have investigated the impact of temperature and volt-

age variations across the die of an embedded core. Their results show that

the temperature varies around 13.6 degrees across the die. Since they use a

130nm CMOS Silicon-on-Insulator technology, it is hard to extrapolate their

results to a bulk CMOS technology. [21] explains an allocation and schedul-

ing algorithm for eliminating hot-spots in a system-on-chip, but they target a

much higher power budget (up to 15W) than is present in systems-on-a-chip

for portable applications (up to 3W see description of the system drivers in the

ITRS roadmap).

Based on our literature study, we believe that the case for temperature-

aware design has not yet been made for low-power multi-processor systems.

Particularly, the existence of hot spots in these systems has not been validated

yet.

3.4 A typical LP-MPSoC

In Figure 3.1, we show the floorplan of a typical LP-MPSoC. It consists of 16

ARM7 cores and 16 32kB shared memories. The shared memory is used for

storing large data structures and communicating data between the processors.

Each ARM7 core is attached to a local 8kB 2-way associative data cache and a

8kB direct mapped instruction cache. The memories and processors are con-

nected using a XPipes Network-on-Chip [14] of which a 6X6 switch and net-

work interface modules are shown on the floorplan. We have obtained the

dimensions of the NoC circuits by synthesizing and building a layout. The di-

mensions of the memories and processors are based on numbers provided by

an industrial partner. In the remainder of the chapter, we will use this floorplan

to research the temperature effects inside an LP-MPSoC.

3.5 Power/thermal analysis

To estimate the power consumption and temperature of all architectural blocks

inside an LP-MPSoC, we have built a simulation environment as depicted in

Figure 3.2.

We use a cycle accurate simulation platform for measuring the activities in

each of the memories and processing elements in the system1. We measure

1based on MPARM [26].

3.5 Power/thermal analysis 27

ARM7

IcacheDcache

Memory

1200um

NoC

6x6 switch

NoC

interface

Figure 3.1: Floorplan of a multi-processor system on a chip in a 130nm technology: 16
ARM7 processors each connected to a 2-way associative 8kB data cache and
a direct mapped 8kB instruction cache; 16 memory tiles of 32kB; a NoC con-
necting processors and memories. Thermal cells are 150µm× 150µm.

the time that each processor spends in active/stalled/idle mode. We trace the

number and type of accesses to each of the memories (instruction cache/data

cache and large shared memories). Based on these activities, we estimate every

10µs the energy consumption in each of the thermal cells of the layout. There-

after, we feed this data into our thermal simulator. The latter one computes the

temperature evolution of the die during the last 10µs. The temperature map

of the die is then logged in a file. Since the joint performance/power/thermal

simulation is rather time-consuming, we also provide the option to dump the

components’ activities in a trace-file. Using this trace-file, we can for instance

more quickly explore different packaging solutions.2

2In this case though, we cannot feedback the temperature effects to the performance simulator

28 Exploring temperature-aware design in low-power MPSoCs

Cycle accurate
simulator

Power
estimation

Thermal
Analysis

Events

Power/
thermal cell

Application

Configuration

Architecture

Layout
Thermal stack

Temperature/
cell

Figure 3.2: Power/thermal model integrated in a cycle-accurate LP-MPSoC simulator
[25].

3.5.1 Power estimation

Max. Max.
Power@100Mhz Power density

ARM7 5.5mW 0.03W/mm2

DCache 8kB/2way 43mW 0.012W/mm2

ICache 8kB/DM 11mW 0.03W/mm2

Memory 32kB 15mW 0.02W/mm2

Table 3.2: Power for the most important components of a LP-MPSoC in a 130nm bulk
CMOS technology.

In Table 3.2, we outline the power consumption and power densities of

the most important components of our system-on-a-chip. The table contains

the maximum power numbers, but the effective power is normally lower, de-

pending on the workload (activities of processors and memories). We ignore

leakage energy. Leakage in mobile systems has to be limited for guaranteeing

sufficient battery-life time. Typically, leakage is therefore eliminated at the de-

vice level by developing high VT transistors. As a result, the leakage can be

as low as 25pA/µm (see ITRS roadmap). High VT transistors come at the ex-

3.5 Power/thermal analysis 29

pense of a higher VDD and thus more dynamic energy (since the VDD − VT has

to be kept constant for retaining the same performance). A better option is to

use leakage reduction techniques such as back-biasing. E.g., [23] jointly opti-

mize VDD/VT by using dual-gate devices or back-biasing. The authors lower

the VDD for reducing the dynamic power. However, to retain the same per-

formance, they have to reduce VT as well, which unfortunately exponentially

increases the subthreshold leakage. In the optimal VDD/VT operating point

(where the VDD/VT are more aggressively scaled than on the ITRS roadmap3),

leakage energy contributes only 10% of the total power. Hence, we believe

that the impact of leakage on temperature for low-standby power systems is

limited.

3.5.2 Modelling the heat flow

PCB

Heat spreader
IC die

IC package

package pin

Figure 3.3: Chip packaging solution.

A LP-MPSoC is usually packaged in a cheap plastic ball grid array package

([35] and see Figure 3.3). The main purpose of this package is to electrically

connect the die to the other circuits on the printed circuit board and to protect

it against the environment. Besides, the package has also to remove the dissi-

pated heat from the die. Typically, a heat spreader made of copper, aluminium

or another highly conductive material is therefore attached to the reverse side

of the die. Its goal is to increase the thermal conductivity of the package. In

the context of this chapter, we assume that all surfaces but the one of the heat

spreader are adiabatic. The spreader disposes the generated heat by natural

convection with the ambient.

Equivalent RC thermal model

Similar to [33] [34] [19], we exploit the well known analogy between electrical

circuits and thermal models. We decompose the silicon die and heat spreader

3Hence, the system operating with the optimal VDD/VT is more leaky than with ITRS condi-
tions.

30 Exploring temperature-aware design in low-power MPSoCs

Cu

Cu
Cu Cu

Cu

Si

Si

Si

Si

Si Si
Si Si

Si Si Si Si

Si Si Si Si

Si

Si

Si Si Si

Si Si Si

Si

Si Si Si Si

Si

Si

Figure 3.4: Dividing the chip into a finite number of cells.

in elementary cells which have a cubic shape (Figure 3.4) and use an equivalent

RC model for computing the temperature of each cell.

N

E

S

W

Top

Bottom

h

w

l

Figure 3.5: Equivalent RC circuit of a cell.

We associate with each cell a thermal capacitance and five thermal resis-

tances (Figure 3.5). Four resistances are used for modeling the horizontal ther-

mal spreading whereas the fifth is used for the vertical thermal behavior. The

thermal conductivities and capacitance of the cell are computed as follows

(where k
si/cu
th is the thermal conductivity and c

si/cu
th is the thermal capacitance

per unit volume):

3.5 Power/thermal analysis 31

GNESW
th = k

si/cu
th ·

h · w

l
(3.1)

Gtop
th = k

si/cu
th ·

l · w

h
(3.2)

Cth = cth · l · h · w (3.3)

We model the generated heat by adding an equivalent current source to the

cells on the bottom surface. The heat injected by the current source into the

cell corresponds to the power density of the architectural component covering

the cell (e.g., a memory decoder or processor) multiplied with the surface area

of the cell. Note that no heat is transferred down into the package from these

bottom cells.

The heat from the cells on the top surface is removed through convection.

We model this by connecting an extra resistance in series with their Rtop
th =

1/Gtop
th resistance. The value of this resistance is equal to the package-to-air

resistance weighted with the relative area of the cell to the area of the spreader.

silicon thermal conductivity4 150 ·
(

300

T

)4/3
W/mK

silicon specific heat 1.628e − 12J/µm3K
silicon thickness 350µm
copper thermal conductivity 400W/mK
copper specific heat 3.55e − 12J/µm3K
copper thickness 1000µm
package-to-air conductivity 20K/W in low power

Table 3.3: Thermal properties.

Thermal properties

In table 3.3, we enumerate the thermal properties of the package used during

our experiments. The amount of heat that can be removed by natural convec-

tion strongly depends on the environment (such as the placement of the chip

on the PCB, the case of the embedded system, etc.). A good average value is

20K/W (see [35]), even though this is much higher than the ones published by

package vendors.

4The silicon thermal conductivity depends on the temperature.

32 Exploring temperature-aware design in low-power MPSoCs

Thermal model equations

The thermal model consists of a set of differential equations which are resolved

in an iterative way. There is an equation associated with every cell, describing

how it interacts with its neighbors:

Ccell

∆t
[Tcell(i + 1) − Tcell(i)] =

= Gn1[Tn1(i) − Tcell(i)] + . . . + Gnx[Tnx(i) − Tcell(i)] + . . .

. . . + Gnm[Tnm(i) − Tcell(i)] + Scell(i) (3.4)

Gnx is the conductance between the n

cell and neighbour x

n is the number of cell

x 1 ≤ x ≤ m is the position number

of the neighbour cell

m is the total number of neighbours cells

Tcell(i) is the cell temperature at i − th time step

Tnx(i) is temperature of the neighbour x

of the cell n at i − th time step

Ccell is the cell capacitance

Scell(i) is the power burned at i − th time step

∆t is the time between two time step

The silicon thermal conductivity is not linear and it changes with the tem-

perature. We have calculated its first order Taylor series expansion and we

have used it inside the cell equation. The differences between the silicon ther-

mal conductivity and its Taylor series are smalls as depicted in the graph (Fig-

ure 3.6). Therefore our silicon conductivity becomes.

ksi
th = k0 + k1 · Tcell (3.5)

The complexity of this model is thus proportional to the number of equa-

tions and thus cells. More cells increase the accuracy (resolution), but this

comes at the cost of a higher simulation time of the model. To understand the

impact of the cell granularity (the number of cells) on the accuracy, we have

simulated the same die and heat source, but with a varying number of cells in

the model (resp. 200,1200 and 8000 cells; see Figure 3.7).

3.5 Power/thermal analysis 33

Figure 3.6: Silicon thermal conductivity can be approximate its Taylor series.

Cells number Max temperature (K) simulation time (Sec)
200 336.521 (99.62%) 18 (1×)
1200 337.345 (99.86%) 104 (5.77×)
8000 337.821 (100%) 1439 (79.94×)

Table 3.4: Maximum temperature and simulation time for three different resolutions in
the 3.2×3.2mm2 silicon surface with 0.64×0.64mm2 heat source at 819mW .

More cells result in only a minor change of the steady-state temperature

(less than 0.4%), whereas the simulation speed is improved by a factor of 80.

In addition, we have explored how the number of cells influences the temporal

behavior. In Figure 3.8, we can observe that the loss in precision is always un-

der the one observed steady-state. Moreover this error decreases if we reduce

the power dissipated.

As a good trade-off between accuracy and simulation time, we have used

a cell size of 150µm × 150µm throughout our experiments (see Figure 3.1). We

assume that the power is uniformly burned in this region (which is 1/8th of

the size of an ARM processor in 130nm). For technologies which have a worse

thermal conductance (such as fully depleted SOI), we plan to use smaller ther-

mal cells (down to the level of standard cells).

34 Exploring temperature-aware design in low-power MPSoCs

333

334

335

336

337

338

339

0 500 1000 1500 2000 2500 3000

length (um)

T
em

p
er

a
tu

re
 (

°K
)

8000

1200

200

Number

of cells

Figure 3.7: Steady-state temperature distribution for three different resolutions in the
3.2× 3.2mm2 silicon surface with 0.64× 0.64mm2 heat source at 819mW .

295

300

305

310

315

320

325

330

335

340

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02

Time (sec)

T
e
m

p
e
ra

tu
re

 (
°K

)

8000 - 819mW

1200 - 819mW

200 - 819mW

8000 - 164mW

1200 - 164mW

200 - 164mW

8000 - 33mW

1200 - 33mW

200 - 33mW

Number of cells - Source power

Figure 3.8: Temporal temperature distribution for three different resolutions and pow-
ers in the 3.2× 3.2mm2 silicon surface with 0.64× 0.64mm2 heat source.

Hot spot dimension(µm2) Temp 3D Temp RC model
60 × 70 1.64◦C 1.58◦C
40 × 50 1.14◦C 1.12◦C
30 × 30 0.77◦C 0.83◦C

Table 3.5: Comparison of the maximum temperature reached with a 3D model and our
equivalent RC model.

Model calibration

We have compared and calibrated our thermal model with a 3D-finite element

package. For this purpose, we have modelled a single heat source located in the

centre of the chip’s bottom surface. The temperature of this source as predicted

3.5 Power/thermal analysis 35

by the 3D model and our RC model is shown in table 3.5.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.00000001 0.000001 0.0001 0.01 1

Time (s)

T
e

m
p

e
ra

tu
re

(C
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1

Figure 3.9: Comparison of the spatial (up) and temporal temperature (down) distribu-
tion evaluated with 3D finite element package (light line) vs. equivalent RC
model (bold line).

Besides predicting the steady state temperature within the hot spot, we also

validate our model’s prediction of the spatial distribution of the temperature.

In Figure 3.9-up, we illustrate how the temperature decreases in function of

the radial distance from the centre of the heat source. The size of source is

indicated by the grey box. The predictions of both models are again similar.5

Finally, we test the accurateness of our thermal model for predicting the tem-

poral behaviour of the die. We apply a sudden power load to the centre of the

chip and illustrate the temperature response of the die in Figure 3.9-down.

5At large distances from the centre of the heat source, our RC model underestimates the tem-
perature, because away from the source, we have used larger cell sizes for reducing its run time.

36 Exploring temperature-aware design in low-power MPSoCs

3.6 Experimental results

3.6.1 Thermal properties of the die

Low power

(e.g., ARM)

High

Performance

Figure 3.10: Temperature differences on chip (6mm× 7.2mm). It contains in the centre
a single source of which the area and power is varied.

To delimit the conditions when larger temperature differences on the die of

the MPSoC will occur, an experiment with a single heat source was conducted

of which the size and power is varied. The resulting maximum temperature

differences on the chip are shown in Figure 3.10.

For a given area of the power source (e.g., 0.36mm2), the temperature dif-

ference increases proportional to the power (with 7.7K/W). For a given power

budget (e.g., 0.36W), the temperature is proportional to the inverse of the

square root of the area (with 1.8K · mm). The smaller the power source be-

comes, the smaller the surface becomes through which the heat can be re-

moved. As a result, the thermal resistance increases with a decreasing diameter

of the power source and the largest temperature drop occurs near the power

source. The thermal resistance is thus mainly determined by the area of the

source rather than the distance from the source to the coldest point on the die.

Hence, even if a larger die size is used, the temperature differences will not

increase significantly.

This observation is confirmed in Figure 3.11. In this experiment, we inves-

tigated the impact of the die size on the steady state-distribution. Burning the

same heat source on two different die sizes (3.2mm×3.2mm vs 12mm×12mm),

we note that the highest temperature difference occurs near the source; in the

rest of the chip, there is almost no temperature difference.

3.6 Experimental results 37

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

Distance from the centre (um)

T
em

p
er

a
tu

re
 d

if
fe

re
n

ce
 (

°K
)

12.8mm

3.2mm

Die dimension

Figure 3.11: Temperature differences on chip for two different dimension of the die
(3.2mm× 3.2mm vs 12mm× 12mm).

With Figure 3.10, designers can easily predict the temperature differences

that will occur on their die and thus delimit the conditions for which ther-

mal design is required. E.g., in our low-power embedded systems the area of

the processor is around 0.3mm2 and consumes 5mW . As can be seen in this

graph (and further illustrated in the next section), the resulting hot spot will

be very low. High performance systems operate in a different field: they con-

sume much more power for the same area. This is mainly because they operate

at a higher clock frequency (e.g., 30 times faster = 30 times more power). For

achieving these high clock frequencies, they use a high performance technol-

ogy in which the leakage contribution cannot be neglected (e.g., leakage is as

important as dynamic energy = 2 times more power). Moreover, they use a dif-

ferent circuit style (such as dynamic logic vs. static logic), that is more power

hungry (e.g., 2 times more power) and rely on more complex IP blocks (such

as complex multiport register-files). As a result, they consume 100 times more

power on the same area, reaching power densities larger than 1W/mm2. This

results important hot spots on the die (12 degrees for our die).

To further validate our results for low power MPSoCs, we look in the ther-

mal issues with more precise thermal/power simulations.

3.6.2 Steady-state thermal analysis

In Figure 3.12-top, we show the temperature differences estimated on the die

when running a pipelined matrix multiplication on four processors. Matrix

multiplications forms the core of most multi-media algorithms (DCT,Wavelets,

etc.). It is a very compute and data intensive application (and thus power hun-

gry). The hottest parts of the chip are the processor cores and their instruction

38 Exploring temperature-aware design in low-power MPSoCs

memories, since they are most active and thus dissipate the most power. They

are followed by the data cache. Even though the data cache consumes more en-

ergy per access than the instruction cache, it is less actively used6 and therefore

does not become a hot spot. When running at 100Mhz, the temperature dif-

ferences on the chip are limited (max. 0.128 Celsius). The on-chip temperature

difference increases only slightly when six additional processors are started

(see Figure 3.12-middle: max. 0.142 Celsius). This is because the processors

with a relatively high power density are intermingled with memories which a

much lower power density.

By scaling the frequency of the processors from 100Mhz to 1GHz, the power

increases with a factor 10. As a result and in agreement with the results of Fig-

ure 3.10, the temperature differences on the chip increase with a factor 10. We

have measured a temperature difference of 1.53 Celsius.

In a next experiment, we test the impact of technology scaling. We scale all

the dimensions of our layout with a factor 2 (reflecting a technology change

from 130nm to 65nm). We also assume that the power supply does not scale

in future processing generations (which is a worst-case assumption) and use

a clock of 1Ghz (which is high for low power systems). According to Fig-

ure 3.10, we find that scaling the area of the power source by four, results in

1.8 times larger temperature differences on chip. This estimation is confirmed

by our accurate simulation: temperature gradients increase from 1.5 Celsius

(130nm@1Ghz) up to 2.8 Celsius (65nm@1Ghz) (see Figure 3.12-bottom).

From these results, we conclude that the on-chip temperature differences of

a typical LP-MPSoC are limited. More important, Figure 3.10 allows to easily

predict the on-chip temperature differences.

3.6.3 Transient thermal analysis

So far, we have only considered spatial temperature differences. However,

temporal temperature differences or thermal cycles are equally important (e.g.,

they impact reliability). We therefore plot the average die temperature in func-

tion of the time (see Figure 3.13-top). As the thermal resistance of the die with

the environment is rather high (20K/W), it takes around 8s before the steady

state temperature is reached. The resulting temperature depends on the power

burned on the chip: the more processors are running, the higher the final tem-

perature becomes (see the differences between 4 and 10 cores in the Figure). In

the Figure 3.13-middle, we plot the maximum temperature difference in func-

tion of the time. The steady state temperature difference is reached after only

250ms. This is much faster than the temperature equilibrium of the die with the

6The register file acts as an extra level of cache and thus eliminates accesses to the data cache

3.7 Conclusions 39

environment. It can be explained by the fact that the silicon die and the copper

heat spreader are good thermal conductors. Since the thermal time constant

on the die is low, the on-chip temperature differences may be very sensitive to

variations of the power consumptions, i.e. thermal cycling. To analyse thermal

cycles due to a varying workload, we have generated an artificial benchmark

application running on a single processor. It consists of a period of high activity

followed by one of low activity. Its power and temperature profile are shown

in Figure 3.13-bottom. Globally, the temperature increases as the steady state

temperature of the die has not been reached yet.7 A series of thermal cycles is

superposed on this gradual increase of temperature. Their amplitude is very

small as the thermal resistance of the die is small.

Large thermal cycles are mainly due to the high resistance of the package

with the environment and only occur at a large time scale. Therefore, we con-

clude that thermal cycling (and the resulting reliability issues [28]) are less of a

problem in LP-MPSoCs than in high performance systems.

3.7 Conclusions

In this chapter, we have investigated the need for temperature-aware design

in LP-MPSoCs. We have built a thermal model which we have calibrated with

a 3D finite-element analysis. Based on our experimental results for a typical

LP-MPSoC, we observe that no hot spots occur across the die. In the context

of LP-MPSoCs implemented on bulk CMOS and under the plausible assump-

tion that LP-MPSoCs will not rush for super-fast clocks (such as defined in

the ITRS roadmap for high performance logic), we therefore do not see the

immediate need for techniques to analyse and reduce hot spots. However, if

more advanced packaging solutions (such as 3D stacking) and new low-k di-

electrics are introduced in silicon bulk technology, the thermal model of the

chip may fundamentally change. The presence of hot spots in these novel tech-

nologies has to be investigated for LP-MPSoCs. Furthermore, as the steady-

state temperature depends on the packaging solution and the applied work-

load, temperature-aware design remains necessary to assure that the maximal

temperature of the system is not breached.

7The measurement is done after 5s, but the steady state temperature is only reached after 8s.

Figure 3.12: Temperature differences of a multi-processor system-on-a-chip. (top) 4 pro-
cessors running at 100MHz; (middle) 10 processors at 100Mhz; (bottom)
10 processors at 1GHz on a scaled die size.

Figure 3.13: Temporal behaviour of the die: (top) average die temperature; (middle)
temperature differences on chip; (bottom) thermal cycles on chip.

Chapter 4

HW-SW Emulation

Framework for

Temperature-Aware Design in

MPSoCs

4.1 Overview

New tendencies envisage Multi-Processor Systems-On-Chip (MPSoCs) as a pro-

mising solution for the consumer electronics market. MPSoCs are complex

to design, as they must execute multiple applications (games, video), while

meeting additional design constraints (energy consumption, time-to-market).

Moreover, the rise of temperature in the die for MPSoCs can seriously af-

fect their final performance and reliability. In this chapter, we present a new

hardware-software emulation framework that allows designers a complete ex-

ploration of the thermal behavior of final MPSoC designs early in the design

flow. The proposed framework uses FPGA emulation as the key element to

model the hardware components of the considered MPSoC platform at multi-

megahertz speeds. It automatically extracts detailed system statistics that are

used as input to our software thermal library running in a host computer. This

library calculates at run-time the temperature of on-chip components, based on

the collected statistics from the emulated system and the final floorplan of the

MPSoC. This enables fast testing of various thermal management techniques.

Our results show speed-ups of three orders of magnitude compared to cycle-

accurate MPSoC simulators.

44 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

4.2 Introduction

An increasing number of multimedia services (e.g., multi-view video or multi-

band wireless protocols) are being implemented on embedded consumer elec-

tronics thanks to the fast evolution of process technology. These new embed-

ded systems demand complex multi-processor designs to meet their real-time

processing requirements while respecting other critical embedded design con-

straints, such as low energy consumption or reduced implementation size.

Moreover, the consumer market is reducing more and more the time-to-market

and price [56], which does not permit anymore complete redesigns of such

multi-core systems on a per-product basis. Thus, Multi-Processor Systems-on-

Chip (MPSoCs) have been proposed as a promising solution for this context,

since they are single-chip architectures consisting of complex integrated com-

ponents communicating with each other at very high speeds [56]. Neverthe-

less, one of their main design challenges is the fast exploration of multiple

hardware (HW) and software (SW) implementation alternatives with accurate es-

timations of performance, energy and power to tune the MPSoC architecture in

an early stage of the design process. In addition, it has been recently outlined

the problem of temperature rise in future technologies in the components of

MPSoCs [68], which increases further their system integration complexity.

With the objective to explore the HW-SW interaction, several MPSoC sim-

ulators have been proposed, both at transaction and cycle-accurate levels us-

ing Hardware Description Languages (HDL) languages and SystemC [43, 44, 49].

Also, recent SW tools can be added to them to evaluate in detail thermal pres-

sure in on-chip components based on run-time power consumption and floor-

planning information of final MPSoCs [68]. Nevertheless, although these com-

plex combined SW environments achieve accurate estimations of the system

with thermal analysis, they are very limited in performance (circa 10-100 KHz)

due to signal management overhead. Thus, such environments cannot be used

to analyze MPSoC solutions with complex embedded applications and realistic

inputs of the final working environment to cover the variations in data loads

at run-time. Moreover, higher abstraction levels simulators attain faster simu-

lation speeds, but at the cost of a significant loss of accuracy. Hence, they are

not suitable for fine-grained architectural tuning or thermal modeling.

One solution for the speed problems of cycle-accurate simulators is HW

emulation. Various MPSoC emulation frameworks have been proposed [46, 53,

38]. However, they are usually very expensive for embedded design (between

$100K and $1M). Moreover, they are not flexible enough for MPSoC architec-

ture exploration since they mainly aim at large MPSoCs prototyping or SW

debugging. Typically, the baseline architectures (e.g., processing cores or inter-

4.3 Related Work 45

connections) are proprietary, not permitting internal changes. Furthermore, to

the best of our knowledge, no flexible interconnection interfaces between HW

emulation and the existing thermal SW libraries exist today. Thus, thermal ef-

fects can only be verified in the last phases of the design process, when the

final components have been already developed, which can produce large over-

heads in system integration due to cores and MPSoC architecture redesigns if

any problem is discovered at that moment.

In this chapter we present a new HW-SW Field-Programmable Gate Array

(FPGA)-based emulation framework that allows designers to explore a wide

range of design alternatives of complete MPSoC systems at cycle-accurate level,

while characterizing their thermal behavior at a very fast speed (i.e., 100 MHz)

with respect to MPSoC architectural simulators. First, MPSoC HW compo-

nents are mapped on an FPGA to extract a large range of critical statistics

from three key architectural levels of MPSoC systems (i.e., processing cores,

memory subsystem and interconnection mechanisms), while real-life applica-

tions are executed. Second, this run-time information is sent through a flexi-

ble interface (using a standard Ethernet connection) to a configurable thermal

model SW tool running on a host PC, which evaluates at the same speed as the

emulation executes the thermal behavior of the final MPSoC design, and re-

turns this information to the FPGA emulating it. This final step enables testing

run-time temperature management strategies in real-time. Our results illus-

trate that the proposed HW-SW framework achieves detailed cycle-accurate

reports with speed-ups of three orders of magnitude compared to state-of-the-

art cycle-accurate MPSoC simulators. Moreover, our experiments indicate the

benefit of the proposed framework to study the importance of packaging floor-

plan features in MPSoC designs.

4.3 Related Work

It is widely accepted that MPSoCs represent a promising solution for forthcom-

ing complex embedded systems [56]. This has spurred research on modeling

and prototyping MPSoC designs, using both HW and SW.

From the SW viewpoint solutions have been suggested at different abstrac-

tion levels, enabling trade-offs between simulation speed and accuracy. First,

fast analytical models have been proposed to prune very distinct design op-

tions using high level languages (e.g., C or C++) [44]. Also, full-system sim-

ulators, like Symics [58] and others, have been developed for embedded SW

debugging and can reach megahertz speeds, but they are not able to capture

accurately performance and power effects (e.g., at the interconnection level)

depending on the cycle-accurate behavior of the HW. Second, transaction-level

46 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

modeling in SystemC, at the academic [63] and industrial side [49, 42], have

enabled more accuracy in system-level simulation at the cost of sacrificing sim-

ulation speed (circa 100-200 KHz). Such speeds render unfeasible the testing of

large systems due to the too long simulation times, conversely to the proposed

emulation framework. Moreover, in most cases SW simulations are only lim-

ited to a number of proprietary interfaces (e.g., AMBA [40] or Lisatek [49]). Fi-

nally, important research has been done to obtain cycle-accurate frameworks in

SystemC or HDL languages. Companies have developed cycle-accurate simu-

lators using post-synthesis libraries from HW vendors [59, 71]. However, their

simulation speeds (10 to 50 KHz) are unsuitable for very complex MPSoC ex-

ploration. In the academic context, the MPARM SystemC framework [43] is

a complete simulator for system-exploration since it includes cycle-accurate

cores, complex memory hierarchies (e.g., caches, scratch-pads) and intercon-

nects, like AMBA or Networks-on-Chip (NoC). It can extract reliable energy and

performance figures, but its major shortcoming is again its simulation speed

(120 KHz in a P-IV at 2.8 GHz).

An important alternative to MPSoC prototyping and validation is HW emu-

lation. In industry, one of the most complete sets of statistics is provided by Pal-

ladium II [46], which can accommodate very complex systems (i.e., up to 256

Mgate). However, its main disadvantages are its operation frequency (circa 1.6

MHz) and cost (around $1 million). Then, ASIC Integrator [40] is much faster

for MPSoC architectural exploration. Nevertheless, its major drawback is the

limitation to up to five ARM-based cores and only AMBA interconnects. The

same limitation of proprietary cores for exploration occurs with Heron SoC

Emulation [53]. Other relevant industrial emulation approaches are System

Explore [38] and Zebu-XL [50], both based on multi-FPGA emulation in the

order of MHz. They can be used to validate intellectual property blocks, but

are not flexible enough for fast MPSoC design exploration or detailed statistics

extraction. In the academic world, a relatively complete emulation platform

up-to-date for exploring MPSoC alternatives is TC4SOC [61]. It uses a propri-

etary 32-bit VLIW core and enables exploration of interconnects by using an

FPGA to reconfigure the Network Interfaces (NIs). However, it does not enable

detailed extraction of statistics and performing thermal modeling at the other

two architectural levels we propose, namely memory hierarchy and process-

ing cores. Last, an interesting approach that uses FPGA prototyping to speed

up co-verification of pure SW simulators is described in [60]. In this case the

FPGA part is synchronized in a cycle-by-cycle basis with the C/C++ SW part

by using an array of shared registers in the FPGA that can be accessed by both

sides. This work shows a final speed for the combined framework of 1 MHz,

outlining the potential benefits of combined HW-SW frameworks, which we

4.3 Related Work 47

fully exploit in this approach to reach an MPSoC emulation speed of 100 MHz.

Regarding thermal modeling, [68] presented a thermal/power model for

super-scalar architectures. It can predict the temperature variations between

the different components of a processor and show the subsequent increased

leakage power and reduced performance. Additionally, [70] investigated the

impact of temperature and voltage variations across the die of an embedded

core. Its results show that the temperature can vary around 13.6 degrees across

the die. Also, in [57] the temperature of FPGAs used as reconfigurable com-

puters is measured using ring-oscillators, which can dynamically be inserted,

moved or eliminated. This empirical measurement method is interesting, yet

it is only applicable to FPGAs as target devices. Our method alternatively

aims at estimating the temperature of integrated circuits implementing MP-

SoC designs. Nevertheless, all these works clearly prove the importance of

hot spots in high-performance and reconfigurable systems, and the need for

temperature-aware design and tools to support it.

Based on the previous and other similar thermal models, Dynamic Ther-

mal Management (DTM) techniques have been suggested for processors us-

ing both architectural adaptation, Dynamic Voltage Scaling (DVS), Dynamic Fre-

quency Scaling (DFS) and profiling-based techniques. In [67], it is proposed to

use formal feedback control theory as a way to implement adaptive techniques

in the processor architecture. In [69] a predictive frame-based DTM algorithm,

targeted at multimedia applications, is presented. This algorithm uses profil-

ing to predict the theoretical highest performance within a thermally-safe HW

configuration for the remaining frames of a certain type. Also, [45] performed

extensive studies on empirical DTM techniques (i.e., DVS, DFS, fetch-toggling,

throttling, and speculation control) when the power consumption of a proces-

sor crosses a predetermined threshold (i.e., 24W). Its results showed that DFS

and DFS can be very inefficient if their invocation time is not set appropriately.

Additionally, [65] suggested not to schedule hot tasks when the temperature

reaches a critical level. In this way the CPU spends more time in low-power

states, such that the temperature can be either locally or globally decreased. In

this work we address the problem of empirical validation of such approaches

with long thermal simulations using real-life workloads, which becomes feasi-

ble with our HW-SW thermal emulation tool. In fact, a simple DFS mechanism

based on the previous works is presented in our experiments to illustrate the

flexibility of the proposed HW-SW FPGA-based framework to interact with the

SW part and to explore in real-time different temperature-management poli-

cies.

Finally, another interesting research line to ease the problem of temperature

in future MPSoCs is temperature-aware placement [48, 47, 51]. In this case the

48 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

temperature issues are addressed at design-time to ensure that circuit blocks

are placed in such a way that they even out the thermal profile. All these

techniques are complementary to our approach, since we assume that the fi-

nal floorplan and core placement phases have been already performed. Hence,

our tool is able to take the outcome of any of the previous approaches and vali-

date their predicted results during the execution of realistic applications of the

target working environments.

4.4 MPSoC Emulation Architecture

The proposed MPSoC framework uses FPGA emulation as the key element to

model the HW components of MPSoCs at multi-megahertz speeds, and extract

detailed system statistics used in our SW thermal library running in a host com-

puter. An overview of the baseline HW architecture of the MPSoC emulation

platform is depicted in Figure 4.1. It consists of three main elements:

1. Different MPSoC processing cores, such as, Power PC, Microblaze, ARM

or VLIW cores.

2. The definition of configurable I- and D-cache, as well as main memories

(i.e., private and shared memories between processors).

3. Various interconnection mechanisms between the L1 memory hierarchy

and the main memory, namely, buses and NoCs.

These elements are designed in standard and parameterizable VHDL and

mapped onto a Xilinx Virtex 2 Pro vp30 board (or V2VP30) with 3M gates,

which costs $2000 approximately in the market, and that includes two em-

bedded Power PCs, various types of memories (i.e., SRAM and DDR) and an

Ethernet port. However, any other FPGA could be used instead. The only

requirements are the availability of an Ethernet core to interact with the SW

thermal tool, a compiler for the included cores, and a method to upload both

the FPGA synthesis of our framework and the compiled code of the application

under study. In our case, Xilinx provides all these basic tools in its Embedded

Development Kit (EDK) framework for FPGAs.

In addition, note that the purpose of our emulator is not prototyping final

HW components in MPSoC systems, but the construction of an emulation and

fast exploration tool that can be used by designers to explore the desired char-

acteristics and thermal effects of the eventual system. Therefore, our frame-

work includes mechanisms to configure the exploration and hide the physical

characteristics of the underlying HW that do not match the selected values

(conversely to traditional prototyping).

4.4 MPSoC Emulation Architecture 49

Figure 4.1: Overview HW architecture of emulated MPSoCs.

In the following subsections we describe in detail the architecture and ad-

vanced emulation mechanisms of the different elements included in our emu-

lation platform. We also depict the synthesis figures for each component.

4.4.1 Processing Elements

In our framework, various types of processing cores can be included, both pro-

prietary and public ones. The accepted input forms are netlists mapped onto

the underlying FPGA and HDL languages (i.e., Verilog, VHDL or Synthesiz-

able SystemC). This addition of cores is possible since the memory controller

that receives the memory requests in our system includes an external pinout

interface and protocol that can be easily modified to match the respective ones

of the studied processor. Moreover, only the instruction-set emulation part of

the core is required because its memory hierarchy (e.g., caches or scratch-pad)

is replaced by our framework to explore different memory configurations.

In the current version of the system, we have ported a hard-core (PowerPC

405) and a RISC-32 soft-core (Microblaze) provided by Xilinx. None includes

HDL sources, only netlist mapping, and the inclusion process for their pinout

interfaces and protocols required one week. Regarding platform scalability for

MPSoC designs, a complete Microblaze requires only 4% of the total resources

of our V2VP30 FPGA (574 out of 13.696 slices).

50 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

4.4.2 Memory Hierarchy

As Figure 4.1 indicates, in the basic emulated architecture two memory levels

presently exist: L1 cache memories and main memories. However, it requires

few minutes to add additional cache memory levels or private memories to

each processing element, either on a per processor or by processor-group basis.

The main element in the memory hierarchy that enables this easy integration

of new memory devices and protocols is the memory controller. One mem-

ory controller is connected to each processing core to capture all its memory

requests. Then, the memory controller forwards them to the necessary ele-

ment of the memory subsystem according to the demanded memory address.

In the current implementation, it takes 2% of the total available resources of

our V2VP30 FPGA (270 slices), and includes interfaces and protocols for four

memory components and three different memory address ranges:

1. Private main memory, cacheable or non-cacheable, addressable in a con-

figurable memory range of each processor: It is possible to configure its

size and latency, as long as enough Block Random Access Memory (BRAM)

resources exist. Its synthesis takes 1% of the V2VP30 (181 slices), apart

from used BRAM that depends on the desired size.

2. Shared main memory, cacheable or non-cacheable according to user’s

configuration: It is possible to configure its total size and latency, and

does not take any area in the FPGA since it uses real memories available

on the board, namely, Synchronous Random Access Memories (SRAM) or

Double Data Rate Synchronous Dynamic RAM (DDR-SDRAM or DDR mem-

ories).

3. Private HW-controlled D- and I-cache: It is possible to define indepen-

dently their total sizes, line sizes and latencies to explore different design

alternatives. In our experiments, both caches are direct-mapped. How-

ever, their modular designs include in different concurrent processes the

replacement policy and associativity features, making easy to change this

configuration with additional algorithms to test. Its synthesis uses 1% of

the V2VP30 (181 slices) and the amount of used BRAM varies according

to the desired size.

Finally, each memory controller is able to observe and synchronize differ-

ent clock domains, due to its multiple external interfaces (see Figure 4.1). It

has internal counters for each type of connected memories to keep track of the

elapsed time and compare it with the user-defined latencies. Then, the mem-

ory controller informs the Virtual Platform Clock Manager (VPCM) to stop the

clock of the processor during the emulation each time one physical memory

4.4 MPSoC Emulation Architecture 51

device cannot fulfill the defined latency. Hence, the stopped processor pre-

serves its current internal state until it is resumed by the clock manager, when

the memory controller informs that the information requested is available. This

mechanism enables trade-offs between emulation performance and use of re-

sources. Currently, our memory controller monitors two clock domains: one is

used for the microprocessor and another one is used for the memories and the

memory controller itself.

4.4.3 Interconnection Mechanisms

The third configurable element in our MPSoC emulation framework is the in-

terconnection mechanism between the memory controller and main memory

(i.e., in BRAM, SRAM, or DDR memories). At this level, we have included both

buses and NoCs. To enable this variety of choices, apart from multiple types of

interfaces of the memory controller, we have also included a configurable main

memory bridge in the device side. It includes two different public pinout in-

terfaces: one corresponds to the memory and the other one to the instantiated

interconnection. Similarly as with the memory controller, this enables us to ex-

tend the current list of available interconnection mechanisms by modifying the

required pinout and protocol.

In the current version, the two available buses on Xilinx FPGAs are in-

cluded, i.e., On-Chip Peripheral Bus (OPB) for general-purpose devices and Pro-

cessor Local Bus (PLB) for fast memories and processors. Also, we have created

our own 32-bit data/address bus for exploration purposes. It is inspired by the

basic functionality of the AMBA 2 AHB interconnect [39], where the bandwidth

and arbitration policies can be configured. Thus, starting from the initial OPB

scheme, we have removed the signals used for advanced arbitration schemes,

transaction parking request, etc. Also, the arbitration protocol is specified at

compile time; Hence, avoiding the need for a dedicated signal to set the ar-

bitration mode. Currently, the allowed arbitration modes are: priority-based,

and round robin. In addition to this, also the latency and bus-width can be

configured. For our experiments the arbitration latency is one cycle, and is

connected to all processing cores through an OPB interface and to an external

SRAM memory through a custom SRAM controller. Its synthesis (including

the SRAM controller) represents 1% of the V2P30 FPGA (210 slices).

In addition, we have included the possibility to explore custom-made NoC

solutions. The synthesizable NoC code is generated using the Xpipes NoC

Compiler [55]. It allows for studying topologies with any number of switches,

links with bandwidth constraints and NIs to connect external cores to the NoC.

We have modified the memory controller and the main memory bridges to

52 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

generate Open Core Protocol (OCP) transactions as the Xpipes NIs require [55].

Regarding FPGA utilization, a complex NoC-based system with 6 switches of

4 input/output channels and 3 output buffers uses 70% of the V2P30 FPGA

(9659 slices).

The inclusion of each of these buses and NoC interfaces in our framework

required one week of work. Furthermore, as with processing cores, any other

high-performance proprietary bus (e.g., AMBA, STBus, etc.) can be added to

our emulation framework as a black-box, since the integration process only

requires to know the used protocol and external bus pinout.

4.5 Statistics Extraction Subsystem

The main feature pursued in the design of the statistic extraction subsystem is

its transparent inclusion in the basic MPSoC architecture to be evaluated, and

with minimum performance penalty in the overall emulation process. For this

purpose, as it is depicted in Figure 4.2, we have implemented HW sniffers that

monitor certain signals of the memory controller and the external pinout of

each device included in the emulated MPSoC. These sniffers calculate, among

other statistics, the energy consumed in each cell of the floorplan of the emu-

lated MPSoC, and stores the final values in a buffer created in the FPGA BRAM

memory. Finally, the buffers are concurrently processed by our network dis-

patcher to generate Medium Access Control (MAC) packets in our own format,

and send them by an Ethernet port to the SW thermal modeling library run-

ning in the connected computer. One key additional element in this extraction

mechanism is the VPCM module, which enables stopping/resuming the statis-

tics extraction mechanism in case of congestion of the Ethernet connection.

4.5.1 HW Sniffers

The HW sniffers transparently extract the statistics from each MPSoC compo-

nent defined in the floorplan. From a design point of view, all sniffers in our

platform share a common structure. They have a dedicated interface to capture

internal signals from the module they are monitoring, and a connection to our

custom statistics bus. To create a new sniffer the designer only needs to define

what to monitor in the component and how to connect the sniffer to the bus.

For temperature monitoring, HW sniffers measure the time that each processor

spends in active/stalled/idle mode at run-time, and the number and type of

accesses to the memories in the system (i.e., I- and D-cache, and large shared

and private main memories). At the interconnection level (buses or NoC), the

monitored values are the number of signals transitions. There is an skeleton

4.5 Statistics Extraction Subsystem 53

Figure 4.2: Overview of the statistics extraction subsystem.

available to ease the creation of new sniffers for this purpose. Currently, we

provide two different types of sniffers. The first one, called event-logging, ex-

haustively logs all interesting events that occur in the platform. The second

type, called count-logging, only counts events, such as cache misses, bus trans-

actions, memory accesses, etc.; Thus, it generates more concise results, and

what typically designers demand from cycle-accurate simulators to test their

systems. Our experimental results with real-life MPSoC designs indicate that,

practically an unlimited number of event-counting sniffers can be added to the

design without deteriorating at all the emulation speed. This establishes one of

the main differences with SW cycle-accurate simulation systems: the addition

of additional cores or analysis sniffers to the MPSoC architecture does not slow

down the emulation process, due to the implicit concurrent synchronization of

signals between different HW modules working in parallel to be able to com-

pose a complete MPSoC architecture. In fact, the HW sniffers merely act as an

additional HW component that transparently monitor the switching activity of

signal and internal states of the bare MPSoC HW architecture.

Finally, as an example to evaluate how much overhead in FPGA area the

statistics extraction subsystem represents, the amount of resources used by one

event-logging sniffer is 0.1% (14 slices), while for an event-counting sniffer is

about 0.2% (31 slices).

54 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

4.5.2 Virtual Platform Clock Manager (VPCM)

The VPCM is the HW element used in our framework to provide multiple vir-

tual clock domains. This module generates as output the clock signals used

in the emulated MPSoC subsystems (VIRTUAL CLK signals in Figure 4.2). It

receives three different types of input signals. First, the physical clock gener-

ated in the oscillator of the FPGA (not shown in Figure 4.2 for simplification

purposes), which in the current implementation is set to 100 MHz. Second, one

signal from each memory controller of the emulated MPSoC subsystems (VIR-

TUAL CLK SUPPRESSION 1..N in Figure 4.2) used to request a virtual clock in-

hibition period if any attached memory device of the emulated hierarchy is not

able to return the requested value at this moment respecting its set user-defined

latency. Third, signals coming from the different virtual temperature sensors

(SENSOR 1..N in Figure 4.2) that monitor if any component has increased its

temperature beyond/below a certain threshold. This mechanism enables the

use of run-time thermal management policies. The virtual temperature sen-

sors are regular registers that currently store the updated run-time temperature

coming from the SW thermal library running in the host computer. However,

in the final MPSoC they would be replaced by real sensors. Then, the use of

virtual clock domains generated by the VPCM is two-fold:

• First, the emulation of MPSoCs can be done for different physical fea-

tures than those of available HW components. Once the respective VIR-

TUAL CLK SUPPRESSION 1..N signal is high, the corresponding VIRTUAL

CLK signal of that sub-system (or the set of sub-systems) is activated.

Then, the stopped processor preserves its current internal state until it

is resumed by the VPCM, when the memory controller informs that the

information requested is available in the accessed memory. This mech-

anism allows us to implement the corresponding memory resources ei-

ther in internal FPGA memory (optimal performance) or with external

memories (bigger size), while balancing emulation performance and use

of resources. For instance, if the desired latency of main memories are 10

cycles, but the available type of memory modules in the FPGA are slower

(e.g., use of DDR instead of SRAMs), the VPCM can stop the clock of the

processors involved at run-time. Thus, it can hide the additional clock cy-

cles required by the memory. Our VPCM includes two clock domains: (1)

microprocessor, memories and interconnections; (2) memory controllers.

• Second, the virtual clock of all or part of the components in the emulated

MPSoC can be transparently stopped/resumed at run-time in case of sat-

uration of the Ethernet connection during the download/upload of the

extracted statistics/estimated temperatures.

4.6 MPSoC SW Power/Thermal Modeling 55

The combination of these two mechanisms enables the execution and ther-

mal modeling of HW configurations of the emulated MPSoC at a different

speed than the allowed clocked speed of the available HW components. In fact,

it is similar to the mechanism used in SW simulations, but at a much higher fre-

quency. For instance, it is possible to explore the effects in thermal modeling of

a final system clocked at 500 MHz, even if the present cores of the FPGA can

only work at 100 MHz. To this end, instead of using a 10 ms statistics sampling

frequency with a desired virtual clock emulation of 500 MHz, our framework

uses a virtual clock of 100 MHz (maximum clock allowed in the FPGA emula-

tion after synthesis). This clock is 5× slower than the desired emulated clock

and collects the statistics every 50 ms, but the switching activity in each MP-

SoC component monitored at this interval is equivalent to the target system for

10 ms. Therefore, our framework samples every 50 ms of real execution, but is

analyzed by the SW thermal library as representing 10 ms of the target MPSoC

emulated execution. The major requirement in this case is the definition of the

sampled/emulating frequency and the target MPSoC frequency to configure

the SW thermal model accordingly. The SW thermal model is described next.

4.6 MPSoC SW Power/Thermal Modeling

Our SW thermal tool is a C++ library that enables thermal exploration of silicon

bulk chip systems. It can evaluate the thermal behavior in devices modeled at

different levels of abstraction (i.e., gate level, RTL level and architectural level).

The switching activities of the wires and the components in the die for this

thermal analysis are obtained from our FPGA-based MPSoC emulation. Then,

the library can be configured in multiple ways to evaluate the thermal behavior

of different alternatives for each final MPSoC chip. For instance, its space reso-

lution for thermal accuracy is configurable (i.e., number of temperature cells in

a fixed area) as well as many other packaging parameters (e.g., quality of heat

sink, thermal capacitance of the different materials that compose the chip, etc.).

In our experiments, this flexibility in the thermal library configuration is used

to investigate the run-time thermal behavior of multiple cores and embedded

memories on a single die in case of different package solutions and floorplan

designs for MPSoCs.

In the next subsections, we first discuss the utilized power model. Second,

we explain the thermal model in detail. Finally, we review the thermal calcu-

lation speed and accuracy of the current implementation of the library.

56 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

4.6.1 Power estimation

In Table 4.1, we outline the power consumption and power densities for the

most important components of the evaluated MPSoCs as illustration of what

our tool requires. We use, as Table 4.1 indicates, the maximum power numbers

for each component as worst case, but the effective power can normally be

lower, depending on the workload (activities of processors and memories), and

can be given as an input by the designer for his particular design. These values

have been derived from industrial power models for a 0.13 µm technology.

Regarding leakage power, we currently assign a fixed 10% weight to leak-

age energy. This figure actually corresponds to the indications of the Interna-

tional Technology Roadmap for Semiconductors (ITRS) [66] for low-standby power

systems in 0.13 µ with supply voltage of 1.2-1.3V. ITRS outlines that in this case

Vdd/Vt are very aggresively scaled to guarantee sufficient battery-life time;

Thus, using an optimal Vdd/Vt operating point results in very limited leakage

power variations for different working temperatures. However, in more recent

technology nodes leakage variations will become more important; Thus, our

SW thermal library and HW sniffers can be extended accordingly.

Table 4.1: Power for the most important components of an MPSoC design using a 0.13
µm bulk CMOS technology.

MPSoC Component Max. Power Max. Power Max. Power density
(at 100 MHz) (at 500 MHz)

RISC 32-ARM7 5.5mW — 0.03W/mm2

RISC 32-ARM11 0.3W 1.5W 0.52W/mm2

DCache 8kB/DM (ARM7) 28mW — 0.028W/mm2

DCache 8kB/DM (ARM11) 142mW 710mW 1.97W/mm2

ICache 8kB/DM (ARM7) 28mW — 0.028W/mm2

ICache 8kB/DM (ARM11) 142mW 710mW 1.97W/mm2

Memory 32kB (ARM7) 11mW — 0.01W/mm2

Memory 32kB (ARM11) 55mW 275mW 0.76W/mm2

NoC switch (6x6-32b) 56mW 257mW 0.08W/mm2

NoC network interface 23mW 128mW 0.02W/mm2

4.6.2 Thermal estimation

In our case we consider MPSoCs HW that are made of silicon die wrapped

into a package placed on a Printed Circuit Board (PCB), with a variable cost

(from low-cost to high-cost packaging). In this case, as shown in Figure 3.3, the

heat flow starts from the bottom surface of the die and goes up to the silicon,

passes through the heat spreader and ends at the environment interface, where

the heat is spread by natural convection [68]. Therefore, for modeling the heat

flow, we rely on an equivalent electrical RC model (Figures 3.4, 3.5). Then, two

different RC models are presently supported. On the one hand, we have de-

4.6 MPSoC SW Power/Thermal Modeling 57

veloped our own thermal model of MPSoC considering non-linear resistances

inside the silicon [62], in order to match the behavior of thermal conductivity.

Then, we consider the heat spreader made of copper and use linear resistances

to model it. Currently, we can analyze 2 seconds of simulation (in a 660-cell

floorplan), in 1.65 seconds on a P-4 at 3GHz, which is fast enough to interact

in real-time with our FPGA-based MPSoC emulation. On the other hand, we

have cross-checked our results by including in our tool the possibility to use

the Hotspot v3.0 thermal model [68]. It is an accurate model for high perfor-

mance processors based on an equivalent circuit of linear thermal resistances

and capacitances, which correspond to micro-architecture blocks and essential

aspects of the thermal package. This model has been validated using finite ele-

ment simulation. In the following subsections, we describe more in detail our

own thermal model and refer to [68] for a more detailed explanation of this

library.

Modeling the heat flow

A low-power MPSoC is usually packed within a plastic ball grid array pack-

age [72] (see Figure 3.3). In our library, we assume that all surfaces, but the one

of the heat spreader are adiabatic. The spreader disposes the generated heat by

natural convection with the ambient.

Then, similar to [68][70][52], we exploit the well-known analogy between

electrical circuits and thermal models. We decompose the silicon die and heat

spreader in elementary cells, which have a cubic shape (Figure 3.5) and use

an equivalent RC model for computing the temperature of each cell. By vary-

ing the cell size and number of cells we can trade-off simulation speed of the

thermal library with its accuracy. In our experiments we have used two basic

floorplans: (a) 4 ARM7 cores at 100 MHz; (b) 4 ARM11 running at 100 or 500

MHz, both in 0.13 µm technology (Figure 4.3). The interconnect is clocked at

the same frequency that the cores in each case. The cell sizes used in both cases

are 150um ∗ 150um. We assume that the power is uniformly burned in this re-

gion, which represents 1/8th of the size of an ARM processor in 0.13 µm. For

technologies with a worse thermal conductance, such as, fully depleted silicon-

on-insulator [66], it is possible to use smaller thermal cells (down to the level

of standard cells).

Equivalent RC thermal model

We associate with each cell a thermal capacitance and five thermal resistances

(Figure 3.5). Four resistances are used for modeling the horizontal thermal

spreading whereas the fifth one is used for the vertical thermal behavior. The

58 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

dCache
8KB
p1

iCache
8KB
p1

dCache
8KB
p2

iCache
8KB
p2

Private
32KB

memory
p3Processor1 Processor2

NoC 6x6
switch

p1

NoC 6x6
switch

p2

NoC 6x6
switch

p3

Private
32KB

memory
p1

Private
32KB

memory
p2

Processor3

iCache
8KB
p3

dCache
8KB
p3

Private
32KB

memory
p4

Shared
32KB

memory

NoC 6x6
switch

p4

Processor4

iCache
8KB
p4

dCache
8KB
p4

NoC
interface

1200um

(a)

dCache
8KB
p1

iCache
8KB
p1

dCache
8KB
p2

iCache
8KB
p2

Private
32KB

memory
p3

Processor1

Processor2

NoC 6x6
switch

p1

NoC 6x6
switch

p2

NoC 6x6
switch

p3

Private
32KB

memory
p1

Private
32KB

memory
p2

Processor3iCache
8KB
p3

dCache
8KB
p3 Private

32KB
memory

p4

Shared
32KB

memory

NoC 6x6
switch

p4

Processor4iCache
8KB
p4

dCache
8KB
p4

NoC interface

1200um

(b)

Figure 4.3: MPSoC floorplan with (a) 4 ARM7 cores and (b) 4 ARM11 cores.

thermal conductivity and capacitance of each cell is computed as equation 3.3,

(where k
si/cu
th is the thermal conductivity and c

si/cu
th is the thermal capacitance

per unit volume).

We model the generated heat by adding an equivalent current source to the

cells on the bottom surface. The heat injected by the current source into the cell

corresponds to the power density of the architectural component covering the

cell (e.g., a memory decoder or processor) multiplied with the surface area of

the cell. No heat is transferred down into the package from these bottom cells.

In contrast, the heat from the cells on the top surface is removed through

convection. We model this by connecting an extra resistance in series where

Rtop
th = 1/Gtop

th resistance. The value of this resistance is equal to the package-

to-air resistance weighted with the relative area of the cell to the area of the

spreader.

Finally, the thermal model was calibrated against a 3D-finite element anal-

ysis given by an industrial partner.

Thermal properties

In Table 4.2 we enumerate the thermal properties of the different packaging op-

tions used during our experiments. The amount of heat that can be removed

by natural convection strongly depends on the environment, such as the place-

ment of the chip on the PCB, as in the case of embedded systems. Regard-

ing package-to-air resistance, we consider the case of very low-cost packaging,

where a good average value is 42W/K (see [72]), because of the uncertainty of

final MPSoC working conditions. However, since this value is higher than the

actual figures published by some package vendors, in our experiments we also

study the effect of different packaging solutions for MPSoCs.

4.7 HW-SW MPSoC Emulation Flows 59

Table 4.2: Thermal properties.

silicon thermal conductivity 150 ·
(

300

T

)4/3
W/mK

silicon specific heat 1.628e − 12J/um3K
silicon thickness 350um
copper thermal conductivity 400W/mK
copper specific heat 3.55e − 12J/um3K
copper thickness 1000um
package-to-air conductivity (low-cost) 40K/W

4.7 HW-SW MPSoC Emulation Flows

The key advantage of our framework for a realistic exploration of MPSoC de-

signs with thermal management at high speed is its double integration of statis-

tics extraction from HW emulation and SW thermal simulation of all MPSoC

architectural blocks in one overall tool flow. The whole system flow used is

depicted in Figure 4.4.

First of all, the HW and SW components of the system are defined. Re-

garding HW, the user specifies in this phase one concrete architecture and all

the HW sniffers that need to be included in the system to extract statistics for

each of the three main architectural levels that constitute the final MPSoC: pro-

cessing cores, memory subsystem and interconnection to the main memories.

This is done by instantiating, in a plug-and-play fashion, the predefined HDL

modules available in our repository for each of the previous three levels and

the respective sniffers. In our case we use Xilinx Integrated Software Environ-

ment. Related to the SW part, in this phase it is compiled the application/s

to be tested in the emulated MPSoC. In this case, we use Xilinx EDK, which

includes GNU C (gcc) and C++ (g++) compilers/linkers for the Power PC and

Microblaze cores available in our repository. Also, EDK enables loading dif-

ferent binaries on each processor of the system. Thus, if the application to be

tested is already written in any of these languages, no effort is required for the

designer since the memory hierarchy and the utilization of the interconnection

mechanism (e.g., generation of OCP transaction for the NIs of the NoC) are

transparently generated by the underlying emulated HW architecture. For a

complex MPSoC with 8 processors and 20 additional HW modules, this phase

requires 10 to 12 hours overall, including the complete synthesis phase with

standard tools. Moreover, modifications in the current configurations of the

cores take less than 1 hour to be re-synthesized, while the compilation of addi-

tional SW part of a 4-processor emulation system only takes minutes.

In the next phase, the floorplan to be evaluated according to the previous

HW definition is defined. At this moment the different energy and frequency

values for each HW component in the emulated MPSoC is set. Also, the con-

60 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

Figure 4.4: Complete HW-SW flows included in the FPGA-based thermal emulation
framework.

figurable granularity of the temperature updates and communication between

the FPGA and the SW thermal library is configured at this moment. In partic-

ular, this value is fixed at 10ms in our experiments.

Next, the whole HW emulated MPSoC is uploaded onto the Xilinx FPGA-

based platform using a JTAG device and the graphical interface of our SW ther-

mal model is launched in the host computer. After this point our framework

runs autonomously. While the emulated system is running, the statistics about

the power values for each cell defined in the layout are concurrently extracted,

and sent to the thermal simulator running onto the host computer via a stan-

dard ethernet connection. The thermal simulator calculates in real-time the

new temperatures and feeds back the updated temperatures by sending MAC

packets to the FPGA-based emulation framework. According to this new re-

ceived information, the implemented temperature manager in our FPGA can

be used to test different run-time thermal management policies on the emu-

lated MPSoC.

4.8 Experimental Results

We have assessed the performance and flexibility of the proposed emulation

framework in comparison with the MPARM framework [43] and its internal

SW thermal library by running several examples of multimedia and intensive

processing cores of MPSoC designs. Additionally, our experiments include

the application of the presented framework to test a run-time DFS mechanism

for one complex MPSoC case study based on ARM-11 cores, and with differ-

4.8 Experimental Results 61

ent thermal-aware floorplan floorplan solutions and various packaging tech-

niques. In our experiments MPARM is executed on a P-IV at 3.0 GHz with 1

GByte SDRAM and running GNU/Linux 2.6.

4.8.1 MPSoC emulation vs simulation performance evaluation

In the first set of experiments we have assessed the performance of the bare

MPSoC emulation framework (without thermal modeling) for system archi-

tecture exploration, in comparison to cycle-accurate simulators. To this end,

we evaluated various configurations of interconnections and processors (1 to

8) using a complex L1 hierarchy for each core with 4 KB D-cache/I-cache, 16

KB of private memory, and a global 1-MB main shared memory. All processors

used OPB and OCP buses. As an example, the MPSoC design with HW sniffers

and 4 processors (1 hard-core PowerPC and 3 soft-core Microblazes) consumes

66% of the V2VP30 and runs at 100 MHz. Next, we have explored the use of

NoCs [55] instead of buses. The tested NoC had 2 32-bit switches with 6 in-

puts/outputs and 3-package buffers. This NoC-based MPSoC required 80% of

our FPGA.

As SW drivers, first, we used a kernel application (MATRIX in Table 4.3) that

performs independent matrix multiplications at each processor private mem-

ory and combines the results in memory at the end. Second, we have used a

dithering filter (DITHERING in Table 4.3) using the Floyd algorithm [64] in two

128x128 grey images, divided in 4 segments and stored in shared memories.

This application is highly parallel and imposes almost the same workload in

each processor. The obtained timing results are depicted in Table 4.3.

These results show that the HW-SW emulation framework scales signifi-

cantly better than SW simulation. In fact, the exploration of MPSoC solutions

with 8 cores for the Matrix driver took 1.2 seconds per run in our case, but

more than 13 minutes in MPARM (at 125 KHz), resulting in a speed-up of 664×.

Moreover, the exploration of NoCs with complex SW drivers (Dithering with

4 cores, 30 HW MPSoC components in total) shows larger speed-ups (1147×)

due to signal management overhead in cycle-accurate simulators (Table 4.3).

As a result, our HW-SW emulation framework achieved an overall speed-up

of more than three orders of magnitude (1147×), illustrating its clear benefits

for the exploration of the design space of complex MPSoC architectures com-

pared to cycle-accurate simulators.

62 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

Table 4.3: Timing comparisons between our MPSoC emulation framework and
MPARM.

MPARM HW Emulator

Matrix (one core) 106 sec 1.2 sec (88×)
Matrix (4 cores) 5 min 23 sec 1.2 sec (269×)
Matrix (8 cores) 13 min 17 sec 1.2 sec (664×)
Dithering (4 cores-bus) 2 min 35 sec 0.18 sec (861×)
Dithering (4 cores-NoC) 3 min 15 sec 0.17 sec (1147×)
Matrix-TM (4 cores-NoC) 2 days 5’ 02 sec (1612×)

4.8.2 MPSoC thermal modeling using cycle-accurate simula-

tion vs HW-SW emulation

In the second set of experiments we have verified the capabilities of real-time

interaction between the HW FPGA-based emulation and the SW thermal li-

brary components of our system, compared to pure cycle-accurate SW simu-

lation. In this case we considered a low-cost package solution (see Table 4.2).

From the HW viewpoint, we have defined a system with 4 RISC-32 process-

ing cores. Each core was attached to a local 8KB direct-mapped instruction

and data caches, using a write-through replacement policy. Also, each proces-

sor had a 32KB cacheable private memory and a 32KB shared memory was

included in the system. The memories and processors were connected using

a XPipes NoC of 4 6x6 switches and NI modules. The considered floorplan

is shown in Figure 4.3 and included 128 thermal cells. We obtained the di-

mensions of the NoC circuits by synthesizing and building a layout. As SW

driver for this MPSoC design, we defined a benchmark (Matrix-TM in Ta-

ble 4.3) that keeps the workload of the processors close to 100% all the time,

pushing the MPSoC to its processing power limits to observe effects in temper-

ature. This benchmark implements a pipeline of 100K matrix multiplications

kernels based on the Matrix benchmark (see Table 4.3). Each processor exe-

cutes a matrix multiplication between an input matrix and a private operand

matrix, then feeds its output to the logically following processor. The platform

receives a continuous flow of input matrices and produces a continuous flow

of output matrices. Every core follows a fixed execution pattern: (i) copy of an

input matrix from the shared memory to its private memory; (ii) multiplication

of the new matrix with a matrix already stored in the private memory; (iii) copy

of the resulting matrix back to the shared memory. During the whole execu-

tion, interrupt and/or semaphore slaves are queried to keep synchronization,

creating an important amount of traffic to the memories. The obtained timing

results (Table 4.3) show that our HW-SW emulation framework takes 5 min-

utes approximately for the whole execution of the driver, including thermal

4.8 Experimental Results 63

Figure 4.5: Average temperature evolution of Matrix-TM in a 4-core MPSoC at 500 MHz
or using a two-choice DFS (500-100MHz).

monitoring, versus 2 days in MPARM for just 0.18 sec of real execution (left

corner on Figure 4.5); Thus, our framework achieves more than three orders of

magnitude of speed-ups (1612×) compared to SW-based thermal simulation,

making feasible to study in a reasonable time long thermal effects.

4.8.3 Evaluation of dynamic thermal strategies in MPSoCs

In the third set of experiments we have performed a long thermal emulation

in our framework to observe thermal effects on the MPSoC with real-life pro-

cessing inputs of embedded applications. We ran the Matrix-TM workload

for 100K iterations and the results for a 500-MHz emulation are shown in Fig-

ure 4.5. They indicate the need to perform long emulations to estimate thermal

effects (note in Figure 4.5 that the previous simulation in MPARM only repre-

sents a very limited part of the overall MPSoC thermal behavior). Due to the

high rise in temperature observed in the MPSoC design, we explored the pos-

sible benefits of DTM techniques within our HW-SW emulation framework.

To this end, we implemented a simple threshold monitoring policy using the

available HW temperature sensors in our framework. The policy consists in

a simple dual-state machine that monitors at run-time if the temperature of

each MPSoC component increases/decreases above/below two certain thresh-

olds that we have defined (350 or 340 degrees Kelvin in this example). Then,

the temperature sensors inform the VPCM, which performs DFS choosing be-

tween 500 or 100 MHz accordingly. The results are also shown in Figure 4.5

and indicate that this simple thermal management policy could be highly ben-

eficial in MPSoC designs using low-cost packaging solutions (i.e., with values

of package-to-air resistance of more than 40K/W). Furthermore, these results

outline the potential benefits of our HW-SW emulation tool to explore the de-

64 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

sign space of complex thermal management policies in MPSoCs, compared to

SW cycle-accurate simulators that suffer from important speed limits.

4.8.4 Floorplan selection exploration in MPSoCs

When an integrated system is built for a certain MPSoC, the definition of an

appropriate floorplan is a very complex task for system integration designers.

In fact, deciding a suitable placement of each block in the MPSoC architecture

requires taking into account multiple constraints (e.g., power, energy, perfor-

mance, etc) with values that are specific for each design. Recently, due to the

increasing temperature in MPSoCs, thermal behavior has become another key

factor to define the placement of each block of the design [48, 47]. In this set of

experiments we have used our tool to evaluate two additional thermal-aware

floorplans (Figure 4.6) for our initial case study with four processing cores and

NoC-based interconnect working at 500 MHz (see Figure 4.3). The first alter-

native floorplan scatters the processing cores in the corners of the chip (Fig-

ure 4.6(a)), while in the second one all the cores are clustered together in the

center of the chip (Figure 4.6(b)). We assumed the use of a low-cost packaging

solution in all the cases (see Table 4.2).

dCache
8KB
p1

iCache
8KB
p1

dCache
8KB
p2

iCache
8KB
p2

Private
32KB

memory
p3

Processor1 Processor2

NoC 6x6
switch

p1

NoC 6x6
switch

p2

NoC 6x6
switch

p3

Private
32KB

memory
p1

Private
32KB

memory
p2

Processor3

iCache
8KB
p3

dCache
8KB
p3

Private
32KB

memory
p4

Shared
32KB

memory

NoC 6x6
switch

p4

Processor4

iCache
8KB
p4

dCache
8KB
p4

1200um

(a)

dCache
8KB
p1

iCache
8KB
p1

dCache
8KB
p2

iCache
8KB
p2

Private
32KB

memory
p3

Processor1 Processor2

NoC 6x6
switch

p1

NoC 6x6
switch

p2

NoC 6x6
switch

p3

Private
32KB

memory
p1

Private
32KB

memory
p2

Processor3

iCache
8KB
p3

dCache
8KB
p3

Private
32KB

memory
p4

Shared
32KB

memory

NoC 6x6
switch

p4

Processor4

iCache
8KB
p4

dCache
8KB
p4

1200um

(b)

Figure 4.6: MPSoC floorplan with cores (a) scattered in the corners and (b) clustered
together in the center of the chip.

The results are shown in Figure 4.7. In this case we can observe that the best

floorplan to minimize temperature (15% less heating speed on average than

the initial floorplan of Figure 4.3) was achieved with the placement technique

that tries to assign the processing cores to the corners of the layout (labelled

as scattered in Figure 4.7). Hence, this solution is the best out of the three

thermal-aware placement options because it delays the most the need to apply

4.8 Experimental Results 65

Figure 4.7: Average temperature evolution with different floorplans for Matrix-TM at
500 MHz with DFS on.

the available DFS mechanism in Figure 4.7, although its interconnects experi-

ence more heating effects due to the longer and more conflicting connection

paths between components, which can originate more NoC congestion effects.

Then, the solution that tries to place all the processing cores in the center of the

chip (labelled as clustered in Figure 4.7) shows the worst thermal behavior,

but just slightly worst in temperature (5% on average) than the original manual

placement of cores used for this MPSoC design, while the delays in the inter-

connections between cores are minimal for the former due to their closest loca-

tions in the floorplan (see Figure 4.6(b)). The main conclusion from this study

is that a more aggresive temperature-aware placement must be applied (e.g.,

placement of cores scattered in the corners of the chip) to justify the placement

of cores apart, as tried in the original manual design, to compensate for the

heating effects on the chip due to longer interconnects. Otherwise, the possible

penalty for long interconnects may not be justified in the end since a uniform

distribution of power sources does not need to lead to a uniform temperature

in the die. Moreover, these results clearly outline the importance for designers

of tools to explore the concrete thermal behavior of each design, and to select

the most appropriate placement in an early stage of the integration flow.

4.8.5 Effect of different packaging technologies and SW ther-

mal libraries

In this final set of experiments we have tested different packaging solutions

and compared them with the thermal behavior of the low-cost value of 40K/W

initially considered (Table 4.2) for our initial reference of MPSoC floorplan

66 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

Figure 4.8: Thermal behavior for an MPSoC floorplan using low-cost, standard and
high-cost packaging solutions.

with four RISC-32 processing cores working at 500 MHz and NoC interconnect

(Figure 4.3). We simulated this floorplan with two additional values, namely,

12K/W in the case of standard packaging [41] and 5K/W in the case of high-

cost and high-performance embedded processors [37]. The results obtained are

shown in Figure 4.8.

As this figure shows, in the case of the standard packaging solution, the

MPSoC design required more time to heat up and it reached a maximum value

of 360 degrees Kelvin when the DFS mechanism was not applied, which is

lower than the case of low-cost packaging (40K/W) that reached a tempera-

ture of more than 500 degrees Kelvin. However, the thermal behavior of the

standard packaging system was similar to the low-cost solution (only its start-

ing point was slightly shifted to the right due to the less steep temperature

rise curve) when the presented threshold-based DTM strategy, fixed at 250 de-

grees Kelvin, was applied. Therefore, in this case, with this threshold value,

no significant improvements were obtained with the standard package, and

the low-cost solution would be preferably selected for this design using DTM.

However, in the case of the high-cost packaging solution (for 5K/W), the sys-

tem showed a completely different temperature behavior, where the chip never

went beyond 325 degrees Kelvin. Therefore, this packaging solution creates a

much lower thermal stress in the overall MPSoC implementation, and it does

not require the application of DFS because the design never reaches a temper-

ature above the 350-degree-Kelvin threshold. As a result, this solution could

significantly increase the expected mean-time-to-failure of the component and

be interesting in highly reliable versions of this MPSoC chip design. However,

note that this type of package has the important drawback of the high cost

4.9 Conclusions 67

for the manufacturer of the final embedded system, namely, typically 5 to 12×

more than standard package solutions and more than 20× the low-cost pack-

age solution [54]; Thus, it can seriously increase the price of the final product

and developers would like to avoid it if possible. Hence, this type of experi-

ments and the presented framework can be a very powerful tool for designers

to decide which type of packaging technique would be enough for a specific

set of constraints in forthcoming generations of MPSoC designs.

Finally, we performed the same set of emulation experiments replacing our

library with the well-known Hotspot v3.0 thermal library [68], configuring it

with the same packaging options previously tested. The results of this addi-

tional set of experiments shown a very similar thermal behavior with this sec-

ond RC thermal library in comparison to our own library in the case of high-

cost packaging (less than 3 degrees Kelvin of difference), which is the original

target of the Hotspot library. Then, in the case of low-cost and standard pack-

aging, variations that range between 4-15 degrees Kelvin have been observed.

The origin of these variations come from the non-linear dependency factor of

silicon thermal conductivity with respect to the actual temperature in the die,

which is included in our own library, but is not modeled in the Hotspot library.

In fact, our results indicate that this non-linear part of the thermal equations is

particularly important when the temperature rises beyond 360 degrees Kelvin

in the case of low-cost packaging solutions, and needs to be considered at each

moment of the emulation to get accurate thermal measurements for this type

of MPSoC packaging technology.

4.9 Conclusions

MPSoC architectures have been proposed as a promising solution to tackle the

complexity of forthcoming embedded systems. These future consumer devices

will contain a really large amount of transistors thanks to nanoscale technolo-

gies, but will be very complex to design as they must execute multiple complex

real-time applications (e.g., video processing or 3D games), while meeting sev-

eral additional design constraints (e.g., energy consumption or short time-to-

market). Moreover, the rise of temperature in the die for on-chip components

can seriously affect performance and reliability of final MPSoC designs. In this

chapter we have presented a new HW-SW emulation framework that provides

designers with a powerful tool to study the thermal behavior of MPSoC de-

signs at three different architectural levels, namely, processing cores, memory

subsystem and interconnection mechanisms. The experimental results have

shown that our proposed framework obtains detailed reports of the thermal

features of final MPSoC floorplans, with speed-ups of three orders of mag-

68 HW-SW Emulation Framework for Temperature-Aware Design in MPSoCs

nitude compared to cycle-accurate MPSoC simulators. Also, the addition of

more processing cores and more complex memory architectures in our emula-

tion framework suitably scales. Thus, almost no loss in emulation speed oc-

curs, conversely to cycle-accurate simulators, which enables long simulations

of complex MPSoCs as thermal modeling requires. Then, the real-time interac-

tion between HW emulation and SW thermal modeling through the Ethernet

connection enables the application and testing of complex dynamic thermal

management policies to the emulated MPSoC at run-time.

In addition, we have used our tool to evaluate different temperature-aware

placement techniques that try to compensate the heating effects on MPSoCs.

Our study indicates that significant overheads of power dissipated in long in-

terconnects can clearly affect the overall thermal behavior of the final MPSoC,

and that a uniform distribution of power sources in the die does not need to

produce a uniform temperature in the final chip. Hence, MPSoCs designed in

latest technology nodes require the use of tools to study their suitable place-

ment in an early stage of system integration, according to the applications that

will be executed in each final MPSoC. Also, we have illustrated the effective-

ness of the presented thermal evaluation tool to rapidly study the effects of

different packaging options for concrete MPSoC solutions. Our results indi-

cate that the selection of final packaging solutions clearly depend on the ther-

mal management techniques included in the target MPSoCs and more costly

packagings may show from the same heating effects as low-cost ones; Thus, the

need of expensive packaging solutions cannot be justified without prior exten-

sive thermal exploration. Finally, we have shown the versatility of our tool

to use various thermal libraries, and illustrated the need for different thermal

models according to the implementation requirements of the target MPSoCs

(e.g., high- or low-cost packaging).

Chapter 5

Exploit the performance

benefits of self-timed logic in

synchronous design

5.1 Overview

Ultra low power digital systems are key for any future wireless sensor nodes

but also inside nomadic embedded systems (such as inside the digital front

end of software defined radios). These systems require the highest possible en-

ergy efficiency of logic, which can only be achieved by operating in moderate

inversion. Unfortunately, when operating near the threshold voltage, transis-

tors become highly sensitive to process variations, thereby increasing leakage

currents and complicating timing closure. Rather than pursuing a worst-case

design approach for dealing with these uncertainties, we present a hybrid self-

timed/synchronous approach. It will be demonstrated on the VEX VLIW core

designed for ultra low-power operations. Experimental results of our approach

demonstrate performance benefits up to 2x and significant energy savings at

low throughput rates.

5.2 Introduction

Ultra low power (ULP) digital systems are a generic technology useful for wire-

less sensor nodes but also inside nomadic embedded systems (such as inside

the digital front end of software defined radios). A key requirement for these

systems is that they provide the highest achievable computational performance

(1-10MOPS) consuming at most 1mW on average [75]. While targeting low to

70 Exploit the performance benefits of self-timed logic in synchronous design

medium performance targets, the highest energy efficiency is achieved by op-

erating in moderate inversion. Unfortunately, at these low operating voltages

(near the threshold voltage), transistor switching speed and leakage power are

extremely sensitive to process variations, thereby complicating timing closure

of synchronous designs. Design margins at all levels of abstraction increase

rapidly, causing a delay and power penalties. In this chapter we compare

two alternative solutions for dealing with these extreme variations: the classic

synchronous design based on corner point analysis and self-timed logic based

on dual rail logic. Self-timed logic remains functionally correct under delay

variations. Therefore, no additional design margins are needed to cope with

process variations. In contrast to synchronous designs, also no need exists to

over-design for input data variations. As a result, self-timed logic operates on

average many times faster compared to synchronous logic. The introduction of

dual rail logic is however far from trivial: (1) usually, synchronization between

stages is performed using handshake protocol, but this is not compatible with

commercial testing solutions; (2) the overhead of dual rail logic is high in terms

of area and power and (3) dual rail logic requires dedicated logic libraries. In

this chapter, we therefore propose an alternative technique to convert a syn-

chronous design into a self-timed one. Rather than replacing the clock network

with a handshake protocol, we retain the clock, but we apply clock-gating un-

til logic has completed. The completion of logic is detected using dual rail

logic. To limit circuit overhead this logic is inserted only in the most critical

parts/stages of the design. In this way, we exploit the performance benefits of

self-timed logic and remain compatible with existing design solutions for syn-

chronous logic. This hybrid system can be clocked at high frequencies without

generating functional errors. In this chapter, we delimit how the throughput

increases with the clock frequency and in this way, how to optimize the clock

frequency for the average case rather than worst case operating conditions.

Experimental results on the VEX VLIW core [85] will be presented to quan-

tify this hybrid approach. To this end, we have developed a complete flow

to convert a synchronous standard-cell based combinational logic stage into a

self-timed one. Our results indicate that significant performance benefits (up

to 2x) can be realized by removing the pessimism of worst-case design. Both

energy/throughput benefits strongly depend on the selected circuit topology.

5.3 Related Work

In recent years, both industry and academia have shown a large interest for

ultra-low power systems, as enabling technology for autonomous systems [73][74].

Initial performance/energy requirements for autonomous systems for different

5.4 Delay variation resilient 71

possible application domains are described in [75]. We focus in this paper on

high bandwidth systems, providing the highest achievable computational per-

formance while consuming less than 1mW on average. A good approach for

achieving this performance/energy target is reducing the power supply [75]

and preferably in combination with scaled/domain specific process technolo-

gies [76]. The benefits of ultra low voltage operation have been validated down

to silicon-level (e.g., the FFT-processor of [78]). However, as the voltage is re-

duced, the sensitivity to process variations increases [77]. As a result, the sys-

tem may functionally fail and/or is subjected to large parametric variations (in

delay/energy), which at the end result in yield loss. In practice, this limits the

maximal achievable energy savings. Rather than restricting parametric varia-

tions at design-time with design margins, our objective is to build systems that

measure delay variations and adapt their performance at run-time depending

on actual system requirements (similar to the approach followed for memories

in [81]). This requires logic that operates correctly under large variations and

should not guarantee the performance at design-time. Hence, design margins

for timing closure are no longer needed. Logic with Razor-latches partially

exhibits this property and can operate in a better-than-worst-case fashion [9].

Unfortunately, it can only cope with limited delay variations (up to 50% of the

clock). However, in moderate inversion larger variations may occur in practice.

An alternative to Razor-latches is self-timed logic, which naturally deals delay-

variations [82]. Under normal operating conditions (high voltage and limited

variability), self-timed logic has an area, power, performance offset compared

to a typical synchronous design. However, in the domain of ULP processing

the balance may change in favor of self-timed logic as the amount of variations

and the sensitivity to them is much higher. For instance, a better-than-worst-

case DLX processor designed in asynchronous logic using matched delay-lines

is presented [83]. Despite the fact that this approach is robust to design mar-

gins for systematic and environmental uncertainties, it cannot cope with ran-

dom variations (which are said to be dominant below 90nm). In attempt to

deal both with systematic and random variations in a single shot, we study the

potential benefits of dual rail encoding logic in this paper. As this logic pro-

gresses based on the delay of the logic itself, it may eliminate these variations.

In the next sections, we explain how we use dual rail logic for dealing with

process variations and quantify its performance benefits.

5.4 Delay variation resilient

As indicated in the introduction, performance targets between 1-10MOPS can

be achieved while operating in moderate inversion. While operating just above

72 Exploit the performance benefits of self-timed logic in synchronous design

True Wire False Wire State Logic Value

gnd gnd Neutral -
gnd vdd Valid False
vdd gnd Valid True
vdd vdd Not Allowed -

Table 5.1: Dual Rail Encoding.

the threshold voltage, systems become very sensitive to process variations,

thereby complicating timing closure. Rather than over-designing the system,

we explore (partially) self-timed circuits that can naturally live with variations.

These will operate on average faster compared to synchronous logic. Self-

timed circuits consist of two parts: (1) a mechanism to detect the completion

of the combinational logic; (2) a mechanism to synchronize sequential regis-

ter stages of the logic. Both completion detection and synchronization circuits

for self-timed logic are rather complex logic designs. Careful introduction of

these components into the system is therefore mandatory. Consequently, to

limit overhead, it should be feasible to build a system where only the most crit-

ical components for variations have been made delay-variation resilient and where the

performance of the entire system is determined by the completion time of these critical

circuits.

5.4.1 Completion detection using Dual Rail Logic

Several ways exist to build completion detection logic (see [82]). In the con-

text of this paper, we have used dual rail logic, which detects the operation

completion by coding the validity of the output signals. At the start of a new

computation cycle, all signals are in the neutral state. During the computa-

tion the signals transit into either a valid 1/0 state. When all signals move

into a valid state, this means that the computation has completed. To code the

valid/invalid, dual rail logic uses two wires to represent each binary signal

(see Table 5.1). We implemented dual rail logic with DCVSL (Dynamic Cas-

code Voltage Switch Logic). The main advantage of this logic style is its speed.

A NAND2 gate implemented in DCVSL logic is shown in Figure 5.1. DCVSL

is weakly indicating, i.e. it starts to compute valid outputs even when not all

input signals have become valid. E.g., as soon as either A or B equal zero, the

left pull down circuit will discharge the pre-charged left-node, and in this way

drive the output of the NAND2 gate to a valid true signal. This makes the

circuit faster compared to alternative strongly indicating approaches where all

input data have to be valid before computing the output (e.g. [84][12]). More-

over, the pre-charge signal can reset the logic into the invalid state much faster

compared to strongly indicating logic. In the latter, all paths have to become

5.5 4-way handshaking protocol vs. clock gating 73

A

Pre Pre

A

OUT

B
B

OUT

Pre Pre

Figure 5.1: DCVSL NAND.

valid, before the logic can be invalidated again. The dual rail encoding is more

complex compared to static CMOS (e.g., all wires are duplicated). Therefore,

its power overhead has to be carefully analyzed.

5.5 4-way handshaking protocol vs. clock gating

We have explored two approaches to synchronize sequential logic. First, we

have used a 4-way handshaking protocol [83], with a slight modification to

work with the completion signal of the logic and for driving the pre-charge

signal (see Figure 2.9). In our view, the introduction of handshake circuits to

replace synchronous logic is involved. There are lots of additional timing is-

sues at the physical design level. Furthermore, handshaking complicates test-

ing significantly. Finally, with handshake circuits, it is difficult to partly intro-

duce delay-variation resilient circuits in the most critical parts of the system.

Therefore, as alternative, we examine an approach to replace the critical parts

of the system with self-timed logic (see Figure 2.10). Basically, additional logic

is inserted to gate the clock. The clock gating is controlled by the completion

detection circuits: as long as these critical stages have not finished their compu-

tations, the clock is not distributed (i.e. it is locally stopped). This gated-clock

network can be implemented similar to [9]. In contrast to [9], we gate the clock

until the computations are done rather than stalling it until correct data has

been restored. As a result, the clock does not need to be operated any longer

at the worst-case delay. It may be operated faster without causing functional

errors. As the logic usually completes faster than the worst-case, the through-

put of the system can be significantly improved. The average throughput of

74 Exploit the performance benefits of self-timed logic in synchronous design

the system can be computed with following formula:

tavg = tclk ·
∑

∀i>0

i · P [tclk · (i − 1) < tops + tcmp < tclk · i] (5.1)

Where tavg is the average delay, tops is the combinatorial logic delay and tcmp is

the completion logic delay. As an illustration, we present the throughput of a

Throughput vs clock frequency at 0.4V

32bit RPL adder

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

clock (Mhz)

T
h

ro
u

g
h

p
u

t
(M

O
P

S
)

worst-case

delay

Figure 5.2: Throughput of self-timed logic (with clock gating) depends on clock speed.

ripple adder in function of the clock frequency in Figure 5.2. The arrow repre-

sents the synchronous reference adder. It can operate maximally at 6.5Mhz and

thus achieve 6.5MOPS. The clock-gated design can be operated faster. Given

the fact that in a ripple adder operations for most input patterns complete

much faster than the worst-case one, the throughput can be increased almost

linearly by speeding up the clock. The benefits saturate at 27Mhz, where a three

and an half times higher throughput than for the synchronous one is achieved.

Thereafter, the number of errors increases rapidly, explaining the throughput

leveling off. It even slightly decreases, because the clock will trigger the regis-

ters only on next cycle after the logic completes. Finally, when increasing the

frequency to extremely high values, the performance reaches the performance

limit set by an ideal self-timed design. However, in practice, a maximal operat-

ing frequency exists in the proposed hybrid self-timed/synchronous approach:

the clock frequency can only be increased until the critical path determined by

the synchronous part of the design. Increasing clock frequency further would

render these synchronous parts of the design functionally incorrect.

5.6 Evaluation Framework 75

NAND2 3.5
EXOR 2.2

Table 5.2: Area Penalty of DCVSL.

5.6 Evaluation Framework

5.6.1 Library Design

As baseline for all our experiments, we use both synchronous and self-timed

cell-library containing 27 gates: NAND2, NAND3, NOR2, NOR3, EXOR, MUL-

TIPLEXER, INVERTER, BUFFER and DFLIPFLOP. The INVERTER and BUFFER

are designed in different versions: minimal size and with increased drive strength

1, 2, 4, 9. The cells are designed in IMEC’s 130nm CMOS technology down to

layout level. Particularly, the GDSII was generated with Synopsys Cadabra.

Based on the layouts of the cells, we have generated the Synopsy target library

(.lib) and physical library (.plib).

5.6.2 Synthesis

We create a synchronous gate-level netlist from a RTL description of the design

using Synopsys Physical Compiler. The RTL design is mapped onto the gates

of the synchronous library characterized with the nominal process conditions.

Constraints were set to optimize power consumption. The self-timed design

was built using a script that translates synchronous design into a self-timed

one. This entails three steps (see Figure 5.3):

From synchronous to asynchronous gates: we replace every synchronous logic

gate with its asynchronous counterpart having a similar input capaci-

tance and drive strength. As the relative strengths/loads between the

cells remain similar to the synchronous design, the technology mapping

decisions of the synthesis tool can be preserved. Note that better ways

exist to synthesize with dual rail gates, exploiting for instance the dual

output during logic mapping. However, commercial synthesis tools do

not support these optimizations, hence our results will be conservative

with respect to an optimized self-timed synthesis flow, but realistic in the

context of current commercial toolflows.

Adding signals: we interconnect all extra ports of the dual rail logic, i.e. the

pre-charge signal and the signals’ comple-ments. No extra flipflops are

added to store signal complements.

Adding the synchronization logic: we add completion detection circuit and

the synchronization logic (handshake circuit or the clock-gating logic).

76 Exploit the performance benefits of self-timed logic in synchronous design

RTL Design

Physical Compiler Sync Library

Gate Netlist

Sync-to-Async

Async Netlist

Insert Synchronization

Self Timed

Design

Async Library

Synchronization

Logic Macro

Figure 5.3: Synthesis of self-timed design.

The completion detection circuit consists of a balanced tree of NOR2

gates implemented in static CMOS logic.

5.6.3 Evaluation under process variations

We evaluate the both synchronous and asynchronous design under process

variations. For this purpose, we characterize the standard cells after subjecting

the cells’ netlists to random β (σβ = 10%) and Vt (σVt
= 5%) variations (see

Figure 5.4). The results of this characterization are converted into a standard

cell library. Besides storing the nominal delay/power of each cell, we also store

the characterization results of each cell when subjected to random process vari-

ations. Then, at the gate-level, we analyze the impact of the process variations.

For this purpose, we randomly replace the default cells with these variants. By

generating several possible instances, statistics on the design’s delay/power

distribution are gathered.

5.7 Experimental Results 77

Std-cell netlist SPICE with

Variability Injection

Cell Characterization

Std-cell netlist SPICE with
Std-cell netlist SPICE with variability

gate netlists

M
o
n
te

Create netlist with rand. cell

Power/perf. characterization

Process statistics

nominal design

M
o
n
te

Energy/performance

Figure 5.4: Performance characterization under process variation.

5.7 Experimental Results

In this section, we compare the performance/energy of synchronous vs. self-

timed for both a ripple and a Brent-Kung adder based pipeline. In Figure 5.5,

we indicate how the relative delay for of a 64-bit ripple (rpl) and Brent-kung

(bk) adder. In a synchronous design, the system’s throughput is defined by the

clock frequency, set by the critical path for the worst-case corner. This results

in large design margins, and thus performance loss compared to the average

delay of the combinatorial logic, particularly when operating at low operating

voltages. E.g., the delay difference between the average performance and the

worst-case one for a ripple-adder is 12x at 0.4V. A self-timed logic style that

removes both design margins for process and input variations, thus may sig-

nificantly improve the performance.

5.7.1 Handshaking vs. clock-gating

As explained before, we compare synchronization with either handshaking cir-

cuits or using a solution based on clock-gating. Handshaking achieves the av-

erage performance of Figure 5.5. Due to the discrete nature of the clock signal,

the throughput of a clock-gating based solution is up to 40% slower, but still

outperforms synchronous logic by 8x (at 0.6V) for the ripple-adder and greatly

simplifies testing. The operating frequency of the clock-gating based approach

78 Exploit the performance benefits of self-timed logic in synchronous design

Design Margins & the delay

of a 64-bit ripple-adder

0.0%

200.0%

400.0%

600.0%

800.0%

1000.0%

1200.0%

1400.0%

0.4 0.6 0.9

Vdd (V)

R
e

la
ti

v
e

 D
e

la
y

Worst

Nominal

Average

Overclocked

DCVSL

DCVSL+comp. detect.

Design Margins & Delay of a 64-bit Brent Kung adder

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

300.0%

350.0%

400.0%

450.0%

0.4 0.6 0.9

Vdd (V)

R
e
la

ti
v
e
 D

e
la

y

Worst

Nominal

Average

Overclocked

DVSL

DCVSL+comp.detec.

Figure 5.5: Exploiting variations - PUT.

has been optimized to achieve the maximum throughput.

5.7.2 From synchronous to dual rail logic

As can be seen in Figure 5.5 the DCVSL logic is in most cases considerably

faster than the worst-case synchronous design. Lowering the voltage improves

the relative performance of DCVSL (including completion detection logic) com-

pared to the synchronous logic. At lower voltages, synchronous logic performs

worse due to increasing short circuit currents and a poor Pmos/Nmos current

ratio. The relative overhead of the Completion Detection Circuits (CDC) de-

pends on the topology and operating voltages. As the logic depth of the adder

becomes smaller (i.e. when going from a ripple adder to a Brent Kung one),

the relative overhead of the CDCs significantly increases. This is why at 0.9V

the synchronous BK adder, designed for the worst-case outperforms the dual

rail one. From this experiment we thus conclude that significant performance

gains can be achieved while using self-timed designs, particularly when oper-

ating at low supplies. Comparing energy consumption in Figure 7, we indicate

5.7 Experimental Results 79

Relative Energy of 64-Bit Ripple Adder

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

1.00E+06 5.00E+06 1.00E+07 5.00E+07 1.00E+08

Throughput

R
e
la

ti
v
e
 E

n
e
rg

y
 t

o
 S

y
n

c
 (

%
)

SYNC DCVSL ASYNC

0.4V

0.4V

0.4V 0.6V

0.4V

0.4V

0.6V

0.4V

0.4V
0.9V

0.6V

0.6V

0.9V
0.6V

0.6V

Relative Energy of 64-bit Brent Kung

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

1.00E+06 5.00E+06 1.00E+07 5.00E+07 1.00E+08

Throughtput

R
e

la
ti

v
e

 E
n

e
rg

y
 t

o
 S

y
n

c
h

 (
%

) SYNC DCVSL ASYNC

0.4V

0.4V

0.4V

0.4V

0.4V
0.4V

0.6V

0.4V

0.4V

0.9V

0.6V

0.6V

0.9V

0.6V

0.6V

Figure 5.6: Relative Energy Using Asynchronous Logic Based on DCVSL (MOPS).

how this performance improvement may be converted into energy savings. We

plot the energy consumption of both adders designed in static CMOS, DCVSL

logic and DCVSL with completion detection circuits. The operating voltage

has been optimized to achieve the desired performance target (see Figure 5.6).

The benefits depend on the selected topology. In case of the ripple-adder, the

DCVSL logic improves the energy efficiency between 24%-30% compared to

static CMOS, despite its dynamic nature and high area overhead. At 10MOPS,

its 30% energy efficiency is the result of a lower operating voltage (0.4V rather

than 0.6 V) and less short circuit currents at these low power supplies. The total

energy consumption of the asynchronous adder including CDC improves be-

tween 4% - 13%. The difference in energy consumption is caused by the CDC,

of which the energy efficiency decreases at lower operating supplies In case

of the Brent-Kung adder, self-timed logic is more energy-hungry than the syn-

chronous ones due to complexity of dual rail logic. Therefore, while exploiting

self-timed logic to improve the performance of an entire pipeline, designers

should carefully analyze how/where to introduce self-timed logic. Replacing

80 Exploit the performance benefits of self-timed logic in synchronous design

all synchronous logic with dual rail one, will result in the highest achievable

performance but may come at a energy penalty. A selective introduction is

therefore desirable to limit the overhead of the dual rail logic.

5.7.3 A hybrid self-timed/synchronous approach demonstrated

on the VEX VLIW

In this section, we illustrate the energy vs. throughput benefits of a more selec-

tive introduction of dual rail logic on a VLIW core. The VEX VLIW [85] consists

of 4 pipeline stages (fetch, decode, execute and write back). The VLIW has been

synthesized for energy with a 1.2V library, and targets a frequency of 132 MHz.

Initially, its critical path (7.53ns) runs through the ALU (EX-stage), containing

a 64-bit ripple adder (ALU-delay=6ns, bypass=0.84ns, others=0.68ns).To im-

prove the average throughput of the system, we replace the ALU with self-

timed logic and over clock the system. Other parts of the system are kept syn-

chronous. The maximum clock frequency of the resulting system is determined

by the longest path in the synchronous parts of the system, i.e. any other stage

than the ALU. In this case, this corresponds to the decode stage which has a de-

lay of 3.75ns. Hence, in this case the system can be over-clocked by a factor two.

While operating at the double frequency only very few operations of the ALU

take more than one cycle. Rather than designing for extremely rate worst-case

input patterns and process variations, an average-case design running at the

double frequency increases throughput by a factor 1.992. Next, we investigate

the energy benefits of the average-case design in more detail. In Figure 5.8, we

plot the [throughput-energy consumption] of the VEX core implemented for

the worst-case (VEX WC RPL) and average case (VEX AVG RPL) running at

different operating supplies. Operating at the same voltage, the VEX core de-

signed for the average case runs almost two times faster. This can be seen

in Figure 5.8 where VEX AVG RPL design is shifted to the right compared

to VEX WC RPL. At higher voltages, the asynchronous execute stage is 1.56

times more energy-hungry compared to synchronous one (see also previous

paragraph). However, the energy penalty per operation for the entire system

is only 21%. At lower voltages, asynchronous circuits become more efficient

compared to synchronous ones. There replacing the execute stage makes the

design both more energy efficient and faster. Finally, we have replaced the

ripple-adder in the VEX ALU design with a faster carry-look ahead (CLA) one.

As a result, the delay of the ALU reduces to 5.7ns, but remains the critical path

in the design. However, the delay-ratio between this path and worst-case path

in the synchronous parts of the design reduces to 1.5. Hence, the throughput

difference between the worst-case and average case design is lower compared

5.8 Conclusions 81

Figure 5.7: VEX VLIW: We have converted the execute stage into a self-timed one to
increase the throughput by taking advantage of process and data-dependent
input variations.

to the ripple-adder design. Energy trends are similar. From above, we con-

clude that a selective introduction of self-timed logic in a VLIW may improve

energy efficiency for a targeted throughput by removing pessimism on data

and process variations. The results are strongly design-dependent though.

5.8 Conclusions

The highest energy efficiency for ultra low power applications requiring a per-

formance between 1-10MOPS is achieved while operating in moderate/weak

inversion. In this operating region, design margins for timing closure due to

process and as input variations considerably slow down the throughput. Self-

timed logic, such as dual rail logic, can eliminate these design margins. How-

ever, self-timed logic implies a large area overhead and may slightly increase

the power consumption. Therefore, it is important to only replace those crit-

ical parts of the system which are most sensitive to variations. To allow the

partial introduction of self-timed logic in an existing synchronous system, we

have proposed a synchronization solution based on clock-gating. This solution

performs slightly worse than a handshake-based synchronization, but still out-

82 Exploit the performance benefits of self-timed logic in synchronous design

Benefits of overclocking (2x) the VEX VLIW

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

MOPS

E
n

e
rg

y
 p

e
r

o
p

e
ra

ti
o

n

 (
p

J
)

VEX_WC_RPL design

VEX_AVG_RPL design

VEX_WC_CLA design

VEX_AVG_CLA design

1.2V

0.6V

0.4V

0.9V

Figure 5.8: Better throughput/energy consumption for a partly asynchronous design
of the VEX VLIW. VEX WC X design is a typical synchronous design in-
stance. Its operating frequency is determined by worst-case conditions.
VEX AVG X is an instance of the VEX designed for the average-case. To
limit circuit overhead, only the ALU has been made self-timed logic rather
than converting the entire design into an asynchronous one. The design was
tested for two versions of the ALU: one where the ALU consists of a 64-bit
ripple adder and one where it contains a 64-bit CLA.

performs synchronous logic. We have demonstrated this approach on a VLIW

core. The results indicate that precise performance/energy benefits strongly

depend on the specific logic architecture, but removing the pessimism inher-

ent to worst-case design in all cases improves the throughput (up to 2x) and

results in more energy-efficient designs at low operating supplies.

Chapter 6

Effectiveness of ASV and

ABB for Full-Swing and

Low-Swing Communication

Channels

6.1 Overview

Adaptive body bias (ABB) and adaptive supply voltage (ASV) have been showed

to be effective methods for post-silicon tuning of circuit properties to reduce

variability. While their properties have been compared on generic combina-

tional circuits or microprocessor circuit sub-blocks, the advent of multi-core

systems is bringing a new application domain forefront. Global interconnects

are evolving to complex communication channels with drivers and receivers,

in an attempt to mitigate the effects of reverse scaling and reduce power. The

characterization of the performance spread of these links and the exploration

of effective and power-aware compensation techniques for them is becoming a

key design issue. This work compares the variability compensation efficiency

of ABB vs ASV when put at work in two representative link architectures of

today’s ICs: a traditional full-swing interconnect and a low-swing signaling

scheme for low-power communication. We provide guidelines for the post-

silicon variability compensation of these communication channels.

84 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

6.2 Introduction

As technology continues to shrink, process variations can have a significant

negative impact on yield due to the wider spread of performance and power

consumption. Post-silicon tuning allows the adjustment of device characteris-

tics after a die has been manufactured to compensate for the specific deviations

that occurred on that particular die [106, 107]. One of the methods utilizes the

transistor body effect to change transistor threshold voltage by applying an

adaptive body bias (ABB) to chip devices to modulate performance and power

[115, 106]. The other method of performing post-silicon tuning is to adjust

the supply voltage (ASV) to trade performance with power, thus achieving

a similar effect to ABB in spite of the different physical mechanism, imple-

mentation overhead and trade-off curves. The effectiveness of ABB and ASV

in reducing variability has been assessed and compared mainly on combina-

tional logic circuits [109], key elements of microprocessor critical paths[107]

and ring oscillators[105], sometimes achieving counterintuitive and even con-

flicting conclusions. According to [109], the difference in effectiveness is so

small that choosing one method over the other should mainly be based on

implementation overhead.[105] claims that although the frequency and power

tuning range of ABB is more limited than that of ASV, its frequency tuning

range proves effective for process-dependent performance compensation. In

contrast, [107] concludes that using ASV together with ABB is much more ef-

fective than using any of them individually and is worth the cost. In essence,

the effectiveness of ASV and ABB should not be assessed in general, but with

reference to the variance of a specific manufacturing process and to the per-

formance and power tuning requirements of the design at hand. With the ad-

vent of multi-core integrated systems, the assessment of post-silicon variabil-

ity compensation techniques cannot be limited to the traditional testbenches

of past research any more, such as combinational logic circuits or even micro-

processor circuit sub-blocks. In fact, the new architecture trend requires long

(global) interconnects for the connection of system-level blocks with each other.

Unfortunately, physical properties of these on-chip interconnects are not scal-

ing well with feature sizes, and they are becoming a key limiting factor for

performance, reliability and timing closure of the whole system. A common

practice is to overcome the effects of interconnect reverse scaling by means of

circuit-level techniques, so that on-chip interconnects cannot be viewed as sim-

ple on-chip wires any more, but rather as communication channels including

complex drivers and receivers [90, 104]. Analyzing the impact of process pa-

rameter variations on the performance and reliability of these communication

channels and exploring effective means for their compensation is a key design

6.3 Related Work 85

issue. The relative effectiveness of ABB and ASV may greatly depend on the

particular communication circuits they are applied to. A traditional design

technique for long links consists of inserting equally spaced CMOS repeaters

to deal with resistive loss along the wire. However, with the increase in num-

ber and density of the wires with each new technology, interconnect area and

power are severely impacted [86]. The most effective technique for global in-

terconnects to achieve significant power savings and energy-delay efficiency

is to reduce the voltage swing of the signal on the wire [100] and, possibly, to

avoid the use of repeater stages, like in [95]. On the other hand, low-swing

signaling reduces noise immunity and poses non-trivial circuit design chal-

lenges. In many previous works (e.g., [112]) power, area and delay of com-

munication links making use of full-swing vs low-swing signaling have been

compared. This work investigates the robustness of the two signaling tech-

niques to process variations, and assesses the effectiveness of ASV and ABB

as variability compensation techniques for full-swing and low-swing intercon-

nects. The ultimate objective is not to characterize the implementation cost of

these techniques, but to find out which technique is worth the cost for a specific

communication channel and under given process parameter variations. How-

ever, aware of the need for low cost compensation, this work also investigates

the effectiveness of selective compensation of specific communication channel

sub-blocks as opposed to channel-wide tuning. All our tests were conducted

on an STMicroelectronics 65nm low-power technology. Given the emerging

role of networks-on-chip (NoCs) as reference interconnect fabrics for MPSoC

platforms [111], our study targets the on-chip wires used for switch-to-switch

connectivity at the top level of the NoC architecture hierarchy.

6.3 Related Work

Most research on low-swing interconnects is focused on designing circuit struc-

tures with minimal impact on delay, area and power, so the inherent advan-

tages of low-swing signaling are not swamped by transmitter and receiver

overhead. An overview of drivers and receivers is illustrated in [100, 88]. [88]

makes a comparison with traditional CMOS circuits and is one of the few pa-

pers dealing with repeater stages of low-swing interconnects. The use of re-

peaters is avoided in [102] by means of a swing limiter and an interconnect

accelerator at the receiver. Carefully engineered voltage level converters are

proposed in [87, 103], while an optimized level restoration scheme based on

bootstrapping can be found in [93]. Sense amplifiers are commonly used to

detect a small voltage swing in reduced-swing buses [100, 89]. The minimum

interconnect swing should be set by the need to overcome noise at the receiver.

86 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

An adaptive sensing scheme is proposed in [99] to reduce the threshold volt-

age offset between a driver and a receiver and ensure low-swing reliable oper-

ation. An adaptive voltage swing is set at circuit initialization in [98] to drive

interconnects based on their delay, thus coping with the increasing intercon-

nect delay spread. To the limit, a self-calibrating interconnect can be designed

[97, 91]. Differential current-mode signaling schemes have a distinctive advan-

tage over the single-ended ones in terms of noise immunity and signal integrity

[96]. Neighbor-to-neighbor crosstalk can be reduced with twists in the differ-

ential interconnect pairs [94]. Differential low-swing interconnects come at the

cost of a significant area and power overhead, therefore are not considered in

this chapter. Current variation models tend to ignore variations in wires [114],

however the spread of technology parameters may jeopardize functionality

of transmitting and receiving circuits, causing communication performance

degradation or even failure. The traditional techniques for post-silicon com-

pensation of variability are adaptive body biasing (ABB) [106, 110] and adap-

tive supply voltage (ASV)[108]. Comparative studies of ABB vs ASV when put

at work for variability compensation in microprocessor sub-circuits or generic

combinational logic circuits have not reached a unique conclusion, proving that

the choice is tightly design- and technology-dependent. In [107, 109, 105] there

is consensus on the fact that ASV has a larger tuning range of circuit proper-

ties and the combined use of ASV and ABB further extends this range. How-

ever, the measured yield improvements are different depending on the tech-

nology and the design at hand, so it is not unambiguous whether hybrid ap-

proaches are worth the cost or not. In many cases, ABB seems to suffice for the

required range of post-silicon compensation. Only for core-to-core variations

ASV seems the best compensation option [92]. [101] points out the dependence

of ABB and ASV efficiency on the device type and operating temperature in

90nm technology, while [109] emphasizes the role of biasing resolution as well.

This work aims at extending the analyses performed so far to the link ar-

chitectures for on-chip communication. First, the intrinsic robustness of full-

swing vs low-swing signaling schemes to process variations will be explored.

Second, ABB and ASV will be applied to find out which extent they can restore

the nominal performance of sample communication channels affected by pro-

cess variations and which is the incurred power cost. Third an entire 32bits

link will be placed and routed in order to apply the above analysis in a real

case. The layout will be drawn with 65nm ST technology and all parasitic

capacitance and resistance will be extracted, providing fine lines model with

crosscoupled capacitances. Our analysis can justify a later investment in the

synthesis backend of nanoscale designs to support the most suitable variabil-

ity compensation technique for a given communication channel and variation

6.4 Communication channel design 87

Q N
D 2m m line Q

D
QN

D

Ck

2 m m line Q
D

Ck

Driver

Q N
D 2m m line Q

D

Vref

QN

D

Ck

2 m m line Q
D

Ck
Vref

Vref

Vref

Ck

Ck Ck

Vin

POut POut

P1

P2 P3 P4 P5

P7 P8

N1 N2 N3 N4

P6

Out

POutPOut

lN1 lN2 lN3 lN4

lP1 lP2

lP3 lP4

Vref

Ck

Ck Ck

Vin

POut
POut

Ck

Out

POut

POut

P1

P2 P3 P4 P5

P6 P7

N2 N3 N4 N5

lN1 lN2 lN3

lP2 lP3lP1

N1

Driver
Receiver Receiver

a b

c d

Figure 6.1: a) CMOS full-swing interconnect. b) Low-swing interconnect. c) PDIFF low-
swing receiver from [100]. d) Optimized PDIFF low-swing receiver.

scenario.

6.4 Communication channel design

We at first present the design of the communication channels that will be as-

sessed later on in terms of robustness to process variations and suitability

for traditional post-silicon compensation techniques. Without lack of gener-

ality, we restrict our analysis to an intermediate layer wire with a length of

2mm, which is already the typical length of a switch-to-switch link in a regu-

lar network-on-chip architecture [111]. Inserting repeaters to reduce delay of a

wire is effective only when the wire is at least twice as long as the critical length

of the technology and of the specific routing layer. In our target 65nm technol-

ogy, a 2mm wire falls below this threshold and the choice is therefore for an

unrepeated interconnect. Even for longer links, solid network-on-chip imple-

mentation works like [95], that suggests the use of unrepeated wires for the

point-to-point communication links between switches, unlike other scenarios

where high-fanout nets are required. To the limit, link pipelining can be used

to break long timing paths. Following these indications, this chapter assumes

the use of unrepeated wires for network-on-chip communication. We at first

model the on-chip wire by a Barkley π3 distributed RC model. In that instance,

88 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

we assume to tackle the cross-talk capacitance with physical-level techniques

such as shielding or proper wire spacing. We leave the analysis of the inter-

action between cross-talk and variability compensation at the second instance,

where We synthesize an entire 32 bit link and extract the parasitic resistance

and capacitance with the RCc model. The reference link architecture uses a 1V

full-swing signaling (Fig.6.1.a). The driver consists of a library flip-flop and a

chain of buffers sized based on exponential horn methodology for minimum

delay. The receiver is another library flip-flop. The alternative communication

scheme is the low-swing pseudo-differential interconnect architecture reported

in Fig.6.1.b. The basic circuit is taken from [100]. The driver is an NMOS-

only push-pull driver which allows the use of very low power supplies and a

quadratic energy reduction as a function of the voltage reference/swing Vref .

The receiver is still clocked but requires the voltage reference as an additional

input. The original receiver circuit proposed in [100] is the clocked sense ampli-

fier followed by a static latch illustrated in Fig.6.1.c. This pseudo-differential

scheme uses single wire per bit while still retaining most advantages of dif-

ferential amplifiers such as low input offset and good sensitivity. The major

reliability degradation may come from the local device mismatch between the

double input transistor pairs and from the variation between distant references

of the driver and the receiver. In contrast, receiver operation is largely insen-

sitive to Vdd supply noise, as opposed to other schemes. This was the basic

motivation for picking up this scheme from [100]. However, we applied some

improvements to this receiver, ending up with the circuit in Fig.6.1.d. First,

PMOS transistor P6 in Fig.6.1.c has the task of equalizing the connected nodes,

however it remains active even after the initialization, thus slowing down node

transients. Moreover, it is not very conductive when the connected nodes reach

an initialization value approaching its voltage threshold. In Fig.6.1.d it has

been replaced by an NMOS transistor driven by the clock, thus achieving a bet-

ter equalization and a faster node transition. Second, although the NOR static

latch in Fig.6.1.c appears to be symmetric, it features uneven 0-to-1 and 1-to-0

switching times. Balancing rise and fall times makes the circuit actually asym-

metric. The solution in Fig.6.1.d allows an easier balancing of these times while

keeping the cross-coupled inverter pair fully symmetric: the outputs of the

pseudo-differential receiver in fact directly drive the transistors (dis-)charging

the flip-flop output capacitance, while the cross-coupled inverter pair keeps

the sampled values. Output capacitance for the differential signal was tuned

to be the same for POUT and POUTN signals. As a side effect, the flip-flop in

Fig.6.1.d turns out to scale better from a performance viewpoint and enables

higher operating frequencies for a comparable area than that of Fig.6.1.c. The

voltage swing was chosen to be 200mV. Transistor sizing for the low-swing

6.4 Communication channel design 89

communication channel was done to keep the same (maximum) performance

of the full-swing interconnect (1.68 GHz): driver sizing was used to achieve the

same link propagation delay, while receiver and static latch sizing was used to

enforce the same clock propagation time, so that the next logic stage fed by the

communication channel is impacted in the same way. In particular, the library

constraints for such propagation time were enforced.

FF_in Driver Receiver

400

350

150

200

250

300

P
o

w
e
r

(µ
W

)

100

50

0
Full-swing PDIFF Low-swing

Figure 6.2: Power breakdown at 1.68 GHz, i.e. the maximum performance achievable
by full-swing signaling.

6.4.1 Communication circuitry characterization

The first step of our link characterization imply power and area exploration of

the full-swing vs PDIFF low-swing signaling schemes in order to provide the

same performance applyed to the Barkley π3 line model. Power results with

100% input switching activity are reported in Fig.6.2. Our low-swing channel

consumes almost 5x less power than the full-swing one, confirming its power

efficiency. Most of the power savings obviously come from the driver and from

its reduced reference voltage. The input flip-flop is the same, and so is the

power. Moreover, the PDIFF receiver almost equals the power of the library

flip-flop in the full-swing scheme, which was chosen with the minimum driv-

ing strength. Low-swing signaling also achieves 28.5% lower leakage power.

Most of the savings come again from the driver, but also the PDIFF receiver has

a lower leakage than the library flip-flop, due to the power gating PMOS tran-

sistor in pre-charge mode and to the minimum area NMOS transistors that are

switched off in evaluation mode. As regards area, the low-swing channel has a

negligible 1% increase in area. The low-swing receiver has a slightly larger area

than the library flip-flop, which is counterbalanced by the lower area footprint

of the low-swing driver. Please observe that the PDIFF receiver consumes the

same total power of the library flip-flop with more area, and this is due to the

90 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

fact that some of its internal nodes switch with a lower swing. Finally, by mod-

eling and simulating wire lengths larger than 2mm, we got almost the same

quadratic delay increase for the full-swing and the low-swing interconnects as

shown in Fig.6.3, since the time constant stays the same. Given a target fre-

quency for a network-on-chip design, the NoC must ensure a maximum link

length, eventually enforced by applying link pipelining techniques.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12

Line length (mm)

C
h

a
n

n
e

l
d

e
la

y
 (

n
s

)

Full Low

Figure 6.3: Channel Delay vs line length.

6.4.2 32bit synthesized channel characteristic

At the second step We have synthesized 32bit communication channel by Syn-

opsys Physical compiler and placed and routed by Cadence SoCEncounter.

This link is typical in NoC [111] and has transmitter and receiver 2mm far,

32 bit channel width, STALL and VALID control signals. The Synthesizer was

instructed to realize unrepeated lines and to generate the clock tree. After-

ward We extracted the parasitic resistance and capacitance generating two link

SPICE netlists with fine line π3 RC model and within/out crosstalk capaci-

tance. Those communication channel netlists were connected with full-/low-

swing transmitter and receiver spice netlist and run by HSPICE engine.

Power at 910Mhz (With cross coupled capacitance)
Busy (mW)(100% activity) Idle Leakage
Max Average Min (mW) (µW)

Fullswing 5.26 4.49 3.71 0.26 3.8
Lowswing 1.36 1.33 1.30 0.42 3.1

Table 6.1: Statistic pattern dependent power analysis of the full- low-swing link with
the 32 bit synthesized channel.

The Fig. 6.4 reports the routed channel by SoCEncounter. As possible to

see the lines are counterintuitive routed not straight as flit30, this implies a

6.4 Communication channel design 91

Transmitter Receiver
Clock Tree

Flit 30

2mm

Figure 6.4: 32-bit communication channel layout.

complex crosstalk interaction among the lines resulting in a hard to find worst,

average and best data patterns for power analysis. Hence we decided to exe-

cute a statistical power analysis feeding the transmitter with a batch of random

data patterns. The results are shown in the table 6.1, where now the low-swing

saves 3.4 times less power than full-swing in the average case. Considering the

lines capacitance, we found a smaller value in the synthesized lines than the

Barkley model (270fF vs 380fF). Such capacity reduction decreases the weight

of the driver in the total power, reducing therefore the power saved by the use

of the low-swing link. Table 6.1 presents also leakage power, that are similar for

both links, and power dissipation for links in idle state (0% activity and clock

on). Low-swing performs worse idle state due to the PDIFF dynamic differen-

tial nature, where in each clock period one of the two branches has to switch.

Further analysis actuated by changing the input activity of the links, has been

resulted with smaller power dissipation of the low-swing for activity bigger

than 5%, justifing the use of the low-swing instead of the traditional CMOS in

all the links where the enable signal gates the clock.

6.4.3 Crosstalk interference

In this section we discuss the consequence of the crosstalk in both full- and

low-swing link when the worst performance scenario is applied. Every bit

switch in the same direction (0/1 → 1/0) except one, which does the oppo-

site transition (1/0 → 0/1) putting its driver line in the worst dis/charging

cross coupled capacitance condition. We applied the worst scenario to each

line. The firsts analysis have been result in a loss in both links performance

92 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

gnd

clk

flit(11)

flit(22)

flit(24)

reset

Figure 6.5: Composition of the flit28 capacitance.

from 1.28Ghz, reached without crosstalk, to 910Mhz. Furthermore the receiver

clock propagation time (taken from the clock sampling edge to the 50% output

voltage swing) has increased by 6% in the low-swing, denoting a little higher

sensitivity to crosstalk than full-swing link. Those results came out using a

clock tree routed with constraint to avoid corsstalk to the link lines (e.i. shield-

ing, proper wire spacing). Whereas without constraint the clock is routed as in

Fig.6.4, generating high crosstalk to the flit28, where the cross coupled capaci-

tance with the clock is the 30.5% of the whole line capacitance Fig.6.5. In such

condition the full-swing lose 16.5% performance while the low-swing receiver

miss to sample the flit28. Therefore is mandatory to route the clock tree with

physical constraint in order to reduce the crosstalk in low-swing link.

gnd

stall

flit(8)

valid

flit(16)

flit(31)

flit(30)

Figure 6.6: Composition of the flit7 capacitance.

Another physical constraint that could concern the route of a low-swing

link is the interaction with full-swing lines. In order to analyze such situation

we have designed a low-swing link with full-swing control signals and we

6.5 Robustness to process variations 93

applied the worst performance case scenario. The results shows a loss in per-

formance of 31.7% respect a whole low-swing link, especially located in line7

Fig.6.6 where the cross coupled capacitance with control signal is the 43.5% of

the whole line capacitance. Then we suggest to route a low-swing link with a

physical constraint to avoid high interaction with other full-swing lines present

in the design.

6.5 Robustness to process variations

The first objective of this chapter is to compare the inherent robustness of full-

swing and PDIFF low-swing signaling schemes respect to process variations,

while compensation techniques will be addressed later on. Our focus is on

within-die variations, which happen at the length scale of a die, and that can

be further divided into two contributors: systematic and random. System-

atic variations can be predicted prior to fabrication and exhibit space locality.

In contrast, random variations are due to the inherent unpredictability of the

semiconductor technology itself. In our tests we inject effective gate length

variations, which have implications on the threshold voltage as well, as com-

puted by the SPICE device models of our target library. HSPICE is used as our

simulation engine. We ignore variations in wires, in agreement with current

variation models (e.g., [114, 108]), consequently all the conclusion are valid for

both Barkley line and synthesized link.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1% 3% 5%

Full Swing Low Swing

Systematic Variations

P
ro

p
a
g

a
ti

o
n

d
e
la

y
 v

a
ri

a
ti

o
n

T
ra

n
s

m
it

te
r

R
e

c
e

iv
e

r

A
ll

s
ta

g
e

s

Figure 6.7: Sensitivity to systematic variations.

Fig.6.7 shows the sensitivity of the signaling schemes to systematic varia-

tions. The sensitivity is measured as the variation-induced deviation of the

clock propagation time of the receiver from the nominal value. The propaga-

tion time goes from the clock sampling edge to the 50% voltage swing of the

94 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

receiver output, and its nominal value is the same for both full- and low-swing

channels, since they were designed to impact the next stage of the design in

the same way. Systematic variations have been applied selectively to the trans-

mitter, to the receiver and to the whole channel, so the bars in Fig.6.7 should

be read pairwise. It can be clearly observed that low-swing signaling proves

a far more robust scheme to systematic variations. By restricting the analy-

sis to the full-swing channel, its transmitter turns out to be the weak point of

this scheme. The reason lies in the high sensitivity of the library flip-flop (i.e.,

the receiver) to the settling time of its input signal. This latter significantly

deviates from nominal conditions when systematic variations affect the trans-

mitter, and this explains the large degradation of the whole full-swing channel

performance. In contrast, the receiver seems much more robust, and varia-

tions affecting the whole channel introduce only an incremental degradation

with respect to the one caused by the transmitter. The only exception occurs

for channel-wide 5% systematic variations, where nominal delay is degraded

by 90% (height of the last column for full-swing is truncated to preserve the

scale). This is much more than one could expect by looking at the transmitter-

degraded case, but this is due to the fact that we are working close to the point

where full-swing channel operation fails: in this region, delay is highly sen-

sitive to process parameter variations. The opposite holds for the low-swing

channel. The PDIFF receiver does a good job in providing a noise margin to the

perturbations of its input signal induced by systematic variations in the trans-

mitter. However, when variations affect directly the receiver, the PDIFF scheme

suffers from increased switching delay. Clock propagation delay variations are

much smaller for low-swing channels with respect to the full-swing ones any-

way, and might more easily induce the following stage in the design to fail,

since it may be impossible to leave a 90% performance degradation margin for

5% systematic variations, as required by the full-swing channel. We detected a

failure of the full-swing channel when the transmitter is affected by 6/7% vari-

ations (tolerating a maximum propagation delay degradation by 90%), while

the low-swing channel can keep working also under 70% systematic variations

affecting both transmitter and receiver, after that the channel fails. At that time,

however, propagation delay is degraded by 40%.

The sensitivity of the channels under test to random variations (3σ/µ=15%)

is illustrated in Fig.6.8. Delay variability is similar in the two cases, with a

slightly more tightened distribution for the low-swing channel. Again, we

found the transmitter to be the most critical part of the full-swing channel,

while the receiver is obviously the weak point of the low-swing channel. In

fact, its pseudo-differential behaviour makes it very sensitive to random pro-

cess variations, although we found only a negligible amount of malfunction-

6.6 Post-silicon compensation 95

0

5

10

15

20

25

30

35

40

45

-40% -20% 0% 20% 40%

P
ro

b
a
b

il
it

y
 d

e
n

s

full swing low swing

Propagation time deviation from nominal value

P
ro

b
a
b

il
it

y
 d

e
n

s
it

y
 f

u
n

c
ti

o
n

Figure 6.8: Sensitivity to random variations.

ing channels with 3σ/µ lower than 20%. This indicates that under such vari-

ations, the unbalancing of the differential branches remains within the noise

margin of the receiver and correct 1/0 sampling takes place in due time. Delay

variations pointed out in Fig.6.7 and Fig.6.8 indicate that compensation is ap-

parently more challenging in full-swing channels, though the effectiveness of

compensation depends not only on the entity of delay variations, but also on

the sensitivity of channel delay to the different channel sub-blocks and also to

the interaction among them, as illustrated hereafter.

6.6 Post-silicon compensation

Next, we explore the effectiveness of ABB (and forward body bias, FBB, in par-

ticular) vs ASV in bringing channel instances slowed down by process varia-

tions back within nominal performance. Compensation is applied to both the

driver and the receiver for channel-wide tuning, but also selectively to individ-

ual sub-circuits to capture sensitivity of channel performance to that of these

sub-circuits and eventually come up with lower-cost compensation techniques.

The ideal performance tuning range of each technique is investigated, with-

out regarding of implementation issues, to justify an investment on the most

suitable technique for each kind of communication channel later on.

96 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

Adaptive Supply Voltage (5% systematic on all stages)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

FF_in+Driver All

W
o

rk
in

g
 S

a
m

p
le

s

1 1.1 1.2

Avg. Power 23.5%

Adaptive Body Bias (5% systematic on all stages)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

FF_in+Driver FF_out All

W
o

rk
in

g
 S

a
m

p
le

s

0 0.1 0.2 0.3 0.4 0.5

Avg. Power 2.4%

Figure 6.9: Working samples after compensation of full-swing channels. x-axis indicates
the channel (sub-)circuits to which compensation has been applied.

6.6.1 Experimental framework

Our experiments encompass the compensation of a representative subset of

variation scenarios. Similarly to [92, 108], worst-case systematic variations

of +5% of parameter nominal value are assumed and superimposed to ran-

dom variations. For these latter, the 3σ/µ of channel length distribution is

varied from 10, 15 to 20%, thus giving rise to three scenarios featuring the

same amount of worst-case systematic variations and an increasing parame-

ter spread associated with random variations.

Recently, advanced modeling frameworks have been proposed to propa-

gate variation information from the transistor compact model up to the system

level, offering a correlated view on yield, timing, dynamic and static energy

[113]. They also improve the traditional Monte Carlo statistical static timing

analysis techniques by accounting for rare events in variability distributions.

6.6 Post-silicon compensation 97

Adaptive Supply Voltage (5% systematic on all stages)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

FF_in+Driver FF_out All

W
o

rk
in

g
 S

a
m

p
le

s

1 1.1 1.2

Avg. Power 8.5%

Adaptive Body Bias (5% systematic on all stages)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

FF_in+Driver FF_out All

W
o

rk
in

g
 S

a
m

p
le

s

0 0.1 0.2 0.3 0.4 0.5

Avg. Power 6.0%

Adaptive Swing Voltage (5% systematic on all stages)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

W
o

rk
in

g
 S

a
m

p
le

s

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Power 46.6%

21.2%

Figure 6.10: Working samples after compensation of PDIFF low-swing channels. x-axis
indicates the channel (sub-)circuits to which compensation has been ap-
plied.

98 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

Since this chapter focuses on a relatively small yet critical amount of logic,

we developed an ad-hoc and simplified methodology based on Monte Carlo

analysis to study the impact of systematic and random variability and how ef-

fectively it can be compensated. For each signaling scheme, variation scenario

and compensation technique, we perform Monte Carlo simulations with a sta-

tistically significant sample set. Each Monte Carlo run (i.e., a channel instance

with different random variability injections) goes through the compensation

methodology illustrated in Fig.6.11. At first, we check for nominal perfor-

mance requirements. If met, a new instance is analyzed. If not, a compensation

step is applied. In practice, if FBB is under test, an incremental reduction step

of the body bias is applied so to improve performance. Similarly, the supply

voltage is increased when ASV is assessed. Decrements/Increments are ap-

plied with steps of 100 mV both for ASV and FBB. This choice stems from the

conclusion of previous works [106] and from considering realistic resolutions

of low-cost voltage regulators. After the compensation step, performance is

re-evaluated and eventually an additional compensation step is applied. The

process completes when nominal performance is finally met OR when the volt-

age range limit is reached: 500 mV for forward body bias (to avoid turning

on the source pn junction of transistors) and 200mV for ASV (for reliability

and technology library constraints). Since our target 65nm manufacturing pro-

cess does not provide a triple well, we apply forward body biasing only to

PMOS transistors. Our analysis aims to capture whether this lower cost solu-

tion suffices for compensation purposes in on-chip communication channels.

In addition, it is not possible to selectively apply ASV only to the receiver of

a full-swing channel, since this would require a voltage level shifter which is

not there. In contrast, such level shifter comes for free in a low-swing channel,

which therefore allows PDIFF receiver selective compensation with ASV. FBB

does not have any kind of constraints in any signaling scheme.

Effectiveness of a technique is expressed as the percentage of the sample

set that can be brought back within nominal performance by the compensation

technique under test. We denote those effectively compensated samples as

working samples. Nominal performance means correct sampling at 1.68GHz for

the Barkley model and 910Mhz for the synthesized link, with clock propaga-

tion time constraints met at the output of the receivers. Moreover, the average

power overhead for compensating channel instances with the highest power

supply value (lowest PMOS body bias value) is measured, denoting power ef-

ficiency of the compensation techniques. For low-swing signaling, we also ex-

plore adaptive voltage swing as an additional and built-in compensation tech-

nique by raising the voltage swing in increments of 100mV. Afterward, system-

atic variations were applied to the whole channel but also selectively to the receiver

6.6 Post-silicon compensation 99

(ASV, FBB)

OR
voltage range limit reached?

(3 variation scenarios)

Apply Leff/Vth variation model

Compensation incremental step

HSPICE channel model

Nominal performance met?
YES

NO

NO

YES

(Full−swing, PDIFF low−swing)

Nominal performance met

Figure 6.11: Framework for assessing the effectiveness of variability compensation
techniques.

and to the transmitter to account for place&route effects. In fact, transmitter

and receiver might be far apart from each other, thus suffering from system-

atic variations to a different extent, or they might be placed close to each other.

In this latter case, physical parameters of the whole communication channel

would be skewed by the same amount. We hereafter report only this latter case

and the differences (if any) with the other variation scenarios are discussed in

the text. We also recall that random variations were always applied to the circuits of

the whole channel, and in the first set of experiments 3σ/µ is assumed to be 15%.

See afterward for different values. When systematic variations were injected in

the entire channel (like random ones), we found almost no channel instances

in the sample set working without compensation, both for full-swing and low-

swing channels. So, in the experiments that follow, the entire sample set needs

to be compensated. Finally we analyzed the compensation techniques applied

to the synthesized link with the previous variation scenarios, in order to eval-

uate their effectiveness under crosstalk regime.

100 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

6.6.2 Compensation efficiency in full-swing links

As can be observed from Fig.6.9, neither ASV nor FBB are able to restore func-

tionality of all working samples by only acting upon the transmitter or (for

FBB) the receiver. The compensation in this case would be totally ineffective.

Variability can only be compensated by tuning all the circuits of the channel.

In fact, under 5% systematic variations performance of full-swing channels is

highly sensitive to the interaction between the signal provided by the transmit-

ter and the requirements imposed by the receiver. Moreover, such variations

(recall Fig.6.7) significantly impact both the transmitter and the receiver. As a

consequence, an effective compensation can only be carried out by acting upon

both modules at the same time. However, while ASV requires a single volt-

age step to reach 100% working samples, FBB needs its entire voltage range to

achieve the same objective. Even the large variations taking place in full-swing

channels can be offset by FBB in spite of its inherently weaker performance

tuning capability by exploiting the sensitivity of channel performance to the

circuits compensation is applied upon. The main difference lies however in

the power efficiency of the techniques. When ASV raises the supply voltage

to 1.1V, the communication channel instances on average exhibit a 23% power

overhead with respect to the variation-free scenario. In contrast, a 500mV for-

ward body bias incurs only an average power overhead of 2.4%, almost negli-

gible. When we applied systematic variations only to the transmitter (flip-flop

and driver), we observed that tuning only the transmitter circuits only partially

solved the problem. ASV could restore about 80% of the samples, while FBB

about 60% by remaining in the voltage range limits. This indicates the impact

of random variations, which require a tuning of the receiver as well to restore

100% working samples. The situation is even worse when only the receiver is

affected by systematic variations: while no selective tuning of the flip-flop is

feasible with ASV due to a lack of a voltage level shifter, only 20% of working

samples were achieved by selective FBB. Again, the only option was to tune

the entire channel, finding again the same power efficiency gap between FBB

and ASV.

6.6.3 Compensation efficiency on low-swing links

Quite different considerations hold for variability compensation in low-swing

channels. This time, ASV can be selectively applied to the receiver since the

level shifter is built-in in the signaling scheme. Fig.6.10 clearly shows that a

selective tuning of the receiver with both ASV and FBB reaches a high percent-

age of working samples. With just one voltage increment step applied to the

output flip-flop, ASV can restore performance of all slow samples. More in-

6.6 Post-silicon compensation 101

terestingly, the average power overhead is limited to 8.5%, much lower than

in a full-swing channel. In low-swing channels, the transmitter is marginally

impacted by systematic variations (recall Fig.6.7). At the same time, receiver

performance is much less sensitive to the perturbations of the input signal than

in full-swing channels. Therefore, acting upon the receiver proves an effective

compensation method. Unfortunately, FBB cannot reach 100% working sam-

ples with a selective compensation at the receiver, and neither a channel-wide

compensation can (90% is the best result achieved with a 500mV FBB). This

is essentially due to weak performance knob represented by FBB, which is not

boosted by any circuit level property in this case (for instance, no high sensitiv-

ity of channel performance to transmitter-receiver interaction). The worst-case

average power overhead incurred by FBB is around 6%, comparable with that

of ASV. Considering the cases where systematic process variations affect only

the transmitter or the receiver, we found that FBB is not able again to reach

100% of working samples (best coverage is 90%). ASV instead works effec-

tively. However, in all cases and for both ASV and FBB, selective compensa-

tion at the receiver turns out to be as effective as full channel compensation.

Power overhead for ASV is around 7 and 8%, while for FBB is around 3%.

There is a slightly higher power overhead of ASV which is the price to pay to

achieve a higher compensation efficiency and, in the end, a higher yield. How-

ever the absolute extra power required to the ASV to recover all the sample is

6.51µW whereas the ABB in full-swing link requires 9.02µW , confirming the

better power efficiency of the low-swing, even for process variation compen-

sation technique.

Fig.6.10 also shows the efficiency of an intuitive compensation technique

which stems from the possibility to tune the voltage swing in the low-swing

channel. Although intuitive, this technique proves highly ineffective to restore

channel performance. By increasing the voltage swing from 200mV to 400mV,

only 50% of the slow samples can be saved. Interestingly, by further increasing

the swing proves useless, and no further improvements can be achieved, thus

spending power uselessly. This is due to the fact that compensating process

variations is not just an issue of speeding up signal propagation across the link,

but to restore correct functionality at the transmitter and at the receiver. Only

when the transmitter is impacted by systematic variations while the receiver

is not, then speeding up the link with a swing of 400mV achieves 82% work-

ing samples. Compensating receiver variability proves more difficult (about

60% working samples). Another argument against reference voltage scaling is

power. The measured average power overhead for the worst case compensa-

tions (those at 400mV) amounts to a significant 46%. This confirms the results

of the work in [91], showing that using the voltage swing to speed up a low-

102 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

swing link is highly power inefficient.

6.6.4 Role of random variations

When we repeated the experiments with a 3σ/µ = 10% and below, the mi-

nor role played by random variations translated into a better compensation

efficiency of FBB in low-swing channels, since working samples were always

close to 100%. The lower delay spread makes the worst-case compensation sce-

nario affordable also for the tuning capability of FBB, so that this latter can be

considered also for low-swing signaling as the impact of random variations de-

creases. Finally, 3σ/µ was set to 20%. In this case, even for full-swing channels

FBB could not bring all samples within nominal performance bounds, although

still achieving around 95% working samples. Interestingly, in low-swing chan-

nels the effectiveness of FBB was as low as 70% working samples.

6.6.5 Compensation technique with crosstalk

ASV with random, systematic variations and xtalk

0

0.2

0.4

0.6

0.8

1

1.2

lowswing fullswing

W
o

rk
in

g
 s

a
m

p
le

s

1 1.1 1.2
Avg. Power 19.2% Avg. Power 22.4%

Figure 6.12: Working samples after ASV compensation with random, systematic varia-
tions and crosstalk.

As last experiment we applied the previous best found compensation tech-

niques to the synthesized link described by RCc parasitic extracted SPICE netlist.

We used ASV and ABB to the all channel for the full-swing link, while the low-

swing had ASV to the receiver and ABB to the all channel, in according to the

previous analysis. The introduction of crosstalk did not change the capability

of ASV to recover 100% of the sample set with only one step for the full-swing

link, see Fig.6.12. The average power overhead is 22.4% like the overhead re-

quired without crosstalk. Whereas the low-swing requires two ASV step to

recover all the sample set, exhibits 19.2% power overhead. Such results are

6.7 Conclusions 103

in agreement to the low-swing higher crosstalk sensitivity, which requires an-

other ASV step to compensate the variation. However the expense exhibited

by the low-swing link is still smaller than the full-swing one, denoting it suit-

ability in the future links.

ABB with random, systematic variations and xtalk

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

lowsing fullswing

W
o

rk
in

g
 s

a
m

p
le

s

0 0.1 0.2 0.3 0.4 0.5

Avg. Power 3.5%

Avg. Power 10.9%

Figure 6.13: Working samples after p-mos n-mos ABB compensation with random, sys-
tematic variations and crosstalk.

Thereafter we ran the simulations with ABB correction technique. In this

case the presence of crosstalk affected both full- and low-swing link, where

only a few samples were brought back to the nominal performance. The ap-

plication of the ABB to the only p-mos impose by the presence of a single well

technology, drastically increase the influence of the crosstalk. In fact when we

ran simulation with ABB applied to both p- and n-mos transistors Fig.6.13, the

full-swing channel has all the sample set working at the nominal performance,

while the low-swing exhibits its small ABB sensibility. To conclude, in crosstalk

regime the full-swing channel has is best performance with ABB applied to the

all channel and both p- and n-mos transistors, whereas the low-swing link is

more suitable for ASV compensation applied at the only receiver.

6.7 Conclusions

This work explores the effectiveness of ASV and FBB as post-silicon variabil-

ity compensation techniques for on-chip communication channels. Our work

shows that FBB is effective for tuning performance of full-swing channels with

minimum power overhead. In contrast, when applied to low-swing channels,

FBB proves not capable of compensating all variation patterns, since its lim-

ited performance tuning capability is not amplified by any circuit property. On

the other hand, ASV can exploit the built-in voltage level shifter in low-swing

104 Effectiveness of ASV and ABB for Full-Swing and Low-Swing Communication Channels

channels and achieve an effective and low power-overhead compensation.

The results of this chapter point out the superior robustness of low-swing

channels to process variations. After considering a realistic range of systematic

and random WID process variations and exploring all the possible counter-

measures based on ABB and ASV, it is evident that low-swing channels (i) can

better cope with systematic variations (lower delay deviations and functional

correctness guaranteed over a wider range of variations), (ii) feature a lower

delay spread under random variations, (iii) can be compensated with success

against delay variability at a low power cost. These features add up to the ref-

erence characteristic of low-swing channels, which is their inherent low power

consumption.

Conclusions

The shrinking transistor dimensions with increasing local temperature and

process variation, are pushing the designers to face new reliability and man-

ufacturability challenges. The standard approach based on the worst case de-

sign, in conjunction with manufacturing and packaging refinements, will not

be efficient anymore. Therefore researchers and industries are developing new

system and logic design techniques aware of circuit reliability and manufac-

turability.

The thesis has introduced readers into the new technology challenges, pre-

senting novel design approaches to increase robustness and yield of the future

integrated circuits. Furthermore the contribution of my Phd research activity

in the reliability and manufacturability issues has been illustrated. At first I

developed a thermal analysis tool, that has been integrated in a NoC cycle ac-

curate simulator and in a FPGA based NoC simulator. Meanwhile the need

for a thermal analysis tool in the first design stages has been investigated: i)

Showing as an accurate layout distribution can avoid the onset of hot-spot. ii)

Proving the temperature and thermal cycles reduction due thermal manage-

ment application. Moreover I developed a statistical process variation analysis

tool able to address both random and systematic variations. The need of a

static analysis tool at the first design stages has been advocated: i) Proving

the system manufacturability increment due self-timed stages insertion in an

embedded microprocessor. ii) Analyzing the NoC link robustness, where the

low swing technique has shown a better power, speed and yield behaviors. iii)

Testing the efficiency of process compensation technique in NoC communica-

tion channel, noticing the ASV as best solution for low swing and ABB for full

swing links.

Acknowledgements

Finally I am approaching the end of the philosophy doctorate, finally used only

as temporal meaning. In fact those three years have deeply changed my life. I

learned a lot of things, not only in my research field. I knew, met, worked and

enjoyed the life with a lot of people from everywhere in the world. I appre-

ciated different culture and maybe I understood better mine, that is evolving

from Italian to European, or maybe I would define myself as world wide citi-

zen, always maybe, remembering all the time I was and will be proud of my

Italian, and Pesarese origin.

However, let me thanks my professor Luca Benini and senior Research Pol

Marchal, which have given me the possibility to do the doctorate. Thanks to

Davide Bertozzi, whom I have collaborated for the last year. Moreover I wanna

thanks all the guys of Micrel Lab and µIdea. Special Thanks to all the guys I

met in Leuven, IMEC, and the guys of Ferrara.

At the end I wanna thanks my parents and brother, who have always sup-

ported me, and Silvia, who has filled my empty heart since nine months ago

till i don’t know.

Bologna

March 11, 2007

Bibliography

[1] International Technology Roadmap For Semiconductors

2007, cap Design

www.itrs.net

[2] Srinivasan, J., Adve, S., Bose, P., Rivers, J., Kun Hu, C. (2003). ”RAMP: A

Model for Reliability Aware MicroProcessor Design”. In RC23048.

[3] Skadron, K., Stan, M., Huang, W., Velusamy, S., Sankaranarayanan, K.,

and Tarjan, D. (2003). ”Temperature-Aware Microarchitecture”. In Proc.

IEEE/ACM ISCA, pages 2-13, San Diego, CA, USA.

[4] Papanicolaou, A. et al., ”At Tape-out: Can System Yield in Terms of Tim-

ing/Energy Specifications be Predicted?”, IEEE Custom Integrated Circuits

Conference, pp.773-778, 2007.

[5] Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F., Olivieri, M. (2005).

”Mparm: Exploring the multi-processor SoC design space with SystemC”.

Journal of VLSI Signal Processing 41, 2, pp.169-182.

[6] Atienza, D., Del Valle, P., Paci, G., Poletti, F., Benini, L., De Micheli, G.,

Mendias, J.M., Harmida, R. (2007). ”HW-SW emulation framework for

temperature-aware design in MPSoCs.” ACM TODAES,Volume 12, Issue 3

Article No. 26

[7] International Technology Roadmap For Semiconductors

www.itrs.net

[8] Kundu, S. ”Managing Variations: from Devices to Systems”, DATE 2008

Workshop: Impact of Process Variability on Design and Test , Munich, March

14, 2008.

[9] Ernst, D. et al ”Razor: a low-power pipeline based on circuit-level timing

speculation” IEEE/ACM MICRO-36, 2003, Proceedings, pp. 7-18, 3-5 Dec.

2003

[10] Eireiner, M.; Henzler, S.; Georgakos, G.; Berthold, J.; Schmitt-Landsiedel,

D. ”In-Situ Delay Characterization and Local Supply Voltage Adjustment

for Compensation of Local Parametric Variations” IEEE Journal of Solid-

State Circuits, Volume 42, Issue 7, July 2007 Page(s):1583 - 1592

[11] Dean, M.E.; Dill, D.L.; Horowitz, M. ”Self-timed logic using current-

sensing completion detection (CSCD)” Proc. IEEE ICCD ’91, 14-16 Oct 1991

[12] Kondratyev, A.; Lwin, K. ”Design of asynchronous circuits using syn-

chronous CAD tools” IEEE Design and Test of Computers, vol.19, no.4,

pp.107-117, Jul/Aug 2002

[13] Srinivasan, J.; Adve, S.; Rivers, P. ”Lifetime reliability: toward an archi-

tectural solution” IEEE Micro, vol.25, Issue 3, pp.70-80, May/Jun 2005

[14] Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini,

L., and DeMicheli, G. (2005). NoC Synthesis Flow for Customized Domain

Specific Multiprocessor Systems-on-Chip. IEEE T. Parallel and Distributed

Systems, 16(2):113–129.

[15] Brooks, D. and Martonosi, M. (2001). Dynamic thermal management for

high-performance microprocessors. In Proc. IEEE HPCA, pages 171–182,

Nuevo Leone, Mexico.

[16] D.Frank, Dennard, R., Nowak, E., Solomon, P., Taur, Y., and Wong, H.

(2001). Device Scaling Limits of Si MOSFETs and Their Application De-

pendencies. Proc. IEEE, 89(3):259–288.

[17] Gunther, S., Binns, F., and and. J. Hall, D. C. (2001). Managing the impact

of increasing microprocessor power consumption. Intel Technology Journal

Q1.

[18] Hamann, H., Weger, A., Lacey, J., Cohen, E., and Atherton, C. (2006).

Power Distribution Measurements of the Dual Core PowerPC 970MP Mi-

croprocessor. In Proc. IEEE/ACM ISSCC, pages 2172 – 2179, San Francisco

CA, USA.

[19] Heo, S., Barr, K., and Asanovic, K. (2003). Reducing Power Density

through Activity Migration. In Proc. IEEE/ACM ISLPED, pages 217–222,

Seoul, Korea.

[20] Huang, M., Renau, J., Yoo, S., and Torrellas, J. (2000). A framework for dy-

namic energy efficiency and temperature management. In Proc. ACM/IEEE

Micro, pages 202–213, Monterey, CA, USA.

[21] Hung, W., Xie, Y., Vijaykrishnan, N., Kandemir, M., and Irwin, M. (2005).

Thermal-Aware Task Allocation and Scheduling for Embedded Systems. In

Proc. IEEE/ACM DATE, pages 898–899, Munich, Germany.

[22] Kanda, K., Nose, K., Kawaguchi, H., Lee, S., and Sakurai, T. (2001). Design

Impact of Positive Temperature Dependences on drain current in Sub 1V

CMOS VLSIs. IEEE J. Solid State Circuits, 36(10):1559–1564.

[23] Kao, J., Miyazaki, M., and Chandrakasan, A. (2002). A 175mV Multiple-

Accumulate Unit Using an Adaptive Supply Voltage and Body Bias Archi-

tecture. IEEE J. Solid-State Circuits, 37(11):1545–1555.

[24] Liao, W., Li, F., and He, L. (2003). Microarchitecture level power and ther-

mal simulation considering temperature dependent leakage model. In Proc.

IEEE/ACM ISLPED, pages 211–216, Seoul, Korea.

[25] Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., and Zafalon, R. (2004).

Analyzing Chip Communication in a MPSoC Environment. In Proc.

IEEE/ACM DATE, pages 752–757, Paris, France.

[26] Loghi, M. and M. Poncino, L. B. (2004). Cycle-Accurate Power Analysis

for Multiprocessor Systems-on-a-Chip. In Proc. GLSVLSI, pages 401–406,

Boston, MA, USA.

[27] Lu, Z., Huang, W., Lach, J., Stan, M., and Skadron, K. (2004). Interconnect

Lifetime Prediction under Dynamic Stress for Reliability-Aware Design. In

Proc. IEEE/ACM ICCAD, pages 327–334, San Jose, CA, USA.

[28] McPherson, J. (2001). Scaling-Induced Reductions in CMOS Reliability

Margins and the Escalating Need for Increased Design-In Reliability Ef-

forts. In Proc. ISQED, pages 123–130, San Jose, CA, USA.

[29] Pham, D., Asano, S., Bolliger, M., Day, M. N., Hofstee, H. P., Johns, C.,

Kahle, J., Kameyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D.,

Stasiak, D., Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wendel, D.,

Yamazaki, T., and Yazawa, K. (2005). The design and implementation of a

first-generation CELL processor. In Proc. IEEE/ACM ISSCC, pages 184–186,

San Francesco, CA, USA.

[30] Poirier, C., McGowen, R., Bostak, C., and Naffziger, S. (2005). Power

and temperature control on a 90nm Itanium-Family processor. In Proc.

IEEE/ACM ISSCC, pages 304–305, San Francesco, CA, USA.

[31] Rohou, E. and Smith, M. (1999). Dynamically managing processor tem-

perature and power. In Proc. 2nd workshop on Feedback-directed optimization,

pages 1–8, Haifa, Israel.

[32] Sanchez, H., Kuttanna, B., Olson, T., Alexander, M., Gerosa, G., Philip, R.,

and Alvarez, J. (1997). Thermal management system for high performance

PowerPC microprocessors. In Proc. IEEE Compcon, pages 325–330, San Jose,

CA, USA.

[33] Skadron, K., Stan, M., Huang, W., Velusamy, S., Sankaranarayanan, K.,

and Tarjan, D. (2003). Temperature-Aware Microarchitecture. In Proc.

IEEE/ACM ISCA, pages 2–13, San Diego, CA, USA.

[34] Su, H., Liu, F., Devgan, A., Acar, E., and Nassif, S. (2003). Full chip leakage

estimation considering power supply and temperature variations. In Proc.

IEEE/ACM ISLPED, pages 78–83, Seoul, Korea.

[35] Vandevelde, B., Driessens, E., Chandrasekhar, A., and Beyne, E. (2001).

Characterisation of the polymer stud grid array (PSGA), A lead free CSP for

high performance and high reliable packaging. In Proc. SMTA, Los Angeles,

CA, USA.

[36] Zhang, Y., Parikh, D., Sankaranarayanan, K., Skadron, K., and Stan, M.

(2003). HotLeakage: A Temperature-Aware Model of Subthreshold and

Gate Leakage for Architects. Technical Report CS-2003-05, Univ. of Virginia

Dept. of Computer Science.

[37] AMD. 2004. Thermal performance comparison for am486dx2 and dx4 in

pdh-208 vs pde-208 package. http://www.amd.com.

[38] APTIX. 2003. System explore. http://www.aptix.com.

[39] ARM. 2003. Arm AMBA 2 AHB Specification.

http://www.arm.com/products/solutions/AMBA Spec.html.

[40] ARM. 2004a. Arm Integrator Application. http://www.arm.com.

[41] ARM. 2004b. ARM7TDMI-STR71xF TQFP144

and TQFP64 10x10 Packages - Product Datasheets.

http://www.arm.com/products/CPUs/ARM7TDMI.html.

[42] ARM. 2002. PrimeXSys Platform Ar-

chitecture and Methodologies, white paper.

http://www.arm.com/pdfs/ARM11%20Core%20&%20Platform%20Whitepaper.pdf.

[43] BENINI, L., BERTOZZI, D., BOGLIOLO, A., MENICHELLI, F., AND

OLIVIERI, M. 2005. Mparm: Exploring the multi-processor SoC design

space with SystemC. Journal of VLSI Signal Processing 41, 2, 169–182.

[44] BRAUN, G., WIEFERINK, A., SCHLIEBUSCH, O., LEUPERS, R., MEYR, H.,

AND NOHL, A. 2003. Processor/memory co-exploration on multiple ab-

straction levels. In Proceedings of DATE.

[45] BROOKS, D. AND MARTONOSI, M. 2001. Dynamic thermal management

for high-performance microprocessors. In Proceedings of HPCA.

[46] CADENCE. 2005. Cadence palladium II. http://www.cadence.com.

[47] CHEN, G. AND SAPATNEKAR, S. 2003. Partition-driven standard cell ther-

mal placement. In Proceedings of ISPD.

[48] CHU, C. AND WONG, D. 1998. A matrix synthesis approach to thermal

placement. IEEE Transactions on Computer-Aided Designs (T-CAD) 17, 11,

1166–1174.

[49] COWARE. 2004. Convergence and Lisatek product lines.

[50] EMULATION AND VERIFICATION ENGINEERING. 2005. Zebu XL and ZV

models. http://www.eve-team.com.

[51] GOPLEN, B. AND SAPATNEKAR, S. 2005. Thermal via placement in 3D

ICs. In Proceedings of ISPD.

[52] HEO, S., BARR, K., AND ASANOVIC, K. 2003. Reducing power density

through activity migration. In Proceedings of ISLPED.

[53] HERON ENGINEERING 2004. Heron mpsoc Emulation.

http://www.hunteng.co.uk.

[54] IBM. 2006. IBM Packaging Solutions. http://www-

03.ibm.com/chips/asics/products/packaging.html.

[55] JALABERT, A., MURALI, S., BENINI, L., AND DE MICHELI, G. 2004.

xpipescompiler: A tool for instantiating application specific networks-on-

chip. In Proceedings of DATE.

[56] JERRAYA, A. AND WOLF, W. 2005. Multiprocessor Systems-on-Chips. Mor-

gan Kaufmann, Elsevier.

[57] LÓPEZ-BUEDO, S., GARRIDO, J., AND BOEMO, E. I. 2000. Thermal testing

on reconfigurable computers. IEEE Design & Test of Computers 17, 1, 84–91.

[58] MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J., FORSGREN, D.,

HALLBERG, G., HOGBERG, J., LARSSON, F., MOESTEDT, A., AND WERNER,

B. 2002. Simics: A full system simulation platform. IEEE Computer 35, 2,

50–58.

[59] MENTOR GRAPHICS. 2003. Platform express and Primecell.

http://www.mentor.com/products/embedded software/platform baseddesign/.

[60] NAKAMURA, Y., HOSOKAWA, K., KURODA, I., YOSHIKAWA, K., AND

YOSHIMURA, T. 2004. A fast HW/SW co-verification method for SoC by

using a c/c++ simulator and fpga emulator with shared register communi-

cation. In Proceedings of DAC.

[61] NAVA, M. D., BLOUET, P., TENINGE, P., COPPOLA, M., BEN-ISMAIL, T.,

PICCHIOTTINO, S., AND WILSON, P. 2005. An open platform for develop-

ing mpsocs. IEEE Computer, 60–67.

[62] PACI, G., MARCHAL, P., POLETTI, F., AND BENINI, L. 2006. Exploring

temperature-aware design in low-power mpsocs. In Proceedings of DATE.

[63] PAULIN, P., PILKINGTON, C., AND BENSOUDANE, E. 2002. Stepnp: A

system-level exploration platform for network processors. IEEE Design &

Test 19, 6, 17–26.

[64] R. W. FLOYD, E. A. 1985. Adaptive algorithm for spatial gray scale. In

Proceedings of ISDT.

[65] ROHOU, E. AND SMITH, M. 1999. Dynamically managing processor tem-

perature and power. In Proceedings of FDO.

[66] SEMICONDUCTOR INDUSTRY ASSOCIATION (SIA). 2004. The Interna-

tional Technology Roadmap for Semiconductors. http://public.itrs.net/.

[67] SKADRON, K., STAN, M., HUANG, W., VELUSAMY, S., SANKARA-

NARAYANAN, K., AND TARJAN, D. 2002. Thermal-RC modeling for ac-

curate and localized dynamic TM. In Proceedings of HPCA.

[68] SKADRON, K., STAN, M. R., SANKARANARAYANAN, K., HUANG, W.,

VELUSAMY, S., AND TARJAN, D. 2004. Temperature-aware microarchitec-

ture: Modeling and implementation. Trans. on Architecture & Code Optimiza-

tions 1, 1, 94–125.

[69] SRINIVASAN, J. AND ADVE, S. V. 2003. Predictive dynamic thermal man-

agement for multimedia applications. In Proceedings of ICS.

[70] SU, H., LIU, F., DEVGAN., A., ACAR, E., AND NASSIF, S. 2003. Full chip

leakage estimation considering power supply and temperature variations.

In Proceedings of ISLPED. 78–83.

[71] SYNOPSYS. 2003. Realview Maxsim ESL environment.

http://www.synopsys.com.

[72] VANDEVELDE, B., DRIESSENS, E., CHANDRASEKHAR, A., AND BEYNE, E.

2001. Characterisation of the polymer stud grid array, A lead-free CSP for

high performance and high reliable packaging. In Proceedings of SMTA.

[73] Butler, D. ”Everything, Everywhere”. Nature, Vol.440, no. 23, pp 402-205,

2006.

[74] Rabaey, J. ”Traveling the Wild Frontiers of Ultra Low Power Design”.

Keynote IEEE PATMOS, Belgium, 2005.

[75] Nazhandali, L. et al ”Energy Optimization of Subthreshold-Voltage Pro-

cessors”. proc. ACM/IEEE ISCA, June 2005.

[76] Raychowdhury, A. et al ”Computing With Subthreshold Leakage: De-

vice/Circuit/Architecture Co-Design for Ultralow-Power Subthreshold

Operation”. IEEE TVLSI, Vol. 13, no. 11, pp 1213-1224, Nov., 2005.

[77] Cao, Y. et al ”Yield optimization with energy-delay constraints in low-

power digital circuits”. proc. IEEE Electronic Devices and Solid-State Circuits,

Dec., 2003.

[78] Wang, A. et al ”A 180-mV Subthreshold FFT Processor Using a Minimum

Energy Design Methodology”. IEEE Journal of Solid-State Circuits, Vol.40,

no. 1, pp. 310-319, Jan., 2005.

[79] Sylvester, D., Blaauw, D., Karl, E. ”ElastIC: An Adaptive Self-Healing

Architecture for Unpredictable Silicon”. IEEE D&T, Vol.23, no. 6, pp. 484-

490.

[80] Mani, M., Orshansky, M. ”A New Statistical Optimization Algorithm for

Gate Sizing”. proc ICCD 2004, pp. 272-277.

[81] Papanikolau, A. et al. ”A system-level methodology for fully compensat-

ing process variability impact of memory organizations in periodic appli-

cations”. proc CODES+ISSS 2005, pp. 117-122.

[82] Sparsø, J. et al. ”Principles of asynchronous circuit design - A systems

perspective”. Kluwer Academic Publishers, 2001.

[83] Cortadella, J. et al. ”Desynchronization: Synthesis of Asynchronous Cir-

cuits From Synchronous Specifications.”. IEEE Trans, Vol. 25, Issue 10, pp

1904-1921, Oct 2006.

[84] Sokolov, D. et al. ”Design and Analysis of Dual-Rail Circuits for Security

Applications”. IEEE Trans, Vol. 54, Issue 4 pp. 449-460, Apr. 2005.

[85] Fisher, J.A., Foraboschi, P., Young, C. ”Embedded Computing. A VLIW

Approach To Architecture, Compilers and Tools”. Morgan Kaufmann, San

Francisco, 2005.

[86] D. Sylvester and K. Keutzer, ”Getting to the bottom of deep sub-micron

II: A global paradigm”, Proc. IEEE Int. Symp. Physical Design, pp.193-200,

1999.

[87] M.Karlsson, M.Vesterbacka, L.Wanhammar, ”Low-Swing Charge Recycle

Bus Drivers”, ISCA ’98, pp.117-120, 1998.

[88] Rjoub, A.; Koufopavlou, O.; ”Efficient drivers, receivers and repeaters for

low power CMOS bus architectures”, ICECS ’99, pp.789 - 794 vol.2, 1999.

[89] Byung-Do Yang; Lee-Sup Kim; ”High-speed and low-swing on-chip bus

interface using threshold voltage swing driver and dual sense amplifier

receiver”, ESSCIRC ’00, pp.105 - 108, 2000.

[90] R. Dobkin, A. Morgenshtein, A. Kolodny, R. Ginosar ”Parallel vs. serial

on-chip communication”, SLIP 2008, pp.43-50.

[91] S.Medardoni, M.Lajolo, D.Bertozzi, ”Variation tolerant NoC design by

means of self-calibrating links”, DATE’08, pp.1402-1407, 2008.

[92] E.Humenay, D.Tarjan, K.Skadron; ”Impact of process variations on mul-

ticore performance symmetry”, DATE ’07, pp.1653 - 1658, 2007.

[93] Garcia, J.C.; Montiel-Nelson, J.A.; Nooshabadi, S.; ”High performance

bootstrapped CMOS low to high-swing level-converter for on-chip inter-

connects”, ECCTD 2007, pp.795 - 798, 2007.

[94] Mensink, E.; Schinkel, D.; Klumperink, E.A.M.; van Tuijl, E.; Nauta,

B.; ”Optimal Positions of Twists in Global On-Chip Differential Intercon-

nects”, IEEE Transactions on VLSI Systems, Volume 15, Issue 4, April 2007,

Page(s):438 - 446.

[95] Kangmin Lee; Se-Joong Lee; Hoi-Jun Yoo; ”Low-power network-on-chip

for high-performance SoC design”, IEEE Transactions on VLSI Systems,

Volume 14, Issue 2, pp.148 - 160, 2006.

[96] A.Narasimhan, B.Srinivasaraghavan, R.Sridhar, ”A low-power asymmet-

ric source driver level converter based current-mode signaling scheme for

global interconnects”, Int.Conf.on VLSI Design, 4 pp., 2006.

[97] F.Worm, P.Ienne, P.Thiran, G.De Micheli, ”A robust self-calibrating trans-

mission scheme for on-chip networks”, IEEE Trans. on VLSI Systems,

pp.126 - 139, 2005.

[98] Jeong, W.; Paul, B.C.; Kaushik Roy; ”Adaptive supply voltage technique

for low swing interconnects”, ASP-DAC 2004, pp.284 - 287, 2004.

[99] Chang-Ki Kwon; Kwang-Myoung Rho; Kwyro Lee; ”High speed and low

swing interface circuits using dynamic over-driving and adaptive sensing

scheme”, ICVC ’99, pp.388 - 391, 1999.

[100] H.Zhang, V.George, J.M.Rabaey, ”Low-swing on-chip signaling tech-

niques: effectiveness and robustness”, IEEE Trans. on VLSI Systems,

pp.264-272, Vol.8, no.3, June 2000.

[101] von Arnim, K.; Borinski, E.; Seegebrecht, P.; Fiedler, H.; Brederlow, R.;

Thewes, R.; Berthold, J.; Pacha, C.; ”Efficiency of body biasing in 90-nm

CMOS for low-power digital circuits”, IEEE Journal of Solid-State Circuits,

Volume 40, Issue 7, July 2005, Page(s): 1549 - 1556.

[102] Venkatraman, V.; Anders, M.; Kaul, H.; Burleson, W.; Krishnamurthy,

R.; ”A Low-swing Signaling Circuit Technique for 65nm On-chip Intercon-

nects”, International SOC Conference, pp.289 - 292, 2006.

[103] Garcia, J.C.; Montiel-Nelson, J.A.; Nooshabadi, S.; ”High performance

CMOS symmetric low swing to high swing converter for on-chip intercon-

nects”, IEEE Northeast Workshop on Circuits and Systems, 2007, pp.566 -

569, 2007.

[104] Joonsung Bae; Joo-Young Kim; Hoi-Jun Yoo; ”0.6pJ/b 3Gb/s/ch

transceiver in 0.18 um CMOS for 10mm on-chip interconnects”, ISCAS

2008, pp.2861 - 2864, 2008.

[105] Meijer, M.; Pessolano, F.; Pineda De Gyvez, J.; ”Technology exploration

for adaptive power and frequency scaling in 90nm CMOS”, ISLPED ’04,

pp.14 - 19, 2004.

[106] Tschanz, J.; Kao, J.; Narendra, S.; Nair, R.; Antoniadis, D.; Chandrakasan,

A.; Vivek De; ”Adaptive body bias for reducing impacts of die-to-die and

within-die parameter variations on microprocessor frequency and leak-

age”, IEEE Journal of SSCs, pp.1396 - 1402, vol.37, no.11, 2002.

[107] Tschanz, J.W.; Narendra, S.; Nair, R.; De, V.; ”Effectiveness of adaptive

supply voltage and body bias for reducing impact of parameter variations

in low power and high performance microprocessors”, IEEE Journal of

SSCs, pp.826 - 829, vol.38, Issue 5, 2003.

[108] Bonesi S., Bertozzi D., Benini L., Macii E., ”Process variation tolerant

pipeline design through a placement-aware multiple voltage island design

style”, DATE 2008, pp.967 - 972, 2008.

[109] Chen, T.; Naffziger, S.; ”Comparison of adaptive body bias (ABB) and

adaptive supply voltage (ASV) for improving delay and leakage under the

presence of process variation”, IEEE Transactions on VLSI Systems, Vol-

ume 11, Issue 5, Oct. 2003, Page(s):888 - 899.

[110] Gregg, J.; Chen, T.W.; ”Post silicon power/performance optimization

in the presence of process variations using individual well adaptive body

biasing (IWABB)”, 5th International Symposium on Quality Electronic De-

sign, Page(s):453 - 458, 2004.

[111] I.Hatirnaz, S.Badel, N.Pazos, Y.Leblebici, S.Murali, D.Atienza, G.De

Micheli; ”Early wire characterization for predictable network-on-chip

global interconnects”, SLIP’07, Page(s):57-64, 2007.

[112] D.Bertozzi, L.Benini, B.Ricc, ”Parametric timing and power macromod-

els for high level simulation of low-swing interconnects”, ISLPED 2002:

pp.307-312.

[113] A.Papanicolaou et al., ”At Tape-out: Can System Yield in Terms of Tim-

ing/Energy Specifications be Predicted?”, IEEE Custom Integrated Circuits

Conference, pp.773-778, 2007.

[114] E.Humenay, D.Tarjan, K.Skadron; ”Impact of Parameter Variations on

Multi-Core Chips”, Int.Workshop on Architectural Support for Gigascale

Integration, 2006.

[115] H. C.Wan et al., ”Channel doping engineering of MOSFET with adapt-

able threshold voltage using body effect for low voltage and low power ap-

plications”, Int. Symp. VLSI Technology, Systems, and Applications, 1995,

pp.159-163

