
Scuola di Dottorato in Scienze Economiche e Statistiche

Dottorato di Ricerca in

Metodologia Statistica per la Ricerca Scientifica

XXI ciclo

A
lm

a
M

ater
S

tu
d

ioru
m

-
U

n
iversità
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Preface

This thesis presents a creative and practical approach to dealing with the problem of se-

lection bias.

Selection bias may be the most important vexing problem in program evaluation or in any

line of research that attempts to assert causality. Some of the greatest minds in economics

and statistics have scrutinized the problem of selection bias, with the resulting approaches-

Rubin’s potential outcome approach or Heckman’s selection model-being widely accepted

and used as the best fixes. That said, these solutions to the bias that arises in partic-

ular from self selection are imperfect, and many researchers, when feasible, reserve their

strongest causal inference for data from experimental rather than observational studies.

The innovative aspect of this thesis is to propose a data transformation that allows mea-

suring and testing in an automatic and multivariate way the presence of selection bias.

Specifically, the approach involves the construction of a multi-dimensional conditional

space of the X matrix in which the bias associated with treatment assignment has been

eliminated. This approach could be considered as a data pre-processing that allows us to

measure selection bias in terms of variability of the original X-space that has been elimi-

nated.

At the same time, this procedure allows testing if the balancing property is satisfied after

a matching procedure or when the propensity score is used, by preserving the multivariate

nature of data.

Further,we propose the use of a clustering procedure as a tool to find groups of compa-

rable units on which estimate local causal effects, and the use of the multivariate test of

imbalance as a stopping rule in choosing the best cluster solution set.

The method is non parametric and does not depend on knowing or estimating the propen-

sity score.

The proposed approach does not call for modeling the data, based on some underlying

theory or assumption about the selection process, but instead it calls for using the exist-

ing variability within the data and letting the data to speak.

The idea of proposing this multivariate approach to measure selection bias and test balance

comes from the consideration that in applied research all aspects of multivariate balance,

not represented in the univariate variable-by-variable summaries, are ignored.

Analysis have been obtained using the statistical softwares Spad and Sas. The remain-

der of this thesis presents the new approach, first by discussing our underlying paradigm,

3



4

then by explaining the problem of causal inference with attention to existing methods in

dealing with it and by discussing when assumptions behind conventional methods break

down; finally, by describing the proposed method theoretically and empirically.

Structure of thesis

An introduction to evaluation methods as part of public and private decision process with

some considerations on the role of data mining is contained in chapter 1. The aim is to

contextualize in a statistical vision the fundamental problem of causal inference in the

presence of non-experimental data and clarify the perspective of data mining.

Chapter 2 concerns conventional statistical tools used in the evaluation context to

draw causal inferential conclusions with particular attention to the Potential Outcome

Approach (Rubin; 1983,1984,1988). The aim is to give an idea to the reader about the

state of literature in the evaluation context by explaining methods used as the best fixes.

This chapter represents a starting point for then highlight where these methods should

break down (Chapter 3) if the assumptions on which they are based are not carefully

checked.

Chapter 3 describes when conventional methods break down, with particular attention

to the problem of how testing in the correct way balancing. We aim at highlighting the

lack of a multivariate test of balancing in literature. Here we will discuss also remedies

that have been proposed to address the resulting problems.

Chapter 4 contains the original contribution. This part presents theoretically the new

multivariate approach. Particulary, we propose the use of a partial dependence analysis

of the X-space as a tool for investigating the dependence relationship between a set of

observable covariates X and a treatment indicator variable T in order to obtain a measure

of imbalance according to their dependence structure. Then we propose an operative use

of the method.

Chapter 5 aims at testing the new multivariate test of imbalance via simulated data.

We check the performance of the method for a given dependence setting, in order to show

some of its essential aspects.

Chapter 6 is dedicated to the application of the new method to a real data set. Particu-

larly, we analyze the impact of PSA programs on the variation of the number of employees

of handicraft firm in Tuscany region.
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Chapter 1

Data mining for causal inference

1.1 Introduction

In this chapter we first give an overview of fields of application in which instruments

and methods for drawing causal conclusions are applied. Then, we underly the useful-

ness of evaluation methods for both public and private setting. Finally, we explain the

fundamental problem of causal inference in observational studies and we introduce our

underlying paradigm in proposing the use of data mining as an automatic instrument to

detect selection bias and test the balancing property.

1.2 Evaluation methods and observational studies

The availability of information concerning the processes aimed at monitoring the activities

of bodies, institutions, private and public companies has over the last decades increased.

This phenomenon led to the proliferation of semi-automatic control processes which largely

rely on the advances made by information technology and on the development of statistical

techniques that are peculiar of modern data mining.

On many different fields, new demands arise of an evaluation of the impacts that large-

scale actions and policies generate on the various stakeholders, users or managers, involved

in the production of goods or services. Reference is made to the evaluation of the impact of

social or economic policies on the individual citizens or businesses. The modern dataflow

within the organizations has turned the monitoring processes into a step of ordinary pro-

duction process. The assessment of the validity of the actions which are developed and

implemented becomes part of tools which are available to private or public decision-makers.

The evaluation process is, by definition, a scientific process which takes place following a

large-scale action and provides a retrospective view of the events.

Bingham and Felbinger(2002) refers to the evaluation of agency programs or legislative

policy as the use of scientific methods to estimate the successful implementation and re-

sultant outcomes of programs or policies for decision-making purposes.

11



12 Data mining for causal inference

Evaluation methods represent a field in continuous development. The literature on

evaluation methods is vast in many area such us economics,educations, and since few

years also in marketing. Rubin and Watermann(2006), for example, presented the results

of a project for a major pharmaceutical company concerned with their marketing inter-

ventions with doctors for the purpose of promoting a doctor to describe the details of

the drug. The causal question they would like to answer is if the marketing intervention

causes a difference. In particular,if the number of scripts written after being visited is more

than the number of scripts without being visited. Other examples in the marketing field

are in Schonlau, Soest, Kaptevn and Couper (2006), Mizuno and Hoshino (2006), Wan-

genhein and Bayòn (2007), Tripathi (2007), Mithas, Almirall and Krisnan (2006). The

causal question in all considered fields is similar. In the program evaluation setting, for

example, researchers need to know if social programs work; whereas, in marketing context,

one of the fundamental question is if marketing interventions cause one-to-one marketing

effectiveness; where marketing effectiveness concerns any change or improvement in a well

defined target variable.

Further, all these fields used to work with observational data, where the lack of random-

ization represents the main characteristic.

Literature refers to several types of evaluations: process evaluations, impact evaluations,

policy evaluations, meta-evaluations 1. The focus here is only on impact evaluations. In

fact, we will focus on the end results of programs or, more generally, of an action.

Typically we are interested on measuring outcomes by answering the question What would

have happened to target population in terms of outcomes in the absence of the program or

of the specific action?

In answering to this kind of questions researchers agree in considering the randomized

experiments the Gold Standard; but in social, economic and marketing fields randomized

experiments are not feasible, due to ethical considerations (for example, when treatment

cannot be denied to needed units), budget constraints, and to retrospective nature of anal-

ysis, that is evaluation usually tends to occur after a program was in place. For example,

it may happen that the treatment have already been implemented before researcher de-

signed the study, or laws may entitle eligible participants to a treatment so that placing

them in a control group at random is not legal.For all that reasons, in program evaluation

randomization is uncommon.

When randomized experiments are infeasible, the logic reference framework is one well

known in literature as quasi-experiments or observational studies. 2 Even in the presence

of observational data, the purpose is to test causal hypotheses about a manipulable cause.

Observational data do not represent a problem at all: on one hand,they lack random

assignments,given that units self-select into treatments or are selected non randomly to

receive treatment by an administrator; on the other hand, observational studies can have

1see Bingham and Felbinger, 2002 for more details
2Rosenbaum (1995)and Cochran (1965) refer to these as observational studies; Campbell and Stanley

(1963) refer to these as quasi-experiments.
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desirable features: study conditions may be more representative of real-world setting than

randomized experiments to the extent that the latter use, for example, less representa-

tive participants, such as volunteers, or less representative setting, such as sites willing to

accept random assignment (Luellen, Shadish and Clark, 2005).

1.3 Causal inference: basic concepts and the fundamental

problem

Typically, to draw causal inferential conclusions, data and auxiliary information are used

to learn what might happen if there is an intervention in some social, biological, physical or

other kinds of process. In the last three decades statisticians have developed and applied,

with the resulting success, a variety of formal frameworks for manipulating causal concepts

and conducting causal inference. A concept common to all framework is that Correlation

does not prove or does not imply causation. Correlation may occur when is not clear which

variable come first and if alternative explanations for the presumed effect exist: that is a

relationship may not be causal at all rather due to a third variable called confound.

As the philosopher John Stuart Mill formalized, a causal relationship exists if:

• The cause precede the effect

• The cause was related to the effect

• Researchers are able to rule out all plausible alternative explanations for the effect

other than the cause.

The three characteristics of a casual relationship are usually matched by experiments in

which researchers are able to manipulate the presumed cause and observe an outcome

afterward; they can see whether variation in the cause is related to variation in the effect

and they use various methods during the experiment to reduce the plausibility of other

explanations for the effect.

Experimental data meet all this; whereas observational data are problematic on the third

criterion when is difficult to make most other causes less likely.

A cause is viewed as a manipulation or treatment that brings about a change in the variable

of interest, compared to some baseline, called the control(Cox,1992;Holland,1986).

After defining the outcome variable and the cause both measured at a unit level, the goal

is to consider how the unit would be different if the cause is altered. Neyman (1923) and

later Holland(1986), Rubin(1986), Rubin and Waterman (2006) formalized the definition

of causal effects as the characterization of two different potential outcomes, one that would

be observed with the interventions and one without the intervention.

Literature, generally refers to what would be observed as the Counterfactual .

In the definitions above emerge that causal effects are always comparative. It also follows

that causal effects are defined in a what if manner and, as such, are hypothetical. In fact
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the what if cannot be directly observed. The what if logic, formalized as the Neyman-Rubin

Model, is pervasive in statistical discussions of cause and effect; but it is also pervasive

within areas such as econometric and epidemiology. All these fields totally accept the

potential outcome conception of causal inference as the best fixe(see for example Hoffer,

2005a; Winship and Morgan, 1999).

More formally, with the observed intervention as t that equals 1 if a unit gets assigned

to treatment and 0 if not; t∗ as the hypothetical intervention that equals 1 if the unit

hypothetically gets assigned to intervention and 0 if not; with Y as the outcome of interest,

the question is what would have happen as a result of intervention compared with the

hypothetical intervention that has not actually introduced. The individual causal effect

of interest (eq. 1.1) is defined as the difference between the potential outcomes.

τi = [(Y (1)i | t∗ = 1]− [Y (0)i | t∗ = 0)] (1.1)

where Y (1) represents the potential outcome under treatment and Y (0) the potential

outcome under control. The causal effect of interest in 1.1 could never be directly observed

given that after the experiment researchers can observe only one of the two potential

outcomes. Berk(2004) has considered four possible pairing between the intervention that

was received and the hypothetical intervention:

1. Y (1) | (t∗ = 1, t = 1):the outcome if, hypothetically,treatment were received and it

actually was received

2. Y (1) | (t∗ = 1, t = 0):the outcome if, hypothetically,treatment were received and it

was actually not received

3. Y (0) | (t∗ = 0, t = 1):the outcome if, hypothetically,treatment were not received but

it actually was received

4. Y (0) | (t∗ = 0, t = 0):the outcome if, hypothetically,treatment were not received and

it was not actually received

Y (1) | t∗ = 1 Y (0) | t∗ = 0
t = 1 observable Missing counterfactual
t = 0 Missing counterfactual observable

Table 1.1: Observed and Missing Data in the Potential Outcome Framework

As shown in table 1.1 the fundamental problem of causal inference is essentially one of

missing data. Given that researchers cannot observe the same unit under both treatment

and control states, it becomes impossible to observe the causal effect of the treatment

T on a specific unit i. As a consequence, researchers focus their attention on estimating
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the average causal effect which is made particularly problematic when the assignment-

to-treatment mechanism is not random and each potential outcome could belong to a

different population. We define the average causal effect as in equation 1.2

E[δi] = E[Yi(1)]− E[Yi(0)] (1.2)

with E[.] denoting the expectation operator. This changing of interest from individual

level to average level is known as statistical solution 3. In the example depicted in table

1.2 the highlighted cells represent the observed outcome and the remaining cells represent

what we cannot directly observe. If we consider the mean of each potential outcome based

individual Yi(1) Yi(0) Yi(1)− Yi(0) treatment
1 1 6 −5 t = 0 (operation B)
2 3 12 −9 t = 0 (operation B)
3 9 8 1 t = 1 (operation A)
4 11 10 1 t = 1 (operation A)
mean 6 9 −3
observed mean 10 9 1

Table 1.2: A teaching example adapted from Rubin(2004)

on the available information, then it seems that treatment A is better than B, because

units under operation A will have an outcome one more than units under B. The achieved

conclusion could be wrong, because by considering the counterfactual - which exists in

some Platonic world - the average of the individual causal effects (Yi(1)− Yi(0)) favors B,

giving an average benefit of three. The misunderstanding mentioned above is due to the

fact that the assignment mechanism is not random, and each potential outcome could be

related to a different population: the counterfactual component remains. In the chapter

2 we will show some ways in which the counterfactual problem can be addressed.

1.4 Conventional methods vs data mining:

underlying paradigm

Although others most certainly provide both a more thorough and more nuanced discus-

sion of the difference between the economic and statistical approaches, our attempt here

is to make some observations about the two paradigms, and to discuss the paradigm that

underlies our proposed approach to dealing with selection bias. Generally, the economic

approach is one that rests on underlying economic theory to drive and test models of

economic behavior and phenomena. For dealing with issues of selection bias in program

evaluation setting, this generally means modeling the selection process as a function of

3Holland,1986
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known variables. The persistent imperfection is the omnipresence of ”unobservables” that

one hopes are sufficiently dealt with by controlling for observables. Researchers acknowl-

edge these shortcomings in their analysis and explore the implications of unobservables on

the extent and direction of bias in results.

In contrast, a focus of statistics may be to fit the best model, but that model need not nec-

essarily be based on some underlying theory about human behavior. According to Breiman

(2001), 98 percent of statisticians engage in a data modeling culture that emphasizes model

validation through goodness-of-fit tests and residual examination; whereas, the other two

percent uses an algorithmic modeling culture, where predictive accuracy validates models.

The technique examined in this thesis comes from the edge of the statistical perspective

- Breiman’s (2001) less common paradigm- where a fundamental underlying belief is that

any research influence unduly affects the results, such that multiple solutions arrive simply

by virtue of researchers’ choice of model. More precisely, the paradigm we refer to is not

only about statistics and economics, but about Breiman’s (2001) two different cultures

in statistical modeling: data modeling versus algorithmic modeling. The latter of these,

the Data Mining perspective, can be thought of as letting the data to speak. This line of

research compels questions about what the model is for a data miner, if the model suits

the nature of the data, and if the model can represent correctly the real complexity of the

data. Breiman’s (2001) work is fundamental to understanding the role and the limitations

of data models and the rationale for utilizing, and perhaps even preferring, algorithmic

models. He asserts that Approaching problems by looking for a data model imposes an a

priori straight jacket that restricts the ability of statisticians to deal with a wide range of

statistical problems. Conclusions from the data modeling perspective are about the model’s

mechanism, and not about nature’s mechanism, such that if a data model is a poor em-

ulation of nature, the conclusion may be wrong (Breiman, 2001). If different models give

different pictures of the relation between the predictor and response variable then the ques-

tion of which one most accurately reflects the data is difficult to resolve and does not help

for commercial or policy purposes (Breiman, 2001).

In brief, our underlying paradigm is that the problem at hand should define the ap-

proach. In response we propose to follow an algorithmic approach as appropriate to deal

with the particular problem of bias in the selection to treatment. With reference to con-

ventional propensity score methods for causal inference, that we will discuss in the next

chapter, the subjectivity in choosing which variable and model to use for propensity score

estimation, as well as subsequent choices about testing balance and stratifying scores, in-

troduces important yet unnecessary bias into an analysis, which could much preferably

be conducted an algorithmic modeling approach. 4 We favor the algorithmic approach

because we think that literature on propensity score estimation lacks automatic tools for
4Stone et al.(1995) and Luellen, Shadish and Clark (2005), for example, used a classification tree

procedure to perform propensity score analysis. From those studies emerged an important future that is
the automatic future of the classification trees algorithm in selecting variable for the PS model, in detecting
interaction in the data and in the automatic role of tree’s terminal node, that eliminated the need to set
stratification cut points.
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testing if conditions on which propensity score is based hold. With the lack of objective

criteria results could be a multiplicity of good models with potential for informing wrong

decisions. The choice of the best model should be justified according to a rigid, unbreak-

able criterion, quantitatively defined prior the analysis, that is in a data mining sense the

score function. Score functions quantify how well a model or parameter structure fits a

given data set. Without some form of score function, we cannot tell whether one model

is better than another or, indeed, how to choose a good set of values for the parameter of

the model.

The criterion we propose is a measure of imbalance. Particularly, we propose a multi-

variate data mining approach to detect and measure the presence of selection bias and

establish in an objective way if the analysis (i.e. propensity score or any kind of matching

procedure)balances data.

1.5 Some definitions of Data Mining

In the literature on the assessment of the causal effect of interventions, is common to

consider data mining as an inappropriate technique. Rubin and Watermann (2006), for

example, asserted that causal effect estimation is not generally accomplished by: regres-

sion, data mining, neural nets, CART, support vector machines, random forests, and so

on. They think that the techniques mentioned above could be useful only after the es-

timation of causal effects. They underly the importance of such techniques in a second

stage of the analysis when the aim is, for example, to classify units into subgroups based on

background variables describing types of units, where the subgroups differ by the expected

size of their causal effects. When Rubin and Watermann speak about the inappropriate-

ness of data mining, they refer to predictive data mining methods. A necessary distinction

is that between explorative and predictive data mining. The explorative data mining is

unsupervised: it uses descriptive algorithm to find structure in the data; whereas, predic-

tive data mining is supervised:it aims to predict as much as possible future data. Here we

consider descriptive DM as springboard. We consider the descriptive data mining in terms

of the French School of Analyse des données, which was the first in dealing with statistical

analysis by using statistical software.5 Particularly, here we use DM as a powerful tool

to check balance in a multivariate and automatic way, when we have not idea about the

presence and the amount of selection bias.

To highlight the power of DM we refer to the definition of Hand et al. (2001). They define

data mining as the analysis of (often large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable and

useful to the data owner. The definition above refers to observational data as opposed

to experimental data. In fact, data mining typically deals with data that have already

been collected for some purposes other than the data mining analysis. This means that
5L’Analyse des données est un outil pour dégager de la gangue des données le pur diamant de la

véridique nature (J.P.Benzecri, 1973
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the objectives of the data mining play no role in the data collection. This is one way in

which data mining differs from much of statistics, in which data are often collected by

using efficient strategies to answer specific questions. This characteristic of data mining

matches the retrospective nature of evaluation analysis, where the rule of how units get

assigned to treatment is lost, and researchers often don’t know anything about the selec-

tion or self-selection mechanism.

In fact, we aim at discovering not a priori known dependence between observed covariates

(potentially involved in the assignment mechanism ) and treatment assignment variable.

Data mining is a process that aims to seek relationships within a data set involving a

number of steps, such as: determining the nature and structure of the representation to

be used, deciding how to quantify and compare how well different representations fit the

data (that is, choosing a score function),choosing an algorithmic process to optimize the

score function. That process could ensure objectivity in results, being not in contrast

with statistics. In fact, it is an interdisciplinary process: statistics, database technology,

machine learning, pattern recognition, artificial intelligence, and visualization, all play a

role. On one hand, statistical techniques alone may not be sufficient to address some of

the more challenging issues in data mining. On the other hand, statistics plays a very

important role in data mining as a necessary component.

Usually, DM is helped by traditional statistical tools involving multivariate analysis such

as: classification, clustering, contingency table analysis, principal component analysis,

and so on. In understanding the role of both statistics and DM as an interdisciplinary

process we refer to a special contribute of professor Bozdogan , one of the best mind of

the DM fields. H. Bozdogan conied the term Statistical Data Mining. In the book edited

in 2004 he defined statistical data mining as the process of selecting and exploring large

amounts of complex information and data using modern statistical techniques and new

generation computer algorithms to discover hidden patterns in the data . This definition

is the testimony that statistics is undergoing a fundamental transformation and it is in an

evolutionary stage (H.Bozdogan, 2004).

Researchers should consider that with high dimensionality and different data types tradi-

tional statistical methods at all are not sufficient.

A key difference between statistics and data mining is also related to the role of model. In

economics and statistics the model follows the theory; whereas in a data mining setting,

model follows the data exploration. More precisely, in a statistical setting questions comes

before data and in DM setting data comes before questions.

Another important definition is that of U.M.Fayyad and G.Piatetski-Shapiro. They de-

fines data mining as the non trivial process of identifying valid, novel, potentially useful,

and ultimately understandable patterns in the data. Based on their definition researchers

should find structure from data.

Other definitions of data mining are from software companies which emphasize its prac-

tical usefulness in helping companies in solving their business problems, given that DM
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provides information that helps business improve marketing, sales and customer services.

From the definitions introduced above it emerges that a more general objective of a data

mining process, that has some analogies with the aim of the evaluation process, is to de-

scribe the general process by which the data arose.

Further, it emerges that the usefulness of DM rather than statistics alone depends on the

size of data sets and the curse of dimensionality. For example, in dealing with exact match-

ing methods in finding clones, when units are not assigned randomly to the treatment,

the main problem is represented by the curse of dimensionality: the exponential rate of

growth of the number of unit cells in a space as the number of variable increases. Data

mining could be useful in dealing with this issue because many data mining techniques

are based on multi-dimensionality reduction methods and find groups based on similarity

or distance measure between objects.

Finally, an other important characteristic of Data Mining is that it is an automatic pro-

cess.This characteristic matches policy-makers requirements of automatic processes in an-

swering to evaluation questions.





Chapter 2

Conventional statistical tools for

causal inference in observational

studies

2.1 Introduction

This chapter aims to give an idea to the reader about the state of literature for what

concerns statistical tools used in the evaluation context in dealing with the causal effect

estimation. The attention is focused on statistical techniques for solving and addressing

the counterfactual problem in order to estimate the effect of an intervention on a well

defined target variable of interest, when randomized experiments are infeasible. Our con-

cern here is with the evaluation of an intervention at the individual level. At the heart

of this kind of intervention evaluation is a missing data problem since, at any moment in

time, a unit is either in the treatment state under consideration or not, never both. Thus,

constructing the counterfactual is the central issue that the conventional evaluation meth-

ods we discuss address. We will briefly take into account various conventional methods

(randomized experiments, propensity score, matching methods, the economic approach),

but we will especially focus our attention on The Potential Outcome Approach, pioneered

principally by Rubin (1974;1978). Implicitly, each approach provides an alternative way

of constructing the counterfactual; different are also the assumptions on which they are

based and different the methods to check if that assumptions are satisfied. At the same

time, this chapter represents a starting point for then highlight some important drawbacks

of the conventional methods (chapter 3) that have motivated our research project (chapter

4).

2.2 Experimental Data

Randomization represents one solution to the evaluation problem. Randomized exper-

iments provide the missing counterfactual by ruling out the selection bias as units are

21
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randomly assigned to the treatment state. Based on the definition of Shadish et al.(2002)

random assignment means any procedure that assigns units to conditions based only on

chance, where each unit has a non zero probability of being assigned to a condition. It

doesn’t mean that every unit have an equal probability of being assigned to conditions.

Due to random assignment to treatment, the treated and control groups are drawn from

the same population; thus, the estimator defined as in eq.2.1

τ = E(Y 1
i )− E(Y 0

i ) (2.1)

will be an unbiased estimator of the average treatment effect; where i index the population

under consideration, Y 1
i the value of the variable of interest when unit i is subject to the

treatment t = 1 and Y 0
i is the value of the same variable when the unit is exposed to

the treatment state t = 0. One simply compares the experience of the treated group with

that of the untreated group; the effect in equation 2.1 is estimable in an experimental

setting because observations in treatment and control groups are exchangeable. In fact,

by design, the experiment will be independent of any kind of influence on outcome Y

whether observed or unobserved. In fact, due to condition 2.2

Y 1
i , Y

0
i ⊥ ti (2.2)

randomization equates groups on expectation: as the sample size grows, observed and

unobserved baseline variables are balanced across treatment and control groups. The

assumption 2.2 implies that for j = 0, 1

E(Yij | ti = 1) = E(Yij | ti = 0) = E(Yi | ti = j) (2.3)

and

τ = E(Yi1 | ti = 1)− E(Yi0 | ti = 0)

= E(Yi | ti = 1)− E(Yi | ti = 0) (2.4)

In an observational setting, researchers are usually interested on the treatment effect on

the treated (eq.2.5)
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τ|t=1 = E(τi | t = 1)

= E(Y 1
i | t = 1)− E(Y 0

i | t = 1) (2.5)

but, without a random assignment to treatment,is possible to estimate E(Y 1
i | ti = 1) and

not E(Y 0
i | ti = 1).

It clearly emerges that with randomization, covariates play no role in the estimation of

treatment effects given that random assignment breaks the link between T and X. A dif-

ferent way to consider causal inference in Classical Randomized Experiments is through

the potential outcomes notation introduced by Rubin.

The potential outcome notation implies that for each unit exist two potential outcomes

Y (1) in the presence of treatment and Y (0) in the absence of treatment, even if each unit

is observed in only one treatment state. Rubin (2005) takes into account three modes of

causal inference in Classical Randomized experiments; one is Bayesian, which treats the

potential outcomes as random variables, and two are based only on the assignment mech-

anism, which treat the potential outcomes as fixed but unknown quantities(Neyman,1923;

Fisher, 1925). Each mode of inference shares a common framework that requires the con-

sideration of a posited assignment mechanism.

For what concerns the Fisher’s mode of inference an important aspect is represented by

the null hypothesis, which is Y (1) ≡ Y (0) for all units. Under this null hypothesis, all po-

tential outcomes are known from the observed outcome Yobs because Y (1) ≡ Y (0) ≡ Yobs.
It follows that, under this null hypothesis, the value of any statistics, S, such as the dif-

ference of the observed averages for units exposed to treatment 1 and units exposed to

treatment 0, y1 - y0, is known not only for the observed assignment, but for all possible

assignment T.

Thus, it is possible to calculate a significance level in order to assess how unusual the

actual observed statistic is relative to all possible values of that statistic that might have

been observed with these units.

Neyman’s form of randomization-based inference can be viewed as drawing inferences by

evaluating the expectations of statistics over the distribution induced by the assignment

mechanism in order to calculate a confidence interval for the typical causal effect. In par-

ticular, an unbiased estimator of the causal estimand is created, and an unbiased estimator

of the variance of that unbiased estimator is found. The causal estimand is the average

causal effect Y (1) - Y (0), where the averages are over all units in the population being

studied, and the traditional statistic for estimating this effect is the difference in sample

averages for the two groups, y1 - y0, which can be shown to be unbiased for Y (1) - Y (0)

in a completely randomized design.

Despite in addressing the causal effect estimation randomized experiments are considered

the gold standard, the deriving causal effect estimation can be invalidated by some aspects:
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such us, for example, dropout or partial compliance. Dropout implies that some units of

treatment group does not receive the treatment, and, as a consequence, the experimental

mean difference estimates the intent to treat and not the treatment effect. To obtain an

estimate of the impact additional assumptions are required (see, for example, Heckman,

LaLonde and Smith, 1999).

2.3 The potential outcome approach

This section gives an overview of the Potential Outcome Approach following the papers

of Holland and Rubin (1988);Rubin (1991;2001;2004;2005;2007); Rosenbaum and Rubin

(1983;1984);Holland (1986); Rubin and Waterman (2006); Frangakis and Rubin (2002);

and the book of Rubin (1987).

From literature, we know that the Potential Outcome framework is principally due to

Rubin, but the formal notation dates back to Neyman (1923). He was the first writer to

use the potential outcome notation for randomized experiments. Only Rubin extended

that notation to describe causal effects in non-randomized studies in 1974. The extension

of Neyman’s potential outcome notation to define causal effects in both non-randomized

and randomized studies is called Neyman-Rubin model (Pearl, 1996) or the Rubin Causal

Model (RCM) (Holland, 1986). The RCM is a counterfactual model of causation: it moves

from the idea that much of researchers knowledge of causal effects in the evaluation context

must come from non-randomized observational studies given the infeasibility of random-

ized experiments. Aiming at measuring a causal effect observational studies should be

designed to approximate randomized experiments as closely as possible. It means that,

with an observational data set, data should be conceptualized as having arisen from an

underlying regular 1 assignment mechanism.

In particular, an observational study in the Rubin perspective, is conceptualized as a

broken randomized experiment, in the sense that observed data are considered as hav-

ing arisen from an hypothetical complex randomized experiment with a lost rule for the

propensity score, whose values we will try to reconstruct. The RCM shares with random-

ized experiments an important future: the analysis in both randomized experiments and

observational studies takes place before seeing any outcome data. The RCM is composed

of two essential elements:

1. the definition of science: it represents the conceptual part defined before seing any

data.

2. the assignment mechanism: a probabilistic model for the treatment each unit receives

as a function of observed covariates and potential outcomes.

These two parts are fundamental in the design stage of an observational study, where by

design Rubin means the collection, organization and analysis of data that takes place prior
1unconfounded and probabilistic
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to seeing any outcome data in order to achieve objectivity in results.

2.3.1 The definition of science

In this framework what Rubin calls The Science is unaffected by whether researchers try

to learn about a causal effect of interest (via experiments or observational studies or any

kind of analysis). The Science represents the state of art before any causal analysis and

is defined as composed of the following elements:

• the units of study

• the treatments (interventions, real or hypothetical)

• the covariates (i.e. background variables) that are presumed to be unaffected by

the treatments

• the potential outcome variables

Table 2.1 summarizes the potential outcome notation. The N units i are considered as

physical objects at a particular time t. The treatment is an action, or an intervention the

effects of which the researcher wishes to asses relative to no intervention. The innovative

aspect of this approach is that before an experiment starts, each unit has two potential

outcomes: Y (1) given treatment and Y (0) without treatment.

In a philosophical sense both Y (0) and Y (1) are concerned as existing simultaneously,

in some Platonic paradise ,even though, in the light of their interpretation, there is no

world, actual or conceivable, in which both could be observed (Dawid, 2006), that is the

fundamental problem of causal inference (Holland, 1986). The counterfactual is what we

cannot observe: the outcome that would have happened Y (0) if the unit had not received

the treatment; whereas observed values of the potential outcomes are those revealed by

the assignment mechanism.

Then causal effects are defined to be the comparisons of the potential outcomes that would

have been observed under different exposures of units to treatments.2 Finally, covariates

X are variables that take the same value for each unit no matter which treatment is

applied to the units, such as quantities measured before treatments are assigned, and as a

consequence, the simply cannot be affected by the treatment. More precisely, a covariate

is a special type of variable for which Xt(i) = Xi for all t ∈ T .

The framework formally described above requires the plausibility of the Stable Unit-

Treatment-Value Assumption (SUTVA). SUTVA means that the set of Y(0), Y(1) for

each unit fully represents the possible values of the outcome Y under all pairings of t ∈ T
with i ∈ N . The SUTVA assumption comprises two sub-assumptions. First, it assumes

2At an average level, for example, the critical requirement is that the causal effect must be a comparison
of Yi(1) and Yi(0) for a common set of unit (S), such that {Yi(1), i ∈ S} and {Yi(0), i ∈ S}.
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Units Covariates
X

Potential outcomes
Treatment

Y(1)

Potential outcomes
Control

Y(0)

Unit-level
Causal effects

Summary
Causal effects

1 X1 Y1(1) Y1(0)
Y1(1)

vs
Y1(0)

I Xi Yi(1) Yi(0)
Yi(1) 

vs
Yi(0)

N Xn Yn(1) Yn(0)
Yn(1)

vs
Yn(0)

Comparison of
Yi(1) vs Yi(0)

for a common set of units

Figure 2.1: RCM notation

that there is no interference between units(Cox, 1958); that is neither Yi(1) nor Yi(0) is

affected by what action any other unit received. Second, it assumes that there are no

hidden version of treatments. The values of Y = (Y (1), Y (0)) are not influenced by T.

More precisely, the set of components of (Y(1),Y(0)) we observe is determined by the

value of T, but the values of (Y(1),Y(0)) are the same, no matter what the value of T is.

Only under stability (SUTVA) each unit has a potential outcome under treatment 1 and

another potential outcome under treatment 0. The SUTVA assumption is essential in the

sense that it allows to get a causal effect for each unit.

2.3.2 The Assignment mechanism

The main future of RCM approach is that it takes into account the assignment mechanism.

The aim is to re-construct the missing counterfactual by explicitly defining a formal model

for the assignment mechanism, the process that creates missing and observed potential

outcomes. The assignment mechanism could be viewed as a real or hypothetical rule used

to assign treatments to the units. With the assignment mechanism vector indicated as:

T = (T1, ..., Ti, ..., Tn)T (2.6)

where Ti equals 1 in the presence of an active treatment and equals 0 otherwise,the model

for the assignment mechanism gives the probability of the vector T given fixed values of

the Science X,Y (1)andY (0) (2.7).
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Pr(T | X,Y (1), Y (0) (2.7)

where the science (X, Y(1), Y(0)) is regarded as fixed and partially revealed by the as-

signment mechanism. In an observational setting the specification of an assignment mech-

anism is required in the sense that causal answers generally change if the posited assign-

ment mechanism is changed. The assignment mechanism matters to valid inference:simply

comparing observed values under the treatments only work if units are randomly assigned

treatments. Without random assignment, given that half the potential outcomes (which

define causal effects) are missing, the process that makes them missing must be part of the

inferential model.(Rubin,1976,p.581). The most critical template for causal effect estima-

tion from observational data is represented by regular designs3 with unknown propensity

scores. These designs are not common in practice because of the need to know all covari-

ates used in the assignment mechanism. But it is possible to draw valid causal inference

by assembling data with enough covariates that it becomes possible to claim that the un-

known assignment mechanism is unconfounded given these covariates. It means to assume

that the treatment assignment is strongly ignorable (Rosenbaum and Rubin, 1983). More

precisely, an assignment mechanism is strongly ignorable when it is regular. A regular

assignment mechanism is defined as both unconfounded (2.8) and probabilistic (2.9):

Pr(Ti | Xi, Yi(0), Yi(1)) = Pr(Ti | Xi) (2.8)

0 < p(Ti = 1 | Xi) < 1 (2.9)

The next step is represented by choosing a model for the unknown assignment mechanism.

2.4 The propensity score methodology

As introduced in the previous section, the main source of selection bias in observational

studies is represented by self-selection or some systematic judgment by the researcher in

selecting units to be assigned to the treatment. Many recent attempts to address such se-

lection bias have focused on modeling the selection process as a means of removing bias in

the estimation of treatment effects. Rosenbaum and Rubin (1983) presented an approach

that involves propensity score. The propensity score (PS) represents the model for the

assignment mechanism. It is widely applied in various fields such as: education (see for
3A regular design is like a completely randomized experiments except that the probabilities of treatment

assignment are allowed to depend from covariates and can vary from unit to unit. These designs have two
features: the assignment mechanism is unconfounded and they are probabilistic
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example, Agodini and Dynarski,2001; Morgan, 2001), social (see for example, Peck and

Scott, 2005; Peck 4, 2007), economic-econometric, medical (Connors et Al., 1996; Gum et

al., 2001), marketing (see for example, Mithas, Almirall and Krishnan, 2006; Mizuno and

Hoshino, 2006; Tripathi, 2007), web survey(S.Lee, 2206), epidemiology (Joffe et al., 1999;

Normand et al., 2001). Given a matrix of observed variables, X, considered as scientific

entities, collected before the experiment takes place, the propensity score model allows re-

searchers to reconstruct the missing counterfactual they were looking for, by modeling the

selection process that has generated the missing data.The propensity score’s knowledge

and estimation allow researchers to achieve a randomized experiments approximation, by

eliminating only part of selection bias due to the selection mechanism. When the propen-

sity scores for each unit are known, then the assignment mechanism is essentially known,

and no fundamental problem of causal inference will exist anymore. Whereas, when the

propensity scores are unknown, but the assignment mechanism is regular, researchers have

to estimate them. Given the estimated propensity scores, units under different treat-

ment’s levels, could be compared if their probability to get assigned to one treatment

given the covariates is the same. If the assignment mechanism is unconfounded (2.8), then

no dependence will exist between assignment to treatment and potential outcome. The

unconfoundness implies that two subgroups, respectively treated and controls, with the

same distribution of the covariates entered in the selection mechanism, will be comparable.

Of course, propensity score methods can eliminate the overall bias, if the assignment mech-

anism is really unconfounded given the observed covariates X.

Controversy exists on the topic of whether propensity score sufficiently approximates ex-

perimental conditions, with some researchers concluding favorably and suggesting some

operative procedures (e.g., Becker and Ichino, 2002; Dehejia and Wahba 1999,2002) and

others unfavorably (e.g., Agodini and Dynarski 2001; Luellen, Shadish and Clark 2005;

Wilde and Hollister, 2002).

Like any probabilities, a PS, defined as in equation 2.10, ranges from 0 to 1.

ei ≡ e(Xi) ≡ Pr(Ti = 1 | Xi) (2.10)

Rosenbaum and Rubin (1983) have demonstrated two key properties of propensity score:

• The covariate balance property.

They have demonstrated that the propensity scores are balancing scores (b(X)).

Balancing scores are function of observed covariates X such that the conditional distri-

bution of X given b(X) is the same for treated and controls. In particular,the treatment

assignment vector and the observed covariates are conditionally independent given the

propensity score (2.11)

4She uses PS to identify subgroups within both the treatment and control groups of social experiments
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X ⊥ t | e(X) (2.11)

If the property 2.11 holds, then treatment and control subgroups with the same scalar

e(X) will have the same distribution of all covariates entered in e(X). Thus, matching on

propensity score automatically controls for differences in outcomes between the treated

and controls. As a consequence, observed differences in the outcomes cannot be due to

those observed covariates.

Of course, propensity score methodology can only attempt to achieve balance in observed

covariates whereas randomization in experiments can balance all covariates, both observed

and unobserved.

• The strong ignorability property

The second property they have demonstrated is the ignorability. In literature, there are

different versions of ignorability: unconfoundedness and ignorable treatment assignment

(Rosenbaum and Rubin, 1983), selection on observables (Barnow, Cain and Goldberg,

1980), conditional independence (Lechner 1999, 2002), and exogeneity (Imbens, 2004).

Ignorability means that treatment assignment and unobserved potential outcomes are

independent, after conditioning on X and the observed potential outcomes. Thus, all

unobserved variables could be ignored. In particular, Rosenbaum and Rubin (1983) have

demonstrated that if treatment assignment is strongly ignorable givenX, then it is strongly

ignorable given e(X) (2.12).

if (Yi(1), Yi(0)) ⊥ Ti | Xi then (Yi(1), Yi(0)) ⊥ Ti | e(Xi) (2.12)

As a consequence, at any value of a balancing score, the difference between the treatment

and control means is an unbiased estimate of the average treatment effect. With strongly

ignorable treatment assignment, pair matching on a balancing score, subclassification on

a balancing score can all produce unbiased estimates of treatment effects, because by

conditioning on observed covariates Xi, treatment and control groups are balanced 5.

Then, when the effect of interest is represented by the Average Treatment Effect (ATT),

it could be estimated as in equation 2.13:

τ | (T = 1) = E{[E(Yi | Xi, Ti = 1)− E(Yi | Xi, Ti = 0)] | Ti = 1} (2.13)

5The most straightforward and non parametric way to condition on X is to exactly match on the
covariates
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It is possible that the PS approach could fail in achieving a comparison of treated with

controls: this may occur when there is little or no overlap. In this circumstance no valid

inferential conclusions could be achieved. The interpretation is that the characteristics (as

measured by covariates) of the two groups are so dissimilar that no meaningful comparison

is possible. We can consider it as an advantage of PS that reveals how much of the

data provide information for causal effect estimation. Anyway, for drawing valid causal

inference, researchers must check the existence of overlap in the estimated propensity

scores and diagnostic analysis must be implemented in order to asses the resulting balance

of covariate distribution. Unfortunately, as we will show in the next chapter, literature

lacks of valid guideline and objective criteria to test balancing property.

2.4.1 A well-known algorithm to estimate PS and subclassification on

PS

Rosenbaum and Rubin(1983) have demonstrated some important properties of PS by as-

suming that PS for each unit was known. In practice, however, propensities are often

unknown and researchers have to estimate them. In literature and in practice, were pro-

posed various methods dealing with the propensity score estimation, such as: discriminant

analysis, logistic regression, probit, decision trees, classification trees (Stone et al., 1995;

Luellen et al., 2005). Dehejia and Wahba (2002) and Beker and Ichino(2002)6 have sug-

gested an easy algorithm aiming at estimating propensity score.

Run logistic regression

Sort data according to
estimated PS

Stratify all observations

Statistical test

Are covariates balanced 
between

treated and control units?

Divide stratum in finer strata
Modify the logit specification Stop

No Yes

Figure 2.2: PS estimation algorithm

Figure 2.2. summarizes the steps of the algorithm described by Dehejia and Wahba (2002)

and Becker and Ichino(2002). We highlight the Becker and Ichino procedure because it is
6They also published the stata code to implement the propensity score estimation widely used by

evaluators in variuos fields
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the widely applied in operative context, but also because it is the algorithm on which the

pscore Stata procedure is based.

Usually, a PS analysis starts with the estimation, by probit or logit, of a treatment assign-

ment equation. Logistic regression is the most commonly used method for computing PS:

researchers used to start with a parsimonious model specification in which all observed

covariates affecting assignment and outcome are included as predictors and the treatment

assignment (dummy code, 0/1) as the dependent variable. After propensity scores are

estimated for each unit and ranked from lowest to highest, some matching procedures are

implemented. The most commonly employed is the subclassification on PS 7, that involves

the stratification of all observations such that the estimated propensity scores within each

stratum for treated and comparison units are close 8. Analysts used to divide the PS in

5 bins according to Cochran(1968), who observed that subclassification with 5 subclasses

is sufficient to remove at least 90% of the bias. Then the distribution of covariates for

treated and controls within each bin are compared and if they still differ, the model speci-

fication is further developed, by adding interaction terms and/or higher-order terms of the

covariates, until researchers can find a good model, where good means to achieve balance

of ps and covariates within bins. Another method of computing propensity scores involved

classification trees algorithms rather than logistic regression. Luellen, Shadish and Clark

(2005) have underlined some advantages of classification tree approach: the algorithm au-

tomatically selects variables for the model, it automatically detects interactions in the data

and tree’s terminal nodes automatically supply the researcher with strata, eliminating the

need to set stratification cut points.

2.5 Matching methods

Matching techniques have origins in experimental work from the first half of the twentieth

century.

In the early 1980s, matching techniques were advanced in a set of papers by Rosenbaum

and Rubin (1983a, 1984,1985).

In the late 1990s, economists joined in the development of matching techniques in the

course of evaluating social programs (e.g. Heckman, Ichimura and Todd, 1997,1998; Heck-

man, Ichimura, Smith and Todd, 1998; Heckman, LaLonde, and Smith 1999). 9 Matching

is a non parametric method that deals with the selection bias by constructing a compari-

son group of units with observable characteristics similar to the treated.

The main idea of this method is to replicate the condition of an experiment in the pres-

ence of observational data. This is possible by dropping, repeating, grouping observations

from an observed dataset in order to reduce covariates imbalances between the treated
7the binning procedure
8When subclasses are perfectly homogeneous in b(x) then X has the same distribution for treated and

controls in each subclass (Rosenbaum and Rubin, 1983)
9For a complete discussion of matching methods, see for example, Greenwood 1945; S.L.Morgan and

D.H. Harding, 2006.
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and control groups that were not avoided during data collection (no random assignment

to treatment).

The ultimate goal of matching is to achieve the best balance for a large number of obser-

vations, by pruning observations according to some metric, and by using any method of

matching that is function of X without introducing outcome in the analysis. All treated

units and matched control units are retained, and all non-matched control units are dis-

carded.

Matching is not a method of estimation, and as a consequence, any application of it must

be followed by a simple difference in means or some other method to estimate the causal ef-

fect. Matching is the beginning rather than the end of a causal analysis. Many researchers

prefer matching to other methods because it allows not statisticians to easy understand

the equivalence of treatment and control groups and to perform simple matched pair anal-

ysis which potentially adjust for confounding variables.

An important assumption required for all matching methods is the availability of a set

of covariates, such that, conditioning on them, potential outcomes are independent of

treatment status (2.14):

Y (0), Y (1) ⊥ T | X (2.14)

We have to distinguish between exact matching on covariates and matching based on

propensity score.

Exact matching on covariates represents a valid substitute for the absence of experimental

control units. It assumes that a control group can be obtained for a set of potential

comparison units, which are not necessarily drawn from the same population as the treated

units, but for whom researchers observe the same set of pre-treatment covariates, Xi.

Under the matching assumption the only remaining difference between the two groups is

the treatment effect. But, it may occur some bias due to incomplete matching (failure to

match all treated units) or inexact matching (failure to find exact matches, that is match

treated-control pairs with different values of X) (Rosenbaum and Rubin, 1985).

Many researchers agree in considering that one limitation of exact matching on covariates

is represented by the dimensionality of the vector of covariates X. For example, if X is

n-dimensional and if all n variables are dichotomous, the number of possible values for

the vector X will be 2n. Clearly, as the number of variables increases, the number of cells

increases exponentially, increasing the difficulty of finding exact matches for each of the

treated units, that is the matching problem.

An important distinction is that between exact matching and one-to-one exact matching.

The exact matching uses all control units with exactly the same covariate values that match

each control unit; whereas one-to-one matching uses only one control unit for each treated

unit. The one-to-one exact matching estimates the counterfactual Yi(0), corresponding to
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each observed treated unit i (with outcome value Yi and covariates Xi) with the outcome

value of a control unit (denote Y ∗match with covariate values X∗match), chosen such that

X∗match = Xi (Imai et al. 2008).Using all exact control matches for each treated unit

rather only one, reduces variance without any increase of bias. When exact matching

methods are used, some units could not have an exact clone especially when samples are

small, variables are measured with many categories and the distribution of participants

between groups is uneven (Shadish et al., 2002).

In the presence of problems mentioned above, the choice concerns one of approximate

matching methods, that matches the treated unit to some control observations according

to some metric.

Examples are the nearest neighbor, Mahalanobis matching, or matching methods based

on the estimated propensity score.

2.5.1 Multivariate matching based on Mahalanobis distance

The most common used multivariate matching method is based on Mahalanobis distance

(Cochran and Rubin, 1973; Rubin,1979,1980). The mahalanobis distance between any

two units is given by:

md(Xi, Xj) = {(Xi −Xj)′S−1(Xi −Xj)}
1
2 (2.15)

where S is the sample covariance matrix of the matching variables X, Xi and Xj are

respectively the multivariate vectors of values of the matching variables for treated unit i

and the untreated unit j. Commonly, this matching procedure first randomly orders units,

then calculates the distance between the first treated unit and all untreated units. To

estimate ATT by matching with replacement, one matches each treated unit with the M

closest control units, as defined by this distance measure in equation 2.15. In particular,

the untreated unit j, with the minimum distance is chosen as the match for the treated unit

i, and both are removed from the pool. The analysis is repeated until matches are found for

all treated. Under Mahalanobis distance matching, individual covariates are collapsed into

a single scalar metric using Mahalanobis distance, which is defined as the generalization

of the standardized distance from the origin of an n-dimensional space to a point where

the coordinates represent the X values for a particular observation. Other multivariate

matching methods are cited in Shadish et al. (2002): such as benchmark group matching,

cluster group matching, index matching. Index matching selects multiple control units

above and below a treatment unit; cluster group matching uses cluster analysis to embed

the treatment group in a cluster of similar controls; benchmark group matching selects

control units that falls close to the treatment unit on a multivariate distance measure. 10

10In Henry and McMillan (1993), we can find a simulation that suggest cluster and benchmark methods
may work better than other matching methods.
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All multivariate matching start by considering a multidimensional space and aim to find

clones similar with respect to their multidimensional characteristics. The main problem

is represented by the high dimensionality of the considered space.

2.5.2 Propensity score matching algorithms

A matching estimator non parametrically balances the variables in Xi across Ti with

the aim of obtaining the best possible estimate of the causal effect of Ti on Yi. The most

popular technique is to estimate the probability of Ti for each unit i as a function of Xi (i.e.

the propensity score) and then to select for further analysis only matched sets of treated

and controls that contain units with same values for the propensity scores. In the Rubin

perspective, the propensity score could be also seen as a way of reducing a large space of

covariates, Xi, to a one-dimensional summary,the probability of treatment assignment, ei.
11 Then the use of a one-dimensional summary for matching, when the dimensionality of

the matching space 12 is high, could be considered as a key bridge between matching and

propensity score. Propensity score matching is not new in literature and widely applied in

various fields. We refers, for example, to papers of Dehejia and Wahba (2002), Rosenbaum

and Rubin (1983), Heckman, Ichimura and Todd(1997), Morgan and Harding(2006).

For what concerns the causal effect estimation, propensity score matching could be viewed

as a way to correct the estimation of the treatment effects controlling for the existence of

uncontrolled factors, based on the idea that the bias is reduced when the comparison of

outcomes is performed using treated and control cases who are as similar as possible with

respect to their estimated propensity score.

According to this perspective, matching methods could be useful in all settings, where

needed data are costly to obtain. Matching, more generally, represents an advantages

because it allows to obtain the outcome variable of the relevant comparison units, after

discarding the irrelevant potential comparison units.

Heckman, Ichimura and Todd (1997,1998) and Smith and Todd (2005) outline a general

framework for representing alternative matching estimators.

All matching estimators could be defined as a weighting scheme, which determines what

weights are placed on comparison units when computing the estimated treatment effect:

τ̂|T=1 =
1
NT

∑
i∈T

[(Yi | Ti = 1)−
∑
j∈C

ωij(Yj | Tj = 0)] (2.16)

where NT is the number of the treatment group, i is the index over treatment group (T), j

is the index over control group (C), and ωij represents a set of scaled weights that measure

the distance between each control unit and the treated unit.

For example, exact matching cited in the previous paragraph uses weights equal to 1
k for

11(Rubin, 2001)
12observable characteristic
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matched control units, where k is the number of matches selected for each target treatment

unit. Weights of 0 are given to all unmatched control units. If only one match is chosen

randomly from among possible exact matches, then ωi,j is set to 1 for the randomly selected

match and 0 for all other control units.

The difference in propensity scores is the most common distance measure used to construct

weights.

Other measures of distance are available including the estimated odds of the propensity

score, the difference in the index of the estimated logit, and the mahalanobis metric. The

amount of bias reduction for each matching procedure depends on many aspects: one

is represented by whether comparison units are matched with replacement or without

replacement.

Matching with replacement minimizes the propensity score distance between the matched

comparison units and the treatment unit: each treatment unit can be matched to the near-

est comparison unit, even if a comparison unit is matched more than once, with resulting

bias reduction.

Matching without replacement may force researchers to match treated to comparison

units with a quite different propensity score with resulting increment of bias and improve-

ment of estimation precision.

One simple algorithm to identify the most similar comparison units to be matched to

the treated units is the nearest neighbor matching,which selects the m comparison units

(the clones) whose propensity scores are closest to the treated unit in question, as a result

of a distance metric minimization:

C(i) = min
j
‖e(i)− e(j)‖ (2.17)

The traditional algorithm randomly orders the treatment units and then selects for each

treatment unit the control unit with the smallest distance. The algorithm can be ran with

or without replacement. With Nearest Neighbor Matching all treated units find a match.

However, it is obvious that some of these matches are fairly poor because for some treated

units the nearest neighbor may have a different propensity score and nevertheless it would

contribute to the estimation of the treatment effect independently of this difference.

Another possible procedure is the radius matching, which admits for each treated unit

to be matched with more than one excluded unit. In this procedure the matches are made

only if propensity score falls in a predefined neighborhood of the PS of the treated unit:

C(i) = {pj | ‖e(i)− e(j)‖ < r} (2.18)
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where r is a tolerance level chosen by the researcher. If the dimension of the neighborhood

(i.e. the radius or caliper) is set to be vary small it is possible that some treated units are

not matched because the neighborhood does not contain control units. On the other hand,

the smaller the size of the neighborhood the better is the quality of the matches. Similarly

to the matching with replacement this method allows a given excluded unit to be matched

more than one time. In both nearest neighbor and radius matching after defining as NC
i

the number of controls matched,the weights as ωij = 1
NC

i
if j ∈ C(i) and ωij=0 otherwise,

the matching estimator can be defined as follows:

τ =
1
NT

∑
i∈T

[(Yi | Ti = 1)−
∑
j∈Ci

ωij(Yj | Tj = 0)]

=
1
NT

[
∑
i∈T

(Yi | Ti = 1)−
∑
i∈T

∑
j∈C(i)

ωijY
C
j ]

=
1
NT

∑
i∈T

(Yi | Ti = 1)− 1
NT

∑
j∈C

ωj(Yj | Tj = 0) (2.19)

where ωj =
∑

i ωij . If one wants to use the entire comparison sample, a possible solution

is the kernel matching. Referring to Heckman, Ichimura, Smith and Todd(1988) and

Heckman, Ichimura, and Todd (1997,1998) kernel matching constructs the counterfactual

for each treatment case using all control units, but weights each control unit based on

its distance from the treatment case. Weights are inversely proportional to the distance

between the propensity scores of treated and control. When the estimated propensity

score is used to measure the distance, kernel-matching estimators define the weight as:

ωij =
G[ e(j)−e(i)hn

]∑
k∈C G( e(k)−e(i)hn

)
(2.20)

where hn is a bandwidth parameter that scales the difference in the estimated propensity

scores based on the sample size, e() is the estimated propensity score, and G is a Kernel

function. The numerator of the expression 2.20 yields a transformed distance between

each control case and the target treatment case. The denominator is a scaling factor equal

to the sum of all the transformed distances across control cases, which is needed so that

the sum of ωij equals 1 across all control cases when matched to each target treatment

case. Then the kernel matching estimator is given by equation 2.21:

τk =
1
NT

∑
i∈T
{Y T

i −
∑

j∈C Y
C
j G( e(j)−e(i)hn

)∑
k∈C G( e(k)−e(i)hn

)
} (2.21)
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Under standard conditions on the bandwidth and kernel the estimator 2.22 is a consistent

estimator of the counterfactual outcome Y (0).

∑
j∈C Y

C
j G( e(j)−e(i)hn

)∑
k∈C G( e(k)−e(i)hn

)
(2.22)

Finally, stratification divides units into strata so members of the treatment and con-

trol groups have similar propensity scores within strata. Rosenbaum and Rubin (1983)

suggested using five equal-size strata as a convention. Their choice of five strata is based

largely on Cochran (1968), who found that five strata are often sufficient to remove ap-

proximately 90% of the bias due to a single continuous covariate. Differences in outcome

between the treatment and control group in each interval are then calculated. The aver-

age treatment effect is obtained as an average of outcome measure differences per block,

weighted by the distribution of treated units across blocks.13 By construction, in each

block defined by this procedure the covariates are balanced and the assignment to treat-

ment can be considered random. Within each block the average treatment effect is then

computed as in equation 2.23.

τSq =

∑
i∈I(q) Y

T
j

NT
q

−
∑

j∈I(q) Y
C
j

NC
q

(2.23)

where q index the blocks, I(q) is the set of units in block q, while NT
q and NC

q are the

number of treated and control units in block q. The ATT estimator is then computed as

in equation 2.24.

τS =
Q∑
q=1

τSq

∑
i∈I(q)Di∑
∀iDi

(2.24)

where the weight for each block is given by the corresponding fraction of treated units

and Q is the number of blocks. An important disadvantage of this procedure is that it

discards observations in blocks where either treated or control units are absent.

2.6 Which of the existent matching algorithms work best?

Given the existence of many matching algorithms, in literature is open the debate about

which method to select in practice. Clearly, the method to select depends on many as-

pects.

First of all, the kind of data to analyze, the degree of overlap between the comparison and
13for the variance formula of the considered estimators see Becker and Ichino, 2002
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treatment groups with respect to estimated propensity score. When there is enough over-

lap in the distribution of propensity score between treated and controls, the considered

matching algorithm will yield similar results. When there is not overlap the treatment

effect could not be estimated. When the overlap is poor the choice of which methods to

adopt depends on subjective choice of researchers for what concerns matching algorithms,

use of replacement or not, range of ps. For good matching researchers have to solve the

trade-off between finding matched for all treated units and to obtain matching pairs that

are very similar to each other. Another important aspect to consider is that propensity

score matching algorithms work only if the assumption of selection on observable covari-

ates is valid. A key problem of the existing approximate matching methods (Iacus et al.

2008) is that, for example, the propensity score can be used to find the area of extrapola-

tion only after we know that the correct propensity score model has been used. However,

the only way to verify that the correct propensity score model has been specified is to

check whether matching on it produces balance between the treated and control groups

on the relevant covariates. But balance cannot be reliably checked until the region of

extrapolation has been removed.

It clearly emerges that there are poor specific guidelines in the literature on which of these

matching algorithms works best, and the answer depends especially on data. But, gener-

ally, if the point of matching estimator is to minimize bias by comparing target units to

similar matched units, then methods that make it possible should be preferred. Matching

is generally successful if, for both the treatment and matched control groups, the distribu-

tion of the matching variables is the same. When this result is achieved, the data are said

to be balanced. Balance usually is assessed using pairing t-tests for differences in means

of the matching variables across matched treatment and control cases. But to achieve full

balance, the entire joint distribution of the matching variables must be the same, with

all observed differences small enough to be attributable to random variation. To meet

this standard, one must evaluate the equivalence of the full joint distributions, and more

complicated tests are required. These complicated tests are often not implemented in

practice.To facilitate the way of testing balance, we propose a method that automatically

tests balance across a multivariate X-space. Then, if the covariates are not balanced, one

can change the estimation model for the propensity score.

In literature, there are some contributes that favor the multivariate balance test. Rosen-

baum (2002) reports on recent results for full optimal matching algorithms. His algorithm

seeks to optimize balance and efficiency of estimation by searching through all possible

matches that could be made, after stipulating the minimum and maximum number of

matches for matched sets of treatment and control cases.

Diamond and Sekhon (2005) propose a general multivariate matching method that uses

a genetic algorithm to search for the match that achieves the best possible balance. The

quality of balance is specified as a standard set of t-tests of differences of means. Their

technique is general and can remove the researchers from having to make any specification
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choices other than designating the matching variable that one wishes to balance.

After using one of the matching estimators one should use thereafter some adjustment

procedure. One is, for example, covariance adjustment (Rubin and Thomas, 2000). Other

procedure are proposed in Heckman, Ichimura, and Todd (1997,1998); Heckman, Ichimura,

Smith and Todd (1998); Abadie and Imbens (2004). Although these adjustment proce-

dures may help to refine the balance of X across treatment and control cases, they do not

help to address the problem of unobservable variables. In the presence of unobservable and

when treatment assignment is not ignorable literature suggests to perform a sensitivity

analysis.(Rosenbaum 1991,1992; Rosenbaum and Rubin 1983b; Ichino, Mealli, Nannicini,

2004).

2.7 The Economic Approach

This paragraph introduces the economic approach to causal inference by following the

papers of Heckman, LaLonde and Smith (1999), Heckman (1979;1989).

The economic approach to program evaluation is based on estimating behavioral relation-

ships that can be applied to evaluate policies yet implemented. The economic approach

guided by economic model is, for some aspects, in contrast with statistics. Statisticians

are interested in estimators that must be correct and efficient; whereas, economists are

usually interested on the framework that motivates estimators.

In particular, they are interested on covariates involved in both outcome and participation

equations. More precisely ,they suggest specific functional forms of estimating equations

motivated by a priori theory.

In particular, outcomes under conditions D = 1 ( eq. 2.25) and D = 0 (eq. 2.26) are

defined as functions of observable (X) and unobservable (U1, U0).

Y1 = g1(X) + U1 (2.25)

Y0 = g0(X) + U0 (2.26)

with the assumption that E(U1 | X) = 0 ,E(U0 | X) = 0 and that both g1 and g0 are non

stochastic functions.

Then, the main parameter of interest is defined. It could be the average treatment effect on

the population (ATE) or the average treatment effect on the treated units (ATTE) or the

average treatment effect on the untreated (ATUE). The most commonly used evaluation

parameters is the average effect of treatment on the treated (ATTE)(2.27)(Heckman and

Robb, 1985; Heckman et al. 1997)
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E(Y1 − Y0 | X,D = 1) = E(4 | X,D = 1)

= g1(X)− g0(X) + E(U1 − U0 | X,D = 1) (2.27)

In estimating the ATTE researchers have to deal with the presence of selection bias due to

lack of random assignment. In Heckman’s perspective selection bias is defined as a form

of omitted variable bias(Heckman, 1979). In particular, he asserts (Heckman,1989) that

selection bias exist if:

E(Y ∗it | Di = 1) 6= E(Y ∗it | Di = 0) (2.28)

with Y ∗it as the outcome for those units in period t who do not receive the treatment.

Then:

Yit = Y ∗it +Diαit if t > k (2.29)

Yit = Y ∗it′ if t < k (2.30)

where the convention is that treatment occurs in period k.

The mean post-program of the outcome for treated is defined as:

E(Yit | Di = 1) = E(αit | Di = 1) + E(Y ∗it | Di = 1) (2.31)

and the outcome for untreated as:

E(Yit | Di = 0) = E(Y ∗it | Di = 0) (2.32)

The difference in mean of outcomes between treated and not treated is:

E(Yit | Di = 1)− E(Yit | Di = 0) = E(αit | Di = 1) + {E(Y ∗it | Di = 1)− E(Y ∗it | Di = 0)}
(2.33)
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The last term in the equation 2.33 represents the selection bias term.

The selection bias problem does not exist in the presence of random assignment where the

2.34 holds.

E(Y ∗it | Di = 1) = E(Y ∗it | Di = 0) = E(Y ∗it) (2.34)

In the absence of a random assignment, in order to draw causal inferential conclusions,

one of the most used model in the economic setting is the Heckman’s selection model

(Heckman, 1979). The Heckman selection model deals with sample selection, but the

same approach can be used in dealing with non-random assignment to treatment as well.

The selection model takes into account two equations: a selection equation (a model of

program participation) and an outcome equation.

For what concerns the outcome equation, here we consider the more general case in which:

• the outcome equation is a simple linear model

Yit = Xitβ +Diαt + Uit with t > k (2.35)

Yit = Xitβ + Uit with t ≥ k (2.36)

with U as a random disturbance term, with E(Uit | Xi) = 0, with t as the number of

periods of data on X available for each observation, αt as the impact of the program

under evaluation, and Yit as the observed outcome.

• the treatment effect is invariant across individuals, such that

αit = αt (2.37)

When assignment to treatment is non-random, selection bias in the estimation of αt can

arise because of dependence between di and Uit. That is, in a model without regressors,

E(Uit | di) 6= 0, and with regressors E(Uit | di, Xi) 6= 0. So, E(Yit | di, Xi) 6= Xitβ + diαt.

In this case, an ordinary least square regression of Yit on Xit and di will not yield consis-

tent estimates of αt ( or β). This is due to the fact that unit’s participation decision is

probably based on personal unobservable characteristics that may affect the outcome.

The baseline idea of the Heckman selection model, is to directly control for that part of the
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error term (U) in the outcome equation that is correlated with the participation dummy

variable (D).

The Heckman’s selection model assumes that the participation decision can be parame-

terised in terms of an index function well known as the selection equation:

Ii = Ziγ + Vi (2.38)

where Vi represents a random disturbance for unit i for selection equation. Then the

outcome Yi is observed if Ii exceeds a particular threshold. In fact:

Dit =

{
1 if Ii > 0 and t > k

0 otherwise

Z affects the outcome only through the participation status D. Then by imposing addi-

tional structures on the model it is possible to estimate the treatment effect of interest.
14 Vi is assumed to be independently and identically distributed across units. Assuming

that Vi is independent of Zi then Pr(di = 1 | Zi) = E(di | Zi) = 1 − F (−Ziγ) which

Rosenbaum and Rubin call the propensity score (Heckman, 1989). Dependence between

Uit and Di can arise for one of two not necessarily mutually exclusive reasons: dependence

between Zi and Uit or dependence between Vi and Uit. Heckman (1989) refers to the first

case as selection on observable and the second case as selection on unobservable. The

source of selection bias for any particular problem depends on the actual process used to

select units.

Selection on observable occurs when the dependence between Uit and Di is due to a set

of observed variables, Zi, which influence selection into program. More formally, fol-

lowing the Heckman’s notation: E(Uit | Di, Xi) 6= 0 and E(Uit | Di, Xi, Zi) 6= 0; but

E(Uit | Di, Xi, Zi) = E(Uit | Xi, Zi).

Controlling for the observed selection variables -Zi- solves the selection bias problem.

Selection on unobservable may occur when the dependence between the treatment in-

dicator variable, Di, and Uit is not eliminated even after controlling for Zi. That is:

E(Uit | Di, Xi) 6= 0 and E(Uit | Di, Xi, Zi) 6= E(Uit | Xi, Zi).

Selection is then said to depend on unobservable. Such selection bias estimators, when

selection is on unobservable, are formed by invoking assumptions about the distribution

of Vi, Zi and Uit.

Shadish et al.(2002) asserted that the Heckman selection model has some analogies

with the PS. As with PS models, the selection equation predicts actual group membership

from a set of presumed determinants of selection into conditions, yielding a predicted

14For a comprehensive review of the estimation procedure for both homogeneous and heterogeneous
treatment regimes see Blundell and Costa Dias(2002).
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group membership score. This prediction is then included in the outcome equation.

In selection bias models, if the residual of the selection equation departs much from zero,

then the selection bias may fail to yield unbiased estimates of treatment effects. The

functional form of the selection equation must be correctly specified.

An advantage of the selection bias models is that they address the question of taking

hidden bias into account rather than just adjusting for observed covariates. These models

would probably work better if they used predictors that were selected to reflect theory

and research about variables that affect selection into treatment, which requires studying

the nature of selection bias as a phenomenon in its own right (e.g. Andrman, Cheadle,

Curry, Diehr, Shultz, and Wagner,1995).

The selection estimator of αt is only one of the existing set of estimators. Heckman and

Robb (1985,1986) present a comprehensive summary of selection bias estimators which

can be implemented in alternative types of data. All non-experimental estimators differ

in the assumptions imposed, the data required to implement such estimators, and their

robustness to alternative sampling plans and measurement errors.

2.8 Regression Discontinuity Design (RDD)

Another way to deal with selection bias is represented by the Regression Discontinuity De-

sign (RDD). Campbell and Stanley,1966; Cook and Campbell, 1979; Cook and Shadish,

1994 categorize the regression discontinuity design as a quasi-experiment. This is partly

due to their understanding of a quasi-experimental design that has structural features of an

experiment but that lacks random assignment. Works on the RDD began in 1958 (Camp-

bell, 1984) with the first published example being Thistlewaite and Campbell (1960).RDD

could be defined as a special case of Selection on observable. It represents a design in which

assignment is based on a cutoff score: the experimenter assigns units to conditions on the

basis of a cutoff score on an assignment variable, not by coin toss or lottery as in a ran-

domized experiment. That means the probability of assignment to treatment depends in

a discontinuous way on some observable variable S.

The assignment variable can be any measure taken prior to treatment, where the units

scoring on one side of the cutoff are assigned to one condition and those on the other side

to another.

Examples of allocation variable can be , for example, in an education setting, merit score,

need (or risk) score, first come, date of birth, and so on. RDD can be viewed as a ran-

domized experiment at cutoff or as a completely known assignment process.

In most other quasi-experiments where assignment to treatment is uncontrolled, the selec-

tion process is sometimes totally unknown, often partially known, but almost never fully

known. If the selection process could be completely known and perfectly measured, then

one could adjust for differences in selection to obtain an unbiased estimate of treatment

effect. In theory, these conditions are met in both RD and the randomized experiments,
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and so both designs can be viewed as special cases of selection bias modeling. In a ran-

domized experiment, the assignment mechanism is completely known and is equivalent

to a coin toss. It is also fully known for RD, being whether the score on the assignment

variable is above or below the cutoff. In neither case exists the problem of unobservable,

that is the presence of unknown variables that influence the assignment mechanism. In

both cases, the assignment mechanism can be perfectly measured and implemented, that

is, the researcher records correctly whether the coin came up heads or tails, or whether a

person’s score is above or below the cutoff. When units get assigned to the treatment on

the basis of a known and pre-established cutoff score on a pre-intervention covariate, the

assignment variable cannot be caused by treatment. This requirement is met by an as-

signment variable that never changed, like the year of one’s birth (Judd and Kenny, 1981).

The assignment variable can even be totally unrelated to outcome and have no particular

substantive meaning. The best assignment variable is a continuous variable that maximize

the chance of correctly modeling the regression line for each group. It is possible to use

many assignment variables simultaneously, and not just one. If several assignment variable

are in different metrics, one could form a total score from them after first standardizing

them and possibly weighting them differentially (Judd and Kenny, 1981; Trochim, 1984,

1990). Assignment to treatment must be controlled, which rules out most retrospective

uses of the design. It is especially appropriate when decision makers wish to target an

action or a program to those who most need or deserve it.

The basic analysis involves an Analysis of Covariance (ANCOVA) with the assignment

variable as the covariate:

Yi = β̂0 + β̂1Zi + β̂2(Xi −Xc) + ei (2.39)

where Y is the outcome, β̂0 is the intercept, Z is the treatment dummy variable (1, 0),

X is the assignment variable, Xc is the cutoff (to estimate the effects of treatment at the

cutoff), β̂2 predicts outcome from assignment, β̂1 is the estimate of treatment effect, e is

a random error term.If the outcome variable is continuous, then an ordinary regression

equation can be used; whereas if the outcome is dichotomous, then should be used a

logistic regression.15 A big problem of RDD is represented by potentially misspecified

functional form of assignment on outcome. In fact, with RDD we measure the size of

the effect as the size of the discontinuity in regression lines at the cutoff. In doing this,

we assume that relationship between assignment and outcome is linear. But functional

forms can be non linear due to: nonlinear relationship between the assignment variable

and the outcome; interactions between the assignment variable and treatment. Functional
15Subtracting the cutoff value from the assignment variable (Xi −Xc) , which is the same as centering

the assignment variable if the cutoff is the mean, causes the equation to estimate the effect of treatment
at the cutoff score, the point at which groups are most similar. One could estimate the effect anywhere on
the range of the assignment variable by varying which value is subtracted, or estimate it at the intercept
by subtracting zero.
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form is an important aspect because effects are unbiased only if the functional form of

the relationship between the assignment variable and the outcome variable is correctly

modeled. A solution could be to include nonlinear functions of the assignment variable in

the equation, as follows:

Yi = β̂0 + β̂1Zi + β̂2(Xi −Xc) + β̂3(Xi −Xc)2 + ei (2.40)

One can also add interactions between treatment assignment (Z) and the assignment

variable (X) as follows:

Yi = β̂0 + β̂1Zi + β̂2(Xi −Xc) + β̂3Zi(Xi −Xc)2 + ei (2.41)

or finally, one can add both nonlinear and interaction terms to the model.

Another shortcoming is that all participants must belong to one population prior to be-

ing assigned to conditions, though the RDD literature is unclear about how to define a

population. A definition could be that, in RDD, it must have been possible for all units

in the study to receive treatment had the cutoff been set differently. Ideally, as in a ran-

domized experiment, those in the treatment group, all should receive the same amount of

treatment, and those in control no treatment at all.

In addition, a disadvantage of RDD is that it only identifies the mean effect at the discon-

tinuity point for selection. If the treatment effect is heterogeneous across units, RDD tells

us nothing about units away from the threshold: it is able to identify only a local mean

impact. Heterogeneity in the effects represents a vexing problem for many researchers(see

for example Peck, 2003;2005). Heterogeneity may occur when treatment works better

for some people than for others: for example, in the education setting, it is common to

find that more advantaged children benefit more from treatment than do less advantaged

children. In this circumstance, if the interaction between the assignment variable and

treatment is not modeled correctly, a false discontinuity will appear. In RDD, an effective

treatment will alter the slope or intercept of the regression line at the known cutoff point.





Chapter 3

Some drawbacks of conventional

methods

3.1 Introduction

In the previous chapter we have introduced various methods that aim to construct the

counterfactual dealing especially with the selection bias problem.

In this chapter we will discuss when and how the assumptions behind conventional meth-

ods break down in practice.

Our concern here is that different estimation methods, and different model specifications,

potentially, and often in the real applications, led to different results.

This could especially happen when conditions on which estimation methods are based are

not always really checked in the correct way.

This chapter represents a review of contributes that in literature have increased the de-

bate about PS methods problems, but also about problems concerning the use of economic

models for assert causality.

Here we will also discuss some remedies that have been proposed to address the resulting

problems. We think that drawbacks of PS principally derive from the wrong practice and

not from theory at all. Rubin(2007), for example, has emphasized some conflicts between

the prescription of the potential outcome approach and the practice of observational stud-

ies in epidemiology and social science, where outcome data, Yobs are used to fit various

models, try transformations, improve p-values, in order to achieve publishable results.

We will take into account the three major open debates of conventional propensity score

methods: the problem of variable selection in controlling for selection bias, the problem

of how test balance and how to minimize the model dependence of ps methods. Finally,

in explaining these problems, which are related each other,we will consider new research

lines and contributes that overcome some limits and that represent a key bridge between

conventional methods and our proposed method.

47
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3.2 The hidden bias problem

A crucial step in modeling the unknown selection mechanism in observational studies, is

to identify potentially relevant covariates to measure. Potentially relevant covariates are

those expected to affect treatment selection and outcomes. Researchers agree in consider-

ing that the omission of such relevant covariates results in hidden bias that propensity score

cannot adjust. In fact, PS analysis assumes that all variables related to both outcomes

and treatment assignment are included in the vector of observed covariates(Rosenbaum

and Rubin, 1983) that is the researcher knows and measures the selection model perfectly,

as with the perfectly implemented regression discontinuity design (Cook, 2008; Shadish.

Cook and Campbell,2002). Unfortunately, this assumption is not always realistic, and re-

searchers have to consider how much the results are robust to departures from it. In fact,

in an observational setting, selection process is complex and not perfectly known, usu-

ally involving some combination of self-,administrator-, or other third-person-selection.

(Steiner et al, 2008). If the PS model is incorrect or the covariates are measured im-

perfectly, then hidden bias may exist that affects estimates. Hidden bias results when a

covariate is signficantly related to treatment assignment and outcome, but has not been

measured and included in the propensity score model. The selection of rights covariates

affect also the plausibility of the strong ignorability assumption 1. In fact, when selection

process is not perfectly known, the strongly ignorability assumption may not hold, and

often cannot be tested.

The hidden bias is strictly related to strongly ignorable treatment assignment. But, in

practice, this assumption is not careful checked.

Many authors have taken into account the hidden bias problem ( Rosenbaum,2002;Imbens,2002;

Smith and Todd,2001; Peck, 2007; Steiner et al., 2008; Rosenbaum and Rubin, 1983b),

and they have proposed different solutions to the problem. Rosenbaum and Rubin (1983),

for example, consider that differences due to unobserved covariates should be addressed

after the balancing of observed covariates in the initial design stage, using models for

sensitivity analysis or models based on specific structural assumptions. Rosenbaum(2002)

presented a detailed discussion of sensitivity analysis, that examines whether the qual-

itative conclusions of a study would change in response to hypothetical hidden bias of

varying magnitudes. Imbens(2002), for example, has considered an alternative approach,

where the unconfoundedness assumption is relaxed by allowing for a limited amount of

correlation between treatment and unobserved components of the outcomes.In the Im-

bens’s perspective, the starting point of sensitivity analysis is the assumption that the

unconfoundedness is satisfied only conditional on an additional, unobserved covariate.

The analysis is close to the practice of assessing sensitivity of estimates by comparisons

with results obtained by discarding one more observed covariates (Heckman and Hotz,
1If all covariates X related to both treatment T and potential outcome are observed, then treatment

assignment is said to be strongly ignorable given X(Rosenbaum and Rubin, 1983). Then, potential out-
comes are independent of treatment assignment conditional on X,and the average treatment effect can be
estimated without bias.
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1989; Dehejia and Wahba,1999; Smith and Todd,2001). To simplify, sensitivity analysis

concerns the analysis of bias that can occur when not all relevant covariates were observed.

The hidden bias problems affects the assumptions behind propensity score but also behind

matching estimators. The existence of no hidden bias implies that the strong ignorability

property holds. In particular, it implies that:

E[Yi(1) | Ti = 1] = E[Yi(1) | Ti = 0]

E[Yi(0) | Ti = 1] = E[Yi(0) | Ti = 0]

(3.1)

But, not in all situations the assumption 3.1 is satisfied. When it is not satisfied

under such a perfect stratification of data,it is possible to assert a conditional variant of

assumption 3.1.

E[Yi(1) | Ti = 1, Si] = E[Yi(1) | Ti = 0, Si]

E[Yi(0) | Ti = 1, Si] = E[Yi(0) | Ti = 0, Si]

(3.2)

whit S as a perfect stratification variable, such that units within strata defined by values of

S are similar each other in all aspects except for observed value of the treatment indicator

variable.

The condition 3.3 could be satisfied only if there are not unobservable variables in S.

In the presence of an unobserved variable, it could be a differential growth rate for

the outcome that is correlated with treatment assignment/selection (S.L. Morgan and

D.J.Harding, 2006).

Sensitivity analysis could be also helpful in this task. Ichino et al. (2005) have proposed

a sensitivity analysis for matching estimators aimed at assessing if estimates derived un-

der the strong ignorability assumption are robust with respect to specific failures of this

assumption.

They suppose that strong ignorability is not satisfied when another additional binary vari-

able could be observed. They simulate this additional variable and used it as an additional

matching variable. Then a comparison of the estimates obtained with and without match-

ing on this simulated binary variable makes clear if the estimator is robust to the specific

source of failure of the unconfoundedness assumption. More precisely, in the sensitivity

analysis the unconfoundedness assumption requires independence of the potential out-

comes and the treatment indicator only after conditioning on one additional, unobserved,

covariate Ui 2. In doing this, a parametric model is postulated and estimated. Then, the
2Yi(0), Yi(1)⊥Ti | Xi, Ui
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focus of the sensitivity analysis is the representation of the estimated average treatment

effect in terms of the sensitivity parameters.

Rosenbaum and Rubin (1983b) have proposed a method to assess the sensitivity of average

treatment effect (ATE) estimates in parametric regression models (ATE). In particular,

their sensitivity analysis consists of the estimation of the average effect of a treatment

on a binary outcome variable after adjustment for observed categorical covariates and an

unobserved binary covariate U , under several sets of assumptions about U . (Rosenbaum

and Rubin, 1983b). They assume that treatment assignment is not strongly ignorable

given X, but is strongly ignorable given X and U, such that:

Pr(T = 1 | Y (0), Y (1), X) 6= Pr(T = 1 | X)

Pr(T = 1 | Y (0), Y (1), X, U) = Pr(T = 1 | X,U)

(3.3)

with X as observed covariates, and U as the unobserved covariate and where the unob-

servable U is usually assumed to be independent of the observed covariates.

Pr(U = 1 | X) = Pr(U = 1) (3.4)

If conclusions are insensitive over a range of plausible assumptions about U, the number of

interpretations of the data is reduced, and causal conclusions are more defensible (Rosen-

baum and Rubin,1983b).

Sometimes, the wrong practice could produce biased result if sensitivity analysis is not

carefully checked. Usually, researchers use only those covariates for which statistically

significant differences between treatment and comparison groups are found. (Rosenbaum,

2002c) offered three cautions against doing so:

• the relationship between the covariates and outcome is not considered and is just as

important in many respects

• statistical significance is not a prerequisite for practical relevance, especially because

the former depends so heavily on sample size

• the covariates are considered in isolation, whereas adjustment consider them collec-

tively.

It is not clear which rationale researchers should adopt in selecting the right covariates.

One should include all variables that affect both treatment assignment and dependent

variable in order to reduce bias and avoid omitted variable bias. The theoretical literature

emphasizes that including variables only weakly related to treatment assignment usually
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reduces bias more than it will increase variance (Rubin and Thomas 1966; Heckman et

al. 1998). One should include all variables that play a role in selection process (including

interactions and other nonlinear terms;( Rosenbaum and Rubin, 1984; Rubin and Thomas,

1996) and that are presumptively related to outcome, even if only weakly so (Rubin, 1997)

unless a variable can be excluded because there is a consensus that it is unrelated to

outcome or is not a proper covariate, it is advisable to include it in the PS model even

if it is not statistically significant (Rubin and Thomas,1996,p.253). The idea is that to

reduce hidden bias propensity scores should be constructed using as many predictors of

group membership as possible.

In contrast, in economic literature is emphasized the importance of the trade-off between

the bias of excluding relevant variables and the inefficiency of including irrelevant ones.

Steiner et al. (2008) implemented a within-study comparison to check if selection bias can

be reduced with a particular set of covariates or with some particular analytic model. They

decompose the complete set of covariates X into smaller, more homogeneous sets in order

to investigate how well they establish strong ignorability and reduce bias. The within-

study design they have proposed permits comparing the adjusted results of the quasi-

experiment to the results from the randomized experiment and, to directly assess how well

the covariates succeed in reducing selection bias, and to test whether the strong ignorability

assumption is met. They use a series of different selection models that systematically vary

covariate sets. They assessed the percentage of bias reduction of each method and covariate

set by the fraction of the initial selection bias remaining after adjustment:

b% = (τaQ − τE)\(τuQ − τE) ∗ 100 (3.5)

where τQ is the adjusted or unadjusted average treatment effect in the quasi-experiment

and τE the estimated average treatment effect in the randomized experiment. A positive

sign indicates an under-adjustment with respect to the experimental effect, and a negative

sign over-adjustment.

In their study, Steiner et al. (2008) found that selection bias can be almost reduced when

appropriate covariates are available; further, they found that the choice of covariates is

more important than the choice of analytic method; third, adding different sets of covari-

ates systematically improves bias reduction since they collectively increase the capacity to

predict the assignment process and outcome. They found that some covariates, are more

important than others, and without some important variable in the selection model, incor-

porating many variables into a seemingly rich covariate set is not sufficient to eliminate

bias. Finally, they make strong ignorability assumption more transparent than usual and

they show its crucial importance for causal inference.
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3.3 Limitations of propensity score estimation

Propensity score methods differ from economic models in the sense that they do not re-

quire any model for outcome. But both PS method and economic selection models are

model dependent: economists use a model for both the selection process and outcomes;

whereas, PS methods use a model for the assignment mechanism.

King and Zang (2006) gave a formal definition of model dependence. They consider it at

point X as the difference, or distance, between the predicted outcome values from any

two plausible alternative models; where ,by plausible, they mean models that fit the data

well. In practice, model dependence exist in all situations where a single correct model

must be chosen between multiple candidates. As a consequence, a unique estimator is not

even specified ex ante and thus not well defined.

Typically, the model dependence problem exists because in real applications, propensity

scores are unknown. Many authors agree in considering that small variations in choice

during the estimation stage could yield to different results for what concerns bias reduction

and size of treatment effect estimation:these choices concern control variables, functional

forms, model assumptions, (see for example, W.Shadish, M.H.Clark, P.M.Steiner, 2008).

When researchers use parametric methods, they do not know the true parametric model,

and many different specification could be plausible.

In this sense, Ho et al. (2007) consider the PS as a tautology. In fact, in order to use non

parametric matching to avoid parametric modeling researchers must know the parametric

functional form of the propensity score equation. PS is a tautology also in the sense that

to be a balancing score, analysts must know a consistent estimate of the true PS; but re-

searchers know to have a consistent estimate of the PS when matching on the PS balances

the covariates. Obviously, a wrong or not unique PS estimate will affect all sub-sequent

analysis based on the estimated PS.

Sekhon and Grieve (2008) noted that if the PS model is wrong then PS matching makes

covariate balance worse, and as a consequence, increase the bias in the estimates even if

the selection on observable assumption is satisfied. 3 Ho, Imai et al. (2007) considers that

PS estimates depend on their underlying model assumptions and that different specifica-

tions can yield very different causal inference conclusions.

More generally, Ho et al. (2007) consider that it does not exist a right model specification

if researchers cannot verify assumptions on which they are based. They offer a solution

to the model dependence problem by introducing a preprocessing method that does not

call for parametric assumptions. They propose to preprocess a data set with matching

methods so that the treated group is similar as possible to the control group, and the

treatment variable is closer to being independent of the background variables.In doing

this,they ensure that any subsequent parametric adjustment will be irrelevant in the sense

that with preprocessing estimates based on the subsequent parametric analysis will be less

3i.e. even if the conditional distribution of the outcomes given the observed covariate is indipendent of
treatment assignment
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dependent on modeling choices and specifications.

Further, Luellen (2007) has conducted a simulation study, which suggests that PS score

adjustment may be also sensitive to which estimation method (logistic regression, classifi-

cation trees, bosted regression, random forest and so on) is used. Heckman, Ichimura and

Todd (1998) highlight that Rosenbaum and Rubin (1983) proved that matching on PS

balances all covariates by assuming that PS is known exactly, but practically researchers

have to estimate it. They argue that matching on all covariates rather than on the esti-

mated PS, could be more efficient than matching on PS.

For what concerns PS estimation,in applied research, analysts and researchers use lo-

gistic regression as the best fixes method. An important drawback of logistic regression is,

for example, that it can underestimate the probability of rare events (King et al., 2003).

As Baser(2006) pointed out researchers used to keep the control data set as large as pos-

sible to increase the likelihood of finding better matches for the treatment group. The

question behind the use of propensity scores estimation methods is about which criterion

should be maximized in order to obtain the best model and avoid the model dependence.

Shadish, Luellen and Clark(2006) gave an answer to this question by focusing their at-

tention on the rationale the researchers should adopt in estimating PS. They refer to two

possible rationales: the balancing strata rationale and the maximum prediction rationale.

The maximum prediction rationale aims at obtaining the best possible prediction of group

membership, that is predict as well as possible. In doing this, they adopt as maximization

criterion the percentage of correct classification of participant into conditions. They think

that applying the maximum prediction rationale PS analysis could yield to the creation

of the equivalent of a perfect assignment variable in a regression discontinuity design, for

example, by creating a set of PS in which all treated have a PS grater than .50 and all

controls have a ps less than < .50. They argued that applying this logic, the better the

prediction, the less overlap exists between ps of the two groups, but overlap is an essential

condition that have to hold in using, for example, a subclassification on PS. Whereas, the

balancing strata rationale, implies that any PS that balances predictors over groups will

do. As a consequence, the criteria for a good set of PS should be the maximization of

how well the propensity scores balance predictors over conditions. They conclude that the

goal is not to get accurate prediction into groups, but is to create scores that, when used,

create balance on predictors over groups within propensity score strata.

This is also the suggestion of Rosenbaum and Rubin. In fact, under Rosenbaum and Ru-

bin (1984), any propensity score that balances predictors will do.

Against what Rosenbaum and Rubin (1984) suggest, in applied research, such tests aim

at maximizing the prediction. The Hosmer-Lemeshow test, for example,is useful for de-

tecting the classification power of the logistic regression. The test suggests regrouping the

data according to predicted probabilities (PS) and then creating equal-size groups. The

insignificant value of the test is needed for precise classification.
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The area under the receive operator curve (ROC) value is another way to detect classifi-

cation power. The ROC curve is a graph of sensitivity versus one minus specificity as the

cutoff varies. The greater the predictive power, the more bowed the curve. Therefore, the

area under the curve can be used to determine the predictive power of logistic regression.

To classify group membership correctly, C-Statistics should be greater than 0.80.

From literature, it clearly emerges that some authors agree in considering that the ratio-

nale underlying the estimation of PS should be the maximization of prediction; on the

other hand, other authors suggest the use of the maximum balancing rationale.

The debate remains open.

3.4 Testing the balance property

How to evaluate balance is at the center of a rich debate in literature. The balancing

property is important for both PS and matching method. Shadish et al. (2008), for exam-

ple, have shown that PS adjustment may be sensitive to which covariate balance criteria

are used. The success of matching, for example, is based on reducing selection bias by

generating as much balance as possible between the distribution of pre-treatment covari-

ates in the treated and control groups. There is no consensus on how exactly matching

ought to be done, how to measure the success of the matching procedure and whether

or not matching estimators are sufficiently robust to mis-specifications. In recent years,

researchers start to be interested in how to choose the best matching techniques for their

data sets. (Baser,2006; King and Stuart, 2006; Iacus et al., 2000). Ho et al. (2007)

consider balance as the main diagnostic of success, as well as the number of observations

remaining after matching. They highlight the importance of balance by emphasizing it

provides a straightforward objective function to maximize in order to choose matching

solutions. In various academic fields researchers used to evaluate the degree of equiva-

lence by conducting hypothesis tests, most commonly the t-test for the mean difference

of each of the covariates in the two matched groups, but also, the chi-square test, the F

and Kolmogorov-Smirnov tests. Imai, King and Stuart (2006) showed that the common

approach used in evaluating the success of this method is invalid. Imai, King and Stuart

(2006) suggest that balancing holds when the 3.6 is satisfied:

p̂(X | T = 1) = p̂(X | T = 0) (3.6)

where p̂ is the empirical density of the observed data, rather than the population density. If

the above assumption holds then the average treatment effect can be estimated by a simple

difference in means of Y between treated and controls. It is clear that the immediate goal

of matching is to choose an algorithm that satisfies the equation 3.6 as best as possible.

Ideally that would involve comparing the joint distribution of all covariates X between
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the matched treated and controls. However, when X is high dimensional, this is generally

infeasible and thus lower-dimensional measures of balance are used instead. The standard

practice involves the evaluation of 3.6 for the chosen matching algorithm by conducting

t-test for the difference in means for each variable in X between the matched treated and

control groups. For what concerns t-test, tables of t and/or they p-values are used as a

justification for the adequacy of the chosen matching method and statistically insignificant

t-test are used as a stopping rule for maximizing balance in the search for the appropriate

matched sample from which to draw inferences. Iacus et al.(2008), have considered a

common mistake that researchers do in real applications: they used to ignore imbalance

due to differences in variances, ranges, covariances, and higher order interactions. These

contributes clarify that the goal of measuring imbalance is to summarize the difference

between the multivariate empirical distribution of the pre-treatment covariates for the

treated p̂(X | T = 1) and matched control p̂(X | T = 0) groups. Unfortunately, many

matching applications do not check balance. Generally, as mentioned above, who checks

balance used to compare only the univariate absolute difference in means in the treated

and control groups as in equation 3.7.

I
(j)
1 = |X(j)

m,(T,W ) −X
(j)
m,(C,W )|, ∀j = 1, ..., k (3.7)

where X(j)
m,(T,W ) and X

(j)
m,(T,W ) denote weighted means, with weights appropriate to each

matching method; or measure the imbalance in univariate moments, univariate density

plots, propensity score summary statistics, or the average of the univariate differences

between the empirical quantile distributions (Austin and Mamdani,2006; Imai, King and

Stuart, 2008; Rubin, 2001).

Iacus, King and Porro (2008) gave an innovative measure of imbalance. They measure the

multivariate differences between P̂ (X | T = 1) and P̂ (X | T = 0) via an L1-type distance.

Their measure works for both categorical and continuous covariates.

In particular, they first choose the number of bins for each continuous covariate to be

discretized. Then, they cross-tabulate the discretized covariates as X1 × ... ×Xk for the

treated and control groups separately, and record in each cell the k-dimensional relative

frequency for the treated fl1,...,lk and control gl1,...,lk . Then their measure of imbalance is

represented by the absolute difference over all the cell values as in 3.8.

`1(f, g) =
∑
l1,...,lk

|fl1,...,lk − gl1,...,lk | (3.8)

An important property of their approach is that the empty cells do not affect the

measure of imbalance. Furthermore, the use of relative frequencies controls for potentially

different sample sizes between the treated and the control groups.
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King and Stuart (2006) have argued that the common practice of conducting matching is

problematic for many reasons.

First, they have shown that randomly dropping observations can influence not only balance

but also statistical power, and unfortunately the t-test, like most statistical tests, is a

function of both. The more observations dropped, the less power the tests have to detect

imbalance in observed covariates. The difference in sample means as a measure of balance

is distorted in the t-test by the total number of remaining observations, the ratio of

remaining treated units to the total number of remaining observations and the sample

variance of X for the remaining treated and control units. Then they have argued that

a difference in means is a fine way to start. Other options include higher order moments

than the mean, nonparametric density plots, and propensity score summary statistics.

Sometimes software do not incorporate a correct balance test. In the Becker and Ichino

procedure, for example, the pscore.ado program does not test the balancing property in

the strict sense, but only one of its implications; i.e. the mean. Softwares should add tests

for higher moments of the distribution of characteristics.

A more general approach to alleviate errors in balance testing is represented by the use of

quantile-quantile plots that compare the empirical distribution of two variables, although

statistics based on QQ plots can have higher variance (Ho, Imai et al., 2007).

In addition, Imai et al. (2006) suggest that the statistics chosen to assess balance should

be characteristics of the sample and not some hypothetical population.

Steiner et al. (2008) assess balance in observables using Cohen’s

d =
(Xt −Xc)√

(s2t +s2c)
2

(3.9)

and variance ratio ν = s2t
s2c

between treatment and comparison group. After propensity

score adjustment, standardized mean differences d should be close to zero, variance ratios

ν close to one (Rubin, 2001). If it is not possible to obtain balance in the covariates, then

perhaps the groups are so nonequivalent that they should not be compared.

A graphical analysis of the overlap in estimated PS could be also useful to examine whether

groups overlap enough to be worth comparing.

To summarize, we think that to correctly implement propensity score and matching algo-

rithm, instead of using hypothesis tests for assessing balance, we need to assess the dif-

ference in the multivariate empirical densities of X for the treatment and control groups.

In the next chapter we will show how the use of a partial dependence analysis could be

useful in testing in a multivariate way the balancing property.
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3.4.1 Genetic matching algorithm (GM)

Here, following Sekhon and Grieve (2008);Diamond and Sekhon (2006); Sekhon and

Mebane (2000) we consider an alternative matching method for causal inference, that

automatically checks balance.

GM is a data mining method that searches the best solution within all possible solutions.

The GM, in fact, uses an evolutionary algorithm which consists of a set of heuristic rules

to modify a population of trial solutions in such a way that each generation of trial values

tends to be, on average, better than its predecessor. The Genetic Matching (GM) is a

new non parametric multivariate matching method for addressing covariate imbalance in

observational studies.

We introduce GM here rather than in the section concerning matching methods, because

we think that GM represent a first step in avoiding the balance test problem and that,

for some aspects, aims at ensuring objectivity in results. It uses an evolutionary search

algorithm to automatically determine the weight each covariate is given, that maximizes

the balance of observed potential confounders across matched treated and control units.

This method does not depend on whether PS is known or not, but it is improved when a

propensity score is incorporated. The basic idea of Geneting Matching is that if matching

using Mahalanobis distance is not optimal for achieving balance between treatment and

controls, then it should be possible to search over the space of distance metrics and find

something better by directly minimizing measures of covariate imbalance. One way of

generalizing the Mahalanobis metric is to include an additional weight matrix as follows:

d(Xi, Xj) = {(Xi −Xj)′(S−
1
2 )′WS−

1
2 (Xi −Xj)}

1
2 (3.10)

where W is a square weight matrix with rows and columns equal to the number of co-

variates in X, and S
1
2 is the Cholesky decomposition of S, the variance covariance matrix

of X. GM is an invariant matching algorithm that uses distance measure d() in which all

elements of W are zero except down the main diagonal. The main diagonal consists of

k parameters that must be chosen. If each of these parameters are set equal to 1, d()

is the same as the Mahalanobis distance. An important issue is how to choose the free

elements of W 4, due to the fact that the optimization problem grows exponentially with

the number of free parameters. By default, geneting matching uses cumulative probability

distribution functions of standardized statistics. The default standardized statistics are

paired t-tests and non-parametric bootstrap Kolmogorov-Smirnov tests that compare the

distribution of covariates across treatment and control groups. By default GM attempts to

minimize a measure of the maximum observed discrepancy between the matched treated

and control covariates, at each iteration of the optimization.

4W has an infinity of equivalent solutions because the matches produced are invariant to a constant
scale change to the distance measure. The matched produced are the same for ever W = cW , with c¿0
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For a given set of matches resulting from a given W, the loss is defined as the minimum

p-value observed across a series of balance tests performed on distributions of matched

baseline covariates. Usually the tests conducted are t-tests for the difference of means

and non parametric (bootstrap) Kolmogorov-Smirnov distributional test. The algorithm

attempts to maximize this loss function by minimizing the largest discrepancy at every

step. As shown by Diamond and Sekhon (2006), the main advantage of GM is that co-

variate balance was much improved compared to using propensity score or Mahalanobis

distance matching. Another advantage of GM is that it is an algorithm that by searching

and finding relationships in the data, achieves excellent levels of balance that does not

depend on PS estimation.

3.5 Some Problem of Heckman’s selection model

The main problem of Heckman’s selection model concerns how to choose among competing

estimators(Heckman, 1989). When not all characteristics related to selection mechanism

are controlled, then bias in the estimates of program impacts may occur. If selection

bias exists, then different non-experimental estimators could lead to different results be-

cause of differences existing in the assumptions underlying each estimators. Many authors

have verified that different estimators produce different estimates of the same program.

Lalonde(1986) and Faker and Maynard (1984,1987), for example, using experimental data

from the National Supported Work Demonstration, have found that non-experimental es-

timates vary widely and differ greatly from the experimental estimates. Other authors

that have found such dependence on different estimators are, for example, Burtless and

Orr (1986,p.613), Ashenfelter and Card (1985, p.648), Barnow (1987, p.190).

Two important features of economic models are the following: on one hand, alternative

non-experimental estimation procedures should produce approximately the same program

estimate,but this requirement is not always matched. On the other hand, there is no

objective way to choose among alternative non-experimental estimates.

The first feature is not matched when there are systematic differences between treated and

comparison group in observed and unobserved characteristics that affect outcome. This

is due to the fact that different non-experimental estimators make different assumptions

about the distribution of these differences.

In solving these problems Heckman(1989) has proposed some model specification tests.

He has considered the problem of assessing the validity of alternative non-experimental

evaluation models that do not produce estimated program impacts close to the experimen-

tal results: the model not rejected produced impacts that are close to the experimental

results.



Chapter 4

A multivariate data mining

approach to deal with selection

bias

4.1 Introduction

In the previous section we presented some limitations of conventional methods in esti-

mating causal effects when random assignment is not feasible. In particular, we have

highlighted some limitations of existing methods in testing the balance property.In order

to maximize balance across treatment and control groups, it is necessary to be able to

measure and test for balance. There are many issues involved with choosing appropriate

tests, but we noted that most researchers especially ignore all aspects of multivariate bal-

ance not represented in the well known variable-by-variable summaries. The concern here

is to theoretically introduce the new approach to measure selection bias and test balance

by preserving the multivariate nature of data.

The main idea lies in the use of the more general framework of the partial dependence

analysis (Daudin,1981) as a tool for investigating the dependence relationship between a

set of observable covariates X and a treatment indicator variable T in order to obtain a

measure of imbalance according to their dependence structure.

Further, we propose the use of a clustering procedure as a tool to find groups of compa-

rable units on which estimate local causal effects and we propose the multivariate test of

imbalance as a stopping rule in choosing the best partition of the X-space.

4.2 Objectives

Usually, there are several pre-treatment covariates X along which balance ought to be

checked, and a method of combining differences it needed. The question is how many tests

should be performed: one for each pretreatment covariate or a single omnibus test?(Hansen

and Bowers,2008).

59
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The innovative aspect of this thesis try to answer to these questions by performing a multi-

variate approach that involves measuring selection bias under non-experimental conditions

and testing the imbalance in a multivariate way. It implies that balance is checked not

only on x1, ..., xk, but simultaneously on all covariates involved in the selection process.

Here we use Rubin’s framework as our springboard. The idea is to consider the available

information as starting point, being strictly interested in the current available sample and

not in inference about a population. As in the Rubin’s approach, potential outcomes

and covariates are defined as scientific entities, no matter which design - experimental,

observational or something else - researcher use. What Rubin calls The Science, in our

approach is represented by the information matrix X, and by observed potential outcomes

(Yobs)(tab 4.1). Obviously, the procedure we propose has no magic, in the sense that it

1 ... j ... Q
1
...
i xij
...
n

T
1
...
0
...
1

Y(0) Y(1)
missing Yobs

... ...
Yobs missing
... ...

missing Yobs

Table 4.1: Left: Information matrix; Center: assignment vector; Right: observed potential
outcome

does not help us control for covariates involved in the selection process that are not avail-

able.

We assume to have sufficient information in the measured pre-treatment control variables

Xi. The information matrix X, must include all variables that are causally prior to the

treatment assignment Ti and that affects Yi conditional on Ti.

The method we propose has two main objectives:

First, given the information matrix it aims at measuring the global selection bias by a

two-stage procedure involves the following:

1. Original pre-treatment covariates, without introducing outcome in the analysis, are

transformed using a specific eigenvalues and eigenvector de-composition to derive a

factorial conditional space, in which the inertia associated with treatment assignment

has been eliminated.

The eliminated inertia represents the global measure of selection bias existent in the

information matrix.In this way we derive a bias elimination coefficient (BEC) that

represents the measure of selection bias relative to the total amount of the inertia of

the specific information matrix considered.

2. Then we test if the detected bias is important with respect to the hypothetical case

of random partition (BIAS=0)

In essence, given an information matrix X of pre-treatment covariates, our analysis detects
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the variability associated with the selection mechanism by creating a new space that is

void of any variability associated with that mechanism.

The goal of measuring imbalance is to summarize the difference between the multivariate

space of the pre-treatment covariates for the treated and the multivariate space of the

pre-treatment covariates for the controls.

Second, we propose the use of a clustering procedure in order to find subspaces on

which measure local causal effects. Then, the multivariate test of imbalance is used as a

stopping rule in finding the best partition of the X-space on which we wish to measure

unbiased local average treatment effects.

4.3 General framework: the partial dependence analysis

Our underlying paradigm here is that of French School of Analyse des Données. Accord-

ing to Benzécri the data are king, not the model one might want to propose for them

(Greenacre, 2006). The philosophy of that school is to place data at the center of the

researcher.

When there is not an a priori knowledge about the relationship between variables, dis-

playing the existing relationship between variables on a factorial space is one of the most

powerful tools for detecting the hidden information.

If there is dependence between covariates and treatment assignment any descriptive facto-

rial analysis may exhibit this link. The aim is to implement a conditional analysis in order

to find a new X-space free of any dependence from the treatment assignment: the part of

variability of the original X space that has been eliminated will represent the measure of

selection bias.

Here we propose to study the conditioning applied to a problem with qualitative variables1

where all or some of them may be linked to the treatment assignment variable.

The problem of dependence of a set of qualitative variables from the influence of an external

qualitative variable T was studies by B. Escofier (Escofier, 1987), who aimed at obtaining

a factorial space by taking into account only the variability not dependent from T (Inertia

Within) with the resulting CORCO model (Escofier 1987;1988). Escofier refers to the

more general framework of partial dependence analysis due to Daudin (Daudin, 1981).

Daudin has extended the concept of partial dependence first defined by J.N. Darroch

(Darroch, 1979). Darroch has distinguished between two sources of partial dependence

between two variables: the dependence due to T, called the dependance attachée, and the

dependence not due to T, called the dependance détachée. The key contribute of Daudin

was the transition from the definition of partial dependence in the analysis of probability

tables in a probabilistic framework (Darroch, 1979) to the the analysis of contingency

tables in the correspondence factorial analysis framework (Daudin, 1981). Starting from

1continuous covariates could be also introduced in the analysis if discretized
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the decomposition of the marginal dependence in dependence not due to T e dependence

due to T (4.1)

Pij. − Pi..P.j.︸ ︷︷ ︸
marginal dependance

= (Pij. −Πij)︸ ︷︷ ︸
dependence not due to T

+ (Πij − Pi..P.j.)︸ ︷︷ ︸
dependence due to T

(4.1)

where Pij. =
∑

t Pijt, Pi.. =
∑

j

∑
t Pijt, P.j. =

∑
i

∑
t Pijt and πij =

∑
t
Pi.tP.jt

P..t
, with πij

interpreted as the conjoint probability of (X = i) and (Y = j) when the two events are

independent given T. 2

Daudin has proposed two separated correspondence factorial analysis: one that analyze

the dependence between variables due to T and another that analyzes the dependence

between variables not due to T. To analyze the dépendance détachée he proposed to

perform a correspondence factorial analysis of the contingency table with generic term

N∗ij :

N∗ij =
Ni..N.j.

N
+ (Nij. −Mij) (4.2)

with N∗ij that aims at studying the dependence not due to T; Ni..N.j.

N as the generic term

of the table that aims at studying the marginal dependence (X,Y) of the variable X and

Y; and with Mij =
∑

t
Ni.tN.jt

N..t
that aims at studying the relationship between variables

due to T. Nijt indicates the absolute frequencies of the tridimensional table of X = i,

Y = j and T = t, Ni.t =
∑

j Nijt, N.jt =
∑

iNijt, N..t =
∑

ij Nijt, Ni.. =
∑

jtNijt and

N.j. =
∑

itNijt.

The factorial analysis of the N∗ij table is defined as a factorial analysis with reference to a

model (Escofier, 1984), where the object of the analysis is a table derived as the difference

between the raw data and a model table, with the model corresponding to the structure

induced by T on the data.

4.4 Notation

We aim at decomposing the original X space of analysis in two complementary spaces: one

whose variability is only that due to the relationships between the covariates entered in the

analysis (X), but not due to the selection mechanism (T); and another whose variability

is only that due to the selection mechanism.

A matrix’s overall variability [Inertia(X;T )] can be decomposed into elements that are

2see appendix B for more details
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independent of the selection-to-treatment mechanism [Inertia(X ⊥ T )] and dependent on

that mechanism [Inertia(X|T )].

Inertia(X;T )︸ ︷︷ ︸
total

= Inertia(X|T )︸ ︷︷ ︸
between

+ Inertia(X ⊥ T )︸ ︷︷ ︸
within

(4.3)

According to a conventional data matrix decomposition in eigenvalues and eigenvectors,

our approach involves decomposing the portion of the matrix that does not depend on

the selection mechanism (inertia within) for then use the part of inertia that has been

eliminated (inertia between) as a measure of selection bias.

Here we consider the problem with categorical variables (X) where some of them may be

linked to an external categorical variable (T). The information matrix (table 4.1) could be

set by two disjunctive tables: the K matrix that represents I on rows and J on columns ;

and the T matrix that represents I on rows and T on column 3.

The indicator matrix K (represented in a disjunctive form) has generic term kij = {Kij :

i ∈ In, j ∈ JQ},whit In as the population of n units under consideration and JQ as the set

of all categories of the Q pre-treatment considered covariates.

K =


· · · · · · · · ·
· · · kij · · ·
· · · · · · · · ·


n×JQ

T =


· · · · · · · · ·
· · · kit · · ·
· · · · · · · · ·


n×t

The rows (ki.) and columns (k.j) margins and grand total (k..) of the K matrix are formally

expressed as follows:

ki. =
Q∑
j=1

kij = Q (4.4)

k.j =
n∑
i=1

kij = k.j (4.5)

k.. =
n∑
i=1

p∑
j=1

kij = nQ (4.6)

The T matrix has generic term kit = {kit : i ∈ In, t ∈ T} whit T as the set of level of the

treatment indicator variable. T takes into account the structure induced by the selection

3the number of column equals the number of level of T
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mechanism on the population. The rows (ti.) and columns (t.t) margins and grand total

(t..) of the T matrix could be expressed as follows:

ti. =
t∑
t=1

kit = 1 (4.7)

t.t =
n∑
i=1

kit = k.t (4.8)

t.. =
T∑
t=1

k.t = n (4.9)

The row margins equal one given that each unit can receive only one treatment’s level.

The column margin equals k.t and represents the size of the group corresponding to the

level t of T. The T variable generates a partition on the population In, the classes of that

partition are defined as In(t)
.To each class In(t)

corresponds a sub-table of the K-matrix;

in this sense we can consider the K matrix as the juxtaposition of those t sub-tables with

dimension k.t.

We will also consider the B matrix with generic term btj = {btj : t ∈ T, j ∈ JQ}, obtained

from the K matrix by collapsing the rows of the K matrix corresponding to the same level

t ∈ T .

B =


· · · · · · · · ·
· · · btj · · ·
· · · · · · · · ·


t×JQ

We call the B table as the sum table, it represents the average profile of each group, and

gives an idea of whether margins differ with respect to T. If we consider, for example, a

treatment variable with two levels (treated/not treated), the B matrix will have two rows

and the number of columns will equal the number of JQ. The B table has generic term

btj .

btj =
∑
i∈In

kijkit =
∑
i∈It

kij (4.10)

The rows (bt.) and columns (b.j) margins and grand total (b..) of the B matrix could be

expressed as follows:
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b =
T∑
t=1

Q∑
j=1

btj = nQ (4.11)

bt. =
Q∑
j=1

btj = Qk.t (4.12)

b.j =
T∑
t=1

btj = k.j (4.13)

4.4.1 Profiles, metrics and weights

Here, for each table introduced in the previous paragraph (K, T and B), we consider

profiles, metrics and weights. Let D(k)
i. and D

(k)
.j the diagonal matrix of the row and

column margins of the K matrix:

D(k)
i. =


Q

0 Q

0 0 Q

 D(k)
.j =


k.1

0 k.j

0 0 k.q


Let D(k)

n and D
(k)
p the weights of units and modalities of the K matrix, defined by the

ratio between the margins and grand totals:

D(k)
n = Q


1
nQ

0 1
nQ

0 0 1
nQ

 =
1
n
In D(k)

p =


k.1
nQ

0 k.j

nQ

0 0 k.q

nQ

 =
1
nQ

D
(k)
.j

Let the metric induced by the K matrix on the variables defined as the inverse of the

weights D(k)(−1)

n = nIn and the metric on the units defined as D(k)−1

p .

Let D(k)−1

i. K the row profile of the K matrix with generic term {kij

Q }(j) and D(k)−1

.j K the

column profile of the K matrix with generic term {kij

k.j
}(i).

Let D(T )
i. and D

(T )
.j the diagonal matrix of the row and column margins of the T matrix:

D(T )
i. =


1

0 1

0 0 1

 = In D(T )
.j =


k.1

0 k.t

0 0 k.T


Let D(T )

n and D
(T )
p the weights of units and modalities of the T matrix, defined by the

ratio between the margins and grand totals:



66 A multivariate data mining approach to deal with selection bias

D(T )
n =


1
n

0 1
n

0 0 1
n

 =
1
n
In D(T )

p =


k.1
n

0 k.t
n

0 0 k.T
n

 =
1
n
D

(T )
.j

Let the metric induced by the T matrix on the variables defined as the inverse of the

weights D(T )(−1)

n = nIn and the metric on the units defined as D(T )−1

p = nD
(T )
.j .

Let D(T )−1

i. T the row profile of the T matrix with generic term {kit}(t) and D
(T )−1

.j T the

column profile of the T matrix with generic term {kit
k.t
}(i).

Let D(B)
i. and D

(B)
.j the diagonal matrix of the row and column margins of the B matrix:

D(B)
i. =


Qk.1

0 Qk.t

0 0 Qk.T

 = D(B)
.j =


k.1

0 k.j

0 0 k.q


Let D(B)

n and D
(B)
p the weights of units and modalities of the B matrix, defined by the

ratio between the margins and grand totals:

D(B)
n =


Qk.1

nQ

0 Qk.t

nQ

0 0 Qk.T
nQ

 =
1
n
D

(B)
i. D(B)

p =


k.1
nQ

0 k.j

nQ

0 0 k.q

nQ

 =
1
nQ

D
(B)
.j

Let the metric induced by the B matrix on the variables defined as the inverse of the

weights D(B)(−1)

n = nD
(B)−1

i. and the metric on the units defined as D(B)−1

p = nQD
(B)−1

.j .

Let D(B)−1

i. B the row profile of the B matrix with generic term { btj
Qk.t
}(j) and D

(B)−1

.j B

the column profile of the B matrix with generic term { btjk.j
}(t).

4.5 The inertia decomposition

The term inertia in correspondence analysis is used by analogy with the definition in

applied mathematics of moment of inertia, which stands for the integral of mass times the

squared distance to the centroid (e.g. Greenacre, 1984,p.35). A default analysis dealing

with the factorial decomposition of the inertia related to the juxtaposition of the K matrix

and the T matrix, when variables are categorical , is the Multiple Correspondence Analysis

(MCA) that has the purpose of studying the marginal links between pairs of categorical

variables in a given table and studying the structure induced by these variables on the

units (Estadella et al., 2005). Multiple Correspondence Analysis (MCA) was proposed

by Benzècri (1973) in his seminal work,Analyse des Données. MCA is an explorative

multivariate technique for the analysis of any kind of matrix with nonnegative entries, but

it principally involves table of frequency or counts with two or more dimensions in which

make sense the sum by rows or by columns. Because it is oriented toward categorical data,
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it can be used to analyze almost any type of tabular data after suitable data transformation

or recoding. Given that the variability of a data matrix can be decomposed in eigenvalues

and eigenvectors, and referring to the MCA for the study of the relationship between

variables and of the structure induced by variables on the population, the presence of a

conditioning variable will strongly influence the structure of the matrix decomposition.

MCA produces a decomposition of the overall variance in eigenvalues and eigenvectors

by a transition from an indicator matrix K to the Burt table. The latter consists of

q × q 4 partitions created by each variable being tabulated against itself, and against the

categories of all other variables.

Usually the MCA is carried out on the overall inertia that is the sum of all non-trivial

eigenvalues, as shown in equation 4.14:

Inertia(X;T ) = (
1
q

q∑
i=1

ji)− 1 =
J

Q
− 1 (4.14)

where q is the number of variables and ji is the number of categories of a generic variable

i ∈ Q.

When the generated factorial space shows dependence of X from T, then the information

matrix appears divided in two sub-tables each corresponding to a different treatment level;

further, the cloud of units will appear as divided in different sub-clouds, each correspond-

ing to a different treatment level. The results of applying classical method such as MCA

to the juxtaposition of two different sub-tables can be affected by some problems when

row margins are different or not proportional.

There are differences in margins when the sub-tables arises from different samples or differ-

ent time points, or different treatment levels. In those situations results can be particularly

affected by the differences between the inertias of the sub-tables: the higher the table’s

inertia, the grater is its influence on the overall analysis.

The conditional method we propose can be viewed as a particular case of partial factorial

analysis, when the variable that causes the structure in the data is qualitative (e.g. the

treatment). Generally, when two continuous variables X1 and X2 are dependent from

an exogenous variable T , the partial analysis aims to measure the correlation coefficient

r(X1, X2). In the partial analysis are considered two n-dimensional populations repre-

sented in a Rn space by the n-dimensional vectors X1 and X2. Then the correlation’s

coefficient is computed by eliminating the effect due to Z. 5 When the exogenous condi-

tioning variable is qualitative and covariates are categorical, is more complicated to study

the relations between variables without the effect of the conditioning variable(Lebart et

al., 1997).

The difficulty arises from the fact that researchers have to consider row and columns pro-

4where q represent the number of variables considered in the analysis
5Other studies in the continuous case are present in Rao,1964; Nonell, Thiç and Aluja, 2000
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file and they have to take into account a metric more complex than the Euclidean metric,

that is the well-known chi-square metric. To measure the influence of an exogenous con-

ditioning variable T on the overall variability of a data matrix X we refer to Huygens’

overall inertia decomposition as within-groups and between-groups(4.15):

Itotal =
∑
t

D(T )
p ‖gt − g‖2 +

∑
t

∑
i∈In(t)

mt
i‖xti − gt‖2

=
∑
t

∑
i∈In(t)

mt
i(x

t
i − g)′D(k)−1

p (xti − g)

=
∑
t

D(T )
p (gt − g)′D−1

p (gt − g) +
∑
t

mi

∑
i∈In(t)

mt
i(x

t
i − gt)′D−1

p (xti − gt)

= Ibetween + Iwithin

(4.15)

Where xti is the unit i belonging to group t and mt
i its mass; g is the global centroid and

gt are the T subcentroids. The D(k)−1

p is the diagonal metric of the Euclidean space as

defined by the inverse of the weight of each category k.j over the global mass of the K

matrix. 6.

The D
(T )
p term represents the weight of the categories, given by the amount of each

categories over the total of individual in the overall population. (D(T )
p = k.t

n ). Thus,in the

case of the structure induced by the selection into treatment mechanism the two centroids

are defined as in equation 4.16 and 4.17.

g = (
k.j
nQ

)j=1,...,JQ
(4.16)

and

gt = (
btj
Qk.t

)j=1,...,JQ
(4.17)

As a consequence, the inertia between groups is given by:

Ibetween =
T∑
t=1

D(T )
p (gt − g)′D(k)−1

p (gt − g) (4.18)

with the metric D(k)−1

p and weights D(T )
p , thus:

6we consider the terms mass and weight as interchangeable
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Ibetween =
∑
t

k.t
n

∑
j

nQ

k.j
(
btj
Qkt
− k.j
nQ

)2

=
1
Q

∑
t

∑
j

b2tj
k.tk.j

− 1

(4.19)

Therefore, the inertia within group is:

Iwithin = Itotal − Ibetween

=
J

Q
− 1− 1

Q

∑
t

∑
j

b2tj
k.tk.j

− 1

=
J −

∑
t

∑
j

b2tj
k.tk.j

Q
− 2

(4.20)

When we deal with the construction of new spaces representative of the original variability,

the analysis can be decomposed, as in the Huygens inertia decomposition, in two parts:

an between-groups analysis that analyzes the relative position of groups and an within-

groups analysis that detects and describes differences between units within each group by

not considering the effect due to the partition’s structure.

Usually, in the evaluation context, this structure is induced by the non-random selection

mechanism.

Aiming at measuring how much of imbalance exist in the data (the selection bias), we

propose a factorial transformation that works for both qualitative and quantitative pre-

treatment covariates, taking into account only the within-inertia in the decomposition of

the information matrix X in eigenvalues and eigenvectors.

4.6 The conditional analysis as an intra analysis: the CORCO

model

The multivariate measure of selection bias is obtained referring to an existing method

known as the Conditional Multiple Correspondence Analysis ( CORCO model), whose

aim is to obtain a factorial decomposition by taking into account the inertia-within of a

given data matrix (Escofier, 1988).

The original version of CORCO model (Escofier,1988) aimed at decondition the data ma-

trix variability from the influence of an exogenous qualitative variable.

The author refers to the questionnaire analysis framework, when the same survey has

been made at different points in time and when analysts are interested in time stable links



70 A multivariate data mining approach to deal with selection bias

between units and variables rather than in temporal evolution.

There are few applications of the CORCO model to problems arising from real data, (see

for example Mercedes, 2002). The CORCO model is new for the purpose of constructing

a conditional space with treatment indicator T as the conditioning variable. In this sense

it represents a new key tool to deal with selection bias in observational studies

We can consider the CORCO model according to different point of view: as an intra

analysis , as an extension of the conventional MCA when an external qualitative variable

generates a structure in the data pattern or as a partial dependence analysis.

The conventional MCA decomposition model is symmetric, because of the transition for-

mula. Symmetry implies that it is equivalent to read a matrix by rows or by columns.

In fact, it has been demonstrated (Escofier, 1988)that transition formula hold also in the

CORCO model. For the reasons explained above, we could perform two separated but

equivalent analysis: an intra analysis in the space of units (RP ) and an intra-analysis in

the space of variables (RN ).

4.6.1 The conditional analysis in the RP space: a geometric point of

view

When there is dependence between X and T, the unit X-space generated by X will appear

as divided in T subspaces, also if T has not been introduced in the analysis.

Geometrically, as shown in figure 4.1, if the data pattern differs too much with respect to

different levels of T, then we will see well separated pattern of points. The conditional

unit space (RPconditional) is obtained by centering the t sub-spaces of units with the same

category t of T on its own center: each subspace gets translated to the origin (fig. 4.2).

According to the Huygens inertia decomposition, the translation to the origin eliminates

 

 

G 

       t 

Figure 4.1: The unit space in the CORCO model
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the inertia between. The unit i with category t of T will have the coordinates on the j-axe

of the new conditional space as expressed in equation 4.21:

kij
Q
− btj
Qk.t

=
1
Q

(kij −
btj
k.t

) (4.21)

where kij

Q represents the row profile of the Kn×Q matrix and btj
Qk.t

represents the row profile

of the Bn×Q matrix. Particularly btj
Qk.t

represents the average profile of the sub-cloud In(t)

7in the space RP .

1
kt

∑
i∈In(t)

kij
Q

=
1

QK.t

∑
i∈In(t)

kij =
btj
Qk.t

(4.22)

4.6.2 The conditional analysis in the Rn space: a geometric point of view

According to the MCA, the column profiles of the J categories of the Q variables in the

K matrix, indicated as kij

k.j
, are located in the Rn space.

The Rn space could be decomposed in T orthogonal components whose number is the same

as the number of treatment indicator variables (t of T )8. We indicate the t-dimensional

subspace of Rn generated by the t indicator variables t as RT . RT explains the structure

induced by the selection mechanism.

To obtain a conditional variable space we will project the original space Rn on the space

orthogonal to RT .

Rn →⊥ RT (4.23)

It is a two-stage procedure that involves the following.

In the first stage, we project the column profile kij

k.j
of the K matrix onto RT , that is the

subspace generated by the modalities of T being the indicator vectors of the modalities

(kit) are orthogonal. After some algebra, the coordinate of the kij

k.j
profile on kit is expressed

as in equation 4.24:

∑
i(
kijkit

k.j
)∑

i(kit)2
=

btj
k.jk.t

(4.24)

7n(t) indicates the number of units of the population under consideration that belongs to group t
8We construct a conditional variable space (Rn

conditional) voided of any influence of the selection mecha-
nism referring to the space decomposition in orthogonal and supplementary subspaces and to the definition
of direct sum of vector spaces.
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Then the distance between j and j′ projections is given by:

D2(jproj , j′proj) =
∑
t

∑
i∈In(t)

[(
btj
k.jk.t

)− (
bj′t
k.j′k.t

)]2n

=
∑
t

(
bjt
k.j
−
bj′t
k.j′

)2
n

k.t
(4.25)

The distance in 4.25 is exactly the chi-square distance between j and j′ profiles in the

Bn×Q table; it represents the distance induced by the selection mechanism on the J cate-

gories.

In the second stage, the structure induced by the selection mechanism is eliminated

by making a projection on the space orthogonal to RT (⊥RT ).

The category j in the conditional space will have the coordinate expressed as in equation

4.26.

kij
k.j
− bjt
k.jk.t

=
1
k.j

(kij −
bjt
k.t

) , i ∈ In(t)
(4.26)

Geometrically, the Huygens inertia decomposition in the variable space corresponds to

the orthogonal projection of columns profile on two subspaces of Rn: the RT subspace

for what concerns the inertia between and the space orthogonal to RT , for what concerns

the inertia within. With the distance induced by the Kn×Q matrix as DIn(j, j′), with the

distance induced by the Bn×Q table as DT (j, j′), and with the distance considered in the

CORCO model as DIn|T (j, j′), the Huygens Inertia decomposition could be rearranged in

terms of distance as follows:

D2
In(j, j′) = D2

T (j, j′) +DIn|T (j, j′)

D2
TOTAL = D2

BETWEEN +D2
WITHIN (4.27)

It clearly emerges that we are able to measure how much of distance is due to the selection

mechanism and how much is not.

4.7 The conditional analysis: an algebric point of view

Given the matrix Kn×JQ
, Tn×t, and Bt×JQ

, the aim of the CORCO model is to analyze

only the variability within after the elimination of the variability between.

The variability between is that associated to the structure induced by the selection into
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treatment, we will indicate this structure as model.

The conventional Correspondence Analysis (CA), for example, analyzes the differences be-

tween a frequency table and a model defined as the product of the marginal distribution of

the frequency table; that is an independence model between the two variables considered.

The ACM analyzes the difference between each profile with respect to the theoric inde-

pendence model.9 Escofier(1987) has demonstrated that the analysis of the divergency

between a given frequency table and an independence model could be generalized to the

analysis of the differences between a generic data matrix and a generic model.

In doing the conditional analysis we consider as model table one that represents the struc-

ture induced by T that has the same margins as the disjunctive table Kn×Q.

The model table is indicated as M.

M =


· · · · · · · · ·
· · · btj

kt.
· · ·

· · · · · · · · ·


n×JQ

M has generic term btj
kt.

with { btjkt.
: i ∈ I, j ∈ JQ}.

The inertia associated to the M matrix is the inertia between. The numerator (btj)

represents the number of units with categories j in the treatment group t of T .

The denominator (kt.) represents the number of unit in the group t of T . In M all rows

related to units i in the same class t of T are identical.

These rows represent the profile of how the number of units in T are distributed along

each categories JQ of Q.

The M matrix is not a disjunctive table, but, for each row, the sum of values corresponding

to the categories of the same variable equals 1. The row margins of M are constant and

equals Q, as in the K matrix.

The column margins in M are the same as the column margin in K.

Specifically,

mi. =
Q∑
j=1

btj
kt.

= Q (4.28)

m.j =
n∑
i=1

btj
kt.

=
T∑
t=1

∑
i∈In(t)

btj
kt.

=
∑
t

btj =
∑
I∈In

kij = k.j (4.29)

The row profile of the M table is btj
Qkt.

and the column profile is btj
k.jkt.

. Given that both the

K and M matrix have the same margins, both the metrics and weights are the same as

those considered for K. To analyze only the variability within, that is the part independent

9In Rn → kij

nQ
− k.j

nQ
and in RP → kij

k.j
− 1

n
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from the selection to treatment, could be performed a conventional correspondence analysis

of the K* table derived as follows:

DATA-MODEL+MARGINS PRODUCT/POPULATION SIZE

The matrix to diagonalize, K∗ has generic term k∗ij .

k∗ij = kij − (
bjt

kt
) +

k.jQ

nQ

= kij − (
bjt

kt
) +

k.j
n

(4.30)

The K∗ matrix with I on rows and J on columns has the same margins as both the K and

M matrix.

K* =


· · · · · · · · ·
· · · kij∗ · · ·
· · · · · · · · ·


n×JQ

In particular:

K∗i. = Q

k∗.j = k.j

k∗.. = n×Q (4.31)

Then, we consider both the row-profiles (4.32) and the column-profiles (4.33)

D
(k)−1

i. K∗ =
kij
Q
− bjt
Qk.t

+
k.j
nQ

(4.32)

D
(k)−1

.j K∗ =
kij
k.j
− bjt
k.jk.t

+
k.jQ

nQ

1
k.j

=
kij
k.j
− bjt
k.jk.t

+
1
n

(4.33)

Thus, the object of analysis in the Rp space will be A (4.34), with generic term ajj′ (4.35)
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A = K∗
′
D(k)
n k∗nQD

(k)−1

.j

= K∗
′ 1
n
InK

∗nQD
(k)−1

.j

= QK∗
′
K∗D

(k)−1

.j

(4.34)

ajj′ = Q
∑
i

k∗ijk
∗
ij′

k.j
(4.35)

In particular,

• K∗ has generic term k∗ij which indicates the coordinate of units in the conditional

variable space

• D(k)
n is the diagonal matrix of weights with generic term dii = 1

nIn

• D(k)−1

p is the diagonal metric with generic term djj = nQ
k.j

Escofier (1988) has demonstrated that the transition formula hold: they link the RP

space to the dual Rn space.

It has also been demonstrated the equivalence between the analysis of the K∗ table and

the Burt table B∗ with generic term b∗jj′ .

b∗jj′ =
∑
i

k∗ijk
∗
ij′ (4.36)

By substituting the term k∗ij in 4.36 then:

b∗jj′ =
∑
i

kijkij′ −
∑
i

bjt
kt

bj′t
kt

+
∑
i

k.j

n

k.j′

n

= bjj′ −
∑
t

bjtbj
′t

kt
+

1
n
k.jk.j′

(4.37)

with bjj′ as the general term of un unconditional Burt table that crosses J and J ′.

4.8 STRATEGY 1: Inference in the conditional analysis

Our aim is going deeper within the relationships existing between variables. We analyze

the association among variables within the framework of multivariate descriptive analysis,
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by using the inertia as a measure of association between variables.

Based on the decomposition of total inertia into between-inertia and within-inertia, we

first compute a bias elimination coefficient (BEC), then we test the significance of the

partition induced by the non random selection process using the asymptotical distribution

of the between inertia (Estadella et al., 2005) based on a chi-square distribution.

4.8.1 The bias elimination coefficient(BEC)

Once obtained the new coordinates voided of any influence of the selection mechanism 10,

we are able to derive a bias elimination coefficient (BEC) that tell us whether the influence

of conditioning is important or not. In fact, the BEC will establish the dependence of a set

of qualitative variables on a model generated by a conditioning variable. How much of the

inertia between has been eliminated will be determined by one minus the ratio between

the inertia-within relative to the total inertia (4.38).

BEC = 1− Iwithin
Itotal

(4.38)

with the total inertia as the inertia of the unconditional X space (MCA), and the within

inertia as that of the conditional space obtained after inertia-between has been eliminated

(CORCO model).

4.8.2 The multivariate test of imbalance

From literature we know that when the conditioning variable defines a random partition,

the Ibetween approaches zero and the Iwithin ∼= Itotal (Estadella et al., 2005).

Then to determine how much important is the inertia between with respect to the hypo-

thetical case of a random partition (Ibetween = 0), we need to perform an hypothesis test.

We specify the null hypothesis as follows:

H0 : Iwithin = Itotal =⇒ no dependence between X and T

If we do not reject the null hypothesis then the observed covariates are not related to the

selection into treatment.

If we have considered the right covariates involved in the assignment mechanism then we

can consider the inertia between that has been eliminates as the correct global measure of

imbalance.

In order to assess if the detected imbalance is significant we use results obtained by Es-

tadella et al. (2005) in studying the distribution of inertia.

10the coordinates of the CORCO model
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Estadella et al. (2005) have derived the distribution of inertia between, with the aim of

assessing when the conditioning variable gives different results with respect to the uncon-

ditional analysis in order to determine whether conditioning is significant.

Specifically, Estadella et al. (2005) have derived the distribution of inertia between un-

der the null hypothesis of a random partition. As starting point, they use the Burt band

which may be considered as a contingency table with marginals: (k.j)j=1,...,J , (Qk.t)t=1,...,T

and grand totals nQ. The Burt Band has dimension J × T , generic term {bjt} and it

crosses the categories of the pre-treatment covariates considered with the modalities of

the conditioning variable T .

BBand =


b11 b12 · · · b1T

b21 b22 · · · b2T

bj1 bj2 · · · bjT

bJ1 bJ2 · · · bJT


J×T

The chi-square coefficient 11 (4.39) of the Burt Band is represented by equation 4.39:

χ2
Burtband

=
∑
t

∑
j

(bjt − k.jQkt.

nQ )2

k.jQkt.

nQ

= n
∑
t

∑
j

b2jt
k.jkt.

− nQ (4.39)

It clearly emerges from equation 4.39 that the chi-square coefficient is exactly nQ times

the value of the inertia between (4.19).

χ2
Burtband

= nQIbetween

χ2
Burtband

= nQ (
1
Q

∑
t

∑
j

b2jt
kt.k.j

− 1)︸ ︷︷ ︸
IBetween

= n
∑
t

∑
j

b2jt
kt.k.j

− nQ

(4.40)

As a consequence,

Ibetween =
1
nQ

χ2
Burtband

(4.41)

11see Josep Daunis i Estadella PhD thesis pp.146, 2004
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Therefore, since the χ2
burtband

coefficient, under the assumption of independence, has

asymptotically a χ2 distribution function with (T − 1)(J − 1) degrees of freedom 12, then

the inter-groups inertia (Ibetween) , under the same assumption has a scaled χ2 distribution

function.

Ibetween ∼
χ2

nQ
(4.42)

Thus, under the null hypothesis of a random partition they assume that:

Ibetween ∼
χ2

(T−1)(J−1)

nQ
(4.43)

With moments:

E(Ibetween) =
(T − 1)(J − 1)

nQ

V ar(Ibetween) =
2(T − 1)(J − 1)

(nQ)2

(4.44)

Estadella et al.(2005) have established the confidence intervals for inertia between actually

obtained with conditional MCA. Particularly at the α value, the confidence interval for

the inertia between will be determined as in equation 4.45.

Ibetween ∈ (0,
χ2

(T−1)(J−1),α

nQ
) (4.45)

If the Ibetween calculated on the specific data set under analysis is out of the confidence

interval, then the null hypothesis is rejected.

To reject the null hypothesis makes us sure that, given all covariates involved in the

selection mechanism, it doesn’t exist dependence between the information matrix X and

T, or if it exist, it is not statistically significant.

4.8.3 How to measure imbalance: a toy example

We consider a simple case in which there are 18 units, and a treatment binary variable T .

The information matrix X is composed of three categorical pre-treatment covariates: X1

with two categories, X2 with three categories and X3 with four categories. First, we
12with T as the number of level of the treatment indicator and J as the number of levels of the Q

variables considered
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implement a conventional MCA, carried out on the overall inertia. According to 4.14,

Itotal = 2 with Q=3 and J=9. The MCA was carried out on the Burt table (tab. 4.2).

X1=1 X1=2 X2=1 X2=2 X2=3 X3=1 X3=2 X3=3 X3=4

X1=1 8
X1=2 0 10
X2=1 3 4 7
X2=2 1 4 0 5
X2=3 4 2 0 0 6
X3=1 3 2 4 0 1 5
X3=2 0 3 0 1 2 0 3
X3=3 1 2 1 2 0 0 0 3
X3=4 4 3 2 2 3 0 0 0 7

Table 4.2: The Burt Table

Id t Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 
1 1 1.08 0.58 0.25 -0.24 -0.32 -0.29 
2 1 -0.66 -0.95 1.05 -0.29 0.28 -0.04 
3 1 -1.22 0.79 -0.57 -0.49 0.05 0.32 
4 1 0.09 0.24 0.02 0.98 0.54 -0.06 
5 1 -0.72 0.00 -0.48 0.81 -0.46 0.21 
6 1 0.51 -0.98 -0.60 -0.01 0.15 0.11 
7 0 0.51 -0.98 -0.60 -0.01 0.15 0.11 
8 0 0.18 0.79 -0.58 -0.82 0.80 -0.55 
9 0 0.09 0.24 0.02 0.98 0.54 -0.06 
10 0 -1.22 0.79 -0.57 -0.49 0.05 0.32 
11 0 -1.29 -0.21 0.67 0.04 -0.59 -0.54 
12 0 0.51 -0.98 -0.60 -0.01 0.15 0.11 
13 0 1.08 0.58 0.25 -0.24 -0.32 -0.29 
14 0 0.90 -0.39 0.14 -0.73 -0.45 0.48 
15 0 -0.66 -0.95 1.05 -0.29 0.28 -0.04 
16 0 0.48 0.83 0.76 0.26 -0.07 0.31 
17 0 0.48 0.83 0.76 0.26 -0.07 0.31 
18 0 -0.12 -0.24 -0.98 0.31 -0.72 -0.40 
 

Figure 4.2: Units coordinates in the conventional MCA space

The coordinates of the new space generated by MCA (fig. 4.2)cannot be used for evalua-

tion purposes given that this space has been generated by some individual characteristics

associated with the assignment mechanism. In fact, by computing the means of each factor

(tab. 4.3), they differ between treated and untreated.

Whereas, by implementing a conditional MCA we obtain the coordinates in fig. 4.3,

voided of any dependence from T.
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mean(t=1) mean (t=0)
factor 1 -0.15 0.08
factor 2 -0.05 0.03
factor 3 0.06 0.03
factor 4 0.13 -0.06
factor 5 0.04 -0.02
factor 6 0.04 -0.02

Table 4.3: means of factors in MCA

id t factor 1 factor 2 fcator 3 factor 4 factor 5 factor 6 
1 1 0.32 -1.29 0.44 0.22 -0.28 -0.33 
2 1 0.13 0.32 -1.33 0.51 0.42 -0.06 
3 1 -1.21 0.33 0.17 -0.14 -0.32 0.23 
4 1 0.17 -0.24 0.21 -0.70 0.60 -0.09 
5 1 -0.18 0.56 0.10 -0.68 -0.50 0.19 
6 1 0.76 0.32 0.42 0.79 0.08 0.06 
7 0 0.71 0.56 0.37 0.64 0.13 0.13 
8 0 -0.59 -0.31 0.75 0.36 0.47 -0.60 
9 0 0.12 0.00 0.16 -0.85 0.66 -0.03 
10 0 -1.26 0.57 0.12 -0.29 -0.26 0.29 
11 0 -0.55 0.72 -1.18 -0.44 -0.46 -0.49 
12 0 0.71 0.56 0.37 0.64 0.13 0.13 
13 0 0.27 -1.05 0.39 0.07 -0.23 -0.27 
14 0 0.54 -0.41 0.08 0.88 -0.39 0.50 
15 0 0.08 0.56 -1.38 0.36 0.48 0.00 
16 0 -0.05 -0.96 -0.13 -0.60 0.14 0.35 
17 0 -0.05 -0.96 -0.13 -0.60 0.14 0.35 
18 0 0.09 0.72 0.57 -0.16 -0.80 -0.36 

 
Figure 4.3: Units coordinates in the conditional space

Table 4.4 shows that the means of each factor, do not differ between treated and

untreated.

Once obtained the conditional space, we are able to assess how much of the inertia

between has been eliminated. By considering the BurtBand (tab. 4.5) and according to

4.19

then,

Ibetween = 0.0242 (4.46)

and

BEC = 1− Iwithin
Itotal

=
1.9758

2
= 0.0121 (4.47)
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mean(t=1) mean (t=0)
factor 1 0 0
factor 2 0 0
factor 3 0 0
factor 4 0 0
factor 5 0 0
factor 6 0 0

Table 4.4: means of factors in conditional MCA

X1=1 X1=2 X2=1 X2=2 X2=3 X3=1 X3=2 X3=3 X3=4

t = 1 2 4 2 2 2 1 1 1 3
t = 0 6 6 5 3 4 4 2 2 4

Table 4.5: The Burt Band

Under the random partition hypothesis, with α = 0.05 the confidence interval for the

inertia between is:

Ibetween ∈ (0,
χ2

(2−1)(9−1),α

18 ∗ 3
) = (0; 0.28) (4.48)

The resulting inertia of the conditioning by T (0.0242), remains inside the confidence

interval, showing the independence of the variables X from the variable T.

4.9 Some properties of the conditional space

As Escofier (1988) has shown, and as mentioned before, the CORCO model has the same

properties as the MCA:

• Constructing and projecting two spaces (Rn and Rp) on their main principal axes.

• Duality and transition formula from units space to variable space and vice versa (the

conventional barycentric formula hold)

• Equivalence with the analysis of a table like a Burt table where the contingency

tables are conditioned to T.

Further, Escofier (1988) has shown important guidelines for what concerns the interpre-

tation of the distance in both units space and variable space.

A numeric example due to Escofier (1988) highlights how part of distance induced by the

exogenous variable T could be eliminated by the construction of a conditional factorial

space. The example concerns the questionnaire analysis, the field in which the CORCO

model has been introduced and developed.

Suppose that a question has 4 items and that the interviewed population is equally par-

titioned over the 4 items.
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According to MCA two units, i and i’, that have chosen the first item will have as coordi-

nates those represented in table 4.6.

X
X1 X2 X3 X4

Unit i and i’ 1 0 0 0
Total population 0.25 0.25 0.25 0.25
Units i and i’ centered 0.75 -0.25 -0.25 0.25

Table 4.6: Both units have chosen the first item

If the population of i has chosen the first item, then according to the CORCO model,

the i-coordinates will equal zero, due to the translation to the origin (tab. 4.7).

X
X1 X2 X3 X4

Population of i 1 0 0 0
Unit i 0 0 0 0

Table 4.7: i has chosen the same item as the population

If the population of i’ is partitioned with certain percentages, i.e. - 0.1, 0, 0.4, 0.5 -

then the i’-coordinates are those represented in table 4.8 .

X
X1 X2 X3 X4

Population of i’ 0.1 0 0.4 0.5
Unit i’ 0.9 0 -0.4 -0.5

Table 4.8: the i’ coordinates

The higher is the difference between the unit i and the population to which it belongs

to, the higher will be its distance from the origin. In the conditional space the units that

have a different answer’s profile with respect to the group to which they belong to will be

located in the extremity of the axe in the light of the chi-square metric.

Two units member of the same sub-population (i.e. both members of the treatment group)

will be close each other if the difference between their coordinates and the means of the

reference group is the same; they will be distant if their answer’s profile is different and

rare.

Two units close each other in the MCA could be very distant in the CORCO model.

In fact, if two units have chosen the same item j, they could not be close if this item is

the reference situation of an unit but not for both. For the reasons explained above the

relative distance between units are different from the distance obtained by MCA.
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4.10 STRATEGY 2: estimating local average causal effects

The quantity of interest is represented by the average treatment effect on local spaces.

From the property of the distance in the conditional space, it clearly emerges that, in

order to estimate the local causal effect of interest, comparable units cannot be found on

the conditional space.

This is due to the fact that distance between units in the conditional space does not take

into account the part of distance due to T.

Thus, we propose the use of Cluster Analysis (CA) on the coordinates obtained with a

Multiple Correspondence Analysis (MCA) as a tool to find local groups of comparable

units on which estimate local average causal effects.

CA is not new in the literature on evaluation. Henry and McMillan(1993), for example,

compare three different matching techniques: index groupings, cluster groupings, bench-

mark groupings.Specifically, Cluster group matching uses cluster analysis to embed the

treatment group in a cluster of similar controls. Their simulations suggest that cluster

and benchmark methods work better than index matching(Nenry and McMillan,1993).

Another example of CA application is in Peck(2005). She proposes using cluster analysis

to identify subgroups within experimental data, with the aim of understanding variation

in program impacts that accrues across heterogeneous populations.

CA is an atheoretical, mathematically based technique that seeks to maximize heterogene-

ity between clusters while minimizing heterogeneity within clusters(Peck, 2005).

The result is groupings of like observations in terms of covariates, that are different from

other groupings.

In particular, we use the hierarchical approach, in which the process of clustering proceeds

sequentially such that at each step only one unit or group of units changes group member-

ship and the group at each step are nested with respect to previous groups. Once, an unit

has been assigned to a group it is never removed from that group. (Jobson, 1992). The

clustering process will produce any number of clusters, ranging, in theory, from one cluster

per observation (where each observation is its own cluster) to one cluster containing all n

units, where all observations are in the same group.

We use an agglomerative hierarchical process meaning that as the process moves from n

clusters to one cluster, the sizes of the clusters increase and the number of cluster decrease.

Usually,the process begins with the Euclidean or standardized Euclidean distance matrix.

At each step in the process the proximity measures are updated according to an optimality

criterion value. The optimality criterion value is the closest proximity value among groups

at that stage of process (Jobson, 1992). The proximity value is determined by the specific

method used. Assuming that Euclidean distance is used as dissimilarity measure, then

the single linkage approach uses the smallest possible Euclidean distance measure between

objects in the two groups; the complete linkage uses the largest possible distance between

objects in the two groups, and the average linkage approach uses the average distance.
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Whereas, Ward’s method uses an analysis of variance approach to evaluate the distances

between clusters. In short, it attempts to minimize the sum of squares (SS) of any two

hypothetical clusters that can be formed at each step. The hierarchical clustering process

does not provide a single cluster solution: each step of the process represents a cluster

solution. To determine the appropriate number of clusters we need to select one of the

steps of the hierarchical process using a second optimality criterion.

Usually, the hierarchical process can be represented using a tree diagram (dendrogram),

and the choice of how many cluster retain, depends on analysis purposes.

Empirically, the appropriate number of clusters can be identified by examining the cut

points in groups depicted on a dendrogram.

Generally, the goal is to optimize the relative amounts of within- and between- clusters

heterogeneity; but, for this particular problem - finding groups of comparable units- the

goal is to generate a cluster solution that results in a number of subgroups that meets the

criterion of achieving balance between treated and untreated as best as possible.

Thus, we propose the use of the multivariate test of imbalance as a stopping rule.

The basic idea is that, given a partition represented in a dendrogram, the lower is the

cut level (maximum number of groups), the higher is the possibility of achieving balance

within groups, and the achievement of balance is checked by performing the multivariate

test of imbalance.

Then, if the test tell us that no dependence between X and T exists within the specific

group, a local average treatment effect is estimated in an unbiased way.

Given a n-clusters solution set, if in some groups balance is not achieved, we can decide

to perform a finer partition (more clusters) or stop the analysis by discarding units that

belong to non balanced groups.



Chapter 5

Testing the new multivariate

method via simulated data

5.1 Introduction

A simulation study is performed in order to evaluate the performance of the method in

identifying selection bias according to the dependence structure of the data.

In particular, we first test the ability of the method to check selection bias when a data

set is available before any analysis; second, we test how the method is able to check if

balancing is achieved after a propensity score analysis is performed; finally, we propose a

cluster analysis as a strategy to find groups of comparable units before the causal effect

estimation, and we use the multivariate test of imbalance as a stopping rule in choosing

the correct number of clusters.

The presence of selection bias is evaluated by establishing a confidence interval for inertia

between under the null hypothesis of a random partition and by making tests for the

values of inertia actually obtained.

5.2 Simulation:the assignment to treatment is not random

but the selection process is perfectly known

5.2.1 Data and assumptions

The analysis could be considered as a toy example rather than a simulation in the strict

sense.

We designed four qualitative 1 pre-treatment covariates: X1 with two levels, X2 with two

levels, X3 with three levels, and X4 with two levels. We considered all 24 combinations of

those covariates.

We assume that the variables in the data are measured without error. We adopt this

general setup for expository reasons. Then, we consider a binary treatment variable T,

1continuous covariates could be discretized
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that equals 1 for treated and equals 0 for untreated.

For each combination of covariates, units were assigned with different proportions (π) to

different levels of treatment, in order to create dependence between X and T. (Appendix

B, tab. B.1). For each unit i we have constructed the potential outcome as in equations

5.1 and 5.2

Y (1) = 2.2X1 + 0.2X2 + 1.8X3 + 2.8X4 (5.1)

Y (0) = Y (1)− Y (1) (5.2)

We have chosen to construct the potential outcomes without error only for expository

reasons, with the aim of exactly check if the method detects imbalance and ,as a conse-

quence, the true average treatment effect. In the simulated data Y (1) = 10.8321 and, by

design, it represents the true average treatment effect. We assume no omitted variable

bias, such that conditional on X, the treatment variable indicator T is independent of the

potential outcomes (5.3):

P (T | X,Y (0), Y (1)) = P (T | X) (5.3)

The observed outcome is expressed as in equation 5.4 :

Yi,obs = TiYi(1) + (1− Ti)Yi(0) (5.4)

The naive estimator of the average causal effect is then defined as in eq 5.5:

δ̂naive ≡ EN [Yi,obs | Ti = 1]− EN [Yi,obs | Ti = 0] (5.5)

which is simply the difference in the means of the observed outcome variable Yi,obs for

the observed treatment and control units in the full data set considered (N=764). With

EN [Yi,obs | Ti = 1] as the mean of the outcome for those observed in the treatment group;

and with EN [Yi,obs | Ti = 0] as the mean of the outcome for those observed in the control

group. We are interested on the causal effect of a treatment indicator variable Ti on an

observed outcome Yi,obs.

But, the naive estimator is an inconsistent estimator of the average treatment effect

(δ̂naive = 8.4051). It corresponds to the coefficient γ of Ti in a bivariate regression model:
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Yi,obs = α+ γTi + εi (5.6)

that will yield an estimated coefficient γ̂ that represents a biased and inconsistent estimate

of the causal effect of interest. This is due to the fact that, when the assignment to treat-

ment is not random, the causal variable Ti, usually, is associated with variables involved

in the selection process and embedded in the error term εi. In literature,the standard

regression solution is to estimate an expanded regression equation, by considering the set

of background covariates X ,assumed to predict both Ti and Yi,obs ,

Yi,obs = α+ γTi + β′Xi + εi (5.7)

The γ coefficient of the expanded regression represents the unbiased causal effect.

Regression type causal effect
bivariate γ=8.4051 biased
expanded γ=10.8321 unbiased

Table 5.1:

5.2.2 The assessment of selection bias

To assess the level of selection bias that arises from the non random selection mechanism

we have first performed a conventional MCA, then a conditional MCA (CORCO).

Conventional MCA was carried out on the overall inertia of the information matrix X.

According to 4.14, Itotal=1.25 with Q=4 and J=9. 2

The resulting coordinates of the MCA space show that the space has been generated by

some individual characteristics that are associated with the assignment mechanism. In

fact, by computing the means of scores for each factor, we can note that some of them

differ between treated and untreated (table 5.2).

factor mean(t=1) mean(t=0) t pr > |t|
factor1 0.5311 -0.271 25.71 < .0001
factor2 0.0572 -0.029 2.13 0.0333
factor3 0.0655 -0.033 2.54 0.0111
factor4 -0.183 0.0934 -8.05 < .0001
factor5 0.233 -0.119 11.74 < .0001

Table 5.2: Means of scores for each factor (MCA)

2where Q represents the number of covariates included in the analysis and J represents the number of
categories of the Q covariates considered
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Then, we performed the conditional MCA (CORCO), with T as the conditional vari-

able and X as the covariates introduced in the analysis.

The resulting coordinates of the conditional space show no dependence from T. In fact,

the means of each factor equals 0 for both treated and untreated (table 5.3). The level

factor mean(t=1) mean(t=0) t pr > |t|
factor1 0 0 0 1.000
factor2 0 0 0 1.000
factor3 0 0 0 1.000
factor4 0 0 0 1.000
factor5 0 0 0 1.000

Table 5.3: Means of scores for each factor (CORCO)

of selection bias is represented by the amount of the inertia between that has been elimi-

nated in obtaining the conditional space. By considering both the Burt Table (table B.2,

appendix B) and the Burt Band (table B.3, appendix B) of the conditional space and

according to 4.19 it results Ibetween = 0.1924. The amount of inertia between that has

been eliminated with respect to the total inertia is determined by computing the BEC

according to 4.38 giving as result 15% of total inertia.

Under the random hypothesis, level α = 0.05 , χ2
8;0.05 = 15.51, n = 764, the confidence in-

terval for the Ibetween is (0;0.0052). The resulting inertia of the conditioning by T remains

outside the interval, showing the dependence of the X-variables from the variable T. It

means that the amount of conditioning by T is significant and that data are not balanced

between treated and controls.

5.2.3 The propensity score model

After checked the existence of selection bias, we have specified a logit model to estimate

the propensity score as in equation 5.8:

Pr(Ti = 1 | Xi) =
exp(α+ βXi)

1 + exp(α+ βXi)
(5.8)

We performed a propensity score with the aim of showing how the multivariate test is able

to check if the PS balances the data.

We specified the PS by considering all covariates involved in the selection process, without

interaction terms or higher order terms. Once propensity scores were obtained, we per-

formed a subclassification on the propensity score for finding balanced groups on which

estimate the average causal effect.

We divided the estimated range of propensity score in 5 bins. Then we have tested if PS

balances the data by performing the proposed multivariate test of imbalance, and we mea-
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sured the causal effect in each bin. Results (Appendix B, table B.5) show that PS balances

data, and in each obtained bin the true benchmark average causal effect (ATE=10.8321)

is reproduced.

5.2.4 Find groups of comparable units before causal effect estimation

We propose the use of the cluster analysis on MCA coordinates, in finding groups of com-

parable units.

The idea is that, given a partition represented in a dendrogram (Appendix B. fig B.1), we

should cut the dendrogram at the lowest level.

The data set used in this analysis is composed of 24 combinations of the X-variables (cells).

By choosing a 24-clusters partition we will reproduce exactly the 24-combinations of the

data design, in which all units are similar in terms of pre-treatment covariates and, as

a consequence, does not exist dependence between X and T. In this circumstances, the

causal effect estimation is allowed and the results are unbiased.

But, a good level of balance could be achieved also in the half of the dendrogram. We use

the multivariate test of imbalance as criterion to choose how many groups are necessary

to achieve balance and yield an unbiased treatment effect by group .

We performed the cluster-analysis procedures on the coordinates obtained with MCA (Ap-

pendix B, fig B.1).

The application of this analysis was carried out in Sas system that uses a hierarchical clus-

tering method. The cluster procedure classifies units defined by the factorial coordinates

obtained with the previous multiple correspondence analysis (MCA).It was first used the

Ward Algorithm (B.7) and the Euclidean distance as its dissimilarity measure.

We most closely examine the two-,four-,six-,eight-,ten-,and twelve-cluster solutions to iden-

tify which one appears to meet the criteria of:

• achieving balance

• approximating as best as possible the benchmark true average treatment effect

(ATE=10.8321)

Results (Tab B.7, Appendix B) show that going deeper in the cut of the dendrogram,

i.e. moving from a 2-clusters partition to a 12-clusters partition, we really move from the

situation of imbalance to that of balance.

Further, when balance is achieved , an unbiased estimation of the average causal effect of

interest is obtained.

As in the subclassification based on the estimated propensity score, an important disad-

vantage of this procedure is that it discards observations in blocks where either treated or

control units are absent (no common support).

Then, we rerun the analysis using the single linkage method ( tab. B.8, Appendix B),

the complete linkage method (tab. B.9, Appendix B) and the average linkage (tab. B.10,

Appendix B).
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5.3 Discussion

Using as criteria the achieved balance, the approximation of the true average causal effect

and the number of discarded units, we prefer results obtained with the Ward’s method.

Using the Ward’s method, by moving from the 10-clusters solution to the 12-clusters

solution, the number of discarded units remains invariated, meaning that the method is

able to group similar units until very soon in the aggregation process.

Despite the single, complete and average linkage in the 12-clusters solution discarded less

units than Ward’s method, we think they are not preferable. In fact, moving from a 10-

clusters solution to a 12-clusters solution, results in terms of discarded units and achieved

balance are very different.

It seems (tab. B.12)that simple, complete and average linkage methods achieve balance

until very late during the clustering process.

This could happen because those methods are sensitive to the nature of data.

It is well known from literature (Jobson, 1992, pp. 524-525), for example, that with the

single linkage method outliers tends to remain as isolated points until very late in the

hierarchical process.

The single linkage method is said to be space conservative (Jobson, 1992), meaning that it

tends to produce long clusters in unevenly sized groups. This is in contrast, for example,

with the complete linkage method which is called space diluting, meaning that it tends to

result in compact clusters.

Both the single and complete linkage methods are sensitive to extreme observations. For

example, with the single linkage an outlier between two clusters can result in the joining

of the two groups. Whereas, with complete linkage, small changes in the location of some

observations could have a big impact on the hierarchical cluster solution set.

For the reasons explained above, we consider the average linkage and Ward’s method as

more preferable to the single linkage and complete linkage methods. We conclude that

depending on what one expects or believes about the nature of units being studied, a

particular method might be more or less preferable than others. We suggest to perform

different methods and then choose the one that meets the criteria of achieving balance

until very soon in the clustering process, as the Ward’s method in the simulated data.



Chapter 6

Applying the multivariate test of

imbalance to real data

6.1 Introduction

This chapter is dedicated to the application of the proposed strategy to a real data set. In

particular, for our intent, we replicated the analysis concerning data on subsidized and not

subsidized handicraft firms of PSA programs in Tuscany region, discussed in the IRPET ’s

report (2007), with the aim of analyzing the impact of PSA programs on the performance

of subsidized handicraft firms.

6.2 The Law 36/95

The legislation governing incentives for new businesses or those already in existence is

growing.

More specifically, through Regional Law n◦ 36 of 1995, the Tuscany region has the aim of

supporting small and medium handicraft enterprises. In implementation of the Regional

Law n◦ 36 of 4 April 1995 Financial intervention in favor of craftmanship and discipline

of guarantee associations for craft, art.3, para. II, the Tuscany region with the help of

Artigiancredito and Fidi Toscana 1 delivers incentives to handicraft firms. The subsidies

are allocated to handicraft firms on the basis of specific programs. Here we analyze the

effects of two programs: the PSA 2001/2002 and the PSA 2003/2005. The main differences

between the two programs concern years when incentives are delivered, the number of

financed projects and the amount of the subsides allocated. Different is also the selection

or auto-selection process.

Our intent here is to replicate the evaluation of the efficacy of both PSA 2001/2002 and

PSA 2003/2005 programs, already performed by the joined work of Unioncamere Toscana,

IRPET and the Statistical Department of Florence University. We are not interested in
1Fidi Toscana was set up on the initiative of the Tuscan Regional Authority and the major banks

operating in the Region with the objective of facilitating access to credit for small and medium businesses
featuring valid prospects of growth but without adequate guarantees
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the design study, but only in the final dataset obtained with their work.

The causal question we would like to answer is if PSA programs work: particularly if the

improvement in the performance of the subsidized handicraft firms could be attributed

to the subsidies allocated rather than to the structural characteristics of firms or to the

context in which they operate. In the rest of this paragraph we will describe the available

information needed to analyze the problem: the treatment, the outcome and the covariates

involved in the selection process.

6.3 Description of the data set

The final dataset arises from a complex work of data integration of different sources

concerning administrative data and a field survey 2. The final dataset consists of 266

subsidized handicraft firms and 721 not subsidized handicraft firms. Particularly, 147

are projects financed by the PSA 2001/2002 program and 119 projects financed by PSA

2003/2005 program. We perform two separated analysis: one analyzes the effect of PSA

N %
Subsidized firms: PSA 2001/2002 147 14
Subsidized firms: PSA 2003/2005 119 12
Not subsidized firms 721 74
Total 987 100

Table 6.1: The available sample

2001/2002 program on subsidized firms ; another analyzes the effect of PSA 2003/2005

program on subsidized firms. Then, we compare and discuss the results obtained in both

analysis.

In the original study were considered 6 different potential control groups for the analy-

sis3.Here, we consider only the control group composed of all non subsidized handicraft

firms.

We have considered the subsidized firms that have obtained at least one subside allocated

by PSA 2001/2002 and/or by PSA 2003/2005 and that have realized the investment before

31 December 2005.

The covariates

As covariates involved in the selection process, causally prior to the treatment assignment

T and that affect the outcome Y conditional on T, we have considered the following:

• number of employees in 2002

2The data integration process is described in the report Analisi e Valautazione delle politiche di sostegno
alle imprese artigiane della Toscana (2007)

3The use of different control groups is discussed in the report Analisi e Valutazione delle politiche di
sostegno alle imprese artigiane della Toscana (2007)
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• legal form

• county code (geographical location)

• being or not in area objective 2

• sector

• start up date

• being or not female firm

• being or not young firm

• operate or not in local market

• operate or not in private market

• realize or not internal production

• turnover

Table C.1 shows that beneficiaries of both PSA programs are especially partnership com-

panies. In particular, beneficiaries of PSA 2001/2002 program are mainly partnerships

followed by individual and family firms; whereas, beneficiaries of PSA 2003/2005 are

mainly partnerships followed by limited liability companies.

The distributions of the structural characteristics of handicraft firms show that par-

ticipants of PSA 2003/2005 program have dimensions higher than participants of PSA

2001/2002 in terms of employees and turnover. The difference in the average number of

employees (figure C.1) suggests that high dimensional firms are more likely to participate

in PSA 2003/2005 program than PSA 2001/2002 program.

Similarly, the analysis suggests that high dimensional firms in terms of turnover (figure

C.2) are more likely to participate in PSA 2003/2005 program than PSA 2001/2002. Fig-

ure C.4 shows that the 73% of beneficiaries of PSA 2001/2002 program sells their product

in local markets. Similarly, the local market represents the main market for beneficiaries

of PSA 2003/2005 program (57%); but, they appear more likely to sell their products also

outside the local market (43%) than beneficiaries of PSA 2001/2002(27%).

The internal production is the main characteristic of all group considered; but, figure C.3

suggests that it is more typical of beneficiaries of PSA 2001/2002 program than other

groups.

The presence of young or female firms is limited. Young firms represent the 15%

in all group considered. Female firms represent the 14% of both not beneficiaries and

beneficiaries of PSA 2001/2002 program. Their presence is a bit higher in the group of

beneficiaries of PSA 2003/2005 program.
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The outcome variable

In this section we analyze the performance of beneficiaries firms. More precisely, we

analyze the impact of both PSA 2001/2002 program and PSA 2003/2005 program on the

variation of the number of employees between 2005 and 2002 4. We will analyze if the

number of employees in 2005 differs with respect to the number of employees in 2002 and

if the detected difference, is attributable to the specific program or not.

At a descriptive level, figure 6.1 shows that beneficiaries have increased the number of

employees (respectively, 27 % and 37%)more than not beneficiaries(17 %).

It clearly emerges that especially beneficiaries of PSA 2003/2005 program(37 %) engage

new employees.

60%
54%

72%

27%
37%

17%13% 9% 11%

PSA 2001/2002 PSA 2003/2005 Controls

invariated increased decreased

Figure 6.1: Difference of number of employees from 2002 to 2005

6.4 The impact analysis: PSA 2001/2002

In analyzing the impact of PSA 2001/2002 program on the variation of the number of em-

ployees we have first assumed to have sufficient information in the available pre-treatment

covariates; then, we have assumed there was no confounding and that all variables were

causally prior to the treatment assignment and that affect the outcome conditional on

treatment. Finally, we have assumed that bias arises only due to difference in observed

covariates.

In estimating the causal effect of PSA 2001/2002 program on beneficiaries we need to know

what would have happened for the beneficiaries in the absence of the specific program.

Given the evaluation problem - that is- only one of the two potential outcomes can be

observed (i.e., the one corresponding to the treatment the unit received), and the conse-

quent infeasibility of estimating the causal effect defined as the comparison Y (1)− Y (0),

we use not beneficiaries to approximate the counterfactual situation of beneficiaries in the

absence of subsidies.
4In the original study the impact of both programs was evaluated on two different outcome variable:

the turnover and the number of employees
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Thus, the aim is to find groups of beneficiaries and not beneficiaries as similar as possible,

on which estimate the causal effect of interest.

We will first check if the original data are balanced, meaning that the empirical distribu-

tions of the covariates in the groups are more similar. In doing this, we use the measure

and the test of imbalance introduced in chapter 4.

Then, if imbalance is detected, we will try to balance data first by controlling for X with a

model (i.e. , Propensity score); second, controlling for X by performing a cluster procedure

to find local groups of balanced and comparable units.

Finally, we discuss which method appears to better improve balance in order to correctly

estimate the causal effect of interest.

The assessment of selection bias

Before starting any analysis we assess the level of selection bias that arises from the non

random selection mechanism.

In doing this, we have performed the multivariate test of imbalance 5. In order to obtain

a measure of selection bias, a conditional MCA was performed with participation into

program indicator variable as the conditional variable and all available pre-treatment

covariates introduced in the analysis (12 covariates).

NT=1 NT=0 N actual between confidence interval α BEC
147 721 868 0.0082 (0;0.0069) 0.05 1%

Table 6.2: The confidence interval for inertia between (PSA 2001/2002)

Results (table 6.2) show that the resulting inertia of the conditioning by T (participa-

tion indicator variable in PSA 2001/2002 program) remains outside the interval, showing

the dependence of the X-variables from T. The significance of the conditioning means that

data are not balanced between treated and controls.

The actual between represents the measure of absolute and global imbalance in the distri-

butions of treated and control units in the original data with nT=1 = 147 and nT=0 = 721.

Conversely, the variable-by-variable chi-square test does not represent an objective instru-

ment to conclude if data are really imbalanced or not. In fact, results (table 6.3)show

that three of twelve variables considered are imbalanced; but there is no objective way to

know if the detected imbalance in that variables is dangerous or not, in order to correctly

estimate an unbiased treatment effect.

Controlling for X with a model

After checked the presence of selection bias, we control for X with a model: the Propensity

Score.
5All continuous pre-treatment covariates (number of employees in 2002, start up date, turnover) were

previously discretized
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Covariates chi-square p-value Balance
employees in 2002 1.4552 0.8345 yes
start up date 5.4839 0.2412 yes
turnover 30.8210 0.0003 no
legal form 4.3689 0.3584 yes
county code 9.1862 0.4203 yes
realize or not internal production 13.3037 0.0003 no
operate or not in private market 6.0460 0.0139 no
operate or not in local market 0.4452 0.5046 yes
being or not young firm 0.0022 0.9626 yes
being or not female firm 0.0016 0.9678 yes
being or not in area ob2 2.3874 0.3031 yes
sector 5.0332 0.5396 yes

Table 6.3: The variable-by-variable chi-square test

To estimate the propensity score we have specified a logit model as in equation 5.8.

We have specified the model by considering all available covariates involved in the selection

process, without introducing interaction terms or higher order terms.

Once obtained the estimated propensity scores, we have performed a subclassification on

the propensity score for finding balanced groups on which estimate the average causal

effect.

We divided the estimated range of propensity score in 5 bins 6. Then, we tested if PS

balances the data by performing the proposed multivariate test of imbalance, and we

measured the average causal effect (ATE) in each balanced bin.

BIN n nT=1 nT=0 Ib Interval for Ib balance ATE err std
1 173 59 114 0.0183 (0;0.031) yes 0.046 0.2544
2 174 31 143 0.0154 (0;0.032) yes 0.608 0.3232
3 174 24 150 0.0136 (0;0.032) yes -0.039 0.5609
4 174 25 149 0.0183 (0;0.032) yes 0.3434 1.1329
5 173 8 165 0.0227 (0;0.031) yes -1.726 0.8334

Table 6.4: Results of stratification on estimated propensity score

Table 6.4 shows that only in the bin number 5 the effect is statistically significant.

The effect has minus sign showing a negative impact of the PSA 2001/2002 program on

the variation of the number of employees.

Then, to obtain an overall estimate of the average causal effect, we have computed the

Average Treatment Effect on the Treated (ATT) according to the following formula7:

6Based on Cochran’s results (1968) we may expect a 90% bias reduction for each of the twelve variables
when we subclassify at the quintile of the distribution of the population propensity score

7S.O.Becker and A.Ichino,2002
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τS =
Q∑
q=1

τSq

∑
i∈I(q) Ti∑
∀i Ti

(6.1)

with Q as the number of bins, I(q) as the set of units in bin q, τSq as the treatment effect

in bin q, with the weight for each bin given by the corresponding fraction of treated units.

Then, we have computed the average causal effect (ATE) according to the following

formula:

τS(p) =
Q∑
q=1

τSq
nq
N

(6.2)

where nq is the number of units (both treated and untreated) in bin q and N is the number

of units in the sample considered. Table D.1 shows that both the ATT and the ATE have

not a big impact on the group of firms considered; furthermore, the estimated effects are

not statistically significant.

Estimate local causal effects via a non parametric method

Here we propose the use of the cluster analysis on MCA coordinates, with the aim of

finding groups of comparable units on which estimate local causal effects.

The method non-parametrically controls for some or all of the pre-treatment control vari-

ables involved in the selection process.

Aiming at finding balanced groups, we will check balance via the multivariate test of im-

balance proposed in chapter 4.

The main advantage of performing a cluster analysis on MCA coordinates is that it avoids

both the problems of model dependence and of dimensionality of categorical variables,being

the new MCA coordinates less in number and of continuous nature. The application of

this analysis was carried out in Sas.

In the light of discussion presented in chapter 5, we have preferred to use a hierarchical

clustering method, and the Ward’s method as group proximity measure. Given the hi-

erarchical clustering process represented in a dendrogram 8, that is a tree diagram used

to keep track of the sequential clustering process, we have chosen a 18-clusters solution

set. The basic idea is that going deeper in the cut of the dendrogram, is more plausible

that groups are balanced in terms of pre-treatment covariates, and as shown in table 6.5,

the multivariate test of imbalance gives rise to our idea. Once the specified cluster solu-

tion set is selected, the analysis estimates program impacts by cluster where balance is

achieved and common support satisfied. The units belonging to non balanced groups were

discarded.
8We omitted to insert the dendrogram here because the sample size was too large
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We have chosen the 18-clusters solution set because it discards a small number of units

with respect to other solutions; it clearly emerges (tab. B.11) there was a big jump in

terms of discarded units moving from the 16-clusters solution to the 18-clusters solution.

Going more deeper than 18-clusters in the cut of the dendrogram, the 20-,22-,24-,26- clus-

ters solution are invariated in terms of discarded units with respect to the 18-clusters

solution. Furthermore, by choosing more than 26 clusters, common support starts to be

not satisfied in some clusters, giving as result an higher number of discarded units than

the previous cluster solution.

It clearly emerges that, on one hand, if the clusters are too many, then too many obser-

vations may be discarded due to the lack of common support.On the other hand, if the

number of clusters is chosen too small, then too many observations may be discarded due

to the lack of balance.

Thus, we think that the 18-clusters solution solves the trade-off between the two problems.

Then,despite our primary interest remains the estimation of local effects by group, to ex-

amine how much close or not are the results with respect to PS, we have computed the

ATT according to formula 6.1 where bins are replaced by groups. Similarly, we have com-

puted the ATE according to the formula 6.2. They are both positive but not statistically

significant. It means that the effect of PSA 2001/2002 program had not a considerable

impact on the variation of the number of employees.

Group n nT=1 nT=0 Ib Interval for Ib balance local effect err std
(1) 326 43 283 0.012 (0;0.0145) yes 0.1227 0.3856
(2) 191 44 147 0.0118 (0;0.024) yes 0.3912 0.2512
(3) 40 5 35 0.0842 (0;0.098) yes -0.2 0.2588
(4) 33 10 23 0.0291 (0;0.1135) yes 0.9636 0.7352
(5) 20 4 16 0.1128 (0;0.2224) yes 0.3125 1.1444
(6) 24 2 22 0.1874 (0;0.1812) no - -
(7) 13 6 7 0.1805 (0;0.3038) yes 0.025 0.0034
(8) 6 1 5 0.2533 (0;0.5056) yes 1.2 1.2
(9) 6 2 4 0.215 (0;0.4884) yes 3 0.07
(10) 14 2 12 0.1699 (0;0.2892) yes -4.333 13.956
(11) 29 5 24 0.1139 (0;0.143) yes 0.8417 1.1023
(12) 41 9 32 0.0435 (0;0.1036) yes -0.014 0.1266
(13) 37 7 30 0.0645 (0;0.1094) yes -0.933 1.3384
(14) 34 5 29 0.0573 (0;0.1132) yes -0.091 1.9552
(15) 3 0 3 no common support
(16) 11 3 8 0.2503 (0;0.2945) yes -2.25 1.4884
(17) 4 1 3 0.5648 (0;0.7843) yes -0.333 0.6667
(18) 36 8 28 0.1209 (0;0.1180) no - -

Table 6.5: 18-Clusters solution set:PSA 2001/2002
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n-clusters solution discarded units discarded units %
14 620 71 %
16 417 48 %
18 63 7%
20 63 7%
22 63 7%
24 63 7%
26 63 7%
28 82 9%
30 82 9%

Table 6.6: Discarded Units

6.5 The impact analysis: PSA 2003/2005

Analogous considerations hold for the impact analysis of PSA 2003/2005 program.We aim

at analyzing the impact of PSA 2003/2005 program on the variation of the number of

employees between 2005 and 2002.

The pre-treatment covariates are the same as those considered for the impact analysis of

PSA 2001/2002.

We will first check if data are balanced, then we aim at finding local groups of balanced

and comparable units on which estimate local causal effects.

The assessment of selection bias

Results (Tab. 6.7) show that the resulting inertia of the conditioning by T (participation

indicator variable in PSA 2003/2005 program ) remains outside the interval, showing the

dependence of the X-variables from T.

The significance of the conditioning means that data are not balanced between treated

and controls.

NT=1 NT=0 N actual between confidence interval α BEC
119 721 840 0.0159 (0; 0.007) 0.05 1%

Table 6.7: balance (psa 2003/2005)

Conversely, the chi-square variable-by-variable summary (Tab. 6.8) shows that six of

twelve considered variables are imbalanced without giving a global measure of imbalance.

Controlling for X with a model

To estimate the propensity score we have specified a logit model as in equation 5.8. We

have specified the model by considering all covariates involved in the selection process,

without introducing interaction terms or higher order terms.

Once obtained the estimated PS we performed a subclassification on the PS for finding
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Covariates Chi-square p-value balance
section 19.6712 0.0032 no
being or not in area ob2 2.5490 0.2796 yes
being or not female firm 0.8183 0.3657 yes
being or not young firm 0.0500 0.8230 yes
operate or not in local market 8.2807 0.0040 yes
operate or not in private market 4.6086 0.0318 no
realize or not internal production 0.7659 0.3815 yes
county code 17.1003 0.0472 no
legal form 20.3648 0.0001 no
turnover 58.4026 ¡.0001 no
birth date of firms 2.2852 0.6835 yes
employees in 2001 24.8567 ¡.0001 no

Table 6.8: The variable by variable chi square test (PSA 2003/2005)

balanced groups on which estimate the average causal effect. We divided the estimated

range of PS in 5 bins.

Then, we tested if PS balances the data by performing the proposed multivariate test of

imbalance, and we measured the average causal effect (ATE) in each balanced bin.

Table 6.9 shows that in all bins the estimated effects are not statistically significant.

BIN n nT=1 nT=0 Ib Interval for Ib balance ATE err std
1 167 2 165 0.0187 (0;0.0331) yes -0.097 1.1055
2 167 12 155 0.0131 (0;0.0319) yes -0.13 0.5752
3 167 18 149 0.0162 (0;0.0331) yes 0.104 0.4838
4 167 22 145 0.011 (0;0.0325) yes 0.8342 0.4999
5 167 64 103 0.0172 (0;0.0336) yes 2.1062 1.1314

Table 6.9: Results of stratification on estimated propensity score

Then, we have computed the overall Average Treatment Effect on the Treated (ATT)

according to formula 6.1 and the ATE according to formula 6.2. Results in table D.1

show that they are both statistically significant. More precisely, table D.1 shows that

according to the subclassification on the estimated PS, beneficiaries of PSA 2003/2005

program engage 1,29 employees more than not beneficiaries.

Estimate local causal effects via a non parametric model

Here we perform a cluster analysis on the pre-treatment covariates in order to find local

groups of comparable units.

The application of this analysis was carried out in Sas and uses an hierarchical clustering

method with the Ward’s method as aggregation criterion. We most closely examine the

4-,5-,6-,8-,10-,12-,14-,16,18-,20-,22-,28- clusters solutions (6.10).

Table 6.10 shows that since the five-clusters solution data are balanced, with zero

discarded units. Even if data are balanced since the five-clusters solution, we have chosen
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n-clusters solution discarded units discarded units (%)
4 430 51 %
5 0 0%
6 0 0%
7 0 0%
8 0 0%
10 0 0%
12 0 0%
14 0 0%
16 0 0%
18 0 0%
20 0 0%
22 0 0%
...

...
...

28 44 5.2%

Table 6.10: Discarded units:PSA 2003/2005

the 14-clusters solution in order to obtain clusters more homogeneous (tab. 6.11) in terms

of inertia. Table 6.11 shows that the inter-inertia increases with the number of groups. By

choosing the 14-clusters solution the ratio between inter inertia and total inertia achieves

an acceptable level, giving as result clusters more homogeneous than the previous cluster

solution. Then we have computed the ATT and ATE (tab. D.1).

n-Clusters Total inertia Inter inertia Inter/Total
5 1.3189 0.3716 0.2818
6 1.3189 0.4179 0.3168
7 1.3189 0.4587 0.3477
8 1.3189 0.4941 0.3746
9 1.3189 0.5287 0.4008
10 1.3189 0.5560 0.4215
11 1.3189 0.5816 0.4409
12 1.3189 0.6029 0.4571
13 1.3189 0.6238 0.4729
14 1.3189 0.6421 0.4868
15 1.3189 0.6564 0.4977
16 1.3189 0.6706 0.508
17 1.3189 0.684 0.510
18 1.3189 0.696 0.528
19 1.3189 0.709 0.537
...

...
...

...
28 1.3189 0.8334 0.6318

Table 6.11: inter inertia in n-clusters solutions

Table 6.12 shows that in three groups of the fourteen considered the treatment effects

are significant.

Table 6.13 notes the characteristics associated with membership in each of the three
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Group n nT=1 nT=0 Ib Interval for Ib balance local effect err std
(1) 65 16 49 0.0608 (0;0.080) yes 2.023 0.5481
(2) 72 3 69 0.0276 (0;0.071) yes -0.188 0.5751
(3) 70 4 66 0.0419 (0;0.0691) yes -0.061 0.5646
(4) 20 6 14 0.1494 (0;0.2273) yes -5.071 7.401
(5) 44 4 40 0.0473 (0;0.11) yes -0.15 0.4045
(6) 69 5 64 0.064 (0;0.070) yes 0.0094 1.086
(7) 38 13 25 0.0616 (0;0.1196) yes 4.4215 2.5615
(8) 41 14 27 0.0641 (0;0.1036) yes 0.7884 1.3597
(9) 24 3 21 0.059 (0;0.1812) yes -1.095 0.7022
(10) 92 17 75 0.0238 (0;0.0505) yes 1.8071 0.5775
(11) 82 10 72 0.0387 (0;0.0387) yes -0.436 0.872
(12) 77 8 69 0.0455 (0;0.0616) yes 4.212 1.2912
(13) 48 8 40 0.04143 (0;0.0947) yes 1.5 1.0717
(14) 93 7 86 0.0377 (0;0.0531) yes 0.9452 0.6416

Table 6.12: 14-Clusters solution set: PSA 2003/2005

clusters in which the estimated treatment effect is significant. To interpret this informa-

tion, those characteristics represented in table 6.13 are the describing features of members

in that clusters, for whom the absolute frequency in the cluster is above the absolute

frequency in the overall sample 9.

Covariates Cluster 1 Cluster 10 Cluster 12
employees in 2002 8-12 8-12

legal form individual firms individual firms partnership
limited liability company

County code Massacarrara,Pistoia Arezzo
area objective 2 Ob2/Pashing Out

sector manifacturing manifacturing
start up date 1995-1999 1979-1985
female firms
young firm no

local market no yes
private market no no

internal production no
turnover 500000-1000000 25000-500000

n 65 92 77
effect 2.023 1.8071 4.212

Table 6.13: Clusters description

To focus more specifically on the meaningful story that these results suggest, consider

the cluster 12. As shown in table 6.13 Cluster 12 is composed of a greater proportion of

handicraft partnership company, who operate in the manifacturing sector, with a relevant

9With njk as the number of units with category j in the cluster k, with nk as the number of units in
cluster k, with nj the number of units with category j in the overall sample of n units, then the difference
between

njk

n
and

nj

n
represents a measure of the importance of the category j in the cluster k
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number of years of experience in the market (start up date between 1979 and 1985), and

of those more likely to externalize production.

In addition, all firms in cluster 12 were not firm with a young management or young em-

ployees, and their turnover was not of considerable entity.

In brief, the PSA 2003/2005 program seems to have a big impact (effect=4.212) on units

that come together in cluster 12. Units within cluster 12 are generally of medium dimen-

sions in terms of employees and turnover but with many experience in terms of start up

date and in terms of age of employees.

If we look at table D.1, both the estimated ATT and ATE are statistically significant.

Against the PSA 2001/2002 program, the PSA 2003/2005 program have increased the

number of employees for those beneficiaries. More precisely, table D.1 shows that, accord-

ing to the ATT based on the clustering procedure, beneficiaries engage 1.22 employees

more than not beneficiaries.

6.6 Discussion

Here, we have dealt with the problem of selection bias in a real and complex problem.

Results in table D.1 confirm what observed in descriptive analysis (Fig 6.1). It emerges

that PSA 2003/2005 program works better than PSA 2001/2002 program. More precisely,

beneficiaries of PSA 2003/2005 program have increased the average number of employees

1.29 (according to subclassification on PS) and 1.22 (according to the clustering procedure)

more than non beneficiaries.

We would like to highlight that the innovative aspect of the proposed analysis is represented

by the ability of identifying subgroups within data and capitalizing on their heterogeneity.

Our proposed strategy has the strength of allowing to answer the question For what kinds

of handicraft firms does PSA programs work?

In turn, the analysis has the strength of eliminating model dependence, given that, against

PS, the strategy completely controls for X in a non-parametric way.

In addition, if the considered X-variables are those involved in the selection process, the

proposed strategy eliminates plausible alternative cause for why the program achieved

a specific impact. The elimination of other plausible causes is allowed by the fact that

groups are really balanced and the achieved balance is globally checked via the proposed

multivariate test.

Furthermore, by using our proposed strategy rather than subclassification on PS, we have

found groups on which the effect of PSA program was statistically significant.

We think that the resulting analytic advantage of performing a cluster analysis, when

the aim is to analyze program impacts on local spaces, is represented by the ability of

identifying which units fall into which specific groups well-defined in terms of baseline

pre-treatment characteristics.

The same advantage arises by performing a subclassification on the estimated PS; but,
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against the subclassification on the PS, our proposed strategy is not model dependent.



Conclusions and perspectives

The main goal in this Ph.D thesis has been to introduce a strategy for making causal

inferences from observational data without model dependence.

As part of that strategy,we have proposed a new data driven procedure able to check and

test the presence of selection bias by preserving the multivariate nature of data.

The procedure is also able to choose automatically the correct number of clusters on which

estimate local causal effects in an unbiased way.

Our proposal originates from the intention to discover local groups of comparable units

according to a test of balance that overcomes limits of other procedures not always able

to check balance in a multivariate way.

We gave a measure of global imbalance (BEC) and we test it in a way not accomplished

by the variable-by-variable t-test or chi-square test commonly used in applied research.

We have tested the performance of the proposed strategy on simulated data, which has

shown that when the test detects the balance, then the true average causal effect is repro-

duced.

We think the proposed strategy outperforms other ways of drawing causal conclusions for

the following reasons:

1. it uses all available information of the X matrix without problem of dimensionality.

2. the procedure could be useful for subgroup analysis by overcoming limits of the

conventional way to measure program impacts- i.e. compute the overall average

treatment effect - that may obscure impacts that accrue to subgroups (Peck, 2005).

In this sense, it represents an effort to detect treatment group heterogeneity.

3. it non parametrically controls for X, with less resulting model dependence. In par-

ticular, it is not needed to specify a priori any model; but, it lets the data to speak

4. it is able to find clusters of comparable units according to the dependence structure

of data

5. it allows to automatically check global imbalance

6. it can account for the dependence relationship of any number of covariates

The idea of measuring impacts on local spaces represents an initial stage in learning more

from data, with the ultimate intent of estimating an unit level effect rather than the

105
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average causal effect.

Future works in this area might concern other classification methods, being the cluster

analysis sensitive to the nature of data, the method and the dissimilarity measure adopted.

Further, future works might explore analytic properties of the conditional space in order

to understand if the coordinates of the conditional space could be used in reconstruct the

missing counterfactual at a unit level.

We will also write a Sas program able to perform the overall analysis in order to develop

an automatic node of a DM process that automatically checks and tests balance of a given

data set.

Finally, we will examine the sensitivity of the multivariate test of imbalance to specific

failures of the unconfoundedness assumption.
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Appendix A

The concept of partial dependence

Definitions of J.N.Darroch

Let X, Y , T three discrete random variables and let:

Pijt = P (X = i, Y = j, T = t) with i = 1, ..., In; j = 1, ..., J ; t = 1, ..., T

Pij. =
∑
t

Pijt

P.jt =
∑
i

Pijt

Pi.k =
∑
j

Pijt

P..t =
∑
ij

Pijt

(A.1)

Then X and Y are conditionally independent given T if for each ijt:

Pijt =
Pi.tP.jt
P..t

(A.2)

Darroch measures the conditionally dependence of the events (X = i) and (Y = j)

given (T = t) as:

Pijt
P..t
− (

Pi.t
P..t

)(
P.jt
P..t

) (A.3)

and the average conditional dependence as:

∑
t

(
Pijt
P..t
− Pi.t
P..t

)P..t = Pij. − πij (A.4)
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114 The concept of partial dependence

where

πij =
∑
t

Pi.tP.jt
P..t

(A.5)

He measures the marginal dependence between two events (X = i) and (Y=j) as:

Pij. − Pi..P.j. (A.6)

Finally he measures the dependence due to T as:

πij − Pi..P.j. (A.7)

where πij could be interpreted as the conjoint probability of the events (X = i) and (Y = j)

if these two events are conditionally independent given T. If there is not dependence due

to T between the event (X=i) and (Y=j) then:

πij = Pi..P.j. (A.8)

According to Darroch the marginal dependence between two variables X and Y can be

decomposed as follows:

Pij. − Pi..P.j.︸ ︷︷ ︸
marginal dependance

= (Pij. −Πij)︸ ︷︷ ︸
dependence not due to T

+ (Πij − Pi..P.j.)︸ ︷︷ ︸
dependence due to T

(A.9)

To the marginal probabilities Pij., Pi.t, P.jt correspond three different tables:

1. the table with generic term Pij

2. the table πij

3. the table Pi..P.j. + (Pij. − πij)

All the three tables have the same marginal distributions Pi.. and P.j.. At the same way

could be constructed the contingency tables corresponding to the table of probabilities

1,2 and 3. In particular, to study the marginal dependence (X,Y) between X and Y he

performs a factorial analysis of the table 1; to study the dependence due to T he performs

a factorial analysis of the table 2 and for the analysis of the dependence not due to T he

performs a factorial analysis of the table 3.



Appendix B

Simulation

T X1 X2 X3 X4

X1
540.15 1.2780 39.2858 4.2089
< .0001 0.2583 < .0001 0.0402

X2
1.1086
0.2924

X3
37.8922 2.1787 10.6046
< .0001 0.3364 0.0050

X4
8.9560 6.4091
0.0028 0.0114

Table B.1: The dependence structure by design

Classification hierarchique directe

 804  846 147314721477147514741471 945 13071478142014141418142214571163141212911436143811241371146213761460146514691463146614611464146814671377129413861456129211331192143913031172144014411443144414421450

Figure B.1: dendrogram MCA
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116 Simulation

Combinations X1 X2 X3 X4 T=1 T=2 Π(T=1) Π(T=2) N
1 1 1 1 1 40 1 97.5% 2.5% 41
2 1 1 1 2 5 0 100% 0 % 5
3 1 1 2 1 40 2 95.2% 4.8% 42
4 1 1 2 2 3 0 100% 0% 3
5 1 2 1 1 40 3 93.02% 6.98% 43
6 1 2 1 2 9 1 98.9% 1.1% 10
7 1 2 2 1 30 1 9.67% 90.33% 31
8 1 2 2 2 2 0 100% 0% 2
9 1 1 3 1 40 7 85.1% 14.9% 47
10 1 1 3 2 2 2 50% 50% 4
11 1 2 3 1 10 5 97.5% 2.5% 15
12 1 2 3 2 5 0 100% 0 % 5
13 2 1 1 1 7 93 7% 93% 100
14 2 1 1 2 0 10 0% 100% 10
15 2 2 1 1 4 80 4.76% 95.24% 84
16 2 2 1 2 0 10 0% 100% 10
17 2 1 2 1 3 30 9% 91% 33
18 2 1 2 2 0 10 0% 100% 10
19 2 2 2 1 1 8 11% 89% 9
20 2 2 2 2 0 20 0% 100% 20
21 2 1 3 1 7 93 7% 93% 100
22 2 1 3 2 0 20 0% 100% 20
23 2 2 3 1 10 90 10% 90% 100
24 2 2 3 2 0 20 0% 100% 20

Table B.2: The Data Design

X11 X12 X21 X22 X31 X32 X33 X41 X42

X11 248
X12 0 516
X21 142 273 415
X22 106 243 0 349
X31 99 204 156 147 303
X32 78 72 88 62 0 150
X33 71 240 171 140 0 0 311
X41 219 426 363 282 268 115 262 645
X42 29 90 52 67 35 35 49 0 119

Table B.3: The Burt table of the conditional space
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T=1 T=0
X11 226 22
X12 32 484
X21 147 268
X22 111 238
X31 105 198
X32 79 71
X33 74 237
X41 232 413
X42 26 93

Table B.4: The Burt Band of the conditional space

N NT=1 NT=0 actual between confidence interval α BEC
764 258 506 0.1924 (0;0.0052) 0.05 15%

Table B.5: The confidence interval for inertia between

Group Q J n nT=1 nT=0 Ib Interval α balance ATE
Subclassification on the propensity score

BIN 1 3 7 190 7 183 0.0205 (0;0.22) 0.05 yes 10.8
BIN 2 4 9 100 10 90 0 (0;0.038) 0.05 yes 10.832
BIN 3 4 9 184 11 173 0 (0;0.021) 0.05 yes 10.812
BIN 4 4 9 133 80 53 0.0247 (0;0.029) 0.05 yes 10.657
BIN 5 4 9 157 150 7 0 (0;0,024) 0.05 yes 10.88

Table B.6: The subclassification on the estimated PS
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Groups n nT=1 nT=0 Ib Interval for Ib achieved balance ATE
2-clusters partition

(Group 1) 645 232 413 0.2559 (0;0.006) no 8.7634
(Group 2) 119 26 93 0.3170 (0;0.035) no 7.8254

4-clusters partition
(Group 1) 268 91 177 0.3823 (0;0.0145) no 8.9507
(Group 2) 115 74 41 1.1465 (0;0.032) no 8.9519
(Group 3) 262 67 195 0.2607 (0;0.0149) no 9.288
(Group 4) 119 26 93 0.3170 (0;0.0352) no 7.8254

6-clusters partition
(Group 1) 84 80 4 0 (0;0.0356) yes 10.782
(Group 2) 184 11 173 0 (0;0.0162) yes 10.874
(Group 3) 115 74 41 0.397 (0;0.0320) no 8.9519
(Group 4) 115 20 95 0.125 (0;0.026) no 9.8479
(Group 5) 147 47 100 0.031 (0;0.0203) no 9.1138
(Group 6) 119 26 93 0.317 (0;0.0352) no 7.8254

8-clusters partition
(Group 1) 84 80 4 0 (0;0.0356) yes 10.782
(Group 2) 84 4 80 0 (0;0.0356) yes 10.832
(Group 3) 100 7 93 0 (0;0.0299) yes 10.832
(Group 4) 115 74 41 0.397 (0;0.0260) no 8.9519
(Group 5) 100 10 9 0 0 (0;0.0299) yes 10.832
(Group 6) 62 50 12 0 (0;0.048) yes 10.789
(Group 7) 100 7 93 0 (0;0.0299) yes 10.832
(Group 8) 119 26 93 0.31704 (0;0.0352) no 7.8254

10-clusters partition
(Group 1) 84 80 4 0 (0;0.0356) yes 10.782
(Group 2) 84 4 80 0 (0;0.0356) yes 10.832
(Group 3) 100 7 93 0 (0;0.0299) yes 10.832
(Group 4) 42 4 38 0 (0;0.0878) yes 10.84
(Group 5) 73 70 3 0 (0;0.0505) yes 10.851
(Group 6) 100 10 90 0 (0;0.0299) yes 10.832
(Group 7) 62 50 12 0 (0;0.0595) yes 10.789
(Group 8) 100 7 93 0 (0;0.0299) yes 10.832
(Group 9) 35 5 30 0.5186 (0;0.1054) no 8.5788
(Group 10) 84 21 63 0.4885 (0;0.0356) no 7.5718

12-clusters partition
(Group 1) 41 40 1 0 (0;0.09) yes 10.832
(Group 2) 43 40 3 0 (0;0.0858) yes 10.832
(Group 3) 84 4 80 0 (0;0.0356) yes 10.832
(Group 4) 100 7 93 0 (0;0.0299) yes 10.832
(Group 5) 42 4 38 0 (0;0.0878) yes 10.84
(Group 6) 73 70 3 0 (0;0.0505) yes 10.851
(Group 7) 100 10 90 0 (0;0.0299) yes 10.832
(Group 8) 62 50 12 0 (0;0.0595) yes 10.789
(Group 9) 100 7 93 0 (0;0.0299) yes 10.832
(Group 10) 35 5 30 0.5186 (0;0.1054) no 8.5788
(Group 11) 44 21 23 0.4952 (0;0.0838) no 9.8437
(Group 12) 40 0 40 no common support

Table B.7: Clusters solution set: Ward’s method
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Groups n nT=1 nT=0 Ib Interval for Ib balanced ATE std err
2-clusters partition

(Group 1) 303 105 198 0.1954 (0;0.0103) no 9.0005 0.1192
(Group 2) 461 153 308 0.1966 (0;0.0076) no 8.0884 0.141

4-clusters partition
(Group 1) 268 91 177 0.1911 (0; 0,0103) no 8.9507 0.0754
(Group 2) 35 14 21 0.2256 (0;0.0790) no 8.7607 0.1278
(Group 3) 377 141 236 0.1934 (0;0.0083) no 8.4518 0.1163
(Group 4) 84 12 72 0.2084 (0;0.0374) no 8.6988 0.2861

6-clusters partition
(Group 1) 268 91 177 0.1911 (0;0.0103) no 8.9507 0.0644
(Group 2) 35 14 21 0.2256 (0;0.0790) no 8.7607 0.1278
(Group 3) 115 74 41 0.1984 (0;0.0240) no 8.9519 0.1034
(Group 4) 35 5 30 0.2593 (0;0.0790) no 8.5788 0.0472
(Group 5) 262 67 195 0.1303 (0;0.1056) no 9.2880 0.0976
(Group 6) 49 7 42 0.1921 (0;0.0564) no 8.7845 0.1933

8-clusters partition
(Group 1) 268 91 177 0.1911 (0;0.0103) no 8.9507 0.0644
(Group 2) 35 14 21 0.2256 (0;0.0790) no 8.7607 0.1278
(Group 3) 115 74 41 0.1984 (0;0.0240) no 8.9519 0.1034
(Group 4) 35 5 30 0.2593 (0;0.0790) no 8.5788 0.0472
(Group 5) 62 50 12 0.0099 (0;0.0380) yes 10.789 0.0274
(Group 6) 9 7 2 0.0892 (0;0.2635) yes 10.975 0.0724
(Group 7) 200 17 183 0.0007 (0;0.0211) yes 10.851 0.0254
(Group 8) 40 0 40 no common support

10-clusters partition
(Group 1) 268 91 177 0.1911 (0;0.0103) no 8.9507 0.0644
(Group 2) 15 14 1 0.0089 (0;0.1581) yes 10.761 0.1029
(Group 3) 115 74 41 0.1984 (0;0.0240) no 8.9519 0.1034
(Group 4) 5 5 0 no common support
(Group 5) 62 50 12 0.0099 (0;0.038) yes 10.789 0.0274
(Group 6) 9 7 2 0.0892 (0;0.2635) yes 10.975 0.0724
(Group 7) 20 0 20 no common support
(Group 8) 30 0 30 no common support
(Group 9) 200 17 183 0.0007 (0;0.0211) yes 10.831 0.0254
(Group 10) 40 0 40 no common support

12-clusters partition
(Group 1) 84 80 4 0.0028 (0;0.0029) yes 10.782 0.0515
(Group 2) 15 14 1 0.0089 (0;0.2585) yes 10.761 0.1029
(Group 3) 73 70 3 0.0003 (0;0.0579) yes 10.851 0.0591
(Group 4) 5 5 0 no common support
(Group 5) 62 50 12 0.0099 (0;0.068) yes 10.789 0.0274
(Group 6) 9 7 2 0.0892 (0;0.4308) yes 10.975 0.0724
(Group 7) 184 11 173 0.0005 (0;0.0244) yes 10.812 0.0311
(Group 8) 20 0 20 no common support
(Group 9) 42 4 38 0.0001 (0;0.1007) yes 10.832 0.0442
(Group 10) 30 0 30 no common support
(Group 11) 200 17 183 0.0007 (0;0.02115) yes 10.832 0.0254
(Group 12) 40 0 40 no common support

Table B.8: Clusters solution set: single linkage method
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Groups n nT=1 nT=0 Ib Interval for Ib balanced ATE std err
2-clusters partition

(Group 1) 303 105 198 0.1954 (0;0.0103) no 9.0005 0.1192
(Group 2) 461 153 308 0.1966 (0;0.0076) no 8.0884 0.141

4-clusters partition
(Group 1) 268 91 177 0.1911 (0; 0,0103) no 8.9507 0.0754
(Group 2) 35 14 21 0.2256 (0;0.0790) no 8.7607 0.1278
(Group 3) 377 141 236 0.1934 (0;0.0083) no 8.4518 0.1163
(Group 4) 84 12 72 0.2084 (0;0.0374) no 8.6988 0.2861

6-clusters partition
(Group 1) 268 91 177 0.1911 (0;0.0103) no 8.9507 0.0644
(Group 2) 35 14 21 0.2256 (0;0.0790) no 8.7607 0.1278
(Group 3) 115 74 41 0.1984 (0;0.0240) no 8.9519 0.1034
(Group 4) 35 5 30 0.2593 (0;0.0790) no 8.5788 0.0472
(Group 5) 262 67 195 0.1303 (0;0.1056) no 9.2880 0.0976
(Group 6) 49 7 42 0.1921 (0;0.0564) no 8.7845 0.1933

8-clusters partition
(Group 1) 268 91 177 0.1911 (0;0.0103) no 8.9507 0.0644
(Group 2) 15 14 1 0.0089 (0;0.1581) yes 10.761 0.1029
(Group 3) 73 70 3 0.0003 (0;0.0579) yes 10.851 0.0591
(Group 4) 35 5 30 0.2593 (0;0.0790) no 8.5788 0.0472
(Group 5) 262 67 195 0.1303 (0;0.0105) no 9.288 0.0976
(Group 6) 49 7 42 0.1921 (0;0.0564) no 8.7845 0.1933
(Group 7) 20 0 20 no common support
(Group 8) 42 4 38 0.0001 (0;0.1007) yes 10.84 0.0442

10-clusters partition
(Group 1) 268 91 177 0.1911 (0;0.0103) no 8.9507 0.0644
(Group 2) 15 14 1 0.0089 (0;0.1581) yes 10.761 0.1029
(Group 3) 73 70 3 0.0003 (0;0.0579) yes 10.851 0.0591
(Group 4) 5 5 0 no common support
(Group 5) 262 67 195 0.1303 (0;0.0105) no 9.288 0.0976
(Group 6) 9 7 2 0.0892 (0;0.2635) yes 10.975 0.0724
(Group 7) 20 0 20 no common support
(Group 8) 42 4 38 0.0001 (0;0.1007) yes 10.84 0.042
(Group 9) 30 0 30 no common support
(Group 10) 40 0 40 no common support

12-clusters partition
(Group 1) 84 80 4 0.0028 (0;0.0029) yes 10.782 0.0515
(Group 2) 15 14 1 0.0089 (0;0.2585) yes 10.761 0.1029
(Group 3) 73 70 3 0.0003 (0;0.0579) yes 10.851 0.0591
(Group 4) 5 5 0 no common support
(Group 5) 62 50 12 0.0099 (0;0.068) yes 10.789 0.0274
(Group 6) 9 7 2 0.0892 (0;0.4308) yes 10.975 0.0724
(Group 7) 184 11 173 0.0005 (0;0.0244) yes 10.812 0.0311
(Group 8) 20 0 20 no common support
(Group 9) 42 4 38 0.0001 (0;0.1007) yes 10.832 0.0442
(Group 10) 30 0 30 no common support
(Group 11) 200 17 183 0.0007 (0;0.02115) yes 10.832 0.0254
(Group 12) 40 0 40 no common support

Table B.9: Clusters solution set: complete linkage method
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Groups n nT=1 nT=0 Ib Interval for Ib balanced ATE std err
2-clusters partition

(Group 1) 303 105 198 0.1954 (0;0.0103) no 9.0005 0.1192
(Group 2) 461 153 308 0.1966 (0;0.0076) no 8.0884 0.141

4-clusters partition
(Group 1) 303 105 198 0.1954 (0; 0.0103) no 9.0005 0.1192
(Group 2) 115 74 41 0.1984 (0;0.0249) no 8.9519 0.1034
(Group 3) 84 12 72 0.2084 (0;0.0374) no 8.6988 0.2861
(Group 4) 262 67 195 0.1303 (0;0.1056) no 9.288 0.0976

6-clusters partition
(Group 1) 268 91 177 0.1911 (0;0.0103) no 8.9507 0.0644
(Group 2) 35 14 21 0.2256 (0;0.0790) no 8.7607 0.1278
(Group 3) 115 74 41 0.1984 (0;0.0240) no 8.9519 0.1034
(Group 4) 35 5 30 0.2593 (0;0.0790) no 8.5788 0.0472
(Group 5) 262 67 195 0.1303 (0;0.1056) no 9.2880 0.0976
(Group 6) 49 7 42 0.1921 (0;0.0564) no 8.7845 0.1933

8-clusters partition
(Group 1) 84 80 4 0.0028 (0;0.0029) yes 10.782 0.0515
(Group 2) 35 14 21 0.2256 (0;0.0790) no 8.7607 0.1278
(Group 3) 115 74 41 0.1984 (0;0.0240) no 8.9519 0.1034
(Group 4) 5 5 0 no common support
(Group 5) 262 67 195 0.1303 (0;0.0105) no 9.288 0.0976
(Group 6) 49 7 42 0.1921 (0;0.0564) no 8.7845 0.1933
(Group 7) 184 11 173 0.0005 (0; 0.0244) yes 10.812 0.0311
(Group 8) 30 0 30 no common support

10-clusters partition
(Group 1) 268 91 177 0.1911 (0;0.0103) no 8.9507 0.0644
(Group 2) 15 14 1 0.0089 (0;0.1581) yes 10.761 0.1029
(Group 3) 73 70 3 0.0003 (0;0.0579) yes 10.851 0.0591
(Group 4) 5 5 0 no common support
(Group 5) 262 67 195 0.1303 (0;0.0105) no 9.288 0.0976
(Group 6) 9 7 2 0.0892 (0;0.2635) yes 10.975 0.0724
(Group 7) 20 0 20 no common support
(Group 8) 42 4 38 0.0001 (0;0.1007) yes 10.84 0.042
(Group 9) 30 0 30 no common support
(Group 10) 40 0 40 no common support

12-clusters partition
(Group 1) 84 80 4 0.0028 (0;0.0029) yes 10.782 0.0515
(Group 2) 15 14 1 0.0089 (0;0.2585) yes 10.761 0.1029
(Group 3) 73 70 3 0.0003 (0;0.0579) yes 10.851 0.0591
(Group 4) 5 5 0 no common support
(Group 5) 62 50 12 0.0099 (0;0.068) yes 10.789 0.0274
(Group 6) 9 7 2 0.0892 (0;0.4308) yes 10.975 0.0724
(Group 7) 184 11 173 0.0005 (0;0.0244) yes 10.812 0.0311
(Group 8) 20 0 20 no common support
(Group 9) 42 4 38 0.0001 (0;0.1007) yes 10.832 0.0442
(Group 10) 30 0 30 no common support
(Group 11) 200 17 183 0.0007 (0;0.02115) yes 10.832 0.0254
(Group 12) 40 0 40 no common support

Table B.10: Clusters solution set: average linkage method
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Method 10-clusters solution 12-clusters solution
Ward 119 119

Single linkage 478 95
Complete linkage 625 95
Average linkage 625 95

Table B.11: Discarded units

n-clusters Ward Single Complete Average
2 0 0 0 0
4 0 0 0 0
6 2 0 0 0
8 6 3 3 2
10 8 4 4 4
12 9 8 8 8

Table B.12: Balanced groups



Appendix C

Descriptive Analysis of real data

Legal Form Not subsidized PSA 2001/2002 PSA 2003/2005
Individual Firms 216 (30%) 53 (36%) 21 (19%)
Limited Liability Companies 111 (15%) 23 (16%) 37 (31%)
Partnerships 326 (45%) 61 (41%) 48 (40%)
Others 68 (10%) 10 (7%) 12 (10%)
Total 721 (100%) 147(100%) 119 (100%)

Table C.1: Legal form

County Code Not subsidized PSA 2001/2002 PSA 2003/2005
Arezzo 180 45 25
Firenze 268 45 44
Grosseto 5 1 1
Livorno 3 1 0
Lucca 61 20 4
Massa Carrara 31 8 13
Pisa 22 2 2
Prato 50 8 9
Pistoia 73 12 11
Siena 28 5 10
Total 721 147 119

Table C.2: County code
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Figure C.1: employees
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Figure C.2: The average turnover
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124 Descriptive Analysis of real data
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Appendix D

Impact Analysis of PSA programs

Method Beneficiaries Treated Controls ATT ATE

Subclassification on PS PSA 2001/2002 147 721
0.1054 -0.1516

(0.0954) (0.0899)

18-Clusters (Ward Method) PSA 2001/2002 147 721
0.14335 0.0803
(0.5136) (0.08972)

Subclassification on PS PSA 2003/2005 119 721
1.2988 0.5653

(0.5552) (0.2027)

14-clusters (Ward Method) PSA 2003/2005 119 721
1.2244 0.9522

(0.5462) (0.2028)

Table D.1: Comparing results
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