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Chapter 1

Introduction

Computer vision is a young research discipline that has been intensively studied during

the second half of the 20th century until today. Computer vision aims at building

artificial systems able to infer information on reality through the processing of data

obtained from optical sensors. Among the several problems investigated within this

discipline, visual correspondence surely represents one of the most important and most

studied. As for a general definition, the goal of visual correspondence can be described

as finding corresponding (homologous) tokens belonging to two sets of pixels. As a

matter of fact, to compare together two or more images usually an instance of the

visual correspondence problem has to be solved.

Some examples of applications that require solving the visual correspondence prob-

lem are as follows:

• robot navigation and autonomous vehicle navigation, that allow a robot or a vehi-

cle to navigate within an unknown environment based on the information coming

from two (or more) optic sensors;

• automatic recognition and categorization of objects and faces;

• defect detection and quality control, a typical industrial application aimed at

automatic inspection and detection of defective or missing parts of a product;

• video surveillance and video analytics, which include intelligent systems for the

automatic detection of motion in a monitored scene (change detection), the anal-

ysis of the behavior of the subjects moving in a scene (behavior analysis) and

the recognition of events that might be of particular interests (event detection);

• motion estimation in video sequences;

• 3D reconstruction;

1



2 CHAPTER 1

• people tracking and counting;

• · · ·

There are different tokens on which visual correspondence can be applied, i.e.

points, patches and images. In particular, visual correspondence on keypoints (also re-

ferred to as interest points) aims at finding corresponding points within two images that

may differ by translation, rotation, scale, occlusions and/or photometric distortions. In-

terest points on images are generally extracted by means of a feature detector [85, 94].

Then, possible correspondences are evaluated using a representation of each keypoint

by means of appropriate descriptors [93]. This problem often occurs for applications

such as object categorization and recognition, scene categorization [85, 94].

On another level lies the problem of finding corresponding patches within images:

this occurs in problems such as pattern matching [35], stereo matching [112], change

detection [106], motion estimation [63]. As for this case, patches usually are repre-

sented by square or rectangular windows of pixels, and similarities between patches

are computed by means of area-based measures. Corresponding patches are those

maximizing the similarity measure within a set of possible candidates. Visual cor-

respondence can even be image-based, e.g. for image registration and alignment by

direct methods [54, 149].

This work presents several visual correspondence problems that have been ana-

lyzed within the research activity carried out during the Ph.D. course. In particular,

three main topics have been investigated. The first concerns efficient visual correspon-

dence, dealing in particular with the proposal of novel techniques for rapidly finding

correspondences between image patches based on similarity measures such as those

derived from the L − p-norm and the Normalized Cross-Correlation. This part of the

work will be presented in Chapter 2. The second topic deals with accurate stereo corre-

spondence: a classification and performance evaluation of local stereo correspondence

algorithms is proposed in Chapter 3, together with new approaches for accurate stereo

matching. Then, Chapter 4 deals with applications of stereo vision to the context of

3D reconstruction and video surveillance. The third main topic concerns robust visual

correspondence and regards the proposal of a new measure for visual correspondence,

together with its application to the fields of pattern matching, change detection, video-

surveillance. This will be illustrated in Chapter 5. Finally, conclusions are drawn in

Chapter 6.



Chapter 2

Fast and exhaustive pattern

matching

2.1 Introduction

Pattern matching is a classical image analysis task that aims at locating the instances

of a given template into a reference set. This task occurs in numerous image analysis

applications and consists in determining the regions of the reference image that are

similar to the template according to a given criterion, and discarding those that are

dissimilar. Pattern matching is widely deployed for tasks such as quality control, defect

detection, robot navigation, face and object recognition, edge detection [54].

The Full Search (FS) pattern matching algorithm consists in calculating a correla-

tion, or distortion, function at each position of a search area within an image measuring

the degree of similarity, or dissimilarity, between a given template and the portion of

the image currently under examination, referred to as image subwindow. This deter-

mines a set of maximum-correlation, or minimum-distortion, positions that locate the

template in the examined image.

Functions typically employed to carry out pattern matching can be divided into two

classes: similarity and dissimilarity measures. Similarity measures are often based on

correlation, such as the Normalized Cross-Correlation (NCC) and the Zero-mean Nor-

malized Cross-Correlation (ZNCC). These two measures are typically adopted when

robustness with regards to photometric variations is required. On the other hand, a

popular class of dissimilarity measures derives from the Lp norm. The two most used

Lp norm-based dissimilarity functions are the Sum of Squared Differences (SSD) and

the Sum of Absolute Differences (SAD).

Since the FS algorithm is often unacceptably slow with respect to the application

3
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requirements, many faster approaches have been proposed in literature. Among these

approaches, non exhaustive algorithms yield computational savings by reducing the

search space [7,54,73,107,128,149] or by decomposing the template or the image into

rectangular regions and approximating each as a polynomial [16, 56, 115, 118].

Conversely, exhaustive algorithms speed up the template matching process and

yield exactly the same result as the FS. In the case of a dissimilarity-based search,

one of the first approaches has been the Partial Distortion Elimination (PDE) [9] and

consists in terminating the evaluation of the current distortion measure as soon as it

rises above the current minimum. Another approach suitable for dissimilarity-based

searches consists in defining a rapidly computable lower bounding function of the

adopted distortion measure, so as to check quickly one or more sufficient conditions to

detect mismatching candidates without carrying out the heavier computations required

by the evaluation of the actual distortion measure. Examples of such an approach

include the Successive Elimination Algorithm (SEA) [83], [132], [57] and Gharavi-

Alkhansari’s algorithm [46]. Analogously, in the case of correlation-based measures

such as the NCC and the ZNCC rapidly computable upper bounding functions can be

deployed [35, 87, 88, 102].

This chapter investigates on the use of successions of increasingly tighter bound-

ing functions to rapidly detect mismatching candidates both for dissimilarity measures

derived from the Lp norm (Section 2.2.2) and similarity measures based on correlation

(Section 2.4.5). The goal is to speed up pattern matching yet maintaining the prop-

erty of exhaustiveness. Experimental results are provided that demonstrate how the

proposed techniques are able to achieve notable speed-ups compared to the state-of-

the-art approaches.

It is interesting to point out that the proposed exhaustive algorithms can be deployed

also to speed up similar tasks such as motion estimation and vector quantization, given

their affinity with the pattern matching problem. This is investigated in section 2.3.

2.2 Fast exhaustive pattern matching based on Lp-norm

dissimilarity measures

This section presents a novel algorithm, referred to as Incremental Dissimilarity Ap-

proximations (IDA), that aims at speeding up pattern matching based on measures

derived from the Lp norm. Experimental results concerning more than 6000 pat-

tern matching instances prove that IDA significantly outperforms state-of-the-art ap-

proaches and can yield substantial speed-ups with respect to the FS.
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2.2.1 Previous Work

For what concerns the SSD, though the typical alternative to the naive FS algorithm

is represented by the FFT-based approach, a novel fast FS-equivalent method [57], re-

ferred to here as Projection Kernels (PK), was recently proposed in literature. This

method was shown to be much more efficient compared to the naive FS-approach as

well as to the FFT. As regards the SAD, a well known classical approach is the Sequen-

tial Similarity Detection Algorithm (SSDA) [7].

The Lp-norm of a M-dimensional vector X = [x1, · · · , xM]T is defined as:

||X||p = ( M∑
i=1

|xi|p) 1
p (2.1)

where p is any positive real number [108].

Let now X be the template vector and Y1, · · · , YN the N candidates (corresponding

to the image subwindows) against whom X must be matched, each candidate having

the same cardinality as the template vector (i.e. Yj = [y j,1, · · · , y j,M]T ).

The generic function based on the Lp-norm measuring the dissimilarity between X

and Yj can be written as:

||X − Yj||pp =
M∑
i=1

∣∣∣xi − y j,i

∣∣∣p (2.2)

If p = 1 then (2.2) coincides with the SAD function, while p = 2 yields the SSD

function.

We will now briefly review the FFT-based, PK and SSDA approaches for fast FS-

equivalent pattern matching with Lp norm-based dissimilarity functions.

Fast Fourier Transform A common approach for speeding-up the FS pattern match-

ing process based on the SSD function relies on the Fast Fourier Transform (FFT). The

SSD function can be written as:

||X − Yj||22 = ||X||22 + ||Yj||22 − 2 · Θ(X, Yj) (2.3)

where:

Θ(X, Yj) =
M∑
i=1

xi · y j,i (2.4)

represents the dot product between X and Yj. In order to achieve computational

savings, the FFT approach calculates Θ in the frequency domain according to the cor-

relation theorem. As it would be inefficient to compute ||Yj||22 in the frequency domain,

this term is usually calculated directly by means of efficient incremental techniques
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( [24], [91], [131]), as described in [81], while ||X||22 is computed once for all at initial-

ization time.

Compared to the FS algorithm, the FFT-based approach is more efficient when the

template size is large enough compared to the image size. The FFT-based approach

cannot be adopted for SAD-based pattern matching since the correlation theorem does

not apply to the L1 norm case.

Projection Kernels The PK method [57] carries out fast full-search equivalent SSD-

based pattern matching in the signal domain. With PK, each basis vector U of the

Walsh-Hadamard transform is used as a projection vector. Then, projecting the tem-

plate vector X and the candidate vector Yj onto each of these projection vectors yields

a projected distance B j:

Bj = UT X − UTYj (2.5)

that can be used to determine a lower bound of the SSD function:

||X − Yj||22 ≥
B2

j

||U ||22
(2.6)

Therefore, if D is the threshold that discriminates between matching and mismatch-

ing candidates, it is possible to establish the condition:

D <
B2

j

||U ||22
(2.7)

which allows for safely pruning Yj from the list of candidates. Furthermore, the lower

bound can be tightened by using a collection of projection vectors along with the cor-

responding projected distances. Hence, an iterative algorithm is proposed in [57]: at

each step the lower bound is tightened so as to increase the effectiveness of the current

pruning condition for those candidates that were not pruned by the previous one.

According to [57], PK is almost two orders of magnitude faster than the FS and

FFT-based approaches, but it is more demanding in terms of memory requirements. It

is worth pointing out that the size of the template is constrained to be a power of 2.

The experimental results reported in [57] show also that PK is more effective with very

small templates (i.e. of size 16 × 16 or 32 × 32).

Sequential Similarity Detection Algorithm The SSDA method is a classical ap-

proach originally introduced to determine simple inequalities to speed-up SAD-based

pattern matching. Let D be a threshold and X, Yj the template-candidate pair under

evaluation. During the computation of the SAD function, at each new element pair xb,

y j,b condition
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b∑
i=1

∣∣∣xi − y j,i

∣∣∣ > D (2.8)

is tested. As soon as (2.8) is satisfied, the evaluation process is terminated and the

value of the last vector index, b̃ j, recorded. Once this is done for all candidates, the

best matching candidates correspond to those having high b̃ j. Typically, D is much

lower than the global minimum and SSDA turns out not equivalent to the FS (i.e. non

exhaustive). In particular, the choice of D determines a cost-performance trade-off: the

higher D, the higher the mean number of calculations needed to evaluate the current

candidate, and the higher the chance the resulting matching candidates will coincide

with those yielded by FS. In order to better deal with this issue D is not kept constant,

but increases along with b. Moreover, to obtain a more regular behavior the order of

processed vector elements is randomly scrambled. However, it is practically unfeasible

to determine a varying D which yield a FS-equivalent algorithm. Therefore, similarly

to the other methods considered throughout the paper, we set D to a constant threshold

higher than the global minimum: this turns SSDA into a FS-equivalent method.

2.2.2 Incremental Dissimilarity Approximations Algorithm

This subsection describes a novel signal domain method, referred to as Incremental

Dissimilarity Approximations (IDA), aimed at speeding-up full-search equivalent pat-

tern matching based on the Lp-norm. IDA relies on partitioning the template vector,

X, and each candidate vector, Yj, into a certain number of sub-vectors in order to de-

termine a succession of pruning conditions characterized by increasing tightness and

computational weight.

Given an M-dimensional vector, we establish a partition of the vector into r dis-

joint sub-vectors (not necessarily with the same number of components) by defining a

partition, P, of set S = {1, 2, . . .M} into r disjoint sub-sets:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P = {S 1, S 2 . . . S r}, r ∈ S
r⋃

u=1

S u = S

S u ∩ S v = φ,∀u � v, u, v ∈ {1, 2, . . . r}

The minimum number of sub-vectors is 1, that is the vector is actually not parti-

tioned into smaller sub-vectors, the maximum number is M, the vector partitioned into

M one-dimensional disjoint sub-vectors. Details concerning an efficient implementa-

tion of such partitioning will be discussed later.
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Given P, we define the partial Lp-norm of vectors X, Yj restrained to the sub-

vectors associated with S t ∈ P as:

||X||p,S t =
(∑

i∈S t

∣∣∣xi

∣∣∣p) 1
p (2.9)

||Yj||p,S t =
(∑

i∈S t

∣∣∣y j,i

∣∣∣p) 1
p (2.10)

and the partial Lp-dissimilarity between X and Yj restrained to the sub-vectors

associated with S t ∈ P as:

||X − Yj||pp,S t
=

∑
i∈S t

∣∣∣xi − y j,i

∣∣∣p (2.11)

Then, by virtue of the triangular inequality applied on corresponding sub-vectors

we establish the following r inequalities:

||X − Yj||pp,S t
≥ ∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p, t = 1, . . . r (2.12)

and summing up both members of the inequalities attains a lower bound of the function

measuring the dissimilarity between X and Yj :

||X − Yj||pp ≥
r∑

t=1

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p (2.13)

This inequality provides a sufficient condition that allows for pruning those can-

didates which cannot represent a matching position. In fact, if the lower-bound of the

dissimilarity function exceeds the threshold D that discriminates between matching and

non-matching candidates:

r∑
t=1

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p > D (2.14)

then from (2.13) and (2.14) Yj cannot be a matching pattern.

If (2.14) does not hold, rather than computing from scratch the term ||X − Yj||pp, we

can obtain another pruning condition based on a tighter lower-bound by considering a

sub-vectors pair and replacing in the left-hand term of (2.14) the difference between

the partial norms with the corresponding partial Lp-dissimilarity:

||X − Yj||pp,S i
+

r∑
t=1,t�i

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p > D (2.15)

Since the following relation holds as a consequence of the triangular inequality
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||X − Yj||pp ≥ ||X − Yj||pp,S i
+

r∑
t=1,t�i

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p ≥
r∑

t=1

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p (2.16)

the lower bound appearing at the left-hand side of (2.15) is tighter compared to that

of (2.14) and hence the associated pruning condition is potentially more effective in

skipping non-matching candidates.

Should condition (2.15) fail, the tightness of the lower-bounding function can be

further increased by taking another sub-vectors pair and, again, replacing the differ-

ence between the partial norms with the corresponding partial Lp-dissimilarity. This

process can be iteratively applied to all the r sub-vectors pairs resulting from P, so as to

determine up to r sufficient conditions that can be sequentially checked when matching

each candidate vector Yj. These r conditions are based on the following succession of

increasingly tighter lower-bounds:

r∑
t=1

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p ≤
≤ ||X − Yj||pp,S i

+

r∑
t=1,t�i

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p ≤
≤ ||X − Yj||pp,S i

+ ||X − Yj||pp,S k
+

r∑
t=1,t�i,k

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p≤ · · ·
· · · ≤

r∑
t=1,t�l

||X − Yj||pp,S t
+

∣∣∣||X||p,S l − ||Yj||p,S l

∣∣∣p (2.17)

Hence, throughout the matching process, each vector Yj undergoes checking a suc-

cession of sufficient conditions starting from (2.14), until either it is pruned or the

following last condition is reached:

r∑
t=1,t�l

||X − Yj||pp,S t
+

∣∣∣||X||p,S l − ||Yj||p,S l

∣∣∣p > D (2.18)

Should the last condition be not verified, the process ends up in computing the

dissimilarity ||X − Yj||pp by replacing
∣∣∣||X||p,S l − ||Yj||p,S l

∣∣∣p with ||X − Yj||pp,S l
in the left-

hand term of (2.18). Then, Yj is classified as a valid pattern if:

||X − Yj||pp < D (2.19)

The key point of the IDA algorithm is that it achieves computational savings since,

compared to ||X − Yj||pp,S t
, the term

∣∣∣||X||p,S t − ||Yj||p,S t

∣∣∣p can be computed much more
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rapidly, and independently from the sub-vectors cardinality, by calculating the partial

norms using well-known fast incremental calculation schemes [24, 91, 131]. Conse-

quently, since replacing differences of partial norms with the corresponding partial dis-

similarities yields tighter bounding functions, the tighter is the bounding function the

higher is its calculation time. Therefore, IDA establishes a succession of increasingly

tighter bounding functions, with the next computationally more demanding function

calculated only when required, i.e. when a candidate has not been pruned by the previ-

ous condition.

In order to efficiently compute the partial norms by means of incremental calcula-

tion schemes, the adopted partitioning scheme for X and Yj must follow certain rules of

regularity [119]. In particular, we propose to partition X and Yj according to a splitting

of template and image subwindows into r rectangular regions and calculate the partial

norms by the one-pass box-filtering method proposed in [91]. In our implementation, a

box-filtering function fills-in an array of partial norms by computing the norm of each

rectangular region of given dimensions belonging to the reference image. As described

in [91], this is done by exploiting a double recursion on the rows and columns of the

reference image, which requires only 4 elementary operations per image point inde-

pendently of the sizes of the rectangular region. Hence, to obtain the required partial

norms we need to run as many box-filters as the number of differently sized regions

corresponding to sub-vectors. In the particular case of r equally sized regions a single

box-filter is needed by IDA. This results in a memory footprint on the order of N, that

compares favorably with the PK technique which requires a memory footprint on the

order of N log M [57].

It is worth pointing out that the idea of partitioning the vectors in order to deploy

tighter bounding functions has been already proposed in other fields such as motion

estimation [43, 77] and vector quantization [103]. Nevertheless, our approach differs

from these proposals since it incorporates the idea of successively refining the bound-

ing functions by means of the partial dissimilarity concept and it is not based on a

multiresolution scheme.

2.2.3 Hybrid IDA algorithm

The main drawback of techniques such as IDA, PK and SSDA is data dependency, that

results in unpredictable response times. In fact, the computational efficiency of these

techniques relies on the ability of pruning mismatching candidates by means of the

adopted sufficient conditions, which in turn depends on the data. Conversely, with the

FS approach response time depends only on the image and pattern sizes and with the

FFT approach only on image size. Moreover, as it will be shown in subsection 2.2.4,

although IDA turns out generally faster than the FS and FFT approaches, in some cases
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it happens to be slower than the FFT approach.

We observed that the overall behavior of the IDA algorithm can be predicted with a

high degree of reliability by evaluating the pruning efficiency of its sufficient conditions

on a small subset of points uniformly distributed over the image. This task requires a

fixed and small computation time and it is particularly meaningful when images have

high spatial similarity within large neighborhoods, as occurs in most cases. Hence, in

those pattern matching instances where IDA is predicted to be not particularly effec-

tive, the matching process may be carried out using the faster between the FS and FFT

approach, this choice made upon image and template sizes. Such an approach requires

a small overhead with respect to the basic IDA algorithm and, as generally the predic-

tion turns out to be correct, it guarantees in most cases a deterministic upper bound on

response time.

Based on these considerations, we have devised the following variation to the basic

IDA algorithm, referred to as hybrid IDA (hIDA). Given a fixed and small subset of

points uniformly distributed over the image, hIDA evaluates the percentage of points

within this subset where the first sufficient condition (i.e. (2.14)) succeeds in pruning

the corresponding candidate. In case this percentage is higher than a certain threshold

(typically between 50%, for small images, and 85%, for bigger images) hIDA carries

out the matching process using the IDA algorithm, conversely it switches to the fastest

between the FS and FFT algorithms. As it will shown in subsection 2.2.4, thanks to

the computational efficiency and reliability of the prediction step, in most cases hIDA

guarantees that in problem instances favorable to the IDA approach the performance

is substantially equivalent to that of the basic IDA algorithm, while in those few cases

less favorable to IDA the performance is substantially equivalent to that of the faster

between FS and FFT.

2.2.4 Experimental results

This subsection is aimed at assessing the performance of IDA and hIDA by comparing

them with the FS algorithm as well as with the fast exhaustive algorithms presented

in Sec. 2.2.1, i.e. the PK, FFT-based and SSDA algorithms. The IDA, hIDA, FS

and SSDA algorithms were implemented in C. As for PK, we compiled and ran the

original authors’ C code (available at their web site [104]) which refers to the case of

the SSD function. With regards to the FFT-based algorithm, we used the very efficient

implementation (cvMatchTemplate function) provided by OpenCV library [26]. Hence,

we compared IDA and hIDA to the FS, PK and FFT algorithms in the case of the SSD

function (p = 2), and then IDA to the FS and SSDA algorithms in the case of the SAD

function (p = 1)1. The benchmarking platform was an AMD Athlon processor with 3

1hIDA has not been considered in the case p = 1 since it deploys the FFT.
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GB RAM running Windows XP.

Two different kinds of experiments were carried out. In Experiment 1 we indi-

vidually compare all the speed-up values yielded by the considered algorithms on an

indoor sequence of 3 images acquired by means of a digital camera. This dataset is

affected by real distortions since each image was taken at a slightly different pose with

respect to that where the templates were extracted from. Instead, Experiment 2 aims at

evaluating the global performance of the algorithms on a large dataset of 120 images,

with artificial noise at 5 different levels added on each image. In this latter experiment,

results are shown by means of statistical indicators.

In order to evaluate the performance of the algorithms with different image dimen-

sions, for both experiments 4 different scales S 1, · · · , S 4 of patterns and images have

been used:

• S1) Images: 160×120; Templates: 16×16 (M=256)

• S2) Images: 320×240; Templates: 32×32 (M=1024)

• S3) Images: 640×480; Templates: 64×64 (M=4096)

• S4) Images: 1280×960; Templates: 128×128 (M=16384)

This choice is suitable to both PK and FFT, since PK requires power of 2 dimen-

sions for the template size and the FFT optimally fits into power of 2 image sizes. Since

the proposed approach can be applied to any Lp-norm based dissimilarity measure, al-

though of limited practical relevance, at the end of this section we also compare IDA

to the FS in the case p = 3 for S 1.

Parameters of the algorithms For what concerns Experiment 1, for each pattern

matching instance the threshold D was set to two different values, referred to as th and

th2. The value th is chosen to be very close to the global minimum, i.e. to the value

||X − YW ||pp where YW is the best matching image subwindow.

In the case p = 2, since the authors’ code of the PK algorithm requires parameter

MMD (Maximum Mean Difference)

MMD =

√
S S Dmin

M
, (2.20)

so that the threshold D is computed as

D = MMD2 · M, (2.21)

we set th as
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Figure 2.1: The adopted partitioning schemes of vectors X and Yj as a function of param-

eter r in the case M = 64 × 64.

th =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
√
||X − YW ||22

M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ (2.22)

The second value, th2, was chosen to be less selective than th, i.e. 10% higher:

th2 = th · 1.10 (2.23)

In the case p = 1, the threshold values th and th2 were set as follows:

th = ||X − YW ||11 + 1 (2.24)

th2 = th · 1.05, (2.25)

with th2 tighter than in (2.23) in order to compensate for the reduced dynamic of the

dissimilarity function. Instead, in Experiment 2 only the case D = th was considered.

The parameters of the algorithms were kept constant throughout all experiments.

In particular, for what means the PK algorithm, the number of Walsh-Hadamard ker-

nels was set to the default value suggested by the authors in their code. As for IDA and

hIDA, we partitioned templates and image subwindows into r equally sized sub-vectors

of adjacent elements, so that, as pointed out in Section 2.2.2, only a single incremen-

tal calculation process is required by the algorithms. With such a choice r is the only

parameter of the IDA algorithm. In order to further limit the degrees of freedom of the
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Figure 2.2: Experiment 1: the 5 templates (top, left) and the 3 test images.

adopted partitioning scheme, we constrained r to be a power of 2 ranging from 2 up

to the template side (i.e. 16, 32, 64, 128 in both experiments), as described graphically

in Fig. 2.1 in the case of a 64 × 64 pixels template. In both experiments the results

yielded by the IDA algorithm with the choice of parameter r yielding the best perfor-

mance are referred to as IDA opt. We show also the results yielded by IDA and hIDA

using some given r values which can be regarded as generally good default choices

for the considered template sizes. In particular, parameter r was set to {4, 4, 8, 8} for

template side equal respectively to {16, 32, 64, 128}, as in most cases the IDA approach

is more efficient if a higher r is used with bigger templates. For what concerns the

hIDA algorithm, it requires the setting of an additional parameter, i.e. the threshold on

the percentage of candidates pruned within the prediction step that determines whether

the search process is carried out using IDA or the fastest between the FS and the FFT.

This parameter was set to 50%, 50%, 70%, 85% for template side equal respectively to

{16, 32, 64, 128}. The prediction step analyses a subset of points obtained by selecting

one point out of 20 along both the directions within the search area.
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Experiment 1 In this experiment we first extracted 5 templates from an image, then

we took 3 other shots of the same scene from slightly different positions (templates

and images are shown in Fig. 2.2). All templates and images were scaled according to

scales S 1, S 2, S 3, S 4. Hence, for each of the 4 scales we obtained 5 templates and 3

images, resulting overall in 60 pattern matching instances. Hereinafter, each instance

will be denoted by the pair test image number- template number (e.g. the pair 1 − 2

denotes template 2 matched into test image 1). Experimental results are given out as

ratios of execution times (i.e. speed-ups) measured on the benchmarking platform.

Fig. 2.3 and Fig. 2.4 report the speed-ups yielded by IDA, hIDA, PK and FFT

with respect to the FS SSD-based algorithm setting respectively D = th and D = th2.

For each pattern matching instance of each scale the first two bars concern IDA: the

leftmost regards the value of parameter r providing the highest speed-up (i.e. IDA

opt), the other, tagged as IDA r, r ∈ {4, 8}, the default value of r. Then, the third bar,

tagged as hIDA r, r ∈ {4, 8}, regards hIDA, with r set to the same default value as IDA.

Finally, the last 2 bars show the speed-up yielded respectively by the PK and FFT-based

algorithm.

As far as Fig. 2.3 is concerned, the IDA algorithm, using the optimal r as well as

the default r, turns out to be very effective in most instances of S 1, S 2 and S 3. As a

matter of fact, with these scales IDA opt and IDA r are both always much faster than

the FFT-based algorithm. Furthermore, IDA opt does not outperform PK in only 5

instances out of 45 (i.e. 1 − 1, 2 − 1 at S 1 and 1 − 1, 3 − 1, 3 − 4 at S 2) while IDA r in

only 6 instances out of 45 (the previous 5 plus 3 − 5 at S 1).

For what concerns S 4, though the computational efficiency of the FFT algorithm

is very high due to the image and template sizes (speed-up=20.5), IDA algorithms

run notably faster in 9 instances out of 15 (reaching a maximum speed-up as high as

184.7 in instance 2 − 1). As for hIDA, it is almost as fast as IDA in the former 9

instances and provides substantially the same speed-up as the FFT-based algorithm in

the remaining 6. Hence, at this scale the effectiveness of the prediction step is clearly

shown, since hIDA allows for deploying the template matching algorithm more suited

to the data by correctly selecting the faster between IDA and the FFT. This is also

demonstrated at S 1, S 2 and S 3, where IDA clearly outperforms the FFT and hIDA

provides substantially the same computational savings as IDA. It is also interesting to

note that at S 4 the average speed-up yielded by hIDA is 77.8, with a lowest speed-up

equal to 20.0, which is very similar to the constant speed-up yielded by the FFT. As a

result of these considerations, it turns out that IDA is particularly suited to small size

images, while hIDA provides the best overall performance.

Moreover, for what concerns a comparison between IDA opt and IDA r, it can

be noticed that the choice of a default r in most instances does not affect notably the



16 CHAPTER 2

0

2

4

6

8

10

12

'1-1' '1-2' '1-3' '1-4' '1-5' '2-1' '2-2' '2-3' '2-4' '2-5' '3-1' '3-2' '3-3' '3-4' '3-5' 

 IDA opt th
 IDA 4 th
 hIDA 4 th
 PK th
 FFT th

0

5

10

15

20

25

30

'1-1' '1-2' '1-3' '1-4' '1-5' '2-1' '2-2' '2-3' '2-4' '2-5' '3-1' '3-2' '3-3' '3-4' '3-5' 

 IDA opt th
 IDA 4 th
 hIDA 4 th
 PK th
 FFT th

0

10

20

30

40

50

60

70

80

90

'1-1' '1-2' '1-3' '1-4' '1-5' '2-1' '2-2' '2-3' '2-4' '2-5' '3-1' '3-2' '3-3' '3-4' '3-5' 

 IDA opt th
 IDA 8 th
 hIDA 8 th
 PK th
 FFT th

0

20

40

60

80

100

120

140

160

180

200

'1-1' '1-2' '1-3' '1-4' '1-5' '2-1' '2-2' '2-3' '2-4' '2-5' '3-1' '3-2' '3-3' '3-4' '3-5' 

 IDA opt th
 IDA 8 th
 hIDA 8 th
 PK th
 FFT th

S3

S4

S1

S2

Figure 2.3: Experiment 1: measured speed-ups in the SSD case, D = th.
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Figure 2.4: Experiment 1: measured speed-ups in the SSD case, D = th2.
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Figure 2.5: Experiment 1: measured speed-ups in the SAD case.
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performance compared to the optimal choice, the speed-ups yielded by IDA r being

generally very close to those of IDA opt.

As regards the PK algorithm, at S 1 and S 2 it turns out slower than IDA and hIDA

in most instances, but always notably faster than the FFT algorithm. At S 3 and S 4 PK

is significantly outperformed by FFT in most instances, and turns out always slower

than IDA and hIDA.

The results reported in Fig. 2.4 substantially confirm the outcomes of the previous

comparative analysis. Focusing our attention on S 4, the hIDA algorithm also with

threshold value th2 is able to yield in the best cases speed-ups comparable to IDA and

in the worst cases speed-ups similar to the FFT. Furthermore also in Fig. 2.4 it can be

noticed that at S 3 and S 4 PK is always slower that IDA (30 out of 30) and in most

instances slower that the FFT (29 out of 30).

Finally, Fig. 2.5 shows the speed-ups yielded by IDA and SSDA with respect to the

FS SAD-based algorithm (i.e. p = 1) with D = th and D = th2. For each instance of

this experiment the first and third bars refer to IDA with the optimal value of parameter

r (respectively for D = th and D = th2), the second and fourth bars to IDA with

the default choice of r (respectively for D = th and D = th2). The last two bars

refer to SSDA, respectively for D = th and D = th2. The Figure shows that IDA

is always much faster than the FS algorithm, with speed-ups ranging from about 5

(worst case) up to more than 500 (best case). It is worth pointing out the ranges of

the measured speed-ups with the less favorable parameter settings (i.e. default r and

less selective threshold D = th2, fourth bar of each instance): from 5.2 to 34.9 at S 1,

from 8.4 to 116.6 at S 2, from 10.4 to 226.7 at S 3 and from 9.0 to 346.4 at S 4. For

what means SSDA, the reported speed-ups are always dramatically lower than those

yielded by IDA algorithms, with the algorithm being sometimes even slower than the

FS. This has to be ascribed to the significant number of test operations (as high as

M) performed by SSDA, which slow down the method particularly at large scales.

Furthermore, this is also due to the fact that, as explained in Section 2.2.1, in order to

guarantee the exhaustiveness of the search the pruning threshold for SSDA must be set

to a constant value higher than the global minimum (i.e. th or th2), while this algorithm

was originally conceived to perform best with a varying D much lower than the global

minimum (i.e. in a non-exhaustive scenario).

Experiment 2 Experiment 2 was aimed at assessing the performance of the exam-

ined algorithms on a larger dataset. This experiment includes a total of 120 images cho-

sen between 3 databases: MIT [29], medical [30] and remote sensing [31]. The MIT

database concerns mainly indoor, urban and natural environments, plus some object

categories such as cars and fruits. The two other databases are composed respectively
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Figure 2.6: 5 images of the dataset used in Experiment 2. Each row shows the noise-free

image (leftmost) where templates were extracted from, together with the 5 corresponding

noisy images.

of medical (radiographs) and remote sensing (Landsat satellite) images. All images

have been subdivided into 4 groups of 30 images, each group being characterized by

a different scale and with scales being the same as in Experiment 1 (i.e. S 1, · · · , S 4).

For each image 10 templates were randomly selected among those showing a standard

deviation of pixel intensities higher than a threshold (i.e. 45). Then, 5 different levels

of i.i.d. zero-mean Gaussian noise, referred to as N1, · · · ,N5, were added to each im-

age. The 5 noise levels range from very low noise to very high noise, the variances of

the Gaussian distribution being respectively 1.3, 2.6, 5.1, 7.7, 10.2 2. Hence, overall

each algorithm was tested against 6000 pattern matching instances. Figure 2.6 shows

5 images of the dataset. For each of them, the 5 corresponding images with increasing

(from left to right) noise levels are also shown.

Due to the large size of the dataset, for each scale and noise level we provide a

global indication (in terms of mean μ and standard deviationσ) of the measured speed-

ups with respect to the FS algorithm on the same benchmark platform as in Experiment

1. Moreover, in order to better assess the behavior of the algorithms, we show two ad-

ditional descriptors that allow for measuring the asymmetry of the distribution. These

descriptors, referred to asσ− andσ+, represent the square root of the mean square error

2Corresponding to 0.005, 0.01, 0.02, 0.03, 0.04 on normalized pixel intensities ranging within [0, 1].



FAST AND EXHAUSTIVE PATTERN MATCHING 21

0

1

2

3

4

5

6

7

8

 N1 
 N2 
 N3 
 N4 
 N5 

FFTIDAopt IDA PKhIDA

0

5

10

15

20

25

 N1 
 N2 
 N3 
 N4 
 N5 

0

10

20

30

40

50

60

 N1 
 N2 
 N3 
 N4 
 N5 

0

20

40

60

80

100

120

140

 N1 
 N2 
 N3 
 N4 
 N5 

S1

S2

S3

S4

FFTIDAopt IDA PKhIDA

FFTIDAopt IDA PKhIDA

FFTIDAopt IDA PKhIDA

Figure 2.7: Experiment 2: speed-ups yielded by the exhaustive techniques vs. FS algo-

rithm at the 4 scales, SSD case (p = 2).
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with respect to μ of the population - respectively - below and above μ.

Fig. 2.7 reports for p = 2 and D = th the performance of IDA opt, IDA, hIDA, PK

and FFT. The figure shows that at S 1 and S 2 IDA, hIDA and PK yield, substantially,

comparable speed-ups. The algorithms are always notably faster than the FFT although

their efficiency decreases significantly with increasing noise. Nevertheless, on average,

IDA opt, IDA and hIDA turn out to be more robust to noise than PK. Furthermore, it is

worth pointing out that at S 2 IDA opt and IDA always provide mean speed-ups higher

than PK. Moreover, in both scales IDA opt and IDA are always slightly more efficient

than hIDA. For what concerns S 3, IDA opt, IDA, hIDA always yield much higher

speed-ups than PK, which in turn is clearly outperformed also by the FFT. Conversely,

our algorithms always perform better than the FFT. However, though all data dependent

algorithms are significantly affected by noise, our algorithms, according to the larger

dynamic of the mean speed-up, show a more substantial decrease of the computational

efficiency with increasing noise. The comparison between our algorithms indicates

that hIDA tend to perform slightly better at higher noise levels. As for S 4, IDA opt and

IDA always dramatically outperform PK and, at noise levels N1,N2,N3, they also result

much faster than FFT. However, at higher noise levels (e.g. N5 for IDA opt, N4 and

N5 for IDA) the FFT turns out more effective. Nevertheless, it is worth observing that

hIDA always outperforms PK and the FFT, resulting the best choice for large images.

Overall, the results of Experiment 2 confirm the trend inferable from Experiment

1: at S 1 IDA and PK perform best, at S 2 IDA is the best choice, at S 3 IDA and hIDA

are comparable and yield the best results, at S 4 hIDA is the best performing algorithm.

The standard deviation, σ, reported in Fig. 2.7 confirms on this larger dataset the

notable data dependency of IDA opt, IDA, hIDA and PK highlighted in experiment 1.

Although for these algorithms σ is significantly high at high noise levels, it is worth

observing that in all such cases the distribution of the speed-up is clearly asymmetric,

with the right tail more pronounced (that is, σ+ is sensibly greater than σ−). Hence, the

values which differ most from the mean occur for speed-ups above μ, while speed-ups

lower than the mean show less dispersion with regards to μ.

For what concerns p = 1, Fig. 2.8 reports the speed-ups yielded by IDA opt, IDA

and SSDA with respect to the FS SAD-based algorithm with D = th. Similarly to

Experiment 1, at each scale IDA opt and IDA dramatically outperform SSDA and FS,

yielding always substantial speed-ups, thus confirming the efficiency of the proposed

approach on this larger dataset. Nevertheless, it is worth observing that the speed-

ups are significantly affected by noise. The figure also confirms the significant data

dependency of IDA opt, IDA and SSDA. Similarly to p = 2, the distributions of the

speed-up values are clearly asymmetric and right-tailed, this behavior getting more

pronounced as the noise level increases.
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Table 2.1: Speed-ups yielded by IDA vs. FS in the case p = 3, measured on the images of

Experiment 2 at S 1.

S N IDA opt IDA 4

μ σ μ σ

S1

N1 5.2 0.8 5.0 0.8

N2 4.6 0.9 4.4 0.9

N3 3.9 0.9 3.7 1.0

N4 3.4 0.9 3.2 0.9

N5 3.0 0.9 2.9 0.9

Experiment with p > 2 We report here the results of an experiment addressing

the case p = 3. In particular, Table 2.1 shows the mean and standard deviation of the

speed-ups yielded by IDA opt and IDA 4 with regards to the FS algorithm on the dataset

used in experiment 2 at S 1. As it can be noted, also in this case both the considered

algorithms run significantly faster than the FS approach.

2.3 Fast exhaustive block matching

Block matching is a common approach adopted in computer vision, in particular to

carry out motion estimation for video compression, whose aim is to reduce temporal

redundancy in video sequences. Let {Ir, It} be two consecutive frames of a video se-

quence, and let Ir be subdivided into non-overlapping blocks, i.e. subwindows of size

N × N. Block matching aims at finding for each block of frame Ir the most similar

block in frame It. Usually each block is not sought on the whole frame, but on a search

area centered at the position of the block in frame Ir.

Similarly to the FS approach for pattern matching, also the FS approach for block

matching relies on comparing each block of Ir with all possible candidate blocks be-

longing to the corresponding search area in It by computing a distance between blocks.

The most commonly used distance for this scope is the SAD. Once the distances be-

tween the reference block and the candidate blocks have been computed, the best

matching block is selected as the one corresponding to the minimum distance value

found within the search area. Since this approach turns out to be computationally ex-

pensive, many techniques have been proposed in the last two decades with the aim of

accelerating the FS (see [63] for a survey), that, as it is the case of pattern matching,

can be either exhaustive or non-exhaustive.Non-exhaustive techniques [82, 96] usually

reduce the search area in order to save computations, hence they don’t guarantee the

requirement of finding, for each block, the candidate block at the globally minimum
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distance within the search area. As a result, they tend to increase the distortion of the

compressed video signal. Conversely, exhaustive techniques aim at accelerating the FS

by selecting rapidly and safely many non-matching candidate blocks, so as to discard

them without the need of computing the distance function. Analogously to the pattern

matching case, non-matching candidate blocks are usually selected by means of lower

bounds of the distance function [43, 77, 83].

This section proposes experimental results concerning the extension to block match-

ing of the IDA technique proposed for pattern matching. In particular, as for the new

approach, the same succession of increasingly tighter lower bounding functions of the

SAD measure is deployed in order to rapidly detect mismatching candidates. The

partitioning parameter, r, turns out to be a parameter of the proposed technique. In-

creasing r would mean having lower bounding functions which better approximate the

distance term, but would also need more computations for their calculations. As for

block matching the size of the blocks is typically N = {8, 16}, we experimentally found

out that in most cases the best results are obtained by choosing r equal to {4, 8}.
It is important to point out that the performances of this method are affected by

the initial value of the minimum found so far, Dm. In fact, if Dm is initialized with a

value close to the global minimum of the distance function to be found in the search

area, the sufficient conditions embodied in the proposed approach have good chances to

discard a high number of non-optimal candidate blocks. Conversely, if Dm is initialized

e.g. to the maximum value which the distance can assume, no blocks can be discarded

within the initial positions until a local minimum is found. For this reason, a simple but

effective improvement can be obtained by initializing Dm to Dm,0, that is the distance

value corresponding to the candidate block at offset (u, v) = (0, 0). We also propose

an alternative approach, that is to initialize Dm to the global minimum corresponding

to the best matching offset position found at the previous frame for the same block,

Dm,mp. In order to deploy this, the technique has to keep trace of the motion flow of

the previous frame. This approach can be seen as a very basic motion predictor, as it

assumes as most probable motion offset that found in the previous frame.

It is important to note that, although other optimal techniques deploying lower

bounding functions obtained by summations over partitioned blocks have been pro-

posed [18, 43, 77], only our technique exploits the concept of partial distance in order

to further refine the bounding functions.

2.3.1 Experimental results

In this subsection some experimental results are presented which compare the proposed

block matching technique with the FS. The distance used is the SAD (i.e. p = 1), the

block size is 16× 16 (i.e. N = 16) and the search is performed on both directions on an
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Table 2.2: Speed-ups of the proposed algorithm vs. FS, r = 4

Sequence Dm,0 Dm,mp

Claire 12.9 13.0

Miss America 2.1 2.0

Salesman 12.6 13.4

Flower garden 2.9 7.3

Table tennis 2.4 3.0

Grandmother 5.3 4.9

Mr. Chest 12.4 11.9

Trevor 5.9 5.8

Surfside 3.9 3.9

Football 5.2 5.3

Average 6.6 7.1

Table 2.3: Speed-ups (ratios of operations) of the proposed algorithm vs. FS, r = 8

Sequence Dm,0 Dm,mp

Claire 12.3 12.4

Miss America 2.0 2.0

Salesman 11.5 12.5

Flower garden 3.9 7.4

Table tennis 2.4 3.2

Grandmother 4.8 4.6

Mr. Chest 11.9 11.7

Trevor 5.5 5.6

Surfside 3.6 3.7

Football 5.0 5.1

Average 6.3 6.8

offset equal to [−16,+16], hence M = 32. For what means the proposed technique, we

show the results obtained by choosing r = {4, 8}, which, as said before, turns out to be

the best choice in most cases. The testing sequences used for the comparison are typical

video sequences used for benchmarking motion estimation algorithms All algorithms

have been implemented in C on a Linux workstation with a 1.5 GHz Pentium M CPU.

Tables 2.2 and 2.3 show the speed-ups in terms of ratios of measured execution

time of the proposed algorithm versus the FS, the former referring to r = 4, the latter

to r = 8. In both tables, the second column (Dm,0) refers to the initialization of Dm as
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Table 2.4: Speed-ups (ratios of operations) of the proposed algorithm vs. FS, r = 4

Dm,0 Dm,mp

Sequence If +/− Abs If +/− Abs

Claire 0.8 21.5 23.9 0.8 21.4 23.8

Miss America 0.4 2.6 2.7 0.4 2.7 2.8

Salesman 0.8 23.2 26.4 0.8 27.0 31.2

Flower garden 0.5 3.7 3.9 0.6 11.6 12.7

Table tennis 0.4 3.0 3.1 0.4 4.2 4.4

Grandmother 0.6 6.8 7.2 0.5 6.7 7.0

Mr. Chest 0.8 21.7 25.0 0.7 21.7 25.0

Trevor 0.7 8.3 8.8 0.6 8.5 9.1

Surfside 0.5 4.7 4.9 0.5 4.7 5.0

Football 0.6 7.8 8.4 0.5 7.8 8.3

Table 2.5: Speed-ups in terms of reduction of N. elementar Ops, proposed algorithm vs.

FS, r = 8

Dm,0 Dm,mp

Sequence If +/− Abs If +/− Abs

Claire 0.8 25.3 30.1 0.7 25.2 29.9

Miss America 0.3 2.8 3.0 0.3 2.9 3.1

Salesman 0.8 28.8 36.0 0.8 32.1 41.2

Flower garden 0.4 4.3 4.6 0.6 15.2 18.1

Table tennis 0.3 3.6 3.9 0.4 5.6 6.2

Grandmother 0.5 7.2 7.9 0.5 7.1 7.7

Mr. Chest 0.8 29.9 39.2 0.7 29.9 39.2

Trevor 0.6 9.7 10.9 0.5 10.0 11.3

Surfside 0.4 5.1 5.6 0.4 5.2 5.6

Football 0.5 9.5 10.8 0.5 9.6 10.9

the distance corresponding to candidate block at offset (0, 0), while the third column

(Dm,mp) refers to the initialization of Dm by means of the motion predictor as explained

in Section 2.3. As it can be inferred from the tables, the proposed technique can speed-

up notably the FS along the whole dataset. In the Dm = Dm,0, r = 4 case the speed-ups

range from 2.1 to 12.9, in the Dm = Dm,mp, r = 4 case they range from 2.0 to 13.4.

Similarly, in the Dm = Dm,0, r = 8 case the speed-ups range from 2.0 to 12.3, in the

Dm = Dm,mp, r = 8 case they range from 2.0 to 12.5. For what means the method
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for initializing Dm, the motion predictor approach seems to bring more benefits, as it

yields to almost the same results as the other approach in all cases except for the Flower

garden sequence, where the speed-up obtained is more than doubled.

Table 2.4 and 2.5 show the speed-ups in terms of ratios of number of elementary

operations of the proposed algorithm versus the FS and, as previously, the former refers

to r = 4, the latter to r = 8. The elementary operations considered refer to the high-

level code, and are subdivided into three groups: ”If” for branch instructions, ”+/-” for

additions and subtractions, ”Abs” for absolute values. Similarly to Table 2.2, columns

2, 3, 4 (Dm,0) refers to the initialization of Dm as the distance corresponding to candidate

block at offset (0, 0), while columns 5, 6, 7 (Dm,mp) refers to the initialization of Dm by

means of the motion predictor. As it can be seen, the proposed technique allows for

a significant reduction in terms of operations for what regards additions, subtractions

and absolute values. Obviously, the number of branch operations is always increased

compared to the FS, due to the high number of tests performed when applying the

sufficient conditions for discarding candidate blocks. Nevertheless, it is worth noting

that for all the tested video sequences, the percentage of branch instructions never

accounts for more than 0.13% of the total number of operations performed by the FS.

2.4 Fast exhaustive template matching based on the NCC

A common alternative formulation of the pattern matching problem deals with locating

the most similar instance of a template within a reference image. For the sake of

clarity, hereinafter we will refer to this formulation as template matching. It is worth

pointing out that the IDA technique can be straightforwardly modified to deal with

template matching. In such a case, the term D is not a constant but represents the

best similarity score found so far. In particular, D might be conveniently and rapidly

initialized by selecting an initial guess for the best matching candidate through a fast

non-exhaustive algorithm [149], [54]. Then, for each candidate Yj, the algorithm is the

same as described previously, the only difference being that if condition (2.19) holds

then ||X − Yj||pp is assigned to D (i.e. the best score found so far is updated).

This Section proposes a novel algorithm, referred to as EBC (Enhanced Bounded

Correlation), that significantly reduces the number of computations required to carry

out template matching based on Normalized Cross Correlation (NCC) and yields ex-

actly the same result as the FS algorithm. Analogously to IDA, the algorithm relies on

the concept of bounding the matching function: finding an efficiently computable upper

bound of the NCC rapidly prunes those candidates that cannot provide a better NCC

score with respect to the current best match. In this framework, we apply a succession

of increasingly tighter upper bounding functions based on Cauchy-Schwarz inequal-
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ity. Moreover, by including an on-line parameter prediction step into EBC we obtain

a parameter free algorithm that in most cases affords computational advantages very

similar to those attainable by optimal off-line parameter tuning. Experimental results

show that the proposed algorithm can significantly accelerate a Full-Search equivalent

template matching process and outperforms state-of-the-art methods.

2.4.1 Previous Work

As far as template matching based on the NCC function is concerned, it is well known

that a faster exhaustive algorithm can be obtained by computing the correlation in the

frequency domain by means of the FFT (e.g. see [81], [65]). Given some conditions

on the dimensions of template and image, this approach yields notable computational

savings with respect to the FS in the signal domain. Moreover, we have shown that

NCC-based template matching can also be accelerated by deploying sufficient condi-

tions to skip mismatching image positions based on properly defined upper bounding

functions. This algorithm, known as Bounded Partial Correlation (BPC), requires cal-

culation of a given portion of the cross-correlation term and bounds the remaining

portion by means of a proper inequality. BPC initial formulation was based on Jensen

inequality [35]. In [36] we subsequently proposed an improved BPC formulation that

deploys Cauchy-Schwarz inequality.

The main novelty of EBC with respect to BPC algorithms [35], [36] consists in the

use of a new and more effective bounding strategy based on the deployment of a suc-

cession of increasingly tighter upper bounds. Thanks to the new bounding strategy and

unlike BPC algorithms, EBC can skip many unmatching positions without calculating

any portion of the cross-correlation term. Moreover, the bounding functions includ-

ing a cross-correlation term are guaranteed to be tighter than those deployed by BPC

algorithms.

2.4.2 Notation

Let T be a template of size M × N, and I the image under examination. NCC-based

template matching locates T into I by searching for the maximum of the NCC function.

Denoting the current template position as (x, y) in the image and the current image

subwindow as Ic(x, y), the NCC function can be written as:

η (x, y) =
ψ (x, y)

||Ic(x, y)|| · ||T || (2.26)

where the numerator, ψ(x, y), represents the cross correlation between the template
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and the current image subwindow

ψ (x, y) =
N∑
j=1

M∑
i=1

I (x + i, y + j) · T (i, j) (2.27)

while the terms at the denominator represent the �2-norm of the current image sub-

window

||Ic(x, y)|| =
√√√ N∑

j=1

M∑
i=1

I2 (x + i, y + j) (2.28)

and the �2-norm of the template

||T || =
√√√ N∑

j=1

M∑
i=1

T 2 (i, j) (2.29)

The value of the NCC function is between −1 and 1; however, when dealing with

images, it ranges between 0 and 1 since pixels always have positive values.

Computing ψ (x, y) turns out to be the bottleneck in the evaluation of η (x, y). In

fact, ||Ic(x, y)|| can be obtained very efficiently using incremental calculation schemes

(i.e. [91], [24]) while ||T || can be computed once at initialisation time.

2.4.3 Related Work

BPC techniques ( [35], [36]) rely on appropriately chosen upper-bounding functions of

the numerator of the NCC. Let us assume that a function β(x, y) exists such that β(x, y)

is an upper-bound of ψ(x, y):

β(x, y) ≥ ψ(x, y) (2.30)

then by normalising β(x, y) we obtain an upper-bound of the NCC:

β(x, y)
||Ic(x, y)|| · ||T || ≥

ψ (x, y)
||Ic(x, y)|| · ||T || = η(x, y) (2.31)

Indicating with ηM the maximum correlation found so far, if the following inequal-

ity holds at image point (x, y):
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β(x, y)
||Ic(x, y)|| · ||T || < ηM (2.32)

then the matching process can proceed with the next position without calculating

η(x, y), for the point is guaranteed not to correspond to the new correlation maximum.

Hence (2.32) is a sufficient condition for skipping points that cannot improve the cur-

rent best degree of matching without carrying out the computation of the actual cross

correlation score. Conversely, if (2.32) holds then it is necessary to compute η(x, y) and

check the condition:

η(x, y) ≥ ηM (2.33)

It is intrinsic to this approach that using bounding functions more closely approx-

imating the cross correlation (i.e. tighter bounds) increases the chance of skipping a

higher number of image points, thus resulting in a more efficient algorithm. As far

as BPC is concerned, β(x, y) was obtained initially based on Jensen inequality [35].

Subsequently, a tighter bound was derived in [36] by deploying the Cauchy-Schwarz

inequality as follows.

Given two p-dimensional vectors a and b, the Cauchy-Schwarz inequality can be

written as

p∑
k=1

ak · bk ≤
√√

p∑
k=1

a2
k ·

√√
p∑

k=1

b2
k (2.34)

Applying (2.34) to vectors T and Ic(x, y) yields

β(x, y) = ||Ic(x, y)|| · ||T || ≥ ψ(x, y) (2.35)

Unfortunately, plugging (2.35) into (2.32) does not yield a useful sufficient con-

dition since (2.32) turns out to be always false. However, as described in [36], an

effective sufficient condition can be obtained by computing only a given portion of

the actual correlation function referred to as partial correlation (i.e. the correlation

associated with rows [1 . . .n], 1 < n < N), and bounding the residual portion of the

correlation function with the term derived from the application of Cauchy-Schwarz

inequality:

β(x, y) =
n∑

j=1

M∑
i=1

I (x + i, y + j) · T (i, j) +

√√√ N∑
j=n+1

M∑
i=1

I2 (x + i, y + j) ·
√√√ N∑

j=n+1

M∑
i=1

T 2 (i, j) (2.36)
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Hereinafter we will describe the EBC approach, which yields higher computational

savings than BPC thanks to the use of more effective sufficient conditions that in most

cases do not require computation of the partial correlation term at all.

2.4.4 Mathematical Framework

This section establishes the mathematical properties that lead to determination of the

EBC algorithm.

Lemma Let a, b ∈ Rp and S = {1, 2, · · · , p}. Hence, ∀S 1, S 2 |
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S 1 ∪ S 2 = S

S 1 ∩ S 2 = φ

then the following inequality holds:

√∑
k∈S 1

a2
k ·

√∑
k∈S 1

b2
k +

√∑
k∈S 2

a2
k ·

√∑
k∈S 2

b2
k ≤

√∑
k∈S

a2
k ·

√∑
k∈S

b2
k (2.37)

Proof. See Appendix B.

�

Property I Let a, b ∈ Rp and S = {1, 2, · · · , p}. Hence, ∀r ∈ {1, · · · , p} |
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S 1 ∪ S 2 · · · ∪ S r = S

S i ∩ S j = φ,∀i � j, i, j ∈ {1 · · · r}

then the following inequalities hold:

∑
k∈S

ak · bk ≤
r∑

t=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√∑

k∈S t

a2
k ·

√∑
k∈S t

b2
k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
≤

√∑
k∈S

a2
k ·

√∑
k∈S

b2
k (2.38)

Proof. The left inequality can be easily derived from the application of the Cauchy-

Schwarz inequality to each sub-vector pair defined by subsets S t, t ∈ {1 · · · r}. The

right inequality can be obtained directly from successive applications of the previous
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lemma.

�

Property I states that an upper-bound of ψ, the cross correlation between vectors

a, b, can be obtained by applying r-times the Cauchy-Schwarz inequality to the sub-

vector pairs defined by subsets S t, and that this bound is tighter than the upper bound

attainable by applying the inequality to the original vectors a, b.

Property II Let a, b ∈ Rp and S = {1, 2, · · · , p}. Hence, ∀r ∈ {1, · · · , p} |
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S 1 ∪ S 2 · · · ∪ S r = S

S i ∩ S j = φ,∀i � j, i, j ∈ {1 · · · r}

then the following inequalities hold:

∑
k∈S

ak · bk ≤
∑
k∈S i

ak · bk +

r∑
t=1,t�i

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√∑

k∈S t

a2
k ·

√∑
k∈S t

b2
k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
≤

r∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√∑

k∈S t

a2
k ·

√∑
k∈S t

b2
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.39)

Proof. Similar to Property I, the left inequality derives from the application of the

Cauchy-Schwarz inequality to each sub-vector pair defined by subsets S t, t ∈ {1 · · · r}−
{i}. The right inequality is easily proved by applying the Cauchy-Schwarz inequality to

the sub-vector pair defined by subset S i.

�

Property II tells us that given an upper bound of ψ obtained by partitioning a, b

into r sub-vectors as defined in Property I, a tighter upper bound can be obtained by

replacing the product-of-norms term related to the sub-vector pair defined by S i with

the corresponding cross correlation term. Successive applications of Property II yield

increasingly tighter upper-bounding functions of ψ, each step of the succession requir-

ing the computation of a new cross correlation term associated with a sub-vector pair

so as to replace the corresponding product-of-norms term.

2.4.5 Core EBC algorithm

This subsection describes the core EBC algorithm, which relies on the mathematical

properties presented in section 2.4.4. First of all, both the template T and the current
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image subwindow Ic(x, y) are seen as vectors belonging to a M×N−dimensional space

and Fig. 2.9 shows a generic partitioning of such vectors into r sub-vectors, as required

by Properties I and II. In general a sub-vector can consist of disjoint sets of pixels, as

is the case of sub-vector 4 in Fig. 2.9.

To deploy the properties of section 2.4.4 within the bounded correlation framework

outlined in section 2.4.3, we define a partitioning of vectors T , Ic(x, y) and apply Prop-

erty I at first, to obtain an initial upper bound β(x, y) at each image position (x, y) and

check the associated skipping condition (2.32) that does not require calculation of any

partial correlation term. If such initial condition is not verified, we then apply Prop-

erty II in successive steps. At each step the product-of-norms term of a sub-vector pair

is replaced by the corresponding cross-correlation term, to obtain a tighter bounding

function and associated skipping condition (2.32).

For reasons of computational efficiency, in a practical deployment of the EBC prin-

ciple it is preferable to adopt a kind of “regular” partitioning scheme to be applied to

T and Ic(x, y). In our implementation T and Ic(x, y) are partitioned into sub-vectors

made out of successive rows, as shown in Fig. 2.10. All sub-vectors are chosen to have

the same number of rows, n, except for the last one (e.g. in Fig. 2.10, sub-vector r).

Hence, with our partitioning scheme the first r − 1 sub-vectors have M × n elements

and the last one has M × (N − (r − 1) · n) elements. In fact, EBC requires evaluation of

the norms of all the sub-vectors resulting from the partitioning of T and Ic(x, y). Like

||T || and ||Ic(x, y)||, the former norms can be computed once for all at initialisation time,

while the latter can be calculated efficiently at run-time by means of incremental tech-

niques. In particular, we adopted the one-pass box-filtering method proposed in [91].

In our implementation, a box-filtering function fills in an array of norms by comput-

ing the norm of each rectangular window of given dimensions belonging to image I.

As described in [91], this is done by exploiting a double recursion on the rows and

columns of image array I, which requires only four elementary operations per image

point irrespective of the size of the rectangular window. Hence, it is readily inferred

that to obtain the required sub-vector norms we need to run as many box-filters as

the number of differently shaped rectangular windows corresponding to sub-vectors.

Therefore, the choice of using two different shapes of sub-vectors allows us to run only

two distinct box-filters, thereby also requiring a relatively small memory footprint (i.e.

twice the image size). In the particular case n = N/r, all the r sub-vectors have the

same shape and the computational efficiency is even higher, with the need for only one

box-filter instance.

Having shown EBC basic principles and the partitioning scheme adopted, we pro-

ceed herein with a detailed description of the core algorithm.
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Figure 2.9: Generic partitioning of template and current image subwindow.

Figure 2.10: Partitioning scheme adopted in our current EBC implementation.

The initial upper bounding function based on Property I can be expressed as:

βr(x, y)|N1 =
r−1∑
t=1

√√√ t·n∑
j=(t−1)·n+1

M∑
i=1

I2(x + i, y + j) ·
√√√ t·n∑

j=(t−1)·n+1

M∑
i=1

T 2(i, j)+

+

√√√ N∑
j=(r−1)·n+1

M∑
i=1

I2(x + i, y + j) ·
√√√ N∑

j=(r−1)·n+1

M∑
i=1

T 2(i, j) (2.40)

This upper bound gives the initial sufficient condition for skipping the current image
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point:

βr(x, y)|N1
||Ic (x, y) || · ||T || < ηM (2.41)

The right hand inequality of Property I guarantees the potential effectiveness of the

initial sufficient condition (i.e. the left-hand term in (2.41) is always ≤ 1).

If the initial condition holds, EBC skips the current image point. Instead, if it

does not hold, we attain a tighter bounding function by deploying Property II. That is,

denoting the generic partial correlation term associated with rows (ρ, θ) as:

ψ(x, y)|θρ =
θ∑

j=ρ

M∑
i=1

I (x + i, y + j) · T (i, j), (2.42)

the next bounding function can be expressed as

γr−1(x, y) = ψ(x, y)|n1 + βr−1(x, y)|Nn+1, (2.43)

βr−1(x, y)|Nn+1 representing a function defined as in (2.40) with the summation start-

ing from t = 2 instead of t = 1, and the corresponding sufficient condition as

γr−1(x, y)
||Ic (x, y) || · ||T || < ηM (2.44)

Should also (2.44) not be satisfied, the method would proceed by successive appli-

cations of Property II: at each step a bounding term (product-of-norms) is replaced with

the corresponding partial correlation term and a new skipping condition is checked.

With this approach, EBC can check up to r sufficient conditions (including the initial

one), the last upper bounding function and associated condition given by:

γ1(x, y) = ψ(x, y)|(r−1)·n
1 + β1(x, y)|N(r−1)·n+1 (2.45)

γ1(x, y)
||Ic (x, y) || · ||T || < ηM (2.46)

Should the last condition not be verified, the process completes the computation of

the actual cross-correlation value (i.e. ψ(x, y)) that is used to check condition (2.33)

by replacing β1(x, y)|N(r−1)·n+1 with ψ(x, y)|N(r−1)·n+1. The pseudo-code for the core EBC

algorithm is shown in Fig. 2.11, with parameter th (always < 1) representing the

initialization value for ηM .
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Figure 2.11: Pseudo-code describing the core EBC algorithm.

As previously mentioned, if the initial condition (2.41) holds, EBC skips the current

image point without calculating any partial correlation term. This is not the case for

previous bounded correlation algorithms ( [35], [36]), that always require calculation

of a certain fraction of the actual correlation score (indeed, they are referred to as

bounded partial correlation algorithms). As shown in Section 2.4.7 (Table 2.8), the

initial condition very frequently allows a substantial fraction of the total image points

to be skipped.

As regards the higher effectiveness of the EBC bounding strategy, by comparing

(2.43) to (2.36) it can also be observed that, by virtue of the right inequality of Prop-

erty I, given the same amount of partial correlation (i.e. with the same n), the bounding

function used by EBC to check condition (2.44) is tighter than that used in [36] and

consequently in [35]. Moreover, if (2.32) is not satisfied the algorithm in [36] carries
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on with the computation of the remaining fraction of the correlation, while in case of

failure of condition (2.44) EBC increasingly tightens the bounding function by compu-

tation of smaller partial correlation terms.

The idea of obtaining increasingly tighter bounds through computation of small

partial correlation terms was also suggested in [35] in the framework of the initial BPC

algorithm based on Jensen inequality. However, even applying the incremental method

discussed in [35] to a BPC algorithm based on Cauchy-Schwarz inequality [36] would

yield bounds less tight than those attainable with the novel bounding strategy proposed

in this paper by virtue of the right inequality of Property I. This will also be proved

by the much higher computational efficiency reported in the experimental results of

section 2.4.7.

Finally, it can readily be inferred from (2.40) and (2.44) that should the elements

of I or T be multiplied by a constant factor, then each of the sufficient conditions

checked by EBC would not change. Hence, the computational benefits provided by

EBC are independent from any possible intensity scaling occurring between the image

under examination and the template. This is an important property since in template

matching applications the NCC is often preferred to other functions, such as the SAD

or SSD, due to its invariance to intensity scaling.

2.4.6 Overall EBC algorithm

The core EBC algorithm, as in the case of [46], [83], [132], [35], [36], [57], is a data-

dependent computational optimization technique, with one major factor that impacts

on performance being the goodness of some initial match. In fact, the sufficient con-

ditions checked by the algorithm become more effective as the correlation between the

template and the current best matching image subwindow (i.e. ηM) becomes higher.

Therefore, the algorithm provides a higher computational efficiency when, given the

scan order, the search process rapidly finds a good matching position.

To deal with this issue EBC would benefit from a strategy aimed at rapidly finding

a suitable initialization value for ηM . In our current implementation we enforce the

following coarse-to-fine approach. An initial search for the best match is carried out

using sub-sampled versions of I and T , then the best matching position is mapped

at full resolution and a second search is carried out in a small neighbourhood of this

candidate position. The sub-sampling factor k̄ depends on the image size and is chosen

automatically as that minimizing the total number of operations required by the two

searches. More precisely, in our implementation:

k̄ = arg min
k
{ (W − M) · (H − N) · M · N

k4
+ (4 · k)2 · M · N} (2.47)
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where the first term of the function to be minimized represents the number of oper-

ations executed using the sub-sampled images, the second that carried out in a 4k × 4k

neighbourhood of the full resolution image. The outcome of the second search is used

as the initial best match that provides the initialization value for ηM. By determining the

sub-sampling factor from (2.47) and the neighbourhood size accordingly (i.e. 4k̄× 4k̄),

this match turns out to be generally a good one, so that, as regards overall efficiency,

the increased effectiveness of the sufficient conditions largely pays-off with respect to

the negligible computational overhead due to the initial coarse-to-fine search. Since

the initial value for ηM is the actual NCC score computed at a certain position of the

full resolution image, it is guaranteed to be less than or equal to the global maximum.

Hence, the coarse-to-fine stage does not affect the optimality of the solution found by

the overall EBC algorithm.

Furthermore, as is clear from section 2.4.5, performance of the core algorithm de-

pends inherently on the choice of parameters (r, n), as different partitioning schemes

yield different bounding functions and associated sufficient conditions. In this regard,

our experiments have shown notable variations of EBC execution time in some cases as

a consequence of different choices of the partitioning parameters. Hence, the determi-

nation of a good (perhaps optimal) choice of parameters (r, n) plays an important role

with respect to practical deployments of the EBC principle. Since most applications

do not allow for an off-line training process aimed at parameter choice, we have de-

veloped a general predictive approach that enables rapid run-time estimation of a good

parameter pair for the current image and template.

The run-time prediction step relies on several empirical observations derived from

an off-line analysis of the algorithm behaviour carried out on a large dataset. First of

all, we limited the maximum r value to be taken into consideration (i.e. rmax = 40)

due to the observation that, generally, increasing r above this limit does not provide

additional computational savings. Then, for each problem instance (i.e. image and

template) in the dataset, we ran the core algorithm with all possible parameter pairs

(i.e. r = 2 . . . rmax and, given r, n = 1 . . . � (N−1)
(r−1) 	). Indeed, to deal with parameter

pairs independent of the actual template size we normalized the size of the partitions

with respect to the template size, thus taking into considerations the pairs (r, n
N ). For

each problem instance we recorded the pair (r, n
N ) that minimizes the execution time.

All such pairs were fed into a vector quantization process to select a small subset of

reference parameter pairs (i.e. the 7 pairs shown in Table 2.6). The selection was based

on minimization of the error associated with representing the whole set of the recorded

best pairs with a smaller subset of given cardinality (i.e. only the 7 pairs).

Once the reference pairs in Table 2.6 had been determined off-line, the task left

to the run-time prediction step was to guess the most appropriate reference pair for
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Table 2.6: Reference parameter pairs used in the predictive approach.

r n
N

34 0.03

25 0.04

20 0.05

16 0.06

12 0.09

8 0.13

4 0.18
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0

5

10

15

20

25

30

35
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Figure 2.12: Mapping function used to determine r from Pr.

the actual problem instance as rapidly as possible. As it is in the case of initialization

of ηM , the run-time parameter prediction step works on sub-sampled versions of I, T ,

so as to require a low computational overhead under the statistical assumption that a

heterogeneous subset holds the characteristics of the whole set.

Hence, the first sufficient condition (i.e. (2.41)) is applied on the sub-sampled I, T

using the reference parameter pair r = 16, n
N = 0.06 to calculate the fraction of skipped

image points, denoted as Pr. We have observed empirically that Pr can be regarded

as an indicator of the efficiency of the first sufficient condition of the algorithm and

that this provides guidelines on the choice of parameters (r, n). More precisely, if Pr

turns out close to 1, then it is highly probable that EBC sufficient conditions are also
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Figure 2.13: Pseudo-code for the overall EBC algorithm with on-line parameter estima-

tion.

effective with a much coarser partitioning scheme: this suggests the use of a much

smaller r, so as to avoid the computational overhead associated with an unnecessarily

fine partitioning scheme. Conversely, if a low Pr is found, then the number of partitions

must be increased accordingly to attain effective sufficient conditions. Based on such

empirical observations we designed a mapping function from the calculated Pr value

to the r value belonging to the reference parameter set (see Fig. 2.12). More precisely,

the mapping function was obtained as the decreasing step function that best fitted a

cloud of (Pr, r) points found experimentally. Thus, the run-time prediction step quickly

calculates Pr, then finds r according to the mapping function in Fig. 2.12 and finally
n
N from Table 2.6. This will be denoted in the pseudo-code of Fig. 2.13 as function

predict.

Eventually, our current implementation of the overall EBC algorithm provides two

options. The first requires (r, n) as input parameters and runs only the coarse-to-fine

search aimed at initializing ηM . The second also runs the prediction stage by inte-

grating it seamlessly with the coarse-to-fine search. More precisely, the coarse step

aimed at finding the initial value for ηM consists in running the core algorithm on the

sub-sampled versions of I, T with parameters (r = 16, n
N = 0.06), so that Pr can be

calculated by applying the first sufficient condition. The pseudo-code for the overall
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Figure 2.14: Board image and templates (rows 8-10 of Tables 2.7, 2.8 and 2.9).

Figure 2.15: Wafer image and templates (rows 11-13 of Tables 2.7, 2.8 and 2.9).

EBC algorithm is shown in Fig. 2.13. We point out that P FLAG allows switching

between the two operating modes (with and without on-line parameter prediction), and

that the core EBC function, unlike that shown in Fig. 2.11, also has to calculate and

return Pr, which is needed for the on-line parameter estimation stage.

2.4.7 Experimental Results

This subsection compares the computational advantages of the overall EBC algorithm

with respect to the other state-of-the-art exhaustive template matching algorithms, i.e.
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Table 2.7: Dataset used in the experiments.

Image Size Template Size ηM (xM, yM)

Paint 1 1152 × 864 164 × 161 0.9956 (142,258)

Paint 2 1152 × 864 128 × 152 0.9953 (160,434)

Paint 3 1152 × 864 118 × 162 0.9980 (175,725)

Pcb 384 × 288 72 × 73 0.9970 (65,268)

Plants 512 × 400 104 × 121 0.9859 (66,333)

Ringo 1 640 × 480 126 × 144 0.9747 (149,102)

Ringo 2 640 × 480 118 × 162 0.9762 (159,161)

Board 1 640 × 480 63 × 179 0.9887 (265,113)

Board 2 640 × 480 106 × 138 0.9789 (198,239)

Board 3 640 × 480 65 × 149 0.9829 (61,500)

Wafer 1 640 × 480 119 × 84 0.9942 (259,65)

Wafer 2 640 × 480 109 × 123 0.9932 (108,32)

Wafer 3 640 × 480 189 × 98 0.9882 (198,256)

Table 2.8: Measured speed-ups: EBC Vs. FS.

EBCopt EBCest

(r, n
N ) Speed-up Ptot[%] P1[%] (r, n

N ) Speed-up Ptot[%] P1[%]

Paint 1 (34,0.03) 49.5 ≈ 100.0 63.1 (34,0.03) 47.6 ≈ 100.0 63.1

Paint 2 (24,0.04) 97.4 ≈ 100.0 95.2 (25,0.04) 91.7 ≈ 100.0 95.4

Paint 3 (14,0.06) 139.7 ≈ 100.0 98.9 (34,0.03) 90.3 ≈ 100.0 99.7

Pcb (4,0.18) 47.0 ≈ 100.0 99.0 (4,0.18) 45.9 ≈ 100.0 99.0

Plants (12,0.08) 80.6 ≈ 100.0 98.5 (8,0.13) 75.8 ≈ 100.0 98.1

Ringo 1 (34,0.03) 19.2 ≈ 100.0 70.3 (16,0.06) 14.7 ≈ 100.0 60.6

Ringo 2 (34,0.03) 25.6 ≈ 100.0 79.3 (16,0.06) 20.0 ≈ 100.0 72.0

Board 1 (34,0.03) 9.1 ≈ 100.0 29.3 (34,0.03) 9.0 ≈ 100.0 29.3

Board 2 (34,0.03) 10.5 ≈ 100.0 12.4 (34,0.03) 10.0 ≈ 100.0 12.4

Board 3 (16,0.05) 63.2 ≈ 100.0 97.4 (4,0.18) 41.0 ≈ 100.0 92.6

Wafer 1 (25,0.04) 25.5 ≈ 100.0 64.3 (20,0.05) 25.4 ≈ 100.0 65.6

Wafer 2 (19,0.05) 65.0 ≈ 100.0 93.1 (34,0.03) 59.4 ≈ 100.0 93.9

Wafer 3 (25,0.04) 15.1 ≈ 100.0 31.0 (25,0.04) 15.2 ≈ 100.0 31.0
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FS, BPC, and FFT-based. All the compared algorithms have been implemented in

C and run on a Linux workstation based on a Pentium 4 3.056 GHz processor. The

implementations of EBC, BPC and FS algorithms deploy the box-filtering technique

[91] to compute the norms of all vectors and sub-vectors involved in the calculations.

Moreover, the implementation of BPC deploys the same coarse-to-fine initialization as

EBC. The dataset used for the experiments consist of grayscale images and templates

of various sizes, as shown in Table 2.7. The Table also lists the coordinates of the

best matching position and the corresponding NCC score. Since templates are not

extracted from the image under examination itself but from another image taken with

the same camera from a slightly different viewpoint, the NCC scores reported in the

Table are always < 1. Hence, the impact of real distorsions typically occurring in

pattern matching applications, such as camera noise and slight changes in viewpoint,

is accounted for in the proposed experiments. Some samples of images and templates

belonging to the dataset are shown in Figs. 2.14 and 2.153.

Table 2.8 compares the overall EBC algorithm to the FS algorithm. The table is

split in two parts. Columns 2 − 5 refer to the EBC algorithm without the on-line pre-

diction stage and with parameters (r, n) chosen optimally (EBCopt), that is determined

by means of a thorough off-line training session carried out on each instance of the

dataset. Instead, columns 6− 9 refer to the case where parameters have been estimated

on-line by means of the prediction algorithm described in section 2.4.6 (EBCest). In

this case the time measurements for EBC include the on-line parameter prediction stage

that, on average, requires 3.2% of the overall execution time. The table reports in each

part the parameter pair (r, n
N ) used by the algorithm (optimally selected in column 3,

estimated on-line in column 7), the speed-ups (i.e. ratios of measured execution times)

with respect to the FS algorithm, Ptot, i.e. the percentage of points skipped by all

the applications of the sufficient conditions involved in the template matching process,

and P1, i.e. the percentage of points skipped by the application of the first sufficient

condition (inequality (2.41)).

Table 2.8 shows that with an appropriate choice of the parameters the overall EBC

algorithm can yield significant computational savings with respect to the FS algorithm,

with measured speed-ups ranging from 9.1 up to 139.7 in the considered dataset. More-

over, it also points out that the predictive approach to parameter selection described in

section 2.4.6 rapidly finds a very good (r, n
N ) pair, so that the parameter-free EBC ver-

sion can achieve notable computational savings, the speed-ups being in most cases very

similar to those attained with an optimal parameter tuning 4. By looking at both parts

3The whole dataset can be found at the following url: www.vision.deis.unibo.it/smatt/PatternMatching.html
4The slight advantage given by EBCest with regards to EBCopt in the Wafer 3 instance of Table 2.8, is to

be ascribed only to a faster fine resolution step of the coarse-to-fine search aimed at estimating ηM . This is

due the fact that, at that stage, EBCopt (P FLAG switched off) uses a default parameter pair, while EBCest
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Table 2.9: Measured Speed-ups: EBC Vs. BPC and FFT-based algorithms.

EBC vs BPC [35] EBC vs BPC [36] EBC vs FFT

EBCopt EBCest EBCopt EBCest EBCopt EBCest

Paint 1 11.8 11.4 14.9 14.3 1.8 1.5

Paint 2 28.4 26.7 29.1 27.4 4.9 4.4

Paint 3 39.6 25.6 41.8 27.0 9.0 4.1

Pcb 17.9 17.5 14.5 14.2 7.3 7.1

Plants 27.3 25.7 24.4 22.9 8.5 8.2

Ringo 1 12.8 9.8 6.1 4.7 2.8 2.4

Ringo 2 13.8 10.8 8.0 6.2 3.2 2.8

Board 1 4.2 4.2 3.5 3.5 1.2 1.2

Board 2 4.0 3.8 3.2 3.0 1.1 1.1

Board 3 20.6 13.4 19.4 12.6 5.3 4.4

Wafer 1 12.3 12.2 7.6 7.5 3.5 3.3

Wafer 2 23.4 21.4 19.1 17.5 4.7 3.2

Wafer 3 4.9 5.0 4.6 4.6 1.4 1.4

of the table we can observe that EBC always runs almost one order of magnitude faster

than the FS.

Comparing EBC with BPC [35], [36], it can be noticed that EBC theoretically

outperforms BPC significantly due to its tighter bounds and more effective bounding

strategy. In fact, BPC has a fixed correlation-ratio (i.e. n
N ), which places a theoretical

upper bound on the maximum attainable speed-up. For example, taking n
N = 0.3, as

proposed in [36], implies that a fraction of the cross-correlation term as high as 30%

must be computed at each point under examination. As a result, whatever the dataset,

the maximum attainable speed-up with respect to the FS algorithm cannot exceed 3.3.

Similar considerations apply for results in [35], where n
N = 0.2 is used. Conversely, the

proposed approach has the capability of calculating at each point the proper fraction

of the cross-correlation that enables to compare accurately the point to the current best

matching position (i.e. from no correlation at all, when condition (2.41) holds, up to

the whole cross-correlation, when even condition (2.46) is not satisfied). Hence, EBC

(P FLAG switched on) can already exploit the predicted parameter pair
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has the potential for much higher speed-ups: e.g. in the dataset considered in this

paper the minimum speed-up yielded by the parameter-free EBC algorithm (i.e. 9.0) is

nearly three times the theoretical upper bound on the speed-up for the BPC algorithm

proposed in [36].

These theoretical considerations were experimentally confirmed by the results shown

in columns 1 − 4 of Table 2.9, reporting the measured speed-ups of EBC with regard

to BPC algorithms [35], [36], with the optimal choice of parameter pairs (EBCopt) and

with the on-line estimation of parameters (EBCest). For a fair comparison, both BPC

algorithms deployed the same coarse-to-fine strategy aimed at initializing ηM as EBC.

BPC parameters were chosen according to [35] (i.e. Cr1 = 0.2,Cr2 = 0.4) and [36]

(i.e. Cr = 0.3). These results clearly demonstrate that the proposed approach dramat-

ically outperform BPC algorithms, with measured speed-ups ranging from 3.0 up to

41.8. Moreover, since the same coarse-to-fine initialization strategy was used for EBC

and BPC algorithms, this comparison demonstrates that the computational efficiency

attained by the overall EBC algorithm is closely associated with its novel and effective

bounding strategy.

To further validate the proposed method we compared EBC to a FFT-based tem-

plate matching approach. As already mentioned, the FFT is quite popular for NCC-

based template matching, even though the FFT requirement for floating-point arith-

metic turned out to be a serious drawback in a number of applications (especially those

based on embedded architectures) [123]. Among the various FFT-based algorithms we

chose as term of comparison the cvMatchTemplate algorithm, belonging to the well

known and highly optimized OpenCV computer vision library, written in C and devel-

oped by Intel. To compare the two algorithms as fairly as possible, the EBC imple-

mentation was also optimized by deploying the parallel multimedia-oriented instruc-

tions (i.e. MMX) available on state-of-the-art processors based on Intel Architecture.

Columns 6 and 7 of Table 2.9 show the speed-ups provided by EBC with respect to the

FFT-based algorithm in the considered dataset. Column 6 refers to the case of optimal

choice of EBC parameters. Column 7 shows the results in case of on-line parameter

estimation, that now requires on average 3.4% of the overall execution time. As shown

clearly by the Table, in the dataset considered EBC was always faster than the FFT-

based algorithm, yielding on average substantial computational savings and, in some

instances, quite remarkable speed-ups (e.g. up to 8.2 in the parameter-free version).

2.4.8 Experiments with small templates and artificial noise

This subsection provides further experimental results aimed at assessing the perfor-

mance of EBC in case of smaller template sizes and increasing artificial noise. To this

purpose, ten templates of size 64 × 64 were hand-selected uniformely from an image
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Figure 2.16: Images and templates used for the experiments with small templates and

artificial noise.

Table 2.10: Measured Speed-ups in case of smaller templates and artificial noise

Artificial noise, σ1 Artificial noise, σ2 Real distorsions

EBCest vs FS EBCest vs FFT EBCest vs FS EBCest vs FFT EBCest vs FS EBCest vs FFT

T1 23.3 2.8 12.8 2.0 15.8 2.4

T2 19.3 3.2 11.4 2.2 37.9 4.3

T3 5.6 1.2 4.6 1.1 4.8 1.1

T4 10.7 2.0 7.8 1.6 29.4 2.8

T5 27.7 3.0 10.9 1.8 7.3 1.6

T6 35.3 4.1 23.9 3.3 30.1 3.1

T7 5.2 1.2 3.8 0.9 9.8 2.0

T8 45.6 6.0 24.8 4.1 33.4 5.0

T9 29.8 4.6 17.7 3.3 46.5 6.0

T10 39.7 4.9 29.8 4.2 45.8 5.3
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belonging to our dataset (Fig. 2.16, top left). These were then matched into the image

itself, after addition of two different levels of i.i.d. zero-mean-gaussian artificial noise

(i.e. σ1 = 0.003 and σ2 = 0.005 5, Fig. 2.16 bottom left and bottom right respec-

tively), and into another image taken with the same camera from a slightly different

position (Fig. 2.16, top right). The speed-ups yielded by the overall EBC algorithm

with online parameter estimation (EBCest) with respect to the FS and FFT algorithms

are shown in Table 2.10. To investigate on the impact of a smaller template size, the

results in the two rightmost columns of Table 2.10 can be compared directly to those

reported in the last eight rows (column 7) of Tables 2.8 and 2.9, as they refer to pattern

matching instances under real distorsions and characterized by the same image size but

significantly larger template sizes. By comparing the three Tables it can readily be seen

that the computational advantages made by EBC do not change sharply as a result of

a significant decrease of the template size. Also with smaller templates EBC generally

runs notably faster than the FS and the FFT, the speed-up ranges now being [4.8÷46.5]

and [1.1 ÷ 6.0] respectively.

As to the impact of increasing noise, comparison of columns 2,3 with 6,7 of Table

2.10 indicates that with the smaller level of artificial noise the performance of EBC

is substantially equivalent to that measured in the addressed real distortions scenario.

However, columns 3,4 of the Table show clearly that the computational benefits tend to

decrease with increasing noise, although with σ2 they are still notable (i.e. up to 29.8

and 4.1 respectively compared to the FS and FFT algorithms).

Finally, as regards this dataset, the on-line prediction stage requires on average

2.7% of the overall execution time, which increases to 3.1% in the case of the EBC

implementation deploying MMX-optimization.

2.5 Fast template matching based on the ZNCC

This section proposes a novel fast and exhaustive technique for template matching,

referred to as Zero-mean Enhanced Bounded Correlation (ZEBC), which is based on

the ZNCC measure and it is inspired by EBC.

2.5.1 Previous work

The ZNCC function at pixel position (x, y) is given by:

ZNCC(x, y) =

(
Ic(x, y) − μIc (x, y)

) ◦ (T − μT )

||Ic(x, y) − μIc (x, y)|| · ||T − μT || (2.48)

5with respect to normalized pixel intensities ranging within [0, 1].
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with μIc (x, y) and μT being respectively the mean intensity value computed over

Ic(x, y) and T , ◦ representing the dot product between two vectors, and the two terms

at the denominator being respectively the L2 norm of zero-mean image candidate and

zero-mean template vectors. Hereinafter the numerator of (2.48) will be referred to as

η(x, y).

Similarly to the case of the SSD and NCC, also for the ZNCC a common alterna-

tive [81] to the FS algorithm computes the cross-correlation in the frequency domain by

means of the well-known Fast Fourier Transform (FFT). Another exhaustive approach

aimed at speeding up ZNCC-based template matching is the Zero-mean Bounded Par-

tial Correlation (ZBPC) technique [37]. This method relies on two computationally

efficient upper-bounding functions for η(x, y), β′ZBPC(x, y) and β′′ZBPC(x, y), that allow

for rapidly pruning mismatching candidates by testing:

min(β′ZBPC(x, y), β′′ZBPC(x, y))

||Ic(x, y) − μIc (x, y)|| · ||T − μT || ≤ ZNCCmax (2.49)

with ZNCCmax being the ZNCC maximum found among previously evaluated can-

didates. If (2.49) holds then the current candidate is guaranteed not to be the global

maximum and ZNCC computation need not being carried out. Nevertheless, since the

computation of both β′ZBPC(x, y) and β′′ZBPC(x, y) involves calculating a partial cross-

correlation term on a subset of template and candidate vectors (i.e. on nZBPC rows),

then the speed-ups yielded by ZBPC on FS are upper-bounded by N
nZBPC

.

Moreover, very recently a fast exhaustive scheme for ZNCC-based block matching

was proposed in [87]. By determining a monotonically decreasing equivalent expres-

sion of (2.48), a Partial Distortion Elimination [9] approach is applied in order to safely

terminate the computation of ZNCC as soon as it gets below ZNCCmax.

The two main novelties of ZEBC with respect to ZBPC are represented by the use

of two bounding functions which do not require any partial cross-correlation term com-

putation at all and which can be demonstrated being tighter to η(x, y) than β′ZBPC(x, y)

and β′′ZBPC(x, y), and by the definition of an additional set of increasingly tighter bound-

ing functions.

2.5.2 The ZEBC algorithm

We now devise two novel bounding functions, β′(x, y) and β′′(x, y), which allow to

rapidly detect mismatching candidates without the need to compute any partial corre-

lation term. By means of a partitioning scheme similar to that deployed for EBC in

Section 2.4, each candidate and template vectors are subdivided into r non-overlapping

rectangular regions R1, · · · ,Rr of size M × n, with n = N
r . We will refer to Ic,t(x, y)

and Tt as, respectively, the candidate and template subvectors corresponding to region
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Rt, and to At as their cardinality (i.e. the number of pixel in each region, At = n · M).

Then, η(x, y) can be seen as the sum of r partial terms ηt(x, y) each one computed on

its corresponding region Rt:

η(x, y) =
r∑

t=1

ηt(x, y) (2.50)

where:

ηt(x, y) =
(
Ic,t(x, y) − μIc,t (x, y)

)
◦ (

Tt − μTt

)
(2.51)

By means of the application of the Cauchy-Schwarz inequality on (2.51) we can

devise an upper-bound for term ηt(x, y):

β′t(x, y) = ||Ic(x, y) − μIc (x, y)|| · ||T − μT || =
=

√
||Tt||2 + At · μT

(
μT − 2 · μTt

) · √||Ic,t||2 + At · μIc (x, y)
(
μIc − 2 · μIc,t

)
(2.52)

All terms in β′t (x, y) relative to the image candidate can be efficiently computed by

means of incremental techniques such as [91], [24], while the others, relative to the

template, can be computed once for all at start-up.

Additionally, equation (2.51) can be algebraically manipulated as follows:

ηt(x, y) = Ic,t ◦ Tt + At

(
μIc (x, y) · μT − μTt · μIc (x, y) − μT · μIc,t (x, y)

)
(2.53)

Hence, by applying the Cauchy-Schwarz inequality on the cross-correlation be-

tween Ic,t, Tt term in (2.53) we get an additional upper-bound for η(x, y):

β′′t (x, y) = ||Ic,t|| · ||Tt|| + At

(
μIc (x, y) · μT − μTt · μIc (x, y) − μT · μIc,t (x, y)

)
(2.54)

Though different from β′t (x, y), also this term can be computed very efficiently,

partly at start-up and partly by means of incremental schemes. It is worth pointing out

that, since both β′t(x, y) and β′′t (x, y) are computed on the same region Rt, and since

all regions are equally sized, their calculation requires a reduced number of incre-

mental scheme instances, with benefits for what concerns efficiency and memory re-

quirements. Moreover, their computational complexity is independent from image and

template sizes.

Thus, we propose a very effective upper-bound for η(x, y) by choosing, for each

region Rt, the term between β′t (x, y) and β′′t (x, y) that better approximates ηt(x, y):
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βB(x, y) =
r∑

t=1

min
(
β′t (x, y), β′′t (x, y)

)
(2.55)

By comparing (2.50) and (2.55) it is easy to infer the bounding property of βB(x, y).

Hence, for each candidate βB(x, y) can be used to reliably detect mismatching candi-

dates previously to the computation of the ZNCC term. If condition

βB(x, y)
||Ic(x, y) − μIc (x, y)|| · ||T − μT || < ZNCCmax (2.56)

is verified, then candidate Ic(x, y) is guaranteed not to be the global maximum and

its ZNCC score does not need to be computed.

For the sake of efficiency, since the computation of βB(x, y) requires the computa-

tion of both β′t(x, y), β′′t (x, y) terms on all regions, based on experimental evidence we

suggest to compute first

β′′(x, y) =
r∑

t=1

(
β′′t (x, y)

)
(2.57)

and then to use it to detect a first set of mismatching candidates. The computation

of (2.55) is carried out only for those candidates that are not rejected by means of

(2.57). Though experimentally it seemed more favourable to choose β′′t (x, y) rather

than β′t (x, y) as the bounding terms to be computed first, a deeper study concerning a

more advanced scheme aimed at exploiting these terms more effectively is currently

under development.

Now, for all candidates not rejected by means of either (2.55) or (2.57) we propose

to refine the search for mismatching candidates by means of a set of increasingly tighter

bounding functions. First, a bounding function can be determined by substituting in

βB(x, y) the bounding term computed on region R1 with its corresponding

η1(x, y) term:

γ1(x, y) = η1(x, y) +
r∑

t=2

min
(
β′t(x, y), β′′t (x, y)

)
=

βB(x, y) − min
(
β′1(x, y), β′′1 (x, y)

)
+ η1(x, y) (2.58)

where the right hand term in (2.58) shows how to efficiently compute γ1(x, y) from

βB(x, y). γ1(x, y) represents a tighter approximation of η(x, y) compared to β′′(x, y)

and βB(x, y), though computationally more expensive, hence can be used to classify

as mismatching those candidates which were previously not rejected by β′′(x, y) and

βB(x, y).
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Figure 2.17: Dataset used for the experimental results.

Following this approach, by substituting at each step the current bounding term

with its corresponding ηt(x, y) term, up to r − 1 additional upper bounding functions

can be overall deployed for candidate rejection, that is γ1(x, y) · · ·γr−1(x, y), the last

one being:

γr−1(x, y) = γr−2(x, y) − min
(
β′r−1(x, y), β′′r−1(x, y)

)
+ ηr−1(x, y) (2.59)

If not even γr−1(x, y) is able to reject the current candidate, then the computation of

the ZNCC is completed by calculating ηr(x, y).

It is worth pointing out that similarly to ZBPC, also ZEBC would benefit of the

use of a proper strategy to initialize ZNCCmax with an initial guess aimed at increas-

ing the efficiency of the bounding functions applied. Hence, we propose to use the

same coarse-to-fine strategy adopted in [37]. It is worth pointing out that this ini-

tialization strategy can not violate the exhaustivity of the search, since the initialized

ZNCC maximum can never be higher than the real maximum. Thus, ZEBC is always

FS-equivalent.

2.5.3 Experimental results

In this section we propose an experimental evaluation aimed at assessing the benefits

brought in by the proposed method, ZEBC, by comparing it to the other state-of-the-

art fast exhaustive template matching approaches. As a benchmark for evaluation we

propose a typical quality assessment setup, where 5 templates, T1 · · ·T5 of size 64×64

were uniformly extracted from a reference image of a product item and then searched

in the images of different items, as if on a production belt. In particular, 5 different
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Table 2.11: Measured speed-ups: ZEBC Vs. FS, ZBPC and FFT-based algorithms.

ZEBC vs FS ZEBC vs ZBPC ZEBC vs FFT

I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5

T1 17.2 15.1 14.7 24.5 23.5 1.5 1.3 1.5 2.1 2.1 2.4 2.1 2.1 3.0 2.9

T2 15.2 15.6 11.6 11.5 13.8 1.4 1.4 2.3 2.3 1.4 2.2 2.3 1.8 1.8 2.0

T3 19.3 21.4 17.7 22.8 15.9 1.7 1.8 1.6 2.0 1.4 2.6 2.8 2.4 2.9 2.2

T4 14.3 15.4 19.0 17.5 15.7 1.3 1.4 1.6 1.6 1.4 2.1 2.2 2.6 2.4 2.2

T5 27.7 27.8 28.5 28.0 12.4 3.9 4.9 3.1 3.4 3.9 3.3 3.4 3.4 3.4 1.8

Mean 18.6 2.1 2.5

Table 2.12: Measured speed-ups on dataset affected by affine photometric distortions.

ZEBC vs FS ZEBC vs ZBPC ZEBC vs FFT

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

T1 13,7 12,8 12,2 19,7 18,2 1,3 1,2 1,3 1,8 1,7 2,0 1,9 1,9 2,7 5,3

T2 12,7 13,4 10,6 10,4 11,8 1,3 1,3 2,2 2,2 1,3 2,0 2,0 1,7 1,7 1,9

T3 15,2 16,7 14,1 17,5 19,1 1,4 1,5 1,3 1,6 0,8 2,2 2,4 2,1 2,5 2,0

T4 8,5 9,1 9,5 10,6 10,8 3,6 2,4 2,5 1,7 1,9 1,4 1,5 1,5 1,8 1,7

T5 23,2 23,0 23,6 23,6 10,4 3,4 4,1 2,8 3,0 3,3 3,0 3,0 2,0 3,1 1,7

Mean 14,8 2,0 2,2

images of as many items, I1 · · · I5, are used, each one sized 640 × 480. This dataset is

shown in Fig. 2.17.

As for the comparison, ZEBC is tested against FS, FFT-based and ZBPC. FS de-

ploys incremental calculation schemes to efficiently compute the candidate norms and

mean values in (2.48). ZBPC parameter nZBPC
N was optimally tuned to 0.07. As for FFT,

we used the implementation proposed in well-known OpenCV library, optimized with

SIMD instructions. For what regards ZEBC, parameter r was set to 8. In addition,

for fairness of comparison, when tested against the FFT also for ZEBC a SIMD op-

timization is used. Finally, the sampling factor k used for the initial multi-resolution

scheme [37] employed by both ZBPC and ZEBC was set to 4.

Table 2.11 reports the speed-ups (ratios of measured execution times) of the ZEBC

algorithm against, from left to right, FS, ZBPC and FFT, obtained on a PC running

Linux with 3.06 GHz clock AMD CPU. The last row of the table reports the mean

speed-up reported by ZEBC against the three algorithms. From the table it can be noted

that ZEBC is always able to notably speed-up the FS algorithm, speed-ups ranging

between 11.5 and 28.5. Moreover, ZEBC is always faster than ZBPC and FFT, mean
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speed-ups being respectively 2.1 and 2.5. It is also worth noting that ZEBC, despite

being a data-dependent technique, showed a rather limited range of variations of the

measured speed-ups.

In addition, we also propose a further experiment where synthetic illumination dis-

tortions are applied between images and templates. In particular, all images are trans-

formed according to an affine mapping function (gain = 0.25, bias = −20), as shown

in Fig. 2.17, images L1 · · · L5. This is motivated by the fact that ZNCC is typically em-

ployed in those cases where photometric distortions which can be assimilated to affine

illumination changes are present between image and template, since ZNCC is invari-

ant to this kind of transformations. Table 2.12 shows the speed-ups reported with this

dataset by ZEBC against FS, ZBPC, FFT. By comparing the two tables it can be noted

that, despite the notable distortions affecting the images, ZEBC is always the fastest

algorithm, its speed-ups being lightly affected by the introduced distortions. From a

theoretical point of view this can be explained since the effectiveness of all bounding

functions applied by ZEBC, though not demonstrated here for lack of space, is robust

to the presence of constant multiplicative and additive factors within I and T . Hence

the decrease of speed-ups between the two tables has to be mainly ascribed to the dis-

tortions due to intensity quantization and saturation arising when such kind of synthetic

transformation is applied.



Chapter 3

Stereo correspondence

3.1 Introduction

Stereo vision represents one of the most active areas of computer vision. The problem

of stereo correspondence can be formulated as follows: given a pair of images taken

from two viewpoints with overlaps, we need to find for each point pr on one image, i.e.

the reference image, its correspondent pt on the other image. By means of the epipolar

constraint [126], it is possible to reduce the search space from the whole image area

to one single line (i.e., going from two to one dimension). In particular, given pr, it

is possible to define two lines, called conjugate epipolar lines, one on each image: on

one line lies pr, while on the other one lies pt.

If the stereo setup is calibrated, it is possible to apply two homographies, one for

each image, that allow each pair of conjugate epipolar lines to be collinear [126]. This

process, called rectification, simplifies the problem of stereo correspondence from an

algorithmic point of view, since pt now lies on the same vertical coordinate as pr.

Once a correspondence between pr and pt has been determined, the coordinates of

P, the 3D point whose projections on the two images are pr and pt, can be estimated

via triangulation. In particular, by denoting as d, disparity, the difference between the

horizontal coordinates of pr and pt:

d(pr) = xpr − xpt (3.1)

the z coordinate (depth) of P can found as:

z(P) =
b · f
d(pr)

(3.2)

with b the baseline (distance between the views) and f the focal length. For further

details see e.g. [126].

55
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Generally speaking, stereo correspondence can be feature-based or dense. In the

first case, depth is estimated only for salient points of the reference image such as

segments, edges, corners. The resulting techniques are robust and efficient, but do

not yield depth at all points of the image. Conversely, dense techniques try to find

correspondences for all points of the reference image, tend to be computationally more

expensive and tend to fail along depth borders and low-textured areas. For further

details, see, e.g., [126]. This chapter will deal with dense stereo algorithms.

A notable number of approaches has been proposed in the last years to attack the

problem of stereo correspondence. Dense stereo techniques are currently divided [112]

into two main categories: local approaches and global approaches. Local algorithms

[130], [45], [141], [34], [49], [14], [100], [60], [32], [20], [138] are traditionally char-

acterized by efficient and simple approaches. Despite being able of achieving real-time

frame rate performance [34], as previously said they typically fail on low-textured ar-

eas as well as along depth borders and over occluded regions. In order to increase

the accuracy of disparity estimations, particularly along depth borders, state-of-the-art

algorithms deploy a variable support to compute the local matching cost rather than us-

ing, as in the traditional approach, a fixed squared window. Some proposed approaches

exploit segmentation and excellent results have been recently obtained on the Middle-

bury [92] dataset (the reference dataset for testing effectiveness of stereo algorithms)

although these approaches are not currently suited for real-time applications.

Conversely, most global methods [120], [62], [135], [148], [70], [13], [71], [121],

[122], [142], [139] attempt to minimize an energy functional computed on the whole

image area by mean of a Pairwise Markov Random Field model (P-MRF). Since this

task turns out to be a NP-hard problem, approximate but efficient strategies such as

Graph Cuts (GC) and Belief Propagation (BP) have been proposed. Currently, global

approaches employing segmentation provide the most accurate results on the Middle-

bury dataset. Global approaches are computational demanding and hence currently not

suitable for real-time application. Nevertheless, a promising framework for efficient

energy minimization was recently proposed [40].

Finally, a third category of methods [58], [51], [78], [33] which lies in between

local and global approaches refers to those techniques based on the minimization of an

energy function computed over a subset of the whole image area, i.e. typically along

epipolar lines or scanlines. The adopted minimization strategy is usually based on the

Dynamic Programming (DP) or Scanline Optimization (SO) techniques. The global

energy function to be minimized includes a pointwise matching cost and a smooth-

ness term which enforces constant disparity e.g. on untextured regions by means of

a discontinuity penalty. These approaches provide a trade-off between accuracy and

computational requirements.
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3.2 A classification of variable support methods

This section focuses on stereo cost aggregation techniques, and addresses methods that

perform cost aggregation on a variable support. The basic local stereo algorithms,

referred to as Fixed Window, relies on rectangular windows to determine the corre-

spondence for each point pr on the reference image. In particular, given pr and a set of

candidate points that lie on the same line as pr on the other image and within a disparity

range D = [dmin, dmax], a matching cost is computed on a window centered on pr and

on each candidate. Then, the candidate reporting the minimum cost value represents

the correspondence for point pr.

The idea at the basis of the variable support concept is to determine the best set of

pixels on which to compute the matching cost (i.e. the support) at each pair of can-

didates under evaluation (i.e. the correspondence). Hence, unlike the basic approach

that relies on a fixed static support, these methods deploy a support which varies along

the potential correspondences in order to adapt itself to the local characteristics of each

correspondence. This allows for obtaining higher accuracy along depth borders and

lower matching ambiguity, especially within low textured regions.

Although works dealing with cost aggregation on a variable support date back to the

70s, 80s and early 90s [4,44,80,100], only in the last years a broad research activity has

provided effective ideas allowing local algorithms based on a variable support to yield

an accuracy comparable to that of many global methods. Moreover, though typically

performed by local algorithms, cost aggregation on a variable support proved to be very

effective in improving the performance of global algorithms such as based on Belief

Propagation (BP) [142], Dynamic Programming (DP) [133], Scanline Optimization

(SO) [90].

We believe that the variety of approaches, as well as the excellent results achieved,

deserve a specific classification, highlighting similarities and differences between the

main cost aggregation strategies, together with a comparative performance evaluation

of the different methods. Recent surveys on stereo matching [17,50,61,112] do not ad-

dress the above topics since they consider the whole class of stereo methods [112], re-

view advances in computational stereo with particular emphasis on occlusion detection

and real-time methods [17], focus on matching functions robust to photometric distor-

tions and noise [61] or address only those cost aggregation methods that are suited to

real-time implementation on a GPU [50]. Differently, the work proposed in this section

(and, succesively, in Section 3.5 is specifically focused on classifying the main variable

support-based cost aggregation strategies and comparing them experimentally within a

plain vanilla Winner-Take-All (WTA) framework.

Although several methods concerning the idea of variable support constrain the cost

aggregation step to rely on rectangular windows with fixed weights only, alternatives to
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this basic idea aimed at improving accuracy and mainly based on either two different

approaches, have been proposed. The former generalizes the concept of variable sup-

port by allowing the support to have any shape instead of being built upon rectangular

windows only. The latter assigns adaptive - rather than fixed - weights to the points

belonging to the support. While these approaches aim at improved accuracy, on the

other hand the irregularity of the support hardly allows for deployment of incremental

calculation schemes, thus yielding potentially higher computational costs. It is also

worth to point out that, with a few exceptions, most of the cost aggregation strategies

determine the support on the basis of a symmetric scheme deploying information from

both images.

As for the matching (or error) function employed, this is typically based on the

Lp distance between the two vectors representing the supports in the stereo images,

such as the Sum of Absolute Differences (SAD) or Sum of Squared Differences (SSD).

Often M-estimators are used to achieve better robustness toward outliers. The basic one

simply truncates the values of the matching measure up to a threshold (e.g. Truncated

SAD [124, 141]), while sometimes other more complex M-estimators are used [45].

Another popular solution regards the use of a measure insensitive to image sampling

[12] (e.g. used in [130]). Moreover, a promising similarity function based on point

distinctiveness has been recently proposed in [143].

Finally, it is worth pointing out that this work addresses aggregation strategies

based on fronto-parallel variable supports only, thus not considering proposals that

account for three-dimensional supports (e.g. [147]).

3.2.1 Cost aggregation based on rectangular windows

Let Ir and It be respectively the reference and target image of a rectified stereo pair.

Let p, the point at coordinate (x, y) in Ir, and q, the point at coordinate (x + d, y) in It,

be the two points for which stereo correspondence is currently being evaluated, and let

wr
n(i, j), wt

n(i, j) denote two squared windows of side n centered on (i, j) respectively in

Ir, It. We also denote as Wn(i, j, d) the pair of windows wr
n(i, j), wt

n(i + d, j).

A first category of variable support methods relies on a fixed set of rectangular

window pairs, S (p, q), symmetrically defined on Ir and It. When evaluating corre-

spondence (p, q) a subset of S (p, q), determined according to a specific criterion and

referred to hereinafter as S V (p, q) represents the current support. Since S V (p, q) varies

at each correspondence under evaluation, it should adapt itself to the local characteris-

tics of p and q, thus enabling better handling of depth borders and low-textured areas

with respect to the use of a fixed static support. The local matching cost is then obtained

by computing an error function over S V (p, q).

It is worth observing that within this category the support at each correspondence
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depends on both Ir and It, since its determination is typically based on the error function

itself, whose value depends on both images. Moreover, each weight assigned to the

points in the various windows is fixed and does not depend on the image content.

Finally, an important advantage of the methods based on this idea is that, since they

deploy rectangular windows, they can often exploit incremental schemes in order to

achieve significant computational efficiency.

Varying window size and/or offset

One of the first algorithms exploiting the idea of using a set of windows to improve the

accuracy of stereo correspondence is Shiftable windows [112]. In this case, the set of

windows S (p, q) is defined as:

S (p, q) = {Wn(i, j, d) : i ∈ [x − n, x + n], j ∈ [y − n, y + n]} (3.3)

where n is a parameter of the algorithm representing the chosen window size. The

support at each correspondence, S V (p, q), is given by the window minimizing the error

function over S (p, q). This approach is useful along depth borders, since it aims at

determining the most appropriate displacement with respect to p on which to center

the window in order to aggregate points lying at the same depth plane as p. A vari-

ation of this basic strategy concerns including in S (p, q) only 9 squared windows in

symmetrical positions with respect to the central point [14, 42].

An alternative approach [1, 100] is to vary the size of the window rather than its

displacement by properly selecting n between a minimum value Nmin and a maximum

value Nmax:

S (p, q) = {Wn(x, y, d) : n ∈ [Nmin,Nmax]} (3.4)

This allows, e.g., to employ bigger windows within low-textured regions.

These schemes can be generalized by selecting the best support between a set of

window pairs having different sizes and different displacements. In [67] the best dis-

placement is selected by means of a shiftable window approach, while, to determine

the size of the support, starting from n = Nmin the window is iteratively enlarged until

a given minimum variance of the error function is reached.

A slightly more general approach is represented by the method proposed in [130],

which selects as support the window minimizing a matching cost over a set of windows

S (p, q) defined as:

S (p, q) = {Wn(i, j, d) : n ∈ [Nmin,Nmax],

i ∈ [x − n, x + n], j ∈ [y − n, y + n]} (3.5)
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The 3 criteria on which the matching cost is based include minimization of the

error function and its variance, plus the use of a biasing weight to favor the choice of

large windows within low-textured regions, where the error function and its variance

might not vary significantly along the evaluated window sizes. Moreover, this method

explicitly proposes an incremental scheme aimed at efficiently computing (3.5) at each

new correspondence.

An analogous approach was proposed in [20]. As for this method, the best displace-

ment is selected out of 9 using the shiftable windows approach. Then, the window size

is iteratively decreased until either the error function gets worse or the minimum win-

dow size is reached.

In [32] the displacements considered at each correspondence are 4, disposed on the

four window corners. As for the window size, starting from an initial value, the window

horizontal and vertical sides are iteratively increased until either the error variance

on a direction gets higher than a certain threshold or the error function gets worse.

Differently from previous approaches, this allows to obtain rectangular supports.

Selecting more than one window

All previous schemes select, for each correspondence, one window on each image rep-

resenting the best support over S (p, q). A generalization of this approach is represented

by S V (p, q) being not one single window pair, but a subset of window pairs. In [101],

S (p, q) is the same as in (3.3) and the outcome of the error measure computation on

the various window pairs is used to assess whether each point is close or not to a depth

edge. Based on that, a variable support strategy is deployed on all points detected as

close to a depth edge, where the final matching cost assigned to each correspondence

is obtained by averaging the error function along those displacement positions detected

as lying on the same border side as p and q.

In one version of method [60], S (p, q) is defined as a set of 5 squared windows

S (p, q) = Wn(x, y, d) ∪ {Wn (x ± n, y ± n, d)} (3.6)

At each correspondence the variable support is obtained as the union of 3 best

supporting windows (i.e., on Ir, the one centered on p plus those 2 out of the 4 windows

around p scoring the lowest error function, and symmetrically on It). Variations of this

scheme employ variable supports of a total of either 5 or 13 best supporting windows

out of a set including, respectively, 9 and 25 windows.
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Associating different weights to window points

It is worth pointing out that with the methods described in Section 3.2.1 the result-

ing shape of the support is no longer constrained to a rectangle. Moreover, getting a

support made out of several partially overlapping windows having uniform weights is

equivalent to getting a support made out of a single rectangular window where each

point is weighted differently. This latter strategy concerns the explicit assignment of

different weights to the points of each window belonging to S (p, q). In method [69],

the aggregation stage defines S (p, q) as a set of 108 rod-shaped windows. Each window

is characterized by a specific orientation and weight set, and the support at each cor-

respondence is determined by the window minimizing the error function. Each point

is then classified as homogeneous or heterogeneous based on the outcome of the ap-

plication of a LoG filter, and on those points denoted as homogeneous the minimum

error score determined on S (p, q) is also compared to that yielded by a basic shiftable

windows approach.

In the strategy proposed in [49], S (p, q) is defined as a set of 5 × 5 window pairs

centered on (p, q), each window point being characterized by a weight belonging to the

set {0, 1, 2, 4}. For each correspondence a window pair is selected according to the local

structure of Ir, which is extracted by means of either edge detection or segmentation.

The authors propose also to iterate the process k times, and suggest to use k = 4 or

k = 2 respectively in a local or global framework.

3.2.2 Cost aggregation based on unconstrained shapes

An important generalization to the idea of determining S (p, q) as a set of rectangular

windows is to allow supports to have any shape. This potentially allows supports to

better adapt to the local characteristics of the data, though sometimes this approach

does not translate into computationally efficient algorithms.

The first method exploiting this idea was proposed in [15]. At each correspondence

(p, q), each pixel pi on Ir is classified either as plausible or not-plausible based on an

estimation of the photometric relation between pi and its correspondent on Iq at the

same disparity as (p, q). The best disparity for p is simply selected as that yielding the

largest set of connected plausible pixels. This allows to have variable supports which

can ideally extend to all pixels of the image. Differently, in [129] the support shape at

each correspondence is represented by a polygonal line around p, which is extracted

by applying the minimum ratio cycle technique.

Finally, in [45] the support shape is represented by the intersection between the seg-

ment on which p lies, Gp, and a squared window centered on p, wr
n(x, y). This approach

is intrinsically based on the assumption, introduced by [122], that disparity is constant
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over each segment obtained from a segmentation process. Moreover, this approach re-

lies only on segmentation information concerning Ir (i.e. it is not symmetrical). Those

points belonging to wr
n(x, y) and not to Gp are included in the error function by means

of a small constant weight.

3.2.3 Use of adaptive weights

Another important generalization of the variable support concept refers to the assign-

ment of different and variable weights to the points surrounding p and q. The concept

of support and shape are more controversial in this case: since every point receives

a weight, the distinction between points belonging or not to the support is seamless.

Moreover, since the whole set of weights has to be re-computed at each new corre-

spondence, the variable support typically does not include the whole image but only a

subset of points represented by a squared or a round window centered on p and q, with

the assumption that points lying farther than a certain distance are uncorrelated. Once

the weights are determined, the error function is typically computed by weighting each

pixel-wise error measurement with the corresponding coefficient.

The method proposed in [138] can be regarded as the first proposal for stereo ex-

ploiting this idea. It was inspired by [27], which proposed a method to segment a

foreground object from its background in an image based on the radial propagation of

similarity starting from a foreground point. In [138] 3 different cues are deployed to

determine the support weights for points belonging to the reference view Ir. The first

one (the certainty) is based on the variance of the error function: since weights are

propagated radially starting from p, each point weight depends from the error variance

of previous points along its ray. With increasing variances, the assigned weight is lower

since it corresponds to a low certainty. The two other cues are color and disparity dis-

tribution correlation: the weight assigned to a point pi increases as the difference in the

color space between pi and p decreases and as the correlation between pi and p dispar-

ity distribution increases. Each cue is weighted by means of a gaussian function in the

final weight formulation, the 3 gaussian variances being 3 parameters of the method.

In [141] this approach is enhanced by symmetrically extending the weight com-

putation to points on It. Weights are computed based on the two cues of distance in

the color space and distance in the coordinate space (proximity) by means of gaussian

functions, this approach being motivated by the Gestalt principles of similarity. Then,

a final weighted error function is proposed including normalization by means of the

weight coefficients. Points farther than a certain distance from p and q are not evalu-

ated. A more detailed analysis of the method proposed in [141] is presented in the next

section. An efficient though simplified asymmetric version of this method is proposed

within a Dynamic Programming framework in [133], so to allow a GPU implementa-
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tion with real-time capabilities.

3.3 Accurate stereo based on adaptive support and seg-

mentation

This section proposes a novel adaptive support aggregation strategy which deploys

segmentation information in order to increase the reliability of the stereo matches. The

proposed approach aims at improving the method proposed in [141], that, as will be il-

lustrated, tends to produce errors in presence of highly textured regions, where the sup-

port can shrink to a few pixels thus dramatically reducing the reliability of the matches.

Unreliable matches can be found also near depth discontinuities, as well as in presence

of low textured regions and repetitive patterns. Compared to the classification of local

stereo algorithms based on a variable support presented in the previous section, the

proposed approach falls into the class of methods that are based on adaptive weights.

3.3.1 Previous work

The basic idea of [141] is to extract an adaptive support for each possible correspon-

dence by assigning a weight to each pixel which falls into the current correlation win-

dow Wr in the reference image and, correspondingly, in the correlation window Wt in

the target image. Let pc and qc being respectively the central points of Wr and Wt,

whose correspondence is being evaluated. Thus, the pointwise score, which is selected

as the Truncated Absolute Difference (TAD), for any point pi ∈ Wr corresponding to

qi ∈ Wt is weighted by a coefficient wr(pi, pc) and a coefficient wt(qi, qc), so that the to-

tal cost for correspondence (pc, qc) is given by summing up all the weighted pointwise

scores belonging to the correlation windows and normalized by the weights sum:

C(pc, qc) =

∑
pi∈Wr ,qi∈Wt

wr(pi, pc) · wt(qi, qc) · TAD(pi, qi)

∑
pi∈Wr ,qi∈Wt

wr(pi, pc) · wt(qi, qc)
(3.7)

Each point in the window is weighted on the basis of its spatial distance as well

as of its distance in the CIELAB colour space with regards to the central point of the

window. Hence, each weight wr(pi, pc) for points in Wr (and similarly each weight

wt(qi, qc) for points in Wt) is defined as:

wr(pi, pc) = exp

(
−dp(pi, pc)

γp
− dc (Ir(pi), Ir(pc))

γc

)
(3.8)
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where dc and dp are respectively the euclidean distance between two CIELAB

triplets and the euclidean distance between two coordinate pairs, and the constants

γc, γp are two parameters of the algorithm.

This method provides excellent results but has also some drawbacks, which will be

highlighted in the following by analysing the results obtained by [141]1 on stereo pairs

belonging to the Middlebury dataset and shown in Fig. 3.1.

Depth discontinuities The idea of a variable support is mainly motivated by depth

discontinuities: in order to detect accurately depth borders, the support should separate

”good” pixels, i.e. pixels at the same disparity as the central point, from ”bad” pixels,

i.e. pixels at a different disparity from the central point. It is easy to understand that

within these regions the concept of spatial distance is prone to lead to wrong separa-

tions, as due to their definition border points always have close-by pixels belonging

to different depths. Therefore ”bad” pixels close to the central point might receive

higher weights than ”good” ones far from the central point, this effect being more sig-

nificant the more the chromatic similarities between the regions at different disparities

increase. Moreover, as for ”good” pixels, far ones might receive a significantly smaller

weight than close ones while ideally one should try to aggregate as many ”good” pixels

as possible. Generally speaking, weights based on spatial proximity from the central

point are constant for each correlation window, hence drive toward fixed - not anymore

variable - supports, with all negatives consequences of such an approach.

Fig. 3.2 shows a typical case where the use of spatial distance would determine

wrongly the correct support. Imagine that the current point (the blue point in figure) is

on the border of two planes at different depths and characterized by a slightly different

colour or brightness. The central image shows the correlated pixels (circles coloured

from red - high correlation - to yellow - low correlation) on the basis of spatial proxim-

ity, where it can be seen that many ”bad” pixels would receive a high weight because of

the close spatial distance from the central point. Right image depicts in red the correct

support that should be ideally extracted. This effect leads to mismatches on some depth

borders of the Tsukuba and Venus datasets, as indicated by the blue boxes of Fig. 3.1

(groundtruth is shown in Fig. 3.6).

Low textured surfaces A further drawback of [141] deals with matching ambiguities

which apply when trying to match points belonging to low textured areas on constant

depths. When considering the correspondence of points on these areas, the support

should ideally enlarge itself as much as possible in order to maximize the signal-to-

noise ratio. Instead, the combined use of the spatial and colour proximities force the

1The results shown in this paper were obtained running the authors’ code available at:

http://cat.middlebury.edu/stereo/code.html.
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Figure 3.1: Some typical artifacts caused by the cost function adopted by [141] on high

textured regions (red), depth discontinuities (blue), low textured regions (green), repetitive

patterns (yellow). [This image is best viewed with colors]



66 CHAPTER 3

Figure 3.2: Example of a correlation window along depth borders (left), correspondent

weights assigned by [141] on the basis of spatial proximity (center) and ideal support

(right).[This image is best viewed with colors].

Figure 3.3: Examples where the support shrinks to a few elements due to the combined

use of spatial and colour proximity. The coloured circles indicate the region correlated to

the central pixels on the basis of the spatial proximity.

support to be smaller than the correlation window. This effect is particularly evident in

datasets Venus, Cones and Teddy, where the low textured regions denoted by the green

boxes of Fig. 3.1 lead to remarkable artifacts in the correspondent disparity map.

High textured surfaces Suppose to have a high textured region laying on a constant

disparity plane. Then, for all those points having not enough chromatic similarities

in their surroundings the aggregated support tends to reduce to a very small number
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Figure 3.4: Typical example of a repetitive pattern along epipolar lines where the aggrega-

tion step of [141] would lead to ambiguous match. Red-to-yellow colours are proportional

to the weights assigned to the supports.

of points. This effect is due to the weights decreasing exponentially with the spatial

and colour distances, and it tends to reduce notably the robustness of the matching as

the support tends to become pointwise. It is important to note that in these situations

the support should ideally enlarge itself and aggregate many elements in the window

because of the constant depth.

In order to have an idea of the behaviour of the aggregated support, consider the

situation of Fig. 3.3, where some particular shapes are depicted. In the upper row, the

blue point represents the current element for which the support aggregation is computed

and the blue square represents the window whose elements concur in the computation

of the support. In the lower row the coloured circles denote the points correlated to the

central point on the basis of the spatial proximity criterion, where red corresponds to

high correlation and yellow to low correlation. As it can be clearly seen the combined

use of spatial and colour proximity would lead in these cases to very small aggregated

supports compared to the whole area of the shapes as well as to the correlation window

area.

Typical artifacts induced by this circumstance are evident in datasets Venus, Cones

and Teddy as highlighted by the red boxes in Fig. 3.1, where it is easy to see that they

are often induced by the presence of coloured writings on objects in the scene and that

they produce notable mistakes in the correspondent regions of the disparity maps.
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Repetitive patterns Finally, a further problem due to the use of the weight function

(3.7) applies in presence of repetitive patterns along the epipolar lines. As an example

consider the situation depicted in Fig. 3.4. In this case, the blue point in top left image

has to be matched with two candidates at different disparities, centered on two similar

patterns and shown in top right image. In this situation, the combined use of spatial

and colour proximities in the weight function would extract supports similar to the ones

shown in the bottom part of the figure, where red corresponds to high weight values and

yellow to low weight values. It is easy to see that the pixels belonging to both candidate

supports are similar to the reference support, hence would lead to an ambiguous match.

This would not happen, e.g., with the use of the common fixed square support which

includes the whole pattern.

In Fig. 3.1 a typical case of a repetitive pattern along epipolar lines is shown by the

yellow box in dataset Tsukuba, which lead to mismatches in the disparity map. Also

the case depicted by the yellow box in dataset Cones seems due to a similar situation.

3.3.2 Proposed approach

The basic idea beyond our approach is to employ information obtained from the ap-

plication of segmentation within the weight cost function in order to increase the ro-

bustness of the matching process. Several methods have been recently proposed based

on the hypothesis that disparity varies smoothly on each segment yielded by an (over-

)segmentation process applied on the reference image [45], [70], [13]. As the cost

function (3.7) used to determine the aggregated support is symmetrical, i.e. it computes

weights based on the same criteria on both images, we propose to apply segmentation

on both images and to include in the cost function the resulting information. The use

of segmentation allows for including in the aggregation stage also information dealing

with the connectiveness of pixels and the shape of the segments, rather than only rely-

ing blindly on colour and proximity. Because our initial hypothesis is that each pixel

lying on the same segment of the central pixel of the correlation window must have a

similar disparity value, then its weight has to be equal to the maximum value of the

range(i.e. 1.0). Hence we propose a modified weight function as follows:

w′r(pi, pc) =

⎧⎪⎪⎨⎪⎪⎩ 1.0 pi ∈ S c

exp
(
− dc(Ir (pi),Ir (pc))

γc

)
otherwise

(3.9)

with S c being the segment on which pc lies. It is important to note that for all

pixels outside segment S c, the proximity term has been eliminated from the overall

weight computation and all pixels belonging to the correlation window have the same

importance independently from their distance from the central point, because of the
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negative drawbacks of the use of such a criterion shown in the previous section. Instead,

the use of segmentation plays the role of an intelligent proximity criterion.

It is easy to see that this method is less subject to the negative aspects of method

[141] outlined in the previous section. The problem of having very small supports in

presence of shapes such as the ones depicted in Fig. 3.3 is improved by segmentation.

In fact, as segmentation allows segments to grow as long as chromatic similarity is as-

sessed, the aggregated supports extracted by proposed approach are likely to correctly

coincide with the shapes depicted in the figure. Moreover, the use of segmentation in

spite of the spatial proximity would allow to extract correctly the support also for bor-

der points such as the situation described in Fig. 3.2, with the extracted support tending

to coincide with the one shown on the right of that figure. Improvements are yielded

also in presence of low textured areas: as they tend to correspond to a single segment

because of the low texture, the support correctly enlarges to include all points of these

regions. Finally, in presence of repetitive patterns such as the ones shown in Fig. 3.4

the exclusion of the spatial proximity from the weights computation allows only the

correct candidate to have a support similar to the one of the reference point.

Moreover, from experimental results it was found that the use of a colour space

such as the CIELAB helps the aggregation of pixels which are distant chromatically

but which are closer in the sense of the colour space. Unfortunately this renders the

colour distance measure less selective, and tends to produce more errors along depth

discontinuities.Conversely, the use of the RGB colour space appeared more picky, de-

creasing the chance that pixels belonging to different depths are aggregated in the same

support, but also increasing the number of artifacts along textured regions which lie at

the same depth. As the use of segmentation implies adding robustness to the support,

we found more convenient to operate in the RGB space in order to enforce smoothness

over textured planes as well as to increase the accuracy of depth borders localization.

Finally, it is worth pointing out that there are two main differences between our

method and that proposed in [45]: first we apply segmentation on both reference and

target images, hence the support aggregation strategy is symmetric. Besides, rather

than using two constant weights, we exploit the concept of colour proximity with all

benefits of such an approach shown in [141].

3.3.3 Experimental results

In this section we present some experimental results of the proposed method. First

we compare our results on the Middlebury dataset with those yielded by [141] using

a Winner-Take-All (WTA) strategy. The parameter set is kept constant for all image

pairs: the set used for the algorithm by Yoon and Kweon is the one proposed in the

experimental results in [141], while the set used for the proposed approach is: γc =
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Figure 3.5: Output of the segmentation stage on the 4 stereo pairs of the Middlebury

dataset.

22.0, window size = 51 × 51, T (parameter for TAD) = 80. For what means the

segmentation step in the proposed approach, we use the Mean-Shift algorithm [21] with

the same constant parameter set, that is: σS = 3 (spatial radius), σR = 3 (range radius),

minR = 35 (minimum region size). Figure 3.5 shows the output of the segmentation

stage on both images of each of the 4 stereo pairs used for testing.

Fig. 3.6 compares the disparity maps obtained by [141] with the proposed ap-

proach. Significant improvements can be clearly noticed since the artifacts highlighted

in Fig. 3.1 are less evident or no longer present. In particular, errors within the consid-
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Figure 3.6: Reference images (first column), disparity maps computed by [141] (second

column) and our approach (third column), ground truth (last column).

Table 3.1: Comparison between proposed approach and method [141] on the Middlebury

dataset using a WTA strategy.

Tsukuba Venus Teddy Cones

N.O. - DISC N.O. - DISC N.O. - DISC N.O. - DISC

Proposed 2,05 - 7,14 1,47 - 10,5 10,8 - 21,7 5,08 - 12,5

[141] 4.66 - 8.25 4.61 - 13.3 12.7 - 22.4 5.50 - 11.9

ered high textured regions on Venus and Teddy are greatly reduced and almost disappear

on Cones. Accuracy along depth borders of Tsukuba is significantly enhanced while

the error along the depth border in Venus shrinks to the true occluded area. Moreover,

highlighted artifacts present on low textured regions notably decrease on Venus and dis-

appear on Teddy and Cones. Finally, also the artifacts due to the presence of repetitive

patterns as shown on Tsukuba and Cones definitely disappear.

In addition, Table 3.1 shows the error percentages with regards to the groundtruth,
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Table 3.2: Disparity error rates and rankings obtained on Middlebury website by the pro-

posed approach (referred to as SegmentSupport) compared to method [141] (referred to as

AdaptWeight) and (where available) [45].

Rank Tsukuba Venus Teddy Cones

N.O. - ALL - DISC N.O. - ALL - DISC N.O. - ALL - DISC N.O. - ALL - DISC

SegmentSupport � 9 1.25-1.62-6.68 0.25-0.64-2.59 8.43-14.2-18.2 3.77-9.87-9.77

AdaptWeight � 13 1.38-1.85-6.90 0.71-1.19-6.13 7.88-13.3-18.6 3.97-9.79-8.26

[45] n.a. n.a.-2.27-n.a. n.a.-1.22-n.a. n.a.-19.4-n.a. n.a.-17.4-n.a.

with the error threshold set to 1, computed on the maps of Fig. 3.6. For each image

pair two error measures are proposed: the former is relative to all image area except for

occlusions (N.O.), the latter only to discontinuities except for occlusions (DISC). The

error on all image area including occlusions has not been reported because occlusions

are not handled by WTA strategy. As it can be seen from the table, the use of the

proposed approach yields notable improvements for what concerns the error measure

on all N.O. area. Moreover, by looking only at discontinuities, we can see that generally

the proposed approach allows for a reduction of the error rate (all cases except for

Cones). Benefits are mostly evident on Venus and Tsukuba.

Finally, we show the results obtained by our method after application of the Left-

Right consistency check and interpolation of those points which were determined as

inconsistent. The obtained disparity maps were submitted and are available at the Mid-

dlebury website. We report, in Tab. 3.2, the quantitative results of our method (referred

to as SegmentSupport) compared to the submitted results of method [141] (referred to

as AdaptWeight), together with the overall ranking assigned by Middlebury to the two

approaches. The table reports also the results published in [45] which consist only

of the error rates on the ALL groundtruth maps (all image area including occlusions),

since no submission has been done so far on Middlebury. As it is clear from the table

and the Middlebury website, currently our approach is the best performing known local

method ranking 9th overall (as of July 2007).

3.4 Accurate near-real time stereo

The idea which motivates the work presented in this section relates to a novel aggre-

gation strategy deploying segmentation aiming at high efficiency and at the same time

as accurate as to improve the results of fast local stereo algorithms. This lead us to

devise a method which improves significantly the performance-cost trade-off, yielding

a level of accuracy comparable to that of segmentation-based methods and capable to
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meet near-real time processing requirements.

It is interesting to note that recently many stereo matching algorithm relying on

image segmentation and aimed at improved accuracy have been proposed [13, 45, 59,

62,70,120,122,124,135,139,148]. The great majority of these methods are global, and

a subset of them [13, 70, 120, 139] represents currently the most accurate methods on

the Middlebury Stereo Evaluation website 2, which is the standard benchmark platform

for the stereo community. Anyway, the computational burden they require is far from

meeting real-time or near real-time requirements.

Local approaches that are state-of-the-art in terms of accuracy are based on segmen-

tation (see previous section) or adaptive weights [141], but are far from being computa-

tionally efficient. Indeed, apart from GPU or hardware-based implementation, typically

only aggregation strategies based on sets of rectangular windows [14, 34, 60, 130] can

afford real-time or near-real-time processing, this implying a notably reduced accuracy

of retrieved disparities. Exceptions are represented by methods [45, 49], whose aggre-

gation strategies rely on segmentation and that exhibit interesting trade-offs between

accuracy and computational efficiency. Moreover, between those methods for which a

GPU implementation has been proposed [50], no one so far deploys segmentation.

3.4.1 Cost aggregation strategy

Let Ir and It be respectively a reference and a target image of a stereo pair, and let

p ∈ Ir, q ∈ It be a pair of points at disparity d for which correspondence is being

evaluated. The proposed aggregation scheme deploys a variable support, that is at

each correspondence (p, q) the set of points around p and q on which the local simi-

larity measure (or local cost) is computed depends on the local characteristics of the

images. Similarly to most stereo matching algorithms deploying segmentation, the

proposed aggregation strategy relies on the assumption that disparity varies smoothly

within points lying on the same segment (this is true in practice especially if images

are over-segmented). Thus, the idea is to shape the variable support at each correspon-

dence based on information derived from image color segmentation. This is achieved

by computing for each correspondence (p, q) at disparity d an aggregation cost defined

as:

Cs(p, q, d) =
∑
pi∈S p

min
(
δ
(
pi, qi,d

)
, Tr

)
(3.10)

where S p is the segment on which p lies, δ(p, q) is the computationally efficient L1

distance between the RGB components of p and q:

2http://vision.middlebury.edu/stereo

http://vision.middlebury.edu/stereo
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Figure 3.7: Examples of the behaviour of the proposed aggregation cost

δ(p, q) = |Rp − Rq| + |Gp −Gq| + |Bp − Bq| (3.11)

and Tr is a fixed threshold. In practice, Cs represents the sum of the truncated

absolute differences (TAD) over the segment on which p lies. The use of the truncation

value Tr is a very basic M-estimator to enhance robustness toward outliers (in our

experiments, Tr is set to 35).

Cs can be efficiently pre-computed by means of a single image scan for each pos-

sible disparity within the disparity range. Moreover, it tends to be notably accurate

along depth borders since disparity edges tend to coincide with color edges on real im-
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ages. Furthermore, within low-textured regions segments tends to be very big, which

results in a high SNR and hence good robustness of Cs toward matching ambiguities.

However, relying only on the segmentation cue might lead to mistakes, since Cs tends

to assign the same disparity value to all points belonging to the same segment. This

leads to mistakes for those points lying at slightly different depths from the majority

of elements of a segment, e.g. on slanted surfaces. Furthermore, it also tends to de-

crease matching distinctiveness along highly-textured regions, where segments tend to

be particularly small. Hence, we modify (3.10) to include also a corrective term based

on a squared correlation window:

Caggr(p, q, d) =
Cs(p, q, d)

n(S p)
+ α · Cw(p, q, d)

(2r + 1)2
(3.12)

where Cw is the TAD over the squared window Wp(r) of radius r and centered on

p:

Cw(p, q, d) =
∑

pi∈Wp(r)

min
(
δ
(
pi, qi,d

)
, Tr

)
(3.13)

Cost Caggr includes a normalization of the two terms Cs, Cw by the total number

of points in, respectively, S p and Wp. This is useful because, while the area of Wp(r)

is fixed, the number of points in each segment, n(S p), varies with p: thus, the nor-

malization stage allows to weight equally each pixel included in Caggr . It is important

to point out that, thanks to the use of incremental schemes [24, 91] the complexity of

the calculation of term Cw amounts to only 4 elementary operations for each point and

disparity, and it is independent on the choice of parameter r. Overall this results in a

particularly efficient aggregation strategy.

Fig. 3.7 depicts graphically the behaviour of the proposed aggregation strategy in

4 different cases. In the figure, the first column shows the reference colour image,

the second column shows the expected disparity map and the third column illustrates

the behaviour of the proposed aggregation strategy. In particular, cost Cs assures that

the variable support is shaped according to local chromatic cues. This is particularly

useful along depth borders (case a) and within low-textured regions (b). Cost Cw,

instead, adds a further weight for those points that are close to p (i.e. spatially more

correlated). Generally the role of cost Cw is to increase the robustness of term Cs for

those points violating the segmentation assumption, e.g. for bordering regions along

slanted surfaces (case c). In addition, it is particularly effective along highly-textured

regions (case d), where segments tend to reduce to a few pixels.
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3.4.2 Further comments

The proposed aggregation strategy bears some resemblances with that proposed in [45],

where for each correspondence (p, q) the variable support is defined as the intersection

between the points lying on the same segment as p and those belonging to the cur-

rent correlation window. Nevertheless, if the working assumption that disparity varies

smoothly within points lying on the same segment is verified, then the use of all points

lying on S p, rather than just those included in the current correlation window shall yield

improved matching robustness and thus less ambiguity. Moreover, to avoid matching

ambiguities due to few intersection points, method [45] requires the use of big corre-

lation windows and the inclusion in the local cost with a smaller weight also of the

remaining points in the window, which tends to increase inaccuracy. Furthermore,

the efficient incremental implementation of the aggregation strategy proposed in [45]

sacrifices accuracy for speed and tends to deteriorate the accuracy of the results. Con-

versely, our proposal can be directly implemented in an efficient way without any loss

in accuracy. This results in significant improvements in accuracy and speed, as shown

in next section.

The proposed aggregation strategy might be usefully deployed either by a local

algorithm or as the initial stage of a global process based on e.g. Scanline Optimiza-

tion [59] or Belief Propagation [120]. Moreover, it is interesting to note that this ag-

gregation strategy could be symmetrically extended to include information also from

the color segmentation of the target image It, rather than only that from Ir. This is not

investigated here for lack of space, but there are hints that it would result in improved

accuracy and lower computational efficiency.

Finally, in our implementation we use Mean Shift [21] to perform segmentation.

This method yields accurate segmentation but is not extremely fast: overall in our ex-

periments it accounts for a percentage between 40 and 80% of the total time. As a

consequence, the proposed method could be further speeded-up using a faster segmen-

tation method.

3.4.3 Experimental results

This section presents a comparison between the proposed method and other state-

of-the-art aggregation strategies. Methods are evaluated within the same plain WTA

(Winner-Take-All) stereo matching framework. In particular, as a term of comparison

we selected state-of-the-art efficient aggregation strategies based on variable support,

that is, Segmentation Based [45], Shiftable Windows [14], Variable Windows [130],

Multiple Windows [60]. For what regards this last method, the version based on 9

correlation window is used as representative of the best accuracy-speed trade-off [60].



STEREO CORRESPONDENCE 77

Algorithm Accur. Tsukuba Venus Teddy Cones Art Books Dolls Laundry Moeb. Reind. MDS

Variable Wind. 86.7 96.23 91.99 87.4 94.34 80.81 80.04 87.22 76.68 87.29 84.63 0.3

Proposed 86.4 97.04 96.47 89.33 95.08 78.72 81 85.64 74.89 84.88 80.48 18.9

Segm. Based 83.3 94.3 93.92 90.35 92.69 76.22 79.86 84.75 61.7 81.09 77.75 5.9

Multiple Wind. 82.1 94.42 95.82 85.46 91.18 72.68 78.31 81.36 64.23 80.79 76.66 2.7

Grad. Guided 79.4 92.99 87.66 80.46 88.03 72.17 72.86 83.93 61.48 76.15 78.27 3.2

Shiftable Wind. 79.4 93.46 93.4 83.84 90.45 68.08 75.6 77.42 60.03 77.06 74.6 1.2

Table 3.3: Comparison of accuracy and MDS yielded by the proposed approach with re-

spect to different state-of-the-art local stereo algorithms.

Methods [141], though being state-of-the-art in accuracy among local algorithms, have

not been included in our comparison since this paper focuses on real-time or near real-

time methods while these methods are far from compelling these requirements (e.g. on

the same platform and on Teddy, author’s code of [141] runs in 18 minutes against 0.6

seconds of our approach).

For fairness of comparison, algorithms do not employ neither pre-processing nor

post-processing such as consistency check and interpolation. Moreover, the local cost

function is for all methods the TAD on RGB values, except for Segmentation based

which deploys the Sum of Absolute Differences on RGB values plus a more complex

M-estimator, as originally proposed in [45]. For what concerns the choice of param-

eters, all parameter values of the algorithms were optimally tuned on the dataset. In

particular, for the proposed method the two parameters of the aggregation stage were

set as α = 0.9, r = 6. Finally, all algorithms were implemented in C, without any kind

of optimization based, e.g., on SIMD instructions and tested on Intel Core Duo 2.14

GHz CPU.

Table 3.3 shows the results in terms of accuracy and computational requirements

yielded by the evaluated algorithms on 10 stereo pairs belonging to the Middlebury

dataset [112]. Accuracy is calculated as the percentage of retrieved disparities whose

difference with the ground truth is ≤ 1. Evaluated disparities relate to all points of the

disparity map except for occluded regions, since local WTA methods do not explicitly

handle occlusions. As for computations, we report the millions of computed disparity

per second (MDS) averaged on the whole tested dataset (for those algorithms deploying

segmentation, the MDS includes also the overhead time spent for segmentation). To

allow for a qualitative evaluation, all stereo pairs and disparity maps can be found on-

line 3.

3Available at: www.vision.deis.unibo.it/Stereo-FS.asp
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From the table it can be inferred that Variable Windows and the proposed approach

outperform neatly all the other methods in terms of accuracy on the evaluated dataset,

yielding comparable results. Nevertheless, for what concerns computations Variable

Windows results to be the slowest method, while our approach is the fastest one, being

almost two orders faster than Variable Windows and more than 3 times faster than Seg-

mentation based. Hence it is clear that overall our approach yields the best accuracy-

speed trade-off. It is interesting to point out that processing time for our method is

around 0.2 s for Tsukuba (320 × 240, 16 disp., i.e. working at 5 fps.) and around 0.6

s for Teddy and Art (respectively 450 × 675, 60 disp. and 463 × 370, 75 disp.), thus

achieving near real-time performance.

3.5 A performance evaluation of variable support meth-

ods

As introduced in section 3.2, in this section we propose a comparison of variable

support strategies in terms of accuracy of the retrieved disparity maps based on the

methodology proposed in [112]. Then, we extend the evaluation methodology in [112]

by comparing strategies also in terms of computational complexity. Moreover, by eval-

uating jointly the two parameters of comparison we highlight the methods that better

trade-off between accuracy and computational complexity.

In particular, since the aim is to specifically evaluate the effectiveness and efficiency

of the various aggregation methods, all the considered strategies have been embodied

into the same plain WTA framework. The two criteria used for the evaluation are accu-

racy and computational cost. Evaluation according to the first criterion is accomplished

by using the Middlebury Stereo Evaluation Dataset4 [112]. Computational cost is as-

sessed by measuring for each method the execution time needed to process a reference

stereo pair on the same machine (Intel Core Duo 2.14 GHz CPU, 2 GB RAM).

The selected approaches are those that represent the state-of-the-art for the differ-

ent classes of cost aggregation strategies identified in Section 3.2. In particular, 15

methods are compared, which are now listed together with the nickname used here-

inafter to refer them to. The basic method that uses a fixed square window is referred

to as Fixed window. As for the approaches based on a selection over a set of win-

dows, we evaluated Shiftable window [14], Reliability [67], Variable windows [130],

Recursive adaptive [20], Multiple adaptive [32], Multiple windows [60] (tested in the

3 versions based respectively on 5, 9 and 25 supporting windows), Oriented rod [69],

Gradient guided [49]. With regards to the approaches that allow for unconstrained

4http://vision.middlebury.edu/stereo

http://vision.middlebury.edu/stereo
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Figure 3.8: Qualitative comparison of the supports obtained by different strategies on 6

points of stereo pair Teddy. The 6 points are depicted in the top-most image. The images

corresponding to Gradient guided and Oriented rod display also enlarged pictures of the

supports to enable better visual analysis of the results. Method Fast Aggreg is not included

in the comparison.
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support shapes we evaluated Max connected [15], Segmentation based [45] and Fast

Aggreg, i.e. the method presented in section 3.4. Finally, within the methods based

on adaptive weights we considered Radial adaptive [138], Adaptive weight [141] and

Segment support, i.e. the method presented in section 3.3.

In order to carry out an as fair as possible comparison, all method were imple-

mented using the same criteria, except in the case of Adaptive weight [141] for which

the authors’ source code is publicly available. For each method, only the proposed

aggregation stage was implemented and tested. In particular, neither pre-processing

stages nor typical post-processing stages, such as median filtering and left-right con-

sistency check, were applied. In order to better assess the performance of Oriented rod

and Multiple windows, where the proposed pre-processing stage is intrinsically con-

nected with the aggregation stage, for both methods we considered two versions, that

is with and without pre-processing. Those versions where pre-processing was excluded

will be denoted hereinafter with the symbol ∗. Since for Oriented rod pre-processing

served as a way to discriminate between homogeneous and heterogeneous points, in

the version without pre-processing all points are considered homogeneous and thus

compared with the result of a shiftable filter. This generally implies higher computa-

tion times and in some case better accuracy. Moreover, for the sake of fairness the cost

function is the same for all methods. In particular, since many aggregation strategies

rely on colour information [45,49,138,141], the selected cost function is the Truncated

sum of Absolute Differences (TAD) on RGB pixels, exception made for method Max

connected, which was implemented as originally proposed by the authors since it is not

explicitly based on a cost function. Finally, for each method which was not originally

proposed with this cost function or where parameter values were not explicitly spec-

ified by authors, parameter values were selected by means of a tuning process ran on

the considered dataset.

As far as execution times are concerned, in our implementations we took into ac-

count all the guidelines and details originally proposed by the authors, including e.g.

the use of incremental schemes for a more efficient implementation (e.g. Variable

windows [130]). Our implementations of the basic Fixed window and of Shiftable win-

dows also deploy incremental schemes. When implementation details were not explic-

itly provided by the authors we adopted the same plain criteria across the considered

algorithm, so as to the render the comparison of execution times as fair as possible.

However, it is clear that by extensively optimizing each algorithm according to its own

structure one would get different and perhaps much faster execution times. Therefore,

the reported measurements should be interpreted only as useful indicators aimed at

comparing the computational costs of the considered methods.
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3.5.1 Analysis of extracted supports

Fig. 3.8 allows for a qualitative evaluation and comparison of the variable supports ex-

tracted by the considered methods on 6 representative hand-chosen points of the stereo

pair Teddy. The selected points, highlighted in the top picture of Fig. 3.8, refer to

regions where stereo methods based on fixed or variable support are often ambiguous

due to one or more of the following causes: presence of depth borders (points 1, 2, 4,

6), low-textured areas (points 2, 5), highly textured areas (point 3). For those methods

associating weights to points belonging to the support, higher weights are represented

by brighter grayscale values. Furthermore, since method Max connected can have sup-

ports extending to the whole image area, only for this method, for each of the evaluated

point, each extracted support is shown on a different picture (indicated in brackets in

the figure). Moreover, for the sake of simplicity the supports displayed for [49] are

relative to k = 1 (although in our implementation we use k = 4, as originally proposed

in [49], to obtain the experimental results shown in Subsection 3.5.2). Finally, supports

for method Fast Aggreg are not shown.

From a qualitative point of view, it is worth noticing how aggregation strategies

deploying sets of window pairs are generally able to adapt their supports according to

the position of the depth border (points 1, 2, 4, 6), though it seems clear that supports

made out of rectangular windows lack in flexibility. For instance, this can be clearly

seen at point 4 for methods Shiftable windows, Reliability, Multiple window (25W).For

what regards low-textured regions (points 2, 5), only a subset of methods which allow

the support windows to vary their size (i.e. Multiple Adaptive, Reliability and, to some

extent, Variable windows) succeeds in correctly expanding over these regions.

As for methods deploying supports characterized by unconstrained shapes, method

Segmentation based seems to adapt very well its supports along depth borders as well

as in presence of low-textured regions. As for method Max connected, though generally

it correctly limits the support shape when approaching a depth border, it often annexes

points at different disparities causing ambiguities in the disparity retrieval stage. More-

over, this causes the extracted supports for points 4 and 5 to coincide, even though these

two points lie at a different disparity.

Finally, all methods deploying adaptive weights seem to extract the supports with

notable accuracy. Together with Segmentation based, they outperform other aggrega-

tion schemes, leading to the best variable supports. Moreover, since they evaluate a

high number of points surrounding the correspondence currently evaluated, this often

allows them to include within the same support a high number of points lying at the

same disparity: this turns out to be effective especially in presence of depth borders and

low-textured regions. Between these methods, Segment support and Radial adaptive

seem more effective than Adaptive weight within low-textured regions (points 2, 5),
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Rank Tsukuba Venus Teddy Cones Rank Time Average

Algorithm Accur. NonOcc NonOcc NonOcc NonOcc Time (mm:ss) Rank

Fast Aggreg 4,25 3,77 2 8,01 10 12,60 3 5,66 2 2 00:00:01 3,13

Segmentation based [45] 4,00 4,53 4 6,91 6 10,94 2 7,67 4 3 00:00:02 3,50

Fixed Window 7,25 6,94 9 7,47 8 16,81 6 8,79 6 1 00:00:00 4,13

Variable Windows [130] 4,25 4,28 3 5,99 4 13,48 5 7,87 5 9 00:00:15 6,63

Multiple Windows (9W)* [60] 10,25 8,39 14 8,05 11 17,51 9 10,17 7 4 00:00:04 7,13

Multiple Windows (5W) [60] 12,00 7,09 10 12,96 14 20,72 14 12,33 10 3 00:00:02 7,50

Adaptive weight [141] 3,25 4,66 5 4,61 3 12,70 4 5,50 1 12 00:17:01 7,63

Shiftable Windows [14] 9,25 7,58 12 7,79 9 17,19 8 10,27 8 6 00:00:12 7,63

Segment support 1,50 2,15 1 1,38 1 10,54 1 5,83 3 14 00:30:38 7,75

Gradient Guided [49] 10,75 6,68 8 11,10 13 19,17 10 12,58 12 5 00:00:05 7,88

Multiple Windows (25W)* [60] 9,25 6,51 7 6,85 5 19,21 11 13,55 14 7 00:00:13 8,13

Multiple Windows (5W)* [60] 13,50 9,56 17 13,32 15 19,56 13 12,11 9 3 00:00:02 8,25

Multiple Windows (9W) [60] 14,50 7,80 13 14,74 18 21,06 16 12,52 11 5 00:00:05 9,75

Reliability [67] 7,75 5,71 6 2,87 2 16,82 7 14,40 16 13 00:18:07 10,38

Multiple Windows (25W) [60] 14,00 7,40 11 14,72 17 21,01 15 12,96 13 8 00:00:14 11,00

Recursive Adaptive [20] 14,25 9,90 18 10,76 12 19,26 12 13,67 15 12 00:17:01 13,13

Radial Adaptive [138] 15,00 9,55 16 7,27 7 23,46 18 21,77 19 15 00:56:14 15,00

Oriented Rod [69] 20,25 15,14 20 28,70 19 34,80 21 37,03 21 10 00:06:46 15,13

Oriented Rod* [69] 20,00 17,21 21 29,26 20 32,70 19 32,51 20 11 00:06:48 15,50

Multiple Adaptive [32] 16,50 9,40 15 13,61 16 21,19 17 20,19 18 16 01:13:26 16,25

Max Connected [15] 19,25 11,81 19 42,46 21 34,46 20 17,70 17 17 01:56:22 18,13

Table 3.4: Performance evaluation in terms of accuracy and execution times of the consid-

ered variable-support based strategies.

while Segment support also handles better the considered high-textured region (point

3) compared to the other two approaches which, conversely, at this point retrieve very

small supports.

3.5.2 Accuracy and computational cost

For what concerns accuracy we rely on a testbed and evaluation methodology analo-

gous to that adopted on the Middlebury Stereo Evaluation site. In particular, as it can

be seen from Table 3.4, we use 4 reference stereo pairs (Tsukuba, Venus, Teddy and

Cones) and for each of them evaluate the error rates on the ground truth maps NonOcc

(all points except for occluded areas). Each single error rate is also denoted by its
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respective ranking along the considered methods. Error rates on all image points in-

cluding occlusions have not been taken into account since the tested algorithms do not

explicitly handle disparity retrieval for occluded points due to the adopted WTA frame-

work. Besides, an overall accuracy ranking obtained by averaging the single rankings

of each method along the dataset is shown in the second column.

As for computational costs, Table 3.4 reports for each method the measured execu-

tion time on the stereo pair Teddy. Similarly to the evaluation of accuracy, the Table

shows the ranking of methods according to the measured execution times. Finally, the

Table reports in the rightmost column the ranking obtained by averaging the overall ac-

curacy ranking and the time ranking, so as to highlight the methods that better trade-off

between accuracy and computational efficiency.

Coherently with the qualitative analysis based on Fig. 3.8, the Table shows that the

most accurate methods are those deploying adaptive weights. In particular, Segment

support [124] and Adaptive weight [141] outperform the other methods almost on the

whole datasetConversely, the fastest methods are those based on the evaluation of the

support over a set of windows or based on unconstrained shapes. It is worth observ-

ing that, apart from the basic Fixed window approach, methods such as Fast Aggreg,

Segmentation based [45], Gradient guided [49], Multiple window [60], Shiftable win-

dow [14] and Variable windows [130] can run in seconds or tens of seconds, while some

methods, i.e. Max connected [15] and Radial adaptive [138] may require hours. As

regards the accuracy/efficiency trade-off, the best method turned out to be Fast Aggreg,

followed by Segmentation based [45]

The disparity maps obtained by the various methods on the Middlebury dataset as

well as the qualitative comparison of the extracted supports concerning the Tsukuba and

Teddy stereo pairs can be found on-line5. In addition, this web site includes the results

dealing with other cost measures (SAD, SSD) and the program used for generating the

supports depicted in Fig. 3.8.

3.6 Accurate stereo matching based on Scanline Opti-

mization

A category of stereo methods which lies in between local and global approaches refers

to those techniques based on the minimization of an energy function computed over a

subset of the whole image area, i.e. typically along epipolar lines or scanlines. The

adopted minimization strategy is usually based on Dynamic Programming (DP) or

Scanline Optimization (SO) [58], [59], [51], [69] techniques, and some algorithms also

5available at www.vision.deis.unibo.it/spe

www.vision.deis.unibo.it/spe
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exploit DP on a tree [78], [33]. The global energy function to be minimized includes

a pointwise matching cost CM (see [112] for details) and a smoothness term which en-

forces constant disparity e.g. on untextured regions by means of a discontinuity penalty

π:

E (d (A)) =
∑
i∈A

CM

(
pi

r, p
i
t,d(A)

)
+ N (d (A)) · π (3.14)

with A being the image subset (e.g. a scanline) and N being the number of times

the smoothness constraint is violated within the region where the cost function has

to be minimized. These approaches achieved excellent results in terms of accuracy

in the disparity maps [58] and in terms of very fast, near real-time, computational

performances [51].

In order to increase robustness against outliers a fixed support (typically a 3 × 3

window) can be employed instead of the pointwise matching score. Nevertheless, this

approach embodies all the negative aspects of a local window-based method, which

are especially evident near depth discontinuities: object borders tend to be inaccurately

detected.

In this section we propose to deploy an SO-based algorithm which embodies, as

matching cost CM , a function based on a variable support. The SO framework allows

to handle effectively low-textured surfaces while the variable support approach helps

preserving accuracy along depth borders. In order to determine the variable support,

we adopt the effective technique based on colour proximity and segmentation proposed

in section 3.3. The accuracy of the SO-based process is also improved by the use of a

symmetrical smoothness penalty which depends on the pixel intensities of both stereo

images. It will be shown that this approach allows to obtain notable accuracy in the

retrieved disparities.

Moreover, we propose a refinement step which allows to further increase the accu-

racy of the proposed method. This step relies on a technique that, exploiting symmet-

rically the relationship between occlusions and depth discontinuities on the disparity

maps obtained assuming alternatively as reference the left and the right image, allows

for accurately locating borders. This is shown to be particularly useful to assign the

correct disparity values to those points violating the cross-checking constraint. Finally,

experimental results show that the proposed approach is able to determine accurate

dense stereo maps and it is state-of-the-art for what means approaches which do not

rely on a global framework.
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3.6.1 A symmetric Scanline Optimization framework

The first step of the proposed technique computes a matching cost CM,v(pr, pt,d) based

on a variable support strategy proposed in section 3.3. Then, the matching cost is

embodied in a simplified SO-based framework similar to that proposed in [58]. Hence,

in the first stage of the algorithm the matching cost matrix CM,v(pr, pt,d) is computed for

each possible correspondence (pr, pd,t). Then, in the second stage, 4 SO processes are

used: 2 along horizontal scanlines on opposite directions and 2 similarly along vertical

scanlines. The j-th SO computes the current global cost between pr and pt,d as:

C j
G(pr, pt,d) = CM,v(pr, pt,d) + min(C j

G(pp
r , p

p
t,d),C j

G(pp
r , p

p
t,d−1) + π1,

C j
G(pp

r , p
p
t,d+1) + π1, cmin + π2) − cmin (3.15)

with pp
r and pp

t,d being respectively the point in the previous position of pr and pt,d

along the considered scanline, π1 and π2 being the two smoothness penalty terms (with

π1 ≤ π2) and cmin defined as:

cmin = mini(C
j
G(pp

r , p
p
t,i)) (3.16)

For what means the two smoothing penalty terms, π1 and π2, they are dependent on

the image local intensities similarly to what proposed in [142] within a global stereo

framework. This is due to the assumption that often a depth discontinuity coincides

with an intensity edge, hence the smoothness penalty must be relaxed along edges and

enforced within low-textured areas. In particular, we apply a symmetrical strategy so

that the two terms depend on the intensities of both Ir and It. If we define the intensity

difference between the current point and the previous one along the considered scanline

on the two images as:

� (pr) = |Ir(pr) − Ir(p
p
r )|

�(pt,d) = |It(pt,d) − It(p
p
t,d)| (3.17)

then π1 is defined as:

π1(pr, pt,d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π1 �(pr) < Pth,�(pt,d) < Pth

Π1/2 �(pr) ≥ Pth,�(pt,d) < Pth

Π1/2 �(pr) < Pth,�(pt,d) ≥ Pth

Π1/4 �(pr) ≥ Pth,�(pt,d) ≥ Pth

(3.18)

where Π1 is a constant parameter of the algorithm, and π2 is defined in the same

manner based on Π2. Finally, Pth is a threshold which determines the presence of
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Table 3.5: Error rates using CM,v within the SO-based framework proposed (first row), a

pointwise matching cost (CM,p) within the same SO-based framework (second row), and

CM,v in a local WTA approach (last row).

Tsukuba Venus Teddy Cones

N.O. - DISC N.O. - DISC N.O. - DISC N.O. - DISC

CM,v, SO 1.63 - 6.80 0.97 - 9.03 9.64 - 19.35 4.60 - 11,52

CM,p, SO 3.70 - 13.38 4.19 - 19.27 12.28 - 20.40 5.99 - 13.96

CM,v, local 2,05 - 7,14 1,47 - 10,5 10,8 - 21,7 5,08 - 12,5

an intensity edge. Thanks to this approach, horizontal/vertical edges are taken into

account along corresponding scanline directions (i.e. horizontal/vertical) during the

SO process, so that edges orthogonal to the scanline direction can not influence the

smoothness penalty terms.

Once the 4 global costs CG are obtained, they are summed up together and a

Winner-Take-All approach on the final cost sum assigns the disparity:

dpr ,best = arg min
d∈D
{

4∑
j=1

C j
G(pr, pt,d)} (3.19)

3.6.2 A first experimental evaluation of the proposed approach

We now briefly show some results dealing with the use of the approach outlined so

far. In particular, in order to demonstrate the benefits of the joint use of the SO-based

framework with the variable support-based matching cost CM,v, we compare the results

yielded by our method to those attainable by the same SO framework using the point-

wise TAD matching cost on RGB triplets, as well as by CM,v in a local WTA approach.

The dataset used for experiments is available at the Middlebury website6. Param-

eter set is constant for all runs. Truncation parameter for TAD in both approaches is

set to 80. For what means the variable support, segmentation is obtained by running

the Mean Shift algorithm [21] with a constant set of parameters (spatial radius σS = 3,

range radius σR = 3, minimum region size minR = 35), while maximum radius size of

the support is set to 51, and parameter γc is set to 22. Finally, for what means the SO

framework, our approach is run with Π1 = 6,Π2 = 27, Pth = 10, while the pointwise

cost-based approach is run with Π1 = 106,Π2 = 312, Pth = 10 (optimal parameters for

both approaches).

6vision.middlebury.edu/stereo
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Table 3.5 shows the error rates computed on the whole image area except for occlu-

sion (N.O.) and in proximity of discontinuities (DISC). Occlusions are not evaluated

here since at this stage no specific occlusion handling approach is adopted by any of

the algorithms. As it can be inferred, the use of a variable support in the matching cost

yields significantly higher accuracy in all cases compared to the pointwise cost-based

approach, the highest benefits being on Tsukuba and Venus datasets. Moreover, benefits

are significant also by considering only depth discontinuities, which demonstrate the

higher accuracy in retrieving correctly depth borders provided by the use of a variable

support within the SO-based framework. Finally, benefits of the use of the proposed

SO-based framework are always notable if we compare the results of our approach with

those yielded by using the same cost function within a local WTA strategy.

3.6.3 Symmetrical detection of occluded areas and depth borders

By respectively assuming as reference Ir the left and the right image of the stereo pair,

it is possible to obtain two different disparity maps, referred to as DLR and DRL. Our

idea is to derive a general method for detecting depth borders and occluded regions

by enforcing the symmetrical relationship on both maps between occlusions and depth

borders resulting from the stereo setup and the scene structure.

In particular, due to the stereo setup, if we imagine to scan any epipolar line of DLR

from left side to right side, each sudden depth decrement corresponds to an occlusion

in DRL. Similarly, scanning any epipolar line of DRL from right side to left side, each

sudden depth increment corresponds to an occlusion in DLR. Moreover, the occlusion

width is directly proportional to the amount of each depth decrement and increment

along the correspondent epipolar line, and the two points composing a depth border on

one disparity map respectively correspond to the starting point and ending point of the

occluded area in the other map.

Hence, in order to detect occlusions and depth borders, we deploy a symmetri-

cal cross-checking strategy, which detects the disparities in DLR which violate a weak

disparity consistence constraint by tagging as invalid all points pd ∈ DLR for which:

|DLR(pd) − DRL (pd − DLR (pd)) | ≤ 1 (3.20)

and analogously detects invalid disparities on DRL. Points referring to disparity

differences equal to 1 are not tagged as invalid at this stage as we assume that occlusions

are not present where disparity varies smoothly along the epipolar lines, as well as

to handle slight discrepancies due to the different view points. The results of this

symmetrical cross-checking are shown, referred to Tsukuba and Cones, on the left and

center images of Fig. 3.9, where colored points in both maps represent the disparities
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Figure 3.9: Points violating (3.20) on DLR and DRL (colored points, left and center) are dis-

criminated between occlusions (yellow) and false matches (green) on Tsukuba and Cones

datasets. Consequently depth borders are detected (red points, right) [This Figure is best

viewed with colors]

violating (3.20). It is easy to infer that only a subset of the colored regions of the maps

is represented by occlusions, while all other violating disparities denote mismatches

due to outliers.

Hence, after cross-checking the two disparity maps DLR and DRL, it is possible to

discriminate on both maps occluded areas from incorrect correspondences (respectively

yellow and green points on left and center image, Fig. 3.9) by means of application

of the constraints described previously. Then, putting in correspondence occlusions

on one map with homologous depth discontinuities in the other map, it is possible to

reliably localize depth borders generated by occlusions on both disparity maps (details

of this method are not provided here due to the lack of space). Right images on Fig.

3.9 show the superimposition of the detected borders referred to DLR (in red color) on

the corresponding grayscale stereo image. As it can be seen, borders along epipolar

lines are detected with notable precision and very few outliers (detected borders which

do not correspond to real borders) are present.

3.6.4 Refinement by means of detected depth borders and segmen-

tation

Depth border detection is employed in order to determine the correct disparity values

to be assigned to points violating cross-checking. In particular, a two-step refinement

process is now proposed, which exploits successively segmentation and depth border

information in order to fill-in, respectively, low textured areas and regions along depth
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Figure 3.10: The reliability of assigning disparities to points violating the strong cross-

checking (3.21) along depth borders (green points, left) is increased by exploiting infor-

mation on depth borders location (red points, center) compared to a situation where this

information is not available (right)

discontinuities.

First of all, the following strong cross-checking consistency constraint is applied

on all points of DLR:

DLR(pd) =

⎧⎪⎪⎨⎪⎪⎩ DLR(pd) DLR(pd) � DRL (pd − DLR(pd))

invalid otherwise
(3.21)

The first step of the proposed refinement approach employs segmentation infor-

mation in order to fill-in regions of DLR denoted as invalid after application of (3.21).

In particular, for each segment extracted from the application of the Mean Shift al-

gorithm, a disparity histogram is filled with all valid disparities included within the

segment area. Then, if a unique disparity value can be reliably associated with that

segment, i.e. if there is a minimum number of valid disparities in the histogram and

its variance is low, the mean disparity value of the histogram is assigned to all invalid

points falling within the segment area. This allows to correctly fill-in uniform areas

which can be easily characterized by mismatches during the correspondence search.

As this first step is designed to fill-in only invalid points within uniform areas,

then a second step allows to fill-in the remaining points by exploiting the previously

extracted information on border locations, especially along depth border regions which

usually are not characterized by uniform areas. In particular, the assigned disparity

value for all invalid points near to depth discontinuities is chosen as the minimum value

between neighbours which do not lie beyond a depth border. This allows to increase

the reliability of the assigned values compared to the case of no information on borders

location, where e.g. the minimum value between neighbouring disparities is selected,

as shown in Fig. 3.10.
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Table 3.6: Disparity error rates and rankings obtained on Middlebury website

Rank Tsukuba Venus Teddy Cones

N.O.-ALL-DISC N.O.-ALL-DISC N.O.-ALL-DISC N.O.-ALL-DISC

AdaptingBP [70] �1 1.11-1.37-5.79 0.10-0.21-1.44 4.22-7.06-11.8 2.48-7.92-7.32

DoubleBP [139] �2 0.88-1.29-4.76 0.14-0.60-2.00 3.55-8.71-9.70 2.90-9.24-7.80

SymBP+occ �3 0.97-1.75-5.09 0.16-0.33-2.19 6.47-10.7-17.0 4.79-10.7-10.9

SO+border �4 1.29-1.71-6.83 0.25-0.53-2.26 7.02-12.2-16.3 3.90-9.85-10.2

Segm+visib [13] �5 1.30-1.57-6.92 0.79-1.06-6.76 5.00-6.54-12.3 3.72-8.62-10.2

C-SemiGlob [59] �6 2.61-3.29-9.89 0.25-0.57-3.24 5.14-11.8-13.0 2.77-8.35-8.20

RegionTreeDP [78] �10 1.39-1.64-6.85 0.22-0.57-1.93 7.42-11.9-16.8 6.31-11.9-11.8

3.6.5 Experimental results

This section shows an experimental evaluation obtained by submitting on the Mid-

dlebury site the results yielded by the proposed algorithm. The parameter set of the

algorithm is constant for all runs and is the same as for the experiments in Sec. 3.6.2.

As it can be seen from Table 3.6, our algorithm (SO+border), which ranked 4th (as of

May 2007), produces overall better results compared to [59], which employs a higher

number of scanlines during the SO process, and also compared to the other SO and

DP-based approaches and most global methods, for higher accuracy is only yielded by

three BP-based global algorithms. Obtained disparity maps, together with correspond-

ing reference images and groundtruth are shown in Fig. 3.11 and are available at the

Middlebury website. The running time on the examined dataset is of the order of those

of other methods based on a variable support [141] (i.e. some minutes) since the ma-

jority of time is required by the local cost computation, while the S.O. stage and the

border refinement stage only account for a few seconds and are negligible compared to

the overall time.
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Figure 3.11: Disparity maps obtained after the application of all steps of the proposed

approach
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Chapter 4

Stereo applications

This chapter presents some applications of stereo vision that were investigated during

the Ph.D. activity. In particular, the tasks that will be illustrated concern the fields of

3D reconstruction and video-surveillance. The common point is that we always attack

the problem using a stereo camera. It will be also highlighted how an accurate - and

often fast - stereo correspondence algorithm is of key importance for the performance

of the ilustrated systems.

4.1 3D reconstruction

This section concerns the research activity carried out at Willow Garage 1, a privately-

funded research center based in Menlo Park (USA). In particular, the Personal Robot

project ran by the center aims at building a mobile robot with manipulators (PR2) for

ordinary household tasks such as setting or clearing a table.

An important sensing technology for object recognition and manipulation is short-

range (30cm – 200cm) 3D perception. Criteria for this device include:

• Good spatial and depth resolution (1/10 degree, 1 mm).

• High speed (>10 Hz).

• Ability to deal with moving objects.

• Robust to ambient lighting conditions.

• Small size, cost, and power.

Current technologies fail on at least one of these criteria. Flash ladars [2] lack depth

and, in some cases, spatial resolution, and have non-gaussian error characteristics that

1www.willowgarage.com

93
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are difficult to deal with. Line stripe systems [25] have the requisite resolution but

cannot achieve 10 Hz operation, nor deal with moving objects. Structured light systems

[110] are achieving reasonable frame rates and can sometimes incorporate motion, but

still rely on expensive and high-powered projection systems, while being sensitive to

ambient illumination and object reflectance. Standard block-matching stereo, in which

small areas are matched between left and right images [72], fails on objects with low

visual texture.

An interesting and early technology is the use of stereo with unstructured light [97].

Unlike structured light systems with single cameras, stereo does not depend on the

relative geometry of the light pattern – the pattern just lends texture to the scene. Hence

the pattern and projector can be simplified, and standard stereo calibration techniques

can be used to obtain accurate 3D measurements.

Even with projected texture, block-matching stereo still forces a tradeoff between

the size of the match block (larger sizes have lower noise) and the precision of the

stereo around depth changes (larger sizes “smear” depth boundaries). One possibility

is to use smaller matching blocks, but reduce noise by using many frames with different

projection patterns, thereby adding information at each pixel. This technique is known

as Spacetime Stereo (STS) [28], [145]. It produces outstanding results on static scenes

and under controlled illumination conditions, but moving objects create obvious diffi-

culties (see Figure 4.1, bottom-left). While there have been a few attempts to deal with

motion within a STS framework [145], [136], the results are either computationally

expensive or perform poorly, especially for fast motions and depth boundaries.

This section proposes the use of regularization methods to attack the problem of

motion in spacetime stereo. One proposed contribution is to enforce not only spatial,

but also temporal smoothness constraints that benefit from the texture-augmented ap-

pearance of the scene. Furthermore, we propose a new regularization method, local

smoothing, that yields an interesting efficiency-accuracy trade-off. Finally, the section

also aims at comparing STS with regularization methods, since a careful reading of

the spacetime stereo literature [28, 145] shows that this has not been addressed before.

Experimentally we found that, using a projected texture, regularization methods ap-

plied on single frames perform better than STS on dynamic scenes (see Figure 4.1) and

produces interesting results also on static scenes.

In the next subsection we review several standard regularization methods, and in-

troduce a novel method, local smoothness, which is more efficient and almost as ef-

fective. We then show how regularization can be applied across time as well as space,

to help alleviate the problem of object motion in STS. In the experimental subsection,

the considered methods are compared on static scenes and in the presence of moving

objects.
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Figure 4.1: The top figure shows the disparity surface for a static scene; disparities

were computed by integrating over 30 frames with varying projected texture using block-

matching (3x3x30 block). The bottom-left figure is the same scene with motion of the

center objects, integrated over 3 frames (5x5x3 block). The bottom-right figure is our local

smoothing method for a single frame (5x5 block).

4.1.1 Smoothness constraints in stereo matching

As discussed in Chapter 3, stereo matching is difficult in areas with low texture and at

depth boundaries. Regularization methods add a smoothness constraint to model the

regularity of surfaces in the real world. The general idea is to penalize those candi-

dates lying at a different depth from their neighbors. A standard method is to construct

a disparity map giving the probability of each disparity at each pixel, and compute a

global energy function for the disparity map as a multi-class Pairwise Markov Random

Field. The energy is then minimized using approximate methods such as Belief Prop-

agation (BP) [70], [139] or Graph Cuts (GC) [23]. Even though efficient BP-based

algorithms have been proposed [140], [40], overall the computational load required by

global approaches does not allow real-time implementation on standard PCs.

Rather than solving the full optimization problem over the disparity map, scanline

methods enforce smoothness along a line of pixels. Initial approaches based on Dy-

namic Programming (DP) and Scanline Optimization (SO) [112] use only horizontal

scanlines, but suffer from streaking effects. More sophisticated approaches apply SO

over multiple, variably-oriented scanlines [58] or use multiple horizontal and vertical

passes [69], [86], [51]. These methods tend to be faster than global regularization,

though the use of several DP or SO passes tends to increase the computational load of

the algorithms. Another limit to the applicability of these approaches within a mobile
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robotic platform is their fairly high memory requirements. This subsection we review

scanline methods and proposes a new method called local smoothness.

Global scanline methods Let IL, IR be a rectified stereo image pair sized M · N and

W(p) a vector of points belonging to a squared window centered on p. The standard

block-matching stereo algorithm computes a local cost C(p, d) for each point p ∈ IL

and each possible correspondence at disparity d ∈ D on IR:

C(p, d) =
∑

q∈W(p)

e(IL(q), IR(δ(q, d))). (4.1)

where δ(q, d) is the function that offsets q in IR according to the disparity d, and e is a

(dis)similarity function. A typical dissimilarity function is the L1 distance:

e(IL(q), IR(δ(q, d))) = |IL(q) − IR (δ(q, d))| . (4.2)

In this case, the best disparity for point p is selected as:

d∗ = arg min
d
{C(p, d)}. (4.3)

In the usual SO or DP-based framework, the global energy functional being minimized

along a scanline S is:

E (d(·)) =
∑
p∈S

C (p, d(p)) +
∑
p∈S

∑
q∈N(p)

ρ (d(p), d(q)) (4.4)

where d(·) denotes now a function that picks out a disparity for its pixel argument, and

q ∈ N(p) are the neighbors of p according to a pre-defined criterion. Thus to minimize

(4.4) one has to minimize two different terms, the first acting as a local evidence and

the other enforcing smooth disparity variations along the scanline, resulting in a non-

convex optimization problem. The smoothness term ρ is usually derived from the Potts

model [105]:

ρ (d(p), d(q)) =

⎧⎪⎪⎨⎪⎪⎩ 0 d(p) = d(q)

π d(p) � d(q)
(4.5)

π being a penalty term inversely proportional to the temperature of the system. Usually

for stereo a Modified Potts model is deployed, which is able to handle slanted surfaces

by means of an additional penalty term πs << π:

ρ (d(p), d(q)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 d(p) = d(q)

πs |d(p) − d(q)| = 1

π elsewhere

(4.6)

Thanks to (4.6), smooth variations of the disparity surface are permitted at the cost

of the small penalty πs. Usually in SO and DP-based approaches the set of neighbours
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for a point p includes only the previous point along the scanline, p−1. From an algo-

rithmic perspective, an aggregated cost A(p, d) has to be computed for each p ∈ S ,

d ∈ D:

A(p, d) = C(p, d) +min
d′
{A(p−1, d

′) + ρ(d, d′)} (4.7)

Because of the nature of (4.7) the full cost for each disparity value at the previous

point p−1 must be stored in memory. If a single scanline is used, this typically requires

O(M ·D) memory, while if multiple passes along non-collinear scanlines are concerned,

this usually requires O(M · N · D) memory [58].

Local smoothness Keeping the full correlation surface over M · N · D is expensive;

we seek a more local algorithm that aggregates costs incrementally. In a recent pa-

per [146], a penalty term is added in a local fashion to improve post-processing of

the disparity image based on left-right consistency check. Here, we apply a similar

penalty during the construction of the disparity map and generalize its use for multiple

scanlines. Given a scanline S , we can modify (4.7) as follows:

ALS (p, d) = C(p, d) + ρ(d, d̃) (4.8)

where

d̃ = arg min
d
{C(p−1, d)} (4.9)

is the best disparity computed for the previous point along the scanline. Hence, each

local cost is penalized if the previously computed correspondence along the scanline

corresponds to a different disparity value. In this approach, there is no need to keep

track of an aggregated cost array, since the aggregated cost for the current point only

depends on the previously computed disparity. In practice the computation of (4.8) for

the current disparity surface might be performed simply by subtracting π from C(p, d̃)

and π − πs from C(p, d̃ − 1), C(p, d̃ + 1).

Enforcing smoothness in just one direction helps handle low-textured surfaces, but

tends to be inaccurate along depth borders, especially in the presence of negative dis-

parity jumps. Using two scans, e.g. horizontally from left to right and from right to

left, helps to reduce this effect, but suffers from the well-known streaking effect [112].

In order to enforce inter-scanline consistency, we run local smoothness over 4 scans, 2

vertical and 2 horizontal (see Figure 4.8). In this case, which we will refer to as Spatial

Local Smoothness (LS s), the aggregated cost (4.8) is modified as follows:

ALS s (d) = C(p, d) +
∑

q∈N(p)

ρ (d, d(q)) . (4.10)

Here N refers to the 4 disparities previously computed on p. The computation of d∗

benefits from propagated smoothness constraints from 4 different directions, which
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a) b)

c) d)

Figure 4.2: Qualitative comparison of different algorithms based on the smoothness con-

straint: a)standard b)SO-based c)local smoothness (2 horizontal scanlines) d)local smooth-

ness (4 scanlines).

reduces noise in low-textured surfaces, and also reduces streaking and smearing effects

typical of scanline-based methods.

It is worth pointing out that the LS s approach can be implemented very efficiently

by means of a two-stage algorithm. In particular, during the first stage of the algo-

rithm, the forward-horizontal and forward-vertical passes are computed, and the result

is stored into two M · N arrays. Then, during the second pass, the backward-horizontal

and backward-vertical passes are processed, and within the same step the final aggre-

gated cost (4.10) is also computed. Then the best disparity is determined as in (4.9).

Overall, computational cost is between 3 and 4 times that of the standard local stereo

algorithm. Memory requirements are also small – O(2 × M × N).

Experimental evaluation We now briefly present some experimental results show-

ing the capabilities of the previously introduced regularization methods on stereo data

by comparing them to a standard block-correlation stereo algorithm. In particular, in

addition to the LS s algorithm, we consider a particularly efficient approach based only

on one forward and one backward horizontal SO pass [86]. This algorithm accounts for

low memory requirements and fast performance, though it tends to suffer the streaking

effect. We will refer to this algorithm as SOs.
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Figure 4.3: Dataset used for experiments: from left to right, Face, Cubes, Cones se-

quences.

Fig. 4.2 shows some qualitative results on the Tsukuba dataset [112]. The stan-

dard local algorithm is in (a), SOs (b) and the LS s algorithm in (d). Also, the figure

shows the disparity map obtained by the use of the Local Smoothness criterion over

only 2 horizontal scanlines in (c). It can be noticed that, compared to the standard

approach, regularization methods allow for improved accuracy along depth borders.

Furthermore, while methods based only on horizontal scanlines (b, c) present typical

horizontal streaking effects, these are less noticeable in the LS s algorithm (d). In our

implementation, using standard incremental techniques but no SIMD or multi-thread

optimization, time requirements on a standard PC for the standard, SOs and LS s algo-

rithms are 18, 62 and 65 ms, respectively.

In addition, we show some results concerning images where a pattern is projected

on the scene. As for the pattern, we use a randomly-generated grayscale chessboard,

which is projected using a standard video projector. Fig. 4.3 shows 3 frames taken

from 3 stereo sequences used here and in Section 4.1.2 for our experiments. Sequence

Face is a static sequence, while Cubes and Cones are dynamic scenes where the ob-

jects present in the scene rapidly shift towards one side of the table. All frames of all

sequences are 640 × 480 in resolution.

Figure 4.4 shows experimental results for the standard algorithm as well as SOs and

LS s over different window sizes. Similarly to what done in [28], ground truth for this

data is the disparity map obtained by the spacetime stereo technique (see next Section)

over all frames of the sequence using a 5 × 5 window patch. A point in the disparity

map is considered erroneous if the absolute difference between it and the groundtruth

is higher than one.

From the figure it is clear that, even on this real dataset, regularization methods

allow for improved results compared to standard methods since the curve concerning

the standard algorithm is always above the other two. It is worth pointing out that

both SOs and LS s achieve their minimum with a smaller spatial window compared

to the standard algorithm, allowing for reduced smearing effect along depth borders.
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Figure 4.4: Quantitative comparison between different spatial approaches: standard algo-

rithm, S Os, LS s.

Conversely, the use of regularization methods with big windows increase the error

rate which tends to converge to the one yielded by the standard method. It is also

worth pointing out that overall the best result is yielded by the proposed LS s algorithm.

Finally, Figure 4.5 shows the 3D point cloud of the face profile obtained by using the

LS s algorithm over one frame on the Face dataset. From the Figure it can be noted that

despite being fast and memory-efficient, this algorithm is able to obtain good accuracy

in the reconstructed point cloud.

4.1.2 Spacetime stereo

Block-correlation stereo uses a spatial window to smooth out noise in stereo matching.

A natural extension is to extend the window over time, that is, to use a spatio-temporal

window to aggregate information at a pixel [145], [28] (Figure 4.6). The intensity at

position I(p, t) is now dependent on time, and the block-matching sum over a set of

frames F and a spatial window W can be written as

C(p, d) =
∑
t∈F

∑
q∈W(p)

e(IL(q, t), IR(δ(q), t)). (4.11)
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Figure 4.5: Point cloud showing the 3D profile of the face in Fig. 4.3 (left), computed

using a single frame and LS s algorithm.

Minimizing C over d yields an estimated disparity at the pixel p. Note that we obtain

added information only if the scene illumination changes within F.

As pointed out in [145], block matching in Equation (4.11) assumes that the dis-

parity d is constant over both the local neighborhood W and the frames F. Assuming

for the moment that the scene is static, by using a large temporal window F we can

reduce the size of the window W while still reducing matching noise. This strategy has

the further salutary effect of minimizing the smearing of object boundaries. Figure 4.1

(top) shows a typical result for spacetime block matching of a static scene with small

spatial windows.

Moving objects In a scene with moving objects, the assumption of constant d over

F is violated. A simple scheme to deal with motion is to trade off between spatial and

temporal window size [28]. In this method, a temporal window of the last k frames is

kept, and when a new frame is added, the oldest frame is popped off the window, and

C(p, d) is calculated over the last k frames. We will refer to this approach as sliding
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Figure 4.6: Spacetime window for block matching. Spatial patches centered on p are

matched against corresponding patches centered on d(p), and the results summed over all

frames.

windows (STS-SW). The problem is that any large image motion between frames will

completely erase the effects of temporal integration, especially at object boundaries

(see Figure 4.1, bottom-left). It is also suboptimal, since some areas of the image may

be static, and would benefit from longer temporal integration.

A more complex method is to assume locally linear changes in disparity over time,

that is, d(p, t) is a linear function of time [145]:

d(p, t) ≈ d(p, t0) + α(p)(t − t0). (4.12)

For smoothly-varying temporal motion at a pixel, the linear assumption works well.

Unfortunately, searching over the space of parameters α(p) makes minimizing the

block-match sum (4.11) computationally difficult. Also, the linear assumption is vi-

olated at the boundaries of moving objects, where there are abrupt changes in disparity

from one frame to the next (see Figure 4.7). These temporal boundaries present the

same kind of challenges as spatial disparity boundaries in single-frame stereo.

A more sophisticated strategy would be to detect the temporal boundaries and ap-

ply temporal smoothness only up to that point. In this way, static image areas enjoy

long temporal integration, while those with motion use primarily spatial information.

Hence, we propose a novel method with the aim of efficiently dealing with dynamic

scenes and rapidly-varying temporal boundaries. In particular, the main idea is to avoid

using the spacetime stereo formulation as in (4.11) which blindly averages all points

of the scene over time, instead enforcing a temporal smoothness constraint similarly

to what is done spatially. In particular, this can be done either modelling the spatio-



STEREO APPLICATIONS 103

Figure 4.7: Disparity at a single pixel during object motion. Initially disparity is con-

stant (no motion); then varies smoothly as the object moves past the pixel. At the object

boundary there is an abrupt change of disparity.

temporal structure with a MRF and solving using an SO or DP-based approach, or

enforcing a local smoothness constraint as described in Section 4.1.1.

Temporal regularization using SO The idea of looking for temporal discontinuities

was first discussed in [136], which proposed an MRF framework that extends over three

frames. The problem with this approach is that the cost in storage and computation is

prohibitive, even for just 3 frames. Here we propose a much more efficient method

that consists in defining a scanline over time, analogous to the SO method over space.

Given a cost array for each point and time instant C(p, d, t) being computed by means

of any spatial method (local, global, DP-based, · · · ), a SO-based approach is used for

propagating forward a smoothness constraint over time:

ASO(p, d, t) = C(p, d, t) +min
d′
{ASO(p, d′, t − 1) + ρ(d, d′)} (4.13)

Instead of backtracking the minimum cost path as in the typical DP algorithm, here it

is more convenient to compute the best disparity over space and time as follows:

d∗(p, t) = arg min
d
{ASO(p, d, t)} (4.14)

so that for each new frame its respective disparity image can be readily computed.

As shown in Figure 4.8, accumulated costs from previous frames ti<n are propagated

forward to influence the correlation surface at time tn. Here we propose to use as spatial

algorithm the SO-based approach deploying two horizontal scanlines as discussed in

Section 4.1.1. This algorithm is referred to as SOs,t.

Temporal regularization using local smoothness In a manner similar to applying

SO across frames, we can instead use local smoothness. The key idea is to modify the
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Figure 4.8: Local smoothing applied in the temporal domain. Disparity values influence

the center pixel at time tn from vertical and horizontal directions, and also from previous

frames ti, i < n.

correlation surface at position p and time t according to the best disparity found at the

same point p at the previous instant t−1. This does not require storing and propagating

a cost array, only the correspondences found at the previous time instant.

The local temporal smoothness criterion is orthogonal to the strategy adopted for

solving stereo over the spatial domain, hence any local or global stereo techniques can

be used together with it. Here we propose to use local spatial smoothness described in

Section 4.1.1. The cost function at pixel p and time t becomes:

ALS s,t (p, d, t) = C(p, d, t) +∑
q∈N

ρ (d, d(q, t)) + ρ (d, d(p, t − 1)) , (4.15)

That is, the penalty terms added to the local cost are those coming from the 4 inde-

pendent scanline-based processes at time t plus an additional one that depends on the

best disparity computed at position p at the previous time instant (see Figure 4.8). This

algorithm will be referred to as LS s,t.

Table 4.1: Percentage of errors, Cubes stereo sequence

Radius STS-SW Standard SOs SOs,t LS s LS s, t

2 12.8 12.1 1.1 1.0 1.1 0.7
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Table 4.2: Percentage of errors, Cones stereo sequence

Radius STS-SW Standard SOs SOs,t LS s LS s, t

1 46.9 49.9 5.3 5.2 14.8 12.2

3 35.4 15.9 4.2 4.1 8.2 6.9

5 31.9 9.6 4.6 4.5 7.0 6.1

It is possible to propagate information both forwards and backwards in time, but

there are several reasons for only going forwards. First, it keeps the data current –

previous frames may not be useful for a realtime system. Second, the amount of com-

putation and storage is minimal for forward propagation. Only the previous image local

costs have to be maintained, which is O(M · N). In contrast, to do both forwards and

backwards smoothing we would need to save local costs over k frames (O(k · M · N)),

and worse, recompute everything for the previous k frames, where k is the size of the

temporal window for accumulation.

Experiments We now present experimental results over two stereo sequences with

moving objects and a projected pattern, referred to as Cubes and Cones (see Fig. 4.3).

To obtain ground truth for the stereo data, each different position of the objects is

captured over 30 frames with a 3 × 3 spatial window, and stereo depths are averaged

over time by means of spacetime stereo. Then, a sequence is built up by using only one

frame for each different position of the objects.

As a comparison, we compute spacetime stereo using the sliding window approach

(STS-SW). This approach is compared with regularization techniques based only on

spatial smoothness (i.e. SOs, LS s) as well as with those enforcing temporal regular-

ization (i.e. SOs,t, LS s,t).

Figure 4.9 shows the error rates of each algorithm for each frame of the Cubes

dataset, with a fixed spatial window of radius 2. Table 4.1 reports the average error

over the whole sequence. In addition, Figure 4.1 shows the ground truth for one frame

of the sequence as well as the results obtained by S TS − SW and LS s,t. As can be

seen, due to the rapid shift of the objects in the scene, the approach based on spacetime

stereo is unable to improve the results compared to the standard algorithm. Instead,

approaches based on spatial regularization yield very low error rates, close to those

obtained by the use of spacetime stereo over the same scene but with no moving objects.

Furthermore, Figure 4.9 shows that the error variance of the methods enforcing the

smoothness constraint is notably lower than that reported by the standard and STS-

SW algorithms. It is worth pointing out that the use of the proposed LS regularization

technique both in space and time yields the best results over all the considered frames.
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Figure 4.9: Comparison of error percentages between different approaches for the Cubes

sequence at each frame of the sequence. [The graph uses two different scales for better

visualization]

As in the previous experiment, Table 4.2 shows the mean error percentages over

the Cones dataset with different spatial windows (i.e., radius 1, 3, and 5). Also in this

case, regularization approaches achieve notably lower error rates compared to standard

and spacetime approaches. From both experiments it is possible to observe that the

introduction of temporal smoothness always helps improving the performance of the

considered regularization methods.

The code concerning the regularization methods and the STS algorithms used in

this paper is open source and available online 2.

2available at:

https://prdev.willowgarage.com/trac/personalrobots/browser/pkg/trunk/vision/spacetime_stereo

and at:

https://prdev.willowgarage.com/trac/personalrobots/browser/pkg/trunk/vision/stereo_image_proc

https://prdev.willowgarage.com/trac/personalrobots/browser/pkg/trunk/vision/spacetime_stereo
https://prdev.willowgarage.com/trac/personalrobots/browser/pkg/trunk/vision/stereo_image_proc
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4.2 Multi-view vandal act detection

This section presents a novel video surveillance approach designed to detect vandal

acts occurring on the background of the monitored scene, such as graffiti painting on

walls and surfaces, public and private property defacing or etching, unauthorized post

sticking. The aim of our approach is to detect this class of events rapidly and robustly.

We propose to use two synchronized views to deploy synergically depth and intensity

information concerning the monitored scene.

Nowadays vandal acts represent a serious problem in urban areas, with thousands of

public and private properties being damaged daily all around the world. Costs issued by

this problem are huge: e.g. for the problem of graffiti, that relates to the wide range of

markings, etchings and paintings that deface public and private properties, an estimate

$ 12 billion a year is spent for cleaning and prevention in the United States [3]. Beside

the expenses related to repairing, cleaning and/or substituting a vandalized property,

indirect costs arise due to the perceived insecurity associated with the occurrence of

vandal acts in a certain area. This typically results in a decrease of revenues for com-

mercial activities or services taking place in the area, such as shops, house tenures, and

public transport, for which the uncleanness and perceived insecurity lower passenger

confidence in the transport system and consequently tend to decrease ridership. Not

less important are the social consequences that repetitive vandal acts in a certain urban

area imply on the dwellers.

The effort pushed to tackle - or at least control - the diffusion of vandal acts in urban

areas worldwide has often resorted to the use of automatic monitoring system due to

the huge amount of public and properties in cities. Commercial products based on

audio sensors [6, 8, 79, 125] try to detect vandal acts by analyzing the sounds typically

occurring during these actions. These devices present notable limitations, since they

detect specific sounds and can hardly generalize to different or noiseless vandal acts.

Moreover they can be easily tricked by the presence of environmental noise, and they

typically need to stand very close to the monitored region.

Due to these reasons, vision-based approaches relying on automatic video anal-

ysis have been recently driving increasing attention. On one hand, all the proposed

state-of-the-art vision-based systems [3, 47, 109] rely on a single-view approach, that

is they try to recognize vandal acts by processing a video sequence obtained from a

single camera. On the other hand, two different classes of algorithms can be outlined.

One approach consists in applying behaviour and gesture analysis techniques for

recognizing the high-level spatio-temporal pattern corresponding to the person perpe-

trating the vandal act. For example, detection of graffiti is carried out in [109] by

searching for the pattern corresponding to a person writing on a monitored surface.

However, such techniques require accurate training of classifiers and generally perform
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much better when a certain degree of cooperation from the subject can be achieved,

which is obviously not the case of vandal acts.

Another approach relies on comparing the current appearance of the monitored

object with that of a background model of the scene. Hence, this class of methods can

detect only vandal acts which produce visible and stationary changes of the appearance

of the monitored scene. We will refer to this class of events as Stationary Visible

Changes (SVC), which includes paintings on walls and surfaces, public and private

property defacing, etching or stealing, unauthorized post sticking. This also concerns

other scenarios such as, e.g. for cultural heritage environments or museums, criminal

acts such as tearing, dirtying, defacing, stealing of parts of an artwork. Detection of

vandal acts by recognizing SVC is carried out in [3, 47].

In particular, in [3] the authors focus on graffiti and propose a low-level approach

for SVC recognition based on single-view change detection. This approach inherently

suffers from a false positives problem when deployed as vandal acts detectors. In fact,

SVC events include most of the common aforementioned vandal acts, but also other

frequent events such as people standing still, parked vehicles (such as cars, motor-

bikes, bicycles), abandoned objects. The same issue arises with method [47], which

concerns a fast single-view SVC detector based on the analysis of higher-level events

occurring in the monitored scene. This problem is partially dealt with by limiting the

detection only on a subset of the camera field-of-view and by assuming that the mon-

itored scene is not crowded. Finally, robustness with regards to sudden illumination

changes occurring in the scene is not investigated.

Our idea is to go beyond the visibility and stationarity cues in order to obtain a finer

classification of SVC. This should allow for a more effective detection of specific van-

dal acts based on the recognition of their peculiar effects. To this purpose, we propose

to deploy also depth information, so that the class of SVC events can be partitioned

into the two following mutually-exclusive sub-classes:

a) Stationary Appearance Changes (SAC): stationary visible changes due to varia-

tions of the appearance but not the 3D geometry of the scene.

b) Stationary Geometric Changes (SGC): stationary visible changes due to varia-

tions of the 3D geometry of the scene;

It is clear that most of the vandal acts that previous proposals try to detect as SVC

are indeed SAC, for they determine no (or small) variation of the scene 3D geometry,

while most false positives have to be ascribed to SGC.

Hence, we propose to effectively detect vandal acts based on the ability of distin-

guishing between SAC and SGC. In particular, we present a real-time SAC detection

algorithm based on the use of two synchronized views of the monitored scene and on
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(a) temporal change detection: only the VC super-class can be recognized
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(b) spatial change detection: only the GC sub-class can be recognized
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Figure 4.10: Temporal and spatial change detection

a novel multi-view change detection approach. This deploys on-line intensity informa-

tion coming from the two image sensors together with knowledge of the 3D structure of

the monitored scene, which is obtained once at initialisation time by means of a stereo

matching process. This enables to detect effectively SAC events even in presence of

static subjects that produce SGC. The proposed method can work within unstructured

environments and does not pose any constraint on the appearance and geometry of the

background of the monitored scene. Moreover, by means of a specific stage which is

robust with respect to non-linear photometric distortions, our approach can also han-

dle strong sudden illumination changes and shadows. Finally, our system can alert the

occurrence of vandal acts while they are being committed.

4.2.1 Principles of multi-view change detection

The input information to our approach is represented by two synchronized video se-

quences of a scene characterized by a considerable overlap of field-of-views. Moreover,

we assume stationarity of the capturing devices as well as of the scene background ge-

ometry, so that geometric registration of the background over the two views, hereinafter

denoted as left view (L) and right view (R), can be computed only once at initialization

time. Apart from stationarity, no further assumption is made about geometry of the

background surface which, in particular, is not constrained to be planar.

The goal of our approach is to compute in one of the two views, referred to as

primary, a binary mask highlighting the pixels which are sensing a SAC, that is, at the

event level, the effect of a vandal act. To this purpose, we use a novel multi-view change

detector to carry out the twofold task of detecting VC and, among these, discriminat-

ing between AC and GC. Then, a simple procedure is used to evaluate stationarity of

AC. To better illustrate our proposal, in this section we outline some basic principles

concerning multi-view change detection and, contextually, review the state-of-the-art

in the field.
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As regards the way the input information (i.e. the two synchronized video se-

quences) can be exploited for detecting changes with respect to a reference scene, we

define:

a) temporal consistency constraint: for a given view-point, the processed frames

are images of the same scene taken at different times;

b) spatial coherence constraint: for a given elaboration time instant, the processed

frames are images of the same scene taken from different view-points;

The temporal consistency constraint can be exploited to perform a temporal change

detection independently in each view by a classical background subtraction proce-

dure. That is, at each time t the current frames FL,t and FR,t are compared with as

many off-line generated view-dependent appearance models BL and BR of the refer-

ence scene, that we call temporal backgrounds. Two temporal change masks are thus

obtained, that is two binary masks CT
L,t and CT

R,t comprising the pixels which are cur-

rently sensing a violation of the temporal consistency constraint. Temporal change

detection is illustrated in Figure 4.10(a) by means of a toy example consisting of a pla-

nar background (light grey with two darker vertical strips), a parallel-axis stereo sensor

with the two optical axes perpendicular to the background, and AC (red) as well as GC

(blue) events being sensed in the current frames. As one can easily understand and as

pointed out in Figure 4.10(a), generally speaking temporal change detection allows for

detecting, independently in each view, the super-class of VC events but not for discrim-

inating between the AC and GC sub-classes. This is due to the fact that recoverying

depth information from a single view is in principle an ill-posed problem.

Exploitation of the spatial coherence constraint yields the simplest multi-view change

detection approach, proposed in [64], that we call spatial change detection. The spatial

background, unlike temporal ones, does not store appearance but geometric informa-

tion about the monitored scene. In fact, it consists in the disparity map DL←R (com-

puted off-line) warping the monitored scene from the auxiliary to the primary view.

Spatial background subtraction is thus performed by a background disparity verifica-

tion. That is, at each time the auxiliary frame FR,t is warped into the primary view

by the background disparity map and then compared with the primary frame FL,t to

obtain a spatial change mask, a binary mask CS
L,t highlighting the pixels which are cur-

rently sensing a violation of the spatial coherence constraint. As illustrated in Figure

4.10(b), only the GC sub-class can be recognized by spatial change detection. In fact,

AC events occur on the background surface and, hence, are coherent with respect to

the background disparity map. Moreover, the method suffers from an intrinsic false

positives problem, called occlusion shadows. In fact, the background pixels in the

primary view which are occluded by a foreground object in the auxiliary view are in-
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(a) joint use of temporal and spatial change detection as proposed in [8,10]
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Figure 4.11: Joint exploitation of temporal and spatial change detection

herently detected as changed. To deal with this problem, in [64] the authors propose

to exploit more than one auxiliary view and to compute the intersection of the binary

masks obtained by comparing the primary with each of the auxiliary views. In [84]

the problem is addressed from a sensor planning perspective. In particular, it is shown

how occlusion shadows can be removed by using just two views if a suitable sensors

configuration is adopted.

The combined exploitation of both the temporal consistency and the spatial coher-

ence constraints is proposed in [68] and [76]. Essentially, both approaches rely on

the idea, illustrated in Figure 4.11(a), of first performing temporal change detection in

each view and then carrying out spatial change detection based on the obtained tem-

poral change masks. This should allow to obtain the AC mask CA
L,t and, by subtraction

from the temporal change mask, the GC mask CG
L,t. However, as pointed out in Figure

4.11(a), these methods inherently suffer from missed detection in the GC mask and, as

discussed in detail in Section 4.2.2, from false detections in the AC mask.

4.2.2 The proposed algorithm

The proposed graffiti detection algorithm relies on a novel multi-view change detection

approach. The novelty consists in a simple yet clever way of combining temporal and

spatial change detection so as to perform an effective discrimination between AC and

GC. To better illustrate the approach we will distinguish between off-line and on-line

elaboration steps. Once the AC events are detected, the proposed procedure for the

recognition of stationary AC (SAC) can be regarded as a post-processing step. Hence,

it will be described in a separate section together with a simple binary morphology

stage applied on the final change mask.
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Off-line elaboration

The very first step concerns the calibration of the stereo sensor, which aims at estimat-

ing, for each view, the calibration parameters, a set of optical distortion parameters and

a rectification homography. This information is condensed into two geometrical trans-

formations gL(·) and gR(·) that will be used at each processing time - both off-line and

on-line - to compute the undistorted and rectified versions FL,t and FR,t of the captured

frames Fc
L,t and Fc

R,t, respectively. In formulas:

FL,t = gL
(
Fc

L,t
)

FR,t = gR
(
Fc

R,t
)

(4.16)

Hence, for each view a short bootstrap sequence of N frames (N in the order of tens) is

used to infer an appearance model of the reference scene, i.e. the temporal background:

BL = b
(
FL,1, . . . , FL,N

)
BR = b

(
FR,1, . . . , FR,N

)
(4.17)

with b denoting a generic - possibly robust - pixel-wise statistical estimator. In the

experiments shown in Section Section 4.2.3 we have used the median operator. The

two temporal backgrounds are thus fed to a dense stereo matching algorithm so as to

compute the disparity map warping the reference scene from the auxiliary (right) to the

primary (left) view, i.e. the spatial background:

DL←R = m
(
BL, BR

)
(4.18)

It is worth pointing out here that this operation aimed at obtaining the spatial back-

ground needs to be obtained once and for all at initialisation time, hence on-line stereo

matching is not required by our method. Therefore, with our approach one should de-

ploy an as accurate as possible, even though slow, stereo matching algorithm, so as to

maximize the accuracy of the warping function. In the experiments shown in Section

Section 4.2.3 we have used the algorithm described in [58].

On-line elaboration

The main on-line processing steps performed by the proposed algorithm are illustrated

in Figure 4.11(b) by means of the same toy example used in the previous section.

First of all, temporal change detection is performed in the primary view by back-

ground subtraction, that is by comparing the current frame FL,t with the off-line gener-

ated temporal background BL, so as to compute the temporal change mask CT
L,t:

CT
L,t = cT (

BL, FL,t
)

(4.19)

In particular, to achieve robustness with respect to strong photometric distortions we

apply at pixel-level the block-level approach presented in [75]. This algorithm is able
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to filter-out illumination changes yielding locally order-preserving transformations of

pixel intensities.

Spatial change detection is then performed. To this purpose, the auxiliary frame

FR,t is warped into the primary view by the DL←R background disparity map:

FL←R,t = dL←R
(
FR,t

)
(4.20)

The spatial change mask CS
L,t is thus obtained by comparing the primary frame FL,t

with the warped auxiliary frame FL←R,t:

CS
L,t = cS (

FL,t, FL←R,t
)

(4.21)

Differently from temporal change detection, here the compared frames are synchro-

nized. Hence, under the assumtpion of lambertian surfaces, illumination changes oc-

curring in the monitored scene affect in the same way the amount of radiation incident

onto the two sensors. Nevertheless, in general the two sensors can produce different

measures (i.e. image intensities) due to the presence of non-lambertian surfaces, to a

different foreshortening of the objects in the two views and different camera parameters

(e.g. gain, exposure).

For this reason, also in this case a robust change detection algorithm is desir-

able. We propose to use a block-based approach and the well-known Normalized

Cross-Correlation (NCC) measure, due to its simplicity and its constant complexity.

This measure is invariant to linear photometric distortions. It is also worth to point out

that the computation of CS
L,t by means of the NCC measure can be efficiently performed

using incremental schemes [24,91], so that complexity turns out independent on block

size.

As discussed in the previous section and clearly outlined in Figure 4.11(b), on

one hand the temporal change mask comprises the super-class of pixels sensing a VC,

while on the other hand the spatial change mask contains the sub-class of GC pixels

and the false positives corresponding to occlusion shadows. Hence, by computing the

intersection of the two masks the geometric change mask CG
L,t containing GC pixels

can be easily obtained:

CG
L,t = CT

L,t ∩ CS
L,t (4.22)

Finally, it is straightforward to compute the appearance change mask CA
L,t by subtract-

ing the geometric from the temporal change mask:

CA
L,t = CT

L,t \ CS
L,t (4.23)

Summarizing, in principles this mask should include only those pixels that are cur-

rently sensing a change of the background appearance related neither to an illumination
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change nor to a variation of the background geometry. Given the addressed application

domain, such changes can be ascribed to acts of vandalism.

It is worth pointing out that in the method of Figure 4.11(a) disparity verification

occurs on the binary temporal change masks. As a result, the method will definitely

yield false AC in correspondence of the overlapping areas between GC regions found

in the primary view and in the warped auxiliary view. Conversely, with our approach

disparity verification is carried out between the original frames, as in 4.10(b). Hence,

for the pixels belonging to the above mentioned overlapping areas a decision is taken

based on photometric similarity according to the NCC measure. Since in such areas

overlapping between different parts of a foreground object is likely to occur (e.g. the

left and right shoulder of a person perpetrating a vandal act), unless the object is untex-

tured, it is likely that photometric dissimilarity will allow for a correct classification as

spatial changes. As a consequence, our method will unlikely yield false AC.

Stationarity and morphology

Since the addressed acts of vandalism yield permanent and static modifications of scene

appearance, we can exploit the further constraint that AC detected by the proposed

multi-view change detector have to be stationary. To this purpose, we propose to use

a simple procedure based on a post-processing and pixel-wise approach. That is, at

each time t a pixel sensing an AC is classified as a SAC if the the appearance change is

persistent over a given interval of previous frames. In formulas:

CSA
t (p) = CA

t (p) ∧ CA
t−1(p) . . . ∧CA

t−k(p) (4.24)

where CSA
t denotes the obtained SAC binary mask and the subscript L is drop for

simplicity. Similarly, a persistent absence of AC is required to switch off a SAC pixel

in CSA
t .

Finally, to refine the computed SAC binary mask and remove small false positives

and false negatives we apply a simple two-steps morphological filtering consisting of

an area-opening and a morphological closing. The obtained graffiti blobs are then

labelled and their bounding-boxes are extracted.

4.2.3 Experimental results

This subsection presents experimental results aimed at evaluating the capabilities of the

proposed approach to detect typical SAC events under real conditions. In particular,

we have implemented the proposed algorithm in C code using off-the-shelf hardware

which includes a PC with an AMD Athlon 2.21 GHz core processor and a very cheap

stereo setup represented by two web-cams.
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Figure 4.12: Results dealing with the 3 Graffiti sequences (to be viewed in color)
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Figure 4.13: Results dealing with the Statue sequence (to be viewed in color)

Figure 4.12 shows the results dealing with three video sequences (A, B and C)

concerning the particular case of graffiti detection. Sequences A, B refer to an outdoor

environment, while sequence C refers to an indoor scene. For all sequences, the top left

frame shows the idle appearance of the scene (i.e. the background), while remanining

frames show the output of the system sampled every 10 or 5 seconds (depending on the

dynamics of the event) starting from the beginning of the vandalic action. In particular,

the output depicts with blue pixels those points currently detected as GC, while in red

those points currently detected as AC. Finally, when a SAC event is detected (i.e. after

post-processing) a green bounding box with a numbered label highlights the area where
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the action is taking place.

In the Graffiti A sequence the background is represented by three textureless slanted

walls at different depths on which a person posts up a flyer and draws some graffiti,

while in the Graffiti B sequence the background is mainly composed by a textureless

slanted wall. In both sequences it is worth to note that our approach is able to accurately

detect the graffiti events at different depths while the action is occurring. Moreover

it is worth pointing out the notable absence of false positives throughout the whole

sequences. It is also interesting to note that SGC events are currently discriminated

from SAC events (e.g. in Graffiti B sequence, the motorbike which is parked in front

of the background during the vandal act).

For what concerns the Graffiti C sequence, the background is represented by a white

slanted wall on which a person draws some graffiti and posts up a flyer. Also in this

case, graffiti are correctly and on-line discriminated from GC. Similarly to the previous

sequence, false positives are absent along all frames despite the notable presence of

shadows on the background. In this case, the adopted robust temporal change detection

algorithm allows to reject the majority of shadow points as visible changes (frames 1-5,

7), the remaining ones being discarded by stationarity and morphology (frames 1-5).

Fig. 4.13 refers to a more general case of vandal acts detection over a complex

background. In this case, referred to as Statue sequence, the background is constituted

by a table and a small statue close to the sensor, plus a variegated group of objects

at a further distance. The background models for the two views together with the

corresponding disparity maps are shown on the top of the figure. Similarly to the

previous cases, frames 1-9 show the output of the system sampled every 5 seconds.

Beside the complex background and the not perfectly synchronized stereo sensor,

challenges are also introduced by the events taking place in the scene. That is, different

people are moving simultaneously (frames 3, 5-7) even close to the camera (frame 5).

Furthermore, a chair is placed in the scene (frames 5-8), this event being correctly not

classified as SAC since it represents a SGC. SAC events are represented by defacing

of the statue (between frames 6 and 7) and by switching on a monitor (between frames

7 and 8). These events are correctly and accurately detected (frames 7-9). Besides,

a person standing still (frame 8) does not produce any false positive since, again, it

correspond to a SGC. As for computational requirements, the proposed approach can

efficiently process video frames at an average rate of 10 fps.

4.2.4 Graffiti detection using a Time-of-Flight camera

This subsection proposes a system based on a TOF (Time-of-Flight) camera to perform

automatic graffiti detection. The rationale of this study is that since a TOF camera

senses both brightness and depth at each pixel location, it may be deployed to de-
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Figure 4.14: Outline of the proposed algorithm

tect graffiti by looking for stationary changes of brightness that do not correspond to

changes in depth. It is clear that, analogously to the use of a stereo camera, also the use

of a TOF camera holds the potential to overcame the false positives issue of the method

in [3], for most still objects other than graffiti would yield both brightness and depth

changes. Furthermore, it is worth noting that the same idea can be usefully employed to

detect further events rather than only graffiti, such as modifications to the background

surfaces. This can be useful, e.g., for cultural heritage environments or museums, to

detect acts of vandalism such as painting, dirtying, etching or defacing of parts of an

artwork.

The proposed algorithm for graffiti detection jointly deploys depth and intensity

information to detect events such as changes in the appearance of the visible surfaces in

the monitored scene. The basic idea of our algorithm can be outlined as follows. First,

by means of an intensity-based analysis visible changes can be detected by comparing

the current intensity information with a model of the background of the scene. Then,

the use of depth information can discriminate between changes occurring in the space

between the background and the camera (e.g. intrusion) and those occurring directly on

the background surface (e.g. graffiti). The outline of the proposed algorithm, described

hereinafter, is shown in Fig. 4.14.

The proposed approach is based on background subtraction [106]. In order to com-

pare the background model with each frame, we adopt a basic background subtraction

approach, i.e. we compute a change mask Ci by thresholding the absolute difference

between each pixel intensity in the background Bi and in the current frame Fi:

Ci(x, y) =

⎧⎪⎪⎨⎪⎪⎩ f alse |Bi(x, y) − Fi(x, y)| < T

true elsewhere
(4.25)

Thus, Ci is a binary mask denoting all points which result changed after the compar-

ison with the background. In the basic model, T is a fixed parameter of the algorithm.
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Nevertheless, when dealing with TOF cameras, the amount of noise perceived by each

pixel is lower at the center of the image, where the power of the reflected light signal

is higher, and increases as we get far from it. Hence, T should depend on the position

(x, y) where the change mask is being evaluated. In particular, we assume that noise

can be modeled as a zero-mean Gaussian distribution:

Fi(x, y) = FT
i (x, y) + Ni(x, y) (4.26)

with FT
i (x, y) being the noise-free version of Fi(x, y) and

Ni(x, y) =
1

2π · σ2
i (x, y)

· exp{− (x2 + y2)

2 · σ2
i (x, y)

} (4.27)

Hence, parameter T in (4.25) is chosen to be proportional to the standard deviation

of the Gaussian distribution of each pixel, which is estimated during the initialization

sequence. This leads to

Ci(x, y) =

⎧⎪⎪⎨⎪⎪⎩ f alse |Bi(x, y) − Fi(x, y)| < ki · σi(x, y)

true elsewhere
(4.28)

with ki typically ranging within [1, · · · , 3] (ki = 1 in our experiments).

The same approach can be carried out also for what concerns the depth information

coming from the TOF sensor. In particular, a depth background model Bd can be built

by averaging the depth value of each point of the depth map over an initialization

sequence, assuring the background is static along that sequence. Moreover, for each

point (x, y) the standard deviation σd(x, y) of the depth values over the initialization

sequence is also computed. Then, similarly to (4.28), the current depth map Fd can be

compared at run-time to the depth background model Bd :

Cd(i, j) =

⎧⎪⎪⎨⎪⎪⎩ f alse |Bd(i, j) − Fd(i, j)| < kd · σd(x, y)

true elsewhere
(4.29)

with kd typically ranging within [1, · · · , 3] (kd = 1.5 in our experiments).

Once Ci and Cd are computed, they are compared so to determine the presence of

graffiti in the scene. In particular, the event of a point (x, y) resulting changed in either

one of the two masks refers to one of the following three possible circumstances:

1. Ci = true, Cd=true: a change in intensity corresponds to a change in depth. This

means that an intrusion by something/someone is currently going on.

2. Ci = true, Cd=false: a change in intensity does not correspond to a change in

depth. Thus, a change of the appearance of the background surface has occurred:

a graffiti event is triggered.
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3. Ci = false, Cd=true: a change in depth does not correspond to a change in inten-

sity. In this case, an intrusion has been performed by something/someone having

an intensity similar to that of the background (i.e. camouflage).

Thus, graffiti are detected simply by choosing all points marked as changed on Ci and

as unchanged on Cd .

In addition, we carry out a final post-processing stage in order to improve the re-

liability of our detector. Along this last stage, three different conditions are checked

in order to eliminate false positives from the final graffiti mask. First, a stationarity

check is performed, that is a point is detected as graffito only if it was positively de-

tected in the last t frames. This is a necessary measure against the high amount of

noise of the camera sensor, which otherwise would produce a high number of flicker-

ing points in the final change mask. Successively, a labeling algorithm is applied on

the detected graffiti regions. This allows to eliminate from the final change mask all

graffiti whose area is less than a certain number of pixels, which are as well typically

generated by noise. Finally, the last check eliminates all graffiti blobs having any of

their 8-connected neighboring points detected as 3D intrusions in Cd, since they are

most probably generated by the parts of an intruding object/person laying close to the

background surface.

Experimental results

We now show some preliminary results dealing with the application of our graffiti

detector to real video sequences. Unfortunately, due to the current limits of the TOF

technology and, above all, due to the characteristics of TOF camera (Canesta DP205,

Field of View: 55 deg.) available to us for the experiments, which is not state-of-

the-art, resolution is limited to 64 × 64 for both intensity and depth. Furthermore, the

power of the infrared illuminator limited the maximum depth range during our tests,

forcing the camera to stand not farther than 1.5∼2 meters away from the background

walls, otherwise the sensor is unable to detect the majority of details appearing on the

background surface. In fact, at a farther distance, the intensity image tends to appear

very dark.

Thus, we now show some footage dealing with some typical acts of vandalism

which can be detected by our system. These acts include graffiti (e.g. writings on a

surface, Video 1), object stealing (e.g. stealing a painting or a drawing hung up on

the wall, Video 2), surface defacing or damaging (e.g. tearing apart a drawing on the

wall, Video 3). For each sequence, we show some qualitative results by uniformly

taking some snapshots of the outputs of the various stages of the algorithm along the

whole sequence. In particular, for each snapshot we show the current intensity frame

Fi, the current depth frame Fd, the intensity change mask Ci, the depth change mask
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Figure 4.15: Video 1: graffiti sequence
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Figure 4.16: Video 2: object stealing sequence

Cd . Besides, we also superimpose on Fi the final output of our algorithm, which is a

bounding box around each graffiti blob detected by our system.

Fig. 4.15 shows the results dealing with the graffiti sequence (Video 1). At the very

beginning of the sequence, the scene is empty, with a white wall on the background

(Frame �1). Then, a person enters the scene and starts making some drawings on the

wall (Frames �100, 250, 500, 750, 1000). As soon as the graffiti start being visible

on the scene (Frame �250), the system detects their presence and localizes them quite

accurately. It is worth noting that in Frames �250 and �1000 2 false positives arise due

to the fact that the person’s arm, laying on the wall, is almost at the same depth as the

background and is recognized as a graffito. Then, when the person stands in front of

the drawing, no graffito is detect in the output (Frame �1100). Finally, Frame �1175

shows the output of the system at the very end of the sequence.

As said before, the proposed algorithm can be usefully deployed also to detect other

events rather than just graffiti. In Fig. 4.16 results are showed concerning a sequence

where a painting hanging on the wall is stolen (Video 2). The object appears at the

beginning of the sequence (Frame �30). While a person is stealing the painting, no

output is raised since an intrusion is present but the background has not structurally

changed yet (Frame �60). Finally, when the object is removed the event is correctly

detected by our system (Frame �90).

Finally, we show a sequence concerning the defacing of an object hanging on the



STEREO APPLICATIONS 123

Figure 4.17: Video 3: object defacing sequence

wall (Video 3). In this last case, we also propose a slight modification to the output of

the algorithm. It is easy to note, from the various depth frames Fd shown in Figg. 4.15,

4.16, that the depth map computed by the TOF sensor is rarely able to determine a good

depth estimation of the scene on the regions around the 4 corners of the map. This is

mainly due, as previously said, to the amount of noise which increases as the distance

of point from the image center increases, and it is maximum around the 4 corners,

which are the points laying farthest from the center. This phenomenon is also evident

for points belonging to the intensity frames. Hence, as a consequence, regions around

the four corners of the image are highly unreliable, their depth and intensity variances

being extremely high. In practice, this increases the chances of having false positives

around those regions. Hence, we propose to use a binary mask which excludes the

graffiti detection over these points, which can be regarded as peripheral regions where

detection can not be performed. The output frames of Video 3 (Fig. 4.17, left column)

show in green this mask.

The first frame of the sequence (�1) shows a painting hanging on a white back-

ground wall. Then a person enters the room (Frame �40) and starts tearing apart the
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painting (Frame �80). Correctly, only when defacing is being performed, the algorithm

produces an alarm (Frame �80). At the very end of the sequence (Frame �120) defac-

ing is correctly detected, as only the lower half of the painting (the part which has been

torn apart) is being highlighted by the bounding box.

4.3 Video surveillance

Detecting motion in video sequences is a fundamental requirement for many higher-

level vision tasks such as object classification, tracking, event detection (e.g. stolen

or abandoned object). A common domain of application for such tasks is video-

surveillance, e.g. with the aim of detecting intrusions. Major issues related to the

motion detection process are as follows. It is difficult to correctly segment out moving

objects when they look similar to the background of the scene (camouflage). The mo-

tion detection process is very sensitive to sudden illumination variations of the scene. It

is difficult to filter out shadows from the detected foreground. By using more than one

view, e.g. by means of a stereo camera, it is possible to obtain 3D information on the

surveyed scene. This allows to exploit, in addition to scene radiance information, also

depth information concerning scene 3D structure, so as to achieve higher robustness

with regards to one or more of the above mentioned issues [14, 39, 53, 84]. In the next

we propose and compare two change detection strategies based on two views which

exploits 2D and 3D information in order to deal with typical change detection issues.

4.3.1 Proposed approach

This subsection describes a novel change detection approach which jointly exploits

depth information coming from a 3D device and 2D brightness information. Informa-

tion on scene changes is recovered by means of two different strategies. The former,

referred to as 3D Output, mainly relies on depth information, and aims at being robust

to camouflage, shadows and sudden illumination changes. The latter, referred to as 2D

Output, aims at obtaining robustness with regards to sudden illumination changes as

well as accuracy in foreground segmentation. The final change masks determined by

the two outputs will be referred to as, respectively, C3D and C2D.

As depicted in Fig. 4.18, the proposed approach can be outlined as a 4-stage al-

gorithm. The imaging sensor used is a stereo camera. In particular, we assume that a

calibrated stereo setup is available, so that the image pairs retrieved from the camera

can be properly rectified.

Stereo Matching For each new rectified image pair coming from the stereo device,

a stereo matching algorithm (see [112] for a survey on this topic) is used in order to
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Figure 4.18: Flow diagram of the proposed approach

retrieve a dense disparity map relative to the observed scene. In particular, in our ex-

periments we have used two different local stereo matching algorithms. The former,

referred to as SMP (Single Matching Phase) [34], is an algorithm that allows to obtain

dense disparity maps in real-time. The latter, referred to as Variable Windows [130],

is an algorithm that holds the potential to retrieve more accurate depth borders com-

pared to SMP thanks to the use of a variable aggregation stage, even if at a higher

computational cost which renders it slower than SMP (near real-time).

We first describe briefly how SMP computes disparities for each point pr of the

reference image. Let Ir, It be respectively the reference image and the ”other” image.

Given a disparity range D, for each point pt,d on It belonging to the disparity range

induced by pr a similarity measure is applied between a squared window centered on pr

and all squared windows centered on pt,d. The adopted similarity measure is the SAD

(Sum of Absolute Differences). The selected disparity dr for point pr is that relative

to the point pt,d that yielded the lowest SAD score on its window. Then uniqueness,

distinctiveness and sharpness constraints (see [34] for details) are used to eliminate

ambiguous disparity values. Hence, the pixels of the final disparity maps obtained by

SMP are labeled either as valid disparity values, or as points violating the constraints

(referred here to as non-matched points, NM). SMP relies on incremental calculations

techniques [91] and delivers disparity maps in real-time.

Differently to SMP, Variable Windows uses the Birchfield-Tomasi [12] measure

as a point wise matching cost and selects the more appropriate aggregation support

evaluating a useful range of window sizes/shapes. Although slower than SMP, also this

approach relies on incremental calculation techniques (i.e. integral images [24, 131])

for efficient disparity maps computation. The matching selection is based on a Winner

Takes All (WTA) strategy and hence all points are labeled as valid.



126 CHAPTER 4

Figure 4.19: An example of B2D and B3D

Figure 4.20: During the background registration stage, the histogram of the background

model B2D (center) is registered according to the specification given by the histogram of

the frame F (left), yielding the new background model BR (right)

Background Modeling The proposed approach requires that, at initialization, two

background models of the scene are built: the former, B2D, is determined from the

brightness values of the reference view, the latter, B3D, is determined from the disparity

values provided by the stereo matching stage. Both models are built by processing a

short initialization sequence of frames. While B2D captures the radiance information

of the scene background, B3D represents a model of the scene 3D structure. In order

to obtain B2D, a classical method is used, that is each value in B2D represents the mean

brightness of a pixels over the initialization sequence. Conversely, by means of three

different thresholds T1,T2,V , each pixel of B3D is associated to 4 different classes:

1. Valid disparity: if a valid disparity is retrieved by the matching algorithm for



STEREO APPLICATIONS 127

more than T1 frames during the initialization sequence, and the variance of dis-

parities is less than V . The final disparity assigned to the pixel in B3D is the mean

disparity over the initialization sequence.

2. High-variance disparity: if a valid disparity is retrieved by the matching algo-

rithm for more than T1 frames during the initialization sequence, but the variance

of disparities is equal or higher than V . The pixel is depicted in green in B3D.

3. Non-match: if a NM is retrieved by the matching algorithm for more than T2

frames during the initialization sequence. This pixel is depicted in white in B3D.

4. Unreliable point: if a valid disparity is retrieved by the matching algorithm for

equal or less than T1 frames during the initialization sequence, and a NM for

equal or less than T2 frames. The pixel is depicted in blue in B3D.

An example of B2D and B3D is shown in Fig. 4.19.

It is worth observing that when a WTA strategy is adopted (as in [130]) the last two

conditions are not meaningful.

3D detection Once the background models are built, at each time instant a new frame

from the reference view, F, together with its disparity map, D, is obtained. At this stage

B3D and D are deployed to compute a mask, M3D, which encodes with different colors

the various correspondences between D and B3D. In particular, as shown in Figure

4.18:

1. b1 (light blue): a valid disparity point in B3D corresponding to a valid disparity

point in D, the difference between the two disparity values being less than a

certain threshold.

2. b2 (pink): a valid disparity point in B3D corresponding to a valid disparity point

in D, the difference between the two disparity values being equal or higher than

a certain threshold.

3. b3 (blue): an unreliable point in B3D.

4. b4 (green): a high-variance disparity in B3D.

5. b5 (white): a non-match point in B3D corresponding to a NM point in D.

6. b6 (red): a non-match point in B3D corresponding to a valid disparity point in D.

7. b7 (yellow): a valid disparity point in B3D corresponding to a NM point in D.

The information encoded in mask M3D is useful to perform the tonal alignment

procedure performed in the background registration stage, as well as in the generation

of the final change mask C3D.
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Figure 4.21: Experimental results on an indoor (above) and outdoor stereo sequence. Top

right picture: output of a classical background subtraction algorithm

Background registration A further stage of the algorithm, which will be particularly

useful for the generation of C2D, deals with the elimination of photometric distortions

between F and B2D by tonally registering B2D with respect to F. In particular, the

evaluation of the Intensity Mapping Function that tonally aligns B2D to F is done by

applying the histogram specification method [52]. For this aim a set of pixels belonging

to F which reliably belongs to the scene background has to be extracted. This can be

easily done by exploiting the information included in M3D: in particular, the set of

pixels chosen as representative of the background of the scene are selected as those

tagged as b1 (i.e. in light blue color) on M3D, as they denote unchanged valid disparities

between D and B3D. The output of this stage is a novel background model, BR, where

photometric distortions with respect to the current frame F have been removed. In

Fig. 4.20 an example is presented, which shows the application of the background

registration to a frame. In particular, the histogram of the current frame F (left) is used

as a model to tonally register the histogram of the 2D background model, B2d (center).

The histogram and the image of the registered background BR, obtained as output of

this stage, are shown on the right side of the Figure.

2D Output Once the background is tonally aligned to the current frame, a simple

pixel wise frame difference can highlight structural changes robustly with respect to

possible brightness distortions. Hence, C2D is generated by subtracting BR from F.

The main strength of this approach is robustness against sudden illumination changes

as well its accuracy in the foreground segmentation stage. Nevertheless, the shadow

and camouflage issues are not properly dealt with.
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3D Output Conversely to 2D Output, this approach relies more on 3D information.

In particular, all pixels whose disparity value was reliably determined on M3D as un-

changed (b1, light blue color) are set as unchanged on C3D. Similarly, all pixels whose

disparity value was reliably determined on M3D as changed (b2, pink color) are set as

changed on C3D. For what means pixels whose disparity can not be determined reli-

ably, all pixels that might denote a structural change (i.e. from NM to a valid disparity

or vice versa, that is b6 and b7 on M3D) are set on C3D as the correspondent value on

C2D. Finally, all remaining pixels (b3, b4, b5 on M3D) for whom nothing can be said are

set as unchanged on M3D
3. This solution represents a robust approach toward shad-

ows, camouflage and sudden illumination changes, but foreground segmentation is less

accurate compared to the other approach due to the depth borders inaccuracy brought

in by the stereo matching process.

4.3.2 Experimental results

In this section we show some qualitative experimental results obtained on three differ-

ent sequences 4, acquired with a Videre Design stereo camera, referred to as Indoor,

Outdoor and Office. In the first sequence, which is indoor, photometric distortions

are induced by real illumination changes. The second sequence, which is outdoor, is

affected by illumination changes as well as by the strong presence of shadows and

camouflage problems. The Office sequence, which is indoor, shows the strong pho-

tometric distortions induced by switching lights on and off. Fig. 4.21 shows the two

outputs C3D and C2D on a frame of the Indoor and Outdoor sequences using the dis-

parity maps computed by the SMP algorithm. No morphology operator was used at

any stage of the algorithm in order to obtain these results, which demonstrate that our

approach is in general robust to photometric distortions. Moreover, it can be noted that

2D Output generally retrieves more accurately foreground borders (both sequences),

and that 3D Output suffers much less of shadows (outdoor sequence) and camouflage

(both sequences). Finally, top right frame in Fig. 4.21, which shows the output of a

classical background difference algorithm, demonstrates the strong entity of the photo-

metric distortions, and how less accurate is the segmentation compared to the proposed

approaches. Figures 4.22 and 4.23 show the results provided by the change detection

strategies proposed in this paper on the more challenging Office sequence using, re-

spectively, the SMP and Variable Windows algorithms. In both figures we show 9 out

of 195 frames. Similarly to the Indoor and Outdoor sequences no morphology operator

was used at any stage. The Office sequence presents dramatic artificially induced illu-

3Another solution is to have these pixels represent regions in the final change mask where detection can

not be performed.
4Sequences available at: www.vision.deis.unibo.it/smatt

www.vision.deis.unibo.it/smatt
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mination changes clearly observable comparing frames �15, �85 and �185 in Figures

4.22 and 4.23. It is worth observing that under these difficult conditions the disparity

maps generated by the two stereo matching algorithms are significantly noisy. Never-

theless, as shown in the two rightmost columns of Figure 4.22, although the shapes of

the objects are not accurately retrieved, the proposed strategies provide a robust detec-

tion. Moreover, similarly to the previous sequences, C3D output provides less accurate

detection of borders compared to C2D output but it the seems less affected by shadows

(on the wall and on the table). Similar considerations apply by observing the results

shown in Figure 4.23. However, in this case, the WTA strategy adopted by the Vari-

able Windows algorithm results in even more noisy disparity maps and consequently

in more noisy results provided by C2D and C3D outputs. As for Variable Windows,

these results do not highlight a better accuracy in recovering the object borders in C3D

compared to SMP. We think that this is due to the WTA strategy adopted in our current

implementation of the algorithm and that a higher accuracy may be obtained by enforc-

ing into the algorithm constraints such as uniqueness, distinctiveness and sharpness or

left-right consistency.
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Figure 4.22: Experimental results on 9 frames of the Office stereo sequence using the dis-

parity map provided by the SMP algorithm [34]. (First column) - Reference image F of the

stereo pair. (Second column) Background model B2D registered according to the specifica-

tion given by the histogram of the frame F. (Third column) - Disparity map D computed

by the SMP algorithm. (Fourth column) - Change mask C2D provided by the proposed 2D

Output approach. (Fifth column) - Change mask C3D provided by the proposed 3D Output

approach.
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Figure 4.23: Experimental results on 9 frames of the Office stereo sequence using the dis-

parity map provided by the Variable Windows [130] algorithm. (First column) - Reference

image F of the stereo pair. (Second column) Background model B2D registered according

to the specification given by the histogram of the frame F. (Third column) - Disparity map

D computed by the Variable Windows algorithm. (Fourth column) - Change mask C2D pro-

vided by the proposed 2D Output approach. (Fifth column) - Change mask C3D provided

by the proposed 3D Output approach.
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Robust visual correspondence

5.1 Introduction

The visual correspondence task can be extremely challenging in presence of distur-

bance factors which typically affect images. A common source of disturbances can be

related to photometric distortions between the images under comparison. These can

be ascribed to the camera sensors employed in the image acquisition process (due to

dynamic variations of camera parameters such as auto-exposure and auto-gain, or to

the use of different cameras), or can be induced by external factors such as changes

of the amount of light emitted by the sources or viewing of non-lambertian surfaces at

different angles.

All of these factors tend to produce brightness changes in corresponding pixels that

can not be neglected in real applications implying visual correspondence between im-

ages acquired from different spatial points (e.g. stereo vision) and/or different time

instants (e.g. pattern matching, change detection). In addition to photometric distor-

tions, differences between corresponding pixels can also be due to the noise introduced

by camera sensors. Finally, the acquisition of images from different spatial points or

different time instants can also induce occlusions. Evaluation assessments have also

been proposed which compared visual correspondence approaches for tasks such as

stereo correspondence [19], image registration [149] and image motion [48].

5.2 Literature review

Let Ir, It be respectively the reference image patch vector and the target image patch

vector, to be matched together. Traditional matching measures can be subdivided into

either correlation-based or distance-based. Between the correlation-based the most

133
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commonly adopted are the Normalized Cross-Correlation (NCC) and the Zero-mean

Normalized Cross-Correlation (ZNCC):

NCC(Ir , It) =
Ir ◦ It
||Ir|| · ||It|| (5.1)

ZNCC(Ir , It) =
(Ir − Īr) ◦ (It − Īt)

||Ir − Īr || · ||It − Īt|| (5.2)

with ◦ being the dot product, || · ||p the Lp norm, ·̄ the mean value over the patch.

Thanks to normalization with regards to the magnitude of the vectors and to the mean

intensity value of the image patch, NCC and ZNCC are invariant, respectively, to linear

and affine transformation between Ir and It.

On the other side, commonly used dissimilarity measures are those derived from

the Lp-distance between Ir and It. Between this class, the most popular ones are the

Sum of Absolute Differences (SAD) and the Sum of Squared Differences (SSD):

S AD(Ir, It) = |Ir − It| (5.3)

S S D(Ir, It) = ||Ir − It||2 (5.4)

These two measures showed experimentally good robustness towards noise [5,89].

While all these measures are usually computed directly on the pixel intensities of the

images, in [89] it was shown that by computing these measures on the gradient norm

of each pixel a higher robustness is attained, i.e. for what concerns insensitivity to

illumination changes the SSD and the NCC applied on gradient norms (referred to here

respectively as G-SSD and G-NCC) showed to perform well. In particular, if we denote

with Gr(i, j) the gradient of Ir at pixel (i, j):

Gr(i, j) =

[
∂Ir(i, j)
∂i

,
∂Ir(i, j)
∂ j

]T
=

[
Gr

i (i, j),Gr
j(i, j)

]T
(5.5)

and similarly with Gt(i, j) the gradient of It at pixel (i, j):

Gt(i, j) =

[
∂It(i, j)
∂i

,
∂It(i, j)
∂ j

]T
=

[
Gt

i(i, j),Gt
j(i, j)

]T
(5.6)

the gradient norm, or magnitude, in both cases is defined as:

||Gr(i, j)|| =
√

Gr
i (i, j)2 +Gr

j(i, j)2 (5.7)

||Gt(i, j)|| =
√

Gt
i(i, j)2 +Gt

j(i, j)2 (5.8)

Hence the G-NCC function can be defined as:
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G − NCC(x, y) =

∑
(i, j)∈Ir

||Gr(i, j)|| · ||Gt(i, j)||
√ ∑

(i, j)∈Ir
||Gr(i, j)||2 ·

√ ∑
(i, j)∈It

||Gt(i, j)||2
(5.9)

and the G-SSD function as:

G − S S D(x, y) =
∑

(i, j)∈Ir
(||Gr (i, j) || − ||Gt (i, j) ||)2 (5.10)

In addition to these measures, many alternatives have been proposed in literature

with the specific aim of deploying robust image matching. The Gradient Correlation

(GC) measure, proposed in [23] and derived from a measure originally introduced in

[111], is based on two terms, referred to as distinctiveness (D) and confidence (C), both

computed from intensity gradients:

D(x, y) =
∑

(i, j)∈Ir
||Gr(i, j) −Gt(i, j)|| (5.11)

C(x, y) =
∑

(i, j)∈Ir
(||Gr(i, j)|| + ||Gt(i, j)||) (5.12)

The GC measure is then defined as:

GC(x, y) =
D(x, y)
C(x, y)

(5.13)

Its minimum value is 0, indicating the pattern is identical to the image subwindow.

For any other positive value, the greater the value, the higher the dissimilarity between

the two vectors. In order to compute the partial derivatives, [23] proposes to use either

the Sobel operator or the Shen-Castan ISEF filter [117].

The Orientation Correlation (OC) measure (Fitch et al., 2002) is based on the cor-

relation of the orientation of the intensity gradient. In particular, for each gradient

Gr(i, j) a complex number representing the orientation of the gradient vector is defined

as:

Or(i, j) = sgn(Gr
i (i, j) + ι Gt

j(i, j)) (5.14)

with ι denoting the imaginary unit and where:

sgn(x) =

⎧⎪⎪⎨⎪⎪⎩ 0 i f |x| = 0
x
|x| otherwise

(5.15)

Analogously, a complex number representing the orientation of the image subwin-

dow gradient vector Gt(i, j) is defined as:
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Ot(i, j) = sgn(Gt
i(i, j) + ι Gt

j(i, j)) (5.16)

As proposed in [41], the partial derivatives for the gradient computation are cal-

culated by approximating them with the central differences. Hence, the OC measure

between Ir and It is defined as the real part of the correlation between all gradient

orientations belonging to Ir and It:

OC(x, y) = Re{
∑

(i, j)∈Ir
Or(i, j) · O∗t (i, j)} (5.17)

with ∗ indicating the conjugate of the complex vector. [41] proposes to compute the

correlation operation in the frequency domain by means of the FFT by exploiting the

correlation theorem in order to achieve computational efficiency.

Another class of measures concerns the so-called order-consistency or order-preservation

hypothesis, that is the assumption that the considered distortions do not violate the or-

dering between the intensities of neighbouring pixels. This assumption includes a more

general class of transformations compared to the linear or affine case. These measures

are called ordinal and a typical example of this class is represented by the Rank trans-

form. As for this measure, both Ir and It are transformed into two novel images where

each pixel stores the number of points in the patch whose intensity is less than that of

the central point of the patch:

Rr = |{(u, v) ∈ Ir |Ir(u, v) < Ir(i, j)}|c (5.18)

Rt(i, j) = |{(u, v) ∈ It|It(u, v) < It(i, j)}|c (5.19)

where | · |c represents the cardinal operator. Once the two transforms are computed,

a matching measure is deployed to compare Rr and Rt, e.g. [144] proposes to use the

SAD.

Other examples of ordinal measures are the Census transform [144], and the mea-

sure proposed in [11]. Further approaches of robust visual correspondence measures

specifically conceived for change detection are [95, 99, 137].

Finally, other robust approaches have been proposed in [66, 74, 98, 116, 127].

5.3 A novel measure for robust visual correspondence

This section describes a novel approach, referred to here as Matching Function (MF),

which is implicitly based on the ordering assumption. In particular, MF aims at quan-

tifying how well the order is preserved between corresponding pairs of neighbouring
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Figure 5.1: Considered subset of horizontal and vertical pairs of neighbouring pixels in a

3 × 3 patch.

pixels in the two images. A simple and effective approach for evaluating the order-

consistency is to evaluate the difference between the intensities of pairs of neighbour-

ing pixels. As an example, lets consider Ir as a 3×3 patch. In order to evaluate the order

preservation between neighbouring elements within this window, many pairs (e.g. 72)

should be considered, as each of the 9 pixels has to be put in correspondence with each

other. In order to simplify the problem, we propose to consider only a subset of the

whole neighbouring pairs set by evaluating only horizontal and vertical neighbouring

pixels. Hence, the considered pairs are reduced to 18, as shown in Fig. 5.1.

In particular, in order to quantify how well the ordering is preserved between the

two image patches Ir and It we propose to correlate the differences between the consid-

ered corresponding pairs within the 33 window. If the ordering is preserved for a given

pair, the result of the pointwise correlation is a positive coefficient regardless of the

sign of the intensity difference, which tends to increase the correlation score associated

with the 3 × 3 window. Conversely, if the order is not preserved the correlation coef-

ficient is negative, and the correlation score is decreased. Moreover, since horizontal

and vertical differences may be thought as the discrete approximation of the horizontal

and vertical derivatives of the image, the proposed measure can also be interpreted as

the cross-correlation between two vectors made out of derivatives computed within the

two 3 × 3 patches.

In the general case of two M × N patches, the considered pairs of pixels in each set

include all pixels at distance 1 and 2 along horizontal and vertical directions. In order

to compute this set, we define a vector of pixel differences computed at a point (i, j) on

Ir:
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δr
1,2(i, j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir(i − 1, j) − Ir(i, j)

Ir(i, j − 1) − Ir(i, j)

Ir(i − 1, j) − Ir(i + 1, j)

Ir(i, j − 1) − Ir(i, j + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.20)

and, similarly, at a point (i, j) on It:

δt
1,2(i, j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

It(i − 1, j) − It(i, j)

It(i, j − 1) − It(i, j)

It(i − 1, j) − It(i + 1, j)

It(i, j − 1) − It(i, j + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.21)

Hence, the MF function consists in correlating these two vectors for each point of

Ir, It, and in normalizing the correlation with the L2 norm of the vectors themselves:

MF1,2(x, y) =

∑
(i, j)∈Ir

δr
1,2(i, j) ◦ δt

1,2(i, j)

√ ∑
(i, j)∈Ir

δr
1,2(i, j) ◦ δr

1,2(i, j) ·
√ ∑

(i, j)∈It
δt

1,2(i, j) ◦ δIt
1,2(i, j)

(5.22)

It is worth noticing that the normalization allows the measure to range between

[−1, 1]. It is a peculiarity of this method that, because of the correlation between differ-

ences of pixel pairs, intensity edges tend to determine higher correlation coefficients (in

magnitude) with respect to low-textured regions. Thus, this can be seen as if the mea-

sure mostly relies on the patch edges. For this reason, MF can be usefully employed

also in presence of high levels of noise, as this disturbance factor can typically vio-

late the ordering constraint on low-textured regions, but seldom along intensity edges.

Similar considerations can be made in presence of partially occluded patches.

The set of pixel pairs in 5.20, 5.21 can be seen as made out of two subsets: the

set of horizontal and vertical lateral derivatives (i.e. all pixels at distance 1 one to

another along horizontal and vertical directions), and the set of horizontal and vertical

central derivatives (i.e. all pixels at distance 2 one to another along same directions).

Theoretically, the former should benefit of the higher correlation given by adjacent

pixels, while the latter should be less influenced by quantization (sampling) noise that

is introduced by the camera sensor. We will refer to two additional measures of the MF

class applied on each of these two subsets as, respectively, MF1 and MF2. For these

last two cases, we define the vector of pixel differences at distance 1 pixel:

δr
1(i, j) =

⎡⎢⎢⎢⎢⎢⎢⎣ Ir(i − 1, j) − Ir(i, j)

Ir(i, j − 1) − Ir(i, j)

⎤⎥⎥⎥⎥⎥⎥⎦ (5.23)
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Figure 5.2: The 3 considered sets of neighbouring pixel pairs.

δt
1(i, j) =

⎡⎢⎢⎢⎢⎢⎢⎣ It(i − 1, j) − It(i, j)

It(i, j − 1) − It(i, j)

⎤⎥⎥⎥⎥⎥⎥⎦ (5.24)

and the pixel differences relative to the case of distance 2:

δr
2(i, j) =

⎡⎢⎢⎢⎢⎢⎢⎣ Ir(i − 1, j) − Ir(i + 1, j)

Ir(i, j − 1) − Ir(i, j + 1)

⎤⎥⎥⎥⎥⎥⎥⎦ (5.25)

δt
2(i, j) =

⎡⎢⎢⎢⎢⎢⎢⎣ It(i − 1, j) − It(i + 1, j)

It(i, j − 1) − It(i, j + 1)

⎤⎥⎥⎥⎥⎥⎥⎦ (5.26)

the MF1 and MF2 measures are defined respectively as:

MF1(x, y) =

∑
(i, j)∈Ir

δr
1(i, j) ◦ δt

1(i, j)

√ ∑
(i, j)∈Ir

δr
1(i, j) ◦ δr

1(i, j) ·
√ ∑

(i, j)∈It
δt

1(i, j) ◦ δt
1(i, j)

(5.27)

MF2(x, y) =

∑
(i, j)∈Ir

δr
2(i, j) ◦ δt

2(i, j)

√ ∑
(i, j)∈Ir

δr
2(i, j) ◦ δr

2(i, j) ·
√ ∑

(i, j)∈It
δt

2(i, j) ◦ δt
2(i, j)

(5.28)

A graphical representation of the 3 different pixel pair sets used by MF1,2, MF1

and MF2 is shown in Fig. 5.2.
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5.4 Application to template matching

This section shows the application of the class of measures referred to as MF in a typi-

cal template matching scenario. As already discussed in Section 2.4, template matching

aims at finding the most similar instances of a given pattern, P, within an image. In par-

ticular, in this section MF measures are compared against traditional general purpose

approaches as well as against proposals specifically conceived to achieve robustness.

One goal of the proposed comparison is to determine which measure is more suitable

to deal with the aforementioned disturbance factors represented by photometric distor-

tions, noise and occlusions.

More precisely, in the comparison with MF we will consider the following match-

ing measures: GC [23], OC [41], G-NCC, G-SSD [89]. Considered traditional mea-

sures are NCC, ZNCC and SSD. All the considered measures are tested on 3 datasets

which represent a challenging framework for what regards the considered distortions.

These datasets, which are publicly available 1, are characterized by a significant pres-

ence of the disturbance factors discussed previously, and are now briefly described.

Guitar In this dataset, 7 patterns were extracted from a picture which was taken with

a good camera sensor (3 MegaPixels) and under good illumination conditions given by

a lamp and some weak natural light. All these patterns have to be sought in 10 images

which were taken with a cheaper and more noisy sensor (1.3 MegaPixels, mobile phone

camera). Illumination changes were introduced in the images by means of variations of

the rheostat of the lamp illuminating the scene (G1-G4), by using a torch light instead

of the lamp (G5-G6), by using the camera flash instead of the lamp (G7- G8), by

using the camera flash together with the lamp (G9), by switching off the lamp (G10).

Furthermore, additional distortions were introduced by slightly changing the camera

position at each pose and by the JPEG compression. The Guitar dataset is shown in

Fig. 5.3, 5.4.

Mere Poulard - Illumination Changes In dataset Mere Poulard - IlluminationChanges

(MP-IC), the picture from which the pattern was extracted was taken under good illu-

mination conditions given by neon lights by means of a 1.3 MegaPixels mobile phone

camera sensor. This pattern is then searched within 12 images which were taken either

with the same camera (prefixed by GC) or with a cheaper, 0.3 VGA camera sensor

(prefixed by BC). Distortions are due to slight changes in the camera point of view

and by different illumination conditions such as: neon lights switched off and use of

a very high exposure time (BC - N1, BC - N2, GC - N), neon lights switched off (BC

- NL, GC-NL), presence of structured light given by a lamp light partially occluded

1available at www.vision.deis.unibo.it/pm-eval.asp

www.vision.deis.unibo.it/pm-eval.asp
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Figure 5.3: Images of the Guitar dataset.
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Figure 5.4: Patterns of the Guitar dataset.

by various obstacles (BC-ST1, · · · , BC-ST5), neon lights switched off and use of the

camera flash (GC-FL), neon lights switched off, use of the camera flash and of a very

long exposure time (GC-NFL). Also in this case, images are JPEG compressed. The

MP-IC dataset is shown in Fig. 5.5.

Mere Poulard - Occlusions In the dataset Mere Poulard - Occlusions (MP-Occl)

the pattern is the same as in dataset MP-IC, which now has to be found in 8 images

taken with a 0.3 VGA camera sensor. In this case, partial occlusion of the pattern is

the most evident disturbance factor. Occlusions are generated by a person standing in

front of the camera (OP1, · · · , OP4), and by a book which increasingly covers part

of the pattern (OB1, · · · , OB4). Distortions due to illumination changes, camera pose

variations, JPEG compression are also present. The MP-Occl dataset is shown in Fig.

5.6.

The number of template matching instances is thus 70 for the Guitar dataset, 12 for

the MP-IC dataset and 8 for the MP-Occl dataset, for a total of 90 instances overall. The

result of a template matching process is considered erroneous when the coordinates of

the best matching subwindow found by a certain measure are further than 5 pixel from

the correct ones.

Figures 5.7, 5.8 report the matching errors yielded by the considered measures

respectively on each of the 3 datasets and overall. As it can be seen, approaches specif-
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Figure 5.5: MP-IC dataset.

ically conceived to achieve robustness generally outperform classical measures, apart

from the ZNCC which performs badly in presence of occlusions but shows good ro-

bustness in handling strong photometric distortions. The two measures which yield the

best performance are MF and GC, with a number of total errors respectively equal to 6

and 8. In particular, MF performs better on datasets characterized by strong photomet-
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Figure 5.6: MP-Occl dataset.
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Figure 5.7: Results of the comparison on the 3 datasets.

Figure 5.8: Overall results of the template matching evaluation.

ric distortions, conversely GC seems to perform better in presence of occlusions.

For what regards the 3 MF measures themselves, it seems clear that the use of

differences relative to adjacent pixels suffers of the sampling noise introduced by the

camera sensor, hence they appear less reliable compared to differences computed on a

distance equal to 2. Moreover, as a consequence of the fact that MF1,2 and MF2 yield
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the same results on all datasets, MF2 seems the more appropriate measure of the class

since it requires only 2 correlation terms instead of the 4 needed by MF1,2. Finally,

for what regards traditional approaches, it is interesting to note that the application of

NCC and SSD on the gradient norms rather than on the pixel intensities allows for a

significantly higher robustness throughout all the considered datasets.

5.5 Application to Change detection

In this section we present the application of the proposed MF measures to the change

detection task. Change detection aims at detecting structural changes occurring in time

in a scene by analyzing a sequence of frames. This is a key task in most advanced

video-surveillance applications, for the mask highlighting changed pixels (change mask)

typically represents the input data to higher level vision algorithms. This is the case

of traditional single view as well as more recent and advanced multiple-views systems.

The most common change detection approach is referred to as background subtraction:

given the current frame, F, and a model of the background of the scene, B, the change

mask is obtained by comparing F and B. This approach assumes that the background

model is available or can be obtained by processing a short sequence of frames at ini-

tialization time (e.g. as shown in [55]). A wide variety of change detection algorithms

has been proposed in literature, so as to address issues such as illumination changes,

camouflage and vacillating background. A recent survey providing good coverage of

this research area is given by [106].

A major issue for most practical change detection applications is represented by

sudden illumination changes occurring in the scene. Properly dealing with such a prob-

lem is a challenging task for change detection algorithms since the resulting photomet-

ric variations can be easily misinterpreted as structural changes, leading to many false

positives in the change mask. Algorithms [38, 99, 137] that specifically aim at detect-

ing changes robustly with respect to sudden illumination variations typically take the

decision of voting a pixel as changed or unchanged based on a given spatial support

(e.g. a 3 × 3 or larger window centered at the pixel under evaluation). Typically such

algorithms rely on a parametric (e.g. linear [38, 99]) or non parametric (e.g. order pre-

serving [137]) model for the false image changes due to sudden illumination variations.

However, it is well known that such algorithms suffer from an aperture problem, i.e.

they cannot detect as changed the pixels belonging to untextured foreground regions.

As a result, they typically enable to detect the borders of foreground objects but not ac-

curately their interior parts. Moreover, the use of a spatial support rather than pointwise

background subtraction implies inaccuracy as regards localization of the borders of the

detected foreground objects. Coarse-to-fine approaches such as [10] can alleviate these
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Figure 5.9: Flow diagram of the proposed change detection algorithm.

problems.

This section presents a novel approach aimed at obtaining robust and accurate fore-

ground segmentation under sudden illumination variations. In particular, as depicted in

Fig. 5.9, the proposed approach consists of three processing stages. In the first stage,

the MF measure is used to extract a subset of pixels in the current frame that can be

marked as background with a high confidence level. Once such a subset, referred to

as FB, is obtained, it can be usefully employed to remove the photometric distortion

between F and B. To this purpose, in the second stage the algorithm computes the

transformation that aligns tonally the current frame, F, to the background image, B,

using as support subset FB. In the third stage, the final change mask is achieved by a

pixelwise subtraction between F and the tonally registered background image, BR. In

the following we provide more details on these three processing stages.

Robust visual correspondence In order to get FB we match the points in the back-

ground image to the current frame. To achieve robustness with respect to outliers and

noise, a block-based approach is used: that is, for each pair of correspondent points in

B and F, a M×M surrounding block is considered, and the MF measure is computed be-

tween the two blocks. Points having a score higher than a given threshold are included

into FB . To explain the usefulness of the MF measure, lets discuss Fig. 5.10 where, for

the sake of simplicity, we consider only two kind of regions, i.e. uniform and highly-

textured. When dealing with a uniform region in both F and B (case a in Fig. 5.10),

photometric differences between F and B can occur due to either variations of the illu-

mination conditions of the background scene as well as to structural changes induced
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Figure 5.10: Reasoning concerning the robust visual correspondence stage.

by a uniform foreground object. Thus, in this case the required matching measure

should yield a low score, for nothing can be said reliably on whether the point belongs

to the background or not. As for cases b,c,d, it is easy to observe that the matching

score should be low too, since theres evidence of the presence of a foreground object.

Finally, when the background is highly textured and the texture pattern does not change

in spite of possible photometric changes (case e), it is reasonable to flag the point as

background with a high confidence level. Hence, in case e we should get a high score

from the required matching measure. Based on the above considerations, we adopt the

MF measure which, as previously mentioned, matches corresponding blocks of two

images by implicitly checking an ordering constraint. Since photometric variations

tend not to violate the ordering of intensities in a neighbourhood of pixels, MF allows

handling sudden and strong illumination variations between the background scene and

the current frame. As previously discussed, MF tries to match the high contrast regions

(i.e. the intensity edges) of the two blocks under comparison, since only high intensity

differences can provide high contributions to the correlation score. Hence, MF behaves

exactly as pointed out in Fig. 5.10. In fact, only two highly textured and highly corre-



ROBUST VISUAL CORRESPONDENCE 149

Figure 5.11: The tonal alignment stage registers, on the basis of the histogram specified

by FB (left), the histogram of the background B (center), obtaining the tonally registered

background BR (right)

lated patterns can provide a high matching score (case e), while the presence of at least

one untextured region (cases a,b,c) or of two textured but uncorrelated patterns (case

d) yields a low score.

Tonal alignment At this point of the algorithm, FB represents a subset of F denoting

pixels that reliably belong to the current background. Hence, B is tonally aligned to

F by applying the histogram specification method [52]. In the evaluation of the IMF

(Intensity Mapping Function) that aligns B to F only the set of corresponding points

that belong to the mask FB is taken into account. By applying the IMF obtained from

the histogram specification method to B we get a novel background, BR, where the

photometric distortions have been removed. An example is shown in Fig. 5.11.

Background subtraction Finally, a simple pixelwise difference between BR and F

highlights structural changes by correctly extracting foreground regions. It is worth

pointing out that since background subtraction is carried out pixelwise, it is not affected

by the aperture problem and allows for accurately detecting the borders as well as

interior parts of foreground objects. Obviously, false negatives can still be found due to

the possible camouflage between the tonally registered background and the foreground

objects.
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5.5.1 Computational requirements

The bottleneck of the proposed algorithm can be identified in the computation of the

MF funcion. In fact, denoting as W and H respectively the width and height of images,

the computation of the numerator requires theoretically 2M2WH differences, multi-

plications and summations, and similarly the two norms at denominator require each

2M2WH differences, multiplications and summations plus WH square roots.

Nevertheless, all differences concerning the background model B can be computed

once for all at initialization, while all differences concerning the current frame can be

computed once for all at each new frame, accounting for a total of 2WH differences.

Furthermore, since the matching metric has to be applied on neighboring blocks in a

”sliding window” fashion, well-known incremental approaches such as [91] allow for

further shrinking the total number operations required for the computation of N. In par-

ticular, this can be done by computing the product of corresponding pixel differences

once for all at each new frame (accounting for 2WH multiplications), then running

two Box-Filter instances to compute the final accumulation term, which accounts for

8WH summations overall. Similar deductions apply to the computation of the two de-

nominator terms, DF and DB. The latter can be computed once for all at initialization,

while, by means of a strategy analogous to that used to compute N, the former requires

only 2WH additional multiplications, 8WH summations and WH square roots overall

at each new frame.

Thanks to these optimizations, our implementation of the proposed algorithm eas-

ily deals with the real-time requirements of many change-detection applications (e.g.

video-surveillance), with an average frame rate of 15 fps on a 320 × 240 frame size.

5.5.2 Experimental Results

We now provide some experimental results dealing with the proposed approach. In

particular, our algorithm has been tested with real as well as with a synthetic benchmark

sequence: real sequences are affected by sudden and strong brightness variations due

to illumination changes, while the synthetic one2 by artificial brightness changes.

First of all, we show some qualitative results. In Fig. 5.12 some screenshots of

the change masks obtained by the proposed algorithm on a real sequence (above) and

a synthetic one (below) are presented, which clearly prove that the proposed approach

is able to accurately segment foreground objects in presence of heavy photometric

changes. It is worth pointing out that no morphology operator was used at any stage

of the algorithm in order to obtain these results: nevertheless, uniform regions of the

foreground are correctly segmented and no false positives arise on low textured regions

2available at: http://muscle.prip.tuwien.ac.at/data_here.php

http://muscle.prip.tuwien.ac.at/data_here.php


ROBUST VISUAL CORRESPONDENCE 151

Figure 5.12: Change masks yielded by the proposed algorithm in two sequences affected

by sudden brightness variations

of the background.

Furthermore, we show some results dealing with a quantitative comparison between

our approach and other proposals. In particular, as representative of change detection

algorithms that model false image changes according to a linear relation we consider

the NCC between pixel intensities. As for algorithms relying on checking the order

preservation of intensities we consider the Rank transform [144]. We also consider as

baseline for comparison the basic pixelwise background subtraction approach (BBS).

For a fair comparison, we used the same block side for each algorithm (i.e. equal

to 7). Then, for what regards the other parameters of each algorithm (in particular, the

threshold for the final change mask), in order to determine the best parameter set of

each algorithm we selected as a measure of comparison the Precision, i.e. the ratio

between the true positives (TP) and the sum between true positives and false positives

(FP):

Precision =
TP

TP + FP
(5.29)

and the Recall, i.e. the ratio between the true positives and the sum between true

positives and false negatives (FN):

Recall =
TP

TP + FN
(5.30)

In order to obtain experimental results, we started from the observation that most

change detection algorithms, especially for video-surveillance applications, require to

have a minimum guaranteed value of Recall. Hence, for different thresholds of mini-

mum Recall (i.e. 70%, 80%, 90% ), we selected for each algorithm the optimal param-

eter set maximizing the Precision value. Such results are shown in Tab. 5.1. It is worth

pointing out that we fixed the maximum constraint value of Recall to 90%, since with

higher values all algorithms would provide Precision values lower than 50%, which

would result in very poor change masks (the number of false positives being higher
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Figure 5.13: Comparison of outputs yielded by the evaluated algorithms on the same

sequence and with the same constraint values on Recall used for results in Tab. 5.1. First

row, from left to right: background model B, current frame F, Ground Truth.

than the number of true positives). Moreover, it is worth noting that also for these re-

sults no post processing was added to the output of the evaluated algorithms, similarly

no morphology operator was used at any stage of the evaluated algorithms.

From the Table it is easy to infer that the proposed algorithm is the most robust and

accurate between the evaluated ones, since it always outperforms the other approaches

in terms of Precision for all different constraint values of Recall. In addition, Fig.
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Table 5.1: Best values of Precision yielded by the evaluated algorithms with different

constraint values on Recall.

> 70% > 80% > 90%

Proposed 87.3 81.7 52.2

NCC 59.6 57.2 43.0

RANK 24.5 18.8 13.1

BBS 2.2 1.9 1.7

5.13 shows, for a single frame of the evaluated testing sequence, the outputs of the

various algorithms at the different constraint values of Recall. In addition, in the first

row of the Figure the background model as well as the current frame together with the

correspondent ground truth frame are shown. These results qualitatively confirm the

trend shown in Tab. 5.1, proving that our approach provides overall the most accurate

results.

5.6 Application to video-surveillance: a case study

In this section a case study is presented where access to a high security gate has to be

monitored to assess for the presence/absence of people as well as to ensure that only

one person occupies the gate at a given time (anti-tailgating).

Monitoring access to interlocks and secured entrance areas, such as revolving doors,

is a very important task in many security applications. The aim of the task is twofold:

first of all, detecting the presence or absence of people in the monitored interlock,

secondly allowing only one person at a time to be present in the interlock (singulariza-

tion). Singularization is needed to avoid two (or more) people simultaneously crossing

the gate (piggybacking) or an unauthorized person crossing the interlock other than the

authorized one (tailgating). Most solutions deploy sensors such as weight controllers,

light barriers and ultrasonic devices [113, 114] which are mounted inside the inter-

lock walls and floor. However, these systems are generally expensive and not accurate

enough. Furthermore, they are often unpractical for maintenance.

Therefore, the use of simple and cost effective video-based approaches is gaining

increasing attention in the security industry. These approaches usually rely on back-

ground subtraction to detect the presence and estimate the number of people in the in-

terlock. However, it is difficult to perform reliable and accurate background subtraction

in real environments, which are characterized by unstructured backgrounds (typically,

the floor of the gate), sudden illumination changes, presence of shadows. Commer-
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cial systems, such as Smart Airlock Control System (SMACS) by Fastcom Technology,

deal with this issue by heavily structuring the working environment, i.e. by deploying

markers on both the interlock floor (e.g. by means of a chessboard patterned carpet)

and walls (e.g. by means of patterned stripes), and by requiring a specially aligned

illumination to avoid shadows (i.e. by means of fluorescent tubes disposed in a rect-

angular arrangement). Another difficulty arises from the size of the interlock, that can

often be very small. This constrains the positioning of cameras and generally forces

the monitoring system to work with very small field of views, which often do not allow

the person to be seen entirely into one single view.

The proposed approach exploits two views to accurately and robustly perform pres-

ence detection and singularization in small interlocks. The only modification to the

environment required by the system consists in installation of a tiny stripe of reflective

material around the borders of the interlock floor. This is not needed for presence de-

tection, but helps improving the feature extraction process required for singularization.

Our approach is based on two main stages. On one side, the use of a novel back-

ground subtraction approach, which deploys the MF measure as well as different back-

ground models, allows to accurately segment the foreground from the background even

in presence of shadows and strong and sudden illumination changes. On the other side,

the deployment of distinctive features extracted by comparing the two views allows our

system to work with very small field of views.

5.6.1 System setup and preliminary work

Since the specifications and the design of our method are closely related to its practical

application, we will refer hereinafter to a specific model of interlock, which was used

for the study and performance evaluation of our approach. Nonetheless, the developed

methodology can be easily generalized to different kind of interlocks. The considered

interlock is a two-door cylindric revolving door, typically used for security accesses

such as bank entrance areas. As shown in Fig. 5.14, the entrance and exit doors of

the interlock are placed at a right angle and two cameras are fixed to the ceiling of the

revolving door.

The gate setup is particularly challenging for video-based monitoring. The small

height of the interlock (approximately 2 meters) typically enables each camera to get

only a partial view of the gate occupant. Moreover, the interlock floor is character-

ized by a black anti-slippery material. The presence of small knobs in this material

determines a natural light pattern that, unfortunately, changes notably its appearance

under different illumination conditions, as depicted in Fig. 5.15. Besides, the presence

of bullet-proof glass all around the interlock typically creates serious light artifacts on

the floor and walls, due to the presence of different illumination conditions inside and
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Figure 5.14: Outlook of the interlock used to test the approach

outside the building. The presence of illuminators inside the interlock and light sources

outside generally produces strong and unpredictable shadows when people occupy the

interlock. Illumination changes and movements of people and vehicles outside the in-

terlock also account for additional photometric distortions. Finally, further artifacts

comes up in time due to dirtying of the walking surface. Some examples showing dif-

ferent appearances of the gate floor when the revolving door is empty are shown in Fig.

5.16.

Preliminary work, just sketched here for the sake of brevity, was carried out to sim-

ulate a real system and verify the feasibility of a possible solution based on a feature

extraction and classification approach. To reach this aim, a 3D graphic model of the

interlock and the occupants was developed (see Fig. 5.17). Then, a study concerning

the selection of the features to be used by the system was carried out by rendering the

two camera views under many working conditions. In particular, the simulations con-

sidered the number of occupants as well as their position, orientation, height and size.

Promising results of these simulations pushed forward for a thorough study addressing

the real working conditions.

Fig. 5.18 outlines the proposed approach, which is aimed at both presence detection

and singularization. As it can be seen, both processes exploit a common stage concern-

ing segmentation of the floor area visible by both cameras. Then, to carry out presence

detection the output of the floor segmentation stage is analysed to decide whether the

interlock is currently empty or one or more occupants are present. Differently, singu-

larization exploits also the segmentation of the floor border visible by cameras, so as to

extract additional features that allow to discriminate whether the number of occupants

is higher or equal than 1. The use of two cameras is mainly motivated by the fact that
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Figure 5.15: Effect of different illumination conditions (a,b) on the appearance of the gate

floor

Figure 5.16: Typical photometric distortions and artifacts affecting the appearance of the

gate floor.
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Figure 5.17: Simulation of the working conditions

features are computed based on the output of the segmentation processes associated

with the two views.

5.6.2 Segmentation processes

Segmentation of the visible floor area A background subtraction approach is de-

ployed in order to segment in each frame of both views the visible area of the interlock

floor. Yet, we have to deal with all the disturbance factors briefly described in previous

section: presence of sudden local illumination changes and shadows, mutable aspect

of the background depending on the position of the light sources. Under these circum-

stances, most background subtraction algorithm relying on image intensities are prone

to fail. Hence, we deploy the MF measure. In our experiments the patch side r de-

ployed by MF was tuned to 11. Let Bc1 and Fc1 be respectively the background model

and the current frame for camera 1. To perform background subtraction on the current

frame, MFBc1,Fc1 (x, y) is computed at each point (x, y) that may belong to the interlock

floor, then a threshold is used to discriminate between floor points (high score) and

non-floor points (low score). A pre-computed binary mask is deployed to eliminate the

points of the images lying outside the floor area.

Preliminary results dealing with the use of MF showed that this was able to deter-

mine a rough estimation of the visible floor area and was robust to strong photometric

distortions and artifacts. Anyway, due to the mutable aspect of the floor (as shown in

Fig. 5.15), accuracy along the segmented borders was sometimes not precise enough.

Hence, we devised an improvement to the basic approach. In particular, several back-
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Figure 5.18: Flow diagrams of singularization and presence detection algorithms

Figure 5.19: Segmentation of the floor area by means of different background models.
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ground models are computed rather than just one, each one encoding the appearance of

the gate floor under different static illumination conditions. To this purpose, 5 different

background models for each view are built, e.g. for camera 1 B1
c1, · · · , B5

c1, with illumi-

nation conditions varying from very dark (B1
c1) to very bright (B5

c1). Each background

model is obtained by varying the rheostat of the illuminator present inside the interlock.

Under each illumination condition the actual background model is attained by averag-

ing the values assumed by each point along an initialization sequence of 30 frames,

during which the interlock is empty. This can be regarded as an initialization stage of

our system. Then, at run-time, for each background model Bi
c1, a corresponding floor

mask Ci
c1 is computed by thresholding the MF score between Fc1 and Bi

c1:

Ci
c1(x, y) = TH

(
MFBi

c1,Fc1
(x, y)

)
(5.31)

Throughout all of our experiments, the threshold was set to 0.215. The outcome of

this operation on each background model votes for the similarity between the current

frame and the background. To classify a point as floor, the portion of the current frame

must match at least one background model, i.e. the matching score for at least one

background model must be above threshold. Hence, the final floor mask is obtained as

the union between each floor mask:

C f
c1(x, y) = ∪5

i=1C
i
c1 (5.32)

Given the 5 background models B1
c2, · · · , B5

c2 and the current frame Fc2, the same

processing stages provide the final floor mask for the second view, C f
c2. An example of

how the approach works can be seen in Fig. 5.19. Here, the two current frames Fc1,

Fc2 (left column) are matched with each of the corresponding 5 background models

(central column), yielding the floor masks shown in the right column. In the final

floor masks, C f
c1, C f

c2, the contributions of the 5 floor masks are depicted with different

colours, so as to point out how the deployment of different background models allows

to increase the accuracy of this process.

A further step based on area-closing and area-opening morphology is applied to

improve the output of the background subtraction stage by reducing false positives and

false negatives from the final floor mask. An example is shown in Fig. 5.20: red and

green circles (above) indicate the connected components filtered out from the floor

masks, while the final binary output for both views is shown below.

To conclude this part, we show some experimental results regarding the floor area

segmentation process. Footage has been acquired concerning scenes with different

numbers of people inside the gate (0, 1, and 2) and notably varied illumination con-

ditions obtained by the use of light sources placed outside the revolving door (as in

Fig. 5.16). In particular, the reported segmentation results refer to 546 frames taken
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Figure 5.20: Morphological post-processing of the final floor mask.

Figure 5.21: Qualitative comparison between ground-truth (centre) and output of the floor

area segmentation algorithm (right).

Figure 5.22: Quantitative assessment of the errors yielded by the floor area segmentation

algorithm.
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from 18 real sequences for each view. Of these frames, for those concerning 1 or 2

people (170 frames taken from 12 sequences) the ground-truth was obtained by hand-

segmentation of the visible floor area and border. Fig. 5.21 shows samples of frames

with 1 and 2 people occupying the interlock and allows for qualitative comparison be-

tween the ground-truth (centre) and the output obtained by the proposed floor segmen-

tation approach. Besides, Fig. 5.22 reports the segmentation error (sum of false posi-

tives and false negatives normalized by number of points within the floor area) along

the footage. These results demonstrate that the proposed approach provide significant

accuracy, with a very small mean error around 5% when the interlock is occupied, and

a negligible error when the interlock is empty.

Segmentation of the visible floor border In order to estimate the percentage of

visible floor border, as illustrated in Fig. 5.23, an approach similar to the floor area

segmentation algorithm is adopted. A binary mask is used to filter out the output of

the background subtraction algorithm for those pixels not belonging to the border area

(Fig. 5.23, b) ). Even though the algorithm worked rather well by exploiting the natural

edge of the floor border, we tested extensively our approach by applying a reflective

tape on the floor border. In fact, this solution is minimally invasive and allows for a

significant increase in the robustness of the border segmentation stage under strongly

varying illumination conditions. This reflective tape is the only synthetic fiducial used

in the whole system.

For what regards quantitative results, Fig. 5.24 reports the segmentation error com-

puted along the footage by comparing the hand-segmented ground-truth with the output

of the proposed floor border segmentation algorithm. When the interlock is occupied (1

or 2 people) the segmentation error is typically below 10%, while in case the interlock

is empty the error is always negligible (never higher than 0.3%).

5.6.3 Presence detection

The algorithm enabling presence detection aims at raising an alarm when one or more

occupants are present within the monitored interlock. This allows, for instance, to avoid

performing singularization when the gate is empty, or to alert security personnel when

the gate is occupied. The idea is to deploy the segmentation of the visible floor of the

gate from the two views to estimate whether the interlock is empty or not. In particular,

denoting as Ac1 and Ac2 the estimated percentage of visible floor area respectively in

view 1 and 2, the presence detection rule is defined as follows:

presence =

⎧⎪⎪⎨⎪⎪⎩ true (Ac1 < Thp)or(Ac2 < Thp)

f alse otherwise
(5.33)
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Figure 5.23: Floor border segmentation: a) input frames, b) binary mask, c) background

subtraction results, d) final segmentation

In other words, presence is detected when the floor is not almost completely visible

from at least one of the two cameras. Typically, Thp is set to 80%. Obviously, the

reliability of the presence detection algorithm heavily depends on the outcome of the

floor area segmentation stage described in subsection 5.6.2. Some experimental results

are shown Fig. 5.25, where the estimated percentage of visible floor area in the two

views is plotted along the different frames of a video sequence. In this sequence, a

person enters the revolving door, then the entrance door is automatically closed. The

most important events are chronologically marked along the frames, that is: the per-

son’s first foot is visible, his second foot is visible, the person is completely inside the

interlock, the entrance door starts to close, the entrance door is completely closed. In

this sequence, the ground-truth is available only for certain frames and is indicated by

blue dots. As it can be seen by comparison with the available groun-truth, the accu-
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Figure 5.24: Error concerning the floor border segmentation stage in the two views com-

pared to ground-truth.

Figure 5.25: Experimental results comparing the percentage of visible floor area in the two

views with ground-truth along a test sequence.

racy of the segmented floor area is very high along the frames of the sequence and for

both views, despite the notable photometric distortions, shadows and artifacts appear-

ing during the entrance of the person and the entrance door closing time. Furthermore,

the use of the presence detection rule in (5.33) allows to reliably detect that the gate is

not empty just after the first foot of the person is placed into the interlock.

5.6.4 Singularization by means of feature extraction and classifica-

tion

In order to perform fast and reliable singularization we propose an approach based on

feature extraction and classification. The key point for such an approach is to rely on a

small number of distinctive features: the small number allows for a reduced computa-

tional cost, while the distinctiveness is necessary for reliability of singularization.

A thorough study concerning the possible features to be adopted in the singular-

ization stage lead us to the determination of two simple features to be computed once

the two views have been registered. The first feature, referred to as Area OR, is given

by the percentage of the floor area which is visible in at least one of the views. This

is motivated by the fact that the presence of a single person which stands around the
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Figure 5.26: Extracted features ”Area OR” and ”Edge OR” in case of one person (above)

and two people (below).

center of the interlock allows a large portion of floor area being seen by at least one of

the two cameras (ideally, the whole area except for the portion of the person touching

the floor, i.e. his feet). Conversely, the presence of two or more people would force a

notable part of the floor to be not visible in both views. Similarly, the second feature

is given by the percentage of the floor border which is visible in at least one of the

views (referred to as Edge OR). This is also motivated by the fact that the presence

of a single person standing around the center of the interlock generally allows all floor

border points to be seen in at least one of the two views, which is not the case when two

or more people are present. An example of how the Area OR and Edge OR features

appear in two cases (one person and two people) is shown in Fig. 5.26.

Then, the output of the feature extraction step is provided to a trained classifier

which discriminates between the two cases: ”one person” or ”two or more people”.

The two features can be rapidly computed since the homographies between the two

planar views with respect to the floor are fixed and precomputed at startup. During

operating mode, singularization is applied only when the two doors of the interlock are

closed. This reduces false alarms due to the single user’s movements while entering the

revolving door. If singularization detects piggybacking, then an alarm is raised, the exit

door stays closed and the entrance door is opened once again to allow the occupants to

leave the interlock.

Experimental results are shown here by means of iterated 2-fold cross-validation.

In particular, the frames of the available footage sequences concerning the presence

of 1 or 2 people (overall 170 frames taken from 12 real sequences) were randomly

subdivided into two groups, A and B. As shown in Tab. 5.2, this subdivision has been

done 10 times by means of different shuffles. For each case, two SVM classifiers [22]

are trained on the two sets, then each set is used as testing sequence for the other.

An example of two classifiers obtained with this kind of evaluation is depicted in Fig.

5.27, which shows that training has been done toward generalization and to avoid data
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� % EA % MA % FA % EB % MB % FB

1 2 0 2 0 0 0

2 0 0 0 0 0 0

3 0 0 0 2 0 2

4 2 0 2 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 3 0 3

8 0 0 0 3 0 3

9 0 0 0 0 0 0

10 0 0 0 0 0 0

Table 5.2: Cross-validation of SVM-based singularization: percentages of error, missed

detection, false alarm yielded for different subdivision of data into two subsets (A and B).

over-fitting. Tab. 5.2 shows the percentages of, respectively, total errors (E), missed

detection (M, i.e. ’two or more people’ being recognized as ’one person’) and false

alarms (F, i.e. ’one person’ being recognized as ’two or more people’) for both sets A

and B along the various subdivisions. It can be noted that the total error percentages

are extremely low in all cases, being often 0% and anyway never higher than 3%. This

demonstrates that the two classes are distinguishable by means of the chosen features.

Furthermore, in all cases the errors are represented by false alarms only, with no missed

detection being actually yielded by our system: this is very important for practical

applications, since the most important aspect in anti-piggibacking and anti-tailgating

is to avoid misclassifying two or more people as one, while a few false alarms can be

usually easily dealt with.

It is worth pointing out that the proposed method including all processing stages

is very efficient: in our implementation, which does not contemplate any hardware or

SIMD optimization, response time for each new frame is 140 ms (i.e. ≈ 7 fps) on a

2.14 GHz Intel Core Duo.
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Figure 5.27: An example of SVM classification of two sets A, B.



Chapter 6

Conclusions

This dissertation has presented the research activity concerning visual correspondence

carried out during the Ph.D. course. In particular, three main problems related to visual

correspondence have been investigated: fast pattern matching, stereo correspondence,

robust image matching.

With regards to the first topic, novel methods for fast and exhaustive pattern match-

ing have been proposed. These methods rely on Lp norm-based dissimilarity functions,

as well as correlation-based similarity functions. Thanks to the derivation of succes-

sions of increasingly tighter bounding functions, it has been shown that it is possible to

safely detect mismatching candidates at a small computational cost. The consequence

is that it is possible to notably speed-up pattern matching (up to two orders of mag-

nitude) without deteriorating the optimality of the search, i.e. the candidates found

are the same as those detected by a Full-Search investigation (exhaustive search). Mea-

sures for which the proposed techniques have shown to yield computational savings are

the SAD and the SSD, for what concerns those measures derived from the Lp norm,

and the NCC and ZNCC, as for correlation-based measures.

Interesting future work may be carried out to further develop the ideas at the basis

of the proposed techniques. For example, the derivation of specific criteria to perform

a more advanced partitioning of template and image subwindow, as well as the use

of different bounding functions. It is also worth noting that recently novel research

work [87,88,102,134] has been proposed in literature that demonstrates the timeliness

of this research topic.

As far as stereo correspondence is concerned, two novel aggregation strategies have

been proposed. The first strategy concerns a very accurate approach to carry out vari-

able support-based stereo correspondence based on segmentation information, and it

turned out to be state-of-the-art in terms of accuracy between local stereo algorithms

on the standard evaluation framework for the stereo community [92]. The latter ap-
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proach deploys incremental techniques and segmentation to derive an very efficient,

yet accurate, stereo aggregation method. This approach turned out to be the best per-

forming one between state-of-the-art local algorithms in terms of cost-performance

trade-off within the performance evaluation carried out in Section 3.5. In addition, a

novel global method has been proposed, which is based on a joint exploitation of a lo-

cal aggregation cost based on a variable support and a global optimization framework

based on Scanline Optimization. The proposed method resulted being state-of-the-art

in terms of accuracy between Scanline Optimization and Dynamic Programming-based

stereo algorithms on the stereo evaluation framework [92].

In addition, the proposed taxonomy and performance evaluation introduced a new

approach that extends the standard reference methodology for performance evaluation

of stereo correspondence algorithms [92] by jointly evaluating accuracy and computa-

tional cost.

The research carried out on stereo correspondence opened up the way to novel ag-

gregation strategies based on variable support, and paved the way for interesting future

work. For instance, the proposed aggregation strategies might be deployed within a

global framework. In addition, the proposed method might benefit of optimization

strategies (e.g. implementation over embedded hardware (FPGA, ASICs, ..) or over

GPUs, use of SIMD-based optimization) in order to notably decrease the computational

burden and achieve near real-time or real-time performances. Finally, it is worth point-

ing out that the methodology deployed to evaluate the performance of stereo aggrega-

tion strategies based on variable support might be extended to stereo correspondence

algorithms in general.

Research activity concerning specific applications of stereo vision has also been

presented. In particular, a study concerning accurate 3D reconstruction based on space-

time stereo and projected texture has been proposed, that yielded a novel local stereo

algorithm as well as a novel approach to perform space-time stereo under dynamic

scenes. Moreover, a multi-view algorithm for detection of vandal events such as graffiti

has been proposed. This approach allowed to overcome the main limitations of single-

view state-of-the-art techniques, in particular in terms of a notable reduction of false

positives. Finally, a novel algorithm for change detection based on a stereo camera

has been proposed, that exploits both appearance and range information to increase

the robustness of the system against camouflage, shadows and sudden illumination

changes.

Finally, as for the third visual correspondence topic investigated, a novel class of

measures for robust visual correspondence under disturbance factors such as photo-

metric distortions, noise and occlusions has been proposed. The proposed approach

is based on the order preservation hypothesis, and aims at measuring how well the or-
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dering constraint between neighboring pixels is preserved. The novel measures have

demonstrated to be state-of-the-art in a pattern matching context, where also a review

of the state of the art and a performance evaluation on a novel dataset has been pro-

posed. Furthermore, the novel measures were deployed also for the task of change

detection for video surveillance. In particular, a novel algorithm for background sub-

traction robust to sudden illumination changes has been proposed, as well as a case

study dealing with singularization and access monitoring in interlocks.

6.1 Summary of contributions

We report here the list of the peer-reviewed international publications that deal with the

material presented in this dissertation. The presented list of publications is subdivided

into sections which refer to the corresponding chapters of the dissertation.
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2. S. Mattoccia, F. Tombari, L. Di Stefano, ”Fast full-search equivalent template
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cessing (TIP),17(4), pp 528-538, April 2008
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block matching for motion estimation”, 14th IAPR International Conference on

Image Analysis and Processing (ICIAP 2007), September 10-13, 2007, Modena,

Italy

4. F. Tombari, S. Mattoccia, L. Di Stefano, Template Matching based on the Lp

norm using sufficient conditions with incremental approximations”, IEEE Inter-
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Appendix A

On the generalization of the

IDA technique

We investigate here the possibility of generalizing the IDA approach, presented in Sec-

tion 2.2, to an arbitrary metric. According to the notation adopted, we indicate the

arbitrary metric used to evaluate dissimilarities as d
(
X, Yj

)
and the corresponding par-

tial distances induced by P as d
(
X, Yj

)
S t

. Though the triangular inequality can still be

applied to subvectors

d
(
X, Yj

)
S t
≥ ∣∣∣d (X, 0)S t

− d
(
Yj, 0

)
S t

∣∣∣, t = 1, . . . r (A.1)

summation of both members now yields

r∑
t=1

d
(
X, Yj

)
S t
≥

r∑
t=1

∣∣∣d (X, 0)S t
− d

(
Yj, 0

)
S t

∣∣∣ (A.2)

Therefore, a sufficient condition for the right-hand side of (A.2) to be a lower-bound

of d
(
X, Yj

)
is

d
(
X, Yj

)
≥

r∑
t=1

d
(
X, Yj

)
S t

(A.3)

Unfortunately, the above inequality does not hold for an arbitrary metric (e.g. for

the Lp-distance when p > 1).

Interestingly, though perhaps of rather limited practical relevance, it is possible to

define at least one class of metrics that allows for the generalization of our method. Let

each of dt (·) , t = 1, . . . r and d̃ (·) be a metric, we define

d̄
(
X, Yj

)
=

⎛⎜⎜⎜⎜⎜⎝ r∑
t=1

dt

(
X, Yj

)
S t

⎞⎟⎟⎟⎟⎟⎠ + d̃
(
X, Yj

)
(A.4)
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with distances between subvectors denoted according to the usual notation. It is

straightforward to prove that function d̄
(
X, Yj

)
is a metric and that (A.4) defines a class

of distances satisfying sufficient condition (A.3), with

d̄0

(
X, Yj

)
=

r∑
t=1

dt

(
X, Yj

)
S t

(A.5)

being the smallest of such distances.
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Proof of Lemma 2.4.4

Proof. The lemma can be proved by contradiction. Let us assume that:

√∑
k∈S 1

a2
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k∈S 1

b2
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the assumption can be rewritten as:
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Then by algebraic manipulation the following absurd result is attained:
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