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Abstract

Modeling Perception of Human-Robot Interaction:

Toward Natural and Social HRI Experiences

Matteo LAVIT NICORA

The increasing integration of robotic systems into various domains such as
industrial, medical, and social environments raises the need to put more and
more emphasis on user-centered design to ensure that these technologies
enhance human well-being and inclusivity. This thesis investigates the de-
velopment of a generalized human-driven control architecture to facilitate
natural and socially-aware human-robot interaction. The proposed frame-
work incorporates insights from biomechanics, physiology, psychology, and
social science to provide a comprehensive model of the user’s experience. By
leveraging this model, robotic systems can dynamically adapt their behavior,
promoting interactions that are both personalized and empathetic.

The research focuses on two primary domains where the experience of in-
teraction plays a vital role: collaborative industrial robotics and robotic neu-
rorehabilitation. In industrial settings, cobots should aim to improve work-
place ergonomics, efficiency, and operator well-being by complementing hu-
man flexibility and decision-making with robotic precision and consistency.
In neurorehabilitation, instead, robotic systems should attempt to augment
therapeutic practices, enhancing patient engagement and recovery outcomes
through adaptive and socially-responsive behaviors. On these bases, the two
use cases of interest also serve as testbeds for the implementation and vali-

dation of the proposed framework.

The methodology followed in this project encompasses three phases: a com-
prehensive review of the existing literature to identify the key factors influ-
encing user experience in HRI; the design and implementation of experimen-
tal setups deployed for the aforementioned application domains; and their
validation through empirical studies with diverse participant groups, includ-
ing neurodivergent individuals. The approach incorporates ethical consider-
ations and prioritizes non-invasive data collection methods, ensuring both

usability in real-life scenarios and compliance with privacy standards.
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Experimental results highlight the framework’s ability to effectively integrate
heterogeneous data, such as biomechanical, physiological, social and psycho-
logical signals, into actionable insights for real-time robotic adaptation. By fa-
cilitating smoother interactions and addressing the varied needs of users, the
framework supports a user-centered approach to robotics. Building upon the
lessons learned during the research activities, this thesis also outlines practi-
cal guidelines for replicating and extending the proposed architecture across
different scenarios, emphasizing its potential to enhance both usability and

social acceptability in HRI.

Overall, the findings underline the importance of interdisciplinary approaches
in designing robotic systems that prioritize human experience. Future work
will focus on refining the adaptive capabilities of the architecture and extend-
ing its application to broader contexts, contributing to the necessary constant

improvement of human-robot collaboration.



Riassunto

Modeling Perception of Human-Robot Interaction:

Toward Natural and Social HRI Experiences

Matteo LAVIT NICORA

La crescente integrazione di sistemi robotici in svariati ambiti, come quello
industriale, medico e sociale, richiede una sempre piti pressante attenzione
al design che deve essere centrato sull'utente per garantire che queste tec-
nologie migliorino il benessere degli utilizzatori e promuovano l'inclusivita.
Questa tesi presenta lo sviluppo di un’architettura di controllo generalizzata
in cui l'esperienza della persona é posta al centro in modo da favorire in-
terazioni uomo-robot sempre piti naturali e sociali. Il framework proposto
integra soluzioni derivate dalla biomeccanica, fisiologia, psicologia e scienze
sociali per offrire un modello completo dell’esperienza dell’utente. Sfrut-
tando tale modello, i sistemi robotici possono adattare dinamicamente il loro

comportamento, promuovendo interazioni personalizzate ed empatiche.

Le attivita di ricerca presentate si concentrano su due ambiti principali in cui
'esperienza di interazione con i dispositivi robotici rappresenta un punto fo-
cale: la robotica collaborativa industriale e quella neuroriabilitativa. Nei con-
testi industriali, 1'utilizzo dei cobot rappresenta un’importante opportunita
per promuovere ergonomia, efficienza e benessere per gli operatori, combi-
nando la flessibilita e la capacita decisionale umana con la precisione e la
ripetibilita tipiche della robotica. Nell’ambito della neuroriabilitazione, in-
vece, i sistemi robotici sono progettati al fine di potenziare le pratiche ter-
apeutiche, migliorando il coinvolgimento dei pazienti e i risultati della ri-
abilitazione attraverso comportamenti adattivi e socialmente responsivi. I
due ambiti applicativi presentati servono anche come banchi di prova per

I'implementazione e la validazione dell’architettura di controllo proposta.

La metodologia seguita nel progetto si articola in tre fasi: una revisione della
letteratura esistente per identificare i fattori chiave che influenzano 1l'espe-
rienza dell’'utente nell’interazione con dispositivi robotici; la progettazione
e 'implementazione di setup sperimentali basati sull’architettura proposta
e declinati per i campi applicativi di interesse; e la loro validazione medi-

ante studi empirici condotti con gruppi di partecipanti eterogenei, inclusi
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soggetti neurodivergenti. L'approccio sperimentale scelto é basato su consid-
erazioni etiche e privilegia metodi di raccolta dati non invasivi, garantendo

sia 'usabilita in applicazioni reali sia il rispetto degli standard di privacy.

I risultati sperimentali evidenziano la capacita dell’architettura proposta di
integrare efficacemente dati eterogenei, come segnali biomeccanici, fisiologici
e sociali, traducendoli in informazioni utili per adattare in tempo reale il
comportmento di sistemi robotici. Promuovendo interazioni piti naturali
e rispondendo alle diverse esigenze degli utenti, le soluzioni introdotte in
questo progetto gettano le basi per un approccio al controllo robot centrato
sull'utente eterogeneo e multidisciplinare. Grazie all’esperienza raccolta du-
rante le fasi sperimentali, viene inoltre identificata e presentata una serie di
linee guida pratiche per replicare ed estendere 1’architettura proposta in di-
versi scenari, sottolineando il suo potenziale nel miglioramento sia dell’usa-

bilita sia dell’accettabilita sociale di tecnologie in interazione con 1"'uomo.

In generale, i risultati ottenuti sottolineano 'importanza di approcci inter-
disciplinari nella progettazione di sistemi robotici che pongano al centro 1'e-
sperienza umana. Studi futuri si concentreranno sul perfezionamento delle
capacita adattive dell’architettura e sull’ampliamento delle sue applicazioni
a contesti pitt ampi, contribuendo al costante miglioramento delle collabo-
razioni tra uomo e robot.
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Chapter 1

Introduction

1.1 Problem overview

The tendency that we are witnessing today seems to point to a reality in
which very soon robotic devices will actively become part of our daily lives.
In fact, thanks to rapid technological innovations and the constant reduc-
tion of the cost of automation, this kind of tools keep becoming more and
more widespread, with a compound annual growth rate (CAGR) of around
15% (Benchmark International, 2024). We are now used to seeing robot instal-
lations for industrial manufacturing, for which the growth still remains expo-
nential (see Figure 1.1), but the same adapted technology is finding new fer-
tile ground in almost every sector of application (see Figure 1.2). Just to name
a few, robots are becoming a relevant presence also in healthcare (Kyrarini et
al., 2021), logistics (Tutam, 2022), agriculture (Cheng et al., 2023), space ex-
ploration (Bogue, 2012), education (Atman Uslu, Yavuz, and Kogak Usluel,
2023) and even social (Breazeal, Dautenhahn, and Kanda, 2016) and domes-
tic (Bogue, 2017) sectors. Now, a question arises: in the great push that is
driving the development of this technology, are we fully taking into account
the people that will use it?

It is well known that robots are exceptional solutions when it comes to repet-
itive operations or physically demanding and dangerous tasks since they can
substitute their human counterpart, freeing them from intense labor in favor
of activities requiring problem-solving and flexibility skills. However, we
cannot assume that those benefits are the only consequence to the rise of this
technology. In fact, given the impact that the capillary diffusion of robots
may have on our society, it is of utmost importance to study the effects that
interacting with these devices may have on the users in order to understand
them better and leverage this newly acquired knowledge to improve their
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FIGURE 1.1: Historical and forecasted data (2020-2030) for in-
dustrial collaborative robots (Grand View Research, 2022).

effectiveness even further. Operto, 2019 presents the results of a survey in-
volving 700 Italian citizens belonging to different social groups. Even though
this study is not generalizable as it only pertains to Italy, it provides a glance
on the perception that people have over this topic. If, on the one hand, the
general public seems to value the growth of robotics, on the other a sense of
fear towards the effects that it could generate on society emerges. Confirm-
ing results have also been found at the European level (Commission, 2017),
where a similar survey shows how around 60% of the respondents have a
positive view on robots but a majority of them also expresses society-related

concerns.

The impact on employment (Carbonero, Ernst, and Weber, 2020) and inequal-
ity (Berg, Buffie, and Zanna, 2018) are of course one of the main sources of
concern. Even though these topics are of utmost importance and require
great discussions and further evaluations, they closely pertain to the socio-
economic sphere and go out of the scope of the present project. Given the
fact that this technology is already heavily present in our reality, the focus of
this study is instead turned towards the experience that people have when
interacting with robotic devices. In this sense, several other topics can be
identified and are relevant for further exploration. First of all, not everyone
has the same perception of technology: older adults are less likely to adopt
new solutions and often experience frustration and difficulty of use (Heinz

et al., 2013), while the younger population is more prone to adapt and feel
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FIGURE 1.2: Robot industry share for the main fields of appli-
cation (updated March 2024) (Forecast, 2024).

comfortable with such tools (Van Volkom, Stapley, and Malter, 2013). More-
over, Human-Robot Interaction (HRI) can be the cause of psychosocial stress
and lead to experiences of isolation (Leso, Fontana, and Iavicoli, 2018). In
fact, often robotic devices are designed to take care of duties previously car-
ried out by men and women, with an intrinsic consequent risk of loosing
most of those social nuances that are typical of human nature and sensibility.
Therefore, in order to make sure that people’s well-being is not negatively in-
fluenced, it is fundamental that a user-centered approach is leveraged in the
design and implementation phases of robotic solutions. Ultimately, the goal
should be the reconstruction of human-human interaction (HHI) experiences
even within human-machine scenarios while guaranteeing safety and high
performance. These aspects are particularly relevant when these technolog-
ical advancements are applied to fields where close interaction is foreseen.
As work represents a large portion of our day-to-day activities, the industrial
sector is one that should definitely be prioritized when aiming to improve the
well-being of operators directly working with collaborative robots (cobots).
Similarly, the constantly growing robotic interventions in the service sector
(see Figure 1.3), and especially in the medical and rehabilitation fields, are
surely an example where physical and cognitive interaction with those tools

plays a fundamental role.
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FIGURE 1.3: Historical and forecasted data (2016-2029) for in-
dustrial and service robots (Forecast, 2024).

Starting from these considerations, here a brief overview of the most relevant
HRI aspects for the two mentioned application fields is reported, while more

detailed information is provided in the following chapters.

The industrial sector

Thanks to the push of the fourth industrial revolution, the so-called Industry
4.0, the diffusion of automatic and digitalized solutions within the produc-
tion chains of several industrial fields has risen to unprecedented levels (Lasi
etal., 2014). In this context, extensive research has been carried out regarding
the technical aspects of HRI, focusing especially on the topics of safety and
productivity. One of the direct results of this push for innovation is the rise
of the so-called cobots, which make it possible to eliminate the barrier sep-
arating the human worker from the automatic system and to put these two
players closer, literally collaborating with each other (Matheson et al., 2019).
Even though this approach aims to maximize the strengths of both the robots,
perfect for repetitive operations, and the human workers, excellent for their
flexibility and problem-solving capabilities, it does not automatically prove
itself as beneficial for the operator (Liu et al., 2024; Weiss, Wortmeier, and
Kubicek, 2021). In fact, the experience of a user in direct interaction with a
robotic device is not simply limited to the forces exchanged between the two,
but realized through a combination of vision, touch and hearing and has rel-

evant effects also on a physiological, social and psychological level. This may
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be one of the reasons why another industrial revolution, the fifth one, is tak-
ing place at this very time (see Figure 1.4). The rising paradigm of Industry
5.0 puts the experience and well-being of the user at the center of focus. The
European Commission defines the fifth industrial revolution as “an approach
that aims beyond efficiency and productivity as the sole goals but places the
well-being of the worker at the center of the production process” (Research
and Innovation, 2022; Research and Innovation, 2021).

THE 5 INDUSTRIAL
REVOLUTIONS
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FIGURE 1.4: The five industrial revolutions (Proaction Interna-
tional, 2022).

In this context, some studies have already been published to understand
how certain parameters can affect the user in terms of stress (Kato, Fujita,
and Arai, 2010), trustworthiness (Miiller et al., 2017) or dominance (Rein-
hardt et al., 2017). Moreover, research shows how direct contact can be effec-
tive regarding physical and psychological benefits (Thomas and Kim, 2021)
and therefore ease the user’s interaction with the robotic device (Block et
al., 2021). The same can also be said for the introduction of bidirectional
human-robot communication. In fact, from a conceptual point of view, a vir-
tual avatar could act as a mediator between the operator and the cobot with
a subjective impression tailored on the specific user needs (Oosterhof and
Todorov, 2008). These are just some of the concepts that should be addressed
when aiming to implement a human-centered robotic framework capable of
promoting well-being in HRI workplaces. In fact, the final goal of Industry
5.0 is to leverage the availability of all these new technologies to achieve so-
cial goals beyond employment and growth and to provide prosperity for the
sustainable development of all humanity (Leng et al., 2022).
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In this sense, the introduction of cobots in the working environment could
also represent an opportunity of inclusion for vulnerable subjects. Among
them, people with difficulties in social relationships, for instance character-
ized by the Autism Spectrum Disorder (ASD), are the ones that better fit
into the purpose of this project (Hendricks, 2010). In fact, the fixed and pre-
dictable routine with precise task assignment that characterizes the collabo-
rative work with a cobot may be beneficial in such a scenario. However, it is
important to remember that the behavioral patterns elicited by neurotypical
operators (NT) are expected to be different from the ones of operators char-
acterized by ASD (Mondellini et al., 2023) and therefore particular attention
needs to be devoted to tailoring the collaboration experience to the needs of

each specific worker.

The medical sector

The industrial field is not the only one recording an exceptional rise in the
rate of introduction of robotic devices. Similarly, the medical sector has seen
an exponential growth in the number of installed robotic devices. As a no-
table example, forecasts show that the use of rehabilitation robots is rapidly
speeding up (Grand View Research, 2021), probably due to the lacking num-
ber of available therapists than cannot keep up with the rate of population
growth paired with a significant increase of the number of older adults. As
shown in Figure 1.5, within the last 30 years the prevalence of conditions that
would benefit from rehabilitation therapy has increased significantly, with
the consequent rise of the number of Years Lived with Disability (YLDs). Ac-
cording to the last data released by the World Health Organization (WHO),
about 2.4 billion people worldwide are currently living with one of those
conditions, but the growing need for therapy is going largely unmet (World
Helath Organization, 2024).

This is where the introduction of rehabilitation robots can be beneficial since
they promise to relieve professionals from part of the physical and time-
related burdens of the therapy while allowing for intense, precise and quan-
titative exercises (Qassim and Wan Hasan, 2020). However, the rehabilitation
field is one where physical and cognitive interaction play a fundamental role
leading to notable challenges in the application of robotic devices. There-
fore, it is important to go beyond the direct benefits that this kind of devices
provide to both patients and therapists and to explore the additional factors

that come into play when a user is put in direct interaction with such tools.
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FIGURE 1.5: On the left the prevalence of conditions that would

benefit from rehabilitation (top) and the consequent YLDs (bot-

tom) in 1990. On the right, the same measures recorded in
2019 (Cieza et al., 2020).

The main research focus in this field is currently the development of devices
and control algorithms optimized to provide therapy effectiveness in terms
of “user’s kinematic performance”. However, one must consider that an ef-
fective recovery does not only come from intense and precise exercises but
also from a positive active engagement of the patient (Blank et al., 2014). An
effective rehabilitation robot should therefore be able to proactively adapt its
behavior on the basis of the inferred overall status of the patient, in particular

in terms of performance, fatigue, stress, attentiveness and engagement.

A lot of the studies carried out to provide more natural and social HRI expe-
riences in the industrial field could, of course, be leveraged and adapted also
for the robotic rehabilitation sector. Moreover, some work has already been
carried out specifically for introducing affective capabilities into the control
systems of this type of robots. For instance, Rivas et al., 2015 explored the

possibility of detecting affective states such as tiredness, tension, pain and
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satisfaction for post-stroke virtual rehabilitation. Similarly, Liu et al., 2007 in-
terred affective cues from psychophysiological analysis to help children with
ASD explore social interaction dynamics in a gradual and adaptive man-
ner. Hoshina et al., 2020 performed preliminary experiments to achieve ac-
curate detection of emotions such as depression and stress while Bonarini
et al.,, 2008 presents a method for the recognition of stress from biological
signals showing that it is possible to discriminate up to five levels with an
accuracy up to 88.06%. In line with the contents of this project, their goal
is in fact to leverage this information to successfully control socially-aware
rehabilitation robots. The same can be said about the use of virtual coaches
and for medical applications. For instance the Fit Track system (Bickmore,
Gruber, and Picard, 2005) features the relational agent Laura, who serves as
an exercise advisor. Laura engages with patients, motivating them to partici-
pate in physical activities and thereby fostering their rehabilitation progress.
The SenseEmotion project (Velana et al., 2017) explored pain management
strategies among the elderly, employing an avatar for crisis interventions to
facilitate reassuring dialogues and support for older adults. Additionally, Gi-
raud et al., 2021 proposed a tangible and virtual interactive system to train
children with ASD in joint actions, demonstrating the broader potential of
socially interactive agents in training social and motor skills relevant to neu-

rorehabilitation.

1.2 Research objectives

Overall, the need for a more heterogeneous representation of the user in-
teracting with a robotic device is clear. The goal of the present project is to
leverage that knowledge to provide more natural and social interactions with
robotic devices. In order to do so we need to study human-human interac-
tions with a particular attention on the different needs of diverse groups of
people. On this basis, there is a need to be able to quantitatively measure ex-
perience and reintroduce in the control logic the social components that are
generally lost when interacting with a machine. All of this must fit into the
design and validation of a generalized control framework providing the au-
tomation level that is necessary for a smooth interaction. A series of research
questions therefore arise. Which are the relevant parameters influencing the
experience of human-robot interaction? How can these measures be lever-
aged for the automatic adaptation of robotic systems? Can these logics be
generalized for heterogeneous groups of people, such as neurotypical and
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ASD users? Can the introduction of social-awareness capabilities and of in-
teractive virtual characters render the experience of interaction more natural
and social for the users? In order to start responding to these relevant and
challenging questions, a series of research activities, grouped into three main

phases, are foreseen for the project.

Phase 1: Preliminary activities

* Anoverview of the current state-of-the-art regarding human-in-the loop
control approaches, with a particular focus on the use of social, physi-
ological and psychological measures to enhance HRI experiences both

in industrial and rehabilitation scenarios.

* The development of a generalized software architecture designed to in-
troduce user-centered quantitative measures in the control logic driving

the behavior of a socially aware robot-avatar system.

¢ Obtaining the ethical clearance from the ethical committee of the Na-
tional Research Council of Italy, where the experimental activities will
take place. In fact, due to the nature of the project, human participants
need to be involved in the necessary data collection campaigns.

Phase 2: Experimental campaigns

¢ The setup and implementation of two lab-based use-case scenarios, one
for exploring the proposed concepts in the robotic rehabilitation field
and the second one to do the same in the industrial manufacturing sec-
tor.

* Leveraging the developed experimental setups to run a number of stud-
ies exploring the different research questions defined during the first
phase of the project and confirming the feasibility of the proposed gen-

eralized control architecture.

Phase 3: Validations and guidelines

¢ The full integration of the two demonstrators and preliminary valida-
tion of their effectiveness in eliciting more natural and social HRI expe-

riences.

¢ The extrapolation of useful guidelines that can be helpful in the repro-
duction and augmentation of user-centered robotic systems, including
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the identification of the main technological and methodological limi-
tations of the currently available tools. This step is crucial to provide
a list of collateral research topics that need further efforts in order to
effectively provide personalized and adaptive solutions also in out-of-

the-lab use cases.

1.3 Thesis structure

The thesis is structured as represented in Figure 1.6. Chapter 2 is devoted to
the analysis of the state of the art for all those features that will be part of
the envisioned system: starting from the most common approaches for the
inference of experience through signal interpretation and their implementa-
tion for control adaptation purposes and then moving to how robotics have
been used up to now with respect to neurodivergent individuals. Chapter 3
introduces the concept of a generalized human-driven control architecture,
from the requirements to the description of the specific modules making up
the system. Chapter 4 shows how the mentioned generalized framework is
put into practice for the development of the two lab-based scenarios that are
leveraged as use-cases for the experimental activities of this project. Chap-
ter 5 goes into the details of all the experimental campaigns carried out in
order to address the several research questions that need an answer and to
validate the proposed generalized framework. Finally, Chapter 6 is devoted
to the discussion of the obtained results in order to draw a conclusion for the

presented project, also highlighting limitations and future work.

A 4
/ \ Chapter 3: / \
Chapter 2: .
Human-driven control
State of the art .
architecture
’ ~ Ch 6
Chapter 1: ) agter :
. Discussions and
Introduction .
conclusions
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Chapter 5: Chapter 4:
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campaigns and results case scenarios
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FIGURE 1.6: Schematic representation of the thesis structure
showing how the chapters interact with each other.
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Chapter 2

State of the art

To enable more natural and socially meaningful interactions between robots
and humans, control algorithms must incorporate quantitative measures that
reflect the user’s experience during the interaction. These measures pro-
vide critical feedback, enabling the system to adapt dynamically to the user’s
needs, preferences, and emotional states. Existing work in this area can serve
as a reference for designing a generalized solution, leveraging strengths and
addressing weaknesses of current approaches. A comprehensive literature
review is presented, starting from Section 2.1 with the common methods
used for quantifying user experience and exploring their implementation in
robotic control systems. Additionally, robotics offers significant inclusion op-
portunities for neurodivergent individuals, particularly those with ASD. To
understand how this potential can be realized, it is essential to review prior
uses of robotic technology with ASD subjects, as summarized in Section 2.2.
Notice that, additional references specifically pertaining the experimental ac-
tivities and use cases presented in Chapter 5 are reported at the beginning of

each subsection.

2.1 Inferring experience for robot adaptation

The first step for the implementation of control strategies aiming to improve
the interaction between a robot and a human is understanding how quanti-
tative measures related to the user’s experience can be extracted. Moreover,
in order to have a complete overview of the user’s status, these measures
should provide information coming from different points of view, including
biomechanics, physiology, psychology and social sciences. Here, the avail-

able knowledge on these multidisciplinary topics is addressed one by one.
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2.1.1 Biomechanical assessments

The integration of biomechanical measures in human-robot interaction is cru-
cial for enhancing the interaction quality and safety. These measures help in
understanding the physical dynamics between humans and robots, which is

essential for developing intuitive and effective control architectures.

Many studies in this field rely on the use of EMG data. For instance, Capo-
raso, Grazioso, and Gironimo, 2022 present a virtual reality system devel-
oped to evaluate ergonomics in human-robot cooperative workplaces. The
proposed system uses surface electromyographic sensors and an accelerome-
ter to analyze muscular activity and ergonomic status in real-time, providing
workers with self-awareness of their physical conditions. Similarly, Rathi et
al., 2017 introduce a flexible, metal-free electrode device used for capturing
biomechanical movements in both humans and robots. The device described
in the study provides qualitative and quantitative data on movements, offer-
ing applications both for the industrial and healthcare sectors. Always re-
garding the medical field, Kim, Vanloo, and Kim, 2021 propose a 3D origami
sensing robot that uses EMG data to evaluate muscle functions. These robots
demonstrate potential in providing empathetic adaptability and quality care
in healthcare settings. Instead, Vera-Ortega et al., 2022 focus on a cooperative
human-robot architecture for search and rescue missions, where bio-signal
sensors are used to monitor stress, anxiety, and physical fatigue in respon-
ders. The proposed system facilitates remote control and communication be-
tween humans and robotic agents. With a different approach, Manjunatha,
Jujjavarapu, and Esfahani, 2020 use EMG data to classify motor control dif-
ficulty in human-robot interaction, adjusting admittance control parameters
accordingly. The study also employs Riemann geometry-based features and
transfer learning to improve classification accuracy across sessions. EMG
signals can also be used to control a robot movements in a more natural and
intuitive way. Artemiadis and Kyriakopoulos, 2010 build upon this tech-
nique to control a robotic arm through a dimensionality-reduction approach
that decodes muscle synergies into motion primitives. This method allows
continuous control of a robot arm, demonstrating the potential of EMG for
real-time robotic applications. Similarly, A hybrid approach combining pat-
tern and non-pattern recognition strategies is used by Sbargoud et al., 2021 to
process EMG signals for controlling a robotic hand. The study highlights the
effectiveness of wavelet packet decomposition and artificial neural networks

in decoding user movement intention.
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Another common approach for biomechanical monitoring in HRI is the use
of vision systems. Related studies can be split between the ones relying on
reflective markers and the ones using marker-less solutions. Starting from
marker-based systems, the BTS SMART device has been used to assess work-
ing ergonomics by evaluating the operational risk during tasks like object lift-
ing and displacement. This system demonstrated high accuracy in comput-
ing risk multipliers, making it a reliable tool for ergonomic assessments (Pa-
trizi, Pennestri, and Valentini, 2016). Another study focused on the Vicon-
460 system (Windolf, Gotzen, and Morlock, 2008), which showed that careful
configuration of camera setup, calibration volume, and marker size can sig-
nificantly enhance accuracy and precision, achieving an overall accuracy of
63+5 micrometers under optimal conditions. In line with some of the EMG
applications reported above, vision systems are also employed to improve
teleoperation tasks. For instance, Minamoto et al., 2018 evaluated an inter-
face that relies on head movements tracked by markers. The analyzed sys-
tem allows control of robots with three degrees of freedom and demonstrated

comparable operation times to gyro sensor-based systems.

While marker-based systems generally offer higher accuracy, marker-less sys-
tems provide sufficient precision for many applications at a lower cost, mak-
ing them accessible for broader use in ergonomic assessments. The choice
between these systems often depends on the specific requirements of the ap-
plication, such as the need for high precision versus the practicality of de-
ployment in various environments. In the case of the present project, the
goal is to develop a generalized framework suitable for deployment also in
real-life scenarios, where marker-less systems could fit well. For this pur-
pose, some studies focus on solutions aiming to improve the performance of
this kind of systems. Among all, Martini et al., 2024 attempted to improve
marker-less human-robot interaction by addressing errors in human pose es-
timation and depth cameras. The proposed filtering pipeline refines 3D hu-
man poses using an RGB-D camera, reducing robot jittering and enhancing
interaction smoothness. Similarly, Liang et al., 2019 developed a marker-less
pose estimation system for construction robots using a deep convolutional
network. The system estimates both 2D and 3D poses, demonstrating ca-
pabilities in proximity detection and object tracking, although occlusion re-
mains a challenge. Another method is presented by Jatesiktat et al., 2024,
using anatomical landmarks to improve 2D keypoint annotation accuracy in
marker-less systems. The approach involves training a deep neural network

with synchronized RGB cameras, achieving a mean Euclidean error of 13.23
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mm, comparable to marker-based systems. Leveraging on similar data con-
ditioning techniques, it is possible to employ marker-less devices in robotic
systems reliably. For instance, Lagomarsino et al., 2022 follow an approach
that monitors the operator’s upper body kinematics on the basis of the in-
put images of a low-cost stereo camera and artificial intelligence algorithms
(i.e., head pose estimation and skeleton tracking) with satisfactory results if
compared to state-of-the-art offline measurements. Similarly, Shafti et al.,
2018 propose a solution where, by continuously observing a human user’s
posture, it is possible to invoke appropriate cooperative robot movements so
that the user’s posture is brought back to an ergonomic optimum.

2.1.2 Physiological signals

Physiological data provide objective and continuous insights into emotional
states, cognitive load, and engagement levels that may not be fully captured
through self-reports or observations. By integrating this information, robotic
systems can adapt more effectively to users’ needs, creating interactions that
are more natural, responsive, and user-centered.

Several studies have focused on estimating the user’s mental state during
interactions with robots using physiological signals. For instance, heart rate
variability has been used to assess mental fatigue, allowing systems to adapt
robot behavior to reduce user workload (Villani et al., 2019). Similarly, HRV
was used to monitor stress levels in operators during teleoperation tasks,
with assistive technologies introduced to reduce mental workload and im-
prove performance (Landi et al., 2018). Another study highlighted the use
of HRV signals at different time scales to classify mental workload, show-
ing that specific classifiers could achieve high accuracy in workload assess-
ment (Shao et al., 2021). Electroencephalography is another critical tool for
monitoring cognitive workload in HRI. In a tele-exploration scenario, EEG
data was used to predict operator performance and situation awareness, with
brain-based features proving effective in assessing mental workload and dis-
traction (Memar and Esfahani, 2018). Additionally, EEG was employed to
study cognitive workload’s impact on error awareness in physical human-
robot collaboration, revealing that increased workload diminished error aware-
ness, which could compromise safety (John et al., 2024). Eye-tracking metrics
have been shown to be reliable indicators of mental workload in HRI too. In a
study involving physical human-robot collaboration, eye-tracking measures
such as gaze entropy and pupil diameter were sensitive to task difficulty
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and could predict performance outcomes with reasonable accuracy (Upasani
et al., 2023). Another study found that eye gaze was the best physiological
indicator of cognitive workload, outperforming other signals like EEG and
arterial blood pressure in a simulated driving study (Aygun et al., 2022).

Another relevant aspect to enhance the effectiveness of human-robot interac-
tions is the ability to detect and react to the level of user engagement. With
this goal, galvanic skin response (GSR) and skin temperature have been em-
ployed to estimate user engagement with an accuracy of 84.73% during in-
teractions (Provost et al., 2007). Pruss et al., 2023, instead, used EEG signals
to demonstrate that adaptively timed robot interventions, based on detected
engagement lapses, are more effective in restoring user engagement com-
pared to random interventions. Advanced engagement models have been
developed to enhance the naturalness and comfort of HRI. The model pro-
posed by Lu et al., 2024 utilize eye gaze, head pose, and action recognition
to determine optimal interaction moments, addressing issues like eye con-
tact anxiety. The system has been validated in real-world scenarios, such as
retail environments, demonstrating its potential to improve user experience.
Additionally, continuous engagement assessment models, using CNN and
LSTM networks, have been proposed to compute engagement levels from
video streams (Duchetto, Baxter, and Hanheide, 2020). These models have
shown success in predicting engagement across different datasets and envi-
ronments, providing a tool for measuring engagement in various HRI set-
tings. Research by Rihet, Clodic, and Roy, 2024 has also examined the im-
pact of robot-induced noise on physiological measurements. It was found
that EEG and PPG signals were affected by such noise, whereas EDA was
not. Adjusting preprocessing parameters improved the accuracy of EEG sig-
nal interpretation, underscoring the importance of signal selection and pre-
processing in HRI. For this purpose there exist tools, like the HRI Physio
Lib (Kothig et al., 2021), that are designed to facilitate the acquisition and
analysis of physiological signals to create adaptive HRI scenarios. The cited
library, for instance, allows for the synchronization and processing of signals
to enable robots to respond to detected human states, such as engagement

and stress, thereby enhancing interactive experiences.

Another significant role of physiological monitoring is enhancing human-
robot interactions by detecting and responding to users” emotional states. For
instance, in a manufacturing setting, Canete, Gonzalez-Sanchez, and Guerra-

Silva, 2024 used consumer-grade EEG devices to monitor operators” brain
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signals to infer emotional and cognitive states. In the study, the robotic
arm adapts its behavior in real-time based on the operator’s stress and con-
centration levels, using RGB lighting to signal when stress levels are high.
Also Swangnetr, 2010 used signals such as heart rate, galvanic skin response,
and facial electromyography to classify emotional states in patient-robot in-
teractions. These signals have been shown to correlate with valence and
arousal, providing a basis for real-time adaptation of robot behaviors to en-
hance user experience. Another framework proposed by Singh et al., 2019
uses physiological data, facial expressions, and eye movements to estimate
emotional states during robot teleoperation. The system classifies emotional
states such as resting, stress, and workload, and dynamically updates the
user interface in real-time. Since many approaches encompass the training
of neural network models on physiological signals it is important to also ex-
plore the best strategies for the purpose. The research carried out by Gallardo
et al., 2024 highlights that a general model fine-tuned with specific subject
data performs better in predicting emotions. Often, overt behaviors do not
align with emotional responses. It is therefore key to emphasize the impor-
tance of understanding internal states, as addressed by Staffa and Rossi, 2022.
In fact, a systematic review highlighted the growing interest in using physi-
ological monitoring to assess user experience during interactions (IRIARTE,
ERLE, and Etxabe, 2021). EEG and GSR combined with ECG are among the
most commonly used tools, indicating a trend towards integrating physio-

logical data to improve experience evaluation.

2.1.3 Social cues

Also social cues can provide rich, real-time information about users” emo-
tions, attention, and engagement. By leveraging this type of information,
HRI systems can create interactions that feel more natural and attuned to hu-
man behavior, improving the effectiveness and acceptance of robotic systems

in various social and collaborative settings.

For instance, social cues can play a crucial role in improving the fluency of
human-robot collaboration. In a study involving a pick and place task, it was
found that when robots used head movements or gestures to indicate non-
reachability, humans responded more naturally and efficiently (Romat et al.,
2016). Similarly, gaze cues have been shown to facilitate cooperation by im-

proving human response times in task-oriented situations (Boucher et al.,
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2012). Effective gaze-based cueing requires overcoming in-attentional blind-
ness. Lee et al., 2020 demonstrated that guiding a user’s attention through
eye contact before signaling cues significantly improved task performance,
underscoring the need for sophisticated interaction designs to capture user
attention effectively. With an interesting approach, Romeo et al., 2021b lever-
aged a deep learning architecture to predict apparent personality traits from
body language cues, such as head pose and gestures. This approach allows
robots to adapt to users by inferring personality traits, thus personalizing
human-robot interactions. In general, body posture and head pose are sig-
nificant social signals used to initiate and terminate interactions. Another
study by Gaschler et al., 2012 shows that by training models like Hidden
Markov Models on these cues, robots can recognize and respond to typical
social behaviors with high accuracy, improving their ability to interact appro-
priately in social settings. The impact of social cues on decision-making has
also been explored by Parenti, Belkaid, and Wykowska, 2023, revealing that
incongruence between pre- and post-decision social signals from robots can
significantly influence human task performance. This suggests that under-
standing and aligning social expectations is key for effective human-robot
interactions. Also monitoring affective cues, such as anxiety, in real-time
can enhance human-robot interaction. In a robot-based basketball game pro-
posed by Liu, Rani, and Sarkar, 2006, adapting the game difficulty based on
the participant’s anxiety led to improved performance, highlighting the ben-

efits of responsive interaction frameworks.

Robots can also leverage social cues to enhance their learning processes and
overall abilities in social interactions. For example, the iCub robot uses mu-
tual gaze, gaze following, and speech to learn new objects through interac-
tion with a human teacher, demonstrating the potential of social cues in cre-
ating more natural and robust learning environments (Lombardi et al., 2022).
Lee et al., 2023 used large language models to generate these cues and found
that robots could engage in more context-aware and authentic interactions,
emphasizing the role of both verbal and non-verbal cues in developing em-
pathetic robots. Additionally, Fiore et al., 2013 showed that proxemic behav-
ior, which involves the robot’s use of space, affects how humans perceive the
robot’s social presence and emotional state. However, gaze behavior alone
was not found to be significant in altering these perceptions, highlighting the
importance of considering various social cues in designing robots to enhance

their perceived social presence.
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2.14 Psychological measures

Psychological measures, such as self-reports on emotions, stress levels, or
engagement, provide subjective insights that complement physiological and
behavioral data. By integrating psychological metrics, HRI systems can bet-
ter assess user satisfaction, cognitive load, and emotional states, enabling
robots to adapt their behavior in ways that align with human needs and ex-
pectations.

As a notable example, studies have developed scales like the Negative Atti-
tudes Toward Robots Scale (NARS) (Nomura et al., 2008) and Robot Anxiety
Scale (RAS) (Nomura et al., 2006a) to measure anxiety and negative attitudes,
which are crucial for understanding communication avoidance behavior in
human-robot interactions. In fact, trust is a critical factor in human-robot
interaction. Li et al., 2024 showed that users’ openness and robot reliabil-
ity significantly affect trust levels. Users with low openness tend to exhibit
lower trust and allocate more attention to monitoring the robot, suggesting
that personality traits influence trust dynamics. Additionally, the propensity
to trust and state anxiety mediate trust levels, affecting comfort distance and
interaction behavior (Miller et al., 2021).

Emotional processes during human-robot interactions, such as those observed
in cognitive testing, show no significant differences between human and
robot administrators in terms of affective states and cognitive performance.
However, non-verbal behaviors like gaze patterns differ, indicating unique
interaction dynamics with robots (Desideri et al., 2019). Furthermore, per-
ceived social intelligence of robots, measured through new scales, correlates
with social competence and predicts positive feelings and interaction will-
ingness (Barchard et al., 2020). The development of psychometrically vali-
dated questionnaires to measure social robot acceptability is still in its early
stages. The questionnaires proposed by Krageloh et al., 2019 assess various
factors, including ethical issues, especially in therapeutic contexts with chil-
dren. Continued psychometric work is necessary to enhance the reliability
and validity of these measures. Additional interesting insights are provided
by research on active physical human-robot interaction, aiming to quantify
human physical and mental states during interactions. The findings pre-
sented by Hu et al., 2022 suggest that active robot actions can cause mea-
surable changes in users’ data, which relate to their perceptions and person-
alities. This understanding can inform the development of pHRI controllers
that consider both physical and mental states.
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Overall, the systematic review provided by Vagnetti et al., 2023 identified 27
instruments designed to assess psychological dimensions in relation to social
and domestic robots. These instruments primarily focus on structural valid-
ity and internal consistency, but often neglect other psychometric properties
such as measurement error and responsiveness. The review highlights the
need for developing new instruments with rigorous methodologies to en-
sure reliable and valid measures for assessing psychological dimensions in
human-robot interactions. Among possible alternatives, Huang et al., 2020
explored embedding psychological test questions into casual human-robot
conversations to profile users. This method showed strong correlations with
traditional written tests in young adults, suggesting its validity. However,
the correlation was moderate in older adults, indicating potential limitations

for certain populations.

2.2 Robotics and Autism Spectrum Disorder

As already mentioned, current advancements in the robotic field represent
a great inclusion opportunity for neurodivergent individuals, particularly
those characterized by the Autism Spectrum Disorder. However, before at-
tempting to translate this opportunity into reality, it is important to under-

stand how this kind of technology has been used for this purpose up to now.

Overall, the vast majority of the publications in the field focus on the use of
robotics as an intervention tool for children with ASD. The primary aim is
to enhance social interaction, communication, and educational outcomes for
ASD subjects through robot-assisted therapies. Various aspects are explored
in this sense, such as the effectiveness of social robots in therapy, the devel-
opment of robotic systems for skill training, and the integration of robotics
in educational settings for ASD children. For instance, many studies report
that robots can significantly improve social interaction and communication
skills in children with ASD. Children often perform better with robot part-
ners than human partners, showing increased social behaviors and reduced
repetitive actions during robotic sessions (Pennisi et al., 2016; Alghamdi, Al-
hakbani, and Al-Nafjan, 2023; Saleh, Hanapiah, and Hashim, 2020). Robotics
has been used to teach various skills, including social, motor, and cogni-
tive skills. Studies have shown that robotic interventions can effectively
teach skills such as eye contact, facial emotion recognition, and even coding,

with children maintaining these skills over time (Santos et al., 2021; Knight,
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Wright, and DeFreese, 2019). Robots have been found to be useful media-
tors in behavioral interventions, showing similar positive effects as human-
facilitated interventions. They help in reducing behavioral and emotional
symptoms and improving the ability to play and interact socially (Yun et al.,
2017; DiPietro et al., 2019). The population involved in the above studies
primarily includes children with ASD, typically ranging from ages 2 to 16
years and they often involve small sample sizes, with some including as few
as 8 participants, while others review larger datasets from multiple studies.
Additionally, only some of the studies also consider the inclusion of typi-
cally developing children for comparative purposes. It is clear that there is
an unbalance in the way robotics have been applied up to now with people
of the spectrum: the most common use-case is therapy with children which,
even though remaining an highly promising and relevant application, does
not realize the above mentioned inclusion opportunity that also adults could

benefit from.

Only a few studies exist involving robotics and adults with ASD and, once
again, they primarily focus on their use as therapy tools for enhancing in-
dependent living skills and social interactions. In these terms, social robots
have been shown to improve social behaviors, reduce repetitive behaviors,
and enhance spontaneous language during therapy sessions (Pennisi et al.,
2016). Additionally, robotics interventions have demonstrated potential in
enhancing independent living skills among young adults with ASD, although
further research is needed to explore the generalization and maintenance of
these skills (Sarri and Syriopoulou-Delli, 2021). The involvement of adults
with ASD in designing interventions has also provided valuable insights into

the practical implementation of robotics in therapy (Huijnen et al., 2017).

While these studies provide valuable insights, they largely overlook adults
with ASD, despite the potential benefits robotics could offer this demographic.
However, many robotic applications, such as collaborative robots in indus-
trial settings, hold promise as powerful tools for promoting social and work-
place inclusion for adults with ASD. The limited attention to this area leaves
a critical knowledge gap, underscoring the need for further research to ex-
plore how robotics can support the unique needs and challenges of adults
with ASD, ultimately fostering greater societal and economic inclusion for

this vulnerable group.
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Chapter 3

Human-driven control architecture

3.1 Schematization of the social mechanism

Without even noticing, whenever we interact with someone an innate social
mechanism is activated and calibrates our actions and reactions depending
on the behavior of the person in front of us. The sophisticated laws that rule
this interaction are deeply rooted in one’s culture, education and past experi-
ences. Figure 3.1 tries to schematize said mechanism in order to understand

it better and possibly reproduce it within the control system of automated

machines.
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|
Social controller :
W
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Sacial interaction skills
elaborated data ‘
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dafa data
perceived data
Perception explict data Expleit state

FIGURE 3.1: A schematic representation of the social mecha-
nism behind human-human interactions.
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Let’s consider a dyadic setting involving a first Interacting Human actor who
adapts his/her behavior in order to positively engage with a second Analyzed
Human actor, whose overall state is affected by the interaction itself. Starting
from the latter, the merge of physiological and psychological aspects make up
an overall condition that is referred to as Actual state in the provided scheme.
However, extensive research in social psychology has shown that the psycho-
logical, affective and emotional expressions visible from the outside are often
different from what the person actually feels from the inside, since they get
reshaped by a sort of Social filter (Ellwood, 1901; Deal, 2007; Hull, 1943). In-
stead, physiological reactions to one’s actual state cannot be controlled but,
on the other hand, they are often not usable within the context of human-
human interactions. The sum of these filtered and unfiltered data make up a
so-called Explicit state, which can be perceived and elaborated by the second
interacting actor depending on their sensibility. Considering Figure 3.1, these
innate human abilities are referred to as Social monitor and directly connected
to a so-called Social controller. In fact, depending on the result of one’s inter-
nal interpretation of the explicit state of the actor under analysis, a decision
is taken on how to act/react with a consequent effect on the interaction expe-
rience from a physical (e.g., touch), visual (e.g., gestures, facial expressions)
and vocal (e.g., utterances) point of view. Of course, this interaction is not
the only factor producing an effect on the actual state of the analyzed actor.
Several unknown External factors, such as personal issues, act as disturbance
in the system and make the whole social mechanism even more complex and

unpredictable.

As mentioned, the goal of the present project is to try and reproduce within
the control system of technological solutions the social mechanism behind
HHI just presented, aiming to render HRI a more natural and social ex-
perience. Considering the current technological advancements, computing
power and available sensor devices make it possible to easily leverage those
unfiltered physiological data that cannot be accessed in normal human inter-
actions. On the other hand, the reconstruction of the presented Social monitor
and Social controller capabilities poses an extremely complex challenge that
will be extensively addressed by the present project.

In simplified terms, the main research question is to understand if and how it
is possible to implement an "adaptive experience controller" such as the one

reported in Figure 3.2. Let’s now consider a second dyadic setting, involving
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a Robotic system and Human user. A technological version of the Social moni-
tor is devoted to produce a measure of the interaction experience as close as
possible to the user’s actual one. The "error" between the measured and op-
timal experience then becomes the driver for a reconstructed Social controller,

dispatching commands to the robotic system itself.

Social Robotic Human
optimal controller cmd system HRI user actual
interaction interaction
experience experience
Social
measured monitor
interaction

experience

FIGURE 3.2: A schematic representation of the concept of an
"adaptive experience controller".

Building upon our understanding of human-human interactions and past ex-
periences in the development of human-driven control architectures, a series

of aspects should be taken into particular consideration:

1. Human-robot interaction often only involves the physical sphere through
direct or indirect contact between the two entities. However, when try-
ing to reproduce the experience of a human-human interaction, visual
and auditory aspects are also involved. These are fundamental to recre-
ate the lost social nuances and should therefore be implemented into
the system to enhance its interaction capabilities.

2. The user should be monitored in a heterogeneous way, both in terms
of objective and subjective measures. Where possible, noninvasive sen-
sors should be preferred to minimize the inconvenience of setup and

promote a sense of natural interaction.

3. All raw data coming from sensors should be fused into a single and
comprehensive representation of the user’s experience. A model of op-
timal state should be produced and adapted to the needs of each single
user in order to leverage the available quantitative information for au-
tomatic adaptation purposes, pushing towards a more social human-

robot interaction.

The scheme depicted in Figure 3.2 is simply a general concept and only serves
as a starting point for the actual implementation of the envisioned human-

driven control architecture. Starting from said concept and the requirements
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listed above, the rest of this Chapter is devoted to a more concrete and de-

tailed description of how said concept can be translated into practice.

3.2 Conceptual architecture

Agents
speed physical
force interaction
t Ao visual
. eic... interaction
Supervisor |~ ~>| Orchestrator | st User
visual
dominance interaction
Avatar .
tc voice
etc... interaction
" T
I biomechanical signals
I
: physiological signals
- >| User Model Interpreter social signals
psychological signals

FIGURE 3.3: Schematic representation of the generalized
human-driven control architecture.

In order to put into practice the conceptual mechanisms of social interaction
presented in Section 3.1, a generalized human-driven control architecture is
reported in Figure 3.3. As depicted, a series of fundamental modules are
interconnected by solid arrows that represent either the stream of measur-
able/controllable parameters or a specific type of interaction. The collection
of these elements allows for the definition of a closed control loop, running

along with the execution of the human-robot task.

The purpose of this framework is to offer the User a natural HRI experience
characterized by social and empathic aspects. To achieve this goal, the envi-
sioned system includes both a generic Robot, and an interactive virtual Avatar.
This additional feature allows to enrich the interaction with the User, adding
gaze, gestures, and talk capabilities to the platform, with physical, visual and
voice interaction modes. The system is aimed at achieving high levels of inte-
gration between the Robot and the Avatar, so that the latter can be considered
a virtual representation of the intelligence of the robot in humanoid form. In
these terms, the User can be said to interact with a unique entity, represented
by the merge of the Robot and the Avatar.
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For this purpose, the behaviors of the Robot and of the Avatar are coordi-
nated by the Orchestrator module. This module has knowledge of the task to
be carried out and is in charge of dispatching information to control both the
Robot and the Avatar coherently and consistently. In doing that, the resulting
behavior of the robotic system is tailored on the User’s overall state in order
to promote a positive and personalized interaction experience. A representa-
tive list of the main parameters available for adaptation have been identified
through the analysis of the literature, presented in Chapter 2. Just to name a
few, the speed, acceleration, distance from the User and force of interaction
of the Robot and the traits of trust, dominance, gestures and vocal interven-
tions of the Avatar can be tailored in a coordinated fashion on the basis of the

interpreted signals.

The Orchestrator tunes the behavior of both the Robot and the Avatar on
the basis of the heterogeneous representation provided by the User Model.
This component requires general knowledge about the User (e.g., age, sex,
height, weight and any other useful information) in order to access the right
clustered information. Moreover, it allows both physical (e.g., fatigue thresh-
olds) and cognitive (e.g., affective states, regulation strategies) modeling of
the User, by processing the high-level measures that it is given as input in
real-time during the execution of the task.

In order for the Orchestrator to work properly, a wide set of heterogeneous
high-level information is required, spanning from physical and mental en-
ergy to psychological and social data. Closing the control loop, raw data
is therefore collected from the User through sensors and questionnaires and
then processed and elaborated by the Interpreter module. In particular, four
main categories of signals, aiming to provide a comprehensive representa-

tion of the overall state of the User, are foreseen:

¢ Biomechanical signals are collected in a noninvasive way through marker-

less tracking systems. For instance, cameras can be used to track the
main skeletal joints of the user in terms of position and velocity. This
information is then used by the Interpreter module to infer higher-level
quantities such as joint power, physical energy consumption and fa-

tigue;

* Physiological signals are collected using wearable sensors. Measures
such as ECG, HRV and EDA are collected in real-time during the exe-
cution of the task and fed to the Interpreter module in order to extract




26 Chapter 3. Human-driven control architecture

information such as stress, frustration and mental energy consumption;

* Social signals are, once again, collected using non-invasive systems such
as cameras. For instance, face-cropped videos of the user can be recorded
and sent to the Interpreter module which is in charge of inferring social
information such as valence, arousal and gaze. Additional labeling of
the User’s facial expression with the so-called Ekman’s atlas of emo-
tions (Ekman, Freisen, and Ancoli, 1980) could provide more detailed

insights of the emotional sphere;

* Psychological signals are also considered thanks to both ad-hoc and

standardized questionnaires. These information are useful as a sub-
jective measure of the quality of experience and can be leveraged by
the Interpreter module as validation for the objective, quantitative and

elaborated measures mentioned above.

Always with reference to Figure 3.3, a second outer loop is represented using
dashed arrows. In fact, the presence of a human Supervisor is still required
to make sure that the system is set up properly and to intervene in case the
adjustment of some parameters is required. Regarding the present project,
this role is covered by the researcher that oversees the experimental sessions
and makes sure that the system works properly with each single participant.
However, considering a future application of this technology in real-world
scenarios, the Supervisor could either be a physiotherapist or a production
manager, depending on the field of application. Starting from the robotic
rehabilitation scenario, a human physiotherapist still has a central role in
the proposed approach. In fact, professional expertise is required for the
patient’s initial assessment (e.g., residual mobility, attention span), used to
define the backbone of the User Model and a selection of suitable exercises.
Moreover, an initial calibration process is useful in order to learn from the
physiotherapist how to optimally balance the target execution performance
for the exercise and the social experience for the specific patient. Moving to
the industrial application, instead, a certain degree of freedom in the assign-
ment of subtasks between the Robot and the User and in the disposition of
all the components inside the workcell may be required to further improve
the level of personalization. The mentioned outer loop is designed to serve
exactly this purpose. The Supervisor analyzes all the data logged during the
collaboration and proposes a reorganization of the task based on the balance
between production requirements and the User’s experience. The same can
be done regarding the choice and positioning of all the components inside
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the workcell, especially important for Users characterized by ASD who are
more sensible to the general organization of resources (Hayward, McVilly,
and Stokes, 2019).

All software and hardware components will be included in the architecture
as nodes in a Robot Operative System (ROS) framework (Quigley et al., 2009).
ROS is a state-of-the-art open source tool that allows developers to build
robotic applications in a modular and flexible way, enabling the deployment
of generalized architectures ready to be plugged into different hardware so-
lutions. This approach is perfectly suited for the present project as it is neces-
sary that the same generalized human-driven architecture can be leveraged
for different robots and sensors (e.g., industrial cobots, rehabilitation robots).
In particular, regarding the interface of sensors with the rest of the frame-
work, the Social Signals Interpretation tool (Wagner et al., 2013) will be used
as it provides a flexible architecture to construct pipelines that handle data of
different nature and with multiple modalities. Finally, even the definition of
the task, the management and synchronization of all the sub-tasks and the co-
ordination between the Robot and the Avatar foreseen for the system require
a powerful and flexible high-level state machine. For this purpose, the Visual
SceneMaker (VSM) tool (Gebhard, Mehlmann, and Kipp, 2012) is selected for
its authoring, orchestrating, and executing capabilities even in complex sce-
narios. By building a bridge between these three tools it is therefore possible
to actually implement the envisioned human-driven architecture feasible for
deployment both in industrial and rehabilitation scenarios.

3.3 In-depth description of the modules

After the overview provided in Section 3.2, here a more detailed explanation
of the fundamental software blocks is reported. In particular, an implemen-
tation plan for each of the modules is presented, explaining the tools that can
be leveraged for the purpose and how they can be interfaced with the rest
of the system to achieve seamless interaction between all the components of
the generalized human-driven control architecture. Notice that, the order in
which these elements were presented in Section 3.2 went through the control
loop in an anti-clockwise direction in order to provide a clearer explanation
of the concept. However, the logic for the implementation of those compo-
nents starts from the lower-levels (basic functionalities) and then moves to

the higher ones (building on those basic functionalities). For this reason, the
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order of presentation for the following sections is flipped backwards and fol-
lows the control loop in a clockwise direction, starting from the data collec-
tion and interpretation used to build the user model and then moving to the
management of the interaction controlling the behavior of the robot-avatar

system interacting with the user.

3.3.1 Interpreter

The Interpreter module is responsible for taking as input a series of raw sig-
nals (biomechanical, physiological, social and psychological) and using them
to extract high-level indicators related to the experience of interaction be-
tween the User and the system (Robot+Avatar). Overall, four high-level in-
dicators have been identified in order to have a complete and heterogeneous
representation of the user during the interaction: mental energy, physical en-
ergy, social and affective state and psychological state. A detailed description

of these indicators is reported below.

Mental energy

Distressed

Focused

Distracted

FIGURE 3.4: The combination of a FitBit activity tracker and the
MindStretch app allow for continuous monitoring of the User’s
mental energy.

While the User is interacting with the system, his /her physiological responses
(e.g., heart rate) and movement (e.g., steps) are monitored by means of wear-
ables, such as the FitBit activity tracker. Using these physiological variables
as input for the BioRICS” Mindstretch application (BioRICS, 2021), shown in
Figure 3.4, it is possible to determine the metabolic energy use and/or recov-
ery for mental tasks exhibited by the User in real-time. Mental energy use
and recovery is a metric, expressed in the Mindstretch app as a percentage,
which relates the mental energy wielded while performing a cognitive task
to the mental energy baseline level defined for that individual. If the cogni-
tive task is demanding, Mindstretch monitors the mental energy used by the
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individual to perform it. When there is no mental effort required to perform
such task, Mindstretch monitors the mental energy recovery induced by that
task (Smets et al., 2013; Norton et al., 2018).

The User needs to wear continuously (day and night) the FitBit, on average,
for 3 days prior to ensure that the Mindstretch algorithm is fully adapted to
the individual subject. Combining the mental energy monitored by Mind-
stretch, together with a performance metric, defined according to the specific
task, allows defining the focus or Eustress zone of the User while perform-
ing such a task (Taelman et al., 2016). This mental focus zone is defined as
the zone of mental energy use exhibited by the User when performing most
efficiently the task (Selye, 1956). This focus zone is individually different per
each User and will vary within the same day. Deviations of the mental en-
ergy exhibited by the User from this estimated focus zone can be used as an
indication of distress or distraction, making the User go out of focus from
the task and, thus, inducing a drop in attention and performance (Joosen,
Exadaktylos, and Berckmans, 2015).

Physical energy

FIGURE 3.5: Two RGB-D cameras capture the User from two

different points of view and the Interpreter uses the depth

video to extract the skeletal joints position, useful to infer an
index of physical energy consumption and fatigue.

In the proposed architecture, visual data is acquired using a set of RGBD
cameras looking at the area shared between the User and the rest of the sys-
tem from different points of view to contrast possible occlusions. In par-
ticular, the Microsoft Azure Kinect DK (Microsoft, 2021a) cameras have been
selected, since they can provide high image resolution, up to 2560 x 1440 pix-
els at 30 Hz. Moreover, the Microsoft Azure Kinect Body Tracking Library is
leveraged to track the User and estimate the 3D position of his/her skeletal
joints with high accuracy and reliability, and low uncertainty (Romeo et al.,
2021a).
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For each camera, four streams are published to the ROS network deliver-
ing the compressed RGB image, the depth map, the depth map rectified in
the color space geometry, and the skeletal data. Figure 3.5 shows an exam-
ple of two synchronized cameras looking at the same area and tracking the
skeletons of two Users. Note that recorded videos are encrypted via a 256-
bit Advanced Encryption Standard (AES) to ensure the mandatory data se-
curity due to privacy reasons. The obtained information is then exploited
to perform an online computation of the kinematics and the dynamics of
the upper-limb (Scano, Molteni, and Molinari Tosatti, 2019) following the
inverse dynamic approach (Dumas, Aissaoui, and Guise, 2004). Articular
angles, velocities, accelerations and torques are used to provide an estima-
tion of the exerted joint power and energy expenditure. This data represents
the basis of the estimation of measures and parameters of effort and fatigue
during the use of the envisioned system, including time-to-peak (Emery and
Coté, 2012), range of motion alteration and effort related to energy expen-
diture. Furthermore, exploiting the NASA Anthropometric Tables (NASA,
2021) and tracked data, this module estimates the volumes occupied in space
by the User and sends them through ROS to the robot controller, making
them available for collision avoidance purposes or for other forms of interac-
tion with the Robot or with the Avatar.

Social and affective state

To support a pleasant interaction experience, the envisioned system has to
adjust the interaction in the case of suboptimal mental states, such as stress
or boredom. To recognize such states from the the User’s social and affec-
tive signals, the SSI tool (Wagner et al., 2013) is used to enable the recording,
analysis, and recognition of human behaviors based on social and affective
signals such as gestures, facial expressions and emotional speech or physio-
logical signals such as Heart-Rate Variability (HRV). To this end, SSI allows
to interface with and extract data from external sensors. Thanks to its mod-
ular architecture, the data processing in SSI is performed through pipelines
consisting of a sequence of autonomous components that allow parallel and
synchronized signal processing. Additionally, SSI supports machine learn-
ing pipelines for the execution of pre-trained models as well as on-device
training of simple online learning classifiers, such as Naive Bayes. This is
especially useful for creating machine learning models that can be adapted

to the individual User behavior over time.
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FIGURE 3.6: An RGB camera captures the User during the in-
teraction with a robot and the Interpreter uses the video stream
to infer a series of social and affective indexes.

Thanks to these functionalities, the envisioned system can be enforced with
a number of classifiers developed to infer the affective and social state of the
User in real-time. For instance, attention and distraction are a crucial point
for the motivational strategy that can be put into action by the system. One
way to discern these states is by using a gaze-based approach as presented
by Prajod et al., 2023. User motivation and willingness to continue the task
can also be affected by experiences of stress. In this sense, based on the ob-
servations presented by Prajod and André, 2022, hand-crafted HRV features
can be leveraged to detect stress and react accordingly. Moreover, further in-
formation can be extracted from the User’s facial expressions, detected using
MediaPipe’s Blaze face detection model (Bazarevsky et al., 2019) and classi-
tied into seven discrete emotion classes (see Figure 3.6): Neutral, Happy, Sad,
Surprise, Fear, Disgust, and Anger, thanks to the AffectNet dataset (Molla-
hosseini, Hassani, and Mahoor, 2019). Additionally, the trained model can
provide two continuous values (in the range [-1, 1]) for each image: Valence,
indicating if the experienced emotion is positive or negative, and Arousal,
representative of the level of intensity of the experienced emotion. Facial
expressions can also be exploited to detect situations of physical pain. In
fact, using deep learning (Wang et al., 2018; Hassan et al., 2019; Xiang et al.,
2022) and transfer learning (Prajod et al., 2021) techniques, it is possible to
link face-based pain detection triggers with the information provided by the

"Physical energy" monitoring to cross-validate the estimations and obtain a
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more comprehensive and robust description of the User’s overall state.

Of course, the rich information that can be inferred from social and affective
signals, needs to find a way to enter the envisioned human-driven control
loop. As the SSI framework allows for the implementation of Python-based
custom plugins, a solution is provided by the use of the rospy (Ken Conley
and Perron, 2012) and rosbridge (Mace, 2012) libraries allowing a direct trans-
lation between SSI pipelines and ROS topics. More details on this integration
can be found in Chapter 4.

Psychological state

[z
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c
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FIGURE 3.7: The SAM questionnaire used to collect information
about the User’s experience in terms of Valence, Arousal and
Dominance.

In order to assess the experience associated with human-robot interactive ac-
tivities, participants can be administered the Experience Sampling Method
(ESM), a procedure developed to study behavior and the associated experi-
ence during their unfolding in real life, thus avoiding memory distortions (Csik-
szentmihalyi, Larson, and Prescott, 2014; Hektner, Schmidt, and Csikszent-
mihalyi, 2007). For this purpose, participants would be given a tablet repro-
ducing an acoustic signal whenever a questionnaire needs to be completed.
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Open-ended questions can be used to collect descriptions of the ongoing ac-
tivity and related stake, location and social context. Moreover, a set of scales
can be leveraged to assess the individual quality of experience associated
to the ongoing task, by rating the level of cognitive, affective and motiva-
tional dimensions, including perceived activity-related challenges and per-

sonal skills in facing them. Some examples are:

¢ The Internal Control Index questionnaire (ICI) (Duttweiler, 1984), aim-
ing to understand the internal locus of control (i.e., do you feel in con-

trol of the events or do you feel controlled by them?) of the participant.

¢ The Experiential Locus of Control questionnaire (ELoC) Jang et al., 2016,
derived from the ICI to analyze the dimension of "feeling in control" not
only as a personal attitude but also as a reaction to a specific activity.

* The Negative Attitude Towards Robots scale (Nomura et al., 2006b),
exploring the feeling towards the practical, social and emotional inter-
action with robots.

* The Self-Assessment Manikin (SAM) Bradley and Lang, 1994, designed
to infer measures of Valence, Arousal and Dominance through a non-

verbal pictorial representation (see Figure 3.7).

One important aspect in the case of psychological reports is that they are
collected asynchronously during the task and, therefore, cannot be a real-
time input to the generalized human-driven control architecture. However,
these measures still have an exceptional importance for the system as they
allow the Supervisor to validate the other quantitative inferred indexes and
to perform post-session analysis aimed at evaluating the effectiveness of the

envisioned system in improving the experience of human-robot interaction.

3.3.2 User Model

The high-level information produced by the Interpreter is a good starting
point to understand the overall current status of the User. However, the ob-
tained indexes still need elaboration in order to fuse them in a single and
heterogeneous representation of the actual experience of interaction: they
are like pieces of a puzzle that need to be put together in order to reveal the

tull picture. This is without a doubt the most challenging aspect of the issue



34 Chapter 3. Human-driven control architecture

that the present project tries to tackle (even within human-human interac-
tions we often find it difficult to understand each other) and the reason why
a dedicated User Model is foreseen in the generalized architecture.
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Withdrawal 9%
Avoidance 66%
Attack Other 1%
Attack Self 13%
None 11%

FIGURE 3.8: An example of the MARSSI model merging mul-
tiple social signals to estimate the confidence related to each
modeled appraisal and regulation (Gebhard et al., 2018)

The first problem is that social signals classification alone is insufficient for
understanding the real meaning behind emotional expressions. For instance,
many communicative, emotional expressions are not directly related to in-
ternal emotional states: a smile could represent actual satisfaction, but also
a mechanism used to hide shame and insecurity. One way to overcome this
issue would be to enhance the social and affective high-level indexes pro-
duced by the Interpreter through a dedicated theory-based model capable of
processing internal appraisal (Lewis, 2008) and regulation strategies (Gross,
2013). This is exactly one of the goals of the User Model block envisioned
for the proposed human-centered control logic. A possible starting point
for the implementation of this delicate module is the Model of Appraisal,
Regulation, and Social Signal Interpretation (MARSSI) introduced by Geb-
hard et al., 2018. The proposed approach relies on Dynamic Bayesian Net-
works (DBNs) to fuse multiple social signals, as represented in Figure 3.8.
Since DBNs support temporal representation, sequences for the interpreta-
tion of social signals can be learned. The User Model can therefore employ
this DBN concept for real-time computation of a confidence value of possi-
ble modeled user affect, updating the possibilities of each modeled appraisal
and regulation information. Another benefit is that the MARSSI model can
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be extended by different regulation strategies, useful for instance to deploy
specialized versions of the model specifically designed for people character-
ized by ASD (Mazefsky et al., 2013).

Secondly, the present project proposes to complete the emotion-based infor-
mation contained within social signals with indexes related to the mental
and physical state/behavior of the User (see Section 3.3.1). The User Model
should therefore make use of all these additional information to provide
smarter pro-active responses of the system. To do so, rules derived from
theory and from experimental behavioral analyses should be defined and
integrated into the model. For instance, the detection of a state of physi-
cal fatigue obtained through biomechanical tracking could be merged with
a possible expression of pain inferred by facial behavior analysis to trigger
the correct rule-based reaction of the system. This reaction also depends on
the specific field of application. In an industrial scenario, the production
rhythm could be slowed down or a break could be suggested by the virtual
character (Gatzounis et al., 2017). In a rehabilitation context, instead, the
level of robotic assistance could be raised or the avatar could suggest a more
ergonomic position to render the exercise execution more comfortable (Das
and Mukhopadhyay, 2014). An additional example of the benefits of this
rule-based approach can be found in the analysis of gaze behavior together
with the emotional expressions mentioned above. Research shows that the
direction of emotional expressions (i.e., understanding to whom or what that
emotional information applies) is a crucial information to really decipher the
User’s intention (Hess and Fischer, 2013). In dyadic interactions, emotional
expressions can be directed to the interaction partner, the situation, the di-
alog topic or at the person mentioned in the utterance. By linking the gaze
or head movement while observing an emotional expression, its direction
can be tracked (Banninger-Huber and Steiner, 1992). The knowledge about
an expression’s direction could then be used for the automatic deduction of
possible elicitors and the consequent selection of a reasonable system reac-
tion.

Some of these rules and typical behaviors have been identified through the
review of the available literature in Chapter 2, but a lot of aspects still need
further evaluation. For this reason, Chapter 5 will be dedicated to a series of
experimental campaigns aiming both at the identification of said rules and
at the validation of the several components of the proposed architecture to

obtain concrete answers in terms of feasibility and effectiveness.
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3.3.3 Orchestrator
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FIGURE 3.9: A screen capture of the VisualScene Maker
Workspace where the high-level task definition and Robot-
Avatar coordination can take place.

The Orchestrator is envisioned as a software framework for authoring, or-
chestrating, and executing scenario content with task specifications. In par-
ticular, relying on the content of the User Model, it is responsible for tailor-
ing the actions of both the Robot and the the Avatar coherently and con-
sistently in order to obtain a resulting behavior of the system adapted to
the User’s interaction experience. This component can be effectively imple-
mented using Visual SceneMaker (VSM) (Gebhard, Mehlmann, and Kipp,
2012), which comes with an authoring tool for creating interactive presenta-
tions aimed at non-programming experts. It supports modeling verbal and
non-verbal behavior of interactive agents and robots through a graphical in-
terface and a simple scripting language that allows domain experts to cre-
ate rich and compelling content. VSM’s central authoring paradigm is the
separation of content (e.g., the action to be performed by the Robot or by
the Avatar) and logic (e.g., the system’s reaction to user input). The content
is organized as a collection of scenes which are specified in a multi-modal
script with dialogue utterances and stage directions for controlling the Robot
movements/parameters or the Avatar gestures, postures, and facial expres-
sions. The logic of the interactive performance, instead is controlled by a
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scene flow as represented in Figure 3.9, implemented as a nested graph sim-
ilar to Harel’s statecharts (Harel, 1987). In this context the Supervisor, rep-
resented by an expert in the field of application but without the need for
advanced programming knowledge, has the duty of setting up the task by
using the pre-implemented building blocks. Of course, it is possible to pre-
pare, save and play a number of scenarios depending on the specific task
needs. Moreover, a list of manually tunable parameters is made available
inside the VSM program so that the Supervisor can intervene for adaptation

purposes without the need to stop and relaunch the on-going execution.

VSM is open-source and implemented in Java (SceneMaker, 2012). To achieve
real-time communication with the rest of the architecture, VSM can be ex-
tended by a dedicated plugin pushing commands through ROS communica-
tion protocols. This can be done by simply building a bridge thanks to the
functionalities of the rosjava (Damon Kohler, 2019) library (more details about
this integration in Chapter 4). With this approach, the information provided
by the User Model is directly available to the Orchestrator for task adapta-
tion purposes. Similarly, the Orchestrator can dispatch its logic-dependent
commands to the Robot-Avatar system and monitor their execution to cor-
rectly synchronize subsequent/parallel tasks or trigger necessary mitigation
strategies.

3.3.4 Robot-Avatar

One of the main challenges for the envisioned system lays in the fact that
hardware tools are not fully known before the solution is deployed for a spe-
cific application. As previously mentioned, this aspect is one of the main
drivers for the choice of ROS, as it allows the implementation of a base-
line software structure that can be interfaced with different devices after-
wards by simply developing ad-hoc plugins. In particular, for the integra-
tion and control of the Robot, the ros_control (Chitta et al., 2017) packages al-
low to make controllers generic to any robot. With reference to Figure 3.10, a
proper RobotHW implementation can render the developed control architec-
ture suitable for a generic application. Moreover, relevant controller param-
eters can be modified online using the dynamic_reconfigure (Gassend, 2014)
package, an extremely important feature as the ability to proactively tune
the system to the needs of the User is one of the central goals for the present
project. Finally, moveit (Chitta, 2016) can be leveraged to enforce the general-
ized system with powerful planning and replanning capabilities.
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FIGURE 3.10: A diagram of the ros_control logic.

Leveraging all the tools mentioned above, the goal is to develop a low-level
robot control module providing a number of ROS-based topics and services
to the upper-levels. Topics consist in a continuous stream of formatted mes-
sages and can be used to share with the whole architecture the state of the
robot movements and on-going actions (e.g., end-effector status). Services,
instead, can be called by an external client to command the execution of a

specific task (e.g., move along a certain trajectory, retune certain parameters).

As mentioned, this project also foresees the presence of an Avatar, seam-
lessly integrated with the Robot as if it was a visual representation of the
intelligence of the system. As a project choice, the Avatar should be charac-
terized by an androgynous aspect with the aim of limiting physical attrac-
tion/repulsion on a gender basis. The first design, produced by the DFKI in-
stitute in collaboration with a graphical artist, is reported in Figure 3.11. The
represented design then needs to be converted into a digital 3D model and
evaluated through off-line rendering, before transferring it to the Unity3D
platform (Haas, 2014) for real-time rendering. The Avatar visualizer is de-
veloped using the YALLAH (Yet Another Low-Level Agent Handler) frame-

work (Nunnari and Heloir, 2019) that allows customization with the Blender
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3D (Blender, 2024) editor and deployment as a stand-alone Unity applica-
tion (see Figure 3.12). The resulting player can therefore support anima-
tions, in-place rotation (e.g., to change the orientation of the avatar mim-
icking the movements of the robot to enhance their perception as a single en-
tity), both Italian and English speech generation (to allow for both national
and international experimental subjects) together with the built-in support

for command-line control of networking options.

FIGURE 3.11: The conceptual design of the virtual character.

The Orchestrator can control the Avatar’s behavior model thanks to another
set of ROS-based services. By calling these services, it is possible to command
the Avatar to perform several actions such direct the gaze, perform gestures,
pointing at entities in space, and talk, depending on the needs of the specific
application and situation. Role-wise, the Avatar acts as a mediator between
the human and the Robot, filling the need for a visual counterpart to make
interaction with robots more emphatic and acceptable. Considering interac-
tive sessions with the User, behaviors should be modeled to provide a more
natural and social interaction experience promoting motivation, easing self-
regulation and helping the User to cope with emotions when abnormal stress
or fatigue levels are detected.

FIGURE 3.12: On the left the Avatar designed converted to a 3D
model. On the right, the 3D model is imported into Unity3D
and enriched with animation capabilities.
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Chapter 4
Setting up the use-case scenarios

As anticipated in Chapter 1, the generalized human-driven control architec-
ture presented in Chapter 3 is put into practice through two use-case scenar-
ios that are of particular interest for the present project, as they require close
interaction between the robotic device and the human user. Therefore, a de-
scription of the setups realized for MindBot, a mental-health friendly collab-
orative manufacturing workcell, and for the Empathetic Neurorehabilitation

Trainer are reported in this Chapter.

4.1 MindBot: Mental-health friendly collaborative

manufacturing

The constantly growing concept of Industry 4.0 is leading to completely new
workspaces where automation machines cooperate with humans. However,
the quality of experience and level of engagement of workers interacting with
robots have become an active research topic only recently and still repre-
sent a largely unexplored domain. So far, industrial cobots have primarily
been studied and designed addressing aspects related to the physical safety
of the worker, aiming to optimize productivity performance by reducing un-
certainty and instability in their cooperation with humans. While these topics
still remain of great interest, new research branches must arise in order to ex-
plore the role that cobots could have in reducing the workers’ psychological
strain. The challenge lies in the fact that, differently from applications such as
social robotics, the interaction between a human worker and a robot collab-
orator in an industrial scenario is bound to the specific task and production
requirements. However, cobots have evolved to a point where many opera-
tions could be performed both by the manipulator and the worker, meaning
that a certain degree of freedom in the assignment of subtasks between the
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two collaborators is possible. Moreover, a series of parameters characterizing
human-robot collaboration, also identified within the previous works pre-
sented in Chapter 2, can be tailored with the aim of optimizing the worker’s
experience. It is clear that, in order to achieve such a goal, a multidisci-
plinary approach and a wide partnership contributing with several differ-
ent fields of expertise are of utmost importance. In this regard, the MindBot
project (Lavit Nicora et al., 2021), funded by Horizon2020, was launched with
the aim of defining organizational and technical guidelines for the design of
a "mental-health-friendly" cobot-based manufacturing workplace. Refer to
Appendix A for the complete list of the partners making up the consortium
and their role in the project.

4.1.1 Realization of the experimental workcell

The first step towards the goals of the MindBot project is the ideation and
realization of a proper experimental setup. Taking inspiration from the most
common industrial applications of collaborative robots in small and medium
enterprises, the idea is to reproduce a realistic workcell in a laboratory envi-
ronment where a human operator and a cobot can collaborate for the assem-

bly of a certain product.

With reference to Figures 4.1 and 4.2, two tables placed in an L-shaped forma-
tion were positioned and constrained to each other thanks to an aluminum
structure designed to guarantee that the several reference systems playing
a role in the setup do not get mistakenly disaligned during the experimen-
tal activities, which would require time consuming recalibrations. Using the
same structure, a Fanuc CRX10iA /1 collaborative robot (Fanuc, 2021) was
added to the workcell and fastened in a position allowing the cobot to reach
most of the space available on the two tables. As represented, this configu-
ration naturally identifies one area where the user can work on his/her in-
dependent tasks, another area assigned to the cobot and a third one, around
where the two tables intersect, that can be used for collaborative activities.
The cobot is equipped with a teach pendant tablet (mostly used for program-
ming purposes and not during the experimental activities) which is typically
kept somewhere easily reachable by the user in case the emergency button
shutting down the system is needed. Moreover, a Robotiq Hand-e parallel
gripper (Robotiq, 2021) is mounted on the end-effector interface of the cobot
to enable pick and place operations.
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FIGURE 4.1: A top view schematic representation of the Mind-
Bot system.

Moving to the array of installed sensors, the collaborative workcell features
a Rethink Pickit3D camera (Rethink, 2021), used for the detection of the posi-
tion and orientation of components. This camera can be mounted on a linear
guide, as in Figures 4.1 and 4.2, or mounted on the wrist of the cobot together
with the gripper. The first solution decouples the camera movement from the
cobot movement making it possible to parallelize the steps of detection and
picking with a consequent reduction of waiting times for the execution of
cobot tasks. However, such a configuration requires an extremely precise
calibration to determine in real-time the transformation matrix connecting
the camera reference system with the cobot one. On the other hand, mount-
ing the camera at the wrist of the robot simplifies this aspect and ensures
better precision in the robot movements at the cost of a slower execution.
Together with the mentioned detection camera, a Logitech C920 HD Pro we-
bcam (Logitech, 2021) is positioned on the aluminum structure right in front
of the worker in order to record his/her behavior (e.g., facial expressions,
hand gestues, gaze). Additionally, a set of two redundant Kinect Azure depth
cameras (Microsoft, 2021b) are positioned at different angles in order to track
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FIGURE 4.2: A side view schematic representation of the Mind-
Bot system.

the user’s skeleton with high confidence and robustness to occlusions. In
terms of wearable sensors, it is very important to be less invasive as possi-
ble in order to minimize the discomfort of the subject and speed up setup
operations. Depending on the specific experimental needs, a FitBit activity
tracker (Google, 2021) and/or a Polar H10 chestband (Polar, 2021) could be

leveraged to monitor additional physiological parameters of the user.

Finally, a Microsoft Surface PC (Microsoft, 2021c) is placed on the user’s ta-
ble for different purposes. First, it can be used as a touch screen monitor to
administer questionnaires during the experimental sessions and directly col-
lect experience samples from the users. Moreover, a virtual character can be
displayed on its monitor and communicate with the user through verbal and

non-verbal behaviors.

4.1.2 Design and production of the assembly components

Now that the design and realization of the enhanced collaborative manufac-
turing workcell has been presented, it is necessary to identify a suitable task
to be carried out during the experimental activities. After analyzing different
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FIGURE 4.3: The custom epicyclic gear train to be used as col-
laborative assembly task during the experimental activities.

types of applications (e.g., painting, glueing, handling), it was agreed within
the project consortium to select a collaborative assembly task. One of the
main drivers for this choice was the possibility of implementing close inter-
action between the cobot and the user and the freedom to, at least partially,
modify the order of operations and to implement different levels of collabo-

ration, if required.

For this purpose, the custom epicyclic gear train represented in Figure 4.3
was designed (Redaelli, Storm, and Fioretta, 2021). The resulting product
is characterized by large tolerances and the absence of strong or irreversible
couplings between the components, in order to satisfy the following project

requirements:

¢ The process required for the assembly of the components should be
fairly easy in order to minimize both the time required for the training
of the user and the chances of failure for the cobot;

* The finished product should be easily disassembled in order to mini-
mize the time required for the setup of the workcell before each exper-

imental session;

* The product should promote collaboration by design, for instance by
requiring more than two hands to avoid undesired disassembly of the

components.
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FIGURE 4.4: At the top, an exploded view of all the components
making up the custom epicyclic gear train (on the left the parts
assigned to Sub,4, on the right the ones assigned to Subg). At the
bottom, the custom gripper fingers designed to allow the self-
adjustment of components during pick and place operations.

At the top of Figure 4.4 all the components making up the complete assem-
bled gear train are shown. Each component has been designed both to facil-
itate recognition by the Pickit3D detection camera in terms of position and
orientation and to be easily handled by the cobot gripper. For this purpose,
most of the components include a particular shape feature, made of one flat
face and one round face that, together with the custom design of the gripper
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fingers represented at the bottom of Figure 4.4, allows for a certain degree
of self-centering and self-orienting of the parts during pick and place opera-

tions.

Subassembly A

-
o ® b

Subassembly B

FIGURE 4.5: An exploded view explaining the assembly proce-

dure for the various components. At the top, the steps required

for Sub,. At the center, the steps required for Subg. At the

bottom, the final joint action (bottom-left) and closure (bottom-
right) steps.

As shown, the components can be divided into two groups, called subassem-
bly A (Sub,) and subassembly B (Subg) respectively. The idea is to be able to
freely assign the assembly of Sub, and Subp between the user and the cobot
depending on the specific experimental needs. In fact, a typical assembly cy-

cle foresees a first step where the two entities independently work on their
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assigned subassembly, followed by a second step where close collaboration is
required to join the two subassemblies and complete the product. Figure 4.5
shows the assembly procedure for Sub,y and Subg, the collaborative joining
process and the final locking of the gear train. As shown, supporting jigs
have been designed to ease the work on the two subassemblies. The collab-
orative joining phase is of particular interest for the project. One possible
implementation of this phase foresees the cobot picking up Sub, and posi-
tioning it near the user to allow the insertion of Subg. The pose of the robot
should be comfortable for the user to complete the assembly, allowing the
operation to take place even if mechanical parts are not tightly coupled. The
user has to carefully position Subg, inserting mechanical components and
paying attention to the correct meshing of the gears, as in Figure 4.6. This
requires particular care by the user in order to avoid the planetary gears and
their bearings to fall down, for instance using both hands to keep them in
position and then aligning the gear teeth. Of particular relevance is the need
for a "robotic third hand", designed to promote close collaboration by design.

FIGURE 4.6: A detail of the joint action where the user focuses
on the correct meshing of the gears while the cobot helps keep-
ing the parts in place as a third hand.

Once the joint action is completed, the product has to be released from the
cobot gripper and handled by the user for the final operations. This requires
a trigger, activated by the user through a pedal switch, giving consent for
the next cobot assembly cycle. At this point, the user holds the entire as-
sembly, adds the final cover fixed with a couple of cotter pins and places the

completed product in a dedicated bin or container.
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4.1.3 Implementation of the software interfaces

With the hardware components selected and installed in the laboratory set-
ting, it is necessary to interface them between each other through a com-
prehensive software framework. For this purpose, the generalized human-
driven architecture presented in Chapter 3 is leveraged to deploy a realistic
workcell enabling constant monitoring of the worker’s psychological strain
and adaption of the behavior of the production cell.

First of all, all the individual computers controlling the various hardware
components need to be connected to a local network allowing the necessary
flow of information, as in Figure 4.7. As anticipated, the architecture heav-
ily relies on ROS to facilitate modular development, even remotely among
partners’ laboratories by sharing dedicated rosbag files (Vigni, Andriella, and
Rossi, 2024). In the chosen configuration, the main Orchestrator PC acts as
ros master while all the other components are implemented as ros nodes, ex-
changing information and commands within the local network. Refer to Ap-

pendix B for a complete list of all the implemented topics and services.

Biomechanical Model
(Windows)
192.168.28.50

Robot commander
» (Linux)
192.168.28.20

Robot controller
(Linux)
192.168.28.21

Orc.hestrator PC USB Cable
(Windows) Webcam
Picklt camera 192.168.28.10

Ly (Linux)
192.168.28.22

A 4

F ¥

USB Cable

Avatar commander
(Windows)
192.168.28.30

Pedal switch

FIGURE 4.7: A schematic representation of MindBot local net-
work.

Robot control

Starting from the robot control system, several software components written
in C++ and deeply embedded within the ROS control framework have been
implemented. They have been organized in stacks to achieve a clearer and

modular structure, easy to maintain and integrate:
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* Cobot stack: This stack contains all the packages required to interface

the cobot with the ROS framework, therefore decoupling the whole
MindBot architecture from the specific robot model installed in the pro-
duction cell. Since the interface packages for the Fanuc CRX10iA/1
cobot were not available at the time of integration, they had to be de-
veloped from scratch by the author specifically for the MindBot project.
Communication between the chosen cobot and ROS has been estab-
lished using the Fanuc User Socket Messaging (USM) option, allowing
the exchange of data packets using TCP/IP communication between
the computer and the robot controller, in combination with the Fanuc
Remote Motion Interface option, enabling the exchange of semi-formed
control commands between the computer and the robot controller. Ex-
ploiting these tools, the cobot state is constantly published inside the
ROS network, while motion commands can be sent to the robot con-

troller for micro-interpolated execution.

Tool stack: Similarly to the previous one, this stack contains all the
packages needed to control the specific tool mounted on the robot wrist
remotely, within the ROS framework. Depending on the chosen com-
bination of tool and cobot, interface packages may be available and
directly retrievable from the ROS community. Once again, since spe-
cific packages interfacing the Fanuc CRX10iA /1 cobot and the Robotiq
Hand-E parallel gripper were not available at the time of integration,
they had to be developed from scratch specifically for the MindBot
project. For this purpose, an additional USM TCP/IP pipeline has been
created to enable remote control of the tool mounted on the robot wrist.
Karel scripting has been leveraged to let the robot controller push the
received commands to the end-effector tool using its internal RS485 se-

rial communication.

Vision stack: This stack contains all the packages connected to the vi-
sion capabilities needed by the robot control system. Regarding the
detection of the assembly components, the cell is equipped with an in-
dustrial vision system with ROS functionalities already offered by the
producer (Rethink, 2022). Also, the camera system has been instructed
through its proprietary web interface and contains all the CAD mod-
els of the components to be detected together with information related
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to the pick strategy to be adopted for each one of them. User’s de-
tection is instead performed by an external module relying on the in-
stalled Kinect cameras and pushing simplified volumes for each body
part through ROS topics. These are useful to provide the system with
the knowledge of the user’s position and occupied spaces and lever-
aged, for instance, inside the planning scene for collision avoidance al-

gorithms.

¢ Task stack: This stack contains all the packages related to the knowl-
edge of the on-going task. In particular, all the static obstacles known
a-priori inside the workcell are defined here and published inside the

robot virtual scene for collision avoidance purposes.

* MindBot stack: This last stack acts as a manager of all the packages
introduced above. It is required to dispatch synchronized low-level
commands to the hardware as a response to the direct communication
established with the Orchestrator module.

Data acquisition and interpretation

As previously mentioned, data acquisition and interpretation is mainly car-
ried out using the SSI tool which needs to be interfaced with the ROS frame-
work in order to allow communication with all the modules making up the
system. First of all, SSI only runs on Windows systems while the preferred
OS for a ROS installation is Ubuntu. To solve this problem, the rospy and ros-
bridge libraries can be used. This combination allows the Windows machine
to communicate with the Ubuntu machine through ROS without the need
for duplicating the two software installations. Essentially, rosbridge can be
used to open a websocket for exchanging JSON messages with any software
component outside of the active ROS architecture. Incoming JSON messages
are interpreted and republished within ROS in the form of topic, service or
action, while any outgoing topic, service or action is translated back into a
JSON message. Similarly, rospy allows to create a python script to commu-
nicate with ROS without the need for a ROS installation on the involved ma-
chine. The available websocket is used to create a connection and messages

are sent and received in the JSON format.

Thanks to the tools presented above, the integration between ROS and SSI
has been implemented in collaboration with the University of Augsburg by
installing a rosbridge node on the Ubuntu machine equipped with the ROS
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installation and by running the python script leveraging rospy functionalities
on the Windows machine equipped with the SSI installation. A ros_sensor.py
script has been written to subscribe to a ROS topic and to push all the re-
ceived information into an SSI stream. A second, ros_consumer.py script is
instead dedicated to take all the data flowing through an SSI stream and pub-
lish it in the form of a ROS topic. With this solution, all the data produced by
the sensors in the workcell can be received by SSI, interpreted to high-level
indicators and published back to the ROS framework, ready to be received
by the User Model and Orchestrator modules.

Task management and orchestration

As anticipated in Chapter 3, the Orchestrator module can be realized using
the Visual SceneMaker tool. Thanks to its intuitive graphical approach, VSM
can be used as an authoring tool allowing the implementation of interactive
and complex tasks involving both robots and avatars without the need for
any advanced programming experience. Even though this solution has been
employed successfully by its creators in past related projects, it has never
been deployed within a ROS environment meaning that a dedicated soft-
ware layer is needed to create the necessary interfaces. For this purpose,
VSM provides a plugin system based on the extension of a ‘RunTimePlugin’
Java class that can be used for the development of dedicated interfaces to-
wards third-party products without involving the recompilation of the core
of the system. Leveraging this functionality, a dedicated plugin has been de-
veloped in collaboration with DFKI using rosjava. This tool allows to create
a java script to communicate with ROS without the need for a dedicated in-
stallation. The generated messages are sent through the network, translated
by the already running rosbridge node and made available to the rest of the
modules. Now, the Orchestrator is able to receive information related to the
state of the User and send the corresponding rule-based commands to both
the Robot and Avatar thanks to the exposed ROS services.

Figure 4.8 shows the top level of the VSM project implemented for command-
ing the robot, the equipped gripper and the detection system through the ex-
ecution of the assembly task. As represented, the first node is used to set up
a series of robot variables such as maximum speed, maximum acceleration,
minimum distance from the operator and so on. Then, the system asks the
user to fill in a form collecting some basic data and waits for a “Continue”
signal through the pedal switch (see Figure 4.9) before moving to the “Task”
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FIGURE 4.8: The top level of the VSM program orchestrating
the MindBot assembly task.

supernode. If during the execution of the task the “Stop” signal is received,
the execution state immediately jumps to the “Emergency” supernode, re-
sponsible for reacting to the request by bringing the robot to a safe state. If,
instead, one cycle of the task is completed without problems, the system au-
tomatically restarts the production cycle after a brief delay of around 200m:s.

FIGURE 4.9: The pedal switch used to send "Continue", "Pause”
or "Stop" signals to the system.

At the top of Figure 4.10 the steps that make up the “Task” supernode are
depicted. Each of these steps is a supernode by itself, containing all the in-
structions for the assembly of one of the components of Sub,. An example
is provided at the bottom of Figure 4.10 for the "SunShaft" component. First,
the robot is sent over the predefined area where a buffer of the needed com-
ponent is stored (e.g. “ROI1”). Then, the detection camera is used to look for
a reachable component and to define its position with respect to the reference
frame at the base of the robot (i.e., “Wait Detection”). Once the component
is detected, a kinematic inversion procedure is performed to send the robot
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to a position just above the detected component (i.e., “Approach Part”). The
robot then slowly moves down on the part, closes the gripper, raises the part
and places it in the assembly area.

FIGURE 4.10: The lower levels of the VSM program orchestrat-
ing the MindBot assembly task.

VSM functionalities are leveraged not only during the actual collaborative
assembly task, but also for collateral purposes. In fact, given the several
reference systems that are needed to align all the components making up the
experimental setup, a calibration procedure should be regularly performed.
For this purpose, the robot can be equipped with a calibration table at its
wrist in place of the parallel gripper, as represented in Figure 4.11.

A

FIGURE 4.11: The cobot equipped with a chess-pattern table
used to calibrate the transport matrices connecting all the refer-
ence systems in play for the system.
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Following a predefined sequence made up of dedicated supernodes inside
the VSM project, the robot moves the calibration table in front of the cam-
eras stopping at difference distances and angles in order to promote robust-
ness. Knowing the exact size and shape of the calibration table (square length
of 45 mm), a dedicated algorithm is then responsible to analyze the images
captured by the cameras and use them to reconstruct all the transformation
matrices connecting the reference systems. With this approach, it is possi-
ble to express all measures taken by the different devices in use to a unique

reference, positioned at the base of the cobot.

4.1.4 The resulting demonstrator setup
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FIGURE 4.12: A schematic representation of the generalized
human-driven control architecture deployed for the MindBot
system.

The MindBot demonstrator is finally ready to be used for experimental pur-
poses. Figure 4.12 provides a summary of how the human-driven control
architecture has been deployed in all its hardware and software components.
Moreover, the resulting setup assembled inside one of the laboratories of
STIIMA-CNR Lecco is depicted in Figure 4.13. As shown, an operator works
on the assembly with the help of a supporting jig, with the spare compo-
nents of Subg on the side. Behind the tables, redundant Kinect cameras and
webcams constantly monitor the user’s actions and behaviors and inform the
system about the inferred interaction experience. To the user’s right, a cobot
works on Sub 4 using all the components placed in their predefined areas on
the table. The detection camera is mounted to its wrist together with the cho-
sen gripper, allowing the manipulator to detect the parts and to perform pick
and place assembly operations, always with the help of a central supporting
jig. In front of the operator, a tablet is held in position by a flexible support
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and displays the avatar providing a visual representation of the intelligence
of the system. Its positioning is designed to be always visible to the user,
while hidden speakers allow the user to hear the avatar’s utterances even in
noisy environments. Finally, to the user’s left is the Orchestrator main PC,
running the task and available to the researcher, acting as a Supervisor, for

any occurring necessity.

Kinect 2

Full-HD
Cameras |

Control
PC

FIGURE 4.13: The resulting experimental workcell seen from
multiple points of view.
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4.2 Empathetic Neurorehabilitation Trainer

Neurorehabilitation is a widely used medical practice that aims to aid recov-
ery from a nervous system injury. Its purpose is to maximize and maintain
the patient’s motor control while trying to restore motor functions in peo-
ple with neurological impairments. Given the constant growth and aging of
the world population, the number of patients affected by neuromotor disor-
ders that seek the attention of professionals for their rehabilitation therapy is
constantly increasing (Crocker et al., 2013). However, due to a lack of med-
ical personnel, it is impossible to provide the intense training that would be
needed for an effective recovery of the patient’s capabilities, therefore hinder-
ing the actual outcomes of the treatment (Teasell et al., 2005). This situation
is both harmful for the patients and constitutes a relevant burden on society
and the healthcare system (Wynford-Thomas and Robertson, 2017).

To address this issue, robot-assisted training has been widely investigated as
an effective neurorehabilitation approach that helps augment physical ther-
apy and facilitates motor recovery. According to literature, such approaches
can help therapists save time and energy while providing patients with a
tool capable of assisting the execution of accurate and repetitive moments in
high-intensity training sessions (Kwakkel, Kollen, and Krebs, 2008; Zhang,
Yue, and Wang, 2017; Qassim and Wan Hasan, 2020). The current situation
sees a limited number of this kind of devices, already installed in rehabil-
itation clinics, hindering their potential as they have to be scheduled over
a large number of patients (Maciejasz et al., 2014; Stein, 2012). However,
forecasts show that a relevant diffusion of this technology is taking place
meaning that, in the near future, we will see an exponentially rising num-
ber of the installations of this technology (Morone et al., 2023). Moreover,
most of the devices currently available are bulky and expensive but, thanks
to the push for telemedicine and telerehabilitation, a new generation of reha-
bilitation robots is making its way into the market (Washabaugh et al., 2018;
Molaei et al., 2022; Mayetin and Kucuk, 2022; Tseng et al., 2024). These af-
fordable and portable solutions would allow for the capillary diffusion of the
technology, out of the clinics and directly at home for the patients to use. The
application of rehabilitation robots in domestic environments would repre-
sent a plausible solution to the lack of treatment intensity that patients are
experiencing nowadays. In fact, a system capable of assisting the patient in
performing the necessary repetitive motions would relieve a lot of the pres-
sure that is acting on the clinical structures, since the physical presence of
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medical personnel would be required only for sporadic interventions.

However, a crucial issue for rehabilitation training is user engagement and
motivation (Blank et al., 2014), which may be lacking if the rehabilitation
system is used without a human medical coach. Since the effectiveness of
the treatment has been proven to be related to the patient’s level of engage-
ment (Turner-Stokes et al., 2015), it is important for the envisioned system
not only to be able to physically assist the patients but also to understand
their affective state and react accordingly. Therefore, a neurorehabilitation
training system capable of modeling the patient’s state and tuning its behav-
ior depending on both the measured performance and the overall inferred
state could improve the user’s engagement and, consequently, the outcome
of the therapy. Once again, a multidisciplinary approach is required to push
towards such a complex goal. For this reason, the Department of Affective
Computing of the University of Augsburg (UA) and the German Research
Center for Artificial Intelligence (DFKI), already involved in the MindBot
project introduced above, collaborated on the realization of a so-called Em-
pathetic Neurorehabilitation Trainer.

4.2.1 The PLANarm?2 prototype

As a first step for the realization of the Empathetic Neurorehabilitation Trainer
system demonstrator, a proper robotic device needs to be selected. For this
purpose, instead of purchasing a commercial device, it was decided together
with the project partners to use the PLANarm2 rehabilitation prototype (Yamine
et al.,, 2020), designed from scratch by the STIIMA-CNR institute and re-
ported in Figure 4.14. This choice was driven by the ease with which the
device’s control system can be accessed and interfaced to the other modules
envisioned for the present project. Moreover, the prototype satisfies all the
requirements of portability and affordability mentioned above.

In terms of mechanical design, the well-known 5R planar kinematic chain
(Giberti, Cinquemani, and Ambrosetti, 2013) was considered a promising so-
lution as it makes it possible to place both motors on a fixed base. As a result,
the robot is characterized by a relatively high stiffness and lower moving
masses if compared to serial manipulators, therefore providing higher dy-
namic performances, a lighter structure and, potentially, better positioning
accuracy. Even though this architecture has already been adopted to real-
ize similar devices, such as the one developed by Klein, Roach, and Burdet,

2014, some key improvements have been made. Starting from the parametric
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FIGURE 4.14: A rendering of the PLANarm?2 rehabilitation pro-
totype.

model of the 5R kinematics, the length of the links of PLANarm?2 have been
optimized to have good kinematic performances in the large majority of its
workspace. Moreover, the workspace itself has been properly dimensioned
to overlap the range of motion of the upper limb. The theoretical reachable
workspace for upper limb neurorehabilitation in Cartesian coordinates was
defined by Corona-Acosta and Castillo-Castaneda, 2015 through a transfor-
mation from articular to Cartesian coordinates, performed using the direct
kinematics of the human arm. With reference to the left side of Figure 4.15,
the desired workspace is defined as the union between the workspace de-
fined for minimum limb lengths and the one defined for the maximum limb
lengths. This identifies an ellipse with center ¢ = [0,513.5]|mm, minor_axis =
222mm and major_axis = 502.75mm. Since the population studied by Corona-
Acosta and Castillo-Castaneda, 2015 was right-handed, the authors of that
research centered the reachable workspace at x = 55.75mm. On the contrary,
the y-axis of PLANarm?2 has been translated of the same distance in order
to have it aligned with the center of the reachable workspace, as shown in
Figure 4.15. As a result, the obtained structure is inherently characterized by
a symmetrically distributed kinetostatic behaviour with respect to the user’s
sagittal plane and therefore usable both by right-handed and left-handed pa-

tients. Since the manipulator is designed for domiciliar use, it should be
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possible to install it on a regular home table or desk. An average sized ta-
ble is assumed to have a length of, at least, 1500mm and a width of about
800mm. Furthermore, the patient should be sitting in front of the device at a
distance of around 200mm away from the table. As shown on the right side
of Figure 4.15, the design of the device is perfectly fitted to the assumed di-
mensions and can therefore be easily clamped to a common table, facilitating
both portability and fast installation inside already furnished environments.
As opposed to the device described in Klein, Roach, and Burdet, 2014, which
is characterized by a self-supported manipulandum, the PLANarm?2 manip-
ulandum slides on the surface of the table, automatically supporting vertical
loads. Consequently, the links of the parallel structure only transmit horizon-
tal forces, limiting bending loads and enabling production through additive

manufacturing techniques, in line with the affordability requirement.
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Moving to the electronic components of the prototype, they have been se-
lected in accordance with the expected functionalities of the device. Impedance
and admittance control strategies are today part of the state of the art in phys-
ical HRI and essential for rehabilitation devices. Impedance control requires
a direct force/torque control Hogan, 1985 with a consequent preference for
backdrivable motors. However, the high-torque and low-velocity features
needed for this application, clash with the characteristics of electrical mo-
tors that generally express high velocity and low torque. Torque motors are
available on the market, but they are expensive and not suitable for the low-
cost device described. Instead, PLANarm?2 is moved by two 24V DC motors
equipped with a non-backdrivable 49:1 gearbox (resulting in a no-load speed
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of 143rpm and a stall torque of 19.6Nm) further reduced by a 3:1 pulley belt
transmission connected to the link. Due to this design choice, an admittance
control strategy has to be preferred over the impedance approach and, there-
fore, force sensing and good position/velocity control are required. For this
purpose, the links have been designed to embed a Cantilever Beam load cell
measuring the transmitted shear force. By multiplying this force by the arm
length, it is possible to evaluate the motor torque, as necessary for the se-
lected low-level control strategy. Moreover, each actuator is equipped with
an incremental encoder sensor with a final resolution on the link rotation of
0.00213rad, providing enough precision for position and velocity measure-
ment. Proximity sensors are used to detect the end stroke of each arm, as
a reference for the incremental encoders. Finally, the low-level firmware, in
line with the affordability nature of the device, is installed on an Arduino
DUE board that, thanks to a VNH5019 dual motor driver, enables full con-
trol over the robot movements. The Arduino board, the motor drivers and
other electronic elements required to operate, are installed on a PCB and
mounted on the device. The MCU controller is, then, connected with an ex-
ternal PC, responsible for the management of the rehabilitation task, through
serial communication. Further details about the design and construction of
the PLANarm?2 prototype are provided by Yamine et al., 2020.
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FIGURE 4.16: A schematic overview of the experimental setup
realized for the Empathetic Neurorehabilitation Trainer.
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To complete the setup, the prototype just presented is clamped on a generic
table and placed in the middle of the area visible to a Vicon 10 TVC sys-
tem, able to track with high precision both the user and the device thanks to
a series of adesive reflective markers. In the same lab-space, a 16-channels
Cometa EMG system is also available and can be synchronized with the Vi-
con system to collect the user’s muscle activations. Of course, the choice of
these two sensors was purely driven by experimental validation needs and
is not foreseen in a future real-life application. Inheriting from the setup re-
alized from the MindBot project, a second set of affordable, less invasive and
portable sensors is introduced. With reference to Figure 4.16, a monitor is
placed in front of the user to display the graphical user interface running
on a dedicated laptop. On top of the monitor, a Logitech C920 HD Pro we-
bcam (Logitech, 2021) is mounted to record the user in terms of behavior,
gaze direction and facial expressions during the execution of the rehabilita-
tion task. Additionally, a Polar H10 chestband (Polar, 2021) can be used to
track physiological data.

4.2.2 Unity3D-based rehabilitation tasks

A Graphical User Interface (GUI) was specifically developed to enrich the
PLANarm?2 prototype with intuitive setup functionalities together with a list
of motor tasks in the form of serious games. In particular, three different
rehabilitation exercises, inspired from the related literature, have been im-
plemented.

1. Clock game. A total of 9 targets are generated within the reachable
workspace in a sunburst formation. One target represents the Center
(C) of the sunburst while the other 8 cover all the remaining cardinal
points: North (N), North-East (NE), East (E), South-East (SE), South (S),
South-West (SW), West (W) and North-West (NW). Given these points,
two different types of exercise can be performed. As a first option, the
patient is requested to perform linear movements, as in Figure 4.17,
from the center to a cardinal point and then back to the center. This
task repeats until all the cardinal points have been reached. Alterna-
tively, the patient is asked to move from the center to a certain cardinal
point and from there reach the other appearing cardinal points through
circular motions.
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FIGURE 4.17: A screen capture of the Clock game.

2. Connect the dots. The GUI generates a series of numbered targets
within the reachable workspace either randomly or on the basis of a
past saved setting. A visual feedback of the current position of the end-
effector is also displayed on screen, as shown in Figure 4.18. The patient
is asked to move the handle of the PLANarm?2 device in order to reach

all the generated targets, connecting them one by one in order.
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FIGURE 4.18: A screen capture of the Connect the dots game.

3. Draw trajectory. A starting and an ending point are generated within
the reachable workspace and connected through a certain trajectory, as
in Figure 4.19. This trajectory can either be generated on the spot by the
therapist by moving a number of waypoints around or loaded from a
previously saved setting. The patient is asked to bring the end-effector
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on the starting target and, from there, follow the displayed ideal trajec-

tory as close as possible until the end target is reached.
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FIGURE 4.19: A screen capture of the Draw trajectory game.

During the execution of the task, the system logs all the relevant data re-
lated to the exercise: duration, traveled distance, exchanged forces, number
of reached targets, average error, etc. Each exercise can be performed under a
certain behavior of the robotic device: either completely passive, completely

active or assistive-as-needed, as explained in detail in Section 4.2.3.

4.2.3 Software modules and interfaces

Once again, ROS is used to allow communication among all the developed
software modules. Differently from the MindBot project, where some of the
commercial devices required the use of dedicated computers communicat-
ing through a local network, all the modules developed for the Empathetic
Neurorehabilitation Trainer can run on a single PC. The same software lay-
ers previously presented are used here to interface both SSI and VSM with
the ROS environment. Additionally, the Unity Robotics Hub package (Unity
Technologies, 2022) is used to connect the rehabilitation GUI with the rest of
the system. Now, the details of how the main software modules have been

implemented are reported.

Robot control

In order to develop an effective and modular control architecture, the au-
thor decided to leverage again the functionalities of the ros_control pack-
age (Chitta et al., 2017). Figure 3.3 specializes the functionalities of this pack-
age, already presented in Section 3.3.4, for the specific needs of the PLA-

Narm2 prototype and application. As shown, the control structure can be
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split in low-level control and high-level control. The low-level portion of the
control architecture is represented by the PID loops for position and veloc-
ity control running on the Arduino DUE board. These capabilities are often
built-in for commercial robotic devices but, in this case, given the use of a
general purpose Arduino DUE for cost-effectiveness and flexibility reasons,
they had to be redesigned from scratch as needed for the custom made high-

level controllers running on the external computer.

High-level control Controller manager

i.e. joint_trajectory_controller
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FIGURE 4.20: The ros_control functionalities deployed for the
PLANarm2 prototype.

The reader can refer to Yamine et al., 2020 for more details about the re-
construction of the low-level controllers, while a brief overview of the three
rehabilitation-specific high-level controllers developed for the project is re-
ported here.

1. Trajectory controller. This controller can be used to perform passive
rehabilitation exercises. Since it is a common tool, the author decided
to exploit the so-called joint_trajectory_controller, available as part of the
ros_control package. This controller takes as input trajectories specified
as a set of waypoints to be reached at specific time instants and attempts
to execute them as well as the mechanism allows. The author chose
to interpolate between waypoints using quintic 1D splines, in order to
guarantee continuity at the acceleration level. Thanks to the trajectory
controller, PLANarm?2 is capable of following any path that lays within
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the workspace, while dragging along the arm of the patient that is hold-
ing onto the device end-effector. It is important to note that a software
limit of force can be specified in order to avoid any harm to the patient

due, for instance, to forced overextension of spastic muscles.

. Admittance controller. Starting from Hogan’s work (Hogan, 1985), in-

direct force control strategies such as admittance control can be consid-
ered the most proper and efficient way to control a robot interacting
with its environment. For this reason, the author choose a strategy
similar to the one described in Seraji, 1994. Given a reference force
F:(t), coming from the digital environment connected to the device,
it is possible to control the motors with a velocity reference (v;) ob-
tained through a PI control loop over the force error F,, where F,(t) =
F,(t) — Fy(t) with F,, being the measured force. For the sake of simplic-
ity, Equation 4.1 has been written only for one of the controlled axes:

1 t

o= = F(t) + K / E(¢)dt 4.1
D, 0

The proportional parameter in Equation 4.1 is called D% to highlight

that the transparency felt by the user will increase while D,, that can be

associated to a virtual damping, decreases.

. Tunnel controller. Corrective rehabilitation is proven effective when

aiming to improve motor coordination. To provide this functionality,
the author decided to develop a so-called tunnel controller, taking in-
spiration from Ding et al., 2014. It takes as input a predefined trajectory
and builds a virtual tunnel of user-defined width around it. The pa-
tient is allowed to move freely along the path and, whenever the tun-
nel’s boundaries are exceeded, a restoring force is produced in order
to correct the undesired movement. A schematic representation of this
concept is reported on the left of Figure 4.21. Differently from the tra-
jectory controller, for which input trajectories are time-parametrized,
the tunnel controller requires paths expressed in terms of curvilinear
abscissa s. In order to guarantee coherence with the other controllers,
a method that automatically transforms a time-parametrized trajectory
into its corresponding s-version has been implemented so that the same
computed trajectory can be applied to all the available controllers. Also,
anew coordinate system (£,i7) has been defined on the trajectory f(s) at

any instant, denoting by f and i the tangential and the normal vectors
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(a) (b)

FIGURE 4.21: (a) Schematic representation of the tunnel built

around the ideal trajectory and the corrective force produced

on the device end-effector. (b) The new coordinate system built
onto the ideal trajectory following its curvilinear abscissa.

respectively, as shown on the right of Figure 4.21. The patient’s force
on the end-effector is projected from the Cartesian reference frame to
the new reference frame according to the instantaneous slope a of the
requested trajectory. Then, the controller’s basic working principle is
similar to the one of the admittance controller. For every control cy-
cle, the normal distance 7., between desired and actual position of the
end-effector, with respect to the given trajectory, is calculated. If that
distance is smaller than the user-defined tunnel half-width W, tangen-
tial and normal measured forces are given as input to a high-level PI
loop set with a reference of ON. On the contrary, if the end-effector is
detected outside said tunnel, the force F,. sy used as reference for the
PI loop related to the normal direction is computed as in Equation 4.2,
where K, represents the stiffness of the virtual spring responsible for
the generation of the corrective force.

FrefN = Nee * Ky 4.2)

The effect of this approach is that the patient is allowed to move freely
inside the virtual tunnel but, whenever the boundaries are exceeded,
a virtual spring generates a corrective force that compensates the error
and guides the end-effector back inside the tunnel. On top of this, an
acceleration limit has been implemented within the controller’s logic
for safety reasons: if any spasm or sudden movement of the patient
occurs, it can be absorbed.
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Data acquisition and interpretation

Affective signals collected from the patients can be used to infer useful infor-
mation about their experience. Home-based healthcare systems frequently
leverage a diverse range of affective signals (Majumder et al., 2017; Philip
etal., 2021; Wang et al., 2021). Of these, the project partners decided to focus

on the more relevant ones when considering a neurorehabilitation scenario:

1. Attention. Motivation and attention serve as crucial modulators of
neuroplasticity, influencing the outcomes of rehabilitation therapy (Cramer
et al., 2011). Distractions, stemming from factors like boredom or lack
of motivation, can disrupt the user’s engagement during training ses-
sions. Hence, the user’s attention level becomes a pivotal input for
the system’s motivational strategy in neurorehabilitation. While pre-
vious studies in various domains have demonstrated the prediction of
attention through physiological signals such as EEG (Ac1, Kaya, and
Mishchenko, 2019; Souza and Naves, 2021), these methods require proper
sensor placement and additional user training on sensor usage. A more
practical alternative lies in camera-based solutions, which capitalize on
a common behavioral cue associated with distraction: looking away
from the task. Research in other domains (Zaletelj and Kosir, 2017;
Smith, Shah, and Vitoria Lobo, 2003; Prajod et al., 2023) has indicated
that facial and body pose features, including gaze direction, head orien-
tation, and body posture, can effectively detect loss of attention. Infer-
ring attention from such features is contingent on the setup (e.g., screen

position), and detection models need to be appropriately calibrated.

2. Pain. Research on the occurrence of pain within the neurorehabilita-
tion population and the consequent necessity for medical interventions
has been extensively explored in works dedicated to neurorehabilita-
tion (Benrud-Larson and Wegener, 2000; Castelnuovo et al., 2016). In
the realm of healthcare applications, numerous systems employ im-
age or video-based automatic pain detection (Kunz et al., 2017; Sellner,
Thiam, and Schwenker, 2019). These approaches typically entail the
identification of pain based on facial expressions captured by a frontal

camera.

3. Stress. Detecting stress becomes crucial, especially with the introduc-
tion of gamification elements in the training session, where the pa-

tient may experience stress, particularly if the exercise surpasses their
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current skill level. Extensive research has explored diverse modalities
for stress detection, encompassing physiological signals, speech, ges-
tures, and contextual behavioral patterns (Koceska, Koceski, and Si-
monovska, 2021; Larradet et al., 2020; Giannakakis et al., 2019; Heimerl
et al., 2023). Physiological signals, including ECG, BVP, EDA, and res-
piration, have demonstrated high efficacy in stress detection (Gedam
and Paul, 2021; Prajod, Mahesh, and André, 2024; Smets, De Raedt, and
Van Hoof, 2018). Audio or speech analysis is another prevalent modal-
ity for automatic stress recognition (Dillon, Teoh, Dillon, et al., 2022;
Lefter, Burghouts, and Rothkrantz, 2015). However, this approach typ-
ically involves substantial verbal interaction with the agent, a scenario

not anticipated during neurorehabilitation exercises.

Given the above considerations, SSI functionalities are leveraged in collab-
oration with the University of Augsburg to deploy dedicated data acqui-
sition and interpretation pipelines. With reference to Figure 4.22, images
coming into the system through the Logitech webcam undergo a cropping
phase to extract the detail of the user’s face by leveraging the face detection
model (Bazarevsky et al., 2019) provided by MediaPipe. This represents the

fundamental information fed to the attention and pain detection pipelines.
Attention
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FIGURE 4.22: The SSI pipelines deployed for the Empathetic
Neurorehabilitation Trainer.
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Starting from the detection of the level of user’s attention, a VGG16 network
for gaze estimation is trained using the ETH-XGaze dataset (Zhang et al.,
2020). After that, a transfer learning approach is leveraged to detect task spe-
cific states of distraction. For that, the prediction layer of the gaze estimation
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network is fine-tuned using a specifically collected dataset. Thanks to this ap-
proach the system is capable of discerning between states of attention (user
looking at the monitor) and distraction (user looking away) with an average

accuracy of 84.6%.

Moving to the topic of pain detection, a major challenge is posed by the
fact that pain datasets are typically small for training deep learning mod-
els (Wang et al., 2018; Hassan et al., 2019; Xiang et al., 2022). To circum-
vent this, a solution can be found in the transfer learning approach described
by Prajod et al., 2021, which involves leveraging features learned for emotion
recognition in pain detection. To this end, an emotion recognition model is
trained using a large dataset called AffectNet (Mollahosseini, Hassani, and
Mahoor, 2019). The model is then fine-tuned using images from two pain
datasets: UNBC-McMaster shoulder pain expression database (Lucey et al.,
2011) and BioVid heat pain dataset (Walter et al., 2013). Both these datasets
are derived from video sequences and thus, have virtually repetitive images.
To mitigate this redundancy, images can be selected following the strategy
proposed by Prajod, Huber, and André, 2022. Thanks to this step, the predic-
tion layer of the emotion recognition model is modified for a 2-class predic-
tion of pain and no-pain classes with an average accuracy of 78% on the test
set.

Additionally, ECG data collected through the Polar H10 chestband are sent
via bluetooth to the PC and injected inside a dedicated pipeline responsi-
ble for the extraction of hand-crafted HRV features. This choice is based on
the observations presented by Prajod and André, 2022, where HRV features
showed more generalizability than models based on raw ECG signals. The
ECG signals from the WESAD dataset (Schmidt et al., 2018) are used to de-
rive the HRV features for training the stress detection model. A total of 22
HRYV features are computed from the time domain, frequency domain, and
poincaré plots. A Support Vector Machine with the radial basis kernel func-
tion is then trained to predict if the user is stressed or not. To mitigate the
individual differences in the signal and derived features (e.g. resting heart
rate), the signals undergo MinMax normalization with a final average accu-
racy of 87%.

Task management and orchestration

Once again, the Visual SceneMaker tool is used as a powerful state machine

capable to orchestrate the rehabilitation task by aligning the behavior of both
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the PLANarm2 prototype and the interactive virtual agent. The goal is to
achieve a good integration between the two entities so that the avatar can
be perceived as the virtual embodiment of a technologically reconstructed
medical coach that can physically interact with the user through the adaptive
behavior of the robotic device. A simple logic that can be used to control
these two agents is reported in Figure 4.23.

ROS Communication

Visual Scene Maker ‘

Is Pain

Detected

YES

N\ BN /.

No

Is Stress

Detected Is Loss in
Attention
Detected

YES

YES

No

FIGURE 4.23: The logical structure of the VSM program devel-
oped for the Empathetic Neurorehabilitation Trainer.

No

The interpreted affective signals produced by the SSI pipelines are pushed
within the ROS framework in the form of topics so that they are directly
accessible from the VSM program. The depicted logic works as a generic
decision tree where, depending on the specific detected state, a different re-
action of both the robot and the avatar can be triggered. Thanks to the collab-
oration with DFKI, the virtual character is equipped with advanced speech

synthesis and animation capabilities, making it possible to command lifelike,
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contextually appropriate interactions based on social cues. The speech out-
put is generated using the Nuance Text-To-Speech system, which supports
precise lip-syncing and manipulation of speech patterns. Animations are, in-
stead, controlled through direct manipulation of the model’s skeletal joints,
enabling nuanced and dynamic physical responses (Gebhard et al., 2014).
Overall, the avatar can perform 54 conversational gestures, captured via mo-
tion capture technology and adjustable in real-time, and express a range of
14 facial expressions, including the six basic emotions defined by Ekman (Ek-
man, 1992). On the robotic side, instead, the parameters available for control
are the ones related to the level of assistance provided to the user and to
the level of difficulty of the proposed task. Given all these controllable vari-
ables, the reaction logics can be personalized depending on the specific user.
For instance, an exercise that is too challenging for the user could lead to
the detection of a stress state. As a reaction, the avatar could provide men-
tal support while the robot could increase the level of assistance and make
the proposed exercise easier in order to balance the task complexity with the
user’s abilities. On the contrary, an easy task could be boring for the user
with a consequent decrease in the detected level of attention. In this case,
the avatar could intervene vocally in order to draw the user’s attention back
towards the exercise, while the robot could reduce the provided assistance
and raise the game complexity so that the user is forced to focus on the task

in order to perform well.

4.2.4 The resulting demonstrator setup
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FIGURE 4.24: A schematic representation of the generalized
human-driven control architecture deployed for the Empathetic
Neurorehabilitation Trainer.
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Thanks to the successful implementation of all the hardware and software
features envisioned for the Empathetic Neurorehabilitation Trainer, the final
demonstrator is ready to be used for the experimental activities. Figure 4.24,
shows how the conceptual control architecture presented in Chapter 3 has
been specialized and deployed for this specific application. It is important
to notice that most of the implementation effort is shared between the two
use-cases under analysis within the present project. The main differences be-
tween the two deployments consist in the choice of the hardware (robot and
sensors), effectively absorbed by the inherent flexibility and modularity pro-
vided by ROS and SSI, and in the definition of the task, anyway simplified
by the intuitive authoring framework offered by VSM. Now, the resulting
experimental setup is depicted in Figure 4.25. As shown, a user is sitting in
front of a table wearing the Polar H10 chestband under the t-shirt. The PLA-
Narm?2 prototype is clamped to the same table and a monitor is placed on top
of it. The user is in direct physical contact with the robotic device through the
ergonomic end-effector handle. In front of him, the monitor displays the re-
habilitation task within the Unity3D-based GUI, enriched by the presence of
an avatar acting as a virtual coach. The ECG data collected by the chestband
is completed by the face-cropped images coming from the webcam placed in
front of the user. During the exercise, the system monitors both the execution
performance and the inferred user state in order to proactively adapt the be-
havior of the two interactive agents coherently and consistently and provide

a better interaction experience.

FIGURE 4.25: The Empathetic Neurorehabilitation Trainer.
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4.3 Approval from the ethical committee

Given the nature of the project, the involvement of human participants is re-
quired for the collection of real-life measures. For this reason, before being
able to run the foreseen experimental campaigns, it is necessary to obtain eth-
ical clearance from a designated committee. Since the studies are performed
in the facilities of STIIMA-CNR in Lecco, the necessary documentation has
been submitted to the institute’s Commission for Research Ethics and In-
tegrity. Moreover, since the project foresees the recruitment of adults charac-
terized by ASD, the additional opinion of a clinical institution was requested.
The ethical committee of IRCCS Eugenio Medea La Nostra Famiglia, partner
of the project, was therefore involved to express their feedback from a clinical
point of view. In these terms, a couple points should be highlighted:

* The proposed studies do not have any diagnostic or clinical goal.

¢ All the recruited participants, including those with ASD, must be healthy
adults capable of giving their voluntary, autonomous and informed
consent for the participation in the study.

On these bases, the required documentation was prepared. First of all, the
study protocol was written to explain the goals and planned methodologies
of the studies. A list of the chosen robotic devices was provided including
both commercial and prototypical solutions. For the commercial devices, the
available certifications guaranteeing their safety were attached to the pro-
posal. Regarding the prototypes, instead, a risk analysis compliant with the
Italian regulation for medical devices was produced. Inclusion and exclusion
criteria were clearly stated together with the foreseen actions to be taken in
case of dropouts or deviations from the protocol. The list of data to be col-
lected was defined and completed by a description of all the planned data
treatment activities. In compliance with the ethical principles of the Decla-
ration of Helsinki, all data are made anonymous using alphanumeric codes.
A protected file storing the link between the mentioned codes and the cor-
responding participants is kept in order to guarantee the rights to erasure,
rectification and restriction. This file will be permanently deleted as soon as
the goal of the data collection is achieved or the present project reaches its
end. On this regard, a Data Protection Impact Assessment (DPIA) was pre-
pared and positively evaluated by the institution’s Data Protection Officer
(DPO). Finally, the following documents were written to collect the signa-
tures of participants before the start of the experimental sessions:
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* Informative sheet: A document explaining the goals of the study to be
signed for acknowledgement.

* Data treatment sheet: A document explaining the criteria and procedures
that will be used for the treatment of personal data to be signed for
acknowledgement.

e [nformed consent sheet: A document to be signed to agree with the par-
ticipation in the study, including the consent for data collection and
treatment.

All the documents presented above, including the signed DPIA, have been
submitted to the ethical committee of STIIMA-CNR who approved the full
study under the condition of a positive feedback from a clinical institution re-
garding the involvement of ASD participants. For this, the ethical committee
of IRCCS Eugenio Medea La Nostra Famiglia was consulted and granted its
clearance, concluding the process of study protocol approval. Thanks to this
achievement (see Appendix C), fundamental for the purposes of the present
project, it is now possible to run a series of experimental activities, presented
in detail in Chapter 5.
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Chapter 5

Experimental campaigns and

results

This Chapter is dedicated to the research activities carried out for the present
project and to the obtained results. Each of the following studies have been
published in international peer reviewed journals and conferences. Here, the
main content is reported, but references to the full publications are available
for further details. At the end of each section, a recap of the main take-aways

is provided, before the final conclusions in Chapter 6.

First, Sections 5.1, 5.2 and 5.3 are dedicated to the inference of the user’s
biomechanical, social and psychological state, respectively, and to their in-
tegration within the generalized human-driven control architecture. Then,
these measures are also used to drive the behavior and interventions of a vir-
tual character in Section 5.4. Finally, Section 5.5 provides a comparison be-
tween neurotypical and ASD participants, fundamental to achieve true per-
sonalization of the HRI experience.

5.1 Biomechanical assessment and ergonomics

One of the first macro topics of interest is the biomechanical assessment of a
user in interaction with a robotic device. In fact, in all fields of application it is
of utmost importance to be able to monitor the user’s physical fatigue. With
this approach, the interaction experience can be improved by optimizing the
task to limit instances of pain or discomfort. Also, a proper biomechanical
analysis of the user’s posture can provide great benefits in terms of task er-
gonomics. This is true for both of the use-cases of interest for the project:

robot-based industrial manufacturing and rehabilitation scenarios.
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5.1.1 Biomechanical assessment of the upper limb for deter-

mining fatigue, strain and effort: a review

Industry 5.0 aims at creating a synergy between humans and autonomous
machines (Nahavandi, 2019), driving the transition to a human-centered and
sustainable industry (Xu et al., 2021). These recent developments are push-
ing companies and stakeholders to introduce measures designed to ensure
the overall wellbeing of their workers, a fundamental step to improve work-
ing conditions and reduce work related musculoskeletal disorders (WRMSD)
(Sorensen et al., 2019). Of course, this translates into significant investments
to transfer all those techniques, sensors (Scano et al., 2020) and findings com-
ing from research in the bioengineering field to real-life industrial applica-
tions. For instance, upper limb fatigue, strain and effort have been repeat-
edly measured and assessed for various purposes, including the customiza-
tion of working cells, load reduction and improvement of ergonomics (Kadir,
Broberg, and Conceicdo, 2019). Moreover, recent research projects are start-
ing to focus on these topics also within collaborative scenarios, where hu-
mans interact with cobots. However, since the adoption of these practices
is still on-going, often there is no correspondence between the tests made in
laboratories and those carried out in real working environments, leading to a
gap between potential and actual applications. As a starting point to try and
bridge this gap, a systematic review of the studies aimed at evaluating and
assessing motor performance of the upper limb in the industrial field was
carried out. Here the main highlights are reported, but the reader can refer
to Brambilla et al., 2023b for additional details. Considering the available

literature, the goal is to provide an answer to the following questions:
* What are the main obtained findings?
* Which kind of setting and equipment were used for the studies?
e What were the demographics of the involved participants?
e Which type of motor tasks were studied?
e Which analysis techniques were employed?

In order to do that, papers applying biomechanical analysis to industrial
applications were considered using the international guidelines established
by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) (Moher et al., 2009). A collection of articles was obtained by screen-

ing Scopus, and Web of Science (WOS) using the following logical query:



5.1. Biomechanical assessment and ergonomics 79

(shoulder OR elbow OR wrist OR “upper limb” OR upper-limb OR “upper
extremity” OR arm) AND (fatigue OR strain OR effort) AND (worker OR
workplace OR industry OR industrial) AND (assessment OR index OR
evaluation OR biomechanics OR measure OR measurement)

A total of 1375 articles were found but, by considering only full journal ar-
ticles, written in English and published after 2000, only 288 of them were
considered eligible and included in the review. Below, a summary of the out-
comes of this study is reported while the reader can refer to Brambilla et al.,
2023b for further details.

Main findings

In terms of physiological conditions, the articles highlight that fatigue has
effects on joint kinematics, torques and coordination and that it causes an
increase of the power spectrum of velocity and acceleration. Duration, com-
plexity and precision of the task increase muscle fatigue and it is possible
to detect this state thanks to the measurements coming from EMG, IMU or
Kinect sensors. Considering the characteristics of the task, also work pace,
handled load, height and direction of movement have an impact on fatigue,
pain and endurance. Assessments are therefore required to identify and mit-
igate the risk of associated muscolo-skeletal disorders. REBA, RULA, Strain
index and the OCRA checklist are the most cited techniques to identify bad
working postures for which ergonomic interventions are needed. Some pre-
vention strategies are also mentioned, among all the use of exoskeletons re-
ducing muscular effort, heart-rate and oxygen consumption and therefore

delaying global fatigue.

Setting and equipment

With reference to Figure 5.1, 50% of the screened studies were performed
in a laboratory environment while 47% of them were performed directly at
the workplace or using data collected at the workplace. The remaining few
studies either suggested protocols not yet implemented or worked on simu-

lations.

As clearly shown, the selected studies split almost equally into two groups:
those made in laboratory environment, and those performed in working places.
Considering the number of recent publications, it is possible to identify a sur-

prisingly increasing trend for the first group while the second group seems
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Setting

B Workplace ™ Laboratory ™ Simulated Protocol

FIGURE 5.1: Settings distribution for screened papers.

to remain stable. Even though this trend seems to suggest that the research
interest is focusing more on laboratory activities than their translation to the
workplace, it should be commented in the light of the fact that the restrictions
due to the COVID-19 pandemic may have had a strong impact on the field.

Demographics of participants

Keeping the distinction between lab and real-life settings identified above, a
first interesting point of discussion can be found in the analysis of the cohorts
of involved participants. As shown in Figure 5.2, 71% of laboratory studies
have enrolled volunteers with no working experience related to the topic of
the study and only 23% enrolled workers (the remaining 6% is simulated
data). Conversely, 99% of the studies performed directly at the workplace

enrolled workers.
Type of participants

Laboratory Workplace

1%

mWorkers ®Volunteers  wSimulated mWorkers mVolunteers Simulated

FIGURE 5.2: Participants type distribution for screened papers.
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Sample size distribution
Laboratory Workplace
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FIGURE 5.3: Sample size distribution for screened papers.

A great difference can also be found in the number of involved participants
for the two groups of studies. Most of the laboratory studies involved less
than 20 participants and only 10 papers involved more than 50 subjects. On
the contrary, most of the studies in the workplace setting involved a high
number of participants (>50) with 16 papers peaking over 500 subjects each.
Figure 5.3 shows how the sample size distributes among the two groups.

Analyzed motor tasks

Starting from the task design distribution shown in Figure 5.4, laboratory
studies are equally divided in repetitive (49%) and controlled (49%) move-
ments, subject by nature to experimental limitations, and only 2% of them
considered unconstrained movements, representing more realistic working
conditions. On the contrary, most of the workplace studies (55%) considered
unconstrained movements, 38% of them was based on controlled design, and

only 7% was conducted in repetitive conditions.

Another relevant difference can be found in the type of supports (e.g., robots,
tools, handles) used during these tasks. Since most laboratory studies re-
garded interaction with the environment and simulation of controlled tasks,
42% of them required tools and handles, including screwdrivers, hand sup-
ports, and others; 38% were based on free movements, while other supports
(3%), end-effector robots (1%) and exoskeletons (16%) were leveraged in the
other cases. On the other hand, in workplace studies participants usually
performed their work during the entire workday and therefore the major-
ity of them (75%) reported free movements, 20% used tools, while only 3%
employed exoskeletons.
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Task design
Laboratory Workplace

mRepetitive mControlled =Unconstrained # Repetitive wControlled = Unconstrained

FIGURE 5.4: Task design distribution for screened papers.

Analysis techniques

Several approaches were employed in the screened studies as shown in Fig-
ure 5.5. Some instrumental approaches were based on EMG and kinematics,
but also model-based approaches often included biomechanics and kinet-
ics, with human models or recorded forces. Other approaches were, instead
based on scales and questionnaires or a mix of the others. Interestingly, once
again the type of assessments differs consistently between laboratory and
workplace settings. In laboratories, EMG and kinematics are the most used
methods to assess biomechanics, effort, fatigue and strain, employed in more
than 50% of the studies. For workplace settings, instead, questionnaires and
scales are by far the most employed ones (more than 80% of the studies).
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FIGURE 5.5: Assessment type distribution for screened papers.

All the discrepancies identified above put a question mark on the repeata-
bility of the results obtained in controlled laboratory environments within
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actual working scenarios. It is therefore of utmost importance that a push to-
wards the translation of lab findings to the real-world is promoted in order to
actually leverage the obtained knowledge for the benefit of all the involved
stakeholders.

5.1.2 Azure Kinect performance evaluation for human mo-

tion and upper-limb biomechanical analysis

In Section 5.1.1, a systematic review of the available literature on fatigue
monitoring during industrial tasks highlighted key differences between stud-
ies performed in laboratory environment and those carried out in real work-
ing scenarios. One of the points of discussion was related to the type of sen-
sors employed for the analyses. In general, marker-based optoelectronic sys-
tems are considered the gold standard in human motion tracking, but their
use is not always feasible in industrial environments. On the other hand,
marker-less sensors are relatively inexpensive, noninvasive and easy to use,
but their accuracy can depend on sensor positioning, light conditions and
body occlusions.

With the aim of establishing a common approach suitable for all kind of set-
tings, it was decided to investigate the performance of the Microsoft Azure
Kinect sensor, one of the most popular marker-less tracking systems on the
market, in computing kinematic and dynamic measurements of static pos-
tures and dynamic movements. Here, a summary of the experimental pro-
cedures and results is reported while the reader can refer to Brambilla et al.,
2023a for further details.

Materials and methods

Previous studies revealed that the tracking accuracy of Kinect cameras can
be influenced by multiple factors, such as distance and orientation from the
subject (Scano et al., 2020), light conditions (Romeo et al., 2021a) and body
occlusions (Cai, Liu, and Ma, 2021). All these factors are likely to be vari-
able and non-controllable in real-life scenarios. It is therefore important to
analyze how much they affect the reliability of the collected tracking data in
order to understand if they can be safely applied within various settings.
For this purpose, 25 healthy adults (age: 28.5+4.9; height: 175.6+£9.6 cm;
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weight: 69.4+10.0 kg; 18M and 7F) were recruited and asked to perform spe-
cific movements while being tracked both by a Vicon Vero system (marker-
based golden standard) and four Azure Kinect cameras positioned at differ-
ent angles. The participants were asked to wear very tight vests or to be
bare-chested at the time of trial, to facilitate placement of the markers on the
anatomical landmarks. Also, an L-shaped table was used to simulate body
occlusions, while a lux meter helped to standardize variable light conditions.
Using these tools, both static and dynamic movements were assessed. With
reference to Figure 5.6, in static trials the subject held three postures for 10
seconds: (i) with the right arm raised frontally, (ii) with both arms raised lat-
erally and (iii) with both arms raised laterally and the elbows flexed. For dy-
namic movements, instead, both frontal and lateral reaching were assessed
as motion primitives for several upper-limb tasks. The subjects started from
the resting position, defined as the standing position with the arms relaxed
by the side, extended elbows and non-elevated shoulders. Then, they were
asked to raise the right arm, either frontally or laterally, at 90° with the palms
facing downwards before going back to the resting position. Each movement
was repeated ten times.

As mentioned, four Kinect cameras were used to investigate four different
positions and orientations with respect to the subject in simultaneous acqui-
sitions. In order to cover a wide field of view, as shown in Figure 5.6 the four
chosen positions of the camera were: (a) in front of the subject (frontal view)
at 1-meter height from the ground (frontal Kinect — KFront); (b) in front of
the subject, from above at 1.80-meter height from the ground with an incli-
nation of -22.5° (pitch) pointing downwards (frontal up Kinect - KFrontUp);
(c) on the lateral side at 45° (yaw), from above at 1.80-meter height from the
ground with an inclination -22.5° (pitch) pointing downwards (lateral 45°
Kinect — KLat45); (d) on the lateral side (lateral view) at 90° (yaw) at 1-meter
height from the ground (lateral Kinect — KLat). The tasks were performed
with and without the joint occlusions provided by the presence or absence of
the L-shaped table to quantify the resulting inaccuracies. Moreover, in order
to standardize light conditions, tests were performed using artificial light,
with no light coming from the outside. Two light conditions were assessed:
illuminance was 268.76+23.3 Lux in the ‘light” condition and 18.2+6.1 Lux in
the ‘no light” condition. Once again, the four combinations of occlusion and
light intensity are shown in Figure 5.6.
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FIGURE 5.6: A summary of all the motor tasks and assessment
conditions analyzed for the evaluation of the Azure Kinect sen-
sor performance.

Markers were attached to the subject on anatomical landmarks correspond-
ing to the Vicon Upper limb model requirements (Nexus, 2007). The data
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acquired by the Vicon were elaborated in the Vicon Nexus software to track
and label the markers: the output obtained was the 3D coordinates of mark-
ers and joint center positions sampled at 100Hz. The acquisition from the
Azure Kinect cameras was elaborated with the Microsoft Azure Body Track-
ing SDK (v1.1.1): the output was the 3D positions of 32 joints and quaternions
indicating segment orientation sampled at 30Hz. Since the Vicon system and
the Azure Kinect cameras were not temporally synchronized, movement on-
set and offset were identified in the data from each system, and the corre-
sponding phases were aligned with a post-processing procedure (Ceseracciu,
Sawacha, and Cobelli, 2014) using MatLab.

Data analysis

For data analysis, the raw data obtained from both systems were filtered with
a 4th-order Butterworth low pass filter at a cut-off frequency = 5 Hz in order
to remove noise artifacts. Since the acquisition systems have different sam-
pling rates (100 Hz for the Vicon system and 30 Hz for the Kinect), the Azure
Kinect data were up-sampled to 100 Hz with a shape-preserving piecewise
cubic interpolation (Fritsch and Carlson, 1980) to allow data comparison be-
tween the two systems. Then, data were elaborated with a biomechanical
model, which allowed the computation of kinematic and dynamic variables
and motor control parameters. The biomechanical model takes as input the
3D position of markers and joint center for the Vicon system and the 3D co-
ordinates of joints and the quaternions for the Kinect. Then, it reconstructs
the 3D coordinate system of each segment and joint and computes joint an-
gles. Joint moment and forces are computed with Newton-Euler equations.
Power exerted at joint level, expended energy and normalized jerk are com-
puted as explained in Brambilla et al., 2023a. For both Vicon and Kinect, the
mass properties for each subject (mass, inertia matrix and center of mass of
each segment) are estimated by accessing anthropometric tables (Christensen
et al.,, n.d.) by height and weight of each participant.

The parameters computed for the analysis were divided into three categories
based on the level of detail they provide. Basic parameters were not associ-
ated with a biomechanical model and included execution time, as the time
needed to execute each movement and normalized body segment lengths
(arm and forearm). Normalization is computed as the limb length divided

by the subject’s height and is needed for reliable inter-subject comparisons.
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Kinematic parameters are, instead, extracted thanks to the mentioned biome-
chanical model and include joint angles (absolute, minimum, maximum and
range of motion) and angular velocities, computed as the derivative of joint
angles. Finally, Dynamic parameters are obtained using both the biomechani-
cal model and the Newton-Euler equations and include: joint torques, peak
power, expended energy and normalized jerk. A summary of all these pa-
rameters is graphically reported in Figure 5.7.
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FIGURE 5.7: A graphical summary of all the assessment param-
eters used for the evaluation of the Azure Kinect sensor perfor-
mance.

Results

First of all, the repeatability of all the parameters of the Vicon data is tested
among the conditions to state whether it could be a standard, without statis-
tical differences among the trials (i.e., in all conditions, the performed move-
ments were the same). Since this condition is met, the parameters computed
from Kinect data can be compared to the Vicon ones.

A first general consideration can be done considering all the tested condi-
tions. After the normalization of the limb lengths obtained dividing the
measures by the height of each subject, the Azure Kinect underestimates the
length estimates. When considering articular angles, the Azure Kinect sys-
tematically underestimates the shoulder angles, and overestimates the elbow
flection angles. The main reason of these different estimations can be due to
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the way the Vicon system provides the 3D coordinates of the articular cen-
ters. On the contrary, the Kinects provide an estimation of the joints based on
the RGB and depth streams, processed by the SDK body tracking making it
difficult to establish the exact correspondence of the detected joint positions
provided by the two sensors. Now, comparing the results obtained with
the different camera positions and orientations, the lateral Kinect had the
lowest correlation with the Vicon system, with a worse estimation of biome-
chanical parameters and a higher variability between subjects. Instead, both
the frontal and frontal raised Kinects showed high correlation coefficients
with Vicon data, providing the most precise tracking when evaluating limb
lengths and articular angles, thanks to the better point of view with respect
to the analyzed motion tasks. Considering the presence of occlusions, the
tracking accuracy was negatively influenced for all cases. As expected, this
means that conditions without any object obstructing the field of view of the
cameras lead to better results and the use of marker-less systems may be tol-
erated or not depending on the application. Quantification of these effects,
useful to decide weather the Kinect sensors are suitable or not for the spe-
cific use-case, are reported in Brambilla et al., 2023a. On the contrary, light
conditions do not seem to affect the performance of the Kinect tracking sys-
tem making its use suitable for settings in which the light intensity cannot be
easily controlled. Presented results are summarized below in Table 5.1.

TABLE 5.1: Summary of the results obtained for the different
Kinect placements in terms of Vicon correlation, precision and
robustness to light conditions and occlusions.

Limb length  Shoulder Elbow flex Vicon corre- Occlusions Light condi-
angle angle lation tions
KFront under esti- under esti- over estima- best correla-  disrupted unaffected
mation mation tion tion perfor- perfor-
mance mance
KFrontUp under esti- under esti- over estima- best correla-  disrupted unaffected
mation mation tion tion perfor- perfor-
mance mance
KLat45 under esti- under esti- over estima- average cor-  disrupted unaffected
mation mation tion relation perfor- perfor-
mance mance
KLat under esti- under esti- over estima- worst corre-  disrupted unaffected
mation mation tion lation perfor- perfor-
mance mance

The performed analyses work on a complete characterization of the subject,
and include parameters relevant for identifying fatigue and monitoring men-
tal health conditions during repetitive activities and working cycles. More-
over, the computation of dynamic parameters allows the evaluation of risks
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related to musculoskeletal injuries. Overall, results demonstrate that the
Azure Kinect sensors can be considered acceptable for the biomechanical as-
sessment of the workers in industrial applications since the obtained biome-
chanical parameters are well correlated with the gold standard measures.
Particular attention should, however, be paid to the presence of occlusions
by mitigating the inevitable performance loss with properly chosen camera
angles and, eventually, the fusion of data coming from different points of
view. Azure Kinect cameras can also be employed for obstacle avoidance
in human-robot collaboration, but the differences in the estimation of limb
lengths and articular angles with respect to the Vicon reference should be
considered while implementing the algorithms.

As a final note, it is important to understand that, even though the perfor-
mance of the Azure Kinect sensor was tested with industrial applications in
mind, the results can be directly applied also to the other use-case considered
in the present project. In fact, the cost, invasiveness and complexity of use
of marker-based system would not be feasible for robotic neurorehabilitation
sessions, especially if considering a future where we hope to apply this kind

of technologies in domestic environments.

5.1.3 A framework for human-robot collaboration enhanced

by preference learning and ergonomics

Section 5.1.1 highlighted the importance of introducing biomechanical as-
sessments in the workplace in order to minimize WRMSDs. Moreover, Sec-
tion 5.1.2 evaluated the Kinect Azure sensors as suitable for the same pur-
pose. Building on these findings, the next goal is to develop a preference-
based optimization algorithm to improve working conditions by introducing

an ergonomic assessment for HRC scenarios.

Assembly workers in manufacturing industry, are at risk for physical and
mental health problems which are common and costly for both workers and
their employers (Govaerts et al., 2021). Considering in particular collabora-
tive assembly manufacturing tasks, engaging in repetitive motions, adopting
awkward body positions, and consistently exerting excessive force can lead
to overloading the musculoskeletal system. Thus, assessing an individual’s
ergonomics to properly implement HRC frameworks is crucial. However, it
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is also important to consider the preferences (Yan and Jia, 2022) and motiva-
tions of the individual to create a working environment that is both physi-
cally and mentally conducive to productivity and well-being.

For this purpose, it has been decided to work on the development and testing
of an algorithm designed to optimize the operator’s posture ensuring com-
fort and minimizing the risk of musculoskeletal disorders while, at the same
time, matching the operator’s personal preference. This is a novelty with
respect to the approaches used in related studies, which either considered
the topic of preference or ergonomics without trying to conciliate the both of
them. Here, a summary of the study and related findings is reported, but the
reader can refer to Falerni et al., 2024 for additional details.

Materials and methods

The flow of the proposed algorithm is schematized in Figure 5.8. As shown,
an iterative minimization process is foreseen after an initial training. In this
process, user preferences are used to address the cognitive workload of the
collaborative task (e.g., user engagement, work-related stress), while the a

quantitative index is used to improve task ergonomics.
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FIGURE 5.8: Block diagram representing the flow of the er-
gonomics and preference based optimization algorithm.
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Preference-based optimization is a semi-automated technique for solving black-
box optimization problems, where the explicit mathematical expression of
the objective function is either expensive or impossible to obtain (Bemporad
and Piga, 2021). In these cases, it is possible to exploit human preferences
as a guide for the optimization process toward the optimal solution. For
instance, Active Preference Learning (APL) (Bemporad and Piga, 2019; Be-
mporad, 2020) techniques can be leveraged to find the global optimum of
an unknown function using only the preferences of a human decision-maker.
For the purposes of this experimental activity, the AmPL algorithm proposed
by Dao et al., 2023 is used as a starting point, as it expands the original ap-
proach with the introduction of multiple levels of preference, making it easier
for the subject to compare between options. In AmPL, the objective function
f(x) is assumed to be non-accessible. Let R"” be the space of decision vari-
ables and x; and x, are two n-element vectors so that x1, x, € R". Because
the values of f(x1) and f(x;) cannot be quantifiable, only their comparison
in the form of preference p: R" x R" — {—2,—1,0,1,2} and corresponding
certainty level c: R" x R" — {1,2,3,4} are accessible. The overall preference
function is a composition of these two elements and is defined as:

R x R — {—2,-1,0,1,2} x {1,2,3,4}
(5.1)
mt(x1,x2) = (p(x1,x2),¢(x1,%2)),

where:

—2 if x7 is "much better" than x,,
—1 if xq is "better" than x5,
p(x1,%2) =40 if x1 is "as good as" x», (5.2)

1 if x71 is "worse" than x,

2 if x1 is "much worse" than x5,

and:
: not so sure,

: quite sure,
c(x1,xp) = d (5.3)

: sure,

= W N =

: absolutely sure.



92 Chapter 5. Experimental campaigns and results

Using this definition, at every iteration the user is asked to express his/her
preference between two options and a level of certainty on the decision it-
self. Then, the algorithm works on the basis of three functions, as from Equa-
tion 5.4:

a(x) — f(x) — nAlll?{f(xl)} _ (SZ(X), (5.4)

e f(x) is a surrogate function which takes into account the preferences of

the user and tries to reproduce the answers to make predictions for

decision vectors not explored yet;

* z(x) is an exploration function used to avoid falling in local minima dur-
ing the global optimization, with é being the gain used to balance be-
tween exploitation and exploration behaviors.

 a(x) is the acquisition function to be minimized, through global opti-
mization, to get the next sample to be compared. It is the sum between

the surrogate function and the exploration function.

Starting from the algorithm above (further details can be found in Dao et al.,
2023), the acquisition function defined in Equation 5.4 is modified to the form
of Equation 5.5, introducing two new elements to the optimization problem:

o) =TV 20 4 by e, 69)

e P(x) is a penalization function used to avoid some zones of the feasible
space when the user realizes that they are not optimal and it would be
a waste of time to let the algorithm explore them.

e x(x) is a quantitative function, used in this case to account for the er-
gonomics of the task, with 77 being the gain used to modulate its impact

on the overall acquisition function.

Among all the existing approaches for the evaluation of ergonomics, the
Rapid Upper Limb Assessment (RULA) has been selected (Yazdanirad et
al., 2018) as it provides a better estimation of posture-related risks with re-
spect to other methods (Kee and Karwowski, 2007). Following this choice,
user’s body joint frames and positions can be acquired using Kinect Azure
cameras and processed to extract the corresponding RULA score, as listed in
Table 5.2. The higher the obtained score, the higher the WRMSD risk, with a
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consequent heavy influence of the quantification function on the overall ac-
quisition function pushing the optimization process away from that unfavor-
able zone of the feasible solution space. Then, a Gaussian Process Regression
modeling (GPR) is implemented to map the RULA index to the optimization

variables and to the subject’s anthropometric parameters.

| Score | Level of WRMSD risk \

1-2 Negligible risk, no action required

3-4 Low risk, change may be needed

5-6 Medium risk, further investigation

7 Very high risk, implement change now

TABLE 5.2: RULA score values based on the WRMSD risk.

Thanks to the use of ROS, this approach can be easily built into the gen-
eralized human-driven control architecture presented in Section 3.2. The
involved components are highlighted in Figure 5.9. User posture and ex-
pressed preferences flow as biomechanical signals into the Interpreter mod-
ule, which incorporates the presented algorithm. The User Model contains
the anthropometric parameters used to map the obtain high-level indexes
to the specific user and, consequently, obtain the information needed by the
Orchestrator to optimize the task. The Supervisor is represented by the re-
searcher that oversees the experimental session and inputs the data required
by the penalization function, if needed. As a result, the Orchestrator com-
mands a new collaborative assembly pose to the cobot, computed to optimize

ergonomics while accounting for the user’s personal preference.
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: physiological signals
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FIGURE 5.9: Highlighted control scheme showing how the pre-
sented algorithm is built into the generalized architecture.
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Experimental assessment

Taking advantage of the above optimization algorithm deployed within the
control architecture introduced in Section 3.2, of the hardware and software
setup described in Sections 4.1.1 and 4.1.3 and of the assembly task presented
in Section 4.1.2, an experimental campaign is prepared. The goal is to opti-
mize the end-effector pose of the MindBot cobot when performing the direct
collaboration step of meshing the gears of the epicyclic mechanism. With

reference to Figure 5.10, the parameters to be optimized are:

* x, y and z representing the relative 3D spatial coordinates of the end-
effector with respect to the base frame of the robot;

* 0, and 0, representing the vertical and horizontal orientation of the

end-effector with respect to the base frame.

\

FIGURE 5.10: A representation of the optimization problem:

The user and the cobot are in direct collaboration for the gear

meshing step and the algorithm proposes new sets for the posi-
tion and orientation of the end-effector.

Table 5.3 provides the domain and the variation step of the optimization vari-
ables used in the experiments. The Step parameter is tuned to make sure that
the change in the robot configuration is big enough to be perceived by the

user.
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| [XIm] Y[ml Z[m] 6,[°1 6,[°T]

Upper bound 0.5 0.3 1.75 90 45
Lower bound -0.3 0.0 1.15 0 -45
Step 0.1 0.1 0.1 10 10
Range size 0.8 0.3 0.6 90 90

TABLE 5.3: The domain and variation step of the optimization
parameters chosen for the experimental sessions.

Each experimental sessions is composed of three phases. In the first training
phase, an expert operator instructs the participant on how to assemble the
components and express his/her preferences. During a second optimization
procedure, pairs of robot configurations are tested. For every iteration, the
user expresses his/her preference between the cobot pose that was consid-
ered the best so far and a new one suggested by the optimization algorithm.
As an exit criterion, the maximum number of optimization iterations is set
equal to 30 (experimentally found to provide a good balance between explo-
ration and exploitation in the considered experimental scenario; other exit
criteria based on, for instance, the satisfaction of the user can be used). In the
tinal validation phase, the participant is asked to use the cobot manual guid-
ance functionality to realize the configuration that s/he considers the best.
The parameters of this configuration are saved so that a comparison with the

optimum achieved by the algorithm can be produced.

A total of 20 participants (24-40 years old) have been involved in the experi-
mental campaign. The mean participants” height is 171.5cm, with a standard
deviation of 8.5cm. In the selection of participants, an effort was made to
balance the number of right (9 participants) and left (11 participants) handed
subjects in order to have a similar representation of the two groups within
the tested population.

Results

Table 5.4 presents the obtained results in terms of pose "error" between the
optimum obtained by means of the developed framework and the one set
manually by the user through the manual guidance of the robot. Even though
the number of iterations within a single experiment was relatively low con-
sidering the number of parameters to be optimized (Dao et al., 2023; Bem-
porad and Piga, 2019; Bemporad, 2020; Bemporad and Piga, 2021), they are
sufficient to reach an admissible configuration of the robot with respect to the
user expectations. As a matter of fact, according to the performance results
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presented in Table 5.4, the algorithm’s error for each variable was found to be
lower than the corresponding problem resolution specified in Table 5.3. This
means that the distance between the pose computed by the optimization al-
gorithm and the one chosen directly by the participant is smaller than what
can be effectively perceived, so much that most of the volunteers could not
distinguish between the two, when asked.

| | x[m] y[m] z[m] 6:[°] 6,[°]]
0.06 005 009 7.66 1165
0.07 003 006 1118 7.73

SR

TABLE 5.4: Mean error (¢) and standard deviation () for each
variable.
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FIGURE 5.11: The RULA scores obtained by the optimiza-
tion algorithm and by the user choice compared to high and
medium risk levels.

Now, considering the results related to ergonomics, Figure 5.11 can be used
to compare for each participant the RULA score corresponding to the con-
figuration chosen by the algorithm and the one chosen by the subject. The
most important achievement that can be inferred from the depicted data is
that all RULA scores remain under the threshold of medium risk, meaning
that the configuration of the robot allows the user to maintain a good posture
that contributes to minimizing WRMSDs. Moreover, it is clear that, for each
participant, the two RULA scores are very close to each other. This result
is aligned with the expectations since the small difference between the two
compared configurations, reported in Table 5.4, should also result in similar
user postures. It is interesting to notice that the configuration manually cho-
sen by some of the participants actually leads to a higher RULA score than
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the one obtained by the algorithm. This can be explained by the fact that pos-
tural comfort and ergonomics are two different concepts. While ergonomics
focuses on postural parameters to guarantee the safety and well-being of
users and prevent health problems, comfort refers a wider range of factors
such as cognitive, physiologic, and environmental factors (Naddeo and Cap-
petti, 2014). Therefore, the most comfortable posture may be different from
the ergonomically optimal one, as reflected by the results.

Even though the obtained results are strictly connected to this specific exper-
imental setting and cannot be generalized, they serve as a positive indication
that the algorithm is capable of optimizing user preference and ergonomics
at the same time.

5.1.4 The effects of robotic assistance on upper limb spatial
muscle synergies in healthy people during planar upper-

limb training

The importance of introducing biomechanical assessments and monitoring in
working environments, as presented up to now, can be directly applied also
to the medical field and, in particular, to rehabilitation where the muscolo-
skeletal sphere is at the center of focus. Since the pioneering approaches
in the 90s (Aisen et al., 1997), in the last decades several studies (Krebs et
al., 2004; Riener, Nef, and Colombo, 2005) showed that robotic rehabilita-
tion is an effective technique inducing comparable or better motor improve-
ments in respect to standard treatment (Volpe et al., 2000). However, the
mechanisms underlying motor recovery and neuroplastic effects induced by
robotic therapy are not well known and understood yet. It is in fact a matter
of debate which guidelines should be followed when assisting rehabilitation
with robots. While several good practice guidelines have been proposed, in-
cluding: assist-as-needed paradigms (Reinkensmeyer et al., 2012), adoption
of transparent robots (Just et al., 2018), biomimetic controllers (Abboudi et
al., 1999), human-in-the-loop approaches (Nam et al., 2019), adaptive con-
trollers (Yang et al., 2016), some relevant scientific questions are still open. In
particular, detailed evidence on the effect of robot assistance on motor con-
trol have not been exhaustively identified (Broekens, Heerink, Rosendal, et
al., 2009; Rodgers et al., 2019).

For the purposes of the present project, knowledge about how the introduc-
tion and regulation of robotic assistance influences motor control is key to
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design a system capable to proactively adapt its behavior in order to promote
both motor recovery and positive interaction experiences. Therefore, the con-
trol architecture introduced in Section 3.2 and deployed for the experimental
setup presented in Section 4.2 is leveraged to run a dedicated experimental
campaign. Figure 5.12 highlights the leveraged hardware and software mod-
ules. Here, a summary of the study protocol and results is reported, but the
reader can refer to Cancrini et al., 2022 for further details.

Agents
speed physical
force interaction
t oo visual
. etc... interaction
Supervisor |-~ Orchestrator | st User
visual
dominance interaction
Avatar .
tc voice
ete... interaction
" T
I biomechanical signals
|
: physiological signals
(S > User Model Interpreter social signals
psychological signals

FIGURE 5.12: A highlight of the modules of the proposed con-
trol architecture used for the evaluation of muscular synergies.

Materials and methods

According to the theory of Muscular Synergies (MS), the central nervous sys-
tem exploits a reduced set of pre-shaped neural pathways, called synergies,
to achieve a large variety of motor commands. The potential of this method
has already been exploited to gain deeper insights concerning motor impair-
ment. For instance, MS have been used as metrics for the evaluation of robot-
assisted interventions (Lencioni et al., 2021), finding that post-stroke subjects
who followed robotic rehabilitation showed larger improvements in axial-to-
proximal muscle synergies with respect to those who underwent usual care.
It was also shown that robot-therapy induced subject-dependent modifica-
tion of synergies (Tropea et al., 2013) and slight modifications of the original
synergies (Scano et al., 2018). However, only a few studies have evaluated
the effects of assistance and challenging conditions during human-robot in-
teraction on healthy people. This assessment is a missing piece in the under-

standing of how robot assistance influences motor coordination and in the
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identification of which modes and approaches can maximize the patients’

motor recovery.

Using the setup presented in Section 4.2, 10 healthy adult volunteers (33+9
years, 2F, 8M) have been recruited to take part in an experimental activity fol-
lowing a protocol inspired from Dumas, Cheze, and Verriest, 2007. In order
to have an appropriate model-based tracking with the Vicon system, each
participant was asked to wear a total of 11 markers positioned on T8 and C7
vertebrae, jugular notch, xiphoid process, greater tubercle, medial and lateral
humeral epicondyles, styloid process of the ulna and the radial, second and
fifth metacarpal heads. Six of the same markers were placed also on the robot:
three on the base of the device as reference axes, one on the top of the right
driven pulley, one on the right joint and one on the end-effector. Moreover,
subjects were equipped with 16 s-EMG electrodes positioned according to the
SENIAM guidelines (Hermens et al., 1999) on the following muscles: Erec-
tor Spinae (ES), Middle Trapezius (MT), Upper Trapezius (UT), Infraspinatus
(IF), Deltoid Anterior (DA), Deltoid Middle (DM), Deltoid Posterior (DP),
Pectoralis (PC), Triceps Long Head (TLo), Triceps Lateral Head (TLa), Biceps
Long Head (BCl), Biceps Short Head (BCs), Brachioradialis (BR), Pronator
Teres (PT), Wrist Flexors (WF) and Wrist Extensors (WE). The right side of
Figure 5.13 shows the instrumented robot and subject.

SET UP AND STUDY DESIGN
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Radial

0 FREE
B MODE

" /
200
200 00 0 10
X [mm]
s Curvilinear \\\
500
Euo ASSISTED
Set up and MODE Robot Kinematic Human Kinematic SEMG Channels
PlanArm2 00 Model Model

-100 0
X [mm]
Two different Two different

exercises modes

FIGURE 5.13: From left to right: the study setup, the trajecto-

ries proposed to the user (radial and curvilinear), the available

robot modes (free and assistive) and the kinematic models used
for motion tracking with the Vicon system.

First, a short adaptation phase was proposed to the participants in order to
familiarize with the task to be executed. During this preliminary adaptation,
the robot is moved by the trajectory controller (see Section 4.2) from target
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to target following rectilinear and curvilinear paths with trapezoidal-shaped
biomimetic velocity profile. In this phase, each subject is asked to follow
the robot with their dominant limb without pushing nor being pushed, thus
keeping interaction forces as low as possible. Then, two experimental con-
ditions of interaction with the robot are considered. A first condition, called
“Free”, exploits the functionalities of the admittance controller (see Section 4.2)
set with a ON force tracking to realize a feeling of transparency to the user’s
push. With this settings, each subject is asked to reproduce the trajectories
performed during the preliminary adaptation without any assistance, while
visual feedback is provided on screen. As a kinematic metric for task perfor-
mance, the root mean errors of each of the samples of the performed trajec-
tory with respect to the ideal one are measured. The second condition, called
“Assisted”, is build on the same trajectories but using the functionalities of

the tunnel controller (see Section 4.2) with an assistance width set to 10mm.

The acquisition protocol includes a comprehensive variety of movement tra-
jectories, based on standard radial paradigms (Aisen et al., 1997) and curvi-
linear trajectories. While radial paths are a standard for this set-up, curvi-
linear tasks are only marginally considered in the literature of robot-assisted
planar movements. However, implementing such trajectories enables to elicit
a wide variety of upper-limb tasks to promote challenge and the recruitment
of the synergies available to people (Frere and Hug, 2012). Targets are ori-
ented towards the main cardinal directions (NE, E, SE, S, SW, W, NW, N) in a
circumference with a radius of 170 mm (see Clock game in Section 4.2), com-
parable to previous studies (Tropea et al., 2013). The left side of Figure 5.13
can be used as reference for the robot modes, the proposed trajectories and
the overall experimental setup.

Data analysis

Thanks to the collected experimental data, coming either from the robot, from
the Vicon system or from the EMG sensors, three outcome measures can be
computed (see Figure 5.14):

¢ Kinematics.
The main metric for the assessment of the performance in the two con-
ditions is the average root mean error found comparing the actual end-

effector path with the ideal trajectory.
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FIGURE 5.14: Experimental data processing and type of analy-
sis for all measures of interest.

e Assistance.

The amount of assistance provided by the robot is estimated as the per-
centage of time during which the corrective tunnel force is different

from zero.

Synergies.

First of all, kinematic recordings are used to separate motion phases
leveraging the velocity profile associated with the marker on the sec-
ond metacarpal head of the dominant limb as a signal for detecting
movement onsets and offsets. Then, all the movements are aligned by
considering data 0.25 s before the task onset and 0.25 s after the task
offset, to ensure the complete capture of EMG waveforms which be-
gins before movement kinematic onset and ends after reaching the tar-
get (d"Avella et al., 2006). Since the nominal duration of the tasks is not
tixed, a procedure for time-scaling and resampling is needed before the
extraction of spatial synergies. Then, EMG data is band-pass filtered
between 20-450 Hz to remove aliasing effects inside the sampling, rec-
tified and low-pass filtered with a cut-off frequency of 6 Hz to extract
the envelope. The obtained envelopes are further analyzed to extract
the phasic component of the EMG, removing the postural (tonic) EMG
activity from the original signal (Flanders, Tillery, and Soechting, 1992),
following the approach used in previous works (d’Avella et al., 2006).
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A normalization procedure was also performed in order to allow intra-
subject comparisons. Then, the processed EMG envelopes are arranged
to generate the pooled matrix data to be given as input to the NMF syn-
ergy extraction algorithm (Lee and Seung, 1999). For each subject, the
extracted spatial synergies in Free and Assisted conditions are matched
by similarity so that each synergy can be coupled with the most similar
one found in the other dataset (Garcia-Cossio et al., 2014). Then, each
couple of matched synergies is assigned a similarity score computed as

the cosine product between the vectors containing the synergy loads.

In all conditions, normality of the data is tested with the Shapiro-Wilk test.
Since many distributions result to be not normal, the non-parametric Kruskal-
Wallis Test is used.

Results

Starting from the kinematic outcomes, results show that error between the
actual followed path and the ideal trajectory is significantly higher in the
Free condition with respect to the Assisted condition for all three tested exer-
cises. As expected, these results underline the effect of the robotic assistance
during exercises, reducing the kinematic error, which is always maintained
within the size of the so-called corrective tunnel. Moreover, as represented
in Figure 5.15, participants generally make more mistakes in the Curvilinear

trajectories with respect to the Radial ones.

Figure 5.16 provides a comparison on the levels of assistance elicited for the
Radial and Curvilinear exercises. Interestingly, the assistance in the Curvi-
linear exercises is in general higher that the one required for the Radial ones.
This result can be explained with a series of considerations. Radial trajecto-
ries are usually considered more intuituive by participants since they closely
reseamble reaching movements that are often required for daily activities.
On the contrary, Curvilinear trajectories represent a more challenging task
which causes the subjects to follow the ideal path less precisely. As men-
tioned above, this results in higher kinematic error meaning that the cor-
rective force provided by the tunnel controller needs to be activated more

frequently.

Moving to MS, the mean number of extracted synergies was 6+1 regardless
of the type of exercise (Radial or Curvilinear) and the exercise mode (Free or
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FIGURE 5.15: A graphical summary of the kinematic error for
the three exercises both in Free and Assisted modes.

Assisted). On these basis, it was decided to consider 6 synergies for all par-
ticipants so that comparison can be carried out more directly. An example of
matching between paired synergies of the Free and Assisted datasets is re-
ported in Figure 5.17. After that, the mean distributions of synergy matching
scores for each subject can be quantified. Even though statistical differences
can be found in this sense among subjects, the same cannot be said when

comparing between the two types of exercises.

Overall, results are in accordance with previous findings, showing that as-
sistance allows improving task performance (i.e., reducing errors in respect
to ideal trajectories), but only alters the spatial structure of muscle synergies
in a limited way. These findings support the employment of robotic devices
for rehabilitation. In fact, the robotic intervention could, in principle, alter
the motor control strategy adopted by the subject, acting as an external per-
turbation, despite achieving a reduced kinematic error. Verifying that robotic
assistance is not disrupting the muscular synergies seems instead to suggest
that assist-as-needed paradigms, where robot intervention comes into play
only when error overpasses a certain threshold, succeed in letting the user

experiment motor learning in a natural way.
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Biomechanical assessment and ergonomics.

Main take-aways:

The need for a thorough biomechanical assessment of the user in pro-
duction environments is highlighted, both to mitigate physical fatigue
and pain instances and to provide better task ergonomics. Overall,
substantial differences exist between studies carried out in labs and
those performed in real working environments. Therefore, a push to-
wards the translation of results in industry is needed to provide actual

benefits to all the involved stakeholders.

The use of non-invasive techniques is to be preferred over other meth-
ods, which are suitable only for lab-based controlled studies, both to
minimize setup times and to provide a more natural interaction ex-
perience. Marker-less systems, such as the Microsoft Azure Kinect
cameras, are validated as a reliable option since they can provide mea-
sures that correlate well with the gold standards if particular attention
is posed to possible occlusions.

As a notable example, the Azure Kinect sensors are employed within
a robotic collaborative assembly task and used as input for the gener-
alized human-driven control architecture. This way, user preferences
and ergonomics can be leveraged simultaneously to personalize the
robot collaborative pose in real-time.

The importance of understanding the effect of robotics on the biome-
chanics of an interacting user is even more evident when considering a
scenario of neuromotor rehabilitation. As a starting point, it is demon-
strated that the introduction of robotic assistance allows improving
exercise performance, with only a limited alteration of the spatial

structure of muscular synergies.
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5.2 Gaze behavior analysis and exploitation

One of the crucial aspects of designing a human-robot collaborative (HRC)
production system is the tuning of the assigned workload since it can sig-
nificantly impact the operator’s well-being. For example, a high workload
is associated with distress, high blood pressure, and other indicators of low
well-being (Ilies, Dimotakis, and De Pater, 2010). On the other hand, bore-
dom at work leads to distress and counterproductive work behavior (Hooff
and Hooft, 2014). Both this scenarios are possible when working together
with an automatic system which is intrinsically blind to how the operator
subjectively perceives the workload throughout his/her shift. Due to these
considerations, it is important to adapt the production rhythm to the level
of productivity of the operators. Another aspect greatly impacting the well-
being of operators is the experience of social isolation when working inside a
robotic productive work cell where the usual human colleague is substituted
by an automatic system. In non-industrial settings, for instance in hospitals
or elderly care, studies show that specifically designed robotic solutions can
be effective in reducing social isolation (Sarabia et al., 2018). Extending this
concept to the industrial context, a cobot capable of interacting with the op-
erator in a natural and social manner may be effective in reducing social iso-
lation. To achieve both goals, human-robot collaboration strategies should
be inspired by everyday human-human interactions, which rely on a vari-
ety of perceptual cues (Bull and Connelly, 1985; Argyle, Cook, and Cramer,
1994; Hadar et al., 1983). For instance, individuals instinctively direct their
gaze towards their intended collaborators before initiating collaborative ac-
tivities (Cary, 1978). If such behavior can be elicited during interactions with
cobots, gaze direction can serve as a natural cue to communicate the intention
to collaborate and therefore help in the automatic adaptation of the produc-

tion rhythm.

The next sections address exactly these topics. First, the development of a
vision model capable of distinguishing human gaze direction towards spe-
cific areas of interest is presented in Section 5.2.1. Then, in Section 5.2.2 the
same model is applied to an HRI assembly scenario and evaluated in terms
of objective performance and subjective participant satisfaction. Finally, Sec-
tion 5.2.3 is dedicated to a second vision model for action recognition that
can complement the information inferred though gaze behavior analysis to

mitigate situations of uncertainty.



5.2. Gaze behavior analysis and exploitation 107

5.2.1 Gaze-based attention recognition for human-robot col-

laboration

Attention recognition is a key factor in improving human-robot collabora-
tion. Previous studies (Saran et al., 2018; Tayibnapis, Choi, and Kwon, 2018;
Huang and Mutlu, 2016) have proposed camera-based solutions to identify
the area/object that has the user’s attention. A gap in the validation of these
systems stems from the guided gaze behaviors in the setup. The setup typ-
ically involves a stationary participant (sitting or standing) who is asked to
gaze at a labeled area. This heavily reduces variations in viewing angle, head
poses, etc. Even in their driver attention use case, where the user is expected
to be seated, Ahlstrom, Kircher, and Kircher, 2013 point out that achieving
"true distraction" in an artificial setting is difficult. Instead, leveraging the
experimental setup presented in Section 4.1, an attention recognition model
could be evaluated using videos from a human-robot collaboration task that
resembles an industrial assembly. In fact, the literature highlights a prefer-
ence for testing such models in a full-fledged setup than a well-controlled
setting. Moreover, the chosen setup provides multiple opportunities for the
cobot to adapt its behavior depending on the operator’s attention, which
can improve the collaboration experience and reduce psychological strain.
Here, an overview of how the gaze-based attention detection model is real-
ized and the related results on robustness and performance are reported, but

the reader can refer to Prajod et al., 2023 for additional details.

Material and methods

In order to train and test the proposed gaze-based attention recognition model,
the collaborative assembly scenario described in Section 4.1 is exploited. A
simple pilot of the setup and of the assembly task is used to get a rough
estimation of the duration of a single production cycle and of the time syn-
chronization with the cobot. Generally, the complete cycle takes around 60-
70 seconds with the operator finishing first and waiting for the cobot for
around 10-15 seconds before tackling the collaborative assembly of the two
sub-assemblies. The assembly is shared equally between the cobot and hu-
man operator, making this setup a level 3 (highest level) collaboration ac-
cording to Christiernin’s categorization (Christiernin, 2017). With the advent
of Industry 4.0, this level of collaboration is becoming more common in the
manufacturing process. Thus, this setup will allow for effective exploration
on how the collaborative experience of the operator can be improved.
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While piloting the setup, it was observed that there exist two key areas that
the operator pays attention to for an extended period of time: the cobot and
the work table. It is also possible that the operator gets distracted when
working for long hours. So, three classes of attention are defined based on
the gaze of the operator: attention on the cobot, attention on the table or dis-
tracted (looking in some other direction), as represented in Figure 5.18. It
is a reasonable heuristic that if the operator’s attention is on the table, they
are working on the sub-assembly. Similarly, if they are looking at the robot,
they are plausibly waiting for the robot to bring its sub-assembly. Now, two
scenarios can take place. If the cobot assembles faster and visibly waits for
the operator, the operator might feel pressured to speed up in order to syn-
chronize with the cobot. So, if the operator is still assembling (attention to
the table), the robot should wait inconspicuously or proceed to assemble the
next part till the operator is ready. On the other hand, if the operator is faster
and is waiting for the cobot (look at the cobot), then the cobot should increase
its pace to avoid boredom. The ultimate goal is to enable the cobot to adapt
its behavior in response to the operator’s social and affective cues (e.g. gaze).

FIGURE 5.18: From left to right the three classes: attention to
the cobot (while waiting), attention to the table (while assem-
bling) or distracted (while waiting).

As a first step towards this goal, a gaze-based attention recognition model
should be trained to detect the area the user is currently focusing on. To do
that, a transfer learning approach is leveraged. Transfer learning involves
using the parameters learned for task A to train a related task B. Since the
attention classification proposed here is based on the gaze of the operator,
gaze estimation is an ideal source task. For this purpose, the ETH-XGaze
dataset (Zhang et al., 2020) is perfect as it contains over a million high-resolution
images collected from 110 participants varying in gender, age, ethnicity, gaze
angles, head poses and illumination. Using this dataset, a gaze estimation
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model is trained using the VGG16 (Simonyan and Zisserman, 2014) neural
network architecture pre-trained on ImageNet (Russakovsky et al., 2015).
Then, as mentioned, a transfer learning technique is exploited by re-using
the weights learned by the gaze estimation model and freezing the convo-
lutional layers, which are not modified anymore in the following training
steps. Instead, the prediction layer is modified to classify the input image
into three classes (cobot, table, and distracted). According to this classes, a
second custom dataset (Attention Areas dataset) is produced. Always within
the experimental setup presented in Section 4.1, a total of 8 participants are
asked to stand in front of the Logitech camera and to look either towards the
cobot, the work table, or anywhere else, with different configurations of their
head orientation and gaze direction. For each of the three conditions, 30 pic-
tures (1920 x 1080) per person are collected and labeled accounting for a total
of 720 images. The Attention Areas dataset is then used for the final train-
ing of the model, making it possible to automatically map the gaze direction
upon the predefined areas of interest.

Evaluation

In order to explore the robustness of the obtained model during human-robot
collaborative tasks, a video dataset (HRI Gaze dataset) of participants working
on the collaborative task described in Section 4.1.2 is collected and annotated.
A total of 8 adult healthy participants (5F and 3M, age: 18-30 years) are asked
to work as operators on the task for 3.5 hours a day, for 5 consecutive days,
thus simulating the experience of a week of work. In order to obtain a natu-
ralistic human-robot collaboration dataset, no guidance with respect to their
gaze behavior is given to the participants. Three sessions of approximately 10
minutes each are recorded (1280 x 720, 25f ps) during the first workday (be-
ginning, middle, and end of the workday). Likewise, three additional videos
are acquired during the last workday of the experiment. With this approach,
one hour of videos for each participant, for a total of 8 hours of recording, are

available to test and validate the gaze-based attention recognition model.

With reference to Figure 5.19, three main phases of the assembly task can be
identified: gathering parts, independent assembly, and collaborative joining.
Moreover, by design the operator has to wait between the end of the indepen-
dent assembly and beginning of the the joint action with the cobot. During

this waiting phase, it is observed that the operator either looks at the cobot
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FIGURE 5.19: From left to right the three main task phases:

the operator gathers the parts, independently works on his/her

sub-assembly, and finally collaborates with the cobot to finish
the product.

or in a random direction. With this distinction, the collected videos are anno-
tated by indicating the activity the operator is doing. From the videos, sets of
labeled images are extracted by removing the ones where face detection fails
(blurry because of movement or covered by objects in the field of view) or
where the eyes are not clearly visible, resulting in a test set with 833 images
of attention to cobot, 940 images of attention on the table, and 962 images of

distraction.

Results

Leveraging the labeled HRI Gaze dataset, the performance evaluation of the
gaze-based attention recognition model yields a satisfactory result, with an
F1 score of approximately 82%. With reference to the confusion matrix re-
ported in Figure 5.20, it is clear that the main contributor to the performance
loss is the "distraction" class, which is often misclassified as "attention to the
work table". Further inspecting this aspect by manually checking the mis-
classified images, it is clear that during many instances of the waiting phase
operators are looking towards the table because distracted by something in
that direction and not because they are assembling parts. Examples of this
behavior are reported in Figure 5.21.

To conclude, the performance of the developed model is satisfactory and
robust for the tested experimental setup. However, it could be further im-
proved by incorporating more informative data: the output of an additional
action recognition model based on the dataset presented below in Section 5.2.3

could, for instance, mitigate instances of uncertainty.



5.2. Gaze behavior analysis and exploitation 111

Distracted

Table

True Classes

Cobot

Distr;xcted Tatl)le Cobot

Predicted Classes

FIGURE 5.20: Confusion matrix for the evaluation of the gaze-
based attention recognition model.

FIGURE 5.21: Examples of misclassified distraction images.

5.2.2 Gaze detection as a social cue to initiate natural human-

robot collaboration in an assembly task

Leveraging HHI patterns to adapt the behavior of a collaborative robot holds
promise to the reconstruction of social experiences akin to working with a
human colleague within the working environment. As mentioned, gaze is
a perceptual cue often present in this kind of scenarios: individuals instinc-
tively direct their gaze towards their intended collaborators before initiating
collaborative activities. Therefore, the gaze-based action recognition model
developed and evaluated in Section 5.2.1, can serve as a starting point for an
adaptive collaborative workcell capable of tuning the workload using natural
interaction strategies designed to improve the operator’s experience. Using
the setup introduced in Section 4.1, two dedicated experimental activities are
carried out. Here, a summary of the two experiments and their results is re-
ported, but the reader can refer to Lavit Nicora et al., 2024 for further details.
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Experiment 1

The goal of this first experiment is to analyze the natural behavior of users
directly collaborating with a cobot on an assembly task and in particular to
understand if gaze towards the cobot can serve as a natural cue to initiate

joint action.

For this purpose, a total of 37 adult volunteers (29M and 8F) ranging from
18 to 48 years old (mean=29.03, SD=7.08) have been recruited. Each partic-
ipant took part in a 15 minutes video-taped experimental session, carefully
timed to ensure an adequate number of assembly cycles (approximately 15
to 20 complete products) enabling a comprehensive analysis of their recur-
ring gaze behavior. With reference to the task presented in Section 4.1.2, each
participant had to assemble Subp while the robot hovered with the detection
camera over the pre-assembled Sub, as if it was scanning for ready-to-pick
sub-assemblies. As the volunteer’s task got close to completion, a researcher
acting as Wizard-of-Oz pressed a button on the laptop to trigger the robot.
As a response, the robot smoothly interrupted the ongoing scanning motion,
moved towards one of the sub-assemblies, picked it up, and brought it in
front of the user at a convenient angle for the final joining. This iterative
process continued throughout the 15-minutes experimental session, regard-
less of the number of completed gearboxes. To ensure a smooth workflow,
ten pre-assembled sub-assemblies were initially placed on the cobot’s table.
The researcher restocked the sub-assemblies as necessary. Importantly, par-
ticipants were unaware of the trigger given by the researcher to prevent any
potential biases in their behavior during the interaction with the cobot. Also,
the participants were informed of being filmed for ethical reasons but the aim
of studying their gaze behavior was revealed only at the end of the experi-

ment, again to avoid any possible bias.

The collected videos are given as input to the gaze-based attention recog-
nition model presented in Section 5.2.1 in order to label the recordings on
the basis of three classes: attention towards the cobot, attention towards the
worktable or distraction. Additionally, manual annotation is required to se-
lect the frame where the cobot enters the camera field of view for the col-
laborative joining phase, considered the start of the joint activity for each
assembly cycle. An example of the output of this procedure is reported in
Figure 5.22.

Now, the gaze pattern for each participant is analyzed in two steps. First,
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FIGURE 5.22: A snapshot showing the predictions from the at-
tention recognition model (top track), and the annotated joint
activity start points (bottom track, red lines).

the gazes towards the cobot within 15 seconds prior to the joint activity are
computed (pGazeJoint). These 15 seconds are chosen because, after the WoZ
trigger, the cobot takes around that time to move over the part, grab it, pick
it up, and bring it to the collaborative joining position. This step helps to
determine how often the joint activity is preceded by gazing towards the
cobot, which therefore represents a cue to initiate the activity. Second, gazes
towards the cobot outside the above-mentioned 15 seconds and outside the
joint activity itself are also computed (pUnexpectedGaze). This step allows to
make sure that the gaze pattern is prominent around the time of the joint

activity, and not a frequent behavior irrespective of the activity.

Figure 5.23 visualizes the pGazeJoint and pUnexpectedGaze values from the 37
participants as box-plots. The mean pGazeJoint value is 83.74, i.e., on average,
83.74% of all collaborative joining instances were preceded by a gaze towards
the cobot. Similarly, the mean pUnexpectedGaze is 9.67%, which implies that
only few gazes at the cobot were outside the expected time frame. In other
words, looking at the cobot occurs predominantly around the time of the

collaborative joining activity.

These results indicate that people actually use gaze as a social cue preceding
joint activity even when interacting with a cobot. Therefore, the second ex-

perimental activity can build on this outcome to implement and evaluate an
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FIGURE 5.23: Box-plots computed from 37 participants repre-
senting pGazeJoint values on the left and pUnexpectedGaze val-
ues on the right.

automatic gaze-based trigger system substituting the role of the Wizard-of-
Oz. Moreover, the data related to the unexpected gazes further supports the
need for additional information to distinguish between uncertain scenarios.

This need is preliminarily addressed in Section 5.2.3.

Experiment 2

The goal of this second experiment is to pilot the full integration of an aug-
mented collaborative cell where joint action is automatically triggered on the
basis of the detected gaze behavior of the user.

For this purpose, the same protocol described for Experiment 1 is used but,
instead of having a Wizard triggering the joint action, the triggering pro-
cess is automated thanks to the attention recognition model presented in
Section 5.2.1. In practice, the robot automatically moves towards the partici-
pant to perform the joint action only if the latter looks towards the robot for
longer than a threshold tuned to avoid slowing down the collaboration flow
but also to avoid unwanted activations due to quick glances. The actual im-
plementation of the automated system is based on the control architecture in-
troduced in Section 3.2. Figure 5.24 highlights the modules that are involved
for this specific experimental campaign. A total of 10 volunteers, with a bal-
anced gender distribution (5M and 5F) and an age range between 18 and
30 (mean=23.8, SD=5.14), have been recruited for this second experiment.
Again, none of the participants has prior experience with the robot and they
are not told about the gaze-based automatic triggering system. In order to
keep the experiment as short as possible but still make sure to collect enough
experience samples, no fixed duration is set. Instead, each experimental con-
dition lasts for the time required to assemble 10 complete gearboxes. At the
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end of the sessions, the participants are asked to report their impressions on

the system and their responses are transcribed for post-analysis.
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FIGURE 5.24: A highlight of the modules of the proposed con-
trol architecture involved in the automated gaze-based trigger
system.

To evaluate the system, each iteration is considered "successful" if the par-
ticipant is able to trigger the joint action at the expected moment (right be-
fore/after finishing his/her part) and within a reasonable time (maximum of
5s after finishing his/her sub-assembly, inspired by the threshold used by El-
dardeer, Sandini, and Rea, 2020). Once again, manual annotation is required
to select the frames corresponding to the moment when the participant is
done with his/her part of the assembly and the moment when the cobot re-
ceives the trigger and starts moving towards its subassembly. Thanks to this
annotation step, it is possible to compute the amount of time passed between
these two instances for each participant and for each assembly cycle. As a
result, the system achieves a success rate of 88.64%. Interestingly, for all the
iterations that are not considered successful, the participants actually looked
at the robot and triggered the joint action but did that after the 5s threshold
set for the analysis. Also, as shown in Figure 5.25, it is important to notice
that the system scores higher than what is observed during Experiment 1
(83.74% of joining instances preceded by a gaze towards the robot) meaning
that the full integration of the system can be considered successful.

Moreover, some before-activations (i.e., the robot receiving the trigger before
the end of the operator’s assembly task) are observed. Overall, this situa-
tion occurrs 19.21% of the times with an average anticipation time of 2.19s

(left plot in Figure 5.26). A possible explanation for this result is that, over
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FIGURE 5.25: A comparison between the percentage of gazes
preceding collaboration detected during the two experiments.

time, some of the volunteers may have guessed the role of their gaze in the
process and started looking towards the robot before finishing their part in
order to reduce the waiting times. A comparison between the average per-
centage of before activations of the group of participants who, at the end of
the experiment, stated that they understood the gaze-based mechanism (be-
fore activations: 43.06%) and the others (before activations: 2.86%) seems to

confirm the hypothesis (right plot in Figure 5.26).

Activation timing Before activations
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FIGURE 5.26: On the left, the distribution of timings for the

detected gaze behaviors. On the right, the percentage of before

activations clustered between those who understood the trigger
system and those who didn't.

Following up on the results obtained with the first experiment, this second
research activity confirms that the operator’s gaze information can in fact be
used as a natural cue to trigger joint action with a cobot. In general, most
of the participants reported a pleasant and natural interaction experience,
strengthening the hypothesis that the introduction of human-human interac-

tion mechanisms within HRI scenarios can improve user experience.
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5.2.3 A dataset on human-cobot collaboration for action recog-

nition in manufacturing assembly

Sections 5.2.1 and 5.2.2 highlighted the need for additional information to
clarify situations of uncertainty where the use of gaze is not sufficient to infer
the actual state of the user and of the on-going task. In fact, in manufactur-
ing processes human action recognition and segmentation are crucial for an
effective human-robot collaboration. The accurate recognition and segmen-
tation of the actions, including the timing of when the actions commence and
conclude, is essential for the cobot to understand and interpret the intended
actions of the human collaborator, to synchronize its actions, respond in real-
time, and ensure smooth cooperation with the human collaborator (Cicirelli
et al., 2015; Maselli et al., 2023). The information derived from skeleton joints
enables researchers to capture temporal variations in body movements and
offers flexibility in focusing on either the entire body or specific body parts
allowing for a more comprehensive representation of the action being recog-
nized and bypassing eventual privacy concern (Romeo et al., 2022). Litera-
ture is rich in RGB-D datasets for human action recognition (Lopes, Souza,
and Pedrini, 2022) prevalently acquired in indoor/outdoor unconstrained
settings. They are mostly related to daily actions, two-person interactions,
or gaming actions. Few papers present assembly action datasets mostly ac-
quired from the worker perspective (Ragusa et al., 2021; Sener et al., 2022).
Moreover, few vision-based datasets exist on human-cobot cooperation for
object assembly in industrial manufacturing and they all have some limita-
tion (e.g., low level of collaboration, no depth information). For this reasons,
the MindBot project consortium decided to put together a new and more
complete dataset, called HARMA, as foundation for developing and testing
advanced action recognition/segmentation systems in the context of HRI.
Here, the most relevant information on how the dataset is built and tested is

reported, but the reader can refer to Romeo et al., 2024 for additional details.

Dataset acquisition

The HARMA dataset is built leveraging on the setup presented in Section 4.1.1
and the collaborative task explained in Section 4.1.2. A total of 27 participants
have been recruited and recorded by the two Kinect cameras present in the
setup while working on the assembly (see Figure 5.27). Each subject per-
forms the task multiple times, resulting in a total of 240 task executions in
the dataset. By design, the product to be assembled and its components offer
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some flexibility to the user in the order of assembly and in the manipulation
strategy (e.g., using both hands or only the dominant hand). Therefore, in or-
der to build a dataset representative of the variability in the way an operator
may approach the task, the participants are instructed to proceed with the
assembly according to their preference by freely choosing how to perform
each step.

FIGURE 5.27: A participant working on the task as seen by the
two Kinect Azure cameras.

After the acquisition, manual data annotation is required to segment and
label each action in the collected videos. The start frame of each action is
determined when the subject begins to move the arm toward the component
to be grasped. The end frame, instead, is set when the subject releases the
component. As a result, total of 2885 actions have been annotated, includ-
ing the “don’t care” action (annotated 245 times overall) to classify eventual
pauses between action transitions or to unexpected events such as the loss of
a component during the assembly.

Dataset analysis and validation

The first analysis that can be done on the resulting HARMA dataset is an
exploration of its temporal characteristics. Videos are recorded at 30 frames
per second (fps) and each action has a different duration in terms of number
of frames. Moreover, subjects perform the task at their own comfortable and
self-selected speed, so there is a high temporal variance between different
subjects, as clearly visible in Figure 5.28.

An additional analysis of the spatial movement of skeletal joints during the
execution of the actions can be helpful in getting information about the main
direction and spatial displacement of the actions. As a reference, both wrists
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FIGURE 5.28: A comparison between the duration of each ac-
tion as performed by two different subjects.

of all operators are considered as they are mainly involved in the action exe-
cution. Figure 5.29 shows the standard deviation of the coordinates (X, Y, Z)
of the right and left wrist joints for each action in all videos. As represented,
each action has its own spatial characteristics. However, it must be consid-
ered that this analysis may be influenced by how the operators performed
the task since no precise rules were imposed in order to achieve maximum

variability of the dataset.

Right Wrist Joint Left Wrist Joint
250 T T T T T T T 300
- X [ I
M I v
[k 2s0 | |2

200

o
=]
T
n
o
(=3

@
=]

=
=]
Standard Deviation

Standard Deviation

=]
=]

50
50 -

CA A

FIGURE 5.29: A comparison between the duration of each ac-
tion as performed by two different subjects.

A final validation is provided through a practical application of the dataset,
by testing action recognition and segmentation methods on it. In particular,
the well-known ASFormer model (Yi, Wen, and Jiang, 2021) is used as refer-
ence since it is one of the first transformer-based architectures for temporal
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action segmentation. RGB and skeletal data are analyzed for three cases:
data acquired from the frontal and lateral cameras, respectively, and com-
bining the data from both cameras. The HARMA dataset is split into non-
overlapping training and testing sets by considering the 70% of videos for
training and the remaining 30% for testing ensuring that videos of the same
operator do not appear in both training and testing sets. Figure 5.30 shows
the best obtained result, with 97.44% (RGB) and 95.95% (skeleton) accuracy

rates.
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FIGURE 5.30: The best segmentation result obtained for the
tested videos of the dataset.

High-performance rates are obtained when using RGB features while Perfor-
mance worsen in the case of skeletal data. In general, RGB data provides
rich visual information about the scene but typically requires higher storage
space and computational complexity compared to skeleton-based data rep-
resentation. On the other hand, by using skeleton data is possible to abstract
away detailed appearance information and focus solely on the spatial config-
uration of body joints and movements. Therefore, it’s essential to carefully
find a good trade-off and select the data modality that best aligns with the

goals and constraints of the working context.
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Gaze behavior analysis and exploitation.

Main take-aways:

The reconstruction of behavioral patterns typical of human-human in-
teractions is proposed as a promising approach to provide positive HRI
experiences. For instance, gaze can serve as a social cue to communi-
cate the intention to collaborate, useful to promote a natural interac-
tion and a personalized task speed.

First, a gaze-based attention recognition model is trained using trans-
fer learning techniques. The model achieves a satisfactory 82% F1
score, but some sources of uncertainty are also identified. As a result,
this new tool is robust for the considered experimental setup, but it
could also benefit from additional information regarding the on-going

actions.

Then, the developed model is introduced in the generalized human-
driven control architecture and leveraged for exploratory research ac-
tivities. A first analysis reveals that around 84% of the collaborative
instances are preceded by a gaze towards the robot, meaning that peo-
ple actually use gaze as a social cue even when interacting with
machines. Once again, some situations of uncertainty are identified,
strengthening the need for the integration of action-related informa-
tion. Secondly, gaze-based attention recognition is proven to be suc-
cessful for the automatic triggering of robot collaboration, achieving

a success rate of around 89%.

In order to complete the information that can be inferred through gaze
behavior analysis, a new dataset is produced as foundation for de-
veloping and testing action recognition/segmentation systems. The
HARMA dataset is therefore collected, validated and made available

to the community for future advancements in the field.
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5.3 Psychology-in-the-loop: flow and locus of con-

trol

Up to now, the exploitation of biomechanical and social signals have been
explored and successfully introduced in the generalized human-driven ar-
chitecture. However, in order to gain a complete and heterogeneous descrip-
tion of the user’s experience of interaction, psychological measures cannot
be neglected. With reference to Section 3.1, these kind of signals can be heav-
ily influenced by the mentioned social filter and it is therefore important to
include strategies of psychological inference based on quantitative and ob-
jective data as well as subjective measures. Regarding the latter, data collec-
tion approaches such as questionnaires and interviews cannot, by nature, be
collected in real-time and leveraged for the adaptation of the behavior of the
robot as the experience of interaction unfolds. However, they still retain great
importance as they can be used for the validation of objectively inferred mea-
sures and for a posteriori evaluation of the acceptability of the system. With
this goal in mind, the following sections attempt to address these topics by
focusing specifically on the well-established concepts of Flow and Locus of
Control.

5.3.1 Flow in human-robot collaboration: multimodal analy-
sis and perceived challenge detection in industrial sce-

narios

The concept of Flow is often described as a state of optimal experience. It
is characterized by high levels of engagement, motivation, a sense of con-
trol, and complete immersion in an activity (Csikszentmihalyi, 2000). This
state emerges when the challenges presented by the task match the indi-
vidual’s skills and abilities. While extensive research (Nah et al., 2014; Sta-
matelopoulou et al., 2018; Santos et al., 2018; Pearce, 2005) has been con-
ducted on the concept of Flow across various domains, such as sports, ed-
ucation, and gaming, its application in industrial settings remains relatively
unexplored. Considering the significance of Flow in optimizing performance
and well-being at work (Csikszentmihalhi, 2020; Csikszentmihalyi and LeFevre,
1989), it is imperative to bridge this research gap and explore the Flow expe-
rience in industrial environments (Fullagar, Delle Fave, and Van Krevelen,
2018; Beyrodt et al., 2023).
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FIGURE 5.31: A simplified model of Flow mapped over chal-
lenges and skills (on the left) or over the dimensions of valence,
arousal and dominance (on the right).

Assembly tasks in industrial settings typically involve repetitive and fixed
procedures. As a result, workers gradually acquire the necessary skills to
proficiently perform the task, leading to minimal variations in their individ-
ual skill levels over time. In such cases, the primary factor that influences the
experience of Flow becomes the perceived level of challenge presented by the
task itself (see Figure 5.31). This unique aspect of industrial tasks has led the
project consortium to investigate how different perceived challenge levels
evoke distinct user responses. Recognizing that Flow emerges when there is
a balance between perceived challenge and skill, the goal is to adapt the task
by adjusting the challenge level to facilitate Flow among cobot workers. For
this purpose, the MindBot setup presented in Section 4.1 can be leveraged. In
practice, by adjusting the production rate of the cobot, it is possible to obtain
three distinct levels of challenge corresponding to the three commonly stud-
ied states in Flow research (Boredom, Flow, and Anxiety). Here, a summary
of the experimental campaign and of the most relevant outcomes is reported,

but the reader can refer to Prajod et al., 2024 for additional information.

Materials and methods

Once again, the workcell described in Section 4.1.1 and the collaborative as-
sembly task presented in Section 4.1.2 are used. In order to have more flex-
ibility in the production rate of the cobot, participants are asked to work on
Subp while a number of pre-assembled copies of Sub 4 are placed on the cobot
table, as if they were produced by a secondary assembly line (not reproduced
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in this lab-based scenario). At a certain point during each production cycle,
the cobot brings a pre-assembled part to the participant and holds it in a
convenient position for the final joint activity of the production cycle (gears
meshing). By simply tuning the time it takes for the robot to bring Sub,4 to
the participants, it is possible to change the overall production rate. With this
approach, three distinct experimental conditions can be realized based on the
production rate of the participant and the cobot:

1. Slow condition: The cobot performs a scanning motion over all the sub-
assemblies using the camera on its wrist before picking one of them up
and bringing it to the user. Overall, it takes around 55 seconds from
the start of each production cycle for the cobot to get to the participant
for the joint activity. The Slow condition represents a low level of chal-
lenge for the participants since they have plenty of time to finish their
part of the assembly before the cobot comes for the joint activity. This
leads to the participant waiting for the cobot and plausible experience

of Boredom.

2. Fast condition: The cobot does not perform any scanning motion, it
moves straight to the next sub-assembly to pick it up and bring it to
the participant. Overall, it takes around 15 seconds from the start of
each production cycle for the robot to get to the participant for the joint
activity. The Fast condition is expected to be perceived by the partici-
pants as a high level of challenge since they do not have enough time to
assemble before the arrival of the cobot. This leads to the cobot waiting
for the participant and could elicit Anxiety in the participants.

3. Adaptive condition: The cobot performs the previously mentioned scan-
ning motion until a researcher, acting as a Wizard of Oz, triggers it to
bring one sub-assembly to the participant. In this case, there is no fixed
timing for the cobot since the wizard triggers the cobot whenever the
participant is close to finishing his/her part of the assembly. The Adap-
tive condition is designed to be the optimal level of challenge since the
production rate of the cobot is tuned according to the participant’s per-

formance.

Three types of data are collected to evaluate how the participants respond to
the administered experimental conditions. Upper-body videos are collected
using the Logitech C920 Pro HD webcam placed in front of the participant
(1920 x 1080, 25f ps). Additionally, ECG data is collected at 130Hz by asking
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participants to wear a Polar H10 chest band. Finally, the NASA-TLX (Hart
and Staveland, 1988) questionnaire is administered on paper at the end of

each session.
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FIGURE 5.32: The steps making up the experimental protocol.

A total of 37 adult volunteers (8F and 29M) aged 18-48 years (mean = 29.03,
SD = 7.08) have been recruited for the study. The within-subjects protocol de-
sign represented in Figure 5.32 is chosen. Every participant is administered
all three experimental conditions with 5 minutes of break between consecu-
tive sessions. Each condition lasts 15 minutes during which the participant
keeps assembling gearboxes one after the other. The order in which the three
conditions are administered is chosen randomly, in order to average out any
side effect that may be caused by the sequence. During the break, the partic-
ipants fill out the NASA-TLX questionnaire about the task load and experi-

ence pertaining to the completed session.
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FIGURE 5.33: A highlight of the modules of the generalized
human-driven architecture in play for this experimental activ-

ity.

The collected videos are used for emotion estimation purposes using a dedi-
cated deep-learning model trained on the widely used AffectNet dataset (Mol-
lahosseini, Hassani, and Mahoor, 2019). The face region is identified and
cropped using MediaPipe Blaze face detection model (Bazarevsky et al., 2019).
This represents the input for the trained model, capable of classifying images
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into seven discrete emotion classes: Neutral, Happy, Sad, Surprise, Fear, Dis-
gust, and Anger, together with the two continuous values of Valence and
Arousal. A point in favor of the reliability of this model is provided by Pra-
jod, Huber, and André, 2022 and Prajod et al., 2021, where the authors use
explainable AI heat maps to represent the results of the training: the model
actually learns the so-called "facial action units" which are the same features
used in systematic evaluation of facial expressions by human observers. That
being said, there is definitely a need for more rigorous validation, currently
hindered by the lack of a standard data labeling approach, which limits the
level of reliability of the obtained results. For this reason, data obtained
from the emotion estimation module will only be used to complement other
sources of information with the goal of gaining a more comprehensive view

of the status of the user.

Additionally, ECG data is pre-processed to obtain a cleaner signal and then
leveraged to extract HRV features. All of these procedures have been carried
out thanks to the use of SSI, which can be directly interfaced with the ROS
network, as explained in Section 4.1.3. As a result, the whole system is built
within the generalized human-driven architecture proposed in Section 3.2.
Figure 5.33 highlights the specific modules of the architecture in play for this
experimental campaign.

Analysis of collected data

A first analysis can be done on the responses of the participants to the NASA-
TLX questionnaire. The mean response values (on a 20-points scale) for each
condition are reported in Table 5.5.

TABLE 5.5: The average responses to the NASA-TLX question-
naires after each condition

Category Slow Fast Adaptive
Mental demand 481 6.35 4.95
Physical demand 459 6.84 5.05
Temporal demand | 4.73 10.54 6.08

Effort 5.16 7.76 5.65
Performance 7.30 6.81 6.81
Frustration 5.35 5.35 4.27

The Fast condition resulted in the highest Effort, Mental, Physical, and Tem-
poral demands. The Slow condition scored lowest in these categories. If
such a difference is expected in Temporal and Physical demands due to the
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design of the experimental conditions, it is interesting to see that the cobot
production rate affected other categories of task load. Moreover, although
the number of assemblies was the highest in the Fast condition and lowest
in the Slow condition, the perceived Performance was highest for the Slow
condition. Another notable observation is that the participants experienced

lower frustration in the Adaptive condition.

Moving to the analysis of the collected emotion indicators, primary focus
is given to the valence and arousal indexes, as continuous values provide a
more dynamic estimation of emotions. Averaging over all participants, the
mean valence levels (Slow: -0.025, Fast: -0.018, Adaptive: -0.023) are lowest
for the Slow condition and highest for the Fast condition. The mean arousal
values (Slow: 0.053, Fast: 0.074, Adaptive: 0.071) also follow a similar trend.
However, from a statistical point of view, no significant difference in mean
valence between conditions is detected. On the other hand, the Slow con-
dition differed significantly in arousal from both the Fast (p = 0.012) and
the Adaptive (p = 0.015) conditions, while no evidence of a significant dif-
ference in mean arousal between the Fast and the Adaptive conditions (p =
0.884) is found. However, the mean arousal values in all three conditions
are in the range [0, 0.1]. These values are typically associated with a neutral
emotional state, meaning that facial expressions are not a good indicator of

the perceived challenge level.

Lastly, the extracted HR and HRV features are analyzed. To mitigate for in-
dividual differences, data is normalized and averaged to obtain the plot re-
ported in Figure 5.34. In line with the trends of emotion estimation, the HR
appears to be highest in the Fast condition (mean = 0.554), followed by the
Adaptive condition (mean = 0.485), and the lowest in the Slow condition
(mean = 0.402). A significant difference between the Slow condition and the
other two conditions (Fast p < 0.001, Adaptive p = 0.038) is found, while
only a trend-level difference between average heart rates of Fast and Adap-
tive conditions (p = 0.056) is detected. Beyrodt et al., 2023 observed that
when a cobot is faster than the user, s/he tends to reappraise the situation
and, over time, starts working at his/her own pace. This could be a plausible
reason for the lack of significant difference obtained between the Fast and
Adaptive conditions.

Overall, the analysis shows trends similar to the observations of other stud-
ies in the literature. As seen in Figure 5.34, HR increases with challenge level
and HRV decreases with challenge level. The Adaptive condition resulted in
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FIGURE 5.34: Box plots of normalized mean HR (left) and HRV
(right) for the three experimental conditions.

a relatively moderate HR and HRV, which is expected in a challenge-skill bal-

anced condition. Hence, HRV features could be good indicators of perceived

challenge levels during human-robot collaboration tasks.

Challenge prediction

The significance test results of heart rate variability features are promising.
On these basis, it was decided to train a simple feed-forward neural network
to predict the challenge level experienced by the participants. If such a model
can be effectively trained and validated, it could represent the basis for an au-
tomatically adaptive system on the lines of the gaze-based one described in
Section 5.2.2. In fact, Flow is usually evaluated through questionnaires and
therefore not suited for real-time tuning of automated systems. By evaluat-
ing and predicting the level of challenge as a direct translation of Flow expe-
riences, it could be possible to introduce this psychological measure within

the generalized human-driven control architecture.

Since the previous analyses repeatedly showed that no significant difference
can be found between the Fast and Adaptive conditions, it was decided to
train the model for a binary classification, discerning between the Slow con-
dition and the others only on the basis of real-time HRV data. With this
approach, the trained model achieves 0.707 in accuracy with an Fl-score of
0.661. Although this result may not be notably high for a binary classifier, the
model performs comparably to other flow detection models in literature.
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As a final note, HRV seems to be a promising indicator of the level of expe-
rienced challenge and the consequent state of flow of the participant. How-
ever, the limited number of predictable classes and the corresponding ob-
tained accuracy does not allow for an effective standalone implementation
in the proposed architecture. A possible benefit of this result could be in
the form of validation of other available measures. For instance, the well-
performing gaze-based attention recognition model presented in Sections 5.2.1
and 5.2.2 could be expanded with some rule-based instructions. In fact, val-
idation of the mentioned model highlighted difficulties in discerning real
states of distraction. A dataset for action recognition and segmentation (see
Section 5.2.3) was produced to mitigate this issue. With the same goal, this
HRV-based challenge recognition model could enhance the overall capabil-
ities of the system. An instance of distraction is often connected to a gen-
eral state of boredom for the user, and boredom is usually a consequence of
low challenge tasks. The ability to detect experiences of low challenge to-
gether with some action recognition data are therefore considered promising

in making the system even more robust.

5.3.2 Synchronizing minds and machines: insights into cog-
nitive and emotional factors in human-robot collabora-
tion

Aligning with the goals of Industry 5.0, a relevant topic is the identification
of which robot characteristics influence the emotional state and other psy-
chological variables of the subjects who interact with it.

Section 5.3.1 already highlighted the need to consider the human emotional
state in response to robot actions and features. There, the effect of different
production rates was analyzed, inferring the user’s emotional state mainly
through objective physiological measures. However, subjective measures,
collected through questionnaires, may offer further insights shedding light
on how these control parameters influence the real emotional experience of a
user interacting with the robotic device.

Additionally, among the many psychological variables in play, the so-called
Locus of Control (Loc) is of particular interest for the present project. The
LoC is the degree to which people believe they have control over events in
their lives, rather than being influenced by external forces (Rotter, 1966). It
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is a one-dimensional construct characterized by two poles, internal and ex-
ternal, placed on the extremities of a continuum. People’s attitudes are ar-
ranged along this continuum depending on how they attribute the cause of
what happens to them. Individuals with an internal Locus of Control be-
lieve events are primarily a result of their actions (e.g., work performance
depends almost entirely on their commitment and abilities). In contrast,
those with an external LoC attribute events to external factors (e.g., work
performance depends on external factors, including chance). Despite many
studies reporting that an internal LoC is often associated with good physical
health (Gale, Batty, and Deary, 2008; Arraras et al., 2002; Cobb-Clark, Kassen-
boehmer, and Schurer, 2014; Kesavayuth, Poyago-Theotoky, Zikos, et al.,
2020), it would seem that even more important is the flexibility with which
a person can adapt their thinking (external-internal) depending on the spe-
cific situational needs (Cheng et al., 2013). Regarding robotics, some authors
have highlighted that people with an internal LoC have worse usage perfor-
mance, as they struggle to leave control of the situation to an autonomous
system (Takayama et al., 2011; Acharya et al., 2018). Personal experiences,
including work experiences, can influence the Locus of Control. In particu-
lar, a change of LoC in a specific scenario when interacting /using a product,
i.e., a cobot, is referred to as the Experiential Locus of Control (ELoC) (Jang
et al., 2016). This concept is an extension of the classic Locus of Control con-
struct and refers to the effect that one experience has on the Locus of Control
relative to that specific experience.

To better understand these dynamics, a dedicated study was carried out
with the data collected during the experimental campaign described in Sec-
tion 5.3.1. Here, the main outcomes are reported, but the reader can refer
to Mondellini et al., 2024 for additional details.

Materials and methods

The setup and assembly task presented in Sections 4.1.1 and 4.1.2, respec-
tively, are leveraged once again. As mentioned, the data needed for this
particular study has been collected concurrently with the experimental cam-
paign described in Section 5.3.1. Therefore the same protocol, foreseeing
three experimental conditions with three different levels of production rate
(Slow, Fast and Adaptive), is followed (see Figure 5.32). Before the start of
the interactive experience, each participant was administered the following

questionnaires as baseline measure of their attitudes:
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e Internal Control Index (Duttweiler, 1984) (ICI). This questionnaire, ad-
ministered before the interaction with the cobot, consists of 28 items.
For each item the participant provides his/her response on a 5-point
Likert scale, where 1 corresponds to "rarely" and 5 to "usually". A high
score (maximum 140) corresponds to a high internal Locus of Control
level. The score can vary from 28 to 140.

* Negative Attitudes Towards Robots Scale (Nomura et al., 2006b). This psy-
chometric scale measures negative attitudes towards robots through 14
items divided into three subscales. S1 relates to "negative attitudes to-
ward situations of interaction with robots" (six items), S2 pertains to
"negative attitudes toward the social influence of robots" (five items),
and S3 addresses "negative attitudes toward emotions in interaction
with robots" (three items). Each item is rated on a scale from 1 to 5
(1: strongly disagree - 5: strongly agree). The score can vary from 6 to
30in S1,5 to 25in S2, and 3 to 25 in S3.

* Perceived Stress Questionnaire (PSS). This tool is designed to assess the
degree to which individuals perceive their lives as unpredictable, un-
controllable, and overloaded—key components of the stress experience.
The PSS is particularly effective for understanding how individuals ap-
praise stress with daily life challenges rather than specific events. It
includes 10 items (Cohen, Kamarck, and Mermelstein, 1983).

Moreover, between each condition, the number of completed assemblies is
annotated as an indicator of the participant’s performance together with the

following subjective measures:

* Experiental Locus of Control Questionnaire (ELoC), This questionnaire is
composed of 3 items from the "Internal Control Index" (Duttweiler,
1984), appropriately modified to evaluate the Experiential Locus of Con-
trol (Jang et al., 2016). The score can vary from 3 to 15.

* Self-Assessment Manikin (Bradley and Lang, 1994). It consists of a non-
verbal pictorial assessment technique that directly measures Valence,
Arousal, and Dominance associated with a person’s emotive reaction
to several stimuli. The participant responds on a 9-point Likert scale
for each subscale (score 1-9). The Valence scale ranges from positive
emotion (happy) to negative emotion (sad). On the Arousal scale, the
score varies from high excitement to calmness. Low scores on the Dom-

inance scale correspond to low control, and vice versa.
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® NASA Task Load Index (NASA-TLX). This multidimensional assessment
tool evaluates six key dimensions of workload: mental demand, physi-
cal demand, temporal demand, perceived performance, effort, and frus-
tration. Participants rate each dimension on a 20-point scale, capturing
the subjective experience of task load and stress (Hart and Staveland,
1988). NASA-TLX has been extensively validated and is commonly ap-
plied in ergonomics and human factors research to evaluate task dif-
ficulty and workload in various settings, particularly those involving

human-machine interactions;

* Short Stress State Questionnaire (SSSQ). This questionnaire is a concise
self-report tool designed to assess immediate stress states in perfor-
mance settings. It measures three distinct dimensions of stress: Dis-
tress, Engagement, and Worry. Each dimension captures specific psy-
chological responses to stress: Distress reflects negative emotions and
perceptions, Engagement indicates motivation and positive involve-
ment, and Worry measures cognitive interference related to concerns
or apprehensions (Helton, 2004);

e International Positive and Negative Affect Schedule short-form (I-PANAS-
SF). This tool assesses the individual’s positive and negative affect states.
Respondents rate their experience of 5 positive and 5 negative emo-
tions over a specified period, providing insight into their general affec-
tive state. This shorter version, derived from a 20-items PANAS ver-
sion (Watson, Clark, and Tellegen, 1988), allows for a quicker yet re-
liable measurement of affect without sacrificing psychometric robust-

ness (Thompson, 2007).

Analysis and results

Thanks to the rich dataset of collected subjective measures, a number of anal-
yses can be carried out. First of all, two-way Friedman ANOVA tests are

conduced to assess differences across the experimental conditions.

As expected, significant differences are found in performance (i.e., the num-
ber of assembled products) with the highest result for the Fast condition (me-
dian = 18, IQR = 4) and the lowest for the Slow condition (median = 13, IQR
= 2). In line with this result, significant differences are also found in the per-
ceived workload with the Fast condition leading to scores higher than both
the Slow and Adaptive conditions (p < .001). Interestingly, positive affects
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in the Slow condition are statistically significantly lower than both the Fast
and Adaptive conditions (p < .001), while no difference is found in terms of
negative affects. These results are summarized by the box plots depicted in
Figure 5.35.
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FIGURE 5.35: Box plots of performance (left), workload (center)
and positive affect (right) for the three experimental conditions.

Overall it can be said that, in the proposed scenario, the production rate
set for the cobot does not significantly influence users” emotional response
and engagement levels. This result is different from what was found in
Section 5.3.1. It is possible that, since the previous study mostly relied on
objective physiological measures, other factors only detected by subjective
questionnaires, such as individual differences, might play a more prominent
role than expected. This highlights the importance of subjective variability in
stress perception, which should be explored further in order to deploy effec-
tive personalized systems. Additionally, the statistical differences found for
both performance and workload seems to be connected between each other.
In fact, when participants have to be faster, more focused, and make fewer
mistakes to keep up with the cobot, they perceive the condition as physically
and cognitively more demanding. Again, subjective variability in stress per-
ception may explain why this result does not reflect also in the scores related
to the level of stress or in the NASA-TLX subscales. Finally, the statistically
lower positive affect detected for the Slow condition highlights that such sce-
nario leads participants to experience more frustration or less enjoyment, po-
tentially due to the longer wait times and lower engagement in the task. In
contrast, both the Fast and Adaptive conditions may foster higher levels of

positive emotions due to the task’s faster pacing or more engaging nature.
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After this comparison between conditions, a detailed and complete statisti-
cal analysis has been performed. Related descriptives are reported in Tables
from 5.6 to 5.10.

TABLE 5.6: Internal Reliability (Omega), Items deleted from the

scale to enhance reliability, Kolmogorov-Smirnov (K-S) test for

the distribution of scores, Median, Minimum and Maximum
Scores and Interquartile Range

| QO | Deleted Items | K-S test | Median (Min-Max) | IQR

BASELINE

4,5,7,8, 3.8
ICI 0.7 9,17,18,19 200 (2.5-4.65) 0.3
PSQ 79 1 200 1.78 (.56-3.11) 95
NARS_1 72 7,8 <0.001 2 (1-4) .88
NARS_2 734 14 021 2.5 (1-4.75) 1.13
NARS_3 .86 - 044 2.33 (1-5) 1.83
C_S (Slow)
Distress 0.9 - .001 1.63 (1-3.88) 1.13
Engagement | 0.81 - .055 3.63 (2.38-5) 94
Worry .819 15,16 <.001 1.5 (1-3.83) .83
Positive Aff | .85 - 2 3 (1.4-4.6) 1.4
Negative Aff | .75 2 <.001 1(1-3) 5
eLoC 53 1,3 069 3.25 (1.25-4.5) 1
C_F (Fast)
Distress .83 - 011 1.5 (1-4) 75
Engagement | .80 - 2 3.88 (2.5-5) 75
Worry 79 15,16 136 2 (1-4) 1.33
Positive Aff | .87 - 2 3.6 (1.8-4.8) 1
Negative Aff | .81 2 <.001 1.25 (1-3) .63
eLoC .64 1,3 262 3.5 (1.5-4.75) 1
C_A (Adaptive)
Distress .88 - <.001 1.5 (1-3.5) 5
Engagement | .83 - 171 3.88 (2.38-5) .88
Worry .83 15,16 <.001 1.67 (1-4.33) 1.42
Positive Aff | .84 - 2 3.4 (1.6-4.8) 1.1
Negative Aff | .64 2 <.001 1.25 (1-2.75) .38
eLoC .69 1,3 .038 3.5 (2-4.75) 1.25
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TABLE 5.7: Distribution, Median, Minimum and Maximum
Scores and Interquartile Range for the Baseline condition.

Phase Eﬁ Median (Min-Max) | IQR
BASELINE
Valence .003 4 (1-8) 2
Arousal <.001 7 (3-9) 2.5
Dominance | <.001 7 (3-9) 2

TABLE 5.8: Distribution, Median, Minimum and Maximum
Scores and Interquartile Range for the Slow condition.

Phase Eﬁ Median (Min-Max) | IQR
C1 (Slow)
Valence 90 4 (1-8) 2.5
Arousal <.001 7 (3-9) 3
Dominance <.001 8 (3-9) 2
Mental Workload <.001 4 (1-15) 3.5
Physical Demand <.001 4 (1-20) 3
Temporal Demand 024 4 (1-14) 6
Effort .001 4 (1-16) 55
Performance <.001 5 (1-19) 7.5
Frustration Level .003 4 (1-17) 5.5
Cognitive Workload | .198 30 (10-67) 19.5
Assemblies <.001 13 (10-15) 2

TABLE 5.9: Distribution, Median, Minimum and Maximum
Scores and Interquartile Range for the Fast condition.

Phase E-sst Median (Min-Max) | IQR

C2 (Fast)

Valence <.001 4 (2-8) 2
Arousal <.001 7 (3-9) 3
Dominance .004 7 (4-9) 2
Mental Workload 023 5 (1-15) 7
Physical Demand <.001 5 (2-16) 5
Temporal Demand | .029 12 (1-16) 8.5
Effort .083 7 (1-16) 6.5
Performance 172 8 (1-15) 6.5
Frustration Level .003 4 (1-14) 6.5
Cognitive Workload 2 45 (11-75) 22
Assemblies .200 18 (12-22) 3
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TABLE 5.10: Distribution, Median, Minimum and Maximum
Scores and Interquartile Range for the Adaptive condition.

Phase Fe-si Median (Min-Max) | IQR
C3 (Adaptive)
Valence .027 4 (2-8) 2
Arousal .004 7 (3-9) 3
Dominance .001 7 (3-9) 2
Mental Workload .044 4 (1-14) 5
Physical Demand <.001 4 (1-19) 3.5
Temporal Demand 165 5 (1-14) 7.5
Effort .003 4 (1-15) 4.5
Performance .032 6 (1-16) 6.5
Frustration Level .003 4 (1-11) 5
Cognitive Workload | .2 32 (12-66) 23
Assemblies .006 16 (9-20) 2.5

To gain a better understanding of the collected data, simple and partial Spear-

man correlations are run between all the variables recorded at the baseline

and after each condition, with the following results:

e Slow condition: Valence (the higher the score, the more negative the

emotion) correlates with distress measured by the SSSQ (o = .504,p =
.014). This indicates that higher distress is linked to more negative
emotional states, which aligns with what is typically expected: peo-
ple feeling more stressed tend to experience more negative emotions.
Also, engagement correlates with positive affect (o = .727,p < .001),
meaning that people that are more engaged in the task feel more posi-
tive emotions. A positive correlation between dominance and arousal
(0 = .642,p < .001) is also found. This suggests that a sense of control
may be linked to a more relaxed state of mind, as reported in psycho-
logical studies (Hong et al., 2021).

Fast condition: Total workload and arousal correlate negatively (p = -
439, p = .036). This relationship may indicate that increased workload
leads to tension in participants, potentially as a response to heightened
task demands. As reported by Carissoli et al., 2024 and Wixted and
O’Sullivan, 2014, distress and cognitive workload can negatively af-
fect employees’ job performance and satisfaction, as well as their well-
being. As for the Slow condition, engagement correlates positively with
positive affect (o = .839, p < .001). Interestingly, a positive correlation is
found between distress and worry (p = .466, p = .025). Thus, the speed
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of the cobot may raise anticipatory concerns in people about task per-
formance or potential errors, as previously reported by Arai, Kato, and
Fujita, 2010.

* Adaptive condition: A positive correlation emerges between negative af-
fect and distress (o = .60, p = .001). This finding aligns with prior re-
search showing that negative emotional states amplify the perception
of stress or discomfort (Fiori, Bollmann, and Rossier, 2015; Yoon et al.,
2022). Finally, in line with the other conditions, engagement confirms

its correlation with positive affect (o = .523, p = .006).

A dedicated discussion is needed for the results obtained regarding the Ex-
periential Locus of Control. The strong positive correlation between engage-
ment and ELoC found in the Slow (p = .692, p < .001) and Adaptive (p =.732,
p < .001) conditions (also in the Fast condition, but not when partial corre-
lations are performed) points to an interesting association between partici-
pants” involvement in the task and their sense of control over the situation.
This finding implies that when participants feel more engaged, they may per-
ceive themselves as having a greater influence over the task outcomes or vice
versa. This perceived control could enhance their motivation and sense of
agency, ultimately fostering higher engagement in the activity. Thus, a higher
Experiential Locus of Control in collaborative settings can make participants
feel more active or autonomous. This aligns with well-known psychologi-
cal theories of self-determination and intrinsic motivation (Baard, Deci, and
Ryan, 2004; Gagné and Deci, 2005).
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Psychology-in-the-loop.

Main take-aways:

Aligning with the goals of Industry 5.0, it is important to explore the
influence of robot parameters on the participant’s emotional and psy-
chological state. In particular, considering industrial applications, the
effect of a changing collaborative production rate is addressed as one
of the most perceivable and impacting factors.

First, the use of objective measures is evaluated to establish a robust
method for real-time estimation of the perceived level of challenge.
In fact, if challenges and skills are balanced correctly it is possible to
ease the user into an optimal state of Flow. Even though the affec-
tive state estimated through facial expression shows different trends
as a response to the changing production rhythm, the associated val-
ues remain within the thresholds of a neutral state. Thus, Valence and
Arousal indexes are not good indicators of the perceived challenge
level. On the other hand, heart rate data make it possible to signif-
icantly distinguish between conditions, identifying the adaptive con-
dition as the one with the best balanced user reaction. Hence, HRV
features represent a promising indicator for the level of perceived
challenge. Using this signal, a prediction model is also trained. How-
ever, results are not robust and informative enough for actual imple-
mentation in the generalized human-driven control architecture. At
the current stage of development, this kind of signals could be ben-
eficial as an auxiliary measure providing additional information to

discern unclear user states (e.g., distraction and boredom).

Secondly, subjective measures are collected through a number of val-
idated questionnaires. The different outcomes obtained with respect
to the previous study highlight that there is a need for a deeper un-
derstanding of subjective variability in stress perception. In general,
results show that faster production rhythms lead to higher perceived
workloads and higher physical and cognitive demands, while slower
production rhythms generate experiences of frustration and lack of en-
gagement. Also, engagement is strongly correlated to both positive
emotions and the Experiential Locus of Control. These results seem to
suggest that being able to personalize the collaboration rhythm with
a cobot can generate positive interaction experiences by promoting

engagement and a sense of control over the task.
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5.4 Integration and control of a virtual character

An analysis of human-human interactions reveals the importance for verbal
and non-verbal communication. In every socially interactive scenario, motor
correlates such as lip-syncing, head nods, deictic gestures and gaze move-
ments are abundant and play a great role in expressing emotions and in-
tentions and clarifying unexpressed details laying the ground for the actual
content of the communication (Mavridis, 2015). Robots often do not offer
any of these capabilities that are fundamental to build a natural and social
interaction. From a conceptual point of view, a virtual avatar could act as a
mediator between a robot and the user, promoting a more natural and social
experience with what is often considered just a tool. In fact, software agents
on a screen can easily move in lifelike ways and reproduce sets of actions
that are not feasible for today’s robots. On the other hand, physical embodi-
ment and presence increases salience and importance of the entity compared
to two dimensional entities (Kawamichi, Kikuchi, and Ueno, 2005). Starting
from the hypothesis that this last statement can be considered true also for
technology, studies demonstrate that physically co-located robots, moving in
space and able to manipulate objects, are generally perceived as more anthro-
pomorphic and more engaging (Kiesler et al., 2008). On the basis of the above
observations, it appears that the integration of the physical capabilities of a
robot with the verbal and non-verbal skills provided by a virtual character
may represent a viable solution to enhance the perception of the system as a
social entity. Depending on the perceived social role, this would also influ-
ence the experience of interaction of the user (Ray, Mondada, and Siegwart,
2008), promoting social engagement and overall well-being.

To explore this topic, the next sections address different aspects regarding the
integration of a virtual character and a robot, considering both industrial and
rehabilitation applications. The goal is to achieve a level of integration high
enough to let the user perceive the two entities as one, as if the avatar visually
represented the intelligence of the system with the robot incorporating its
physical interaction capabilities. In fact, achieving such goal would allow
the user to have more natural and social HRI experiences, specifically tuned

on their characteristics and needs.



140 Chapter 5. Experimental campaigns and results

5.4.1 Towards social embodied cobots: the integration of an

industrial cobot with a social virtual agent

Since the classic animation experiment presented by Wick et al., 2019, it is be-
coming more and more clear that humans have a strong tendency to impose
narrative even on non-humanoid interactions. This is a promising starting
point from which to build a system featuring both a robot and a virtual char-
acter, fused together as a single social entity. The goal is to be able to reach a
level of integration high enough that the robot is perceived as the physical in-
terface that allows the avatar to interact with the surroundings and, in turn,
the avatar appears as the intelligence driving the actions and behaviors of
the robot. A first step in this direction is to gain insights on the effect that the
physical positioning of the robot and the display rendering the virtual char-
acter has on the perception that the user has of the system. For this purpose,
two possible configurations are proposed to volunteers through an online
survey. Here, the methodology and outcome of the study are reported, but
the reader can refer to Lavit Nicora et al., 2023 for additional information.

Materials and methods

Once again, the setup and assembly task presented in Sections 4.1.1 and 4.1.2
respectively are leveraged for the purpose of this study. Figure 5.36 depicts
two different configurations (co-located and non co-located) that are pro-

posed here for they unique characteristics:

* Co-located configuration: A co-located configuration is realized by dis-
playing the virtual character on a tablet screen and strapping the latter
to the base of the cobot (left side of Figure 5.36). This way, the two
entities are positioned in the same area of the workspace and move to-
gether (as the base of the robot rotates, the tablet and the avatar rotate
with it). As a result, a sense of unity and embodiment is expected, con-
sequently promoting the perception of the system as single social en-
tity. Moreover, since the robot movements sometimes bring the avatar
to positions where the latter is not visible, as would happen with a col-
leage that turns its back to the user, it is possible that the social role of a

coworker is promoted.

* Non co-located configuration: A non co-located configuration is realized
by putting some distance between the cobot and a large TV screen dis-
playing the avatar (right side of Figure 5.36). As a result, a lower sense
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of unity is expected since the two entities are further in space and do not
share synchronized movements. Additionally, the TV screen is always
within the field of view of the user and, in turn, the avatar is constantly
overlooking the on-going task. Therefore, it is possible that, in this case,
the social role of a supervisor is assigned to the system.

CO-LOCATED CONFIGURATION NON CO-LOCATED CONFIGURATION

FIGURE 5.36: The configurations proposed to understand the
effect of physical positioning of the two entities.

Exploiting these two variations of the workspace, first-perspective videos
showing the same pattern of interaction between the user and the system
are recorded. For each configuration, two instances of collaboration are rep-

resented in the videos:

* The user restocks the cobot table with components while the cobot is
working on its part of the subassembly. Below, the related script is re-
ported.

WORKER: Good morning! [Worker speaks to the resting system.]

SYSTEM: Good morning! [Cobot wakes up and avatar waves at the worker.]

WORKER: Let’s get to work.

SYSTEM: OK. [Avatar looks at the component and cobot moves to pick it.]

WORKER: I'have some parts for you. [Worker looks at his hand full of compo-
nents, places them on the table and then moves towards his side of the workce]].]

SYSTEM: Thanks!

* The cobot holds its subassembly in a precise orientation while the user
assembles it with the other subassembly by correctly meshing the gears.
Again, the related script is reported below.
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WORKER: Hey, I'm almost done. [Worker is handling some parts and Iooks at
the system.]

SYSTEM: Here I am. [Cobot brings the finished subassembly in front of the user,
the user completes the assembly and retrieves the product.]

SYSTEM: Thanks!

WORKER: Great! Thank you! [Cobot moves back to its table while the avatar is

looking in that direction. The worker puts the finished product in a box.]

Then, the recorded videos are incorporated in an online questionnaire made
up of four individual scales (5-point Likert, from "strongly disagree" to "strongly
agree"): a social presence scale (the feeling of working with someone, rather
than something), a collegiality social role scale (the feeling of working with a
colleague, rather than a supervisor), a supervision social role scale (the feel-
ing of working with a supervisor, rather than a colleague), and a unity scale
(the feeling of perceiving the cobot and the avatar as a single entity). Addi-
tionally, a score (7-point Likert) is added to measure the ability to imagine
oneself in the depicted situation. The scales are first piloted with 10 volun-
teers to make sure that their internal consistency is sufficient. After success-
ful piloting (Cronbach Alpha between 0.7 and 0.95), 20 more volunteers are
recruited for the actual study. Each participant is administered the above
questionnaire integrated with either the video of the co-located interaction
or the non co-located one. One week later, the participants are administered
the same questionnaire again, but integrated with the video option they have
not yet seen.

Analysis and results

After confirming that all scales are normally distributed, a comparison be-
tween the two groups (Group 1: the ones who have seen the co-located op-
tion first, Group 2: the ones who have seen the non co-located video first)
demonstrates that the order of questionnaire administration does not affect
the responses significantly. Moreover, the imagination scale shows an aver-
age moderate immersion (M = 3.32, Median = 3, SD = 1.82), meaning that
the participants were able to project themselves in the situation depicted in
the videos enough to consider all other responses reliable.

On these basis, additional statistical analyses can be carried out. First of
all, differently from what was expected, no significant differences can be

found between the two proposed configurations. In fact, both configurations
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achieve high levels of perceived social presence and unity, meaning that the
relative position of the cobot and the avatar do not affect the experience of
the user. However, some interesting correlations emerge, as from the scatter
plots in Figure 5.37. In particular, significant correlations are found between
social presence, collegiality and unity. Additionally, no correlation is found
between social presence and supervision. This outcome points to an inter-
esting direction: if the avatar is developed well enough to be perceived as
a social entity, then also a sense of unity (between the avatar and the cobot)
and collegiality arise. Even though further analyses, done in presence and
with more participants, are required to confirm these results in a robust and
generalizable way, they are extremely important as they confirm that the inte-
gration of a virtual character in the generalized human-driven control archi-
tecture would positively impact user experience. In fact, its presence would
translate in the desired social role of a colleague, rather than a supervisor

controlling user’s behavior and performance.

Collegiality

Saocial Presence Social Presence

FIGURE 5.37: Plots of the correlation between social presence
and collegiality (left) and social presence and unity (right).

5.4.2 Socially interactive agents as cobot avatars: developing
a model to support flow experiences and wellbeing in

the workplace

The study reported in Section 5.4.1 revealed that if a virtual character is con-
vincing enough to be perceived by the user as an actual social entity, its pres-
ence within the robotic system is perceived positively and united with the
robot itself. However, in order to achieve this goal it is necessary to base the
behavior of the avatar on a proper emotional model of the user, designed to
anticipate and counteract counterproductive emotional experiences during
HRL
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With reference to Section 5.3.1, a pleasurable and effective state of deep en-
gagement in a certain activity can be referred to as Flow. It has already been
shown that a properly balanced skill-to-challenge ratio facilitates experiences
of Flow, while a mismatch of these two dimensions can lead to either bore-
dom/apathy or stress/anxiety and even shame. To react to the individual
emotional experiences of boredom and anxiety in a way perceived as relevant
to the user, these complex constructs need to be dissected first. In particular,
a feeling of boredom can be generated from a situation of under-challenge
(U-Boredom), the common definition of this psychological concept, but also
from situations of over-challenge (O-Boredom). This condition, also referred
to as self-focused boredom, can be seen as a defense mechanism against pro-
longed high-stress levels: individuals tend to subconsciously reduce nega-
tively experienced and self-threatening emotions by entering a state of bore-
dom (Nathanson, 1994). The regulation of negative emotions, however, can
remove obstacles from experiencing Flow and even help reappraise the sit-
uational demand, consequently re-balancing the perceived skill-to-challenge
ratio. Guidance towards said regulation can be beneficial but depends on the
context, the individual’s emotional experience, and subjective differences.
Implicit guidance is often viewed as less obstructive (Heimbuch and Bode-
mer, 2017). In contrast, explicit guidance typically interrupts the process by
giving prompts for action (Loksa et al., 2016). It is therefore important to de-
sign regulation guidance strategies that fit well with the specific application
of interest and personalized to each single subject.

Starting from these concepts, the BASSF (boredom, anxiety, self-efficacy, self-
compassion, flow) model, based on PAD (pleasure, arousal, dominance) di-
mensions dichotomization by Mehrabian and Russell, 1974, is introduced.
The goal is to understand how the concept of Flow can be mapped onto the
PAD space and then leveraged as input to the BASSF model to drive the be-
havior of a robot-avatar system. Here the main points of interest are reported,
but the reader can refer to Beyrodt et al., 2023 for additional information.

Materials and methods

The proposed BASSF model uses the three dimensions of PAD to differentiate
between every possible affect. These three dimensions are visualized within
a three-dimensional space subdivided into eight octants depending on the
value of each axis, with the result displayed in Table 5.11. To make the BASSF
model decisions more transparent, adaptable to user needs, and testable, the
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TABLE 5.11: The eight octants of the BASSF interventions
space.

PAD octant ‘ Affective state

+P+A+D Flow
+P+A-D Awe
+P-A+D Relaxed
+P-A-D Hopeful
-P+A+D Hostile
-P+A-D Anxious
-P-A+D U-Boredom
-P-A-D O-Boredom

mentioned differential causes of boredom are used and connected to stress
and anxiety.

The setup and collaborative assembly task presented in Sections 4.1.1 and
4.1.2 respectively are operationalized for the purposes of this study. First, 30
minutes of standard collaborative assembly are foreseen: the cobot works on
Sub, while the subject assembles Subg and then they collaboratively join the
two parts to obtain the final product. Since the robot takes around 50 seconds
to complete Sub, which is longer than the time needed by the participant for
Subp (Slow phase), the task request is very underwhelming in this case, and
a state of U-Boredom is expected. After that, a fake failure of the robot is
introduced: the robot stops moving, the researcher comes in to fix the simu-
lated issue and then asks the participant to speed up the production rhythm
to make up for the lost time. Now, the robot is given preassembled copies
of Sub, and is, therefore, much faster than the user since it only has to pick
them up and bring them in the collaborative assembly space (Fast phase).
An additional 20 minutes is performed in this configuration, with the user
struggling to keep up with the new robot pace. Since the participant does
not know that the failure is simulated, and only hears the request to speed
up his/her assembly operations, this second phase should cause a prolonged
state of overwhelming time pressure. The reason behind the design of this
second phase is the need to elicit strong emotional reactions in the user and,
ideally, to study if the overwhelming task request is actually regulated with
an O-Boredom response. Following these expected emotional reactions, the
cobot-avatar interventions reported in Table 5.12 are activated during the ex-

perimental session at fixed times.

A total of 20 participants (12M-8F, 25-48 years old) have been recruited for the
study. After the working phase presented above, the participants are asked to
move to a separate room where the experimenter replays six recorded scenes.

After each scene, the participant is administered a questionnaire developed
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TABLE 5.12: Examples of possible cobot-avatar interventions.

Affect/ Interven- Avatar verbal behavior = Avatar/Cobot nonver- Theoretical justification
tion bal behavior

Self-Awareness vs  “Are you okay over A: Head tilted to the Increase Self-Conscious- ness

U-Boredom there? Let me know if right, Bending hips/ C:  and Task-Awareness to reduce
you need anything!” Increase acceleration & boredom via socio-cognitive
velocity conflict & increased chal-

lenge, while remaining car-
ing (Chehayeb et al, 2021;
Bambrah, Moynihan, and East-

wood, 2023).
Self-Efficacy ~ vs  “Look at that! We have  A:Surprised Expression  Focus attention on the shared
Anxiety already done so many achievement to increase Skill-to-
pieces!” Challenge Ratio and ease the
pressure by reminding them
that they are a team (Lackas,
2021).
Self-Compassion ““You are doing great! Moderate zoom in: Increases Self-Compassion to
vs O-Boredom Everybody would be Short compassionate facilitate self-regulation and
stressed at this speed” smile cognitive reappraisal (Lackas,
2021).

to collect subjective perceptions of pleasure, arousal, dominance, flow and
self-efficacy. Four of these participants have also been involved in an ad-
ditional semi-structured interview. The latter lasts around 30 minutes and
tries to explore further the user feelings with respect to both the task and the

avatar presence/interventions.

Analyses and results

Analyzing the data collected through the administered questionnaire, the
self-efficacy dimension seems to struggle in achieving good prediction of
Flow, probably due to the small sample size or to the scale used to mea-
sure it, which comprises only a single item. On the other hand, dominance
achieves significant correlation with both self-efficacy and flow. This means
that monitoring the dominance dimension opens up the possibility to infer
the users’ feeling about the on-going task, specifically in their ability to han-
dle the proposed challenge with their own skill which, by definition, is a
direct prediction of the Flow dimension. Figure 5.38 reports the PAD dimen-
sions collected for each participant through questionnaires before and after
the change of assembly pace.

Considering the qualitative in-depth analysis that can be done with the infor-
mation collected during the semi-structured interviews, interesting results
emerge. Starting from the Slow phase, all participants describe the task as
relaxing, though acknowledging its repetitiveness. After the introduction of
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FIGURE 5.38: Flow and PAD values over time for each partic-
ipant. The dotted vertical line represents the change from the
slow to the fast phase.

the Fast phase, none of the participants is able to keep up with the robot, lead-
ing them to various levels of stress. All the interviewees, seem to have found
their own way (e.g., reappraisal, avoidance, or disengagement) to deal with
this feeling, which consequently stabilizes by the end of the session. How-
ever, the elicited strategies either caused a decrease in performance or left
the subject with a negative feeling by the end of the experiment. This means
that the way participants regulated their emotions is not optimal and affects
both well-being and productivity, highlighting the need for proper guidance

solutions.

To conclude, the findings suggest that the dominance dimension of the PAD
model plays a crucial role in predicting flow and, therefore, should definitely
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be included as input for the generalized human-driven control architecture.
Furthermore, this study highlights the importance of guidance in emotion
regulation, as some strategies used by participants negatively impacted their
well-being and productivity. This justifies and further strengthens the choice
of introducing a supportive virtual character in the proposed architecture,
but only if the latter is implemented with a robust behavior model driven by

real-time reliable user experience measures.

5.4.3 Understanding and mapping pleasure, arousal and dom-

inance social signals to robot-avatar behavior

The study reported in Section 5.4.2, worked on the design of a behavioral
model promoting positive emotions for the users involved in human-robot
interactions. However, in order for this model to be effective, reliable real-
time measures of the user current experience are required. The experimental
campaign in Section 5.4.2, based the evaluation of the proposed BASSF model
on collected questionnaires which are not suitable for automatic adaptation
purposes. On the other hand, recent advancements in modern artificial intel-
ligence (i.e., neural-based machine learning) are leading automated estima-
tion of human communicated emotions based on facial expressions analysis
to levels that make it applicable for affective-aware applications (Toisoul et
al., 2021). However, it is also known that, as soon as Al models are applied
in real-time interactive applications, they often fail due to unpredictable con-
ditions, such as variable lighting, poor-quality cameras, background noise,

and unexpected user behaviors.

T * A » strategy: verbal,
CN ol B nonverbal

m
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This is too difficult for
me. | can‘t keep up
with the task, | am too
slow

Aim to decrease anxiety

O Anxiety simulated by self-efficacy

Look! [surprise] We

_ have already done so
—— many pieces!
®

FIGURE 5.39: A top-level conceptualization of the models, sen-
sors and interactions in play.
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A possible desired deployment of such an interactive system in an industrial
scenario is depicted in Figure 5.39. A worker performs a cyclical assembly
task in collaboration with a cobot. The worker’s face and body motion are
analyzed by a set of Al modules to extract his/her pleasure, arousal and
dominance (PAD) inferred values. These values are then leveraged to trigger
the execution of a finite set of robot-avatar interventions, designed to pro-
mote worker’s well-being and flow. However, the idea of using the collected
information to trigger interventions as soon as some measure goes above
or below a certain threshold, reveals itself to be unrealistic. The “raw” in-
coming PAD signals are jittery, with many unexpected spikes, the prediction
range [0,1] is not fully covered, data distribution is not uniform nor normal,
and signals are not centered. In addition, signals are often interrupted be-
cause the user is often too far, walks away from the camera field-of-view, the
face is too rotated or the frame is too blurry. Unfortunately, in the research
literature, such problems are often unaddressed, sometimes categorized as
"technical details", and skipped in favor of the description of more theoreti-
cal aspects. However, details on the "tricks" injected by developers to put a
system at work would often be of extreme importance for the reproducibility

of previous research.

A solution to mitigate these effects is therefore sought for in this study. Here,
the main results are reported, but the reader can refer to Nunnari et al., 2023

for further details.

Baseline data analysis

Once again, the setup and assembly task described in Sections 4.1.1 and 4.1.2
respectively are leveraged. Specifically, participants are instructed to com-
plete as many products as they can in the given time, but without starting
to work on the next gearbox before the previous one is finished. In fact, the
robot assembly steps take sensibly longer to complete than the ones assigned
to the user, resulting in long waiting times and therefore leading to boredom
and frustration. Ultimately, the goal is to elicit significant emotional reactions
within the short time of an experimental session, so that the collected data is
rich enough to extract informative characteristics on their trend. A total of
14 participants (12M-8F, 25-48 years old) are recruited for the experimental
campaign. Each one of them is first asked to assume a neutral facial expres-

sion (relaxed facial muscles and closed lips) and look into the webcam for
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12 seconds. After that, 30 minutes of collaborative assembly start, with the

avatar present in the workcell but not interactively.

The first point of interest comes from the analysis of the neutral face record-
ings from all participants. Interestingly, data clearly shows that the emotion
recognition module does not provide centered values: different subjects lead
to statistically different distribution profiles, as visible from Figure 5.40. Re-
sults make it clear that there can be no assumption about reference values for
the neutrality of facial expressions: calibration is needed for each user, and
assumptions on the emotion expressed by the face must be made relative to
said calibration data.
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FIGURE 5.40: Box plots showing the distributions of pleasure
(top-left), arousal (top-right) and dominance (bottom) collected
from participants during the neutral expression phase.

Now, moving to the data collected during the 30 minutes of collaborative
assembly, two main problems can be identified. First, data is very jittery,
presenting strong spikes, especially when the user’s face enters the camera
tield of view. This is of course not acceptable for a trigger-based system
and can simply be addressed by filtering the incoming data with a median
over the last second of collected samples. Additionally, the face is often not
recognized, because of the user walking around, quick movements (blurry
frames), or excessive head rotation. Hence, the continuous signal is full of
"temporal holes". Again, this is not acceptable for the logic driving the sys-
tems and adds an additional risk: if a face is not visible for a while and then
re-enters the camera view, the median might be computed between freshly

received values and values received long before. A simple countermeasure
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can be implemented by introducing a time-aware buffer, so that values older

than 1 second are removed from the median computation.

Another problem with the collected data distribution comes from the statisti-
cal rejection of the hypothesis of normality, as most of the data distributions
present a strong skewness. As a consequence, the intervention triggering sys-
tem cannot rely on thresholds symmetrical to the median and should be de-
fined separately for positive and negative values. For this purpose, the data
collected for each participant is first centered around its calibration mean and
then split into positive and negative sets. The root mean squared error is then
computed on the union of all positive and all negative sets separately. With
this approach, it is possible to compute the generalized low and high thresh-
old reported in Table 5.13 for each of the PAD dimensions. Then, at run time,
the thresholds can be customized on each participant by computing them as
deviation from their calibration median.

TABLE 5.13: Mean squared errors computed from our calibra-
tion data.

Dimension \ above median  below median

Pleasure Elf =0.138 E, =0.098
Arousal E} =0.071 E, =0.134
Dominance Eg =0.052 E; =0.020

Mapping PAD signals to interventions

After gaining a better understanding of the features of the incoming PAD
signals and of how they can be processed to render them usable in the appli-
cation of interest, a model laying the basis for their exploitation is required.
For this purpose, the affect model presented in Section 5.4.2 is chosen. The
model aims at assisting workers reach the Flow state previously introduced
in Section 5.3.1. In general, a mismatch between challenge and skill can cause
a variety of unpleasant emotions such as anxiety, stress, and boredom, which
are incompatible with Flow, when unregulated. The BASSF model aims to
help directly and indirectly these kind of situations by influencing the afore-
mentioned challenge-to-skill ratio of the worker (e.g., by manipulating their
self-efficacy believes).

Now, given the six ad personam thresholds computed after calibration, when
a triplet of PAD samples is received an intervention is triggered if each one of
the three signals go above or below the corresponding threshold. This com-
bination is linked to a so-called activation code, among the ones previously
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displayed in Table 5.11. For example +P+A-D denotes a combination of high
pleasure, high arousal, but low dominance. On top of this, a multiplier 1/K
is introduced in the computation of said thresholds to be able to control the
sensitivity of the model. In fact, it is important to fine-tune how often the
cobot and the avatar should intervene: too many interventions could distract
the user from the task while too few would limit the interactivity and effec-
tiveness of the system. By going back to the collected data and changing K,
it is possible to find an optimized value that balances the intrusiveness of the

system. Table 5.14 reports the results of this analysis.

TABLE 5.14: Average number of activations for P, A, D, and all
signals.

K |P A D | ALL

2.0 | 557.14 657.29 479.29 10.79
2.1 | 48471 57793 429.14 4.07
22 | 41821 518.00 389.50 2.29
2.3 | 36257 473.50 35143 1.21
24 | 31329 427.07 314.93 0.21
25 | 26779 381.07 280.29 0.00
2.6 | 22357 323,57 250.86 0.00
2.7 | 18786 259.86  223.50 0.00
2.8 | 159.93 18793  201.29 0.00
29 | 12771 11829 179.36 0.00
3.0 | 102.93 70.71 161.71 0.00
3.1 78.14 43.14  144.50 0.00
32 56.14 33.14 127.64 0.00
3.3 43.64 30.79  111.07 0.00
3.4 32.00 27.86 99.07 0.00
3.5 22.29 26.29 87.07 0.00
3.6 14.07 23.71 77.21 0.00
3.7 7.86 21.71 66.50 0.00

As reported, as the sensitivity (1/K) decreases (i.e., K increases), the average
number of activations for single dimensions goes from more than 450 to less
than 60. However, when checking if all three dimensions surpass the thresh-
olds simultaneously, a maximum average of 10 activations is recorded with
K = 2.0, going down to only 0.21 with K = 2.4, and none after that. This is a
clear sign that it is not possible to assume that the activation of the PAD chan-
nels happen simultaneously since the manifestation of emotions on people’s
face have different activation delay, persistence, and relaxation time, reflect-
ing in a misalignment of the PAD signals. This means that the trigger based
on activation codes should not refer to single sampling times, but to sam-
pling windows. Again, by going back to the collected data it is possible to
compute an optimal time window, equal to around 30 seconds, that balances
well the delays existing between the three PAD dimensions. An example of
the resulting behavior is reported below in Figure 5.41.
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FIGURE 5.41: Example of PAD streams over 30 minutes and
their activations (vertical lines), for a single user, with W = 30
seconds and K = 2.

A final consideration can be done regarding the time of interventions activa-
tion. A sudden intervention as soon as all the conditions mentioned above
are satisfied might result in an annoying and distracting interruption dur-
ing moments of high concentration. For this reason, the project consortium
decided to synchronize the interventions with the assembly task: activation
codes are cumulated during each production cycle and, if an intervention
is planned, it is produced only after the joining phase (i.e., a moment of
high concentration because of the collaborative meshing of the gears). Al-
though the model and resulting behavior of the system is not formally vali-
dated through users’ feedback within this study, preliminary piloting shows
promising results.
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5.4.4 Socially interactive agents for robotic neurorehabilita-
tion training: conceptualization and proof-of-concept

study

If up to now this section has focused on the integration of an avatar with
an industrial collaborative robot, its application is promising also for other
applications where social and empathic interactions are important. Above
all, the rehabilitation field is of particular interest for the present project. In
fact, robotic devices hold great potential in reducing the dependence on med-
ical personnel during therapy but, at the same time, they generally lack the
crucial human interaction and motivation that traditional in-person sessions
provide. To mitigate this issue and inheriting the knowledge collected up
to now for industrial application, the integration of an interactive socially-
aware virtual agent into a neurorehabilitation robotic framework is explored.
The primary objective is to test the feasibility of such a system in recreating
the social aspects inherent to in-person rehabilitation sessions, fundamen-
tal to promote motivation, engagement and, ultimately, better therapy out-
comes. Here, an overview of the Empathic Neurorehabilitation Trainer is re-
ported together with a preliminary evaluation of the system, but the reader

can refer to Arora et al., 2024 for more insights.

Materials and methods

To gain a baseline rationale, unstructured interviews are carried out with
professionals in order to understand not only their approach to therapy but
also needs and views regarding the use technological systems for their day-
to-day activities. Based on the answers of 15 experienced therapists, the gen-
eralized human-driven control architecture presented in Chapter 3 and de-
ployed for rehabilitation scenarios in Section 4.2 is considered promising for
the development of the desired system. One primary research question there-
fore remains: how can the avatar be deployed effectively so that its behavior
promotes engagement and motivation for patients without distracting them

from the exercise to be carried out?

First of all, the social role that the virtual agent should have is defined: a
coach motivating, informing and assisting the patient during his/her reha-
bilitation journey. Aligned with the view that drove the integration for in-
dustrial applications, the avatar and the robot should be synchronized well

enough so that they are perceived as a single entity. Ideally, the agent should
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give the impression of helping the patient both vocally, through proper speech
generation, and physically, through the assistive capabilities of the robotic
device. Lydia, represented in Figure 5.42, is chosen for this purpose thanks
to her speech, gesture and facial expression capabilities. This anthropomor-
phic design choice goes beyond aesthetics: it serves as a conduit for users
to attribute human-like motivations and intentions to the agent, reinforcing
feelings of warmth and approachability. In fact, the fundamental concept
of trust should lay at the heart of every agent’s design and implementation.
Drawing inspiration from established principles of trust in human-human re-
lationships, key elements of warmth and competence are therefore integrated
into Lydia’s behavior. For that, experienced psychologists are involved in the
fine-tuning of the agent’s verbal expressions, such as the ones reported as an
example in Figure 5.42.

Warmth ~— Competence

o Lydia: Wow! [Happy] I'm really imypressed to see your determination. great job [smile]. Let’s discuss your
performance now. you complefed the exercise with a distance of $coveredDistance and within the time of
$Elapsedtime seconds. The overall aceuracy achieved by [Happy intensity=0] you was [smile] $Accuracy1

o Lydia: | noticed a drop in your attention level during the session. | would recommend taking a small break to
refresh your mind which would better increase your ability to focus on the next task.

o Lydia: During your session, | also noticed that you experienced some level of pain. | would suggest taking a
short break to ease your muscles and recover from the pain experienced, before proceeding to the next
session.

FIGURE 5.42: Lydia, the chosen virtual agent, and some speech
examples presenting traits of both warmth and competence.

In the context of neurorehabilitation, metrics such as attention and pain are
crucial. Hence, an empathic agent capable of identifying attention and pain
contributes to the establishment of a rehabilitation environment that mini-
mizes stress, essential to sustain patient motivation. Therefore, as explained
in detail in Section 4.2.3, Lydia’s behavior relies on the affective cues regard-
ing stress, attention, and pain inferred by dedicated SSI pipelines. All the
information is sent through ROS into VSM and, if the value of any of these
social cues exceeds its threshold, the agent is triggered to empathetically in-

form the user about their current state.

In order to have a preliminary evaluation of the system, a pilot study is car-
ried out with 18 healthy adult volunteers (12M and 6F, 22-33 years old). The
GUI and training exercises presented in Section 4.2.2 together with the Pla-
nArm?2 rehabilitation robot described in Section 4.2.1 are leveraged for this
purpose. In particular, the participants are required to move the end-effector

along three ideal trajectories (a circle, an infinity symbol and a straight line),
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with the device set to assist them using the presented tunnel controller. Each
exercise is repeated three times, with the user continuously monitored both
in terms of performance (i.e., error from the ideal trajectory, total traveled dis-
tance and time to complete the task) and of social signals (i.e., facial expres-
sions, gaze and heart-rate to infer stress, attention and pain). After each ses-
sion, Lydia provides participants with a summary of their performance and
inferred status, if different from optimal, offering suggestions to improve. At
the end of the training, Lydia also communicates the session in which the
participant demonstrated the best precision, with a comparative analysis of
the three sessions. Finally, the participants are administered a post-training
questionnaire, collecting further insights regarding their experience of inter-

action with the system.

Preliminary results

Starting from the collected performance data, Figure 5.43 shows the trend of
the errors made by the participants over the three sessions. As represented,
except for two clear outliers, a consistent downward trend suggests that the
volunteers effectively adapted to the device and proposed exercise. This nat-
ural adaptation to the task also serves as a preliminary indication that the
presence of the avatar did not negatively impact their performance, for in-

stance by distracting them from the trajectory to be followed.

N\
o - —_—
Training Sessionl Training Session2 Training Session3

FIGURE 5.43: The error trend of all participants over the three
experimental sessions.

Moreover, moving to the qualitative responses collected through question-

naires, it is of utmost importance to understand if the avatar is perceived
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as distracting or, in turn, as an engaging feature. Figure 5.44 reports the re-
sponses of the 18 participants to these questions. As represented, 94.4% of the
respondents selected the lower scores with respect to the level of perceived

distraction and the higher scores regarding the level of achieved engagement.

Negative impact Overall engagement

13 (72.2%)

7.5

7 (38.9%)

5.0

4 (22.2%) 25
1(5.6%)
0 (0%) 0 (0%) 0 (?%)

1 2 3 4 5 1

FIGURE 5.44: Participants’ responses regarding the level of per-
ceived distraction (left) and engagement (right).

Moreover, most of the participants report that Lydia is a likable virtual char-
acter, generally perceived as kind and coherent in its interventions with the
proposed exercises. These additional insights are summarized in Figure 5.45.
Overall, even though the obtained results are not statistically relevant due
to the small sample size and therefore not generalizable to other settings, it
is safe to say that this specific deployment of the generalized human-driven
control architecture reaches the goals it was designed for. Of course, future
studies should evaluate the system within a clinical setting and with actual
patients to be able to derive an evaluation of its benefits also in therapeutic
terms.

10.0

B | completely agree [l | agree I rather agree [ More orless [l | rather not agree
5.0
2.5

0.0

| think Lydia is very likeable | think Lydia is very kind | think Lydia is very engaging

FIGURE 5.45: Participants” responses regarding their overall
impression of the avatar behavior.
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Integration and control of a virtual character.

Main take-aways:

The integration of the physical capabilities of a robot with the verbal
and non-verbal skills provided by a virtual character may represent a
viable solution to enhance the perception of the system as a social en-
tity. Depending on the perceived social role, this would also influence
the experience of interaction of the user, promoting social engagement

and overall well-being.

Interestingly, preliminary results show that the relative positioning of
the robot and the avatar do not affect the user perception of the sys-
tem. In fact, whatever configuration is chosen, it seems that the pres-
ence of the avatar alone, supposing that its behavior is convincing
and robust, is enough to let the system embody the social role of a

colleague.

To achieve this goal, the BASSF behavior model is evaluated using
subjective measured collected through questionnaires. Interestingly,
the dominance dimension shows the best results in the prediction
of flow. Also, the importance of guidance for emotion regulation is
highlighted, strengthening the need for a properly modeled avatar in
the system.

In order for the evaluated model to be integrated in interactive scenar-
ios, however, reliable real-time measures of the user’s experience are
needed. These could be obtained by leveraging dedicated Al modules,
if it wasn’t for the noisy and uncalibrated nature of their output. Post-
processing strategies are therefore proposed and tested successfully
with the aim of promoting Flow during HRI.

Finally, the full implementation of a robot-avatar system is attempted
also for neurorehabilitation applications. An Empathic Neurorehabil-
itation Trainer is deployed and preliminary evaluated through a ded-
icated pilot study. Results show that, on average, participants tend
to improve their performance over time and perceive the integrated
virtual character as a positive and engaging feature, not causing any

distraction during the exercise to be carried out.
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5.5 Comparing and supporting neurotypical and
ASD subjects

The constantly growing paradigm of Industry 5.0 is paving the way for user-
centered and user-oriented design of workplaces with the goal of transition-
ing to a more sustainable, inclusive and human-centric industry. Human-
Robot Interaction is one of the concepts upon which this technological revo-
lution is building. In this regard, research shows that a true understanding
of the effects that HRI has on user experience should be deeply rooted in the
analysis of human cognitive behavior (Hormaza et al., 2019). However, in the
struggle for finding solutions personalized to the needs of each single user,
there seems to be a lack of studies regarding the exploitation of these tools as

an inclusion opportunity for vulnerable subjects (Hendricks, 2010).

Above all, this project focuses on people characterized by the Autism Spec-
trum Disorder as a condition that, often, leads to very specific needs in terms
of behaviors and social relationships (American Psychiatric Association, 1994).
A major part of the body of literature in this regard, deals with the use of
robots as therapy tools for people with ASD, especially children. Their ap-
plication in inclusive industrial settings, on the other hand, still needs to be
deepened. In fact, the fixed and predictable routine with precise task assign-
ment (Goris et al., 2020) that characterizes the collaborative work with a cobot
could represent a great fit with the representative features of ASD. Social
skills deficits (Weiss and Harris, 2001), a preference for predictability (Goris
et al., 2020), difficulties in transitioning (Sterling-Turner and Jordan, 2007)
and the need for concrete external feedback on personal performance (Lar-
son et al., 2011) are relevant aspects that characterize this often overlooked
condition. Starting from these considerations, the working routine required
for industrial automated tasks may be beneficial to offer an important inclu-
sion opportunity, specifically when considering the high-functioning part of
the spectrum of the autism disorder (Gillberg, 1998).

Understanding the different needs and behavioral patterns of ASD and neu-
rotypical (NT) users and finding solutions to ease positive interaction expe-
rience for all is the main focus of this section and of the studies presented

below.
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5.5.1 Behavioral patterns in robotic collaborative assembly:
comparing neurotypical and autism spectrum disorder

participants

Starting from the need of understanding the differences between ASD and
NT operators when interacting with a cobot on industrial applications, the
present work does not aim to build a new characterization theory, but rather
to observe the behavioral manifestations in the two groups within a con-
text that has been investigated very little so far. Given the innovative na-
ture of this goal, an exploratory and observational approach is taken in or-
der to better outline the needs of different users and use them as a starting
point to provide an even more personalized experience through the proposed
human-driven control architecture. Here, the main results are reported, but
the reader can refer to Mondellini et al., 2023 for additional insights.

Materials and methods

The setup and collaborative assembly task presented in Sections 4.1.1 and 4.1.2
respectively are leveraged. A total 16 participants are involved, of which
8 NT (5 females and 3 males, 18-30 years old) and 8 diagnosed with high-
functioning ASD (1 female and 7 males, 21-50 years old). The unbalance in
the sex distribution towards males for the ASD group, is expected from liter-
ature (Loomes, Hull, and Mandy, 2017). It is important to note that none of
the participants had prior experience working with an industrial cobot. Par-
ticipants are asked to work on the task for 3.5 hours a day, for 5 consecutive
days, in order to observe modifications in their performance and behavior

during the overall experience (from Monday to Friday).

Yo

FIGURE 5.46: Webcam captures for the experimental sessions
with NT (left) and ASD (right) subjects.

The Logitech C920 Pro HD webcam placed in front of the volunteers” work-
bench is used to record them during the experimental activities, as from the
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captures in Figure 5.46. Three sessions of approximately 10 minutes each
are video-recorded during the first workday (beginning, middle, and end of
the workday). Likewise, three additional videos are acquired during the last
workday of the experiment. Thus, one hour of videos for each participant
is available to be analyzed, for a total of 16 hours of videos. For this pur-
pose, four different tools are used to collect robust measures representative
of both predictable and unforeseen behaviors. Some of the chosen tools allow
for the precise observation of predefined aspects of the collaboration, but are
not suited for the analysis of long sessions (e.g., video-based annotations).
Other tools, instead, have been selected for their good fit with long and un-
predictable scenarios (e.g., live note-taking). Moreover, the different chosen
measures allow for both a qualitative analysis of the observed behaviors and
a quantitative comparison between the two mentioned groups. Below, the

list of exploited tools is reported:

* Observational grid. To detect some predictable aspects related to well-
being and performance, an observational grid is built. In particular, it
was decided to note the observed manifestations related to 7 attitudes:

1. Manifestations of tiredness. Body movements or facial expressions

that convey to the observer that the participant is tired are of inter-
est since they can give insights on how to improve the interaction

and make the experience less demanding for the two groups.

2. Hand gestures. All hand movements that are frequent but not use-

ful for the task are noted as interesting features given the known

stereotypical gestures of ASD subjects.

3. Assembly strategy. A class encompassing how the participant as-

sembles the planetary gearbox (e.g., using one or both hands, build-
ing several pieces at the same time).

4. Loading strategy. Participants also have to periodically replenish

the components buffers on the robot table. Knowing that subjects
with ASD have rigidities in changing their behavior while work-
ing on a repetitive task, it is interesting to see how and when this

step is carried out.

5. Regard for the cobot. A class including reactions related to the be-

havior of the cobot (e.g. talking to it) but also no reactions (e.g.

ignoring the robot).
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6. Talk to someone. A researcher is always in the room for task su-

pervision and conversations can take place.

7. Other manifestations. Other behaviors that cannot be categorized
in the other classes but that still contribute to describing the mo-

ment are noted here.

* Unstructured notes. Additional data is collected in the form of unstruc-
tured note-taking to make sure that the loss of specific behavioral occur-
rences is minimized. The researcher supervising the session is therefore
also in charge of annotating, on a dedicated document, all those inter-
esting behavioral nuances that may be missed by the video-recording
sessions. Using the collected notes, informative cards, called "Personas”
are built for each participant considering 5 categories: task challenges
and strengths, work organization, quotes, recurrent behaviors and emo-
tional expressions. The reasoning behind the choice of these classes
is similar to observational grid, but generalized in order to capture a

wider range of occurrences.

e Video annotations. The NOVA (NOn Verbal Annotator) tool is chosen
for the purpose. The recorded videos are run through the software
and manually annotated using labels related to the behavior of both
the robot and the participant. A first set of labels is dedicated to the on-
going activity phases (gathering parts, assembling, collaborative join-
ing). To that, a dedicated label for waiting instances is added, also char-

acterizing concurrent specific behaviors (e.g., distraction, gaze, talking).

* Performance analysis. One piece of information missing from the data
collected using the above tools is the quantitative performance achieved
by each participant. Therefore, for every day of the experimental week,
the supervising researcher noted on an Excel sheet the start and end
time of the session, any occurring stop of the activity (e.g., robot fail-
ure, participant taking a break), and the total number of assembled
gearboxes per day. Using this data it is possible to extract uptimes,
downtimes and a performance index computed as the ratio between

total number of completed gearboxes and total uptime.

Thanks to this rich dataset, it is possible to run a series of analysis in order to
gain further insights on repeating patterns, needs and behaviors. However,
it is important to remember that the small sample size limits the chance of

generalizing results. In fact, this work only aims to explore possible points of
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interest to be studied further before being translated into actual applications

inside the proposed human-driven control architecture.

Main results

For brevity, here only a comparison between the two groups is reported,
as some interesting differences emerge from the observations and analyses

made on the collected dataset.

From a qualitative point of view, a greater number of manifestations are
recorded for the ASD group both in terms of tiredness/boredom and regard-
ing stereotyped movements/gestures. Also, in terms of facial expressions
ASD participants show more variability than the NT ones while, analyzing
their gaze behavior, the tendency to look towards the cobot when it is time
to start collaborating seems to be significantly reduced. This is a first inter-
esting result since, with reference to the study reported in Section 5.2.2, this
outcome indicates that the effectiveness achieved with NT subjects by the
gaze-based attention triggering system may not replicate with ASD opera-
tors. This is proof of the fact that solutions validated for specific groups of
people may not be generalizable to all population, highlighting the need for
the importance of personalization in HRI. Continuing with the comparison,
the NT group seems to have a faster adaptation to the task, by gradually
changing the sequence, timing and positioning of their actions to achieve a
better performance over time. This adaptation is slower or totally lacking
for participants with ASD, specifically in their way of interacting with the
cobot. For most of the instances where the robot is waiting for the operator
to initiate the joining phase, ASD participants did not show any urgency to
collaborate, de-prioritizing this step in favor of their assembly scheme and
with a consequent loss in performance. Moreover, the analyses show that
ASD wusers prefer to maintain a certain distance from the robot throughout
the sessions. This is evident by looking at the strategies elicited by the two
groups regarding the replenishing of components on the robot table: if NT
participants gather these components as soon as they are needed regardless
of the robot actions, the ASD group tends to perform that action when the
robot is stopped in the collaborative joining position.

The quantitative data collected regarding the interaction seems to confirm
some of the differences mentioned above between the two groups. With ref-
erence to the left side of Figure 5.47, the lack of urgency in attending the
robot observed for ASD participants reflects in the statistical distribution of
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FIGURE 5.47: ASD vs NT differences regarding robot waiting
times (left) and gazes directed towards the robot (right).

robot waiting times. As shown, the average robot wait per video recording
is 20.70s for neurotypical subjects, while the ASD group accounts for almost
three times that, resulting in 59.96s of wait time per video. The differences in
gaze patterns are also confirmed by the quantitative analysis. As reported by
the box plot in the right side of Figure 5.47, NT generally spend more time
looking at the robot. Moreover, further analyses show that the duration of
gaze contact with the robot is sensibly shorter for the ASD group, replicating

previous results obtained by Damm et al., 2013.
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FIGURE 5.48: ASD vs NT differences regarding performance
average (left) and deviation (right).

In terms of performance (expressed as gearboxes/hour), results are summa-
rized in Figure 5.48. The NT groups clearly shows a trend of increasing per-
formance (+15%) and a tendency to converge towards a common top result
(SD from 3.95 to 1.73 over the week). The ASD group also achieves an in-
crease in performance (+9%), even though more moderate, but, on the other
hand, results are quite spread apart and do not seem to converge to a shared
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optimum (SD oscillating between 5.75 and 6.52 over the week). If, on aver-
age, data seem to confirm what is highlighted by the qualitative observations
in terms of performance (i.e., a slower rate of adaptation and multi-tasking
for the ASD group, resulting in a lower number of completed products), a
surprising result emerges through a subject by subject analysis. In fact, both
the best and worst performers among all participants belong to the ASD
group, signaling that the mentioned inclusion opportunity could be bene-
ficial also in terms of production, if the right task is assigned to the right

person and personalized accordingly.

A final interesting note should be taken into consideration. Even though,
on average, the two groups seems to have significant differences in terms of
gaze, gestures, adaptation to the task and resulting performance, it is always
important to remember that true personalization cannot happen through gen-
eralization. Each individual subject, even though considered within a group
as a clustering strategy to simplify the implementation issues, has his/her
own needs and approaches to daily life. Therefore, general rules drawn for
homogeneous groups should only represent the starting point from which
smart systems adapt their behavior with the aim of promoting positive and

natural interactions.

5.5.2 Biomechanical analysis on neurotypical and autism spec-

trum disorder people during human-cobot interaction

Sections 5.1.2 and 5.1.3 provide evidence that workers” physical assessments
are of utmost importance to enhance well-being and reduce work related
musculoskeletal disorders. For this reason, if up to now the comparison be-
tween ASD and NT individuals in industrial HRI scenarios has focused on
behaviors and performance, biomechanical aspects should not be left out. In
fact, Section 5.5.1 started to highlight differences between the two groups also
in terms of manifestations of tiredness and stereotyped movements which
could impact their biomechanical assessment. Moreover, research demon-
strates that ASD people often show reduced motor performance and motor
coordination of both upper and lower limbs (Fournier et al., 2010; Bennett et
al., 2021), increasing the risk of physical fatigue. To further explore these top-
ics in a semi-realistic industrial environment, this study provides a detailed
comparison between ASD and NT volunteers in terms of biomechanical mea-

sures collected while working on a collaborative assembly task.



166 Chapter 5. Experimental campaigns and results

Materials and methods

The data necessary to perform the desired analyses is collected during the
extensive experimental campaign already described in Section 5.5.1. In par-
ticular, skeleton data is acquired using the two redundant Azure Kinect cam-
eras and following the same protocol used before: three acquisitions lasting
10 minutes each are carried out at the beginning of the experimental week
(start, middle and end of the workday) and the pattern is repeated for the
last day, in order to capture variability both through the day and through the

week.

Leveraging the model already presented in Section 5.1.2, the collected skele-
ton data is used for the computation of kinematic and dynamic parameters.
Additionally, since participants are free to move around the workcell for as-
sembly purposes, the covered distance is computed as the 3D Euclidean dis-
tance of the spine-chest joint from one frame to the consecutive one. This
joint is chosen as one representative of the center of mass (the actual cen-
ter of mass cannot be inferred as the tracking of the legs is not permitted
due to the occlusion caused by the workbench). Torque, power and energy
are again computed as in Section 5.1.2 and normalized by dividing by the
weight and the height of the participant, in order to allow inter-individual
comparison (Saadatian, Sahebozamani, and Karimi, 2023). Further elabora-
tions of the biomechanical parameters are made to identify whether instant
or medium-term fatigue/effort is taking place during the task. For this pur-
pose, threshold values of torque and energy are identified (Lorenzini et al.,
2023; Yu et al., 2019). The torque threshold is defined as the shoulder torque
needed to maintain the shoulder elevated at 90° in a static configuration. On
this basis, events of instantaneous fatigue are detected as the times in which
the torque exceeded the 80% of the threshold. The energy threshold is, in-
stead, defined as the shoulder work required to perform repetitive reaching
movements lasting about 1 second each in a one minute session. An index
for medium-term fatigue is then computed as the percentage of the energy in

time windows of 1 minute with respect to the energy threshold.

Analyses and results

No significant differences are found between the ASD and NT groups in
terms of covered distance around the workcell, even though ASD partici-

pants show a tendency of moving less (p = 0.05). The maximum normalized
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torque seems to decrease between the first and last days of the work week for
both groups (p = 0.016), even though the number of events of instantaneous
fatigue remain almost unchanged. A similar decreasing trend (p = 0.009)
is found when considering the maximum normalized power. Interestingly,
this measure also identifies a significant difference between the two groups
(p = 0.012), with the ASD group reaching higher values. The same can be
said for the normalized mean energy (p = 0.022), with the ASD accounting
for significantly higher levels of expended energy. Figure 5.49 can be used as

reference for the data highlighting the mentioned differences.

normalized P normalized E
max s

0.06

__ 0015
- I Session 1 - NT *E
I Session 2 - NT, 2P 001
)
=
0.005
0

=
=
=

[W/(kg*m)]

oS
=]
=

5983585%82=92% 882585885522
— — — L B B s B M
EEEEEEEREE=EE22¢ R DR - - -
NNNANNNNANWNNANNN AUANNANAAN AR AR A
. normalized E
normalized P 0.02 s

[W/kg*m)]
=1 =1
[=] (3% £
20 [
20—

S04 E—

S

I Session 1 - ASD
B Session 2 - ASD
O
=}
=
7]

FIGURE 5.49: Barplots for the ASD and NT groups regarding
normalized power (left) and energy (right).
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Overall, both groups showed an adaptation process that may have taken
place to reduce the effort during industrial work. However, results also sug-
gest that the ASD group is subject to higher risks of fatigue due to slightly
less efficient movement performance. This result is in line with the find-
ings reported in Section 5.5.1, suggesting that ASD workers account for more
manifestations of fatigue and therefore highlighting the need for a careful
definition of both the workspace and work schedule. For instance, since ASD
operators seem to get tired more rapidly, more frequent breaks could be con-
sidered. Other than that, no clearly observable contraindications are found,
strengthening the opportunity of inclusion that HRI and Industry 5.0 may
offer to vulnerable subjects.
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5.5.3 Design and testing of (A)MICO: A Multimodal feed-
back system to facilitate the Interaction between Cobots

and human Operators

The studies presented in Sections 5.5.1 and 5.5.2 highlight a number of dif-
ferences between ASD and NT operators regarding industrial HRI scenarios.
However, these differences do not pose any contraindication towards the in-
volvement of vulnerable subjects if the workplace, assigned task and sched-
ule are designed properly. In fact, Section 5.5.1 highlighted that the character-
istics of neurodivergent operators may even be beneficial, leading to higher
performances overall. Creating accessible environments where everyone can
join in and have the same experience is one of the main concepts promoted by
the approach called 'Design for All’, a term introduced to indicate "a design
for human diversity, social inclusion and equality" (All Europe, 2004) and to
emphasize the importance of guaranteeing the dignity of all users. This con-
cept aims to promote the development of smart solutions, well harmonized

with their surroundings and usable by all indiscriminately (Ielegems, 2014).

Neurodivergent people face several difficulties in finding and maintaining
their job due to the lack of support, also caused by the overall organization
of resources and environmental factors such as stigma (Unger, 2002). Re-
search focusing on solutions facilitating the employment of neurodivergent
workers, such as those with ASD may provide employers with the appro-
priate tools and knowledge on inclusive recruitment (Nicholas et al., 2019),
reducing barriers to employment. One of those barriers, can definitely be
identified in problems of communication. This aspect is of great importance
in human-robot interaction, as also highlighted by several scales developed
to analyze the level of anxiety towards robots, the process and the factors
involved (Nomura et al., 2006a). Robots should be designed with intuitive
communication and cooperation modalities for human operators. Sciutti et
al., 2018 describe this process as “humanization” of human-robot interac-
tion, which in this context does not refer to the choice of an anthropomorphic
appearance, but to the development of a code for mutual understanding be-
tween the two agents. This aspect acquires a greater importance especially

when designing accessible robotic systems.

Starting from these considerations and the actual socio-cultural context, the
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present study aims to design a solution to make the interaction between col-
laborative robots and operators more intuitive and accessible for all neu-
rotypical and neurodivergent operators. In particular, a multi-modal feed-
back system is proposed, featuring a combination of visual and acoustic sig-
nals, to reinforce and integrate the information transmitted by the cobot re-
garding the activity in progress. Here, the most relevant details about the
implementation and testing of such device are reported, but the reader can
refer to Dei et al., 2024 for additional details.

Design of the prototype

To design a positive experience with the cobot, the information must be con-
veyed as intuitively and simply as possible, so that it can be understood by
everyone, reducing the stress and anxiety caused by not being in control of
the situation. On this, several studies confirmed that visual and auditory
signals are the most immediate modalities for individuals to interact with
robots (Su et al., 2023). In addition, making the cobot activity more trans-
parent allows for a faster and more efficient collaboration (Gross and Krenn,
2024). Moreover, considering that many workplaces are not designed with
accessibility functions, the developed solution must be adaptable to a pre-
existing system and its feedback should be customizable onto a wide variety
of applications.

Starting from the above requirements, the first prototype named (A)MICO
(A Multi-modal device to improve inclusive Interaction between Cobots and
Operators) is realized as represented in Figure 5.50. The device has a cylin-
drical shape with a properly sized footprint so that it can be placed in work-
stations with limited available space, but still transmit the information with
enough clarity. (A)MICO is composed of a base with a speaker, used to pro-
duce acoustic signals. On top of the base, a hollow semi-transparent cylinder
is mounted, equipped with five RGB LED strips. This design makes it pos-
sible to provide visual feedback both in terms of colors and 2D graphical
patterns (to make it accessible also for color-blind users). Being displayed on
a rounded surface, no additional movements of the user are required to see
the feedback. Overall, the aesthetic of the device is inspired by that of the sig-
nal towers often found in industrial settings. In addition, the rounded shape
recalls the lines of the cobot links, making it more emotional and affective,
while allowing the possibility to fix the device on the robot itself, thanks to
its hollow center.
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FIGURE 5.50: A rendering for the design and internal structure
of the first prototype of (A)MICO.

The device is controlled via dedicated firmware running on an Arduino Nano
board. The board is connected to the main PC controlling the robotic work-
cell via Bluetooth connection. A dedicated software module runs on the
main computer and interfaces the device with the rest of the architecture us-
ing ROS. Thanks to this approach, it is possible to translate the actions and
status of the cobot into lighting and acoustic patterns in real time. More-
over, this guarantees flexible and multiplatform use, as more and more robot
manufacturers develop controllers compatible with the ROS communication

middleware.

At this point, a co-design phase involving five individuals (1F and 4M) with
high-functioning autism is organized. The volunteers, selected for their pe-
culiar communication issues and need for explanations and guidance, are
recruited among the ones that participated in the study presented in Sec-
tion 5.5.1 in order to make sure that they have a proper understanding of
the system and of the difficulties that they may face interacting with it. In
fact, the goal of this phase is to identify the type of information the device
should be able to communicate and how this transfer should be realized.
Each participant is therefore administered an interactive questionnaire in-
tegrating videos of different combinations of visual and acoustic feedback
produced by the device, as in Figure 5.51.
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FIGURE 5.51: The administered questionnaire exploring possi-
ble feedback during three critical assembly phases.

Based on previous experience, three critical situations are presented in the

questionnaire:

1. The cobot stops because of a system error. Manual intervention of the

supervising researcher is required to restart the system.

2. The cobot stops because the detection camera fails in finding the next
component. The operator is supposed to bring new parts on the work-
bench or reorganize them so that they are well visible to the camera.

3. The cobot is waiting over the buffer of components while the detec-
tion camera succeeds in finding the next part. This small pause in the
movements of the robot may look like the detection has failed, when
in reality the camera has succeeded. The operator should not intervene
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and move the components around in this phase because the robot is

about to proceed picking up the next one.

For each of these situations, four options are proposed so that the participants
can vote their preferred one. A dedicated space is also left for the responders
to express additional concerns/suggestions regarding the use of (A)MICO in
the setup. Based on the outcomes of this co-design phase, four distinct multi-
modal feedback strategies are implemented. Figure 5.52 provides a summary
of their characteristics in terms of color, 2D pattern and associated acoustic
signal.
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FIGURE 5.52: The four feedback strategies implemented to re-
spond to the main needs identified by the participants in the
co-design phase.

Three of the shown strategies address the critical situations mentioned above,
but a fourth one is also added. In fact, responses collected in the "open com-
ments" section of the questionnaire highlight the need for a feedback on the
current performance during the task. For this purpose, an additional com-
bination of visual and acoustic feedback is implemented as a signal sent to
the user every 10 completed products. Indeed, especially for people with
ASD, having frequent feedback on the ongoing work is a valuable way for
reducing stress and for having a better awareness of time passing.

Testing and evaluation

To evaluate the potential of the device, the setup reported in Section 4.1.1
is integrated with (A)MICO and the collaborative assembly task described
in Section 4.1.2 is once again proposed. Twelve new participants with ASD
(2F and 10M) are involved. First, each subject is asked to work on the task
for around 10 minutes without the help of (A)MICO. After that, additional
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10 minutes are spent on the same task, but with the system integrating the
proposed feedback strategies. Note that, apart from clarifications regarding
the task, the researcher did not provide any explanation about the meaning
of the different feedback strategies since the goal is to understand their effec-
tiveness and intuitiveness in delivering the message. At the end of the two
assembly phases, participants are asked to also take part in a semi-structured
interview of around 15 minutes. The aim is to investigate quality of experi-
ence, clarity of the feedback strategies and achieved assembly proficiency

regarding the specific proposed task. Here, the main results are reported:

e Perception of the device. Figure 5.53 shows that half of the participants
have a correct understanding of the purpose of the device, even though
it was not explained by the researcher during the activity. This is a
positive result considering that the selected ASD participants have a
reflective reasoning process, rather than intuitive. Given more time to
familiarize with the task and with the functionalities of the device, the
design of (A)MICO seems promising in quickly communicating its pur-
pose to a wide cohort of individuals. Moreover, a similar proportion of
the experimental group expresses a preference to work with (A)MICO
rather than without. Considering those who do not find the device
helpful, no expression of annoyance is annotated during the interviews
since the reason for their dislike is mainly based on the fact that they
did not pay attention to it during the task. This is another positive re-

sult since ASD individuals are often hypersensitive to external stimuli.

IN YOUR OPINION, WHICH IS | LAB SETTING: DID YOU PREFER
THE FUNCTION OF (A)MICO? | WORKING WITH (A)MICO OR WITHOUT IT?

Providing information (N=6) With (A)MICO (N=6)
| do not know (N=3) Il without (A)MICO (N=3)
B Other Answers (N=3) B Does not matter (N=3)

25%

FIGURE 5.53: The answers collected during the semi-structured
interviews regarding the perception of the device.
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* Understanding of the feedback. Investigation of the level of comprehen-

sion regarding the proposed feedback strategies is of utmost impor-
tance for this study. Each participant is shown a video of the stimuli
and asked to explain their meaning. Figure 5.54 summarizes the ob-
tained results. The first stimulus on the left, representing an error state
is the one achieving the highest level of correct understanding. On the
contrary, the feedback related to the searching phase (the cobot wait-
ing for the detection camera to find the next component) is the one that
leads to a wider variety of wrong interpretations. The two remaining
stimuli shown on the right, are intended as indicators of a positive situ-
ation and only a few participants considered them as conveying a neg-
ative message. Even though further studies and design iterations are
needed to improve the effectiveness of the device (for some feedback
more that others), the collected preliminary results are promising. In
fact, inferring complex information from a combination of visual and
acoustic stimuli is not an easy process, especially for a target group
characterized by difficulties in abstract reasoning.

UNDERSTANDING OF THE FEEDBACK CONVEYED
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- The meaning was not understood

10

9
7
L 4
5 3 3 32
o H P

Error Searching Phase Finding Phase Workflow
(X red blinking with a (Orange arrows pointing (Double green blinking  (Rainbow shadow with
warning sound) towards the table witha  with a positive sound) a successful sound)

L Jelelsl Tol lelslsl Isl lslslsl } CO8COC00800000800
Oe0eCO0e0eCO0e0e0 O0O®00000800000800
(alel Jelslelsaie] lelelelslsl Lele] S9088COBRISONNOGS
ol 1ol lelelsl le] lelelel 1ol le] ol 1 1 lelelel T 1 lelefel 1 1 e}
L jelsjsl le] telslsl la] lelele] ] COeCO000900000e00

suspense sound)

FIGURE 5.54: The answers collected during the semi-structured
interviews regarding the understanding of feedback strategies.
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* General opinion on user experience. A wide variety of considerations emerge
in terms of user experience, highlighting the heterogeneity of sensitiv-
ities of users with ASD. If no relevant comments address the proposed
visual patterns, different suggestions can be considered for the auditory
part. For instance, some users would like (A)MICO to convey messages
through actual speech synthyesis, while others would find it helpful to
have some kind of musical rhythm helping them maintain the work-
flow and reduce the perception of tiredness. Regarding the positioning
of the device, some users suggest to have it closer to them, while others
would prefer to have it mounted on the robot arm, so that attention can

be paid to both entities simultaneously.

Even though longer tests with a bigger experimental population would be
required to have robust conclusions regarding the acceptability and effec-
tiveness of (A)MICO in assisting ASD during HRI, promising results are
achieved. However, it is important to remember that autism is a spectrum,
meaning that its manifestations are varied and heterogeneous. For this rea-
son, the functionalities of the proposed multisensorial feedback system should
be expanded to provide easy customization for each single subject, adapting

to their needs and sensibility.
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Comparing and supporting neurotypical and ASD subjects.

Main take-aways:

The fixed and predictable routine with precise task assignments that
characterizes the collaborative work with a cobot could represent a
great inclusion opportunity for individuals with ASD, in line with the
goals of Industry 5.0. However, it is important to remember that sys-
tems designed to satisfy the needs of neurotypical users may not be
optimal for neurodivergent ones. Therefore, dedicated studies are re-
quired to understand the main differences and propose effective and

personalized solutions.

A first observational study comparing ASD and NT users in the con-
text of HRI reveals that the two groups have significant differences in
terms of gaze, gestures, adaptation to the task and overall resulting
performance. Moreover, focusing on the biomechanical aspects of the
interaction, ASD individuals elicit slightly less efficient movements in-
dicating higher risks of fatigue. However, all the observed differences
can be addresses through a proper organization of the task, schedule
and workplace. With this approach, no contraindication for the em-
ployment of ASD workers remain: results even show that perfor-
mance levels above the NT average can be achieved.

One way to promote this inclusion opportunity is to develop new
assistive solutions aligned with the concept of Design for All. Fol-
lowing this paradigm, a co-design session involving ASD individu-
als is organized to understand how a cobot can communicate with the
user in an intuitive and predictable way. As a result, a prototype of
the (A)MICO multisensorial feedback system is realized and tested
achieving promising results. Further studies are required to test the
effectiveness of the device over longer periods of interaction and to
define the best strategy to customize the provided feedback for each
specific application and user.
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Chapter 6

Conclusions

The introduction of robots in every field of application is rising exponentially.
It is well known that robots are exceptional solutions when it comes to repeti-
tive operations or physically demanding and dangerous tasks since they can
substitute their human counterpart, freeing them from intense labor in fa-
vor of activities requiring problem-solving and flexibility skills. However, a
question arises: are we fully taking into account the needs and peculiarities
of the people that will be interacting with them? Given the impact that the
capillary diffusion of robots may have on our society, it is of utmost impor-
tance to study the effects that these devices may have on the users in order
to understand them better and leverage this newly acquired knowledge to

improve their effectiveness even further.

In fact, robotic devices are often designed to take over tasks traditionally
performed by humans, risking the loss of social nuances inherent to hu-
man nature and sensitivity. To safeguard well-being, it is crucial to adopt
a user-centered approach during the design and implementation of these
solutions. The ultimate aim should be to replicate human-human interac-
tion (HHI) within human-machine contexts while ensuring safety and per-
formance. This is particularly vital in areas requiring close interaction such
as work (industrial sector) and healthcare (rehabilitation sector). A compre-
hensive review of the state of the art, reported in Chapter 2, revealed that
current advancements in sensing and computing are opening new paths for
the introduction of human-centered design and socially-aware control strate-
gies. High-level information related to the experience of the interacting user
can be collected from biomechanical, physiological, social and psychologi-
cal signals. However, further research is still required to better understand
how this multimodal data can be fused together and effectively leveraged in

the control system of robotic devices in order to offer more natural and social
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HRI experiences. Additionally, the use of robotics as promoters of inclusivity
for vulnerable groups, such as neurodivergent users, is going largely unex-
plored, highlighting the need for further studies.

Depending on one’s culture, education and experiences, a certain approach
to social interactions takes place whenever two individuals interact with each
other. Therefore, the first step of the present project consisted in a simplified
schematization of the above mechanism to understand it better and repro-
duce it within the control system of automated machines. Section 3.1 went

into the details of this topic, highlighting three main points of interest.

1. The real state of a person often does not coincide with the one that
is expressed to the outside because of an innate Social filter. By merg-
ing psychological, affective and emotional expressions with measur-
able physiological and biomechanical reactions, an interactive entity
should attempt to gain an understanding of the user’s state as close
as possible to the actual one. A wide array of sensors collecting het-
erogeneous raw signals from the user is therefore key for a successful

technological reconstruction of the social mechanism.

2. One’s ability to interpret the state of others is referred to as Social
monitor. Within day-to-day interactions, these capabilities are deeply
rooted among the intricate laws of human sensibility and social aware-
ness. Exploiting existing knowledge and the power of Al, one of the
biggest challenges of the present project is, in fact, achieving reliable

inference of user experience.

3. Once a proper understanding of the state of a person is achieved,
new challenges arise in trying to change the ways of interaction in or-
der to offer a positive, social and natural experience. This is can be rep-
resented by a so-called Social controller, an expert system embedding
rule-based instructions coming from both existing knowledge and the

outcomes of novel experimental campaigns.

A generalized human-driven control architecture has therefore been concep-
tualized on the basis of the above observations. Section 3.2 and the rest of
Chapter 3 presented the choices behind this architecture and the role of each
foreseen module. In this regard, three additional points of interest should be
highlighted:
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1. The interactive technological system is composed of both a robot
and a virtual character, integrated together as a single entity in order
to provide physical, visual and auditory interaction capabilities similar

to what is experienced in human-human interactions.

2. Biomechanical, physiological, social and psychological raw signals
are collected from the users through non-invasive techniques in order
to gain a complete understanding of their state, ideally bypassing the
uncertainties produced by social filtering. High-level interpretation of
these signals and mapping upon a personalized user model are key
steps to fuse this information together and achieve a robust basis for

the decision-taking process of the control system.

3. The tuning of the behavior of the system is realized through an in-
tuitive programming interface so that no specific programming skills
are required for the deployment of the system. With this approach,
high automation levels can be achieved providing a natural experience
since the users are not required to manage the system itself, but simply
to interact with it as they would with a human counterpart. However,
a supervisor is still foreseen in the architecture to make sure that ir-
replaceable human judgment can be injected within the control loop

whenever deemed necessary.

Leveraging the proposed architecture, two use-case scenarios have been setup
for this project. The first application of interest can be referred to as Mind-

Bot, a mental-health friendly workcell for collaborative manufacturing. The
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setup featured a Fanuc CRX10iA /1 cobot and an interactive virtual avatar,
coherently orchestrated using VSM. A wide array of sensors was added to
the demonstrator and interfaced with the rest of the architecture using SSI,
while ROS was chosen to build the communication framework necessary for
dispatching information and commands. A 3D printed gearbox was also
ideated specifically as assembly task for the purposes of this study, with char-
acteristics aiming to promote close collaboration by design. Section 4.1 pre-
sented all the details of this deployment.
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Secondly, an Empathic Neurorehabilitation Trainer was realized to test the
teasibility of the proposal in a rehabilitation scenario, surely one where phys-
ical and cognitive interactions play a relevant role in the effectiveness of the
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deployment. The setup incorporated the PLANarm2 prototype, a robotic de-
vice developed within STIIMA-CNR to assist upper-limb planar movements
even in domestic environments. To provide a visual representation of the
warmth and competence of the system, a virtual character was again intro-
duced and controlled using the same tools mentioned above. A GUI, realized
using Unity3D, was added in this case to provide visual feedback of the ex-
ercises to be carried out. Together with the array of portable sensors, selected
to be feasible for future home-therapy, lab-based and more invasive equip-
ment is also interfaced with the architecture solely as a validation tool for
the effectiveness and acceptability of the system. All the details regarding
the implementation of the system and the available rehabilitation tasks have

been addressed in details in Section 4.2.

Thanks to these two demonstrators and to the approval obtained by the in-
volved ethical committees, a number of experimental campaigns have been

carried out. The goal here was multifaceted:
* Verify the technical feasibility of the deployed systems.

* Explore specific aspects regarding the experience of human-robot inter-

action.

¢ Test the effectiveness of possible solutions aiming to make HRI more

natural and social.

¢ Collect a list of "lessons learned" to construct a guideline that can be

referenced for future expansions on this work.
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Section 6.1 provides a summary of the main outcomes of these studies and
tries to extrapolate the main take-away messages achieved by this project.
After that, Section 6.2 attempts to draw the guidelines for future further de-
velopments in the field, highlighting both technical and organizational as-
pects. Finally, Section 6.3 is dedicated to the identification of the limitations
of the present project and of a series of interesting research lines, worth ex-

ploring in future works.

6.1 Main take-aways

Chapter 5 was dedicated to the experimental campaigns carried out for the
purposes of this project. Each section addressed one specific topic and was
completed by a summary sheet reporting the main outcomes and a brief dis-
cussion. Overall, the findings highlight the multifaceted nature of human-
robot interaction and emphasize the importance of personalized, adaptive
and socially aware robotic systems to optimize both performance and user
experience. In particular, this work investigated how various factors includ-
ing biomechanics, gaze behavior, psychological measures, and the integra-
tion of virtual characters affect the perception and effectiveness of human-
robot collaborations, with significant implications for both industrial and
neurorehabilitation settings. A growing need for a holistic approach to HRI
is underlined, not only to optimize task performance but also to prioritize

user well-being, engagement, and inclusivity.

Assessing physical well-being through biomechanical monitoring

One of the most significant aspects of HRI in industrial settings is ensur-
ing that the collaboration between humans and robots does not contribute to
physical strain, fatigue, or discomfort. This thesis highlights the importance
of biomechanical assessments in both laboratory and real-world production
environments, underlining the limitations of studies conducted in controlled
settings that do not account for the complex dynamics of live work envi-
ronments. In contrast to laboratory conditions, real-world industrial settings
are far more dynamic and unpredictable, presenting challenges in terms of
sensorization, ergonomics, task design, and physical demands on the user.

The results presented throughout Section 5.1 emphasize the importance of
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non-invasive, real-time assessment tools to monitor and improve user er-
gonomics. Technologies like the Microsoft Azure Kinect, which offer marker-
less motion tracking, are particularly beneficial in industrial applications due
to their ability to operate with minimal setup and maintain the natural flow
of interaction. The use of such technologies in collaborative robotic systems
allows for continuous, real-time adaptation to the user’s movements and
preferences. For instance, this thesis demonstrated that robots can adjust
their poses dynamically to minimize strain and improve overall user com-
fort, ensuring that both the robot and the human can collaborate efficiently

and without causing physical harm or discomfort.

Furthermore, the analysis of neuromotor rehabilitation tasks reveals the broader
potential of robotics in healthcare. The introduction of robotic assistance in
rehabilitation scenarios was shown to improve exercise performance, though

it did not significantly alter the underlying structure of muscular synergies.
This demonstrates that robotic systems can support the physical recovery
of users while respecting natural movement patterns, which is crucial for
long-term rehabilitation and preventing further injury. The biomechanics of
rehabilitation should continue to be a priority in future studies, as under-
standing the interplay between robot assistance and human movement can
lead to more personalized and effective rehabilitation protocols.

Leveraging natural social cues

Gaze has been shown to be a crucial social cue in human-human interac-
tion, serving to communicate intent, establish attention, and facilitate col-
laboration. In Section 5.2, gaze-based attention recognition was successfully
integrated into the generalized human-driven control architecture, demon-
strating its potential as a tool for enhancing social interaction with robots. In
fact, the development of a gaze-based attention recognition model revealed
that gaze is a key indicator of collaborative intent, with over 80% of collabo-
rative instances preceded by gaze directed towards the robot. This supports
the hypothesis that humans (specifically neurotypical subjects) instinctively
use gaze as a non-verbal communication tool, even when interacting with
robots. The developed model achieved an 82% F1 score, demonstrating its
potential for real-time applications in collaborative robotics. Furthermore,
integrating gaze behavior into the generalized human-driven control archi-
tecture enhanced the robot’s ability to respond to user intentions, leading to
a success rate of 89% in triggering collaboration.
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However, some of the results presented in Section 5.5 demonstrate that this
gaze-based robotic behavior, successfully leveraged with neurotypical sub-
jects, may not be usable when considering neurodivergent populations. In
particular, ASD individuals were observed to have different gaze patterns,
rarely looking towards the robot and for shorter periods of time. These re-
sults highlight even more the need for personalized interaction strategies in
HRI: broader implications lie in the potential for robots to understand and
engage with humans on a more intuitive and human-like level. As robots
become more integrated into daily life, the ability to interpret personalized
non-verbal cues will be increasingly important in fostering seamless and nat-
ural interactions. This could result in more adaptive, efficient, and pleasant
collaborative experiences, where robots are not just tools but active partici-

pants in social and professional tasks.

Supporting emotion regulation and mental well-being

The role of psychological elements in human-robot collaboration is another
area where this research can offer interesting insights. As robots become
more embedded in workplace environments, it is crucial to monitor not only
their physical but also their emotional impact on users. Previous research
has shown that emotional well-being and cognitive load play a significant
role in user performance and engagement. This thesis builds on this idea by
exploring how physiological signals, such as heart rate and facial expression
analysis, can provide valuable feedback for the robot, enabling it to adjust
its behavior to better support the user’s emotional state. Interestingly, while
facial expressions are often used as a common tool for emotional state anal-
ysis, the findings presented throughout Section 5.3 indicate that heart rate
variability (HRV) measures are more robust and reliable indicators of per-
ceived challenge and user engagement. HRV was found to distinguish be-
tween conditions where the user felt challenged and those where they were
in a more balanced state, pointing to its potential as a real-time feedback sig-
nal for robot behavior adjustment. Moreover, subjective measures (e.g., self-
reported questionnaires) further confirmed that personalized adjustments to
the robot’s collaboration rhythm could positively influence user experience,

reducing workload and enhancing engagement.

Given the growing recognition of the importance of emotional and cogni-

tive states in user experience, these findings suggest that robots could be
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designed not just to perform tasks but also to promote emotional regula-
tion and mental well-being. For example, by monitoring HRV and other
psychological signals, a robot could adjust the difficulty level of a task to
prevent frustration, boredom, or stress and ultimately improving user satis-
faction and task performance. Further studies could refine these measures
and explore their integration into real-time control systems, with promising
opportunities also for ASD users for whom the monitoring of physiologi-
cal signals may represent a solution overcoming the higlighted differences
in behavior and emotional/introspective expressions. A promising direc-
tion could be the development of hybrid models that combine physiologi-
cal data with subjective self-reports (if applicable) to more accurately assess
the user’s emotional state. Such models could be employed across a range
of high-stakes applications, from industrial environments to healthcare set-
tings, where understanding and supporting the emotional needs of the user

is essential.

Enhancing social interactions with virtual characters

The integration of virtual characters into human-robot systems offers an-
other fascinating opportunity to enhance social interaction and user expe-
rience. The use of avatars or virtual characters in conjunction with physical
robots has the potential to create a more cohesive and engaging user expe-
rience. This thesis investigates how the social role of the robot can be en-
hanced through the addition of a virtual character. In particular, Section 5.4
demostrated that the presence of an avatar, provided its behavior is convinc-
ingly modeled, can help the system embody a social role, such as a the one
of a colleague or a collaborator. This is especially relevant not only in indus-
trial applications, where this approach can promote better performance and
emotional well-being, but also in contexts like neurorehabilitation, where the

social engagement of the user can significantly impact their recovery process.

The BASSF behavior model, used to guide the avatar’s actions, highlights the
importance of emotional regulation in promoting optimal user engagement
and task performance. By focusing on dimensions like dominance and guid-
ance, the model demonstrated how avatars can be designed to encourage
positive emotional states, supporting Flow during collaborative tasks. These
findings align with broader research in the field of social robotics, which sug-
gests that robots with socially aware avatars can create more natural, engag-

ing, and supportive interactions with users. Moreover, incorporating virtual



186 Chapter 6. Conclusions

characters into robots could expand the scope of robot capabilities in neu-
rorehabilitation. The Empathic Neurorehabilitation Trainer developed in this
thesis demonstrated that avatars could enhance user performance and en-
gagement during rehabilitation exercises without causing distractions. This
suggests that virtual characters, when integrated thoughtfully, can support
users not only by guiding physical tasks but also by providing emotional
support, further promoting engagement and progress.

Promoting inclusion for neurodivergent users

A particularly innovative aspect of this research was presented in Section 5.5,
where HRI is explored as a tool for promoting the inclusion of individu-
als with the Autism Spectrum Disorder in collaborative work environments.
As the goals of Industry 5.0 emphasize human-centric and inclusive produc-
tion systems, this research highlights the potential for cobots to offer unique
opportunities for neurodivergent individuals, particularly those with ASD.
Both quantitative and qualitative analyses revealed significant differences
between ASD and neurotypical users in terms of gaze, gestures, and task
adaptation. These differences, however, could be mitigated through thought-
tul task structuring, careful scheduling, and a personalized approach to col-

laboration.

Interestingly, individuals with ASD exhibited slightly less efficient move-
ments during collaboration, which could indicate higher risks of fatigue.
However, these differences did not preclude their ability to perform well,
especially when tasks were tailored to their needs. By designing systems
that are flexible and responsive to the specific challenges of neurodivergent
users, it is possible to create work environments that are both inclusive and
optimized for performance and where individuals with ASD could not only
meet but exceed the performance of their NT counterparts. This aligns with
the principles of “Design for All,” which advocates for the creation of sys-
tems that are accessible to diverse user groups. The development of assis-
tive technologies like the (A)MICO multisensory feedback system represents
a promising step toward achieving this goal. By providing intuitive, pre-
dictable communication between the robot and the user, this system can im-
prove the user experience and facilitate more effective collaboration. Fur-
ther studies should focus on refining these systems and testing them over

extended periods to ensure their effectiveness in real-world environments.
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This thesis contributes to the growing body of research on human-

robot interaction by exploring the integration of biomechanical, be-
havioral, emotional, and psychological measures into a unified
robotic framework. By employing non-invasive technologies, lever-
aging gaze behavior as a social cue, monitoring physiological and psy-
chological responses, and incorporating virtual avatars, this work con-
tributes to the development of more personalized, adaptive, and so-
cially aware robotic systems. Furthermore, including neurodivergent
individuals in the design process further enriches this vision, aligning
with the inclusive goals of Industry 5.0 and demonstrating that robots
can promote both performance and well-being in a diverse range of
users.

The findings presented here underscore the importance of personaliza-
tion and social awareness in HRI, showing that robots can and should
be designed to not only perform tasks but also engage with users in
ways that promote emotional well-being, inclusion, and task success.
As robots continue to play an increasingly central role in various in-
dustries, future work should further explore the integration of these
insights into real-world scenarios, such as collaborative workcells or
neurorehabilitation applications, ensuring that collaborative robots can

serve as effective, supportive, and inclusive partners for all users.

6.2 Guidelines for replication

The contents and outcomes of this thesis required a significant effort in over-
coming both organizational and technical issues. Building upon the lessons
learned up to now could allow future studies and replications to avoid un-
necessary mistakes and optimize the research flow. For this purpose, here
a list of guidelines is reported based on the experience collected during the
doctoral program.

Organizational guidelines

* Considering realistic use-case scenarios that could significantly benefit
from the study outcomes is key to promote the impact of research out-

side the laboratory walls. In fact, a review of the state of the art revealed
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that the results obtained in controlled environments are often not rep-

resentative of the dynamism and complexity of real-life applications.

* When designing research questions, study protocols and experimental
campaigns, it is important to extend as much as possible the range of
involved users in order to mitigate the risk of biased generalization. In
fact, some of the obtained outcomes may be applicable to the studied
populations but not as much for other overlooked groups. As a notable
example, the use of gaze as a promoter of natural HRI was demon-
strated to be very effective for neurotypical subjects but unfeasible for
ASD individuals.

* A rich and multidisciplinary research consortium is key to tackle com-
plex issues from a heterogeneous set of points of view. In fact, as an
author with technical backgrounds, the collaboration with colleagues
coming from diverse backgrounds proved itself necessary to avoid over-
looking important aspects that would have been deprioritized other-

wise.

* A complete knowledge of the requirements dictated by the need of an
ethical approval can help in speeding up the clearance process. In the
case of this project, the support of a clinical partner was fundamental
both for the involvement of ASD subjects and for the addresses rehabil-

itation scenarios.

Technical guidelines

* At a research level, selecting robotic devices that can be freely con-
trolled at a low-level can speed up the integration of promising solu-
tions into working demonstrators. For instance, the implementation of
all the software interfaces needed to use the Fanuc CRX10iA /1 cobot
in the MindBot project required quite some time compared to the steps
needed to integrate the PLANarm?2 prototype in the Empathic Neurore-
habilitation Trainer.

* Using tools that ease the process of sharing and replaying collected
data opens up the possibility of decentralizing development, calibra-
tion, testing and analyzing processes, a relevant aspect when working

with international teams from different laboratories.
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¢ Building local networks can help sharing computational loads onto dif-
ferent machines, avoiding unnecessary bottlenecks and achieving bet-
ter system performances overall. Of course, a distributed systems re-
quires a tool capable of effectively exchanging information and com-
mands. In this project, ROS was chosen as state-of-the-art solution for
robotic applications. Future studies could even consider a migration to
the newer ROS2 version, which is becoming more and more stable and

provides powerful solutions to ease the implementation process.

* When selecting sensors, one should consider that some are only ap-
plicable in controlled environments. Consequently, this kind of tools
could be leveraged for evaluation and validation purposes but not for
their implementation as real-time data providers since their use would

not be feasible in a realistic environment.

¢ Considering physiological data, the above consideration can be extended
even further. Collecting EMG signals requires long setup times, ex-
perience for a precise positioning and often becomes invasive for the
subject. On the other hand, EDA sensors are often easy to install, but
the data they produce is heavily affected by movements, hindering the
replicability in real-life applications. Extremely interesting insights can
be obtained by analyzing the brain activity of individuals. However,
most EEG sensors present both of the above limitations: they require

long setup times and do not allow the subject to freely move around.

* For easy installation, reduced invasiveness and replicability in realis-
tic environments, one should prefer to base real-time adaptive systems
onto data related to heart activity, as available devices (e.g., chestbands)
can be worn quickly and autonomously by the subject with minimal
worries related to noise disrupting the collected data. Similar consider-
ations can be done regarding marker-less vision systems, both in terms
of RGB and depth cameras. In fact, provided that their positioning is
redundant and robust enough for the specific application, they can be
effectively leveraged to extract useful information such as biomechani-

cal assessments, facial expressions, gaze behaviors, etc.

¢ Self-reported questionnaires are also useful for a complete representa-
tion of the user’s status. However, one should remember that they are
asynchronous tools that could represent a distraction for the subject if

administered during the task under analysis.



190 Chapter 6. Conclusions

6.3 Limitations and future work

When working on experimental campaigns, often some limitations must be
accepted. In the case of the present thesis, some of the analyses carried out
for the MindBot project required participants to work on the task for exten-
sive periods of time and over multiple days. Thanks to this approach a rich
and varied dataset can be collected for each subject but, on the other hand
the size of the analyzed population must be limited. The reason is twofold:
tirst, there is the organizational complexity of recruiting participants willing
to reschedule their day-to-day activities in order to take part in such a study
and second, the need for supervision during this kind of experimental ac-
tivities represents a significant time burden for the researchers and for the
lab availability as well. Similarly, when working with ASD individuals, re-
cruitment is a problematic task. Collaboration with dedicated associations
can ease the process but still, the reachable population is limited and must
be further filtered depending on the portion of the spectrum suitable for the
purpose of the study. As a consequence, some of the obtained results could
be rendered statistically more robust if, over time, data related to bigger and

bigger populations were to be collected.

Similar considerations can be done also for the activities related to the Em-
pathic Neurorehabilitation Trainer. Due to ethical limitations, the involve-
ment of patients was not foreseen for the planned experimental campaigns.
However, in order to test the effectiveness of the system on the outcomes of
actual therapies, future works should transition from the lab to the clinics or,
even better, to the homes of patients in order to validate the feasibility of the

solution also for domestic and unsupervised environments.

Overall, the generalized human-driven control architecture proposed in this
thesis proved itself effective in promoting natural and social human-robot in-
teraction experiences both for industrial and rehabilitation use-cases. In this
sense, it would be interesting to quantitatively evaluate how easily and effec-
tively the proposed demonstrators could be repurposed for different appli-
cation or even modified to accommodate different robots and sensors. More-
over, many aspects of human-robot interaction still need to be explored in
detail. The outputs of this thesis provide a series of tools that can ease future
studies, but research cannot end here. The answer to one research question
naturally opens up many more and only a continuous push can provide the
knowledge that is needed to keep improving automatic systems by provid-

ing growing levels of awareness and personalization.
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Appendix A

MindBot Consortium

FIGURE A.1: A picture taken during one of the MindBot Gen-
eral Assemblies depicting the group of researchers involved in
the project.

* IRCCS — Associazione La Nostra Famiglia ‘Istituto Scientifico Eugenio Medea’.
Coordinator of the project and expert for the involvement and monitor-
ing of ASD participants (MEDEA, 2024).

* Universita degli Studi di Milano. Contributing with its psychology de-
partment for the experience questionnaire collection and analysis (UMIL,
2024).

* Consiglio Nazionale delle Ricerche. The STIIMA institute (to which the
author of the present thesis is affiliated) was in charge of providing
the technical skills necessary to implement the overall software and

hardware architecture and in particular to realize the foreseen adaptive
robot control (CNR, 2024).
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* BioRICS NV BE. A company based in Belgium responsible for the men-
tal energy interpreter module based on their proprietary Mindstretch
app (BIORICS, 2024).

* Deutsches Forschungszentrum fur Kiinstliche Intelligenz Gmbh. The ger-
man research center for artificial intelligence, involved as expert regard-

ing avatar control and cognitive user modeling (DFKI, 2024).

e Sveuciliste u Rijeci, Filozofski Fakultet u Rijeci. The University of Rieka,
responsible for the analysis and assessment of the organizational im-
pact that the presented system may have on small and medium enter-
prises (FFRI, 2024).

* KUKA Deutschland Gmbh. Involved to perform a baseline analysis of
work environment and organizational specifications together with the
identification of companies willing to test the system in their premises (KUKA,
2024).

o Universitaet Augsburg. Its Affective Computing Research group was the
main responsible for the social and affective signals interpretation layer
of the control architecture (UAU, 2024).

* Republic of Croatia — Ministry of Labour, Pension System, Family and Social
Policy. Collaborating with the University of Rieka for an employment
assessment of the current industrial scenario (MRMSOSP, 2024).



193

Appendix B

MindBot ROS Communication

Pipelines

Nodes Topics Services
/mindbot_service _requester /mindbot/robot/action_done
(server)
This node is created by the /mindbot/robot/set_ctrl_state
VSM module and is used to (client)
communicate with the /mindbot/robot/set_ctrl_mode
RobotControl module via (client)
services /mindbot/robot/set_detection
(client)
/mindbot/robot/set_gripper_action
(client)
__________________ /mindbot/robot/set_joint_target
(client)
/mindbot/robot/set_tcp_target
(client)
/mindbot/robot/set_max_tcp acc
(client)
/mindbot/robot/set_max_tcp_vel
(client)

/mindbot/robot/set_min_clearance
(client)

/mindbot_topic_subscriber /mindbot/robot/ctrl_state

(subscribe)
This node is created by the  /mindbot/robot/ctrl_mode
VSM module and is used to (subscribe)  ——
read the topics published by /mindbot/robot/tcp state
the RobotControl (subscribe)
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Jcrx10ial
(publish, 20Hz)
This node is created by the
RobotControl module and is
responsible for the direct Jtf
integration with the (publish, 40Hz)
controller of the Fanuc robot /tf_static
using the RMI interface (publish, latching)
/rmi_controller/result
(publish, 20Hz)
/rmi_controller/goal
(subscribe)
/mindbot/robot/ctrl_state
(publish, 1Hz)
/mindbot/robot/ctrl_mode
(publish, 1Hz)
/mindbot/robot/tcp_state
(publish, 15Hz)
/human/body_frames
(subscribe)

(publish, 20Hz)

/mindbot_manager_node

This node is created by the
RobotControl module and is
responsible for the
dispatching of all the
commands to the correct
hardware modules (robot,
gripper, detection camera)

/pickit Jtf
(subscriber)
Jtf_static
(subscriber)

This node is created by the
RobotControl module and is
responsible for the direct
integration with the
controller of the Pickit3D
detection camera
/ssi [ssi/emotion

(publish, 10Hz)
This node is created by the  /ssi/pain
Analysis of Social and (publish, 10Hz)
Affective Cues module and is /ssi/attention
used to publish the inferred (publish, 10Hz)
data to the ROS framework

/mindbot/robot/joint_states /controller_manager/load

(server)

/mindbot/robot/robot_state /controller_manager/unload

(server)

/mindbot/robot/action_done
(client)
/mindbot/robot/set_ctrl_state
(server)
/mindbot/robot/set_ctrl_mode
(server)
/mindbot/robot/set_detection
(server)
/mindbot/robot/set_gripper_action
(server)
/mindbot/robot/set_joint_target
(server)
/mindbot/robot/set_tcp target
(server)
/mindbot/robot/set_max_tcp_acc
(server)
/mindbot/robot/set_max_tcp vel
(server)
/mindbot/robot/set_min_clearance
(server)
/pickit/product/load
(server)
/pickit/setup/load
(server)
/pickit/check_for_object
(server)
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[kinect [kinect_0/skeletons
(publish, 12Hz)
This node is created by the  /kinect_1/skeletons
Image Processing module and (publish, 12Hz) e
is responsible for sharing all
the information related to
the operator’s skeleton
/biomech /kinect_0/skeletons
(subscribe)
This node is created by the  /kinect 1/skeletons
Biomechanical module and is (subscribe)
used to publish the computed /human/body_frames
indexes to the ROS (publish, 12Hz)
framework. /human/fatigue
(publish, 2.5Hz)
/human/fatigue_index
(publish, 2.5Hz)
/biomech/joints
(publish, 2.5Hz)
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Appendix C

Ethical Clearance

Given the study protocol provided for the project under the name "Modeling
perception of human-robot interaction: toward natural and social HRI ex-
periences" together with all the accompanying documentation, the approval
granted from the ethical committee of STIIMA-CNR is reported below (in

italian).

The present study does not have any diagnostic or clinical goal. However,
robot prototypes developed for rehabilitation purposes are used in the ex-
perimental campaigns as tools useful to test the users” experience of interac-
tion in a setting resembling that of a neurorehabilitation session. Moreover,
the study foresees the involvement of participants characterized by ASD as a
particular group of interest for the study given the specific needs and behav-
iors that they may elicit when interacting with a robotic device. Given the
aspects highlighted above, the approval of the ethical committee of a clinical
partner was also requested and granted to complement the positive feedback
already obtained by STIIMA-CNR. In particular, Dr. Eng. Fabio Storm, a re-
searcher for IRCCS Eugenio Medea La Nostra Famiglia collaborating on the
project, presented the outline of the study to the committee and obtained the
approval reported below (in italian).
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I'Integrita nella Ricerca

PARERE DI ETHICAL CLEARANCE

PREMESSA

La Commissione per I'Etica e I'Integrita della Ricerca, considerate le proprie competenze attribuite
dal Decreto del Presidente del CNR del 23 settembre 2019 — prot. n. 0065527/2019 e s.m.i., dando
seguito a una richiesta di valutazione etica da parte dell’Istituto dei Sistemi e Tecnologie Industriali
Intelligenti per il Manifatturiero Avanzato (STIIMA-CNR), ha preso visione e analizzato natura,
obiettivi e modalita di svolgimento dello studio “Modeling perception of human-robot interaction:
towards natural and social HRI experiences”. Sono partner dello studio: I'lstituto di Tecnologie
Biomediche del CNR (ITB-CNR); I'lstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio
Medea-Associazione “La nostra famiglia” (MEDEA); I'azienda privata AuticonM; l'universita tedesca
di Augusta (Lehrstuhl fiir Menschzentrierte Kiinstliche Intelligenz); la partnership no profit pubblico-
privato Deutsches Forschungszentrum fuer Kunstliche Intelligenz GmbH.

DESCRIZIONE

Il progetto ha lo scopo di identificare e quantificare alcuni aspetti chiave dell’interazione tra uomo
e robot al fine di rendere tali interazioni sempre piu naturali, sociali e sicure. In particolare, il
progetto si propone di elaborare modelli generali di interazione uomo-robot per lo sviluppo di
algoritmi di controllo mirati all’'ottimizzazione dell’esperienza dell’'utente. Tali modelli sono
generalizzati a partire da gruppi di utenti omogenei, ovvero adulti neuro-tipici e adulti con una
diagnosi di Disordine dello Spettro Autistico (ASD) ad alto funzionamento (ovvero privi di limitazioni
di tipo cognitivo).

Lo studio intende contribuire all’inserimento dei robot nella vita quotidiana non solo quali ausilii
nell’attivita umana, ma anche quali dispositivi con una capacita di interazione sociale in grado di
simulare quanto piu possibile I'esperienza tipica delle relazioni umane. Lo studio prevede tre fasi
sperimentali principali, per una durata complessiva di almeno tre anni. Al fine della conduzione delle
attivita sperimentali & arruolato un campione minimo di 60 partecipanti, cui potranno essere
aggiunti ulteriori soggetti in funzione del soddisfacimento della soglia statistica richiesta per alcuni
parametri dello studio.

A ognuno dei partecipanti sono proposte una o piu esperienze di interazione diretta con un
dispositivo robotico oppure attraverso schermo o tablet. Nel corso dell’'interazione con i dispositivi
robotici sono raccolti segnali cineto-dinamici, biomeccanici, sociali, fisiologici e psicologici degli
utenti (parametri quantitativi in grado di definire lo stato complessivo dell’'utente) e questionari al
fine di valutare la qualita della relazione percepita?. | dati raccolti ed elaborati nella prima fase sono
successivamente analizzati al fine di sviluppare modelli generalizzati di interazione uomo-robot che
potranno essere impiegati per la previsione delle reazioni di un ‘utente tipo’ dal punto di vista
sociale, fisiologico e psicologico in risposta al variare del comportamento del dispositivo robotico e
delle caratteristiche del task proposto. Nella fase conclusiva, tali modelli generalizzati sono
impiegati per lo sviluppo di algoritmi di controllo del comportamento del dispositivo robotico in

! Tali dati possono includere: Dati di posizione, velocita e forza scambiata con il dispositivo; Registrazione audio/video;
Eye tracking; Elettroencefalogramma (EEG); Elettromiografia (EMG); Attivita elettrodermica (EDA); Elettrocardio-
gramma (ECG); Frequenza cardiaca (BVP); Saturazione ossigeno (Sp0O2); Respirazione (PZT). Tra i parametri valutati nei
questionari vi sono: Fatica percepita; Performance cognitive; Stato emotivo; Usabilita e comfort; Attitudine/rapporto
con la tecnologia; Ansia legata all’uso della tecnologia.
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funzione di alcuni parametri inferiti dallo stato attuale dell’'utente, al fine di ottenere un livello di
interazione ottimale tra uomo e robot. A tal fine sono impiegate tecniche di machine learning grazie
alla collaborazione con il partner Deutsches Forschungszentrum fuer Kunstliche Intelligenz GmbH.
Tutti i dati acquisiti durante le sessioni sperimentali sono acquisiti in forma anonima e criptata e
sono conservati fino al raggiungimento delle finalita di progetto, raggiunte le quali I'intero database
sara eliminato in modo definitivo.

ETHICAL CLEARANCE

La Commissione,

valutato che:

Il progetto si pone in continuita con il precedente progetto “MindBot-Mental Health
promotion of cobot Workers in Industry” in merito al quale la Commissione per I'Etica e
I'Integrita nella Ricerca ha rilasciato un parere di Ethical Clearance in data 20 luglio 2021
(prot. n. 0051763/2021);

le attivita di ricerca svolte nel precedente progetto non hanno evidenziato criticita etiche e
lo studio in esame e condotto con metodologie analoghe e prevede il coinvolgimento dello
stesso gruppo di ricerca;

I’arruolamento prevede il coinvolgimento tra i partecipanti anche di personale CNR non
strutturato e che tuttavia non vi sono rapporti gerarchici diretti tra i partecipanti e il
responsabile scientifico del progetto, e non vi sono comunque circostanze tali da generare il
rischio di induzione del consenso;

tutti i dispositivi commerciali utilizzati nello studio sono dotati delle apposite dichiarazioni di
conformita e marcatura CE?, e che per i due dispositivi prototipali (PLANarm2 e PhiCube) &
stata effettuata una valutazione del rischio secondo i parametri definiti dalla norma UNI CElI
EN ISO 14971: 2012;

il progetto non & diretto alla validazione dei dispositivi PLANarm2 e PhiCube in ambito clinico
né vengono effettuate valutazioni di tipo clinico dei partecipanti sulla base dei dati raccolti;
i risultati dei questionari e delle analisi dei dati sono elaborati, pubblicati e diffusi in forma
anonima e aggregata;

e fornita ai partecipanti adeguata informativa per I'espressione del consenso, compresa
I’esplicitazione del diritto a revocarlo senza che derivi alcuna conseguenza;

€ resa ai partecipanti specifica informativa sul trattamento dei dati personali;

e ragionevolmente esclusa la possibilita che i risultati siano impiegati per scopi che esulino
dalle finalita del progetto;

i partner internazionali hanno formalmente dichiarato che: i) le proprie attivita di ricerca si
svolgono nel rispetto della normativa locale vigente e sono compatibili con la normativa UE;
ii) non si prevedono criticita etiche particolari relative alle modalita di arruolamento dei
partecipanti; iii) sono adottate specifiche misure tecniche e organizzative per garantire la
riservatezza e la protezione dei dati personali; iv) in caso di criticita etiche emergenti o di
mutamenti normativi locali, ne sara data tempestiva informazione al Coordinatore di
progetto e tramite questi al Coordinatore della Commissione per I'Etica e I'Integrita nella
Ricerca,

preso atto:

2 | dispositivi commerciali utilizzati nello studio sono il: (i) HasoMed RehaStim FANUC CRX10iA/L; (ii) Robotiq 2F
Adaptive Gripper; (iii) Robotiq Hand-E Gripper; (iv) QBRobotics SoftHand Research Gripper e sono dotati delle se-
guenti dichiarazioni di conformita Council Directive 93/42/EECe (i); ISO 10218-1 (ii); EN ISO 12100:2010 (iii-iv);
ISO/TS 15066 (v).
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delle dichiarazioni: i) del Direttore di STIIMA-CNR attestante la conformita del trattamento
dei dati personali svolta nell’lambito del progetto alle disposizioni di cui alle normative
europee e nazionali applicabili dichiarazione resa in data 26 aprile 2022; ii) del Responsabile
scientifico del progetto con cui si impegna ad aderire alle Regole deontologiche per i
trattamenti a fini statistici o di ricerca scientifica pubblicate ai sensi dell’art. 20, comma 4,
del d.Igs. 10 agosto 2018, n. 101- 19 dicembre 2018, resa in data 29 luglio 2022;

della validazione del documento di valutazione preliminare di impatto (DPIA) da parte del
Direttore di Istituto (4 novembre 2022) a seguito della valutazione positiva espressa dal
Responsabile Protezione Dati del CNR e dal Corrispondente presso il Dipartimento DIITET;
del parere favorevole del Comitato Etico dell’l.R.C.C.S. Eugenio Medea, sez. Scientifica
dell’Associazione “La Nostra Famiglia” in merito allo studio “GiocAbile” che impiegava il
dispositivo PhiCube di cui al prot. N. 89/21-CE,

precisato inoltre che:

il presente parere etico non solleva in ogni caso i ricercatori dalla responsabilita legale
connessa al trattamento dei dati personali e alla conduzione del progetto;

il valore autorizzativo del presente parere etico € subordinato all’approvazione del progetto
da parte del Comitato Etico dell'lIRCCS Eugenio Medea (MEDEA), in particolare in ragione
dell'impiego dei dispositivi prototipali summenzionati,

con la richiesta che:

sia trasmesso alla Commissione il parere autorizzativo non appena rilasciato dal Comitato
Etico dell'lRCCS Eugenio Medea (MEDEA);

in caso di arruolamento di ulteriori partecipanti oltre al numero attualmente previsto di 60,
ne sia data semplice comunicazione alla Commissione per |'Etica e I'integrita nella Ricerca;
al paragrafo “Soggetti” del protocollo sperimentale (che prevede che ogni volontario possa
ritirarsi dallo studio) sia eliminata la richiesta di una dichiarazione sui motivi del ritiro o che
la procedura sia riformulata nel senso che resti nella facolta del partecipante rispondere o
meno alla richiesta;

nel foglio informativo, al paragrafo “Comitato etico” sia corretta la denominazione in
“Commissione per |'Etica e I'Integrita nella Ricerca del CNR”;

sia esplicitato anche nell'informativa sul trattamento dei dati personali che lo studio non
ha in alcun modo finalita diagnostiche o cliniche;

nella conduzione del progetto e nella pubblicazione dei risultati vengano rispettati i principi
di integrita nella ricerca di cui alle Linee guida per I'integrita nella ricerca della Commissione
per I'Etica e I'integrita nella Ricerca del CNR3 nonché allo European Code of Conduct for
Research Integrity di ALLEA%;

nella pubblicazione dei risultati e nella loro diffusione sia adottato uno stile espositivo
improntato alla chiarezza, onesta, obiettivita, rigore e trasparenza.

Tutto cio considerato, richiamando le richieste piu sopra evidenziate, la Commissione per quanto di

propria competenza, approva lo studio in esame.

Per la Commissione per I'Etica e I'Integrita nella Ricerca,

il Coordinatore

3 https://www.cnr.it/it/ethics.
4 https://allea.org/code-of-conduct.
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16 | ALLEGATO 11 - Statement of compleance UA 25.08.2022
17 | ALLEGATO A - Brochure FANUC CRX10iAL /
18 ALLEG'ATO B - Dichiarazione di conformita Robotiq 2F /
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20 | ALLEGATO D - Brochure QBRobotics SogtHand Gripper /
21 | ALLEGATO E - Manuale d_uso PLANarm2 /
22 | ALLEGATO F - Manuale d_uso PhiCube /
23 | ALLEGATO G - Analisi dei rischi PLANarm2 Versione 1.0
24 | ALLEGATO H - Analisi dei rischi PhiCube Versione 1.0
25 | ALLEGATO | - Protocollo Polimi PLANarm2 22.05.2020
26 | ALLEGATO L - Protocollo GiocAbile PhiCube Versione 1.0 del 23/06/2021
27 | ALLEGATO M - Approvazione Polimi PLANarm2 Parere n. 10/2020 del 28/05/2020
28 | ALLEGATO N - Approvazione GiocAbile PhiCube Prot. N. 89/21-CE del 12.11.2021
29 | ALLEGATO O - Manuale d'uso RehaStim /

A seguito di valutazione e tenuto conto del parere di PARERE DI ETHICAL CLEARANCE espresso dalla

Commissione per I'Etica e I'Integrita della Ricerca del CNR del 23.11.2022, il Comitato Etico ha espresso

PARERE FAVOREVOLE allo svolgimento dello studio, rilevando che il presente protocollo & rispettoso

dei principi etici dell’Istituzione e della rilevante normativa vigente.

Il parere sopra espresso si intende limitato esclusivamente alle versioni citate ed alla documentazione

presentata. Ogni variazione della stessa deve essere obbligatoriamente sottoposta al parere di questo

Comitato Etico.

Al Responsabile dello studio si rammenta quanto segue:

comunicare per iscritto la DATA DI INIZIO E DI CONCLUSIONE dello studio, come pure della sua

eventuale SOSPENSIONE o CONCLUSIONE ANTICIPATA con l'indicazione dei relativi motivi;

comunicare per iscritto eventuali PROROGHE alla chiusura dello studio;

condurre il Progetto secondo le MODALITA indicate;

NON introdurre VARIAZIONI al protocollo senza che il Comitato Etico competente abbia
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espresso parere favorevole;
- inviare, alla fine della ricerca, una RELAZIONE FINALE dello studio;
- ottemperare alle eventuali RACCOMANDAZIONI richieste dal Comitato Etico competente e a

darne comunicazione per iscritto.

Lo studio dovra essere eseguito secondo i principi etici fissati nella Dichiarazione di Helsinki; tutte le
fasi dello stesso dovranno inoltre essere predisposte, attuate e descritte seguendo i principi della

Buona Pratica Clinica.

Colgo I'occasione per porgere cordiali saluti.

Il Presidente 5
Dr. Paolo Arosio /7 o Y/
fo e AL
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