

DOTTORATO DI RICERCA IN

MECCANICA E SCIENZE AVANZATE DELL'INGEGNERIA

Ciclo 37

Settore Concorsuale: 09/C2 - FISICA TECNICA E INGEGNERIA NUCLEARE

Settore Scientifico Disciplinare: ING-IND/19 - IMPIANTI NUCLEARI

DEVELOPMENT OF A CFD TOOL FOR TURBULENT NATURAL CONVECTION
AND HEAT TRANSFER SIMULATIONS OF LIQUID METALS

Presentata da: Lucia Sirotti

Supervisore

Sandro Manservisi

Esame finale anno 2025

Coordinatore Dottorato

Lorenzo Donati

Borsa di dottorato del Programma Operativo Nazionale Ricerca e
Innovazione 2014-2020 (CCI 2014IT16M2OP005), risorse FSE REACT-EU,
Azione IV.4 “Dottorati e contratti di ricerca su tematiche dell’innovazione”

e Azione IV.5 “Dottorati su tematiche Green.

Codice CUP: J35F21003210006

Contents

Abstract 1

Introduction 3

1 Turbulence Modeling for Liquid Metals 7
1.1 Fluid Mechanics Equations . 8

1.1.1 Conservation Equation 9
1.2 Governing Equations for Turbulent Flows 16

1.2.1 Derivation of Reynolds-Averaged Navier-Stokes and En-
ergy Equations . 19

1.2.2 Law of the Wall . 20
1.2.3 The Closure Problem 22

1.3 Dynamic Turbulence Modeling 23
1.3.1 Zero-Equation Model: Mixing Length 23
1.3.2 One-Equation Model 24
1.3.3 Two-Equation Models 27

1.4 Thermal Turbulence Modeling 36
1.5 Models for Reynolds Stress Tensor and Turbulent Heat Flux . 41

1.5.1 Explicit Algebraic Stress Models 42
1.5.2 Explicit Algebraic Heat Flux Models 48

1.6 The Anisotropic Four-parameter Turbulence Model 53

ii Contents

2 Code Coupling Method 57
2.1 Numerical Platform Environment 59

2.1.1 Strategies for Code Integration 60
2.2 OpenFOAM and FEMuS Integration 64

2.2.1 MED Communication Class 66
2.2.2 FEMuS Interface Class 72
2.2.3 OpenFOAM Interface Class 75

2.3 Coupling Algorithm . 78
2.3.1 Algorithm Routines . 82

2.4 Validation . 87
2.4.1 Differentially Heated Cavity (DHC) 87
2.4.2 Conjugate Heat Transfer (CHT) 112

3 Turbulent Natural Convection of Liquid Metals 127
3.1 Literature Overview . 128
3.2 Characterization of the Flow 132
3.3 Simulation Results . 139

3.3.1 FEMuS Results . 141
3.3.2 OpenFOAM Results 146
3.3.3 Coupling Application Results 149

4 Liquid Metal Heat Exchanger 157
4.1 Description of the Heat Exchanger 158

4.1.1 Constraints and properties of the PbLi-air heat exchanger160
4.1.2 Zero-dimensional analysis 161

4.2 Lead-Lithium Simulation . 164
4.2.1 Numerical Results . 167
4.2.2 DNS Comparison . 168

4.3 Pipe and Fins Simulations . 173
4.4 Conjugate Heat Transfer Application 179

Conclusions 187

List of Figures 191

List of Tables 199

Bibliography 201

Contents iii

A Developed Routines 219
A.1 MED Class Routines . 219
A.2 FEMuS Interface Class Routines 223
A.3 OpenFOAM Interface Class Routines 225

A.3.1 Derived Classes . 227

B Configuration Parameters for OpenFOAM Simulations 233

Abstract

This dissertation investigates numerical techniques for studying turbulent
natural convection and turbulent heat transfer systems involving liquid met-
als. Specifically, two strategies are explored. The development of stand-alone
solvers to account for all the occurring phenomena, and a code coupling strat-
egy, where two or more numerical codes are integrated to exploit the different
code peculiarities. In this work, the latter approach is realized by coupling
the in-house finite element code FEMuS with the finite volume code Open-
FOAM, using the open-source MED library for data exchange.

Turbulent natural convection is studied in a Differentially Heated Cav-
ity configuration. An anisotropic four-parameter turbulence model is imple-
mented in the FEMuS code and validated against the DNS benchmark for
liquid metal-filled cavities. To extend this analysis, the coupling application
is first validated in the laminar natural convection regime and then applied
to the turbulent case. The volume data transfer algorithm is used to leverage
the more accurate thermal turbulence model of the FEMuS code with the
extensively validated dynamic solver of OpenFOAM.

Turbulent heat transfer is investigated in a liquid metal heat exchanger
configuration. A boundary data transfer algorithm is validated using a Con-
jugate Heat Transfer problem, where thermal coupling occurs between the
fluid and solid domains. This technique is then applied to a finned pipe
heat exchanger, with FEMuS simulating the turbulent liquid metal flow and
OpenFOAM modeling heat conduction in the solid structure.

Introduction

Liquid metals represent a cutting-edge innovation in the energy sector, par-
ticularly as heat transport fluids. Due to their ability to remain liquid over
wide temperature ranges and their high thermal conductivity, liquid metals
represent a valid alternative to traditional heat transfer fluids. These unique
properties make liquid metals suitable for demanding applications with high
thermal loads. In such systems, liquid metals could increase their operating
temperature and thus the plant’s efficiency. Over the years, liquid metals
have been investigated for use in Concentrated Solar Power (CSP) plants
[1, 2] and Generation IV nuclear reactors [3, 4]. In recent decades, Lead-
cooled Fast Reactors (LFRs) and Sodium-cooled Fast Reactors (SFRs) have
emerged as some of the most promising technologies for the next generation
of nuclear reactors. In Europe, research and development for these reactors
have reached an advanced stage, culminating in the conceptualization and
design of a large-scale demonstrator, the Advanced Lead Fast Reactor Euro-
pean Demonstrator (ALFRED) [5, 6, 7, 8]. Regarding solar energy, initiatives
such as the NEXTower project have also driven the use of liquid metals for
CSP systems operating at high temperatures [9, 10, 11]. These power plants
are classified as multiscale and multiphysics systems, as they involve physical
processes across various spatial scales and interactions of physical phenomena
in a strongly coupled framework. The study of multiscale and multiphysics
problem has experienced significant advancement thanks to Computational
Fluid Dynamics (CFD) tools. However, simulating these complex phenom-
ena requires multiple physics and domains, which still presents significant

4 Introduction

challenges for computational tools. Over the years, two primary strategies
have been developed to address these challenges: the monolithic approach,
which involves creating a unified numerical code to model all relevant phe-
nomena, and the code coupling approach, which combines existing validated
codes to leverage their strengths and specific capabilities. For this purpose,
both strategies are explored in this Thesis. The in-house finite element code,
FEMuS, and the well-established finite volume code, OpenFOAM, are used
both as stand-alone solvers and as subsystems within a coupling framework.
The coupling application is developed using the open-source MED library
to numerically integrate the FEMuS and OpenFOAM codes. The imple-
mented coupling application supports two types of data transfer. The volume
field transfer involves the exchange of numerical data representing physical
quantities distributed across the computational domain. The boundary field
transfer handles the interaction between physical domains at their interfaces.

Despite their promising role in demanding power plants, the turbulent
behavior of liquid metals continues to pose significant challenges for both
experimental and numerical investigations. Turbulence modeling in practi-
cal engineering systems is commonly addressed using the Reynolds-Averaged
Navier-Stokes (RANS) approach, derived by applying a time-averaging oper-
ator to the Navier-Stokes equations. This averaging process introduces new
turbulent unknowns, namely, the Reynolds stress tensor and the turbulent
heat flux, resulting in a non-closed system of equations. Over the years, this
turbulence closure problem has driven the development of various modeling
techniques. Conventional first-order turbulence models rely on isotropic eddy
viscosity and turbulent thermal diffusivity concepts. However, these approxi-
mations have been observed to be inadequate for liquid metals, which require
more advanced modeling approaches. Among them, the Explicit Algebraic
Stress Model (EASM) and the Explicit Algebraic Heat Flux Model (EAHFM)
belong to a class of models between the first and second order. They are clas-
sified as anisotropic models, as they provide algebraic expressions for each
component of the Reynolds stress tensor and turbulent heat flux.

The aim of this Thesis is to investigate both monolithic and coupling
strategies for modeling and simulating relevant turbulence phenomena in-
volving liquid metals, such as natural convection and heat transfer. As re-
gard the turbulent natural convection, in the stand-alone code approach, an
anisotropic turbulence model is implemented in the FEMuS code to account
for the buoyancy effects of liquid metals’ natural convection. The EASM and

Introduction 5

EAHFM models are validated using a Differentially Heated Cavity (DHC)
configuration, where the temperature difference between the cavity’s side
walls drives the natural convection motion. This configuration is also stud-
ied using the coupling code technique. Specifically, the volume data transfer
algorithm is used to exchange velocity-related fields from OpenFOAM to FE-
MuS code and temperature fields from FEMuS to OpenFOAM. The goal is
to integrate the OpenFOAM-validated dynamic solver capabilities with the
more advanced thermal turbulence model in FEMuS, which is specific for
liquid metals.

As part of the National Operational Program (PON) for Research and
Innovation, this Ph.D. program features a collaborative project with Nier
Ingegneria S.p.A.. The collaboration focuses on conducting CFD analysis of
a Lead-Lithium heat exchanger designed by the company. This system is
simulated using the implemented boundary data transfer algorithm within
the coupling code framework. This approach simulates the Conjugate Heat
Transfer (CHT) problem between the internal turbulent flow and the external
tube. In this setup, the liquid metal is thermally coupled with a solid domain
in an EUROFER pipe covered with copper fins. The anisotropic turbulence
model of the FEMuS code simulates turbulent forced flow. At the same
time, OpenFOAM models the temperature distribution in the solid regions.
Interfaces between the solid and fluid domains are managed through the
interface coupling application that ensures accurate interaction between the
two regions.

This Thesis is organized as follows. In Chapter 1, the Reynolds-Averaged
Navier-Stokes (RANS) system of equations is derived from the governing
equations for incompressible laminar flow. Various strategies are presented
to tackle the turbulence closure problem, alongside the most popular first-
order turbulence models. Then, the Explicit Algebraic Models are derived
to account for the buoyancy effects. Chapter 2 focuses on the description
of the coupling code strategy. It details the numerical platform framework
where the coupling application is implemented. Then, it describes the de-
veloped C++ modules that manage the integration between FEMuS and
OpenFOAM, along with the numerical algorithm employed. Finally, the
volume data transfer algorithm is validated using the Differentially Heated
Cavity problem in the laminar natural convection regime. The boundary
data transfer is validated through a Conjugate Heat Transfer problem. In
Chapter 3, the turbulent natural convection problem is studied. Both mono-

6 Introduction

lithic codes, FEMuS and OpenFOAM, and their respective turbulent models
simulate the natural convection of liquid metals in a DHC configuration. The
results are compared with literature references. Then, the volume data trans-
fer method of the coupling application is employed to study the same DHC
configuration, and the results are presented. Chapter 4 details the collabo-
rative project conducted with Nier Ingegneria S.p.A. It describes the liquid
metal-air heat exchanger and outlines the design constraints. Turbulent flow
simulations are performed using both FEMuS and OpenFOAM codes, with
results compared to benchmark data from the literature. Following this, the
temperature distribution in the solid regions is computed using OpenFOAM.
Finally, the boundary data transfer algorithm is employed to simulate the
complete heat exchanger system.

Chapter 1

Turbulence Modeling for Liquid
Metals

The knowledge of turbulence flow is important not only in many fields of
engineering but more generally as the basis for many physical phenomena that
we experience daily, from combustion processes to the motion of fluids within
conduits, from the flow around moving vehicles to the behavior of blood in
vessels. Even though it is a widely occurring phenomenon, turbulence is
not completely understood. For this reason, and mainly because of its role
in engineering applications, it is one of the most studied problems in the
scientific community.

Over the last few decades, significant progress has been made in this field,
driven by advancements in experimental technologies and, most importantly,
the evolution of computational simulation techniques. In particular, Com-
putational Fluid Dynamics (CFD) has enabled a quantitative and detailed
analysis of turbulent flows by numerically solving the Navier-Stokes equa-
tions.

Many computational approaches for simulating turbulent flows are based
on the Reynolds-averaged Navier-Stokes equations (RANS). This approach
focuses on solving the Navier-Stokes equations by averaging statistical fluc-
tuations and providing information on the mean properties of the flow. The
time-averaging process results in a RANS system of equations with several

8 Chapter 1. Turbulence Modeling for Liquid Metals

unknowns exceeding the number of equations, requiring the introduction of
turbulent closure models.

Over the years, several turbulence models have been developed to address
this closure problem, relying on the Boussinesq hypothesis and Reynolds’
analogy. The Boussinesq hypothesis is commonly used in commercial codes
because of its simple implementation, but it presents significant limitations,
particularly when simulating complex and anisotropic flows. Moreover, most
common approaches provide accurate results only for conventional fluids.
The error introduced by standard models increases in non-conventional fluids,
such as liquid metals, characterized by low-Prandtl number values. There-
fore, more sophisticated models have been developed to account for the flow
anisotropy and the peculiarity of turbulence in low-Prandtl number fluids.

This chapter focuses on deriving the system of equations implemented in
FEMuS code for simulating the turbulent flow of low Prandtl number fluids.
This chapter starts with a brief introduction to the governing equations for
laminar flows and proceeds to the derivation of the RANS system. Strategies
for addressing the closure problem for dynamical and thermal equations are
presented. The Boussinesq hypothesis and the corresponding turbulent mod-
els are introduced. Then, more accurate anisotropic turbulence models are
presented based on the Explicit Algebraic Stress Model (EASM) and the Ex-
plicit Algebraic Heat-Flux Model (EAHFM). These formulations have been
derived in this chapter to account for the buoyancy effects occurring in turbu-
lent natural convection regimes. Finally, after reviewing the relevant models
from the literature, the full turbulence model implemented and employed for
the simulations in this thesis is presented in a comprehensive summary.

1.1 Fluid Mechanics Equations
In fluid dynamics, the behavior of a fluid system, whether a gas or a liquid,
can be effectively described by treating it as a continuous medium, even
if it is composed of atoms and molecules. From a physical perspective, a
continuous medium is a space filled with matter where every part can still be
regarded as a continuum of matter. This assumption implies that the physical
phenomena of interest in fluids can be analyzed on a spatial scale much larger
than the distance between individual molecules. This approach allows a given
volume of fluid to be represented as consisting of infinitesimal elements, small
enough to provide a detailed system description but large enough to contain a

1.1. Fluid Mechanics Equations 9

significant number of particles, typically on the order of Avogadro’s number
[12]. Under this assumption, the motion of the fluid is described as the
movement of infinitesimal elements, each with a spatial extent dΩ, which
evolve along specific trajectories. At any given time t, a generic fluid element
follows its trajectory and occupies a unique space position (x, y, z). The
infinitesimal elements’ trajectories cannot overlap in space, nor can a single
element occupy the same position at different times. Thus, the vector field
u(x, y, z, t) can be defined by describing the velocity of a generic infinitesimal
fluid element. The characterization of the thermodynamic state of the fluid
requires the additional assumption of local equilibrium, which states that each
element of the fluid can be considered a thermodynamic system in stable
equilibrium at any t. Given this assumption, it is possible to define the
scalar fields of temperature T (x, y, z, t), pressure P (x, y, z, t), and density
ρ(x, y, z, t).

1.1.1 Conservation Equation

At a fixed time t, consider a generic fluid system or a volume of material
Ω(t), representing a region of space that contains a portion of the fluid mass.
This volume is bounded by a closed regular surface ∂Ω(t), and moves and
deforms with the fluid over time. According to the Lagrangian approach,
Ω(t) contains the same fluid particles throughout its time evolution. On the
other hand, in the Eulerian approach, a chosen arbitrarily control volume
Ω0 is considered. This control volume represents a fixed region where the
liquid particles contained in the control volume can vary over time. The
relationship between the two approaches is provided by Reynolds’ transport
theorem. Therefore, defined a generic extensive property Ψ in Ω(t) and its
corresponding intensive property ψ as

Ψ(t) =
∫

Ω(t)
ρ(x, t)ψ(x, t)dΩ, (1.1)

where x = (x, y, z), the Reynolds’ transport theorem is expressed as

dΨ
dt

=
∫

Ω0

∂

∂t
(ρψ)dΩ0 +

∫
∂Ω0

(ρψu) · nd∂Ω0. (1.2)

The integral conservation equation for ψ states that the extensive property
change rate, throughout the volume, equals the net flux balance through

10 Chapter 1. Turbulence Modeling for Liquid Metals

the outer surface ∂Ω0, plus the net contribution of volumetric generation.
Therefore, we obtain

dΨ
dt

= −
∫
∂Ω0

Jψ · n d∂Ω0 +
∫

Ω0
ρS dΩ0, (1.3)

where Jψ is the flux density, and S the generation term per unit of mass and
time. Combining equation (1.2) with equation (1.3), we obtain the integral
form of the general conservation equation
∫

Ω0

∂(ρψ)
∂t

dΩ0 +
∫

Ω0
∇ · (ρψu) dΩ0 = −

∫
Ω0
∇ · Jψ dΩ0 +

∫
Ω0
ρS dΩ0. (1.4)

Since the control volume is chosen arbitrarily, equation (1.4) must also hold
for any Ω0, and thus, its differential form must also be valid. Therefore, we
can obtain the following expressions for the conservation equation

∂(ρψ)
∂t

+∇ · (ρψu) = −∇ · Jψ + ρS, (1.5)

or its representation using the Einstein summation notation

∂

∂t
(ρψ) + ∂

∂xi
(ρψui) = − ∂

∂xi
Jψi

+ ρS. (1.6)

The conservation equation expressed in the differential form (1.6) can be used
by substituting the extensive property Ψ with mass, momentum, or energy
to derive their respective conservation equations.

Mass Conservation Equation

The Eulerian differential form of the mass conservation equation, or conti-
nuity equation, can be easily deduced by substituting mass as the extensive
property Ψ. Since the production terms, both volumetric and surface, are
null, the balance equation (1.6) becomes

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0, (1.7)

or in the following form

∂ρ

∂t
+ ui

∂ρ

∂xi
+ ρ

∂ui
∂xi

= 0 . (1.8)

1.1. Fluid Mechanics Equations 11

The sum of the first two terms represents the substantial or convective deriva-
tive of the density. This definition leads to the general form of the mass
conservation equation as

Dρ

Dt
+ ρ

∂ui
∂xi

= 0. (1.9)

In the case of a constant fluid density equation (1.9) simplifies to
∂ui
∂xi

= 0, (1.10)

meaning that for an incompressible fluid, the velocity field is solenoidal.

Momentum Conservation Equation

We can formulate the momentum conservation equation by imposing Ψ =
ρu, where ρ is the density of the volume of material, and u is the velocity
vector. Therefore, the corresponding specific quantity is the velocity ψ = u,
representing the momentum per unit mass. The momentum conservation
principle is deduced from Newton’s second law of dynamics as applied to fluid
systems. It states that the substantial derivative of the momentum associated
with the material volume Ω(t) equals the net external forces acting on the
volume. The total external forces include body forces (e.g., gravity) and
surface forces. Contact forces act on the external surface of the infinitesimal
fluid element, while body forces act throughout the entire fluid volume. The
former are classified as pressure and viscous forces, expressed as follows

Jij = −σij = pδij − τij, (1.11)

where σij is the stress tensor, p is the pressure of the system, δij is the
Kronecker delta, and τij is the viscous stress tensor. The first contribution
is the isotropic part of the stress tensor σij, while the latter represents its
deviatoric part.

Body forces include those arising, for example, from gravitational and
electromagnetic fields. Neglecting all the fields except for the gravitational
one and substituting into equation (1.6), we formulate the Navier-Stokes
equation as

∂(ρui)
∂t

+ ∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ∂τij
∂xj

+ ρgi. (1.12)

From the definition of the substantial derivative, the conservation equation
becomes as follows

D(ρui)
Dt

+ ρ
∂uj
∂xj

ui = − ∂p

∂xi
+ ∂τij
∂xj

+ ρgi. (1.13)

12 Chapter 1. Turbulence Modeling for Liquid Metals

This equation is valid for a continuous system, but describing a specific sys-
tem requires introducing a constitutive relationship. Given a Newtonian
viscous fluid, which follows Newton’s experimental law on viscosity, it can be
demonstrated that the stress tensor is related to the fluid deformation rate
by the following relation

τij = µSij −
(2

3µ− λ
)
tr(S)δij, (1.14)

where µ and λ are the dynamic and bulk viscosities, respectively, Sij is the
strain rate tensor defined as

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (1.15)

and tr(S) is the trace of the strain rate tensor

tr(S) = Sii. (1.16)

We can rewrite the Navier-Stokes equation considering the (1.14) as follows

D(ρui)
Dt

+ ρ
∂uj
∂xj

ui = − ∂p

∂xi
+ ∂

∂xj

[
µSij −

(2
3µ− λ

)
tr(S)δij

]
+ ρgi. (1.17)

This expression can be simplified under incompressible fluid conditions, where
equation (1.10) holds

Dui
Dt

= −1
ρ

∂p

∂xi
+ ∂

∂xj
(νSij) + gi, (1.18)

where ν = µ
ρ

represents the kinematic viscosity.

Energy Conservation Equation

For the energy conservation equation, the extensive property is the fluid total
energy E. The corresponding specific property consists of two contributions:
the kinetic energy of the fluid element, u2/2, and its internal energy, ϵ. Thus,
the specific energy υ is defined as

υ = ϵ+ u2

2 . (1.19)

The source terms of the energy conservation equation consider the external
forces acting on the surface of the control volume and the heat introduced

1.1. Fluid Mechanics Equations 13

or generated within the system. The former accounts for the work of surface
forces, σijuj, and the heat flux through the external surface, qi. Therefore,
Jψ can be expressed as

Ji = qi − σijuj. (1.20)

The volumetric contribution consists of terms such as the heat content per
unit of time due to gravitational forces and the internal heat generation Q.
The latter term accounts for any generated power, such as chemical reactions
or radiation absorption. We can write the volumetric power generation as

S = Q

ρ
+ giui. (1.21)

By substituting these quantities into equation (1.10), the energy equation
can be derived as follows

D

Dt
(ρυ) + ρυ

∂ui
∂xi

= − ∂qi
∂xi
− ∂

∂xi
(pui − τijuj) + ρgiui +Q. (1.22)

The equation (1.22) can be rearranged and simplified to obtain the following
internal energy conservation equation

ρ
Dϵ

Dt
= − ∂qi

∂xi
+ τij

∂uj
∂xi

+Q. (1.23)

The second term of the right-hand side of this equation represents the viscous
forces of the fluid element deformations, which are inherently non-negative.
As a result, in any flow field with nonzero deformation rates, the heat gen-
erated due to viscous stresses leads to an irreversible increase in the internal
energy. This term is called viscous dissipation function and is named Φ.

To write the energy conservation equation, a constitutive equation is in-
troduced to relate the heat transport term, qi, to the temperature field, T .
For a thermally conductive fluid where heat transfer occurs via molecular
conduction, this relationship is described by Fourier law

qi = −k(T) ∂T
∂xi

, (1.24)

where k(T) represents the thermal conductivity. In addition, a conserva-
tion equation for the variable T can be obtained by reformulating the first
term of the equation (1.23). The internal energy ϵ, under the incompressible
fluid hypothesis, depends only on temperature, and the following differential
relationship can be written

dϵ = c(T)dT, (1.25)

14 Chapter 1. Turbulence Modeling for Liquid Metals

where c(T) is the fluid specific heat. Substituting the relationships (1.24) and
(1.25) the energy conservation equation for the temperature field becomes

ρc
DT

Dt
= ∂

∂xi

(
k
∂T

∂xi

)
+ Φ +Q, (1.26)

or
DT

Dt
= ∂

∂xi

(
α
∂T

∂xi

)
+ Φ
ρc

+ Q

ρc
, (1.27)

where α is the thermal diffusivity.

Summary of the Governing Laminar Equations

To conclude, in absence of additional simplifying assumptions, the full com-
pressible system of governing equations is

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0, (1.28)

∂(ρui)
∂t

+ ∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ∂τij
∂xj

+ ρgi, (1.29)

∂

∂t
(ρυui) + ∂

∂xi
(ρυ) = − ∂qi

∂xi
− ∂

∂xi
(pui − τijuj) + ρgiui +Q. (1.30)

Based on the considerations of previous sections and the simplifications de-
rived for the case of incompressible fluid, the system of governing equations
is defined as follows

∂ui
∂xi

= 0, (1.31)

Dui
Dt

= −1
ρ

∂p

∂xi
+ ∂

∂xj
(νSij) + gi, (1.32)

DT

Dt
= ∂

∂xi

(
α
∂T

∂xi

)
+ Φ
ρc

+ Q

ρc
. (1.33)

Oberbeck-Boussinesq Approximation

The system of equations (1.28)-(1.30), written for the generic compressible
fluid problem, has several unknowns exceeding the number of equations. If we
consider non-isothermal flows, the Oberbeck-Boussinesq approximation pro-
vides a solution for simplifying the equations and avoiding the need to solve
for the complete system. According to this hypothesis, the only variations

1.1. Fluid Mechanics Equations 15

in density are those that influence buoyancy forces. Consequently, density
can be treated as constant (ρ = ρ0 = const), except for the gravitational
force term in the momentum conservation equation. We can reformulate the
system of equations (1.28)-(1.30) as

∂ui
∂xi

= 0, (1.34)

ρ0
Dui
Dt

= − ∂p

∂xi
+ ∂

∂xj
(µSij) + ρgi, (1.35)

ρ0c
DT

Dt
= ∂

∂xi

(
k
∂T

∂xi

)
+ Φ +Q. (1.36)

The approximation remains valid as long as the temperature undergoes vari-
ations smaller than 10–20 K. If this holds, we can consider a reference tem-
perature T0 and expand ρ in a Taylor series as

ρ = ρ(T) = ρ(T0) + dρ

dT

∣∣∣∣∣
T0

(T − T0) +O[(T − T0)2], (1.37)

where, considering small temperature variations, the second-order term can
be neglected. We now introduce the coefficient of isobaric thermal expansion,
β, as

β = − 1
ρ0

(
∂ρ

∂T

)
p

, (1.38)

and its value at the reference temperature

β = −1
ρ

dρ

dT

∣∣∣∣
T0

, (1.39)

where ρ(T0) = ρ0. Therefore, we can formulate the temperature dependence
of the density using the thermal expansion coefficient as

ρ(T) = ρ0 − ρ0β(T − T0). (1.40)

This expression leads the momentum conservation equation to be rewritten
as

ρ0
Dui
Dt

= − ∂p

∂xi
+ ∂

∂xj
(µSij) + gi [ρ0 − ρ0β(T − T0)] . (1.41)

Finally, defined the piezometric pressure as P = p − ρ0gixi, equation (1.41)
becomes

ρ0
Dui
Dt

= −∂P
∂xi

+ ∂

∂xj
(µSij) + ρ0giβ(T − T0), (1.42)

16 Chapter 1. Turbulence Modeling for Liquid Metals

where ρ0giβ(T −T0) represents the buoyancy force. Given these assumptions
and the constitutive equations introduced earlier, the system of equations
under the Oberbeck-Boussinesq approximation is

∂ui
∂xi

= 0, (1.43)

Dui
Dt

= −1
ρ

∂P

∂xi
+ ∂

∂xj
(νSij) + giβ(T − T0), (1.44)

DT

Dt
= ∂

∂xi

(
α
∂T

∂xi

)
, (1.45)

where the viscous energy dissipation and the internal heat generation have
been neglected.

1.2 Governing Equations for Turbulent Flows
The study of turbulence dates back centuries. Interest in this field arose at the
end of the 19th century when Osborn Reynolds experimentally investigated
manifestations of this phenomenon. In particular, he noted the formation
of visible perturbations in the fluid motion as the velocity increased, and he
named this type of flow a turbulent motion. Its behavior is characterized by
the dimensionless Reynolds number

Re = UL

ν
, (1.46)

where U is the fluid’s velocity, ν is its kinematic viscosity, and L is the
hydraulic diameter of the conduit. It has been observed that the motion
turns to turbulent behavior for Reynolds numbers exceeding 2000 − 3000.
For lower values, it remains laminar.

Turbulence arises from instabilities in an initially laminar, often two-
dimensional flow, which evolves into complex three-dimensional structures
like vortices. As the Reynolds number increases, these disturbances intensify,
leading to fully developed turbulence characterized by random fluctuations
in velocity and temperature over space and time. Turbulence arises from
small variations in initial conditions, boundaries, and material properties,
leading to random behavior that limits purely deterministic analysis. There-
fore, studying turbulence requires statistical methods, which will be briefly
introduced in this chapter.

1.2. Governing Equations for Turbulent Flows 17

Over the years, several theories have been developed to rigorously explain
turbulence. Turbulence has been interpreted as a superposition of vortices
(eddies), spanning various scales and sizes. According to Richardson and
Kolmogorov’s energy cascade theory [13, 14], kinetic energy is transferred
from large to smaller eddies through non-linear interactions. The instability
of vortices caused by intense non-linear effects leads to their breakdown into
increasingly smaller structures, each characterized by higher local Reynolds
numbers, thereby sustaining the cascade. This progression persists until the
structures reach scales where the Reynolds number is reduced enough. At
these smaller scales, molecular diffusion effects become dominant, and kinetic
energy is dissipated into heat through the action of viscosity.

The largest turbulent structures, known as macro-scale, have dimensions
determined by the geometric properties of the phenomenon. For these struc-
tures, a characteristic length scale L and velocity U are defined. From these,
a time scale T = L/U and a Reynolds number Re = UL/ν can be deter-
mined. On the other hand, the scales responsible for dissipating turbulent
energy are known as Kolmogorov scales or microscales [15]. Their character-
istic length is represented by η, the characteristic time by τ , and the velocity
by v. These quantities are defined as follows

η =
(
ν3

ε

) 1
4

, τ =
(
ν

ε

) 1
2
, v = (νε) 1

4 , (1.47)

where ε is the viscous dissipation rate at Kolmogorov scales, representing
the turbulent kinetic energy, k, dissipated per unit mass and time. Under
stationary conditions, the viscous dissipation rate is expressed as the ratio of
the kinetic energy per unit mass at macroscopic scales, Ec, and T as follows

ε ∼ Ec
T

= U3

2L. (1.48)

From expressions (1.47), a Reynolds number associated with the small scales
can be defined as

Reη = ηv

ν
, (1.49)

which can be demonstrated through straightforward steps to be equal to
unity. The theory of the energy cascade can be explained by introducing a
time scale associated with viscous diffusion, denoted by Tv. This time scale
is derived from the one-dimensional diffusion equation as

∂u

∂t
= ν

∂2u

∂x2 , ⇒ U

Tv
∼ νU

L2 , (1.50)

18 Chapter 1. Turbulence Modeling for Liquid Metals

that allows to define the time scale, Tv, as

Tv ∼
L2

ν
= ReT. (1.51)

According to (1.51), at high Reynolds numbers in turbulent flows, the viscous
diffusion time scale is much larger than the characteristic time scale of the
mean flow. This condition leads to reduced energy dissipation in large-scale
motions and explains the transfer of kinetic energy from large scales to small
scales. At the Kolmogorov scale, instead, the viscous diffusion becomes rel-
evant and it lastly dissipates the energy. These effect rises when the time
scale, Tv, is of the same order of magnitude of the characteristic time τ and
at microscales the Reynolds number is unitary, indeed, we have

Tv ∼ Reτ, ⇒ Tv ∼ τ . (1.52)

From equations (1.47) and (1.48), the ratio between the microscales and
macroscales can be derived as

η

L
=
(
ν

UL

) 3
4

= Re− 3
4 , (1.53)

τ

T
=
(
ν

UL

) 1
2

= Re− 1
2 , (1.54)

v

U
=
(
ν

UL

) 1
4

= Re− 1
4 . (1.55)

As Re increases, the difference in orders of magnitude between microscales
and macroscales becomes more important. Based on these considerations,
simulating the behavior of turbulent flows across all scales would require a
mesh with elements as small as η and a timestep of the order of τ . This
method, known as Direct Numerical Simulation (DNS), solves the Navier-
Stokes equations for turbulent flows considering the whole range of spatial
and temporal scales without any simplifying assumptions. Therefore, the
DNS approach would require a grid with a number of elements equal to
N = (L/η)3 = Re

9
4 . As the Reynolds number increases, the number of grid

elements grows exponentially, leading to high computational demands and
very long total computation times.

Since DNS’s computational cost is extremely high, even at low Reynolds
numbers, alternative modeling approaches are typically employed to describe
turbulence. An example of an approximate mathematical model is the Large

1.2. Governing Equations for Turbulent Flows 19

Eddy Simulation (LES). This approach applies a filtering operation to di-
rectly simulate the larger vortex structures while modeling the smaller ones.
As a result, LES requires less grid refinement and has a lower computa-
tional cost than DNS. The third approach is based on the Reynolds-averaged
Navier-Stokes method. This statistical approach focuses on simulating only
the mean motion fields, significantly reducing the required number of grid
elements and, consequently, the computational cost.

1.2.1 Derivation of Reynolds-Averaged Navier-Stokes
and Energy Equations

Reynolds introduced the Reynolds Averaged Navier-Stokes equations ap-
proach in 1895 [16]. This method does not resolve the detailed behavior
at the smallest scales and assumes that turbulence is a purely statistical
phenomenon across all scales. In his theory, he introduced three different
types of averaging, which can be applied to the turbulent flow characteris-
tics. Whether the turbulent flow is statistically stationary, homogeneous, or
periodic (meaning that it can be replicated N times), the three averaging
methods are the time average, spatial average, and ensemble average, respec-
tively. In this discussion, we assume statistical stationarity and homogeneity
of the flow, under which assumption all these averaging methods are equiv-
alent. Therefore, the following analysis is based on the application of the
temporal average, defined as

⟨ψ(x, t)⟩ = 1
T

∫ t+T

t
ψ(x, t)dt , (1.56)

where ψ(x, t) is a random field and T is the time scale. This averaging
operator assumes that the quantity ψ(x, t) may vary over time with fluctu-
ations occurring on a scale much larger than that of the averaging operator.
According to the Reynolds decomposition, the instantaneous and fluctuat-
ing velocity vector field, u(x, t), is composed by the sum of its mean value
⟨u(x, t)⟩ and a perturbation or turbulent fluctuation, u′(x, t), as follows

u(x, t) = ⟨u(x, t)⟩+ u′(x, t) . (1.57)

Similarly, the pressure field and the temperature field can be defined as

p(x, t) = ⟨p(x, t)⟩+ p′(x, t) , (1.58)

20 Chapter 1. Turbulence Modeling for Liquid Metals

T (x, t) = ⟨T (x, t)⟩+ T ′(x, t) . (1.59)
Thus, we can obtain the following system of equations known as the Reynolds
Averaged Navier-Stokes equations

∂⟨ui⟩
∂xi

= 0 , (1.60)

D⟨ui⟩
Dt

= −1
ρ

∂⟨p⟩
∂xi

+ ∂

∂xj

[
ν

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)
− ⟨u′

iu
′
j⟩
]
− giβ⟨T ⟩ , (1.61)

D⟨T ⟩
Dt

= ∂

∂xi

(
α
∂⟨T ⟩
∂xi

− ⟨u′
iT

′⟩
)
. (1.62)

The term ⟨u′
iu

′
j⟩ is introduced as a result of the averaging operator applied

to the convective term in the Navier-Stokes equation. This contribution acts
as a source term in the mean velocity evolution equation, and it can be read
as a mean momentum flux due to the fluctuating velocity. This contribution
can be defined as a stress tensor added to the viscous stress tensor, τij. Thus,
it is commonly indicated as τ rij = −ρ⟨u′

iu
′
j⟩ and it is known as the Reynolds

Stress Tensor. Therefore, the equation can be rewritten also in the following
form

ρ
D⟨ui⟩
Dt

= −∂⟨p⟩
∂xi

+ ρ
∂τ effij

∂xj
− ρgiβ⟨T ⟩ , (1.63)

where τ effij = τij + τ rij is the effective stress tensor.
On the other hand, the term ⟨u′

iT
′⟩ in equation (1.62) is the velocity-

temperature variance and it represents the flux of the temperature due to
the fluctuating velocity field. This contribution is called Turbulent Heat
Flux and it can be named as qri = ρcp⟨u′

iT
′⟩. Thus, equation (1.62) can be

formulated as
ρc
D⟨T ⟩
Dt

= −∂q
eff
i

∂xi
+Q , (1.64)

where qeffi = qi + qri is the effective heat flux.

1.2.2 Law of the Wall
We now introduce some empirical relations, known as the law of the wall,
which allow to evaluate the wall behavior of the mean velocity and mean
temperature fields. To define these relations we introduce the dimensionless
velocity field as

u+ = ⟨u⟩
uτ

, (1.65)

1.2. Governing Equations for Turbulent Flows 21

where uτ is the friction velocity. This reference velocity is defined as

uτ =
√
τw
ρ
, (1.66)

where τw is the viscous stress contribution at the wall. The law of the wall
can be generically expressed as

u+ = f(y+) , (1.67)

where y+ = uτd/ν is the dimensionless distance from the wall. We can
distinguish three distinct regions in the the boundary layer, where different
laws of the wall hold. Close to the wall, within the region at y+ < 5, the
following expression is used

u+ = y+ . (1.68)

Therefore, the region where equation (1.68) holds is called the viscous sub-
layer or linear region. Far from wall, at y+ > 50, the following expression is
valid

u+ = 1
κ

[
ln(y+) + A

]
, (1.69)

where A is a constant usually equal to 5.2 and κ is the Von Kármán con-
stant. Equation (1.69) describes the mean velocity in a region known as
the logarithmic region. Between the linear and logarithmic regions, there is
an intermediate zone known as the buffer layer, where the velocity profile
transitions between the two. The dimensionless velocity can thus be written
as

u+ =


y+ if y+ < 5
1
κ

[
ln(y+) + A

]
if y+ > 50.

(1.70)

Similar correlations can be derived to describe the temperature profile in
the two regions of the boundary layer. We define the dimensionless temper-
ature T+ as

T+ = (Tw − ⟨T ⟩)
Tτ

, (1.71)

where Tw is the wall temperature and Tτ is called the friction temperature
and is defined as

Tτ = qw
uτρcp

. (1.72)

Here, qw is the wall heat flux. In the linear region, we can introduce the
following law of the wall

T+ = Pry+ , (1.73)

22 Chapter 1. Turbulence Modeling for Liquid Metals

while the behavior in the logarithmic region can be expressed by the following
function

T+ = 1
κ

ln(y+) + C , (1.74)

where the constant C depends on the Prandtl number and the coefficient κ.

1.2.3 The Closure Problem

Due to the introduction of the Reynolds stress tensor and the turbulent heat
flux through the averaging process, the system of equations for the mean field
(1.60) - (1.62) differs from the original system of equations (1.43) - (1.45).
This difference is not negligible, and unlike the original system, the RANS
problem is no longer closed. In this system, the tensor ⟨u′

iu
′
j⟩ and the vector

⟨u′
iT

′⟩ increase the number of unknowns. In particular, the Reynolds stress
tensor for a three-dimensional problem is obtained from the dyadic product
of the velocity fluctuations with themselves and is equal to

⟨u′
iu

′
j⟩ =


⟨u′2⟩ ⟨u′v′⟩ ⟨u′w′⟩
⟨v′u′⟩ ⟨v′2⟩ ⟨v′w′⟩
⟨w′u′⟩ ⟨w′v′⟩ ⟨w′2⟩

 . (1.75)

The diagonal components, ⟨u′
iu

′
i⟩, are referred to as normal stresses, while the

off-diagonal terms are known as shear stresses. The Reynolds stress tensor is
symmetric, thus ⟨u′

iu
′
j⟩ = ⟨u′

ju
′
i⟩, and it introduces six additional unknowns

to the system of equations (1.60) - (1.62). The turbulent heat flux, instead,
is defined as

⟨u′
iT

′⟩ = (⟨u′T ′⟩, ⟨v′T ′⟩, ⟨w′T ′⟩) , (1.76)

and it adds three more unknowns. Overall, the system consists of only five
equations and fourteen unknowns, including the pressure field, the three com-
ponents of the velocity field, the temperature field, the six components of the
Reynolds stress tensor, and the three components of the turbulent heat flux.
Consequently, without additional information to determine the extra statis-
tical terms, the RANS equations cannot be solved.

Over the years, several strategies have been developed to address the clo-
sure problem of turbulence. These strategies can be divided into two main
categories. The first one consists of introducing first-order models that rely
on the concept of eddy viscosity, referred to as eddy viscosity models, and

1.3. Dynamic Turbulence Modeling 23

eddy thermal diffusivity, known as eddy thermal diffusivity models. The sec-
ond category includes second-order models known as nonlinear eddy viscosi-
ty/diffusivity models or anisotropic models, which add to the RANS system
transport equations for each component of the Reynolds stress tensor and
the turbulent heat flux.

1.3 Dynamic Turbulence Modeling
The purpose of eddy viscosity models is to introduce a closure expression that
computes the Reynolds stress tensor, without solving six separate equations
for the six tensor unknowns.

The first approach was introduced by Boussinesq in 1877 [17] and refers
to the concept of turbulent viscosity. This hypothesis asserts that turbulence
produces effects similar to molecular diffusion, and the Reynolds stress tensor
is mathematically equivalent to that of viscous stresses. As a result, the
eddy viscosity hypothesis assumes a form similar to the constitutive relation
between stress and rate of strain introduced for a Newtonian fluid. The
equation (1.61) can be reformulated as

D⟨ui⟩
Dt

= −1
ρ

∂⟨p⟩
∂xi

+ ∂

∂xj

[
(ν + νt)

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)]
− giβ⟨T ⟩ , (1.77)

where νt is the turbulent viscosity. The two contributions on the viscosity
diffusion are usually known as νeff = ν + νt, which is the effective viscosity.

By using Equation (1.77), the closure problem is significantly simplified,
reducing the six unknown components of the tensor to a single scalar value, νt.
Unlike molecular viscosity, νt also depends on the flow’s state of motion, and
in order to solve the closure problem, turbulent models must be introduced.
Eddy viscosity models are classified according to the type of equations they
introduce into the system. Models that use algebraic equations are known as
zero-equation models, while those that add N differential equations to close
the problem are referred to as N -equation models.

1.3.1 Zero-Equation Model: Mixing Length
In zero-equation models, turbulent viscosity is specified algebraically. Among
the algebraic models, the mixing length model introduced by Ludwig Prandtl
in 1925 [18] is worth mentioning. This simple model defines the turbulent

24 Chapter 1. Turbulence Modeling for Liquid Metals

viscosity as a function of the mixing length ℓm as

νt = ℓ2
m

d⟨u⟩
dy

. (1.78)

As shown by (1.78), to become fully determined, this model requires the
computation of ℓm value. The formula used for computing the mixing length
depends on the distance from the wall; in particular, two different relation-
ships have been introduced according to the region of the boundary layer
considered. The first one is valid near the wall, in the linear region, and the
second is defined within the logarithmic region. Thus, close to the wall the
following expression holds

ℓm = κy, (1.79)
where κ is the Von Kármán constant. For the logarithmic region, in 1956,
Van Driest proposed the following empirical relationship [19]

ℓm = κy
[
1− exp

(
−yuτ
νA

)]
, (1.80)

where A = 26 is called the Van Driest constant.
The main limitation of this model is its specificity, as it is explicitly de-

signed for wall flows and is therefore not applicable to other types of flows or
to real-world scenarios of interest.

1.3.2 One-Equation Model
The one-equation model, or k-model, assumes that turbulent viscosity is a
function of the turbulent kinetic energy k(x, t). This turbulent variable is
defined to be half the trace of the Reynolds stress tensor

k = 1
2
(
⟨u′2⟩+ ⟨v′2⟩+ ⟨w′2⟩

)
= 1

2⟨u
′
iu

′
i⟩. (1.81)

Therefore, in order to formulate the transport equation for the mean turbu-
lent, kinetic energy is necessary to first derive an equation for ⟨u′

iu
′
j⟩. Given

the Reynolds-Averaged Navier-Stokes equation (1.61) and the momentum
equation (1.44) for the instantaneous velocity u, we subtract (1.61) from
(1.44) and we obtain a transport equation for the fluctuating velocity field

∂u′
i

∂t
+ ⟨uj⟩

∂u′
i

∂xj
+ u′

j

∂⟨ui⟩
∂xj

+ u′
j

∂u′
i

∂xj
= −1

ρ

∂p′

∂xi
+

+ ∂

∂xj

[
ν

(
∂u′

i

∂xj
+
∂u′

j

∂xi

)
+ ⟨u′

iu
′
j⟩
]
− giβT ′.

(1.82)

1.3. Dynamic Turbulence Modeling 25

By multiplying the i-th equation of (1.82) by u′
j and the j-th equation of

(1.82) by u′
i and time-averaging, we can formulate the transport equation for

⟨u′
iu

′
j⟩ as the sum of the two resulting equations

∂⟨u′
iu

′
j⟩

∂t
+ ⟨uk⟩

∂⟨u′
iu

′
j⟩

∂xk
+ ⟨u′

iu
′
k⟩
∂⟨uj⟩
∂xk

+ ⟨u′
ju

′
k⟩
∂⟨ui⟩
∂xk

+

+ ∂

∂xk
⟨u′

iu
′
ju

′
k⟩ = −1

ρ

(
⟨u′

i

∂p′

∂xj
⟩+ ⟨u′

j

∂p′

∂xi
⟩
)

+

+ ν

(
⟨u′

j

∂2u′
i

∂x2
k

⟩+ ⟨u′
i

∂2u′
j

∂x2
k

⟩
)

+ ⟨u′
j

∂u′
ku

′
i

∂xk
⟩+

+ ⟨u′
i

∂u′
ku

′
j

∂xk
⟩ − β

(
gj⟨u′

iT
′⟩+ gi⟨u′

jT
′⟩
)
.

(1.83)

The first two terms on the right-hand side of Equation (1.83) represent the
interaction between the pressure gradient and turbulent fluctuations, and the
viscous dissipation of these fluctuations, respectively. By reformulating these
terms, we obtain the following equation for the Reynolds stress tensor

D⟨u′
iu

′
j⟩

Dt
= −⟨u′

iu
′
k⟩
∂⟨uj⟩
∂xk

− ⟨u′
ju

′
k⟩
∂⟨ui⟩
∂xk

− 2ν⟨ ∂u
′
i

∂xk

∂u′
j

∂xk
⟩+

+ 1
ρ

(
⟨p′∂u

′
j

∂xi
⟩+ ⟨p′ ∂u

′
i

∂xj
⟩
)

+ ∂

∂xk

(
ν
∂⟨u′

iu
′
j⟩

∂xk
− ⟨u′

iu
′
ju

′
k⟩ +

− ⟨p
′

ρ
(δkiu′

j + δkju
′
i)⟩
)
− β

(
gj⟨u′

iT
′⟩+ gi⟨u′

jT
′⟩
)
,

(1.84)

Given the equation (1.84), if we compute its trace and we divide it by 2, we
can derive the transport equation for the turbulent kinetic energy as

Dk

Dt
= −⟨u′

iu
′
k⟩
∂⟨ui⟩
∂xk

− ν⟨ ∂u
′
i

∂xk

∂u′
i

∂xk
⟩+ ∂

∂xk

(
ν
∂k

∂xk
+

−1
2⟨u

′
iu

′
iu

′
k⟩ −

⟨p′u′
k⟩

ρ

)
− βgi⟨u′

iT
′⟩ ,

(1.85)

or in its compact form as

Dk

Dt
= Pk − Sk +Dk +Gk . (1.86)

The first contribution on the right-hand side of the equation is a produc-
tion term associated with the work of turbulent stresses and is responsible

26 Chapter 1. Turbulence Modeling for Liquid Metals

for transferring turbulent energy from the mean motion to the fluctuations.
Applying Boussinesq’s hypothesis, this term can be rewritten as follows

Pk = −⟨u′
iu

′
k⟩
∂⟨ui⟩
∂xk

= 2νtS2 . (1.87)

The second term on the right-hand side represents the dissipation rate of
turbulent kinetic energy, which originates from the work of turbulent stresses
that dissipate turbulent kinetic energy into internal energy. The dissipative
contribution is indicated as ε, and it has been modeled in [18] applying di-
mensionless considerations as a function of the mean turbulent kinetic energy
and the mixing length. Thus, the dissipation rate is given by

Sk = ν⟨ ∂u
′
i

∂xk

∂u′
i

∂xk
⟩ = ε = CD

k3/2

ℓm
, (1.88)

where ℓm is the aforementioned mixing length, and CD is a proportionality
coefficient that depends on the type of flow considered. It usually assumes
the value of 0.08. The diffusion term at the right-hand side of equation (1.85)
is defined as the sum of three contributions and is responsible for redistribut-
ing turbulent kinetic energy within the domain. It includes the molecular
diffusion ν∂k/∂xk, which is the diffusion of turbulent energy caused by the
molecular transport process. The second term, ⟨u′

iu
′
iu

′
k⟩, is the turbulent

transport and it is the rate at which turbulent energy is transported through
the fluid by turbulent fluctuations. Lastly, the third term is the pressure
diffusion, which is another form of turbulent transport resulting from the
correlation of pressure and velocity fluctuations. These two last contribu-
tions can be modeled as a function of k as

−⟨u′
iu

′
iu

′
k⟩ −

⟨p′u′
k⟩

ρ
= νt
σk

∂k

∂xk
. (1.89)

As a result, the diffusion term can be rewritten as

Dk = ∂

∂xk

(
ν
∂k

∂xk
− 1

2⟨u
′
iu

′
iu

′
k⟩ −

⟨p′u′
k⟩

ρ

)
= ∂

∂xk

[(
ν + νt

σk

)
∂k

∂xk

]
, (1.90)

where the coefficient σk is called the effective Prandtl-Schmidt number for
diffusion, and it is empirically determined, in particular, for incompressible
fluids, it is taken as a constant. We reformulate equation (1.85) by applying
these considerations and we obtain the following transport equation for the
turbulent kinetic energy

Dk

Dt
= ∂

∂xk

[(
ν + νt

σk

)
∂k

∂xk

]
+ 2νtS2 − CD

k3/2

ℓm
+Gk. (1.91)

1.3. Dynamic Turbulence Modeling 27

Given Equation (1.91), the turbulent kinetic energy can be determined and
the turbulent viscosity can be computed using the following expression

νt = ℓm
√
k. (1.92)

The most evident limitation of this model remains its dependence on the
evaluation of mixing length, which does not have a universally valid definition.

1.3.3 Two-Equation Models
To address the limited versatility of earlier models and eliminate dependence
on the definition of the mixing length, alternative differential models have
been developed. Kolmogorov was the first to propose, in 1942 [20], the use
of a second differential equation. According to [20], the turbulence model
involves defining a second turbulent variables, generically defined as kαℓβm ,
and writing its transport equation similarly to that of k. The introduction of
the second variable enables the modeling of turbulent viscosity as a function of
k and a characteristic time scale, τu, which in turn depends on the introduced
variables. Hence, we can formulate the turbulent viscosity as

νt = Cνkτu . (1.93)

where Cν is a constant coefficient determined according to the turbulent
model. Both the coefficient and the dynamic time scale will be introduced in
the following sections.

k − ε Model

One of the first two-equations model was proposed by Chou in 1945 [21] and
then refined by Jones and Launder in 1972 [22]. It introduces the dissipation
rate of turbulent energy, ε, as the second variable. Based on dimensional
considerations, the characteristic time scale is defined as

τu = k

ε
, (1.94)

therefore, the turbulent viscosity can be simply derived as

νt = Cµ
k2

ε
. (1.95)

where the constant Cµ usually assumes the value of 0.09.

28 Chapter 1. Turbulence Modeling for Liquid Metals

The transport equation for ε can be derived by applying the following
mathematical steps to the transport equation for velocity fluctuation (1.82).
Firstly, the process involves differentiating the equation (1.82) with respect
to xk. Then, the resulting equation has to be multiplied by the quantity

2ν ∂u
′
i

∂xk
. (1.96)

Lastly, the time-averaging process and some algebraic manipulations of the
equation terms lead to the following transport equation

Dε

Dt
= −2ν

(
⟨ ∂u

′
i

∂xk

∂u′
j

∂xk
⟩+ ⟨∂u

′
k

∂xj

∂u′
k

∂xi
⟩
)
∂⟨ui⟩
∂xj

+

− 2ν
(
⟨ ∂u

′
i

∂xk

∂u′
j

∂xk

∂u′
i

∂xj
⟩+ ⟨u′

j

∂u′
i

∂xk
⟩ ∂2ui
∂xj∂xk

+ ν⟨ ∂2u′
i

∂xj∂xk
⟩2
)

+

+ ∂

∂xj

[
ν
∂ε

∂xj
− ν⟨u′

j

∂u′
i

∂xk

∂u′
i

∂xk
⟩ − 2ν

ρ
⟨
∂u′

j

∂xk

∂p′

∂xk
⟩
]

+

− 2νgiβ⟨
∂T ′

∂xk

∂u′
i

∂xk
⟩.

(1.97)

or in its compact form as

Dε

Dt
= Pε − Sε +Dε +Gε . (1.98)

Since the resulting terms of the ε equation introduce other unknowns, some
hypothesis have to be introduced [23, 24] in order to obtain a closed form
of the equation. The terms on the first line of the right-hand side are the
production terms, that can be modeled as

Pε = −2ν
(
⟨ ∂u

′
i

∂xk

∂u′
j

∂xk
⟩+ ⟨∂u

′
k

∂xj

∂u′
k

∂xi
⟩
)
∂⟨ui⟩
∂xj

= Cε1
ε

k
⟨u′

iu
′
k⟩
∂⟨ui⟩
∂xk

, (1.99)

where ⟨u′
iu

′
k⟩∂⟨ui⟩/∂xk is the production term in turbulent kinetic energy

equation (1.85). Additionally, given the Boussinesq hypothesis, we can rewrite
the production term as

Pε = 2νtCε1
ε

k
S2 . (1.100)

The dissipation term, in the second line of the equation (1.97), includes the
contribution of three terms, and it is modeled similarly to the production
terms as

Sε = −Cε2
ε2

k
. (1.101)

1.3. Dynamic Turbulence Modeling 29

The third line of equation (1.97) represents the diffusion term, which consists
of the sum of molecular diffusion and turbulent transport of ε. Given the same
gradient-diffusion hypothesis adopted in (1.89) and neglecting the diffusion
transport of ε due to pressure fluctuations, the term Dε can be rewritten as

Dε = ∂

∂xk

(
ν + νt

σε

)
∂ε

∂xk
. (1.102)

The buoyancy term can be modeled using the buoyancy production term of
k equation as

Gε = cb
ε

k
Gk . (1.103)

Finally, the two equations k-ε model commonly referred to as the standard
k − ε model are summed up as follows

Dk

Dt
= ∂

∂xk

[(
ν + νt

σk

)
∂k

∂xk

]
+ 2νtS2 − ε+Gk , (1.104)

Dε

Dt
= ∂

∂xk

[(
ν + νt

σε

)
∂ε

∂xk

]
+ Cε1

ε

k
Pk − Cε2

ε2

k
+ cb

ε

k
Gk , (1.105)

where the coefficients in the standard k−ε model are assumed to be constant
and are defined as

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, cb = 1.2, σk = 1.4, σε = 1.3. (1.106)

The assumption of a constant coefficient is an approximation that may be
acceptable for simple flows but can prove quite inaccurate for complex flows.
Over the years, other versions of the k-ε model have been developed to assign
more detailed expressions to the coefficient in the standard model. Among
them, we introduce the Re-Normalisation Group methods known as RNG
k − ε model and the k-ε model introduced by Manservisi and Menghini in
[25]. The former has been developed by Yakhot et al. [26, 27] and it provides
the following expression for modeling the coefficient of the dissipation term,
Cε2, of equation (1.105)

C∗
ε2 = Cε2 + Cµη

3(1− η/η0)
1 + βη3 , (1.107)

where
η = Sk

ε
, S = (2SijSij)1/2 . (1.108)

30 Chapter 1. Turbulence Modeling for Liquid Metals

The other model constants adopted in [27] are as follows

Cµ = 0.0845, σk = 0.7194, σε = 0.7194, Cε1 = 1.42,
Cε2 = 1.68, η0 = 4.38, β = 0.012 .

(1.109)

Similarly, the model in [25] introduces a new expression for the Cε2 coef-
ficient as the product of a constant and a damping function

C∗
ε2 = Cε2fε , (1.110)

where the function fε is defined as

fε = (1− exp (−0.3226Rd))2
(
1− 0.3 exp (−0.0237R2

t)
)
. (1.111)

The turbulent Reynolds number, Rt, is defined as

Rt = k2

νε
, (1.112)

while the dimensionless wall distance, Rd, is given by

Rd = δ(εν) 1
4

ν
, (1.113)

where δ is the distance from the wall. The other constants of the model used
by Manservisi and Menghini in [25] are provided below as

Cε1 = 1.5, Cε2 = 1.9, σk = 1.4, σε = 1.4. (1.114)

k − ω Model

In 1942, Kolmogorov in [20] proposed the first model based on two differential
equations: one for the mean turbulent kinetic energy, and the second for the
specific dissipation rate of turbulent kinetic energy. This second variable, in-
dicated as ω, was defined by Kolmogorov as the ratio between the dissipation
rate and the turbulent kinetic energy as

ω = ε

Cµk
, (1.115)

from which the time scale τu = 1/ω can be derived, while the turbulent
viscosity is

νt = k

ω
. (1.116)

1.3. Dynamic Turbulence Modeling 31

The transport equation for ω derived by Kolmogorov is one of the first for-
mulations adopted. It states that

Dω

Dt
= −βω2 + ∂

∂xk

(
νt
σω

∂ω

∂xk

)
, (1.117)

where the first term at right hand side is a dissipation term, while the second
one is a turbulent diffusion term. The transport equation for ω introduced by
Kolmogorov served as the foundation for the k − ω-based models developed
later.

The main contribution to the development of this model was carried out
by Wilcox in 1988 [28]. He proposed a modified version incorporating the
production and molecular diffusion terms to the (1.117). In his model, the
production term assumes an analogous form as the one in (1.99), and thus it
is given by

Pω = γ
ω

k
Pk , (1.118)

similarly, the buoyancy production term is

Gω = γ
ω

k
Gk . (1.119)

The diffusion contribution is defined as the diffusion terms in the previous
turbulent transport equation for ω, thus the k− ω model takes the following
form

Dk

Dt
= ∂

∂xk

[(
ν + νt

σk

)
∂k

∂xk

]
+ 2νtS2 − β∗kω +Gk , (1.120)

Dω

Dt
= ∂

∂xk

[(
ν + νt

σω

)
∂ω

∂xk

]
+ γ

ω

k
Pk − βω2 + γ

ω

k
Gk , (1.121)

where we can notice that the dissipation term in the k equation has been
written as a function of the specific dissipation rate simply applying its defi-
nition. In the model proposed by Wilcox in 1988, the coefficients are model
constants and are defined as

γ = 5
9 , β = 3

40 , β
∗ = 9

100 , σk = σω = 1
2 . (1.122)

Ten years later, Wilcox proposed a more refined version of the k − ω

model [29]. He defined a variant of the model that extended the treatment
to compressible fluids within the boundary layer, involving a redefinition of
the closure coefficients as follows

γ = 13
25 , β = 9

25fβ, β
∗ = 9

100f
∗
β , (1.123)

32 Chapter 1. Turbulence Modeling for Liquid Metals

where
fβ = 1 + 70χω

1 + 80χω
, χω = |ΩijΩjkSki|

(0.09ω)3 , (1.124)

and

f ∗
β =

1 if χk ≤ 0,
1+680χ2

k

1+400χ2
k

if χk > 0,
χk = 1

ω3
∂k

∂xk

∂ω

∂xk
, (1.125)

and recalling the definition of the tensors Ωij and Sij

Ωij = 1
2

(
∂ui
∂xj
− ∂uj
∂xi

)
, Sij = 1

2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (1.126)

In 2008, the model was further improved with the addition of a term in
the ω equation called cross diffusion [30]. This term depends upon gradients
of both k and ω, and it is defined as

σd
ω

∂k

∂xk

∂ω

∂xk
. (1.127)

The coefficient σd is given by

σd =

0 if ∂k
∂xk

∂ω
∂xk
≤ 0 ,

σdo if ∂k
∂xk

∂ω
∂xk

> 0 ,
(1.128)

and the constant σdo is defined according to the model. The equation (1.121)
can be rewritten in the following form

Dω

Dt
= ∂

∂xk

[(
ν + νt

σω

)
∂ω

∂xk

]
+ σd
ω

∂k

∂xk

∂ω

∂xk
+ γ

ω

k
Pk − βω2 + γ

ω

k
Gk , (1.129)

This model also imposes a constraint for the turbulent viscosity, which is
expressed as

νt = k

ω̃
with ω̃ = max

{
ω,

7
8

√
2SijSij
β∗

}
. (1.130)

Another approach for deriving the turbulent closure model is introduced
in [31]. Here, the ω equation is derived from equations (1.104) and (1.105)
by substituting the definition of ω in (1.105) and manipulating the result-
ing equation with straightforward algebraic steps. The resulting transport
equation can be written as follows

Dω

Dt
= ∂

∂xk

[(
ν + νt

σω

)
∂k

∂xk

]
+ 2
k

(
ν + νt

σω

)
∂k

∂xj

∂ω

∂xj
+

+ (cε1 − 1)ω
k
Pk − cµ(cε2fε − 1)ω2 + (cb − 1)ω

k
Gk,

(1.131)

1.3. Dynamic Turbulence Modeling 33

where the coefficient are defined as in (1.111) and (1.114). It worth noting
that the derivation of the transport equation for ω, starting from the equation
for ε, introduces the same cross-diffusion contribution as in the Wilcox model.

SST k-ω model

In this paragraph, another well-established method is presented. This model
is the Shear Stress Transport (SST) k − ω model introduced by Menter et
al. in 1993 [32, 33]. It is a two-equation eddy-viscosity model that combines
both the k−ε and k−ω models. This method employs the k−ω formulation
within the inner regions of the boundary layer, extending all the way down
to the wall through the viscous sub-layer. In the free-stream zone, instead,
it uses the k− ε model. The transport equations employed in the SST k−ω
model are derived from the Wilcox model previously described and from the
standard k− ε. In particular, the k transport equation is defined as equation
(1.85), while the variation in ω assumes the form of equation (1.129). In this
model, the coefficients are redefined as

σd = 2(1− F1)σω2, (1.132)

σk = 1
F1/σk1 + (1− F1)/σk2

, σω = 1
F1/σω1 + (1− F1)/σω2

, (1.133)

while β and γ are given by

β = β1F1 + β2(1− F1) , γ = γ1F1 + γ2(1− F1) . (1.134)

The blending function F1 is defined as

F1 = tanh

min
[
max

(√
k

β∗ωd
,
500ν
d2ω

)
,

4ω2k

CDkωd2

]4 , (1.135)

CDkω = max
(

2σω2
1
ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
, (1.136)

where d is the distance from the wall. The other model constants are

β∗ = 9
100 , γ1 = 5

9 , γ2 = 0.44, β1 = 3
40 , β2 = 0.0828,

σk1 = 0.85, σk2 = 1, σω1 = 0.5, σω2 = 0.856.
(1.137)

In this model, the expression for the turbulent viscosity is as follows

νt = a1k

max(a1ω, SF2)
, (1.138)

34 Chapter 1. Turbulence Modeling for Liquid Metals

where

F2 = tanh
max

(
2
√
k

β∗ωd
,
500ν
d2ω

)2 , a1 = 0.31 . (1.139)

Near Wall Behavior

We have already introduced the concept of a local time scale characteristic of
dynamic turbulence τlu, through which we can define the turbulent viscosity

νt = Cµkτlu(k, ε) , or , νt = Cµkτlu(k, ω) (1.140)

The idea of modeling turbulent viscosity using a local time scale arises from
some observations about the behavior of wall-bounded flows. Here, the tra-
ditional models fail to provide an accurate prediction for the velocity field.
The reason why turbulence shows incorrect prediction near the wall depends
on the following factors [34]. The first reason is due to the influence of
low Reynolds numbers. In such cases, the predominant effects of molecular
viscosity in the region adjacent to the wall require specific treatment. The
second motivation is the influence of wall proximity, which causes preferential
damping of velocity fluctuations in the direction normal to the wall. Since
the influence of the viscous stress tensor is significant, properly modeling the
turbulent viscosity is important for the correct simulation of wall turbulence.

The definition of time scales has seen significant developments over the
years. One of the most important contributions was made in 1990 by Nagano
and Tagawa [35], who provided the following definition of νt

νt = Cµfµ
k2

ε
, (1.141)

from which the constant τlu can be written as

τlu = fµ
k

ε
. (1.142)

The modeling of the damping function fµ can be derived from considerations
regarding wall effects and asymptotic trends near the wall. In the vicinity of
the wall, the following proportionalities hold

k ∝ y2, ε ∝ 1, νt ∝ y3 , (1.143)

therefore, the asymptotic behavior of the ratio k2/ε is

k2

ε
∝ y4 . (1.144)

1.3. Dynamic Turbulence Modeling 35

From these considerations, we can deduce that the function fµ has to satisfy
fµ ∝ y−1. The model presented in [34] formulates the following expression
for the damping function

fµ =
[
1− exp

(
−y

+

26

)]2 (
1 + 4.1

R
3/4
d

)
. (1.145)

However, it has been verified that this model fails in simulations near the
separation point and the reattachment of the boundary layer due to its de-
pendence on the friction velocity uτ . The dimensionless wall distance y+ is,
in fact, effectively zero around separating and reattaching points because of
the friction velocity value. As a result, fµ tends to zero as well as the turbu-
lent viscosity, and it forces the Reynolds stress tensor to vanish, contrary to
what occurs in real phenomena.

For this reason, in a more recent model [36], the friction velocity has been
replaced with the Kolmogorov velocity scale uε = (νε)1/4. According to this
model, fµ can be modeled as

fµ =
{

1− exp
[
−
(
y∗

14

)2]}2 {
1 + 5

R
3/4
t

exp
[
−
(
Rt

200

)2]}
, (1.146)

where
y∗ = uϵy

ν
. (1.147)

Following the previous example, the function fµ was further refined in [37]
and replaced with

fµ =
{

1− exp
[(
Rd

26

)2]}2 {
1 + 35

R
3/4
t

exp
[
−
(
Rt

30

)3/4]}
, (1.148)

where Rd is the wall dimensionless wall distance

Rd = δ

(ν3/ε)1/4 . (1.149)

The expression adopted for modeling τlu in [25] is given by

τlu = f1µA1µ + f2µA2µ, (1.150)

where
f1µ =

[
1− exp

(
−Rd

14

)]2
, A1µ = τu, (1.151)

36 Chapter 1. Turbulence Modeling for Liquid Metals

f2µ = f1µ exp
[
−2.5× 10−5R2

t

]
, A2µ = τu

5
R

3/4
t

. (1.152)

Thus, we can express the local time scale as

τlu = τu

[
1− exp

(
−Rd

14

)]2 [
1 + exp

(
−2.5× 10−5R2

t

) 5
R

3/4
t

]
. (1.153)

1.4 Thermal Turbulence Modeling
Thermal eddy diffusivity models express the turbulent heat flux as a function
of the mean temperature field. This class of models is based on the following
assumption

⟨u′
iT

′⟩ = αt
∂⟨T ⟩
∂xi

, (1.154)

where αt is the turbulent thermal diffusivity. This approximation is com-
monly known as the Simple Gradient Diffusion Hypothesis (SGDH). Apply-
ing the SGDH to the Reynolds averaged energy equation (1.62), we can write

D⟨T ⟩
Dt

= ∂

∂xi

[
(α + αt)

∂⟨T ⟩
∂xi

]
. (1.155)

In equation (1.155), the number of unknowns is reduced from the three com-
ponents of the turbulent heat flux of Equation (1.62) to the scalar αt. As
in the dynamic models discussed above, to address the closure problem in
Reynolds averaged equations, it is necessary to introduce models for defining
the turbulent thermal diffusivity.

Eddy thermal diffusivity is often derived using an additional simplifying
hypothesis called Reynolds analogy, which expresses αt as a function of νt
through a proportionality relationship

αt = νt
Prt

, (1.156)

where Prt is the turbulent Prandtl number. This similarity reduce the closure
problem to determine the unknown proportionality factor. Almost all the
commercial codes assume Prt ≃ 0.85 implying that no additional closure
equations beyond those for the velocity field are needed to determine the mean
temperature field. However, this simple approach can yield acceptable results
in simulations involving fluids with a molecular Prandtl number Pr ≃ 1. As
discussed in [38], for medium to high Prandtl number fluids the spatial value

1.4. Thermal Turbulence Modeling 37

of the turbulent Prandt number is approximately independent of the distance
from the wall and assuming a constant value of ≃ 1 can be an acceptable
hypothesis. For low-Prandtl numbers fluid, instead, it has been demonstrated
that Prt depends on many parameters, such as the Reynolds number and
the distance from the wall. Therefore, for liquid metals simulations, more
sophisticated closure models are required to overcome the Reynolds analogy
deficiencies.

For fluids with Pr ≪ 1, thermal turbulence models that do not rely
on the similarity hypothesis can be employed. These models use a set of
scalar differential equations to determine the characteristic time scale for
thermal turbulence τα, in analogy with τu. Turbulent thermal diffusivity can
be defined as

αt = Cαkτα, (1.157)

where Cα is a model constant.

kθ − εθ Model

The kθ − εθ model is based on two quantities: kθ, which represents the tem-
perature variance, and εθ, which represents the dissipation of the temperature
variance field. These quantities are defined as follows

kθ = 1
2⟨T

′2⟩, εθ = α
∂T ′

∂xj

∂T ′

∂xj
, (1.158)

where T ′ is the fluctuating temperature field. The introduction of these two
variables allows the identification of the thermal timescale similarly to the
dynamic time scale. Indeed, we can define τα as

τα = kθ
εθ
. (1.159)

The transport equation for the temperature variance is derived by multiplying
the equation for the instantaneous temperature (1.45) by the temperature
fluctuation and applying the Reynolds average process [39]. The equation for
kθ can be therefore written as

D 1
2⟨T

′2⟩
Dt

= −⟨u′
jT

′⟩∂⟨T ⟩
∂xj

− α⟨∂T
′

∂xj

∂T ′

∂xj
⟩+

+ ∂

∂xj

(
α
∂ 1

2⟨T
′2⟩

∂xj
−
⟨u′

jT
′2⟩

2

)
.

(1.160)

38 Chapter 1. Turbulence Modeling for Liquid Metals

or in its compact form as

Dkθ
Dt

= Pkθ
− Skθ

+Dkθ
. (1.161)

The derivation of the transport equation for kθ introduce other unknowns
to the system and some simplification has to be applied. In particular, the
production contribution (first term at right hand side of Equation (1.160)),
can be reformulate using the SGDH model as

Pkθ
= −⟨u′

jT
′⟩∂⟨T ⟩
∂xj

= αt
∂⟨T ⟩
∂xj

∂⟨T ⟩
∂xj

. (1.162)

The third term at right hand side is the diffusion term and can be modeled
similarly to the diffusion terms in dynamic turbulent equations. Thus, the
following expression can be adopted

Dkθ
= ∂

∂xj

(
α
∂kθ
∂xj
−
⟨u′

jT
′2⟩

2

)
= ∂

∂xj

[(
α + αt

σkθ

)
∂kθ
∂xj

]
. (1.163)

where αkθ
is a model constant. Lastly, the dissipation term is equivalent

to εθ and it is obtained by solving the corresponding transport equation.
The transport equation for the dissipation rate of temperature fluctuations
is derived by taking the derivative of the equation of the instantaneous tem-
perature (1.45) with respect to xj, multiplying by the term 2α∂T ′/∂xj and
averaging. We therefore obtain the following equation

Dεθ
Dt

= −2α⟨∂T
′

∂xk

∂u′
j

∂xk
⟩∂⟨T ⟩
∂xj

− 2α⟨u′
j

∂T ′

∂xj
⟩ ∂

2⟨T ⟩
∂xj∂xk

+

− 2α⟨∂T
′

∂xk

∂T ′

∂xj
⟩∂⟨uj⟩
∂xk

− 2α⟨∂T
′

∂xk

∂u′
j

∂xk

∂T ′

∂xj
⟩+

− 2α2⟨
(

∂2T ′

∂xj∂xk

)2

⟩ − ∂

∂xj

(
⟨εθu′

j⟩ − α
∂εθ
∂xj

)
,

(1.164)

or in its compact form

Dεθ
Dt

= Pεθ1 + Pεθ2 + Pεθ3 + Pεθ
− Sεθ

+Dεθ
(1.165)

where the production contribution Pεθ1, Pεθ2, Pεθ2 and Pεθ
are, respectively,

the first, second, third and fourth terms at the right-hand side of the equation
(1.164). The dissipation Sεθ

is the fifth term, while the diffusion Dεθ
is the

1.4. Thermal Turbulence Modeling 39

last term at right hand side. The production term and the dissipation term
can be modeled as

Pεθ1 +Pεθ2 +Pεθ3 +Pεθ
−Sεθ

= cp1
εθ
kθ
Pkθ

+ cp2
εθ
k
Pk− cd1

ε2
θ

kθ
− cd2

εεθ
k
, (1.166)

where Pεθ2 is generally neglected and the coefficients cp1, cp2, cd1, and cd2

are characteristic parameters of the model. The diffusion term is modeled
similarly to the other diffusion terms as

Dεθ
= − ∂

∂xj

(
⟨εθu′

j⟩ − α
∂εθ
∂xj

)
= ∂

∂xj

[(
α + αt

σεθ

)
∂εθ
∂xj

]
. (1.167)

The k − ε model can be summed up as

Dkθ
Dt

= ∂

∂xj

[(
α + αt

σkθ

)
∂kθ
∂xj

]
+ αt

∂⟨T ⟩
∂xj

∂⟨T ⟩
∂xj

− εθ, (1.168)

Dεθ
Dt

= ∂

∂xj

[(
α + αt

σεθ

)
∂εθ
∂xj

]
+ εθ
kθ

(cp1Pkθ
−cd1εθ)+ εθ

k
(cp2Pk−cd2ε). (1.169)

where the coefficients are defined as in [31]

σkθ
= σεθ

= 1.4, cp1 = 0.925, cp2 = 0.9, cd1 = 0.9,
cd2 = 1.9 [1− exp (−0.0308Rd)]2

[
1− 0.3 exp

(
−0.0237R2

t

)]
.

(1.170)

kθ − ωθ Model

The use of the kθ-ωθ model for simulating thermal turbulence is carried out in
[31] and [40], where it is discussed and validated. This model can be obtained
by defining the specific dissipation rate of temperature variance as

ωθ = εθ
Cµkθ

, (1.171)

which leads to the definition of a time scale as

τα = 1
ωθ
. (1.172)

Substituting the definition of ωθ in (1.168) and (1.169) we can deduce the
following eddy diffusivity model

Dkθ
Dt

= ∂

∂xj

[(
α + αt

σkθ

)
∂kθ
∂xj

]
+ Pkθ

− cµkθωθ, (1.173)

40 Chapter 1. Turbulence Modeling for Liquid Metals

Dωθ
Dt

= ∂

∂xj

[(
α + αt

σωθ

)
∂ωθ
∂xj

]
+ 2
kθ

(
α + αt

σωθ

)
∂kθ
∂xj

∂ωθ
∂xj

+

+ (cp1 − 1)ωθ
kθ
Pkθ

+ cp2
ωθ
k
Pk − (cd1 − 1)ω2

θ − cd2cµωωθ.

(1.174)

Here, the production and dissipation terms have been modeled through the
following expressions

Pωθ
= Pε −

ωθ
kθ
Pkθ

, Sωθ
= Sε −

ωθ
kθ
Skθ

. (1.175)

At right-hand side of Equation (1.174), we identify in order the diffusive
term, the mixed term or cross diffusion, the contributions of thermal and
mechanical production, and finally, the dissipation terms. The coefficients
cp2 and cd2 have the same values as in (1.170), while cp1 and cd1 have been
redefined to ensure the positivity of the coefficients of the production and
dissipation terms

cp1 = 1.025 + Cinc, cd1 = 1 + Cinc, (1.176)

where Cinc = 0.1 is a constant determined by comparison with experimental
results.

Near Wall Behavior

Experimental evidence shows that predicting turbulent heat flux using the
similarity hypothesis αt = νt/Prt with Prt ≃ 1 is fairly accurate for fluids
with Pr ≃ 1 and not for low Prandtl number fluids. Thus, several models
have been proposed in order to model an appropriate characteristic thermal
time scale. Recalling the modeling of the turbulent diffusivity as a function
of a local characteristic thermal time scale, we have

αt = Cαkτm, (1.177)

where the time constant τm is the mixed time-scale. Given the (1.177) and
the definition of turbulent Prandtl number as Prt = νt/αt, then the thermal
time scale can be defined as

τm ∝ τu
1
Prt

, (1.178)

from which it follows that it is possible to define the thermal time scale
based on the Prt behavior. The modeling of Prt as in [25] depends on three

1.5. Models for Reynolds Stress Tensor and Turbulent Heat Flux 41

contributions according to the distance from the wall. The central region
depends on the harmonic average of the dynamical time scale and the thermal
time scale as

τm ∝
1

1
τu

+ Cm

τt

= τu
R

Cm +R
. (1.179)

where R is the time-scale ratio of the thermal to mechanical turbulent time
scales defined as R = τθ/τu = kθε/(kεθ). In the bulk region, τm is independent
of the time ratio R, and the turbulent diffusion is assumed to be dominated
only by velocity fluctuations. In the bulk region, therefore we assume that

τm ∝ τu
1

Prt,∞
, (1.180)

where Prt,∞ can be assumed constant and uniform or can be modeled, for
example by means of Kays model Prt = 0.85 + 0.7/Pr [41]. We also should
introduce a model function in the τm expression to account for the wall-
proximity effects. For the near-wall region, the characteristic time scale is

τm ∝ τu

√
2R

PrR
3/4
t

, (1.181)

The characteristic thermal time scale is then modeled as:

τm = τuf1θ

(
1
Prt

+ 2R
R + Cγ

f2θ + 1.3
√

2R
PrR

3/4
t

f3θ

)
, (1.182)

where Cγ = 0.25/Pr1/4
t and the model functions are given by

f1θ =
[
1− exp

(
−
√
PrRd/19

)]
[1− exp (−Rd/14)] , (1.183)

f2θ = exp
[
−(Rt/500)2

]
, f3θ = exp

[
−(Rt/200)2

]
. (1.184)

1.5 Models for Reynolds Stress Tensor and
Turbulent Heat Flux

All the eddy viscosity models presented in previous sections are based on
Boussinesq’s hypothesis, which reduces the unknowns of the Reynolds stress
tensor to a single scalar unknown, νt. This assumption significantly simplifies
the closure problem and implies that the Reynolds stress tensor is parallel
to the strain-rate tensor of the mean field. However, it has been observed

42 Chapter 1. Turbulence Modeling for Liquid Metals

that such alignment does not generally occur, and, in particular, it fails in
scenarios involving flows with rapid variations in the strain-rate tensor. This
limitation results in inaccuracies when predicting secondary flows caused by
turbulence’s anisotropy. Eddy viscosity models also fail to simulate flows
over curved surfaces, within ducts exhibiting secondary flows, and in cases of
boundary layer separation. Similarly, the eddy diffusivity models assume the
turbulent heat flux parallel to the temperature gradient, and while simple,
they are inappropriate for more complex problems, such as natural convection
regimes.

These considerations have led to the development of more advanced meth-
ods aimed at enhancing the numerical accuracy of anisotropic phenomena.
One main approach relies on modeling and solving a specific equation for each
component of the Reynolds stress tensor and the turbulent heat flux. These
models are categorized as nonlinear eddy viscosity models and nonlinear eddy
diffusivity models. Among them, the anisotropic models belong to a class of
intermediate models between first-order and second-order formulations, intro-
ducing a set of algebraic equations for the closure of the turbulence problem.
In this section, the Explicit Algebraic Stress Model (EASM) for the Reynolds
stress tensor and the Explicit Algebraic Heat Flux Model (EAHFM) for the
turbulent heat flux are derived.

1.5.1 Explicit Algebraic Stress Models

The main contribution to the development of explicit algebraic models for the
components of the Reynolds stress tensor, known as Explicit Algebraic Stress
Models, is attributed to Pope [42]. He introduced a methodology to derive an
explicit relationship for the Reynolds stress tensor, starting from the implicit
algebraic model proposed by Rodi [43], which in turn derived a model based
on the earlier model by Launder et al. [44]. In implicit form, the constitutive
relation introduced by Rodi represents a model known as the Algebraic Stress
Model (ASM). These implicit models were eventually replaced by explicit
models for the Reynolds stress tensor thanks to the contribution of Abe et
al. in 1997 [37] and Hattori and Nagano in 2004 [45]. This thesis focuses on
a more recent formulation proposed by Hattori et al. in 2006 [46], derived
from the earlier version [45]. This model introduces a new explicit algebraic
formulation for the Reynolds stress tensor that incorporates buoyancy effects.

1.5. Models for Reynolds Stress Tensor and Turbulent Heat Flux 43

Recalling the transport equation for the Reynolds stress tensor
D⟨u′

iu
′
j⟩

Dt
= −⟨u′

iu
′
k⟩
∂⟨uj⟩
∂xk

− ⟨u′
ju

′
k⟩
∂⟨ui⟩
∂xk

− 2ν⟨ ∂u
′
i

∂xk

∂u′
j

∂xk
⟩+

+ 1
ρ

(
⟨p′∂u

′
j

∂xi
⟩+ ⟨p′ ∂u

′
i

∂xj
⟩
)

+ ∂

∂xk

(
ν
∂⟨u′

iu
′
j⟩

∂xk
− ⟨u′

iu
′
ju

′
k⟩ +

− ⟨p
′

ρ
(δkiu′

j + δkju
′
i)⟩
)
− β

(
gj⟨u′

iT
′⟩+ gi⟨u′

jT
′⟩
)
,

(1.185)

we report the compact form of the aforementioned equation as
D⟨u′

iu
′
j⟩

Dt
= Pij − εij + Φij +Dij +Gij. (1.186)

where Pij is the production term, εij is the dissipation term, Φij is the
pressure-strain correlation term, Dij is the diffusion term including the molec-
ular diffusion and the turbulent and pressure diffusion contribution, and fi-
nally Gij is a buoyant term. We recall also the compact form of the turbulent
kinetic energy transport equation as

Dk

Dt
= Pk − Sk +Dk +Gk . (1.187)

We can decompose the Reynolds stress tensor as a sum of the isotropic stress
and a deviatoric part, aij, as

⟨u′
iu

′
j⟩ = 2

3kδij + aij . (1.188)

The normalized anisotropy tensor bij is defined as

bij = aij
2k =

⟨u′
iu

′
j⟩

2k − δij
3 . (1.189)

Considering the spatial and temporal variations in bij, we can obtain

Dbij
Dt

= 1
2k
D⟨u′

iu
′
j⟩

Dt
−
⟨u′

iu
′
j⟩

2k2
Dk

Dt
. (1.190)

Substituting (1.189) into (1.190) we obtain

Dbij
Dt

= 1
2k
D⟨u′

iu
′
j⟩

Dt
− bij + δij/3

k

Dk

Dt
. (1.191)

Applying equations (1.186) and (1.187) to equation (1.191) and negletting
the diffusion terms we obtain

Dbij
Dt

= 1
2k (Pij +Gij + Φij − εij)−

bij + δij/3
k

(Pk +Gk − ε) . (1.192)

44 Chapter 1. Turbulence Modeling for Liquid Metals

We now assume the hypothesis of local equilibrium state for which the spatial
and temporal variations in bij are zero. This assumption yields the following
equation

Pij +Gij + Φij − εij = 2
(
bij + δij

3

)
(Pk +Gk − ε) . (1.193)

Using the expression of the dissipation term introduced by Gatski and Speziale,
in 1993 [47] that split it into isotropic and deviatoric parts

εij = 2
3εδij + εDij

, (1.194)

and rewriting the production term Pij as follows

Pij = −4
3kSij − 2k

(
bikSjk + bjkSik −

2
3bmnSmnδij

)
+

−2k(bikΩjk+bjkΩik) ,
(1.195)

we can derive the following formulation of the equation (1.193)

(Pk +Gk − ε)bij = −2
3kSij − k

(
bikSjk + bjkSik −

2
3bmnSmnδij

)
+

−k (bikΩjk + bjkΩik) + 1
2Πij + 1

2

(
Gij −

2
3δijGk

)
,

(1.196)

where Πij = Φij−εDij
. Modeling Πij using second-order closure models in bij

[48] results in a class of models that are implicit, as the Reynolds stress tensor
appears on both sides of the equation. However, the primary drawback of
implicit algebraic stress models is the need for matrix inversions, which can be
overcome by using explicit models, thereby offering significant computational
savings. In order to derive the explicit equation for bij in terms of the mean
velocity gradients, we can model Φij using an expression that is linear in
the anisotropy tensor bij. Explicit relations for bij were proposed first by
Pope in 1975 in [42] for the two-dimensional problem and extended to three-
dimensional flows by Gatski and Speziale in 1993 in [47]. The general linear
model for Πij, which includes the buoyant term, is given by

Πij = −C1εbij + C2kSij + C3k
(
bikSjk + bjkSik −

2
3bmnSmnδij

)
+

+C4k (bikΩjk + bjkΩik)− C5

(
Gij −

2
3δijGk

)
,

(1.197)

1.5. Models for Reynolds Stress Tensor and Turbulent Heat Flux 45

where C1–C5 are model constants. By substituting Equation (1.197) into
Equation (1.196), we derive the following relation

b∗
ij = −S∗

ij −
(
b∗
ikS

∗
jk + b∗

jkS
∗
ik −

2
3b

∗
kℓS

∗
kℓδij

)
+ b∗

ikΩ∗
kj + b∗

jkΩ∗
ki − f ∗

ij, (1.198)

where the nondimensional quantities introduced to obtain (1.198) are as fol-
lows

S∗
ij = 1

2gτ(2− C3)Sij,

Ω∗
ij = 1

2gτ(2− C4)Ωij,

b∗
ij =

(
C3 − 2
C2 − 4

3

)
bij, τ = k

ε
,

f ∗
ij = gτ

(C5 − 1)(C3 − 2)
2(C2 − 4

3)k

(
Gij −

2
3Gkδij

)
,

g =
(1

2C1 + Pk
ε

+ Gk

ε
− 1

)−1
.

(1.199)

Equation (1.198) can be written in the matrix form as

b∗ = −S∗ −
(

b∗S∗ + S∗b∗ − 2
3{b

∗S∗}I
)

+ b∗Ω∗ −Ω∗b∗ − f∗, (1.200)

where {·} indicates the trace operator. To derive an explicit form of b∗ from
Equation (1.200), we use the integrity basis definition proposed by Pope in
1975 [42], which is

b∗ =
∑
λ

Q(λ)T(λ) , (1.201)

where T(λ) is the integrity basis for functions of a symmetric and anti-
symmetric tensor and Q(λ) are scalar functions of the irreducible invariants
of S∗ and Ω∗. Therefore, the Reynolds stresses can be expressed as known
functions of a finite number of tensors T(λ) and an equal number of unknown
scalars Q(λ), which depend on a finite set of known invariants. The charac-
teristics of the tensor T(λ) are derived from b∗. Thus, the tensors are linearly
independent and symmetric with zero trace. In this derivation, we use the

46 Chapter 1. Turbulence Modeling for Liquid Metals

seven basis tensors introduced by So et al. in 2002 [49], which are defined as

T(1) = S∗, T(2) = S∗Ω∗ −Ω∗S∗,

T(3) = S∗2 − 1
3{S

∗2}I, T(4) = f∗,

T(5) = f∗Ω∗ −Ω∗f∗, T(6) = f∗2 − 1
3{f

∗2}I,

T(7) = f∗S∗ + S∗f∗ − 2
3{f

∗S∗}I.

(1.202)

The following procedure is then introduced to determine the values of the
scalars Q(λ). Expanding the summation (1.201) using (1.202) we obtain

b∗ = Q(1)S∗ +Q(2) (S∗Ω∗ −Ω∗S∗) +Q(3)
(

S∗2 − 1
3{S

∗2}I
)

+

+Q(4)f∗ +Q(5) (f∗Ω∗ −Ω∗f∗) +Q(6)
(

f∗2 − 1
3{f

∗2}I
)

+

+Q(7)
(

f∗S∗ + S∗f∗ − 2
3{f

∗S∗}I
)
.

(1.203)

We introduce the scalar functions H and J defined in [42]. This functions
are related with T(λ) by the following expressions

T(λ)S∗ + S∗T(λ) − 2
3{T

(λ)S∗}I =
∑
γ

HλγT(γ), (1.204)

and
T(λ)Ω∗ −Ω∗T(λ) =

∑
γ

JλγT(γ). (1.205)

Substituting (1.204), (1.205) and definition (1.201) into (1.200) we obtain the
following equation for T(λ)

∑
λ

Q(λ)T(λ) = −
∑
λ

δ1λT(1) −
∑
λ

Q(λ)
(∑

γ

HλγT(γ)
)

+

+
∑
λ

Q(λ)
(∑

γ

JλγT(γ)
)
−
∑
λ

δ4λT(4).

(1.206)

which correspond to a linear system of equations for the determination of
Q(λ) since the tensors T(λ) are independent. Thus, the following equation
holds

Q(λ) = −δ1λ − δ4λ −
∑
γ

Q(λ)Hλγ +
∑
γ

Q(λ)Jλγ. (1.207)

1.5. Models for Reynolds Stress Tensor and Turbulent Heat Flux 47

This linear system can be written in the following form

AγλQ
(λ) = Bλ , (1.208)

where Aγλ = −δλγ −Hλγ + Jλγ, and Bλ = δ1λ + δ4λ. In order to solve Equa-
tion (1.208), we need to invert the matrix Aγλ. By using Cayley–Hamilton
identities [47], the matrices Hλγ and Jλγ can be determined and consequently
the inverse of the matrix Aγλ is derived. This process leads to the definitions
of Q(λ) as follows

Q(1) = 1
D1

, Q(2) = 1
D1

, Q(3) = − 2
D1

, Q(4) = 1
D2

,

Q(5) = 1
D2

, Q(6) = 0, Q(7) = 1
D2

.
(1.209)

where
D1 = 3− 2η2 + 6ζ2

3 , D2 = 1 + 2ζ2, (1.210)

with η =
(
S∗
ijS

∗
ij

)1/2
and ζ =

(
Ω∗
ijΩ∗

ij

)1/2
. Substituting the expression

(1.209) into Equation (1.203), we can obtain the expression for the normalized
anisotropy tensor

b∗
ij =− 3

3− 2η2 + 6ζ2

S∗
ij +

(
S∗
ikΩ∗

kj − Ω∗
ikS

∗
kj

)
+

− 2
(
S∗
ikS

∗
kj −

1
3S

∗
mnS

∗
nmδij

)+

− 1
1 + 2ζ2

f ∗
ij +

(
f ∗
ikΩ∗

kj − Ω∗
ikf

∗
kj

)
+

+
(
f ∗
ikS

∗
kj + S∗

ikf
∗
kj −

2
3f

∗
mnS

∗
mnδij

),

(1.211)

where fij = Gij− (2/3)Gkδij. Here, the non-dimensional forms of b∗
ij, S∗

ij, Ω∗
ij

and f ∗
ij are adopted as described by Abe et al. in [37] and by Nagano et al.

in [50] as

b∗
ij = CDbij,

S∗
ij = CDτSij,

Ω∗
ij = 72CDτΩij,

f ∗
ij = Cg

(
τmg
k

)
fij.

(1.212)

48 Chapter 1. Turbulence Modeling for Liquid Metals

Consequently, the Explicit Algebraic Stress Model adopts the following ex-
pression to account for buoyancy effects

⟨u′
iu

′
j⟩ = 2

3kδij −
2νt
fR1

Sij −
4CDkfτ
fR1

(SikΩkj − ΩikSkj) +

+ 4CDkfτ
fR1

(
SikSkj −

1
3SmnSmnδij

)
+

− 2Cgτmg
CDfR2

fij −
4Cgτ 2

mg

fR2
(fikΩkj − Ωikfkj) +

+
2Cgτ 2

mg

fR2

(
fikSkj + Sikfkj −

2
3fmnSmnδij

)
.

(1.213)

with

fR1 = 1 + 22
3 (CDτR0)2Ω2 + 2

3(CDτR0)2
(
Ω2 − S2

)
fB, (1.214)

fR2 = 1 + 8(CDτR0)2Ω2. (1.215)

where τmg is the mixed scale of velocity and thermal fields, and fτ is the func-
tion of characteristic time-scale reflecting wall-limiting behavior introduced
by Nagano and Hattori in [51] as follows

fτ = τ 2
R0 + τ 2

Rw
, (1.216)

where the characteristic time-scale τR0 is given by νt/k, and τRw is the wall-
reflection time-scale. The other model constants and functions are indicated
in Table 1.1.

1.5.2 Explicit Algebraic Heat Flux Models

To overcome the limitations of models based on the Simple Gradient Dif-
fusion Hypotheses, we introduce the Explicit Algebraic Heat Flux Models
(EAHFM). The model presented in the following is the model described by
Hattori in [46] that is based on previous models introduced by Abe et al. in
1996 [52] and Nagano and Hattori in 2003 [51].

To derive the transport equation for the turbulent heat flux, the i-th
fluctuating velocity component is multiplied by the equation for the instan-
taneous temperature (1.45), and the result is added to the i-th component of
the instantaneous Navier-Stokes equation (1.44) multiplied by the fluctuating

1.5. Models for Reynolds Stress Tensor and Turbulent Heat Flux 49

Cµ CD Cη Cv1 Cv2 Cg Cλ τmg

0.12 0.8 5.0 0.4 1.0× 102 −0.7 0.1 Cλfλ
k
ε

fλ fw (ξ)

[1− fw(25)]
{

1 +
√

2R
Pr

15
R

3/4
t

exp
[
−
(
Rtm

30

)3/4
]}

exp
[
−
(
Rtm

ξ

)2
]

τR0 τRw fB

vt

k

√
1
6
fR1/CD

fSΩ

(
1− 3Cv1fv2

8

)
f 2
v1 1 + Cη (CDτR0)2 (Ω2 − S2)

fSΩ Sf

Ω2

2 + S2

3 −
[(√

S2

3 −
√

Ω2

2

)
fw(1)

]2
1 +
√
S2τu

fv1 fv2 Rtm

exp
[
− (Rtm/52)2Sf

(Rtm/52)2+Sf

]
1− exp

(
−

√
Rt

Cv2

) 130RdR
1/4
t

130R1/4
t +Rd

Table 1.1: Model constants and functions for EASM as in [46].

temperature T ′. The resulting expression is then time-averaged

D⟨u′
jT

′⟩
Dt

= −
(
⟨u′

kT
′⟩∂⟨uj⟩
∂xk

+ ⟨u′
ju

′
k⟩
∂⟨T ⟩
∂xk

)
+

− (α + ν)⟨∂T
′

∂xk

∂u′
j

∂xk
⟩ − ∂

∂xk

(
⟨u′

ku
′
jT

′⟩+ ⟨p
′T ′⟩
ρ

δjk

)
+

− α⟨u′
j

∂T ′

∂xk
⟩ − ν⟨T ′ ∂u

′
j

∂xk
⟩+
⟨p′ ∂T ′

∂xj
⟩

ρ
− βgj⟨T ′2⟩.

(1.217)

or in its compact form as

D⟨u′
jT

′⟩
Dt

= Pjθ − εjθ +Djθ + Φjθ +Gjθ, (1.218)

where Pjθ is a production term, εjθ is a dissipation term, Djθ is a diffusion
term including the turbulent and molecular transport term, Φjθ is a pres-
sure–temperature gradient correlation and Gjθ is a buoyant term. We recall
the equation for the temperature variance in its compact form as

Dkθ
Dt

= Pkθ
− εkθ

+Dkθ
. (1.219)

50 Chapter 1. Turbulence Modeling for Liquid Metals

Let the normalized heat flux a∗
j be equal to ⟨u′

jT
′⟩/
√
kkθ, then we apply a

similar procedure used for the normalized stress tensor in the previous section
and we obtain the spatial and temporal variations in a∗

j as

Da∗
j

Dt
= 1√

kkθ
(Pjθ + Φjθ − εjθ +Gjθ) +

− 1
2ka

∗
j (Pk +Gk − ε)−

1
2kθ

a∗
j (Pkθ

− εθ) ,
(1.220)

where the diffusive effectDjθ is neglected. Here, we have used the definition of
the transport equations for the turbulent heat flux (1.218), for the turbulent
kinetic energy (1.187), and for the temperature variance (1.219). In the local
equilibrium state, the relation introduced by Abe et al. in [52] holds

Da∗
j

Dt
= 0. (1.221)

Thus, we can obtain the following equation

1√
kkθ

(Pjθ + Πjθ +Gjθ) =
a∗
j

2

[1
k

(Pk +Gk − ε) + 1
kθ

(Pkθ
− εθ)

]
, (1.222)

where Πjθ = Φjθ − εjθ. As regards this latter term, the general linear ex-
pression introduced by Launder [53] is employed considering also the buoyant
effect proposed by Craft et al. in [54]. Therefore, it is modeled as follows

Πjθ = −Ct1
⟨u′

jT
′⟩

τu
+ Ct2⟨u′

kT
′⟩∂⟨uj⟩
∂xk

+ Ct3⟨u′
kT

′⟩∂⟨uk⟩
∂xj

+

+Ct5gjβkθ − Ct4⟨u′
iu

′
j⟩Aik

∂⟨T ⟩
∂xk

− Ct6Ajkgkβkθ,
(1.223)

where Aik = ⟨u′
iu

′
k⟩/k is the non-dimensional Reynolds stress tensor. The

term ∂⟨T ⟩/∂xk is included because the production of εjθ is significantly in-
fluenced by the temperature gradient. We recall the definition of Pjθ and Gjθ

as

Pjθ = −⟨u′
kT

′⟩∂⟨uj⟩
∂xk

− ⟨u′
ju

′
k⟩
∂⟨T ⟩
∂xk

, Gjθ = βgj⟨T ′2⟩ = 2βgjkθ . (1.224)

By replacing the expression (1.223) and (1.224) into the Equation (1.222),

1.5. Models for Reynolds Stress Tensor and Turbulent Heat Flux 51

the following equation can be formulated

1√
kkθ

1
Cθ1τu

− ⟨u′
jT

′⟩ − Cθ1τu⟨u′
ju

′
k⟩
∂⟨T ⟩
∂xk

− Cθ2τu⟨u′
kT

′⟩Sjk+

− Cθ3τu⟨u′
kT

′⟩Ωjk − Cθ4τu⟨u′
iu

′
j⟩Aik

∂⟨T ⟩
∂xk

− Cθ5τugjβkθ+

− Cθ6τuAjkgkβkθ

 = −1
2
⟨u′

jT
′⟩

√
kkθ

[
ε

k

(
Pk
ε

+ Gk

ε
− 1

)]
+

+ εθ
kθ

(
Pkθ

εθ
− 1

)
,

(1.225)

where Cθ1 = 1/Ct1, Cθ2 = (1 − Ct2 − Ct3)/Ct1, Cθ3 = (1 − Ct2 + Ct3)/Ct1,
Cθ4 = Ct4/Ct1, Cθ5 = (2 − Ct5)/Ct1, Cθ6 = Ct6/Ct1, are model constants.
Substituting the decomposition of the Reynolds stress tensor in its isotropic
and deviatoric parts and applying some algebraic manipulations, we obtain
the following equation

⟨u′
jT

′⟩
√
kkθ

1
τu

1 + Cθ1

2

(
Pk
ε

+ Gk

ε
− 1

)
+ Cθ1

2R

(
Pkθ

εθ
− 1

) =

= − (δjk + 3bjk)
2
3
Cθ1k√
kkθ

∂⟨T ⟩
∂xk

− (Cθ2Sjk + Cθ3Ωjk)
⟨u′

kT
′⟩√

kkθ
+

− (δij + 3bij)
2
3
kCθ4√
kkθ

Aik
∂⟨T ⟩
∂xk

− Cθ5√
kkθ

gjβkθ −
Cθ6√
kkθ

Ajkgkβkθ.

(1.226)

We introduce the following non-dimensional quantities

b∗
jk = 3bjk, (1.227)

Θ∗
k = 2

3
Cθ1kτm√
k
√
kθ

∂⟨T ⟩
∂xk

, (1.228)

S∗
jk = Cθ2τmSjk, (1.229)

Ω∗
jk = Cθ3τmΩjk, (1.230)

T ∗
k = 2

3
Cθ4kτm√
k
√
kθ

∂⟨T ⟩
∂xk

, (1.231)

G∗
j = 2

3
Cθ5τm√
k
√
kθ
gjβkθ, (1.232)

F ∗
k = 2

3
Cθ6τm√
k
√
kθ
gkβkθ, (1.233)

52 Chapter 1. Turbulence Modeling for Liquid Metals

used to obtain the following non-dimensional equation

a∗
j = −

(
δjk + b∗

jk

)
Θ∗
k − a∗

k

(
S∗
jk + Ω∗

jk

)
+

−
(
δij + b∗

ij

)
AikT

∗
k −G∗

j − AjkF ∗
k ,

(1.234)

which represents the implicit form of the Algebraic Stress Models in non-
dimensional form since the normalized turbulent heat flux appears on both
sides of the equation. The explicit form in a∗

j can be derived from (1.234) as

a∗
j = F

{ [
−
(
δjk + b∗

jk

)
+ (δℓk + b∗

ℓk)
(
S∗
jℓ + Ω∗

jℓ

)]
Θ∗
k+

+
[
−
(
δjk + b∗

jk

)
Aik + (δℓi + b∗

ℓi)
(
S∗
jℓ + Ω∗

jℓ

)
Aik

]
T ∗
k+

−
[
δjk −

(
S∗
jk + Ω∗

jk

)]
G∗
k −

[
δjℓ −

(
S∗
jℓ + Ω∗

jℓ

)]
AℓkF

∗
k

}
.

(1.235)

where

F = 1
1 + 1

2 (Ω∗2 − S∗2) ,Ω
∗2 = Ω∗

ijΩ∗
ij, S

∗2 = S∗
ijS

∗
ij . (1.236)

The dimensional form of Equation (1.235) is then derived

Ctm Rtm fw (ξ) Cθ1 Cθ2

1.3× 102 CtmRdR
1/4
t

CtmR
1/4
t +Rd

exp
[
−
(
Rtm

ξ

)2
]

0.14 [1− fw(40)] 0.05

Cθ3 Cθ4 Cθ5 Cθ6

0.11 0.3 0.3 [1− fw(40)]2 0.2 [1− fw(20)]

Cθ7 Cm Bλ1 τu τθ R

0.2 [1− fw(20)] 0.25/Pr1/4 1+2Pr
20Pr0.4

k
ε

kθ

εθ

τθ

τu

τm{
2R

R+Cm
+
√

2R
Pr

30
R

3/4
t

exp
[
−
(
Rtm

Bλ1

)3/4
]}
τu

Table 1.2: Model constants and functions for EAHFM as in [46].

1.6. The Anisotropic Four-parameter Turbulence Model 53

⟨u′
jT

′⟩ = −αtjk
∂⟨T ⟩
∂xk

+ τ 2
m

fRT
(Cθ1⟨u′

ℓu
′
k⟩+ Cθ5⟨u′

ℓu
′
i⟩Aik) (Cθ2Sjℓ+

+Cθ3Ωjℓ)
∂⟨T ⟩
∂xk

− 2Cθ6τmgkβkθ
fRT

[δjk − τm (Cθ2Sjk + Cθ3Ωjk)]

− 2Cθ7τmAℓkgkβkθ
fRT

[δjℓ − τm (Cθ2Sjℓ + Cθ3Ωjℓ)] ,

(1.237)

The anisotropic eddy diffusivity is given as

αtjk = τm
fRT

(Cθ1ujuk + Cθ4uiujAik) , (1.238)

where

fRT = 1 + 1
2 {τm [1− fw(40)]}2

(
Cθ3Ω2 − Cθ2S

2
)
. (1.239)

The other model constants and functions are indicated in Table 1.2.

1.6 The Anisotropic Four-parameter Turbu-
lence Model

This section provides the overview of the equations implemented in the turbu-
lent solver of FEMuS code for simulating both forced and natural convection
phenomena. This solver is based on the previously introduced anisotropic
Reynolds stress tensor and anisotropic turbulent heat flux, overcoming the
limitations of the Boussinesq hypothesis of eddy viscosity and diffusivity.

The governing equation for the generic turbulent problem in RANS form
is

∂⟨ui⟩
∂xi

= 0 , (1.240)

D⟨ui⟩
Dt

= −1
ρ

∂⟨p⟩
∂xi

+ ∂

∂xj

[
ν

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)
− ⟨u′

iu
′
j⟩
]
− giβ⟨T ⟩ , (1.241)

D⟨T ⟩
Dt

= ∂

∂xi

(
α
∂⟨T ⟩
∂xi

− ⟨u′
iT

′⟩
)

+ Q

ρc
. (1.242)

In this work, the Reynolds stress tensor and the turbulent heat flux have
been implemented using the EASM and EAHFM models as presented in the
Section 1.5 and reported here for clarity. These models consider the buoyancy

54 Chapter 1. Turbulence Modeling for Liquid Metals

term added to treat the natural convection problem as

⟨u′
iu

′
j⟩ = 2

3kδij −
2νt
fR1

Sij −
4CDkfτ
fR1

(SikΩkj − ΩikSkj) +

+ 4CDkfτ
fR1

(
SikSkj −

1
3SmnSmnδij

)
+

− 2Cgτmg
CDfR2

fij −
4Cgτ 2

mg

fR2
(fikΩkj − Ωikfkj) +

+
2Cgτ 2

mg

fR2

(
fikSkj + Sikfkj −

2
3fmnSmnδij

)
,

(1.243)

while the turbulent heat flux uses

⟨u′
jT

′⟩ = −αtjk
∂⟨T ⟩
∂xk

+ τ 2
m

fRT
(Cθ1⟨u′

ℓu
′
k⟩+ Cθ5⟨u′

ℓu
′
i⟩Aik) (Cθ2Sjℓ+

+Cθ3Ωjℓ)
∂⟨T ⟩
∂xk

− 2Cθ6τmgkβkθ
fRT

[δjk − τm (Cθ2Sjk + Cθ3Ωjk)]

− 2Cθ7τmAℓkgkβkθ
fRT

[δjℓ − τm (Cθ2Sjℓ + Cθ3Ωjℓ)] .

(1.244)

The closure of the turbulent model requires the determination of k and ω,
along with the turbulent viscosity νt and its characteristic dynamic time scale
τlu for the dynamic turbulence. Additionally, the thermal turbulence requires
kθ and ωθ, the turbulent thermal diffusivity αt, and its associated mixing
time scale τm. By solving the transport equations for the turbulent variables,
we can determine the turbulent kinetic energy, its specific dissipation, the
temperature variance, and its specific dissipation. In this thesis, the four-
parameter model employed is a logarithmic version of the standard models
already included in FEMuS code [55, 56, 57]. The use of logarithmic variables,
denoted as K−Ω and Kθ−Ωθ, improves the stability of the standard models
by ensuring that the state variables remain positive throughout the solution
process [58]. The dynamic logarithmic variables are defined as follows

K = ln(k), Ω = ln(ω), (1.245)

and their corresponding transport equations derived from (1.120) and (1.131)
are given by

DK

Dt
= ∂

∂xi

[(
ν + νt

σk

)
∂K

∂xi

]
+
(
ν + νt

σk

)
∂K∂K

∂xi∂xi
+ Pk
eK

+ Gk

eK
− cµeΩ, (1.246)

1.6. The Anisotropic Four-parameter Turbulence Model 55

DΩ
Dt

= ∂

∂xi

[(
ν + νt

σω

)
∂Ω
∂xi

]
+
(
ν + νt

σω

)
∂Ω∂Ω
∂xi∂xi

+ Pk
eK

(cε1 − 1) +

+ 2
(
ν + νt

σω

)
∂K∂Ω
∂xi∂xi

+ (cb − 1) Gk

eK
− cµ (cε2fε − 1) eΩ,

(1.247)

where the production rate of the turbulent kinetic energy is defined as Pk =
−⟨u′

iu
′
k⟩∂⟨ui⟩/∂xk and the buoyancy production term is Gk = −βgi⟨u′

iT
′⟩.

The model constants and the model functions are detailed in (1.111) and
(1.114).

As regards the thermal turbulent variables, we can introduce logarithmic
quantities as

Kθ = ln(kθ), Ωθ = ln(ωθ), (1.248)

and the system of equations is obtained substituting (1.248) in Equations
(1.173) and (1.174) as

DKθ

Dt
= ∂

∂xi

[(
α + αt

σkθ

)
∂Kθ

∂xi

]
+
(
α + αt

σkθ

)
∂Kθ

∂xi

∂Kθ

∂xi
+

+ Pkθ
e−Kθ − cµeΩθ ,

(1.249)

DΩθ

Dt
= ∂

∂xi

[(
α + αt

σωθ

)
∂Ωθ

∂xi

]
+
(
α + αt

σωθ

)
∂Ωθ

∂xi

∂Ωθ

∂xi
+

+ 2
(
α + αt

σωθ

)
∂Kθ

∂xi

∂Ωθ

∂xi
+ Pkθ

e−Kθ (cp1 − 1) +

− (cd1 − 1) cµeΩθ − cd2cµe
Ωθ + cp2Pke

−K ,

(1.250)

where the thermal and mechanical production production terms are Pkθ
=

−⟨u′
jT

′⟩∂⟨T ⟩/∂xj and Pk = −⟨u′
iu

′
k⟩∂⟨ui⟩/∂xk. The model constants and the

model functions are defined as in [57]

cd2 =
{

1.9
[
1− 0.3 exp

(
− R2

t

42.25

)]
− 1

}[
1− exp

(
−R

2
d

25

)]
, (1.251)

cp1 = 1.025, cp2 = 0.9, cd1 = 1.1, σkθ = σωθ = 1.4. (1.252)

The eddy viscosity has been computed using the following expression

νt = Cµkτlu , (1.253)

where τlu has been defined according to [25] as

τlu = τu

[
1− exp

(
−Rd

14

)]2 [
1 + exp

(
−2.5× 10−5R2

t

) 5
R

3/4
t

]
. (1.254)

56 Chapter 1. Turbulence Modeling for Liquid Metals

Similarly, the eddy diffusivity is modeled as

αt = Ctkτm, (1.255)

where the mixing time scale is given by

τm = τuf1θ

(
1
Prt

+ 2R
R + Cγ

f2θ + 1.3
√

2R
PrR

3/4
t

f3θ

)
, (1.256)

where Cγ = 0.25/Pr1/4
t and the functions f1θ, f2θ and f3θ are defined as in

(1.183) and (1.184). All the other model constants and functions used in
Equations (1.243) and (1.244) have been modeled accordingly to [46] and are
reported in Table 1.1 and 1.2.

Chapter 2

Numerical Code Coupling

In the past few years, the study of multiscale and multiphysics problems
has emerged as a topic of intensive research. Multiscale modeling involves
simulating processes at different spatial and temporal scales. Multiphysics
modeling combines different physical models to simulate interactions between
various phenomena. For instance, complex systems such as nuclear reactor
plants, where neutronic, thermohydraulic, and thermomechanics are strongly
coupled, or heat exchangers, where analyzing thermal performances requires
the Conjugate Heat Transfer (CHT) problem to integrate fluid dynamics with
solid heat conduction.

Evaluation of the whole system requires a modeling effort for all scales and
interactions among system components. Thus, the development of numerical
tools has to account for phenomena with multiple scales and physics [59, 60,
61, 62, 63, 64].

Nowadays, CFD techniques are an integral part of the design process
of most engineering systems, even the more complex ones. Moreover, High-
Performance Computing (HPC) significantly enhances multiphysics and mul-
tiscale CFD simulations by providing the necessary computational power to
handle large calculations and datasets. Despite all the advancements in this
field, simulating highly complex systems remains a significant challenge. In-
deed, no single code can handle the full range of physical interactions involved
in any given phenomenon. Existing commercial codes generally cater to a

58 Chapter 2. Code Coupling Method

specific problem type. For instance, we can find a plethora of open-source
simulation software that can tackle a subset of the physical systems. We can
refer to codes such as OpenFOAM [65], TrioCFD [66], and code Saturne [67]
for fluidynamical simulations. These codes solve incompressible and com-
pressible Navier-Stokes equations with multi-phase flow and turbulence phe-
nomena (at different scales, through RANS, LES, or DNS). Several solvers
are available in the thermomechanical field, including elasticity problems
and fracture propagation. Among them, we can mention Code-Aster [68]
or TFEL/MFront [69]. Codes such as Dragon/Donjon have been developed
to tackle neutronic problems. Other open-source FEM-based numerical plat-
forms such as libMesh [70], Deal-II [71], and FEniCS [72] are widely used to
solve generic PDE problems.

Two main strategies have been explored over the years to simulate multi-
scale and multiphysics problems. One way is to develop a new numerical code
to model all the relevant physical phenomena. This strategy is commonly de-
fined as the monolithic approach or the direct method. Alternatively, one can
choose to couple existing and validated codes for each phenomenon of inter-
est. The main advantage of the monolithic approach is that it can lead to
a more stable and accurate solution. Since all physical interactions are fully
integrated into the system of equations, the feedback between subsystems
is captured more accurately, with less risk of introducing errors or instabil-
ities from decoupling. However, the formulation is generally more difficult
because all physical phenomena must be considered simultaneously, often re-
quiring specialized software or adaptations to existing solvers. In contrast,
the partitioned (or coupled) method keeps the individual solvers. The idea is
to solve each subsystem independently and exchange information (typically
at each time step). This approach is advantageous when reliable solvers for
each subsystem already exist, as it allows existing codebases to use strategies
designed for those subsystems. The partitioned approach can also enable
parallel computations, where different subsystems are solved concurrently,
improving computational efficiency. This method requires efficient data ex-
change between codes, especially in the HPC framework. Therefore, output
and input exchange data on code coupling are performed directly in memory
to avoid writing and reading processing from external files [73].

In this thesis, the development of the coupling application aims to improve
the in-house numerical platform [74] for enabling multiphysics and multiscale
simulations. The proposed platform models several physical PDEs (Partial

2.1. Numerical Platform Environment 59

Differential Equations) using both FEM (finite element method) and FVM
(finite volume method) for modeling fluids and solids [75]. By integrating the
open source software, OpenFOAM [65] and the in-house library FEMuS [76],
the numerical platform aims to leverage their strengths and their simulation
capabilities. In this Chapter, the code coupling strategy is presented, and
its implementation is discussed. This Chapter introduces the computational
framework in which the code coupling application has been developed. Then,
it presents the coupling strategy and the numerical algorithm implemented,
concluding with a discussion of two numerical examples of code coupling
between FEMuS and OpenFOAM, one involving the exchange of volumetric
fields and the other coupling boundary conditions. Numerical results are
provided and compared with literature data of the same physical problems
performed with the monolithic approach.

2.1 Numerical Platform Environment
A numerical platform has been developed over the years at the Laboratory
of Montecuccolino of the University of Bologna to improve portability and
communication among in-house numerical codes [74]. The idea behind the
numerical platform is to create a numerical environment for multiphysics and
multiscale simulations, integrating different physical PDE models with FEM
and FVM discretizations for fluids and solids.

This numerical platform provides several environments for different user
levels: one for implementing engineering applications and another suitable
for developing in-house code. These environments include the data entry for
“input/output” using CAD and Mesh generators and visualization or post-
processing with tools typical of the SALOME computing platform [77], i.e.,
the software Paraview [78]. Implementations of PDE models on the FE and
FV discretizations are available from two standalone codes: the in-house
FEM solver named FEMuS [76] and the open-source software OpenFOAM
[65]. The Message Passing Interface (MPI) manages parallel computations
for both CFD codes. MPI is a standardized and portable protocol designed
for programming with parallel computing architectures [79, 80]. In particu-
lar, both CFD codes use the Open Message Passing Interface (OpenMPI),
an open-source implementation of MPI developed and maintained by a con-
sortium of academic, research, and industry partners [81]. For the solution
of partial differential equations and, in particular, for the solution of linear

60 Chapter 2. Code Coupling Method

systems, FEMuS uses a library called PETSc, which stands for the “Portable,
Extensible Toolkit for Scientific Computation” [82]. PETSc is a suite of data
structures and routines developed by Argonne National Laboratory, designed
for the scalable (parallel) solution of scientific applications modeled by partial
differential equations. On the other hand, OpenFOAM relies on its in-house
matrix and solver libraries to handle the numerical solution of PDEs rather
than an external library like PETSc. However, it has recently introduced the
option to integrate PETSc for these computations [83].

2.1.1 Strategies for Code Integration
Two main strategies can be adopted to integrate multiple numerical codes
within this numerical platform. The first strategy involves implementing
specific procedures to couple the new code with each existing platform li-
brary. Alternatively, a new library can be added to the coupling framework
by developing a single wrapper that maps its data fields to a common cou-
pling format. In this case, heterogeneous fields with different data structures
from various numerical codes are exchanged through a shared intermediate
representation. These two approaches are referred to as the point-to-point
and hub-and-spoke models, respectively. A schematic example of the two
coupling approaches is reported in Figure 2.1. Point-to-point integration pro-

Point-to-Point Hub and Spoke

HUB

c1

c2

c3

c4

c5

c6

c1

c2

c3

c4

c5

c6

Figure 2.1: Coupling strategy models: point-to-point on the left and hub-
and-spoke on the right.

vides direct communication and data exchange between two endpoints. This

2.1. Numerical Platform Environment 61

approach does not need an intermediary between the subsystems, ensuring
continuous interaction and optimized data interchanging mechanism. On the
other hand, hub-and-spoke integration follows a different approach by elimi-
nating the need for direct connections between every system involved in data
sharing. Each endpoint is connected to a centralized hub, which manages all
data exchanges between senders and receivers. Point-to-point communica-
tion is inherently limited in scalability and requires significant efforts to work
with large systems with several integrated software. As the number of con-
nected subsystems grows, the complexity increases exponentially, making the
approach less efficient. In contrast, the hub-and-spoke model provides a more
efficient alternative to the point-to-point model, requiring fewer connection
routes. More particularly, in a network with n endpoints, the hub-and-spoke
model requires only n − 1 routes to connect all nodes, setting the upper
bound of n − 1 connections and a complexity of O(n). This approach is
significantly more efficient than the n(n − 1)/2 routes, or O(n2), needed for
direct connections between every pair of nodes in a point-to-point network.

Among the intermediary representations, MED (Model for Exchange Data)
libraries can be adopted as a hub intermediary in the hub-and-spoke model.
This open-source library provides a standard coupling format (the MED for-
mat) for the numerical codes integrated into the aforementioned platform.
This library is a module of the SALOME platform for retrieving, processing,
and sharing data at the memory level, avoiding external disk files. The SA-
LOME platform and its modules are further detailed in the following section.

SALOME Platform

SALOME is a numerical platform developed by CEA (Commissariat à l’énergie
atomique et aux énergies alternatives) and EDF (Électricité de France) to
provide open-source software for computer-aided engineering (CAE) [84].
This platform offers several modules, such as GUI, Geometry, Mesh, Fields,
YACS, JobManager, and ParaViS, that may manage every stage of a com-
putational simulation performed by multiple external standalone codes. The
software implements tools for parametric CAD modeling, tetrahedral and
hexahedral mesh generation, code supervision, post-processing, and data
analysis [77]. In particular, the supervisor can generate simulation work-
flows that connect different computational units, with the support of the
FIELDS and MED libraries. This controls data communication by manipu-
lating input and output simulations. It can also perform data transfer and

62 Chapter 2. Code Coupling Method

analysis.

A brief description of the main functionalities may offer a clear under-
standing of the different aspects and capabilities and explain how each fea-
ture contributes to the overall workflow in addressing different tasks and
requirements. SALOME is equipped with a parametric and variational CAD
modeler called SHAPER. This modeler allows users to define parametric di-
mensions and constraints for a sketch, enabling the automatic update of the
final shapes when the CAD element parameters are modified. With this
feature, designers can automatically create and update groups, regions, and
domains when geometry is modified. Additionally, it allows the creation
of non-manifold geometries (e.g., an edge shared by more than two faces)
and the assembly of multi-dimensional parts to create a complex geometry.
SMESH module represents the SALOME mesh module, providing several
discretization algorithms for finite element and finite volume methods. This
module gives the possibility to exploit SALOME meshing tools (quadran-
gles, hexahedra, boundary-layer meshing, etc.), open-source meshing tools
(NETGEN and Gmsh), and commercial meshing tools from the MeshGems
suite. Multiple types of meshes, generated using various available meshing
algorithms, can be applied to different regions. To simplify the mesh cre-
ation process, several transformation options are provided, such as rotation,
symmetry, and scaling, as well as mesh optimization and local refinement.
The mesh object can be equipped with groups and labels to recognize the
geometry of different regions, including the boundary elements. The SA-
LOME platform includes a module called PARAVIS for the visualization and
analysis of numerical results. This module uses ParaView functionalities,
an open-ource software for interactive scientific visualization. The PARAVIS
module offers various types of data representations and a wide range of filters
customized for effective data visualization.

Several functionalities provided by SALOME, which are strictly connected
to multi-physics simulations, are managed by the supervisor. The super-
visor’s main responsibility is to create a simulation workflow by integrat-
ing domain-specific solvers through the YACSGEN interface, simplifying the
coupling of different physical domains. Within the coupling framework, SA-
LOME provides modules for field manipulation called FIELDS. The FIELDS
module for field manipulation consists of a graphical interface designed to
implement standard use cases of field manipulation, along with a library
of functions for processing data on meshes and fields based on the MED

2.1. Numerical Platform Environment 63

model. Among its features, the most relevant for this work are reading/writ-
ing from/to files, the aggregation and exchange of data, interpolation between
different computational grids, format conversion, and renumbering or parti-
tioning of data for multiprocessor frameworks.

The XMED Library from the SALOME Platform. The FIELDS
module for field manipulation is called XMED. It consists of a small set of
atomic library files. Its structure is depicted in Figure 2.2, where the archi-
tecture layer is reported. In particular, each element depends on the blocks

INTERP KERNEL

MEDCoupling C++ Layer

ParaMEDMEM REMAPPER MEDLoader

MEDMEM C++ layer

MEDMEM Python layer MEDMEM COBRA layer

MedClient C++ layer

MedClient Python layer

MEDOP C++ Layer

MEDOP

COBRA layer

Python layer

libc++,libc,system MPI MED fichier

*.med

Figure 2.2: Packages structure of the XMED library in FIELDS module.

it covers (fully or partially) along the vertical line. The core of the MED
module is the MEDMEM library represented by the orange blocks, while the
white blocks represent the old deprecated version of the MEDMEM library.
The blue packages represent the additional components for field manipula-
tion through the user interface (TUI and GUI). It is built around the MED
format, which is a standardized format for storing and exchanging numerical
data in scientific computing. It can be used in both C++ and Python en-
vironments. The library provides data structures (C++ classes) for meshes
or fields and various functionalities for data manipulation. It also includes
routines for reading and writing MED files. MEDMEM library is mainly
designed for advanced data processing, such as interpolation and localiza-
tion of fields or projecting data between different meshes. The MEDMEM

64 Chapter 2. Code Coupling Method

library manages these functionalities through its submodules, each designed
for specific tasks. The MEDCoupling package handles the data structures for
meshes and fields and data manipulation routines. The MEDLoader module
provides I/O operations for the MED file format. INTERP KERNEL and
REMAPPER modules provide the mathematical frameworks and algorithms
for data exchange, focusing on interpolation between different numerical do-
mains. In the following, we will refer only by the name MED to the MED
library or the MEDMEM module.

2.2 OpenFOAM and FEMuS Integration
Thanks to its efficiency, the hub-and-spoke approach represents the most ef-
fective strategy for coupling multiple codes and supporting multiscale and
multiphysics simulations. Accordingly, in this thesis, the FEMuS and Open-
FOAM codes have been coupled into the numerical platform using the MED
library as a common intermediate representation for exchanging heteroge-
neous data structures.

Figure 2.3 represents the simplified scheme of the hub-and-spoke model
adopted as a code coupling framework. The diagram outlines the coupling
system between two computational codes, identified as Code 1 and Code
2, interacting under the direction of a Supervisor. It is worth noting that
the approach described in this scheme is not limited to two codes but can be
extended to integrate multiple coupled codes. In this context, the terms Code
1 and Code 2 represent FEMuS and OpenFOAM. The Supervisor object is
represented as a main program used to manage the structures of both codes
and the coupling between them. In particular, it is responsible for managing
the instantiation and initialization of Code 1, Code 2, and Coupling objects
class. The Supervisor controls the progression of numerical simulations over
time and coordinates the integration process over shared or overlapping time
intervals. In addition to code-related functionalities, it is also responsible for
synchronizing the data transfer between the two codes, ensuring a consistent
exchange of information throughout the simulation process.

Each code internally manages its solver, Solver 1 and Solver 2, which oper-
ate on their respective datasets and solve their respective physical problems.
However, in the context of a coupled application, both codes may require
physical quantities solved by the other subsystems. These specific quanti-
ties are represented in the scheme of Figure 2.3 as Φs,∗ and Φt,∗, where the

2.2. OpenFOAM and FEMuS Integration 65

Supervisor

Code 1 Coupling Code 2

Solver 1 Solver 2
MED Data

Manipulation

Φt,1

Φs,1

Φs,2

Φt,2

Interpolation

Interpolation

Set

Get

Get

Set

Φt,med Φs,med

Φs,med Φt,med

Figure 2.3: Coupling procedure scheme.

subscripts t and s refer to “target” and “source”, respectively. These fields
are data structures specific to each code, which may differ depending on the
coupled application. For instance, FEMuS uses PETSc data structures to
store the solution of the problem equation, whereas OpenFOAM employs its
own data structures, such as GeometricField, dimensionedField, and others.
Code interfaces are explicitly developed to ensure compatibility between two
types of data structures. These interfaces are implemented as C++ classes
with multiple functionalities, including converting data from specific data
structures to the MED format and vice versa. In Figure 2.3, these interfaces
are represented by dashed lines connecting the green blocks (code libraries)
to the red one. The latter block represents the C++ class developed for col-
lecting routines from the MEDMEM module. It acts as the intermediary for
data exchange between Code 1 and Code 2. In particular, given the fields
from Code 1, this class projects the corresponding MED field, Φs,med, defined
over a source MED mesh, onto the target MED mesh to compute the target
MED field (Φt,med). The interface of Code 2 receives this field in MED format
and converts it into Code 2 data structure.

As just mentioned, data flows between the two codes have been possible
by implementing three classes. The first class, named foamMED, is the inter-
mediary link between OpenFOAM and the MED library, covering the role

66 Chapter 2. Code Coupling Method

of the OpenFOAM-MED interface. Similarly, the second class, femusMED, is
the interface between FEMuS and the MED library. Finally, the third class,
namely MEDclass, is responsible for managing operations within the MED
library itself.

2.2.1 MED Communication Class

In this section, we explore the development of the MEDclass, which is the core
of the coupling applications discussed in the following chapters. In particular,
a brief overview of the features implemented in this class is provided.

MED Class Structure

The MED library provides a comprehensive set of routines for creating meshes,
initializing fields, and managing data transfer between meshes. It supports
a wide range of element types categorized by their geometric dimensionality
and shape. These include line segments for 1D meshes, triangles, quadri-
laterals, and polygons for 2D meshes, and tetrahedra, hexahedra, prisms,
pyramids, and polyhedra for 3D meshes. The library can also create fields
with different dimensionalities and discretizations. It supports scalar, vector,
and tensor fields, which can be associated with various types of mesh enti-
ties, such as nodes (nodal fields) or cells (cell-centered fields). Node fields
are classified as P1 or P2, corresponding to linear or quadratic discretizations.
Cell-centered fields are labeled P0. Moreover, the MED library can handle
field interpolation from one mesh (source mesh) to another (target mesh)
while preserving physical consistency in the built-in projection method.

The C++ class MEDclass has been created to employ all these function-
alities, and a brief code snippet is provided below to illustrate its structure:

1 class MEDclass {
2 private:
3 MPI_Comm _comm;
4 vector<MEDCoupling::MEDCouplingUMesh*> _mesh;
5 vector<MEDCoupling::MEDCouplingFieldDouble*> _field;
6 vector<MEDCoupling::DataArrayDouble*> _array_tmp;
7 vector<MEDCoupling::MEDCouplingRemapper*> _remapper;
8 vector<c_type> _element_type;
9 public:

2.2. OpenFOAM and FEMuS Integration 67

10 map<string, int> _map_field_name;
11 map<string, int> _map_mesh_name;
12 map<int, int> _map_field_mesh;
13

14 int problem_dimension;
15

16 public:
17 MEDclass() = default;
18 ˜MEDclass() = default;
19

20 MEDclass(MPI_Comm comm) : _comm{comm} {}
21

22 //beginFunctions
23 ...
24 //endFunctions
25 }

This class includes all the MED structures for storing data, i.e., meshes,
fields, interpolation matrices, as well as structures designed to facilitate in-
formation retrieval at the supervisor level, such as map field name and
map mesh name. The current version of the MEDclass includes support for

an MPI communicator. However, it does not yet handle distributed data
exchange between processes. This functionality should be implemented for
future developments to support efficient coupling in high-performance com-
puting environments.

To complete this class, the following data structures are defined:

1 enum cell_type {
2 quad9 = INTERP_KERNEL::NORM_QUAD9,
3 quad4 = INTERP_KERNEL::NORM_QUAD4,
4 seg3 = INTERP_KERNEL::NORM_SEG3,
5 seg2 = INTERP_KERNEL::NORM_SEG2,
6 hexa8 = INTERP_KERNEL::NORM_HEXA8,
7 polyhed = INTERP_KERNEL::NORM_POLYHED,
8 ...
9 };

10 struct c_type{
11 cell_type type;
12 int dof;

68 Chapter 2. Code Coupling Method

13 int dimension;
14 };

These structures are used to group information about the MED mesh, such as
the type of cell elements (cell type), the degree of freedom (DOF) of the ele-
ments (dof) and the mesh dimension. The cell type structure includes a va-
riety of element types supported by the MEDclass, including two-dimensional
quadratic elements such as NORM QUAD9, commonly used in the FEMuS code,
as well as three-dimensional elements typically found in OpenFOAM meshes,
such as hexahedral (NORM HEXA8) and polyhedral (NORM POLYHED) cells.

Main Functionalities

In the coupling procedure of this Thesis, one of the first step is to define
computational meshes in MED format over which the MED fields can be
stored. The routine responsible for managing the creation of unstructured
meshes is called create mesh(). The creation of the MED mesh requires
information about connectivity, coordinate nodes, discretization type, and
mesh dimension. The vector vector<MEDCoupling::MEDCouplingUMesh*>
mesh groups the mesh copies, with the number of copies corresponding to

the interfaces required by the coupling application.
The MEDclass provides the possibility to define several entities, field, of

type MEDCouplingFieldDouble, stored in a C++ vector, which correspond
to the coupled fields involved. Two distinct functions have been developed to
create MED field data structures responsible for storing field information from
the coupled codes. These routines are named init med field on nodes()
and init med field on cells(). The former creates and initializes a MED
field over the mesh nodes, which can be linear or bi-quadratic. The lat-
ter function performs a similar initialization but defines a field over cells
instead of nodes. During the solution process, the set field() routine up-
dates the field values. It uses a MED data structure (array tmp), where
code solutions are temporarily stored. Then, it copies the fields from the
DataArrayDouble to the MEDCouplingFieldDouble structure. The inverse
process, named get field(), is used to retrieve MED field information and
transfer it to the intermediate data structure of type DataArrayDouble.

The other main functionality implemented in MEDclass is the interpola-
tion mechanism. The interpolation of a source field over a target mesh is
performed by constructing the projection operator P to compute the follow-

2.2. OpenFOAM and FEMuS Integration 69

ing matrix operation
Φt = PΦs , (2.1)

where Φt and Φs are the target and the source fields, respectively. There-
fore, the interpolation routine consists of two main steps: the construction
of the operator P, named remapper, and the projection of the source field
onto a target field. The operator P is a matrix with dimensionality n ×m,
where n is the number of nodes/cells in the target mesh and m is the num-
ber of nodes/cells in the source mesh. This matrix is constructed through
algorithms that can locate the nodes or cells of the source mesh within
the elements of the target mesh. The creation of P, implemented in the
get remapper() routine, is managed by the REMAPPER class of the MED
library through the prepare() function, which is available within the library.
Once the operator has been built, the field projection step in (2.1) is executed
in the interpolate field() routine using the built-in MED function named
transferField(). The interpolation routine is available for both P0 and P1

fields and the algorithms can combine different field types, e.g. it is possible
to interpolate from P0 to P0, from P0 to P1, from P1 to P0, and from P1 to
P1. More details about these routines are provided in Appendix A.1.

MED library provides several methods to construct the matrix P accord-
ing to the type of source and target meshes. The simpler interpolation mech-
anism occurs when the two meshes are perfectly overlapping. Point-to-point
interpolation transfers field values from nodes in one mesh to corresponding
nodes in another mesh. This is a straightforward method used when the two
meshes have the same topology and point locations, allowing a direct transfer
of values. Similarly, in cell-to-cell interpolation, the values of a field defined
on the cells of one mesh are transferred to the corresponding elements of
another mesh.

When the mesh nodes or cells are aligned, the interpolation can be exact,
with the projection operator taking the form of a diagonal matrix. How-
ever, this approach is not appropriate for meshes with different geometries or
element distributions, which typically require more complex projection meth-
ods. To address such cases, two MED built-in algorithms were employed for
the interpolation of fields in this thesis: the Triangulation algorithm and
the Geometric2D algorithm. The former decomposes each cell into triangles
and computes triangle-triangle intersections by determining segment cross-
ings and node inclusions. The latter is very flexible because it supports any
type of polygon, including linear, quadratic, convex polygons, and non-convex

70 Chapter 2. Code Coupling Method

polygons. This projection method can also handle interpolations between
edges.

−0.805

−0.548

−0.291

−0.034

0.224

0.481

0.738

0.995

f
(x
,y

)

−0.625

−0.396

−0.168

0.061

0.289

0.518

0.746

0.975

f
(x
,y

)

Figure 2.4: P0 − P0 interpolation from the piece-wise representation of the
analytical function f(x, y) = 1− (x− 1)2 + (y − 1)2 over a finer mesh to the
piece-wise representation on a coarser one.

When referring to non-overlapping meshes, we may consider differences
such as element types (e.g., triangle or quadrilateral elements), discretization
methods (e.g., piecewise or linear discretization), resolution, or simply varia-
tions in point or cell locations. Differences in resolution can be classified as
either upscaling or downscaling, depending on whether data are transferred
from a coarse mesh to a fine mesh or from a fine mesh to a coarse mesh,
respectively. An example of downscaling interpolation obtained by exploit-
ing MEDclass routines is shown in Figures 2.4, where the MED field of the
finer source mesh is interpolated onto the coarser target mesh. In this spe-
cific case, the source field is the P0 representation of the analytic function
f(x, y) = 1 − (x − 1)2 + (y − 1)2. It has been initialized on a 20 × 20 mesh
with QUAD4 elements. The target mesh consists of a 10× 10 computational
grid.

Figure 2.5 illustrates another example of P0−P0 interpolation for nonover-
lapping meshes. The two meshes are shifted, with the overlapping region
limited to the domain defined by the target mesh lower left corner and the
source mesh upper right corner. The interpolations performed include up-
scaling for the case shown on the left and downscaling for the case shown on
the right. The interpolated source field is a piecewise representation of the
analytic function f(x, y) = sin πx sin πy.

MEDclass has been developed to handle also interpolation for mixed-

2.2. OpenFOAM and FEMuS Integration 71

−0.976

−0.697

−0.418

−0.139

0.139

0.418

0.697

0.976

f
(x
,y

)

−1.000

−0.714

−0.429

−0.143

0.143

0.429

0.714

1.000

f
(x
,y

)

Figure 2.5: P0 − P0 interpolation for partially overlapped meshes. Interpo-
lation of the piece-wise representation of the analytical function f(x, y) =
sin πx sin πy from the coarser to the finer mesh on the left and from the finer
to the coarser mesh on the right.

dimension meshes, where different regions of the domain are discretized with
different dimensions. Dimensional interpolation is the process of mapping
field values between meshes with different dimensions, such as from 3D to
2D, 2D to 1D, or viceversa. A field defined over a 3D volume mesh (e.g.,

−0.869

−0.602

−0.336

−0.069

0.198

0.464

0.731

0.998

f
(x
,y

)

−0.869

−0.602

−0.336

−0.069

0.198

0.464

0.731

0.998

f
(x
,y

)

Figure 2.6: P0 − P0 interpolation from a 2D representation of the analytical
function f(x, y) = 1− (x− 1)2 + (y − 1)2 to a 3D mesh.

temperature, pressure, or velocity) often needs to be transferred to a 2D
surface mesh. This scenario is common when information from a 3D fluid
domain must be projected onto a two-dimensional boundary. In the applica-
tions presented in this thesis, such an interpolation occurs when dealing with
OpenFOAM to FEMuS codes. OpenFOAM can handle only 3D simulations,

72 Chapter 2. Code Coupling Method

even for 2D problems, while FEMuS operates with 2D meshes. As a result,
the interpolation required in this case involves transferring data from a 3D
mesh to a 2D mesh. The inverse interpolation function has to be applied when
fields from FEMuS 2D meshes is projected onto OpenFOAM 3D meshes. Fig-
ures 2.6 and 2.7 provide examples of multidimensional interpolation managed
using MEDclass functionalities. The former shows the 2D to 3D interpolation
of a piecewise field representing the function f(x, y) = 1− (x−1)2 + (y−1)2.
The latter report the target field of the 1D to 2D interpolation of the same
function in its 1D form, f(x) = 1− (x− 1)2.

0.0000

0.1428

0.2856

0.4283

0.5711

0.7139

0.8567

0.9994

f
(x
,y

)

Figure 2.7: P0 − P0 interpolation from a 1D representation of the analytical
function f(x) = 1− (x− 1)2 to a 2D mesh.

2.2.2 FEMuS Interface Class

The FEMuS code includes solvers for a wide range of physical problems, such
as incompressible Navier-Stokes equations, heat transfer, turbulence models,
fluid-structure interaction problems, multiphase flows, and optimal control.
One notable advantage of FEMuS is its flexibility in implementing new mod-
els by directly integrating the constitutive equations into the FEM paradigm.
This approach allows for the efficient modeling of novel physical phenomena,
such as the complex dynamics of turbulent flows in unconventional fluids like
liquid metals. For further details on the FEMuS library, readers are referred
to [85, 86, 76, 87, 88].

The FEMuS library has been integrated into the coupling application
of the numerical platform by extending it with a MED-compatible C++
interface, named femusMED.

2.2. OpenFOAM and FEMuS Integration 73

femusMED Class Structure

The femusMED class is built to manage the interaction between the FEMuS
framework and the MED library within a coupled CFD simulation environ-
ment. Its primary aim is to provide all the functionalities for transferring the
mesh-related data to the MED environment. The C++ class is defined as
follows:

1 class femusMED {
2 private:
3 MPI_Comm _comm;
4 int probl_dimension = 2;
5 std::vector<interfaces_femus> interface;
6 public:
7 femusMED() = default;
8 ˜femusMED() = default;
9 femusMED(MPI_Comm comm) : _comm{comm} {}

10

11 //beginFunctions
12 ...
13 //endFunctions
14 }

This class creates interfaces femus structures, which are data collections
for creating the interface between FEMuS and MED format:

1 struct interfaces_femus{
2 vector<int> _conn;
3 vector<double> _coords;
4 vector<vector<int>> _indices;
5 vector<double> _field_val;
6 map<int,int> _map_med2mg;
7 map<int,int> _map_mg2med;
8 int _n_nodes;
9 string _mesh_name;

10 ...
11 };

These structures store mesh data, such as connectivity information, mesh
coordinates, and mappings between the FEMuS and MED node indices. The

74 Chapter 2. Code Coupling Method

interface also holds field values to be transferred along with the reference of
the corresponding indexes to enabling the coupling calculation. Each part of
the domain that needs to be coupled externally has its own interface struc-
ture, allowing the management of more than one interface at a time.

Main Functionalities

The main feature of the femusMED class deals with initializing and manag-
ing the interface structure. The routine developed for this purpose is named
init interface(). During initialization, the interfaces collect node con-
nectivity (vector<int> conn) and coordinate (vector<int> coords) in-
formation from the FEMuS mesh object using the set mesh connectivity()
and set mesh coordinates() functions. Moreover, init interface() gath-
ers all the data necessary for subsequent steps to streamline and accelerate
the coupling process. This includes assigning a unique name to the mesh
for easy information retrieval (string mesh name), determining the num-
ber of DOFs (n nodes), and other essential parameters. This data is then
transferred to the MED class to create the mesh entity in MED format, as
described in Section 2.2.1.

To ensure compatibility with another solver in the MED frameworks,
femusMED class also provides methods to handle mesh conversions. The de-
veloped routine convert to linear mesh() provides information for creat-
ing a linear MED mesh starting from biquadratic mesh connectivity and
coordinates information. The class can also extract information to create
boundary interfaces. The overloaded routines set mesh connectivity()
and set mesh coordinates() are used to establish the local connectivity
of the boundary mesh from the original FEMuS mesh and to map the local
renumbered nodes to the global index numbering of the mesh.

The class femusMED is also responsible for getting and setting the MED
field from/to the FEMuS structure. The get field from femus() routine
is employed to extract a field from FEMuS as a PETSc vector, which is the
structure FEMuS uses to store the solver field solutions. The retrieved field
can be copied to the temporary MED data structures, making it accessible
to the MEDclass. Since the FEMuS code uses a P2 representation for the
solution fields, the interface class has been extended to perform a P2 − P0

interpolation. This projection has been extensively described in [89], and the
corresponding functionality has been incorporated into the developed class.

A similar approach transfers the MED field to the FEMuS code structures

2.2. OpenFOAM and FEMuS Integration 75

through the set field to femus() routine. This routine has been developed
to write MED fields into PETSc data structures to update the FEMuS solver
fields. In this process, it may be necessary to calculate a quadratic field from
the cell-centered field provided by the MED framework. An interpolation
routine for transforming a P0 field into a P2 field has been included as in [89].
More details about these class methods are provided in Appendix A.1.

2.2.3 OpenFOAM Interface Class

OpenFOAM is a well-known, open-source, object-oriented C++ library de-
veloped primarily for CFD simulations, maintained separately by ESI (Engi-
neering System International) Group and the OpenFOAM Foundation [65].
Its versatility, scalability, and extensive set of solvers and libraries make it
one of the most widely used codes in industry and academia. OpenFOAM
provides a comprehensive modeling platform for complex fluid dynamics sce-
narios, such as multiphase flow, aerodynamics, turbulence, and heat transfer
phenomena.

In this thesis, the interface class has been created for version 11 of the
OpenFOAM Foundation distribution. Unlike other versions and distribu-
tions, it introduces a significant change to its CFD toolbox by implementing
modular solvers. Solvers are now written as modules, e.g., incompressible-
Fluid, incompressibleVoF, and solid module, and they are compiled as a sepa-
rate library. These modules, written as classes, offer more flexibility than the
traditional application-based solvers that have been part of OpenFOAM since
1993. This version also introduces a generalized application called foamRun,
that loads and runs the modular solvers, providing a standardized way to call
the solver routines. This approach does not require switching applications
for each specific case. The OpenFOAM Foundation version v11 introduces a
foamMultiRun application for more complex simulations. It enables the use
of different equations in separate mesh regions, making it particularly useful
for coupled problems.

In this thesis, a C++ wrapper for the OpenFOAM simulation environ-
ment has been developed to provide a structured and object-oriented interface
to the foamRun and foamMultiRun solvers. The architecture of this wrapper
is based on inheritance, consisting of a base class and two derived (child)
classes. The two child classes extend the base class for the single and multi-
region OpenFOAM solvers.

76 Chapter 2. Code Coupling Method

foamMED Class Structure

The base foamMED class has been developed as the interface between the
OpenFOAM framework and the MED library:

1 class foamMED {
2 private:
3 int probl_dimension = 3;
4 vector<interfaces_foam> interface;
5 Foam::fvMesh * mesh;
6 string problem_path;
7 public:
8 foamMED() = default;
9 explicit foamMED(string_view path) : problem_path(path){}

10 ˜foamMED() = default;
11

12 //beginFunctions
13 ...
14 //endFunctions
15 };

The core data exchange happens through the interfaces foam structure,
which stores information such as field values, node coordinates, connectivity
details, and mappings between MED and OpenFOAM node indices. As in
femusMED class, the following structure allows the interface class to translate
OpenFOAM’s internal data into a format compatible with the MED library:

1 struct interfaces_foam{
2 vector<vector<int>> _indices;
3 vector<double> _field_val;
4 map<int,int> _map_med2of;
5 map<int,int> _map_of2med;
6 vector<mcIdType> _conn;
7 vector<double> _coords;
8 int _n_nodes;
9 string _mesh_name;

10 };

The main features of this class are similar to the main features of the FEMuS
interface. OpenFOAM interface class uses init interface() routine to set

2.2. OpenFOAM and FEMuS Integration 77

up the domain interface information such as node connectivity and coordi-
nates. The set mesh connectivity() and set mesh coordinates() func-
tions are used to retrieve mesh information from mesh object. The get and
set routines, get field from of() and set field to of(), are employed to
manage OpenFOAM fields converting built-in OpenFOAM data structures
to MED format fields and vice versa.

The derived classes exploit the two generalized application foamRun and
foamMultiRun to execute the OpenFOAM problem. The foamSingleProblem
class refers to the single-region application foamRun, while the class named
foamMultiProblem refers to the multi-region solver. The classes are as:

1 class foamSingleProblem : public foamMED
2 {
3 private:
4 std::unique_ptr<Foam::Time> _runTime;
5 std::unique_ptr<Foam::solver> _solver;
6 std::unique_ptr<Foam::pimpleSingleRegionControl> _pimple;
7 Foam::word solverName;
8

9 public:
10 foamSingleProblem(std::string path) : foamMED(path) {};
11 ˜foamSingleProblem() = default;
12

13 //beginFunctions
14 void init(int argc, char * argv[]);
15 void init_mesh();
16 void init_solver();
17 void init_pimple_control();
18 bool run();
19 void pre_solve();
20 void solve();
21 void post_solve();
22 void write();
23 void setup_dt();
24 void adjust_dt();
25 //...
26 //endFunctions
27 };

78 Chapter 2. Code Coupling Method

1 class foamMultiProblem : public foamMED{
2 private:
3 std::unique_ptr<Foam::Time> _runTime;
4 std::unique_ptr<Foam::regionSolvers> _solver;
5 std::unique_ptr<Foam::pimpleMultiRegionControl> _pimple;
6

7 public:
8 foamMultiProblem(std::string path) : foamMED(path) {};
9 ˜foamMultiProblem() = default;

10

11 //beginFunctions
12 void init(int argc, char * argv[]);
13 void set_mesh(Foam::word region_name);
14 bool run();
15 void pre_solve();
16 void solve();
17 void post_solve();
18 void write();
19 void setup_dt();
20 void adjust_dt();
21 //...
22 //endFunctions
23 };

More details about the routines are provided in Appendix A.1.

2.3 Coupling Algorithm
As outlined in previous sections, numerical models based on single solvers are
conventionally developed to address a single physical problem. In such solu-
tions, interactions with other phenomena usually rely on strong hypotheses.
In this context, the partitioned approach overcomes the lack of integration
between physical phenomena to allow a more realistic representation of com-
plex systems. This strategy systematically integrates different solvers based
on exchanging data through iterative coupling algorithms. A generic sce-
nario involving two independent codes, each designed to simulate a specific
phenomenon, is schematically illustrated in Figure 2.8. In this setup, the
solvers, referred to as Solver 1 and Solver 2, receive inputs named x1,i and

2.3. Coupling Algorithm 79

Solver 1Input Data

x1 = (x1,1, x1,2, x1,3, . . . , x1,N)

Output Data

y1 = (y1,1, y1,2, y1,3, . . . , y1,M)

Solver 2Input Data

x2 = (x2,1, x2,2, x2,3, . . . , x2,N)

Output Data

y2 = (y2,1, y2,2, y2,3, . . . , y2,M)

Figure 2.8: Schematic representation of weak (solid lines) and strong (solid
and dashed lines) coupling between Solver 1 and Solver 2.

x2,i, respectively, where i = 1, ..., N with N being the total input variables,
and return y1,j and y2,j outputs, where j = 1, ...,M with M being the total
output variables. The interactions between the two solvers can take on two
distinct forms. The simplest form of coupling is called weak coupling, semi-
coupling, partial coupling, or loose coupling. Here, Solver 1, referred to as the
feeder, produces output data that serves as input for Solver 2, known as the
consumer [90]. This coupling approach is illustrated in Figure 2.8 using solid
lines connecting the feeder subsystem’s output to the consumer subsystem’s
input. During the execution of a single time step, the output of Solver 1 di-
rectly passes to Solver 2 input. It is worth noting that, in loose coupling, the
consumer output has no impact on the feeder solver input data, reflecting a
unidirectional flow of information. Due to its inherent nature, this approach
may necessitate subcycling or midpoint correction at synchronization time
steps. Although weak coupling is relatively simple to implement, its use is
limited since the consumer solver output directly influences the feeder solver
input. In contrast to semi-coupling, a second approach is known as strong
coupling (called “full coupling” or “tight coupling”). Strong coupling also
includes a feedback loop where the output of Solver 2 is connected to the
input of Solver 1, represented in Figure 2.8 by a dashed line. In this way,
both solvers are interdependent because each consumer solver relies on the
output of the previous one. For this reason, the two solvers must be executed
sequentially, and neither solver can be run simultaneously.

In the coupling problem context, input variables are classified into depen-
dent and independent categories. The former are influenced by the output

80 Chapter 2. Code Coupling Method

of a feeder solver and are considered interface-matching unknowns. The pri-
mary challenge in addressing strong coupling problems lies in determining the
values of the dependent variables through a coupling algorithm. The coupling
framework developed in this work can handle both the weak and strong cou-
pling types. We focus on describing the two main methods for solving strong
coupling problems, as tight coupling represents the most interesting applica-
tion and is likely the most valuable for realistic simulations.

Given a first subsystem with input parameters x1, its evolution over time
is described by the following differential equation

ẋ1 = f1(x1,x2), (2.2)

where x1 and x2 are elements of function spaces, H1 and H2, respectively,
and f1 is a differential operator. As a result, equation (2.2) describes sub-
systems governed by partial differential equations. In this first subsystem,
the input variables x2 are not explicitly defined and represent the dependent
parameters for the coupling interface with the second subsystem, which is
similarly described by the following partial differential equation

ẋ2 = f2(x2,x1). (2.3)

The system of equations (2.2) and (2.3), which is the differential evolution
system for (x1,x2) ∈ H1×H2, can be referred to as pure differential coupling.
Consider applying a time discretization method to both equations (2.2) and
(2.3), assuming, for simplicity, that the time step is the same and equal to ∆t.
When they do not share the same time step, one must employ sub-cycling
since the temporal interval between synchronization points, ∆t, consists of
multiple smaller steps. Let x(n)

j , (j = 1, 2) represents the discrete approxi-
mation of the solutions to (2.2) and (2.3) at time step n. The integration
algorithms, as illustrated in Figure 2.8, can be expressed as follows

x(n)
1 = φ1(x(n)

1 ,x(n−1)
1 ,y2), (2.4)

x(n)
2 = φ2(x(n)

2 ,x(n−1)
2 ,y1). (2.5)

Here, the time dependence is omitted for simplicity of notation. The unknown
time-dependent functions, yj(t), (j = 1, 2), represent the dependent variables
provided by the other solver over the time interval ∆t = tn− tn−1. To set the
dependent input variables yj(t), (j = 1, 2), several numerical methods relying
on iterative procedures for exchanging inputs and outputs have been devel-
oped over the years. For example, the Block Jacobi (BJ) coupling process

2.3. Coupling Algorithm 81

Iteration

(n− 1)

Iteration

(n)

Iteration

(n+ 1)

Block Jacobi

Block Gauss-Seidel

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

Figure 2.9: Coupling algorithm strategies for the strongly coupled problem.

is the most conceptually simple iterative approach to achieve strong cou-
pling between two or more subsystems [91]. Given the function Ψj(x(n−1)

j),
(j = 1, 2), which depends on the previous values of the approximate solu-
tion, the BJ approach assumes that the value at tn−1 remains constant at
each iteration interval. In particular, yj = Ψj(x(n−1)

j) ≡ x(n−1)
j , (j = 1, 2).

This approximation results in the following system of equations for the two
subsystems

x(n)
1 = φ1(x(n)

1 ,x(n−1)
1 ,Ψ2(x(n−1)

2)) = φ1(x(n)
1 ,x(n−1)

1 ,x(n−1)
2), (2.6)

x(n)
2 = φ2(x(n)

2 ,x(n−1)
2 ,Ψ1(x(n−1)

1)) = φ2(x(n)
2 ,x(n−1)

2 ,x(n−1)
1). (2.7)

At time step n, the BJ method uses the solution from the previous time step
of the other subsystem as input-dependent parameters. This approach is
illustrated in Figure 2.9 (top), where the dashed lines represent the solution
process of each specific solver advancing from step (n − 1), providing the
previous solutions x(n−1)

j , (j = 1, 2) for time step n. Meanwhile, the solid
lines represent the coupled dependent parameters computed at the time step
n− 1 provided by the other solver, x(n−1)

j , (j = 2, 1). Both codes solve their
problem at the time step n using old solutions. The system solvers have an
associated critical time step ∆tcj, (j = 1, 2). By coupling the systems, the
critical time step for the global system is min ∆tcj.

82 Chapter 2. Code Coupling Method

Starting from (2.6) and (2.7) equations, the Gauss-Seidel iterative ap-
proach can be formulated

x(n)
1 = φ1(x(n)

1 ,x(n−1)
1 ,Ψ2(x(n−1)

2)) = φ1(x(n)
1 ,x(n−1)

1 ,x(n−1)
2), (2.8)

x(n)
2 = φ2(x(n)

1 ,x(n−1)
2 ,Ψ1(x(n−1)

1)) = φ2(x(n)
1 ,x(n−1)

2 ,x(n)
1) , (2.9)

where the new value x(n)
1 = Ψ1(x(n−1)

1) := φ1(x(n−1)
1 ,x(n−1)

2) is used in the
same iteration to compute solution of Solver 2. This partly implicit approach
converges better than Block Jacobi’s method because it uses information
about the dependent parameters as soon as they become available. The Block
Gauss-Seidel strategy for strong coupling is shown in Figure 2.9 (bottom).
In the first step of the algorithm, all independent parameters and an initial
estimate value for all dependent parameters are entered into the two solvers.
For given dependent and independent input parameters, Solver 1 delivers an
output that becomes a new input for Solver 2. The procedure is repeated
until the difference between two subsequent iterations satisfies the proposed
convergence criteria.

2.3.1 Algorithm Routines
This section explains the coupling approach implemented between FEMuS
and OpenFOAM, referred to as Code 1 and Code 2. This implementation
can easily be generalized to additional software with simple modifications,
mainly by translating the internal data structures into the MED format. Fig-
ure 2.3 offers a concise overview of the main functionalities of the coupling
environment. The Algorithm 1, instead, provides a detailed explanation of
the coupling process used in this thesis and offers a more comprehensive de-
scription of the coupling process, illustrating how the routines outlined in
previous sections are implemented using the Block Gauss-Seidel algorithm.
This framework can be exploited in various coupling simulations between
volume or boundary fields. For simulations requiring volume field transfer,
the application allows the exchange of numerical data representing physi-
cal quantities distributed in the whole computational domain. Simulations
involving boundary data transfer focus on the interaction between different
physical domains or interfaces within the computational domain. By transfer-
ring boundary conditions, forces, or constraints between Code 1 and Code 2,
it is possible to simulate complex fluid-structure interactions, conjugate heat
transfer processes, and multi-phase flow phenomena.

2.3. Coupling Algorithm 83

Algorithm 1 Code setup for a coupling algorithm.
1: procedure Supervisor control
2: Instantiate code class objects code1 obj and code2 obj
3: Instantiate MED class object MED obj
4: Initialize interfaces
5: if not moving mesh then
6: Create projection matrix P
7: end if

Time loop

8: while code1 obj.run() or code2 obj.run() do
9: Solve Code 1 system of equations

10: Retrieve src fieldC1 from Code 1
11: if Code 1 == FEMuS then
12: Compute P0 src fieldC1 from P2 FEMuS field
13: end if
14: if moving mesh then
15: Update projection matrix P
16: end if
17: Compute trg fieldC2 from interpolation over target mesh
18: if Code 2 == FEMuS then
19: Compute P2 FEMuS field from P0 trg fieldC2
20: end if
21: Set trg fieldC2 into Code 2
22: Solve Code 2 system of equations
23: Retrieve src fieldC2 from Code 2
24: if Code 2 == FEMuS then
25: Compute P0 src fieldC2 from P2 FEMuS field
26: end if
27: if moving mesh then
28: Update projection matrix P
29: end if
30: Compute trg fieldC1 from interpolation over target mesh
31: if Code 2 == FEMuS then
32: Compute P2 FEMuS field from P0 trg fieldC1
33: end if
34: Set trg fieldC1 into Code 1
35: end while
36: end procedure

84 Chapter 2. Code Coupling Method

At the supervisor level, the main function manages the instantiation and
setup of both Code 1 and Code 2 classes (Code1 obj and Code2 obj), en-
suring they are correctly configured and ready for interaction. The initial-
ization process, described in Algorithm 2, includes the creation of interface
objects for both codes. Thus, the init interface() routine is called to

Algorithm 2 Interfaces initialization.
1: function init interface(code1 obj, code2 obj)
2: Set interface parameters, i.e. mesh name, n nodes
3: Set connectivity of the interface conn
4: Set coordinates of the interface coords
5: if Code 1 == FEMuS or Code 2 == FEMuS then
6: Convert to linear connectivity
7: end if
8: end function
9: function create mesh(code1 obj.interface,code2 obj.interface)

10: Set conn, coords and parameters into the MED mesh structure
11: Create MED mesh copies from Code 1 and Code 2 meshes
12: end function
13: function init med field on cells()
14: Create MED field src fieldC1 and trg fieldC1 for Code 1
15: Create MED field src fieldC2 and trg fieldC2 for Code 2
16: end function

initialize interfaces of the femusMED and foamMED classes using information
on mesh connectivity and coordinate nodes. This information is retrieved
with set mesh connectivity() and set mesh coordinates() routines. It
is worth noting that the FEMuS code mesh is composed of biquadratic el-
ements. However, the FEM interface to the MED coupling must use a lin-
ear mesh due to the compatibility requirements with OpenFOAM, which
uses linear meshes, and the broader range of functionalities available in the
MED library for handling linear meshes. Therefore, we extract data from the
original FEMuS interface biquadratic elements and project them into linear
elements using the femusMED routine convert to linear mesh().

The supervisor also manages the instantiation of the coupling object,
which is responsible for numerically coupling the two codes. The MED obj
initialization involves creating structures to store mesh data from the two in-
terfaces, setting up storage for the MED fields, and defining other parameters

2.3. Coupling Algorithm 85

that characterize the physical problem, such as problem dimension. As shown
in Algorithm 2, in the initial steps of the coupling process, both Code 1 and
Code 2 are required to generate a mesh copy in MED format corresponding
to the computational domain (or a portion of it). The information retrieved
to create the interfaces is passed to the MED framework to recreate the MED
format mesh with create mesh() method.

Following the creation of meshes, the MED field structures must be ini-
tialized within the MED framework. In strongly coupled problems, the input
parameters of Code 2 depend on the output of Code 2 and vice versa. Con-
figurations of this type require the creation of at least four fields: the out-
put field of Code 2 (src fieldC1) that influences the input field of Code 2
(trg fieldC2), and the output field of Code 2 (src fieldC2) that influ-
ences the input field of Code 2 (trg fieldC1). For the FEMuS-OpenFOAM
coupling, we choose a piecewise field representation. The FEMuS interface
converts its native biquadratic fields into P0 fields, aligning the representation
of the data exchanged between the two codes. As a result, the data structures
for both codes are created as P0 fields using the init med field on cells()
routine.

Once interface data are available, the projection operator P is computed
for each of the interfaces involved in the simulation by the get remapper()
function. This procedure can be executed once before the time loop starts,
provided the mesh does not change over time. However, the algorithm also
allows the projection matrix to be recomputed at every time step if the sim-
ulation involves a moving mesh.

Both codes have completed their initialization at the supervisor level
through their respective dedicated methods. The supervisor function can
initiate the time loop for the coupled simulation since the data transfer in-
terfaces have been fully configured, including their corresponding MED mesh
copies and MED fields. The supervisor manages the time step synchroniza-
tion between Code 1 and Code 2. At each time step, the supervisor coor-
dinates the field data exchange and monitors convergence criteria to ensure
accuracy and stability. The time loop begins with the solver function run
within Code 1, which is responsible for solving the system of governing equa-
tions of the specific physics being modeled. Once the Code 1 has completed
its computations and obtained a solution, the field named src fieldC1 is
transferred to the corresponding MED fields. The transfer process involves
a sequence of functions. Firstly, the interface class of Code 1 uses the

86 Chapter 2. Code Coupling Method

method get field from Code1() to retrieve the solution of the field from
Code 1. Next, within the MEDclass class, the set field() routine is set to
the src fieldC1 into the corresponding MED field structure.

At this stage, the projection function interpolate field() is called
when a source field from Code 1 needs to be interpolated from its source
mesh onto a target grid compatible with Code 2. The field interpolation
uses the projection matrix calculated in the previous step only if the mesh
is not moving. Otherwise, the P matrix must be computed at each time
step using get remapper() routine before calling the interpolate field()
method. In the FEMuS-OpenFOAM coupling application, a P0 to P0 inter-
polation scheme requires that both fields of FEMuS and OpenFOAM codes
are represented as cell-wise fields. When Code 2 is FEMuS, it becomes nec-
essary to convert its solution into a cell-wise field. After the FEMuS solver
is executed, the algorithm interpolates P2 nodal solutions into P0 cell-wise
solutions. The resulting trg fieldC2, obtained from the interpolation pro-
cess, is now available in memory as a MED object. Through an inverse
process, this field can be stored as the solution for Code 2 using the inter-
face function set field to Code2(). In cases where Code 2 is FEMuS, an
additional interpolation algorithm from P0 to P2 is applied before invoking
the set field to Code2() function.

With the solution provided by Code 1, Code 2 can proceed to solve its
specific physics. Once the solution of the system of equations in Code 2 is
obtained, it provides the field to be exchanged back to Code 1 using a mech-
anism analogous to the previous one. This procedure is necessary for the
Block Gauss-Seidel algorithm, which requires that the most recent solution
be written into Code 2 as soon as it becomes available. The interface method
get field from Code2() is called to extract solutions from Code 2. Then,
set field() is employed to set the solution of the Code 2 into the corre-
sponding MED field. The interpolation function is used to interpolate the
MED field from Code 2, src fieldC2, to the target MED field associated
with Code 1, trg fieldC1. Finally, this interpolated field is written into
Code 1 using the set field to Code1() routine. Once Code 1 receives the
solution from Code 2, the data exchange between the two codes is completed.
With both codes now equipped with the necessary fields, the time loop can
proceed to the next time iteration at the supervisor level.

The implemented algorithm includes the option to apply a sub-iteration
process to enhance the strength of the coupling. This possibility allows for the

2.4. Validation 87

specification of a maximum number of sub-iterations along with the definition
of suitable convergence criteria before proceeding to the computation of the
next time step. This iterative process is repeated at each time step until the
end of the simulation.

2.4 Validation
This section presents two numerical examples to validate the implemented
algorithm, focusing on volume and boundary field transfer. The first example
involves a buoyancy-driven cavity and is used to test the volume data transfer
algorithm. The two subsystems, FEMuS and OpenFOAM, solve the velocity
and temperature fields independently, while the coupling application ensures
the exchange of these fields across the entire domain. The boundary coupling
is evaluated by solving a conjugate heat transfer problem, where temperature
and heat flux are exchanged at the interface of solid and fluid domains.

This section describes the two problems, defining the governing equations,
the boundary conditions, and the solution process of the coupling algorithm.
The numerical results are compared to reference data for the same application
setting.

2.4.1 Differentially Heated Cavity (DHC)

Natural convection, also referred to as buoyancy-driven convection, is a com-
mon phenomenon driven by temperature differences with significant practi-
cal engineering applications. A key area of study is the natural convection
phenomenon occurring within the Differentially Heated Cavities (DHC) con-
figuration. In DHC, fluid is heated along one boundary and cooled along
another, creating a temperature difference between vertical walls that drives
flow through buoyancy forces.

This phenomenon plays an important role in several industrial processes.
For instance, it occurs in double-glazed windows, where two or more glass
window panes are separated by a space filled with inert gas or air. This system
is designed to enhance energy efficiency by minimizing heat transfer across
windows [92, 93]. Another application of natural convection in enclosures
can be found in solar collectors [94, 95, 96]. In these systems, uneven heating
of a fluid occurs as the absorber plate is warmed by solar radiation, creating
a temperature gradient between the absorber and the surrounding air or

88 Chapter 2. Code Coupling Method

glass cover. Studying the physical phenomenon of the air gap between the
absorber plate and the glass cover allows us to minimize heat losses and
enhance energy absorption. A similar application is found in gas-filled cavities
where buoyancy-driven convection is used for cooling nuclear reactor cores
[97]. These cavities can be used as cooling mechanisms in advanced reactor
designs, including gas-cooled fast reactors (GFRs) and high-temperature gas-
cooled reactors (HTGRs).

In addition to its numerous applications in engineering processes, the
Differential Heated Cavity configurations are benchmark cases for develop-
ing and validating numerical algorithms and computational codes for thermal
problems. The thermal cavity problem has been widely studied, particularly
for a Prandtl number of Pr = 0.71, and several reference works are avail-
able in the literature. De Vahl Davis et al. [98], in the first years of the
1980s, solved this problem to address the stream-function-vorticity form of
the governing equations. Their work provides a comprehensive set of flow
data results for several DHC configurations. Massarotti et al. [99] addressed
the same problem using a semi-implicit version of the characteristic-based
split scheme (CBS) with equal-order interpolation functions for all variables.
In [100], Manzari’s research group analyzed the air-filled cavity employing
an artificial compressibility (AC) method to couple the pressure and velocity
fields. Additionally, they used an artificial dissipation (AD) method to en-
hance the stability of the numerical solution. More recently, in [101], Manzari
et al. extended the scheme used in their earlier work to address incompress-
ible flow problems with heat transfer, using the DHC problem as a valida-
tion benchmark. Mayne et al. [102] employed an h-adaptive finite-element
method to ensure a very accurate solution for thermal cavity problems. In
[103], Wan et al. used two methods to solve the Navier-Stokes and energy
equations in the DHC configuration. The first is a highly accurate quasi-
wavelength-based discrete singular convolution (DSC) method. The second
one is a standard Galerkin finite-element method. In their work, they con-
ducted a detailed analysis of the numerical simulation, providing extensive
benchmark data for laminar natural convection problems.

A Differentially Heated Cavity typically consists of a rectangular or square
enclosure where opposite vertical walls are maintained at different tempera-
tures, while the horizontal ones are adiabatic. Inside this enclosure, fluid flow
arises along the hot wall and descends along the cold wall. The temperature
difference between the two vertical walls generates buoyancy forces within

2.4. Validation 89

y∗

x∗

T = TCT = TH

∇T · n̂ = 0

∇T · n̂ = 0

g l

Figure 2.10: Geometry of the buoyant cavity problem with boundary condi-
tions for the temperature field.

the fluid, driving its motion, which would otherwise remain steady.
Figure 2.10 represents the bidimensional square cavity used as the nu-

merical domain for validating the present coupling application. As seen in
Figure 2.10, the aspect ratio of the enclosure, defined by the height-to-width
ratio of the cavity, is unitary. Variations in aspect ratio can result in dif-
ferent levels of complexity in flow structures and thermal performance. In
this study, we consider an incompressible Newtonian fluid. In particular,
named the velocity u, the pressure p, and the temperature T , the governing
equations for the natural laminar convection are as follows

∂ui
∂xi

= 0,

Dui
Dt

= −1
ρ

∂p

∂xi
+ ∂

∂xj
(νSij) + giβ(T − T0),

DT

Dt
= ∂

∂xi

(
α
∂T

∂xi

)
,

(2.10)

where ν is the kinematic viscosity, ρ the density, β the coefficient of thermal
expansion, α the thermal diffusivity, T0 the reference temperature, set to the
mean value between TH and TC . Since the coupling term is explicitly repre-
sented by the buoyancy force, natural convection phenomena are a well-suited
problem for validating the coupling algorithm. Regarding the boundary con-
dition, no-slip boundary conditions are imposed for the velocity field at each
boundary edge. For the energy equation, Dirichlet and Neumann boundary

90 Chapter 2. Code Coupling Method

conditions are used. In particular, uniform and homogeneous temperatures
are applied to the two opposite vertical edges, with the two Dirichlet bound-
ary conditions creating a hot and cold wall. An insulation condition has been
imposed on the remaining edges, according to Figure 2.10. Furthermore, the
volumetric thermal source Q is set to zero for every numerical simulation.

This configuration provides a framework for analyzing the effects of dif-
ferent parameters on fluid flow and heat transfer efficiency. In particular,
three main parameters govern the behavior of the solution in this setup.
The Rayleigh number (Ra) is a dimensionless parameter that quantifies the
strength of the thermal buoyancy against the viscous and thermal diffusion
in a fluid. Higher Ra values typically lead to more intense convection within
the system. Alongside the Rayleigh number, the Prandtl number represents
the ratio of momentum diffusivity (viscosity) to thermal diffusivity. The
variations in Pr can significantly influence flow stability and heat transfer
behavior. For example, as Pr increases, flow stability tends to increase,
while the heat transfer efficiency generally decreases at a constant Ra. The
third parameter is the Grashof number (Gr), defined as a combination of the
other two parameters. This dimensionless quantity represents the balance
between buoyancy and viscous forces and controls natural convection within
the system. The definitions of the aforementioned parameters are as follows

Ra = gρβL3(TH − TC)
να

, (2.11)

Pr = ν

α
, (2.12)

Gr = gρβL3(TH − TC)
ν2 = Ra

Pr
, (2.13)

where L is the reference length of the domain.

Volume data transfer algorithm

This section details the solution method for the specific case of a volume
data transfer algorithm in the coupling application. Two different approaches
are employed to solve the Differentially Heated Cavity problem described in
2.4.1. The first coupling case, referred to as c1, includes that the FEM code,
FEMuS, solves for the temperature field, and the FVM code, OpenFOAM,
solves for the velocity field. In the second coupling case, referred to as c2, the
reverse coupling is applied: FEMuS solves the Navier-Stokes equations, while
OpenFOAM handles the energy equation. In both procedures, the coupling

2.4. Validation 91

between the codes occurs through two equations: the buoyancy term, which
requires the temperature field in the momentum equation, and the advection
term in the energy equation, which is computed via the velocity field coming
from the momentum equation. This configuration is a necessary condition
for the cases c1 and c2 to satisfy the problem described in (2.10). The field
transfer between the codes is performed considering the volumetric value of
the specific field. For each cell of the target mesh, the field is interpolated
from the source mesh by using the MED structures described in the previous
sections. The entire volumetric field is transferred between the two codes,
adopting the same discretization for the domain, even if the FEM codes
consider biquadratic quadrilateral elements, as the FVM code uses linear
quadrilateral elements.

Algorithm 3 Volume data transfer algorithm.
1: procedure Supervisor control
2: Instantiate class objects
3: Initialize volume interfaces
4: Create MED meshes and fields
5: Create projection matrix remapper

Time loop

6: while OpenFOAM obj.run() do
7: Solve T with FEMuS solver
8: Retrieve source P2 T from FEMuS
9: Compute source P0 T from source P2 T

10: Compute target P0 T from interpolation over OpenFOAM mesh
11: Set target P0 T into OpenFOAM
12: Solve u with OpenFOAM solver
13: Retrieve source P0 v from OpenFOAM
14: Compute target P0 v from interpolation over FEMuS mesh
15: Compute target P2 v from target P0 v
16: Set target P2 v into FEMuS
17: end while
18: end procedure

Following Algorithm 3, the procedure employed for the coupling appli-
cation involving volume data transfer is described. Firstly, both coupling
cases c1 and c2 use init interface() and create mesh() routines to create

92 Chapter 2. Code Coupling Method

a MED mesh object representing the entire domain. Through the FEMuS
interface class, the quadratic mesh is converted into MED format, and the
structure of the interface domain is created. In this specific application, the
FEMuS code employs a 2D computational grid with QUAD 9 Lagrangian
elements. This mesh is then translated into a MED-format mesh object,
and a corresponding linear mesh is generated to facilitate the field interpo-
lation process. Regarding the OpenFOAM framework, a 3D domain is used
to represent the two-dimensional cavity, as OpenFOAM can only handle 3D
meshes, even for 2D problems. The OpenFOAM class is used to clone the
OpenFOAM mesh and the resulting MED mesh consists of hexahedral linear
elements (HEX 8).

The initialization of MED fields over the MED meshes involves calling the
routine init med field on cells(). Both c1 and c2 cases create a cell-wise
temperature field and a cell-wise velocity field over the whole domain for
FEMuS and OpenFOAM MED interfaces. We can refer to these MED fields
as source P0 T and target P0 T for the temperature field, and source P0 v
and target P0 v for the velocity field.

This application does not involve mesh movement, so the projection ma-
trix remapper remains constant over time and can be computed before the
time loop starts.

The employed coupling method c1 is described in the following, while the
c2 case can be extrapolated since it is entirely similar to the first one. As the
time loop starts, FEMuS solves the temperature equation described in (2.10).
The temperature solution over the entire domain is extracted from FEMuS
code using the function get field from femus(). It is worth noting that
the FEMuS code solves for a biquadratic (P2) temperature field, requiring
an interpolation from P2 to P0 to enable the P0 − P0 interpolation managed
by the MED routines. This P2 to P0 interpolation is handled internally by
the FEMuS interface class. The resulting P0 temperature field is assigned to
the MED field named source P0 T through the routine set field(). For
the case c1, this source field is defined over the cloned MED mesh of FEMuS
representing the internal volume of the computational domain.

At this point, the interpolate field() routine performs the P0 − P0

interpolation to transfer the source P0 T to the OpenFOAM interface. This
operation computes the target MED field, target P0 T, over the MED tar-
get mesh using the interpolation matrix calculated by the MED routines.
The function set field to OpenFOAM() set the interpolated field into the

2.4. Validation 93

OpenFOAM temperature field, used to compute the buoyancy term as in
(2.10). Once OpenFOAM has solved the Navier-Stokes equation, the veloc-
ity field is extracted using get field from OpenFOAM() routine and set to the
source P0 v field. The interpolation function computes the target P0 v to
be transferred to the FEMuS velocity field with set field to femus() rou-
tine. To compute the advection contribution in the FEMuS energy equation,
this volumetric field must be first interpolated using the P0 to P2 interpola-
tion scheme. The P0−P2 interpolation is performed by computing a weighted
distribution over the quadratic nodes of the piece-wise field. FEMuS use this
updated velocity field to solve the temperature equation in the following time
iteration.

Simulations Results

In this section, the coupling application results obtained for the DHC prob-
lem are presented and compared with the literature data referenced in Section
2.4.1. Additionally, two simulations have been performed by solving the sys-
tem of equations (2.10) considering a monolithic solution with the FEMuS
code and OpenFOAM. These two solutions are labeled by F and OF , re-
spectively. The results from the monolithic approaches are compared to the
coupling application results and used as references as the literature bench-
mark.

The problem is described in the previous sections, referring to Figure 2.10
and additional information about OpenFOAM configuration parameters is
provided in Appendix B. The simulations performed are obtained by vary-
ing the governing parameters of the problem, the Prandtl number and the
Rayleigh number. In particular, two different Prandtl numbers are consid-
ered, corresponding to an air-filled cavity (Pr = 0.71) and a water-filled
cavity (Pr = 7). Regarding the Rayleigh number, four cases are simulated,
ranging from 103 to 106. The numerical fields resulting from the computation
have been non-dimensionalized with the following expressions

x∗ = x

L
, u∗ = uL

α
, Θ = T − TC

∆T , Ψ = ψ

α
(2.14)

where TC represents the Dirichlet boundary condition for the temperature
on the cold wall, and Ψ represents the non-dimensional stream function.
Naturally, by considering variables such as the non-dimensional temperature
Θ, the non-homogeneous Dirichlet boundary conditions change their specific

94 Chapter 2. Code Coupling Method

values: on the cold wall, we now have Θ = 0, while on the hot one, we have
Θ = 1.

Air filled cavity - Pr = 0.71. In this paragraph, natural convection for
an air-filled square cavity is studied. The numerical tests for the validation of
the algorithm have been performed for different Ra numbers, ranging from
103 up to 106 and compared with reference data [98, 99, 101, 102, 103].
In Figure 2.11, the grid convergence analysis is reported for the maximum

103 104

nel

65

66

67

68

v
∗ m
a
x

F
OF
c1
c2

Figure 2.11: Grid convergence of the v∗
max value at y∗ = 0.5 for the case with

Ra = 105, for both the monolithic solutions and the coupling applications.

value of the v∗ component evaluated at y∗ = 0.5, for the case of Ra = 105.
In particular, four types of grid size have been investigated, corresponding
respectively to 400, 1600, 6400, and 25600 elements (nel) for each of the four
simulation setups. The four simulations show the same convergence behavior,
with the optimal refinement determined to be an 80× 80 grid.

Figures 2.12-2.15 analyzes the natural convection patterns of the square-
cavity problem varying with the Ra number. The enclosure with differentially
heated vertical walls is characterized by two different flow patterns: the varia-
tion in the thickness of the boundary layer along the wall and the recirculating
motion in the core region. The boundary layer growth is predominant in sim-
ulations with higher Rayleigh numbers. In contrast, the recirculating motion
in the core region has more strength in simulations with lower Rayleigh num-
bers. The variation of the flow patterns is depicted in Figure 2.12, where

2.4. Validation 95

Ψ

0.00

0.12

0.24

0.36

0.47

0.59

0.71

0.83

0.95

1.07

1.19
Ψ

0.00

0.51

1.02

1.53

2.04

2.55

3.07

3.58

4.09

4.60

5.11

Ψ

0.00

0.97

1.93

2.90

3.87

4.84

5.80

6.77

7.74

8.71

9.67 Ψ

0.00

1.68

3.37

5.05

6.73

8.41

10.10

11.78

13.46

15.14

16.83

Figure 2.12: Non-dimensional stream function contour, Ψ, for low Rayleigh
number on the top, Ra = 103 (left) and Ra = 104 (right), and for high
Rayleigh number on the bottom, Ra = 105 (left) and Ra = 106 (right).
Coupling algorithm c1 (solid line) and c2 (dotted line).

the contour maps of the stream function Ψ are reported. This Figure shows
that the simulations with Ra = 103 and 104 generate only a single circulating
eddy in the core region. In contrast, a higher Rayleigh number creates a more
complex flow pattern. In particular, for Ra = 105, the main eddy splits into
two smaller counter-rotating eddies, which are stretched toward the top left
and bottom right corners. As the Rayleigh number increases, the fluid flow
patterns undergo additional transformation, with the inner secondary eddies
moving closer to the hot and cold walls.

The streamlines are reported for both the coupling simulations (c1 and
c2), showing a very similar behavior in all four simulations. The streamlines
for c1 are indicated using the solid lines, while the c2 results are depicted using
dotted lines. The results reported in Figure 2.12 display a good agreement

96 Chapter 2. Code Coupling Method

|u∗|

0.00

0.41

0.82

1.24

1.65

2.06

2.47

2.88

3.29

3.71 |u∗|

0.00

2.19

4.38

6.57

8.76

10.95

13.14

15.34

17.53

19.72

|u∗|

0.00

7.63

15.26

22.89

30.52

38.15

45.77

53.40

61.03

68.66
|u∗|

0.0

24.3

48.7

73.0

97.4

121.7

146.1

170.4

194.8

219.1

Figure 2.13: Non-dimensional velocity magnitude contour, |u∗|, for low
Rayleigh number on the top, Ra = 103 (left) and Ra = 104 (right), and
for high Rayleigh number on the bottom, Ra = 105 (left) and Ra = 106

(right). Coupling algorithm c1 (solid line) and c2 (dotted line).

with the streamlines computed in [98] and [103]. Table 2.1 compares the
stream function field with the corresponding values reported in [98] and [103].
Here, Ψmax represents the maximum value of the non-dimensional stream
function, while Ψmid refers to the value of the stream function at the midpoint
of the cavity. As observed, simulations with lower Rayleigh numbers yield
identical values for both Ψmax and Ψmid. This equivalence occurs because, at
lower Rayleigh numbers, the inner eddy reaches its maximum intensity at the
midpoint of the cavity. For the other two simulations, Ψmax values are not
located at the center of the cavity but are instead shifted toward the upper
left side of the cavity. In particular, for the case with Ra = 105 the maximum

2.4. Validation 97

v∗

−3.70

−2.88

−2.06

−1.23

−0.41

0.41

1.23

2.06

2.88

3.70 v∗

−19.57

−15.21

−10.85

−6.48

−2.12

2.25

6.61

10.98

15.34

19.70

v∗

−68.04

−52.85

−37.67

−22.48

−7.29

7.90

23.08

38.27

53.46

68.65
v∗

−217.4

−168.9

−120.4

−71.9

−23.4

25.1

73.6

122.1

170.6

219.1

Figure 2.14: Non-dimensional vertical velocity contour, v∗, for low Rayleigh
number on the top, Ra = 103 (left) and Ra = 104 (right), and for high
Rayleigh number on the bottom, Ra = 105 (left) and Ra = 106 (right).
Coupling algorithm c1 (solid line) and c2 (dotted line).

value of Ψ occurs at x∗ = 0.291 and y∗ = 0.601, for both c1 and c2 simulations.
The literature results reported in [98] locates the maximum at x∗ = 0.285 and
y∗ = 0.601. The values of Ψmax computed for the simulations with Ra = 106

are located at (x∗, y∗) = (0.146, 0.551) in c1 and (x∗, y∗) = (0.153, 0.537) in
c2, while the corresponding benchmark solution is located at x∗ = 0.151 and
y∗ = 0.547. Consequently, both simulations can predict the maximum values
of Ψ and their locations with a good agreement comparing them with the
one calculated in [98].

The velocity isocontours are reported in Figures 2.13-2.15 for all the sim-
ulations performed. Here, the isolines of the velocity magnitude (|u∗|) and
the non-dimensional velocity components (u∗, v∗) are reported for four Ra

98 Chapter 2. Code Coupling Method

u∗

−3.66

−2.84

−2.03

−1.22

−0.41

0.40

1.22

2.03

2.84

3.65 u∗

−16.15

−12.55

−8.96

−5.37

−1.77

1.82

5.41

9.00

12.60

16.19

u∗

−43.46

−33.75

−24.03

−14.32

−4.60

5.11

14.82

24.54

34.25

43.97
u∗

−126.2

−97.9

−69.6

−41.3

−13.0

15.3

43.6

71.9

100.3

128.6

Figure 2.15: Non-dimensional horizontal velocity contour, u∗, for low
Rayleigh number on the top, Ra = 103 (left) and Ra = 104 (right), and
for high Rayleigh number on the bottom, Ra = 105 (left) and Ra = 106

(right). Coupling algorithm c1 (solid line) and c2 (dotted line).

numbers (from 103 up to 106) for the two coupling algorithms (c1 and c2).
The solid line tracks the isolines of the case c1 and the dotted one is the simu-
lation of the case c2. Figure 2.15 shows the evolution of the u∗ contours as the
Rayleigh number increases. The simulations performed with Ra = 103 and
Ra = 104 generate two horizontal eddies positioned one below the other. As
the Rayleigh number increases, these two eddies shift closer to the adiabatic
walls. In a similar way, in Figure 2.14, the non-dimensional v∗−component
exhibits two dominant circulations near the left and right walls that move
closer to the hot wall and the cold wall as the Ra number increases. This
behavior produces a visible reduction of the boundary layer. Reference re-
sults of the physical field contours can be widely found in the literature for

2.4. Validation 99

Ra
Ψmax Ψmid

c1 c2 [98] c1 c2 [98] [99]
103 1.181 1.186 1.174 1.181 1.186 1.174 1.167
104 5.088 5.109 5.071 5.088 5.109 5.071 5.075
105 9.630 9.643 9.612 9.106 9.173 9.111 9.153
106 16.83 16.82 16.75 16.39 16.42 16.32 16.49

Table 2.1: Non-dimensional maximum values of the stream function, Ψmax,
and non-dimensional values of the stream function at the midpoint of the
cavity, Ψmid. Simulation results (c1 and c2) compared to literature data ([98]
and [99]).

this problem. For this reason, the interested reader can refer to [103] and
references therein. For every case of Ra number, the contour isolines agree
with the data found in the literature. In Tables 2.2 and 2.3, the maximum
value of the non-dimensional velocity components, u∗ and v∗ evaluated are
reported respectively at the planes x∗ = 0.5 and v∗ = 0.5 with different Ra
numbers and compare them with the same data taken from the literature. A

Ra F OF c1 c2 [98] [101] [102] [103]
103 3.658 3.646 3.660 3.662 3.63 3.68 3.65 3.49
104 16.178 16.224 16.218 16.208 16.18 16.10 16.18 16.12
105 34.791 34.961 34.670 34.497 34.81 34.00 34.77 33.39
106 64.808 65.180 64.625 64.450 65.33 65.40 64.69 65.40

Table 2.2: Maximum values of u∗-component at x∗ = 0.5, for different Ra
numbers and comparison with literature data.

good agreement can be seen for the maximum value of the non-dimensional
velocity components.

The evolution of the pattern in the non-dimensional temperature field
(Θ) is shown in Figure 2.16. Here, the isotherms of the non-dimensional
temperature are presented for both c1 (solid line) and c2 (dotted line). The
vertical temperature distribution at lower Ra evolves into a horizontal tem-
perature distribution in the core of the cavity at higher Ra. In the immediate
neighborhood of the hot and cold walls, the contours remain parallel to them.

100 Chapter 2. Code Coupling Method

Ra F OF c1 c2 [98] [101] [99] [102] [103]
103 3.71 3.70 3.70 3.71 3.68 3.73 3.69 3.70 3.69
104 19.63 19.64 19.69 19.71 19.51 19.90 19.63 19.62 19.76
105 68.66 68.70 68.79 68.31 68.22 70.00 68.85 68.69 70.63
106 220.4 219.9 221.4 221.0 216.8 228.0 221.6 220.8 227.1

Table 2.3: Maximum value of v∗-component at y∗ = 0.5, for different Ra
numbers and comparison with literature data.

Θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2.16: Non-dimensional temperature contour, Θ, for low Rayleigh num-
ber on the top, Ra = 103 (left) and Ra = 104 (right), and for high Rayleigh
number on the bottom, Ra = 105 (left) and Ra = 106 (right). Coupling
algorithm c1 (solid line) and c2 (dotted line).

In Figures 2.17-2.18, the non-dimensional velocity components and the
non-dimensional temperature plots are reported for every type of the four

2.4. Validation 101

0.00 0.05 0.10 0.15 0.20

x∗

0.80

0.85

0.90

0.95

1.00

Θ

Wan et al.
F
OF
c1
c2

0.00 0.05 0.10 0.15 0.20

x∗

0.6

0.7

0.8

0.9

1.0

Θ

Wan et al.
F
OF
c2
c1

0.0 0.2 0.4 0.6 0.8 1.0

y∗
−4

−2

0

2

4

u
∗

Wan et al.
F
OF
c1
c2

0.80 0.85

3.60

3.65

0.0 0.2 0.4 0.6 0.8 1.0

y∗

−15

−10

−5

0

5

10

15
u
∗

Wan et al.
F
OF
c1
c2

0.80 0.82 0.84

16.0

16.1

16.2

0.0 0.2 0.4 0.6 0.8 1.0

x∗
−4

−2

0

2

4

v
∗

Wan et al.
F
OF
c1
c2

0.16 0.18 0.20

3.675

3.700

3.725

0.0 0.2 0.4 0.6 0.8 1.0

x∗

−20

−10

0

10

20

v
∗

Wan et al.
F
OF
c1
c2

0.10 0.12 0.14

19.4

19.6

19.8

Figure 2.17: Non-dimensional temperature Θ (at y∗ = 0.5, top) and non-
dimensional components u∗ (at x∗ = 0.5, middle) and v∗ (at y∗ = 0.5, bottom)
for the four types of simulations (F , OF , c1 and c2) with a comparison with
literature data from [103] (circular markers). Case with Ra = 103 on the left
and Ra = 104 on the right.

102 Chapter 2. Code Coupling Method

0.00 0.25 0.50 0.75 1.00

x∗

0.0

0.2

0.4

0.6

0.8

1.0

Θ

Wan et al.
F
OF
c2
c1

0.00 0.05 0.10 0.15 0.20

x∗

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Θ

Wan et al.
F
OF
c2
c1

0.0 0.2 0.4 0.6 0.8 1.0

y∗

−30

−20

−10

0

10

20

30

u
∗

Wan et al.
F
OF
c1
c2

0.84 0.86

34.5

35.0

0.0 0.2 0.4 0.6 0.8 1.0

y∗

−60

−40

−20

0

20

40

60

u
∗

Wan et al.
F
OF
c1
c2

0.825 0.850 0.875

63

64

65

66

0.0 0.2 0.4 0.6 0.8 1.0

x∗

−50

0

50

v
∗

Wan et al.
F
OF
c1
c2

0.06 0.07

68.0

68.5

0.0 0.2 0.4 0.6 0.8 1.0

x∗

−200

−100

0

100

200

v
∗

Wan et al.
F
OF
c1
c2

0.035 0.040 0.045

217.5

220.0

222.5

Figure 2.18: Non-dimensional temperature Θ (at y∗ = 0.5, top) and non-
dimensional components u∗ (at x∗ = 0.5, middle) and v∗ (at y∗ = 0.5, bottom)
for the four types of simulations (F , OF , c1 and c2) with a comparison with
literature data from [103] (circular markers). Case with Ra = 105 on the left
and Ra = 106 on the right.

2.4. Validation 103

simulations (F , OF , c1, c2) and for every Ra number. A comparison with lit-
erature data from [103], symbolized with circular markers, is also highlighted.
Specifically, these plots refer to the variables’ behavior at specific points in
the domain: the line x∗ = 0.5 for the u∗ component and the line y∗ = 0.5 for
the v∗ component and the temperature Θ.

Regarding the latter variable, the plotted domain is restricted to x∗ ∈
[0, 0.2] (apart from Ra = 105) since the literature data can be found only
in this interval. Moreover, for the same Θ, a good agreement with reference
data published in [103] is present for every case and every type of simulation,
including both coupled algorithms. For this reason, a zoom on specific regions
of the non-dimensional temperature plot is not provided since the lines of the
four simulations are almost overlapping. The same trend can also be seen
for the v∗ component and for the u∗ component. Each of the simulations
seems to produce the same numerical solution, confirming the goodness of
the simulations and coupling procedure. A zoom of the plot is provided in
the region close to the maximum/minimum of the velocity components to
highlight better the slight differences between the four simulations and the
literature results.

One of the key quantities for designers and engineers is the quantification
of heat transfer, and in this context, the heat transfer coefficient along the hot
and cold walls plays an important role. The Nusselt number, which expresses
the ratio of convective heat transfer to conductive heat transfer at the wall,
is commonly used to quantify the heat transfer along the walls. The local
Nusselt number is defined as

Nuloc = ±∂Θ
∂x
|wall, (2.15)

where the negative sign refers to heat transfer from the wall to the fluid
(hot wall), while the positive sign indicates heat transfer from the fluid to
the wall (cold wall). In Figure 2.19, the local Nusselt number computed
along the hot wall is presented for the coupling simulations c1 and c2. These
plots are compared to the reference data from [99], [101], and [103]. It can
be observed that for low Rayleigh numbers, both coupling simulations show
good agreement with all the reference data. For Ra = 105, the results align
with the references in [101] and [103], while the solution from [99] shows
slight differences when compared to the others. These differences become
more emphasized for Ra = 106, where all three reference datasets produce
distinct behaviors. Both c1 and c2 simulations appear to closely match the

104 Chapter 2. Code Coupling Method

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Nu

0.0

0.2

0.4

0.6

0.8

1.0
y
∗

R
a

=
1
0
3

R
a

=
1
0
4

R
a

=
10 5

R
a

=
10 6

Massarotti et al.
Manzari et al.
Wan et al.
c1
c2

Figure 2.19: Comparison between reference data [99, 101, 103] and coupling
simulation results of the Nusselt number profile along the hot wall for the
four Rayleigh numbers.

solution provided by [103].
In Table 2.4, the average Nusselt values are reported for all the cases

simulated and compared to the literature references. The average Nusselt
number, which is a design parameter of interest, is obtained from the following
expression

Nu =
∫ 1

0
Nulocdy. (2.16)

Table 2.4 shows that all the simulations are in good agreeement with the
references for all the four Raileigh number.

Water filled cavity - Pr = 7 Many studies examine the relationship be-
tween Nu, Re, and Ra. However, a significant gap remains in the literature
concerning the effects of Pr on flow and heat transfer in the DHC configura-
tion. Most investigations have used air (Pr = 0.71) as the working fluid in
the cavity to construct benchmarks. Furthermore, research on the relation-
ship between Reynolds and Prandtl numbers has predominantly focused on
Rayleigh-Bénard convection (RBC) [104]. Only a few studies have addressed

2.4. Validation 105

Ra F OF c1 c2 [98] [99] [101] [102] [103]
103 1.117 1.142 1.121 1.113 1.118 1.074 1.117 1.115 1.117
104 2.241 2.300 2.255 2.245 2.243 2.084 2.243 2.259 2.254
105 4.480 4.639 4.521 4.514 4.519 4.30 4.521 4.483 4.598
106 8.824 9.066 8.842 9.008 8.800 8.743 8.806 8.881 8.632

Table 2.4: Average values of Nusselt number on the hot wall for different Ra
numbers and comparison with literature data.

whether solutions validated for Pr = 0.71 apply to significantly higher or
lower Prandtl numbers. Thus, the influence of Pr on the behavior of the
DHC configuration remains mostly an open problem. This analysis is par-
ticularly important because higher Pr values are relevant for many thermal
engineering applications. For example, water has a Prandtl number equal to
7, and oils have values reaching up to 105.

One of the few studies examining the impact of the Prandtl number is
by Kennelly et al. [105], which analyzed its influence on temperature and
velocity fields. They found that the Prandtl number significantly affects the
flow and heat transfer characteristics within the DHC configuration. For a
constant Ra, substantial differences were observed in the velocity and tem-
perature fields between low and high Pr fluids, particularly near the cavity
corners, where inertial effects are significant. In particular, at constant Ra,
increasing Pr reduces the number of eddies within the cavity since the fluid
flow becomes more stable. Moreover, as the Pr number increases, the heat
transfer performances increase, resulting in higher Nusselt numbers.

In Figure 2.20, the u∗- and v∗-components of the velocity pattern are
shown for the Pr = 7 case. These results were obtained using the c1 and
c2 simulations for the four values of Rayleigh number cases, from 103 to 106.
Solid lines represent the c1 simulation results, while the c2 simulation results
are depicted using dotted lines. As shown in Figure 2.20, the primary flow
characteristics are similar to those of an air-filled cavity. In particular, as the
Rayleigh number increases, the eddies move closer to the cavity walls: the
horizontal eddies shift, and the vertical eddies migrate closer to the vertical
walls, causing a sensible reduction of the boundary layer. However, the results
differ from those observed for Pr = 0.71, and these differences become more
pronounced with increasing Rayleigh number.

106 Chapter 2. Code Coupling Method

v∗

−3.70

−2.88

−2.05

−1.23

−0.41

0.41

1.23

2.05

2.87

3.69
u∗

−3.66

−2.84

−2.03

−1.22

−0.40

0.41

1.22

2.04

2.85

3.66

v∗

−20.05

−15.59

−11.14

−6.68

−2.23

2.23

6.68

11.14

15.59

20.05
u∗

−16.34

−12.71

−9.08

−5.45

−1.81

1.82

5.45

9.08

12.71

16.34

v∗

−74.39

−57.86

−41.32

−24.79

−8.26

8.28

24.81

41.34

57.88

74.41
u∗

−39.61

−30.80

−22.00

−13.20

−4.39

4.41

13.21

22.02

30.82

39.62

v∗

−237.1

−184.4

−131.7

−79.0

−26.3

26.4

79.1

131.8

184.5

237.2
u∗

−97.0

−75.5

−53.9

−32.3

−10.8

10.8

32.4

53.9

75.5

97.1

Figure 2.20: Contour lines of non-dimensional v∗−component on the left and
non-dimensional u∗−component on the right for the four cases of Rayleigh
numbers, from Ra = 103 (top) to Ra = 106 (bottom). Coupling algorithm c1

(solid) and c2 (dotted).

2.4. Validation 107

Ra
v∗ u∗

F OF c1 c2 F OF c1 c2

103 3.70 3.69 3.69 3.71 3.67 3.66 3.66 3.67

104 19.84 19.82 19.86 19.93 16.28 16.25 16.27 16.32

105 73.82 73.65 74.11 74.25 35.79 35.76 35.70 35.74

106 236.35 235.69 237.85 237.67 81.17 81.04 80.93 80.87

Table 2.5: Maximum values of v∗-component at y∗ = 0.5 and u∗-component
at x∗ = 0.5 for different Ra numbers in water-filled cavity.

Table 2.5 presents the corresponding maximum values for the two veloc-
ity components. These values are comparable to those observed in air-filled
cavities, but the gap between the results widens as the Rayleigh number in-
creases. For lower Rayleigh numbers, the maximum values remain similar
across all Prandtl number cases, highlighting minimal variation in flow dy-
namics under these conditions. For higher Ra the maximum values of both
u∗ and v∗ considerably differ from those of Table 2.2 and 2.3.

103 104 105 106 107 108 109 1010

Ra

10−1

100

101

102

103

104

R
e

Pr = 0.5, Kennelly et al.

Pr = 0.71, Kennelly et al.

Pr = 7, Kennelly et al.

Pr = 10, Kennelly et al.

Pr = 100, Kennelly et al.

Pr = 0.71

Pr = 7

Figure 2.21: Reynolds numbers against Rayleigh numbers (104 to 109) for
different Pr (0.5 to 100), as reported in [105]. Simulated cases are indicated
with black-filled markers: Pr = 0.71 (diamond) and Pr = 7 (circle).

108 Chapter 2. Code Coupling Method

In their study, Kennelly et al. [105] plotted the Reynolds number as a
function of varying Rayleigh and Prandtl numbers, as shown in Figure 2.21.
Their results indicate that the Reynolds number increases with decreasing
Prandtl number and increasing Rayleigh number. In Figure 2.21, the results

104 105 106

Ra

100

101

N
u

Nu
∼ Ra

1
3

Nu
∼ Ra

1
4

Pr = 0.5, Kennelly et al.

Pr = 0.71, Kennelly et al.

Pr = 1, Kennelly et al.

Pr = 10, Kennelly et al.

Pr = 7

Pr = 0.71

Figure 2.22: Nusselt number against Rayleigh number, as reported in [105].
Simulated cases are represented with circular markers: black-filled for Pr = 7
and empty for Pr = 0.71.

from the c1 case are represented using filled markers (black). The results
from the c2 case are not reported as they do not differ from the c1 simulation.
It can be observed that, for both Prandtl numbers, the simulated results
slightly underestimate the Reynolds number compared to the reference data.
In contrast to the Reynolds number, the Nusselt number demonstrates a
much weaker dependence on the Prandtl number. The variation in Nusselt
values across different Prandtl numbers is relatively small, indicating that
the heat transfer is influenced by the Rayleigh number rather than the fluid’s
Prandtl number. Figure 2.22 shows the behavior of the Nusselt values varying
the Rayleigh and Prandtl numbers as in [105]. The observed dependence
of the Nusselt on the Rayleigh number was found to be between a scaling
behavior of Ra1/3 and Ra1/4. Furthermore, the simulated cases agree with the
experimental and analytical results reported by the authors. This consistency
supports the reliability of the numerical methods and assumptions used in
the simulations.

2.4. Validation 109

Evaluation of the DHC Coupling Application Performance

For multiphysics simulations or CFD simulations involving a large number of
mesh elements, computational cost becomes significant, and execution time is
relevant. In coupling applications, the overhead introduced by data exchange
needs to be considered in the total computation time of the simulation, as it
plays a non-negligible role in such assessments. Implementing data transfers
that do not rely on reading from files can improve computational cost, as
reading/writing into output files is computationally expensive. For this rea-
son, the data exchange procedures are performed online to reduce the overall
computational effort. In this way, the coupling scheme does not rely on a
code’s generic output format but instead exploits direct access to memory
data stored in MED structures.

Figure 2.23 shows the execution time per iteration throughout the entire
simulation for the c1 coupling case. For each time step, the figure displays
the execution time used by FEMuS to solve the temperature equation, Open-
FOAM to solve the Navier–Stokes equations, and the coupling application to
perform data exchange between the two codes. The simulations are con-
ducted with increasing mesh resolution: 20 × 20 (top left), 40 × 40 (top
right), 80× 80 (center left), 160× 160 (center right) and 320× 320 (bottom).
As can be observed, even though the energy equation is relatively simple,
the FEMuS solver requires an execution time much larger than the time that
OpenFOAM requires in all five cases. On the other hand, the data exchange
time is of the same order of magnitude as the OpenFOAM execution time.

As confirmation, Table 2.6 and Figure 2.24 report the total simulation
times up to the convergence of the solution. For lower mesh resolution, most
of the time (∼ 50 − 60%) is dedicated to solve the energy equation using
FEMuS, while less time is required for data exchange and the OpenFOAM
solution. As the mesh resolution increases, the time required by the solvers
to perform the simulation grows exponentially, whereas the data exchange
time shows a linear trend with respect to the number of DOFs. The exe-
cution time referenced in Figure 2.23-2.24 and Table 2.6 corresponds to the
application running in serial mode. However, both FEMuS and OpenFOAM
support parallel execution via the MPI library, and the developed platform
allows both codes to run in parallel. As a result, solver execution time can
be significantly reduced through parallel computation. Nevertheless, as pre-
viously mentioned, data exchange between the solvers is currently handled
in serial mode. Once each code completes its parallel execution, control is

110 Chapter 2. Code Coupling Method

0 1000 2000 3000 4000 5000 6000

niter

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

t
[s

] OpenFOAM

FEMuS

Data Exchange

0 1000 2000 3000 4000 5000 6000

niter

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t
[s

] OpenFOAM

FEMuS

Data Exchange

0 1000 2000 3000 4000 5000 6000

niter

0.0

0.1

0.2

0.3

0.4

t
[s

] OpenFOAM

FEMuS

Data Exchange

0 1000 2000 3000 4000 5000 6000

niter

0.0

0.5

1.0

1.5

2.0

2.5

t
[s

] OpenFOAM

FEMuS

Data Exchange

0 1000 2000 3000 4000 5000 6000

niter

0

2

4

6

8

10

12

t
[s

] OpenFOAM

FEMuS

Data Exchange

Figure 2.23: Execution time for c1 coupling with varying mesh resolutions.
OpenFOAM, FEMuS, and Data Exchange timings are shown for meshes of:
20× 20 (left) and 40× 40 (right) in the top row, 80× 80 (left) and 160× 160
(right) in the central row and 320× 320 in the bottom row.

2.4. Validation 111

0.0 0.2 0.4 0.6 0.8 1.0

n× n ×105

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
t

[s
]

×104

OpenFOAM

FEMuS

Data Exchange

Figure 2.24: Total execution time to reach the converged solution for the c1

coupling case simulation, varying mesh resolution.

Time

n× n 20× 20 40× 40 80× 80 160× 160 320× 320

FEMuS 41% 54% 65% 70% 62%

OpenFOAM 25% 20% 17% 19% 31%

Data Exchange 34% 26% 18% 11% 7%

Table 2.6: Time percentage over the total execution time, for the c1 coupling
case simulation.

returned to the supervisor, which manages the data exchange sequentially.
Parallelizing the data transfer could also significantly reduce the coupling
process’s computational cost.

With regard to the convergence of the solution, Figure 2.25 shows the
residual behavior of the two velocity components as a function of the number
of iterations for both the coupled application c1 and the monolithic Open-
FOAM code, in the case of the air filled cavity with Ra = 105 and an 80× 80
elements mesh. The coupling algorithm improves the solution’s convergence

112 Chapter 2. Code Coupling Method

0 2000 4000 6000 8000

niter

10−10

10−8

10−6

10−4

10−2

100

R
es

u OF

v OF

u c1

v c1

Figure 2.25: Residuals of the u- and v-velocity components as a function of
the number of iterations for the OpenFOAM case and the c1 coupling case.

behavior, achieving the convergence criteria after approximately 6000 itera-
tions, compared to around 7000 iterations required by the standalone Open-
FOAM simulation.

2.4.2 Conjugate Heat Transfer (CHT)
In this section, the second application implemented to test the data transfer
between a FVM code and a FEM code is described. This test investigates the
data transfer through the interface connecting two separate physical domains.
In the context of heat transfer, these interfaces are classified as conjugate
problems, where the so-called conjugate boundary condition can be applied
[106, 107]. In the following, a Conjugate Heat Transfer (CHT) problem is
analyzed, focusing on the thermal exchange between two regions composed
of different materials. Specifically, the analysis considers heat transfer across
a physical boundary between a solid and fluid regions.

Many practical applications are based on conjugate heat transfer problems
whenever heat conduction in a solid region is closely coupled with convection
heat transfer in an adjacent fluid region. Typical examples include heat
transfer in cavities with thermally conducting walls, enhanced heat transfer
with finned surfaces, or heat dissipation in high-performance devices. Many
studies have focused on heat transfer between solid and fluid regions in the
context of solar collectors and thermal energy storage systems, particularly

2.4. Validation 113

in concentrated solar power plants [108, 109]. Solar collectors and thermal
energy storage systems are the two core components of solar power plants,
making them a primary focus of research and development efforts in the field.
The interaction between the solid collector and the working fluid is a critical
aspect of collector design [110, 111, 112, 113], since the solar irradiation is
absorbed by the solar collector and the heat is transferred to the working fluid
through the domains interface. This thermal exchange is a classic example
of a CHT configuration, where heat conduction in the solid and convection
in the fluid are strongly coupled. Similarly, CHT plays an important role in
optimizing heat extraction processes within thermal storage systems, where
the main objective is to obtain an excellent heat transfer rate (absorb and
release heat at the required speed) [114, 115]. Another key application area
is heat exchanger systems, where numerous studies have adopted different
methods to simulate heat transfer processes [116, 117, 118, 119, 120]. CHT is
also crucial in nuclear energy production, particularly in safety analyses and
operational assessments of nuclear reactors. The coupling of conduction and
convection mechanisms is fundamental in ensuring reactor safety and efficient
operation [121, 122, 123].

From the scientific computing perspective, the primary challenge in solv-
ing a conjugate heat transfer problem lies in addressing the strongly coupled
interface domain. This interface is subject to both Dirichlet and Neumann
boundary conditions simultaneously, reflecting the complex interaction be-
tween the solid and fluid regions. Different approaches have been developed
over the years in order to tackle this kind of problem [124, 125, 126, 127]. Nu-
merical solutions for conjugate conduction-convection problems are typically
carried out within a unified computational domain that encompasses both
the solid and fluid regions. In this context, SIMPLE-like algorithms are com-
monly used to solve the governing equations. However, the main difficulty is
ensuring that the numerical solutions accurately capture the physical reality
of the problem, particularly at the coupled interfaces. Proper representation
of the boundary interactions and careful validation of the numerical meth-
ods are essential for achieving reliable and realistic results. For this reason,
this section focuses on validating the multi-physics application developed to
couple different domains through their interface. This approach enables the
treatment of the CHT problem using two separate domains while applying a
coupling algorithm to numerically model solid-fluid heat exchange.

The heat transfer in CHT systems is governed by two distinct physical

114 Chapter 2. Code Coupling Method

0.2 l l

FEM FVM

qw

Tw

T = THT = TC

0.8 l l

FEM FVM

qw

Tw

T = THT = TC

0.4 l 0.4 ll

FEM FEMFVM

qw qw

Tw Tw

T = THT = TC

y∗

x∗

Figure 2.26: Geometrical configurations of the CHT problem: on the left the
domain with the solid wall thickness equal to t1, on the right equal to t2 and
on the bottom equal to t3.

mechanisms. In the solid domain, conduction dominates, where the heat
flows through the material driven by temperature gradients. In fluids, con-
vection becomes the primary mode of heat transfer, which may occur nat-
urally through buoyancy-driven forces or through forced movement caused
by external drivers like pumps or fans. The configurations investigated for
testing the boundary data transfer algorithm are reported in Figure 2.26 and
refer to the cases described in [128]. The three configurations rely on two
different domains connected where different equations are solved. Within the
first region (white), the momentum and temperature equations are solved for
a buoyant fluid, employing the same system of equations described in (2.10).
The second region (gray) represents a solid domain in which only the temper-
ature equation has been solved. The solid is modeled as a two-dimensional
isotropic material with constant material properties where the only parame-
ter that describes the temperature distribution is the thermal diffusivity α.
This parameter is defined as

α = ks
ρ cp

, (2.17)

where ks is the thermal conductivity and cp is the thermal capacity of the

2.4. Validation 115

solid domain. Therefore, the heat equation in the solid reads as

∂T

∂t
= α∆T . (2.18)

The peculiarity of this kind of physical setup is the mutual exchange of the
boundary conditions values at the interface between the two regions. At the
interface, the fluid problem is defined by a non-homogeneous Dirichlet bound-
ary condition, while the solid problem is defined by a non-homogeneous Neu-
mann boundary condition. Specifically, the temperature field in the solid at
the boundary is used as the boundary condition for the fluid region, while the
heat flux computed at the same interface for the fluid region is the boundary
condition for the temperature equation of the solid. This setup is commonly
adopted for CHT simulations, as detailed in [129]. A schematic representa-
tion of the exchange of physical quantities can be seen in Figure 2.26. Here,
the grey-colored solid region is graphically separated from the fluid one with
a dashed line, through which the flux (wavy line, qw) and the temperature
(solid line, Tw) are exchanged.

For the solid subdomain, the other boundary conditions include two ho-
mogenous Neumann boundary conditions imposed at the top and bottom
boundaries, while a fixed temperature is assigned on the external sides of the
domain. The physical temperature field has been non-dimensionalized, as in
the DHC problem. Thus, the temperature field T is transformed into the
corresponding Θ by using (2.14). For the configurations shown at the top of
Figure 2.26, a fixed temperature of θ = 0 is imposed on the cold wall, which
corresponds to the left vertical wall. In contrast, for the third case, both
external vertical walls of the solid domains are treated with homogeneous
Dirichlet boundary conditions. Specifically, the left wall is assigned a fixed
cold temperature of θ = 0, while the right wall is set to a fixed temperature
of unity, θ = 1.

In the fluid subdomain, the boundary conditions for the velocity field are
the same as the ones described for the cavity in the previous section. For the
temperature field, the top and bottom walls are adiabatic. In the configura-
tions depicted at the top of Figure 2.26, the non-dimensional temperature Θ
is fixed at 1 on the hot wall. The remaining walls serve as exchange interfaces
with the solid subdomain.

116 Chapter 2. Code Coupling Method

Boundary data transfer algorithm

This section provides a description of the solution methods employed to im-
plement a boundary data transfer algorithm within the coupling application
framework. In the CHT problem, the boundary data transfer algorithm is
necessary to replicate numerically the setups where the heat exchange be-
tween the fluid and solid subdomain is not uniform. As stated in the intro-
ductory part of the chapter, a possibility would be to solve the whole domain
with a single code that implements both physics. However, the strategy of
using well-established codes is adopted in this thesis for robustness and ac-
curacy, so a suitable strategy must be developed to exchange data between
FVM and FEM codes when they share a boundary region.

The method used for the coupling application involving boundary data
transfer follows a Algorithm 4. As illustrated in Figure 2.26, for all the config-
urations simulated, the FVM code is employed to solve the natural convection
flow within the cavity. On the other hand, the FEM code is used to solve the
energy equation within the solid domain. Each code initializes its own mesh
independently: the FEMuS code generates the mesh for the solid domain,
while OpenFOAM creates the mesh for the fluid domain. The coupling class
provides init interface() and create mesh() routines to create a MED
mesh object representing the boundary interface for both codes. In this spe-
cific application, the goal is to couple the two regions within a 2D problem.
Thus, the FEMuS interface structure consists of a 1D mesh of biquadratic
Lagrangian edges. Similarly, the OpenFOAM interface class provides the in-
formation needed to construct a copy of the 2D boundary mesh. The 2D
representation of the boundary mesh is required since OpenFOAM handles
3D meshes, even for 2D problems.

After the creation of the MED objects representing the interfaces and the
meshes, the numerical fields to be exchanged are initialized. The temperature
at the boundary and the wall heat flux through the same boundary are ini-
tialized as MED fields using init med field on cells(). Consequently, the
MED fields source P0 T and target P0 q are created to store FEMuS data:
a cell-wise temperature field for storing the computed temperature from FE-
MuS and a heat flux field for storing the interpolated data from OpenFOAM.
Similarly, corresponding MED fields are initialized for OpenFOAM, namely
source P0 q and target P0 T, serving the same purposes. The application
of conjugate heat transfer does not require any mesh movement and the pro-
jection matrix can be computed before the time loop begins. However, other

2.4. Validation 117

Algorithm 4 Boundary data transfer algorithm.
1: procedure Supervisor control
2: Instantiate class objects
3: Initialize boundary interfaces
4: Create MED meshes and fields
5: Create projection matrix remapper

Time loop

6: while OpenFOAM obj.run() do
7: Solve u and T with OpenFOAM fluid solver
8: Retrieve source P0 q from OpenFOAM boundary
9: Compute target P0 q from interpolation over FEMuS mesh

10: Compute target P2 q from target P0 q
11: Set target P2 q as Neumann BC into FEMuS
12: Solve T with FEMuS solid solver
13: Retrieve source P2 T from FEMuS boundary
14: Compute source P0 T from source P2 T
15: Compute target P0 T from interpolation over OpenFOAM mesh
16: Set target P0 T as Dirichlet BC into OpenFOAM
17: end while
18: end procedure

data transfer boundary applications, such as fluid–structure interaction, may
involve changing meshes. In such cases, the interpolation matrix must be
recomputed at every time step, as described in Algorithm 1.

The time loop start with OpenFOAM solving the governing equation
for the fluid and the temperature equation using its own solver routines.
The wall heat flux within the boundary representing the interfaces solid-
fluid is computed and stored in source P0 q MED field. Therefore, this
field is first extracted from the solution of OpenFOAM using the routine
get field from OpenFOAM() and then stored in a MED field over the cor-
responding boundary mesh using set field() routine. The heat flux pro-
vided by OpenFOAM is interpolated onto the target mesh to obtain the
target field target P0 q using the interpolation() function. This inter-
polation routine performs a P0 − P0 interpolation from the linear 2D mesh
copy of the OpenFOAM mesh to the 1D linear mesh derived from the bi-
quadratic FEMuS mesh. The target P0 q field is then transferred to the

118 Chapter 2. Code Coupling Method

FEMuS solver as a non-homogeneous Neumann boundary condition using
the set field to femus() routine. It is important to note that a P0 − P2

interpolation is required before the solution is applied to the boundary, as
the field provided by OpenFOAM uses a cell-wise approximation. The up-
dated boundary condition is then used by FEMuS to solve the temperature
equation within the solid domain, as described in (2.18). The temperature
solution, source P0 T, computed by the FEMuS solver in the solid domain,
is retrieved at the boundary interface using the get field from femus()
routine. Through inverse mapping, this solution is first converted into a
P0 field and then interpolated onto the OpenFOAM boundary to create the
target P0 T field. The projection from OpenFOAM interface to FEMuS in-
terface of the coupled temperature is computed using the already mentioned
interpolation() routine. This field is applied as a Dirichlet boundary con-
dition in OpenFOAM, where the non-homogeneous boundary temperature
is updated using the set field to OpenFOAM() routine. At this stage, con-
trol is turned back to OpenFOAM, where it continues the task of solving its
equations in the following time step.

Simulations Results

In this section, the boundary data transfer algorithm is tested by using a Con-
jugate Heat Transfer problem. The physical and geometrical configurations
are based on the work of Basak et al. [128], which is used as the reference for
validation. Several physical and geometrical configurations were analyzed in
[128], varying parameters such as the Prandtl number, the Rayleigh number,
the conductivity ratio (K), the solid wall thickness (t), and its geometric po-
sition (on the hot or cold side). For this validation, the numerical simulations
were conducted by varying the wall thickness, the conductivity ratio, and the
Rayleigh number.

A schematic representation of the physical configurations used for the
simulations is provided in Figure 2.26. Three geometric configurations are
analyzed to account for different solid region layouts. The first configuration
features a solid region with thickness t1 = 0.2l. The second has a width
of t2 = 0.8l, where l is the side length of the square cavity. The third
configuration includes two solid regions on opposite sides of the cavity, each
with a thickness of about 0.4l, resulting in a total combined width of 0.8l.
This third case is referred to as having a thickness of t3 = 0.4l × 2. The
conductivity ratio K is defined as the ratio between solid and fluid thermal

2.4. Validation 119

conductivity as
K = ks

kf
, (2.19)

where the subscripts s and f refer to solid and fluid regions, respectively. In
this study, three distinct values of K have been investigated: K1 = 0.1, K2 =
1, and K3 = 10. These values allow us to analyze systems where the solid is
significantly less conductive than the fluid (K1), equally conductive (K2), or
significantly more conductive (K3). Regarding the Rayleigh number, which
quantifies the natural convection within the fluid, two representative values
have been selected for the simulations: 103 and 105. These values correspond
to different flow regimes, with Ra = 103 representing weaker convection and
Ra = 105 indicating stronger convective flows. In contrast, the Prandtl
number has been kept fixed at Pr = 0.015. This value corresponds to a
low-Prandtl fluid, such as liquid metals. By systematically varying K, Ra,
and wall thickness, this study provides a comprehensive assessment of the
boundary data transfer algorithm under diverse thermal and flow conditions.

In Figures 2.27-2.30, the contour of the non-dimensional temperature Θ
and the non-dimensional velocity stream function Ψ are reported for the
simulated cases. The non-dimensional temperature can be set as follows

Θ = T − T0

∆T , Ψ = ψ

α
. (2.20)

Specifically, Figure 2.27 illustrates the solutions for Ra = 103 with a wall
thickness of t1, showing the effect of the conductivity ratio variation on the
temperature distribution and flow patterns. For the case with K = 0.1, as
shown at the top of Figure 2.27, the isotherms are parallel to the side walls,
indicating conduction-dominated heat transfer within the fluid. The lower
thermal conductivity of the solid (grey-colored domain) leads to a steeper
temperature gradient within the solid wall. Thus, we can observe a squeeze
of the lines toward the solid region, which results in a temperature variation
spanning from 0 at the left wall (cold wall) to 0.6 within the solid. In contrast,
within the fluid phase, the temperature gradient is much smaller, ranging
from 0.7 to 1 near the hot wall. This smaller gradient reduces the buoyancy
force, resulting in weaker fluid flow. Therefore, the flow strength within
the cavity is very weak, with the maximum magnitude of the streamfunction
reaching only Ψ = 0.4. The circulation intensity is high near the center of the
cavity. It decreases toward the walls due to the no-slip boundary conditions,
as shown in the function contours in the upper right images of Figure 2.27.

120 Chapter 2. Code Coupling Method

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.1
0.2

0.3
0.4

0.5
0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.01

0.05

0.10

0.15

0.2
0

0.2
5

0.30

0.
35

0.40

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.1

0.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.02

0.10

0.20

0.30

0.40

0.
50

0.60

0.70

0.80

0.90

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.01

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80
0.90

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.
02

0.10

0.20

0.3
0

0.40

0.50

0.60

0.70

0.80

0.90

1.0
0

Figure 2.27: Simulations with solid thickness t1 and Ra = 103. Contour of
non-dimensional temperature Θ (left) and velocity stream function Ψ (right)
for K = 0.1, 1, 10 (from top to bottom).

2.4. Validation 121

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.
1

0.2

0.
3

0.
4

0.5

0.
6

0.
7

0.8

0.8

0.
90

0.95
0.98

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.
10

0.50

1.0
0

2.00

3.
00

4.0
0

5.
00

5.20

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.1

0.
2

0.3

0.4

0.
6

0.7

0.
8

0.9

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.2
0

0.50

1.0
0

2.00

3.0
0

4.0
0

5.00

6.
00

7.
00

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.02

0.
04

0.1

0.
2

0.
3

0.4

0.
5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.5 1.0

2.0

3.0
4.0

5.0

6.0 7.0

7.
9

Figure 2.28: Simulations with solid thickness t1 and Ra = 105. Contour of
non-dimensional temperature Θ (left) and velocity stream function Ψ (right)
for K = 0.1, 1, 10 (from top to bottom).

122 Chapter 2. Code Coupling Method

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.10
0.20

0.30
0.40

0.50
0.60

0.70
0.80

0.90

0.
95

0.98

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.05

0.50
1.00

1.50

2.
00

2.50

3.00

3.
50

0.0 0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.10

0.20

0.30
0.40

0.50

0.
60

0.70

0.8
0

0.
90

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.2
0.5

1.
0

2.0
3.0

4.
0

5.0

6.0

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.10

0.20

0.
30

0.40

0.
50

0.6
0

0.70
0.80

0.
90

0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.
2

0.5

1.
0

2.
0

3.0

4.
0

5.0

6.
0

7.
0

7.
6

Figure 2.29: Simulations with solid thickness t2 and Ra = 105. Contour of
non-dimensional temperature Θ (left) and velocity stream function Ψ (right)
for K = 0.1, 1, 10 (from top to bottom).

2.4. Validation 123

0.0 0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.10
0.20

0.30

0.
40

0.48

0.50

0.53

0.53
0.60

0.70
0.80

0.90

0.0 0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.10

0.80

1.80

2.50

3.00

3.
30

0.0 0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.10

0.20

0.30

0.
30

0.
40

0.50

0.60

0.70

0.
70

0.80

0.90

0.0 0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.50

1.00

1.50
2.00

2.50

3.
00

3.50

4.00

4.50

5.
00

5.
50

0.0 0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Θ

0.
05

0.
10

0.20

0.
30

0.40

0.50

0.60

0.70

0.80

0.
90

0.
95

0.0 0.4 0.8 1.2 1.6
0.0

0.2

0.4

0.6

0.8

1.0
Ψ

0.2

0.8

1.4

2.
0

2.6

3.1

3.
7

4.3

4.
9

5.
5

6.
1

Figure 2.30: Simulations with solid thickness t3 and Ra = 105. Contour of
non-dimensional temperature Θ (left) and velocity stream function Ψ (right)
for K = 0.1, 1, 10 (from top to bottom).

124 Chapter 2. Code Coupling Method

The circulation induced by the temperature difference is anticlockwise. This
is consistent with the hot wall positioning on the right and the cold wall on
the left. The buoyancy forces pull the fluid to rise along the hot right wall.
It descends along the cold left wall, forming the observed circulation pattern.

Considering the non-dimensional temperature, the isolines behave de-
pending on the conductivity ratio K. As already discussed, for K < 1, the
temperature gradient is concentrated in the solid region. As the conductiv-
ity ratio increases, the temperature gradient shifts to the fluid region, where
the higher conductivity enhances more efficient heat transfer. The middle
section of Figure 2.27 illustrates a case with the same parameters previously
described but with a conductivity ratio of K = 1. In this scenario, the non-
dimensional temperature distribution appears uniform across the solid and
fluid regions. This behavior occurs because both materials have equal ther-
mal conductivities, resulting in an identical temperature gradient across the
solid and fluid domains. Therefore, at the interface, the temperature gradi-
ent is continuous, unlike in the previous case. This temperature distribution
leads to a stronger intensity of buoyancy forces within the fluid causing the
isotherms to be slightly more curved. In this setup, the temperature dif-
ference in the fluid increases from 0.3 to approximately 0.8, resulting in an
increase of the maximum value to 0.9. As the conductivity ratio increases,
this effect becomes more evident, as shown in the patterns at the bottom
of Figure 2.27. Specifically, for a conductivity ratio of 10, the temperature
gradient shifts almost entirely to the fluid region, increasing from 0.8 in the
previous case to approximately 0.95. This results in a corresponding intensi-
fication of the buoyancy effect.

Figure 2.28 presents the simulation results for Ra = 105 with a wall thick-
ness of 0.2l. Similar to the previous case, the figure illustrates the behavior of
the non-dimensional temperature and stream functions as the conductivity
ratio varies. The increase in the Rayleigh number to 105 results in a signif-
icant strengthening of the flow, causing greater distortion of the isotherms
compared to the Ra = 103 case. In fact, as the Rayleigh number increases,
the solution moves from temperature stratification towards a recirculation
cell. Increasing K produces a similar effect to the previous case. Specifically,
as the thermal conductivity of the solid increases, the temperature gradient
within the solid region decreases, causing the gradient to shift further into
the fluid region. This steeper temperature gradient in the fluid enhances the
flow strength, which in turn leads to greater distortion of the isothermal lines.

2.4. Validation 125

0.0 0.2 0.4 0.6 0.8 1.0

y∗
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
N
u
l

Basak et al.

Present work

0.0 0.2 0.4 0.6 0.8 1.0

y∗
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
u
l

Basak et al.

Present work

0.0 0.2 0.4 0.6 0.8 1.0

y∗

0.2

0.3

0.4

0.5

0.6

N
u
l

Basak et al.

Present work

0.0 0.2 0.4 0.6 0.8 1.0

y∗
0

1

2

3

4

5

6

N
u
l

Basak et al.

Present work

Figure 2.31: Local boundary Nusselt number for the cases with solid thickness
t1: solid lines are the simulations with Ra = 103 on top (K = 0.1 on the left
and K = 10 on the right), Ra = 105 on the bottom (K = 0.1 on the left and
K = 10 on the right). A comparison with data from [128] is reported (white
circular markers).

Similar considerations apply to the variation of K in the simulations with
t2 wall thickness and Ra = 105, reported in Figure 2.29. As already observed
in Figure 2.28, the temperature isolines are distorted in the fluid core, indi-
cating convection-dominated heat transport. The variation in K results in
a shift of the temperature gradient from the solid region to the fluid. The
main difference compared to the cases with the same Rayleigh number but
a wall thickness of t1 is that, as the total wall thickness increases, the flow
strength decreases. This reduction is due to lower buoyancy forces caused
by a smaller thermal gradient. The behavior remains consistent when the
total wall thickness is unchanged but applied to the third configuration. The
solutions for the three values of K (K = 0.1, K = 1, and K = 10), with
Ra = 105 and t3, are shown in Figure 2.30.

In Figure 2.31, the local Nusselt number on the interface is reported for
the case of the solid wall thickness equal to t1. The Nusselt number has

126 Chapter 2. Code Coupling Method

Ra
t1

K1 [128] K2 [128] K3 [128]

103 0.332 0.335 0.898 0.890 1.08 1.08

105 0.412 0.412 1.897 1.907 3.269 3.162

Ra
t2

K1 [128] K2 [128] K3 [128]

105 0.118 0.117 0.850 0.851 2.556 2.578

Ra
t3

K1 [128] K2 [128] K3 [128]

105 0.117 0.117 0.859 0.855 2.575 2.586

Table 2.7: Average Nusselt numbers for different conductivity ratios K, vary-
ing the Ra number and wall thickness t. A comparison with results from [128]
is also reported.

been computed as the normal gradient of the non-dimensional temperature
on the interface. It represents the total ratio between the convective and the
conductive heat transfer over the boundary interface. In particular, it can be
expressed as

Nul = ∂Θ
∂n

. (2.21)

A comparison with data from the reference literature is shown using circular
white markers for the data from [128] and using a black solid line, which
represents results obtained with the boundary data algorithm presented in
this work. Overall, the estimation of the Nusselt number shows good agree-
ment with the literature data. However, for Ra = 105 and both values of the
conductivity ratio, there is a slight deviation in the results compared to the
reference data.

In Table 2.7 the average Nusselt number Nul on the shared boundary
between the two regions is reported, with a comparison of the same parameter
presented in [128]. A good agreement with the literature data is achieved for
every simulation.

Chapter 3

Turbulent Natural Convection
of Liquid Metals

Natural convection of liquid metals has increased interest due to their wide
range of applications, especially as excellent heat transfer fluids. Heat trans-
fer in liquid metals is fundamental in many engineering processes, including
high-performance cooling systems in next-generation nuclear reactors and
solar energy collectors. For example, during the shutdown of a liquid metal
nuclear reactor, heat transfer from the reactor core to the coolant occurs
primarily through natural convection. Natural convection in liquid metals
also occurs when the absorber plate in solar collectors is warmed by solar
radiation, creating a temperature gradient between the absorber and the sur-
rounding fluid. Therefore, understanding the flow and heat transfer behavior
in the natural convection regime is paramount in liquid metal applications.

In recent years, there has been increasing interest in thermally driven
flows in enclosures. Buoyancy-driven convection in cavities occurs in two
fundamental forms. The first is Rayleigh-Bénard convection, where convec-
tive flow arises due to heating at the bottom and cooling at the top of an
enclosure. The second is vertical convection, which occurs when the sidewalls
of an enclosure are heated differentially, resulting in a configuration known
as the differentially heated cavity. In this scenario, a non-zero temperature
difference creates a circulation, with fluid rising along the hot wall, moving

128 Chapter 3. Turbulent Natural Convection of Liquid Metals

across the top, descending along the cold wall, and returning across the bot-
tom. The higher the temperature drop between the sidewalls, the higher the
fluid’s convection regime inside the cavity.

This chapter focuses on the low-Prandtl-number natural convection study
within a square differentially heated cavity. First, a brief description of the
available literature data is reported. This is followed by highlighting the key
differences between the behavior of standard fluids (e.g., water and air) and
non-conventional fluids characterized by low Prandtl numbers. The results
obtained using the turbulence models described in Chapter 1 are then pre-
sented and compared with literature data. Simulations conducted with vari-
ous OpenFOAM turbulence models are also discussed and evaluated against
literature benchmarks. Finally, the chapter introduces simulations performed
using the coupled approach, where the volume data transfer algorithm is ap-
plied as described in Chapter 2.

3.1 Literature Overview
The natural convection regime is determined by the Grashof number, Gr =
Ra/Pr, which is the buoyancy ratio to viscous forces acting on a fluid. The
Rayleigh number, Ra, is the dimensionless number that defines the ratio be-
tween diffusive and convective thermal transport phenomena, while Pr, the
Prandtl number, is defined as the ratio of momentum diffusivity to thermal
diffusivity. For a given Pr number, below a critical Ra, conduction dom-
inates heat transfer. As Ra increases, buoyancy strengthens the flow, and
the convection term becomes more important. Once Ra exceeds the criti-
cal threshold, the flow becomes unsteady, exhibiting periodic motion, and
eventually transitions to turbulence. However, it is evident that the critical
Rayleigh number alone does not define the transition limit, as the natural
convection regime is closely dependent also on the Prandtl number.

In [105], Kennelly et al. analyzed the effect of Reynolds number on varying
Prandtl numbers. As shown in Figure 2.21, the highest Reynolds number
calculated for high-Prandtl-number fluids is approximately 2600, obtained
for Pr = 0.5 and Ra = 109. These results are confirmed in [130] and [131],
where Henkes et al. demonstrate that for ordinary fluids with a Prandtl
number of 1, the flow becomes turbulent only at high Rayleigh numbers. For
instance, in the case of natural convection for air-filled cavities, the critical
Rayleigh is above 108. According to Incropera et al., the laminar natural

3.1. Literature Overview 129

10−3 10−2 10−1 100 101 102

Pr

101

103

105

107

109

1011

R
a

H
L

= 200

H
L

= 50

H
L

= 10

H
L

= 1

H
L
≤ 50

Ra ' 108(2H
L)2Pr

Ra ' 108(2H
L)2Pr2

Ra ' 108Pr2

Ra ' 108Pr3

Figure 3.1: Transition boundaries from laminar (below the lines) to turbulent
(above the lines) flow in cavities, as identified by Lage et al. [134]. The
Ra − Pr plot illustrates critical Rayleigh number as a function of Prandtl
number for different aspect ratios.

convection at a local Rayleigh number larger than 109 may be promoted to
turbulent transition [132]. In their DNS simulation, Paolucci et al. [133]
detected the existence of a critical Rayleigh number between 108 and 2× 108

for an airflow in a square cavity. The flows under these conditions undergo
a periodic unsteady flow. In [133], they suggested that beyond the critical
value, a Reynolds-averaged form of the Navier-Stokes and energy equations
should be employed together with a turbulence model.

A study conducted by Lage et al. [134] demonstrates that the transition
to turbulence depends not only on the Prandtl number and Rayleigh number
but also on the aspect ratio of the cavity, defined as the ratio of cavity height
(H) to base (L). In [134], the authors derived a correlation that identifies the
critical Rayleigh number as a function of the Prandtl number and the aspect
ratio of the cavity. This correlation is illustrated in Figure 3.1, presented
as a Ra − Pr plot. The lines delineate two regions: the area below the
lines corresponds to the laminar natural convection regime, while the area
above is characterized by turbulent flow. As the cavity aspect ratio decreases,
the critical Rayleigh number also decreases, reaching its lowest values for
square cavities (H = L). The boundary lines marking the transition from

130 Chapter 3. Turbulent Natural Convection of Liquid Metals

laminar to turbulent flow for square cavities are represented by a dashed line
for high Prandtl numbers and a dotted line for Prandtl numbers < 1. For
lower Prandtl numbers fluids (Pr < 0.025), the threshold is represented by
the solid line labeled with H/L = 1 and highlighted in red. According to
this study, high-Prandtl-number fluids begin the transition to turbulence at
a Rayleigh number exceeding 108, whereas low-Prandtl-number fluids start
the transition at much lower Rayleigh numbers Ra ≤ 105. As a result,
maintaining laminar flow in liquid metal enclosures is challenging, as the
flow often becomes turbulent even at relatively low Rayleigh numbers.

However, the turbulent regime in this kind of fluid has received limited
attention and remains a subject of ongoing research. High-fidelity studies of
turbulent heat transfer in low-Prandtl liquid metals have primarily focused
on Rayleigh-Bénard convection. Notable examples include works by Zwirner
et al., Zürner et al., and Vogt et al. [135, 136, 137]. On the contrary, studies
on differentially heated cavities with liquid metals at high Rayleigh numbers
are very limited, and most available data are restricted to laminar flow condi-
tions, with few studies addressing the transition to turbulence. The available
literature data for the specific case of a square cavity at high Rayleigh num-
bers with low Prandtl number fluids is limited to the studies [138], [139],
[140], [141], [142] and [143].

Bawazeer et al. in [138] conducted a detailed analysis of the flow structure
in low-Pr regimes using the multi-relaxation time lattice Boltzmann method.
Their study mapped flow regimes in the Ra − Pr domain for steady and
unsteady flows. In particular, they found that the Prandtl number and the
critical Rayleigh number are related by the following correlation

Ra = 2.8727× 108Pr2.0502, (3.1)

which was obtained by interpolating the critical Ra from their simulations re-
sults. Figure 3.2 displays the critical Rayleigh numbers identified by Bawazeer
et al., along with the correlation from Equation 3.1. This line divides the pa-
rameter space into two distinct zones: the region below the critical Rayleigh
line represents steady solutions, while the region above the line represents
unsteady solutions. As we can see from Figure 3.2, decreasing the Prandtl
number results in a considerable reduction of the critical Rayleigh number.
In [138], the authors attribute this behavior to the low kinematic viscosity
of liquid metals, which causes the advection term in the Navier-Stokes equa-
tions to dominate over the viscous term. Consequently, flow instability arises

3.1. Literature Overview 131

at relatively low values of the controlling parameter Ra, in contrast to fluids
with higher Prandtl numbers.

10−5 10−4 10−3 10−2 10−1 100

Pr

100

102

104

106

108

R
a

Ra = 2.8727× 108Pr2.0502

Bawazeer et al.

Mohamad et al. (1990)

Mohamad et al. (1992)

Wolff et al.

Oder et al.

Figure 3.2: Correlation by Bawazeer et al. [138] (Equation 3.1) (black line),
marking the transition from steady (below) to unsteady (above) flow regimes
in low-Prandtl fluids. Black diamond markers refer to the simulation cases
conducted in [138]. Circle markers denote critical values predicted by Mo-
hamad et al. [141]. Triangles point out cases studied by Mohamad et al.
[142], and crosses show configurations analyzed by Wolff et al. [139]. DNS
case from [143] is indicated using triangle down markers.

The transition to turbulent buoyant flow with low Prandtl number fluids
was also explored by Mohamad and Viskanta in [141]. They investigated
transient natural convection in a cavity with Pr values ranging from 0.001
to 0.01 and Gr numbers up to 107 using finite difference methods. The
authors solved the conservation equations without considering turbulence
terms, focusing instead on analyzing the oscillatory behavior of the system
under different conditions. Specifically, they predicted the critical Grashof
numbers for three different Prandtl numbers, 0.001, 0.005, and 0.01, at which
the flow begins to exhibit periodic oscillations. The simulations performed
by Mohamad et al. are shown in Figure 3.2 as white circle markers. Their
findings indicate oscillatory behavior for Grashof numbers greater than 2 ×
106, 3 × 106, and 5 × 106 for Prandtl numbers of 0.001, 0.005, and 0.01,
respectively. In Figure 3.2, the three critical Rayleigh numbers correspond

132 Chapter 3. Turbulent Natural Convection of Liquid Metals

to the three circle markers with the lowest Rayleigh number values. As we
can see, the critical values predicted by Mohamad et al. are slightly higher
than those estimated by Bawazeer et al..

In a recent study, Mohamad et al. [142] analyze the turbulent buoyant
flow of low Prandtl number fluids at Rayleigh number values exceeding the
critical thresholds identified in their earlier work [141]. In their study, Mo-
hamad et al. employed a low Reynolds number k − ε model, as described in
[144], to predict the behavior of turbulent natural convection for low Prandtl
number fluids. They compared their simulation results with experimental
data and direct numerical simulation findings. They reported temperature
profiles in two different cases, see triangular marker in Figure 3.2. The former
case involved a gallium-filled cavity (Pr = 0.0208) at a Rayleigh number of
Ra = 1.08 × 106, where the authors compared their simulation results with
those from previous work by Viskanta et al. [140]. The latter case refer-
enced experimental studies conducted by Wolff et al. [139], who measured
fluctuating temperature profiles in a liquid tin-filled cavity (Pr = 0.011) at
a Rayleigh number of Ra = 3.66 × 105. Wolff et al. [139] conducted a com-
bined experimental and numerical study for two additional configurations to
investigate the influence of the Rayleigh number in a gallium-filled cavity.
They performed both simulations and experiments at Rayleigh numbers of
Ra = 1.68×105 and Ra = 6.73×105, see cross marker in Figure 3.2. Finally,
the most comprehensive reference work in the literature was provided by Oder
et al. in [143]. They presented results from a direct numerical simulation us-
ing a high-order spectral element method to investigate natural convection in
a square cavity for low-Prandtl-number fluids. They solved the Navier-Stokes
equations using the spectral element method implemented in nek5000 v 19.0
and performed three separate simulations at a constant Grashof number of
1.8× 108, considering three different Prandtl numbers: 0.021, 0.1, and 0.2.

3.2 Characterization of the Flow
For low-Prandtl-number fluids, reaching the turbulent regime requires a lower
Rayleigh number compared to fluids with higher Prandtl numbers. For such
fluids, as the Grashof number increases, the fluid motion transitions from
steady to unsteady, eventually becoming turbulent. To verify this behavior,
the stability of the solution has been investigated by comparing its oscilla-
tory characteristics with the results reported by Mohamad et al. in [141]

3.2. Characterization of the Flow 133

0 1 2 3 4

τ

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

u
∗ c

0 1 2 3 4

τ

−5

0

5

10

15

u
∗ c

0 1 2 3 4

τ

−5

0

5

10

u
∗ c

Figure 3.3: Transition to unsteady behaviour of non-dimensional velocity at
the center of the cavity over time, varying the Rayleigh number, 2×104 (top),
5× 104 (center), and 105 (bottom) with a fixed Prandtl number of 0.01.

134 Chapter 3. Turbulent Natural Convection of Liquid Metals

and Bawazeer et al. in [138]. The stability analysis has been carried out us-
ing both the OpenFOAM and FEMuS laminar buoyant solvers, based on the
same configuration shown in Figure 2.10. For details regarding the mesh, sys-
tem of equations, and boundary conditions, the reader is referred to Section
2.4.1. The fluid properties have been adjusted to represent a liquid metal,
while variations in the Rayleigh number have been achieved by modifying
the geometry dimensions, keeping the non-dimensional temperature differ-
ence between the side walls fixed at 1. Figures 3.3 illustrate the transition to
the unsteady solution in a sodium-filled cavity (Pr = 0.01) as the Rayleigh
number increases. In Figures 3.3, u∗

c represents the dimensionless velocity at
the center of the cavity, and τ denotes the non-dimensional time, obtained
by dividing the time variable by L2/α. Oscillatory behavior is observed to
begin at a Rayleigh number between 2 × 104 and 5 × 104, corresponding to
Grashof numbers of 2×106 and 5×106, respectively. Our results estimate the
critical Rayleigh number at a lower value than that reported by Mohamad et
al. in [141], but they show better agreement with the findings of Bawazeer
et al.[138], who identified the critical range to be between 104 and 5 × 104

(or Gr between 106 and 5× 106). For this reason, to observe turbulent natu-
ral convection in low-Prandtl number fluids using FEMuS and OpenFOAM
solvers, the Grashof number should be at least greater than 5× 106.

Case Prandtl Rayleigh Grashof Reference
Simulation 1 0.0210 3.78× 106 1.8× 108 [143]
Simulation 2 0.0208 1.08× 106 5.2× 107 [140, 144]
Simulation 3 0.0110 3.66× 105 3.3× 107 [139, 144]

Table 3.1: Parameter values (Prandtl, Rayleigh and Grashof numbers) for
the simulated cases.

In the following, we present a brief overview of the main characteristics of
turbulent flows in square cavities, supported by simulation results from three
cases consistent with the limited data available in the literature. The first
case corresponds to the study reported in [143], specifically for Pr = 0.021
and a Grashof number of 1.8 × 108. The other two cases are taken from
[144] and [139]. The first is characterized by Pr = 0.0208 and a Rayleigh
number of 1.08× 106, while the second is characterized by Pr = 0.011 and a
Rayleigh number of 3.66×105. The simulations performed are summarized in

3.2. Characterization of the Flow 135

Table 3.1 and show three different Grashof number values. All three Grashof
numbers are significantly above the unsteady threshold previously identified
using the OpenFOAM and FEMuS solvers. This condition ensures the onset
of turbulent behavior.

Figure 3.4 shows the streamlines for the three simulated cases, illustrating
and comparing the flow patterns of the simulations. As observed, all three
cases exhibit a large, concentric, clockwise-rotating convection cell, similar to
the laminar simulations presented in Chapter 2. In addition to the primary
vortex that dominates the cavity, secondary and tertiary vortices form in the
corners and at the center of the main cell. This behavior is due to the peculiar
characteristics of low-Prandtl number fluids. In particular, by focusing on the
differences between high-Prandtl-number fluids Pr > 1.0 and low-Prandtl-
number fluids Pr < 1.0, we can explain the flow patterns observed in natu-
ral convection in enclosures. In the natural convection regime, the thermal
boundary layer for high-Prandtl-number fluids has a comparable or smaller
thickness compared to the velocity boundary layer. The temperature gradi-
ent is higher within the thermal boundary layer, confining buoyancy forces
to this region of the domain. On the other hand, the fluid motion outside the
thermal boundary layer remains passive. Thus, at high Prandtl numbers, the
fluid flow forms only a single main circulating cell inside the enclosure. As the
Rayleigh number increases, the thermal boundary layer thickness decreases,
the high-velocity region becomes confined near the boundaries, and the flow
in the core of the enclosure becomes nearly stagnant. Additionally, the core
region of the flow becomes thermally stratified in the vertical direction, as
we can see from Figures 2.16, with hot fluid at the top and cold fluid settling
at the bottom. This stratification results in a heat transfer primarily driven
by conduction rather than convection.

For fluids with Pr < 1, the thermal boundary layer can extend signifi-
cantly away from the heated and cold walls, potentially reaching the core of
the enclosure. In this case, the buoyancy effects can influence the behavior of
the fluid within the entire cavity. The presence of buoyancy within the center
of the cavity can induce the formation of secondary vortices. Figure 3.5 (left)
and Figure 3.6 (left) show zoomed-in views of the cavity center, illustrating
the streamlines and the rotational direction of the flow for the secondary
vortices. As observed in these two simulations, an anti-clockwise recirculat-
ing cell forms at the center of the cavity. The third case does not exhibit
the same behavior, likely due to its lower Grashof number. In fact, com-

136 Chapter 3. Turbulent Natural Convection of Liquid Metals

Ψ
Zoom 1

Zoom 2

−1.26

−1.13

−1.00

−0.88

−0.75

−0.63

−0.50

−0.37

−0.25

−0.12

0.01

Ψ
Zoom 1

Zoom 2

−0.94

−0.85

−0.75

−0.66

−0.56

−0.47

−0.37

−0.28

−0.18

−0.09

0.01

Ψ
Zoom 1

Zoom 2

−0.54

−0.49

−0.43

−0.38

−0.32

−0.27

−0.21

−0.16

−0.10

−0.05

0.01

Figure 3.4: Stream functions for the simulations with Pr = 0.021 and Ra =
3.78× 106 (top), Pr = 0.0208 and Ra = 1.08× 106 (middle), and Pr = 0.011
and Ra = 3.66× 105 (bottom).

3.2. Characterization of the Flow 137

paring the three cases, it seems that a higher Grashof number enhances the
intensity of the inner anti-clockwise circulation: decreasing its value suggests
weaker buoyancy forces relative to viscous forces, which limits the formation
or intensity of secondary vortices.

0.16 0.33 0.50 0.67 0.84
0.16

0.33

0.50

0.67

0.84
Ψ, Zoom 1

0.00 0.02 0.04 0.06
0.94

0.96

0.98

1.00
Ψ, Zoom 2

Figure 3.5: Zoomed-in views of Simulation 1: central zone (left) and upper
left corner (right) secondary recirculation cells.

0.16 0.33 0.50 0.67 0.84
0.16

0.33

0.50

0.67

0.84
Ψ, Zoom 1

0.00 0.02 0.04 0.06 0.08
0.91

0.94

0.97

1.00
Ψ, Zoom 2

Figure 3.6: Zoomed-in views of Simulation 2: central zone (left) and upper
left corner (right) secondary recirculation cells.

138 Chapter 3. Turbulent Natural Convection of Liquid Metals

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Ψ, Zoom 1

0.04 0.10 0.16 0.22 0.28 0.34
0.01

0.04

0.07

0.10

0.13

0.16
Ψ, Zoom 2

Figure 3.7: Zoomed-in views of Simulation 3: upper left corner (top) and
lower left corner (bottom) secondary recirculation cells.

As can be seen from Figures 3.5, 3.6 (right) and Figures 3.7, buoyant flow
in liquid metals is also characterized by the formation of weak secondary cir-
culations in the corners of the cavity. In particular, cases with higher Grashof
numbers exhibit secondary circulation only in the upper-left and lower-right
corners. In contrast, the third simulation, characterized by a lower Grashof
number, displays small recirculation cells in all four corners of the enclosure.
At the corners, the main flow detaches from the side walls and turns at a
90-degree angle, leading to the development of these localized circulations.
Larger recirculation zones develop in the top-right and bottom-left corners
of the enclosure, in contrast to the smaller regions in the other corners. This
behavior arises because the fluid velocities near the hot and cold vertical
walls are higher than those along the horizontal top and bottom walls, caus-
ing flow separation to occur earlier in the upper-right and lower-left corners
compared to the lower-right and upper-left corners. This is clearly illustrated

3.3. Simulation Results 139

in the bottom images of Figure 3.4, where the extension of the zoomed-in view
in green, labeled as Zoom 2, is noticeably larger than the red zone in the up-
per left corner. The larger green-marked zone, shown in detail in Figure 3.7
(bottom), comprises two distinct convection cells, whereas the upper-left and
lower-right corners each contain a single, smaller eddy. Due to the presence
of secondary recirculation cells, the impact of the main flow on all four walls
of the enclosure does not occur next to the corners, as would typically be
expected in natural convection of a high-Prandtl-number fluid within the
same Rayleigh number range, see Figures 2.12. Instead, the points of colli-
sion are shifted vertically along the side walls and horizontally along the top
and bottom walls. For the simulated cases, no stream function patterns are
available in the literature for direct quantitative comparison. Nevertheless,
the streamline from the first two simulations, shown in the top and center
panels of Figure 3.4, can be qualitatively compared with those reported in
[144]. Both the simulations and the literature reference are characterized by
higher Grashof number values and show very similar flow patterns. On the
other hand, Simulation 3 with a lower Grashof number can be compared with
the streamlines reported in [139]. The reference from the literature for lower
Grashof numbers exhibits very similar behavior to that shown in the bottom
image of Figure 3.4.

3.3 Simulation Results
This section presents a comparative analysis of the three aforementioned
cases. Specifically, the simulation results, obtained using three different
approaches, are reported and compared with the available literature data.
Firstly, the simulations performed using the FEMuS monolithic solver are
presented. The second approach uses the monolithic code OpenFOAM with
its built-in turbulence model. Finally, the third approach aims to leverage the
strengths of both codes by combining them in a coupled application, using
the volume transfer algorithm introduced in Chapter 2.

The configuration and computational domain used in these simulations
are the same as described in Section 2.4.1, with physical parameters adjusted
for low-Prandtl-number fluids, according to the non-dimensional simulation
parameters of Table 3.1. Based on the geometry configuration shown in Fig-
ure 2.10, a no-slip condition is applied to all sides of the cavity. Dirichlet
boundary conditions are imposed on the vertical walls for the temperature

140 Chapter 3. Turbulent Natural Convection of Liquid Metals

field, with the left side set to a hot temperature and the right side to a
cold temperature. Instead, the top and bottom walls have a homogeneous
Neumann boundary condition imposed for the temperature field. The bound-
ary conditions for the other turbulent variables are detailed in the following
sections, as each solver uses its own set of boundary conditions for these
variables. The simulations have been conducted using a refined mesh of

Figure 3.8: Mesh grid of 100× 100 elements used in all the simulations, with
a refined distribution near the walls.

100× 100 elements, as shown in Figure 3.8. This fine resolution ensures that
the turbulent parameter y+ is maintained below 1 for all cases so that the
first computational node from the wall lies within the viscous sublayer of the
boundary layer (linear region). By maintaining y+ < 1, the mesh captures
the steep gradients in velocity and other flow variables near the wall without
relying on empirical wall functions.

All the comparisons are presented using dimensionless variables. The non-
dimensional magnitude of the velocity field is obtained using the following
quantity

u0 =
√
βg∆TL, (3.2)

where β is the coefficient of thermal expansion, g is the gravitational acceler-
ation, ∆T is the temperature difference between the vertical walls, and L is
the side length of the cavity. Thus, the non-dimensional velocity is given by

U+ =
√
u2 + v2

u0
, (3.3)

3.3. Simulation Results 141

where u is the horizontal component and v is the vertical component of
the velocity field. Using this velocity reference value u0, the dimensionless
turbulent kinetic energy can be computed as

k+ = k
u2

0
2

= 2k
βg∆TL . (3.4)

The non-dimensional temperature field is given by

Θ+ = T − Tcold
∆T , (3.5)

where ∆T = Thot − Tcold. Given both the velocity reference value (3.2) and
the temperature difference, the components of the turbulent heat flux are
non-dimensionalized as

⟨u′T ′⟩+ = ⟨u
′T ′⟩

u0∆T
. (3.6)

3.3.1 FEMuS Results

This section presents the results obtained for the three simulated cases using
the improved turbulence model described in Chapter 1. The governing equa-
tion used in these simulations are the RANS equations with the introduction
of the Oberbeck-Boussinesq approximation for modeling the buoyancy forces.
In particular, the system of equations solved by FEMuS code is as follows

∂⟨ui⟩
∂xi

= 0 , (3.7)

D⟨ui⟩
Dt

= −1
ρ

∂⟨p⟩
∂xi

+ ∂

∂xj

[
ν

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)
− ⟨u′

iu
′
j⟩
]
− giβ⟨T ⟩ , (3.8)

D⟨T ⟩
Dt

= ∂

∂xi

(
α
∂⟨T ⟩
∂xi

− ⟨u′
iT

′⟩
)
. (3.9)

The model used to compute the Reynolds stress tensor and the turbulent heat
flux are the EASM and EAHFM presented in Chapter 1. These models use
the expressions for ⟨u′u′⟩ and ⟨u′T ′⟩, as detailed in (1.213) and (1.237). The
turbulence model includes the logarithmic four-parameter turbulence model,
K − Ω − Kθ − Ωθ, as shown in (1.246), (1.247), (1.249) and (1.250). The
boundary conditions for the dynamic turbulent variables over all the four

142 Chapter 3. Turbulent Natural Convection of Liquid Metals

walls of the cavity are

∂K

∂x
= 2
δ
,

Ω = ln
(

2ν
Cµδ2

)
,

(3.10)

where δ is the wall distance. On the other hand, the thermal turbulent
variables have the following boundary conditions on the vertical walls, where
the temperature field is fixed

∂Kθ

∂x
= 2
δ
,

Ωθ = ln
(

2α
Cµδ2

)
,

(3.11)

while homogeneous boundary conditions are imposed over the adiabatic walls.
The results are compared with available literature data and the previous

version of the turbulence model. This older model uses the formulations for
the Reynolds stress tensor and the turbulent heat flux described in [145]. The
results of the improved model are referred to as New A4P and the ones of
the older version of the model are indicated as A4P .

Simulation 1

Simulation 1 refers to the case reported in [143] which provides DNS results
for Pr = 0.0210 and Ra = 3.78×106. The benchmark profiles of the variables
are provided along the non-dimensional coordinate x+ = x/L at two different
y+ = y/L positions: at y+ = 0.5, corresponding to the middle of the cavity,
and at y+ = 0.75, corresponding to the upper part of the cavity.

Figure 3.9 shows the dimensionless magnitude of the velocity field of Sim-
ulation 1 at both y+ positions. The profile on the left illustrates the velocity
at y+ = 0.5, while the plot on the right displays the results at y+ = 0.75. The
non-dimensional velocity is reported, and the A4P results are compared with
the New A4P results. As observed, the new model significantly improves
the prediction of the velocity field. The enhancements that the implemented
model provides are evident, particularly in the peak values of the velocity
magnitude, which are otherwise underestimated in the A4P . This behavior
can be attributed to the earlier model’s overestimation of the components of
the Reynolds stress tensor.

3.3. Simulation Results 143

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.1

0.2

0.3

0.4

0.5

U
+

DNS

A4P

New A4P

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.1

0.2

0.3

0.4

0.5

U
+

DNS

A4P

New A4P

Figure 3.9: Comparison between DNS (circle markers), A4P and New A4P
simulations of the non-dimensional magnitude of velocity field along x+ co-
ordinates at different heights: y+ = 0.5 on the left, y+ = 0.75 on the right.

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.00

0.02

0.04

0.06

0.08

k
+

DNS

A4P

New A4P

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.00

0.02

0.04

0.06

0.08

0.10

0.12

k
+

DNS

A4P

New A4P

Figure 3.10: Comparison between DNS (circle markers), A4P and New A4P
simulations of the non-dimensional turbulent kinetic energy field along x+

coordinates at different heights: y+ = 0.5 on the left, y+ = 0.75 on the right.

The aforementioned overestimation is reflected in the values of the tur-
bulent kinetic energy, as shown in Figure 3.10. The left image in the figure
shows the plot of the non-dimensional k along x+ at the center of the cavity,
while the right image displays the plot at a height of y+ = 0.75. As observed
from the k profiles, the old version tends to overestimate these values at both
y+ locations, particularly in the central region of the cavity. The prediction
of turbulent kinetic energy profiles appears to be more accurate when the
buoyancy contribution is included in the Reynolds stress tensor and the tur-
bulent heat flux models. However, the New A4P FEMuS turbulence model
predicts a peak in turbulent kinetic energy that is shifted closer to the ver-
tical walls. This inaccuracy suggests that the modeling of turbulent kinetic

144 Chapter 3. Turbulent Natural Convection of Liquid Metals

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

DNS

A4P

New A4P

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

DNS

A4P

New A4P

0.0 0.2 0.4 0.6 0.8 1.0

x+

0

1

2

3

4

5

6

〈u
′ T
′ 〉+

×10−3

DNS

A4P

New A4P

0.0 0.2 0.4 0.6 0.8 1.0

x+

0

2

4

6

8
〈u
′ T
′ 〉+

×10−3

DNS

A4P

New A4P

0.0 0.2 0.4 0.6 0.8 1.0

x+

−8

−6

−4

−2

0

2

4

6

〈v
′ T
′ 〉+

×10−3

DNS

A4P

New A4P

0.0 0.2 0.4 0.6 0.8 1.0

x+

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

〈v
′ T
′ 〉+

×10−2

DNS

A4P

New A4P

Figure 3.11: Comparison between DNS (circle markers), A4P , and New A4P
simulations of the non-dimensional temperature (top) and turbulent heat flux
components (center and bottom) along x+ coordinates at different heights:
y+ = 0.5 on the left, y+ = 0.75 on the right.

energy and its dissipation may require further corrections.
The thermal fields are shown in Figure 3.11, with the left group displaying

the values at the middle of the cavity and the right group presenting the
plots at three-quarters of the cavity height. The results indicate that the new
version of the model provides better predictions for both the temperature field

3.3. Simulation Results 145

and the turbulent heat flux components. The temperature field computed
by New A4P shows evident improvements in predicting the profile in the
upper part of the cavity. The additional term in Equations (1.213) and
(1.237), introduced to account for buoyancy effects, significantly improves
the accuracy of the profile predictions, particularly in capturing the shape
and trend of the profiles.

Simulation 2 and 3

In this section, the results obtained for Simulations 2 and 3 are presented.
The comparison includes the New A4P , the A4P , the data obtained by
Mohamad and Viskanta [144] using a three-dimensional low Reynolds number
k − ε model, as well as experimental data from Viskanta et al. [140] for
Simulation 2 and from Wolff et al. [139] for Simulation 3. Figure 3.12 shows

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

y+ = 0.5

y+ = 0.0

y+ = 1.0

Viskanta et al.

Mohamad et al.

A4P

New A4P

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

y+ = 0.5

y+ = 0.1

y+ = 0.9

Wolff et al.

Mohamad et al.

A4P

New A4P

Figure 3.12: Non-dimensional temperature profiles at different cavity heights:
comparison between A4P and New A4P results and reference data from [140]
(circle) and [144] (diamond) for Simulation 2 (left) and from [139] (circle) and
[141] (diamond) for Simulation 3 (right).

the results for Simulation 2 on the left and for Simulation 3 on the right. The
non-dimensional temperature profiles are reported along x+ coordinates for
different cavity heights. According to the available reference data, Simulation
2 shows the temperature profiles at the bottom and top wall, y+ = 0.0 and
y+ = 1.0, respectively, and the plot at y+ = 0.5, corresponding to the middle
plane of the cavity. On the contrary, Simulation 3 provides results for values
of the non-dimensional y−coordinate equal to 0.1, 0.5 and 0.9. As observed,
in both simulations, the results from both models show better alignment

146 Chapter 3. Turbulent Natural Convection of Liquid Metals

with the simulation data by Mohamad and Viskanta [144] compared to the
experimental data. In Simulation 2, the improvements introduced by the
new model are particularly evident along the middle line of the cavity when
compared to the reference simulation [144]. The profiles obtained with New
A4P are more accurate than those of A4P also at the top and bottom walls,
although the differences are relatively small. For Simulation 3, the differences
between the two models are more pronounced in the upper and lower parts
of the cavity, while in the middle region, the results from both models appear
to be very similar.

3.3.2 OpenFOAM Results
This section provides a comparison between the simulations obtained using
the available built-in turbulence models of OpenFOAM. The governing equa-
tions solved by OpenFOAM are as follows

∂⟨ui⟩
∂xi

= 0 , (3.12)

D⟨ui⟩
Dt

= −1
ρ

∂⟨p⟩
∂xi

+ ∂

∂xj

[
(ν + νt)

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)]
− giβ⟨T ⟩ , (3.13)

D⟨T ⟩
Dt

= ∂

∂xi

[
(α + αt)

∂⟨T ⟩
∂xi

]
. (3.14)

where νt is the turbulent viscosity and αt is the turbulent diffusivity. As can
be seen, the Reynolds stress tensor and the turbulent heat flux in OpenFOAM
are modeled using the Boussinesq approximation, which assumes a linear
relationship between the Reynolds stresses and the mean velocity gradients,
and between the turbulent heat flux and the temperature gradient. Moreover,
OpenFOAM code adopts the Reynolds analogy to determine the turbulent
diffusivity as

αt = νt
Prt

. (3.15)

where turbulent Prandtl number is taken as constant. This approximation
relates momentum transfer to heat transfer, enabling the modeling of the
turbulent heat flux based on the velocity field.

The simulations are conducted by comparing four different built-in tur-
bulence models available in OpenFOAM. Two of these models are based on
the turbulent kinetic energy and its dissipation rate, namely kEpsilon and
RNGkEpsilon. The kEpsilon model is a standard turbulence model widely

3.3. Simulation Results 147

used for general-purpose simulations based on the standard Jones and Laun-
der formulation [22], while RNGkEpsilon is derived from the Renormalization
Group theory by Yakhot and Orszag [26], enhancing its accuracy for flows
with rapid strain and swirl effects. Both models have been presented in
the first Chapter in 1.3.3. The other two models are based on the turbu-
lent kinetic energy and its specific dissipation rate, referred to as kOmega and
kOmegaSST. The kOmega model is well-suited for flows near walls and provides
accurate results in boundary layers, and is based on the Wilcox formulation
[28] presented in Section 1.3.3. The kOmegaSST model combines the strengths
of kOmega in near-wall regions and kEpsilon in free-stream regions, making it
effective across a wide range of flow conditions. This model is an extension of
the Wilcox k-ω formulation, incorporating the blending approach introduced
by Menter [33] in his Shear Stress Transport (SST) model. The detailed
model is presented in 1.3.3.

For turbulent variables, the boundary conditions on the vertical walls of
the cavity are the built-in boundary conditions implemented in OpenFOAM.
In particular, for the k variable, kqRWallFunction has been chosen, while
omegaWallFunction and epsilonWallFunction have been used for ω and ε,
respectively. On the other two walls, a zeroGradient boundary condition
has been applied. The other parameters of the OpenFOAM simulation are
discussed in Appendix B.

Simulation 1

The results obtained using the OpenFOAM code for the Simulation 1 case
are presented in the following. Figure 3.13 illustrates the non-dimensional
velocity magnitude at the top, the non-dimensional temperature field in the
center, and the turbulent kinetic energy at the bottom, for both y+ values: 0.5
on the left and 0.75 on the right. As observed, all four simulations show good
agreement with DNS in predicting the velocity magnitude. However, the k−
ω-based model slightly overestimates the velocity peak, while the k−ε-based
models underestimate it. The temperature profiles present similar trends
for all the models. In particular, along the line in the middle of the cavity,
the k − ω models provide better results compared to the k − ε models. At
y+ = 0.75, the temperature profiles show good agreement compared to DNS
data. As observed for the FEMuS simulation results, none of the turbulent
models employed accurately captures the behavior of the turbulent kinetic
energy. All models overestimate the values in the central part of the cavity

148 Chapter 3. Turbulent Natural Convection of Liquid Metals

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

U
+

DNS

kEpsilon

RNGkEpsilon

kOmega

kOmegaSST

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

U
+

DNS

kEpsilon

RNGkEpsilon

kOmega

kOmegaSST

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

DNS

kEpsilon

RNGkEpsilon

kOmega

kOmegaSST

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

DNS

kEpsilon

RNGkEpsilon

kOmega

kOmegaSST

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.00

0.01

0.02

0.03

0.04

k
+

DNS

kEpsilon

RNGkEpsilon

kOmega

kOmegaSST

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.00

0.01

0.02

0.03

0.04

k
+

DNS

kEpsilon

RNGkEpsilon

kOmega

kOmegaSST

Figure 3.13: Comparison between DNS (circle markers) and the four Open-
FOAM simulations of the non-dimensional velocity magnitude (top), temper-
ature (center), and turbulent kinetic energy (bottom) along x+ coordinates
at different heights: y+ = 0.5 on the left, y+ = 0.75 on the right.

for both cavity heights and tend to underestimate the peak values. However,
unlike FEMuS, it offers more accurate predictions of the peak’s distance from
the wall.

3.3. Simulation Results 149

Simulation 2 and 3

The results obtained for both Simulation 2 and Simulation 3 are presented
in this section. Based on the outcomes of Simulation 1, the kEpsilon and
kOmegaSST models were excluded from further analysis, as they provided less
accurate predictions of the main fields. Consequently, Simulations 2 and 3
were carried out using the RNGkEpsilon and kOmega models only, and the
results were compared with the reference data. In Figure 3.14, the non-
dimensional temperature profiles are shown for Simulation 2 (left) and Sim-
ulation 3 (right). Overall, both models align more closely with the reference

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

y+ = 0.5

y+ = 0.1

y+ = 0.9

Wolff et al.

Mohamad et al.

kOmega

RNGkEpsilon

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

y+ = 0.5

y+ = 0.0

y+ = 1.0

Viskanta et al.

Mohamad et al.

kOmega

RNGkEpsilon

Figure 3.14: Non-dimensional temperature profiles at different cavity heights:
comparison between RNGkEpsilon and kOmega results and reference data
from [140] (circle) and [144] (diamond) for Simulation 2 (left) and from [139]
(circle) and [141] (diamond) for Simulation 3 (right).

data from [144] than with the experimental data, similar to the observations
made with the FEMuS results.

3.3.3 Coupling Application Results
Both FEMuS and OpenFOAM codes show several weaknesses in predicting
the variable profiles. FEMuS performs better in simulating the thermal fields,
whereas OpenFOAM demonstrates good agreement in simulating the velocity
field. These deficiencies in both codes may arise from the imperfect prediction
of the strongly coupled fields. Thus, many questions may arise. What would
the resulting temperature field be like in FEMuS using the more accurate
velocity field provided by OpenFOAM? Could the velocity profile predicted

150 Chapter 3. Turbulent Natural Convection of Liquid Metals

by OpenFOAM improve by using the more accurate thermal turbulent model
implemented in FEMuS? Exploring these possibilities could help address the
observed discrepancies and enhance the overall predictive accuracy of the
simulations.

For this reason, the third simulation performed for the first case (Pr =
0.021 and Ra = 3.78×106) [143] employs the volume data transfer algorithm
described in Chapter 2. Figure 3.15 reports the coupling scheme implemented
for this application. FEMuS is used to solve the thermal fields, while Open-
FOAM is employed to solve the dynamic fields. In particular, the FEMuS
code solves for T , Kθ, Ωθ, and the turbulent heat flux components, whereas
OpenFOAM handles the velocity field, the turbulent kinetic energy, and its
specific dissipation using the k − ω model. The coupling application is used

OpenFOAM FEMuS

Fluid solver:

u

Turbulent model:

k - ω

Temperature solver:

T

Turbulent model:

Kθ - Ωθ - ⟨u′T ′⟩

MED
Data Transfer

T

u

k − ω

Figure 3.15: Schematic representation of the coupling algorithm for the vol-
ume data transfer application in the turbulent cavity case.

to exchange the fields between FEMuS and OpenFOAM following Algorithm
1. FEMuS provides the temperature field to OpenFOAM, which uses it to
compute the buoyancy term in the Navier-Stokes equation. In turn, Open-
FOAM supplies the velocity field and both dynamic turbulent variables, k
and ω.

In the following, the results of the coupling application, here referred to
as Coupled k−ω, have been compared with the DNS data and the monolithic
solver solutions, the results from theNew A4P obtained with FEMuS and the

3.3. Simulation Results 151

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.1

0.2

0.3

0.4

0.5

0.6
U

+

DNS

kOmega

New A4P

Coupled k − ω

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.1

0.2

0.3

0.4

0.5

U
+

DNS

kOmega

New A4P

Coupled k − ω

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.00

0.01

0.02

0.03

0.04

k
+

DNS

kOmega

New A4P

Coupled k − ω

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.00

0.01

0.02

0.03

0.04

0.05

k
+

DNS

kOmega

New A4P

Coupled k − ω

Figure 3.16: Comparison between DNS (circle marker), coupling applica-
tion and monolithic simulations of the non-dimensional velocity magnitude
(top) and turbulent kinetic energy (bottom) along x+ coordinates at different
heights: y+ = 0.5 on the left, y+ = 0.75 on the right.

k−ω model from OpenFOAM. The profiles of the variables are plotted against
the non-dimensional x−direction at two different heights of the cavity: y+ =
0.5 and y+ = 0.75. To quantify the discrepancies between the simulation
profiles and the DNS data, the Root Mean Square Error (RMSE) is calculated
as

RMSE =

√√√√ 1
N

N∑
i=1

(ϕi − ϕ∗
i)2, (3.16)

where ϕi represents the simulation results and ϕ∗
i corresponds to the DNS

data at each point i. Additionally, the accuracy of the results are further
evaluated using the Normalized RMSE (NRMSE), which is computed by
dividing the RMSE by the range of the DNS data

NRMSE = RMSE

ϕ∗
max − ϕ∗

min

, (3.17)

where ϕ∗
max and ϕ∗

min are the maximum and minimum values of the DNS

152 Chapter 3. Turbulent Natural Convection of Liquid Metals

data.

Coupled k − ω kOmega New A4P

y+ = 0.5 RMSE 0.0240 0.0306 0.0327
NRMSE 0.0435 0.0555 0.0594

y+ = 0.75 RMSE 0.0296 0.0346 0.0484
NRMSE 0.0556 0.0650 0.0908

Table 3.2: RMSE and NRMSE for dimensionless velocity magnitude, U+.

Figure 3.16 illustrates the dimensionless velocity profile (top) and the tur-
bulent kinetic energy (bottom). Regarding U+, both monolithic code solu-
tions produce results consistent with the DNS profiles. The FEMuS solution
tends to underestimate the velocity peak, while OpenFOAM slightly over-
estimates it. The coupling application provides results in good agreement
with DNS data, with improvements over monolithic OpenFOAM solver pre-
diction. In particular, the velocity peak and the velocity at the center of the
cavity, where the flow is nearly stationary, are accurately predicted. However,
in the transition region between the peak and the center of the cavity, the
coupled simulation still shows some deviation from the DNS profile. Table
3.2 reports the RMSE and NRMSE values for U+. The error in the coupled
simulations is lower than that of the FEMuS and OpenFOAM solutions for
both y+ values.

Coupled k − ω kOmega New A4P

y+ = 0.5 RMSE 0.0085 0.0104 0.0056
NRMSE 0.201 0.246 0.134

y+ = 0.75 RMSE 0.0083 0.0103 0.0121
NRMSE 0.189 0.232 0.275

Table 3.3: RMSE and NRMSE for dimensionless turbulent kinetic energy,
k+.

Regarding the turbulent kinetic energy, as illustrated in Figure 3.16, FE-
MuS and OpenFOAM produce appreciably different results. In particular,
FEMuS provides a k profile that better matches the DNS data, especially in
the central part of the cavity, while OpenFOAM offers a more accurate pre-
diction of the peak location. In the coupled application, the model used for

3.3. Simulation Results 153

k is based on OpenFOAM, and thus, the solution closely follows the Open-
FOAM results for both y+ values. The peak of k is encouragingly maintained
in the correct wall distance compared to the FEMuS results, providing a bet-
ter prediction of its position. Moreover, the value of the peak increases from
the OpenFOAM monolithic solution. Table 3.3 reports the overall errors.
As expected, the slightest deviation from the DNS data is observed for the
FEMuS solution. However, the k values predicted by OpenFOAM show an
improvement when using the same turbulent model in the coupling applica-
tion.

Coupled k − ω kOmega New A4P
y+ = 0.5 RMSE 0.0214 0.0254 0.0275
y+ = 0.75 RMSE 0.0116 0.0389 0.0119

Table 3.4: RMSE for dimensionless temperature, θ+.

In Figure 3.17, the profiles of the simulated thermal field are displayed.
The RMSE values for the temperature solutions are provided in Table 3.4,
while RMSE and NRMSE for the turbulent heat flux components are reported
in Table 3.5. As shown in Figure 3.17 (top) and Table 3.4, the temperature
profile is well-estimated by the coupled application. The prediction of the
non-dimensional temperature has been improved compared to both mono-
lithic solutions for both y+ values.

Coupled k − ω New A4P
⟨u′T ′⟩ ⟨v′T ′⟩ ⟨u′T ′⟩ ⟨v′T ′⟩

y+ = 0.5 RMSE 0.0010 0.0011 0.0009 0.0012
NRMSE 0.2330 0.1683 0.1929 0.1842

y+ = 0.75 RMSE 0.0019 0.0010 0.0018 0.0012
NRMSE 0.1888 0.1210 0.1813 0.1369

Table 3.5: RMSE and NRMSE for dimensionless turbulent heat flux, ⟨u′T ′⟩.

The turbulent heat flux profiles are shown in Figure 3.17 (center and bot-
tom), and the corresponding errors are reported in Table 3.5. At y+ = 0.5,
both components show a reduced range between their minimum and max-
imum values. In particular, the FEMuS monolithic solution tends to over-
estimate the maximum and underestimate the minimum of ⟨v′T ′⟩, whereas
the coupled simulation smooths the profile by reducing the maximum and

154 Chapter 3. Turbulent Natural Convection of Liquid Metals

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

DNS

kOmega

New A4P

Coupled k − ω

0.0 0.2 0.4 0.6 0.8 1.0

x+

0.0

0.2

0.4

0.6

0.8

1.0

θ+

DNS

kOmega

New A4P

Coupled k − ω

0.0 0.2 0.4 0.6 0.8 1.0

x+

0

1

2

3

4

〈u
′ T
′ 〉+

×10−3

DNS

New A4P

Coupled k − ω

0.0 0.2 0.4 0.6 0.8 1.0

x+

0

2

4

6

8
〈u
′ T
′ 〉+

×10−3

DNS

New A4P

Coupled k − ω

0.0 0.2 0.4 0.6 0.8 1.0

x+

−1

0

1

2

3

4

5

6

〈v
′ T
′ 〉+

×10−3

DNS

New A4P

Coupled k − ω

0.0 0.2 0.4 0.6 0.8 1.0

x+

−2

0

2

4

6

8

〈v
′ T
′ 〉+

×10−3

DNS

New A4P

Coupled k − ω

Figure 3.17: Comparison between DNS (circle markers), coupling application
and monolithic simulations of the non-dimensional temperature (top) and
turbulent heat flux components (center and bottom) along x+ coordinates at
different heights: y+ = 0.5 on the left, y+ = 0.75 on the right.

raising the minimum values. As regard the normal component of the turbu-
lent heat flux, the peak values predicted by the coupling application deviate
further from the DNS reference data. In the upper part of the cavity, the
results remain largely unchanged compared to the monolithic solutions. As
shown in Table 3.5, the errors in the turbulent flux components remain nearly

3.3. Simulation Results 155

unchanged compared to the monolithic solutions.
We now introduce the results for the skin friction coefficient and the

Nusselt number. The skin friction coefficient Cf is defined as

Cf = 1
2
√
Gr

∂⟨v⟩
∂x

, (3.18)

where ⟨v⟩ is the vertical component of the mean velocity field. The average
Nusselt number has been computed as the integral of the local Nusselt number
in (2.21) over the hot wall. Table 3.6 presents the skin friction coefficient and

Coupled k − ω kOmega New A4P [143]
Value Error Value Error Value Error Value

Cf 0.098 10.90% 0.083 24.92% 0.076 30.81% 0.110
Nu 7.756 2.44% 8.440 6.17% 7.682 3.37% 7.950

Table 3.6: Skin friction coefficient and Nusselt number values and errors.

the Nusselt number for the three simulations, along with their error values.
Despite the high error in predicting Cf , the coupled simulation demonstrates
a considerable improvement with respect to both the monolithic solutions.
Moreover, the Nusselt number error, which was already low has been further
reduced to 2.44%. By combining the dynamic solver of OpenFOAM with
the more accurate thermal turbulence model of FEMuS, both Cf and Nu

predictions are improved.

Chapter 4

Liquid Metal Heat Exchanger

The Ph.D. project, as part of the PON Research and Innovation program,
involves a collaborative initiative with Nier Ingegneria S.p.A., a technical
consultancy company that offers various services in the field of integral sus-
tainability. The company has expertise in several areas, including Systems
Engineering, Sustainability, Occupational Safety, and Software Engineering.
The collaboration was carried out with the System Engineering Area team,
which provides specialized technical consulting services in various fields, such
as fusion energy.

The collaboration takes place in the context of urgent climate change, a
challenge that demands a significant transition towards the use of sustainable
energy sources. Among these, solar energy stands out as one of the most
important renewable resources. Over the years, advances in solar energy
technology have boosted the development of increasingly efficient systems to
generate heat and electricity. One notable advancement has been inspired by
projects such as NEXTower [9], which has led to the use of liquid metals as
heat transfer fluids in Concentrated Solar Power systems operating at high
temperatures [10, 11]. This development draws on the experience gained in
the design of IV-generation nuclear reactors and nuclear fusion reactors. The
synergy between nuclear reactor design and CSP technology fields provides
a robust foundation for creating high-efficiency energy systems that operate
with liquid metals. The use of liquid metals, including lead and its alloys, as

158 Chapter 4. Liquid Metal Heat Exchanger

heat transfer fluids and thermal storage fluids could enable energy systems to
increase their operating temperature and, thus, plant efficiency. Therefore,
it is essential to accurately predict the fluid dynamics and thermal behavior
of these fluids, particularly under turbulent flow regimes.

This chapter presents the collaboration project with Nier Ingegneria S.p.A.
and focuses on analyzing various approaches for the numerical simulation of
a realistic PbLi-air heat exchanger designed by the company. The study aims
to improve the accuracy of predictions beyond the zero-dimensional approach
used by the company in heat exchanger design. The study begins with a de-
scription of the heat exchanger, including its design constraints imposed by
the prototype requirements. The analysis proceeds with simulations of the
turbulent flow of the lead-lithium alloy (PbLi) using different numerical meth-
ods. These approaches are compared to the original design parameters and
validated by comparing them with Direct DNS results to assess their accu-
racy and reliability. In addition, the chapter explores a numerical simulation
of the tube-and-fin assembly of the heat exchanger, where the interaction be-
tween the fins and the air is modeled as a porous medium. Finally, the study
addresses the conjugate heat transfer problem by building a comprehensive
simulation framework. This configuration involves coupling fluid and solid
domains using the boundary data transfer algorithm as described in Chapter
2.

4.1 Description of the Heat Exchanger
The analyzed PbLi-air heat exchanger is part of the International Thermonu-
clear Experimental Reactor (ITER) Test Blanket Modules (TBMs), which are
designed to evaluate tritium breeding concepts and heat extraction technolo-
gies for fusion power plants. The results from the TBM program will directly
contribute to the design of DEMO, the demonstration fusion power plant
that will succeed ITER [146, 147, 148]. The TBMs in ITER require several
ancillary systems to ensure their proper operation, monitoring, and integra-
tion within the reactor. These supporting systems handle cooling, tritium
production and extraction, neutron diagnostics, and safety functions [149].
Among them, the Lead-Lithium loop is a crucial system in some TBMs and
serves as both a breeder material to generate tritium (T) via neutron inter-
actions with lithium and a coolant to extract heat from the TBM. In the
normal operational state of the PbLi loop, the liquid metal flow returns from

4.1. Description of the Heat Exchanger 159

Figure 4.1: Geometry of the PbLi loop cooler.

the TBM module at a temperature of around 673 K, with a mass flow rate
in the experimental range of 0.2 − 1.0 kg/s. The PbLi alloy is then heated
to 723 K and enters the TEU (Tritium Extraction Unit), which extracts tri-
tium from the liquid metal into a gas phase. Downwards, a heat exchanger
cools down the PbLi to 573 K, this is done through a double cooling system
consisting of a closed air circuit (primary coolant) and a water cooling con-
nected to the ITER CCWS (Component Cooling Water System). After that,
part of the PbLi flow enters the cold trap (CT) for alloy purification, while
the remaining part is directly sent to the storage tank which also acts as a
draining system.

The PbLi loop heat exchanger model is shown in Figure 4.1. The system
consists of a closed outer casing that directs airflow from the lower chamber,
where the fan is located, to the upper section, which houses the tube bundle
that forms the heat exchanger. The airflow first passes through the tube
bundle on the left, where it extracts heat from the PbLi, cooling the liquid
metal. It then flows through a cooling coil, where it is further cooled by the
external water circuit.

This cooling system must ensure that the PbLi flow meets the required
conditions at the TBM inlet while maintaining a sufficient margin above the
PbLi freezing temperature throughout the entire loop. Regarding the lower
limit (safety margin), PbLi outlet temperatures below the design constraints
can be considered acceptable. In fact, the coldest region in the loop is not
the outlet of the heat exchanger but rather the CT outlet pipe, where PbLi

160 Chapter 4. Liquid Metal Heat Exchanger

reaches 526 K, which is 16 K above the freezing point [150]. Moreover, to
prevent the temperature from dropping further, heating cables will be acti-
vated to maintain a safe operating margin. For these reasons, the analysis of
the heat exchanger performance serves to verify that the upper limit (TBM
inlet temperature) is satisfied, while lower temperatures can be considered
acceptable as long as they remain above the solidification temperature.

In the following, the heat exchanger’s performance analysis focuses only
on its critical section, which is the interaction between the PbLi flow pipe
and the air. This section of the heat exchanger involves a non-conventional
fluid, the lead-lithium alloy, whose thermal performance requires particular
attention for the sizing of the system in Figure 4.1.

4.1.1 Constraints and properties of the PbLi-air heat
exchanger

According to the constraints, the cooler system of the PbLi loop is designed to
reduce the temperature of the PbLi alloy flow from 723 K to 573 K, achieving
a temperature reduction of 150 K. The mass flow rate of the liquid metal is
set at 0.63 kg/s, corresponding to the thermal power extraction of 17870 W.
This cooling is accomplished using an airflow that externally sweeps the pipe
with a mass flow rate of 1.517 kg/s. The air temperature is set to 333 K, and
it absorbs the heat from the liquid metal as it flows through the tube. As
seen in Figure 4.1, the PbLi-air heat exchanger consists of a single pipe with
a hydraulic diameter of Dh = 0.03 m and a length of L = 0.6 m. The pipe
is made of EUROFER (EUROpean FERritic-martensitic steel) [151] with a
thickness of 0.004 m and is covered by 120 copper fins, each with an average
length of 0.014 m. The schematic of the PbLi-air heat exchanger is shown in
Figure 4.2, and the design parameters are summarized in Table 4.1 on the
left. The figure shows the internal tube where the liquid metal flows from the
inlet (on the left) to the outlet (on the right), the EUROFER pipe confining
the liquid metal flow, and the copper fins on the outside. The airflow is in a
cross-current configuration against the tube.

Table 4.1 on the right reports the physical properties of the materials used
in the following simulations. In particular, the properties of the liquid metal
refer to the Pb-rich eutectic alloy Pb-16Li (16 at.% Li) at the operational tem-
perature of 648 K [150]. EUROFER is a low-carbon ferritic-martensitic steel
optimized for resistance to neutron irradiation damage [151]. Its thermophys-

4.1. Description of the Heat Exchanger 161

Ta,in

Ta,outTPbLi,in

TPbLi,out

Figure 4.2: Schematic representation of the PbLi-air heat exchanger.

Design Parameter
TPbLi,in 723 K
TPbLi,out 573 K
ṁPbLi 0.63 kg/s
Tair,in 333 K
ṁair 1.517 kg/s

Properties
Material ρ [kg

m3] λ [W
mK] c [J

kgK] µ [Pa s]
PbLi 9749 21.9 189.1 0.0017
Air 1.225 0.0292 1008.2 0.00002
EUROFER 7798 28.8 512.70 -
Copper 8933 401 385 -

Table 4.1: Design constraints of the heat exchanger and physical properties
of the involved material.

ical properties are reported at temperatures corresponding to the operating
temperature of the liquid metal.

4.1.2 Zero-dimensional analysis

According to the company’s design, the PbLi-air heat exchanger has been
modeled using an electrothermal analogy, where thermal resistances corre-
spond to electrical resistor components. Figure 4.3 illustrates the scheme of
thermal resistance acting on the heat exchanger system. The model com-
prises a series of two resistances and a block of resistance in parallel. The
first resistance is associated with the thermal convection of the liquid metal

162 Chapter 4. Liquid Metal Heat Exchanger

RPbLi REU
Rfins

REU,air Rfins,air

RPbLi REU

REU,air

Rfins Rfins,air

TPbLi TEUin

TEUout

Tair

Tfins

Figure 4.3: Schematic representation of the thermal resistance analogy.

to the pipe wall, labeled by RPbLi. The thermal resistance for convection
heat transfer is expressed as

RPbLi = 1
hA

, (4.1)

where h is the heat transfer coefficient at the pipe wall, and A is the exchange
surface, which corresponds to the internal surface area of the pipe. The liquid
metal heat transfer coefficient has been computed as h = λNu/Dh using the
following experimental correlation for the Nusselt number [152]

Nu = 6.3 + 0.0167(RePr)0.89Pr0.08. (4.2)

The value is equal to 5704 W/(m2K), calculated for a Reynolds number of
1.57 × 104 and a Prandtl number of 0.0146. Consequently, the calculated
resistance is 0.0031 K/W. The conduction resistance introduced by the EU-
ROFER pipe is determined using the solution of Fourier’s equation for a
hollow cylinder. The thermal resistance is given by the following relation

REU = ln (re/ri)
2πλL , (4.3)

where re and ri are the external and internal radii of the pipe, λ is the thermal
conductivity of the material, and L is the pipe length. Given the thickness of

4.1. Description of the Heat Exchanger 163

the pipe, 0.004 m, the length of the pipe, 0.6 m, and the conductivity of the
EUROFER as in Table 4.1 the value of REU is equal to 0.0022 K/W. The
block of parallel resistances consists of three distinct resistances. REU,air, is
associated with convection between air and the EUROFER pipe and it as-
sumes the value of 0.123 K/W. It can be calculated using the same formula
as in (4.1), considering a value of 140.4 W/m2K for the heat transfer coeffi-
cient and a value of 0.058 m2 for the surface area of the pipe in contact with
the air. The heat transfer coefficient of the air sweeping the pipe has been
calculated as h = λNu/Dh using an empirical correlation for the Nusselt
number, known as Gnielinski correlation [153]. Thus, the Nusselt number
can be computed as

Nu = (f/2)(Re− 1000)Pr
1 + 12.7(f/2)1/2(Pr2/3 − 1) , (4.4)

where the Reynolds number for the air flow is 6.28× 104 and f is the Darcy
friction factor. This parameter has been calculated using the following ex-
perimental relationship

f = A+BRe−1/m, with A = 0.00128, B = 0.1143, m = 3.2154. (4.5)

REU,air is in parallel with two other resistances connected in series. The first is
Rfins, which corresponds to conduction within the fins. It has been calculated
with experimental correlation and assumes the value of 0.0022 K/W. The
second resistance, Rfins,air, corresponds to convection between air and the
surface of the fins. The external surface of the fins in contact with airflow is
0.630 m2 and the heat transfer coefficient is 140.4 W/m2K. As a result, the
value of Rfins,air is equal to 0.011 K/W.

The total thermal resistance calculated by the company’s design process
is expressed as follows

Rtot = 1
1

Rfins,air+Rfins
+ 1

REU,air

+REU +RPbLi = 0.0173 W/K, (4.6)

and the total thermal power extracted is

Q̇ = ∆T
Rtot

≃ 17873 W, (4.7)

where ∆T is the temperature difference between the mean temperature of
the liquid metal, TPbLi, and the mean temperature of the air, Tair. These

164 Chapter 4. Liquid Metal Heat Exchanger

mean temperatures are calculated as the averages of the inlet and outlet
temperatures of liquid metal and air.

The use of experimental relationships and analytical expressions results in
a total extracted thermal power that exactly matches the design constraint.
This outcome leaves no margin for uncertainty or safety factors, resulting in
non-conservative predictions. For these reasons, a CFD analysis has been
requested to validate or revise the current heat exchanger design. Compared
to the zero-dimensional approach, CFD simulations can offer more accurate
insights, particularly in estimating the heat transfer coefficient of the liquid
metal. By employing an appropriate numerical model for turbulent liquid
metal flow, it is possible to achieve a more precise prediction of the heat
transfer behavior than the algebraic value calculated in this section.

4.2 Lead-Lithium Simulation
The simulation of the lead-lithium alloy has been performed using both FE-
MuS and OpenFOAM monolithic turbulent codes. Considering the sym-

x

y

Γs

Γi

Γo

Γw

ri

L

Figure 4.4: Schematic representation of the computational domain for Lead-
Lithium flow simulation.

metry of the problem, the computational domain can be simplified. The
Lead-Lithium simulation was performed over the entire length of the pipe

4.2. Lead-Lithium Simulation 165

Figure 4.5: Refined mesh of a single cell along the length of the pipe, used for
the liquid metal flow simulation by FEMuS (left) and OpenFOAM (right).

but employed an axisymmetric configuration in FEMuS code and a wedge
configuration in OpenFOAM. Both strategies effectively represent the radial
symmetry of the simulation. The schematic representation of the geometry
has been reported in Figure 4.4. The simplification results in a 2D domain
for FEMuS defined as a rectangle with a base of ri = 0.015 m and a length of
L = 0.6 m. Similarly, OpenFOAM adopts a wedge geometry with a radius of
0.015 m and a length of 0.6 m. Figure 4.5 shows a single cell in y direction to
provide a clearer view of the radial mesh. It presents a cross-sectional slice
of the pipe, also highlighted in red in Figure 4.4. A refinement near the wall
has been adopted in both setups to guarantee that y+ remains lower than
1. In particular, the wall refinement ensures that the cell closest to the wall
has a width of 1 × 10−4 m. The computational mesh consists of 14792 cells
with 172 cells along the y direction and 86 along the radial direction for both
simulations.

Considering the operational temperature range, the thermal variation of
the physical properties is not expected to impact significantly on their values.
Thus, the liquid metal flow operates in a forced regime and the buoyancy
terms are neglected in all the governing equations. In particular, FEMuS
code uses the following RANS system of equation

∂⟨ui⟩
∂xi

= 0 , (4.8)

166 Chapter 4. Liquid Metal Heat Exchanger

D⟨ui⟩
Dt

= −1
ρ

∂⟨p⟩
∂xi

+ ∂

∂xj

[
ν

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)
− ⟨u′

iu
′
j⟩
]
, (4.9)

D⟨T ⟩
Dt

= ∂

∂xi

(
α
∂⟨T ⟩
∂xi

− ⟨u′
iT

′⟩
)
. (4.10)

The Reynolds stress tensor and the turbulent heat flux are computed using
EASM and EAHFM presented in Chapter 1. These models use the expres-
sions for ⟨u′u′⟩ and ⟨u′T ′⟩, as detailed in (1.213) and (1.237). The model
closure is obtained with the logarithmic four-parameter turbulence model,
K − Ω−Kθ − Ωθ, as shown in (1.246), (1.247), (1.249) and (1.250).

OpenFOAM solves for the RANS system of equations using the Boussi-
nesq hypothesis

∂⟨ui⟩
∂xi

= 0 , (4.11)

D⟨ui⟩
Dt

= −1
ρ

∂⟨p⟩
∂xi

+ ∂

∂xj

[
(ν + νt)

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)]
, (4.12)

D⟨T ⟩
Dt

= ∂

∂xi

[
(α + αt)

∂⟨T ⟩
∂xi

]
. (4.13)

The turbulent viscosity is computed with the kOmegaSST model, while the
turbulent diffusivity is derived through the Reynolds analogy with Prt =
0.85.

We base the simulation approach on the assumption that the lead-lithium
alloy flows through a pipe before entering the heat exchanger and reaches the
fully developed flow condition. With respect to the thermal field, the sim-
ulation is meant to model a developing flow. In a realistic scenario, the
flow enters the pipe at its maximum temperature and begins to cool as it
progresses along the pipe. This setup leads to the following boundary condi-
tions: for both codes, a no-slip boundary condition is applied to the velocity
field on the wall of the pipe Γw. To simulate fully developed flow, FEMuS
adopts pressure values as boundary conditions at both inlet and outlet (Γi
and Γo). These constraints create a sufficient pressure drop to achieve the
correct mass flow rate required by the setup. OpenFOAM, on the other hand,
employs mapped boundary conditions, where the outlet velocity is mapped
to the inlet boundary. Moreover, to guarantee a fully developed flow regime,
OpenFOAM imposes a constraint on the mean bulk velocity. In particular,
the imposition of a meanVelocityForce constraint and the setting of the
bulk velocity to 0.0914 m/s create the condition for the fully developed flow.

4.2. Lead-Lithium Simulation 167

In FEMuS, the symmetry condition imposed on the boundary along the ro-
tation axis, Γs, is a homogeneous Neumann boundary condition. In contrast,
OpenFOAM uses a wedge boundary condition for the front and back faces of
the wedge geometry.

For the temperature field, both codes set the inlet temperature to a uni-
form value of 723 K, representing the maximum temperature of the lead-
lithium alloy. At the pipe wall, a homogeneous heat flux boundary condition
is applied, with a value of q̇ = −315998 W/m2. This value corresponds to the
design specification provided by the company and represents the total thermal
power per unit surface area. A homogeneous Neumann boundary condition is
applied at the outlet for both codes, meaning that no heat escapes the simu-
lation domains through these boundaries. Symmetry conditions are imposed
on the remaining boundaries.

Regarding the turbulent variables, FEMuS applies zero-gradient bound-
ary conditions at both the inlet and outlet for all dynamic and thermal turbu-
lent quantities. On the wall boundary Γw, we impose the conditions specified
in 3.10 for k and ω, and in 3.11 for kθ and ωθ. In contrast, OpenFOAM ap-
plies mapped boundary conditions at the inlet and outlet, and on Γw it uses
the built-in kqRWallFunction and omegaWallFunction for k and ω, respec-
tively. The other parameters of the OpenFOAM simulation are discussed in
Appendix B.

4.2.1 Numerical Results

In this section, the results obtained with the CFD codes are presented. Con-
sidering the axisymmetry of the problem computed with FEMuS code, the
bulk velocity can be calculated as

ub =
∫ ri

0 ⟨u(r)⟩rdr∫ ri
0 rdr

, (4.14)

where u(r) is the streamwise component of the velocity vector, the only non-
zero velocity component. For the OpenFOAM code, ub can be computed
as an integral on any cross-sectional surface normal to the stream direction.
The pressure drop imposed in FEMuS code and the meanVelocityForce
constraint in OpenFOAM are set to achieve a bulk velocity of 0.0914 m/s.
This velocity corresponds to a mass flow rate of 0.63 kg/s, as required by the
design constraint.

168 Chapter 4. Liquid Metal Heat Exchanger

With respect to the thermal field, the heat flux applied to the wall bound-
ary is responsible for cooling the flow temperature from the inlet value to the
required outlet temperature. The bulk temperature at the outlet can be cal-
culated for FEMuS by considering the cylindrical configuration of the pipe
as follows

Tb,out =
∫ ri

0 ⟨T (r)⟩⟨u(r)⟩rdr∫ ri
0 ⟨u(r)⟩rdr . (4.15)

For OpenFOAM, the outlet bulk temperature can be calculated by applying
an integral on the outlet surface. Table 4.2 compares the simulation results
with the predicted analysis provided by the company. The temperature at
the pipe outlet, calculated using the FEMuS solver, is 573.1 K, while the
temperature obtained from the OpenFOAM solution is 572.6 K. These bulk
temperatures result in thermal power extraction values of 17860 W for FE-
MuS and 17916 W for OpenFOAM. The table reports also the mean wall

OpenFOAM FEMuS Prediction
Tb,out [K] 572.6 573.1 573
Q̇ [W] 17916 17860 17870
Tw [K] 594.42 589.6 -
Tb [K] 647.6 647.7 648

RPbLi [K/W] 0.0030 0.0032 0.0031
h [W/(m2K)] 5940 5431 5704

Nu 8.11 7.45 7.81

Table 4.2: Comparison between OpenFOAM and FEMuS results with the
predicted quantities.

temperature, Tw, the bulk temperature throughout the entire domain, Tb,
the convective thermal resistance, RPbLi, the heat transfer coefficient, h and
the Nusselt number, Nu. The thermal resistance has been computed using
(4.1), where h is calculated as h = q̇/(Tw − Tb).

4.2.2 DNS Comparison

This section presents a more detailed analysis of the dynamic fields. The
discussion of the dynamic behavior is feasible because the flow is fully devel-
oped. Moreover, given the forced convection nature of the flow, the non-fully
developed temperature profile has no impact on the velocity-related fields.

4.2. Lead-Lithium Simulation 169

As a result, we can provide a comprehensive comparison with the DNS data
in the literature. Several DNS reference databases have been created for pipe
flows, varying the friction Reynolds number (Reτ = uτδ/ν). Specifically, the
available DNS data correspond to the cases listed in Table 4.3. Each value of
Reτ is associated with a bulk Reynolds number (Reb), which is also detailed
in Table 4.3. The graph in Figure 4.6 presents the friction Reynolds numbers

Reb Reτ DNS
5300 181 [154, 155, 156]
5500 186 [157]
11700 360 [154]
19000 550 [154]
24580 685 [156]
37700 1000 [154]
44000 1140 [155, 156]

Table 4.3: Bulk Reynolds numbers and the corresponding friction Reynolds
numbers of the DNS cases in literature.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Reb
×104

200

400

600

800

1000

1200

R
e τ

Linear Regression: Reτ = 0.0249Reb + 61.3242

DNS

FEMuS

OpenFOAM

Figure 4.6: Regression line of the relationship between the bulk Reynolds
numbers and the corresponding friction Reynolds numbers (cross markers).
Values of the bulk Reynolds numbers computed by OpenFOAM (square
marker) and FEMuS (circular marker) simulations for the heat exchanger
case.

170 Chapter 4. Liquid Metal Heat Exchanger

against the bulk Reynolds numbers. The DNS data of Table 4.3 and the com-
putational results obtained using the FEMuS code and OpenFOAM. A linear
regression fit, expressed as Reτ = 0.0249Reb + 61.3242, is superimposed to
highlight the trend of the data set. For a bulk Reynolds number of 1.57×104,
the value of Reτ calculated using the FEMuS code is 459, corresponding to a
friction velocity of 0.00534, while the value computed by OpenFOAM is 389,
with a friction velocity of 0.00452. As shown in the Reτ -Reb plot the FEMuS
result aligns well with the linear trend. The precision in the accuracy of Reτ
gives confidence in the reliability of the model used to simulate turbulent
flow. The correctness of the FEMuS turbulence model is further confirmed
by the validation performed in [145]. In contrast, the OpenFOAM results
show a noticeable deviation from the linear regression line, suggesting that
these results cannot be considered an accurate prediction of the turbulent
flow.

A qualitative comparison can be performed between the DNS profile of
the dynamic fields and the results obtained with the two codes. Variables
are normalized using wall units, such as friction velocity, uτ , and kinematic
viscosity, ν. The friction velocity is used to normalize the velocity as

v+ = u

uτ
. (4.16)

The components of the Reynolds stress tensor and the turbulent kinetic en-
ergy are normalized as follows

⟨u′u′⟩+ = ⟨u
′u′⟩
u2
τ

, ⟨u′v′⟩+ = ⟨u
′v′⟩
u2
τ

, ⟨v′v′⟩+ = ⟨v
′v′⟩
u2
τ

, k+ = k

u2
τ

. (4.17)

All the variables are reported against the non-dimensional radial coordinates

x+ = ruτ
ν
. (4.18)

At the top of Figure 4.7 the non-dimensional velocity is reported, on the right
a zoom-in view is provided. The turbulent kinetic energy is displayed in the
center-left of the figure. For both variables the FEMuS and OpenFOAM
solutions are provided. In the middle right and bottom of Figure 4.7, the
Reynolds stress tensor components are reported exclusively for FEMuS code.
The solutions provided by FEMuS and OpenFOAM are indicated as PbLi (F)
and PbLi (OF). Comparisons have been made by plotting the DNS profiles for
the nearest lower and higher values of Reτ . The simulated case of the Lead-
Lithium flow represents an intermediate case between the DNS cases with

4.2. Lead-Lithium Simulation 171

0 100 200 300 400 500

x+

0

5

10

15

20

v
+

DNS, 360

A4P, 360

DNS, 550

A4P, 550

PbLi (F), 459

PbLi (OF), 459

0 100 200 300 400

x+

12

15

18

21

v
+

DNS, 360

A4P, 360

DNS, 550

A4P, 550

PbLi (F), 459

PbLi (OF), 459

0 100 200 300 400 500

x+

0.0

1.0

2.0

3.0

4.0

5.0

k
+

DNS, 360

A4P, 360

DNS, 550

A4P, 550

PbLi (F), 459

PbLi (OF), 459

0 100 200 300 400 500

x+

0.0

0.2

0.4

0.6

0.8
〈u
′ v
′ 〉+

DNS, 360

A4P, 360

DNS, 550

A4P, 550

PbLi, 459

0 100 200 300 400 500

x+

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

〈u
′ u
′ 〉+

DNS, 360

A4P, 360

DNS, 550

A4P, 550

PbLi, 459

0 100 200 300 400 500

x+

0.0

2.0

4.0

6.0

8.0

〈v
′ v
′ 〉+

DNS, 360

A4P, 360

DNS, 550

A4P, 550

PbLi, 459

Figure 4.7: Comparison of the simulated cases, PbLi (F) for FEMuS and PbLi
(OF) for OpenFOAM, with two DNS dataset (Reτ = 360 and Reτ = 550)
from [154] and the results from [145] (A4P) for non-dimensional velocity,
turbulent kinetic energy and non-dimensional components of the Reynolds
stress tensor.

172 Chapter 4. Liquid Metal Heat Exchanger

Reτ = 360 and Reτ = 550. Moreover, the corresponding solutions provided
by the validation in [145] are shown for further comparisons. These latter
simulations are labeled with the acronym A4P, which stands for ”anisotropic
four parameter”, referring to the turbulence model used.

The non-dimensional velocity and turbulent kinetic energy profiles demon-
strate good agreement with FEMuS solutions. For all the friction Reynolds
numbers, the numerical results of the A4P solutions for the dimensionless
velocity align perfectly with the reference data, and the new simulated case
fits well as an intermediate profile between the two DNS cases. A similar
observation can be made for k+, where the FEMuS solutions consistently
exhibit an overestimation of the near-wall peak in all cases. This suggests
that the new case solution is also likely to overestimate its corresponding
peak. However, the velocity profile computed using OpenFOAM shows a
slightly different trend, which may explain the observed discrepancy in fric-
tion velocity. Furthermore, the turbulent kinetic energy profile provided by
OpenFOAM significantly underestimates the near-wall peak and exhibits no-
table discrepancies compared to the DNS profile. The three components of
the Reynolds stress tensor for the PbLi case provide similar considerations for
the FEMuS simulation. The diagonal components, ⟨u′u′⟩+ and ⟨v′v′⟩+, show
some discrepancies compared to the reference data. In particular, ⟨u′u′⟩+
exhibits an overall overestimation, while ⟨v′v′⟩+ tends to overestimate only
the peak of the profile, providing satisfactory agreement in the bulk region.
The new simulated case follows similar profiles for both variables. The off-
diagonal component, ⟨u′v′⟩+, on the other hand, aligns perfectly with the
simulation results of the A4P validation for the two DNS cases provided.
The PbLi case once again exhibits an intermediate profile, consistent with its
expected behavior.

These results suggest that the FEMuS model, that includes formulations
for the components of the Reynolds stress tensor and provides a more ad-
vanced near-wall treatment of the variables, can be used to accurately predict
liquid metal turbulent flow. Thus, the conjugate heat transfer problem pre-
sented later in this chapter employs FEMuS to solve the fluid domain and
OpenFOAM to solve the solid domain.

4.3. Pipe and Fins Simulations 173

4.3 Pipe and Fins Simulations
In this section, the solid domain is analyzed and the results obtained using
OpenFOAM-v11 are presented. The computational domain of the problem

x

y

Γs

Γi

Γo

ΓwΓm

ri

rm

re

Figure 4.8: Schematic representation of the computational domains used for
the EUROFER pipe and copper fins simulation by OpenFOAM (left). Mesh
of a single cell along the length of the pipe (right), pipe and fins mesh are
reported in red and in gray, respectively.

consists of two distinct regions: the EUROFER pipe and the copper fins. The
scheme of the computational domain is illustrated in Figure 4.8 on the left,
where the EUROFER pipe is highlighted in red, and the fins in gray. Figure
4.8 also shows a y-section of the mesh used for the OpenFOAM simulation.
The mesh consists of 2576 cells, with 92 cells in the y-direction, and blocks
of 8 cells in the radial direction for the pipe domain and 20 cells in the
radial direction for the fins region. Both regions are treated in OpenFOAM
using a wedge configuration, leveraging the symmetry of the problem. Given
the internal radius of 0.015 m and a tube thickness of 0.004 m, the interface
radius of the pipe is rm = 0.019 m. The average length of the fins is 0.014 m,
resulting in an external radius equal to re = 0.033 m.

The solid solver of OpenFOAM is used to calculate the temperature
distribution for the multi-region domain. It solves the energy equation for

174 Chapter 4. Liquid Metal Heat Exchanger

both solid regions, which is expressed as

ρc
∂T

∂t
= ∂

∂xi

(
λ
∂T

∂xi

)
, (4.19)

where ρ is the density, c is the specific heat capacity and λ is the thermal
conductivity. All these material properties listed in Table 4.1 are assumed to
be constant; therefore, the built-in thermophysical model constSolidThermo
is used. Regarding the boundary conditions for the pipe, a Dirichlet bound-
ary condition is imposed at the internal wall in contact with the liquid metal
flow, Γs. At the top and bottom of the pipe, corresponding to the inlet and
outlet sections, adiabatic conditions are imposed. The front and back faces
are treated as wedge boundaries in OpenFOAM to enforce the symmetry con-
dition. At the interface between the two domains, Γm, OpenFOAM provides
a coupled temperature boundary condition, ensuring the coupling of both
temperature and wall heat flux between the two regions. The boundary con-
ditions applied to the fins region are similar to those described for the pipe.
The top and bottom surfaces are treated as adiabatic, while a fixed tempera-
ture of 338.85 K is assigned to Γw, which is the external wall in contact with
air flow. This temperature corresponds to the mean air temperature of the
PbLi-air heat exchanger.

In the following, two configurations are presented to simulate the inter-
action between the fins and the air domains.

Case 1. In the first configuration, Case 1, the fins region is treated as if it
is composed entirely of solid material. This approach involves modifying the
properties of the copper material to account for all thermal effects that occur
in this region. In particular, the fins domain must account for the thermal
resistance of the parallel block in Figure 4.3. This block introduces a thermal
resistance calculated as

Req = 1
1

Rfins,air+Rfins
+ 1

REU,air

= 0.0121 K
W
. (4.20)

This computational domain corresponds to a hollow cylinder, and the thermal
resistance introduced by this material must be equal to 0.0121 K/W. Using
the definition of thermal resistance for a hollow cylinder as

R =
ln re

rm

2πλL, (4.21)

4.3. Pipe and Fins Simulations 175

we can deduce an equivalent thermal conductivity as

λeq =
ln re

rm

2πReqL
= 12.103 W

mK
. (4.22)

For Case 1, two simulations were performed. In the first, a uniform Dirich-

0.015 0.020 0.025 0.030 0.035

r

350

400

450

500

550

600

T

Pipe Fins

Analytic solution

Radial temperature

Interface

Figure 4.9: Radial temperature distribution for the solid multi-region simu-
lation compared to the analytic solution (circle markers).

let boundary condition is applied to Γs, using the mean wall temperature
computed by FEMuS in the previous section, which is 589.6 K. The solution
is shown in Figure 4.9, where the radial temperature profile is compared to
the analytical solution for the conduction problem. The analytical solution
for heat conduction in two connected hollow cylinders with different thermal
conductivities (λ1 and λ2) under steady-state conditions is derived as follows

T (r) =

C1 ln(r) + (Tw,in − C1 ln(ri)) if ri ≤ r ≤ rm

C3 ln(r) + (Tw,ext − C3 ln(re)) if rm ≤ r ≤ re ,
(4.23)

where
C1 = Tw,ext − Tw,in

ln(rm)− ln(ri)− λ1
λ2

ln(rm) + λ1
λ2

ln(re)
, (4.24)

and
C3 = λ1

λ2
C1. (4.25)

176 Chapter 4. Liquid Metal Heat Exchanger

Here, Tw,in represents the temperature of the internal wall of the pipe, while
Tw,ext is the temperature applied to the external wall of the fin cylinder.
The thermal conductivity λ1 corresponds to the conductivity of EUROFER,
while λ2 is the equivalent thermal conductivity used for the fins region. Due
to the uniform temperature imposed at the inner wall and the adiabatic
boundaries at the inlet and outlet sections, the problem reduces to a one-
dimensional radial heat conduction case, resulting in temperature profiles
that is the solution of the analytical problem.

0.015 0.020 0.025 0.030 0.035

r

350

400

450

500

550

600

T

Pipe Fins

y = 1/3L

y = 2/3L

y = L

Interface

Figure 4.10: Radial temperature distribution for the solid multi-region sim-
ulation at three different heights of the pipe.

The second simulation for Case 1 is performed by applying the non-
uniform wall temperature distribution, obtained from the lead-lithium flow
simulated with FEMuS, as a Dirichlet boundary condition on Γs. Figure
4.10 shows the radial temperature profiles at three different heights along
the pipe: one-third of the length, two-thirds of the length, and at the outlet
surface. As expected, the non-uniform wall temperature results in a varying
temperature profile along the solid domain.

Figure 4.11 compares the temperature distributions from the two simula-
tions of Case 1. The distributions across the pipe and fins domains (separated
with a black line) are shown for both simulations, with the aspect ratio ad-
justed for visual clarity. The simulation with a uniform Dirichlet boundary
condition (left) results in parallel temperature isolines, while the non-uniform

4.3. Pipe and Fins Simulations 177

0.019 0.033
0.0

0.2

0.4

0.6

340.9

368.4

395.9

423.3

450.8

478.3

505.8

533.3

560.8

588.2

0.019 0.033
0.0

0.2

0.4

0.6

340.2

382.3

424.3

466.3

508.4

550.4

592.4

634.4

676.5

718.5

Figure 4.11: Temperature distribution for Case 1 for case with a uniform
Dirichlet boundary condition on Γs (left) and a non-uniform Dirichlet bound-
ary condition on Γs (right).

temperature distribution (right) produces curved isothermal lines.

Case 2. The second approach, Case 2, considers the fins region as a porous
material, introducing a third region represented by the air domain. In this
porous approach, the air region completely overlaps the fins region and is used
only for thermal coupling purposes. To implement this case, the fvModel
class in OpenFOAM is used, and the interRegionHeatTransfer coupling
is applied. This functionality provided by OpenFOAM introduces a coupled
quantity that is used by the solver of the two domains (fins and air) to
compute the heat transferred between them. In particular, it introduces the
heat source term into energy equations of both air and fins region as

Q̇ = hAv(Tnbr,mapped − T), (4.26)

where h is the heat transfer coefficient between air and fins, Av is the exchange
area per unit volume, T is the temperature variable of the region being con-
sidered (either air or fins) and Tnbr,mapped is the coupled temperature field

178 Chapter 4. Liquid Metal Heat Exchanger

0.015 0.020 0.025 0.030 0.035

r

350

400

450

500

550

600
T

Pipe Fins + air

Region

Pipe + fins

Air

Interface

Position

y = 1
3L

y = 2
3L

y = L

Figure 4.12: Radial temperature profiles for the solid multi-region simulation,
comprising pipe and fins temperature profiles (black lines) and air tempera-
ture profiles (red lines). The temperature distributions refer to three positions
along the heat exchanger: one-third of the length (solid lines), two-thirds of
the length (dash-dotted lines), and at the outlet surface (dashed lines).

provided by the neighboring region (fins or air). The coupled temperature
field is computed using the intersection method as interpolationMethod,
a built-in interpolation algorithm available in OpenFOAM. This quantity is
used in Equation (4.19) as a volumetric heat source in both regions, ac-
counting for the heat exchanged between them. This approach allows for the
specification of the heat exchange area of the fins, which is significantly larger
than the area provided by the external surface of the hollow cylinder. In this
simulation, the resistance due to convection between air and fins, Rfins,air,
is accounted for through this contribution. The values of the heat transfer
coefficient and the heat exchange area, presented in the previous section, are
140.4 W/m2K and 0.630 m2, respectively. The remaining thermal resistances,
Rfins = 0.002 K/W and REU,air = 0.123 K/W, are modeled using equivalent
thermal conduction. In particular, the resistance Rfins corresponds to heat
conduction within the fin region, while REU,air represents the resistance of
the air domain. Applying Equation (4.21) to the external hollow cylinder, we
obtain λeq = 66.5 W/(mK) for the fins domain. Then, considering the vol-
ume fraction occupied by the fins, we reduce the thermal conductivity of the

4.4. Conjugate Heat Transfer Application 179

hollow cylinder to λeq = 9.76 W/(mK). For the air region, based on Equa-
tion (4.21) and the volume fraction occupied by air, an equivalent thermal
conductivity of λeq = 1.02 W/(mK) is imposed within the domain.

Figure 4.12 shows the radial temperature profiles computed in Case 2.
The black lines correspond to the radial profile simulated in the solid regions
comprising EUROFER tube and copper fins regions. The red lines display the
temperature distributions for the air domain. Temperature profiles are shown
at three different heights along the pipe to highlight the variations caused by
the non-uniform wall temperature imposed as a boundary condition at the
inner surface of the pipe. In this simulation, the thermal power transferred
from the fins to the air is 1017 W. The total heat transfer rate, Q̇, extracted
from the external surface of the computational domain, Γw, is 17878 W. This
includes 15122 W through the external surface of the fins region, accounting
for both conduction and convection heat transfer, and 3774 W through the
air’s external surface, corresponding to the thermal power in the parallel
branch of REU,air.

4.4 Conjugate Heat Transfer Application
In this setup, the entire heat exchanger is simulated using the boundary cou-
pling application, where FEMuS and OpenFOAM codes perform the liquid
metal flow and solid regions simulations, respectively. Figure 4.13 illustrates
the scheme of the computational domain. The orange zone represents the
liquid metal domain, the red zone corresponds to the EUROFER pipe re-
gion, and the gray zone indicates the fins region. On the right, a single cell
along the y direction of the heat exchanger mesh is reported. This geometry
includes two distinct interfaces: the first, Γm1 , connects FEMuS and Open-
FOAM and represents the interface between the fluid domain (PbLi flow)
and the solid domain; the second, Γm2 , is the interface between the two solid
regions, specifically between the EUROFER pipe and the fins region.

The integration between FEMuS and OpenFOAM across the Γm1 interface
is handled using the coupling application for boundary data transfer described
in Chapter 2. In the context of the conjugate heat transfer problem, the
wall heat flux in Γm1 , provided by FEMuS, is transferred to OpenFOAM.
These values are used as non-homogeneous Neumann boundary conditions
on the internal wall of the pipe geometry. In turn, OpenFOAM provides the
wall temperature to FEMuS, which uses it as a non-homogeneous Dirichlet

180 Chapter 4. Liquid Metal Heat Exchanger

x

y

Γm1

Γi

Γo

ΓwΓm2Γs

ri

rm

re

Figure 4.13: Schematic representation of the computational domains used
for the CHT simulations (left). Mesh of a single cell along the length of
the heat exchanger (right). It comprises the liquid metal domain (orange),
EUROFER pipe domain (red) and copper fins domain (gray).

boundary condition for the temperature equation.
The simulation of the solid domain and the coupling through the Γm2

interface are carried out using two different configurations.

Case A. The first approach uses the coupling application not only to con-
nect FEMuS and OpenFOAM across Γm1 , but also to couple the two solid
regions managed by OpenFOAM across Γm2 . At this interface, the wall heat
flux from the EUROFER pipe is transferred as a non-homogeneous Neumann
boundary condition to the copper fins region. In return, the copper fins re-
gion provides the wall temperature as a Dirichlet boundary condition back
to the pipe. The coupling configuration adopted for this approach, referred
to as Case A, is schematically illustrated in Figure 4.14.

In this scenario, the fins domain is treated as described in Case 1 of Sec-
tion 4.3, where the thermal conductivity used for the fins region is taken as
calculated in (4.22). Figure 4.15 shows the temperature profiles at three dif-
ferent heights along the heat exchanger. The solid line corresponds to 1/3 of

4.4. Conjugate Heat Transfer Application 181

FEMuS

PbLi

OpenFOAM

Pipe

OpenFOAM

Fins

Fluid solver:

NS - T

Compute q̇w

Solid solver:

T

Compute q̇w

Solid solver:

T

MED
Data Transfer

Tw

MED
Data Transfer

q̇w

MED
Data Transfer

Tw

MED
Data Transfer

q̇w

Figure 4.14: Schematic representation of the coupling algorithm for Case A.

0.00 0.01 0.02 0.03 0.04

r

350

400

450

500

550

600

650

700

750

T

PipePbLi Fins

Region

PbLi (F)

CHT (F +OF)

Position

y = 1
3L

y = 2
3L

y = L

Interface

Figure 4.15: Multi-region radial temperature profiles at three sections of the
pipe, y/L = 1/3 (solid), y/L = 2/3 (dashed) and y/L = 1 (dash-dotted), for
both the CHT simulation (black) and PbLi flow simulation as in Section 4.2
(blue).

the total pipe length, the dashed profile is taken at 2/3L, and the remaining
profile represents the outlet section of the pipe. The black lines correspond to
the radial temperature profile across liquid metal, pipe, and fins computed in

182 Chapter 4. Liquid Metal Heat Exchanger

the CHT simulation. For comparison purposes, in blue, we have reported the
temperature profiles for the fluid flow simulation performed using FEMuS, as
described in 4.2.1. This simulation is referred to as PbLi. This PbLi simula-
tion is performed with a fixed wall heat flux applied to the external wall of the
fluid domain, here Γm1 , whereas in the CHT simulation, the wall heat flux on
the same surface is non-homogeneous. This difference results in non-uniform
cooling along the length of the pipe. At the inlet, the temperature difference
between the PbLi and the pipe is at its maximum, leading to a maximum
wall heat flux at the interfaces. As the flow progresses along the pipe, the
temperature difference between the solid and the fluid domains decreases,
leading to a progressive reduction in the wall heat flux between the regions.
For completeness, Figure 4.16 shows the two-dimensional temperature field

0.015 0.033
0.0

0.2

0.4

0.6

340.6

383.0

425.5

468.0

510.5

553.0

595.5

638.0

680.5

723.0

Figure 4.16: Temperature distribution in the liquid metal flow, EUROFER
pipe, and fins domains, as obtained from the Case A simulation.

in the three regions involved in the simulation of Case A. A solid black line
separates each of the three regions. From left to right, the field distribution
is shown within the liquid metal, the pipe, and the fins. Table 4.4 summa-
rizes the calculated results and compares them with the predicted values. It
can be observed that the bulk temperature at the pipe outlet satisfies the

4.4. Conjugate Heat Transfer Application 183

CHT Prediction
Tb,out [K] 572.1 573
Q̇ [W] 17964 17870
Tw [K] 585.8 -
Tb [K] 633.6 648

RPbLi [K/W] 0.0028 0.0031
h [W/(m2K)] 6413 5704

Nu 8.79 7.81

Table 4.4: Comparison between CHT results with the predicted quantities
for Case A.

design constraint, reaching 572.1 K, which is slightly lower than the target
value of 573 K, which corresponds to a total cooling power of 17964 W. The
CFD simulation provides a heat transfer coefficient of 6413 W/m2K, which is
higher than the predicted value. This suggests that the convective resistance
of the liquid metal flow is lower than initially estimated and, consequently,
the simulated Nusselt number exceeds the prediction.

FEMuS

PbLi

OpenFOAM

FinsPipe Fins + air

Fluid solver:

NS - T

Compute q̇w

Solid solver:

T

Solid solver:

T

Fluid solver:

NS with u = 0
T

MED
Data Transfer

Tw

MED
Data Transfer

q̇w

CHT
fvModel

Figure 4.17: Schematic representation of the coupling algorithm for Case B.

Case B. The second CHT simulation adopts the full configuration setup,
involving the air domain similarly to Case 2 of the previous section. Unlike

184 Chapter 4. Liquid Metal Heat Exchanger

0.00 0.01 0.02 0.03

r

400

500

600

700

T

PipePbLi Fins + air

Region

PbLi (F)

CHT (F +OF)

Air (OF)

Position

y = 1
3L

y = 2
3L

y = L

Interface

Figure 4.18: Multi-region radial temperature profiles at three sections of the
pipe, y/L = 1/3 (solid), y/L = 2/3 (dashed) and y/L = 1 (dash-dotted), for
the CHT simulation (black), air (red) and PbLi flow as in Section 4.2 (blue).

the boundary data transfer of Case A, this configuration requires the use
of the dedicated wrapper developed for the OpenFOAM multi-region solver.
In this setup, the Γm1 interface is managed through the MED library. The
MED communication on Γm1 has been implemented between FEMuS and
the multi-region application of OpenFOAM. Consequently, the Γm2 interface,
located between the EUROFER pipe and the copper fins region, is handled
internally by the OpenFOAM CHT solver, without any external coupling.
Additionally, the interaction between the fins region and the air domain is
modeled using OpenFOAM’s fvModel functionality, which applies volumetric
coupling within the two domains. Figure 4.17 shows the coupling application
for Case B.

Similar considerations to those discussed for Case A can be drawn by
examining the radial temperature profiles shown in Figure 4.18, evaluated
at the same three heights along the pipe. The temperature profiles for the
liquid metal, EUROFER pipe, and fins are plotted in black, while the air
domain profile is shown in red. For reference, the temperature distribution
obtained from the FEMuS solver in Section 4.2.1 is indicated in blue. Table
4.5 summarizes the results of the main quantities compared to the predicted
values. The CHT simulation results in a Nusselt number of 7.97, which is

4.4. Conjugate Heat Transfer Application 185

CHT Prediction
Tb,out [K] 571.4 573
Q̇ [W] 18065 17870
Tw [K] 579.1 -
Tb [K] 634.1 648

RPbLi [K/W] 0.0030 0.0031
h [W/(m2K)] 5810 5704

Nu 7.97 7.81

Table 4.5: Comparison between CHT results with the predicted quantities
for Case A.

slightly higher than the predicted value of 7.81. This values indicates that the
convective heat transfer of liquid metal is marginally higher than predicted.

0.015 0.033
0.0

0.2

0.4

0.6

340.3

382.9

425.4

467.9

510.4

552.9

595.5

638.0

680.5

723.0

0.019 0.033
0.0

0.2

0.4

0.6

339.8

349.2

358.6

368.1

377.5

386.9

396.4

405.8

415.3

424.7

Figure 4.19: Temperature distribution in the liquid metal flow, EUROFER
pipe, and fins domains (left), and in the air domain (right), as obtained from
the Case B simulation.

The 2D temperature field distribution is shown in Figure 4.19. On the left,
the temperature field for the liquid metal, the pipe, and the fins domains are

186 Chapter 4. Liquid Metal Heat Exchanger

displayed, while on the right, the temperature distribution for the air domain
is presented.

The results from Case A and Case B may suggest that the theoretical
prediction of the Nusselt number is underestimated and that the actual heat
flux is higher than initially expected. The liquid metal’s heat transfer perfor-
mance allows the heat exchanger to operate effectively, achieving an outlet
temperature that satisfies the required constraint. Moreover, the resulting
outlet temperature remains sufficiently above the critical value. This re-
sult provides a margin of safety that protects against potential discrepancies
between the computational model and the real system configuration. Fur-
thermore, the presence of a reheater downstream of the PbLi heat exchanger
ensures that the critical temperature threshold is never reached.

Conclusions

The primary objective of this dissertation is to develop a numerical platform
for studying complex engineering systems involving liquid metals. These
materials are a vibrant research topic because of their promising applicability
in emerging energy technologies, such as Concentrated Solar Power plants
and Generation IV nuclear reactors. In these power plants, the research
community is actively investigating the use of liquid metals as heat transfer
fluids, leveraging their exceptional thermal properties to address the demands
of high-performance thermal management.

Accurate modeling of turbulent natural convection and heat transfer is es-
sential for liquid metals. It is important to overcome the limitations of eddy
viscosity and eddy diffusivity models commonly implemented in commercial
software. This challenge can be tackled by using more advanced turbulence
closure models. In the FEMuS code, indeed, the Reynolds stress tensor and
the turbulent heat flux are modeled using the Explicit Algebraic class of mod-
els, and the four-parameter model is used to close the system of equations.
In this Thesis, buoyancy terms have been incorporated into the EASM and
EAHFM equations to improve the prediction of turbulent natural convection
flows.

Within the numerical platform framework, the coupling between the FEM
code FEMuS and the FVM code OpenFOAM has been realized using the
open-source MED library. The volume data transfer algorithm has been
validated by studying a differentially Heated Cavity domain under a laminar
natural convection regime for standard fluids, such as air and water. In

188 Conclusions

these coupling applications, the exchanged quantities are the temperature
and velocity fields across the entire domain. On the other hand, the boundary
data transfer algorithm has been validated using a Conjugate Heat Transfer
problem, where a natural convection flow inside a square cavity is thermally
coupled with solid domains on the side walls. The interface coupling has
involved the mutual exchange of wall temperature and heat flux between
the domains. The results obtained from the DHC and CHT problems have
validated the implemented coupling algorithm.

The turbulent natural convection in liquid metals has been investigated
using monolithic and code coupling approaches. The buoyant algebraic model
has been validated in a DHC configuration for three cases involving liquid
metals. The FEMuS results have been compared with both DNS benchmark
and experimental data. Including buoyancy terms considerably improved the
prediction of the variables in all three cases. However, some discrepancies
have been found in dynamic field simulation, particularly in predicting k−ω
variables.

The same configuration has been investigated using OpenFOAM’s built-in
turbulent models. All of them rely on the eddy viscosity and eddy diffusivity
models. The comparison with DNS and experimental data shows a good
alignment, particularly for the velocity profile for all the turbulent models.

A third approach has been used to investigate this phenomenon. The vol-
ume data transfer algorithm has been used to leverage the thermal turbulent
model used in FEMuS with the dynamic, turbulent model implemented in
OpenFOAM. We could observe a general improvement in the prediction of
velocity and temperature fields meaning that both solvers could benefit from
a coupled approach.

Finally, a realistic case of a liquid metal heat exchanger involving a Lead-
Lithium alloy flowing through a cylindrical pipe with fins has been analyzed.
Separate simulations were conducted for the fluid and solid domains using
various configurations. The turbulent flow of the liquid metal was simulated
using FEMuS with the anisotropic four-parameter model and OpenFOAM
with the k − ω SST model. A comparison with DNS data demonstrated the
greater reliability of the FEMuS solutions with respect to OpenFOAM ones
in turbulent forced regimes. The pipe and fins regions were simulated in two
different configurations using the solid solver in OpenFOAM, both employ-
ing OpenFOAM’s built-in coupling paradigm. Within the numerical coupling
framework, two conjugate heat transfer configurations have been employed to

Conclusions 189

thermally couple the fluid region, solved by FEMuS, with the solid regions,
solved by OpenFOAM. The first simulation used the MED-based coupling to
thermally couple all three domains: the EUROFER pipe was coupled with
both the liquid metal flow and the copper fins region through the developed
coupling application. In the second simulation, the coupling between the fluid
flow and the pipe was handled using the MED interface, while the interac-
tion between the pipe and the fins was managed internally by OpenFOAM’s
native multi-region solver. The interface coupling enabled the analysis of the
heat transfer performance of the liquid metal under a non-uniform wall heat
flux. Specifically, it allowed for a more precise calculation of the convection
resistance of liquid metals and comparison with the predicted value.

It can be concluded that the coupling application proves to be a valuable
tool for simulating complex phenomena that stand-alone commercial codes
cannot fully or accurately capture. Its modular design allows for future ex-
tension to other numerical solvers and the inclusion of additional physical
models, enabling accurate simulations of more advanced multiphysics sys-
tems.

List of Figures

2.1 Coupling strategy models: point-to-point on the left and hub-
and-spoke on the right. 60

2.2 Packages structure of the XMED library in FIELDS module. . 63
2.3 Coupling procedure scheme. 65
2.4 P0−P0 interpolation from the piece-wise representation of the

analytical function f(x, y) = 1− (x−1)2 +(y−1)2 over a finer
mesh to the piece-wise representation on a coarser one. 70

2.5 P0−P0 interpolation for partially overlapped meshes. Interpo-
lation of the piece-wise representation of the analytical func-
tion f(x, y) = sin πx sin πy from the coarser to the finer mesh
on the left and from the finer to the coarser mesh on the right. 71

2.6 P0−P0 interpolation from a 2D representation of the analytical
function f(x, y) = 1− (x− 1)2 + (y − 1)2 to a 3D mesh. . . . 71

2.7 P0−P0 interpolation from a 1D representation of the analytical
function f(x) = 1− (x− 1)2 to a 2D mesh. 72

2.8 Schematic representation of weak (solid lines) and strong (solid
and dashed lines) coupling between Solver 1 and Solver 2. . . 79

2.9 Coupling algorithm strategies for the strongly coupled problem. 81
2.10 Geometry of the buoyant cavity problem with boundary con-

ditions for the temperature field. 89
2.11 Grid convergence of the v∗

max value at y∗ = 0.5 for the case with
Ra = 105, for both the monolithic solutions and the coupling
applications. 94

192 List of Figures

2.12 Non-dimensional stream function contour, Ψ, for low Rayleigh
number on the top, Ra = 103 (left) and Ra = 104 (right), and
for high Rayleigh number on the bottom, Ra = 105 (left) and
Ra = 106 (right). Coupling algorithm c1 (solid line) and c2

(dotted line). 95
2.13 Non-dimensional velocity magnitude contour, |u∗|, for low Rayleigh

number on the top, Ra = 103 (left) and Ra = 104 (right), and
for high Rayleigh number on the bottom, Ra = 105 (left) and
Ra = 106 (right). Coupling algorithm c1 (solid line) and c2

(dotted line). 96
2.14 Non-dimensional vertical velocity contour, v∗, for low Rayleigh

number on the top, Ra = 103 (left) and Ra = 104 (right), and
for high Rayleigh number on the bottom, Ra = 105 (left) and
Ra = 106 (right). Coupling algorithm c1 (solid line) and c2

(dotted line). 97
2.15 Non-dimensional horizontal velocity contour, u∗, for low Rayleigh

number on the top, Ra = 103 (left) and Ra = 104 (right), and
for high Rayleigh number on the bottom, Ra = 105 (left) and
Ra = 106 (right). Coupling algorithm c1 (solid line) and c2

(dotted line). 98
2.16 Non-dimensional temperature contour, Θ, for low Rayleigh

number on the top, Ra = 103 (left) and Ra = 104 (right),
and for high Rayleigh number on the bottom, Ra = 105 (left)
and Ra = 106 (right). Coupling algorithm c1 (solid line) and
c2 (dotted line). 100

2.17 Non-dimensional temperature Θ (at y∗ = 0.5, top) and non-
dimensional components u∗ (at x∗ = 0.5, middle) and v∗ (at
y∗ = 0.5, bottom) for the four types of simulations (F , OF ,
c1 and c2) with a comparison with literature data from [103]
(circular markers). Case with Ra = 103 on the left and Ra =
104 on the right. 101

2.18 Non-dimensional temperature Θ (at y∗ = 0.5, top) and non-
dimensional components u∗ (at x∗ = 0.5, middle) and v∗ (at
y∗ = 0.5, bottom) for the four types of simulations (F , OF ,
c1 and c2) with a comparison with literature data from [103]
(circular markers). Case with Ra = 105 on the left and Ra =
106 on the right. 102

List of Figures 193

2.19 Comparison between reference data [99, 101, 103] and coupling
simulation results of the Nusselt number profile along the hot
wall for the four Rayleigh numbers. 104

2.20 Contour lines of non-dimensional v∗−component on the left
and non-dimensional u∗−component on the right for the four
cases of Rayleigh numbers, from Ra = 103 (top) to Ra = 106

(bottom). Coupling algorithm c1 (solid) and c2 (dotted). . . . 106
2.21 Reynolds numbers against Rayleigh numbers (104 to 109) for

different Pr (0.5 to 100), as reported in [105]. Simulated cases
are indicated with black-filled markers: Pr = 0.71 (diamond)
and Pr = 7 (circle). 107

2.22 Nusselt number against Rayleigh number, as reported in [105].
Simulated cases are represented with circular markers: black-
filled for Pr = 7 and empty for Pr = 0.71. 108

2.23 Execution time for c1 coupling with varying mesh resolutions.
OpenFOAM, FEMuS, and Data Exchange timings are shown
for meshes of: 20 × 20 (left) and 40 × 40 (right) in the top
row, 80×80 (left) and 160×160 (right) in the central row and
320× 320 in the bottom row. 110

2.24 Total execution time to reach the converged solution for the
c1 coupling case simulation, varying mesh resolution. 111

2.25 Residuals of the u- and v-velocity components as a function of
the number of iterations for the OpenFOAM case and the c1

coupling case. 112
2.26 Geometrical configurations of the CHT problem: on the left

the domain with the solid wall thickness equal to t1, on the
right equal to t2 and on the bottom equal to t3. 114

2.27 Simulations with solid thickness t1 and Ra = 103. Contour
of non-dimensional temperature Θ (left) and velocity stream
function Ψ (right) for K = 0.1, 1, 10 (from top to bottom). . . 120

2.28 Simulations with solid thickness t1 and Ra = 105. Contour
of non-dimensional temperature Θ (left) and velocity stream
function Ψ (right) for K = 0.1, 1, 10 (from top to bottom). . . 121

2.29 Simulations with solid thickness t2 and Ra = 105. Contour
of non-dimensional temperature Θ (left) and velocity stream
function Ψ (right) for K = 0.1, 1, 10 (from top to bottom). . . 122

194 List of Figures

2.30 Simulations with solid thickness t3 and Ra = 105. Contour
of non-dimensional temperature Θ (left) and velocity stream
function Ψ (right) for K = 0.1, 1, 10 (from top to bottom). . . 123

2.31 Local boundary Nusselt number for the cases with solid thick-
ness t1: solid lines are the simulations with Ra = 103 on top
(K = 0.1 on the left and K = 10 on the right), Ra = 105 on
the bottom (K = 0.1 on the left and K = 10 on the right).
A comparison with data from [128] is reported (white circular
markers). 125

3.1 Transition boundaries from laminar (below the lines) to tur-
bulent (above the lines) flow in cavities, as identified by Lage
et al. [134]. The Ra − Pr plot illustrates critical Rayleigh
number as a function of Prandtl number for different aspect
ratios. 129

3.2 Correlation by Bawazeer et al. [138] (Equation 3.1) (black
line), marking the transition from steady (below) to unsteady
(above) flow regimes in low-Prandtl fluids. Black diamond
markers refer to the simulation cases conducted in [138]. Circle
markers denote critical values predicted by Mohamad et al.
[141]. Triangles point out cases studied by Mohamad et al.
[142], and crosses show configurations analyzed by Wolff et al.
[139]. DNS case from [143] is indicated using triangle down
markers. 131

3.3 Transition to unsteady behaviour of non-dimensional velocity
at the center of the cavity over time, varying the Rayleigh
number, 2×104 (top), 5×104 (center), and 105 (bottom) with
a fixed Prandtl number of 0.01. 133

3.4 Stream functions for the simulations with Pr = 0.021 and
Ra = 3.78 × 106 (top), Pr = 0.0208 and Ra = 1.08 × 106

(middle), and Pr = 0.011 and Ra = 3.66× 105 (bottom). . . . 136
3.5 Zoomed-in views of Simulation 1: central zone (left) and upper

left corner (right) secondary recirculation cells. 137
3.6 Zoomed-in views of Simulation 2: central zone (left) and upper

left corner (right) secondary recirculation cells. 137
3.7 Zoomed-in views of Simulation 3: upper left corner (top) and

lower left corner (bottom) secondary recirculation cells. 138

List of Figures 195

3.8 Mesh grid of 100 × 100 elements used in all the simulations,
with a refined distribution near the walls. 140

3.9 Comparison between DNS (circle markers), A4P and New

A4P simulations of the non-dimensional magnitude of velocity
field along x+ coordinates at different heights: y+ = 0.5 on the
left, y+ = 0.75 on the right. 143

3.10 Comparison between DNS (circle markers), A4P and New

A4P simulations of the non-dimensional turbulent kinetic en-
ergy field along x+ coordinates at different heights: y+ = 0.5
on the left, y+ = 0.75 on the right. 143

3.11 Comparison between DNS (circle markers), A4P , and New

A4P simulations of the non-dimensional temperature (top)
and turbulent heat flux components (center and bottom) along
x+ coordinates at different heights: y+ = 0.5 on the left,
y+ = 0.75 on the right. 144

3.12 Non-dimensional temperature profiles at different cavity heights:
comparison between A4P and New A4P results and reference
data from [140] (circle) and [144] (diamond) for Simulation 2
(left) and from [139] (circle) and [141] (diamond) for Simula-
tion 3 (right). 145

3.13 Comparison between DNS (circle markers) and the four Open-
FOAM simulations of the non-dimensional velocity magnitude
(top), temperature (center), and turbulent kinetic energy (bot-
tom) along x+ coordinates at different heights: y+ = 0.5 on
the left, y+ = 0.75 on the right. 148

3.14 Non-dimensional temperature profiles at different cavity heights:
comparison between RNGkEpsilon and kOmega results and ref-
erence data from [140] (circle) and [144] (diamond) for Simu-
lation 2 (left) and from [139] (circle) and [141] (diamond) for
Simulation 3 (right). 149

3.15 Schematic representation of the coupling algorithm for the vol-
ume data transfer application in the turbulent cavity case. . . 150

3.16 Comparison between DNS (circle marker), coupling applica-
tion and monolithic simulations of the non-dimensional ve-
locity magnitude (top) and turbulent kinetic energy (bottom)
along x+ coordinates at different heights: y+ = 0.5 on the left,
y+ = 0.75 on the right. 151

196 List of Figures

3.17 Comparison between DNS (circle markers), coupling applica-
tion and monolithic simulations of the non-dimensional tem-
perature (top) and turbulent heat flux components (center and
bottom) along x+ coordinates at different heights: y+ = 0.5
on the left, y+ = 0.75 on the right. 154

4.1 Geometry of the PbLi loop cooler. 159
4.2 Schematic representation of the PbLi-air heat exchanger. . . . 161
4.3 Schematic representation of the thermal resistance analogy. . . 162
4.4 Schematic representation of the computational domain for Lead-

Lithium flow simulation. 164
4.5 Refined mesh of a single cell along the length of the pipe,

used for the liquid metal flow simulation by FEMuS (left) and
OpenFOAM (right). 165

4.6 Regression line of the relationship between the bulk Reynolds
numbers and the corresponding friction Reynolds numbers (cross
markers). Values of the bulk Reynolds numbers computed by
OpenFOAM (square marker) and FEMuS (circular marker)
simulations for the heat exchanger case. 169

4.7 Comparison of the simulated cases, PbLi (F) for FEMuS and
PbLi (OF) for OpenFOAM, with two DNS dataset (Reτ = 360
and Reτ = 550) from [154] and the results from [145] (A4P)
for non-dimensional velocity, turbulent kinetic energy and non-
dimensional components of the Reynolds stress tensor. 171

4.8 Schematic representation of the computational domains used
for the EUROFER pipe and copper fins simulation by Open-
FOAM (left). Mesh of a single cell along the length of the
pipe (right), pipe and fins mesh are reported in red and in
gray, respectively. 173

4.9 Radial temperature distribution for the solid multi-region sim-
ulation compared to the analytic solution (circle markers). . . 175

4.10 Radial temperature distribution for the solid multi-region sim-
ulation at three different heights of the pipe. 176

4.11 Temperature distribution for Case 1 for case with a uniform
Dirichlet boundary condition on Γs (left) and a non-uniform
Dirichlet boundary condition on Γs (right). 177

List of Figures 197

4.12 Radial temperature profiles for the solid multi-region simu-
lation, comprising pipe and fins temperature profiles (black
lines) and air temperature profiles (red lines). The tempera-
ture distributions refer to three positions along the heat ex-
changer: one-third of the length (solid lines), two-thirds of the
length (dash-dotted lines), and at the outlet surface (dashed
lines). 178

4.13 Schematic representation of the computational domains used
for the CHT simulations (left). Mesh of a single cell along the
length of the heat exchanger (right). It comprises the liquid
metal domain (orange), EUROFER pipe domain (red) and
copper fins domain (gray). 180

4.14 Schematic representation of the coupling algorithm for Case A. 181
4.15 Multi-region radial temperature profiles at three sections of

the pipe, y/L = 1/3 (solid), y/L = 2/3 (dashed) and y/L = 1
(dash-dotted), for both the CHT simulation (black) and PbLi
flow simulation as in Section 4.2 (blue). 181

4.16 Temperature distribution in the liquid metal flow, EUROFER
pipe, and fins domains, as obtained from the Case A simulation.182

4.17 Schematic representation of the coupling algorithm for Case B. 183
4.18 Multi-region radial temperature profiles at three sections of

the pipe, y/L = 1/3 (solid), y/L = 2/3 (dashed) and y/L = 1
(dash-dotted), for the CHT simulation (black), air (red) and
PbLi flow as in Section 4.2 (blue). 184

4.19 Temperature distribution in the liquid metal flow, EUROFER
pipe, and fins domains (left), and in the air domain (right), as
obtained from the Case B simulation. 185

List of Tables

1.1 Model constants and functions for EASM as in [46]. 49
1.2 Model constants and functions for EAHFM as in [46]. 52

2.1 Non-dimensional maximum values of the stream function, Ψmax,
and non-dimensional values of the stream function at the mid-
point of the cavity, Ψmid. Simulation results (c1 and c2) com-
pared to literature data ([98] and [99]). 99

2.2 Maximum values of u∗-component at x∗ = 0.5, for different Ra
numbers and comparison with literature data. 99

2.3 Maximum value of v∗-component at y∗ = 0.5, for different Ra
numbers and comparison with literature data. 100

2.4 Average values of Nusselt number on the hot wall for different
Ra numbers and comparison with literature data. 105

2.5 Maximum values of v∗-component at y∗ = 0.5 and u∗-component
at x∗ = 0.5 for different Ra numbers in water-filled cavity. . . 107

2.6 Time percentage over the total execution time, for the c1 cou-
pling case simulation. 111

2.7 Average Nusselt numbers for different conductivity ratios K,
varying the Ra number and wall thickness t. A comparison
with results from [128] is also reported. 126

3.1 Parameter values (Prandtl, Rayleigh and Grashof numbers)
for the simulated cases. 134

200 List of Tables

3.2 RMSE and NRMSE for dimensionless velocity magnitude, U+. 152
3.3 RMSE and NRMSE for dimensionless turbulent kinetic energy,

k+. 152
3.4 RMSE for dimensionless temperature, θ+. 153
3.5 RMSE and NRMSE for dimensionless turbulent heat flux, ⟨u′T ′⟩.153
3.6 Skin friction coefficient and Nusselt number values and errors. 155

4.1 Design constraints of the heat exchanger and physical proper-
ties of the involved material. 161

4.2 Comparison between OpenFOAM and FEMuS results with the
predicted quantities. 168

4.3 Bulk Reynolds numbers and the corresponding friction Reynolds
numbers of the DNS cases in literature. 169

4.4 Comparison between CHT results with the predicted quanti-
ties for Case A. 183

4.5 Comparison between CHT results with the predicted quanti-
ties for Case A. 185

B.1 Discretization scheme abbreviations. 233
B.2 Configuration parameters for laminar and turbulent Open-

FOAM simulations of the DHC problem. 234
B.3 Configuration parameters for fluid and solid OpenFOAM sim-

ulations of the PbLi-air heat exchanger. 235

Bibliography

[1] L. Marocco, G. Cammi, J. Flesch, and T. Wetzel, “Numerical analysis
of a solar tower receiver tube operated with liquid metals,” Interna-
tional Journal of Thermal Sciences, vol. 105, pp. 22–35, 2016. 3

[2] D. Frazer, E. Stergar, C. Cionea, and P. Hosemann, “Liquid metal as
a heat transport fluid for thermal solar power applications,” Energy
Procedia, vol. 49, pp. 627–636, 2014. 3

[3] X. Cheng and N.-i. Tak, “Investigation on turbulent heat transfer to
lead–bismuth eutectic flows in circular tubes for nuclear applications,”
Nuclear Engineering and Design, vol. 236, no. 4, pp. 385–393, 2006. 3

[4] J. Pacio, K. Litfin, A. Batta, M. Viellieber, A. Class, H. Doolaard,
F. Roelofs, S. Manservisi, F. Menghini, and M. Böttcher, “Heat trans-
fer to liquid metals in a hexagonal rod bundle with grid spacers: Ex-
perimental and simulation results,” Nuclear Engineering and Design,
vol. 290, pp. 27–39, 2015. 3

[5] G. Grasso, C. Petrovich, D. Mattioli, C. Artioli, P. Sciora, D. Gugiu,
G. Bandini, E. Bubelis, and K. Mikityuk, “The core design of alfred,
a demonstrator for the european lead-cooled reactors,” Nuclear Engi-
neering and Design, vol. 278, pp. 287–301, 2014. 3

[6] A. Alemberti, M. Caramello, M. Frignani, G. Grasso, F. Merli, G. Mor-
resi, and M. Tarantino, “Alfred reactor coolant system design,” Nuclear
engineering and design, vol. 370, p. 110884, 2020. 3

202 Bibliography

[7] M. Tarantino, M. Angiolini, S. Bassini, S. Cataldo, C. Ciantelli,
C. Cristalli, A. Del Nevo, I. Di Piazza, D. Diamanti, M. Eboli, et al.,
“Overview on lead-cooled fast reactor design and related technologies
development in enea,” Energies, vol. 14, no. 16, p. 5157, 2021. 3

[8] M. Caramello, M. Frignani, G. Grasso, M. Tarantino, D. Martelli,
P. Lorusso, and I. Di Piazza, “Improvement of alfred thermal hydraulics
through experiments and numerical studies,” Nuclear Engineering and
Design, vol. 409, p. 112365, 2023. 3

[9] NextTower, “Advanced materials solutions for next generation high ef-
ficiency concentrated solar power (csp) tower systems.” 3, 157

[10] F. M. Aprà, S. Smit, R. Sterling, and T. Loureiro, “Overview of the
enablers and barriers for a wider deployment of csp tower technology
in europe,” Clean Technologies, vol. 3, no. 2, pp. 377–394, 2021. 3, 157

[11] V. Casalegno, L. Ferrari, M. Jimenez Fuentes, A. De Zanet, S. Gianella,
M. Ferraris, and V. M. Candelario, “High-performance sic–based solar
receivers for csp: component manufacturing and joining,” Materials,
vol. 14, no. 16, p. 4687, 2021. 3, 157

[12] S. B. Pope, “Turbulent flows,” Measurement Science and Technology,
vol. 12, no. 11, pp. 2020–2021, 2001. 9

[13] L. F. Richardson, Weather prediction by numerical process. University
Press, 1922. 17

[14] A. N. Kolmogorov, “Dissipation of energy in the locally isotropic tur-
bulence,” Proceedings of the Royal Society of London. Series A: Math-
ematical and Physical Sciences, vol. 434, no. 1890, pp. 15–17, 1991.
17

[15] A. N. Kolmogorov, “The local structure of turbulence in incompress-
ible viscous fluid for very large reynolds numbers,” Proceedings of the
Royal Society of London. Series A: Mathematical and Physical Sciences,
vol. 434, no. 1890, pp. 9–13, 1991. 17

[16] O. Reynolds, “Iv. on the dynamical theory of incompressible viscous
fluids and the determination of the criterion,” Philosophical transac-
tions of the royal society of london.(a.), no. 186, pp. 123–164, 1895.
19

Bibliography 203

[17] J. Boussinesq, Essai sur la théorie des eaux courantes. Imprimerie
nationale, 1877. 23

[18] L. Prandtl, “7. bericht über untersuchungen zur ausgebildeten tur-
bulenz,” ZAMM-Journal of Applied Mathematics and Mechanic-
s/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 5, no. 2,
pp. 136–139, 1925. 23, 26

[19] E. R. Van Driest, “On turbulent flow near a wall,” Journal of the aero-
nautical sciences, vol. 23, no. 11, pp. 1007–1011, 1956. 24

[20] A. N. Kolmogorov, “Equations of turbulent motion in an incompressible
fluid,” in Dokl. Akad. Nauk SSSR, vol. 30, pp. 299–303, 1941. 27, 30

[21] P.-Y. Chou, “On velocity correlations and the solutions of the equa-
tions of turbulent fluctuation,” Quarterly of applied mathematics, vol. 3,
no. 1, pp. 38–54, 1945. 27

[22] B. E. Launder and D. B. Spalding, “The numerical computation of
turbulent flows,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 3, pp. 269–289, 1974. 27, 147

[23] F. H. Harlow and P. I. Nakayama, “Turbulence transport equations,”
The Physics of Fluids, vol. 10, no. 11, pp. 2323–2332, 1967. 28

[24] K. Hanjalić and B. E. Launder, “A reynolds stress model of turbulence
and its application to thin shear flows,” Journal of fluid Mechanics,
vol. 52, no. 4, pp. 609–638, 1972. 28

[25] S. Manservisi and F. Menghini, “A cfd four parameter heat transfer
turbulence model for engineering applications in heavy liquid metals,”
International Journal of Heat and Mass Transfer, vol. 69, pp. 312–326,
2014. 29, 30, 35, 40, 55

[26] V. Yakhot and S. A. Orszag, “Renormalization group analysis of tur-
bulence. i. basic theory,” Journal of Scientific Computing, vol. 1, no. 1,
pp. 3–51, 1986. 29, 147

[27] V. Yakhot, S. A. Orszag, S. Thangam, T. Gatski, and C. Speziale,
“Development of turbulence models for shear flows by a double expan-
sion technique,” Physics of Fluids A: Fluid Dynamics, vol. 4, no. 7,
pp. 1510–1520, 1992. 29, 30

204 Bibliography

[28] D. C. Wilcox, “Re-assessment of the scale-determining equation for
advanced turbulence models,” AIAA Journal, vol. 26, no. 11, pp. 1299–
1310, 1988. 31, 147

[29] D. Wilcox, “Turbulence modeling for cfd,” DCW industries, La
Canada, 1998. 31

[30] D. C. Wilcox, “Formulation of the kw turbulence model revisited,”
AIAA journal, vol. 46, no. 11, pp. 2823–2838, 2008. 32

[31] D. Cerroni, R. Da Viá, S. Manservisi, F. Menghini, G. Pozzetti, and
R. Scardovelli, “Numerical validation of a κ-ω-κθ-ωθ heat transfer tur-
bulence model for heavy liquid metals,” in Journal of Physics: Confer-
ence Series, vol. 655, p. 012046, IOP Publishing, 2015. 32, 39

[32] F. Menter, “Zonal two equation kw turbulence models for aerodynamic
flows,” in 23rd fluid dynamics, plasmadynamics, and lasers conference,
p. 2906, 1993. 33

[33] F. R. Menter, “Two-equation eddy-viscosity turbulence models for en-
gineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605,
1994. 33, 147

[34] D. R. Chapman and G. D. Kuhn, “The limiting behaviour of turbulence
near a wall,” Journal of Fluid Mechanics, vol. 170, pp. 265–292, 1986.
34, 35

[35] Y. Nagano and M. Tagawa, “An improved k-e model for boundary
layer flows,” Journal of Fluids Engineering-transactions of The Asme,
vol. 112, pp. 33–39, 1990. 34

[36] K. Abe, T. Kondoh, and Y. Nagano, “A new turbulence model for
predicting fluid flow and heat transfer in separating and reattaching
flows—i. flow field calculations,” International journal of heat and mass
transfer, vol. 37, no. 1, pp. 139–151, 1994. 35

[37] K. Abe, T. Kondoh, and Y. Nagano, “On reynolds-stress expressions
and near-wall scaling parameters for predicting wall and homogeneous
turbulent shear flows,” International journal of heat and fluid flow,
vol. 18, no. 3, pp. 266–282, 1997. 35, 42, 47

Bibliography 205

[38] H. Kawamura, H. Abe, and Y. Matsuo, “Dns of turbulent heat transfer
in channel flow with respect to reynolds and prandtl number effects,”
International Journal of Heat and Fluid Flow, vol. 20, no. 3, pp. 196–
207, 1999. 36

[39] B. E. Launder, “Heat and mass transport,” Turbulence, pp. 231–287,
2005. 37

[40] R. Da Vià and S. Manservisi, “Numerical simulation of forced and
mixed convection turbulent liquid sodium flow over a vertical backward
facing step with a four parameter turbulence model,” International
Journal of Heat and Mass Transfer, vol. 135, pp. 591–603, 2019. 39

[41] W. M. Kays, “Turbulent prandtl number. where are we?,” ASME Jour-
nal of Heat Transfer, vol. 116, no. 2, pp. 284–295, 1994. 41

[42] S. B. Pope, “A more general effective-viscosity hypothesis,” Journal of
Fluid Mechanics, vol. 72, no. 2, pp. 331–340, 1975. 42, 44, 45, 46

[43] W. Rodi, “A new algebraic relation for calculating the reynolds
stresses,” in Gesellschaft Angewandte Mathematik und Mechanik Work-
shop Paris France, vol. 56, p. 219, 1976. 42

[44] B. E. Launder, G. J. Reece, and W. Rodi, “Progress in the development
of a reynolds-stress turbulence closure,” Journal of fluid mechanics,
vol. 68, no. 3, pp. 537–566, 1975. 42

[45] H. Hattori and Y. Nagano, “Nonlinear two-equation model taking into
account the wall-limiting behavior and redistribution of stress compo-
nents,” Theoretical and Computational Fluid Dynamics, vol. 17, no. 5,
pp. 313–330, 2004. 42

[46] H. Hattori, A. Morita, and Y. Nagano, “Nonlinear eddy diffusivity mod-
els reflecting buoyancy effect for wall-shear flows and heat transfer,”
International journal of heat and fluid flow, vol. 27, no. 4, pp. 671–683,
2006. 42, 48, 49, 52, 56, 199

[47] T. B. Gatski and C. G. Speziale, “On explicit algebraic stress models for
complex turbulent flows,” Journal of fluid Mechanics, vol. 254, pp. 59–
78, 1993. 44, 47

206 Bibliography

[48] C. G. Speziale, S. Sarkar, and T. B. Gatski, “Modelling the pressure–
strain correlation of turbulence: an invariant dynamical systems ap-
proach,” Journal of fluid mechanics, vol. 227, pp. 245–272, 1991. 44

[49] R. So, P. Vimala, L. Jin, C. Zhao, and T. Gatski, “Accounting for
buoyancy effects in the explicit algebraic stress model: homogeneous
turbulent shear flows,” Theoretical and Computational Fluid Dynamics,
vol. 15, pp. 283–302, 2002. 46

[50] Y. Nagano, H. Hattori, and K. Abe, “Modeling the turbulent heat and
momentum transfer in flows under different thermal conditions,” Fluid
dynamics research, vol. 20, no. 1-6, pp. 127–142, 1997. 47

[51] Y. Nagano and H. Hattori, “A new low-reynolds-number turbulence
model with hybrid time-scales of mean flow and turbulence for complex
wall flows,” 01 2003. 48

[52] K.-i. Abe, T. Kondoh, and Y. Nagano, “A two-equation heat trans-
fer model reflecting second-moment closures for wall and free turbu-
lent flows,” International journal of heat and fluid flow, vol. 17, no. 3,
pp. 228–237, 1996. 48, 50

[53] B. E. Launder, Heat and Mass Transport, p. 231–287. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1976. 50

[54] T. Craft, N. Ince, and B. Launder, “Recent developments in second-
moment closure for buoyancy-affected flows,” Dynamics of atmospheres
and oceans, vol. 23, no. 1-4, pp. 99–114, 1996. 50

[55] R. Da Via, S. Manservisi, and F. Menghini, “A k–ω–kθ–ωθ four pa-
rameter logarithmic turbulence model for liquid metals,” International
Journal of Heat and Mass Transfer, vol. 101, pp. 1030–1041, 2016. 54

[56] R. Da Vià, V. Giovacchini, and S. Manservisi, “A logarithmic turbulent
heat transfer model in applications with liquid metals for pr= 0.01–
0.025,” Applied Sciences, vol. 10, no. 12, p. 4337, 2020. 54

[57] G. Barbi, V. Giovacchini, and S. Manservisi, “A new anisotropic four-
parameter turbulence model for low prandtl number fluids,” Fluids,
vol. 7, no. 1, p. 6, 2021. 54, 55

Bibliography 207

[58] F. Ilinca, D. Pelletier, et al., “A unified finite element algorithm for
two-equation models of turbulence,” Computers & fluids, vol. 27, no. 3,
pp. 291–310, 1998. 54

[59] D. Drikakis, M. Frank, and G. Tabor, “Multiscale computational fluid
dynamics,” Energies, vol. 12, no. 17, p. 3272, 2019. 57

[60] D. Groen, S. J. Zasada, and P. V. Coveney, “Survey of multiscale and
multiphysics applications and communities,” Computing in Science &
Engineering, vol. 16, no. 2, pp. 34–43, 2013. 57

[61] M. E. Cordero, S. Uribe, L. G. Zárate, R. N. Rangel, A. Regalado-
Méndez, and E. P. Reyes, “Cfd modelling of coupled multiphysics-
multiscale engineering cases,” Comput. Fluid Dyn.-Basic Instruments
Appl. Sci, 2018. 57

[62] J. G. Michopoulos, C. Farhat, and J. Fish, “Modeling and simulation of
multiphysics systems,” Journal of Computing and Information Science
in Engineering, vol. 5, no. 3, pp. 198–213, 2005. 57

[63] B. Engquist, P. Lötstedt, and O. Runborg, Multiscale modeling and
simulation in science, vol. 66. Springer Science & Business Media,
2009. 57

[64] M. Peksen, Multiphysics Modeling: Materials, Components, and Sys-
tems. Academic Press, 2018. 57

[65] H. Jasak, A. Jemcov, Z. Tukovic, et al., “Openfoam: A c++ library
for complex physics simulations,” in International workshop on coupled
methods in numerical dynamics, vol. 1000, pp. 1–20, 2007. 58, 59, 75

[66] P.-E. Angeli, U. Bieder, and G. Fauchet, “Overview of the triocfd code:
Main features, vetv procedures and typical applications to nuclear en-
gineering,” in NURETH 16-16th International Topical Meeting on Nu-
clear Reactor Thermalhydraulics, 2015. 58

[67] F. Archambeau, N. Méchitoua, and M. Sakiz, “Code saturne: A fi-
nite volume code for the computation of turbulent incompressible
flows-industrial applications,” International Journal on Finite Vol-
umes, vol. 1, no. 1, 2004. 58

208 Bibliography

[68] J. Levesque, “The code aster: a product for mechanical engineers; le
code aster: un produit pour les mecaniciens des structures,” Epure,
1998. 58

[69] T. Helfer, B. Michel, J.-M. Proix, M. Salvo, J. Sercombe, and
M. Casella, “Introducing the open-source mfront code generator: Appli-
cation to mechanical behaviours and material knowledge management
within the PLEIADES fuel element modelling platform,” vol. 70, no. 5,
pp. 994–1023. 58

[70] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh:
A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening
Simulations,” Engineering with Computers, vol. 22, no. 3–4, pp. 237–
254, 2006. https://doi.org/10.1007/s00366-006-0049-3. 58

[71] W. Bangerth, R. Hartmann, and G. Kanschat, “deal. ii—a general-
purpose object-oriented finite element library,” ACM Transactions on
Mathematical Software (TOMS), vol. 33, no. 4, pp. 24–es, 2007. 58

[72] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,
C. Richardson, J. Ring, M. E. Rognes, and G. Wells, “The fenics project
version 1.5,” Archive of numerical software, vol. 3, no. 100, 2015. 58

[73] R. Da Vià, Development of a computational platform for the simula-
tion of low Prandtl number turbulent flows. PhD thesis, University of
Bologna, 2019. 58

[74] “Numeric platform.” https://github.com/FemusPlatform/
NumericPlatform. 58, 59

[75] G. Barbi, A. Cervone, F. Giangolini, S. Manservisi, and L. Sirotti,
“Numerical coupling between a fem code and the fvm code openfoam
using the med library,” Applied Sciences, vol. 14, no. 9, p. 3744, 2024.
59

[76] G. Barbi, G. Bornia, D. Cerroni, A. Cervone, A. Chierici, L. Chirco,
R. Da Vià, V. Giovacchini, S. Manservisi, and R. Scardovelli, “Femus-
platform: A numerical platform for multiscale and multiphysics code
coupling,” in 9th International Conference on Computational Methods

https://doi.org/10.1007/s00366-006-0049-3
https://github.com/FemusPlatform/NumericPlatform
https://github.com/FemusPlatform/NumericPlatform

Bibliography 209

for Coupled Problems in Science and Engineering, COUPLED PROB-
LEMS 2021, pp. 1–12, International Center for Numerical Methods in
Engineering, 2021. 59, 72

[77] “Salome.” https://www.salome-platform.org/?page_id=23, 2023.
59, 61

[78] J. Ahrens, B. Geveci, C. Law, C. Hansen, and C. Johnson, “36-
paraview: An end-user tool for large-data visualization,” The visual-
ization handbook, vol. 717, pp. 50038–1, 2005. 59

[79] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface stan-
dard,” Parallel computing, vol. 22, no. 6, pp. 789–828, 1996. 59

[80] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface, vol. 1. MIT press,
1999. 59

[81] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, (Bu-
dapest, Hungary), pp. 97–104, September 2004. 59

[82] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune,
K. Buschelman, E. M. Constantinescu, L. Dalcin, A. Dener, V. Ei-
jkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet,
D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A.
May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Ro-
man, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang,
H. Zhang, and J. Zhang, “PETSc Web page.” https://petsc.org/,
2024. 60

[83] S. Bna, I. Spisso, M. Olesen, and G. Rossi, “Petsc4foam: A library
to plug-in petsc into the openfoam framework,” PRACE White paper,
2020. 60

[84] A. Ribes and C. Caremoli, “Salome platform component model for
numerical simulation,” in 31st annual international computer software

https://www.salome-platform.org/?page_id=23
https://petsc.org/

210 Bibliography

and applications conference (COMPSAC 2007), vol. 2, pp. 553–564,
IEEE, 2007. 61

[85] A. Chierici, V. Giovacchini, and S. Manservisi, “Analysis and numeri-
cal results for boundary optimal control problems applied to turbulent
buoyant flows.,” International Journal of Numerical Analysis & Mod-
eling, vol. 19, 2022. 72

[86] R. Da Vià, V. Giovacchini, and S. Manservisi, “A logarithmic turbu-
lent heat transfer model in applications with liquid metals for pr =
0.01–0.025,” Applied Sciences, vol. 10, no. 12, 2020. 72

[87] L. Chirco, On the optimal control of steady fluid structure interaction
systems. PhD thesis, University of Bologna, 2020. 72

[88] D. Cerroni, Multiscale multiphysics coupling on a finite element plat-
form. PhD thesis, University of Bologna, 2016. 72

[89] R. D. Vià, Development of a computational platform for the simulation
of low Prandtl number turbulent flows. PhD thesis, alma, Aprile 2019.
74, 75

[90] I. Farajpour and S. Atamturktur, “Optimization-based strong coupling
procedure for partitioned analysis,” Journal of computing in civil engi-
neering, vol. 26, no. 5, pp. 648–660, 2012. 79

[91] H. G. Matthies, R. Niekamp, and J. Steindorf, “Algorithms for strong
coupling procedures,” Computer methods in applied mechanics and en-
gineering, vol. 195, no. 17-18, pp. 2028–2049, 2006. 81

[92] L. De Giorgi, V. Bertola, and E. Cafaro, “Thermal convection in double
glazed windows with structured gap,” Energy and Buildings, vol. 43,
no. 8, pp. 2034–2038, 2011. 87

[93] M. Bitaab, R. Hosseini Abardeh, and S. Movahhed, “Experimental and
numerical study of energy loss through double-glazed windows,” Heat
and Mass Transfer, vol. 56, pp. 727–747, 2020. 87

[94] H. Singh and P. C. Eames, “A review of natural convective heat trans-
fer correlations in rectangular cross-section cavities and their potential
applications to compound parabolic concentrating (cpc) solar collector

Bibliography 211

cavities,” Applied Thermal Engineering, vol. 31, no. 14-15, pp. 2186–
2196, 2011. 87

[95] M. Dahmani and F. Z. Ferahta, “Enhancing convective heat loss reduc-
tion in flat-plate solar collectors by optimal integration of transparent
partitions in the air gap,” Heat Transfer Research, vol. 55, no. 15, 2024.
87

[96] N. B. Balam, T. Alam, A. Gupta, and P. Blecich, “Higher order accu-
rate transient numerical model to evaluate the natural convection heat
transfer in flat plate solar collector,” Processes, vol. 9, no. 9, p. 1508,
2021. 87

[97] M. Ciofalo and T. Karayiannis, “Natural convection heat transfer in a
partially—or completely—partitioned vertical rectangular enclosure,”
International journal of Heat and Mass transfer, vol. 34, no. 1, pp. 167–
179, 1991. 88

[98] G. de Vahl Davis, “Natural convection of air in a square cavity: a
benchmark numerical solution,” International Journal for numerical
methods in fluids, vol. 3, no. 3, pp. 249–264, 1983. 88, 94, 96, 97, 99,
100, 105, 199

[99] N. Massarotti, P. Nithiarasu, and O. Zienkiewicz, “Characteristic-
based-split (cbs) algorithm for incompressible flow problems with heat
transfer,” International Journal of Numerical Methods for Heat & Fluid
Flow, vol. 8, no. 8, pp. 969–990, 1998. 88, 94, 99, 100, 103, 104, 105,
193, 199

[100] M. Manzari, O. Hassan, K. Morgan, and N. Weatherill, “Turbulent flow
computations on 3d unstructured grids,” Finite elements in analysis
and design, vol. 30, no. 4, pp. 353–363, 1998. 88

[101] M. Manzari, “An explicit finite element algorithm for convection heat
transfer problems,” International Journal of Numerical Methods for
Heat & Fluid Flow, vol. 9, no. 8, pp. 860–877, 1999. 88, 94, 99, 100,
103, 104, 105, 193

[102] D. A. Mayne, A. S. Usmani, and M. Crapper, “h-adaptive finite ele-
ment solution of high rayleigh number thermally driven cavity prob-

212 Bibliography

lem,” International Journal of Numerical Methods for Heat & Fluid
Flow, vol. 10, no. 6, pp. 598–615, 2000. 88, 94, 99, 100, 105

[103] W. D.C., P. B.S.V., and W. G.W., “A new benchmark quality solution
for the buoyancy-driven cavity by discrete singular convolution,” Nu-
merical Heat Transfer: Part B: Fundamentals, vol. 40, no. 3, pp. 199–
228, 2001. 88, 94, 96, 99, 100, 101, 102, 103, 104, 105, 192, 193

[104] S. Grossmann and D. Lohse, “Scaling in thermal convection: a unifying
theory,” Journal of Fluid Mechanics, vol. 407, pp. 27–56, 2000. 104

[105] T. R. Kennelly and S. Dabiri, “Natural convection in a differentially
heated cavity-effect of prandtl number,” Available at SSRN 4542982.
105, 107, 108, 128, 193

[106] T. Perelman, “On conjugated problems of heat transfer,” International
Journal of Heat and Mass Transfer, vol. 3, no. 4, pp. 293–303, 1961.
112

[107] A. S. Dorfman, Conjugate problems in convective heat transfer. CRC
Press, 2009. 112

[108] A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, and
L. F. Cabeza, “State of the art on high temperature thermal energy
storage for power generation. part 1—concepts, materials and mod-
ellization,” Renewable and sustainable energy reviews, vol. 14, no. 1,
pp. 31–55, 2010. 113

[109] Y. Tian and C.-Y. Zhao, “A review of solar collectors and thermal
energy storage in solar thermal applications,” Applied energy, vol. 104,
pp. 538–553, 2013. 113

[110] K. R. Kumar and K. Reddy, “Thermal analysis of solar parabolic trough
with porous disc receiver,” Applied energy, vol. 86, no. 9, pp. 1804–1812,
2009. 113

[111] J. A. Ackermann, L.-E. Ong, and S. C. Lau, “Conjugate heat transfer in
solar collector panels with internal longitudinal corrugated fins—part i:
overall results,” Forschung Im Ingenieurwesen, vol. 61, no. 4, pp. 84–92,
1995. 113

Bibliography 213

[112] J. A. Ackermann, L.-E. Ong, and S. C. Lau, “Conjugate heat transfer
in solar collector panels with internal longitudinal corrugated fins-part
ii: Local results,” Forschung im Ingenieurwesen, vol. 61, no. 6, pp. 172–
179, 1995. 113

[113] H. M. Regue, B. Bouali, T. Benchatti, and A. Benchatti, “Numerical
simulation of conjugate heat transfer in a ptc with secondary reflector,”
International Journal of Heat and Technology, vol. 38, no. 1, pp. 9–16,
2020. 113

[114] F. Nees and Y. Pai, “Conjugate heat transfer analysis of the transient
thermal discharge of a metallic latent heat storage system,” in Journal
of Physics: Conference Series, vol. 2766, p. 012212, IOP Publishing,
2024. 113

[115] J. Solano, F. Roig, F. Illán, R. Herrero-Mart́ın, J. Pérez-Garćıa, and
A. Garćıa, “Conjugate heat transfer in a solar-driven enhanced ther-
mal energy storage system using pcm,” in de Proceedings of the 4th
World Congress on Mechanical, Chemical, and Material Engineering
(MCM’18), Madrid, 2018. 113

[116] Y. Ito, N. Inokura, and T. Nagasaki, “Conjugate heat transfer in air-to-
refrigerant airfoil heat exchangers,” Journal of heat transfer, vol. 136,
no. 8, p. 081703, 2014. 113

[117] P. Renze and K. Akermann, “Simulation of conjugate heat transfer
in thermal processes with open source cfd,” ChemEngineering, vol. 3,
no. 2, p. 59, 2019. 113

[118] E. Greiciunas, D. Borman, J. Summers, and S. J. Smith, “A multi-
scale conjugate heat transfer modelling approach for corrugated heat
exchangers,” International Journal of Heat and Mass Transfer, vol. 139,
pp. 928–937, 2019. 113

[119] N. Lebaal, A. SettaR, S. Roth, and S. Gomes, “Conjugate heat transfer
analysis within in lattice-filled heat exchanger for additive manufactur-
ing,” Mechanics of Advanced Materials and Structures, vol. 29, no. 10,
pp. 1361–1369, 2022. 113

214 Bibliography

[120] H. Ahmed, H. Sadat, and S. Nasrazadani, “High-fidelity conjugate heat
transfer simulation of micro-channel heat exchanger,” Journal of Ad-
vanced Research in Fluid Mechanics and Thermal Sciences, vol. 106,
no. 1, pp. 165–181, 2023. 113

[121] F. Espinosa, R. Avila, J. Cervantes, and F. Solorio, “Numerical sim-
ulation of simultaneous freezing–melting problems with natural con-
vection,” Nuclear engineering and design, vol. 232, no. 2, pp. 145–155,
2004. 113

[122] J.-W. Park, J.-h. Bae, and H.-J. Song, “Conjugate heat transfer analysis
for in-vessel retention with external reactor vessel cooling,” Annals of
Nuclear Energy, vol. 88, pp. 57–67, 2016. 113

[123] A. Timperi, “Conjugate heat transfer les of thermal mixing in a t-
junction,” Nuclear Engineering and Design, vol. 273, pp. 483–496, 2014.
113

[124] S. Chen, Y. Yan, and W. Gong, “A simple lattice boltzmann model for
conjugate heat transfer research,” International Journal of Heat and
Mass Transfer, vol. 107, pp. 862–870, 2017. 113

[125] X. Chen and P. Han, “A note on the solution of conjugate heat transfer
problems using simple-like algorithms,” International Journal of Heat
and Fluid Flow, vol. 21, no. 4, pp. 463–467, 2000. 113

[126] N. Sato, S. Takeuchi, T. Kajishima, M. Inagaki, and N. Horinouchi, “A
consistent direct discretization scheme on cartesian grids for convec-
tive and conjugate heat transfer,” Journal of Computational Physics,
vol. 321, pp. 76–104, 2016. 113

[127] S. V. Patankar, Numerical heat transfer and fluid flow. Hemisphere
Publishing Corporation, 1980. 113

[128] T. Basak, R. Anandalakshmi, and A. K. Singh, “Heatline analysis on
thermal management with conjugate natural convection in a square
cavity,” Chemical engineering science, vol. 93, pp. 67–90, 2013. 114,
118, 125, 126, 194, 199

[129] B. John, P. Senthilkumar, and S. Sadasivan, “Applied and theoreti-
cal aspects of conjugate heat transfer analysis: A review,” Archives of
Computational Methods in Engineering, vol. 26, pp. 475–489, 2019. 115

Bibliography 215

[130] R. Henkes, F. Van Der Vlugt, and C. Hoogendoorn, “Natural-
convection flow in a square cavity calculated with low-reynolds-number
turbulence models,” International Journal of Heat and Mass Transfer,
vol. 34, no. 2, pp. 377–388, 1991. 128

[131] R. Henkes and C. Hoogendoorn, “Scaling of the turbulent natural con-
vection flow in a heated square cavity,” 1994. 128

[132] F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine, et al.,
Fundamentals of heat and mass transfer, vol. 6. Wiley New York, 1996.
129

[133] S. Paolucci and D. R. Chenoweth, “Transition to chaos in a differ-
entially heated vertical cavity,” Journal of Fluid Mechanics, vol. 201,
pp. 379–410, 1989. 129

[134] J. Lage and A. Bejan, “The ra-pr domain of laminar natural convection
in an enclosure heated from the side,” Numerical heat transfer, vol. 19,
no. 1, pp. 21–41, 1991. 129, 194

[135] L. Zwirner, A. Tilgner, and O. Shishkina, “Elliptical instability and
multiple-roll flow modes of the large-scale circulation in confined tur-
bulent rayleigh-bénard convection,” Physical Review Letters, vol. 125,
no. 5, p. 054502, 2020. 130

[136] T. Zürner, F. Schindler, T. Vogt, S. Eckert, and J. Schumacher, “Com-
bined measurement of velocity and temperature in liquid metal con-
vection,” Journal of Fluid Mechanics, vol. 876, pp. 1108–1128, 2019.
130

[137] T. Vogt, S. Horn, A. M. Grannan, and J. M. Aurnou, “Jump rope vortex
in liquid metal convection,” Proceedings of the National Academy of
Sciences, vol. 115, no. 50, pp. 12674–12679, 2018. 130

[138] S. Bawazeer, A. Mohamad, and P. Oclon, “Natural convection in a
differentially heated enclosure filled with low prandtl number fluids with
modified lattice boltzmann method,” International Journal of Heat and
Mass Transfer, vol. 143, p. 118562, 2019. 130, 131, 134, 194

216 Bibliography

[139] F. Wolff, C. Beckermann, and R. Viskanta, “Natural convection of liq-
uid metals in vertical cavities,” Experimental Thermal and Fluid Sci-
ence, vol. 1, no. 1, pp. 83–91, 1988. 130, 131, 132, 134, 139, 145, 149,
194, 195

[140] R. Viskanta, D. Kim, and C. Gau, “Three-dimensional natural convec-
tion heat transfer of a liquid metal in a cavity,” International journal
of heat and mass transfer, vol. 29, no. 3, pp. 475–485, 1986. 130, 132,
134, 145, 149, 195

[141] A. Mohamad and R. Viskanta, “Transient natural convection of low-
prandtl-number fluids in a differentially heated cavity,” International
Journal for numerical methods in fluids, vol. 13, no. 1, pp. 61–81, 1991.
130, 131, 132, 134, 145, 149, 194, 195

[142] A. Mohamad and R. Viskanta, “Modeling of turbulent buoyant flow
and heat transfer in liquid metals,” International journal of heat and
mass transfer, vol. 36, no. 11, pp. 2815–2826, 1993. 130, 131, 132, 194

[143] J. Oder, M. Alsailani, L. Koloszar, W. Munters, D. Laboureur, and
J. Pacio, “Direct numerical simulation of flow in a confined differentially
heated cavity at low prandtl numbers,” pp. 1206–1218, 01 2023. 130,
131, 132, 134, 142, 150, 155, 194

[144] A. Mohamad and R. Viskanta, “Application of low reynolds number
k-ε turbulence model to buoyant and mixed flows in a shallow cavity,”
Fundamentals of Mixed Convection, vol. 223, pp. 43–54, 1992. 132, 134,
139, 145, 146, 149, 195

[145] V. Giovacchini, Development of a numerical platform for the modeling
and optimal control of liquid metal flows. PhD thesis, alma, Luglio
2022. 142, 170, 171, 172, 196

[146] A. Ying, M. Abdou, C. Wong, S. Malang, N. Morley, M. Sawan, B. Mer-
rill, D. K. Sze, R. Kurtz, S. Willms, et al., “An overview of us iter
test blanket module program,” Fusion engineering and design, vol. 81,
no. 1-7, pp. 433–441, 2006. 158

[147] L. Boccaccini, J.-F. Salavy, R. Lässer, A. L. Puma, R. Meyder, H. Neu-
berger, Y. Poitevin, and G. Rampal, “The european test blanket mod-

Bibliography 217

ule systems: Design and integration in iter,” Fusion engineering and
design, vol. 81, no. 1-7, pp. 407–414, 2006. 158

[148] P. Calderoni, A. Aiello, B. Ghidersa, Y. Poitevin, J. Pacheco, et al.,
“Current design of the european tbm systems and implications on demo
breeding blanket,” Fusion Engineering and Design, vol. 109, pp. 1326–
1330, 2016. 158

[149] C. Ciurluini, V. Narcisi, A. Tincani, C. O. Ferrer, and F. Giannetti,
“Conceptual design overview of the iter wcll water cooling system and
supporting thermal-hydraulic analysis,” Fusion Engineering and De-
sign, vol. 171, p. 112598, 2021. 158

[150] D. Martelli, A. Venturini, and M. Utili, “Literature review of lead-
lithium thermophysical properties,” Fusion Engineering and Design,
vol. 138, pp. 183–195, 2019. 160

[151] K. Mergia and N. Boukos, “Structural, thermal, electrical and magnetic
properties of eurofer 97 steel,” Journal of Nuclear Materials, vol. 373,
no. 1-3, pp. 1–8, 2008. 160

[152] C. A. Sleicher Jr and M. Tribus, “Heat transfer in a pipe with turbulent
flow and arbitrary wall-temperature distribution,” Transactions of the
American Society of Mechanical Engineers, vol. 79, no. 4, pp. 789–797,
1957. 162

[153] V. Gnielinski, “New equations for heat and mass transfer in turbulent
pipe and channel flow,” International chemical engineering, vol. 16,
no. 2, pp. 359–367, 1976. 163

[154] G. K. El Khoury, P. Schlatter, A. Noorani, P. F. Fischer,
G. Brethouwer, and A. V. Johansson, “Direct numerical simulation
of turbulent pipe flow at moderately high reynolds numbers,” Flow,
turbulence and combustion, vol. 91, pp. 475–495, 2013. 169, 171, 196

[155] S. Pirozzoli, J. Romero, M. Fatica, R. Verzicco, and P. Orlandi, “One-
point statistics for turbulent pipe flow up to,” Journal of fluid mechan-
ics, vol. 926, p. A28, 2021. 169

[156] X. Wu and P. Moin, “A direct numerical simulation study on the mean
velocity characteristics in turbulent pipe flow,” Journal of Fluid Me-
chanics, vol. 608, pp. 81–112, 2008. 169

218 Bibliography

[157] L. Redjem-Saad, M. Ould-Rouiss, and G. Lauriat, “Direct numerical
simulation of turbulent heat transfer in pipe flows: Effect of prandtl
number,” International Journal of Heat and Fluid Flow, vol. 28, no. 5,
pp. 847–861, 2007. 169

Appendix A

Developed Routines

In this appendix, we describe the main routines implemented during the
project. The aim is to offer a clearer and more detailed view of the algorithms’
internal logic, complementing the developed C++ classes of the coupling
application described in Chapter 2. Each routine is presented in a structured
format to highlight key computational steps and decision-making processes.

A.1 MED Class Routines

This section describes the main methods implemented in the C++ class,
named MEDclass, of the developed coupling application. The first routine
generates the MED mesh starting from the connectivity and coordinate vec-
tors provided by the coupled codes (e.g., FEMuS and OpenFOAM). The al-
gorithm of the routine create mesh() is shown in Algorithm 5. The function
creates an instance of an unstructured mesh, named mesh, and allocates suf-
ficient memory to store a number of cells equal to nel, using the MED routine
mesh.allocateCells(nel). Each cell is then added to the mesh by speci-
fying the cell type (e.g., QUAD4, HEXA8, TRI3 etc.), the number of DOFs per
cell, and its connectivity through the mesh.insertNextCell(type, dof,
conn) routine. The MED method mesh.finishInsertingCells() marks
the completion of the cell insertion process, once the mesh is completed. A

220 Appendix A. Developed Routines

Algorithm 5 Create mesh
1: function create mesh(conn, coord, type, dimension)
2: Set dimension and elements type of the interface mesh
3: Create mesh object of type MEDCoupling::MEDCouplingUMesh
4: Allocate memory for the nel number of cells
5: while i ̸= nel do
6: Set cell connectivity
7: Insert i-th cell
8: end while
9: Close memory

10: Create tmp array of type MEDCoupling::DataArrayDouble
11: Allocate memory for ndof × dimension coordinates
12: Copy coordinates into tmp
13: Use tmp to set coordinates into mesh object
14: end function

temporary MED array, tmp, is then created. The function tmp.alloc(ndof,
dimension) allocates the memory needed to store the coordinate values, with
a total size corresponding to the number of nodes times the mesh dimension-
ality. The standard copy method is then used to transfer the values from
the coord vector provided by the numerical code into the tmp array. To add
the coordinates to the mesh, the MED routines mesh.setCoords(tmp) and
mesh.zipCoords() are employed.

Algorithm 6 Initialization of node fields
1: function init med field on nodes(mesh, name, dim)
2: Set field type to MEDCoupling::ON NODES
3: Create field object of type MEDCoupling::MEDCouplingFieldDouble
4: Assign mesh to the field object
5: Set name of the field
6: set field(field,dim)
7: end function

The second functionality, outlined in Algorithms 6 and 7, is the ini-
tialization of the fields used in the coupling application. The routine be-
gins by selecting the discretization type of the fields, determining whether
they are defined at the mesh nodes or are cell-wise fields. The field object
(field) is then instantiated and assigned to the mesh using the MED routine

A.1. MED Class Routines 221

Algorithm 7 Initialization of cell-wise fields
1: function init med field on nodes(mesh, name, dim)
2: Set field type to MEDCoupling::ON CELLS
3: Create field object of type MEDCoupling::MEDCouplingFieldDouble
4: Assign mesh to the field object
5: Set name of the field
6: set field(field,dim)
7: end function

field.setMesh(mesh). The routine field.setName(name) is used to set
up the characteristic name of the field. Then, the algorithm calls the method
set field(field, dim), shown in Algorithm 8, to initialize the field object.
The initialization, performed at the beginning of the solution process, when
time is zero, involves allocating the memory needed to temporarily store the
field values. The array tmp array must be sized as ndof times the field’s
dimension, depending on whether the field is scalar, vector, or tensor. The
array tmp array is filled with the initial values using the copy function and

then assigned to the field object through the field.setArray(array tmp)
routine. Then, field.checkConsistencyLight() and field.setTime(0)
are invoked.

Algorithm 8 Set field
1: function set field(field, dim)
2: if time == 0 then
3: Allocate memory of MEDCoupling::DataArrayDouble array tmp
4: Copy initial values to array tmp
5: Set array tmp to field
6: Set time = 0
7: else
8: Fill array tmp with updated values
9: Set array tmp to field

10: Set time to time
11: end if
12: end function

The same routine shown in Algorithm 8 for setting the field is called
whenever the solution needs to be updated during execution. The inverse
routine, get field(), described in Algorithm 9, is used to retrieve the field

222 Appendix A. Developed Routines

Algorithm 9 Get field
1: function get field(field, array tmp)
2: Get field updated values
3: Set values to array tmp
4: end function

values from the field object and store them in the array tmp array.

Algorithm 10 Get remapper
1: function get remapper(method, src mesh, trgt mesh)
2: Create P object of type MEDCoupling::MEDCouplingRemapper
3: Set interpolation method
4: Compute P for src mesh and trgt mesh
5: return P
6: end function

Algorithm 11 Interpolate field
1: function interpolate field(remapper, src field, trgt field, nature)
2: Set src field nature
3: Compute trgt field from src field
4: end function

Beyond mesh and field creation, a main functionality of the MED class is
the interpolation process, which is managed by the routines get remapper()
and interpolate field(). The get remapper() routine, detailed in Al-
gorithm 10, creates the remapper object, which represents the projection
matrix P used to map fields from one mesh to another. The interpola-
tion method is specified using remapper.setIntersectionType(method),
a REMAPPER class routine. The remapper object is then computed by call-
ing the remapper.prepare(src mesh, trgt mesh, type) method, which
calculates the projection matrix P based on the source mesh, the target
mesh, and the selected interpolation type (e.g., P0 − P0, P0 − P1, etc.).

Finally, the interpolate field() routine performs the following matrix
operation

Φt = PΦs, , (A.1)

to compute the target field starting from the source field. The nature of the
source field (e.g., IntensiveMaximum, ExtensiveConservation) is specified

A.2. FEMuS Interface Class Routines 223

using the field.setNature(nature) function. This definition assigns a
physical meaning to the field and influences the selection of the appropriate
interpolation strategy. Then, the remapper.transferField(src field)
routine is called to generate the trgt field.

A.2 FEMuS Interface Class Routines
This section describes the main functionality of the wrapper class between
FEMuS code and the MED framework.

Algorithm 12 Interface initialization
1: function init interface(name)
2: Create interface object
3: set mesh connectivity(interface)
4: set mesh coordinates(interface)
5: Set interface parameters (i.e. n nodes, mesh name)
6: Set useful structures (i.e. map med2mg, map mg2med, indices)
7: end function

The design of the class is centered around the creation of an interface
object. Specifically, the init interface() function groups all the function-
alities required to gather the necessary information for constructing the in-
terface mesh from the FEMuS code. This method is outlined in Algorithm

Algorithm 13 Set mesh connectivity
1: function set mesh connectivity(interface)
2: Get total number of element nel
3: for i < nel do
4: if quad then
5: Get i-th quadratic cell connectivity
6: else if lin then
7: Get i-th linear cell connectivity
8: end if
9: Insert connectivity to interface. conn

10: end for
11: end function

12. It instantiates an object of the interface femus structure and begins

224 Appendix A. Developed Routines

initializing its data members. The routine invokes the retrieval of mesh con-
nectivity.

The set mesh connectivity() function, detailed in Algorithm 13, is
used to populate the interface. conn data member with the connectiv-
ity information for each of the nel interface elements. The connectivity is
computed based on the requirements of the MED mesh format and supports
both linear and quadratic elements. It is worth noting that the logic for
extracting the i-th cell connectivity from the FEMuS solver mesh has been
specialized to differentiate between volume and boundary interfaces. Algo-

Algorithm 14 Set mesh coordinates
1: function set mesh coordinates(interface)
2: Get total number of element ndof
3: for i < ndof do
4: for j < dimension do
5: Get i, j-th node coordinate
6: Insert coordinate to interface. coords
7: end for
8: end for
9: end function

rithm 14 shows the implementation of the function set mesh coordinates()
invoked after the connectivity retrieval. For each of the ndof nodes of the
mesh (volume or boundary), the interface. coords vector is initialized with
the corresponding j-th coordinate in each spatial dimension of the mesh. The
init interface() function ends by initializing key data structures required
for the interface’s operation. It includes the creation of mapping structures
that associate the nodes of the FEMuS mesh with those of the MED interface.
femusMED and MEDclass use these maps to convert indices from the internal
solver mesh to the MED interface and vice-versa. Additionally, the func-
tion sets up an indices vector that holds the global node indices to efficiently
retrieve the solver’s solution during later stages of computation.

Another core functionality of the FEMuS interface class is retrieving so-
lution values from and assigning external fields to the internal solution struc-
tures of FEMuS. Algorithm 15 describes the procedure implemented in the
get field from femus() function, which is responsible for extracting the
solver solution from the FEMuS code and assigning it to the interface struc-
ture. The routine begins by retrieving the PETSc solution object, referred

A.3. OpenFOAM Interface Class Routines 225

Algorithm 15 Get field from FEMuS
1: function get field from femus(interface)
2: Get PETSc solution object numvec
3: numvec → get(interface. indices, interface. field val)
4: end function

to as numvec, which contains the numerical solution data. It then employs
the get() method of the PETSc library to extract the values correspond-
ing to the global indices specified in interface. indices. The resulting
field values are stored in the interface. field val container, making them
accessible for transfer into MED-compatible data structures.

Algorithm 16 Set field to FEMuS
1: function set field to femus(interface,dim)
2: Get PETSc object numvec
3: for i < ndof × dim do
4: numvec ← set(interface. indices, interface. field val)
5: end for
6: end function

The inverse operation, setting an external field into FEMuS, is described
in Algorithm 16. It uses the set() method provided by PETSc to write
values directly into the FEMuS solution field.

A.3 OpenFOAM Interface Class Routines
This section outlines the main functionalities of the wrapper class that con-
nects the OpenFOAM code with the MED framework. The base class,
foamMED, implements all the methods required to create the interface between
OpenFOAM and MED. Derived classes enable the supervisor of the coupled
application to execute specific OpenFOAM solvers. As regards the base class,
the init interface() function is described. It follows the same structure
presented in Algorithm 12 and is used to populate the interface of struc-
tures.

The set mesh connectivity() function is presented in Algorithm 17. In
OpenFOAM, this function retrieves the list of cells (cell) from the mesh
and assigns their connectivity to the interface. conn data member. A

226 Appendix A. Developed Routines

specialized version of this routine is also implemented for boundary mesh
interfaces, as shown in Algorithm 18. The boundary information is extracted
by accessing the mesh patch using the identification number associated with
the boundary. The logic of the set mesh coordinates() function follows

Algorithm 17 Set mesh connectivity
1: function set mesh connectivity(interface)
2: Get mesh cells cell
3: for i in cell do
4: Get i−th cell connectivity
5: Insert connectivity to interface. conn
6: end for
7: end function

Algorithm 18 Set boundary mesh connectivity
1: function set mesh connectivity(interface,patch)
2: Get patch identification number
3: Get patch mesh
4: Get patch cell list cell
5: for i in cell do
6: Get i−th cell connectivity
7: Insert connectivity to interface. conn
8: end for
9: end function

the structure outlined in Algorithm 14.
In Algorithm 19, we have detailed the procedure used by the function

named get field from of(), which extracts solver results from OpenFOAM
and assigns them to the interface structure. The solution is retrieved by ac-
cessing the field through the name of the corresponding OpenFOAM field
(e.g., U, T, epsilon, etc.). In OpenFOAM, fields are associated with the
mesh object and are accessed through the mesh entities. The OpenFOAM
field structures can vary depending on whether the field belongs to the vol-
ume mesh or the boundary mesh (e.g., volScalarField, volVectorField,
surfaceScalarField etc.). The retrieved solution is then copied in the
interface. field val container. The set field from of() function fol-
lows a logic similar to that of Algorithm 19; however, instead of retrieving

A.3. OpenFOAM Interface Class Routines 227

Algorithm 19 Get field from OpenFOAM
1: function get field from of(interface, name, patch)
2: if patch ̸= null then
3: Get boundary mesh object
4: else
5: Get volume mesh object
6: end if
7: for i in fields do
8: if i == name then
9: Get field values from mesh object

10: Fill interface. field val
11: end if
12: end for
13: end function

the solution and storing it in interface. field val, it performs the re-
verse operation by assigning the values from interface. field val to the
corresponding OpenFOAM field.

A.3.1 Derived Classes
For clarity, the full C++ implementation of the derived classes is provided
below. The following wrapper can be used by interested users to access inter-
nal structures of OpenFOAM v11. As regards the foamSingleProblem class,
the implementation of the methods are detailed in the following program
listing:

1 void foamSingleProblem::init(int argc, char *argv[]) {
2

3 Foam::argList::addOption("solver", "name", "Solver name");
4 Foam::argList args_base(argc, argv);
5

6 //Set path to OpenFOAM folder
7 auto opts = Foam::HashTable<Foam::string>();
8 opts.set("case", path_problem);
9 Foam::argList args(args_base, opts);

10 if (!args.checkRootCase()) {
11 Foam::FatalError.exit();

228 Appendix A. Developed Routines

12 }
13

14 // Create time
15 _runTime.reset(new Foam::Time(Foam::Time::controlDictName, args));
16

17 // Read the solverName in controlDict
18 solverName = _runTime->controlDict().lookupOrDefault("solver",

Foam::word::null);↪→

19 // Optionally reset the solver name from the command-line
20 args.optionReadIfPresent("solver", solverName);
21

22 // Check that the solverName has been set
23 if (solverName == Foam::word::null) {
24 args.printUsage();
25 FatalErrorIn(args.executable())
26 << "solver not specified in the controlDict or on the

command-line"↪→

27 << exit(Foam::FatalError);
28 } else {
29 // Load the solver library
30 Foam::solver::load(solverName);
31 }
32 }
33

34 void foamSingleProblem::init_mesh() {
35 // Create the default single region mesh
36 mesh_ = new

Foam::fvMesh(Foam::IOobject(Foam::fvMesh::defaultRegion,
_runTime->name(), *_runTime, Foam::IOobject::MUST_READ));

↪→

↪→

37 }
38

39 void foamSingleProblem::init_solver() {
40 // Instantiate the selected solver
41 _solver.reset(Foam::solver::New(solverName, *mesh_).ptr());
42 }
43

44 void foamSingleProblem::init_pimple_control() {
45 // Create the outer PIMPLE loop and control structure
46 _pimple.reset(new

Foam::pimpleSingleRegionControl(_solver->pimple));↪→

A.3. OpenFOAM Interface Class Routines 229

47

48 // Set the initial time-step
49 setDeltaT(*_runTime, *_solver);
50 }
51

52 bool foamSingleProblem::run() { return _pimple->run(*_runTime); }
53

54 void foamSingleProblem::pre_solve() { _solver->preSolve(); }
55

56 void foamSingleProblem::post_solve() { _solver->postSolve(); }
57

58 void foamSingleProblem::write() { _runTime->write(); }
59

60 void foamSingleProblem::setup_dt() {
61 // Adjust the time-step according to the solver maxDeltaT
62 adjustDeltaT(*_runTime, *_solver);
63 (*_runTime)++;
64 }
65

66 void foamSingleProblem::solve() {
67 // PIMPLE corrector loop
68 while (_pimple->loop()) {
69 _solver->moveMesh();
70 _solver->fvModels().correct();
71 _solver->prePredictor();
72 _solver->momentumPredictor();
73 _solver->thermophysicalPredictor();
74 _solver->pressureCorrector();
75 _solver->postCorrector();
76 }
77 }

The foamMultiProblem class methods are detailed in the following listing:

1 void foamMultiProblem::init(int argc, char * argv[])
2 {
3 Foam::argList::addOption("solver", "name", "Solver name");
4 Foam::argList args_base(argc, argv);
5

6 //Set path to OpenFOAM folder

230 Appendix A. Developed Routines

7 auto opts = Foam::HashTable<Foam::string>();
8 opts.set("case", std::string{path_problem});
9 Foam::argList args(args_base, opts);

10 if (!args.checkRootCase()) {
11 Foam::FatalError.exit();
12 }
13

14 //Create time
15 _runTime.reset(new Foam::Time{Foam::Time::controlDictName, args});
16

17 // Create the region meshes and solvers
18 _solver.reset(new Foam::regionSolvers{*_runTime});
19

20 // Create the outer PIMPLE loop and control structure
21 _pimple.reset(new Foam::pimpleMultiRegionControl{*_runTime,

*_solver});↪→

22 }
23

24 void foamMultiProblem::pre_solve()
25 {
26 forAll(*_solver, i){ (*_solver)[i].preSolve(); }
27

28 _solver->setGlobalPrefix();
29 }
30

31 void foamMultiProblem::solve()
32 {
33 // Multi-region PIMPLE corrector loop
34 while (_pimple->loop())
35 {
36 forAll(*_solver, i){ (*_solver)[i].moveMesh(); }
37 forAll(*_solver, i){ (*_solver)[i].fvModels().correct(); }
38 forAll(*_solver, i){ (*_solver)[i]..prePredictor(); }
39 forAll(*_solver, i){ (*_solver)[i].momentumPredictor(); }
40 while (_pimple->correctEnergy())
41 {
42 forAll(*_solver, i)
43 {
44 (*_solver)[i].thermophysicalPredictor();
45 }

A.3. OpenFOAM Interface Class Routines 231

46 }
47 forAll(*_solver, i){ (*_solver)[i].pressureCorrector(); }
48 forAll(*_solver, i){ (*_solver)[i].postCorrector(); }
49 }
50 }
51

52 void foamMultiProblem::post_solve()
53 {
54 forAll(*_solver, i){ (*_solver)[i].postSolve();}
55 _solver->setGlobalPrefix();
56 }
57

58 bool foamMultiProblem::run(){ return _pimple->run(*_runTime); }
59

60 void foamMultiProblem::write(){ _runTime->write(); }
61

62 void foamMultiProblem::setup_dt(){ setDeltaT(*_runTime, *_solver); }
63

64 void foamMultiProblem::adjust_dt()
65 {
66 // Adjust the time-step according to the solver maxDeltaT
67 adjustDeltaT(*_runTime, *_solver);
68 (*_runTime)++;
69 }
70

71 void foamMultiProblem::set_mesh(Foam::word region_name)
72 {
73 mesh = _solver->get_mesh(region_name);
74 }

Appendix B

Configuration Parameters for
OpenFOAM Simulations

This appendix provides an overview of the OpenFOAM configuration used
for the simulations presented in this thesis. It includes the key numerical set-
tings such as discretization schemes, solver tolerances, and relaxation factors,
as defined in the respective configuration files (e.g., fvSchemes, fvSolution,
and controlDict). The numerical parameters used in the OpenFOAM sim-
ulations are reported in Table B.2 for the Differentially Heated Cavity config-
uration, and in Table B.3 for the heat exchanger case discussed in Chapter 4.
Table B.1 lists the abbreviations used for the discretization schemes.

Discretization Scheme Abbreviation
Gauss linear GL
Gauss linearUpwind GLU
Gauss linearUpwind limited GLU limited
Gauss limitedLinear GLL
Gauss linear corrected/uncorrected GL corrected/uncorrected

Table B.1: Discretization scheme abbreviations.

234 Appendix B. Configuration Parameters for OpenFOAM Simulations

Differentially Heated Cavity

Simulation Laminar Turbulent

controlDict

Solver name fluid fluid

deltaT 0.01 0.005

fvSchemes

Time derivative scheme Euler backward

Gradient scheme GL GL

Div scheme U GLU GLU limited

Div scheme e and K GL GLL

Div scheme turbulence - GLL

Laplacian scheme GL corrected GL corrected

fvSolution

Solver Type Tolerance type tol

p GAMG 10−9 GAMG 10−8

rho diagonal - diagonal -

Other variables PBiCGStab 10−9 PBiCGStab 10−8

nOuterCorrectors 0 1

nCorrectors 2 1

Field Relaxation factor 1.0 0.9

Equation Relaxation factor 1.0 0.7

Table B.2: Configuration parameters for laminar and turbulent OpenFOAM
simulations of the DHC problem.

235

Heat Exchanger Simulations

Region PbLi Pipe + Fins

controlDict

Solver name fluid solid

deltaT 0.01 0.1

fvSchemes

Time derivative scheme backward Euler

Gradient scheme GL GL

Div scheme U GLU limited -

Div scheme e and K GLL -

Div scheme turbulence GLL -

Laplacian scheme GL corrected GL uncorrected

fvSolution

Solver Type Tolerance type tol

p GAMG 10−6 - -

rho diagonal - - -

Other variables smoothSolver 10−7 PCG 10−6

nOuterCorrectors 1 -

nCorrectors 1 -

Field Relaxation factor 0.7 1.0

Equation Relaxation factor 0.7 1.0

Table B.3: Configuration parameters for fluid and solid OpenFOAM simula-
tions of the PbLi-air heat exchanger.

	Abstract
	Introduction
	Turbulence Modeling for Liquid Metals
	Fluid Mechanics Equations
	Conservation Equation

	Governing Equations for Turbulent Flows
	Derivation of Reynolds-Averaged Navier-Stokes and Energy Equations
	Law of the Wall
	The Closure Problem

	Dynamic Turbulence Modeling
	Zero-Equation Model: Mixing Length
	One-Equation Model
	Two-Equation Models

	Thermal Turbulence Modeling
	Models for Reynolds Stress Tensor and Turbulent Heat Flux
	Explicit Algebraic Stress Models
	Explicit Algebraic Heat Flux Models

	The Anisotropic Four-parameter Turbulence Model

	Code Coupling Method
	Numerical Platform Environment
	Strategies for Code Integration

	OpenFOAM and FEMuS Integration
	MED Communication Class
	FEMuS Interface Class
	OpenFOAM Interface Class

	Coupling Algorithm
	Algorithm Routines

	Validation
	Differentially Heated Cavity (DHC)
	Conjugate Heat Transfer (CHT)

	Turbulent Natural Convection of Liquid Metals
	Literature Overview
	Characterization of the Flow
	Simulation Results
	FEMuS Results
	OpenFOAM Results
	Coupling Application Results

	Liquid Metal Heat Exchanger
	Description of the Heat Exchanger
	Constraints and properties of the PbLi-air heat exchanger
	Zero-dimensional analysis

	Lead-Lithium Simulation
	Numerical Results
	DNS Comparison

	Pipe and Fins Simulations
	Conjugate Heat Transfer Application

	Conclusions
	List of Figures
	List of Tables
	Bibliography
	Developed Routines
	MED Class Routines
	FEMuS Interface Class Routines
	OpenFOAM Interface Class Routines
	Derived Classes

	Configuration Parameters for OpenFOAM Simulations

