

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 37

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

JOB-LEVEL ONLINE PREDICTIVE MODELLING FOR SUSTAINABLE HPC
SYSTEMS

Presentata da: Francesco Antici

Supervisore

Zeynep Kiziltan

Esame finale anno 2025

Coordinatore Dottorato

Ilaria Bartolini

Borsa di dottorato del Programma Operativo Nazionale Ricerca e Innovazione
2014-2020 (CCI 2014IT16M2OP005), risorse FSE REACT-EU, Azione IV.4 “Dot-
torati e contratti di ricerca su tematiche dell’innovazione” e Azione IV.5 “Dottorati
su tematiche Green.” Il codice CUP della borsa è J35F21003070006.

2

Abstract

High-Performance Computing (HPC) systems are pivotal in addressing complex
computational challenges across various scientific and industrial domains. How-
ever, their significant energy consumption and environmental impact pose critical
sustainability challenges. One possible solution to tackle these challenges is the
development of job level predictive models, with the aim of optimizing system
throughput while minimizing environmental impact. While promising, these prac-
tices are currently not employed in HPC systems due to several important limi-
tations which make them impractical in production environments. The research
makes several contributions in addressing such limitations, and making job-level
predictive modelling a practical solution towards more sustainable and efficient
HPC environments. We first create two comprehensive datasets, namely PM100
and F-DATA, to overcome the scarcity of publicly available, fine-grained job-level
data. These datasets facilitate in-depth analysis of job execution characteristics,
such as power consumption and resource allocation, and serve as fundamental tools
for job-level predictive modelling. Then, online ML-based predictive algorithms
are developed to predict key job execution characteristics, including failure, power
consumption, and memory/compute-bound nature. These models operate online,
leveraging only submission-time features to infer the prediction into job scheduling
and resource allocation decision-making. We employ our predictive models into
frameworks, e.g. MCBound and UoPC, suitable for deployment in production en-
vironment. Such frameworks enable both system-level optimizations and end-user
awareness, fostering improved end-user experience, performance and sustainability.
This work emphasizes the importance of job-level predictive modelling for sustain-
able HPC workload management. By addressing the limitations of such practices,
our research contributes to the broader mission of sustainable computing, setting
the stage for more environmentally conscious HPC systems.

i

ii

Contents

Abstract i

1 Introduction 1

1.1 Research Context . 1

1.2 HPC Sustainability Problems . 2

1.2.1 Uninformed Job Scheduling 2

1.2.2 End-User Inefficient Resource Utilization 3

1.3 Job-level Predictive Modelling . 4

1.3.1 Applications and Impact . 4

1.3.2 Use of Machine Learning . 5

1.3.3 Limitations of The State Of The Art 6

1.4 Research Contributions and Results 8

2 Background 11

2.1 HPC systems . 11

2.1.1 History of HPC . 11

2.1.2 HPC in modern society . 13

2.1.3 Using HPC systems: Jobs and Schedulers 14

2.2 Systems studied . 16

2.2.1 Supercomputer Fugaku . 16

2.2.2 Marconi100 . 18

2.3 Predictive Modelling Tools . 19

2.3.1 Artificial Intelligence . 19

2.3.2 AdaBoost . 20

2.3.3 XGBoost . 21

2.3.4 Logistic Regression . 23

2.3.5 Random Forest . 24

2.3.6 K-nearest neighbors . 24

2.3.7 SBert . 26

CONTENTS iii

CONTENTS

3 PM100: A Job Power Consumption Dataset of the Marconi100
System 27
3.1 M100 Dataset . 29
3.2 PM100 Dataset Creation . 30
3.3 Dataset Overview . 34

3.3.1 Job analysis . 34
3.3.2 Job power consumption analysis 38
3.3.3 Prediction Tasks . 41

4 F-DATA: A Fugaku Dataset for Holistic Job-centric Predictive
Modelling 45
4.1 Dataset Creation . 46
4.2 Dataset Overview . 50
4.3 Experimental Study . 55

4.3.1 Experimental Setup . 55
4.3.2 Experimental Results . 57

5 Job Failure 63
5.1 Related Work . 64
5.2 Methodology . 65

5.2.1 Data preparation . 65
5.2.2 Online Predictive Algorithm 67

5.3 Experimental Study . 70
5.3.1 Experimental setting . 70
5.3.2 Results . 71

6 Job Power Consumption 75
6.1 Related Work . 76
6.2 Methodology . 77

6.2.1 Data Preparation . 77
6.2.2 Job Power Consumption Prediction 80
6.2.3 Experimental Study . 80
6.2.4 Experimental Setting . 80
6.2.5 Results . 83

7 Job Memory/Compute-Bound Nature 95
7.1 Related Work . 97
7.2 MCBound Framework . 98

7.2.1 Data Fetcher . 100
7.2.2 Feature Encoder . 101
7.2.3 Job Characterizer . 101

iv CONTENTS

CONTENTS

7.2.4 Classification Model . 103
7.2.5 MCBound Deployment . 103

7.3 Memory/Compute-bound Characterization and Analysis of Fugaku
Jobs . 104
7.3.1 Fugaku Job Traces . 104
7.3.2 Job Characterization Setup 105
7.3.3 Fugaku Job Analysis . 107

7.4 Experimental Study . 110
7.4.1 Classification Model Implementation for Fugaku 110
7.4.2 Online Prediction Algorithm Evaluation 111
7.4.3 Experimental Results . 112

8 End-user Tool 121
8.1 Related Work . 123
8.2 UoPC Framework . 124

8.2.1 UoPC Overview . 124
8.2.2 SBert Feature Encoder . 126
8.2.3 Predictive Algorithm . 127
8.2.4 UoPC Implementation . 128

8.3 UoPC Deployment for Fugaku . 128
8.3.1 Fugaku Dataset . 129
8.3.2 Data Preparation for Prediction 130
8.3.3 Online Prediction Algorithm Implementation 134

8.4 Experimental Study . 134
8.4.1 Online Prediction Algorithm Evaluation 134
8.4.2 Experimental Results . 137
8.4.3 Discussions . 140

9 Conclusion 149
9.1 Summary of Contributions . 149
9.2 Research Significance and Considerations 151
9.3 Future Directions . 152
9.4 Concluding Remarks . 153

157

Bibliography 157

CONTENTS v

CONTENTS

vi CONTENTS

Chapter 1

Introduction

1.1 Research Context

High-Performance Computing (HPC) refers to the practice of aggregating compu-

tational power to solve complex computational problems (such as big data pro-

cessing, simulations, or real-time analytics) at high speed. HPC systems, such

as supercomputers, aggregate processing power, storage, and memory to achieve

performance levels far beyond those of conventional computers.

HPC systems typically involve clusters of thousands of interconnected nodes,

each containing multiple CPUs or GPUs, to perform tasks collaboratively. To

enable efficient communication, the nodes are connected through high-speed inter-

connects like InfiniBand or Ethernet. HPC systems can scale up by adding more

computational nodes, enabling them to handle increasing workloads as computa-

tional demands grow. To fully exploit this interconnected computational power

and accelerate computations, HPC systems leverage parallel processing, i.e. they

divide large computational tasks into smaller sub-tasks, distributed across multiple

processors, and executed simultaneously.

HPC systems are not just feats of engineering, but also fundamental enablers

of scientific advancements and discoveries. By providing the computational power

required to simulate complex physical phenomena, analyze massive datasets, or

optimize intricate systems, HPC has revolutionized research in fields such as cli-

mate modeling, genomics, astrophysics, drug discovery, and artificial intelligence

CHAPTER 1. INTRODUCTION 1

1.2. HPC SUSTAINABILITY PROBLEMS

(AI). For example, HPC have been instrumental in training large-scale AI mod-

els, understanding global climate patterns, or employing massive-scale genome

sequencing to accelerate medical research and personalized medicine. Without the

capabilities of HPC, many of these breakthroughs would have been impossible or

would have required decades to achieve.

1.2 HPC Sustainability Problems

Modern HPC systems are engineering marvels; however, such powerful machines

come with significant sustainability challenges. These machines consume enor-

mous amounts of power to operate their processors, memory, storage, and cooling

infrastructure. Considerations on the cost of power generation, power delivery,

and chiller/cooler infrastructures put 30MW as an upper limit for the power con-

sumption of HPC systems [1]. Despite modern systems being projected to respect

this limit, their energy requirements (comparable to those of a small town) result

in substantial carbon footprints, making environmental sustainability a critical

concern for the HPC community.

To this end, two main factors significantly affecting the system’s energy con-

sumption are job scheduling and end-user resource utilization. Addressing these

aspects is crucial for reducing the environmental impact of HPC systems while

ensuring they continue to drive innovation and scientific progress.

1.2.1 Uninformed Job Scheduling

Job scheduling is normally performed in an uninformed fashion, which means

that the scheduling strategy does not take into account energy consumption and

job execution characteristics to make the job scheduling decision. This results

in having scheduling strategies which make the system reach concerning peaks of

power consumptions [2, 3], as they have no understating of the relation between job

executions and system power status. For instance, having systems operating over

the 30MW limits or creating sudden and huge variation in the power consumption

of the systems which can potentially damage the system components.

Moreover, they do not make scheduling decisions suited to the job execution

2 CHAPTER 1. INTRODUCTION

1.2. HPC SUSTAINABILITY PROBLEMS

characteristics [4]. For example, they may schedule energy-intensive jobs to less

energy-efficient nodes, increasing power consumption unnecessarily. Uninformed

scheduling strategies fail to adapt to changing workloads or system states. They

may continue running jobs inefficiently on certain nodes even when better alter-

natives exist, such as shifting workloads to low-power nodes during periods of low

utilization. Furthermore, schedulers often allow users to request more resources

than needed, leaving the over-allocated resources powered and consuming energy

unnecessarily [5].

1.2.2 End-User Inefficient Resource Utilization

Jobs have different behaviors and requirements, and in order to execute them op-

timally, they need to be coupled with a correct configuration. Users are often

unaware of their jobs’ characteristics (e.g. resources required, power consump-

tion, duration, failures) and pick a wrong or suboptimal configuration for the job

execution. This includes overprovisioning or underprovisioning the resources re-

quested, wrong type of setup (e.g. node frequency, power cap, wall-time) or types

of resources requested [5]. This has a negative impact at job level, as with mis-

configuration come errors and increased runtime, but it also has concerning conse-

quences for the whole system, with allocated resources being underused or wasted

[6, 7]. In fact, the resources require significant energy and cooling resources. Idle

or underused components waste power, driving up operational expenses without

delivering proportional computational output. In parallel, such energy consump-

tion results in an unnecessarily increased environmental footprint for the system

operations. Moreover, inefficient resource utilization limits the number of jobs that

can be processed over time, reducing the system’s overall productivity, which can

be measured as suboptimal system throughput [6, 8]. In addition, the average time

jobs wait in the queue increases as the system fails to match resource availability

to user demands effectively, frustrating users, and delaying results.

CHAPTER 1. INTRODUCTION 3

1.3. JOB-LEVEL PREDICTIVE MODELLING

1.3 Job-level Predictive Modelling

In order to obtain more effective HPC systems, it is thus fundamental to address

problems related to their sustainability. As mentioned in the previous section, two

main factors which are worsening HPC systems’ sustainability and efficiency are

unaware job scheduling and end-user inefficient resource utilization. By improving

these aspects, it is possible to improve system throughput, while reducing its

energy consumption and environmental impact.

1.3.1 Applications and Impact

A practical solution to address both uninformed job scheduling and end-user in-

efficient resource utilization is predicting job execution characteristics (e.g. job

duration, failure, power/energy consumption, resources needed, performance met-

rics).

First, the predicted characteristics can be used to devise informed job schedul-

ing strategies. The information on power or energy consumption of the jobs can be

leveraged to perform power-constraining techniques (e.g. power-capping, delaying

power-hungry jobs) or energy-aware scheduling (such as executing energy-intensive

jobs on energy-efficient nodes or carbon-aware scheduling). In addition, the pre-

diction of actual resources needed, and performance metrics can be used to pick

the best execution setup for the job, aiming to increase its performance. All the

cited solutions are instrumental to reduce the energy consumption of the system

while ensuring optimal throughput.

Moreover, the predictive models can also be aimed at helping the end-users.

By providing information on characteristics and actual resources needed by the

job, the users can be helped in picking the correct job configuration, and thus

optimizing the job performance, while minimizing resource wastage and energy

consumption. Furthermore, prediction of energetic impact and cost (power/energy

consumption and carbon footprint) of job executions can increase users’ awareness

on such topics, promoting downsizing (e.g. less requested resources or delaying the

execution to a less carbon intensive period) of jobs in favor of a more sustainable

(in terms of energetic footprint) execution on the system.

4 CHAPTER 1. INTRODUCTION

1.3. JOB-LEVEL PREDICTIVE MODELLING

1.3.2 Use of Machine Learning

In recent years, Machine Learning (ML) has emerged as a cornerstone technol-

ogy for predictive modeling in the context of HPC systems. ML techniques are

particularly well-suited for job-level predictive modeling, as they excel at identify-

ing patterns and relationships in complex, high-dimensional data. This capability

has made ML the go-to approach for addressing challenges related to resource

prediction, scheduling optimization, and energy efficiency in HPC environments.

ML has been applied to predict key job-level parameters such as runtime [9, 10]

or power consumption [11, 12]. These techniques stand out as the optimal approach

for job-level predictive modeling due to the following reasons:

• Data-Driven Insights: HPC systems generate vast amounts of operational

and job-related data. ML algorithms are designed to analyze and learn from

such large-scale data, uncovering intricate patterns that traditional methods

struggle to detect.

• Flexibility and Adaptability: Unlike rule-based or heuristic approaches, ML

models can be trained on diverse datasets and adapted to various HPC envi-

ronments and workloads. This adaptability makes ML particularly valuable

in heterogeneous and evolving systems.

• Prediction Accuracy: ML models can achieve high accuracy in predictions,

especially when trained on well-preprocessed datasets. Accurate predic-

tions are critical for optimizing scheduling decisions and reducing resource

wastage.

• Scalability: ML techniques are inherently scalable, allowing them to han-

dle the increasing size and complexity of modern HPC systems. Advanced

models, such as deep learning, are particularly effective at scaling to high-

dimensional datasets.

• Automation and Continuous Learning: ML models can automate the process

of performance analysis and scheduling by continuously learning from new

data, ensuring that predictions remain relevant even as workloads and system

characteristics change.

CHAPTER 1. INTRODUCTION 5

1.3. JOB-LEVEL PREDICTIVE MODELLING

1.3.3 Limitations of The State Of The Art

While job-level predictive modeling has seen significant advancements, there are

important limitations which make them impractical in production environments.

These gaps affect the accuracy, adaptability, and usability of predictive models,

limiting their ability to drive sustainable and efficient HPC operations.

Lack of Comprehensive Job-Level Datasets One of the primary challenges

in job predictive modeling is the absence of publicly available datasets containing

detailed job-level characteristics. In past work [13], it has been shown that extrac-

tion of job data from federated grid architectures is non-trivial, yet feasible. Such

data is insightful on the characteristics of the jobs executed on the system, and

it is fundamental to train and validate predictive models. While some datasets

[14, 15] include job runtime and basic resource utilization metrics, they often lack

crucial features such as per job energy and power consumption and performance

metrics (e.g. memory bandwidth, CPU efficiency or # of flops). The lack of such

datasets hinders the development and validation of predictive models, which are

instrumental to optimize both performance and energy efficiency.

Lack of Submission-time Models Job predictive modelling becomes particu-

larly important when the predictions can be leveraged to make informed decisions

on the job scheduling and resource allocations. This is possible only if the model

can generate a prediction before the job is executed, i.e. at job submission-time.

The only information available at job-submission time is the job submission-time

features (e.g. resources requested and user information), and the data of the jobs

completed by then. Past work on job level predictive modelling has mainly relied

on data not limited to submission-time features [16, 17], making the approach not

suitable for real-case scenarios.

Static and Offline models Many ML approaches [11, 12, 18] are trained only

once offline using historical data, and do not simulate the real online scenario

where job data are live and streaming in time. This setting presents two main

problems. First, by not simulating the online environment, the models do not take

into account the timeline of job submission and execution. This is fundamental

6 CHAPTER 1. INTRODUCTION

1.3. JOB-LEVEL PREDICTIVE MODELLING

to ensure that the data in the training set always come before the one in the test

set. Otherwise, the model is not evaluated in a realistic scenario, resulting in

unreliable prediction performance. Second, the models are not updated over time

to adapt to the workload changes or evolving system configurations, which is key

to obtain accurate prediction. This can potentially lead to suboptimal prediction

performance.

Moreover, such models are not designed to be deployed online in a production

environment, making them useful for simulation and testing, but not for deploy-

ment.

No Predictive Models for Performance Characteristics A major gap in

the state-of-the-art is the lack of models predicting job performance characteristics,

such as Memory/Compute-Bound nature, memory bandwidth or #flops. Failure

in understanding such job characteristics may lead to suboptimal performance,

wasted resources and increased energy consumption. Conversely, as shown in [6,

8], knowing these characteristics before job execution allows to improve system

throughput, while reducing significantly system energy consumption. The absence

of these models restricts the ability of HPC systems to implement sophisticated

scheduling strategies tailored to job-specific performance profiles.

Lack of Tools for End-User Awareness Current research and tools in job

predictive modeling focus primarily on system-level optimizations, overlooking the

role of end-users. No tools have been developed to help users understand the

characteristics of their jobs, such as resource requirements or performance profiles.

Providing such information could enable users to make more informed resource

selection decisions during job submission, which could improve overall system effi-

ciency and reduce unnecessary energy consumption [5]. For instance, a user could

be informed about the actual resources needed for their job, allowing them to

avoid overprovisioning or underprovisioning. This would not only enhance the

user’s experience but also contribute to a more sustainable use of HPC resources.

Additionally, end-user tools could raise awareness about the environmental impact

of their jobs, encouraging users to adopt more energy-efficient practices. This is

particularly important in the context of HPC systems, where energy consump-

CHAPTER 1. INTRODUCTION 7

1.4. RESEARCH CONTRIBUTIONS AND RESULTS

tion and carbon emissions are significant concerns. Raising user awareness on

the energy impact of their jobs is fundamental to enforce energy-based pricing

schemes [19, 20], so as to promote energy-efficient job configurations.

1.4 Research Contributions and Results

In light of the previous considerations, we can conclude that accurate job level

predictive modelling is instrumental to reduce the energetic impact of HPC sys-

tems, while improving their throughput. However, current approaches lack some

fundamental traits which would make them practical for a real system. Therefore,

this research aims at filling the gaps in the state-of-the-art for job level predictive

modelling, and contribute to the creation of workload management pipelines for

more efficient and sustainable HPC systems. Table 1.1 summarizes the limitations

of the state-of-the-art for job-level predictive modeling. For each of these limita-

tions, we report the specific contributions of this work in overcoming them, and

we highlight how this research differs from past work.

In the early stages of our research, we focused on finding voluminous datasets

containing job execution data; this step is fundamental to develop the prediction al-

gorithms and test their accuracy. Since the publicly available resources are scarce,

and often do not present fine-grained job execution characteristics (e.g. power

consumption, energy consumption, performance metrics), we studied methodolo-

gies to extract and create novel fine-grained job datasets from production HPC

systems. The methodologies were applied to the data of two production HPC

systems, namely Supercomputer Fugaku and Marconi100. We were able to then

create two large scale datasets, which we eventually released to augment the pub-

lic availability of job data, and empower the scientific community with important

tools to foster research in job-level predictive modelling.

Then, we worked on job level predictive modelling, trying to address all the

limitations of the state-of-the-art. To this end, we develop prediction algorithms

which leverage only submit-time information to perform a prediction before the

job execution. Our solutions are all online, meaning that they are designed to

work in a real system where data are streaming in time. We test the prediction

performance by keeping into account the actual timeline of the job data, so as

8 CHAPTER 1. INTRODUCTION

1.4. RESEARCH CONTRIBUTIONS AND RESULTS

Aspect State-Of-The-Art Our Contributions
Job-Level Datasets Limited datasets with

coarse-grained job charac-
teristics. Lacking important
features for prediction, such
as per-job power/energy
consumption and perfor-
mance metrics [14, 15].

Creation and release of fine-
grained datasets extracted
from production systems
(PM100 and F-DATA) with
detailed job execution char-
acteristics, including pow-
er/energy consumption and
performance metrics.

Submission-time Mod-
els

Models trained on post-
execution data, unsuitable
for real scenarios [16, 17].

Creation of submission-
time prediction algorithms,
which rely only on submit-
time features.

Online Models Models are static and of-
fline, i.e., they are trained
only once on historical data,
witout being updated over
time [11, 12, 18].

Development of Online
prediction algorithms which
continuously update the
models to adapt to work-
load changes and evolving
system configurations.

Performance Character-
istics Prediction

Lack of models pre-
dicting job performance
characteristics (e.g.,
memory/compute-bound
nature).

Development of MCBound,
a predictive framework for
job performance character-
istics (i.e., the memory/-
compute bound nature of
the job).

End-User Tools No tools for end-user aware-
ness.

Creation of UoPC, a tool
to help users forecast their
jobs’ power consumption,
aiming to promote energy-
efficient practices.

Deployment Readiness Models designed for simu-
lation and testing, not for
production environments.

Development of frameworks
(MCBound and UoPC)
which are suitable for de-
ployment in real production
systems.

Table 1.1: Limitations of the state-of-the-art in job-level predictive modelling and
our contributions to address them.

to obtain reliable results. Our algorithms perform continuous model updating,

CHAPTER 1. INTRODUCTION 9

1.4. RESEARCH CONTRIBUTIONS AND RESULTS

to adapt to the change of workload of the system and obtain better prediction

performance w.r.t. to a static approach, as we will show in the next chapters.

Furthermore, we designed predictive algorithms for job performance characteris-

tics, namely the memory/compute-bound nature of the job, and predictive tools

for the end-users. Finally, we note that we developed frameworks to easily deploy

our predictive algorithms to a real system, providing the first operational tools to

perform job level predictive modelling systematically in a production system.

In the next chapters, we first present the background to our research in Chap-

ter 2. In Chapter 3 and 4 we present the two datasets we released, namely PM100

and F-DATA. Then, we present our studies on the prediction of different job exe-

cution characteristics, namely the job failure (Chapter 5), job power consumption

(Chapter 6) and job memory/compute-bound nature (Chapter 7). In Chapter 8 we

present our work on the creation of an end-user tool for job predictive modelling,

and we finally conclude in Chapter 9.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 HPC systems

2.1.1 History of HPC

HPC has evolved dramatically over the past few decades, transitioning from early

mainframes and vector processors to today’s powerful supercomputers capable of

solving complex scientific, industrial, and societal problems.

Early days The roots of HPC can be traced back to the development of early

electronic computers in the mid-20th century. Machines like the ENIAC (Elec-

tronic Numerical Integrator and Computer) and UNIVAC were among the first

to perform large-scale computations. Although these systems were primitive by

modern standards, they were groundbreaking for their time, enabling tasks such as

ballistic trajectory calculations and census data analysis. The concept of parallel

computing emerged during this era as a way to improve computational speed. By

dividing tasks across multiple processors, early computer scientists realized they

could achieve faster results. This principle became a cornerstone of HPC, laying

the groundwork for future advancements.

The Advent of Supercomputing: 1960s and 1970s The 1960s marked the

birth of supercomputing as a distinct field. Seymour Cray, often referred to as

the ”father of supercomputing,” played a pivotal role in this era. Working at

CHAPTER 2. BACKGROUND 11

2.1. HPC SYSTEMS

Control Data Corporation (CDC), Cray designed the CDC 6600, considered the

first true supercomputer. Released in 1964, the CDC 6600 achieved unprecedented

processing speeds by introducing pipelining and parallel processing techniques,

innovations that would become fundamental to HPC systems.

Cray’s work continued into the 1970s with the development of the Cray-1, a

system renowned for its distinctive cylindrical design and use of vector processing.

Vector processors optimized mathematical operations on large datasets, making

the Cray-1 ideal for scientific simulations and modeling. This period also saw the

rise of government and academic interest in HPC, with systems being used for

tasks like nuclear simulations, weather forecasting, and aerospace research.

Scaling Up: The 1980s and 1990s The 1980s and 1990s were transformative

decades for HPC, driven by advancements in hardware, software, and networking.

Parallel computing became more prominent, with the introduction of massively

parallel processing (MPP) architectures. MPP systems, such as the Thinking

Machines Corporation’s CM-5, employed thousands of interconnected processors

to achieve high speeds. These systems marked a shift from the vector processing

paradigm to a focus on scalability.

The development of distributed computing further enhanced HPC capabilities.

By connecting multiple systems via high-speed networks, distributed computing al-

lowed researchers to leverage collective computational power. This era also saw the

emergence of standardized programming models like MPI (Message Passing Inter-

face) and PVM (Parallel Virtual Machine), which facilitated parallel programming

and resource management.

Government initiatives, such as the U.S. Department of Energy’s investment

in supercomputing centers, spurred further advancements. Machines like IBM’s

Deep Blue demonstrated the power of HPC in specialized tasks, famously defeating

world chess champion Garry Kasparov in 1997, a milestone in artificial intelligence

and computational chess.

The Petascale Era: 2000s The early 21st century marked the beginning of

the petascale era, where supercomputers achieved processing speeds measured in

petaflops (quadrillions of floating-point operations per second). This milestone

12 CHAPTER 2. BACKGROUND

2.1. HPC SYSTEMS

was first reached by IBM’s Roadrunner in 2008, a hybrid system that combined

traditional processors with specialized accelerators.

This period saw an explosion in the demand for HPC, driven by the growth of

data-intensive fields like genomics, climate modeling, and financial analytics. Ad-

vances in hardware, such as multicore processors and GPUs (Graphics Processing

Units), enabled greater computational efficiency and parallelism. GPUs, initially

developed for gaming and graphics, became a key component of HPC systems,

offering immense processing power for tasks like machine learning and scientific

simulations.

The rise of open-source software, such as Linux, also revolutionized HPC. Linux

became the operating system of choice for supercomputers, providing a flexible and

cost-effective platform for large-scale computation.

The Exascale Pursuit: 2010s to Present The 2010s and beyond have been

defined by the pursuit of exascale computing, where systems achieve speeds ex-

ceeding one exaflop (1018 floating-point operations per second). This leap in per-

formance has been made possible by innovations in architecture, interconnect tech-

nology, and energy efficiency.

Supercomputers like Fugaku in Japan, Frontier in the U.S., and LUMI in Eu-

rope have pushed the boundaries of HPC. Fugaku, launched in 2020, integrates

specialized ARM processors to achieve world-leading performance while empha-

sizing energy efficiency. These systems are being used to tackle global challenges,

from simulating the spread of COVID-19 to modeling climate change impacts.

2.1.2 HPC in modern society

In today’s society, HPC systems are at the forefront of modern technological ad-

vancements, impacting a wide range of industries and societal functions. These

systems have become critical in scientific research, as they allow for execution

of large scale and computationally intensive workload, outside the capabilities of

normal computing architectures.

In the scientific community, HPC enables breakthroughs in areas like genomics,

material science, and particle physics, supporting researchers in modeling complex

CHAPTER 2. BACKGROUND 13

2.1. HPC SYSTEMS

phenomena that would be impossible or impractical to study in physical laborato-

ries. In healthcare, HPC aids in drug discovery, disease research, and personalized

medicine, allowing researchers to simulate biological processes and analyze exten-

sive genetic data. Furthermore, in environmental science, HPC is essential for

climate modeling and predicting natural disasters, helping societies prepare and

mitigate the effects of climate change.

Supercomputers like Frontier and Fugaku exemplify how large-scale architec-

tures are being leveraged for scientific discovery. These machines can perform more

than 1015 operations per second, making them indispensable for solving complex

equations, simulating natural phenomena, and analyzing vast datasets. In several

cases, such architectures allow to solve urgent problems, which otherwise would

require months. For instance, Fugaku was instrumental in accelerating COVID

related research. It ran simulations to study how respiratory droplets spread in

various environments, aiding in the development of effective social distancing and

ventilation guidelines. Additionally, Fugaku was used to analyze potential drug

candidates by simulating how various compounds interact with the virus at the

molecular level, significantly speeding up the drug discovery process. Its unpar-

alleled processing power allowed researchers to model complex scenarios in days

that would have otherwise taken months, demonstrating the critical role of super-

computing in addressing global health crises.

As modern society’s demand for computational power grows exponentially,

HPC is not just a tool for specialized fields, but a foundational technology funda-

mental for modern innovation.

2.1.3 Using HPC systems: Jobs and Schedulers

Accessing and efficiently utilizing HPC systems requires specialized workflows,

tools, and protocols. HPC systems are designed to manage the computational

needs of thousands of users simultaneously, ensuring optimal resource utilization

and minimizing conflicts. Most users access HPC systems remotely via secure

shell (SSH) connections. Upon gaining access, users typically work within a shared

environment, usually a Linux-based operating system, where they can upload data,

manage files, and configure their computational tasks.

14 CHAPTER 2. BACKGROUND

2.1. HPC SYSTEMS

Jobs Users execute their applications on an HPC system under the form of jobs,

which are instances of computational tasks executed on a set of system resources

that are allocated for a finite amount of time. In fact, users do not directly

interact with computational resources like processors or memory, instead they

submit jobs to the system. To submit a job, the user prepares a job script, which

is a configuration file that specifies the details of the job execution, such as the

amount of hardware requested, the expected runtime of the job, the logging files

and most importantly the commands, libraries and modules needed to execute the

computational task. In Listing 2.1, we provide an example of a job script which

requests 8 computational nodes for 2 hours of time. The job executes the python

script simulation.py and saves the output of a computation in the output.log

file. Depending on the job scheduler installed on the system (e.g. SLURM, PBS,

etc), the job script must contain specific keywords (e.g. #SBATCH) to specify

requirements for the job. In the case of Listing 2.1, the job script is written for

the SLURM1 job scheduler.

Listing 2.1: Example of a Job Script for the SLURM Job Scheduler�
1

2 #!/ bin/bash

3 #SBATCH --job -name=example_job

4 #SBATCH --output=output.log

5 #SBATCH --nodes=8

6 #SBATCH --time =02:00:00

7 #SBATCH --partition=compute

8

9 module load python

10 python simulation.py
� �
Once the job script is ready, the user submits it to the system through the job

scheduler, and the job is then queued for execution.

Job Scheduling The job scheduler is a critical component of any HPC sys-

tem. Such component is a software tool responsible for allocating resources and

managing the queue of submitted jobs. The job scheduler dynamically allocates

resources to maximize system utilization, while ensuring that high-priority jobs are

executed promptly. Such software is highly scalable and high performance, since

1https://slurm.schedmd.com

CHAPTER 2. BACKGROUND 15

https://slurm.schedmd.com

2.2. SYSTEMS STUDIED

they are required to handle scheduling of thousands of jobs per seconds, submitted

by hundreds of different users.

The job scheduler executes jobs in the queue based on several factors, which

are the priority policy, the resource availability and dependency. The priority

policy is usually determined at system level, and may consider factors like job

size, user group, or fairness policies. The jobs need to wait for the availability

of the resources requested, which might result in having smaller jobs be executed

sooner than larger ones. As the Job Scheduler also aims at maximizing the resource

utilization and minimizing the job waiting time in the queue, such software may

consolidate smaller jobs into available nodes or pause lower-priority jobs to make

way for urgent tasks. Finally, some jobs may depend on the completion of others

and hence are scheduled accordingly.

Once a job is submitted, most job schedulers allow the users to monitor their

job and obtain information on its status (e.g. running, pending or failed) and exe-

cution metrics (e.g. power consumption, resource utilization and duration). Such

information is generally stored in detailed logs and reports, generated after the job

completes. Users can then analyze such logs to identify bottlenecks, optimize their

code, or debug errors. Furthermore, these data can be fed into AI and data-driven

models to predict job execution characteristics (e.g. power consumption, failure,

duration, etc) and patterns.

2.2 Systems studied

During our research, we had the opportunity to work with two production HPC

systems, namely Marconi100 and Supercomputer Fugaku, from which we extracted

job-level data.

2.2.1 Supercomputer Fugaku

Supercomputer Fugaku, developed by RIKEN and Fujitsu in Japan, is one of

the most powerful and advanced HPC systems ever created. Named after Mount

Fuji, this system has set global benchmarks in supercomputing, excelling in both

performance and versatility. Fugaku is one of the most effective supercomputers

16 CHAPTER 2. BACKGROUND

2.2. SYSTEMS STUDIED

in the world, tackling problems in: medical research, climate science, disaster

management and AI research.

The development of Fugaku began as the successor to the K computer, another

groundbreaking Japanese supercomputer that operated from 2011 to 2019. The

project to design and build Fugaku started in 2014, and it was officially completed

in March 2020. Despite becoming fully operational in 2021, it was heavily used

during the outbreak of the COVID-19 pandemic to simulate droplet dispersion

and identifying potential drug candidates. These contributions underscored its

practical value in addressing global crises.

Table 2.1 summarizes Fugaku architecture and performance. Fugaku is built on

Fujitsu’s A64FX processor, the world’s first CPU based on the Arm architecture

designed specifically for HPC, differently from traditional x86 processors. The

A64FX is equipped with 48 computational cores and is optimized for high memory

bandwidth and energy efficiency. Thanks to more than 150K interconnected nodes,

the system theoretical peak performance is around 537 petaflops2. The system

is designed with energy efficiency in mind. It uses liquid cooling technology to

maintain optimal operating temperatures, reducing the energy required for cooling

while maximizing performance.

System characteristic Description
Architecture Armv8.2-A SVE 512 bit
OS Red Hat Enterprise Linux 8
#Nodes 158.976
#Cores 48 + 2 assistant cores (per node)
Memory HBM2, 32 GiB (per node)
Peak Performance ≈ 537 Pflop/s (FP64)
Internal Network Tofu D Interconnect (28 Gbps)

Table 2.1: Fugaku system architecture.

In the years since its deployment, Fugaku has consistently ranked among the

world’s most powerful supercomputers, claiming the number one spot in multiple

categories (e.g. Top500, Graph500 and HPCG). Nowadays, after more than 4

years since its debut, it still occupies the 6th position in the latest (November

21015 floating-point operations per second

CHAPTER 2. BACKGROUND 17

2.2. SYSTEMS STUDIED

System characteristic Description

#Nodes 980
#Processors (per node) 2x16 cores IBM POWER9 AC922, 3.1 GHz
#Accelerators (per node) 4 x NVIDIA Volta V100 GPUs, 16 GB
#CPU cores (per node) 32
Amount of RAM (per node) 256 GB
Peak performance 32 PFlop/s

Table 2.2: Marconi100 system characteristics.

2024) Top500 list 3 (a list ranking the world’s most powerful supercomputers).

Fugaku relies on a proprietary operations management software4, built as an

extension of PBS [21] which features workload management operations like job

manager, job scheduler, and functions that enable the recording and storage of job

data.

2.2.2 Marconi100

Marconi100 is an ex-production supercomputer installed at CINECA,5 Italy’s lead-

ing HPC center. During its operational phase, which spanned from March 2020 to

June 2023, it ranked among the world’s fastest supercomputers, holding the 9th

position in the June 2020 Top500 list. This achievement underscored its signifi-

cance as a computational resource, particularly in academic research.

The system could deliver approximately 32 petaflops of peak performance, and

it was based on IBM Power9 processors and NVIDIA Volta GPUs. Marconi100

was composed of 980 nodes, each featuring two 16-core processors and four GPUs,

interconnected through Mellanox Infiniband EDR DragonFly+. This configuration

facilitated efficient and high-speed computation for a wide range of applications

in physics, climate modeling, biology, and materials science. It also offered 8 PB

of storage and 256 GB of RAM per node to handle data-intensive tasks efficiently.

The system architecture is summarized in Table 2.2.

3https://top500.org/lists/top500/2024/11/
4https://www.fujitsu.com/global/about/resources/publications/technicalreview/

2020-03/article10.html#cap-03
5https://www.cineca.it/it

18 CHAPTER 2. BACKGROUND

https://top500.org/lists/top500/2024/11/
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article10.html#cap-03
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article10.html#cap-03

2.3. PREDICTIVE MODELLING TOOLS

Marconi100 is endowed with Examon [22], a software which allows the mon-

itoring of the system. Examon collects data concerning management, workload,

facility, and infrastructure of the Marconi100 supercomputer, including hundreds

of metrics measured on each computing node and hundreds of others gathered

from sensors monitoring the system components.

2.3 Predictive Modelling Tools

In this section, we provide the necessary background to all the predictive modelling

tools used in our research. First, we explain what is AI and why we use it, and

then we present the ML and AI tools we used for job-level predictive modelling.

2.3.1 Artificial Intelligence

Recent years witnessed unprecedented leaps forward in scientific discovery and

technology development. Such advancement has been largely driven by the inte-

gration of Artificial Intelligence (AI) and data-driven techniques (e.g. numerical

simulations, Machine Learning (ML) and Deep Learning (DL)). AI refers to the

simulation of human intelligence in machines designed to perform tasks that typ-

ically require human cognitive abilities. These tasks include learning from data,

reasoning, problem-solving, understanding natural language, and perceiving or in-

terpreting sensory input. AI systems range from narrow AI, specialized in specific

tasks like language translation or image recognition, to the concept of artificial

general intelligence (AGI), which would exhibit human-like cognitive versatility.

Such solutions have become fundamental catalysts for scientific progress, enabling

breakthroughs across numerous fields by automating complex tasks, analyzing

massive datasets, and generating actionable insights.

In healthcare and genomics, AI has transformed drug discovery and personal-

ized medicine. ML algorithms have drastically reduced the time needed to identify

potential drug candidates, as seen during the rapid development of COVID-19 vac-

cines. Similarly, tools like DeepMind’s AlphaFold have revolutionized biology by

accurately predicting protein structures, a challenge that stumped scientists for

decades. This advancement is opening new avenues in understanding diseases

CHAPTER 2. BACKGROUND 19

2.3. PREDICTIVE MODELLING TOOLS

and developing targeted treatments. In climate science, AI is helping researchers

model and predict the impacts of global warming with unprecedented accuracy. By

analyzing satellite imagery, climate data, and environmental patterns, AI systems

are improving predictions of extreme weather events, aiding disaster preparedness,

and enabling better resource management. In astrophysics, AI is being used to sift

through terabytes of data from telescopes, detecting exoplanets, identifying black

holes, and even revealing new insights about the formation of galaxies. Meanwhile,

in material science, ML is accelerating the discovery of new materials, including

those with properties suitable for renewable energy and quantum computing.

Despite being often considered as a modern breakthrough, AI is an idea rooted

in the mid-20th century, when pioneers like Alan Turing and John McCarthy en-

visioned machines capable of mimicking human intelligence. Early AI research

developed concepts like symbolic reasoning and rudimentary ML algorithms, but

the limited computational power of the time rendered these theories largely im-

practical. Only in recent decades, with the advent of advanced computational

centers, high-performance GPUs, and cloud computing, has AI truly come into

its own. These innovations have made it possible to process massive datasets,

train complex models, and perform calculations at speeds unimaginable to early

researchers, transforming AI from a theoretical pursuit into a transformative force

across industries.

Modern state-of-the-art AI models show incredible predictive performance, due

to their capability of analyzing enormous quantity of data to discover patterns and

learn correlations which are outside the reach of other predictive techniques (e.g.

heuristics, exponential smoothing, imperative algorithms). For this reason, we

employ different ML and AI models for our job-level predictive modelling studies.

2.3.2 AdaBoost

The Adaptive Boosting (AdaBoost) algorithm, introduced in [23], is one of the

earliest and most influential boosting methods, designed to improve the accuracy

of weak classifiers by iteratively combining them into a strong predictive model.

AdaBoost is widely recognized for its simplicity, effectiveness, and versatility in

both classification and regression tasks, making it a fundamental technique in the

20 CHAPTER 2. BACKGROUND

2.3. PREDICTIVE MODELLING TOOLS

machine learning toolkit.

The central idea of boosting is to combine the predictions of multiple weak

learners (typically Decision Trees (DTs)), to create a single strong learner. Unlike

bagging methods such as Random Forest, where models are trained independently,

AdaBoost sequentially trains weak learners and adapts their weights based on their

performance. This adaptive process allows the model to focus on difficult examples,

progressively reducing errors. AdaBoost assigns higher weights to misclassified

samples, forcing subsequent models to focus on these challenging cases. Each

weak learner contributes to the final model based on its accuracy, with better-

performing learners given higher weights. AdaBoost requires no parameter tuning

for individual weak learners and can work with various base models, although DTs

are commonly used.

At initialization, equal weights are assigned to all the training samples. All the

weak learners are trained on the weighted dataset, and the error rate on all the

samples is collected. The weights of misclassified samples is increased, while the

ones of the correctly classified is decreased. This is done to put more focus on the

samples which are harder to predict on the following iterations of the algorithm.

Each learner is assigned with a weight too, based on its accuracy. Learners with

lower error rates receive higher weights, indicating greater influence on the final

prediction. Finally, the AdaBoost performs a prediction by combining the predic-

tions of all weak learners using a weighted majority vote (for classification) or a

weighted average (for regression).

AdaBoost is generally sensitive to noisy data and outliers since misclassified

samples receive higher weights. Despite this, its interpretability and effectiveness

have made it a foundational technique in ensemble learning.

2.3.3 XGBoost

XGBoost, short for eXtreme Gradient Boosting, is a powerful and widely used ML

algorithm designed for supervised learning tasks such as regression and classifi-

cation. Presented in [24], XGBoost is a scalable and efficient implementation of

gradient boosting, which gained popularity due to its impressive performance on

ML benchmarks.

CHAPTER 2. BACKGROUND 21

2.3. PREDICTIVE MODELLING TOOLS

The foundation of XGBoost lies in gradient boosting, similarly to the Ad-

aBoost, i.e. combining weak learners (usually decision trees (DTs)) into a strong

predictive model. Gradient boosting optimizes a loss function by sequentially

adding DTs that correct the errors of previous models. Unlike traditional boost-

ing methods, XGBoost incorporates several advanced techniques to enhance its

efficiency and performance, such as:

• Regularization: XGBoost includes L1 and L2 regularization to prevent over-

fitting and improve generalization.

• Tree Pruning: The algorithm uses a maximum depth parameter and employs

a post-pruning strategy to avoid over-complex DTs.

• Handling Missing Data: XGBoost automatically handles missing values in

the dataset, estimating their impact during training.

• Parallel Processing: By leveraging parallelism, XGBoost speeds up tree con-

struction and evaluation, making it highly efficient for large datasets.

• Customizable Loss Function: Users can define custom loss functions to tailor

the algorithm to specific use cases.

The algorithm starts by initializing predictions for the target variable with

a baseline value (often the mean for regression or a constant for classification).

Then, at each iteration, a new DT is fitted to the gradient of the loss function

with respect to the current predictions. This gradient represents the errors the

model needs to correct. This new tree is added to the model, and its predictions

are scaled by a learning rate (a hyperparameter) to control the contribution of

each tree.

XGBoost minimizes a combined objective function comprising the loss function

(e.g., mean squared error for regression) and a regularization term that penalizes

model complexity. The process repeats for a specified number of iterations or

until the model achieves a desired level of accuracy. After all iterations, the pre-

dictions of the ensemble model (the sum of all trees’ outputs) are used to make

final predictions.

22 CHAPTER 2. BACKGROUND

2.3. PREDICTIVE MODELLING TOOLS

2.3.4 Logistic Regression

Logistic Regression (LR) [25] is a widely used ML method for binary classification

tasks (it can be extended to multi-class classification with variants like multinomial

LR). Despite its name, LR is a classification algorithm, not a regression technique.

It models the probability of a sample belonging to a specific class, making it ideal

for problems where the outcome is categorical, such as spam detection, medical

diagnosis, and customer churn prediction.

LR leverages the logistic function (also called the sigmoid function), which

maps real-valued inputs to probabilities between 0 and 1. It assumes a linear

relationship between the input features and the log-odds of the target class. This

simplicity makes logistic regression interpretable and computationally efficient,

even with large datasets.

The algorithm initializes a set of weights (parameters) for the input features,

which will be optimized during training via optimization algorithms (e.g. gradient

descent). LR models the log-odds (logarithm of the odds) of the target class as a

linear combination of the input features, as shown in Equation 2.1; in the equation

β0 is the intercept, and β1, β2, . . . , βn are the weights. The log-odds are converted

into probabilities using the sigmoid function, which maps the probability in the

range [0, 1]. LR optimizes the weights by minimizing the log loss (cross-entropy

loss), which measures the difference between predicted probabilities and actual

labels. After several iterations of the optimization algorithm, the trained LR

predicts the class of a sample by applying a threshold (e.g., 0.5) to the predicted

probability. If P (y = 1|x) ≥ 0.5, classify the sample as 1; otherwise, classify it as

0.

log-odds = β0 + β1x1 + β2x2 + . . .+ βnxn (2.1)

LR is easy to implement and provides interpretable coefficients, showing the

impact of each feature. It works well with small to medium-sized datasets and

does not require extensive computational resources. However, logistic regression

has limitations, such as its reliance on the linearity assumption and reduced per-

formance with highly complex or non-linear data. Despite this, its effectiveness,

interpretability, and probabilistic nature make logistic regression a cornerstone of

CHAPTER 2. BACKGROUND 23

2.3. PREDICTIVE MODELLING TOOLS

machine learning and a baseline for many classification tasks.

2.3.5 Random Forest

The Random Forest (RF) algorithm is a widely used learning method for classi-

fication, regression, and other tasks. RF is an ensemble method, which leverages

several DTs to enhance predictive accuracy, reduce overfitting, and improve ro-

bustness in handling diverse data types. Its lightweight nature, coupled with the

ability to deliver reliable predictions, has made it a standard in various domains,

from medical diagnostics and predictive modeling, to finance and environmental

science.

The concept of DT, which form the foundation of RF, dates back to the 1960s,

while RF itself was introduced in 2001 [26]. The algorithm incorporates two key

innovations, such as bootstrap sampling (i.e. creating multiple subsets of data

for tree training) and feature randomization (i.e. selecting a random subset of

features at each split to reduce correlation among trees). RF outperforms single

DTs and even other ensemble methods in many scenarios, especially when dealing

with noisy or missing data [26].

RF employs n instances of DTs (usually ∼ 100). The training phase consists

of training each DT independently on a different subset of the data. In addition,

each DT is trained on a different feature set of the data, selected randomly. Then,

RF infers on new data, by considering the predictions of all the trained DTs. For

classification tasks, it aggregates DTs predictions using majority voting, while for

regression tasks, it calculates the average predicted value.

2.3.6 K-nearest neighbors

The K-Nearest Neighbors (KNN) algorithm [27] is a non-parametric learning method

used for classification and regression tasks. It is based on a vector distance ap-

proach, which makes it highly effective in applications involving pattern recogni-

tion, recommendation systems, and anomaly detection.

Such method was first introduced in the 1950s as a statistical method for

pattern recognition. The algorithm gained popularity due to its simplicity and

24 CHAPTER 2. BACKGROUND

2.3. PREDICTIVE MODELLING TOOLS

effectiveness, becoming a foundational technique in data science and artificial in-

telligence. Over time, KNN has evolved with various adaptations to optimize its

efficiency, particularly for large datasets.

KNN predicts outcomes based on the proximity of data points in feature space.

It operates on the assumption that similar data points share similar characteristics.

The algorithm is non-parametric, as it does not make any prior assumptions about

the data distribution. In fact, KNN employs a lazy learner method, i.e. it does

not build a model during training; instead, it memorizes the dataset and performs

calculations during inference.

The algorithm infers on new data as follows:

1. Chooses the Value of k, where k is the number of nearest neighbors to con-

sider when making a prediction. A low k value (e.g., 1) can make the model

sensitive to noise, while a high k can smooth predictions but risk losing

detail.

2. Calculates Distance: The algorithm computes the distance (such as Eu-

clidean, Manhattan, Minkowski) between the new data point and all other

data points in the training set.

3. Identifies Nearest Neighbors: The k closest data points are selected based

on the computed distances.

4. Makes Predictions: For classification the class label with the highest fre-

quency among the k neighbors is assigned to the new data point (majority

voting). Conversely, for regression, the average value of the target variable

among the k neighbors is used as the prediction.

The non-parametric nature of the KNN removes the need for heavy model

training and big availability. However, KNN suffers the curse of dimensionality,

as with growing dataset sizes, the computational cost of calculating distances in-

creases, posing challenges for large-scale applications.

CHAPTER 2. BACKGROUND 25

2.3. PREDICTIVE MODELLING TOOLS

2.3.7 SBert

Sentence-BERT (SBERT) [28] is an advanced variation of the BERT (Bidirec-

tional Encoder Representations from Transformers) model [29], designed specifi-

cally for producing high-quality sentence embeddings. Developed by Nils Reimers

and Iryna Gurevych in 2019, SBERT extends BERT’s capabilities to better han-

dle tasks requiring semantic understanding of sentence pairs, such as semantic

search, question answering, and text clustering. SBERT is heavily used in tasks

like semantic search, question answering and text clustering.

The original BERT model, introduced by Google in 2018, revolutionized nat-

ural language processing (NLP) by enabling deep contextualized representations.

It employed a transformer architecture with a bidirectional attention mechanism

to pretrain on large-scale text corpora using masked language modeling and next

sentence prediction. While highly effective, BERT required computationally ex-

pensive pairwise input comparisons for sentence-level tasks. SBERT optimizes

BERT’s transformer architecture for efficient computation of sentence similarities,

addressing BERT’s computational limitations.

SBERT is created by fine-tuning a Siamese network architecture employing

BERT models on sentence similarity tasks. Such a solution allows to derive fixed-

length vector representations for sentences, which enable semantic text similarity

tasks to be performed not only faster, but also more accurately, as shown in [28].

26 CHAPTER 2. BACKGROUND

Chapter 3

PM100: A Job Power

Consumption Dataset of the

Marconi100 System

Job power consumption refers to the amount of electrical power consumed by the

job while executing its computational tasks on the system resources. Hence, the to-

tal power consumption of a job is computed by aggregating the power consumption

of all the resources allocated to the job during its execution. Predicting the power

consumption of a job before its execution would allow to forecast the whole sys-

tem’s power consumption. Past work proved the feasibility of predicting job power

consumption by leveraging on workload manager information [12, 15, 30, 31]. The

prediction can then be exploited by the workload manager to perform techniques

like power capping [2, 32].

All the referenced work addressed the prediction task by using data-driven

techniques exploiting a structured dataset. Due to the steady development of

such techniques, the availability of quality data extracted from a production HPC

system has thus become a leading priority. Such resources are, however, often

limited due to the inherent complexity of collecting structured data for job power

characterization in a production system.

Power consumption measurement relies on, among others, hardware sensors

and different software interface. To give an idea, most of the modern systems have

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

27

in-band software interface (available within the operating system of the compute

node) for the power measurement of compute elements, whereas for node-level and

component-level measurement, they rely on out-of-band interface (observable in

the management network) and smart power switches which monitor cluster power

consumption (observable in the facility management network). Job information

instead requires monitoring the workload manager, which is possible from the login

and master node. Accessing simultaneously to all these data resources requires

different privilege levels and monitoring software validation procedures. While

this is relatively easy in a test environment, it is not the case in a production

machine. On the other hand, job characteristics of a production machine are more

relevant for predictive studies as they reflect the behaviour of a multitude of real

user. Test clusters tend to have synthetic and small-scale workload submitted from

a smaller set of users with larger idle time, which limits generality.

In order to fill the lack of resources for job power prediction, we propose an

approach to extract job power consumption data from workload manager data and

node power metrics logs, which can easily be obtained through system plugins.

Moreover, we created a large job dataset named PM100, with fine-grained job

power consumption information. The PM100 dataset is derived from the M100

workload [33], a holistic dataset extracted from a large-scale production HPC,

using the approach that we propose and is accessible through Zenodo [34].

To the best of our knowledge, the only publicly available dataset for job power

consumption is presented in [15]. The dataset contains 80K jobs using CPU cores

and is extracted from two production HPC clusters, with 560 and 728 nodes, re-

spectively. Our work differs from [15] in a number of ways. First, our dataset is

based on the first holistic dataset M100 of a more powerful tier-0 production su-

percomputer (Marconi100) and contains many more jobs (80k vs 230k). Second,

as the nodes of Marconi100 are equipped with GPUs, the collected power con-

sumption data refers to two types of jobs (those using only cores and also GPUs).

Third, the data presented in [15] lack job information present in PM100, such as

the job exit state, making the dataset not suitable for the job failure analysis and

prediction tasks presented in Section 3.3. Finally, our approach can be applied to

any public workload data with node power metrics logs so as to create new job

power consumption datasets. With the results of our work, we strive to empower

28CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

3.1. M100 DATASET

the HPC community with tools to drive research in optimizing system performance

and power consumption.

3.1 M100 Dataset

The M100 workload data [33] is collected during two and a half years of operation

of Marcon100. It is the first holistic dataset of a tier-0 supercomputer, and it is

the largest (49.9 TB in size before compression) publicly available. It contains

data ranging from the computing nodes’ internal information such as core load,

temperature, power consumption, to the system-wide information, including the

liquid cooling infrastructure, the air-conditioning system, the power supply units,

workload manager statistics, and job-related information. For our purposes, we

are interested in the job data and node power metrics.

Job data The job data is collected in the job table plugin. We focus on the

data that describes the jobs present in the workload by features related to their

submit-time, run-time and end-time. The first category contains the information

available when a job is submitted, such as submission time, number of requested

resources, user information and system state. The second category comprises the

information about the job launch, such as waiting time, execution start time, and

the actual number of allocated resources. At job termination, the end-time features

are collected, e.g., ending time, duration and outcome of the execution. The full list

of job features is available at the dataset repository.1 The job termination features

do not contain job power consumption, so we need to extract this information from

the power metrics logs of the nodes present in M100.

For the purposes of our work, we consider only a part of the dataset2 and use

only the data collected between May 2020 and October 2020. The reason is that

this is the only period where the dataset contains information on the requested

resources, which is useful to give a more in-depth description of each job and could

be exploited for prediction tasks. The considered period contains around 1 million

1https://gitlab.com/ecs-lab/exadata/-/blob/main/documentation/plugins/job_

table.md
2https://doi.org/10.5281/zenodo.7588815

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

29

https://gitlab.com/ecs-lab/exadata/-/blob/main/documentation/plugins/job_table.md
https://gitlab.com/ecs-lab/exadata/-/blob/main/documentation/plugins/job_table.md
https://doi.org/10.5281/zenodo.7588815

3.2. PM100 DATASET CREATION

jobs.

Node power metrics The power consumption data of the system components

is contained in the IPMI plugin, which collects several metrics on cluster nodes,

such as ambient temperature, node temperature, fan speed, node power, CPU power,

memory power. The full list of metrics present in the IPMI data, and their relative

sampling time, is reported in the original documentation of the dataset.3 The

values of all the metrics are collected every 20 seconds on all the system nodes.

The final data is saved in a table, divided by node and collection time.

For our purposes, we consider only the metrics ps0 input power and ps1 input power,

which contain the power consumption values recorded at the input of the two power

supplies of the nodes. Thus, the power consumption of a node n at time ti can be

obtained by summing ps0 input powern,ti and ps1 input powern,ti .

3.2 PM100 Dataset Creation

In this section, we first discuss the information that needs to be included in the

data to apply our methodology. Then, we describe how we selected the jobs in

M100 to include in the dataset PM100; this step is crucial to guarantee data

soundness. We then explain how to extract job power consumption data starting

from the power metrics logs of the nodes present in M100. At the end, we discuss

the job features present in PM100.

Data requirements The methodology we propose in this work can be applied to

any workload manager data and node power metrics logs, providing the following

information.

The workload manager data need to contain, for each job j, its start time, end

time, and the nodes nodesj allocated to the job j. This information will be used

to filter out the exclusive jobs and to extract the job j power consumption pj.

The node power metrics logs must keep record of the power consumption values

of the single nodes of the systems, at different timestamps ti. Such values are used

to compute the job j power consumption pj, at the different time ti.

3https://gitlab.com/ecs-lab/exadata/-/blob/main/documentation/plugins/ipmi.md

30CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

https://gitlab.com/ecs-lab/exadata/-/blob/main/documentation/plugins/ipmi.md

3.2. PM100 DATASET CREATION

In this work, we consider the node n power consumption at time ti as the sum of

ps0 input powern,ti and ps1 input powern,ti . However, if the ps0 input power and

ps1 input power values are missing, the node power consumption can be defined

differently, in accordance with the data present in the node power logs.

Job filtering In Marconi100, multiple jobs can run on the same node at the same

time. Therefore, node power consumption depends on the power consumption

of the execution of multiple jobs on the node’s resources. We are not aware of

a methodology to evaluate accurately the contribution of each job execution to

the node power consumption. Thus, we consider only the jobs that run alone

on all the allocated nodes throughout their execution, to provide accurate power

consumption information.

In order to filter out the exclusive jobs, we implement a pipeline defined as

follows. First, we create a hash-table for each node n, where the keys are the

timestamps ti of a fixed period of time ∆, sampled every θ seconds. The value

related to the key ti is a list containing the IDs of the jobs running on n during that

particular timestamp ti. For each job j, we round the start time (ceiling rounding)

and the end time (floor rounding) to the closest ti (referred to as start timej and

end timej). We then add the job ID to the lists of all the ti that fall between

start timej and end timej, for all the nodes n ∈ nodesj allocated to j. Finally,

from the resulting tables, we filter out all the jobs j that are the only members of

the lists hashed by ti falling between start timej and end timej for all n ∈ nodesj.

Despite considering all the ti of all the jobs is a costly operation, it can be very

useful for future work. For instance, it can be used to study the power consump-

tion of concurrent jobs and how their power consumption intertwine during their

execution. Moreover, one can augment the data by considering the power profiles

of the concurrent jobs just in the timespans where they ran alone.

Job power consumption extraction In order to extract job power consump-

tion, we need to perform a data post-processing pipeline to correlate each job to

the power consumption caused by its execution. We define the power consumption

of an exclusive job j as a list pj, where each element is the job power consumption

computed at ti, for all the ti intersecting the job execution. The job power con-

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

31

3.2. PM100 DATASET CREATION

Input : job j, ps0 input power, ps1 input power
Output : pj
pj = []
ti = start timej
θ = 20
while ti ≤ end timej do

p nodesj,ti = 0
for n ∈ nodesj do

p nodesj,ti = p nodesj,ti + ps0 input powern,ti + ps1 input powern,ti
end
pj = pj + [p nodesj,ti]
ti = ti + θ

end
Algorithm 1: Job power consumption extraction

sumption at time ti is obtained as the sum of the power consumption of the nodes

n ∈ nodesj allocated to the job j (p nodesj,ti). As mentioned in Section 3.1, the

power consumption of a single node n at time ti is the sum of ps0 input powern,ti
and ps1 input powern,ti . Thus, p nodesj,ti can be computed as shown in Equation

3.1. Combining the definitions, we can create the job power consumption values

list as shown in Equation 3.2.

p nodesj,ti =
∑

n∈nodesj

ps0 input powern,ti + ps1 input powern,ti (3.1)

pj = [p nodesj,start timej , . . . , p nodesj,end timej] (3.2)

Algorithm 1 lists the steps performed to extract the power consumption of each

exclusive job filtered in the previous step. For each job j that has end timej −
start timej > 0, we initialize pj as an empty list. The length of pj will be

end timej − start timej/θ, where θ is the sampling time of the power values in

the power data (20 seconds in our case), namely the distance in time between

two consecutive power measurements in the data. We iterate over all the ti inter-

secting the execution of j, (i.e. start timej ≤ ti ≤ end timej), and we compute

the p nodesj,ti . At the end of each iteration, p nodesj,ti is added to pj and ti is

updated. The algorithm returns pj containing the power consumption values of

the job j during its execution.

32CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

3.2. PM100 DATASET CREATION

The code to perform the full pipeline is available on the GitHub repository4

of the dataset. We run the scripts on a machine endowed with 32 cores and 256

GB of RAM, and the runtime of the whole process was around 8 weeks, with only

the job power consumption extraction requiring more than 7 weeks. The lengthy

computation is mainly due to the size of the initial dataset, which contains around

1 million jobs. The filtering process removed all the jobs that do not run exclusively

on the nodes and with which we encountered problems due to missing values in the

power data. The final dataset (∼ 100 MB) contains 231,238 jobs and is accessible

through Zenodo [34].

Job features Each job in PM100 is represented with a set of features, most of

which are imported from the original dataset M100. After inspecting the original

feature values, we notice that some information is duplicated or not meaningful

enough. For instance, multiple fields are related to the names of the allocated

nodes, so we aggregate them into a single feature called nodes. We also observe that

some features contain the same information in different formats, e.g., time limit str

and time limit, thus we keep only one of such features. We further remove the

features that have the same values across all the jobs, such as power flags.

After this initial pre-processing, we modify some features to make the under-

lying information more explicit and easy to access. In particular, we engineer

the features related to the resources. In the original data, each job record con-

tains two fields listing the amount of requested and allocated resources, namely

tres req str and tres alloc str. This data is structured as a comma-divided list of

features (#nodes, #cores, #GPUs, and amount of RAM) and their values, e.g.

”nodes=1,cpus=32,gpu=1,mem=256G”. We unpack the list of features and their

values to individual features fk, where f ∈ {num nodes, num cores, num gpus,mem}
and k ∈ {req, alloc}. Finally, we add the power consumption feature, which is the

list pj of job power consumption values recorded during its execution, as computed

in the previous paragraph.

Overall, each job has 32 features, which are documented in the GitHub repos-

itory of the dataset.

4https://github.com/francescoantici/PM100-data

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

33

https://github.com/francescoantici/PM100-data

3.3. DATASET OVERVIEW

3.3 Dataset Overview

In this section, we offer an overview of the PM100 dataset. First, we conduct an

Exploratory Data Analysis (EDA) to understand the dataset and its underlying

patterns, such as distributions, correlations, and relationships between certain

features. As the description of the original M100 dataset [22] did not provide

any such analysis, we first start with the jobs and then continue with their power

consumption. This process provides insights into the nature of the data, which

could be useful for prediction purposes and choosing the appropriate modeling

techniques. We conclude the section with some examples of prediction tasks that

can be performed with the dataset.

3.3.1 Job analysis

With job analysis, we investigate the classical workload characteristics, such as job

submission date, exit state, duration, and allocated resources.

Submission date In Figure 7.2, we plot the distribution of the number of jobs

(y-axis) submitted per day (x-axis), and its Kernel Density Estimate (KDE). The

KDE (blue solid line) provides a probability density function estimation of the job

submission per day, and it is plotted to spot patterns or seasonality more easily.

Although we may expect a uniform distribution of job submission throughout the

days, the figure shows that neither seasonality nor uniformity is present in the

data. This is not unexpected. The PM100 dataset does not include all the jobs

submitted to the system. Also, in a real HPC environment, jobs maybe submitted

non-uniformly due to several reasons, like scheduled maintenance, holidays, and

node failures and outages. Moreover, occasionally, it may be necessary to dedicate

(a part of) the cluster to certain computations, as it happened in our case with

COVID-19-related tasks.5

5Quoting an e-mail from the HPC system support to the users: ”Due to a COVID-related
urgent computing activity, most of M100 nodes will not be available for the standard production
from Friday, November 6, 4 pm, to Monday, November 9, 4 pm. This will cause a significant
increase in the waiting times and the impossibility to run jobs with more than 60 nodes”.

34CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

3.3. DATASET OVERVIEW

Figure 3.1: The distribution of the jobs throughout the days.

Exit state The exit state of a job represents its execution outcome. Since the

jobs in our dataset are executed on a production machine, we expect to have a

workload composed of mainly successfully completed jobs. This is because produc-

tion machines are not used for tests, but only to execute stable jobs. We present

in Figure 3.2 the distribution of the possible outcomes. As expected, the vast

majority of the jobs (77%) are successfully completed. The second most frequent

category is failed, with the 14%. These are the jobs that fail due to generic errors

encountered during their execution, such as bugs in the code or errors in the job

script. Some jobs are cancelled by their user during their execution due to reasons

like discovery of bugs or errors in the code by checking intermediate results or

of misconfigurations in batch scripts (e.g. run-time duration configuration is not

enough). They represent 5% of the jobs in the dataset. With similar percentage

(4%), there is the timeout category, referring to the jobs that exceeded the time

limit set by the user or the system. Less than 1% of jobs run out of memory (oom)

due to misconfiguration and underestimation of memory requirements. Similarly,

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

35

3.3. DATASET OVERVIEW

Figure 3.2: Distribution of job exit state.

less than 1% of the jobs fail due to node fail. This phenomenon is very rare in

production machines, indeed, oom and node fail jobs combined account for around

1%. Even though the dataset does not reflect the whole system load, the expected

unbalancing towards the successfully completed jobs is still present and yet there

exist a significant amount of jobs that did not successfully complete (∼ 50K).

Duration In Figure 3.3, we present the job duration distribution. In an HPC

system, job duration may range from a few seconds to several days, depending on

the allocated resources, the operations performed, and the system requirements

(some systems may allow long executions while others not). The figure reveals

that the majority of jobs has a duration of less than 100 minutes. Very few jobs

run for more than a day, meaning that the jobs in our dataset are mainly short to

medium length. This can be a characteristic of the users (not submitting jobs that

require excessive computation) or due to a system setting (lengthy executions are

not allowed). In the figure we also investigate how job duration is related to job

36CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

3.3. DATASET OVERVIEW

Figure 3.3: Distribution of job duration, divided by exit state.

exit state. We observe all possible outcomes with jobs running up to 1300 minutes.

We observe further that the jobs that run for more than 1300 minutes all timeout.

This is consistent with the information provided in the official documentation of

Marconi1006, stating that the system limits the job duration to 24 hours (1440

minutes) except some particular cases.

Allocated resources The dataset is dominated by the jobs using both cores

and GPUs (91%). In Figures 3.4, 3.5, 3.6, and 3.7, we show the distribution of

the amount of allocated nodes, cores, GPUs and RAM, respectively. From Figure

3.4, we can conclude that the majority of the jobs uses just one node for their

execution. No job uses a significant portion (≥ 20%) of the system nodes (980 in

total), meaning that the jobs in our data mainly represent small-scale executions.

This is also reflected in Figures 3.5, 3.6, and 3.7. Indeed, we notice an evident

spike in these figures in correspondence to the amount of cores (128), GPUs (4),

6https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=336727645

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

37

3.3. DATASET OVERVIEW

Figure 3.4: Distribution of the number of allocated nodes.

and RAM of a node (256 GB).

3.3.2 Job power consumption analysis

With job power consumption analysis, we investigate whether jobs differ in their

power consumption values and trends, as well as the influence of GPU usage.

Power consumption As discussed in Section 3.2, power consumption is the

feature containing the list of power consumption values of the job throughout its

execution. We start our analysis by plotting in Figure 3.8 the power consumption

values of 7 randomly chosen jobs whose resource usage is reported in Table 3.1.

We observe that the jobs with similar features (single-node jobs 1 and 2) tend to

behave similarly in their power consumption. As the number of allocated nodes,

cores and GPUs increase, so does the power consumption values. We also observe

that the consumption trend of the jobs vary. For instance, while jobs 6 and 7

fluctuate between higher and lower values, the others show a smoother behaviour.

38CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

3.3. DATASET OVERVIEW

Figure 3.5: Distribution of the number of allocated cores.

We can conclude that our dataset contains a diverse set of jobs in terms of power

usage.

GPU influence on power consumption Since the jobs are extracted from

a heterogeneous machine, we want to explore how the GPU usage impacts power

consumption. In this analysis, we consider the individual values of the jobs’ instan-

taneous power consumption at each time point rather than their time distribution.

Thus, we merge all the values of all the power consumption lists into a single set,

independently of the job. Then, we use this data to plot Figures 3.9 and 3.10.

In Figure 3.9, we show the distribution of the set of power consumption values

by distinguishing between the jobs using only cores (9%) from those using also

GPUs (91%). The figure shows that jobs using only cores tend to reach lower

power values compared to the ones using also GPUs. This behavior is normal in

heterogeneous systems, since GPUs have higher functional unit density and are

usually characterized by a larger Thermal Design Power (TDP) than cores. In

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

39

3.3. DATASET OVERVIEW

Figure 3.6: Distribution of the number of allocated GPUs.

Job # #Nodes #Cores #GPUs RAM
1 1 40 4 74
2 1 128 4 237
3 4 64 16 512
4 8 1024 32 1900
5 12 1536 48 2695
6 16 2048 64 3800
7 20 1280 80 4804

Table 3.1: Amount of allocated resources of jobs in Figure 3.8.

Figure 3.10, we focus on the single-node jobs and plot the distribution of the in-

stantaneous power consumption values, again by separating the jobs using only

cores from those using also GPUs. We see that independently of the number of

allocated nodes, the range of power consumption values of jobs using also GPUs

are higher than those using only cores, validating the findings of the analysis of

the previous plot.

40CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

3.3. DATASET OVERVIEW

Figure 3.7: Distribution of the amount of allocated RAM.

3.3.3 Prediction Tasks

Our dataset enables performing various prediction tasks in HPC systems such

as job duration prediction, job failure prediction, and job power consumption

prediction.

Job duration prediction This concerns forecasting the execution duration of

a job before its allocation in the system.

This information can be useful to develop dedicated workload management

strategies, as shown in [35], aiming at improving system performance and achieving

high quality of service (QoS) levels. Past work, such as [36, 10], explored the

task by relying on machine learning techniques, while others like [35] tackled the

problem by employing a data-driven heuristic algorithm in the scope of an online

job dispatching problem. Such approaches can easily be performed on our dataset

by exploiting the run time feature of the jobs as target.

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

41

3.3. DATASET OVERVIEW

Figure 3.8: Job power consumption during execution.

Job failure prediction This is one of the hottest topics in the area of workload

prediction, and it concerns forecasting possible failures during the execution of a

job before its allocation in the system. Failing jobs unnecessarily occupy resources

which could delay other jobs, adversely affecting the system performance, QoS and

power consumption. Similar to the job duration prediction, forecasting failures a

priori would allow to adopt ad-hoc workload management strategies, as shown in

[37]. Several past work addressed the job failure prediction task. For instance,

[9, 18, 37] relied on data-driven techniques aimed at predicting job failure by

analysing workload features. As discussed in Section 3.3.1, our dataset contains

the exit state of each job, which can be found in the job state feature and used as

a target in a classification task.

Job power consumption prediction This is about predicting the power con-

sumption caused by the execution of a job on the system. It can assist the devel-

opment of power-aware workload management techniques to optimize the system

42CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

3.3. DATASET OVERVIEW

Figure 3.9: Distribution of job power consumption.

performance and power consumption, as shown in [2]. The prediction can be per-

formed in different ways; for instance, by predicting the power consumption values

of a job throughout its execution time, as done in [31]. Alternatively, it can be

performed by predicting the average, or the maximum power consumption value,

as done in [12, 15, 30]. The data in PM100 can be used for both purposes. As

discussed in Section 3.2, each job has the power consumption feature, which is a

list of power consumption values computed at each timestamp intersecting the job

execution. This feature can be used as it is for the first purpose, and its average

and maximum values can easily be computed for the second.

CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

43

3.3. DATASET OVERVIEW

Figure 3.10: Power consumption of single-node jobs.

44CHAPTER 3. PM100: A JOB POWER CONSUMPTION DATASET OF THE
MARCONI100 SYSTEM

Chapter 4

F-DATA: A Fugaku Dataset for

Holistic Job-centric Predictive

Modelling

Due to technical difficulties in the data collection discussed in Chapter 3, public re-

sources do not contain some important job execution characteristics, such as power

consumption and performance metrics (e.g. #flops, memory/compute-bound class

and memory bandwidth). Information like user name and job name reveal insights

on users’ job execution patterns, and hence are crucial for developing accurate pre-

dictive models. On the other hand, power consumption and performance metrics

can help design workload management strategies to improve system throughput

and energy efficiency, as shown in [6, 8, 38]. While for the power consumption

we released PM100 (Chapter 3), no public resource contains performance metrics,

making their prediction currently infeasible. Moreover, PM100 has some limita-

tions. first, it only contains a subset of all the jobs executed on the system, namely

the ones which ran exclusively on the resources; second, it contains the data of

only 5 months, for a total of ∼200K job data.

To address the aforementioned problems, we present F-DATA, a workload

dataset for job-centric predictive modelling in HPC systems. It contains the data

of around 24 million job executions on Fugaku1 Supercomputer, over more than

1https://www.fujitsu.com/global/about/innovation/fugaku/

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

45

4.1. DATASET CREATION

three years of system usage, and is publicly available in Zenodo.2 The sensitive

job data appears both in anonymized and irreversibly encoded versions. The en-

coding is based on an NLP model and, as confirmed by our experimental study,

it retains sensitive but useful job information for prediction purposes without vio-

lating privacy. F-DATA is the first public dataset containing i) the data of one of

the most powerful supercomputers, ii) the job feature performance metrics along

with several others (e.g. power consumption, duration and exit state), which are

useful for a multitude of job-centric predictive modelling, and iii) an encoding of

the sensitive data. By releasing F-DATA publicly, we empower HPC researchers

and practitioners with a resource to foster the development of ML-based predictive

models aimed at guaranteeing the sustainable development of HPC systems.

4.1 Dataset Creation

Fugaku relies on a proprietary operations management software,3 which enables

the recording and storage of job data in an instance of a PostgreSQL [39] database.

We query the database via its interface and retrieve the data of the jobs executed

on the system in each month between March 2021 and April 2024. F-DATA is

thus composed of 38 smaller datasets (for a total of 28 GiB of data), named as

YY-MM, each containing the data of the jobs executed during the month (MM) of

the year (YY). We consider the data as of March 2021, when the system became

available for public usage.4

Original job features Each job data extracted from the database contains

features concerning the job submission, execution and completion. To the first

category belongs the information available at job submission time, such as the job

user information (e.g. username and user id), the submission time (i.e. when

the user submits the job to the system) and the requested resources by the user

(e.g. # of cores, amount of memory, # of nodes). When the job starts running,

the execution features can be collected, such as the start time (i.e. when the job

2https://doi.org/10.5281/zenodo.11467483
3https://www.fujitsu.com/global/about/resources/publications/technicalreview/

2020-03/article10.html#cap-03
4https://www.fujitsu.com/global/about/innovation/fugaku/

46 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

https://doi.org/10.5281/zenodo.11467483
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article10.html#cap-03
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article10.html#cap-03
https://www.fujitsu.com/global/about/innovation/fugaku/

4.1. DATASET CREATION

starts) and the resources allocated (i.e. actual amount of resources allocated to the

job). At job completion, it is possible to access execution outcome characteristics,

such as the duration, the exit code, the power consumption and the performance

counters. The exit code is an integer value in the range [0-255] representing whether

the job execution was successful or not. The power consumption is the power

consumption of the resources allocated to the job during its execution, and it can

be collected from different hardware components, like a node, CPU and RAM.

The performance counters store the amount of hardware-related operations (e.g.

of memory read/write requests and # of floating point operations) performed

by the job, which allow to gain insights on the job resource utilization.

We extend the job data by deriving new job features from the original features,

and by encoding the sensitive data, which we explain next. The full list of 44 job

features can be found in Zenodo.2

Derived features For each job, we derive the exit state and a series of per-

formance metrics features, starting from the exit code and performance counters

features. The exit state of a job is a label that describes the outcome of the exe-

cution, which can be successful or not. This feature is directly related to the job

exit code which is 0 if a computation ends without any error, or an integer number

in the range [1-255] in case of errors. Hence, we label the exit state of a job as

completed if the exit code is 0, and as failed otherwise.

The performance metrics provide high-level information on the job resource

utilization. Such information is fundamental to characterize a job execution, aim-

ing to improve job and system level throughput and energy efficiency [6, 8, 40].

The job performance metrics we compute are #flops, mbwidth, opint and pclass.

The #flopsj is the number of floating point operations per second performed by

the job j and is computed as in Equation 4.1. In the equation, perf2j is the

fixed amount of operations, while perf3j is the number of operations per 128-bit

SVE (Scalable Vector Extension), which is multiplied by 4 since the A64FX of Fu-

gaku is 512-bit SVE.The memory bandwidth mbwidthj is the amount of memory

bytes moved per second during execution. In Equation 4.2, perf4j and perf5j are

summed in order to obtain the total number of requests to the memory, as they

represent the amount of memory read and write requests, respectively. Then, they

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

47

4.1. DATASET CREATION

are multiplied by the size of the memory requests, (256 bytes of cache line size),

to obtain the total amount of memory bytes moved. The cores of Fugaku nodes

are grouped by 12 in Core Memory Groups (CMGs). Since the perf4j and perf5j

values are generated by summing all the values collected by each core for the whole

CMG, these values need to be divided by 12 to eliminate redundant information.

Since both #flops and mbwidth are computed per second, we divide the values by

the job duration (durationj). The operational intensity opint, which is the amount

of floating point operation per byte of the job execution, is computed as the ratio

between #flops and mbdwidth.

#flopsj =
perf2j + (perf3j ∗ 4)

durationj

(4.1)

mbwidthj =
(perf4j + perf5j) ∗ 256

durationj ∗ 12
(4.2)

Finally, we generate the performance class label pclass, which can be either

memory-bound or compute-bound. They refer to the jobs whose performance is

bound by the memory access rate or by the system’s arithmetical performance,

respectively. This feature can be generated as shown in [41], by computing the

ridge point of the system, i.e. the ratio between the system peak attainable per-

formance (maximum number of floating point operations per second) and memory

bandwidth. We label all the jobs with opint greater than ridge point as compute-

bound, and the others as memory-bound.

Anonymization of the sensitive data Publication of job data is possible

upon effective protection of the sensitive data of the users and the system [20, 42].

Anonymization [43] is one of the most used techniques to protect sensitive data,

and it consists of altering data in a way that prevents the original information to

be identified. In F-DATA, the values requiring anonymization are the user name,

job name, job id and job environment. Those values could indeed reveal the user

identity, thus violating personal privacy, and disclose confidential details about

the research or work being conducted, which could violate internal privacy policies

on intellectual property or non-disclosure-agreements. For analysis purposes, such

features are kept in the dataset, but they are transformed as follows. For each

48 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

4.1. DATASET CREATION

feature, we take the list of all the values, without duplicates. As the data are

originally ordered chronologically, the values list will be ordered by the time of

first appearance in the dataset. The list index i is then used to generate the

anonymization for a value of a feature f , as f i (e.g. the first user name in the

dataset becomes username 0).

Encoding of the sensitive data As argued in [42], using anonymized data may

compromise the effectiveness of prediction models. This is because the anonymiza-

tion process may remove important information about the data, which is funda-

mental for the prediction task. In particular, the anonymized values of the sensitive

data do not provide any information on the job nature, which is fundamental for

job-centric predictive modelling. For instance, the user name and job name are

fundamental to understand the user behavior and job execution patterns, while the

job environment provides information on the software and hardware used to run

the job. In the context of job-centric ML-based predictive modelling, we discovered

that encoding job data with an NLP model improves the prediction performance

of ML models, with respect to using the data in the standard integer format (as

our experimental results in Chapter 3,6,7 and 8 will show). Thus, we encode the

deanonymized version of the sensitive data with an NLP model and add it to the

dataset as the sensitive data encoding feature.

We rely on the NLP model SBert [28], a state-of-the-art sentence embedding

model. In the next chapters, we will show how we use SBert in our experiments

for job level predictive modelling. We implement SBert leveraging the sentence

transformers5 library, with the pre-trained model all-MiniLM-L6-v2 6, since it has

the best trade-off between prediction quality and speed [28].

The sensitive data encoding feature for a job data is generated by merging the

deanonymized user name, job name and job environment features into a comma-

separated string, and then encoding it with SBert. To this end, we do not consider

the job id for the encoding, as it is an integer number and its original format

does not provide any further information on the job nature with respect to the

anonymized one. It is not possible to recreate the original values from the sensitive

5https://www.sbert.net
6https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

49

https://www.sbert.net
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

4.2. DATASET OVERVIEW

Figure 4.1: Distribution of jobs’ submission by month

data encoding [44]. We thus safely include it in the dataset, aiming to foster the

development of effective predictive models, without violating privacy concerns.

4.2 Dataset Overview

In this section, we provide an overview of F-DATA. First we analyze the job data,

then we discuss the possible prediction tasks and the limitation of the dataset.

Job analysis We inspect the distribution of several job features. More specif-

ically, in Figure 4.1, we show the distribution of the amount of job executions

divided by month. We observe no clear patterns or seasonality. Except for April

2021, the amount of data is steadily over 300K jobs a month, with peaks in June

2023 (more than 1.2 million of data) and in January 2022 (around 1 million of

data).

Jobs in HPC systems are executed on a set of nodes. In Figure 4.2, we show

50 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

4.2. DATASET OVERVIEW

Figure 4.2: Distribution of jobs’ # of nodes allocated

the amount of nodes allocated per job. We observe that the majority of the jobs

(around 19 million) uses up to 10 nodes, meaning that the Fugaku workload is

mainly composed of jobs using limited resources. However, the dataset contains

also around 10K jobs executed on a significant portion of the system, using more

than 10K nodes.

Depending on the complexity of the application, HPC jobs can run from a few

seconds to several days. In Figure 4.3, we show that the dataset covers all values

in the range of edge values, with a predominance of the short jobs (around 15

million jobs ran for less than an hour). We observe that jobs running for many

days are rare (some hundreds), while thousands of jobs run for around one day.

Being a production system, the jobs submitted to Fugaku are expected to be

mainly successful, as users are accounted for their job executions and failed jobs

result in additional cost for the computational resources. This can be observed

in the distribution of the job exit state, in Figure 4.4. The figure shows that the

great majority of the jobs (more than 21 million) are completed. We can conclude

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

51

4.2. DATASET OVERVIEW

Figure 4.3: Distribution of jobs’ duration in minutes

that the dataset is composed of mainly successful jobs, which are fundamental for

the correct analysis of job behavior, as no failure alters or stops the execution.

Yet, the dataset provides a significant amount of failed jobs (around 2.5 million),

which can be used to study the job behavior and investigate the reasons for failed

executions.

Figure 4.5 shows the distribution of the amount of job executions in each month,

divided by their pclass values (i.e. memory-bound or compute-bound). We observe

a high variability, due to the fact that the system workload and usage changes

continuously. This is witnessed by the fact that the pclass distribution throughout

the months is neither balanced nor stable; hence, the characteristics of the jobs

running on the system are very different. While most of the jobs are memory-

bound (almost 2/3), in some months (e.g. 21/07 and 23/01) the compute-bound

jobs are the majority.

For job power prediction tasks, the job power consumption is usually normal-

ized per node [11, 12]. In Figure 4.6, we show the minimum (minpcon), average

52 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

4.2. DATASET OVERVIEW

Figure 4.4: Distribution of jobs’ exit state by month

(avgpcon) and maximum (maxpcon) job power consumption, normalized on the

number of nodes allocated to the job. We observe that the maxpcon is shifted to

the right (higher values of power consumption) with respect to the other two; the

same holds for avgpcon with respect to minpcon. This is expected, the maximum

power consumption is always greater than the average, and the minimum is always

the lowest. Again, the dataset covers a wide range of power consumption values,

from some watts to more than 200.

Prediction tasks The information included in the dataset allows for a multi-

tude of job-centric prediction tasks. For instance, it allows for the prediction of job

and system level power consumption, as shown in [12, 30]. By providing minpcon,

avgpcon and maxpcon, jobs can be characterized in terms of full power consump-

tion profile. Along power, it is also possible to explore the energy consumption

prediction task, as each job data contains the econ feature giving the energy con-

sumption in Watt-Hours. Such values can be used to estimate the carbon footprint

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

53

4.2. DATASET OVERVIEW

Figure 4.5: Distribution of jobs’ pclass by month

of a job execution, which is fundamental to guide the sustainable development of

HPC systems [45]. Moreover, all the performance metrics can be used as a tar-

get for a prediction model. Features like the mbwidth, #flops and pclass can be

predicted to develop both co-scheduling techniques and specific hardware-software

co-design techniques to improve system throughput and energy consumption, as

shown in [6, 8] and [46, 47, 40], respectively. Furthermore, in Chapter 5, we will

show how to use the exit state for job failure prediction tasks. Such an informa-

tion might be useful to develop failure-aware scheduling strategies to minimize the

system resource wastage [37]. Finally, it is possible also to predict values related

to the time of the job execution, such as duration [48] or ending time [49]. These

predictions can be used to develop better scheduling strategies accounting for job

duration [35].

54 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

4.3. EXPERIMENTAL STUDY

Figure 4.6: Distribution of jobs’ minpcon, avgpcon and maxpcon per node

4.3 Experimental Study

We conduct an experimental study to i) showcase the value of the dataset in

predictive modeling, and ii) demonstrate that the sensitive data encoding improves

prediction performance with respect to the anonymized values. In the following

sections, we first describe the experimental setup and then present our results.

4.3.1 Experimental Setup

We focus on the prediction of job exit state, pclass, avgpcon, and duration values,

because they are often addressed in past work, as discussed in Section 4.2. Since

the prediction target values are integers (avgpcon and duration) and labels (exit

state and pclass), we face two regression and two classification tasks.

The experiments are run on a machine equipped with two AMD EPYC 7302

CPUs, 64 cores and 512 GB RAM, running Python 3.11.5 on Linux Fedora 37.

The code necessary to repeat the experiments is available at F-DATA GitHub

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

55

4.3. EXPERIMENTAL STUDY

repository.7

ML-based predictive models We need ML-based predictive models that can

infer on new unseen data after being trained on historical data, and that are

suitable for both regression and classification tasks. We opt for three widely used

models, namely XGBoost (XG) [24], Random Forest (RF) [26], and k-nearest

neighbors (KNN) [27].

In our experiments, we use the model implementations available in the Python

scikit-learn library, 8 and instantiate them with the default settings provided by

the library.

Evaluation metrics To evaluate the prediction performance of the models, we

adopt the Mean Absolute Error (MAE) and accuracy, which are simple and widely

used metrics for regression and classification tasks, respectively. The MAE is

computed as the mean of all the absolute error on all the predictions, with respect

to the ground truth values, and it is representative of the numerical error of the

predictive model. The accuracy is a value between 0 and 1, computed as the ratio

between the amount of correctly classified values and the size of the whole test set.

To ease readability, we multiply it by 100 and express it in percentage form.

Job data preparation The ML models require the input job data to be en-

coded in a numerical format, i.e. a list of integers or floating points values. In

our prediction tasks, we represent each job with its job name, user name and job

environment. While these features are the most informative about job character-

istics, they are also sensitive data and appear in the dataset as anonymized and as

sensitive data encoding using Sbert. To adopt an NLP encoding approach (which

we will use also for our experiments in the next chapters), we use directy sensitive

data encoding (sb sensitive), as well as SBert encoding of the comma-separated

anonymized data (sb anon)(e.g. ”jobname 0,username 0,jobenvironment 0”). For

the integer encoding (int), we assign an integer to all the sensitive feature values,

as commonly done in ML tasks We note that this encoding is the same for the

7https://github.com/francescoantici/F-DATA/
8https://scikit-learn.org/stable/

56 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

https://github.com/francescoantici/F-DATA/
https://scikit-learn.org/stable/

4.3. EXPERIMENTAL STUDY

original and anonymized values, since each unique value is mapped to an integer

with the same order, regardless of the original format.

We train and test all the models with the sb sensitive, sb anon, and int en-

codings, for all the prediction tasks. This is done to see whether an NLP-model

is able to extract more meaningful information about the job from the original

deanonymized data and compare it to a standard (int) encoding.

Model training and testing To perform the prediction tasks, it is necessary

to define a training set and a testing set. In an HPC context, the data of testing

set need to always come after in time with respect to those of the training set, as

otherwise the experiments would not be realistic, as discussed in Chapter 1.3.3. We

consider as the training set the first 26 months of data, namely the jobs executed

between 21/03 and 23/05, and we test on the data of the jobs executed between

23/06 and 24/04. The training set is composed of around 19 million job data,

while the testing set has the remaining 6 million. We note that this is not an

optimal setting for job-centric prediction, as the models are more accurate when

they are updated frequently over time with recent data, as we will show in the

following chapters. The setting is however sufficient to showcase the utility of the

dataset and its features.

4.3.2 Experimental Results

We present our results in Figure 4.7, 4.8, 4.9 and 4.10. We observe in Figure 4.7,

that for the pclass prediction, sb sensitive obtains the best results with all the

three models. In particular, it outperforms sb anon, increasing the accuracy from

a minimum of 4% (RF) to a maximum of 8% (KNN). The int and the sb anon

encodings obtain similar results with XG and RF, while int performs the worst

with KNN. Concerning the exit state prediction (Figure 4.8), the sb sensitive and

sb anon encodings obtain the same results with XG and RF, however, sb sensitive

is better with KNN. Here, int outperforms the other two with XG and KNN,

while it is the worst with RF. The usefulness of the sb sensitive is particularly

evident in the duration and avgpcon prediction tasks, shown in Figure 4.9 and

4.10, respectively. In both cases, we observe a clear improvement in the prediction

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

57

4.3. EXPERIMENTAL STUDY

Figure 4.7: Model performance on the pclass prediction task. The higher the
better.

performance with respect to the other encodings. The only exception is KNN in

avgpcon, where all the encodings behave equally.

We conclude with these results that, i) the NLP encoding of the job data usually

leads to better prediction than the standard int encoding, and ii) the sensitive data

encoding retains more information about the jobs with respect to anonymized

values and further improves the prediction performance, without violating data

privacy.

58 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

4.3. EXPERIMENTAL STUDY

Figure 4.8: Model performance on the exit state prediction task. The higher the
better.

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

59

4.3. EXPERIMENTAL STUDY

Figure 4.9: Model performance on the duration prediction task. The lower the
better.

60 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

4.3. EXPERIMENTAL STUDY

Figure 4.10: Model performance on the avgpcon prediction task. The lower the
better.

CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

61

4.3. EXPERIMENTAL STUDY

62 CHAPTER 4. F-DATA: A FUGAKU DATASET FOR HOLISTIC
JOB-CENTRIC PREDICTIVE MODELLING

Chapter 5

Job Failure

A critical problem of HPC systems is job failure. Whenever a job running on the

system fails, it results in a waste of resources, time and power. The allocation of

resources for a job is also responsible for delaying other jobs execution, reducing

the efficiency of the system. One strategy to prevent this undesired behavior is

to highlight the jobs that are most likely to fail, prior to their execution on the

system. We distinguish between failures due to external factors, such as problems

with the computing nodes, networking issues, workload manager downtime (exoge-

nous failures) [50], and those due to internal reasons, such as wrongly configured

submission scripts and software bugs (endogenous failures)[51]. We here focus on

the latter category. Forecasting failures due to internal factors a priori would allow

to adopt ad-hoc workload management strategies. For instance, we could enforce

system power saving policies by exploiting job power prediction models, such as

the one presented in [2]. Quantifying the power required by a job would allow

us to estimate the system power consumption and reduce it by rescheduling jobs

which are likely to fail to time spans when the system power consumption is lower.

Furthermore, such prediction could be provided to the end-users to warn them on

the risk of executing such, and hopefully prevent fallacious job executions.

We develop an ML-based classification approach to predict endogenous job

failures. Our approach is applicable to data that can be collected from a production

machine and leverages only the information available at job submission time (hence

does not require any instrumentation of the users’ code nor any change to standard

CHAPTER 5. JOB FAILURE 63

5.1. RELATED WORK

workload submission workflow). This information might have different formats,

and text is among them. To extract more meaningful job information from such

textual data, we employ NLP tools and improve the classification performance of

the ML models. To the best of our knowledge, this is the first work that exploits

an NLP method to represent jobs during classification. Contrary to the majority

of the past studies which work on random splits of historical data, the proposed

methodology can be deployed in an online context where jobs are continuously

submitted by users to a real production system. We demonstrate the validity of

our approach on a dataset extracted from M100, presented in Section 3.1.

5.1 Related Work

In this paper, we restrict the related work to the study of failures in large-scale

systems at job/application level. In [52], the authors analysed workload traces in

a grid, showing the correlations between failure characteristics and performance

metrics. Works like [53, 54] tackled application failure prediction in cloud comput-

ing by using recurrent neural networks on resource usage data and performance

logs, extracted from Google cluster workload traces. Also in [55] the authors relied

on the resource usage data of a job to predict its failure, but in the scope of an

HPC center.

These approaches do not take into account the human factors (error in the code,

the submission, etc.), which are responsible for many job failures [18]. Therefore,

the trend is shifting towards the use of data collected from a workload manager

to predict failure using job features, as done in [18, 37, 9]. In [9], the authors use

a decision tree algorithm to predict job failure on two HPC workloads. In [37],

they survey several ML techniques to perform the same task on a Google cluster

workload trace and other two HPC workloads. A similar approach is reported in

[18] on another workload; in addition, they use NLP techniques to assign similar

names to similar jobs executed by the same user. All this past work, which are

most related to ours, evaluate their approach on random splits of data, which is not

realistic because testing could be done on data which is chronologically placed in

between the training data traces. Our work differs in two ways: (i) we propose to

use NLP techniques to represent jobs for classification via all the job information

64 CHAPTER 5. JOB FAILURE

5.2. METHODOLOGY

available at job submission time, (ii) our approach can be deployed in a more

realistic online context and is thus evaluated on a streaming data, by continuously

retraining the classification model on recent (past) data, and testing it on (future)

data which has not been seen.

5.2 Methodology

In this section, we describe our methodology to job failure prediction. The work-

flow can be divided into two phases: (i) data preparation and (ii) job failure

prediction.

5.2.1 Data preparation

To train and test our classifiers, we consider a part of the M100 dataset1 and use

only the data collected between May 2020 and October 2020. The reason is that

this is the only period where the dataset contains information on the requested

resources and the job EC, which we need for our prediction task. We collect the

job data in a data frame and then prepare it for model training and inference.

Feature selection In order to describe the characteristics of a job in a clas-

sification task, we need to associate it with certain features. We focus only on

job submit-time features, as we want to compute a prediction before job alloca-

tion. The features available in the dataset are listed in Table 6.1 along with their

description. Jobs submitted by the same user and close in time tend to be simi-

lar because in a production HPC, users often submit jobs in batches referring to

similar experiments and jobs in the same batch tend to have similar names and

command. Thus, we believe that all these features are useful for our purposes. We

note that user name and similar private data are omitted in the public dataset.

However, CINECA granted us access under a non-disclosure agreement.

Job exit state labels For the training data, we need to assign a label to each

job, indicating whether it has failed or not. In M100, one feature related to the

1https://doi.org/10.5281/zenodo.7588815

CHAPTER 5. JOB FAILURE 65

https://doi.org/10.5281/zenodo.7588815

5.2. METHODOLOGY

Name Description Type
Name Job name assigned by the user String
Command Command executed to submit the job String
Account Account to be charged for job execution String
User id ID of the user submitting the job Integer
Dependency Jobs to wait for completion before execution String
Group id Group of the user submitting the job Integer
Requested nodes Specific nodes requested List[String]
Num tasks per socket Number of tasks to invoke on each socket Integer
Partition Name of the assigned partition String
Time limit Maximum allowed run time in minutes or infinite Integer
Qos requested quality of service String
Num cpu Number of rquested CPUs Integer
Num nodes Number of requested nodes Integer
Num gpus Number of requested GPUs Integer
Submit time Time of job submission Timestamp

Table 5.1: Job features description.

execution outcome is the job Exit State (ES) label, which is assigned to each job

by Slurm as an interpretation of the job’s Exit Code (EC). This code is formed by

a pair of numbers; we consider only the first one, which refers to a system response

that reports success, failure, or the reason of an unexpected result from job launch.

An EC value of 0 means successful completion, while any EC ̸= 0 represents an

error encountered during execution. Table 5.2 describes the ES labels assigned to

the jobs in our dataset, along with their distribution. As seen in the table, the

dataset is highly unbalanced. This is not surprising, because in a real production

machine the failures should be minimized to guarantee correct functioning of the

system. Nevertheless, the percentage of the jobs not successfully completed is more

than 20% (more than 1 out of 6 million jobs), representing an important threat to

the system performance.

According to the Slurm official documentation, the labels assigned by the sched-

uler may not be coherent with the actual EC, due to lack of proper synchronization

between the signal emitted by the job exit and the data collected in the database.

We therefore inspect the data and identify any possible discrepancy, e.g., a job

with an ES label completed and an EC ̸= 0. Our analysis reveals that more than

66 CHAPTER 5. JOB FAILURE

5.2. METHODOLOGY

Name Description %
Completed Job completed execution without errors 79%
Failed Job terminated for an unknown reason 10%
Cancelled Job did not start execution due to an error in submission 8%
Timeout Job terminated due to reaching the time limit 2%
Out of memory Job terminated due to more memory access than allocated 0.6%
Preempted A higher-priority job delayed the job execution 0.1%
Node fail Job terminated due to a failure in an allocated node 0.01%

Table 5.2: Job ES labels and their distribution in the M100 dataset.

70K jobs labelled differently than completed have an EC value of 0. This is con-

firmed by the difference between the percentage of the completed jobs (83%) and

the jobs having an EC of 0 (89%). As a consequence, we discard the original labels

and create new labels based on the job EC.

Despite the discrepancy between the original ES labels and EC, the highly

unbalanced nature of the entire dataset (see Section 3.1) is observed also in the

subset data we use in this study. In particular, while the percentage of jobs with

EC = 1 is 9%, the percentage with EC > 1 is 2%. We therefore group all types

of failures under the same category; discriminating among different fail modes is

outside the scope of this work. Moreover, we are interested in failure caused by the

workload itself, so we remove from the dataset all the jobs originally labelled as

cancelled (failure due to user) and node fail (failure due to hardware). Eventually,

we re-label the remaining data according to the following policy: for every job, we

assign an ES label of completed if its EC is 0, failed otherwise. The final dataset

after the relabelling is composed of 924,252 (89%) completed and 113,027 (11%)

failed jobs. The distribution of the labels, throughout the months, is reported in

Figure 5.1. We can observe that imbalance between the two classes of jobs appears

in all the months, while the ratio between them changes considerably, showing that

the workload is highly variable across time.

5.2.2 Online Predictive Algorithm

Feature encoding In order to compute a prediction for a job, we need to repre-

sent it suitably to feed into the classification models presented in Chapter 2.3. We

CHAPTER 5. JOB FAILURE 67

5.2. METHODOLOGY

Figure 5.1: Job ES label distribution throughout the months in the final dataset.

achieve that by relying on job feature values, and we propose two different ways to

encode them. In the first (INT), we assign an integer to the values which are not

numerical, i.e. name, command, account, dependency, requested nodes, partition,

qos, submit time, while setting all the missing values in the other fields (num tasks

per socket, time limit) to a default value of 0. In the second encoding (SB), we

first concatenate all the feature values into a comma divided string, e.g. job1,

run job1.sh, [1, 10], 2020-10-01 15:30:00, account 1, partition 1, 0, normal, 4,

100, 2, etc. Then we encode the string with SBERT, obtaining a 384-dimensional

floating-point array.

We believe that with SBERT we can extract more fine-grained insights about

job features expressed in natural language (e.g. name, command, account). This

is because SBERT is designed to result in similar encodings with sequences with

semantically similar contents. As we discussed in Section 5.2.1, jobs with similar

names and command could belong to the same submission batch running similar

operations. Therefore, features like submit time, name, account, command could

68 CHAPTER 5. JOB FAILURE

5.2. METHODOLOGY

reveal important patterns on the nature of the job and its workload. This is hard

to recognize with the INT encoding, since similar natural language values will be

mapped to different integer values, while they would have similar representation

in SB, due to semantic similarity.

Classifier training and testing In our prediction task, it would not be realistic

to do inference on a job by learning from the data of the future jobs submitted at a

later time. We thus create the training and test sets by considering the timeline of

the job data, keeping in the training set the data that comes before in chronological

order the data of the test set.

We identify two settings in which a classifier can be trained and tested on

a dataset. The first is the offline setting, where we consider the job data as a

whole, train the model once on one portion of it, and test it using the data of the

other portion in chronological order. To do this, we sort the jobs based on their

submission time, split them into two, use the first split preceding in time as the

training set, and the other as the test set.

The second setting, which we refer to as online, is more suitable to our context.

We treat the job data as live and streaming in time, retrain the model periodically

on a fixed size of recent data, and test it on future data that comes later (but

near) in time. As we discussed in Section 5.2.1, the workload of an HPC system

can be very similar in a short period, while may vary in the long term. As our

experimental results confirm, a model trained once on data which slowly gets

further in time to the test data could classify poorly compared to a model which

is retrained continuously on data closer in time to the test data.

In the online setting, we use the time information provided by the submit time,

start time and end time features in order to simulate job submission and execution

on a machine, and add the day feature as the submission date by extracting it from

submit time. We consider as the first training set all the jobs that were submitted

in the first α days and not finished after the date of the first test set. Starting

from the submission time of the first job not present in the first training set, we

divide the data in batches in chronological order, where each batch contains the

jobs submitted in the next β days. We then iterate over each batch, considering it

as a new test set. At every iteration, the training set is updated with the data of

CHAPTER 5. JOB FAILURE 69

5.3. EXPERIMENTAL STUDY

the last α days and the supervised models are retrained. With the unsupervised

models, no actual re-training takes place, however the training set is extended for

each new job in the test set with the jobs that finished before the submission time

of the new job (with negligible overhead).

5.3 Experimental Study

In this section, we report our experimental study and discuss our results.

5.3.1 Experimental setting

All the experiments are conducted on a node of a small cluster equipped with two

Marvell TX2 CPUs with 32 cores and 256 GB of RAM. No accelerator, such as

GPU, is used in the experiments.

The classification algorithms are implemented with scikit-learn Python library.

The sequence encoder model is provided by the sentence transformers library2,

while the weights for SBERT are pulled from huggingface.3 We use the pre-trained

model all-MiniLM-L6-v2 4, since it is the best trade-off between prediction perfor-

mance and speed [28]. All the models are instantiated with the default setting

provided by the library.

We set the hyperparameters as follows after an initial empirical evaluation. We

use MWD of order p = 2 and set k = 5 in the KNN algorithm. As discussed in

Section 5.2, the testing period strictly follows the training period. For the offline

setting, we take the first 70% of the data as the training set and the remaining

30% as the test set. For the online, we fix the training interval α to 30 days, based

on the trade-off between prediction performance and training/inference time. The

time-span of data in each test set is β = 1 day. The implementation is available

in a GitHub repository.5

The results are reported in Tables 5.3 and 5.4, where we distinguish between the

job feature encodings (INT and SB), the supervised algorithms (DT, LR, RF), and

2https://www.sbert.net
3https://huggingface.co
4https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
5https://github.com/francescoantici/job-failure-predictor/

70 CHAPTER 5. JOB FAILURE

https://www.sbert.net
https://huggingface.co
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://github.com/francescoantici/job-failure-predictor/

5.3. EXPERIMENTAL STUDY

the distance metrics of the KNN algorithm (CD and MWD). Each classification

algorithm is evaluated using the two feature encodings and are compared with

two simple baselines, namely majority and random. Both baselines ignore the

input feature values. The majority returns the most frequent label observed in the

training data, while the random generates predictions uniformly from the list of

unique labels, so each class has equal probability. The results reported in Table

5.4 are averaged over 5 months between June 2020 and October 2020.

5.3.2 Results

We evaluate our models with metrics typically used for classification tasks, namely

f1, precision and recall. Table 5.3 reports the results of the offline setting. The

model that gives the best results overall is INT+RF. It achieves a f1 score of 71%

and is very good at classifying the completed jobs, as the f1 score computed over

such jobs is 98%. The prediction of the failures is somewhat harder, with a f1

score of 43%.

Overall, we observe that the supervised techniques perform better, but all the

models struggle with the classification of the failed jobs, as most of them (with

the exception of INT+DT) have lower recall than the random baseline in the

failed class. Conversely, the classification of completed jobs is much easier, with

the precision being ≥ 96%; this is probably due to the imbalance in the dataset

(completed jobs are more abundant). This is compounded with the proportion

between the completed and failed jobs varying significantly across different periods,

as shown in Figure 5.1. Thus, with the offline setting, the model has a high

risk of overfitting on the completed job examples (being more numerous) and of

spectacularly underperforming when tested on jobs that fail.

This behaviour can be mitigated by retraining the models to adapt them to

the workload and the class distribution shift over time. Indeed, Table 5.4 shows

the results of the online setting, with notable improvements in the classification of

the failed jobs. The SB encoding coupled with the clustering classifier using the

Minkowski distance (SB+MWD) yields the best results overall, suggesting that

properly extracting meaningful job information from textual data is beneficial. In

terms of the f1 score, SB+MWD reaches 70%, outperforming all the supervised

CHAPTER 5. JOB FAILURE 71

5.3. EXPERIMENTAL STUDY

models, which arrive to a maximum of 64% with SB+RF and INT+RF.

The classification of the completed jobs is good for all the models and their f1

scores are always above the 80%; the clustering methods have the highest preci-

sion (87%), while SB+RF has better recall (91% with respect to 83%). There is

some minor drop in performance in the completed class compared to the offline

setting (less overfitting), but the results are still solid. In the failed class, the

clustering methods (SB+CD, SB+MWD) obtain a f1 score of 54% outperforming

all the supervised algorithms. We observe a significant improvement with respect

to the offline setting. Indeed, the best f1 score obtained over failed jobs in the

offline setting (INT+RF) is increased by 20% by the best model in the online set-

ting (SB+MWD and SB+CD); clearly, retraining the models helps to classify job

failures.

As can be observed in both tables, the use of the SB encoding has a marginal

impact with the supervised models, while the training time increases significantly

in the online context (e.g., the training time of INT+RF is 25 seconds, while

SB+RF requires 922 seconds). The increase in training time is not surprising, as

the extraction of the text features through NLP involves the usage of a computa-

tionally hungry DN. We note, however, that the inference time remains very small

and this is the operation that needs to be performed in real time without affecting

the machine’s normal workload (the retraining can be scheduled in less busy peri-

ods). On the other hand, in the case of the unsupervised models, SB improves the

performance by 1-2% in almost every metric while no training time is incurred and

the inference time always remains under a second. As we discussed in Section 5.2,

with these models retraining is simply extending the training set (with negligible

overhead) and classifying a new job requires a simple inference step (i.e., the new

job is compared with those in the training set, projected in the feature space).

72 CHAPTER 5. JOB FAILURE

5.3. EXPERIMENTAL STUDY

M
o
d
el

T
F
1 m

T
P
re
c m

T
R
ec

m
C

F
1

C
P
re
c

C
R
ec

F
F
1

F
P
re
c

F
R
ec

S
u
p
er
v
is
ed

IN
T
+
D
T

0.
30

0.
50

0.
48

0.
55

0.
96

0.
38

0.
06

0.
03

0
.5
7

IN
T
+
L
R

0.
54

0.
62

0.
53

0
.9
8

0.
97

0.
99

0.
10

0.
26

0.
06

IN
T
+
R
F

0
.7
1

0
.7
2

0
.6
9

0
.9
8

0
.9
8

0.
98

0
.4
3

0
.4
7

0.
39

S
B
+
D
T

0.
38

0.
50

0.
50

0.
70

0.
97

0.
55

0.
06

0.
03

0.
45

S
B
+
L
R

0.
66

0.
70

0.
63

0
.9
8

0
.9
8

0.
99

0.
34

0.
43

0.
28

S
B
+
R
F

0.
55

0.
54

0.
61

0.
95

0.
97

0.
92

0.
16

0.
11

0.
30

U
n
su
p
er
v
is
ed

IN
T
+
C
D

0.
52

0.
52

0.
58

0.
92

0.
97

0.
87

0.
11

0.
07

0.
28

IN
T
+
M
W

D
0.
39

0.
50

0.
50

0.
72

0.
97

0.
58

0.
06

0.
03

0.
42

S
B
+
C
D

0.
42

0.
50

0.
52

0.
76

0.
97

0.
63

0.
07

0.
04

0.
42

S
B
+
M
W

D
0.
42

0.
50

0.
52

0.
76

0.
97

0.
63

0.
07

0.
04

0.
42

M
a
jo
ri
ty

0.
49

0.
50

0.
48

0
.9
8

0.
97

1
.0
0

0.
00

0.
00

0.
00

R
an

d
om

0.
36

0.
50

0.
50

0.
66

0.
97

0.
50

0.
06

0.
03

0.
49

T
ab

le
5.
3:

R
es
u
lt
s
in

th
e
offl

in
e
se
tt
in
g,

fo
r
b
ot
h
cl
as
se
s
(T

),
co
m
p
le
te
d
cl
as
s
(C

)
an

d
fa
il
ed

cl
as
s
(F

)
u
si
n
g
p
re
ci
si
on

(P
re
c)
,
f1

an
d
re
ca
ll
(R

ec
).

In
(T

),
w
e
co
n
si
d
er

th
e
m
ac
ro

av
er
ag
ed

m
et
ri
cs

(F
1 m

,
P
re
c m

,
R
ec

m
).

T
h
e
m
o
d
el

n
am

e
is
co
m
p
os
ed

of
th
e
fe
at
u
re

en
co
d
in
g
an

d
th
e
cl
as
si
fi
ca
ti
on

al
go
ri
th
m
/d

is
ta
n
ce

m
et
ri
c.

B
es
t
re
su
lt
s
ar
e
h
ig
h
li
gh

te
d
in

b
ol
d
.

CHAPTER 5. JOB FAILURE 73

5.3. EXPERIMENTAL STUDY

M
o
d
el

T
F
1
m

T
P
rec

m
T

R
ec

m
C

F
1

C
P
rec

C
R
ec

F
F
1

F
P
rec

F
R
ec

T
im

e
S
u
p
erv

ised
IN

T
+
D
T

0.60
0.64

0.63
0.80

0.84
0.79

0.41
0.44

0.46
1.27

+
0.005

IN
T
+
L
R

0.46
0.53

0.51
0.85

0.79
0.95

0.06
0.26

0.06
78

+
0.3

IN
T
+
R
F

0.64
0.69

0.64
0.84

0.84
0.87

0.43
0.54

0.41
25

+
0.12

S
B
+
D
T

0.61
0.62

0.63
0.80

0.84
0.78

0.41
0.39

0.47
455

+
0.09

S
B
+
L
R

0.60
0.66

0.60
0.85

0.82
0.89

0.34
0.50

0.30
84

+
0.4

S
B
+
R
F

0.64
0.70

0.63
0.86

0.83
0.91

0.41
0
.5
7

0.35
922

+
0.4

U
n
su
p
erv

ised
IN

T
+
C
D

0.68
0.69

0.69
0.84

0.86
0.82

0.52
0.52

0.56
N
.A

.
+

0
.3

IN
T
+
M
W

D
0.68

0.69
0.69

0.84
0
.8
7

0.83
0.52

0.51
0.55

N
.A

.
+

0
.3

S
B
+
C
D

0.69
0.70

0.71
0.84

0
.8
7

0.83
0
.5
4

0.54
0
.5
9

N
.A

.
+

0.7
S
B
+
M
W

D
0
.7
0

0
.7
1

0
.7
1

0.85
0
.8
7

0.83
0
.5
4

0.54
0
.5
9

N
.A

+
0.7

M
a
jority

0.44
0.40

0.50
0
.8
7

0.79
1
.0
0

0.00
0.00

0.00
N
.A

.
R
an

d
om

0.44
0.50

0.50
0.61

0.79
0.5

0.28
0.21

0.5
N
.A

.

T
ab

le
5.4:

R
esu

lts
in

th
e
on

lin
e
settin

g,
p
resen

ted
sim

ilarly
to

T
ab

le
5.3.

T
h
e
tim

e
(in

sec)
is
th
e
av
g.

train
in
g
tim

e
p
er

d
ay

an
d
th
e
av
g.

in
feren

ce
tim

e
p
er

job
(in

clu
d
in
g
th
e
S
B

en
co
d
in
g
tim

e
w
h
ere

ap
p
licab

le
–
“N

.A
.”

in
d
icates

th
e
cases

w
h
ere

S
B

is
n
ot

ap
p
licab

le).

74 CHAPTER 5. JOB FAILURE

Chapter 6

Job Power Consumption

Efficient management of power resources in HPC systems is essential for several

reasons. First, power consumption directly impacts the operational costs of HPC

facilities, making it imperative for organizations to optimize it to minimize the

costs. Furthermore, minimizing the power consumption is vital for environmental

sustainability, to reduce the carbon footprint of the systems. Therefore, develop-

ing strategies aimed at minimizing the power consumption of the system, while

guaranteeing its optimal performance, is of paramount importance.

This challenge can be addressed at workload level. Predicting power consump-

tion of HPC jobs, prior to their execution on the system, allows to compute the

system power consumption in advance, enabling better workload management de-

cisions. Prior work [2, 3, 56, 57] leverages job power prediction models to infer

power awareness in workload management strategies, such as power capping and

workload scheduling. Hence, the need for accurate prediction models for job power

consumption gained prominence in the HPC community.

Building on top of the online prediction algorithm presented in Chapter 5, we

create a pipeline for the prediction of job power consumption. The task is defined

as a regression problem, since we target the estimation of a mapping between

the job workload manager data and its power consumption value. We present

an online job power prediction algorithm which is able to efficiently predict two

different targets, namely the maximum and average job power consumption. Such

an algorithm is tested on a batch of job data extracted from F-DATA (Chapter

CHAPTER 6. JOB POWER CONSUMPTION 75

6.1. RELATED WORK

4), confirming that our online, NLP-based approach outperforms classic methods.

6.1 Related Work

In the past, several works have explored techniques to estimate power consumption

prediction of jobs executed on large-scale systems.

Prior work, such as [16, 17], explored the use of workload manager information

to perform power-related prediction on the execution of the job. In their work,

differently from our approach, the job data is not limited to submission time,

making the online prediction non-feasible.

In [12, 11], the authors propose to predict job average power consumption per

node by using an RF model trained on historical data, without relying on an online

algorithm.

In [30, 58] the authors propose simple non-ML algorithm which are updated

over time. In particular, they propose to predict average job power consumption

per node based on exponential smoothing of similar past jobs power consumption.

This approach, though, relies only on categorical features of the jobs (user id,

group id, # tasks per node, submission time), which are very general and less

informative on the nature of the job. In fact, these approaches are shown to be

outperformed by an RF model trained only once on all the data (as in [12]). The

results obtained in this work show that an online RF model performs better than

an offline one, confirming that our online solution is more accurate than the ones

in [30, 58].

Differently from all those works, we propose to use a prediction algorithm which

is both online and relies on NLP techniques to extract more meaningful insights

from the job data. We apply the methodology proposed in Chapter 5, but to a

new task and new dataset. Differently from the failure prediction, where the task

is a binary classification problem, we apply the methodology to a regression task,

i.e. the job power consumption prediction. Moreover, we validate the approach

using different models and on different data with respect to Chapter 5.

Furthermore, differently from all the cited works on power prediction, we per-

form the prediction of average and maximum job power consumption values. Both

values can be exploited for different power-aware scheduling strategies, such as

76 CHAPTER 6. JOB POWER CONSUMPTION

6.2. METHODOLOGY

power capping.

For instance, in [57] the authors propose a constraint-programming based dis-

patching strategy exploiting job power consumption to perform power-capping. In

[3] the maximum power consumption caused by the execution of the job to the

system is used to make informed decisions about the scheduling of the jobs, while

works like [56, 2] rely on the average job power consumption to perform the same

task. Moreover, the prediction of the maximum job power consumption could be

used to address the power supply demand from the supercomputing center to the

electricity company, as shown in [59], aiming to estimate in advance the power

load required by the system.

6.2 Methodology

In this section, we describe how we modify the online prediction methodology

presented in Chapter 5 to apply it a new task, namely the job power consumption

prediction of the jobs in the Fugaku dataset.

6.2.1 Data Preparation

To evaluate our prediction algorithm, we consider the subset of F-DATA contain-

ing the data collected between January and March 2022 (∼ 1.5 million of jobs).

Starting from the original job data presented in Chapter 4, we perform some data

engineering steps to isolate the information we need to perform the prediction.

Feature selection As discussed also in Chapter 5, we can only rely on job

submit-time features, since our goal is to predict the power consumption before

job execution. After analyzing the full set of job features available in the dataset,

we filter the submit-time ones. The final list of submit-time features of the job are

listed in Table 6.1, along with their description.

Since users tend to submit jobs in batches containing similar experiments, the

jobs submitted in the same batch are prone to have similar names, characteris-

tics and perform similar operations. Given that the power consumption of a job

depends on the computational operations it performs, jobs performing the same

CHAPTER 6. JOB POWER CONSUMPTION 77

6.2. METHODOLOGY

Name Description Type

Job type Category of the job (Batch, Step, etc.) String
User User name String
Group Name of the group the user belongs to String
User id ID of the user submitting the job Integer
Group id Group of the user submitting the job Integer
Frequency Requested frequency of the processor Int
Job name Name of the job String
Host name Name of the host node String
Priority The priority assigned to the job Int
#Cores Requested The number of cores requested Int
#Nodes Requested The number of nodes requested Int
Arrival time Time of job submission Timestamp
Memory size limit The limit to the memory size allocated Int
Time limit Maximum allowed run time in minutes Integer
Environment The set of environment variable String

Table 6.1: Job features description.

or similar operations will have similar power consumption. Therefore, features

like the user name, job name and environment variables, might be the key to

identify similar jobs, and consequently, perform accurate job power consumption

prediction.

In an initial experimental phase, we evaluate models’ prediction performance

on a smaller sample of the data, using different subsets and combinations of the

features presented in Table 6.1. We observed that the use of particular subsets

of features to represent a job is beneficial for both prediction performance and

computation time, since the number of features to encode is smaller. The subset

of features which yields the best predictive performance is composed of the fol-

lowing features, user name, job name, # cores requested, # nodes requested and

environment. Therefore, we decide to use such features to represent each job in

our dataset.

Job power consumption The prediction tasks require the definition of a pre-

diction target for the training phase of the models. In this work, we focus on

the maximum and average job power consumption. This information is present

in each job j data, namely in the maxpconj and avgpconj features. The original

78 CHAPTER 6. JOB POWER CONSUMPTION

6.2. METHODOLOGY

power consumption values range from few to millions of Watts, depending on the

resources allocated to the job. This makes the prediction task very hard and the

possible relative prediction error very high. In light of that, we decide to perform

some data pre-processing to make the target more suitable for the regression task,

as outlined hereafter.

We analyse the power traces of the nodes allocated to the jobs which run on

multiple nodes. The analysis reveals that, during the job j execution, there is

a small difference between the power consumption values of the different nodes

allocated to the job (nodes allocatedj). Thus, for each n ∈ nodes allocatedj, its

power consumption is well approximated by the average of the power consumption

of all the nodes n in nodes allocatedj. Such assumption is particularly valid for

HPC systems like Fugaku system, where the nodes have similar architectures which

result in similar power consumption values. For different environments and systems

(such as federated learning on different architectures), this assumption might not

hold. However, using the average power consumption per node is a widely used

proxy to evaluate the node-level power consumption of a job (regardless of the

environment), especially in the context of job-level power prediction [12, 30], and

workload scheduling [3, 2]. This allows us to predict each job power consumption

as if it was running on a single node, ultimately making the prediction task less

error-prone. Hence, the final job power consumption values used in the prediction

tasks are defined as the average of maxpconj (p max) and avgpconj (p avg) per

node, as shown in Equations 6.1 and 6.2.

p maxj =
maxpconj

#nodes allocatedj
(6.1)

p avgj =
avgpconj

#nodes allocatedj
(6.2)

In order to gain more insights on the data for the prediction phase, we plot

the distribution of p maxj and p avgj in Figure 6.1. We do that also to show that

the two values provide different information, thus needing two different prediction

tasks. The values range from a minimum of 24 W (for p maxj) and 20W (for

p avgj), to a maximum of 200 W for both power values. The average values for

p maxj and p avgj are, 97 W and 90 W. Nevertheless, the majority of the values

CHAPTER 6. JOB POWER CONSUMPTION 79

6.2. METHODOLOGY

are around 110 W for p avgj, while, for p maxj, the values are shifted towards

the 120W. We can observe that in both cases, there is a predominance of jobs in

two power consumption bands, with the first being less than 50W per node, and

the second being in the range 110-130 W. The values in between the two power

bands are more uniformly distributed, while the jobs consuming very high amount

of power (≥ 130W) are in a very limited number with respect to the others.

This analysis shows that p maxj and p avgj are indeed different, and predicting

them defining two different tasks is necessary to obtain reliable results.

6.2.2 Job Power Consumption Prediction

The methodology, in terms of feature encoding and model training and testing, is

the same one presented in Chapter 5. However, the task addressed is a regression

and not a classification, hence the models employed need to be adapted to predict

an integer value.

The target of the predictions are the p maxj and p avgj value of a job, and we

test our algorithm on both the tasks. From here on, we refer to the prediction of

the p maxj and p avgj as the maximum and average task.

6.2.3 Experimental Study

In this section, we present the experimental setting and the results of the tests

conducted for the study.

6.2.4 Experimental Setting

We run our experiments on a machine equipped with two AMD EPYC 7302 CPUs

with 64 cores and 512 GB of RAM.

The RF and AD algorithms are implemented with the scikit-learn1 Python

library, while the XG implementation is retrieved from the xgboost2 library. The

sequence encoder model is provided by the sentence transformers library3, while

1https://scikit-learn.org/stable/
2https://xgboost.readthedocs.io/en/stable/index.html
3https://www.sbert.net

80 CHAPTER 6. JOB POWER CONSUMPTION

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/index.html
https://www.sbert.net

6.2. METHODOLOGY

Figure 6.1: Distribution of p maxj (above), and p avgj (below).

CHAPTER 6. JOB POWER CONSUMPTION 81

6.2. METHODOLOGY

the weights for SBERT are pulled from huggingface.4 We use the pre-trained model

all-MiniLM-L6-v2 5, since it is the best trade-off between prediction performance

and speed [28]. All the models are instantiated with the default setting provided

by the libraries. The implementation and the details regarding the Python version

and its packages are available in a GitHub repository.6

Job power prediction We evaluate the models for the prediction of job power

consumption on several metrics typically used in regression tasks, namely Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE) and Coefficient of Determina-

tion (R2).

For the offline setting, the parameters are set as in Chapter 5, thus we take

the first 70% of the data as the training set and the remaining 30% as the test

set. Concerning the online, we experiment with three different values for the α,

namely 15, 30 and 60. We observe that, for the Fugaku data, the best prediction

performance is obtained with α = 60. Therefore, differently from our previous

work, we fix the training interval α to 60 (30 in the past work) days, while we keep

ω = 1 day. The training/testing step of the models is performed only if the data

splits defined by α and ω contain more than 1 element each, otherwise, we move

on to the following splits. We are able to compute 16 iteration over the data in

the online settings, corresponding to the job data submitted between the 16th and

the 31st of March 2022. Therefore, the results reported in Table 6.2.5 and 6.3 are

the average of the results of the 16 tests.

For the evaluation phase, we distinguish between the job feature encodings

(INT and SB) and the supervised algorithms (AD, XG, RF). Each regression

algorithm is evaluated using the two feature encodings, and are compared with

two simple baselines predicting constant values, namely c max and c avg. These

baselines always predict the same value, ignoring the input feature values (thus we

don’t need to distinguish between INT and SB encoding since the input features

are not considered for the prediction). The c max always predicts the maximum

4https://huggingface.co
5https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
6https://github.com/francescoantici/job-pcon-predictor

82 CHAPTER 6. JOB POWER CONSUMPTION

https://huggingface.co
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://github.com/francescoantici/job-pcon-predictor

6.2. METHODOLOGY

value among the power consumption of the jobs in the training set, while the c avg

always predicts the average one.

System power prediction Furthermore, after testing the models at job level,

we want to evaluate the prediction performances at system level. We do that

for two main reasons, (i) to see if our models are capable of reconstructing the

system power state accurately, thus providing a tool which is able to predict the

power consumption of a whole system by considering only the job submitted,

and (ii) because the prediction error on a single job is either an overestimate or

an underestimate of the actual power consumption, so we believe that such errors

might cancel out each other at system level, given the large amount of jobs running

concurrently.

We estimate the real system global power consumption for each hour (psysh)

of each day of the online testing phase. We start by computing the power con-

sumption of the system for a single minute, by summing the power consumption

of all the jobs j ∈ Jh,m running concurrently on the system between the minutes

m and m+ 1 of the hour h. The hourly power consumption of the system is then

computed by taking the average of its power consumption for each minute of the

hour, as shown in Equation 6.3 and 6.4.

psys avgh =

∑60
m=1

∑
j∈Jh,m p avgj

60
(6.3)

psys maxh =

∑60
m=1

∑
j∈Jh,m p maxj

60
(6.4)

The same methodology is used to compute the predicted system power, by

replacing the true job power consumption values with the predicted ones.

6.2.5 Results

After computing all the experiments, we analyse the results obtained. First, we

present the power prediction performance of the models in the offline and online

setting. Finally, we show how well our models perform at system level.

CHAPTER 6. JOB POWER CONSUMPTION 83

6.2. METHODOLOGY

Model MAE (W) MAPE (W) MSE (W) RMSE (W) R2
INT+AD 33.43 0.53 1372.86 37.05 0.05
INT+XG 35.00 0.55 1643.22 40.05 -0.14
INT+RF 39.64 0.59 2029.66 45.05 -0.41
SB+AD 33.41 0.52 1337.30 36.56 0.07
SB+XG 22.70 0.37 844.84 29.06 0.41
SB+RF 28.15 0.50 1368.74 37.00 0.05
con max 110.42 1.80 13632.96 116.76 -8.46
con avg 33.93 0.59 1564.92 39.55 -0.09

Offline job power prediction Table 6.2 reports the results of the offline ex-

periments. These show that the SB+XG model is the best-performing model for

both the maximum and average task, obtaining a RMSE of 29.6 and 25.8, respec-

tively. It is noticeable how the use of the SB encoding improves the performances

of all the models. For instance, on the RF model, the R2 score goes from -0.15

(INT+RF) to 0.23 (SB+RF), confirming that a meaningful representation of tex-

tual features improves the prediction performance. The two baselines employed for

the prediction tasks obtain poor results in both the average and maximum tasks.

While the const max baseline obtains the worst results for the prediction task, the

const avg baseline performs similarly to models trained with the INT encoding.

These results highlight the difficulty of the prediction task and the importance of

leveraging on a trained model to perform the prediction.

Online job power prediction In Table 6.3 we show the prediction performance

of the models in the online setting. Coherently with the offline setting, the use of

the SB encoding improves all the models performances significantly. For instance,

the RMSE score of the INT+RF model is almost twice the one of SB+RF for both

the maximum and average task. Moreover, the R2 score of all the models increases

significantly with the SB encoding, going from values lower than zero to greater

than 0.50 (INT+XG and SB+XG). In this setting, the models obtaining better

results are the SB+XG and SB+RF. In the maximum task, both the models obtain

the same MAPE of 27%, but the SB+XG reaches slightly better results in terms

of MAE (18.70 vs 18.88), MSE (631.63 vs 655.32), RMSE (25.13 vs 25.59) and R2

(0.57 vs 0.55). Conversely, on the average task, the trend is reversed. Indeed, the

84 CHAPTER 6. JOB POWER CONSUMPTION

6.2. METHODOLOGY

Model MAE (W) MAPE (W) MSE (W) RMSE (W) R2
INT+AD 30.30 0.52 1161.94 34.1 0.0
INT+XG 25.16 0.38 886.54 29.77 0.24
INT+RF 31.76 0.44 1346.77 36.70 -0.15
SB+AD 29.72 0.51 1112.15 33.35 0.05
SB+XG 19.90 0.32 666.05 25.80 0.43
SB+RF 23.47 0.42 895.98 29.93 0.23
con max 116.58 1.95 14758.07 121.48 -11.65
con avg 31.18 0.55 1288.17 35.90 -0.10

Table 6.2: Results in the offline setting for the maximum (above), and average
(below) power consumption task. For MAE, MAPE, MSE and RMSE metrics
the lower, the better, while for R2 score the higher, the better. Best results are
highlighted in bold.

SB+RF model obtain better results in terms of MAE (16.80 vs 17.14) and MSE

(557.65 vs 557.81), while the MAPE (0.26), RMSE (23.61) and R2 (0.53) scores

are equivalent.

The comparison of the results of the online and offline setting outlines that

retraining the models is beneficial for prediction performance. The most noticeable

enhancement is obtained in terms of the R2 score. Indeed, the score increases by

0.16 (maximum task) and 0.10 (average task) points. Based on the definition of

the R2 metric, this represents a significant improvement in the model capability

of capturing characteristics and variation of the target values.

We plot Figures 6.3 and 6.4 to visualize how much the models are able to

capture the variability of the target values. We create the figures performing the

following steps. First, we group all the job data belonging to all the test splits

together in a list; then we sort them in ascending order by their actual power

consumption values. We further split the sorted job data in 307 batches, with

each batch identifying a range of true power consumption values. Finally, for

each batch, we show the true (solid blue line) and the predicted (whisker) power

consumption values of the jobs belonging to it. This allows us to understand how

the model performs on the different ranges of job power consumption values.

7The number of splits is decided after an empirical evaluation to guarantee readability of the
plots.

CHAPTER 6. JOB POWER CONSUMPTION 85

6.2. METHODOLOGY

Model MAE (W) MAPE (W) MSE (W) RMSE (W) R2
INT+AD 33.37 0.52 1346.27 36.69 0.08
INT+XG 37.75 0.41 2207.05 46.97 -0.50
INT+RF 43.01 0.57 2464.04 49.63 -0.68
SB+AD 28.74 0.44 1008.74 31.76 0.31
SB+XG 18.70 0.27 631.63 25.13 0.57
SB+RF 18.88 0.27 655.32 25.59 0.55
c max 110.36 1.81 13647.47 116.82 -8.29
c avg 34.21 0.59 1573.37 39.66 -0.07

We plot the results of the RF and XG models, both with the INT and SB

encodings, to check that the improvement in the results presented in Table 6.3

actually corresponds to a better reconstruction of the target values. As expected,

the distribution of the ranges is better approximated by the models with the

SB encoding, in both the maximum and average tasks. The models with the

INT encoding (Figure 6.3) tend to always predict the same values regardless of

the target, while the SB encoding (Figure 6.4) seems to make the models more

flexible and adaptable to the different distributions. Even though the prediction

performance of the models is improved with the SB encoding, there is still evidence

of power values that the models struggle in predicting8. For instance, the extreme

values of the ranges, both for the maximum and average task. For the case of the

jobs consuming low power, the absolute prediction error is quite small, given the

low power values. Concerning the jobs consuming very high levels of power, we

can observe by the power distribution plots in Figure 6.1 that such values are the

least numerous in the dataset. Therefore, since their occurrence is very rare, it is

very hard for the models to learn patterns to predict their values.

System power prediction Figure 6.5 presents the system-level evaluation of

the best models for the maximum and average task in the online setting, namely

SB+XG and SB+RF. The period of time represented in the plots is the testing

period of the online setting, which concerns the jobs submitted between the 16th

and the 31st of March 2022 (Section 6.2.4). We plot the figures to show how

8In Figure 6.4 there is an outlier in the predictions in correspondence to the true power values
between 115 and 120 Watts. The reasons for this are still under investigation.

86 CHAPTER 6. JOB POWER CONSUMPTION

6.2. METHODOLOGY

Figure 6.2: Job true and the predicted power for the maximum target with the
INT+XG model (above), and for the average target with the INT+RF model
(below). The x-axis represents the number of jobs in the test set.

CHAPTER 6. JOB POWER CONSUMPTION 87

6.2. METHODOLOGY

Model MAE (W) MAPE (W) MSE (W) RMSE (W) R2
INT+AD 30.29 0.51 1129.74 33.61 0.05
INT+XG 33.15 0.42 1519.56 38.98 -0.28
INT+RF 33.48 0.39 1667.66 40.83 -0.41
SB+AD 27.37 0.45 925.28 30.41 0.22
SB+XG 17.14 0.26 557.81 23.61 0.53
SB+RF 16.80 0.26 557.65 23.61 0.53
c max 116.50 1.96 14756.10 121.47 -11.47
c avg 31.22 0.55 1281.47 35.79 -0.08

Table 6.3: Results in the online setting for the maximum (above), and average
(below) power consumption task. For MAE, MAPE, MSE and RMSE metrics
the lower, the better, while for R2 score the higher, the better. Best results are
highlighted in bold.

well the total true power consumption of the jobs (blue line) is approximated by

the predictions of our models (orange line). The results confirm the hypothesis

formulated in 6.2.4, i.e. that the prediction performance is improved at system

level (MAPE of around 5% and a R2 ¿ 0.97 for both tasks) with respect to the job

level. This can be caused by several factors. For instance, the predicted job power

consumption prediction might be either an overestimate, or an underestimate of

the actual values. These can balance each other out when summing the power

consumption of the concurrent jobs, obtaining a better approximation of the overall

power consumption.

In this scenario, it is important to specify that the reconstruction is an estimate

of the systems’ power consumption, which does not match with the actual power

consumption of Fugaku. This is because we don’t have access to other power

consumption sources of the system (e.g. idle node power) and there are some

missing information in our data which prevents us to reconstruct the exact load

of the system through time. Hence, instead of seeing the Fugaku-typical constant

load of about 19MW9, we are seeing an increasing curve. Nevertheless, this plot

shows that for the available data, our prediction model nearly matches the actual

load of the system in Spring of 2022.

Finally, in Figure 6.6 we report the average training time for all the models

9https://status.fugaku.r-ccs.riken.jp/

88 CHAPTER 6. JOB POWER CONSUMPTION

6.2. METHODOLOGY

employed in the experiments with the INT and SB encoding. In each heatmap we

show the average, maximum and minimum training time of the model throughout

the 16 days of the testing of the online setting. We do that to investigate if the

training time has a very high variability through time, which would represent a

non-predictable behaviour of our algorithm. The figures show that our models’

training time does not present a significant dissimilarity between the minimum,

average and maximum value. The difference is justified by the variability of the

number of job data in the training splits, which range from a minimum of 1038542

jobs to a maximum of 1481037 (mean value of 1261219).

For the case of the INT encoding, the training time is almost negligible for the

RF and XG models, while it is around 2 minutes for the AD.10 As introduced in

Section 6.2, the SB encoding maps the input to a 384 dimensional vector, with

respect to the 5 dimensional of the INT representation. This step introduces a

significant complexity to the model, since the feature space of the SB encoding

is almost 80 times bigger than the INT one. RF relies on single features values

correlation with the target, so its computation time is heavily influenced by the

dimensionality of the input data (training time more than 60 times bigger in the

case of SB encoding). The AD model is the one obtaining worse results in terms

of training time for the INT encoding (90 seconds), while it performs better than

RF with the SB encoding(∼ 7000 seconds less in every case). The XG model is

the most robust in terms of training time, since despite the high-dimensionality

of the input with the SB encoding, it is able to perform the training in around 3

minutes for the worst case scenario, making it easily deployable to a real system.

10Differently from the other two models, the scikit-learn API for the AdaBoostRegressor algo-
rithm currently does not support the distribution of the training operations on multiple processors

CHAPTER 6. JOB POWER CONSUMPTION 89

6.2. METHODOLOGY

Figure 6.3: Job true and the predicted power for the maximum target with the
INT+XG model (above), and average target with the INT+RF model (below).
The x-axis represents the number of jobs in the test set.

90 CHAPTER 6. JOB POWER CONSUMPTION

6.2. METHODOLOGY

Figure 6.4: Job true and the predicted power for the maximum target with the
SB+XGmodel (above), and for the average target with the SB+RF model (below).
The x-axis represents the number of jobs in the test set.

CHAPTER 6. JOB POWER CONSUMPTION 91

6.2. METHODOLOGY

Figure 6.5: System true and predicted power for the maximum task with the
SB+XG model (above), and for the average task with the SB+RF model (below).

92 CHAPTER 6. JOB POWER CONSUMPTION

6.2. METHODOLOGY

Figure 6.6: Models’ training time with the INT (above) and SB (below) encoding.

CHAPTER 6. JOB POWER CONSUMPTION 93

6.2. METHODOLOGY

94 CHAPTER 6. JOB POWER CONSUMPTION

Chapter 7

Job Memory/Compute-Bound

Nature

HPC jobs, like any application, can be classified based on the intensity of their

system resource usage as memory-bound and compute-bound [6, 8]. The first cat-

egory refers to the jobs whose attainable performance are bound by their memory

access rate, often measured as the utilization level of the available system memory

bandwidth. In contrast, the compute-bound refers to the ones whose performance

is bound by the system’s arithmetical performance, often measured as the rate of

double-precision floating-point operations computed per second. As jobs are of-

ten not engineered to simultaneously saturate the different system resource types,

failure in identifying their category prior to their execution is likely to cause inef-

ficiency in resource usage, system throughput and energy consumption [5, 6, 60].

Conversely, knowing if a job is compute-bound or memory-bound upon submis-

sion allows making informed decisions about its scheduling and execution. For

instance, it can be used to design specific hardware-software co-design techniques

[40, 46, 47, 61, 62], or a job co-scheduling strategy that allocates the same node to

jobs with different characteristics [6, 8]. Both techniques have been proven effec-

tive in enhancing system throughput, while significantly reducing system energy

consumption. Therefore, classifying jobs as memory-bound and compute-bound,

prior to their execution, has the potential to improve the system energy efficiency

and throughput, without the need of any intervention by the user, as shown in

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 95

[40, 6, 8, 46, 47, 61, 62].

To develop reliable classification models to predict the memory/compute-bound

nature of a job before its execution, a large amount of labelled job data is needed.

However, to the best of our knowledge, such a public dataset for a production sys-

tem does not exist. Without prior knowledge on jobs’ computational operations

and memory usage, they can only be characterized by analyzing the performance

metrics collected during the execution. This requires a systematic characterization

technique leveraging the data collected during job execution. Job data analysis

based on this characterization could also provide insights into the system usage;

for instance, whether the users submit jobs optimized to fully saturate the dif-

ferent system resources and if specific actions can be enacted to improve system

throughput.

Despite recognizing its importance, no past work has proposed a solution to

systematically and seamlessly characterize and classify memory/compute-bound

jobs in an HPC system before job execution, nor has proven the feasibility of such

an approach. During our research, we tackled the aforementioned challenges by

developing MCBound, the first online data-driven framework to classify HPC jobs

before job execution as memory-bound and compute-bound, without user interven-

tion. We propose a systematic characterization technique to generate a reference

dataset from historical data for our initial classification model training. Using the

proposed characterization technique, we analyze the data from 2.2 million job runs

on the Supercomputer Fugaku to obtain insights into theirmemory/compute-bound

characteristics. Moreover, we employ MCBound to classify the jobs executed on

Fugaku during February 2024, obtaining an F1-macro average score [63] of at least

0.89 as prediction quality.

The MCBound framework is online in the sense that it works in real-time

on live streaming data and periodically updates the classification model in the

background. The job characterization is performed systematically, leveraging job

performance metrics, system’s specifics, and the Roofline model [41] technique.

The classification is achieved through a prediction algorithm relying on NLP and

supervised ML models, which is trained on historical and properly characterized

job data, and is able to classify unseen jobs upon submission prior to their ex-

ecution. The algorithm is periodically retrained over time on recent data. Our

96 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.1. RELATED WORK

framework can be configured ad-hoc to meet the needs and characteristics of the

system on which it is deployed.

Towards implementing MCBound in a production HPC system, we extract

from F-DATA 2.2 million jobs executed on Fugaku between December 2023 and

March 2024. Our job analysis using our characterization technique reveals that the

great majority of Fugaku jobs are memory-bound and users execute large numbers

of compute-bound jobs with the system’s default execution mode (i.e. 2.0 GHz),

instead of the boost mode (i.e. 2.2 GHz), which may result in longer execution

time, node-hours wastage and increased energy consumption.

We implement MCBound for Fugaku and evaluate the online prediction algo-

rithm with over 700,000 jobs executed during February 2024. We study the impact

of choice of recent data for periodic retraining and retraining frequency on pre-

diction accuracy and runtime overhead of training and inference. We show that

our approach is effective for the classification task with an F1-macro average score

of at least 0.89 as prediction quality and it incurs low runtime overhead on the

system.

To the best of our knowledge, this is the first approach to systematically and

seamlessly characterizes and classify memory/compute-bound jobs in HPC systems

before job execution, without requiring any intervention by the user.

7.1 Related Work

The use of the Roofline model to evaluate computational bottlenecks and charac-

terize memory-bound and compute-bound applications is a standard in the field,

and it has been done in several past work [62, 64, 65, 66]. In [64, 65], the au-

thors rely on a technique based on the Roofline model for an in-depth analysis of

application bottleneck in the cache memory. Whereas, in [66, 62] it is used to char-

acterize memory-bound and compute-bound applications and evaluate the impact

of optimization techniques on their execution. All the cited work characterized a

few well-known kernels or benchmarks via visual analysis of the resulting Roofline

model of the computations, while we here do it systematically on millions of real

jobs, for which we have no prior knowledge on the operations performed.

In MCBound, we target predicting a new job characteristic prior to job execu-

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 97

7.2. MCBOUND FRAMEWORK

tion, as runtime prediction [36, 17] may incur overhead on the system operations

and necessitate modification to the regular workload submission workflow, as often

thousands of jobs are submitted every second.

This work proves that online NLP-augmented RF and KNN models are effec-

tive also in predicting the memory/compute-bound job class, other than failure

(Chapter 5), and power (Chapter 6). Moreover, we study the impact of choice

of recent data for periodic retraining and retraining frequency on prediction ac-

curacy and runtime overhead of training and inference. Finally, we integrate the

algorithm as a component in a deployable framework.

7.2 MCBound Framework

In this section, we first describe the MCBound framework at a high-level, then

detail its main components, and finally explain how it is deployed on the target

system.

The framework is designed to be deployed in a real system where jobs are

submitted and executed continuously, and various information regarding job sub-

mission, execution and completion (referred to as job data) is streaming in time.

For this reason, MCBound employs an online prediction algorithm which shares

the characteristics of the one presented in Chapter 5. First, it relies on job sub-

mission information only, as classification of a job before its execution can be done

by leveraging only such data, and the historical data of the jobs that are already

completed by that time. Second, to adapt to changes in the workload and guar-

antee accurate classification, the model is periodically updated over time by using

the recently executed job data for training. The framework thus executes in two

different modes: (i) periodic model retraining on recent job data and (ii) model

inference on a newly submitted job. For this, the framework requires an opera-

tional data analytics framework that collects job data and stores them in a jobs

data storage.

The framework is depicted in Figure 7.1, where the rectangular blocks repre-

sent the main components and the blue containers show how they are employed in

two Continuous Integration/Continuous Delivery (CI/CD) workflows. The com-

ponents are:

98 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.2. MCBOUND FRAMEWORK

Se
le

ct
ed

 fe
at

ur
es

Pe
rfo

rm
an

ce
m

et
ric

s

Jo
bs

 d
at

a
st

or
ag

e

En
co

de
d

da
ta

Fe
at

ur
e

En
co

de
r

C
la

ss
ifi

ca
tio

n
M

od
el

(tr
ai

ni
ng

)

Lo
ad

Tr
ai

ne
d

m
od

el

M
em

or
y/

co
m

pu
te

bo
un

d
la

be
ls

Jo
b

C
ha

ra
ct

er
iz

er

Jo
b 1

 d
at

a

Jo
b n

 d
at

a

...
Sa

ve
Fe

tc
h

D
at

a
Fe

tc
he

r

En
co

de
d

da
ta

Fe
at

ur
e

En
co

de
r

C
la

ss
ifi

ca
tio

n
M

od
el

(in
fe

re
nc

e)
Se

le
ct

ed
 fe

at
ur

es
N

ew
 jo

b
da

ta
Pr

ed
ic

te
d

m
em

or
y/

co
m

pu
te

bo
un

d
la

be
l

Tr
ai

ni
ng

 W
or

fk
lo

w

D
at

a
Fe

tc
he

r

In
fe

re
nc

e
W

or
kfl

ow

Q
ue

ry Q
ue

ry
Fe

tc
h

F
ig
u
re

7.
1:

H
ig
h
-l
ev
el

sc
h
em

e
of

th
e
co
m
p
on

en
ts

an
d
th
e
w
or
k
fl
ow

s
of

M
C
B
ou

n
d.

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 99

7.2. MCBOUND FRAMEWORK

• The Data Fetcher, which retrieves the job data by querying the jobs data

storage.

• The Feature Encoder, which takes as input a series of raw job data, and

returns the encoded data to be fed into the Classification Model.

• The Job Characterizer, which takes the raw job data as input and augments

the job data with memory/compute-bound labels.

• The Classification Model, which uses the encoded data together with the

memory/compute-bound labels for model training, and just the encoded data

for model inference to classify each submitted job as memory or compute-

bound prior to its execution.

When triggered:

• the Training Workflow fetches the data of the jobs executed in the last α

days to generate an instance of a trained Classification Model once every β

days;

• the Inference Workflow fetches the data of a new (unseen and not yet exe-

cuted) job and generates a memory/compute-bound label for it.

MCBound targets the Fugaku supercomputer, however, the framework is de-

signed to work universally for any system. It requires only that the jobs data

storage is integrated in the system, containing job features referring to submission

(such as requested resources, user information, job name), execution and comple-

tion (such as duration and #nodes allocated), and performance metrics (such as

#flops and #moved memory bytes). The architecture is designed to be modular

and easy to customize for different systems, for instance by implementing different

Data Fetcher, Feature Encoder, or Classification Model. All the framework com-

ponents are software components implemented as Python classes, with a method

for each functionality they provide.

7.2.1 Data Fetcher

The Data Fetcher is an interface to retrieve data from the jobs data storage, which

contains information of executed and newly submitted jobs. At initialization time,

100 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.2. MCBOUND FRAMEWORK

the class allows configuring the Data Fetcher object to interact with the specific

data storage technology deployed in the target system (e.g., relational database,

non-relational database, distributed file system). The class provides the fetch

method, which takes as input either a job id, or a start time and end time. With

the first parameter the method fetches the data of a single job corresponding to the

job id, with the second instead the data of all the jobs executed between start time

and end time are fetched. These parameters are used to generate an SQL query to

the job’s data storage. The query results in a list of job features and their values,

which is then returned as the output of the fetch method.

7.2.2 Feature Encoder

This component represents job features in a format suitable to be fed into the

Classification Model, i.e. an array of floating point values. The class is endowed

with an encode method which takes as input the raw job data and outputs the en-

coded job data. Internally, the method filters out a subset of job features, selected

empirically during an initial experimentation phase and accordingly to the cho-

sen classification model. The corresponding feature values are then concatenated

into a comma-separated string and encoded with Sentence-BERT (SBERT) [28].

The resulting representation of the feature string is a fixed-size 384-dimensional

floating-point array, which constitutes the output of the encode method.

This method can be modified to select any subset of job features and to leverage

any encoding technique (such as classical categorical mapping of feature values to

integers, transformers or neural encoder/decoder models) able to map job features

to a suitable format for the Classification Model.

7.2.3 Job Characterizer

The Job Characterizer component exploits the Roofline model [41] which repre-

sents the compute-memory ratio of a computation, and allows identifying if it is

compute-bound or memory-bound. By using system specifics (i.e. peak perfor-

mance and peak memory bandwidth), it computes the operational intensity op

(mean operations per byte of memory traffic) of the ridge point opr for a machine

m, namely the minimum op needed to obtain the peak performance of m. This

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 101

7.2. MCBOUND FRAMEWORK

value is then used to distinguish between memory-bound and compute-bound com-

putations. In our case, computations are jobs, and machine m is a single node n

of an HPC system.

The Job Characterizer class is initialized with the peak performance and the

peak memory bandwidth of a single node n of an HPC system, and computes the

operational intensity of the ridge point opr. The generate labels method of the

class returns the memory-bound or compute-bound label of a job j given as input

its feature values. These are the number of floating point operations (#flopsj),

the duration (durationj), the number of nodes allocated (#nodes allocj), and the

amount of moved memory bytes (#moved memory bytesj). These features can be

obtained by filtering the job execution statistics and performance metrics. Inter-

nally, the method computes the performance (pj), the memory bandwidth (mbj),

and operational intensity (opj) for j. As pj is a measure of Flops per second,

we divide the flopj by durationj. Furthermore, since the Roofline model refers

to a single node of the machine, the performance of j needs to be normalized on

#nodes allocj, obtaining for each job the per node average pj, mbj and opj. Then,

pj, mbj and opj are computed as shown in Equations 7.1, 7.2 and 7.3. The gen-

erate labels method returns compute-bound if opj is greater than opr computed at

class initialization time, memory-bound otherwise.

pj =
#flopsj

durationj ∗#nodes allocj
(7.1)

mbj =
#moved memory bytesj
durationj ∗#nodes allocj

(7.2)

opj =
pj
mbj

(7.3)

In this first version ofMCBound, we focus only on the classes defined in the original

Roofline paper [41]. However, by adding to the Roofline model the bandwidth of

other hardware components (e.g. cache, interconnect and GPUs) it is possible

to expand the Job Characterizer to create other labels for the job data, such as

interconnect-bound and GPU-bound.

102 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.2. MCBOUND FRAMEWORK

7.2.4 Classification Model

This component provides methods for the classification task via data-driven predic-

tion algorithms. When an object of the class is created, the initialization method

takes as input the name of the algorithm to employ. In our use case, we implement

two instantiations, using supervised ML algorithms which are first trained on his-

torical and properly characterized job data, before performing inference on unseen

jobs. Such algorithms are the KNN and RF, presented in Chapter 2.3. The cho-

sen algorithms spend complementary effort in their training and inference parts.

While RF needs to dedicate a significant amount of time to training, the KNN does

that for inference. Availability of algorithms with different learning nature allows

choosing the best trade off between the quality of prediction and the runtime effort

spent on it. We note that it is possible to implement any data-driven prediction

algorithm for Classification Model, such as neural networks, other ML-based or

even heuristic algorithms.

Once initialized, the Classification Model instance provides the training and

inference methods. The training method takes as input two arrays containing re-

spectively encoded job data and the corresponding memory/compute-bound labels.

The input data is then used to train the Classification Model instance. The infer-

ence method can be called only after the Classification Model instance is trained.

The method takes as input an array of encoded job data and generates a list of

predicted memory/compute-bound labels for all the jobs.

7.2.5 MCBound Deployment

We implement MCBound as a flask 1 backend, providing APIs to perform the

operations of the framework. Flask is endowed with a built-in development server,

but it can be also easily deployed to any HTTP server. We also provide a Docker

[67] configuration, to distribute the framework as a container and make it scalable

through container orchestration techniques, such as Kubernetes [68].

The workflows shown in Figure 7.1 are implemented as Python scripts lever-

aging the framework APIs to perform the necessary steps. The trained model

1https://flask.palletsprojects.com/

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 103

https://flask.palletsprojects.com/

7.3. MEMORY/COMPUTE-BOUND CHARACTERIZATION AND
ANALYSIS OF FUGAKU JOBS

instances are saved to the machine file system by using the skops.io library,2 in

order to handle and maintain different versions of the models.

We provide a deploy script for the first deployment of MCBound. The script

first executes the Training Workflow script to generate the trained instance of

the Classification Model, and then the flask application of MCBound is started.

Finally, a cronjob [69] is scheduled to re-execute the Training Workflow script

every β days.

The online prediction starts when a trained instance of the Classification Model

is generated. Then, the trained instance is used by the Inference Workflow script

to generate predictions for the all jobs submitted in the following β days. Within

this period, the inference on a job can be triggered in two different ways depending

on how and when the prediction is needed: at each new job submission, or by

periodically querying the jobs data storage to retrieve the accumulated new job

data. After β days, the cronjob for the Training Workflow script is re-triggered,

an instance of the Classification Model is trained, and the framework is ultimately

reloaded.

7.3 Memory/Compute-bound Characterization and

Analysis of Fugaku Jobs

In this section, we apply our characterization approach to the job data obtained

from the Fugaku system and analyze the outcome. The characterization is neces-

sary to acquire the ground truth for the prediction algorithm evaluation in Section

8.4, while the analysis allows to obtain insights into the system usage; for instance,

whether the users submit jobs optimized to fully saturate the different system re-

sources and if specific actions can be enacted to improve system throughput.

7.3.1 Fugaku Job Traces

For our experiments, we use the F-DATA dataset. This data includes informa-

tion about job submission (such as submission time, requested resources, user

2https://skops.readthedocs.io/en/stable/index.html

104 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

https://skops.readthedocs.io/en/stable/index.html

7.3. MEMORY/COMPUTE-BOUND CHARACTERIZATION AND
ANALYSIS OF FUGAKU JOBS

20
23

-12
-01

20
23

-12
-15

20
24

-01
-01

20
24

-01
-15

20
24

-02
-01

20
24

-02
-15

20
24

-03
-01

Submission day

101

102

103

104

of

 Jo
bs

Figure 7.2: Job submission distribution over time.

information, and system state), as well as job execution and completion (such

as duration and performance counters). The performance counters can be lever-

aged to compute performance metrics on the job execution, such as #flops and

#moved memory bytes.

Fugaku is used by hundreds of users, submitting thousands of jobs to the system

every day. We extract from F-DATA the data of 2.2 million jobs submitted and

executed between December 2023 and March 2024. Figure 7.2 shows the distribu-

tion of the jobs over the entire period. We observe that the job submission rate

is uniform except for a few days in early February, when a scheduled maintenance

caused the shutdown of the system.

7.3.2 Job Characterization Setup

Following the methodology presented in Section 7.2.3, we extract the peak per-

formance and peak memory bandwidth of a Fugaku node from system’s spec-

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 105

7.3. MEMORY/COMPUTE-BOUND CHARACTERIZATION AND
ANALYSIS OF FUGAKU JOBS

ifications.3, which are 3380 GFlops/s in FP64 and 1024 GByte/s, respectively.

The peak performance reported refers to FX1000 boost-mode configuration (i.e.

frequency = 2.2 GHz for the A64FX CPUs), as we need to consider the best perfor-

mance attainable by the machine. Based on these characteristics, the ridge point

is at an opr of ≈ 3.3 Flops/Byte, which is used for the job labelling.

As described in Section 7.2.3, for job j we compute pj and mbj (and conse-

quently opj), via #flopsj and #moved memory bytesj. These two values in the

target system are computed starting from the performance counters (perf2, perf3,

perf4, perf5). In Fugaku, perf2 and perf3 correspond to the FP FIXED OPS SPEC

and FP SCALE OPS SPEC A64FX PMU Events, while perf4 and perf5 refer to

BUS READ TOTAL MEM and BUS WRITE TOTAL MEM [70]. In Equation

7.4, perf2 is the fixed amount of operations, while perf3 is the number of op-

erations per 128-bit SVE, and it is multiplied by 4 since the A64FX of Fugaku

is 512-bit SVE. In Equation 7.5, perf4 and perf5 are summed in order to ob-

tain the total number of requests to the memory, as they represent the amount

of memory read and write requests, respectively. Then, they are multiplied by

the size of the memory requests, (256 bytes of cache line size), to obtain the total

#moved memory bytesj. Moreover, the cores of Fugaku nodes are grouped by 12

in Core Memory Groups (CMGs). The perf4 and perf5 values are generated by

summing all the values collected by each core for the whole CMG. Therefore, these

values need to be divided by 12 to eliminate redundant information.

#flopsj = perf2j + (perf3j ∗ 4) (7.4)

#moved memory bytesj =
(perf4j + perf5j) ∗ 256

12
(7.5)

Once we compute pj andmbj (and opj), we label the job j based on the comparison

of opr of the ridge point and opj.

3https://www.fujitsu.com/global/about/innovation/fugaku/specifications/

106 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

https://www.fujitsu.com/global/about/innovation/fugaku/specifications/

7.3. MEMORY/COMPUTE-BOUND CHARACTERIZATION AND
ANALYSIS OF FUGAKU JOBS

Figure 7.3: Roofline model of the job data.

7.3.3 Fugaku Job Analysis

Figure 7.3 shows the collective Roofline model, which reports in x-axis op mea-

sured as Flops/Byte, and in y-axis p in GFlops/s. We observe that the distribution

of the operational intensity of the jobs submitted to the Fugaku system is signifi-

cantly skewed toward values lower than the ridge point. Moreover, as reported in

Table 7.1, the number of memory-bound jobs is around 3.5 times as the number

of compute-bound jobs. Figure 7.4 reports the distribution of each job type over

the entire period. We notice that the proportion between the memory-bound and

compute-bound jobs is constant in time, suggesting that this difference is a char-

acteristic of the studied Fugaku workload. This is interesting considering that the

A64FX of the Fugaku system has been co-designed for memory-bound jobs [71],

and thus, a more balanced job distribution would be expected.

We can also see that many jobs are far from the Roofline. This is particularly

notable in the memory-bound area, where only a few clusters of jobs are close to

the peak memory bandwidth line. The same can be observed in the compute-

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 107

7.3. MEMORY/COMPUTE-BOUND CHARACTERIZATION AND
ANALYSIS OF FUGAKU JOBS

20
23

-12
-01

20
23

-12
-15

20
24

-01
-01

20
24

-01
-15

20
24

-02
-01

20
24

-02
-15

20
24

-03
-01

Submission day

101

102

103

104

of
 Jo

bs

Label
memory-bound
compute-bound

Figure 7.4: Distribution of job types over time.

bound area, where only some jobs with operational intensity around the ridge

point touch the peak performance line. This means that while there are some well-

engineered jobs saturating fully the resources, it is not the case for the majority of

the jobs. Therefore, leveraging MCBound to classify memory/compute-bound jobs

has the potential to guide job scheduling, for instance by enacting co-scheduling

of memory-bound and compute-bound jobs on the same node, or by adjusting

the amount of resource allocated to the job, and thus to reduce system resource

wastage.

Figure 7.5 shows the distribution of jobs in the Roofline plane by highlighting

the node frequency selected by the user at job submission time. In Table 7.1, we

see that around 54% of the memory-bound jobs are executed in normal mode (fre-

quency=2.0 GHz), while only around 30% of compute-bound jobs in boost mode

(frequency=2.2 GHz). Moreover, Figure 7.5 shows that there is no observable cor-

relation between the user-selected frequency at submission time and the position

of the given job in the Roofline. These observations suggest that users do not nec-

108 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.3. MEMORY/COMPUTE-BOUND CHARACTERIZATION AND
ANALYSIS OF FUGAKU JOBS

Figure 7.5: Roofline model of the job data, divided by frequency.

Table 7.1: Distribution of job types.
Frequency memory-bound compute-bound Total
2.0 GHz (normal mode) 891,056 330,878 1,221,934
2.2 GHz (boost mode) 752,421 147,097 899,518
Total 1,643,477 477,975 2,121,452

essarily choose appropriate frequencies for their jobs. Indeed, memory-bound jobs

do not benefit from running at higher frequencies, as their performance bottleneck

is the memory bandwidth, while compute-bound jobs are likely to increase their

performance at higher frequencies, possibly resulting in shorter execution time and

energy savings. Therefore, another advantage of leveraging MCBound is the pos-

sibility to guide frequency selection, and thus the improvement of system energy

efficiency and throughput.

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 109

7.4. EXPERIMENTAL STUDY

7.4 Experimental Study

In this section, we present the implementation of the Classification Model of

MCBound for Fugaku, experimentally evaluate the online prediction algorithm,

and discuss the results.

7.4.1 Classification Model Implementation for Fugaku

We rely on the scikit-learn4 library for the ML models and use their default imple-

mentation. The SBERT model is provided by the sentence transformers library5,

while the weights are pulled from Huggingface 6. We use the pre-trained model

all-MiniLM-L6-v2 7, since it has the best trade-off between prediction quality and

speed [28]. The code we used for the implementation will be released in a public

repository.

We conduct an initial empirical evaluation of the dataset to find the best set

of features to represent the Fugaku jobs. The set should be representative enough

for jobs to maximize the prediction accuracy while concise enough to minimize

the runtime overhead in processing them. In our previous work on job power

consumption of Fugaku jobs (Chapter 6), we found that the best set is composed

of user name, job name, #cores requested, #nodes requested and environment.

Our experiments confirm their value in our prediction task and that including the

additional feature frequency requested improves the prediction performance. We

therefore use frequency requested and those of Chapter 6 as augmented feature set.

As mentioned in Section 7.2, the Inference Workflow can be triggered periodi-

cally. For Fugaku, we do it once every β days, using the job data accumulated since

the last trigger. We save the job characterizations and encodings of every trigger of

the Training Workflow and Inference Workflow, in order to reuse them and avoid

redundant computations during the future triggers of the Training Workflow.

The Training/Inference Workflows are performed on a machine detached from

Fugaku, accessible via HTTP calls. Thus, no overhead to the HPC computing

4https://scikit-learn.org/stable/
5https://www.sbert.net
6https://huggingface.co
7https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

110 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

https://scikit-learn.org/stable/
https://www.sbert.net
https://huggingface.co
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

7.4. EXPERIMENTAL STUDY

resources is incurred. As the data were already collected for logging purposes, the

only additional storage required is for the saved trained model, which is negligible

in today’s HDD (around 1GiB)

7.4.2 Online Prediction Algorithm Evaluation

To evaluate the online prediction algorithm, we implement an evaluate Python

script, which is executed once at the end of the testing period. This evaluation

targets the assessment of the prediction quality as well as the incurred runtime

overhead.

Evaluation setup We employ the two ML models, KNN and RF, described in

Section 7.2.4. The models are trained on portions of the data of the jobs executed

between December 1st, 2023 and January 31st, 2024 and tested on a subsequent

time window composed of over 700,000 jobs executed between February 1st and

29th, 2024.

Prediction quality is measured using the F1-macro average score [63] - a widely

used metric for classification problems - computed as the mean of the F1-score

obtained on specific memory-bound and compute-bound classes. The F1-score on

a single class is computed as the harmonic mean between the precision and recall

on the target values. Hereafter, we will refer to the F1-macro average as F1. The

F1 for a model is computed at the end of the testing period by our evaluate

script, on all the predictions generated by all the Inference Workflow executions.

The ground truth labels necessary for F1 have been acquired via Fugaku job data

characterization, as described in Section 7.3.

The runtime overhead of the algorithm refers to the time spent in training

and inference, which are computed as the average of all the Training Workflow

and Inference Workflow runtimes. While job characterization time is negligible

(1 ∗ 10−6 seconds per job), the encoding incurs a higher overhead (2 ∗ 10−3 seconds

per job) which still is negligible. We note, however, that job encoding takes place

during Training Workflow only once at the first deployment of MCBound. This

is because there are no encodings of the historical job data at the beginning. As

models are retrained during future triggers of the Training Workflow, the job

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 111

7.4. EXPERIMENTAL STUDY

encodings can be retrieved from the previous Inference Workflow computations.

Thus, we do not include the job characterization and encoding time in the training

time, while we include the encoding time in the inference time.

Experimental setup We conduct three experiments. As described in Section

7.2, the online prediction algorithm retrains a model using the recently executed

job data (the last α days’ data), and continues to do so periodically (at every β

days). In the first experiment, we use different combinations of α and β values, to

find the best time window of the recent data for periodic retraining and retraining

frequency. We iterate α ∈ {15, 30, 45, 60} and β ∈ {1, 2, 5, 10}. We avoid β = 0,

i.e. retraining upon each new job submission, as it incurs excessive overhead, as

well as exclude larger values of β so as not to delay model update for long.

We are not interested in using more than α = 60 days of training data either,

as otherwise the model would have to deal with a large amount of data during RF

training and KNN inference, possibly increasing the runtime overhead. Moreover,

the workload of an HPC system is variable and training based on “older” data is

not beneficial for prediction. We demonstrate this in our second experiment, where

the initial model training is done using the best α found in the first experiment,

and then successively the model is retrained using the data of all the past days,

without forgetting the data older than α days. We refer to this setting as α+ time

window.

To observe whether the amount of data used within a given α time window in-

fluences the prediction quality, in our third experiment we retrain the models using

a θ subset of the last α days of data. To this end, we iterate θ in {102, 103, 104, 105}
after having analyzed the average training data size.

The experiments are run on the machine where the framework is currently

deployed for testing purposes, which is equipped with two AMD EPYC 7302 CPUs,

64 cores and 512 GB RAM, running Python 3.11.5 on Linux Fedora 37. The code

of the experiments will be released in a public repository.

7.4.3 Experimental Results

112 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.4. EXPERIMENTAL STUDY

1 2 5 10
β

60
45

30
15

α

0.87 0.87 0.86 0.86

0.88 0.88 0.87 0.86

0.89 0.88 0.87 0.87

0.83 0.81 0.80 0.80

KNN

1 2 5 10
β

60
45

30
15

α

0.90 0.89 0.88 0.87

0.90 0.88 0.87 0.86

0.90 0.88 0.87 0.86

0.90 0.88 0.87 0.86

RF

Figure 7.6: F1 of KNN (above) and RF (below) with different α and β values.

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 113

7.4. EXPERIMENTAL STUDY

Experiments with α and β values Figure 7.6 shows F1 values over different

combinations of α and β values. In both models, as β increases, F1 decreases, due

to less frequent model training and knowledge update. We therefore consider the

best retraining frequency as β = 1 (once a day). As α increases, the models behave

differently. The parametric model RF tends to benefit from training using data

spanning to a larger time window, probably because parameter tuning becomes

more precise, but we observe no gains with α > 15 when β = 1. Whereas, the

non-parametric nature of KNN does not benefit from “older” data. In the specific

case of β = 1, the best performance is attained with α = 30 and then declines

with greater values. We theorize that the workload has more similarities within 30

days. Given that KNN inference works by finding similar data, training on data

older than 30 days infers past job behavior.

Figure 7.7 shows the average daily training time across various values of α.

KNN training time is almost negligible, with a maximum duration of 0.32 seconds

with α = 60. In fact, KNN training consists of just building a model instance,

which stores the training data for future inference, and no parameter is tuned.

Conversely, RF requires an actual training phase with parameter tuning, and as α

grows, so does the training time with the amount of data growing, up to almost 3

minutes. However, RF reaches the best prediction already with α = 15, when the

training time is lowest (around 26 seconds).

In Figure 7.8, we show the daily average inference time per job (including job

encoding time) across various values of α. RF has a constant inference time, as

inference is done through tuned parameters independently of α. Though this value

is around 2 ∗ 10−6, it is dominated by the average job encoding time (2 ∗ 10−3).

KNN inference is about finding similarities among the entire training data, thus

inference time would grow with larger values of α. However, the inference time is

again dominated by the encoding time and is around 2.3∗10−3, not changing much

across different values of α. Still, the inference time per job of α = 30 is negligible

(milliseconds) w.r.t. job average waiting time for scheduling (time spent until the

scheduling decision of a job, after its submission), which is around 3 minutes in

the observed period. This means that neither of the models would incur overhead

on the job submission workflow of the system. From Figures 7.6, 7.7 and 7.8, we

can conclude that the best algorithm settings are α = 15 (RF) and α = 30 (KNN),

114 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.4. EXPERIMENTAL STUDY

15 30 45 60
α

10−1

100

101

102

Da
ily

 a
ve

ra
ge

 tr
ai

ni
ng

 ti
m

e
(in

 se
co

nd
s)

0.08

0.16
0.24

0.32

26.39

67.41
119.71

168.13model
KNN
RF

Figure 7.7: Average model training time variation when β = 1.

coupled with β = 1.

We further compare the RF and KNN to a simple baseline that maps a tuple

of (job name, # of cores requested) to a memory/compute-bound label (which can

be seen as a KNN with k = 1 on the features job name, # of cores requested).

The baseline is updated over time using the same online algorithm, with α = 30

and β = 1 (as the best KNN settings). While this solution is simpler, it is also less

accurate than ours (F1-score: 0.83 vs 0.90), justifying the need for our approach.

Experiments with α+ Starting with the best α and β value combinations as

described in the previous experiment, we observe no improvement in prediction

considering the α+ time window during training. F1 of RF with α+ is 0.90, which

is the same as α = 15. This is not surprising, as we saw in the previous experiments

that increasing α does not change F1 when β = 1. F1 of KNN instead decreases

to 0.86 with α+ from 0.89 with α = 30. This supports our hypothesis that jobs

are most similar within 30-days.

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 115

7.4. EXPERIMENTAL STUDY

15 30 45 60
α

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Da
ily

 a
ve

ra
ge

 in
fe

re
nc

e
tim

e
pe

r j
ob

 (i
n

se
co

nd
s)

 2.1*10−3
 2.3*10−3

 2.4*10−3
 2.5*10−3

 2.0*10−3 2.0*10−3 2.0*10−3 2.0*10−3

model
KNN
RF

Figure 7.8: Average job inference time variation when β = 1.

Moreover, the growing time window jeopardizes the training time of RF and the

inference time of KNN, as they are both dependent on the training data size. The

average training time of RF increases from 26.39 seconds with α = 15 to more than

200 seconds with α+. Differently, the training time increase in KNN is marginal,

going from 0.16 seconds with α = 30 to 0.39 seconds with α+. Conversely, while

the average inference time per job of RF remains the same, the KNN time increases

but slightly, going from 2.3∗10−3 seconds per job with α = 30 to around 2.5∗10−3

with α+.

This experiment confirms that a sliding time window, which filters the recent

job data for retraining, is beneficial for the proposed online algorithm both for

prediction accuracy and overhead on the system’s operations. Therefore, in the

following experiment, we fix α to its best values of 15 (RF) and 30 (KNN).

Experiments with θ For a given α retraining time window, we select a subset

θ of data points either randomly, or by considering the jobs with the most recent

116 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.4. EXPERIMENTAL STUDY

ending time. When sampling data randomly, we repeat model training with 5

different random seeds8 and average the results of the 5 different trained models.

Figures 7.4.3 and 7.9 show F1 values of KNN and RF using latest and ran-

dom data over different values of θ. We observe that having more data within a

fixed time window improves the prediction accuracy for both sampling approaches,

where the best result is obtained by using all the available data. Interestingly,

random sampling is more effective consistently across all θ values. This can be at-

tributed to the fact that Fugaku jobs are usually submitted in batches of identical

jobs, and job data very near in time might lead to replicated data during training.

A higher percentage of such replicated training data would result in a less general

model, while sampling the data randomly smoothes this effect. Our hypothesis is

supported by the fact that with smaller values of θ, i.e. from 102 to 104, the F1

difference between the two sampling approaches is significant (up to 0.26), while

the gap reduces drastically (down to 0.02) with θ = 105. In fact, the more jobs

take part in training, the less batches of identical jobs would impact the model, as

the percentage of replicated data would drop.

Discussion of results The best settings of the algorithm, in terms of retraining

data time window α and retraining frequency β, are α = 15, β = 1 days for RF

and α = 30, β = 1 days for KNN, using all the available training data. With these

settings, we obtain accurate predictions (F1=0.90 for RF and F1=0.89 for KNN),

at the expense of 26 seconds for RF and 0.16 for KNN daily average training time,

and average inference time per job of 2.0∗10−3 seconds with RF and 2.3∗10−3 with

KNN. As the average number of submitted jobs per day in the observed period

is 25K, the daily overhead of model inference can be estimated as around 50

seconds for RF and 60 for KNN. The overall daily training and inference overhead

is negligible w.r.t. to job average waiting time for scheduling, which is around 3

mins during our observation.

We conclude that regardless of the model used, the online prediction algorithm

is suitable to be deployed in a production system, as it provides accurate predic-

tions with negligible overhead on the job submission workflow of the system. We

highlight that our approach can have a significant impact on the system power, en-

8The random seeds used for the experiments are 520, 90, 1905, 7, 22

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 117

7.4. EXPERIMENTAL STUDY

102 103 104 105

θ

0.0

0.2

0.4

0.6

0.8
F1

0.48

0.65

0.73

0.86

0.57

0.79

0.87 0.88All data, f1: 0.89
KNN with α=30 and β=1

Data sampling
latest
random

102 103 104 105

θ

0.0

0.2

0.4

0.6

0.8

F1 0.47

0.66

0.77

0.85

0.73

0.84
0.88 0.89All data, f1: 0.90

RF with α=15 and β=1
Data sampling

latest
random

Figure 7.9: F1 of KNN (above), and RF (below) with different θ values.

118 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

7.4. EXPERIMENTAL STUDY

ergy and performance. We estimate the impact based on previous work on job and

frequency mode characterization [72]. The authors showed that using the boost

mode on Fugaku for compute-bound jobs can reduce the job execution duration

by 10% (with respect to normal mode), while using the normal mode for memory-

bound jobs can reduce the job power consumption by 15% (with respect to boost

mode). Our algorithm classifies 90% of the jobs correctly, hence we could perform

semi-automatic frequency selection and obtain the following improvements. There

are 750k memory-bound jobs executed in boost mode, with an average power con-

sumption of 5000 W, and an average duration of 6000 seconds. By executing them

in normal mode, we could have reduced the power consumption by around 680W

per job, saving 450MW of power, and 14 GJoules of energy, at the system level.

Moreover, there are 330k compute-bound jobs executed in normal mode, with an

average duration of 13,500 seconds. By executing them in boost mode, we could

have saved around 20 minutes of computation per job, and more than 1,700 hours

of overall system computation.

We note that these kinds of improvements can be potentially obtained in any

system where the nodes’ frequency can be decided by the user, and thus our results

are not limited to the Fugaku system.

CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE 119

7.4. EXPERIMENTAL STUDY

120 CHAPTER 7. JOB MEMORY/COMPUTE-BOUND NATURE

Chapter 8

End-user Tool

The prediction algorithms presented so far are working at system-level, i.e. they

employ just one model considering the data of all the jobs by all the users. While

these approaches are valid, they present some limitations when employed in pro-

duction environments. Such prediction algorithms rely on models which require

training on voluminous historical execution data of jobs submitted by diverse users,

as otherwise prediction effectiveness can be compromised [73]. In a real system,

however, it is non-trivial to collect large amounts of data from multiple users.

This can be due to privacy concerns [74] or difficulties in the data collection

phase (caused by for instance different privilege levels requirements and moni-

toring software validation procedures) [75]. An observation is that in production

environments, users tend to submit jobs performing similar operations (due to for

instance running similar experiments) and consequently with similar power con-

sumption [11]. Hence, job power consumption prediction using only the historical

data of its own user is likely to improve accuracy, while eliminating the need for

large amounts of data from various users. However, there can be significant vari-

ances in the job power consumption values of even a single user (due to for instance

change of experiments), which renders the prediction task non-trivial, requiring a

prediction model tailored to a user’s behavior and job execution characteristics.

Another limitation of the existing approaches is that they are usually designed

to be employed at the system level, without taking into account the end-users.

From a user perspective, knowing the energy cost of their jobs is useful in systems

CHAPTER 8. END-USER TOOL 121

where power-based pricing strategies are in place [20]. It has been argued that to

encourage the adoption of greener systems, the energy cost of jobs needs to be made

explicit and accounted for in the pricing scheme [19]. Providing such information

allows to raise end-users awareness on the environmental impact of their jobs,

encouraging users to adopt more energy-efficient practices. For instance, if users

are informed on the power consumption of their job, they could decide to submit

it at a different time, or with a different configuration (e.g. amount of requested

resources), to minimize the cost and the energetic impact of their workload.

To address the aforementioned limitations and challenges, we introduce a new

online framework UoPC to predict the power consumption of jobs submitted to

production HPC environments.1 Our contributions can be summarized as follows:

• We design UoPC, which exploits ML-based predictive models. UoPC elim-

inates the need for model training and large amounts of data. It builds a

separate and simpler model for each user by relying solely on the user’s data,

differing from the existing approaches.

• We provide an easy-to-use Python implementation of UoPC, which can be

either used by the end-users as a stand-alone tool or integrated into the

workload management system to enable power/energy-aware job scheduling

strategies.

• We deploy UoPC for the Supercomputer Fugaku, a production HPC system

hosted at the RIKEN Center for Computational Science, in Japan, and eval-

uate it on a very large dataset of job runs on Fugaku, obtaining a prediction

error of only 10%, while incurring a small overhead on the standard workload

submission workflow.

UoPC exploits KNN (Chapter 2.3) prediction algorithm, which is non-parametric

and thus does not require model training. Again, the KNN is augmented with

SBert to encode the textual features present in the job data. The framework

streamlines the standard prediction process for a newly submitted job before its

execution, requiring only the information available at job submission time and the

1https://github.com/francescoantici/UoPC

122 CHAPTER 8. END-USER TOOL

https://github.com/francescoantici/UoPC

8.1. RELATED WORK

data of k (which can be as low as 5) previous job executions by the same user.

This makes our approach more practical for production environments than the ex-

isting solutions. Moreover, the implementation requirements of UoPC transcend

architectural boundaries, offering a solution applicable to different systems and

workloads.

We tested the Fugaku deployment of UoPC on the job execution data of more

than 1.3 million jobs submitted by more than 700 different users between February

and May 2024. Our experimental results show that UoPC outperforms recent ML-

based solution in predicting the average and maximum job power consumption

while significantly reducing the overhead on the system operation and the amount

of historical data needed. Our approach has also proven effective in predicting the

system power consumption, obtaining an error of only 4%.

8.1 Related Work

The work related to job power consumption prediction is discussed in Chapter 6.1.

All the cited works (including our solution in Chapter 6) train the model with a

large amount of data which may not be always available, as discussed previously,

especially per user. If we were to retrain the model, the approach of [11] (the

only one building a model for each user) would be even more impractical in a

real system, which are used by hundreds of users. Hence, training a model per

user with a large amount of data would result in excessive overhead on the system

operations.

In Chapter 6 and [12] there is an evaluation of the performance at the system

level as well. Our approach is more accurate than that of [12], as they obtain an

error around 9% against our 4%. Concerning our previous solution in Chapter 6,

we obtain a similar error on the average system power consumption (around 4%),

but UoPC is better for the maximum one (5% against our 4%).

All the cited approaches are designed to work at the system level, and they

do not provide a tool for end-users. We instead enable end-users to estimate the

power consumption of their jobs, while improving the prediction accuracy at the

same time. Finally, they all build their supervised models by merging the data of

all the users, while our approach keeps separate the data of different users, thus

CHAPTER 8. END-USER TOOL 123

8.2. UOPC FRAMEWORK

preventing possible privacy concerns related to data sharing.

8.2 UoPC Framework

In this section, we describe UoPC’s functioning. We first provide an overview of

the framework, and then detail its components and implementation.

8.2.1 UoPC Overview

The UoPC framework is designed to predict job power consumption in a real

HPC system, where jobs are submitted and executed continuously, and various

information regarding job submission, execution and completion (referred to as

job data) is streaming in time. In this context, the prediction for a job before

its execution can be performed leveraging exclusively features available at job

submission, together with the historical data of the jobs that are completed by

that time.

The only implementation requirement for UoPC is the presence of a data collec-

tion infrastructure gathering the job execution data per user. Such an infrastruc-

ture should update the user dataset with the record of completed jobs, including

all the features regarding job submission (such as requested resources, user infor-

mation, job name), job execution and completion time (such as duration, #nodes

allocated, and power consumption). The user should be able to interact with their

dataset at any time. This is not a strict requirement, since modern systems are

typically endowed with monitoring software that permits the collection of job data

[76, 77, 78], including power consumption [79, 80]. Moreover, systems usually

provide a user-friendly interface to this data [81]. For users who are not system

admins (usually the great majority), such tools allow them to retrieve only their

data, due to privacy and security concerns. The data we require are restricted to

a single user, therefore both privacy concerns and technical difficulties in the data

collection do not represent a problem.

Practically speaking, our framework works as an inference engine without hav-

ing to train large statistical models. UoPC takes as input the data of a new job

submission. The high-level functioning of its prediction algorithm for a new job is

124 CHAPTER 8. END-USER TOOL

8.2. UOPC FRAMEWORK

SB
er
t

en
co
di
ng
s

SB
er

t F
ea

tu
re

 E
nc

od
er

N
ew

 jo
b

fe
at

ur
es

Fe
at

ur
e

1:
 V

al
ue

 1

...

Fe
at

ur
e

m
: V

al
ue

 m

"f1
=v
1,
...
,fm

=v
m
" SB

er
t

[0
.1
,..
.,-
0.
4]

C
om

m
a

se
pa

ra
te

d
fe

at
ur

e
st

rin
g

38
4

flo
at

in
g

po
in

ts
ve

ct
or

K
N

N
 P

re
di

ct
iv

e
M

od
el

Pa
st

 jo
bs

'
po

w
er

 c
on

su
m

pt
io

n
va

lu
es

U
se

r d
at

as
et

N
ew

 jo
b

pr
ed

ic
te

d
po

w
er

 c
on

su
m

pt
io

n
va

lu
e

KN
N

(k
,θ
)

Pa
st

 jo
bs

SB
er

t e
nc

od
in

gs

Pa
st

 jo
bs

'
fe

at
ur

e
va

lu
es

N
ew

 jo
b

SB
er

t e
nc

od
in

g

F
ig
u
re

8.
1:

H
ig
h
-l
ev
el

fu
n
ct
io
n
in
g
an

d
co
m
p
on

en
ts

of
U
oP

C
.

CHAPTER 8. END-USER TOOL 125

8.2. UOPC FRAMEWORK

presented in Figure 8.1. The main components of UoPC are:

• The SBert Feature Encoder, which takes as input a series of job feature values

and returns the encoded data to be fed into the KNN Prediction Model.

• The KNN Prediction Model, which predicts the power consumption of a new

job based on the encoded job data and the data of the past job executions

of the same user.

UoPC is designed to work for any system where resources are allocated to job

executions. We provide an easy-to-use Python implementation for UoPC, which

can be used as a stand-alone tool by the end-user, or deployed in a workload

management system. The components are software components implemented as

Python classes, with a method for each functionality they provide.

8.2.2 SBert Feature Encoder

As job feature values are in a textual format, this component converts the job

information into a standard numeric format suitable to be fed into the KNN Pre-

diction Model. The conversion is performed by the encode method of the class,

which takes as input a list of feature values describing the job at submission time

(e.g. “user 1”,”job 1”,”48”,”1”,”env 1,2000”). Internally, the feature values are

concatenated into a comma-separated string (e.g. “user 1,job 1,48,1,env 1,2000”)

and encoded with an instance of a pre-trained SBert model.The final output of

the encode method is a 384-dimensional floating-point vector (e.g. [-1.2,...,0.3]).

As shown in the previous chapters (Chapter 5, 6 and 7), an NLP encoding

allows extracting more meaningful information from the job data, in the scope

of predicting HPC job characteristics. We here identify additional advantages in

terms of generality and data protection. Jobs submitted to different systems, or to

the same system at different times, are likely to be described by different feature

sets. SBert does not require a fixed feature set contrarily to typical ML models

, thus can be used in a variety of settings. Additionally, we note that users tend

to consider their job data sensitive and avoid its easy access and storage. Ideally,

they prefer their data to be obfuscated and not available in a non-encoded format.

SBert addresses this concern as it projects the information on a latent space.

126 CHAPTER 8. END-USER TOOL

8.2. UOPC FRAMEWORK

Moreover, this step complicates the association between the original user-sensitive

information and the encoded data used for training [44].

8.2.3 Predictive Algorithm

The prediction algorithm is based on the KNN model, and a specific model instance

is built for each user. Predicting a job power consumption based on its user allows

to maximize the accuracy of the KNN algorithm, while minimizing the amount of

data needed, as explained before. Moreover, it also makes the framework suitable

for systems where multiple user data may not be available (e.g. cloud or edge).

At initialization, the class requires the user dataset2. Then, it implements a

predict method, which takes as input the SBert-encoded job submission data and

generates a power consumption prediction for the job execution as follows:

1. The user dataset is queried to look for past job execution data.

(a) If the dataset has at least k data points, the algorithm moves on to the

next step. Otherwise, the prediction cannot be performed, and an error

is returned; this is due to the constraint on the minimum number of

data points required by KNN.

(b) Conversely, if the dataset contains more than θ data points, we set a

cap to the number of points that will be passed to the KNN module, to

keep the inference time low (as applying KNN to a smaller set of points

is computationally faster). To do that, we sort the data points by their

completion time (w.r.t. the job arrival time) and keep the first θ points

from the sorted list.

2. A KNN instance is built on the resulting past data, and it is used to generate

power consumption prediction for the job execution.

The parameters k and θ are set by the UoPC user.

We focus on the job power consumption per node. Nevertheless, the compo-

nent can easily be configured to predict power consumption at the CPU, GPU or

2We consider the user dataset to be accessible in a tabular data frame format, e.g. CSV,
TSV, Parquet, JSON, etc.

CHAPTER 8. END-USER TOOL 127

8.3. UOPC DEPLOYMENT FOR FUGAKU

memory level. Moreover, the energy consumption of a job can be computed as its

average power consumption multiplied by its duration. Therefore, UoPC can also

be used to estimate the job energy consumption per node as the predicted average

power consumption multiplied by the duration predicted by the user.

UoPC can also be used to estimate the power consumption of the whole system

at a given time t. The total power consumption of a job can be computed as the

predicted job power consumption multiplied by the number of nodes allocated. By

summing the total power consumption of all the jobs running concurrently at a

given t, we obtain an estimate for the system. We note however that this estimation

concerns only the job executions, as the total system power consumption depends

also on other factors, such as cooling system or idle nodes power consumption.

8.2.4 UoPC Implementation

We provide an install script to install all the required dependencies at the time of

the first deployment. Then, a predict script can be used to analyze job submission

data and perform the prediction; the script takes as input either a series of comma-

divided named parameters or a file from which to read the feature values. The

frequency of the prediction depends on the use case. It can be called periodically

(e.g. after a certain number of jobs are submitted) or when needed without any

periodicity.

We provide a Docker [67] configuration, to distribute the framework as a con-

tainer and make it scalable through container orchestration techniques, such as

Kubernetes [68].

8.3 UoPC Deployment for Fugaku

In this section, we present the deployment of UoPC for the Supercomputer Fugaku

to experimentally evaluate the prediction algorithm.

128 CHAPTER 8. END-USER TOOL

8.3. UOPC DEPLOYMENT FOR FUGAKU

Figure 8.2: Distribution of jobs submitted to Fugaku between Dec.’23 and May’24.

8.3.1 Fugaku Dataset

To evaluate our prediction algorithm on real HPC jobs, we extract the data of

almost 3 million jobs executed on Fugaku between December 2023 and May 2024,

from F-DATA.

Figure 8.2 shows the distribution of the job submission in time. We notice

that the number of submitted jobs is steadily higher than 10k per day, with a

mean value of 20k jobs submitted per day. The only exceptions are in the first

days of February and April, where scheduled system maintenance caused a system

shutdown. In Figure 8.3, we show the distributions of the number of users, divided

by their number of job data in the dataset. Out of more than 700 users, the great

majority has less than 500 job traces. This justifies and favors our approach, since

it can work well with a small amount of historical data.

As in Chapter 6, we consider the job power consumption recorded at the node

level. We remind that Fugaku’s job manager prevents node sharing among jobs,

hence the power consumption value recorded on a node depends only on a single

CHAPTER 8. END-USER TOOL 129

8.3. UOPC DEPLOYMENT FOR FUGAKU

[5,50) [50,500) [500,5K) [5K,50K) [50K,500K)
of jobs

0

50

100

150

200

250

300

of
 u

se
rs

Figure 8.3: Distribution of users, divided by the number of jobs in the dataset.

job execution and there is no interference caused by other job executions (besides

the typically shared resources like storage and network). The final value of the

job power consumption is computed as the sum of the power consumption values

recorded on all the nodes allocated to the job during its execution.

8.3.2 Data Preparation for Prediction

For our prediction task, we need to associate each job with a set of features rep-

resentative of its characteristics. In general, the job power consumption depends

on the computational operations performed and the amount of hardware used.

Consequently, jobs performing similar operations and having a similar type and

amount of hardware allocated, are likely to have similar power consumption. As

argued in [82] and Chapter 6, features like the job name and requested resources,

are key in identifying similar jobs, and consequently performing accurate job power

consumption prediction. Since we work with the data of a single user, we exclude

the username feature which is common to all the job data. The feature set we

130 CHAPTER 8. END-USER TOOL

8.3. UOPC DEPLOYMENT FOR FUGAKU

Figure 8.4: Distribution of average and maximum power consumption per node of
jobs.

use to represent the job data is composed of job name, # cores requested, # nodes

requested, requested node frequency, and environment. We chose this set based on

our previous work on the task (Chapter 6), and upon empirical evaluation of which

feature set yields the best prediction.

As for the prediction target, we focus on the average and maximum job power

consumption, as in Chapter 6. Such values are normalized on the number of nodes,

obtaining avgpcon and maxpcon. This allows us to predict the power consumption

of each job as if it were running on a single node and makes the prediction task less

error-prone. This strategy was adopted in past work [12, 15] and proven useful,

especially in the context of workload scheduling [38, 83].

In Figure 8.4, we show the distribution of the avgpcon and maxpcon per job.

We notice that the majority of the values lies in the range of 40W-110W, with a

maximum value located around 40W. For values greater than 140W, the avgpcon

is shifted to the left of maxpcon. This is explainable by the fact that for a single

CHAPTER 8. END-USER TOOL 131

8.3. UOPC DEPLOYMENT FOR FUGAKU

Users0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
im

ila
r j

ob
s (

in
 %

)

Figure 8.5: Percentage of similar jobs for the top 45 users.

job, the maxpcon is always greater or equal to the avgpcon. Thus, jobs may reach

a high peak of power consumption (maximum), while maintaining a lower average

power consumption throughout their execution.

Earlier in this chapter we argued that while users tend to submit similar jobs

with similar power consumption values, a significant variance may appear across

these values. Figures 8.5 and 8.6 reveal that this is the case for the Fugaku users

and their jobs. In both figures, we show only the top 45 users (out of more than

700), i.e. the users with the largest amount of job data in the dataset. This is

done to ease the readability of the plot, and also because such users submitted ∼
85% of all the jobs executed on the system in the studied period, meaning that

they are a relevant sample for analysis. Figure 8.5 shows the percentage of similar

jobs per user. We say that two jobs of a user are similar if they have the same job

name, # cores requested, # nodes requested, requested node frequency, environment

(following the features decided earlier to represent similarity), and a difference of

less than 5 Watts in the avgpcon and maxpcon values. We observe that the

132 CHAPTER 8. END-USER TOOL

8.3. UOPC DEPLOYMENT FOR FUGAKU

Users0

10

20

30

40

50

60

70

80
No

rm
al

ize
d

St
an

da
rd

 D
ev

ia
tio

n
(in

 %
)

avgpcon
maxpcon

Figure 8.6: Normalized tandard deviation (on the average value per user) of the
power consumption values for the top 45 users. The two bars of a user are placed
one in front of the other.

majority of the users submits more than 80% of similar jobs, which supports the

idea of user-based prediction.

Figure 8.6 instead shows the normalized (on the average value per user) stan-

dard deviation of the avgpcon and maxpcon values per user. We notice that for

some of the users with many similar jobs, the job power consumption values vary

a lot (up to more than 70% of the normalized standard deviation). Conversely,

some users with few similar jobs have indeed low values of normalized standard

deviation. We note that exogenous factors (e.g. room temperature) do not sig-

nificantly affect power consumption of Fugaku jobs [84]. Hence, the normalized

standard deviation shown in Figure 8.6 depends solely on endogenous factors, such

as the resources allocated to the job or the operations it performs.

These observations confirm that the prediction task is indeed non-trivial and

that a proper prediction model tailored to a specific user’s behavior and job exe-

cution characteristics is necessary.

CHAPTER 8. END-USER TOOL 133

8.4. EXPERIMENTAL STUDY

8.3.3 Online Prediction Algorithm Implementation

We rely on the scikit-learn3 Python library for the ML models and use their de-

fault implementation. The SBert model is provided by the sentence transformers

library,4 while the weights are pulled from Huggingface.5 We use the pre-trained

model all-MiniLM-L6-v2 6 since it provides the best trade-off between prediction

quality and speed [28].

To decide the k and θ parameters of the prediction algorithm, we experimented

with different values of θ (50, 100, 200, 500, 1000, 2000, and 5000) and k (5, 10, 20,

and 50). We observed that, for any value of θ, k = 5 always yields the best

prediction performance. Conversely, the prediction accuracy stops increasing for

θ > 500, while the inference time grows up to several seconds. Hence, we set k

= 5 and θ = 500. UoPC is implemented and executed with Python 3.12, and the

experiments are run on a machine equipped with two AMD EPYC 7302 CPUs

with 64 cores and 512 GB of RAM.

8.4 Experimental Study

In this section, we experimentally evaluate the UoPC online prediction algorithm

and discuss the results.

8.4.1 Online Prediction Algorithm Evaluation

Metrics To evaluate the prediction quality, we compute the Mean Absolute

Percentage Error (MAPE), and the R2 score, between the actual value (prediction

target) and the predicted job power consumption value. The MAPE is the mean

of all absolute percentage errors between the predicted and the actual values.

Conversely, the R2 score represents how much of the variation in the target values

is predictable from the model. R2 is not suitable to evaluate the numerical error,

but it is meaningful to evaluate the adaptability and quality of the prediction

3https://scikit-learn.org/stable/
4https://www.sbert.net
5https://huggingface.co
6https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

134 CHAPTER 8. END-USER TOOL

https://scikit-learn.org/stable/
https://www.sbert.net
https://huggingface.co
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

8.4. EXPERIMENTAL STUDY

model. Generally speaking, an accurate regression model for a job should obtain

a MAPE lower than 20% [85, 86], and an R2 of at least 0.50 [11].

We also evaluate the prediction overhead to see how the algorithm impacts the

system workload submission workflow. We define overhead as the computational

time incurred by the prediction algorithm. The overhead of any ML-based predic-

tion algorithm is composed of training and inference time. We define training time

as the average time needed to train the model on the past data, and inference time

as the time required to perform a prediction for a single job. When training is

repeated periodically, it contributes to the overhead. A practical algorithm should

incur a small overhead on the system operations, to be seamlessly integrated in the

default workload submission workflow. A proxy to measure the overhead of our

algorithm is to compare its time requirement to the average job waiting time (the

time spent between the submission and the insertion in the job execution queue).

Baselines From the related work discussed in Chapter 6.1, we can conclude that

RF is the the most used and effective model to predict job execution characteristics.

The best results for power consumption prediction have been obtained with the

online algorithm presented in Chapter 6. The algorithm involves a daily rebuilding

of the model, on the data of the jobs executed in the last 60 days, from all the

users. We employ both RF and KNN (the predictive model of our algorithm) in

this algorithmic setting and refer to these baselines as A-RF and A-KNN, with

“A-” meaning all users’ data. To support that our approach would incur significant

runtime overhead if the user-based models needed training, we also employ RF as

predictive model in our algorithm, which we refer to as U-RF, with “U” meaning

user-based. The algorithm of UoPC thus corresponds to U-KNN. Finally, we

consider a simple baseline which predicts a job’s power consumption by fitting a

Linear Regression (LR) model (see Chapter 2.3) on the power consumption of the

last k (i.e. 5) jobs executed by the same user.

Testing on historical data To test on historical data, we use the time informa-

tion provided by the submit time, start time and end time features to simulate the

actual timeline of job submission and execution on a machine. We use this tem-

poral information also to guarantee that the data used for model building always

CHAPTER 8. END-USER TOOL 135

8.4. EXPERIMENTAL STUDY

comes before in chronological order the data of the test set. For a fair comparison,

we evaluate both approaches on the same test set. Since the baseline requires 60

days of historical data also during the first training, the test set starts with the

jobs submitted as of February 1st.

For the UoPC algorithm, we iterate over all the job data and for every job j we

perform prediction. To this end, we create the user-specific dataset by selecting

the jobs belonging to the same user that were completed before the submission of

j. This guarantees a realistic set-up where the prediction for a given job cannot

be made with the data of future jobs.

Since both approaches require the SBert data encoding, we create them initially

for all the jobs executed before February 1st. Then, when we test a job j, we save

its encoding to be retrieved for future training and prediction. This is done not to

increase the overhead, as the encoding time for a single job is negligible (2 ∗ 10−3

seconds), while it can be significant for a set of training data. A similar time-saving

mechanism can be enacted when UoPC is deployed in a real system.

We employ both approaches to predict avgpcon and maxpcon for every job,

keeping them as two distinct learning tasks. Finally, we compute the evaluation

metrics on all the predictions performed on the test set data.

System power consumption We evaluate the prediction quality also at the

system level, as done in Chapter 6, to understand how accurately the prediction

algorithm can reconstruct the system power consumption, and thus, whether it can

be an effective tool to predict the whole system power consumption by analyzing

only the submitted jobs. As discussed in Chapter 6, the prediction error at a single

job level can be either an overestimation or an underestimation of the actual power

consumption. Hence, such errors might cancel out each other at the system level,

given the large number of jobs running concurrently.

We consider all the jobs for which we computed the predictions, and we group

them based on the hour of the day when they were running. For all the hours

of all the days d ∈ D, we compute the system power consumption as the sum

of the actual power consumption of all the running jobs. Then, we compute the

daily system power consumption psysd, as the average of all the hourly ones.

By replacing the actual job power consumption with the generated prediction,

136 CHAPTER 8. END-USER TOOL

8.4. EXPERIMENTAL STUDY

multiplied by the number of nodes allocated to the jobs, we can also compute the

predicted system power consumption psysd.

Differently from Chapter 6, we evaluate the numerical error of the predictions

by computing themean error score in Equation 8.1, as defined in [12]. In addition,

we also calculate the R2 score.

mean error =
1

|D|
∑
d∈D

|psysd − psysd|
psysd

∗ 100 (8.1)

8.4.2 Experimental Results

Job power consumption prediction In Table 8.1, we show the prediction

performance of UoPC (U-KNN) and the baselines defined in Section 8.4.1. We

exclude LR from the table as it obtains a very high MAPE (> 100%). As expected,

U-RF turned out to be computationally expensive and did not terminate within

a week. We conclude that the method is not suited to a production environment.

As A-RF outperforms A-KNN both in prediction performance and overhead, from

now on we consider A-RF as the only baseline. While both UoPC and A-RF

lead to accurate power consumption prediction, our algorithm outperforms the

baseline for both the avgpcon and maxpcon prediction tasks. In the avgpcon

task, our algorithm improves the MAPE score of the A-RF by 40%, going from

14% to 10%. It also improves the R2, from 0.76 to 0.80. For the maxpcon, the

MAPE of our approach is stable at 10%, while it slightly increases to 15% for the

A-RF baseline. The R2 of our approach is 0.01 lower in the avgpcon, however,

it is steadily higher than the baseline value of 0.76. These results show that our

approach not only obtains a very low prediction error in general terms but is also

more accurate than A-RF.

In Figures 8.9-8.8, we compare UoPC against A-RF across single users. Figure

8.7 shows the distribution of the MAPE values of the approaches on all the users.

We observe that the majority of the MAPE values obtained by UoPC is less than

10%, while A-RF obtains generally higher MAPE values. This means that overall,

A-RF obtains a higher error w.r.t. UoPC. This is highlighted also in Figure 8.8,

where we show the MAPE obtained by the two approaches on the top 45 users (as

in Figure 8.6). Here we notice that except for a couple of users (where the A-RF

CHAPTER 8. END-USER TOOL 137

8.4. EXPERIMENTAL STUDY

a
v
g
pcon

m
a
x
pcon

A
p
p
roach

M
A
P
E
(%

)
R

2
A
v
g
T
rain

T
im

e
(s)

A
v
g
In
f
T
im

e
(s)

M
A
P
E
(%

)
R

2
A
v
g
T
rain

T
im

e
(s)

A
v
g
In
f
T
im

e
(s)

U
ser

based
(U

-)
U
oP

C
(U

-K
N
N
)

1
0

0
.8
0

0
0
.0
8

1
0

0
.7
9

0
0
.0
8

U
-R

F
-

-
-

-
-

-
-

-
A
ll
data

(A
-)

A
-K

N
N

16
0.60

0
9

17
0.58

0
9

A
-R

F
14

0.76
2080

0.13
15

0.76
2080

0.13

T
ab

le
8.1:

R
esu

lts
for

th
e
a
v
g
pcon

an
d
m
a
x
pcon

p
red

iction
task

s.
F
or

M
A
P
E

low
er

valu
es

in
d
icate

b
etter

resu
lts,

w
h
ile

for
R

2
h
igh

er
valu

es
are

p
referred

.
F
or

train
in
g
an

d
in
feren

ce
tim

e,
th
e
low

er
th
e
b
etter.

A
“-”

m
ean

s
th
at

n
o

resu
lt
w
as

ob
tain

ed
in

a
w
eek

of
com

p
u
tation

.
T
h
e
b
est

resu
lts

are
h
igh

ligh
ted

in
b
old

.

138 CHAPTER 8. END-USER TOOL

8.4. EXPERIMENTAL STUDY

error is anyway similar), UoPC obtains a significantly lower error on the single

users.

The high R2 score obtained by our approach outlines its capability to accurately

predict the variability in the power values. To observe this, we split the jobs based

on their actual power consumption into power ranges of 20W. We then plot in

Figure 8.9 the distribution of the ground truth and the predicted values in each

range using both approaches. We observe that the UoPC distributions are more

aligned with the ground truth w.r.t. to the A-RF ones. This is particularly

noticeable in the ranges [100, 140) and [20, 40), which is also the most populated

range, as shown in Figure 8.4. Both A-RF and UoPC struggle in the ranges [160,

180) for the avgpcon task, and [140,160) for the maxpcon prediction tasks. This

can be explained by the low density of data in such areas, as shown in Figure 8.4.

Nevertheless, UoPC still approximates the distribution better than A-RF.

Amount of data required In Figure 8.10, we show the average amount of job

execution data per month used by the prediction algorithms. The amount used

by the UoPC algorithm is computed by summing the dimensions of all the user

datasets used during prediction. We observe that the amount needed by the A-RF

is always over 1.1 million job traces, while UoPC requires around 800k data points.

Even with fewer data, UoPC outperforms A-RF.

Overhead In Table 8.1, we also compare the overhead of the two approaches.

Since the A-RF baseline requires daily retraining, we report the average daily

training time. Our approach does not require a training phase, and the only

overhead is the inference time. We observe that the training overhead of the A-RF

is non-negligible, as it is more than half an hour per day. Thus, our approach saves

time and resources, while resulting in a more accurate prediction.

The inference time of the two approaches is comparable and negligible com-

pared to the average job waiting time in the system (up to 3 minutes). However,

our algorithm still manages to predict in almost half of the A-RF time, 0.08 sec-

onds against 0.13. Considering an average of 20k job submissions per day, if both

approaches were to be deployed in a real system to analyze all the jobs systemat-

ically, the average daily inference time would be around 45 minutes for the A-RF

CHAPTER 8. END-USER TOOL 139

8.4. EXPERIMENTAL STUDY

and around 25 for UoPC. We note that these numbers reflect the worst-case sce-

nario where 20k jobs arrive in the system simultaneously and need to be processed

right away.

System power consumption prediction Figure 8.11 compares the estimated

system power consumption values with UoPC and A-RF to the actual values for

both the avgpcon and maxpcon tasks. The drops in values are due to the system

shutdown, as can be seen also in Figure 8.2. We observe that UoPC outperforms

A-RF both in terms of mean error and R2 in both tasks. It obtains an R2 greater

than 0.97 and an error smaller than 5% for both tasks, meaning that our approach

is accurate enough to be used to predict the system-level power consumption.

We note that UoPC’s purpose is not to predict system-level power consumption;

however, given its accuracy, such a prediction can be instrumental in guiding

power-aware scheduling strategies in power-constrained systems.

8.4.3 Discussions

Our experimental results show that, with respect to the state-of-the-art ML meth-

ods using all users’ data, UoPC obtains better predictions (lower MAPE), while

incurring a smaller overhead and requiring less amount of data. An important

consideration is that even if the improvement in the MAPE value is low, it can

have a big impact when the prediction is used, for instance, to estimate the energy

consumption of a job. In the Fugaku data, the average job duration is 10k seconds,

while the average job power consumption is 5576W. If we consider job energy con-

sumption as job power consumption multiplied by its duration, a prediction more

accurate by just 1% would lead to a more precise job energy consumption esti-

mation of around 156Wh. Considering this at the system scale, where on average

20k jobs are submitted per day, the improvement reaches around 3,000kWh. To

put this number in perspective, the average US household energy consumption

is 30kWh per day [87]. Hence, an improvement of 4% and 5%, respectively, in

job power consumption prediction tasks, can be a highly significant achievement.

For instance, when using a more accurate model in a scheduling algorithm, the

scheduling decisions would allow for more energy savings and better performance

140 CHAPTER 8. END-USER TOOL

8.4. EXPERIMENTAL STUDY

avgpcon maxpcon
Approach MAPE (%) R2 Avg Train Time (s) Avg Inf Time (s) MAPE (%) R2 Avg Train Time (s) Avg Inf Time (s)
User based (U-)
UoPC (U-KNN) 18 0.11 0 0.07 22 0.13 0 0.07
U-RF - - - - - - - -
All data (A-)
A-KNN 22 -0.1 0 0.18 27 -0-03 0 0.18
A-RF 20 0.07 400 0.12 24 0.13 400 0.12

Table 8.2: Results for the avgpcon and maxpcon prediction tasks on PM100 data.
For MAPE lower values indicate better results, while for R2 higher values are
preferred. For training and inference time, the lower the better. A “-” means that
no result was obtained in a week of computation. The best results are highlighted
in bold.

for each job execution.

We validated our approach also on PM100, presented in Chapter 3. In such

data, the job power consumption data includes the GPU power contribution, and

we tested UoPC on predicting the total power consumption, not just the CPU’s

power usage. Such values span from a few watts to more than 1kW, making

the prediction task significantly more challenging. A summary of the obtained

results is shown in Table 8.2, similarly to those presented in Table 8.1. Again, our

algorithm improves A-RF (which is again better than A-KNN). In the avgpcon

task, UoPC obtains a MAPE of 18% against a MAPE of 20% in A-RF, while

not requiring model training and just using a fraction of the data. UoPC also

obtains a better R2 score (0.11 against 0.07 of A-RF). For the maxpcon, while

the MAPE of our approach increases to 22%, it is still lower than 24% of A-RF,

with the R2 value being 0.13 in both cases. These results confirm that UoPC is

a valid approach for other systems as well, including those with GPUs. UoPC

does not require any structural changes to be adapted to other systems; only a

preprocessing step is needed to account for potential differences in the job feature

sets.

One limitation of our approach is that a prediction cannot be performed until

the kth job execution of a user. However, k can be set to lower values to mini-

mize this inconvenience. Alternatively, UoPC can be coupled with a simple linear

CHAPTER 8. END-USER TOOL 141

8.4. EXPERIMENTAL STUDY

regression model or with A-RF (when it is possible to obtain all the user’s data),

until the user executes the kth job. Another limitation could be that our ap-

proach has been tested on jobs executed in exclusive mode. However, as described

in Chapter 3, no current method can accurately determine jobs’ node power con-

sumption when jobs run concurrently, hence no public dataset offers such data.

If future monitoring of resources enables precise job attribution, UoPC could be

easily modified for this goal.

Finally, we note that UoPC can be seamlessly modified to predict other job

features, such as job failure, duration, and performance metrics. These predictions

can be used in conjunction with power consumption prediction to make informed

decisions on job scheduling.

142 CHAPTER 8. END-USER TOOL

8.4. EXPERIMENTAL STUDY

0 20 40 60 80 100 120 140 160
MAPE (%)

0

10

20

30

40

50
Co

un
t

Approach
A-RF
UoPC

0 20 40 60 80 100 120 140 160 180
MAPE (%)

0

10

20

30

40

50

Co
un

t

Approach
A-RF
UoPC

Figure 8.7: Distribution of the MAPE values per user for the avgpcon (above) and
maxpcon (below) prediction.

CHAPTER 8. END-USER TOOL 143

8.4. EXPERIMENTAL STUDY

Users
0%

10%

20%

30%

40%

50%

60%

70%

80%

M
AP

E
(%

)
Approach

A-RF
UoPC

Users
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

M
AP

E
(%

)

Approach
A-RF
UoPC

Figure 8.8: MAPE per user of the avgpcon (above) andmaxpcon (below) prediction
for the top 45 users. The bars are placed one in front of the other.

144 CHAPTER 8. END-USER TOOL

8.4. EXPERIMENTAL STUDY

[0,
20

)

[20
,40

)

[40
,60

)

[60
,80

)

[80
,10

0)

[10
0,1

20
)

[12
0,1

40
)

[14
0,1

60
)

[16
0,1

80
)

Range of job power consumption (W)

20

40

60

80

100

120

140

160

Po
we

r c
on

su
m

pt
io

n
(W

)

value
Ground Truth
A-RF
UoPC

[0,
20

)

[20
,40

)

[40
,60

)

[60
,80

)

[80
,10

0)

[10
0,1

20
)

[12
0,1

40
)

[14
0,1

60
)

[16
0,1

80
)

Range of job power consumption (W)

20

40

60

80

100

120

140

160

180

Po
we

r c
on

su
m

pt
io

n
(W

)

value
Ground Truth
A-RF
UoPC

Figure 8.9: Distribution of actual and predicted avgpcon (above) and maxpcon
(below) in ranges of 20W.

CHAPTER 8. END-USER TOOL 145

8.4. EXPERIMENTAL STUDY

2024-02 2024-03 2024-04
Month

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

of

 jo
b

ex
ec

ut
io

n
da

ta

1e6
Prediction algorithm

A-RF
UoPC

Figure 8.10: Distribution of the average amount of data per month used by the
prediction models.

146 CHAPTER 8. END-USER TOOL

8.4. EXPERIMENTAL STUDY

02
-01

02
-14

02
-24

03
-05

03
-15

03
-25

04
-07

04
-17

Day

0

5

10

15

20

25
Av

g
sy

st
em

 p
ow

er
 (M

W
)

UoPC: R2 = 0.97 mean error = 4.52%, A-RF: R2 = 0.94 mean error = 6.11%

Ground Truth
A-RF
UoPC

02
-01

02
-14

02
-24

03
-05

03
-15

03
-25

04
-07

04
-17

Day

0

5

10

15

20

25

30

M
ax

 sy
st

em
 p

ow
er

 (M
W

)

UoPC: R2 = 0.98 mean error = 4.14%, A-RF: R2 = 0.95 mean error = 5.65%

Ground Truth
A-RF
UoPC

Figure 8.11: System power consumption prediction for the avgpcon (above) and
maxpcon (below) tasks.

CHAPTER 8. END-USER TOOL 147

8.4. EXPERIMENTAL STUDY

148 CHAPTER 8. END-USER TOOL

Chapter 9

Conclusion

In this work, we explored the development of job level predictive models, to en-

hance the effectiveness and sustainability of HPC systems. By addressing critical

challenges in the state-of-the-art, this research has contributed with novel method-

ologies and tools to improve the environmental and operational efficiency of HPC

environments. This chapter summarizes the primary contributions, highlights their

significance, and outlines directions for future work.

9.1 Summary of Contributions

This research contributed in 5 main areas, which are in line with the limitations of

the state-of-the-art in job-level predictive modelling, presented in Chapter 1.3.3.

Such areas are the following.

Novel Comprehensive Job-Level Datasets During our research, we created

and publicly released two extensive datasets from production systems, namely

PM100 and F-DATA. Such datasets were created to address the lack of publicly

available, large and fine-grained job-level data. They contain comprehensive in-

formation on job execution characteristics, including per job power consumption

and performance metrics. F-DATA is the current largest job-level dataset, and the

only one containing performance metrics. Moreover, is the first dataset containing

the execution data of a former 1st most powerful supercomputer in the world, for

CHAPTER 9. CONCLUSION 149

9.1. SUMMARY OF CONTRIBUTIONS

all its operational period. PM100, on the other hand, is the first dataset contain-

ing the actual job power consumption values (on different resources such as node,

memory and CPU), sampled every 20 second during job execution. Their release

has empowered the scientific community by fostering further research in job level

predictive modeling for HPC systems.

Submission-time Models All the predictive models we developed rely only on

submission-time information to perform a prediction on a job. This allows to make

the models suitable to scenarios where the prediction can be leveraged to make

informed decision on job scheduling or resource allocation.

Online Models Our algorithms are designed to work in an online context, where

job data are live and streaming in time. This is fundamental to ensure that when

the models are tested, this is done in a reliable way, and the results are actually

meaningful for a real production environment. Moreover, we update our models

over time to adapt to the change of workload in the system. This allows to obtain

better prediction performance with respect to an offline scenario, as shown in

Chapter 5 and 6, which was the standard in job level predictive modelling.

Furthermore, we developed operational framework, such as MCBound (Chapter

7.2) and UoPC (Chapter 8). Such frameworks can be easily configurable for each

system’s specifics, and rely on a software architecture which can be seamlessly

deployed in a real production systems, as we showed for the case of Supercomputer

Fugaku.

Predictive Models for Job Performance Characteristics This work is the

first to address the prediction of job performance characteristics. In Chapter 7, we

present a systematic methodology to characterize and predict the memory/compute-

bound nature of HPC jobs. This kind of prediction is fundamental to enable de-

cisions on the job execution based on the job performance, while allow to improve

the system throughput while minimizing the energy consumption [6, 8].

End-User Tools Finally, in Chapter 8, we also present a user-level prediction

framework. This framework is the first which targets also the use from the end-

150 CHAPTER 9. CONCLUSION

9.2. RESEARCH SIGNIFICANCE AND CONSIDERATIONS

users, thus becoming the first end-user tool. Such tools are crucial to i) improve

end-user awareness in favor of a more environmentally sustainable usage of the

HPC resources, and ii) encourage the adoption of energy-based pricing schemes

[19].

9.2 Research Significance and Considerations

The findings of this dissertation underline the importance of job level predictive

modelling in overcoming HPC sustainability challenges. By leveraging recent ML

techniques and introducing novel datasets, this work bridges the gaps in existing

methodologies and demonstrates how predictive insights can lead to substantial

improvements in energy efficiency, system throughput, and user satisfaction.

Furthermore, this research emphasizes the need for user-awareness tools in

HPC environments. By enabling end-users to make informed decisions regarding

job configurations, the developed frameworks contribute to a collaborative effort

between system designers and users toward achieving sustainable HPC practices.

Explainability The predictive models we developed are based on ML techniques

(i.e., RF and KNN), which allow for several degrees of prediction interpretability.

The RF can be used to identify the most important features for the prediction (in

the case of RF), while the KNN reveals what data leads to perform a certain pre-

diction (KNN). Such analysis are fundamental to validate how the models work in

production environments, for accountability and trustworthyness purposes. More-

over, this provides insights on the job execution characteristics, and allows to study

how the importance of the different features changes over time and across different

systems. For instance, it could be observed how on different systems the power

and energy are dependent on different causes and characteristics. This could be

expanded by using adding the binaries, job scripts inspection with LLMs, or other

configuration files to the input of the models, so as to have more fine-grained in-

formation on which specific components or workload characteristcs influence the

prediction outcome.

CHAPTER 9. CONCLUSION 151

9.3. FUTURE DIRECTIONS

Technical Integration with Job Schedulers Our predictive models are all

suited for integration with job schedulers of production systems. In the previous

chapters, we showed how are approaches always incur a negligible overhead on the

system operations. This is fundamental to ensure that the scheduling strategies can

be deployed in production systems, without incurring in performance penalties or

alterations to the normal workload submission pipeline of the system. In pratical

terms, the integration can be achieved through the development of a software

pluging for the job scheduler, which interacts with the APIs of our frameworks to

obtain the predictions. Such plugins can be developed in different programming

languages, depending on the job scheduler used. Popular scheduling softwares,

e.g. SLURM [88], FLUX [4] and PBS [21], support the integration of external

plugins written in C/C++ and Python. Such plugins are usually event-based,

meaning that they are triggered by specific events in the job scheduling process

(e.g. job submission, job start, job end, etc). For our purposes, a plugin can be

triggered when a job is submitted to the scheduler, and it can then interact with our

prediction framework to feed the job data and obtain the predictions for that job.

Finally, the predictions can be leveraged to make an informed scheduling decision

on the job execution. For instance, the predicted power consumption can be used

to allocate resources in a way that minimizes the overall power consumption of the

system, or the predicted memory/compute-bound nature of the job can be used to

allocate resources in a way that maximizes the performance of the job. We foresee

the development of such a software, so as to integrate our predictive models with

the job scheduling pipeline of production systems.

9.3 Future Directions

Provided the results of our research, we foresee several possible future directions.

First, we would like to find other production system datasets, aiming to test our

predictive models on other data and validate the results obtained so far. In this

endeavor, we would like to obtain data extracted from computing environment

(e.g. cloud, edge, fog), so as to expand our approaches beyond HPC systems only.

Second, we would like to expand our predictive models to other job characteristics,

such as duration or energy. In the context of the study presented in Chapter

152 CHAPTER 9. CONCLUSION

9.4. CONCLUDING REMARKS

7, we want to expand our classification to other classes, such as GPU-bound,

I/O-bound or network-bound. This would allow to have even more fine-grained

information for scheduling and resource allocation strategies. Finally, we want to

integrate our predictions into informed job-scheduling strategies. More specifically,

we are interested in carbon-aware scheduling. Our power prediction models can

be adapted to the prediction of per-job carbon emission. Such information can

be used to perform job scheduling targeting the minimization of system’s carbon

footprint.

9.4 Concluding Remarks

Sustainability considerations are fundamental in every aspect of modern society.

When it comes to HPC system, these become not only necessary, but also timely.

In our research, we aimed at improving the state of job level predictive modelling

to make them suitable for production environment. With our contributions, we

hope to have made steps forward towards i) the actual deployment in productions

of such solutions, and ii) the employment of more environmental conscious HPC

practices. We believe that it is paramount to raise awareness on the importance

of this research’s topic, to inspire further advancements in the field and contribute

to the broader mission of sustainable computing.

CHAPTER 9. CONCLUSION 153

9.4. CONCLUDING REMARKS

154 CHAPTER 9. CONCLUSION

CHAPTER 9. CONCLUSION 155

Bibliography

[1] Oreste Villa, Daniel R Johnson, Mike Oconnor, Evgeny Bolotin, David Nel-

lans, Justin Luitjens, Nikolai Sakharnykh, Peng Wang, Paulius Micikevicius,

Anthony Scudiero, et al. Scaling the power wall: a path to exascale. In SC’14:

Proceedings of the International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, pages 830–841. IEEE, 2014.

[2] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and

Luca Benini. Scheduling-based power capping in high performance computing

systems. Sustainable Computing: Informatics and Systems, 19:1–13, 2018.

[3] Dineshkumar Rajagopal, Daniele Tafani, Yiannis Georgiou, David Glesser,

and Michael Ott. A novel approach for job scheduling optimizations under

power cap for arm and intel hpc systems. In 2017 IEEE 24th International

Conference on High Performance Computing (HiPC), pages 142–151. IEEE,

2017.

[4] Tapasya Patki, Dong Ahn, Daniel Milroy, Jae-Seung Yeom, Jim Garlick, Mark

Grondona, Stephen Herbein, and Thomas Scogland. Fluxion: A scalable

graph-based resource model for hpc scheduling challenges. In Proceedings of

the SC’23 Workshops of The International Conference on High Performance

Computing, Network, Storage, and Analysis, pages 2077–2088, 2023.

[5] Felippe Vieira Zacarias, Paul Carpenter, and Vinicius Petrucci. Memory de-

mands in disaggregated hpc: How accurate do we need to be? In 2021

International Workshop on Performance Modeling, Benchmarking and Sim-

ulation of High Performance Computer Systems (PMBS), pages 1–6. IEEE,

2021.

BIBLIOGRAPHY 157

BIBLIOGRAPHY

[6] Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis. Case study on co-

scheduling for hpc applications. In 2015 44th International Conference on

Parallel Processing Workshops, pages 277–285, 2015.

[7] Jason Hall, Arjun Lathi, David K Lowenthal, and Tapasya Patki. Evaluating

the potential of coscheduling on high-performance computing systems. In

Workshop on Job Scheduling Strategies for Parallel Processing, pages 155–

172. Springer, 2023.

[8] Jens Breitbart, Simon Pickartz, Stefan Lankes, Josef Weidendorfer, and An-

tonello Monti. Dynamic co-scheduling driven by main memory bandwidth

utilization. In 2017 IEEE International Conference on Cluster Computing

(CLUSTER), pages 400–409, 2017.

[9] Anupong Banjongkan, Watthana Pongsena, Nittaya Kerdprasop, and Kitti-

sak Kerdprasop. A study of job failure prediction at job submit-state and

job start-state in high-performance computing system: Using decision tree

algorithms. Journal of Advances in Information Technology, 12(2), 2021.

[10] Nasim Ahmed, Andre LC Barczak, Mohammad A Rashid, and Teo Susnjak.

Runtime prediction of big data jobs: performance comparison of machine

learning algorithms and analytical models. Journal of Big Data, 9(1):67,

2022.

[11] Alina Ŝırbu and Ozalp Babaoglu. Power consumption modeling and predic-

tion in a hybrid cpu-gpu-mic supercomputer. In Euro-Par 2016: Parallel

Processing: 22nd International Conference on Parallel and Distributed Com-

puting, Grenoble, France, August 24-26, 2016, Proceedings 22, pages 117–130.

Springer, 2016.

[12] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and

Luca Benini. Predictive modeling for job power consumption in hpc systems.

In High Performance Computing: 31st International Conference, ISC High

Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings, pages

181–199. Springer, 2016.

158 BIBLIOGRAPHY

BIBLIOGRAPHY

[13] Georges Da Costa, Marios D Dikaiakos, and Salvatore Orlando. Nine months

in the life of egee: a look from the south. In 2007 15th International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecommuni-

cation Systems, pages 281–287. IEEE, 2007.

[14] Dmitry Duplyakin and Kevin Menear. Nrel eagle supercomputer jobs. 02

2023.

[15] Tirthak Patel, Adam Wagenhäuser, Christopher Eibel, Timo Hönig, Thomas

Zeiser, and Devesh Tiwari. What does power consumption behavior of hpc

jobs reveal?: Demystifying, quantifying, and predicting power consumption

characteristics. In 2020 IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS), pages 799–809. IEEE, 2020.

[16] Bruce Bugbee, Caleb Phillips, Hilary Egan, Ryan Elmore, Kenny Gruchalla,

and Avi Purkayastha. Prediction and characterization of application power

use in a high-performance computing environment. Statistical Analysis and

Data Mining: The ASA Data Science Journal, 10(3):155–165, 2017.

[17] Keiji Yamamoto, Yuichi Tsujita, and Atsuya Uno. Classifying jobs and pre-

dicting applications in hpc systems. In High Performance Computing: 33rd

International Conference, ISC High Performance 2018, Frankfurt, Germany,

June 24-28, 2018, Proceedings 33, pages 81–99. Springer, 2018.

[18] Jie Li, Rui Wang, Ghazanfar Ali, Tommy Dang, Alan Sill, and Yong Chen.

Workload failure prediction for data centers. arXiv preprint arXiv:2301.05176,

2023.

[19] Andrea Borghesi, Andrea Bartolini, Michela Milano, and Luca Benini. Pricing

schemes for energy-efficient hpc systems: Design and exploration. The Inter-

national Journal of High Performance Computing Applications, 33(4):716–

734, 2019.

[20] Md Sabbir Hasan, Frederico Alvares de Oliveira, Thomas Ledoux, and Jean-

Louis Pazat. Enabling green energy awareness in interactive cloud application.

In 2016 IEEE International Conference on Cloud Computing Technology and

Science (CloudCom), pages 414–422. IEEE, 2016.

BIBLIOGRAPHY 159

BIBLIOGRAPHY

[21] Hanhua Feng, Vishal Misra, and Dan Rubenstein. Pbs: a unified priority-

based scheduler. In Proceedings of the 2007 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems, pages 203–

214, 2007.

[22] Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi

Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Ces-

tari, Francesco Barchi, Luca Benini, et al. M100 exadata: a data collection

campaign on the cineca’s marconi100 tier-0 supercomputer. Scientific Data,

10(1):288, 2023.

[23] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boost-

ing. Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612,

1999.

[24] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pages 785–794, 2016.

[25] Chao-Ying Joanne Peng, Kuk Lida Lee, and Gary M Ingersoll. An introduc-

tion to logistic regression analysis and reporting. The journal of educational

research, 96(1):3–14, 2002.

[26] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[27] Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonpara-

metric discrimination: Consistency properties. International Statistical Re-

view/Revue Internationale de Statistique, 57(3):238–247, 1989.

[28] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and et al. BERT: Pre-training of

deep bidirectional transformers for language understanding. In Proceedings of

the 2019 NAACL: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association

for Computational Linguistics.

160 BIBLIOGRAPHY

BIBLIOGRAPHY

[30] Théo Saillant, Jean-Christophe Weill, and Mathilde Mougeot. Predicting job

power consumption based on rjms submission data in hpc systems. In High

Performance Computing: 35th International Conference, ISC High Perfor-

mance 2020, Frankfurt/Main, Germany, June 22–25, 2020, Proceedings 35,

pages 63–82. Springer, 2020.

[31] Shigeto Suzuki, Michiko Hiraoka, Takashi Shiraishi, Enxhi Kreshpa, Takuji

Yamamoto, Hiroyuki Fukuda, Shuji Matsui, Masahide Fujisaki, and Atsuya

Uno. Power prediction for sustainable hpc. Journal of Information Processing,

29:283–294, 2021.

[32] Sean Wallace, Xu Yang, Venkatram Vishwanath, William E Allcock, Susan

Coghlan, Michael E Papka, and Zhiling Lan. A data driven scheduling ap-

proach for power management on hpc systems. In SC’16: Proceedings of

the International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 656–666. IEEE, 2016.

[33] Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi

Ardebili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Ces-

tari, Francesco Barchi, Luca Benini, Francesco Beneventi, and Andrea Bar-

tolini. M100 dataset, https://zenodo.org/records/7588815, January 2023.

[34] Francesco Antici, Mohsen Seyedkazemi Ardebili, Andrea Bartolini, and

Zeynep Kiziltan. PM100: A Job Power Consumption Dataset of a Large-

Scale HPC System, July 2023.

[35] Cristian Galleguillos, Zeynep Kiziltan, Alina Ŝırbu, and Ozalp Babaoglu. Con-

straint programming-based job dispatching for modern hpc applications. In

Principles and Practice of Constraint Programming: 25th International Con-

ference, CP 2019, Stamford, CT, USA, September 30–October 4, 2019, Pro-

ceedings 25, pages 438–455. Springer, 2019.

[36] Qiqi Wang, Hongjie Zhang, Jing Li, Yu Shen, and Xiaohui Liu. Predicting job

finish time based on parameter features and running logs in supercomputing

system. The Journal of Supercomputing, 78(17):18551–18577, 2022.

BIBLIOGRAPHY 161

BIBLIOGRAPHY

[37] Mohammad S Jassas and Qusay H Mahmoud. Analysis of job failure and

prediction model for cloud computing using machine learning. Sensors,

22(5):2035, 2022.

[38] Basit Qureshi. Profile-based power-aware workflow scheduling framework for

energy-efficient data centers. Future Generation Computer Systems, 94:453–

467, 2019.

[39] Michael Stonebraker and Lawrence A Rowe. The design of postgres. ACM

Sigmod Record, 15(2):340–355, 1986.

[40] Mohamed Wahib and Naoya Maruyama. Scalable kernel fusion for memory-

bound gpu applications. In SC’14: Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and Analysis,

pages 191–202. IEEE, 2014.

[41] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an

insightful visual performance model for multicore architectures. Communica-

tions of the ACM, 52(4):65–76, 2009.

[42] Siavash Ghiasvand and Florina M Ciorba. Assessing data usefulness for failure

analysis in anonymized system logs. In 2018 17th International Symposium

on Parallel and Distributed Computing (ISPDC), pages 164–171. IEEE, 2018.

[43] Suntherasvaran Murthy, Asmidar Abu Bakar, Fiza Abdul Rahim, and Ra-

mona Ramli. A comparative study of data anonymization techniques. In 2019

IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity),

IEEE Intl Conference on High Performance and Smart Computing,(HPSC)

and IEEE Intl Conference on Intelligent Data and Security (IDS), pages 306–

309. IEEE, 2019.

[44] Zhaozhen Xu, Zhijin Guo, and Nello Cristianini. On compositionality in data

embedding. In International Symposium on Intelligent Data Analysis, pages

484–496. Springer, 2023.

[45] Baolin Li, Rohan Basu Roy, Daniel Wang, Siddharth Samsi, Vijay Gadepally,

and Devesh Tiwari. Toward sustainable hpc: Carbon footprint estimation

162 BIBLIOGRAPHY

BIBLIOGRAPHY

and environmental implications of hpc systems. In Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–15, 2023.

[46] Kazi Asifuzzaman, Mohammad Alaul Haque Monil, Frank Liu, and Jeffrey S

Vetter. Evaluating hpc kernels for processing in memory. In Proceedings of

the 2022 International Symposium on Memory Systems, pages 1–6, 2022.

[47] Marcelo Orenes-Vera, Esin Tureci, David Wentzlaff, and Margaret Martonosi.

Dalorex: A data-local program execution and architecture for memory-bound

applications. In 2023 IEEE International Symposium on High-Performance

Computer Architecture (HPCA), pages 718–730. IEEE, 2023.

[48] Kevin Menear, Ambarish Nag, Jordan Perr-Sauer, Monte Lunacek, Kristi

Potter, and Dmitry Duplyakin. Mastering hpc runtime prediction: From

observing patterns to a methodological approach. In Practice and Experience

in Advanced Research Computing, pages 75–85. 2023.

[49] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. Predicting job com-

pletion times using system logs in supercomputing clusters. In 2013 43rd

Annual IEEE/IFIP Conference on Dependable Systems and Networks Work-

shop (DSN-W), pages 1–8. IEEE, 2013.

[50] Elvis Rojas, Esteban Meneses, Terry Jones, and Don Maxwell. Analyzing

a five-year failure record of a leadership-class supercomputer. In 2019 31st

SBAC-PAD, pages 196–203. IEEE, 2019.

[51] Sheng Di, Hanqi Guo, Eric Pershey, Marc Snir, and Franck Cappello. Char-

acterizing and understanding hpc job failures over the 2k-day life of ibm blue-

gene/q system. In 2019 49th Annual IEEE/IFIP DSN, pages 473–484. IEEE,

2019.

[52] Hamid Fadishei, Hamid Saadatfar, and Hossein Deldari. Job failure prediction

in grid environment based on workload characteristics. In 2009 14th CSICC,

pages 329–334. IEEE, 2009.

BIBLIOGRAPHY 163

BIBLIOGRAPHY

[53] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. Failure prediction of

jobs in compute clouds: A google cluster case study. In 2014 IEEE ISSRE

Workshops, pages 341–346, 2014.

[54] Tariqul Islam and Dakshnamoorthy Manivannan. Predicting application fail-

ure in cloud: A machine learning approach. In 2017 IEEE ICCC, pages 24–31.

IEEE, 2017.

[55] Wucherl Yoo, Alex Sim, and Kesheng Wu. Machine learning based job status

prediction in scientific clusters. In 2016 SAI, pages 44–53, 2016.

[56] Deva Bodas, Justin Song, Murali Rajappa, and Andy Hoffman. Simple power-

aware scheduler to limit power consumption by hpc system within a budget.

In 2014 Energy Efficient Supercomputing Workshop, pages 21–30. IEEE, 2014.

[57] Andrea Borghesi, Francesca Collina, Michele Lombardi, Michela Milano, and

Luca Benini. Power capping in high performance computing systems. In

Principles and Practice of Constraint Programming: 21st International Con-

ference, CP 2015, Cork, Ireland, August 31–September 4, 2015, Proceedings

21, pages 524–540. Springer, 2015.

[58] Danilo Carastan-Santos, Georges Da Costa, Millian Poquet, Patricia Stolf,

and Denis Trystram. Light-weight prediction for improving energy consump-

tion in hpc platforms. In Jesus Carretero, Sameer Shende, Javier Garcia-Blas,

Ivona Brandic, Katzalin Olcoz, and Martin Schreiber, editors, Euro-Par 2024:

Parallel Processing, pages 152–165, Cham, 2024. Springer Nature Switzerland.

[59] Hyunsoo Kim, Jiseok Jeong, and Changwan Kim. Daily peak-electricity-

demand forecasting based on residual long short-term network. Mathematics,

10(23):4486, 2022.

[60] Eduardo R Rodrigues, Renato LF Cunha, Marco AS Netto, and Michael

Spriggs. Helping hpc users specify job memory requirements via machine

learning. In 2016 Third International Workshop on HPC User Support Tools

(HUST), pages 6–13. IEEE, 2016.

164 BIBLIOGRAPHY

BIBLIOGRAPHY

[61] Daren Lee, Ivo Dinov, Bin Dong, Boris Gutman, Igor Yanovsky, and Arthur W

Toga. Cuda optimization strategies for compute-and memory-bound neu-

roimaging algorithms. Computer methods and programs in biomedicine,

106(3):175–187, 2012.

[62] Ang Li, Weifeng Liu, Mads RB Kristensen, Brian Vinter, Hao Wang, Kaixi

Hou, Andres Marquez, and Shuaiwen Leon Song. Exploring and analyzing

the real impact of modern on-package memory on hpc scientific kernels. In

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–14, 2017.

[63] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond accuracy,

f-score and roc: A family of discriminant measures for performance evaluation.

volume Vol. 4304, pages 1015–1021, 01 2006.

[64] Nan Ding and Samuel Williams. An instruction roofline model for gpus. IEEE,

2019.

[65] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. Cache-aware roofline

model: Upgrading the loft. IEEE Computer Architecture Letters, 13(1):21–

24, 2013.

[66] Diogo Marques, Helder Duarte, Aleksandar Ilic, Leonel Sousa, Roman Be-

lenov, Philippe Thierry, and Zakhar A Matveev. Performance analysis with

cache-aware roofline model in intel advisor. In 2017 International Confer-

ence on High Performance Computing & Simulation (HPCS), pages 898–907.

IEEE, 2017.

[67] Babak Bashari Rad, Harrison John Bhatti, and Mohammad Ahmadi. An

introduction to docker and analysis of its performance. International Journal

of Computer Science and Network Security (IJCSNS), 17(3):228, 2017.

[68] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John

Wilkes. Borg, omega, and kubernetes. Communications of the ACM,

59(5):50–57, 2016.

BIBLIOGRAPHY 165

BIBLIOGRAPHY

[69] Michael S Keller. Take command: cron: Job scheduler. Linux Journal,

1999(65es):15–es, 1999.

[70] Fujitsu Limited. A64fx pmu events, 2019.

[71] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya

Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo

Miyoshi, et al. Co-design for a64fx manycore processor and” fugaku”. In

SC20: International Conference for High Performance Computing, Network-

ing, Storage and Analysis, pages 1–15. IEEE, 2020.

[72] Yuetsu Kodama, Tetsuya Odajima, Eishi Arima, and Mitsuhisa Sato. Eval-

uation of power management control on the supercomputer fugaku. In 2020

IEEE International Conference on Cluster Computing (CLUSTER), pages

484–493. IEEE, 2020.

[73] Viraj Kulkarni, Manish Gawali, Amit Kharat, et al. Key technology con-

siderations in developing and deploying machine learning models in clinical

radiology practice. JMIR Medical Informatics, 9(9):e28776, 2021.

[74] Abdul Hameed, Alireza Khoshkbarforoushha, Rajiv Ranjan, Prem Prakash

Jayaraman, Joanna Kolodziej, Pavan Balaji, Sherali Zeadally, Qutaibah Mar-

wan Malluhi, Nikos Tziritas, Abhinav Vishnu, et al. A survey and taxonomy

on energy efficient resource allocation techniques for cloud computing systems.

Computing, 98:751–774, 2016.

[75] Lucas Baier, Fabian Jöhren, and Stefan Seebacher. Challenges in the de-

ployment and operation of machine learning in practice. In ECIS, volume 1,

2019.

[76] Gideon Juve, Benjamin Tovar, Rafael Ferreira Da Silva, Dariusz Król, Douglas

Thain, Ewa Deelman, William Allcock, and Miron Livny. Practical resource

monitoring for robust high throughput computing. In 2015 IEEE Interna-

tional Conference on Cluster Computing, pages 650–657. IEEE, 2015.

[77] Nitin Sukhija and Elizabeth Bautista. Towards a framework for monitoring

and analyzing high performance computing environments using kubernetes

166 BIBLIOGRAPHY

BIBLIOGRAPHY

and prometheus. In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Com-

puting, Advanced & Trusted Computing, Scalable Computing & Communi-

cations, Cloud & Big Data Computing, Internet of People and Smart City

Innovation, pages 257–262. IEEE, 2019.

[78] Jie Li, Ghazanfar Ali, Ngan Nguyen, Jon Hass, Alan Sill, Tommy Dang, and

Yong Chen. Monster: an out-of-the-box monitoring tool for high performance

computing systems. In 2020 IEEE International Conference on Cluster Com-

puting (CLUSTER), pages 119–129. IEEE, 2020.

[79] Maxime Colmant, Pascal Felber, Romain Rouvoy, and Lionel Seinturier.

Wattskit: Software-defined power monitoring of distributed systems. In 2017

17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-

puting (CCGRID), pages 514–523. IEEE, 2017.

[80] Jonathan Muraña, Sergio Nesmachnow, Fermı́n Armenta, and Andrei Tch-

ernykh. Characterization, modeling and scheduling of power consumption of

scientific computing applications in multicores. Cluster Computing, 22:839–

859, 2019.

[81] Masahiro Nakao, Hidetomo Kaneyama, Masaru Nagaku, Ikki Fujiwara, At-

suko Takefusa, Shinichi Miura, and Keiji Yamamoto. Introducing open on-

demand to supercomputer fugaku. In Proceedings of the SC’23 Workshops

of The International Conference on High Performance Computing, Network,

Storage, and Analysis, pages 720–727, 2023.

[82] Adedolapo Okanlawon, Huichen Yang, Avishek Bose, William Hsu, Dan An-

dresen, and Mohammed Tanash. Feature selection for learning to predict

outcomes of compute cluster jobs with application to decision support. In

2020 International Conference on Computational Science and Computational

Intelligence (CSCI), pages 1231–1236. IEEE, 2020.

[83] Hamidreza Khaleghzadeh, Ravi Reddy Manumachu, and Alexey Lastovet-

sky. Efficient exact algorithms for continuous bi-objective performance-

energy optimization of applications with linear energy and monotonically

BIBLIOGRAPHY 167

BIBLIOGRAPHY

increasing performance profiles on heterogeneous high performance comput-

ing platforms. Concurrency and Computation: Practice and Experience,

35(20):e7285, 2023.

[84] Yuichi Tsujita, Atsuya Uno, Ryuichi Sekizawa, Keiji Yamamoto, and Fu-

michika Sueyasu. Job classification through long-term log analysis towards

power-aware hpc system operation. In 2021 29th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP),

pages 26–34. IEEE, 2021.

[85] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,

and Ion Stoica. Ernest: Efficient performance prediction for {Large-Scale} ad-
vanced analytics. In 13th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 16), pages 363–378, 2016.

[86] Kevin Assogba, Eduardo Lima, M Mustafa Rafique, and Minseok Kwon. Pre-

dictddl: Reusable workload performance prediction for distributed deep learn-

ing. In 2023 IEEE International Conference on Cluster Computing (CLUS-

TER), pages 13–24. IEEE, 2023.

[87] U.S. Energy Information Administration. How much electricity does an amer-

ican home use?, 2024.

[88] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux

utility for resource management. In Workshop on job scheduling strategies for

parallel processing, pages 44–60. Springer, 2003.

168 BIBLIOGRAPHY

	Abstract
	Introduction
	Research Context
	HPC Sustainability Problems
	Uninformed Job Scheduling
	End-User Inefficient Resource Utilization

	Job-level Predictive Modelling
	Applications and Impact
	Use of Machine Learning
	Limitations of The State Of The Art

	Research Contributions and Results

	Background
	HPC systems
	History of HPC
	HPC in modern society
	Using HPC systems: Jobs and Schedulers

	Systems studied
	Supercomputer Fugaku
	Marconi100

	Predictive Modelling Tools
	Artificial Intelligence
	AdaBoost
	XGBoost
	Logistic Regression
	Random Forest
	K-nearest neighbors
	SBert

	PM100: A Job Power Consumption Dataset of the Marconi100 System
	M100 Dataset
	PM100 Dataset Creation
	Dataset Overview
	Job analysis
	Job power consumption analysis
	Prediction Tasks

	F-DATA: A Fugaku Dataset for Holistic Job-centric Predictive Modelling
	Dataset Creation
	Dataset Overview
	Experimental Study
	Experimental Setup
	Experimental Results

	Job Failure
	Related Work
	Methodology
	Data preparation
	Online Predictive Algorithm

	Experimental Study
	Experimental setting
	Results

	Job Power Consumption
	Related Work
	Methodology
	Data Preparation
	Job Power Consumption Prediction
	Experimental Study
	Experimental Setting
	Results

	Job Memory/Compute-Bound Nature
	Related Work
	MCBound Framework
	Data Fetcher
	Feature Encoder
	Job Characterizer
	Classification Model
	MCBound Deployment

	Memory/Compute-bound Characterization and Analysis of Fugaku Jobs
	Fugaku Job Traces
	Job Characterization Setup
	Fugaku Job Analysis

	Experimental Study
	Classification Model Implementation for Fugaku
	Online Prediction Algorithm Evaluation
	Experimental Results

	End-user Tool
	Related Work
	UoPC Framework
	UoPC Overview
	SBert Feature Encoder
	Predictive Algorithm
	UoPC Implementation

	UoPC Deployment for Fugaku
	Fugaku Dataset
	Data Preparation for Prediction
	Online Prediction Algorithm Implementation

	Experimental Study
	Online Prediction Algorithm Evaluation
	Experimental Results
	Discussions

	Conclusion
	Summary of Contributions
	Research Significance and Considerations
	Future Directions
	Concluding Remarks

	
	Bibliography

