

Esame finale anno 2025

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 37

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

DECLARATIVE APPROACHES FOR CUSTOM CLOUD-EDGE SERVERLESS
FUNCTION SCHEDULING

Presentata da: Giuseppe De Palma

Coordinatore Dottorato Supervisore

Ilaria Bartolini Gianluigi Zavattaro

 Co-Supervisore

Saverio Giallorenzo

Borsa di dottorato del Programma Operativo Nazionale Ricerca e Innovazione 2014-2020 (CCI

2014IT16M2OP005), risorse FSE REACT-EU, Azione IV.4 “Dottorati e contratti di ricerca su

tematiche dell’innovazione” e Azione IV.5 “Dottorati su tematiche Green.” J35F21003070006

ii

Abstract

Serverless computing has rapidly evolved from cloud-centric paradigms to embrace pri-
vate edge and hybrid cloud-edge systems, addressing latency and resource optimization
challenges. However, mainstream serverless platforms typically rely on rigid, hardcoded
scheduling policies that fail to support the diverse functional, topological, and perfor-
mance constraints required by modern applications. In particular cloud-edge serverless
applications, or serverless deployments, spanning multiple regions introduce the need
to govern the scheduling of functions to satisfy their functional constraints or avoid
performance degradation to meet user-defined goals. We address the problem of function-
execution scheduling in this thesis by first proposing a declarative language of Allocation
Priority Policies (APP), enabling developers to specify scheduling policies tailored to
their application needs, and we show an implementation of APP on top of Apache Open-
Whisk, validated with a cloud-edge use case. Building on this foundation, the focus shifts
to topology-aware scheduling through the development of tAPP, a language extension ca-
pable of enforcing co-existing topological constraints across hybrid deployments without
requiring custom platform modifications. We prove our approach feasible by implement-
ing a tAPP-based Apache OpenWhisk, and show that our extension naturally allows for
cloud-edge deployments with topology-aware requirements which cannot be supported
by standard deployments of vanilla OpenWhisk. We then focus on affinity-aware scenar-
ios, i.e., where, for performance and functional requirements, the allocation of a function
depends on the presence/absence of other functions on nodes. We further extend APP
to aAPP, a language that allows users to capture affinity-aware scheduling policies. An
aAPP-based prototype shows that affinity constraints can be expressed and enforced
with negligible overhead, enabling performance improvements where affinity matters..

This family of languages unlocks the capability for customizable scheduling in FaaS,
making it possible to enforce ad-hoc optimizations in serverless applications. However,
defining the “right” scheduling policy is far from trivial, often requiring rounds of
refinement that involve knowledge of the underlying infrastructure, guesswork, and
empirical testing. We start investigating how information derived from static analysis
could be incorporated into APP scheduling function policies to help users select the
best-performing workers at function allocation. To this end, we develop a cost-variant
APP called cAPP, which incorporates a pipeline capable of extracting cost equations

iii

from functions’ code, synthesizing cost expressions through the usage of off-the-shelf
solvers, and extending APP policies to consider this information.

Finally, recognizing the resource-constrained nature of cloud-edge scenarios, we
present FunLess, a FaaS platform capable of running bare-metal on edge devices without
the need for container orchestration layers. FunLess leverages WebAssembly (Wasm) as
its runtime, providing a lightweight execution environment with enhanced portability
and a reduced memory footprint. We also perform a comparative analysis of the energy
consumption of FunLess, OpenWhisk and a container-based service architecture. More-
over, FunLess features built-in support for APP, enabling the execution of customizable
scheduling policies even in resource-constrained environments.

iv

Contents

Abstract iii

1 Introduction 1

I Background 7

2 Cloud and Serverless Computing 9
2.1 The Cloud Organization . 9

2.1.1 The “as-a-Service” Models Proliferation 10
2.2 Types of Cloud . 13

2.2.1 Deployment Models . 14
2.2.2 Distribution Models . 15

3 Function as a Service 19
3.1 FaaS Platforms Internals . 21

3.1.1 Core Components . 22
3.1.2 Example of FaaS Platform: Apache OpenWhisk 25

3.2 Functions Scheduling . 26
3.2.1 Limitations . 26
3.2.2 Scheduling in Apache Openwhisk 28

II Contributions 31

4 Allocation Priority Policies 33
4.1 Introduction . 33
4.2 The APP Language . 34
4.3 APP Implementation in Apache OpenWhisk 38
4.4 Experiments and Results . 40
4.5 Conclusions . 44

CONTENTS v

CONTENTS

5 Topology-aware Serverless Scheduling 45
5.1 Introduction . 45
5.2 tAPP, by example . 48

5.2.1 The tAPP Approach . 49
5.3 The tAPP Language . 50

5.3.1 tAPP in OpenWhisk . 55
5.3.2 Deploying tAPP-based OpenWhisk 58

5.4 Case Study . 59
5.4.1 Case Study Implementation 60
5.4.2 Overhead Analysis . 67

5.5 Conclusion . 71

6 Affinity-aware Serverless Scheduling 73
6.1 Introduction . 73
6.2 The aAPP Language . 76
6.3 aAPP-based Apache OpenWhisk . 77
6.4 Performance Improvements via Affinity-awareness 80
6.5 aAPP’s Overhead is Negligible . 84
6.6 Conclusions . 87

7 Cost-aware Serverless Scheduling 89
7.1 Introduction . 89
7.2 The mini Serverless Language . 92
7.3 The Inference of Cost Expressions . 96
7.4 From APP to cAPP . 102

7.4.1 Cost-aware policies with cAPP 102
7.5 Conclusions . 106

8 FunLess: Lightweight Cloud-Edge FaaS 109
8.1 Introduction . 109
8.2 WebAssembly . 112
8.3 Platform Architecture . 113

8.3.1 Design choices and limitations 117
8.4 Energy Consumption Comparison . 119

8.4.1 Use Case . 119
8.4.2 Evaluation . 120

8.5 Conclusions . 125

9 Discussion and Conclusion 127
9.1 Related Work . 127
9.2 Conclusions . 134

vi CONTENTS

CONTENTS

9.2.1 Future Work . 136

139

Bibliography 139

CONTENTS vii

CONTENTS

viii CONTENTS

List of Figures

2.1 Cloud Computing Layers (adapted from Zhang et al. [130]). 9

2.2 Common representation of the responsibility offloaded to the cloud
vendor provided by the different Cloud Computing Service Models. . . 13

2.3 A representation of the Cloud-Edge Continuum, adapted from [50]. . . 17

3.1 Common representation of the responsibility offloaded to the cloud
vendor provided by the different Cloud Computing Service Models. . . 20

3.2 High-level FaaS architecture components. 21

3.3 Apache OpenWhisk architecture. 26

3.4 Scenario depicting multiple zones with heterogeneous workers. A naive
scheduling algorithm would assign functions to workers without consid-
ering the kind of computational resources available. 27

4.1 The APP syntax. 35

4.2 Use case architecture representation. 39

5.1 Example of function-execution scheduling problem. 45

5.2 Representation of the case study. 47

5.3 The syntax of tAPP (the extensions from APP are highlighted). . . . 50

5.4 Architectural view of our OpenWhisk extension. We highlight in
light blue the existing components of OpenWhisk we modified and in

yellow the new ones we introduced. 56

5.5 A tAPP script that implements the scheduling semantics of the case
study in Section 5.1 (Figure 5.2). 59

5.6 Use case architecture: the services were separated in two zones, named
Edge and Cloud, and connected using two different networks, a local
network corresponding to the Edge zone and a virtual private network
used for the OpenWhisk cloud-edge deployment. 61

5.7 Script used in the tAPP-based use case deployments. 62

5.8 Latencies in tAPP-based OpenWhisk (left) and vanilla OpenWhisk (right). 65

5.9 Test Case 3 latencies (left) and scheduling time (right). 68

LIST OF FIGURES ix

LIST OF FIGURES

5.10 Test Case 5 latencies (left) and scheduling time (right). 68
5.11 Test Case 6 latencies (left) and scheduling time (right). 69
5.12 Test Case 9 latencies for the four subtests: C and Java functions with

concurrency 1 (top-left and top-right), C and Java functions with con-
currency 40 (bottom-left and bottom-right). 70

5.13 Test Case 9 scheduling time for the four subtests: C and Java functions
with concurrency 1 (top-left and top-right), C and Java functions with
concurrency 40 (bottom-left and bottom-right). 71

5.14 Test Case 10 latencies (left) and scheduling time (right). 71

6.1 Example of a FaaS infrastructure (left) and an aAPP script (right). . . 75
6.2 aAPP syntax. 77
6.3 Sorted scatter plot of divide functions; x is the latency (ms) of the yth%

fastest invocation. 82
6.4 Comparison of scheduling times between vanilla, APP-, and aAPP-based

OpenWhisk. From the left, avg and st dev (in ms) and the plot of the
long-running case. 86

6.5 Latencies of the benchmarks (in ms). 87

7.1 A multi-zone serverless topology and APP script. 90
7.2 The rules for deriving cost expressions 98
7.3 The syntax of cAPP (the extensions from APP are highlighted). . . . 103
7.4 Flow followed, from deployment to scheduling, of the functions at List-

ings 7.1 and 7.2. 104
7.5 The map-reduce function, its cost analysis, and scheduling invalidation

logic. 106

8.1 Architecture of the FunLess platform with the function flow from creation
to invocation. 113

8.2 Architecture of the laboratory environment use case. 119
8.3 Energy-usage sample distribution (idle scenario). 121
8.4 Energy-usage sample distribution (constant workload scenario). 122
8.5 Energy-usage over time (spiked workload scenario). 123
8.6 Energy-usage sample distribution (spiked workload scenario). 124

x LIST OF FIGURES

List of Listings

3.1 Example OpenWhisk Javascript function. 22
4.1 Simple APP script for data locality optimization. 35
4.2 Example of an APP script. 36
5.1 Example of a tAPP script. 51
6.1 Example aAPP script. 78
6.2 The pseudo-code of the schedule function. 79
6.3 The pseudo-code of the valid function. 80
7.1 Function with a conditional statement guarded by an expression. . . . 94
7.2 Function with a conditional statement guarded by an invocation to

external service. 94
7.3 Function implementing a map-reduce logic. 95
7.4 cAPP script for Listings 7.1 and 7.2. 103
7.5 cAPP script for Listing 7.3. 105

LIST OF LISTINGS xi

LIST OF LISTINGS

xii LIST OF LISTINGS

Chapter 1

Introduction

Software development and deployment have undergone multiple changes throughout the

history of computing and continues to evolve even today. From the early days of main-

frames, where computing was centralized on a single machine, to multi-tier architectures

with multiple physical nodes connected and accessible over a network, to the modern era

of cloud computing where hardware resources are virtualized and provided as a remote

service. Cloud computing has fundamentally changed how software systems are designed

and its own evolutionary line with several new paradigms have emerged. Starting from

only providing resources such as storage and machines, to providing software systems

that can compile and run applications directly, kickstarting a transition of computation

from on-premises servers to a multitude of data centers distributed across the globe.

Alongside these developments, Edge computing has also emerged to address the need for

latency-sensitive applications and the increasing amount of data generated by Internet

of Things (IoT) devices. Moving large amounts of data to the cloud for processing is not

always feasible due to bandwidth or latency constraints, so as opposed to centralizing

computation in remote data centers it is, instead, distributed across devices or servers

located nearer to users or data-generating endpoints. Modern solutions are now evolving

toward the concept of Cloud-Edge Continuum, a model that represents a spectrum of

resources aiming to integrate the large-scale centralized public clouds with distributed,

near-device computational resources. The key pattern of this evolution in computing

has been an abstraction over the hardware and the simplification of the deployment

and management of applications, reaching this newest peak with the illustrative name

CHAPTER 1. INTRODUCTION 1

of “Serverless” Computing, where, ideally, the infrastructure is completely abstracted

away, hence servers (and devices) are no longer directly managed by the user. A

key component of this abstraction is the Function-as-a-Service (FaaS) model, which

has been gaining more and more attention both in academic research and industry.

This service model allows developers to deploy programs in the form of event-driven,

stateless and ephemeral functions, which can be executed over a large number of servers

automatically. The simplicity in deployment and scalability attracted many researchers

in exploring its usage in different scenarios, such as investigating new ways to architect

distributed systems, finding new optimizations in workload scheduling and execution,

and its applicability to IoT and Edge computing. Popularized through AWS Lambda

as the first FaaS platform offered by a major cloud provider, many other providers have

followed suit with their own proprietary or open-source platforms. Operating on the

premise of automatically allocating resources for execution offers an advantage in terms

of cost efficiency for customers, but the underlying scheduling and resource allocation

mechanisms are generally opaque and inflexible. These rigid mechanisms can fail to

adapt to heterogeneous environments that include different types of resources, equipped

with varying hardware, and that could include not only cloud data centers but also

edge devices. In such distributed environments, performance optimizations require an

awareness of resource locality, workload variability, and dynamic system constraints.

The complexity of these challenges calls for a more flexible and expressive approach to

resource management in FaaS platforms. While existing solutions often rely on prede-

fined, black-box scheduling mechanisms, a declarative language-based approach offers

the ability to precisely specify scheduling policies and reason about them systematically.

This enables developers to maintain fine-grained control over function placement while

abstracting away the low-level details of resource allocation. The driving motivation

for the works presented in this thesis lies in exploring the optimizations achievable in

FaaS platforms by allowing users to maximize usage of the resources available to them.

For example, latency-sensitive applications, such as those involving real-time tasks with

IoT-generated data, require their execution environments to be as close as possible to

the data source. Similarly, compute-intensive workloads may need to leverage powerful

cloud servers, while lightweight tasks can efficiently run on resource-constrained edge

devices. Current platforms fail to consider these diverse requirements and these lim-

itations become particularly pronounced in scenarios involving hybrid deployments. To

2 CHAPTER 1. INTRODUCTION

tackle this class of problems, this thesis introduces a family of declarative languages and

companion frameworks for scheduling policies, namely Allocation Priority Policies (APP)

and its extensions: Topology-aware APP (tAPP) with the investigation on integrating

topology-based optimizations on function scheduling, Affinity-aware APP (aAPP) by

exploring the idea of (anti-)affinity constraints between functions and Cost-aware APP

(cAPP) by considering the cost of function execution. These frameworks enable devel-

opers and operators to specify detailed policies for function placement, incorporating

considerations such as data locality, resource availability, and their heterogeneity.

Starting with APP (in Chapter 4), we focus on the problem of optimizing function

scheduling in a heterogeneous cluster of resources. In FaaS platforms the component

responsible for function execution, often called worker, and the component responsible

for function scheduling, i.e. choosing a worker for a function to run on, are typically

distributed across one or more data centers. The open-source platforms that have

become popular over the years, such as Apache OpenWhisk [8] and OpenFaaS [80],

make use of simplistic scheduling approaches such as pseudo-random or round-robin

selection, which do not consider the computational power of the workers or the func-

tions they are currently executing. Not all workers are equal when allocating functions.

Indeed, effects like data locality [47]—due to high latencies to access data—or session

locality [47]—due to the need to authenticate and open new sessions to interact with

other services—can sensibly increase the run time of functions. To tackle the chal-

lenges and opportunities for these optimizations in function scheduling we propose APP

as the basis for a policy-driven, declarative scheduling language for FaaS platforms.

Developers can use APP to specify a scheduling policy for their functions that the

scheduler later uses to find the worker that, given the current status of the system,

best fits the constraints specified by the developer of a given function. We extended

the scheduler of OpenWhisk as well, to use APP-defined policies in the scheduling

of serverless functions, and validated our extension with an use case combining IoT,

Edge, and Cloud Computing. With the baseline ideas in place, we explored different

directions in function scheduling optimizations with several APP extensions.

Following APP, we explored scenarios where FaaS platforms are deployed across

multiple zones, each with its own set of workers and schedulers. As to OpenWhisk’s

case, platforms are deployed over a cluster of machines where, regardless of the zones

and number of replicated schedulers, any worker in the cluster could be picked to run a

CHAPTER 1. INTRODUCTION 3

function. To handle topological information and cover multi-scheduler deployments, we

introduce tAPP (in Chapter 5) as a first extension of APP. With tAPP we enhance the

initial language with new constructs and extend OpenWhisk with new components to

capture topological information at the level of workers and schedulers, and let schedulers

and gateways follow tAPP policies depending on topological zones. We evaluated our

tAPP-enabled OpenWhisk prototype using an Industry 4.0 case study featuring a

Cloud-Edge deployment.

After tAPP, we explored the idea of affinity-aware scheduling in FaaS from obser-

vating that, at lower levels of the cloud stack, popular Infrastructure-as-a-Service (IaaS)

platforms (e.g., OpenStack [82]) and Container-as-a-Service (CaaS) systems (e.g., Kuber-

netes [64]) allow users to express affinity and anti-affinity constraints about the allocation

of VM/containers—e.g., anti-affinity constraints, to reduce overhead by shortening data

paths via co-location, to increase reliability by evenly distributing VM/containers among

different nodes, and for security, such as preventing the co-location of VM/containers be-

longing to different trust tiers. On the contrary, FaaS platforms do not natively support

the possibility to express affinity-aware scheduling, where function allocation depends

on the presence (affinity) or absence (anti-affinity) at scheduling time of other functions

in execution on the available workers. Recognising the potential of FaaS-level affinity-

aware scheduling policies, we propose aAPP (in Chapter 6) by extending APP, and we

concretise our proposal by presenting a prototype implementation of an aAPP-based

OpenWhisk able to enforce aAPP-defined FaaS (anti-)affinity scheduling constraints.

While studying the potential optimizations in function scheduling, we also focused

on another line of research that is gaining traction in the community, the costs and

sustainability of cloud computing. The advent of the cloud raised concerns about the

energy consumption and environmental impact of data centers, which power cloud

services, as major consumers of electricity, contributing to carbon emissions. As demand

for cloud services continues to rise, optimizing resource usage and minimizing energy

waste have become important challenges for both researchers and industry. By applying

these concerns on our research on FaaS platforms, we propose two contributions: i) a

novel FaaS platform, FunLess, designed to be lightweight with a focus on (mixed) edge-

cloud scenarios, and ii) a Cost-aware extension of APP, named cAPP (in Chapter 7),

with an implementation on FunLess.

With FunLess, we experimented with new ideas and more recent technologies such

4 CHAPTER 1. INTRODUCTION

as WebAssembly (Wasm) [122] to create a lightweight FaaS platform with built-in

support for APP. FunLess is a new open-source platform providing decreased resource

requirements, lightweight scalability, and portability via the Erlang’s BEAM Virtual

Machine [107] and WebAssembly for running functions. Thanks to these traits, users

can run the whole FunLess distributed platform on resource-constrained edge devices

without requiring a container runtime (e.g., Docker) and container-orchestration tech-

nologies (e.g., Kubernetes). We also studied the energy usage impact compared to more

traditional FaaS platforms.

Regarding cAPP, we propose this new extension from the observation that if an user

has knowledge about the reduced running time of a worker in performing some particular

task with an external service, .e.g. in accessing a database, the user must know about the

workers’ topology and their latencies w.r.t. the external services used by their functions.

However, users might not have such knowledge when writing their APP scripts. Moreover,

the worker-service latency is a property that can dynamically change depending, e.g.,

on the state of the network connections, including traffic and congestion. Thus, we

start investigating how information derived from static analysis could be incorporated

into APP scheduling function policies to help users select the best-performing workers

at function allocation. We substantiate our proposal by presenting a pipeline able to

extract cost equations from functions’ code, synthesising cost expressions through the

usage of off-the-shelf solvers, and extending APP to consider this information. In other

terms, we propose to use a combination of static analysis (applied on a function’s code)

and run-time monitoring (of the workers latencies in accessing the external services) to

estimate a cost for executing a function on a worker, considering what and how it uses

external services. Differently from before, the prototypical implementation of cAPP is

developed on FunLess, as it is the platform we can better control which allowed us an

integration of the needed components from the ground up.

Structure of the Thesis The remainder of this thesis is organized as follows. It

is divided in two main parts: Background and Contributions. From the Background

part, Chapter 2 provides an overview of cloud computing and its evolution over the

years with a focus on the models of distribution and deployment. Chapter 3 introduces

Function-as-a-Service as the core model of serverless computing and elaborates on its

architectural principles, scalability features, and scheduling challenges. In the first

CHAPTER 1. INTRODUCTION 5

chapter of the Contributions part, Chapter 4, we present the design and implementa-

tion of APP, including its integration into the Apache OpenWhisk platform and the

experimental evaluations. We extend the discussion to tAPP in Chapter 5, introducing

its ability to support scheduling policies with topological constraints, and its integration

and evaluation. In Chapter 6, we move the discussion to aAPP, presenting the new

capabilities of expressing affinity and anti-affinity constraints in function scheduling,

together with its implementation and evaluation. We then introduce cAPP in Chapter 7

where we go into details on the additional components and ideas built on top of APP to

make scheduling aware of function running time, and we present FunLess in Chapter 8

with an overview of its architecture, design choices and a comparison on the energy usage

with OpenWhisk and a classical service-oriented architecture. Finally, in Chapter 9

the conclusions are drawn and some directions for future work are discussed.

6 CHAPTER 1. INTRODUCTION

Part I

Background

7

Chapter 2

Cloud and Serverless Computing

2.1 The Cloud Organization

Modern-day web software is deeply integrated with services on the cloud due to the

capabilities and flexibility they can offer. In this chapter, we give an introduction to

cloud computing and serverless computing (the focus of this thesis) and introduce the

common service models available.

Cloud computing is characterized by an easily usable and accessible pool of vir-

tualized resources based on a pay-per-use model. Customers can acquire and release

resources on demand, and when in need of scaling they can simply request more

resources. Figure 2.1 shows a simplified view of the organization of cloud computing.

Resources managed at each layer

Infrastructure as a Service
(IaaS)

Platform as a Service
(PaaS)

Software as a Service
(SaaS)

CPU, memory, disk, bandwidth

Computation (VM), storage (block, file)

Software frameworks, Storage (databases)

Web services, multimedia, business apps

Application

Platforms

Infrastructure

Hardware

AWS EC2, AWS S3

Google AppEngine,
MS Azure App Service

Google Apps, Youtube, Outlook, etc.

Data CentersMetal as a Service
(MaaS)

Figure 2.1: Cloud Computing Layers (adapted from Zhang et al. [130]).

CHAPTER 2. CLOUD AND SERVERLESS COMPUTING 9

2.1. THE CLOUD ORGANIZATION

We can generally divide cloud computing into four layers:

• Hardware: At the lowest layer, the cloud provider manages the physical hard-

ware. Server machines, storage equipment, networking devices but also power

and cooling systems. This physical layers is generally implemented in data cen-

ters, which are large buildings powering, cooling and housing all the necessary

equipment to run a variety of software services.

• Infrastructure: On top of the hardware there are the virtualization technolo-

gies that form the backbone for most cloud computing offerings. At this level

virtualization techniques are employed to provide customers an infrastructure

consisting of virtual machines, virtual storage and other computing resources.

• Platform: Based on the virtualized resources provided by the infrastructure layer,

a set of APIs and services provide the means to developers to easily develop and

deploy software. In practice, an application developer is offered a vendor-specific

API, which includes calls to uploading and executing a program in that vendor’s

cloud, giving an high-level abstraction of the underlying machines, storage and so

on. For example, Amazon S3 provides an API that allows users to store locally

created files in “buckets”. By doing so, the file is uploaded to Amazon’s cloud

and can be accessed remotely. Moreover, the responsibility of conserving the file

is shifted to the service provider.

• Application: This topmost layer is where applications are delivered to end-users

over the internet. Many kinds of web applications make use of cloud computing

such as web-based email, office suites (text processors, spreadsheet applications,

presentation applications), collaboration tools. These applications are executed

on the vendor’s cloud and the vendor is responsible to make them accessible

online and keep them always available without any downtime.

2.1.1 The “as-a-Service” Models Proliferation

Over the years, the cloud computing market has seen a proliferation of services that can

be grouped on top of the four layers described above. They are commonly referred to as

“as-a-Service” models, where the “as-a-Service” suffix means that the service is provided

10 CHAPTER 2. CLOUD AND SERVERLESS COMPUTING

2.1. THE CLOUD ORGANIZATION

over the internet based on a pay-per-use model. Starting from these four layers, cloud

providers offer them to their customers as a means for outsourcing local computing

infrastructures, through various interfaces (command-line tools, APIs, and web GUIs),

making them their business model. This approach has led to the establishment of

four main service models - MaaS, IaaS, PaaS, and SaaS - which represent increasing

levels of abstraction in cloud service delivery. Fig. 2.2 shows a common representation

of these service models. Numerous specialized variations have also emerged to pro-

vide specific functionalities tailored to particular needs (such as Database-as-a-Service,

Storage-as-a-Service, and so on).

Metal-as-a-Service (MaaS)

The first kind of cloud service corresponds to a direct hardware (commonly called

bare-metal) offering, hence the name Metal as a Service. MaaS offers to customers

dedicated, bare-metal servers installed and housed by providers. Customers can choose

from servers with various hardware configurations, such as different CPUs, GPUs,

and memory options, to meet their specific needs. In this case, customers are respon-

sible for configuring and maintaining the resources, while providers only handle the

physical installation (and power and cooling). As an example, a company running

high-performance computing tasks might want full control over the hardware and avoid

user contention on shared resources.

Infrastructure-as-a-Service (IaaS)

IaaS provides virtualized computing resources over the internet, enabling customers to

rent virtual machines (often referred to as “instances”), storage, and networking compo-

nents on demand. This model allows customers to scale their infrastructure dynamically

according to their workload requirements without the need for investing in physical hard-

ware. Providers manage the underlying physical infrastructure and ensure its availability,

while customers control and configure the operating systems and applications running on

them. For example, a company developing a web application might use IaaS to quickly

deploy and scale their servers based on user traffic, paying for the virtual machines only

when they are needed. The pervasive use of virtualization technology revolutionized the

market by providing the ability to cloud vendors to abstract from physical resources and

CHAPTER 2. CLOUD AND SERVERLESS COMPUTING 11

2.1. THE CLOUD ORGANIZATION

run workloads belonging to different customers on the same infrastructure transparently.

Platform-as-a-Service (PaaS)

This model is a step further in the abstraction of the infrastructure, further reducing

the customer’s effort by providing a ready-to-use execution environment on which

applications can run. PaaS provides a platform (often used via APIs or web interfaces)

allowing customers to develop, run, and manage applications without dealing with the

underlying virtualized components (e.g., having to install all the necessary software

and dependencies on virtual machines). In its purest form, PaaS is just an abstraction

over the infrastructure layer with some interface to upload application code. The cloud

vendor has to spin up the virtual machines, configure them, and deploy the application.

This mechanics further delegates responsibility to the cloud provider, which is now

responsible for the execution and scalability of the application.

Software-as-a-Service (SaaS)

At the other end of the spectrum, SaaS offers the highest level of abstraction by deliv-

ering fully functional software applications over the Internet, accessible through a web

browser or mobile apps without any need for local installation or maintenance. From this

perspective, SaaS customers are the end-users of the software. A wide range of business

applications are offered as SaaS, such as Customer Relationship Management (CRM),

Enterprise Resource Planning (ERP), human resources management, and collaboration

or productivity tools like Office 365, Google Suite or Salesforce. The main benefits of

SaaS are threefold: i) it eliminates the need for customers to purchase, install, and main-

tain software, ii) it reduces IT management costs, iii) enables the customer to access the

software from any device with Internet access. Usually, SaaS software is licensed on a sub-

scription basis, with the customer paying a monthly or yearly fee to access the software.

Other “as-a-Service” Models

Based on these four main models, many other specialized services tailored to specific

needs were developed. This phenomenon became known as the “Everything as a Service”

(XaaS) model, where any kind of software can be offered as an online service based

on a pay-per-use model. For instance, Database-as-a-Service allows customers to easily

12 CHAPTER 2. CLOUD AND SERVERLESS COMPUTING

2.2. TYPES OF CLOUD

Hardware

Virtualization

Runtime

Application

Hardware

Virtualization

Runtime

Application

Hardware

Virtualization

Runtime

Application

Hardware

Virtualization

Runtime

Application

Hardware

Virtualization

Runtime

Application

On Premises MaaS IaaS PaaS SaaS

Managed by
Customer

Managed by
Vendor

Figure 2.2: Common representation of the responsibility offloaded to the cloud vendor
provided by the different Cloud Computing Service Models.

deploy, access and manage databases without the complexities of setup and maintenance.

Similarly, Storage as a Service provides scalable storage solutions that can be accessed re-

motely, eliminating the need for on-premises hardware. This kind of services can each fall

into their relative layer of the above-mentioned cloud computing organization. Of particu-

lar note, Backend-as-a-Service (BaaS) is a refinement of the PaaS model, where the cloud

provider integrates in the code execution platform a set of pre-configured services, such as

databases, storage, and middleware. This enhanced platform forms a complete, tighly in-

tegrated environment where the customer has access to a ready-to-use backend infrastruc-

ture. Backend-as-a-Service is one of the two components that form the basis of Serverless

Computing, the other being Function-as-a-Service (FaaS) which we discuss in Chapter 3.

2.2 Types of Cloud

Cloud computing, with its several service models, has been instrumental in expanding

the reach and capabilities of software applications. We can categorize the kind of cloud

deployments into four main types [126, 26]: private cloud, community cloud, public

cloud, and hybrid cloud. Moreover, we can consider different kinds of distribution

models, such as multi-region, multi-cloud, fog computing, and edge computing.

CHAPTER 2. CLOUD AND SERVERLESS COMPUTING 13

2.2. TYPES OF CLOUD

2.2.1 Deployment Models

Private Cloud

A private cloud, also known as internal cloud, is designed for exclusive use by a single

organization. It is either built and managed by the organization or outsourced to a third

party. This model ensures the highest degree of control over performance, reliability,

and security. However, unlike public cloud solutions, private clouds do not typically

operate on a pay-as-you-go model, resembling traditional company-owned server farms

in their financial structure.

Community Cloud

A community cloud is a cloud computing model where infrastructure is shared among a

specific group of users, such as organizations within the same industry or with common

interests. These cloud deployments are typically owned and managed by one or more

organizations within the community, and they cater to the unique needs of this group.

While delivering computing resources like storage, networking, servers, and applications

over the Internet, community clouds are distinct from public clouds in that they are

accessible only to members of the community. This model offers benefits such as cost

efficiency, enhanced security, optimizations tailored to specific use cases, and compli-

ance with regulatory requirements. By sharing resources, community clouds reduce

infrastructure and management costs, providing a secure and compliant environment

for the community’s specialized needs.

Public Cloud

Public clouds, managed by third-party providers, offer computing resources such as stor-

age, networking, and applications over the Internet to users worldwide. These cloud de-

ployments operate on a pay-as-you-go model, allowing users to access and scale resources

as needed without the burden of maintaining their own infrastructure. While public

clouds can be cost-effective, including no initial capital investment on infrastructure, they

may not provide the same level of customization as private clouds and lack fine-grained

control over data, network, and security settings. Moreover, the services offered by the

providers are often geared towards the so called “vendor lock-in”, where customers are

14 CHAPTER 2. CLOUD AND SERVERLESS COMPUTING

2.2. TYPES OF CLOUD

tied to a specific provider due to the integrated nature of the services offered, making

it difficult to migrate an application built on a specific provider’s cloud to another one.

Hybrid Cloud

Hybrid clouds are a combination of the public and private cloud models that try to

address the limitations of the other approaches. It allows organizations to leverage

on-premises, private, and third-party public cloud services based on their specific needs.

This approach enables fine-grained control over virtualized infrastructure, utilizing stan-

dardized or proprietary technology to integrate different cloud deployments. It makes

it possible for organizations to use public clouds for non-sensitive tasks and private

clouds for critical or sensitive workloads. However, hybrid clouds requires to carefully

determine the best split of resources and workloads between the two environments.

2.2.2 Distribution Models

Cloud computing distribution models define how cloud services are deployed and accessed

across different locations and platforms. A single centralized cloud approach could repre-

sent a single point of failure for the overall architecture, due to possible network connec-

tivity problems, human errors, unpredictable failure or natural disasters. Moreover, from

a business perspective, the above-mentioned phenomena of vendor lock-in can be a signif-

icant issue, making it difficult for customers to experiment with different cloud providers

or migrate from one to another to cut costs or take advantage of different capabilities.

Multi-Cloud

An effective solution to cloud availability and vendor lock-in issues is adopting a

Multi-Cloud strategy. Multi-Cloud involves using multiple cloud services from different

providers into a single infrastructure, including public clouds like AWS, Microsoft Azure,

and Google Cloud Platform, as well as private and on-premises solutions. This approach

generalizes the hybrid cloud model by integrating multiple public cloud providers. Opt-

ing for Multi-Cloud helps to avoid dependency on a single provider, ensuring there

are alternatives in case of outages or pricing changes. It also allows cost optimization,

as different providers may offer better pricing for specific services. Implementing

CHAPTER 2. CLOUD AND SERVERLESS COMPUTING 15

2.2. TYPES OF CLOUD

Multi-Cloud requires resource management across platforms, which can be facilitated

by cloud management tools and standardized technologies like OpenStack [81] and

Kubernetes [63]. However, the approach may still fall short in meeting the strict locality

and high data demands of numerous connected, smart services.

Multi-Region

An alternative to the Multi-Cloud strategy is the Multi-Region approach, where ser-

vices are distributed across multiple geographic regions. This can also be enacted

within the same cloud provider. This method enhances resilience by reducing the

risk of regional failures such as natural disasters or network outages, by spreading

resources across different regions. It also makes it possible to position resources in

regions closer to end-users to reduce latency. Additionally, Multi-Region deployments

help meeting regulatory requirements by keeping data within specific geographical

boundaries. As for multi-cloud distribution, this strategy requires robust mechanisms

for data synchronization, failover management, and load balancing across the regions.

Edge Computing

Going a step further in the distribution models, Edge Computing brings resources closer

to the users, outside of centralized data centers typically at the edge of the network.

With the ubiquitous wireless Internet access and the proliferation of IoT technology

many new applications are possible in sectors such as smart cities and Industry 4.0 [12].

Traditional cloud solutions are not optimized for latency speeds, bandwidth and

connectivity availability, when it comes to a decentralized network of devices connected

to the cloud. As industries increasingly demand fast analysis and reaction, the delays

inherent in cloud computing lead to inefficiencies and delays. Additionally, the continuos

streams data generated by IoT devices require an adequate bandwidth and raise security

and privacy concerns. Adding Edge Computing to the cloud continuum enables local

optimizations of data processing, reducing the distance data must travel on the network

and minimizing delays, by positioning storage and computing resources closer to data-

producing and consuming devices. In this way, Edge Computing is perceived as a method

of optimizing Cloud Computing by performing computations (such as data analytics)

as close to the data sources as possible. Edge resources can be tailored to specific use

16 CHAPTER 2. CLOUD AND SERVERLESS COMPUTING

2.2. TYPES OF CLOUD

cases, providing functionalities like computing offloading, data storage, caching, and

service request coordination. This proximity reduces network hops, speeding system

response and interactions. New connectivity technologies like WiFi-6 and 5G further

enhance network bandwidth, supporting parallel and continuous data transmission.

Fog Computing A related concept is Fog Computing, which is usually conflated

with Edge Computing. Fog Computing is a layered model aiming to give ubiquitous

access to a continuum of computing resources, from the cloud to the edge. The central

concept is to have “fog” nodes (physical or virtual) positioned between smart end-

devices and centralized cloud services [50]. These context-aware fog nodes, organized in

clusters, minimize request-response times and provide local computing resources while

maintaining connectivity to central services when needed. Together Edge, Fog and

Cloud form the Cloud-Edge Continuum, Figure 2.3.

La
te
nc
y

Sl
ow

Fa
st

Cloud
Computing

Edge
Computing

Fog
Computing

Figure 2.3: A representation of the Cloud-Edge Continuum, adapted from [50].

Cloud-Edge Continuum

Organizations can choose to adopt one or multiple cloud distribution models based on

their specific needs. Multi-cloud and edge computing are emerging as promising archi-

tectural patterns that could potentially address service availability and quality demands.

The development of an infrastructure beyond centralized data centers into the edge

CHAPTER 2. CLOUD AND SERVERLESS COMPUTING 17

2.2. TYPES OF CLOUD

forms the Cloud-Edge Continuum (commonly referred to with just Cloud Continuum),

which combines the large-scale data processing of cloud computing with the low latency,

location-aware processing of edge computing. Integrating different models within the

Cloud Continuum presents challenges in orchestrating and managing these decentralized

infrastructures. For an effective integration, systems are required to cooperate and

coordinate across various protocols and data formats, necessitating reliable and scalable

interaction mechanisms along with novel synchronization and coordination methods.

This complexity can increase development costs and hinder adoption, although new

service models, like serverless computing, try to abstract away the underlying resources

and provide a more straightforward way to deploy applications across the continuum.

In the next chapter the focus will shift to Serverless Computing, introducing its key

service model: Function-as-a-Service.

18 CHAPTER 2. CLOUD AND SERVERLESS COMPUTING

Chapter 3

Function as a Service

Function as a Service (FaaS) is another computing model that has been gaining

popularity over the last few years [92, 27, 72, 44, 61, 80, 8, 59]. The main idea behind it is

to have a service where a developer can register code functions together with parameters

such as triggering events and data bindings. The functions are uploaded and stored in

a platform that can support indipendent invocations of the functions in response to the

triggering events. These FaaS platforms create an abstraction that allows users to operate

as if the underlying infrastructure does not exist, therefore paired with a BaaS system to

manage the FaaS platform itself, a cloud provider can offer a “Serverless” environment.

With these platforms, software developers create stateless functions, that act as the basic

execution unit, and develop software architectures as a composition of these functions.

These compositions are often referred to as workflows or pipelines. This way of building

architectures also means that users do not control where or when their code is executed.

As shown in Figure 3.1, we can extend the previous service models representation from

Figure 2.2 by including FaaS as an intermediate step between PaaS and SaaS. In FaaS,

customers have no view of the underlying runtimes of their applications, i.e., they do not

have to package their code with the necessary libraries or dependencies (or containerized)

so that it can be uploaded to a PaaS system. Furthermore, they do not have to worry

about scaling their applications, or introduce mechanisms to handle scaling for when the

PaaS platform decides to perform replications. With FaaS, customers only have to upload

code snippets (typically in the form of functions with a specific signature) and configure

the events that can trigger their execution (e.g. HTTP requests). These functions can be

CHAPTER 3. FUNCTION AS A SERVICE 19

Hardware

Virtualization

Runtime

Scaling

Hardware

Virtualization

Runtime

Scaling

PaaS SaaS

Managed by
Customer

Managed by
Vendor

Hardware

Virtualization

Runtime

Scaling

FaaS

Application Code Application Code Application Code

Figure 3.1: Common representation of the responsibility offloaded to the cloud vendor
provided by the different Cloud Computing Service Models.

written in the platform of choice’s supported programming languages and are (or should

be) designed to be short-lived and stateless. Under this light, everything is managed

by the cloud provider but the code itself, putting FaaS just one step below SaaS.

FaaS platforms also dynamically scale resources per request, adjusting automatically

based on demand. This functionality allows for a zero-scaling feature, meaning services

consume minimal resources when idle (as long as no functions are running due to some

triggering, the provider just runs minimal services to listen for those triggers). There is

a variety of approaches to handle functions’ execution, but the most common one is to

use containers in order to have an isolated environment to run the function. On a new

function invocation, the platform instantiates a new container, executes the function,

and then destroys the container or reuses it for future invocations. In the next section,

we will discuss the various approaches to function execution. Finally, regarding this abil-

ity to spin up resources on demand to invoke functions, cloud providers have introduced

a per-execution billing model, where customers pay only for function invocations or for

the duration of each function execution. When using a paid FaaS offering from a cloud

20 CHAPTER 3. FUNCTION AS A SERVICE

3.1. FAAS PLATFORMS INTERNALS

vendor, it can translate into a more cost-effective solution, especially when demand of

an application is low or highly variable. Instead of paying for a fixed amount (typically

a monthly fee) to reserve resources, customers only pay for when their applications are

in use. The per-use model can also be a double-edged sword when there are unexpected

traffic spikes, or in case of a developer error that causes a function to invoke itself or

other functions continuously (a common anti-pattern [95]). In both cases, the platform

will silently try to meet demand by automatically scaling the functions up [111, 88].

3.1 FaaS Platforms Internals

In recent years many FaaS platforms have been developed by both industry and

academia. All the major cloud providers have their own Serverless computing offerings

powered by their own FaaS platforms, such as AWS Lambda, Google Cloud Functions,

Azure Functions, and IBM Cloud Functions. The latter is based on Apache OpenWhisk,

an open-source FaaS platform developed by IBM and later donated to the Apache

Software Foundation. In the open source space there are numerous other projects, with

OpenWhisk being now one of the most popular together with OpenFaaS and Knative.

Storage

Controller

Worker

API

Scheduler

Metrics

Function Invoker Function Instance

Save Result

Store/Retrieve

Function InstanceFunction Instance

Request Invocation

Metrics

Pipeline Composer

Figure 3.2: High-level FaaS architecture components.

Among all these platforms, a pattern of common architecture elements has emerged,

CHAPTER 3. FUNCTION AS A SERVICE 21

3.1. FAAS PLATFORMS INTERNALS

as shown in Figure 3.2. In particular, a Controller component responsible for managing

and coordinating the functions, a Worker component (or many) that runs the functions,

a storage component to store the functions, their metadata possibly their results, etc.,

and a triggering mechanism to map events to function invocations.

3.1.1 Core Components

Functions

The core concept for a FaaS platform is the execution and scaling of functions, which

are code snippets written in some programming language supported by it and uploaded

by customers. These code snippets usually follow a specific signature so that a worker

can identify it and invoke it. In Listing 3.1, we show an example of a simple OpenWhisk

function written in JavaScript. OpenWhisk functions expect a “main” procedure with

a JSON input parameter, and another JSON as output. The “body” field of the output

JSON is also treated as the HTML body of the response when the function is invoked

via HTTP. �
1 function main(args) {

2 const name = args.name || ’World ’;

3 return {

4 body: ’<h1 >Hello , ’ + name + ’!</h1 >’,

5 };

6 }
� �
Listing 3.1: Example OpenWhisk Javascript function.

Controller

This component is the heart of a FaaS platform, acting as both the orchestrator for

function execution and the provider of the service to the user. It usually consists of a set

of APIs to create, read, update, and delete functions, and possibly other resources like

“packages” or “modules” that can be used to group functions together, or trigger rules that

can be used to link functions to events. The Controller is also responsible for function

scheduling, so when a function is invoked, it decides which Worker should run it. It can

also keep track of the state of the platform and the health of the Workers to inform the

scheduling decisions. Furthermore, a growing number of platforms now also offer function

22 CHAPTER 3. FUNCTION AS A SERVICE

3.1. FAAS PLATFORMS INTERNALS

composition, allowing multiple functions to be combined into a single workflow. A popu-

lar form of composition on FaaS platforms is function chaining, where one function’s out-

put directly feeds into the next. The controller usually manages the chaining of functions,

coordinating the invocation of the next function in the chain with the output of the pre-

vious one. This chaining allows for complex processes to be built from simpler functions.

Workers

The workers, also commonly called “invokers”, are the function executors. They are

typically distributed across a cluster of nodes and are accessible by the controller to

request invocations. When such requests are received, the worker will prepare the

execution environment, run the function, and return the result.

Runtimes The technologies that Workers employ to make this happen are often

called “runtimes”. The most common approach to implement runtimes are Contain-

ers [19], but new approaches have found use in recent years such as MicroVMs [118]

(e.g. AWS Lambda moved to MicroVMs for function execution with FireCracker [3]),

UniKernels [69], and WebAssembly [103]. The way these technologies are used is similar,

as the objective is to have an isolated environment that can be quickly instantiated

(and removed) with all the necessary dependencies to run functions.

In the early days of FaaS, platforms also used virtual machines to reach a maximum

degree of isolation between invocations [94], but the overhead of instantiating and

setting up VMs limited scaling capabilities. At that point, other approaches were

explored, namely containers and microVMs. A container consists of a lightweight,

isolated environment that packages applications with their dependencies, sharing the

host OS kernel. On the other hand, microVMs are minimal virtual machines that

include an OS kernel, keeping a similar level of isolation as VMs but with a lower

overhead, similar to containers. Unikernels [69] are highly specialized, single-purpose

machine images that include only the necessary parts of an operating system together

with the application code and run directly on a hypervisor or on bare metal. Finally,

WebAssembly [103] (commonly called Wasm) is a binary format compilation target

for languages such as C/C++, Rust, and Go. It enables execution of code written in

these languages within Web browsers with near-native speed. After the introduction

of the WebAssembly System Interface (WASI), it can also be used to run standalone

CHAPTER 3. FUNCTION AS A SERVICE 23

3.1. FAAS PLATFORMS INTERNALS

programs through external calls (imports) to interact with a host environment, enabling

the usage of Wasm modules in server-side environments and as FaaS runtimes.

Function Distribution Besides the way Workers perform function executions, they

can follow different modalities on how they manage function instances. There are two

main approaches to function distribution:

• Single Function Worker: a Worker instance is created for each function deploy-

ment. Here, the Worker is a thin wrapper around the runtime. When an user up-

loads a function, the platform deploys a new Worker instance with the correspond-

ing runtime and function code, ready to accept invocation requests. The controller

can then schedule to one of the available workers designated to run the function.

• Multi-Function Worker: a single Worker instance can instantiate multiple

runtimes. This approach is also shown in Figure 3.2, where aWorker manages mul-

tiple function instances. With container-based runtimes, the Worker will manage

a pool of containers and instantiate a new one when the controller requests an invo-

cation for a specific function for the first time. It can then reuse the container for

future invocations of the same function, to avoid the overhead of spinning up a new

container. With WebAssembly runtimes, the Worker can just cache the compiled

Wasm module and instantiate a new instance of the module for each invocation.

Storage

Intuitively, a storage component is crucial for managing platform artifacts, including

function code, logs, and metadata. Multiple storage systems can be employed to store

the different types of data. Invocations requests might also be stored for monitoring,

to support workflows and retries, and for billing purposes.

Triggers

An equally-important aspect in a FaaS platforms are the triggering events that produce

invocation requests. A trigger is a logical entity responsible for detecting or receiving

external information and transforming it into internal events that initiate function

execution. They are typically mapped to one or more functions in order to invoke

24 CHAPTER 3. FUNCTION AS A SERVICE

3.1. FAAS PLATFORMS INTERNALS

them via requests from a variety of heterogeneous sources. Depending on the platfom,

multiple protocols (e.g., HTTP, WebSockets or messaging queues) and data formats

(e.g., JSON, XML or binary) can be used. Commonly, FaaS platforms provide a set

of built-in triggers, in particular HTTP requests and timers, to which users can add

external services such as message queues via a trigger, connected to specific functions.

The lifecycle and management of triggers are fully handled by the platform.

3.1.2 Example of FaaS Platform: Apache OpenWhisk

Apache OpenWhisk’s architecture closely resembles the one depicted in Figure 3.2 with

one, or more, Controllers and multi-function Workers (they spawn one container per

function). It is an open-source FaaS platform initially developed by IBM and donated to

the Apache Software Foundation. We report in Figure 3.3 a scheme of the architecture

of OpenWhisk.

From left to right, we first find Nginx, which acts as the gateway and load balancer to

distribute the incoming requests. Nginx forwards each request to one of the Controllers

in the current deployment.

The Controllers decide on which of the available computation nodes, calledWorkers1,

to schedule the execution of a given function. Controllers and Workers do not interact

directly but use Apache Kafka [62] and CouchDB [7] to respectively handle the routing

and queueing of execution requests and to manage the authorisations and the storage

of functions and of their outputs/responses.

Workers execute functions using Docker containers. To schedule executions, Con-

trollers follow a hard-coded policy that mediates load balancing and caching. This

logic works by trying to allocate requests to the same functions on the same Workers,

hence saving time by skipping the retrieval of the function from CouchDB and the

instantiation of the container already cached in the memory of the Worker.

In OpenWhisk, Workers follow the Multi-Function Worker approach, where a single

Worker instance can instantiate multiple runtimes (using containers).

1OpenWhisk’s documentation uses the more specific term “invokers”.

CHAPTER 3. FUNCTION AS A SERVICE 25

3.2. FUNCTIONS SCHEDULING

authorisation, functions, responses

balancing

executionqueuingscheduling

Figure 3.3: Apache OpenWhisk architecture.

3.2 Functions Scheduling

The Serverless development cycle is divided in two main parts: a) the writing of a

function using a programming language supported by the platform (e.g., JavaScript,

Python, C#) and b) the definition of an event that should trigger the execution of the

function. For example, an event is a request to store some data, which triggers a process

managing the selection, instantiation, scaling, deployment, fault tolerance, monitoring,

and logging of the functions linked to that event. A Serverless provider is responsible

to schedule functions on its workers, to control the scaling of the infrastructure by

adjusting their available resources, and to bill its users on a per-execution basis.

3.2.1 Limitations

When instantiating a function, the provider has to create the appropriate execution

environment for the function, as discussed in Section 3.1.1. How the provider implements

the allocation of resources and the instantiation of execution environments impacts on

the performance of the function execution [54, 13, 47, 46].

One of the main challenges to address is how should Serverless providers schedule

the functions on the available computation nodes. To visualize the problem, consider,

for example, Figure 3.4 which depicts the availability of two groups of heterogeneous

Workers and a Controller. One group contains nodes with different computational

resources, in particular one node is equipped with a GPU. The other group provides

a Data Storage service and a Worker that is close to it.

26 CHAPTER 3. FUNCTION AS A SERVICE

3.2. FUNCTIONS SCHEDULING

Worker

Worker

Data Storage

GPU

Worker

Worker

Controller

Site 1 Site 2

Figure 3.4: Scenario depicting multiple zones with heterogeneous workers. A naive
scheduling algorithm would assign functions to workers without considering the kind of
computational resources available.

All the Workers can execute a function that interacts with the Data storage. When

the Controller (acting as the function scheduler) receives a request to execute the

function, it must decide on which Worker to execute it. To minimise the response time,

the Controller should consider the different computational loads of the Workers, which

influence the time they take to execute the function. Moreover, the latency to access

the Data storage plays an important role in determining the performance of function

execution. TheWorker at Site 2 is close to the data storage and enjoys a faster interaction

with it while the Workers at Site 1 are farther from it and can undergo heavier latencies.

Cold Starts One of the most common slow-down issues in FaaS platforms is the

“cold start” problem, where the first invocation of a function is slower than subsequent

ones. If the provider allocates, for example, a new container for every request, the

initialisation overhead of the container would negatively affect both the performance of

the single function and heavily increase the load on the worker. The “cold start” is due

CHAPTER 3. FUNCTION AS A SERVICE 27

3.2. FUNCTIONS SCHEDULING

to the time it takes for the worker to spin up the new container with the appropriate

dependencies for the function, initialize it with the function code, and then finally

launch the execution. The opposite of a cold start would be a “warm start”, where

the worker can reuse a container that has already been initialized and is ready to

run the function. A solution to tackle this problem is to maintain a “warm” pool of

already-allocated containers. This principle is usually referred to as code locality [47].

Localities Resource allocation also includes I/O operations that need to be properly

considered. For example, Wang et al. [115] report that a single function in the Amazon

serverless platform can achieve on average 538Mbps network bandwidth, an order of

magnitude slower than single modern hard drives (the authors report similar results

from Google and Azure). Those performance result from bad allocations over I/O-

bound devices, which can be reduced following the principle of session locality [47], i.e.,

taking advantage of already established user connections to workers. Another important

aspect to consider to schedule functions, as underlined by the example in Figure 3.4,

is that of data locality, which comes into play when functions need to intensively access

(connection- or payload-wise) some data storage (e.g., databases or message queues).

Intuitively, a function that needs to access some data storage and that runs on a

worker with high-latency access to that storage (e.g., due to physical distance or thin

bandwidth) is more likely to undergo heavier latencies than if run on a worker “closer” to

it. Data locality has been subject of research in neighbouring Cloud contexts [124, 117].

3.2.2 Scheduling in Apache Openwhisk

Given a function to be executed, OpenWhisk’s controller acts as the load balancer by

forwarding the execution request to one selected worker.

The load balancing policy followed by the controller aims at maximising container

reuse. When the controller needs to schedule the execution of a function, a numeric hash

h is calculated using the action name. A worker is then selected using the remainder of

the division between h and the total number of workers n. The controller checks if the

worker is overloaded. If the chosen worker is overloaded, the index is incremented by a

step-size, which is any of the co-prime numbers smaller than the amount n of available

workers.

28 CHAPTER 3. FUNCTION AS A SERVICE

3.2. FUNCTIONS SCHEDULING

When no worker is available after cycling through the entire worker pool, the load

balancer randomly selects a worker from those that are considered “healthy”—able

to sustain the workload. This happens when there are workers that are healthy but

have no capacity available when the scheduling algorithm was searching for a worker.

When there are no healthy workers, the load balancer returns an error stating that no

workers are available for executing the function.

CHAPTER 3. FUNCTION AS A SERVICE 29

3.2. FUNCTIONS SCHEDULING

30 CHAPTER 3. FUNCTION AS A SERVICE

Part II

Contributions

31

Chapter 4

Allocation Priority Policies

4.1 Introduction

The first challenge we address in this thesis, is the problem of function-execution

scheduling optimisation [47], as discussed in Section 3.2.1, for which we propose a

methodology that enables Serverless providers to efficiently schedule functions on avail-

able computation nodes using a declarative language called Allocation Priority Policies

(APP). Developers can use APP to specify a scheduling policy for their functions that

the scheduler later uses to find the worker that, given the current status of the system,

best fits the constraints specified by the developer of a given function. To substantiate

our proposal, we extended the scheduler of OpenWhisk to use APP-defined policies in

the scheduling of Serverless functions.

Structure of the chapter In Section 4.2 we detail the APP language and present our

prototypical implementation as an extension of OpenWhisk. To validate our extension,

in Section 4.3, we present a use case combining IoT, Edge, and Cloud Computing and in

Section 4.4 we contrast an implementation of the use case using our APP-based prototype

with a näıve one using three coexisting installations of the vanilla OpenWhisk stack to

achieve the same functional requirements. We present the data on the performance of

the two deployments, providing empirical evidence of the performance gains offered by

the APP-governed scheduling. We discuss future and concluding remarks in Section 4.5.

CHAPTER 4. ALLOCATION PRIORITY POLICIES 33

4.2. THE APP LANGUAGE

4.2 The APP Language

At least three aspects related to function scheduling affect the performances of function

execution in Serverless platforms: code, session, and data locality. Load balancing

policies adopted by state-of-the-art Serverless platforms like Apache OpenWhisk take

advantage only of code locality, but they currently have no way to integrate also

information on other types of locality. To take advantage of other forms of locality, the

load balancer should have knowledge on the way functions access external resources,

like I/O-bound devices or databases, whose usage depends on the implementation of

functions. As a first work to tackle this issue, we aim at bridging that information gap,

presenting a language that any Serverless platform can use in its scheduling policies to

consider those factors. Our approach is conservative: with its default settings (explained

in the next section) it can capture the status of current Serverless platforms. Then,

more advanced Serverless users and platform providers can use the features offered by

our proposal to optimise the execution of functions. Moreover, optimised scheduling

policies could be the outcome of automatic heuristic/inference systems applied to the

functions to be executed. With this chapter we address the first fundamental step,

i.e., showing the feasibility of Serverless platforms instructed with customized load

balancing rules. As previously discussed, current serverless platforms, like OpenWhisk,

come equipped with hard-coded load balancing policies. In this section, we present

the Allocation Priority Policies (APP) language, intended as a language to specify

customised load balancing policies and overcome the inflexibility of the hard-coded load

balancing ones. The idea is that both developers and providers can write, besides the

functions to be executed by the platform, a policy that instructs the platform what

workers each function should be preferably executed on. Function-specific configurations

are optional and without them the system can follow a default strategy.

As an extension of the example depicted in Figure 3.4, consider some functions that

need to access a database. To reduce latency (as per data locality principle), the best

option would be to run those functions on the same pool of machines that run the

database. If that option is not valid, then running those functions on workers in the

proximity (e.g., in the same network domain) is preferable to using workers located

further away (e.g., in other networks). Below, Listing 4.1, we provide an initial APP

script that specifies the scheduling policies only for those workers belonging to the pool

34 CHAPTER 4. ALLOCATION PRIORITY POLICIES

4.2. THE APP LANGUAGE

policy tag ∈ Identifiers ∪ {default} worker label∈Identifiers n ∈ N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers ["*" | - worker label]
(strategy [random | platform | best first])?
(invalidate [capacity used : n%
| max concurrent invocations : n | overload])?

followup ::= followup : [default | fail]

Figure 4.1: The APP syntax.

of machines running the database.�
couchdb_query :

- workers:

- DB_worker1

- DB_worker2

strategy: random

invalidate:

capacity used: 50%

followup: fail
� �
Listing 4.1: Simple APP script for

data locality optimization.

At the first line, we define the policy tag, which

is couchdb_query. As explained below, tags are

used to link policies to functions. Then, the key-

word workers indicates a list of worker labels,

which identify the workers in the proximity of the

database, i.e., DB_worker1 and DB_worker2. As ex-

plained below, labels are used to identify workers.

Finally, we define three parameters: the strat-

egy used by the scheduler to choose among the

listed worker labels, the policy that invalidates

the selection of a worker label, and the followup

policy in case all workers are invalidated. In the

example, we select one of the two labels randomly, we invalidate their usage if the

workers corresponding to the chosen label are used at more than the 50% of their

capacity (capacity used) and, in case all workers are invalidated (followup), we let

the request for function execution fail.

The APP syntax and semantics We report the syntax of APP in Figure 4.1. The

basic entities considered in the APP language are a) scheduling policies, identified by a

policy tag identifier to which users can associate their functions—the policy-function

CHAPTER 4. ALLOCATION PRIORITY POLICIES 35

4.2. THE APP LANGUAGE

association is a one-to-many relation—and b) workers, identified by a worker label—

where a label identifies a collection of computation nodes. An APP script is a YAML [18]

file specifying a sequence of policies. Given a tag, the corresponding policy includes

a list of workers blocks, possibly closed with a followup strategy. A workers block

includes three parameters: a collection of worker labels, a possible scheduling strategy,

and an invalidate condition. A followup strategy can be either a default policy or the

notification of failure.

We discuss the APP semantics, and the possible parameters, by commenting on

a more elaborate script extending the previous one, shown in Listing 4.2. The APP

script starts with the tag default, which is a special tag used to specify the policy

for non-tagged functions, or to be adopted when a tagged policy has all its members

invalidated, and the followup option is default.

In Listing 4.2, the default tag describes the default behaviour of the serverless

platform running APP. The wildcard ”*” for the workers represent all worker labels.

The strategy selected is the platform default (e.g., in our prototype in Section 4.3 the

platform strategy corresponds to the selection algorithm described in Section 3.2.2)

and its invalidate strategy considers a worker label non-usable when its workers are

overloaded, i.e., none has enough resources to run the function.�
1 default:

2 - workers: "*"

3 strategy: platform

4 invalidate: overload

5

6 couchdb_query :

7 - workers:

8 - DB_worker1

9 - DB_worker2

10 strategy: random

11 invalidate: capacity_used : 50%

12 - workers:

13 - near_DB_worker1

14 - near_DB_worker2

36 CHAPTER 4. ALLOCATION PRIORITY POLICIES

4.2. THE APP LANGUAGE

15 strategy: best_first

16 invalidate: max_concurrent_invocations : 100

17 followup: fail
� �
Listing 4.2: Example of an APP script.

Besides the default tag, the couchdb_query tag is used for those functions that

access the database. The scheduler considers worker blocks in order of appearance from

top to bottom. As mentioned above, in the first block (associated to DB_worker1 and

DB_worker2) the scheduler randomly picks one of the two worker labels and considers

a label invalid when all corresponding workers reached the 50% of capacity. Here the

notion of capacity depends on the implementation (e.g., our OpenWhisk-based APP

implementation in Section 4.3 uses information on the CPU usage to determine the

load of invokers). When both worker labels are invalid, the scheduler goes to the

next workers block, with near_DB_worker1 and near_DB_worker2, chosen following a

best first strategy—where the scheduler considers the ordering of the list of workers,

sending invocations to the first until it becomes invalid, to then pass to the next ones in

order. The invalidate strategy of the block regards the maximal number of concurrent

invocations over the labelled workers—max concurrent invocations, which is set to 100.

If all the worker labels are invalid, the scheduler applies the followup behaviour, which

is to fail.

Summarising, given a policy tag, the scheduler considers the corresponding workers

blocks starting from the top. A block includes three parameters:

• workers: contains a non-empty list of worker labels or the "*" wildcard to

encompass all of them;

• strategy: defines the policy of worker label selection. APP currently supports

three strategies:

– random: labels are selected in a fair random manner;

– best first: labels are selected following their order of appearance;

– platform: labels are selected following the default strategy of the serverless

platform—in our prototype (cf. Section 4.3) the platform option corre-

CHAPTER 4. ALLOCATION PRIORITY POLICIES 37

4.3. APP IMPLEMENTATION IN APACHE OPENWHISK

sponds to the algorithm based on identifier hashing with co-prime increments

explained in Section 3.2.2.

• invalidate: specifies when to stop considering a worker label. All invalidate

options below include as preliminary condition the unreachability of the corre-

sponding workers. When all labels in a block are invalid, the next block or the

followup behaviour is used. Current invalidate options are:

– overload: the corresponding workers lack enough computational resources

to run the function;1

– capacity used: the corresponding workers reached a threshold percentage

of CPU load (although not being overloaded);

– max concurrent invocations: the corresponding workers have reached a

threshold number of buffered concurrent invocations.

• followup: specifies the policy applied when all the blocks in a policy tag are

considered invalid. The supported followup strategies are:

– fail: stop the scheduling of the function;

– default: follow what is defined in the default tag.

4.3 APP Implementation in Apache OpenWhisk

We have implemented a serverless platform in which load balancing policies can be

customised using the APP language. This implementation2 was obtained by modifying

the OpenWhisk code base. Namely, we have replaced the load balancer module in the

OpenWhisk controller, with a new one that reads an APP script, parses it, and follows

the specified load balancing policies when OpenWhisk invokers should be selected3.

1The kind of computational resources that determine the overload option depends on the APIs
provided by a given serverless platform. For example, in our prototype in Section 4.3 we consider a
worker label overloaded when the related invokers are declared “unhealthy” by the OpenWhisk APIs,
which use memory consumption and CPU load.

2The implementation is on an open-source a fork of Apache OpenWhisk. Available at
https://github.com/giusdp/openwhisk.

3For simplicity, we chose to associate one worker label with one invoker.

38 CHAPTER 4. ALLOCATION PRIORITY POLICIES

4.3. APP IMPLEMENTATION IN APACHE OPENWHISK

Invocation

Private Data
IoT Devices

Site 1

Worker WorkerLoad Balancer

Virtual Private Network Public Cloud

Worker

E

S B

S B

B
Site 2

Public Data

Legend
Access E S B Function

Figure 4.2: Use case architecture representation.

To test our implementation, we used the Serverless use case depicted in Figure 4.2

encompassing three Serverless domains: i) a private cloud with a low-power edge-device

Worker at a first location, called Site 1; ii) a private cloud with the Worker at Site 1

and a mid-tier server Worker at a second location, called Site 2; iii) a hybrid cloud

with the two Workers at Site 1 and Site 2 and a third mid-tier server from a Public

Cloud. Site 1 and Site 2 are respectively located in Italy and Greece while the Public

Cloud is located in northern Europe.

Site 1 is the main branch of a company and it runs both a data storage of Private

Data and the IoT Devices used in their local line of production. Site 1 also hosts

the scheduler of functions, called the Load Balancer. The Worker at Site 1 can

access all resources within its site. Site 2 hosts a Worker which, belonging to the

company virtual private network (VPN), can access the Private Data at Site 1. The

company also controls a Worker in a Public Cloud and a data storage with Public

Data accessible by all Workers.

In the use case, three different function deployments need to co-exist in the same

infrastructure, marked as E , S , and B . Function E (edge) manages the IoT

Devices at Site 1 and it can only execute on the edge Worker at the same location,

CHAPTER 4. ALLOCATION PRIORITY POLICIES 39

4.4. EXPERIMENTS AND RESULTS

which has access to those devices. Function S (small) is a light-weight computation

that accesses the Private Data storage at Site 1, within the company VPN. Function

B (big) performs heavy-load queries on the Public Data storage in the Public Cloud.

As mentioned, here data locality plays an important part in determining the performance

of Serverless function execution:

• the Worker at Site 1 can execute all functions. It is the only worker that can

execute E and it is the worker with the fastest access to the co-located Private

Data for S . It can execute B undergoing some latency due to the physical

distance with the Public Data storage;

• theWorker at Site 2 can execute functions S and B , undergoing some latency

on both functions due to its distance from both data storages;

• the Worker at the Public Cloud can execute B , enjoying the fastest access to

the related Public Data source.

4.4 Experiments and Results

We compare the differences on the architecture and performance of the use case

above as implemented using our APP-based OpenWhisk prototype against a näıve

implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed of a

low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in Italy for

Site 1, a Virtual Machine—comparable to an Amazon EC2 a1.large instance—from

the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece for Site 2, and a

Virtual Machine—comparable to an Amazon EC2 a1.large instance—from the Public

Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment plan for

the use case as follows:

40 CHAPTER 4. ALLOCATION PRIORITY POLICIES

https://okeanos.grnet.gr

4.4. EXPERIMENTS AND RESULTS

�
1 Function_E :

2 - workers:

3 - worker_site1

4 followup: fail
� ��
1 Function_S :

2 - workers:

3 - worker_site2

4 - worker_site1

5 strategy: random

6 followup: fail
� ��
1 Function_B :

2 - workers:

3 - worker_public_cloud

4 - worker_site2

5 - worker_site1

6 strategy: best_first

7 followup: fail
� �
Commenting the code above, we have function E represented by Function_E,

where the only invoker available is the one at Site 1 (worker_site1). Since we do

not allow other invokers to handle E , we set the followup value to fail. For S

we have Function_S, where the invokers available are the ones at Site 1 and Site 2

(worker_site2). We let the two invokers split evenly the load of invocations, assigning

random as routing strategy. Also here we let the invocation fail since we do not have

other invokers able to access the Private Data storage within the company VPN. Finally,

the policy for B (Funcion_B) includes all workers (hence also worker_public_cloud

besides the ones at Site 1 and Site 2) selected according to the best first strategy.

As for S , also here we let the invocation fail since no other invokers are available.

For the APP-based deployment, we locate the Load Balancer at Site 1 registering to

it the three Workers/invokers from Site 1, Site 2 and the Public Cloud. For the näıve

implementation, we use the same cluster but we install three separate but co-existing

CHAPTER 4. ALLOCATION PRIORITY POLICIES 41

4.4. EXPERIMENTS AND RESULTS

vanilla OpenWhisk instances. The three separate instances are needed to implement

the functional requirements of limiting the execution of function E only on the Italian

Worker, of S only on the Italian and Greek Workers, and of B on all Workers.

To implement the databases (both Private and Public ones) we used a CouchDB

instance deployed at Site 1 and another in the Public Cloud. To simulate the access

to IoT devices at Site 1 (function E) we implemented a JavaScript function that,

queried, returns some readings after a one-second delay. We followed a similar strategy

for S and B , where two JavaScript functions perform a (respectively lighter and

heavier) query for JSON documents.

Architectural Evaluation An evident problem that arises with the triple-deployment

combination is the increased consumption of computational and memory resources to

host 3 copies of all the components, most importantly the Controller and the Invoker.

A partial solution to this is to deploy separately the Kafka, Redis, and CouchDB

components used by OpenWhisk, configuring them to be used by the three different

installations simultaneously. However, we did not perform such optimisation to minimise

the differences between the two tested architectures.

Quantitative Evaluation To have statistically relevant figures to compare the two

setups (the APP-based and the vanilla one), we fired a sequence of 1000 requests for

each function in each setup. We report the results of the tests of the APP-based

implementation in Table 4.1 and those of the vanilla one in Table 4.2. In both tables,

the first column on the left reports the tested function. The three following columns

report the number of requests served by the respective Workers at Site 1, Site 2, and

in the Public Cloud. The last two columns report the time passed from sending a

request to the reception of its response: the second-to-last column reports the average

time (in ms) and the last one reports the average time (in ms) for the fastest 95th

percentile of request-responses.

We comment on the results starting from E (first row from the header in both

tables). As expected, all requests for E are executed at Site 1. The slight difference in

the two averages (APP ca. 5.6% faster than vanilla) and the two fastest 95th percentile

(APP ca. 0.6% faster than vanilla) come from the heavier resource consumption of the

vanilla deployment.

42 CHAPTER 4. ALLOCATION PRIORITY POLICIES

4.4. EXPERIMENTS AND RESULTS

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1096.53 1019.03

S 466 534 0 149.18 90.86

B 0 90 910 105.18 64.62

Table 4.1: 1000 invocation for each function in the APP-based OpenWhisk deployment.

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

E 1000 0 0 1159.90 1025.52

S 19 981 0 385.30 302.08

B 185 815 0 265.69 215.793

Table 4.2: 1000 invocations for each function in the vanilla OpenWhisk deployment.

As expected, the impact of data locality and the performance increase provided by

the data-locality-aware policies in APP become visible for S and B . In the case of S

, the Load Balancer of the vanilla deployment elected Site 2 as the location of the main

invoker (passing to it 98.1% of the invocations). We remind that S accesses a Private

Data storage located at Site 1. The impact of data locality is visible on the execution

of S in the vanilla deployment, being 88.35% slower than the APP-based deployment

on average and 107.5% slower for the fastest 95th percentile. On the contrary, the

APP-based scheduler evenly divided the invocations between Site 1 (46.6%) and Site

2 (53.4%) with a slight preference for the latter, thanks to its greater availability of

resources. In the case of B , the Load Balancer of the vanilla deployment elected again

Site 2 as the location of the main invoker (passing to it 81.5% of all the invocations)

and Site 1 as the second-best (passing the remaining 18.5%). Although available to

handle computations, the invoker in the Public Cloud is never used as the other two

managed to handle the load. Since B accesses a Public Data storage located in the

Public Cloud, also in this case the effect of data locality is strikingly visible, marking a

heavy toll on the execution of B in the vanilla deployment, which is 86.5% slower than

the APP-based deployment on average and 107.8% slower for the fastest 95th percentile.

The APP-based scheduler, following the preference on the Public Cloud, sends the

majority of invocations to the Public Cloud (91%) while the invocations that exceed

the resource limits of the Worker in the Public Cloud are routed to Site 2 (9%), as

defined by the Function_E policy.

As a concluding remark over our experiment, we note that these results do not

CHAPTER 4. ALLOCATION PRIORITY POLICIES 43

4.5. CONCLUSIONS

prove that the vanilla implementation of OpenWhisk is generally worse (performance-

wise) than the APP-based one. Indeed, what emerged from the experiment is the

expected result that, without proper information and software infrastructure to guide

the scheduling of functions with respect to some optimisation policies, the Load Balancer

of OpenWhisk can perform a suboptimal scheduling of function executions. Hence, there

was a chance that the Load Balance of OpenWhisk could have performed some better

scheduling strategies in our experiment, however that would have been an occasional

occurrence rather than an informed decision. Contrarily, when equipped with the

proper information (as it happens with our APP-based prototype) the Load Balancer

can reach consistent results, which is the base for execution optimisation.

4.5 Conclusions

We started addressing the problem of function-execution scheduling optimisation by

proposing a methodology that provides developers with a declarative language called

APP to express scheduling policies for functions, laying the foundation for a family of

frameworks that can be used to enhance new and existing FaaS platforms. To validate

our work, we extended the scheduler of OpenWhisk to use APP-defined policies in

the scheduling of Serverless functions and empirically tested our extension on a use

case that combines IoT, Edge, and Cloud Computing, contrasting our implementation

with a näıve one using the vanilla OpenWhisk stack to achieve the same functional

requirements.

44 CHAPTER 4. ALLOCATION PRIORITY POLICIES

Chapter 5

Topology-aware Serverless

Scheduling

5.1 Introduction

With APP we introduced a novel way to specify customised load-balancing policies so

that developers can optimize their serverless applications by exploiting the locality of

the resources. Use-cases like the one in Figure 5.1 motivate the need for such policies.

Figure 5.1: Example of function-execution scheduling problem.

We have a simple serverless system composed of two workers. One worker, Wl,

executes in the local network and the other, Wc, is in a public cloud. Both workers

can execute functions that interact (represented by the dashed lines) with a database

db deployed in the local network. When the Controller (acting as function scheduler)

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 45

5.1. INTRODUCTION

receives a request to execute the function, it must decide on which worker to execute it.

To minimise the response time, the Controller should consider the different computa-

tional power of the workers as well as their current loads, which influence the time they

take to execute the function. Moreover, the performance of the functions that interact

with the database depends on the latter’s access latency of the node they run on: Wl is

close to the db and enjoys a faster interaction with it while Wc is farther away and can

undergo heavier latencies.

With such use-cases, APP is enough to fine-tune serverless applications to improve

resource usage. However, in more complex scenarios where the system comprises of

replicated controllers and many workers distributed and isolated in different zones, the

language fails to capture the system’s complexity. For this reason we developed an

extension of APP.

A Motivating Example We further clarify the concepts of locality-bound FaaS

scheduling with a case study from our industry partners, which we use as an example

throughout the chapter. We deem the case useful to help understand our contribution

and clarify the motivation behind our work.

The case concerns a cloud-edge-continuum system to control and perform both

predictive maintenance and anomaly detection over a fleet of robots in a production line.

The system runs three kinds of computational tasks: i) predictions of critical events,

performed by analysing data produced by the robots, ii) non-critical predictions and

generic control activities, and iii) machine learning tasks. Tasks i) follow a closed-control

loop between the fleet that generates data and issues these tasks and the workers that

run them and can act on the fleet. Since tasks i) can avert potential risks, they must

execute with the lowest latency and their control signals must reach the fleet urgently.

The users of the system launch the other kinds of tasks, which have no time-constrains.

Tasks iii) have resource-heavy requirements. We depict the solution that we have

designed for the deployment of the system in Figure 5.2. We consider three kinds

of functions, one for each kind of tasks: critical functions ! , generic functions ,

and machine learning functions . To guarantee low-latency and the possibility to

immediately act on the robots, we execute critical functions ! on edge devices (workers

W1,...,Wi in Figure 5.2) directly connected to the robots. Since machine-learning

algorithms require considerable resources, which the company prefers to provision

46 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.1. INTRODUCTION

#edge

#local

#cloud

#cloud

#local

#edge

!

!

!

!

Figure 5.2: Representation of the case study.

on-demand, we execute the machine-learning functions on a public cloud, outside

the company’s perimeter (Wk+1,...,Wj in Figure 5.2). The generic functions do

not have specific, resource-heavy requirements, but they might need to access the

database db in the local network. Hence, we schedule these preferably on the local

cluster (Wi+1,...,Wk in Figure 5.2) and use on-demand public-cloud workers when the

local ones are at full capacity.

For performance and reliability, our solution considers two function-scheduling

controllers for the internal workers, i.e., the controllers LocalCtl1 and LocalCtl2 , and one

for cloud workers, i.e., the controller CloudCtl. One local controller, namely LocalCtl1 ,

has a dedicated low-latency connection with the edge devices able to act on the fleet.

Finally, a Gateway acts as load balancer among the controllers. However, to follow

the requirements of the company, instead of adopting a generic round-robin policy, we

need to instruct the Gateway to forward critical functions ! to LocalCtl1 , the generic

functions to one between LocalCtl1 and LocalCtl2 , and the cloud functions to

CloudCtl (or to any other controller when the latter is not available).

The APP Extension The case above presents a scenario where we need to deploy the

serverless platform over at least two zones (local network and public cloud) and where

the function-execution scheduling policy depends on a topology of different clusters

(edge-devices, local cluster, and cloud cluster). The scheduling policies influence the

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 47

5.2. TAPP, BY EXAMPLE

behaviour of both the gateway and the controllers, which need to know the current

status of the workers (e.g., to execute generic functions in the cloud when the local

cluster is overloaded). One can obtain a deployment of the case by modifying the

source code of all the involved components and by hard-coding their desired behaviour.

However, this solution requires a deep knowledge of the internals of the components

and is fragile and difficult to maintain.

We propose an approach based on a new declarative language, called tAPP (Topology-

aware Allocation Priority Policies), used to write configuration files describing topology-

aware function-execution scheduling policies. In this way, following the Infrastructure-as-

Code philosophy, users (typically DevOps) can keep all relevant scheduling information

in a single repository (in one or more tAPP files) which they can version, change, and

run without incurring downtimes due to system restarts to load new configurations.

Structure of the chapter We first introduce the tAPP language with an example

in Section 5.2 and detail its syntax in Section 5.3. We implement support for tAPP in

OpenWhisk, which allows us to evaluate the feasibility of topology-aware scheduling

policies, presented in Section 5.4. We show that our prototype can capture typical

functional scheduling requirements in cloud-edge deployments that cannot be supported

by standard deployments of vanilla OpenWhisk. We detail the impact of tAPP on

the locality-bound scenario described in our motivating example in Section 5.4.1. In

Section 5.4.2, we analyse the overhead of the tAPP-based extension of OpenWhisk w.r.t.

the vanilla version through test cases drawn from ServerlessBench [128], a benchmark

suite for serverless platforms. In Section 5.5 we draw conclusions discussing future

work.

5.2 tAPP, by example

The Topology-aware Allocation Priority Policy (tAPP) language is a declarative language

able to specify customised load-balancing policies and overcome the inflexibility of the

hard-coded load-balancing ones. The idea is that tAPP can support developers and

providers in optimising the execution of serverless functions. tAPP is tailored to adapt

to the different types of information on the serverless infrastructure that providers

share with developers. For example, in edge deployments (where it is important to

48 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.2. TAPP, BY EXAMPLE

know on which machine functions run), developers know which nodes are available and

their position; in the Cloud, developers think in terms of regions (e.g., west/east US,

Europe) and zones (Los Angeles, New York, Paris areas), rather than single nodes.

As exemplified in Section 5.1, tAPP policies can scale according to these needs and

adapt to cloud-edge-continuum scenarios, where policies can span single nodes, unbound

collections of these (e.g., defined by some common trait), and topological zones. tAPP

can also work in the absence of information provided to developers—without function-

specific configurations, tAPP-based platforms follow a default strategy, like the other,

hardwired alternatives.

As an extension of the example depicted in Figure 5.1, consider some functions that

need to access a database. To reduce latency (as per data locality principle), the best

option would be to run those functions on the same pool of machines that run the

database. If that option is not valid, then running those functions on workers in the

proximity (e.g., in the same network domain) is preferable than using workers located

further away (e.g., in other networks).

An initial tAPP script that specifies the scheduling policies only for those workers

belonging to the pool of machines running the database can be the same as the original

APP script showed in Listing 4.1. We can define a policy tag, associate some workers

and optionally specify a strategy, an invalidate condition and the followup rule.

Essentially, tAPP can capture the same policies as APP at its core, with the addition of

new constructs to express potential topological constraints.

5.2.1 The tAPP Approach

A tag identifies a policy (e.g., we can use a tag “critical” to identify the scheduling

behaviour of the critical ! functions of our case study, cf. Section 5.1) and it marks

all those functions that shall follow the same scheduling behaviour (e.g., marking as

“critical” any function that falls into that category). Topologies are part of policies and

come in two facets. Physical topologies relate to zones, which can represent availability

zones in public clouds and plants in multi-plant industrial settings. Logical topologies

instead represent partitions of workers. The logical layer expresses the constraints of

the user and identifies the pool of workers which can execute a given function (e.g., for

performance). The smallest logical topology is the singleton, i.e., a worker, which we

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 49

5.3. THE TAPP LANGUAGE

identify with a distinct label (e.g., W1 in Figure 5.2). In general, policies can target

lists of singletons as well as aggregate multiple workers in different sets. The interplay

between the two topological layers determines which workers a controller can use to

schedule a function. For example, we can capture the scheduling behaviour of the

critical functions of our case study in this way: 1) we assign LocalCtl1 , LocalCtl2 , and

W1,...,Wk to the same zone, 2) we configure said workers to only accept requests from

co-located controllers (this, e.g., excludes access to CloudCtl), and 3) we set the policy

of the critical functions to only use the workers tagged with the edge label, #edge

in Figure 5.2. Besides expressing topological constraints, policies can include other

directions such as the strategy followed by the controller to choose a worker within

the pool of the available ones (e.g., to balance the load evenly among them) and when

workers are ineligible (e.g., due to their resource quotas).

5.3 The tAPP Language

policy tag∈Identifiers ∪ {default} label∈Identifiers n ∈ N

app ::= - tag

tag ::= policy tag : - controller? workers strategy? invalidate? strategy? followup?

controller ::= controller : label (topology tolerance : (all — same — none))?

workers ::= workers: - wrk : label invalidate?

| workers: - set : label? strategy? invalidate?

strategy ::= strategy : (random | platform | best first)
invalidate ::= invalidate : (capacity used n% | max concurrent invocations n | overload)
followup ::= followup : (default | fail)

Figure 5.3: The syntax of tAPP (the extensions from APP are highlighted).

We report the syntax of tAPP in Figure 5.3.

tAPP scripts are YAML [18] files. The basic entities considered in the language are

a) scheduling policies, defined by a policy tag identifier to which users can associate their

functions—the policy-function association is a one-to-many relation—and b) workers,

identified by a worker label—where a label identifies a collection of computation nodes.

All identifiers are strings formed with the accepted character set as defined in [18].

Given a tag, the corresponding policy includes a list of blocks, possibly closed

with strategy and followup options. A block includes four parameters: an optional

50 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.3. THE TAPP LANGUAGE

controller selector, a collection of workers, a possible scheduling strategy, and an

invalidate condition. The outer strategy defines the policy we must follow to select

among the blocks of the tag, while the inner strategy defines how to select workers

from the items specified within a chosen workers block. The controller defines

the identifier of a specific controller we want the gateway to redirect the invocation

request to. When used, it is possible to define a topology tolerance option to further

refine how tAPP handles failures (of controllers). The collection of workers can be

either a list of labels pointing to specific workers (wrk), or a worker set. In lists, the

user can specify the invalidate condition of each single worker, while in sets, the

invalidate condition applies to all the workers included in the set. When users specify

an invalidate condition at block level, this is directly applied to all workers items

(wrk and set) that do not define one. In sets the user can also specify a strategy

followed to choose workers within the set. Finally, the followup value defines the

behaviour to take in case no specified controller or worker in a tag is available to handle

the invocation request.

We discuss the tAPP semantics, and the possible parameters, by commenting on

a more elaborate script extending the previous one, shown in Listing 5.1. The tAPP

script starts with the tag default, which is a special tag used to specify the policy

for non-tagged functions, or to be adopted when a tagged policy has all its members

invalidated, and the followup option is default.

In Listing 5.1, the default tag describes the default behaviour of the serverless

platform running tAPP. In this case we use a workers set to select workers, with no

value specified for set which represents all worker labels. The strategy selected is the

platform default. In our prototype in Section 5.3.1 the platform strategy corresponds

to a selection algorithm, discussed in Section 3.2.2, which mediates load balancing

and code locality by associating a function to a numeric hash and a step-size. The

invalidate strategy considers a worker non-usable when it is overloaded, i.e., it does

not have enough resources to run the function.

�
1 - default:

2 - workers:

3 - set:

4 strategy: platform

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 51

5.3. THE TAPP LANGUAGE

5 invalidate: overload

6

7 - couchdb_query :

8 - workers:

9 - wrk: DB_worker1

10 - wrk: DB_worker2

11 strategy: random

12 invalidate: capacity used 50%

13 - workers:

14 - wrk : near_DB_worker1

15 - wrk : near_DB_worker2

16 strategy: best first

17 invalidate: max concurrent invocations 100

18 followup: fail
� �
Listing 5.1: Example of a tAPP script.

Besides the default tag, the couchdb_query tag is used for those functions that

access the database. The scheduler considers worker blocks in order of appearance

from top to bottom. As mentioned above, in the first block (associated to DB_worker1

and DB_worker2) the scheduler randomly picks one of the two worker labels and

considers the corresponding worker invalid when it reaches the 50% of capacity. Here

the notion of capacity depends on the implementation (e.g., our OpenWhisk-based tAPP

implementation uses information on the CPU usage to determine the load of invokers).

When both worker labels are invalid, the scheduler goes to the next workers block,

with near_DB_worker1 and near_DB_worker2, chosen following a best first strategy—

where the scheduler considers the ordering of the list of workers, sending invocations to

the first until it becomes invalid, to then pass to the next ones in order. The invalidate

strategy of the block (applied to the single wrk) regards the maximal number of

concurrent invocations over the labelled worker—max concurrent invocations, which

is set to 100. If all the worker labels are invalid, the scheduler applies the followup

behaviour, which is to fail.

Users can define subsets of workers by specifying a label associated with the workers,

e.g., local selects only those workers associated to the local label.

52 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.3. THE TAPP LANGUAGE

The scheduling on worker-sets follows the same logic of block-level worker selection:

it exhausts all workers before deeming the item invalid. Since worker-set selection/in-

validation policies are distinct from block-level ones, we let users define the strategy

and invalidate policies to select the worker in the set. For example, we can pair the

above selection with a strategy and an invalidate options, e.g.,�
- workers:

- set: local

strategy: random

invalidate : capacity used 50%
� �
which tells the scheduler to adopt the random selection strategy and adopt the ca-

pacity used invalidation policy when selecting the workers in the local set. When

worker-sets omit the definition of the selection strategy we consider the default one.

When the invalidation option is omitted, we either use the one of the enclosing block

or, if the latter is missing too, the default one.

Summarising, given a policy tag, the scheduler follows the policy defined in the

strategy option to select the corresponding blocks. A block includes three parameters:

• workers: which either contains a non-empty list of worker (wrk) labels, each

paired with an optional invalidation condition, or a worker-set label (possibly

blank, to select all workers) to range over sets of workers; workers sets optionally

define the strategy and invalidate options to select workers within the set

and declare them invalid;

• strategy: defines the policy of item selection at the levels of policy tag, workers

block, and workers sets. APP currently supports three strategies:

– random: selects items in a fair random manner;

– best first: selects items following their order of appearance;

– platform: selects items following the default strategy of the serverless

platform—in our prototype, this corresponds to a co-prime-based selection.

• invalidate: specifies when a worker (label) cannot host the execution of a func-

tion. All invalidate options include, as preliminary condition, the unreachability

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 53

5.3. THE TAPP LANGUAGE

of a worker. When all labels in a block are invalid, we follow the defined strategy

to select the next block one until we either find a valid worker or we exhaust all

blocks. In the latter case, we apply the followup behaviour. Current invalidate

options are:

– overload: the worker lack enough computational resources to run the

function;1

– capacity used: the worker reached a threshold percentage of CPU load;

– max concurrent invocations: the worker have reached a threshold number

of buffered concurrent invocations.

• followup: specifies the policy applied when all the blocks in a policy tag are

considered invalid. The supported follow up strategies are:

– fail: drop the scheduling of the function;

– default: apply the default tag.

Since the default block is the only possible “backup” tag used when all workers

of a custom tag cannot execute a function (because they are all invalid), the followup

value of the default tag is always set to fail.

Besides the above elements, to further detail topological constraints of function

execution scheduling, we have the controller . This is an optional, block-level parameter

that identifies which of the possible, available controllers in the current deployment

we want to target to execute the scheduling policy of the current tag. Similarly to

workers, we identify controllers with a label.

As mentioned above, a controller clause can have topology tolerance as optional

parameter. When deploying controllers and workers, users can label them with the

topological zone they belong in2. Hence, when the designated controller is unavailable,

1The kind of computational resources that determine the overload option depends on the APIs
provided by a given serverless platform. For example, in our prototype in Section 5.3.1 we consider a
worker label overloaded when the related invokers are declared “unhealthy” by the OpenWhisk APIs,
which use memory consumption and CPU load.

2Zone labels of controllers and workers are not used in tAPP scripts, which only specify co-location
constraints, i.e., requests to consider workers in the same zone of a given controller. Zone labels are
used by the infrastructure to implement the tAPP constraints.

54 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.3. THE TAPP LANGUAGE

tAPP can use this topological information to try to satisfy the scheduling request by

forwarding it to some alternative controller.

The topology tolerance parameter specifies what workers an alternative controller

can use. Specifically, all is the default and most permissive option and imposes no

restriction on the topology zone of workers; same constrains the function to run on

workers in the same zone of the faulty controller (e.g., for data locality); none forbids the

forward to other controllers. As an example, we could take advantage of the topology

zones and rewrite the previous tAPP script from Listing 5.1 for the couchdb_query tag.

e.g., �
- couchdb_query :

- controller : DBZoneCtl

workers:

- set: local

strategy: random

topology_tolerance : same

followup: default
� �
this way it is guaranteed that the function will be executed always on the workers in

the same zone of the database. Lastly, tAPP lets users express a selection strategy

for policy blocks. This is represented by the optional strategy fragment of the tag

rule. By default, when we omit to define a strategy policy for blocks, tAPP allocates

functions following the blocks from top to bottom—i.e., best first is the default policy.

Here, for example, setting the strategy to random captures the simple load-balancing

strategy of uniformly distributing requests among the available controllers.

5.3.1 tAPP in OpenWhisk

We modified OpenWhisk to support tAPP-based scheduling. In particular, to manage

the deployment of components, we pair OpenWhisk with the popular and widely-

supported container orchestrator Kubernetes.

The implementation entailed the creation and inclusion in the existing architecture

of OpenWhisk of new components—e.g., a watcher service, which informs the gateway

and the controllers on the current status of the nodes of the platform—and the extension

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 55

5.3. THE TAPP LANGUAGE

authorisation, functions, responses

balancing

executionqueuing

nodes status, script repository status monitoring

scheduling

DevOps

Figure 5.4: Architectural view of our OpenWhisk extension. We highlight in light blue

the existing components of OpenWhisk we modified and in yellow the new ones we
introduced.

of existing ones with new functionalities—e.g., to capture topological information at

the level of workers and controllers, to enable live-reloading of tAPP policies, and let

controllers and gateways follow tAPP policies depending on topological zones.

Figure 5.4 depicts the architecture of our OpenWhisk extension, where we reuse the

Workers and the Kafka components, we modify Nginx and the Controllers (light blue

in the picture), and we introduce two new services: the Watcher and the NFS Server

(in the highlighted area of Figure 5.4).

The modifications mainly concert letting Nginx and Controllers retrieve and interpret

both tAPP scripts and data on the status of nodes, to forward requests to the selected

controllers and workers. Concerning the new services, theWatcher monitors the topology

of the Kubernetes cluster and collects its current status into the NFS Server, which

provides access to tAPP scripts and the collected data to the other components.

Topology-based Worker Distribution

To associate labels with pods, we exploit the topology labels provided by Kubernetes.

These labels are names assigned to nodes and they are often used to orient pod allocation.

Labels offer an intuitive way to describe the structure of the cluster, by annotating

their zones and attributes. In Figure 5.4 we represent labels as boxes on the side of the

controllers and workers.

56 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.3. THE TAPP LANGUAGE

Since OpenWhisk does not have a notion of topology, all controllers can schedule

all functions on any available worker. Our extension unlocks a new design space that

administrators can use to fine-tune how controllers access workers, based on their

topology. At deployment, DevOps define the access policy used by all controllers. Our

investigation led us to identify four topological-deployment access policies:

• the default policy is the original one of OpenWhisk, where controllers have access

to a fraction of all workers’ resources. This policy has two drawbacks. First,

it tends to overload workers, since controllers race to access workers without

knowing how the other controllers are using them. Second, it gives way to a

form of resource grabbing, since controllers can access workers outside their zone,

effectively taking resources away from “local” controllers;

• the min memory policy is a refinement of the default policy and it mitigates

overload and resource-grabbing by assigning only a minimal fraction of the worker’

resources to “foreign” controllers. For example, in OpenWhisk the resources

regard the available memory for one invocation (in OpenWhisk, 256MB). When

workers have no controller in their topological zone, or no topological zone at

all, we follow the default policy. Also this policy has a drawback: it can lead to

scenarios where smaller zones quickly become saturated and unable to handle

requests;

• the isolated policy lets controllers access only co-located workers. This reduces

overloading and resource grabbing but accentuates small-zone saturation effects;

• the shared policy allows controllers to access primarily local workers and let them

access foreign ones after having exhausted the local ones. This policy mediates

between partitioning resources and the efficient usage of the available ones,

although it suffers a stronger effect of resource-grabbing from remote controllers.

In case no tAPP script is available, controllers resort to their original, hard-coded

logic (explained in Section 3.2.2) but still prioritise scheduling functions on co-located

workers.

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 57

5.3. THE TAPP LANGUAGE

5.3.2 Deploying tAPP-based OpenWhisk

The standard way to deploy OpenWhisk is by using the Docker images available for

each component of the architecture—this lets developers choose the configuration that

suits their deployment scenario, spanning single-machine deployments, where all the

components run on the same node, and clustered (e.g., via Kubernetes) deployments,

e.g., assigning a different node to each component. Since we modified the Controller

component of the architecture (see Section 5.3.1), we built a new, dedicated Docker

image and published it on DockerHub3, so that it is generally available to be used in

place of the vanilla controller. Both for reproducibility and reliability, we automate all

the levels of the deployment steps: the provisioning of the virtual machines (VMs) and

both the deployment of Kubernetes and of (our extended version of) OpenWhisk. We

programmatically provision VMs using the Google Cloud Platform via a Terraform4

script. Since this script is tied to a specific topology, we provide more information on it

when describing our experiments in Section 5.4.1.

We wrote Ansible5 scripts instead to automatically deploy the Kubernetes cluster.

Given the VMs where one wants to deploy Kubernetes on and their designated roles

(workers, etc.), our Ansible scripts configure each VM by installing the dependencies

required for Kubernetes, deploy the control-plane on the designated master VM with

the kubeadm tool, and make the other VMs join the cluster as worker nodes (again

with the kubeadm tool).

Once the Kubernetes cluster is up and running, we use the Helm6 package from

openwhisk-deploy-kube [83], that we forked to implement a tAPP-specific package

for the installation with our custom controller image. This automatically deploys

every component on a Kubernetes cluster and allows the user to parameterize the

configuration of the deployment; specifically, we configure the deployment to select our

tAPP-based controller image.

All Terraform and Ansible scripts are publicly available at https://github.com/

giusdp/ow-gcp.

3https://hub.docker.com/r/mattrent/ow-controller.
4https://www.terraform.io/.
5https://www.ansible.com/.
6https://helm.sh/.

58 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

https://github.com/giusdp/ow-gcp
https://github.com/giusdp/ow-gcp
https://hub.docker.com/r/mattrent/ow-controller
https://www.terraform.io/
https://www.ansible.com/
https://helm.sh/

5.4. CASE STUDY

5.4 Case Study

As a final illustration of the tAPP language, we show and comment on the salient parts

of a tAPP script—reported in Figure 5.5—that captures the scheduling semantics of

the case in Figure 5.2.�
1 - critical:
2 - controller : LocalCtl_1
3 workers:
4 - set: edge
5 strategy: random
6 followup: fail
7 - machine_learning :
8 - controller : CloudCtl
9 workers:
10 - set: cloud
11 topology_tolerance : same
12 followup: default
� ��
13 - default:
14 - controller : LocalCtl_1
15 workers:
16 - set: internal
17 strategy: random
18 - set: cloud
19 strategy: random
20 strategy: best_first
21 - controller : LocalCtl_2
22 workers: # same as above
23 strategy: best_first
24 strategy: random
� �

Figure 5.5: A tAPP script that implements the scheduling semantics of the case study
in Section 5.1 (Figure 5.2).

In the script, at lines 1–6, we define the tag associated to critical (!) functions:

only LocalCtl 1 can manage their scheduling, they can only execute on #edge workers

(W1,...,Wi in Figure 5.2), and no other policy can manage them (followup: fail). At

line 5 we specify to evenly distribute the load among all edge workers with strategy:

random.

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 59

5.4. CASE STUDY

At lines 7–12, we find the tag of the machine learning () functions. We define

CloudCtl as the controller and consider all #cloud workers (Wk+1,...,Wj in Figure 5.2) as

executors. Notice that at line 12 we specify to use the default policy as the followup,

in case of failure. The interaction between the followup and the topology tolerance

(line 11) parameters makes for an interesting case. Since the topology tolerance is

(the) same (zone of the controller CloudCtl), we allow other controllers to manage the

scheduling of the function (in the default tag) but we continue to restrict the execution

of machine-learning functions only to workers within the same zone of CloudCtl, which,

here, coincide with #cloud-tagged workers.

Lines 13–24 define the special,default policy tag, which is the one used with

tag-less functions (here, our generic ones) and with failing tags targeting it as their

followup (as seen above, line 12). In particular, the instruction at line 24 indicates

that the default policy shall randomly distribute the load on both worker blocks (lines

14–20 and 21–23), respectively controlled by LocalCtl 1 and LocalCtl 2. Since the two

blocks at lines 14–20 and 21–23 are the same, besides the controller parameter, we

focus on the first one. There, we indicate two sets of valid workers: the #internal ones

(line 16, Wi+1,...,Wk in Figure 5.2) and the #cloud ones (as seen above, for lines 9–10).

The instruction at line 20 (strategy: best first) indicates a precedence: first we try

to run functions on the #local cluster and, in case we fail to find valid workers, we

offload on the #cloud workers—in both cases, we distribute the load randomly (lines

17 and 19).

5.4.1 Case Study Implementation

We now evaluate our contribution by presenting a cloud-edge-continuum case study,

taken from the literature, to both demonstrate how one can use tAPP to meet topology-

aware functional requirements and how existing serverless solutions—where no topo-

logical information is used by the function scheduler, like vanilla OpenWhisk—fail in

complying with those requirements.

The case study we consider is a simplification of the architecture described in

Section 5.1, which we depict in Figure 5.6. It is a serverless cloud-edge deployment of

the system described in [48, 49], consisting of a power transformers’ anomaly detection

application. Each power transformer to be monitored is equipped with six accelerometers

60 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.4. CASE STUDY

)

Subscribe

Publish

#cloud

#edge

!

!

Figure 5.6: Use case architecture: the services were separated in two zones, named Edge
and Cloud, and connected using two different networks, a local network corresponding
to the Edge zone and a virtual private network used for the OpenWhisk cloud-edge
deployment.

that produce data at a frequency of 10kHz. At every minute, the data produced by

the six sensors are collected for one second. For each set of data produced by one

sensor, two features are extracted: FCA (based on Frequency Complexity Analysis) and

DET (based on Vibration Stationarity Analysis). These features are then combined in

two vectors (one with the six FCA features and one with the six DET features) and

classified following machine learning techniques.

In the case study, we assume that the sensors communicate their data through an

IoT-specific protocol to a message broker accessible only from machines within the same

local network, named Edge. This prevents public access to the broker to protect it, e.g.,

from denial of service attacks. While data gathering happens locally, the elaboration of

the data requires powerful resources. For this reason, when local resources are available,

we run these analyses locally, otherwise, we run them in the Cloud.

In our serverless deployment of the use case, we have assumed that the sensors

communicate their data via a standard IoT protocol, namely MQTT [75], and that the

workflow is implemented as a pipeline of three separate functions:

• data-collection, which contacts an MQTT broker and subscribes to six topics

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 61

5.4. CASE STUDY

�
1 - default:
2 - workers:
3 - set:
4 - MQTT:
5 - controller : LocalCtl
6 workers:
7 - set: edge
8 topology tolerance: none
9 followup: fail
� ��
1 - DB:
2 - workers:
3 - wrk: W_2
4 invalidate: capacity used 50%
5 - wrk: W_1
6 strategy: best-first
7 - Cloud:
8 - controller : CloudCtl
9 workers:
10 - set: cloud
11 topology tolerance: none
12 followup: fail
� �

Figure 5.7: Script used in the tAPP-based use case deployments.

(one for each sensor), receives the corresponding data and stores it in a local

database;

• feature-extraction, which queries the database for the collected data and

extracts relevant features;

• feature-analysis, which receives the extracted features and performs the classifi-

cation task.

To perform the evaluation, we deploy the platform and services in two different

zones, as represented in Figure 5.6: a cloud zone containing the Kubernetes master

node, one OpenWhisk controller and one worker, and an edge zone containing the

MQTT broker, the database, one OpenWhisk controller and another worker. Functions

62 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.4. CASE STUDY

can access the MQTT broker only from the edge zone, while they can access the

database from the entire cluster, and accordingly, from both workers.

We use a total of 6 separate VMs. Specifically, we use 3 e2-medium instances (2

vCPUs, 4GB of RAM) on Google Cloud Platform, located in the Belgian data centre

(europe-west1-b) for the cloud zone. One of these VMs acts as the Kubernetes master

node and the other 2 as the cloud Controller and the cloud worker. The other 3 VMs

for the edge zone are hosted on Digital Ocean in the Frankfurt data centre. Specifically,

one edge VM hosts the edge Controller, one the edge worker, and one both the database

and the MQTT broker. All VMs sport 2 vCPUs and 4GB of RAM each. We connect

the VMs using two separate networks:

• a virtual private network, containing the entire Kubernetes cluster (i.e., Kubernetes

master node, cloud and edge Controllers, cloud and edge workers) and the

database;

• a local network, containing the entire edge zone (i.e., edge worker, edge Controller,

MQTT broker and database).

We simulate the sensors via a Python script running on the edge VM hosting the

MQTT broker. To mimic the real system that inspired our experiments, we kept

the workflow frequency at one invocation per minute and the push frequency of the

sensors at 10kHz (i.e., ten thousand tuples pushed per second, per sensor). Since the

influence on the experiment of the specific machine learning model used for the analysis

is immaterial, we implement these steps as functions that receive/gather the data from

the database, perform a heavy workload (matrix multiplications), and then generate a

predetermined response.

Our first experiment is about the deployment of the case study by using vanilla

OpenWhisk. Repeating the experiment 10 times we observed that randomly the system

would be deployed in a way that the invocation would either work as intended or fail

every invocation of the data-collection function, invalidating the entire pipeline. The

reason for this behaviour is that OpenWhisk randomly assigns identifiers to workers

and use them to make scheduling decisions (cf. the platform strategy, Section 5.3). If

the algorithm marks the worker that cannot reach the MQTT broker as the one where

to send data-collection, this function will consistently fail to connect to the MQTT

broker.

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 63

5.4. CASE STUDY

As shown in Figure 5.7, we overcome this limitation with tAPP by specifying the

appropriate function allocations:

• we tag data-collection (!) with MQTT, so that the LocalCtl controller decides

their scheduling, which means it allocates the functions only in the edge zone

and on workers located in the same network as the MQTT broker. By setting

the topology tolerance to none we forbid forwarding to the other controllers and

ensure this function only runs on the edge worker;

• we tag feature-extraction () with DB. In this case, we do not define a

controller, but we specify a list of workers so that the controller always picks

the worker in the edge zone first. For this function, we specify a priority among

the workers since they can all reach the database, preferring to use the edge

worker—until it exceeds a capacity of 50%—since it is the closest to the db.

• we tag feature-analysis () with Cloud. Similarly to the data-collection

function, we specify a specific controller, CloudCtl, and a tolerance of none to use

the cloud zone exclusively. In this way, we simulate a situation where machine

learning tasks would be moved away from the edge machines, which usually have

fewer resources or stricter requirements.

Experimental Data We recorded the performance of the system using the vanilla

and tAPP-based OpenWhisk variants. The starting version for both tAPP-based

OpenWhisk and the vanilla OpenWhisk in the experiments originate from commit

aa7e6e2 of the official Apache OpenWhisk repository.7 For the vanilla version, we add

a logging mechanism to record the scheduling times for the invocations.

We repeated the deployments of both versions of the platform 10 times. Once

deployed, we tested the use case by performing 100 sequential invocations of the pipeline

with an interval of 1 minute between each invocation as described in the use case, and

recording the latencies of the function invocations, i.e., the time passed between a

request to a function and a response (successful or failing), and the scheduling time, i.e.,

the time the scheduler takes to pick a worker for the function invocation. We performed

these test runs with Locust8, a load testing tool.

7github.com/apache/openwhisk/commit/aa7e6e2af196ac017ae4b9ea36656bec868a9931
8https://locust.io/

64 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

github.com/apache/openwhisk/commit/aa7e6e2af196ac017ae4b9ea36656bec868a9931
https://locust.io/

5.4. CASE STUDY

We observed that vanilla OpenWhisk picks the cloud worker as the main worker for

the data-collection function a total of 8 out of 10 times.9 In these cases, the pipeline

fails to connect to the MQTT broker and the data-collection stalls until the the

timeout mechanism is triggered after 60 seconds. The other 2 functions are not invoked

as the function pipeline stops at its first step. The tAPP-based deployment has instead

a success rate of the pipeline invocation of 100%, with the data-collection function

being always allocated to the edge worker, resulting in consistent performance.

2 4 6 8 10
Test Run Number

1000
2000
3000
4000
5000
6000

Re
sp

on
se

 T
im

e
(m

s)

data-collection (tAPP)

2 4 6 8 10
Test Run Number

1000

2000

3000

Re
sp

on
se

 T
im

e
(m

s)

feature-extraction (tAPP)

2 4 6 8 10
Test Run Number

500
1000
1500
2000
2500

Re
sp

on
se

 T
im

e
(m

s)

feature-analysis (tAPP)

1 2
Test Run Number

2000

3000

4000

5000

Re
sp

on
se

 T
im

e
(m

s)

data-collection (Vanilla)

1 2
Test Run Number

500
750

1000
1250
1500
1750
2000
2250

Re
sp

on
se

 T
im

e
(m

s)

feature-extraction (Vanilla)

1 2
Test Run Number

400
600
800

1000
1200
1400
1600

Re
sp

on
se

 T
im

e
(m

s)

feature-analysis (Vanilla)

Figure 5.8: Latencies in tAPP-based OpenWhisk (left) and vanilla OpenWhisk (right).

Figure 5.8 shows the violin plots related to the response time of the 3 functions in all

the 10 tAPP-based OpenWhisk deployments and the 2 functioning vanilla OpenWhisk

deployments. The response times cluster around 2000 ms for data-collection, less than

1000 ms for feature-extraction, and between 500 and 1000 ms for feature-analysis

for both the tAPP and vanilla OpenWhisk. In both scenarios, there are outliers,

9We remark that, while we were expecting a failure in 50% of the cases, the chosen worker from the
vanilla scheduler was almost always the cloud worker. It is beyond the scope of this thesis to ascertain
if this was due to a statistical anomaly or to OpenWhisk’s internal decisions (e.g., decisions based on a
hash from the namespace and the function name) that favour particular deployment choices.

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 65

5.4. CASE STUDY

representing the high response times caused by cold starts when the functions are first

invoked.

For completeness, we report in Table 5.1 the aggregated mean, median, tail latency

(i.e., 99 latency percentile), and standard deviation of the tAPP-based and the 2

functioning vanilla OpenWhisk deployments—for compactness, we use the icons ! ,

, to represent resp. the data-collection, feature-extraction, and feature-analysis

functions. As can be seen, in case the deployment of vanilla OpenWhisk did allow the

scheduling of the data-collection function, the response times were similar.

tAPP-based Vanilla
Function Mean Median Tail Std. Dev. Mean Median Tail Std. Dev.

! 2272 2231 2543 345 2148 2114 2522 361

652 629 981 91 749 727 1097 141

729 716 830 113 707 691 975 111

Table 5.1: Latency (ms) of the tAPP-based and vanilla OpenWhisk deployments.

Finally, Table 5.2 reports the mean, median, tail, and standard deviation of the

scheduling time of the tAPP-based and vanilla deployments, i.e., the time it takes the

controller to schedule a function from when the function invocation is received to when

the scheduling logic is executed and a worker is chosen. From the results, we can

conclude that the performance of vanilla OpenWhisk and tAPP are comparable—the

average scheduling time is below 2 ms for both the tAPP and vanilla OpenWhisk

deployments.

Function tAPP-based Vanilla
Mean Median Tail Std. Dev. Mean Median Tail Std. Dev.

! 1.42 1.29 2.60 0.57 1.78 1.54 3.75 1.22

1.62 1.43 4.23 0.93 2.0 1.74 3.82 1.20

1.68 1.68 2.85 0.64 1.95 1.73 3.82 1.02

Table 5.2: Scheduling time (ms) of the tAPP-based and vanilla OpenWhisk deployments.

66 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.4. CASE STUDY

5.4.2 Overhead Analysis

We investigate the performance of our tAPP extension looking at the overhead it exerts

w.r.t. vanilla OpenWhisk. To this aim, we run a set of experiments using a benchmark

suite for serverless platforms, called ServerlessBench [128]. Running the tests, we

measure both the scheduling time (the time taken to pick on which worker to allocate

a function) and the request-reply latency of functions.

ServerlessBench consists of 12 test cases exploring several metrics of serverless

computing, like communication efficiency and startup latency (cold starts). Of these

12 test cases, 6 apply to OpenWhisk: 3–6, 9, and 10. Of these, case 4 consists of 4

subtests, each with different example applications requiring different resources (i.e.,

databases, Alexa devices). Due to these special requirements, we exclude case 4 from

our analysis and focus on the remaining 5.

We run cases on both vanilla OpenWhisk and tAPP-based OpenWhisk deployments.

For the tAPP variant, we use a simple tAPP script with default settings that make the

tAPP variant behave like vanilla OpenWhisk. In this way, we perform a same-settings

comparison of the two versions of the platform. We run each case 5 times to obtain

consistent data.

Case 3 This case focuses on function composition, obtained by invoking a long

pipeline of functions. The functions in the pipeline are instances of the same one,

written in JavaScript, which increments by one the input value and returns it. We

create a “sequence” (the OpenWhisk built-in pipeline construct) with 50 of these

functions so that the platform invokes them in sequence, passing the output of one

function as the input of the next one. We invoke the pipeline 20 times to have a total

of 1000 invocations in a single test run. We report the latencies and scheduling times in

Figure 5.9. From the results, the time required to pick a worker is essentially the same

for both versions of OpenWhisk. Similarly, the total latency of the invocations—each

spanning the entire sequence and corresponding to the time required to execute all the

functions in the pipeline—is comparable, with the majority falling between the 17 to

24 seconds range. In particular, vanilla OpenWhisk shows a higher fluctuation in the

total latencies with a higher standard deviation of 2435.11 ms (and mean of 20096.86

ms), while tAPP had a more stable performance (standard deviation of 1139.1 ms and

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 67

5.4. CASE STUDY

mean of 18901.26 ms).

16000 18000 20000 22000 24000
Latency time (ms)

0%

20%

40%

60%

80%

100%
Total Latency

tAPP
Vanilla

1.0 10.0
Scheduling time (ms)

0%

20%

40%

60%

80%

100%
Scheduling Time

tAPP
Vanilla

Figure 5.9: Test Case 3 latencies (left) and scheduling time (right).

Case 5 This case focuses on data transfer costs, using a sequence of 2 functions where

a file of 32KB is passed to the first function, which passes it to the second one. We

invoke the sequence 500 times to have a total of 1000 invocations in a single test run,

as in the previous case. We show the latencies and scheduling times in Figure 5.10.

Consistently with the observations of case 3, we have negligible differences in scheduling

times between the two platforms, and the total latencies are stable between 500 ms

and 2000 ms for both platforms, with some outliers reaching 4000 ms due to cold

starts. Regarding invocation latency, vanilla OpenWhisk has a slightly higher standard

deviation of 357.27 ms and a mean of 967.55 ms, while tAPP has a standard deviation

of 186.67 ms and a mean of 855.82 ms.

500 1000 2000 4000
Latency time (ms)

0%

20%

40%

60%

80%

100%
Total Latency

tAPP
Vanilla

1.0 10.0
Scheduling time (ms)

0%

20%

40%

60%

80%

100%
Scheduling Time

tAPP
Vanilla

Figure 5.10: Test Case 5 latencies (left) and scheduling time (right).

Both cases 6 and 9 focus on startup latency, tested by invoking functions while

inducing cold starts.

68 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.4. CASE STUDY

Case 6 In case 6, we invoke a Java function that uses a custom Java container runtime

for OpenWhisk, which incurs long initialisation times. To enforce cold starts, one must

either invoke the function after 10 minutes since the last invocation—OpenWhisk keeps

a function’s container alive for 10 minutes since the last call to reduce cold starts—or

manually stop the function container on the worker. To avoid interfering with the

platform’s internal dynamics, we preferred the first option and, to keep the test times

reasonable, we opted to perform 10 invocations for each test run. We present the

latencies and scheduling times in Figure 5.11. The results are in line with the previous

test cases, with negligible differences in scheduling times between the two platforms.

The total latencies are stable between 2000 ms and 4000 ms with a mean of 2943.87 ms

for tAPP OpenWhisk and a standard deviation of 476.39 ms, and a mean of 3494.07

ms and a standard deviation of 672.62 ms for vanilla OpenWhisk.

2000 3000 4000 6000
Latency time (ms)

0%

20%

40%

60%

80%

100%
Total Latency

tAPP
Vanilla

1.0 10.0
Scheduling time (ms)

0%

20%

40%

60%

80%

100%
Scheduling Time

tAPP
Vanilla

Figure 5.11: Test Case 6 latencies (left) and scheduling time (right).

Case 9 This test case covers a concurrent startup scenario to analyse how auto-scaling

impacts function startup. We use the Java and C functions of the case, and we run 10

invocations of the functions in a single test run. For each function, we send 40 requests

simultaneously, once with a maximum concurrency limit (i.e., the maximum number of

concurrent invocations of the same function per container) set to 1 and once set to 40,

effectively resulting in four subtests. We show the latencies and scheduling times in

Figure 5.12 and Figure 5.13. In all subtests, the two platforms have similar performance.

We report in Table 5.3 the aggregated mean, median, tail latency (i.e., 95 latency

percentile), and the standard deviation of the tAPP-based and vanilla OpenWhisk

deployments.

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 69

5.4. CASE STUDY

Conc. tAPP-based Vanilla
Mean Median Tail S. Dev. Mean Median Tail S. Dev.

C 1 8892 8692 10195 693 8808 8524 10421 776
Java 1 9861 9602 11739 931 10202 10245 11665 1026
C 40 10098 10187 11731 915 10171 9962 12563 1289
Java 40 8925 8767 10380 742 9433 9043 11361 1078

Table 5.3: Statistics of the tAPP-based and vanilla OpenWhisk deployments forf Test
Case 9 (ms).

7500 8000 9000 10000 11000
Latency time (ms)

0%

20%

40%

60%

80%

100%
Latency for C Function - Concurrency 1

tAPP
Vanilla

7500 8000 9000 10000 11000 12000 13000 14000
Latency time (ms)

0%

20%

40%

60%

80%

100%
Latency for Java Function - Concurrency 1

tAPP
Vanilla

7500 8000 9000 10000 11000 12000
Latency time (ms)

0%

20%

40%

60%

80%

100%
Latency for C Function - Concurrency 40

tAPP
Vanilla

7500 8000 9000 10000 11000 12000
Latency time (ms)

0%

20%

40%

60%

80%

100%
Latency for Java Function - Concurrency 40

tAPP
Vanilla

Figure 5.12: Test Case 9 latencies for the four subtests: C and Java functions with
concurrency 1 (top-left and top-right), C and Java functions with concurrency 40
(bottom-left and bottom-right).

Case 10 This test case focuses on the effect of implicit state with a Java function that

performs image resizing using a custom Java runtime. The function takes advantage

of ”warm” containers by re-using the implicit state of the Java runtime. We invoke

the function 1000 times in a single test run, reporting in Figure 5.14 the latencies and

scheduling times. Similarly to the previous test cases, the scheduling time differences

between the two platforms are negligible. The request-reply latencies go from below

500 ms to more than 4000 ms for both platforms, with a mean of 610.67 ms and a

standard deviation of 256.67 ms for tAPP OpenWhisk and a mean of 811.44 ms and a

standard deviation of 431.69 ms for vanilla OpenWhisk.

Overall, these experiments demonstrate that the scheduling time for our tAPP

70 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

5.5. CONCLUSION

0.3 1.0 10.0 40.0
Scheduling time (ms)

0%

20%

40%

60%

80%

100%
Scheduling Time for C Function - Concurrency 1

tAPP
Vanilla

0.5 1.0 10.0 60.0
Scheduling time (ms)

0%

20%

40%

60%

80%

100%
Scheduling Time for Java Function - Concurrency 1

tAPP
Vanilla

0.5 1.0 10.0 70.0
Scheduling time (ms)

0%

20%

40%

60%

80%

100%
Scheduling Time for C Function - Concurrency 40

tAPP
Vanilla

0.4 1.0 10.0 40.0
Scheduling time (ms)

0%

20%

40%

60%

80%

100%
Scheduling Time for Java Function - Concurrency 40

tAPP
Vanilla

Figure 5.13: Test Case 9 scheduling time for the four subtests: C and Java functions
with concurrency 1 (top-left and top-right), C and Java functions with concurrency 40
(bottom-left and bottom-right).

500 1000 2000 4000 6000
Latency time (ms)

0%

20%

40%

60%

80%

100%
Total Latency

tAPP
Vanilla

1.0 10.0
Scheduling time (ms)

0%

20%

40%

60%

80%

100%
Scheduling Time

tAPP
Vanilla

Figure 5.14: Test Case 10 latencies (left) and scheduling time (right).

prototype is comparable to, if not better than, the vanilla implementation. Consequently,

our solution does not present any significant performance drawbacks when compared

to vanilla OpenWhisk.

5.5 Conclusion

We introduced tAPP, a declarative language that provides users with finer control

over the scheduling of serverless functions. Being topology-aware, tAPP scripts can

CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING 71

5.5. CONCLUSION

restrict the execution of functions within zones and help improve the performance

(e.g., exploiting data or code locality properties), security, and resilience of serverless

applications. To validate our approach, we presented a prototype tAPP-based serverless

platform, developed on top of OpenWhisk, and we used it to show that tAPP allows

for an easy deployment of cloud-edge serverless systems with typical topology-aware

scheduling constraints that cannot be guaranteed by standard vanilla OpenWhisk

deployments. As future work we plan to expand our range of tests both to include other

aspects of locality (e.g., sessions) and specific components of the platform (e.g., message

queues, controllers). We also intend to formalise the semantics of tAPP, e.g., building

on existing “serverless calculi” [39, 51]. This is a stepping stone to mathematically

reason on scheduling policies and formally prove they provide desirable guarantees.

72 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING

Chapter 6

Affinity-aware Serverless Scheduling

6.1 Introduction

The breadth of the design space of serverless scheduling policies is witnessed by the

growing literature focused on techniques that mix one or more of these locality principles

to increase the performance of function execution, assuming some locality-bound traits

of functions [22, 56, 15, 52, 60, 101]. Besides performance, functions can have functional

requirements that the scheduler could consider. For example, users might want to ward

off allocating their functions alongside “untrusted” ones—common threat vectors in

serverless are limited function isolation and the ability of functions to (surreptitiously)

gather weaponisable information on the runtime, the infrastructure, and the other

tenants [13, 115, 6, 29]. Although one can mix different principles to expand the profile

coverage of a given platform-wide scheduler policy, the latter hardly suits all kinds

of scenarios. This shortcoming was one of the motivation for our domain-specific,

platform-agnostic, declarative language APP (and later the extension tAPP). Thanks to

APP, the same platform can support different scheduling policies, each tailored to meet

the specific needs of a set of related functions. As mentioned in Chapter 1, we study

the addition of affinity and anti-affinity constraints at the FaaS level by proposing a

new affinity-aware extension, called aAPP, after observing that other cloud platforms

like IaaS and CaaS support affinity and anti-affinity constraints for workload allocation,

which FaaS platforms lack native mechanisms for.

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 73

6.1. INTRODUCTION

Example

We introduce and motivate aAPP-based affinity-aware FaaS scheduling policies with an

example. We have a divide-et-impera data-crunching serverless application implemented

through two companion functions. The first, invoked by the users, is called divide. Its

task is to split some data into chunks, store them in a database, and invoke instances

of the second function. The second function, which the divide invokes for each stored

chunk, is called impera. Its task is to retrieve a chunk of data from the database and

process it.

We run the above functions on the FaaS infrastructure depicted on the left of

Figure 6.1. The infrastructure includes two zones (e.g., separate regions of a cloud

provider) and it has a Gateway that decides on which worker to allocate the execution

of the functions. The infrastructures also incldues three workers: w1 and w2 in Zone1

and w3 in Zone2. Each zone hosts an instance of an eventually-consistent distributed

database [114], used by the functions running in that zone—eventually-consistent

systems are the preferred choice for (FaaS) scenarios like our example, where one

favours throughput and availability w.r.t. e.g., overall data consistency [11].

In Figure 6.1, we represent function allocation requests with labelled document

icons sent towards the Gateway. Note that the users (the laptop icons in Figure 6.1)

launch the divide function (e.g., d3) and while the running divide invokes the impera

functions (e.g., d2 requesting i2 and i′2).

Our FaaS infrastructure executes additional applications besides the one above.

In Figure 6.1, we represent these requests with the labels h1, h2, and h3 which are

compute-intensive functions—called heavy—that use a high amount of computational

resources of the worker running them.

Given this context, a first example of an affinity-aware scheduling policy is to

avoid the co-occurrence of the divide and impera functions with the heavy ones. In

this way, we can improve the performance of divide and impera by avoiding resource

contention with the heavy functions. Another improvement regards the interaction

with the database. The eventual-consistency behaviour of the database entails possible

delays to synchronise the instances. Waiting for synchronisation is necessary only

when the functions accessing the database connect to different database instances.

Moreover, to further reduce delay, we can exploit the principle of session locality and

74 CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING

6.1. INTRODUCTION

Eventual Consistency

�
1 - d:
2 - workers: *
3 affinity:
4 - !h
5 - i:
6 - workers: *
7 affinity:
8 - !h
9 - d

10 - h:
11 - workers: *
12 affinity:
13 - !d
14 - !i
� �

Figure 6.1: Example of a FaaS infrastructure (left) and an aAPP script (right).

let functions running on the same worker share the same connection with the database.

This affinity-aware scheduling policy places impera functions only on workers that

already host divide functions and avoid the overhead of re-establishing new connections.

These constraints can be encoded in aAPP as shown in the script in Figure 6.1. This

code has three top-level items: d, i, and h. These are tags that identify policies, each

describing the scheduling logic of a set of related functions. In the example, the tag d

describes the logic for the divide functions while i and h target respectively the impera

and heavy ones. The line workers: * found under all tags indicates that their related

functions can use any of the available workers. From the top, under tag d, we use the

affinity clause, introduced by aAPP, to specify that d-tagged functions should not

be scheduled on a worker that currently hosts heavy functions (!h). Specifically, this is

an example of anti-affinity, where we prevent the allocation of the tagged functions

(e.g., d) on a worker that already hosts any anti-affine function (e.g., tagged h). Tag i

declares the same anti-affinity for heavy functions, but it also indicates that i-tagged

functions are affine with d-tagged ones. Affinity means that we can schedule a function

on a candidate worker only if it currently hosts the former’s affine functions. In the

example, we use affinity to have impera functions run in the same worker of divide

functions. Finally, we use tag h to complement the anti-affinity relation expressed in

the previous tags, i.e., the heavy functions are anti-affine with both d and i functions

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 75

6.2. THE aAPP LANGUAGE

and shall not be scheduled in workers that already host any of the latter.

Structure of the chapter. In Section 6.2 we present aAPP, an APP extension

with (anti)-affinity constraints. In Section 6.3, we discuss our extension of the Apache

OpenWhisk scheduler (i.e., a popular open-source FaaS solution) to support aAPP. We

use our prototype to show, in Section 6.4, that using aAPP in affinity-bound scenarios

(like the one presented above) leads to an appreciable reduction in latency. Moreover,

by using microbenchmarks, in Section 6.5, we show that the overhead of supporting

aAPP-based affinity is negligible. We draw our conclusions in Section 6.6.

6.2 The aAPP Language

In this section, we present aAPP, our extension of the FaaS function scheduling language

APP [31, 30] with affinity and anti-affinity constraints.

We report in Figure 6.2 the syntax of aAPP. From here on, we indicate syntactic

units in italics, optional fragments in grey , terminals in monospace, and lists with

bars1. The idea behind aAPP is that functions have associated a tag that identifies

some scheduling policies. An aAPP script represents: i) named scheduling policies

identified by a tag and ii) policy blocks that indicate either some collection of workers,

each identified by a worker id, or the universal *. To schedule a function, we use its tag

to retrieve the scheduling policy that includes one or more blocks of possible workers.

To select the worker, we iterate top-to-bottom on the blocks. We stop at the first

block that has a non-empty list of valid workers and then select one of those workers

according to the strategy defined by the block (described later).

Each tag can define a followup clause, which specifies what to do if the policy of

the tag did not lead to the scheduling of the function; either fail, to terminate the

scheduling, or default to apply the special default-tagged policy. Each block can

define a strategy for worker selection (any selects non-deterministically one of the

available workers in the list; best first selects the first available worker in the list), a list

of constraints that invalidates a worker for the allocation (capacity used invalidates a

worker if its resource occupation reaches the set threshold; max concurrent invocations

1While aAPP scripts are YAML-compliant, for presentation, we slightly stylise the syntax to increase
readability. For instance, we omit quotes around strings, e.g., * instead of "*".

76 CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING

6.3. aAPP-BASED APACHE OPENWHISK

invalidates a worker if it hosts more than the specified number of functions), and an

affinity clause that carries a list containing affine tag identifiers id and anti-affine

tags, represented by negated tag identifiers !id. aAPP is a minimal extension of APP

adding the possibility to use this latter affinity construct that is not available in the

original APP proposal.

As an example, Listing 6.1 shows an aAPP policy for functions tagged f tag. The

policy has two blocks. The former restricts the allocation of the function on the workers

labelled local_w1 and local_w2 and the latter on public_w1. The first block specifies

as invalid (i.e., which cannot host the function under scheduling) the workers that reach

a memory consumption above 80%. Since the strategy is best first, we allocate the

function on the first valid worker; if none are valid, we proceed with the next block. The

function has affinity with g tag and anti-affinity with h tag. Hence, a valid worker

requires the presence of at least a function with tag g tag and no functions with tag

h tag. If both the first and second blocks do not find a valid worker, the scheduling of

the function fails (instead of continuing with the default tag).

id∈Identifiers n ∈ N

app ::= −tag

tag ::= id : − block followup : f opt

block ::= workers : w opt strategy : s opt

invalidate : − i opt affinity : − a opt

w opt ::= * | − id
s opt ::= any | best first
i opt ::= capacity used n% | max concurrent invocations n
a opt ::= id | !id
f opt ::= default | fail

Figure 6.2: aAPP syntax.

6.3 aAPP-based Apache OpenWhisk

We have implemented and validated an aAPP-based FaaS platform, obtained by

extending the APP prototype of Apache OpenWhisk. The main intervention we

performed to make the existing APP-based OpenWhisk architecture aAPP-compliant

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 77

6.3. aAPP-BASED APACHE OPENWHISK

�
- f_tag:
- workers:

- local_w1
- local_w2
strategy: best first
invalidate:
- capacity used 80%
affinity: g_tag ,! h_tag

- workers:
- public_w1

followup: fail
� �
Listing 6.1: Example aAPP script.

consists of an extension of the Controller component. The extension adds a parser

for the aAPP scripts and a new scheduler that handles the given policies, but the

major challenge of implementing aAPP has been changing the Apache OpenWhisk’s

load balancer—the part of the Controller responsible for scheduling the functions—so

that it keeps track of the functions allocated to all the workers. We introduced two

lookup tables to implement this tracking functionality: the activeFunctions and the

activeTagActivations. The first table associates the allocated functions (and their tags)

to their host worker and allows the load balancer to verify affinity and anti-affinity

constraints. The second table is an auxiliary one. Indeed, to update the activeFunctions

table, we need to keep track of the state of the different function instances (possibly

of the same function definition, so we cannot use their identifiers) by pairing their

activation ids with their function identifiers; when we observe the termination of an

active function, we look its function identifier up and remove that instance from the

activeFunctions table—we detect instance terminations thanks to the messages workers

send to notify the load balancer of their completion.

The scheduling algorithm following an aAPP script is straightforward. We present it

in (Python-like) pseudo-code in Listing 6.2 and Listing 6.3. In Listing 6.2, the schedule

function requires the name of the function to be scheduled (f), the map representing

the infrastructure configuration (conf), the aAPP script encoded as a Python dictionary

of objects (aapp), and a registry mapping the memory occupation and the tag for every

function (reg). The configuration of a worker is assumed to be a map, denoting with

78 CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING

6.3. aAPP-BASED APACHE OPENWHISK

�
1 def schedule(f, conf , aapp , reg):
2 (memory , tag) = reg[f]
3 blocks = aapp[tag]. blocks # get the blocks
4 if aapp[tag]. followup != ’fail ’:
5 blocks += aapp[’default ’]. blocks # add default tag blocks
6 for block in blocks:
7 if ’*’ in block[’workers ’]:
8 block[’workers ’] = conf.keys
9 workers = [for worker in block[’workers ’] if valid(f,worker ,conf ,reg ,block)]

10 if len(workers) > 0: # if at least one valid worker is found
11 if block[’strategy ’] == ’best_first ’:
12 return workers [0]
13 elif block[’strategy ’] == ’any ’:
14 return random.choice(workers)
15 raise Exception(’Function not schedulable ’)
� �

Listing 6.2: The pseudo-code of the schedule function.

fs, memory used, and max memory respectively the list of functions already scheduled

on the node, the memory allocated for those functions, and the total amount of memory

of the worker. Given these inputs, in Listing 6.2 schedule gets the tag associated with

f (Line 2) and then extracts the blocks associated with this tag in the aapp script

(Line 3). If the follow-up strategy is different from “fail” the blocks associated with the

default tag are appended to the list of f’s bocks (Line 5). Then, we obtain the list of

valid workers for every block in order of appearance (Line 9). When the workers clause

uses * we consider all the workers present in the configuration (Line 8). If the list of

valid workers is non-empty, we choose the first one when the strategy is best first

(Line 12) and a random one otherwise (Line 14). If the list is empty, the schedule fails

(Line 15). The schedule function uses the valid function to check when a worker is

valid, i.e., it is available, it has enough capacity to host the function (Lines 18–19),

and that allocating on it the function satisfies all the constraints of capacity used,

max concurrent invocations (Lines 21–26), and affinity (Lines 27–34).

Note that in aAPP the relation of (anti-)affinity is “directional”—similarly to the

one introduced by Microsoft in its IaaS offering [71]. In particular, we do not impose any

properties like symmetry or anti-symmetry on affinity or anti-affinity. One might argue

that imposing these additional properties as well-formedness guarantees can prevent

programmers from making mistakes in their aAPP scripts (e.g., they can misconfigure

the policies of two functions that they wanted to be mutually anti-affine because they

forgot to include a constraint in some block). While avoiding these occurrences is

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 79

6.4. PERFORMANCE IMPROVEMENTS VIA AFFINITY-AWARENESS

�
1 def valid(f, w, conf , reg , block):
2 (memory , tag) = reg[f]
3 if (w not in conf) or (conf[w][’memory_used ’] + memory > conf[w][’max_memory ’]):
4 return False
5 if ’invalidate ’ in block:
6 if (’capacity_used ’ in block[’invalidate ’]) and
7 (block[’invalidate ’][’capacity_used ’] <= conf[w][’memory_used ’]):
8 return False
9 if (’max_concurrent_invocations ’ in block[’invalidate ’]) and

10 (block[’invalidate ’][’max_concurrent_invocations ’] <= len(conf[w][’fs’])):
11 return False
12 if ’affinity ’ in block:
13 affine_tags = set ([t for t in block[’affinity ’] if not t. startswith (’!’)])
14 anti_affine_tags = set ([t[1:] for t in block[’affinity ’] if t. startswith (’!’)])
15 w_tags = set ([t for (_, t) in [reg(f) for f in conf[w][’fs’]]])
16 for t in affine_tags :
17 if t not in w_tags: return False
18 for t in anti_affine_tags :
19 if t in w_tags: return False
20 return True
� �

Listing 6.3: The pseudo-code of the valid function.

important, our objective is to allow aAPP to capture as many useful scenarios as possible

and imposing well-formedness properties would limit the expressiveness of aAPP.2

We developed the code to implement the update of the functions and changed the

scheduling algorithm in Scala, on a fork of the OpenWhisk repository [84]. The entire

system is easily deployable using Terraform and Ansible scripts.

6.4 Performance Improvements via Affinity-awareness

To validate our platform and show that the usage of (anti-)affinity constraints for

affinity-aware scenarios are beneficial, we use the example presented in Section 6.1 as

a benchmark. We show that, by enforcing (anti-)affinity constraints, we can reduce

average execution times and tail latency.

Recalling the example, we develop two functions, d and i, that represent a simple

divide-et-impera serverless architecture running in a realistic co-tenancy context. Users

invoke divide functions, requesting the solution of a problem. At invocation, divide

2For example, if we had (anti-)symmetric anti-affinity, we would not capture a scenario in which a
function init is the seeding function for a database and function query manipulates that data. The
function init should always run before query but never where query is already running, while function
query should run where init is present. To obtain this behaviour, we need init anti-affine with query
but query affine with init.

80 CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING

6.4. PERFORMANCE IMPROVEMENTS VIA AFFINITY-AWARENESS

splits the problem into sub-problems and invokes instances of the second function,

impera. The impera instances solve their relative sub-problems and store their solution

fragments on a persistent storage service. After the imperas terminated, divide retrieves

the partial solutions, assembles them, and returns the response to the user. Referencing

the aAPP script on the right of Figure 6.1, we indicate i affine with d. In the multi-zone

execution context of the use case, we have workers from two data centres (which

represent the Zones of Figure 6.1), placed far apart from each other. We have two

synchronised instances of persistent storage (like db and db′ in Figure 6.1), one per

data centre. The storage implements an eventual consistency model, i.e., it trades high

availability of data off of its overall consistency. To minimise latency, both the divide

and the impera functions access the storage instance closest to them. Since it can

take some time for the two database instances to converge, the functions implement

a traditional exponential back-off retry system—each function tries to fetch its data

(sub-problems/solutions) from its local storage instance; if the data is not there, starting

from a 1-second delay, the function waits for a back-off time that exponentially increases

at each retry. We also draw the heavy functions from Figure 6.1, which simulate the

possible interferences of serverless co-tenancy.

We consider three APP/aAPP scripts to showcase the benefits of (anti-)affinity

constraints. The first, which uses the full expressiveness of aAPP, is the one reported

on the right of Figure 6.1—where imperas are affine with divide and they are both

anti-affine with the heavy functions. The second script removes the affinity constraints

between impera and divide from the first script (anti-affinity-only-aAPP). The third

script omits the anti-affinity constraints from the second one, effectively making it an

APP script.

To run the use case, we deploy the OpenWhisk versions of APP and aAPP on a

8-node Kubernetes cluster on the Digital Ocean platform; one node acts as the control

plane (and as such, it is unavailable to OpenWhisk), one hosts the OpenWhisk core

components (i.e., the Controller, the OpenWhisk internal database CouchDB, and the

messaging system Kafka), and six nodes are workers. We deploy the control plane

and the OpenWhisk core components on virtual machines with 2 vCPU and 2 GB

RAM, while we deploy 4 workers on virtual machines with 2 vCPU and 2 GB RAM

and 2 workers with 1 vCPU and 1 GB RAM. All machines run the Ubuntu Server

20.04 OS. Location-wise, we place the control plane, the OpenWhisk core components,

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 81

6.4. PERFORMANCE IMPROVEMENTS VIA AFFINITY-AWARENESS

250 500 1000 2000 4000 8000 16000 32000 64000

Latency (ms, log scale)

0%

20%

40%

60%

80%

100%

aAPP
Anti-A�inity-only aAPP
APP

Figure 6.3: Sorted scatter plot of divide functions; x is the latency (ms) of the yth%
fastest invocation.

and 3 workers in Europe and 3 workers in North America (2 with the more powerful

configuration and 1 with the lesser one in each zone). To implement persistent storage,

we deploy a 2-node MongoDB replica set, one in Europe and one in North America,

using the 6.0.2 version of the Community Server. We distribute the load generated by

the heavy functions on the platform with two variants, heavy eu and heavy us which,

in the APP/aAPP scripts, we constrain to be resp. allocated in the Europe and the

North America data centres on the less powerful workers, to further amplify the effect of

co-tenancy they exert. All functions are in JavaScript and run on OpenWhisk NodeJS

runtime nodejs:14.

Experiments and Results Each experiment involves 5 sequential runs. Each run

invokes the heavy eu and heavy us functions in non-blocking mode, followed by 10 calls

of the divide function, each one waiting for the previous to complete. Upon termination

of the heavy functions, we proceed with the remaining runs; for a total of 10 heavy and

50 divide functions per experiment. To ensure reliable results, we ran the experiment 5

times, totalling 250 calls of the divide function for each of the three APP/aAPP script.

We use Apache JMeter [53] to simulate each request, tracking its latency, number of

retries (to retrieve storage data), and outcomes (success or failure).

82 CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING

6.4. PERFORMANCE IMPROVEMENTS VIA AFFINITY-AWARENESS

The results match our expectations. The mean and median latency for the divide

functions in aAPP is resp. 1547ms and 883ms, while the 95th tail latency is 3041ms.

The corresponding figures increase for anti-affinity-only-aAPP: 2337ms (+40%), 2381ms

(+91%), and 3476ms (+13%). As expected, the latency increases even more substantially

for APP, with respectively (percentage increase vs aAPP) 8118ms (+135%), 2648ms

(+99%), and 60157ms (+180%).

To further analyse the differences, in Figure 6.3, we report the plots where we sort

the latencies of the divide functions from the shortest to the longest (x-axis). We focus

on this measure because it offers a comprehensive overview of the performance of the

architecture. In particular, it includes the latencies of the related impera functions

and its latencies are concretely the ones experienced by the users interacting with the

system. The first striking observation is that the distribution of the aAPP data points is

interrupted (there are almost no instances) between the 1000ms and the 2400ms mark.

We attribute this behaviour to having OpenWhisk core components installed in one

region, which exert some overhead on the workers of the other region when they interact

with the platform (e.g., to fetch functions and receive/send requests/notifications). We

see similar intervals, although less apparent, for APP and anti-affinity-only-aAPP.

In the 200–1000ms interval aAPP provides consistent, fast performance, while APP

and anti-affinity-only-aAPP show only a few well-performing cases—the rest, on the

same performance bracket, are shifted to the right, achieving slower results. We can

characterise the “fast” invocations as those where the divide and its two impera functions

appear on a “free” node, i.e., without the heavy function, in Europe. Specifically, when

using APP, each invocation has a 2/6 probability of appearing on a free node in Europe,

i.e., the probability of fast invocations is (2/6)3≈3.7%; using anti-affinity-only-aAPP

the figure becomes (1/2)3=12.5% (each invocation has a 1/2 chance of appearing on a

European free node). Finally, using aAPP the probability raises to 50%, as all three

functions go on the same node (either in the US or in the EU).

Overall, already introducing anti-affinities improves performance (mean, median,

tail latency improve resp. of 110%, 10%, and 178%), which shows the impact of sharing

a worker with heavy functions—APP shows a long tail of invocations after the ca.

3000ms mark in Figure 6.3. Looking at worst cases, using aAPP does not result in a

considerable performance increase. This is visible from the plot by noticing how the tail

high-percentage instances of anti-affinity-only-aAPP and aAPP almost overlap, resulting

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 83

6.5. aAPP’S OVERHEAD IS NEGLIGIBLE

in a small (+13%) improvement in tail latency. The differences in mean (+40%) and

median (+91%) latency between having affinities or not emerges in the 250–1000ms

bracket, where not having affinity causes to have only a few data points w.r.t. to the

higher number of fast instances of aAPP. Practically, the figures and distribution show

how strongly North American allocations impact latency vs the benefit of co-location.

Besides increasing performance, aAPP succeeds in eliminating database access retries,

contrarily to anti-affinity-only-aAPP (i.e., 42 requests suffer at least one retry in APP,

23 in anti-affinity-only-aAPP, and 0 in aAPP).

6.5 aAPP’s Overhead is Negligible

We now show that the added functionalities (to track the state of functions on workers)

of our aAPP-based prototype have negligible impact on the platform’s performance.

For the experiments, we decided to use the benchmark suite used in one of our

prior works [85] to benchmark their APP-based OpenWhisk implementation. Note

that, in our settings, we are not interested in the data locality capabilities of APP but

only in checking the scheduling performances of aAPP. Thus, we decided to deploy

the platforms in only one cloud zone and use 2000 invocations for each scenario, to

simplify as much as possible the testing environment and have enough invocations to

draw meaningful comparisons. The benchmarks are:

• hello-world implements a simple echo application, and indicates the baseline

performance of the platform.

• long-running waits for 3 seconds and benchmarks the handling of multiple

functions running for several seconds and the management of their queueing

process;

• compute-intensive multiplies two 102 square matrices and returns the result to

the caller. This benchmark measures both the performance of handling func-

tions performing some meaningful computation and of handling large invocation

payloads.

• DB-access (light) executes a query for a document from a remote MongoDB

database. The requested document is lightweight, corresponding to a JSON

84 CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING

6.5. aAPP’S OVERHEAD IS NEGLIGIBLE

document of 106 bytes, with little impact on computation. We used the case

to measure the impact of data locality on the overall latency. Since we have all

workers in the same cloud zone, we use it to measure the overhead of scheduling

functions that fetch small payloads from a local database.

• DB-access (heavy) regards both a memory- and bandwidth-heavy data-query

function. The function fetches a large document (124.38 MB) from a MongoDB

database and extracts a property from the returned JSON. Similarly to the

previous function, we use this one to evaluate the overhead of scheduling functions

that fetch large payloads from a local database.

• External service benchmarks the performance invoking an external API (Slack).

This function was drawn from the Wonderless dataset [34].

• Code dependencies is formatter that takes a JSON string and returns a plain-

text one, translating the key-value pairings into Python-compatible dictionary

assignments. This case was also drawn from the Wonderless dataset [34].

For completeness, we note that we omitted the cold-start case from [85], which is

an echo application with sizable, unused dependencies. The peculiarity of the case is its

10-minute invocation pattern, used to check the performance of the platform against

cold-start times (so that the platform evicts cached copies of the function, requiring

costly fetch-and-startup times at any subsequent invocation). We decided to omit this

benchmark since we can observe its effects with the hello-world and code-dependency

cases.

We run the benchmarks on a one-zone Google Cloud cluster with four Ubuntu

20.04 virtual machines with 4 GB RAM each, one with 2 vCPU for the OpenWhisk

controller and three with 1 vCPU, resp. for two workers and a MongoDB instance

for the DB-access cases. We run 2000 function invocations for each case in batches

of 4 parallel requests (500 per thread), recording both the scheduling time (the time

between the arrival of a request at the controller and the issuing of the allocation)

and the execution latencies. We compare aAPP, APP, and vanilla OpenWhisk. For a

fair comparison, with vanilla OpenWhisk, we set the APP/aAPP configurations with a

default policy that falls back to the vanilla scheduler.

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 85

6.5. aAPP’S OVERHEAD IS NEGLIGIBLE

OpenWhisk APP aAPP
avg st dev avg st dev avg st dev

hello-world 0.68 1.16 0.73 1.25 0.8 1.27
long-running 0.48 0.53 0.69 0.92 0.71 1.01
compute-intens. 11.57 11.92 10.17 11.67 10.01 9.66
DB-acc., light 0.65 1.31 0.85 1.62 0.83 1.31
DB-acc., heavy 0.44 0.69 0.91 1.25 1.04 1.7
external service 1.28 2.08 1.95 3.33 1.49 2.5
code dependen. 0.64 1.06 1.0 2.27 0.86 1.8

0.1 1.0 10.0

Scheduling time (ms, log scale)

0%

20%

40%

60%

80%

100%

Long-running - Scheduling time

OW
APP
aAPP

Figure 6.4: Comparison of scheduling times between vanilla, APP-, and aAPP-based
OpenWhisk. From the left, avg and st dev (in ms) and the plot of the long-running
case.

For all cases and platforms, we report on the left of Figure 6.4, in tabular form, the

average (avg) and standard deviation (st dev) of the scheduling time. On average, all

platforms allocate functions in less than 2ms, except for the compute-intensive case,

which takes less than 12ms (likely due to the large request payloads that the controller

needs to forward to workers). As expected, OpenWhisk vanilla is the fastest, closely

(under one millisecond) followed by APP and aAPP—except for the compute-intensive

case, where APP and aAPP perform better and OpenWhisk is slower by less than 2ms.

The differences between APP and aAPP are even smaller, with APP being generally

slightly (sub-millisecond) faster than aAPP. To better characterise the comparison, in

Figure 6.4, we show the plot-line distribution of the scheduling times of the long-running

case in which the average gap between aAPP and OpenWhisk is the greatest. The curve

exhibit the typical tail distribution pattern [32] of cloud workloads (which accounts

for the high standard deviation reported in Figure 6.4) and confirm our observations;

excluding the tails, they almost overlap with negligible sub-millisecond differences.

In Figure 6.5, we report instead the latencies of execution of the cases, characterised

by their average (avg), median (med), 95th% tail latency (tail lat), and standard

deviation (st dev), for each of the three considered platforms. Interestingly, if we

consider the tail latencies, it appears that aAPP slightly outperforms OpenWhisk.

We ascribe this behaviour to the high variability (as per the standard deviation in

86 CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING

6.6. CONCLUSIONS

OpenWhisk APP aAPP
avg med tail lat st dev avg med tail lat st dev avg med tail lat st dev

hello-world 88 84 126 28 78 73 114 23 76 72 109 34
long-running 3118 3096 3176 87 3094 3074 3174 86 3092 3072 3175 88
compute-intensive 348 330 559 136 304 286 501 122 257 235 409 103
DB-access, light 131 111 181 289 119 102 156 241 125 91 139 484
DB-access, heavy 95 83 130 135 95 84 131 136 87 75 113 158
external service 627 613 741 230 640 625 765 308 647 630 778 305
code depend. 132 116 213 127 143 117 255 186 98 80 142 209

Figure 6.5: Latencies of the benchmarks (in ms).

Figure 6.5) of performance of the cloud instances and the inherent variability of the

cases.

6.6 Conclusions

To the best of our knowledge, aAPP is the first language that allows developers to

state (anti-)affinity constraints to better control the schedule of the functions in FaaS

platforms. By extending OpenWhisk, we have demonstrated the effectiveness of using

(anti-)affinity constraint of aAPP in reducing latency and tail latency. Furthermore,

benchmarking tests have shown that the overhead of supporting aAPP-based affinity

constraints is minimal compared to vanilla OpenWhisk and its APP-based variant.

One could realise a version of aAPP for the Infrastructure and/or the Container

layers, but we argue it is more interesting to focus on FaaS. There are mainstream

IaaS and CaaS platforms that allow users to program directly ad-hoc schedulers (e.g.,

Kubernetes exposes APIs for creating scheduler plugins that define its scheduling

policies). Since these layers afford a higher level of customisation than aAPP—at the

expense of more technical involvement on the part of the users—a variant of aAPP for

the IaaS/CaaS-levels seems less useful. On the other hand, one can use IaaS and CaaS

platforms that support affinity constraints to implement affinity-aware FaaS platforms.

We see two main problems with pursuing this path. The first regards performance. To

implement FaaS-level affinity using IaaS/CaaS affinity constraints, we need to impose a

1:1 relation between a function instance and the VM/container running it (if we let the

same VM/container run parallel copies of the same function we cannot guarantee e.g.,

self anti-affinity). A consequence of such an implementation is precluding the platform

from exploiting the ubiquitous serverless optimisation technique of VM/container reuse

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 87

6.6. CONCLUSIONS

to avoid cold starts [74, 104, 102]. The second problem regards abstraction leakage,

where letting FaaS users access the underlying IaaS/CaaS layers leaks details and

control of the infrastructural components and breaks FaaS’ paradigmatic abstractions.

Regarding the constructs we have proposed for expressing (anti-)affinity constraints

in aAPP, we observe that an alternative approach could be to let the user directly

declare the properties to enforce, leaving to the platform the task to realise them

at run time. The scheduling runtime of this APP variant would allocate a function

only if the allocation satisfies the formula or fail otherwise. The problem with this

approach is scalability. Indeed, checking the satisfiability of a property’s formula can

take exponential time on the size of the formula, workers, and functions. Contrarily,

the aAPP scheduler checks whether it can allocate a function on a worker in linear time

on the size of the workers and aAPP script length.

Implementation-wise, OpenWhisk supports scenarios where multiple controllers

share the pool of available workers (e.g., for redundancy and load balancing) and take

scheduling decisions without coordination. In our aAPP-based implementation, such

multi-controller configurations present a problem since we need to prevent scheduling

races among controllers—e.g., imagine two controllers that select an available, empty

worker and, at the same time, allocate mutually anti-affine functions on it. Supporting

multi-controller deployments is important, but we deem dealing with it to be outside

the scope of this work and an interesting subject for future work.

88 CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING

Chapter 7

Cost-aware Serverless Scheduling

7.1 Introduction

We present one last extension to the APP language we developed to investigate the

integration of static analysis techniques to derive cost information from functions. Fixed

and opinionated platform-wide policies to manage the allocation of function executions

does not allow the platform to adapt to function performance degradation. For instance,

a function can endure degradation depending on the worker that hosts it, e.g., due to

effects like the latency to access data relative to the worker’s location.

We visualise the issue by commenting on the minimal scenario drawn in Figure 7.1,

similar to the one in Section 5.1. We have two workers, W1 and W2, located in distinct

geographical Zones A and B, respectively. Both workers can run functions that interact

with a database (db) located in Zone A. When the function scheduler receives a request

to execute a function, it must determine which worker to use. To minimise the function

run time (and, thus, the response time), the scheduler should take into account the

different computational capabilities of the workers, as well as their current workloads.

Moreover, when functions interact with external services, it might take into account

also their latency to access them, choosing the ones that minimise it. In our example,

the scheduler should find a worker that minimises the time to access the database. In

this case, that worker is W1, thanks to its closeness to db (same geographic zone) which

allows it to undergo lower latencies than the farther worker W2. We propose to overcome

the above limitations by letting users express latency-aware selection strategies. In

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 89

7.1. INTRODUCTION

�
1 - db_query:
2 - workers:
3 - wrk: W1
4 - wrk: W2
5 strategy: best first
� �

Figure 7.1: A multi-zone serverless topology and APP script.

the scenario in Figure 7.1, we expect the user to be able to express policies like the

following one:

�
- db_query:

- workers:

- wrk: W1

- wrk: W2

strategy: min latency
� �
where the strategy min latency instructs the platform to give priority to the worker

expected to endure the lowest latency w.r.t. its latency in the usage of external services

(e.g., the database db in Figure 7.1).

While such high-level policies greatly alleviate the burden on users, they open a

relevant question: given a function f to be scheduled and a list of possible workers, how

can one automatically guide the scheduling of f on a worker with low-latency access to

f’s external services?

We answer to the above question by proposing a solution consisting of three

components:

90 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

7.1. INTRODUCTION

1. the quantification of (an upper bound of) of the invocations done by a function

to its external services, obtained through a static analysis of the function’s code;

2. the periodical run-time monitoring of the latencies workers endure in contacting

said external services;

3. the computation, at function scheduling time, of an upper-bound of the function-

worker overall latency by combining the quantified invocations to the function’s

external services with the workers’ expected latencies.

In other terms, we propose to use a combination of static analysis (applied on a

function’s code) and run-time monitoring (of the workers latencies in accessing the

external services) to estimate a cost for executing a function on a worker, considering

what and how it uses external services.

Thanks to such a quantification, we can support other meaningful scheduling policies

like the following one:�
- db_query:

- workers:

- wrk: W1

- wrk: W2

invalidate: max latency: 300
� �
In this case, we do not specify a selection strategy (using the platform’s default one) to

choose between the two workers, but we consider invalid any worker whose estimated

latency of running the function exceeds the threshold of 300ms.

We discuss the applicability of our approach on a minimal language, called miniSL

(standing for mini Serverless Language), for programming functions in serverless applica-

tions. We focus on a minimal language for two main reasons. First, it allows us to show

the feasibility of our approach by concentrating on basic language constructs, abstracting

away from the specific (and, in some case, idiosyncratic) constructs of the different

programming languages used in serverless computing. Second, miniSL represents an

abstract language for describing the behaviour of programs written in mainstream

programming languages, so that the theory developed in this chapter becomes directly

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 91

7.2. THE MINI SERVERLESS LANGUAGE

applicable to any programming language.1 Concretely, we define a static analysis tech-

nique that, given miniSL code, extracts a set of equations that define meaningful costs,

in particular, the number and kind of external service invocations. Then, we feed the

equations to off-the-shelf cost analysers (e.g., PUBS [5] and CoFloCo [36]) to compute

cost expressions that quantify over-approximations of said costs. The question we ask

above focusses on a theoretical problem, i.e., how we can give an abstract estimation of

the expected latencies of external service invocations done by a function scheduled on a

given worker. We also developed a concrete proposal2 as an extension of our in-house

FaaS platform, FunLess, that we will present in the next Chapter 8. Working with a

platform we have complete control over allowed us to more easily perform substantial

changes to the platform’s architecture to support latency monitoring, to parse the cost

equations and to add a service wrapping PUBS for the analyser.

Structure of the chapter. We start, in Section 7.2, by defining our minimal

language, called miniSL, which includes constructs for specifying computation flow (via

if and for constructs) and for service invocation (via a call construct). Then, in

Section 7.3, we describe how to exploit static analysis techniques, inspired by behavioural

type systems like those by Garcia et al. and Laneve and Sacerdoti Coen [42, 66], to

automatically extract a set of equations from function source codes written in miniSL

that define meaningful function costs (in our case, the number of invocation to external

services). One can feed these equations to off-the-shelf cost analyser (e.g., PUBS [5]

or CoFloCo [36]) to compute cost expressions quantifying over-approximations of the

considered costs. In Section 7.4, we present cAPP, our extension of APP for expressing

cost-aware scheduling policies. We conclude by drawing final takeaways in Section 7.5.

7.2 The mini Serverless Language

The mini Serverless Language, shortened into miniSL, is a minimal calculus that we

propose to specify the functions’ behaviour in serverless computing. miniSL focuses only

1Since serverless platforms support many disparate programming languages, we see exploring the
usage of miniSL as an abstract language for describing serverless functions too broad and tangential to
be tackled here, and leave it as interesting future work.

2It can be found at: https://github.com/funlessdev/funless/tree/miniSL

92 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

https://github.com/funlessdev/funless/tree/miniSL

7.2. THE MINI SERVERLESS LANGUAGE

on core constructs to define operations to access services, conditional behaviour with

simple guards, and iterations.

Function executions are triggered by events. At triggering time, a function receives

a sequence of invocation parameters: for this reason, we assume a countable set of

parameter names, ranged over by p, p′. We also consider a countable set of counters,

ranged over by i, j, used as indexes in iteration statements. Integer numbers are

represented by n; service names are represented by h, g, ···. The syntax of miniSL is as

follows (we use over-lines to denote sequences, e.g., p1,p2 could be an instance of p):

F ::= (p) =>{S}
S ::= ε | callh(E)S | if (G){ S } else { S } |

for (i in range(0,E)){ S }
G ::= E | callh(E)

E ::= n | i | p | E ♯ E | !E

♯ ::= + | - | * | / | > | < |
>= | == | <= | && | ||

A function F associates to a sequence of parameters p a statement S executed at

every occurrence of the triggering event. Statements include the empty statement ε

(which is always omitted when the statement is not empty); calls to external services

by means of the call keyword; the conditional and iteration statements. The guard of

a conditional statement could be either a boolean expression or a call to an external

service which, in this case, is expected to return a boolean value. The language supports

standard expressions in which it is possible to use integer numbers and counters. Notice

that, in our simple language, the iteration statement considers an iteration variable

ranging from 0 to the value of an expression E evaluated when the first iteration starts.

In the rest of the chapter, we assume all programs to be well-formed so that all

names are correctly used (e.g., counters are declared before they are used). For each

expression used in the range of an iteration construct, we assume that its evaluation

generates an integer, and for each service invocation callh(E), we assume that h is a

correct service name and E is a sequence of expressions generating correct values to be

passed to that service. Calls to services include serverless invocations, which possibly

execute on a different worker of the caller.

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 93

7.2. THE MINI SERVERLESS LANGUAGE

We illustrate miniSL by means of three examples. As a first example, consider the

code in Listing 7.1 representing the call of a function that selects a functionality based

on the characteristic of the invoker.�
1 (isPremiumUser , par) => {

2 if(isPremiumUser) {

3 call PremiumService (par)

4 } else {

5 call BasicService (par)

6 }

7 }
� �
Listing 7.1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on

whether it has been triggered by a premium user or not. The parameter isPremiumUser

is a value indicating whether the user is a premium member (when the value is true) or

not (when the value is false). The other invocation parameter par must be forwarded

to the invoked service. For the purposes of this chapter, this example is relevant because

if we want to reduce the latency of this function, the best node to schedule it could be

the one that reduces the latency of the invocation of either the service PremiumService

or the service BasicService, depending on whether isPremiumUser is true or false,

respectively.

Consider now the following function, where differently from the previous version, it

is necessary to call an external service to decide whether we are serving a premium or

a basic user. �
1 (username , par) => {

2 if(call IsPremiumUser (username)) {

3 call PremiumService (par)

4 } else {

5 call BasicService (par)

6 }

7 }
� �
Listing 7.2: Function with a conditional statement guarded by an invocation to external

service.

In this case, the first parameter carries an attribute of the user (its name) but it does

not indicate (with a boolean value) whether it is a premium user or not. Instead,

94 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

7.2. THE MINI SERVERLESS LANGUAGE

the necessary boolean value is returned by the external service IsPremiumUser that

checks the username and returns true only if that username corresponds to that of a

premium user. Within this setting is difficult to predict the best worker to execute

such a function, because the branch that will be selected is not known at function

scheduling time. If the user triggering the event is a premium member, the expected

execution time of the function is the sum of the latencies of the service invocations of

IsPremiumUser and PremiumService while, if the user is not a premium member, the

expected execution time is the sum of the latencies of the services IsPremiumUser and

BasicService. As an (over-)approximation of the expected delay, we could consider the

worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus the

maximum between the latencies of the services PremiumService and BasicService.

At scheduling time, we could select the best worker as the one giving the best guarantees

in the worst case, e.g., the one with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.�
1 (jobs , m, r) => {

2 for(i in range (0, m)) {

3 call Map(jobs , i)

4 for(j in range (0, r)) {

5 call Reduce(jobs , i, j)

6 }

7 }

8 }
� �
Listing 7.3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is

indicated by the parameter m. The “map” phase, which generates m “reduce” subtasks,

is implemented by an external service Map that receives the jobs and the specific

index i of the job to be mapped. The “reduce” subtasks are implemented by an

external service Reduce that receives the jobs, the specific index i of the job under

execution, and the specific index j of the “reduce” subtask to be executed — for every

i, there are r such subtasks. In this case, the expected latency of the entire function

is given by the sum of m times the latency of the service Map and of m × r times the

latency of the service Reduce. Given that such latency could be high, a user could be

interested to run the function on a worker, only if the expected overall latency is below

a given threshold.

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 95

7.3. THE INFERENCE OF COST EXPRESSIONS

7.3 The Inference of Cost Expressions

In this section, we formalise the inference of a cost program from miniSL code. Once

inferred, we can feed this program to off-the-shelf tools, such as [36, 5], to calculate the

cost expression of the related miniSL code. Notice that, since these tools are designed

to handle only Presburger arithmetic, we restrict our extraction only to a subset of

miniSL, where the expressions conform to Presburger arithmetic constraints.

Cost programs are lists of equations which are terms

f(x) = e+
∑

i∈0..n
fi(ei) [φ]

where variables occurring in the right-hand side and in φ are a subset of x and f and fi

are (cost) function symbols. Every function definition has a right-hand side consisting

of

• a Presburger arithmetic expression e whose syntax is

e ::= x | q | e+e | e−e | q∗e

| max(e1,···,ek)

where x is a variable and q is a positive rational number,

• a number of cost function invocations fi(ei) where ei are Presburger arithmetic

expressions,

• the Presburger guard φ is a linear conjunctive constraint, i.e., a conjunction of

constraints of the form e1≥e2 or e1=e2, where both e1 and e2 are Presburger

arithmetic expressions.

The intended meaning of an equation

f(x) = e+
∑

i∈0..n
fi(ei) [φ]

is that the cost of f is given by e and the costs of fi(ei), when the guard φ is true.

Intuitively, e quantifies the specific cost of one execution of f without taking into

account invocations of either auxiliary functions or recursive calls. Such additional

96 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

7.3. THE INFERENCE OF COST EXPRESSIONS

cost is quantified by
∑

i∈0..nfi(ei). The solution of a cost program is an expression,

quantifying the cost of the function symbol in the first equation in the list, which is

parametric in the formal parameters of the function symbol.

For example, the following cost program

f(N,M) = M+f(N−1,M) [N≥1]

f(N,M) = 0 [N=0]

defines a function f that is invoked N+1 times and each invocation, excluding the last

having cost 0, costs M. The solution of this cost program is the cost expression N×M.

Our technique associates cost programs to miniSL functions following a syntax-

directed approach: we define a set of (inference) rules that, following the parse tree

bottom-up, gather fragments of cost programs that are then combined in a syntax-

directed manner.

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 97

7.3. THE INFERENCE OF COST EXPRESSIONS

[eps] Γ⊢ε :0 ; ∅ ; ∅ [call]
Γ(h)=e Γ⊢S :e′ ; C ; Q

Γ⊢callh(E) S :e+e′ ; C ; Q

[if-exp]

Γ⊢E :φ Γ⊢S :e′ ; C ; Q Γ⊢S′ :e′′ ; C′ ; Q′ if ℓ fresh

w=var(φ,e′,e′′)∪var(C,C′) Q′′=

[
if ℓ(w)=e′+C [φ]
if ℓ(w)=e′′+C′ [¬φ]

]

Γ⊢if (E){ S } else { S′ } :0 ; if ℓ(w) ; Q,Q′,Q′′

[if-call]
Γ(h)=e Γ⊢S :e′ ; C ; Q Γ⊢S′ :e′′ ; C′ ; Q′

Γ⊢if (callh(E)){ S } else { S′ } :e+max(e′,e′′) ; C+C′ ; Q,Q′

[for]

Γ⊢E :e Γ+i :Int⊢S :e′ ; C ; Q w=(var(e,e′)∪var(C))\i
forℓ fresh Q′=

[
forℓ(i,w)=e′+C+forℓ(i+1,w) [e ≥ i]
forℓ(i,w)=0 [i ≥ e+1]

]

Γ⊢for (i in range(0,E)){ S } :0 ; forℓ(0,w) ; Q,Q′

[prg]

Γ⊢S :e ; C ; Q w=var(p,e)∪var(C)
main fresh Q′=main(w)=e+C []

Γ⊢(p) =>{S} :Q′,Q

Figure 7.2: The rules for deriving cost expressions

As usual with syntax-directed rules, we use environments Γ, Γ′, which are maps. In

particular,

• Γ takes a service h or a parameter name p and returns a Presburger arithmetics

expression, which is usually a variable. For example, if Γ(h)=X, then X will

appear in the cost expressions of miniSL functions using h and will represent the

cost for accessing the service. As regards parameter names p, Γ(p) represents

values which are known at function scheduling time,

98 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

7.3. THE INFERENCE OF COST EXPRESSIONS

• Γ takes counters i and returns the type Int.

When we write Γ+i :Int, we assume that i does not belong to the domain of Γ. Let C

be a sum of (cost) function invocations and let Q be a list of equations. Judgments

have the shape

• Γ⊢E :e, meaning that the value of the integer expression E in Γ is represented by

(the Presburger arithmetic expression) e,

• Γ⊢E :φ, meaning that the value of the boolean expression E in Γ is represented

by (the Presburger guard) φ,

• Γ⊢S :e ; C ; Q, meaning that the cost of S in the environment Γ is e+C given a

list Q of equations,

• Γ⊢F :Q, meaning that the cost of a miniSL function F in the environment Γ is

given by the cost program Q (remember that a cost program is a list of equations).

We use the notation var(e) to address the set of variables occurring in e, which is

extended to tuples var(e1,···,en) with the standard meaning. Similarly var(
∑

i∈0..nfi(ei))

is the union of the sets of variables var(e0),···,var(en). We use var(φ) for Presburger

guards.

The inference rules for miniSL are reported in Figure 7.2. They compute the cost

of a program with respect to the calls to external services (whose cost is recorded in

the environment Γ). Therefore, if a miniSL expression (or statement) has no service

invocation, its cost is 0. Notice that in the rule [if-exp] we use the guard [¬φ], to
model the negation of a linear conjunctive constraint φ, even if negation is not permitted

in Presburger arithmetic. Actually, such notation is syntactic sugar defined as follows:

• let ¬φ (the negation of a Presburger guard φ) be the list of Presburger guards

¬(e≥e′) = e′≥e+1

¬(e=e′) = e≥e′+1 ; e′≥e+1

¬(e∧e′) = ¬e ; ¬e′

where ; is the list concatenation operator (the list represents a disjunction of

Presburger guards),

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 99

7.3. THE INFERENCE OF COST EXPRESSIONS

• let ¬φ= φ1 ; ··· ; φm , where φi are Presburger guards, then

(
f(x) = e+

∑
i∈0..nfi(ei)

)
[¬φ]

def
=
{
f(x) = e+

∑
i∈0..nfi(ei) [φj] | j∈1..m

}
.

We now comment on the inference rules reported in Figure 7.2.3

Rule [call] manages invocation of services: the cost of callh(E) S is the cost of S

plus the cost for accessing the service h.

Rule [if-exp] defines the cost of conditionals when the guard is a Presburger

arithmetic expression that can be evaluated at function scheduling time. We use a

corresponding cost function, if ℓ, whose name is fresh,4 to indicate that the cost of the

entire conditional statement is either the cost of the then-branch or the else-branch,

depending on whether the guard is true or false. As discussed above, the use of the

guard ¬φ generates a list of equations.

Rule [if-call] defines an upper bound of the cost of conditionals when the guard

is an invocation to a service. At scheduling time it is not possible to determine whether

the guard is true or false – c.f. the second example in Section 7.2. Therefore the cost

of a conditional is the maximum between the cost e′+C of the then-branch and the

one e′′+C′ of the else-branch, plus the cost e to access to the service in the guard.

However, considering that the expression max(e+C,e′+C′) is not a valid right-hand side

for the equations in our cost programs, we take as over-approximation the expression

max(e,e′)+C+C′.

As regards iterations, according to [for], its cost is the invocation of the corre-

sponding function, forℓ, whose name is fresh (we assume that iterations have pairwise

different line-codes). The rule adds the counter i to Γ (please recall that Γ+i : Int

entails that i /∈dom(Γ)). In particular, the counter i is the first formal parameter of

forℓ; the other parameters are all the variables in e, in notation var(e) plus those in

the invocations C (minus the i). There are two equations for every iteration: one is the

case when i is out-of-range, hence the cost is 0, the other is when it is in range and

3We omit rules for expressions E since they are straightforward: they simply return E if E is in
Presburger arithmetics. We notice that no rule is defined if E is not in Presburger arithmetics. In
fact, in these cases, it is not possible to derive cost equations.

4We assume that conditionals have pairwise different line-codes and ℓ represents the line-code of
the if in the source code.

100 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

7.3. THE INFERENCE OF COST EXPRESSIONS

the cost is the one of the body plus the cost of the recursive invocation of forℓ with i

increased by 1.

The cost of a miniSL program is defined by [prg]. This rule defines an equation

for the function main and puts this equation as the first one in the list of equations 5.

Once inferred, we can feed this program to off-the-shelf tools, such as [36, 5], which will

compute the cost of the the first function of the list, i.e. the main function.

As an example, we apply the rules of Figure 7.2 to the codes in Listings 7.1, 7.2,

and 7.3. Let Γ(isPremiumUser)=u, Γ(par)=v, Γ(PremiumService)=P and

Γ(BasicService)=B. For Listing 7.1, we obtain the cost program

main(u,v,P,B)= if 2(u,P,B) []

if 2(u,P,B)= P [u=1]

if 2(u,P,B)= B [u=0]

Notice that the parameters of the main function include, initially, the values cor-

responding to the parameters of the corresponding miniSL function and then those

corresponding to the other variables occurring in the cost equations.

For Listing 7.2, let Γ(username)=u, Γ(par)=v,

Γ(IsPremiumUser) =K, Γ(PremiumService) =P and Γ(BasicService) =B. Then

the rules of Figure 7.2 return the single equation

main(u,v,K,P,B)= K+max(P,B) []

For 7.3, when Γ(jobs)=J. Γ(m)=m, Γ(r)=r, Γ(Map)=M and Γ(Reduce)=R, the

cost program is

main(J,m,r,M,R)= for2(0,m,r,M,R) []

for2(i,m,r,M,R)= M+for4(0,r,R)+

for2(i+1,m,r,M,R) [m≥i]

for2(i,m,r,M,R)= 0 [i≥m+1]

for4(j,r,R)= R+for4(j+1,r,R) [r≥j]

for4(j,r,R)= 0 [j≥r+1]

5Given that miniSL functions are anonymous, we use the default name main for the corresponding
cost function.

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 101

7.4. FROM APP TO CAPP

The foregoing cost programs can be fed to automatic solvers such as PUBS [5] and

CoFloCo [36]. The evaluation of the cost program for Listing 7.1 returns max(P,B)

because u is unknown. On the contrary, if u is known, it is possible to obtain a more

precise evaluation from the solver: if u=1 it is possible to ask the solver to consider

main(1,v,P,B) and the solution will be P , while if u=0 it is possible to ask the solver to

consider main(0,v,P,B) and the solution will be B. The evaluation of main(u,v,K,P,B)

for Listing 7.2 gives the expression K+max(P,B), which is exactly what is written

in the equation. This is reasonable because, statically, we are not aware of the value

returned by the invocation of IsPremiumService. Last, the evaluation of the cost

program for Listing 7.3 returns the expression m×(M+r×R).

Since we combine miniSL and our inference system for estimating costs of functions

interacting with external services, one might wonder how relevant the approach is,

i.e., how common are serverless functions that call external services, and what is their

structure? While a systematic study is out of the scope of this thesis, we started this

process by analysing a comprehensive repository of illustrative serverless functions6 for

different platforms (AWS, Azure, OpenWhisk, etc.). Our analysis reveals that 50%

(65/130) of these functions follow patterns that one can represent using miniSL by

abstracting away structured data and internal computation and estimate their cost

w.r.t. the flow of external calls, such as HTTP invocations to external services.

7.4 From APP to cAPP

We now present the new language cAPP for expressing cost-aware function scheduling

policies, by extending the previously discussed language APP, as shown in Figure 7.3.

7.4.1 Cost-aware policies with cAPP

To support the scheduling of functions based on costs we propose two extensions to

APP. The first one is a new selection strategy named min latency. Such a strategy

selects, among some available workers, the one which minimises a given cost expression.

The second one is a new invalidation condition named max latency. This condition

6“A collection of ready-to-deploy Serverless Framework services” at https://github.com/
serverless/examples.

102 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

https://github.com/serverless/examples
https://github.com/serverless/examples

7.4. FROM APP TO CAPP

policy tag∈Identifiers ∪ {default} label∈Identifiers n ∈ N

app ::= - tag

tag ::= policy tag : - block followup?

block ::= workers: [* | - wrk : worker label]
(strategy: [random | platform | best first

| min latency])?

(invalidate: [capacity used : n%
| max concurrent invocations: n
| overload

| max latency: n

])?

)
followup ::= followup: [default | fail])

Figure 7.3: The syntax of cAPP (the extensions from APP are highlighted).

invalidates a worker in case the corresponding cost expression is greater than a given

threshold.

We dub cAPP the cost-aware extension of APP and illustrate its main features by

showing examples of cAPP scripts that target the functions in Listings 7.1–7.3.�
- premUser:

- workers:

- wrk: W1

- wrk: W2

strategy: min latency
� �
Listing 7.4: cAPP script for Listings 7.1 and 7.2.

Listing 7.4 defines a cAPP tagged premUser that we will associate to both the

functions at Listing 7.1 and 7.2. In this script, we specify to follow the logic min latency

to select among the two workers, W1 and W2 listed in the workers clause, and prioritises

the one for which the solution of the cost expression is minimal.

To better illustrate the phases of the min latency strategy, we depict in Figure 7.4

the flow, from the deployment of the cAPP script to the scheduling of the functions in

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 103

7.4. FROM APP TO CAPP

saverio.giallorenzo@gmail.com • Università di Bologna

ICSOC 2020Allocation Priority Policies for Serverless Function-execution Scheduling Optimisation

13

G. De Palma et al. 9

// tag: premUser
(isPremiumUser , par) => {

...
}

f1 from Listing 1
// tag: premUser
(username , par) => {

...
}

f2 from Listing 2 - premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

cAPP script

main(u,P,B) = if 2(u,P,B) []
if 2(u,P,B) = P [u = 1]
if 2(u,P,B) = B [u = 0]

main(K,P,B) = K +max(P,B)[]

Inference of Cost Programs
(cf. Section 3)

Request for f1

W in (W1, W2)
where W.latency(PremiumService)
is minimal

Request for f2

W in (W1, W2)
where W.latency(IsPremiumUser)
+ max(W.latency(PremiumService),

W.latency(BasicService))
is minimal

Cost Program Solver

D
E

PL
O

Y
M

E
N

T
T

IM
E

SC
H

E
D

U
L

IN
G

T
IM

E

Figure 3: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
of the cAPP policy, which selects one of the two workers W1 or W2 at random and checks their validity
following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
and Reduce services from the selected worker, and possibly invalidate it if the computed value is greater
than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving

G. De Palma et al. 9

// tag: premUser
(isPremiumUser , par) => {

...
}

f1 from Listing 1
// tag: premUser
(username , par) => {

...
}

f2 from Listing 2 - premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

cAPP script

main(u,P,B) = if 2(u,P,B) []
if 2(u,P,B) = P [u = 1]
if 2(u,P,B) = B [u = 0]

main(K,P,B) = K +max(P,B)[]

Inference of Cost Programs
(cf. Section 3)

Request for f1

W in (W1, W2)
where W.latency(PremiumService)
is minimal

Request for f2

W in (W1, W2)
where W.latency(IsPremiumUser)
+ max(W.latency(PremiumService),

W.latency(BasicService))
is minimal

Cost Program Solver

D
E

PL
O

Y
M

E
N

T
T

IM
E

SC
H

E
D

U
L

IN
G

T
IM

E

Figure 3: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

where we tag the function (//tag:mapReduce) and we proceed to compute its cost program, obtaining
the associated cost expression. Then, when we receive a request for that function, we trigger the execution
of the cAPP policy, which selects one of the two workers W1 or W2 at random and checks their validity
following the logic shown at the bottom of Figure 4, i.e., we solve the cost program and then compute the
corresponding cost expression by replacing the parameters m and r with the latency to contact the Map
and Reduce services from the selected worker, and possibly invalidate it if the computed value is greater
than 300.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. Steps in that direction include the
definition of a target language used to write serverless functions close to the minimal language from
Section 2 and the implementation of the inference system (cf. Section 3) to extract the cost equations
relative to a given function. Another step regards the implementation of a runtime for cAPP able to
orchestrate both the above-mentioned tool to extract cost equations at function deployment and the solvers
that compute the cost expression at scheduling time. Besides computing costs, the runtime shall also
interact with the workers available in the platform to collect the measures that characterise the costs
sustained by the workers (e.g., the latency endured by a worker when contacting a given service). Proving

4 Serverless Scheduling Policies based on Cost Analysis

1 // tag: premUser
2 (username , par) => {
3 if(call IsPremiumUser(username)) {
4 call PremiumService(par)
5 } else {
6 call BasicService(par)
7 }
8 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 (jobs , m, r) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.

Request for A(1,v)

Request for B(u_name,v)

Request for lambda1(1,v)

Request for lambda2(u_name,v)

G. De Palma et al. 3

p, p0. We also consider a countable set of counters, ranged over by i, j, used as indexes in iteration
statements. Integer numbers are represented by n; service names are represented by h, g, · · · . The syntax
of miniSL is as follows (we use over-lines to denote sequences, e.g., p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= e | call h(E) S | if (G) { S } else { S } | for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E] E
] ::= + | - | > | == | >= | && | * | /

A function F associates to a sequence of parameters p a statement S which is executed at every
occurrence of the triggering event. Statements include the empty statement e (which is always omitted
when the statement is not empty); calls to external services by means of the call keyword; the conditional
and iteration statements. The guard of a conditional statement could be either a boolean expression or
a call to an external service which, in this case, is expected to return a boolean value. The language
supports standard expressions in which it is possible to use integer numbers and counters. Notice that, in
our simple language, the iteration statement considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the paper, we assume all programs to be well-formed so that all names are correctly used,
i.e., counters are declared before they are used and when we use p, such p is an invocation parameter.
Similarly, for each expression used in the range of an iteration construct, we assume that its evaluation
generates an integer, and for each service invocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct values to be passed to that service. Calls to
services include serverless invocations, which possibly execute on a different worker of the caller.

We illustrate miniSL by means of three examples. As a first example, consider the code in Listing 1
representing the call of a function that selects a functionality based on the characteristic of the invoker.

1 // name: lambda1.miniSL
2 // tag: premUser
3 (isPremiumUser , par) => {
4 if(isPremiumUser) {
5 call PremiumService(par)
6 } else {
7 call BasicService(par)
8 }
9 }

Listing 1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on whether it has been
triggered by a premium user or not. The parameter isPremiumUser is a value indicating whether the
user is a premium member (when the value is true) or not (when the value is false). The other invocation
parameter par must be forwarded to the invoked service. For the purposes of this paper, this example is
relevant because if we want to reduce the latency of this function, the best node to schedule it could be
the one that reduces the latency of the invocation of either the service PremiumService or the service
BasicService, depending on whether isPremiumUser is true or false, respectively.

Consider now the following function where differently from the previous version, it is necessary to
call an external service to decide whether we are serving a premium or a basic user.

4 Serverless Scheduling Policies based on Cost Analysis

1 // name: lambda2.miniSL
2 // tag: premUser
3 (username , par) => {
4 if(call IsPremiumUser(username)){
5 call PremiumService(par)
6 } else {
7 call BasicService(par)
8 }
9 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1 // tag: mapReduce
2 (jobs , m, r) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m ⇥ r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.

Leveraging Static Analysis for Cost-aware Serverless Scheduling Policies disable todos 7

[EPS]

G ` e : 0 ; /0 ; /0

[CALL]

G (h) = e G ` S : e0 ; C ; Q

G ` call h(E) S : e+e0 ; C ; Q

[IF-EXP]

G ` E : j G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0 if ` fresh

w = var(j,e0,e00)[var(C,C0) Q00 =


if `(w) = e0 +C [j]
if `(w) = e00 +C0 [¬j]

�

G ` if (E) { S } else { S0 } : 0 ; if `(w) ; Q, Q0,Q00

[IF-CALL]

G (h) = e G ` S : e0 ; C ; Q G ` S0 : e00 ; C0 ; Q0

G ` if (call h(E)) { S } else { S0 } : e+max(e0,e00) ; C+C0 ; Q, Q0

[FOR]

G ` E : e G + i : Int ` S : e0 ; C ; Q w = (var(e,e0)[var(C))\ i

for` fresh Q0 =


for`(i,w) = e0 +C+ for`(i+1,w) [e � i]
for`(i, w) = 0 [i � e+1]

�

G ` for (i in range(0,E)){ S } : 0 ; for`(0, w) ; Q, Q0

[PRG]

G ` S : e ; C ; Q w = var(p,e)[var(C)
main fresh Q0 = main(w) = e+C []

G ` (p) => { S } : Q0, Q

Fig. 3: The rules for deriving cost expressions

– let ¬j (the negation of a Presburger guard j) be the list
of Presburger guards

¬(e � e0) = e0 � e+1
¬(e = e0) = e � e0 +1 ; e0 � e+1
¬(e^e0) = ¬e ; ¬e0

where ; is the list concatenation operator (the list repre-
sents a disjunction of Presburger guards),

– let ¬j = j1 ; · · · ; jm , where ji are Presburger guards,
then
⇣

f (x) = e+Âi20..n fi(ei)
⌘

[¬j]
def
=
n

f (x) = e+Âi20..n fi(ei) [j j] | j 2 1..m
o

.

We now comment on the inference rules reported in Fig-
ure 3.2

Rule [CALL] manages invocation of services: the cost of
call h(E) S is the cost of S plus the cost for accessing the
service h.

Rule [IF-EXP] defines the cost of conditionals when the
guard is a Presburger arithmetic expression that can be eval-
uated at function scheduling time. We use a corresponding
cost function, if `, whose name is fresh,3 to indicate that the
cost of the entire conditional statement is either the cost of
the then-branch or the else-branch, depending on whether
the guard is true or false. As discussed above, the use of the
guard ¬j generates a list of equations.

Rule [IF-CALL] defines an upper bound of the cost of
conditionals when the guard is an invocation to a service. At
scheduling time it is not possible to determine whether the

2 We omit rules for expressions E since they are straightforward: they
simply return E if E is in Presburger arithmetics. We notice that no rule
is defined if E is not in Presburger arithmetics. In fact, in these cases, it
is not possible to defrive cost equations.

3 We assume that conditionals have pairwise different line-codes and
` represents the line-code of the if in the source code.

guard is true or false – c.f. the second example in Section 3.
Therefore the cost of a conditional is the maximum between
the cost e0 + C of the then-branch and the one e00 + C0 of
the else-branch, plus the cost e to access to the service in
the guard. However, considering that the expression max(e+

C,e0 + C0) is not a valid right-hand side for the equations
in our cost programs, we take as over-approximation the
expression max(e,e0)+C+C0.

As regards iterations, according to [FOR], its cost is the
invocation of the corresponding function, for`, whose name is
fresh (we assume that iterations have pairwise different line-
codes). The rule adds the counter i to G (please recall that
G + i : Int entails that i /2 dom(G)). In particular, the counter
i is the first formal parameter of for`; the other parameters
are all the variables in e, in notation var(e) plus those in
the invocations C (minus the i). There are two equations for
every iteration: one is the case when i is out-of-range, hence
the cost is 0, the other is when it is in range and the cost is
the one of the body plus the cost of the recursive invocation
of for` with i increased by 1.

The cost of a miniSL program is defined by [PRG]. This
rule defines an equation for the function main and puts this
equation as the first one in the list of equations 4. Once
inferred, we can feed this program to off-the-shelf tools, such
as [3,14], which will compute the cost of the the first function
of the list, i.e. the main function.

As an example, we apply the rules of Figure 3 to the
codes in Listings 1, 2 and 3. Let G (isPremiumUser) = u,
G (par) = v, G (PremiumService) = P and G (BasicService) =
B. For Listing 1 we obtain the cost program

main(u,v,P,B) = if 2(u,P,B) []
if 2(u,P,B) = P [u = 1]
if 2(u,P,B) = B [u = 0]

4 Given that miniSL functions are anonymous, we use the default
name main for the corresponding cost function.

8 G. De Palma, S. Giallorenzo, C. Laneve, J. Mauro, M. Trentin, G. Zavattaro

For Listing 2, let G (username) = u, G (par) = v,
G (IsPremiumUser) = K, G (PremiumService) = P and
G (BasicService) = B. Then the rules of Figure 3 return
the single equation

main(u,v,K,P,B) = K +max(P,B) []

For 3, when G (jobs) = J. G (m) = m, G (r) = r, G (Map) =

M and G (Reduce) = R, the cost program is

main(J,m,r,M,R) = for2(0,m,r,M,R) []

for2(i,m,r,M,R) = M + for4(0,r,R)+

for2(i+1,m,r,M,R) [m � i]

for2(i,m,r,M,R) = 0 [i � m+1]

for4(j,r,R) = R+ for4(j +1,r,R) [r � j]

for4(j,r,R) = 0 [j � r +1]

The foregoing cost programs can be fed to automatic solvers
such as Pubs [3] and CoFloCo [14]. The evaluation of the
cost program for Listing 1 returns max(P,B) because u is
unknown. On the contrary, if u is known, it is possible to
obtain a more precise evaluation from the solver: if u = 1
it is possible to ask the solver to consider main(1,P,B) and
the solution will be P, while if u = 0 it is possible to ask
the solver to consider main(0,P,B) and the solution will be
B. The evaluation of main(K,P,B) for Listing 2 gives the
expression K + max(P,B), which is exactly what is written
in the equation. This is reasonable because, statically, we
are not aware of the value returned by the invocation of
IsPremiumService. Last, the evaluation of the cost program
for Listing 3 returns the expression m⇥ (M + r⇥R).

5 From APP to cAPP

As discussed in the Introduction, we propose the new lan-
guage cAPP, for expressing cost-aware function scheduling
policies, by extending the already available language APP.
We start by briefly introducing the APP syntax and constructs,
reported in Figure 4, as found in its first incarnation by De
Palma et al. [13] and then discussing the new constructs we
introduce to handle cost-aware scheduling policies.

5.1 The APP Language

APP scripts are collections of tagged scheduling policies. The
main, mandatory component of any policy (identified by a
policy tag) are the workers therein, i.e., a collection of labels
that identify on which workers the scheduler can allocate the
functions. The assumption is that the environment running
the APP script establishes a 1-to-1 association so that each
worker has a unique, identifying label. A policy associates to
every function a list of one or more blocks, each including

policy tag 2 Identifiers [{default} worker label 2 Identifiers
n 2 N

app ::= tag

tag ::= policy tag : - block followup?

block ::= workers: [* | - wrk: worker label]
(strategy: [random | platform | best first

| min latency])?
(invalidate: [capacity used : n%

| max concurrent invocations: n
| overload
| max latency: n
])?

followup ::= followup: [default | fail]

Fig. 4: The APP syntax and, in red, the cAPP extension.

– the worker clause stating on which workers the function
can be scheduled;

– the strategy, an optional parameter that defines the
scheduling followed to select one of the workers of the
block;

– the invalidate condition, optional as well, which deter-
mines when a worker cannot host a function.

When a selected worker is invalid, the scheduler tries to apply
the selection strategy and allocate the function on the rest of
the available workers in the block. If none of the workers of
a block is available, the scheduling moves to the next block.
The last clause, followup, encompasses a whole policy and
defines what to do when no blocks of the policy managed
to allocate the function. When set to fail, the scheduling
of the function fails; when set to default, the scheduling
continues by following the (special) default policy.

The strategy parameter supports the following values:
platform that applies the default selection strategy of the
serverless platform; random that allocates functions stochas-
tically among the workers of the block following a uniform
distribution; best-first that allocates functions on workers
based on their top-down order of appearance in the block.
The options for the invalidate parameter are: overload
that invalidates a worker based on the default invalidation
control of the platform; capacity used that invalidates a
worker if it uses more than a given percentage threshold of
memory; max concurrent invocations that invalidates a
worker if a given number of function invocations are already
currently executed on the worker.

We close this section by extending the example presented
in Figure 1 to illustrate APP, reported below.

db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best first
invalidate: capacity used: 50%

Figure 7.4: Flow followed, from deployment to scheduling, of the functions at Listings
7.1 and 7.2.

Listings 7.1 and 7.2. When the cAPP script is created, the association between the

functions code and their cAPP script is specified by tagging the two functions with

the comment // tag:premUser. In this phase, assuming the scheduling policy of the

cAPP script requires the computation of the functions cost (because the strategy is

min latency), the code of the functions is used to infer the corresponding cost program.

When the functions are invoked, i.e., at scheduling time, we can compute the solution

of the cost program, given the knowledge of the invocation parameters. The knowledge

of the invocation parameters allows for a more precise analysis. For instance, for the

function in Listings 7.1, called lambda1, it is possible to invoke the cost analyser with

either main(1,v,P,B) or main(0,v,P,B) where P represent the cost of PremiumService,

B the cost of BasicService and the first parameter is the value of the isPremiumUser

parameter.

If the invocation is lambda1(1,v) (first horizontal line in In Figure 7.4) then the

cost program (represented by the intersection point on the left) and the corresponding

cAPP policy to implement the expected scheduling policy are retrieved. At this point, a

cost analyser is used to solve the cost programs (depicted by the gear). In this case,

since the cost expression is P , which is PremiumService, the scheduling amounts to

(i) estimating the latencies to access to PremiumService from the considered workers

104 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

7.4. FROM APP TO CAPP

and (ii) choosing the worker that minimises the foregoing latency. This computation is

highlighted in the rightmost grey window corresponding to the request lambda1(1,v).

When the request is lambda2(u name, v), the corresponding cost function is

main(u name,v,K,P,B), where K is the cost of the service IsPremiumUser. In

this case, the cost expression is K+max(P,B) Since lambda2.miniSL has the same

tag as lambda1.miniSL, the selected cAPP script is the same. Therefore the scheduling

amounts to minimize the latencies from the workers W1 and W2 to the services

IsPremiumUser, PremiumService and BasicService according to the expression

K +max(P,B). This is highlighted in the rightmost grey window corresponding

to the request lambda2(u name,v).

The controller needs also to be aware of the possibility of invalidating a worker

when the latency to access a service exceeds a certain threshold. In particular, when

max latency is used in the invalidate clause, workers are not selected if the computed

latency is above the given value. To illustrate this item, let us consider the cAPP code

for the map-reduce function in Listing 7.5.�
- mapReduce:

- workers:

- wrk: W1

- wrk: W2

strategy: random

invalidate:

max latency: 300
� �
Listing 7.5: cAPP script for Listing 7.3.

As visualised in Figure 7.5, starting from the (top-most) deployment phase box

where we tag the function (//tag:mapReduce), the cost program is computed, obtaining

the associated cost expression. Then, when a request for the function is received, the

execution of the cAPP policy is triggered, which selects one of the two workers W1 or

W2 at random and checks their validity following the logic shown at the bottom of

Figure 7.5, i.e., the cost program is solved and the parameters m and r are replaced

with the latency to contact the Map and Reduce services from the selected worker,

and possibly invalidate it if the computed value is greater than 300.

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 105

7.5. CONCLUSIONS

�
1 // tag: mapReduce
2 (jobs , m, r) => {
3 for(i in range (0, m)) {
4 call Map(jobs , i)
5 for(j in range (0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }
� �

⇓
main(J,m,r,M,R)= for 2(0,m,r,M,R) []
for2(i,m,r,M,R)= M+for4(0,r,R)+for2(i+1,m,r,M,R) [m≥i]
for2(i,m,r,M,R)= 0 [i≥m+1]
for4(j,r,R)= R+for4(j+1,r,R) [r≥j]
for4(j,r,R)= 0 [j≥r+1]

⇓�
1 Cost Expression : m*(M + r*R)
� �

⇓�
1 W in (W1 , W2)
2 where m *(W.latency(Map)
3 + r * W.latency(Reduce))
4 is < 300
� �

Figure 7.5: The map-reduce function, its cost analysis, and scheduling invalidation
logic.

7.5 Conclusions

We introduced a framework that lightens the burden on the shoulders of users by

deriving cost information from the functions, via static analysis, into a cost-aware

variant of APP that we call cAPP. To show the feasibility of the approach, we present

a prototype of such framework where we extract cost equations from functions’ code,

synthesise cost expressions through off-the-shelf solvers, and implement cAPP to support

the specification of cost-aware allocation policies. Specifically, we demonstrate that one

can over-approximate, at scheduling time, the overall latency endured by the invocation

of a function f when running on a given worker and use this information to govern its

106 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

7.5. CONCLUSIONS

scheduling. To achieve this result, we present a proposal for an extension of the APP

language, called cAPP, to make function scheduling cost-aware. The extension adds

new syntactic fragments to APP so that programmers can govern the scheduling of

functions towards those execution nodes that minimise their calculated latency (e.g.,

increasing serverless function performance) and avoids running functions on nodes

whose execution time would exceed a maximal response time defined by the user (e.g.,

enforcing quality-of-service constraints).

In future work, we will address several key questions that remain open. Specifically,

we aim to investigate the scalability and performance of our approach by examining

how it would work with more complex examples and evaluating its execution times

under varied computational conditions. Since determining the exact cost of a function

is, in principle, undecidable, as future work, we will focus on exploring models and

techniques that can make this problem more tractable in practical scenarios. This

may include the development of heuristics and over-approximation methods that work

effectively for the majority of cases, while ensuring that these approaches remain

computationally efficient. Additionally, we are considering architectural solutions to

complement these techniques, such as the inclusion of caching systems to store and

reuse previously computed costs for repeated function invocations. These systems could

significantly reduce overhead by calculating the actual cost of a function only once,

avoiding redundant computations. To further enhance system reliability, we propose

integrating timeouts for particularly challenging cost calculations, paired with sensible

default strategies to maintain responsiveness. This would ensure the system remains

functional even in scenarios where exact costs cannot be computed within a reasonable

time frame.

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 107

7.5. CONCLUSIONS

108 CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING

Chapter 8

FunLess: Lightweight Cloud-Edge

FaaS

8.1 Introduction

While public clouds are the birthplace of serverless computing, recent industrial and

academic proposals demonstrated the desirability, benefits and feasibility of moving

FaaS outside public clouds. These solutions are tailored for private, public, and hybrid

(where the infrastructure includes parts from public and private) cloud scenarios [24]

and include edge [16] and Internet-of-Things [96] components. From the industrial

point of view, several FaaS platforms are designed for edge computing (e.g., AWS

Greengrass1, Cloudfare Workers2).

In contrast to public edge-cloud computing solutions, private edge cloud systems have

the benefit of further reducing latency, increasing security and privacy, and improving

bandwidth and usage of high-end devices [96]. More precisely, private edge cloud

systems are small-scale cloud data centres in a local physical area, such as a house,

an office, a factory, or a small geographic area, where mobile devices, such as drones,

mobile robots, smartphones and fixed devices, such as sensors/actuators, workstations,

and servers are interconnected through sisngle or multiple local area networks.

In this chapter, we address the challenge of supporting FaaS in private edge cloud

1https://aws.amazon.com/greengrass/.
2https://www.cloudflare.com/en-gb/learning/serverless/glossary/

serverless-and-cloudflare-workers/.

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 109

https://aws.amazon.com/greengrass/
https://www.cloudflare.com/en-gb/learning/serverless/glossary/serverless-and-cloudflare-workers/
https://www.cloudflare.com/en-gb/learning/serverless/glossary/serverless-and-cloudflare-workers/

8.1. INTRODUCTION

systems. Off-the-shelf solutions to this challenge consist of deploying popular open-source

FaaS platforms (e.g., OpenFaas, Knative, Fission, OpenWhisk) on top of container

orchestration technologies (e.g., Kubernetes). However, these technologies, which usually

rely on containers and container orchestration solutions, entail performance and resource

overheads which can create issues on devices with constrained resources—they might

not have enough memory to host containers or computational power to effectively run

functions, especially in low-latency application contexts.

These problems motivated researchers and practitioners to consider alternatives

and propose runtimes that provide the isolation and parallel execution of existing

FaaS platforms yet mediate the heavy toll of the mentioned more complex runtimes.

Examples of these proposals include using virtual machines like that of Java [89] and

Python [43] or embedding functions in unikernels [73]. Unfortunately, while these

solutions achieve the goal of reducing the overhead of containers, they respectively miss

fundamental features. Java/Python VMs do not provide high-performing runtimes [51]

and properly isolate functions (e.g., exposing the users to security risks). Unikernels

are still a niche technology whose usage requires specific engineering knowledge (e.g., to

define the minimal OS stack needed to run high-level functions).

A promising alternative is WebAssembly3 (Wasm) for lightweight FaaS environ-

ments [57] (introduced in more detail in Section 8.2). Indeed, Wasm comes with a

stack-based virtual machine designed for running programs in a sandbox environment

with performance close to native code and fast load times. Wasm proved to be a

valid candidate for FaaS, providing lightweight sandboxing at the edge with both

small latencies and startup times [45, 41]—recently, providers like Cloudflare proposed

closed-source solutions based on Wasm4.

FunLess. Building on these results, we propose FunLess, a FaaS platform designed for

(mixed) edge-cloud scenarios. FunLess uses Wasm to run functions, providing many

pros:

• Security. Wasm’s inherent security and isolation mechanisms make it well-suited

for scenarios where data integrity and confidentiality are critical.

• Memory and CPU footprint. FunLess does not require a container runtime (e.g.,

3https://webassembly.org/.
4https://developers.cloudflare.com/workers/runtime-apis/webassembly/.

110 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

https://webassembly.org/
https://developers.cloudflare.com/workers/runtime-apis/webassembly/

8.1. INTRODUCTION

Docker) and orchestrator (e.g., Kubernetes). Hence, the “bare-metal” deployment

of FunLess frees resources essential for running functions on memory-constrained

or low-power edge devices.

• Cold starts. FunLess leverages Wasm to mitigate the problem of cold starts [113],

i.e., delays in function execution due to the overhead of loading and initialising

functions—an issue that constrained-resource edge devices can accentuate. Cold-

start mitigations usually rely on caching or keeping “warm” function instances.

However, the size of containers can make these solutions unfeasible on constrained-

resource devices. FunLess’s use ofWasmminimise the cost of function caching (and

even fetch-and-load roundtrips), making cold-start mitigations more affordable.

Moreover, Wasm runtimes provide fast startup times (Wasm’s main use case

is in-browser execution, where responsiveness is crucial), allowing FunLess to

achieve small cold-start overheads.

• Consistent function development and deployment environment. Since Wasm

abstracts away the hardware and environment it runs within, FunLess provides

a consistent development and deployment experience across the diverse private

edge architectures, offering a built-in solution for the challenges of variability in

hardware and software environments of private edge-cloud scenarios. Similarly

to Java bytecode, Wasm binaries can run on any platform that can execute a

(dedicated) Wasm runtime. As illustrated in Section 8.3, the developers only need

to write once their functions5, compile them into Wasm binaries, and load them

into the platform. FunLess handles the task of running them on the possible

diverse devices and architectures of the given cloud/edge infrastructure.

• Simple and flexible platform deployments. FunLess can use existing containerisa-

tion solutions (e.g., Kubernetes) to streamline and ease its deployment. When

container orchestration technologies are not affordable/available, users can install

FunLess by running a Core component (with metrics and storage services, e.g.,

resp. Prometheus and Postgres) on a node and a Worker component on the

nodes tasked to run the functions (cf. Section 8.3). This flexibility derives from

5FunLess users can write functions in any language supported by the platform, currently Rust, Go,
and JavaScript.

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 111

8.2. WEBASSEMBLY

WebAssembly (the binaries do not need an ulterior container for their isolation),

and FunLess’ communication mechanism between nodes.

Structure of the chapter In the following, in Section 8.2, we present WebAssembly

in more detail. We detail FunLess’ architecture in Section 8.3 and show an analysis of

the energy consumption of FunLess compared to OpenWhisk and a classical container-

based service architecture in Section 8.4. We then draw our conclusions and future

work directions in Section 8.5.

8.2 WebAssembly

We dedicate this section to providing the preliminary notions useful to contextualise our

contribution. Specifically, we introduce WebAssembly—the technology underpinning

the FunLess execution runtime (cf. Section 8.3). The WebAssembly [122] technology,

Wasm for short, is a W3C standard since 2019, maintained with contributions from

Apple, Google, Microsoft, Mozilla, and other companies. The idea behind Wasm is

to provide a simple assembly-like instruction set which can run efficiently within a

browser. At its core, Wasm includes a binary instruction format and a stack-based virtual

machine that supports functions and control flow abstractions like loops and conditionals.

Although browsers are the main target of Wasm, recent initiatives, like WebAssembly

System Interface [123] (WASI), norm the implementation of Wasm runtimes to support

the execution of Wasm code outside the browser with a set of APIs that provide

POSIX capabilities (e.g., file system, network, and process management). Some

examples of open-source and proprietary WASI-compliant runtimes are Wasmtime [121],

Wasmer [120], and WasmEdge [119].

Focusing on FaaS, Wasm provides a sandboxed runtime environment for functions,

akin to containers. However, while one needs to build a container (for the same function)

for each targeted architecture, the same Wasm binary can run on different architectures

thanks to the hardware abstraction provided by the Wasm runtime. Moreover, Wasm

binaries tend to be more lightweight than containers, thanks to the fact that they do

not need to include a pre-packaged filesystem.

112 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

8.3. PLATFORM ARCHITECTURE

8.3 Platform Architecture

We present the principles and technologies behind FunLess, its architecture and discuss

our design choices (trade-offs and limitations).

User

Core WorkerWorkerWorker

1. Upload

6. Retrieve

3. Broadcast

5. Invoke 7. Request

2. Store

10b. Request with Code

9a/12b. Result
9b. No Code Message

10a/13b. Reply

8. Retrieve

4./11b Cache

Figure 8.1: Architecture of the FunLess platform with the function flow from creation
to invocation.

The main principles behind the design of FunLess are the simplicity of both

function development and platform deployment and the flexibility of hardware and

deployment automation. In particular, FunLess is independent of the underlying

deployment orchestrators (if any), which avoids potential overheads and allows users

to install the entire platform on resource-constrained, low-power edge devices. For the

implementation of the platform, we used Elixir [55], which is a functional, concurrent,

high-level general-purpose programming language that runs on the BEAM virtual

machine [107] (used by the Erlang language). Specifically, Elixir and the BEAM

allowed us to simplify the creation and deployment of a distributed application without

relying on container orchestration technologies, while retaining high performance, fault-

tolerance, and resilience (provided by the BEAM’s scheduler and lightweight processes,

famous for being optimised for concurrent and distributed systems).

We represent in Figure 8.1 both the components that make up the platform’s

architecture and the typical flow developers and users follow to create and invoke

functions. Architecture-wise, FunLess consists of mainly two components: the Core

and the Worker, which we detail in the next parts of this section. Briefly, the Core acts

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 113

8.3. PLATFORM ARCHITECTURE

as an user-facing API to i) create, fetch, update, and delete functions and ii) schedule

functions on workers. The Worker is the component deployed on every node tasked to

run the functions; in the remainder, we refer to these nodes as Workers. In addition to

these two components, FunLess includes a Postgres database to store functions and

metadata and Prometheus to collect metrics from the platform.6

FunLess is an open-source project and both its source code [37] and documenta-

tion [38] are publicly available.

Core. The Core is the controller of the platform. It exposes an HTTP REST API to

the users, handles authentication and authorization, and manages functions’ lifecycle

and invocations.

Although the Core implements the main coordination logic and functionalities of

FunLess, it is a lightweight component. For instance, on a Raspberry Pi 3B+ its local

bare-metal deployment (that includes the database, the monitoring system and the

underlying operating system and services) occupies ca. 600 MB of RAM when idle.

Functionality-wise, FunLess users create a new function by compiling its source

code to Wasm—using either the language’s default compiler (for Rust), an alternative

one (for Go), or an external tool (for JavaScript)—and uploading the resulting binary

to the Core, assigning to it a name. Users can group functions in modules and, when

uploading a function, they can optionally specify which module the function belongs to.

Moreover, users should also specify the amount of memory reserved for the execution

of the function.

Looking at the steps reported in Figure 8.1, once the Core receives the request

to create a function (1. Upload), it stores its binary in the database (2. Store).

Fetch, update, and deletion happen via the assigned function name. When the Core

successfully creates a function, it notifies the Workers (3. Broadcast) to store a local

copy of the function binary (4. Cache) compiled from the source code with the given

metadata (i.e., module and function names). This push strategy helps to reduce part

of the overhead of cold starts. Indeed, most FaaS platforms follow a pull policy where,

if the execution nodes do not have the function in their cache (e.g., it is the first time

they execute), they fetch, cache, and load the code of the function, undergoing latency.

The small occupancy of Wasm binaries makes it affordable for FunLess to employ a

6Resp. found at https://www.postgresql.org/ and https://prometheus.io.

114 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

https://www.postgresql.org/
https://prometheus.io

8.3. PLATFORM ARCHITECTURE

push strategy, helping to reduce cold-start overheads.

Since both the Core and the Workers run on the BEAM, these components

communicate via the BEAM’s built-in lightweight distributed inter-process messaging

system, avoiding the need (complexity, weight) for additional dependencies for data

formatting, transmission, and component connection.

When a function invocation reaches the Core (5. Invoke), the latter checks the

existence of the function in the database and retrieves its code (6. Retrieve). If the

function is present in the database, the Core uses the most recent metrics—we represent

the pushing of the data, updated every 5s by default, from Prometheus to the Core

with the dashed line in Figure 8.1—to select on which of the available Workers to

allocate the function (7. Request). The selection algorithm starts from the Worker

with the largest amount of free memory to the one with the smaller. If no worker has

enough memory to host the function, the invocation will return with an error.

After the Worker successfully ran the function (we detail this part of the workflow

in the section about Workers, below) it sends back to the Core the result (if any),

which the Core relays back to the user (10a/13b. Reply). If no Worker is available at

scheduling time or there are errors during the execution, the Core returns an error.

Another important feature of FunLess is that the Core can automatically discover

the Workers in its same network. This feature derives from Elixir’s libcluster library7,

which provides a mechanism for automatically forming clusters of BEAM/Erlang

nodes. Technically, when deployed on bare metal, FunLess follows the Multicast UDP

Gossip algorithm of the library, to automatically find available workers. Instead, when

deployed using Kubernetes, FunLess relies on the service discovery capabilities of the

container orchestration engine to connect the Core with the Workers, paired with the

“Kubernetes” modality of the library. Users can manually connect Workers from other

networks via a simple message (e.g., a ping) thanks to the BEAM’s built-in capability

of connecting to other BEAM nodes.

Worker. The Worker executes the functions requested by the Core. The Workers

employs Wasmtime, a standalone runtime for Wasm and WASI by the Bytecode

Alliance [21]. The main reasons behind this choice come from the ease of integration,

amount of contributors, and security-oriented focus of the project. While Workers

7https://hexdocs.pm/libcluster/readme.html.

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 115

https://hexdocs.pm/libcluster/readme.html

8.3. PLATFORM ARCHITECTURE

integrate Wasmtime, we modelled their architecture to abstract away the peculiarities

of specific Wasm runtimes so that future variants can use different runtimes and even

extend support for multiple ones (possibly letting users specify which one to use). When

a Worker receives a request from the Core to execute a function (7. Request), it first

checks whether it has a cached version of the function’s binary (8. Retrieve). If that is

the case, it loads and runs the function’s binary and returns to the Core the result of

the computation (9a. Result). If the Worker does not find the code of the function

in its local cache, it contacts the Core (9b. No Code Message), which responds with

a request that carries the code of the function to the Worker (10b. Request with

Code). Upon reception, the Worker compiles the code, caches the binary for future

invocations (11b. Cache), loads it to run the function, and relays the result to the Core

(12b. Result). The above mechanism is an important advantage afforded by FunLess

for the edge case. Function fetching (if needed) transmits small pieces of binary code

(rather than heavyweight containers). Wasm binaries achieve the two-fold objective

of having Workers run functions on different hardware architectures (e.g., AMD64,

ARM) and allowing users to write their functions once, knowing that they will execute

irrespective of the hardware of the Worker.

Summarising, fetching and precompiling (if any, depending on cache status) consti-

tutes most of the “cold start” overhead in FunLess, which the platform greatly reduces

w.r.t. alternatives relying on containers (which are heavier both in terms of bandwidth

and memory occupancy).

Regarding caching and eviction, Workers set a threshold for the cache memory

(configurable at deployment time). If the storing of a new function exceeds that threshold,

the Worker evicts the function with the longest period of inactivity (invocation- or

update-wise). Additionally, Workers automatically evict functions if inactive for a set

amount of time (by default, 45 minutes).

Storage. FunLess relies on PostgreSQL as its primary storage solution. The storage

component maintains the state of the platform through a well-structured database

schema that reflects the hierarchical organization of functions and modules. The

database schema centers around two main entities: the module and function tables.

The module table serves as a logical container for grouping related functions, and storing

essential metadata such as the module name and associated user owner. The function

116 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

8.3. PLATFORM ARCHITECTURE

table maintains records of all functions in the platform, storing both metadata and the

actual WebAssembly binary. Each function entry includes the compiled WebAssembly

binary stored as a binary large object (BLOB). This storage architecture supports the

efficient operation of the Core component, enabling quick retrieval of function binaries

during cold starts and providing robust persistence for the platform’s state.

Metrics. The architecture integrates a Prometheus service as its metrics collection and

monitoring system, enabling observability of the platform’s performance and resource

utilization. Prometheus implements a pull-based architecture where it periodically

scrapes metrics from the Worker components through exposed HTTP endpoints. The

Workers report operational metrics including memory usage and CPU utilization.

These metrics are collected at configurable intervals (default: 5 seconds) and stored in

Prometheus’s time-series database, and the Core executes PromQL queries to retrieve

up-to-date performance metrics, which inform its scheduling decisions. The monitoring

system also facilitates platform maintenance and troubleshooting by providing historical

performance data and enabling the detection of potential bottlenecks or resource

constraints.

8.3.1 Design choices and limitations

Since a small resource footprint and simplicity (of architecture and computation) are

the driving principles behind FunLess’ implementation, we favoured design choices

(both w.r.t. the components in the architecture and the internal implementation) that

introduced the least complexity while affording flexibility (of implementation and

deployment). Below, we discuss the main aspects that FunLess trades off for the above

benefits.

Language support. FunLess requires functions to be compiled to Wasm to execute

them. Moreover, for the Wasm binary to properly integrate with the Worker, it needs

to expose a specific function that acts as a “wrapper” for the user’s function. The

wrapper performs input and output (de)serialisation, and is not a standard feature of

Wasm modules. Therefore, FunLess provides a wrapper for each supported language—

depending on the language, a wrapper can be a library, macro or compiler extension.

While offering support for different languages is not essential for this presentation,

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 117

8.3. PLATFORM ARCHITECTURE

FunLess already supports three languages: Rust, Go and JavaScript—and we planned

support for more in the future. Specifically, we chose Rust for its performance, its

growing developer community, and its ease of compiling to Wasm; similarly, Go is

famous for its performance and widespread use in cloud computing; lastly, JavaScript

is one of the most popular languages in software development.

Resilience. FunLess’s Core component, which acts as the sole scheduler and holder of

the platform’s state, is not replicated. On the one hand, this reduces the footprint of

the platform since users just need to deploy one Core. On the other hand, the Core

is a single point of failure of the architecture. The BEAM opportunely guarantees

fault-tolerance, so that the Core can recover from software crashes. However, the

platform would stop working properly if the hardware hosting the Core failed. On

software crashes, the only data lost are the invocations in transit (which the users would

notice as timed out), but the rest of the system would recover (normal functionality,

connections to the Workers, metrics, and storage), following the connection protocols

mentioned above.

Robustness. FunLess implements an at-most-once message relay policy, hence, lost

messages between the Core and Workers imply the failure of the invocation. Imple-

menting more robust semantics, e.g., at least once, would require the inclusion of a

message broker, increasing the load on nodes and the architecture’s complexity.

Retry policies. The Core does not implement retry policies. Thus, if a function’s

execution fails on the chosen Worker or that Worker becomes unresponsive, the Core

does not try to run the function on another worker. Implementing retry policies would

increase the complexity platform-wide. Specifically, the Core would need to keep track of

the state of function invocations, increasing the amount of coordination/messages with

the Workers. This extension would also increase the amount of data and interactions

with the database (needed to enforce the transactional management of functions’ state

and stave off the risk of losing this data due to crashes) and further complicate the Core’s

implementation to manage back-off strategies and execution time limits. Nonetheless,

we plan to implement retries with an “opt-in” approach (the BEAM already provides

some building blocks for the task, used to implement function timeouts and monitoring),

giving users the flexibility to choose between a lighter setup or increased reliability.

118 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

8.4. ENERGY CONSUMPTION COMPARISON

8.4 Energy Consumption Comparison

We used FunLess to perform a comparative analysis of energy consumption in FaaS

platforms. To assess the efficiency in energy usage in these kinds of platforms, we

compared different implementations of the same use case: long-running containerized

services and serverless computing functions. For the serverless approach, we further

consider two different implementations: one using OpenWhisk (functions backed by

containers) and the other with FunLess (functions in WebAssembly).

8.4.1 Use Case

The use case involes a simple distributed architecture for a laboratory environment.

The architecture, depicted in Figure 8.2, consists of a data processing pipeline composed

of three main services.

Figure 8.2: Architecture of the laboratory environment use case.

It starts from the edge devices, which include various sensors such as temperature,

pressure, and humidity sensors. These sensors collect environmental data from the

laboratory and send it to a Parser service. The Parser service acts as a data receiver,

formats the data into a standardized JSON package and sends it to the Aggregator

service. The Aggregator service collects the several JSON packages from the Parser

services (one for each sensor) and prepares the data for further processing into a bundle.

The data is sent to storage that a Dashboard service in the cloud can retrieve to provide

a real-time visualization of the sensors for monitoring purposes. Additionally, the data

can be stored for future analysis and retrieval.

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 119

8.4. ENERGY CONSUMPTION COMPARISON

The analysis focuses on the three core services, therefore they have been implemented

using the three different approaches: as containerized services, as OpenWhisk functions,

and as Wasm functions for FunLess. The implementation of the services simulate the

workload for benchmarking purposes. In the case of the containerized services the

implementation is in Elixir, chosen for its built-in distribution capabilities. The Parser

service performs a creation of a JSON object simulating the reception of data from a

sensor, and is configured to forward the data to the Aggregator service. The Aggregator

service simulates the aggregation of the data from the Parser services, and performs

a simple mathematical computation in a loop with 1 million iterations to introduce

deliberate processing delays to mimic real-world data processing scenarios. Finally, the

Dashboard service simulates the visualization of the aggregated data by generating an

HTML page. For the serverless implementations, we use JavaScript for the function

logic with follow an equivalent logic to the containerized services. For FunLess, the

relative functions are compiled to WebAssembly. Following this configuration, a request

to the Parser service triggers the usage of the Aggregator service as well, while the

Dashboard service can remain idle until it is accessed by a user.

8.4.2 Evaluation

Test Setup To monitor the energy consumption we used PowerAPI [35]. PowerAPI is

an open-source framework designed to monitor and analyze the energy used of software

systems. PowerAPI utilizes the HardWare Performance Counter (HWPC) Sensor to

track the power consumption of Intel CPUs and estimate the energy usage via two

different models: RAPL (Running Average Power Limit) formula and the SmartWatts

formula. The former is a feature provided by Intel processors that allows for the

measurement of power from the HWPC sensor, while the latter is a software-defined

power meter based on the PowerAPI toolkit, which includes HWPC metrics together

with other system events. In our evaluation, we measured the consumed milliwatts

(mW) of each service for a fixed period of time, sampling the power consumption every

second. For the comparisons, we measured the energy consumption of the indivual

services for each approach. For the containerized service architecture we measured

the three core services, for OpenWhisk we measured the Controller, CouchDB, the

Invoker, Kafka, and Zookeeper services, and for FunLess we measured the Core, Postgres,

120 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

8.4. ENERGY CONSUMPTION COMPARISON

Prometheus, and Worker services. Finally, we analysed the total energy consumption

of the three approaches by summing the measured milliwatts of the individual services.

The tests we conducted using Apache JMeter to send requests to the services.

Scenarios The tests were conducted on a single node equipped with an Intel i7

processor with 12 cores and 32 GB of RAM. The test runs included three scenarios:

i) idling, where no requests were sent to the services; ii) constant workload, where

requests were sent at a constant frequency (5000 requests with 5 req/s); iii) spiked

workload, which involved bursts of requests potentially leading to cold starts for the

FaaS platforms.

Results

0 1 2 3 4 5
Watt

0%

20%

40%

60%

80%

100%

Services
OpenWhisk
FunLess

Figure 8.3: Energy-usage sample distribution (idle scenario).

Idle Scenario Starting with the idle scenario, we measured the energy used for 5

minutes, totalling 300 samples. Figure 8.3 shows the plot-line distribution of the energy

consumption, and we report in Table 8.1 the aggregated average, standard deviation,

and median. The figure shows the percentage of samples that fall below a certain value.

FaaS platforms exhibit higher consumption due to the several long-running services that

compose them, with OpenWhisk having a higher baseline consumption than the other

two approaches (generally above 1000 mW), and the containerized services showing the

lowest consumption.

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 121

8.4. ENERGY CONSUMPTION COMPARISON

Average (mW) Std. Dev. (mW) Median (mW)
Cont. Services 134.40 185.18 67.2
OpenWhisk 2001.97 807.89 1757.3
FunLess 493.84 520.02 308.98

Table 8.1: Summed energy usage of the three approaches in the idle scenario.

Constant Workload Scenario In this scenario we sent 5000 requests to the services

at a constant rate of 5 requests per second, obtaining a total of 1000 samples. As shown

in Figure 8.4, the energy consumption difference between the three approaches are less

pronounced. OpenWhisk still has the highest consumption, although in the best cases

it is similar to FunLess, around 2000 mW. The metrics reported in Table 8.2 reiterate

the trend, although FunLess shows more stability than OpenWhisk.

0 2 4 6 8 10 12
Watt

0%

20%

40%

60%

80%

100% Services
OpenWhisk
FunLess

Figure 8.4: Energy-usage sample distribution (constant workload scenario).

Average (mW) Std. Dev. (mW) Median (mW)
Cont. Services 1202.56 1235.59 858.35
OpenWhisk 2766.14 2065.93 2110.00
FunLess 2299.30 1630.66 1708.9

Table 8.2: Summed energy usage of the three approaches in the constant workload
scenario.

122 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

8.4. ENERGY CONSUMPTION COMPARISON

Spike Calls Scenario The trend changes significantly in the spiked workload scenario.

This test was run with 1 request per second for 30 seconds, followed by a sudden increase

to 10 requests per second for the next 30 seconds. After that, the rate dropped back to 1

request per second for a minute, and finally, there was a spike to 100 requests per second

for another minute. Figure 8.5 plots the energy usage over time, showing the two spikes

0 50 100 150 200 250 300 350 400
Time (Seconds)

0

5

10

15

20

W
at

t

Services
OpenWhisk
FunLess

Figure 8.5: Energy-usage over time (spiked workload scenario).

as they occur. In this situation the FaaS platforms handled the change in workload

more efficiently with FunLess keeping a lower energy consumption than OpenWhisk.

OpenWhisk also managed the spikes relatively well, except for the first requests where

it started scaling the function containers and cold-starts significantly impacted energy

usage. On the other hand, the containerized services performed the worst, especially

during the second, more intense spike. Figure 8.6 shows the energy-usage sample

distribution for the spiked workload scenario. The summarized energy usage metrics

are reported in Table 8.3.

Average (mW) Std. Dev. (mW) Median (mW)
Cont. Services 1775.46 3054.79 681.25
OpenWhisk 1397.77 1278.01 965.00
FunLess 976.64 817.73 812.10

Table 8.3: Summed energy usage of the three approaches in the spiked workload
scenario.

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 123

8.4. ENERGY CONSUMPTION COMPARISON

0 5 10 15 20
Watt

0%

20%

40%

60%

80%

100%

Services
OpenWhisk
FunLess

Figure 8.6: Energy-usage sample distribution (spiked workload scenario).

In this last test OpenWhisk showed a higher consumption when it started scaling

due to the cold-starts. The experiments show that the OpenWhisk Invoker reaches

a peak of 7.4 Watts when the cold-start triggering requests are sent. Moreover, each

function container consumes an average of 200 mW in this use case. In FunLess’ case,

the Worker service reaches a measured peak of 4.5 Watts with cold-starts requests.

Cold-starts for Wasm functions happen when the worker has to compile the Wasm

module and instantiate the function in memory for the first request. Since the Wasm

functions are executables handled by the Worker, there is no extra overhead for the

cold-starts.

124 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

8.5. CONCLUSIONS

8.5 Conclusions

We presented FunLess, a FaaS platform tailored to respond to recent trends in serverless

computing that advocate for extending FaaS to cover private edge cloud systems,

including Internet-of-Things devices. The motivation behind the shift towards private

edge cloud systems includes reduced latency, enhanced security, and improved resource

usage. Unlike existing solutions that rely on containers and container orchestration

technologies for function invocation, FunLess leverages Wasm as its function-execution

runtime environment. The reason behind this choice is to reduce performance overheads

that can prevent resource-constrained devices from running FaaS systems. Wasm’s

fundamental feature exploited by FunLess is its lightweight, sandboxed runtime, which

allows the platform to run efficiently functions in isolation on constrained devices at the

edge. Thus, Wasm provides a portable, homogeneous way for developers to implement

and deploy their functions among clusters of heterogeneous devices (write once, run

everywhere), simplifying platform deployments, offering flexibility in deployment options,

and mitigating cold start issues. FunLess is also developed with support for APP and

its extension in mind, which opens up the possibility of having a built-in and deeply

integrated system for customizing scheduling behavior. It already provides support for

APP and will be extended to support the entire family of APP languanges.

As future work, we plan to integrate new versions of Wasmtime and, with it, native

support for HTTP and other optimisations and features of the new releases and support

for the WASI runtime. Indeed, many current Wasm runtime implementations miss

features like interface types, networking support in WASI multi-threading, atomics, and

garbage collectors. Besides Wasmtime, other projects are developing new, optimised,

and extended Wasm runtimes, which FunLess can leverage to increase its performance

(and adapt it to different application contexts). For example, the support for garbage

collection can lead to improved JavaScript runtimes and increase the performance of

this kind of functions.

From the point of view of feature support, we deem supporting function composition

in FunLess both important for the users and beneficial for performance. Indeed, FunLess

currently supports function composition by publicly exposing the functions in a flow

and chaining them via their public endpoints. In the future, we propose to study how

technologies like FaaSFlow [67], Palette [2], AWS Step Functions [93], Azure Durable

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 125

8.5. CONCLUSIONS

Functions [20] work and integrate them into FunLess. In particular, since FunLess uses

Wasm, an interesting direction is exploiting memory sharing to have Wasm functions

in a flow to avoid the overhead of network communication by letting chained Wasm

functions work on the same memory block to store and retrieve their data.

We also plan to improve the reliability of the platform, allowing the support of retry

policies for failed invocations, at-least-once message delivery, and the replication of the

Core components. Following the principles of simplicity and versatility that guided the

development of FunLess, we propose to tackle these extensions as optional features to

support flexible deployments, adaptable to the different application contexts (cloud,

edge, on resource-constrained devices).

Finally, we plan to ease the deployment of FunLess by supporting other tools like,

e.g., Nomad [78] and optimise the platform for edge devices by using, e.g., Nerves [77]

to further minimise the overhead on bare-metal deployment.

126 CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS

Chapter 9

Discussion and Conclusion

In this chapter, we discuss the positioning of the work presented in this thesis with

respect to the state of the art and related work, and conclude by drawing final takeaways

and future research directions.

9.1 Related Work

The industrial adoption of Serverless is spreading [14] and it is a hot research topic due

to its “untapped” potential [13, 46, 47, 54]. Cloud-edge deployments for FaaS platforms

are gaining traction, as they ease the development of applications that need to span

multiple locations and devices, while retaining the benefits of Serverless Computing

(such as event-driven function invocations and automatic scaling). In this context,

function scheduling becomes an important aspect to consider, and numerous research

efforts have been dedicated to improving it.

Serverless Functions Optimizations One of the main approaches explored in

the literature to improve Serverless performance through function scheduling comes

from improving the warm- vs cold-start of functions [46, 54]. Those techniques mainly

regard containers re-utilisation and function scheduling heuristics to avoid setting up

new containers from scratch for every new invocation. However, other techniques have

been proposed in the literature. Mohan et al. [74] present an approach focused on the

pre-allocation of network resources (one of the main bottlenecks of cold starts) which

CHAPTER 9. DISCUSSION AND CONCLUSION 127

9.1. RELATED WORK

are dynamically associated with new containers. Abad et al. [1] present a package-aware

scheduling algorithm that tries to assign functions that require the same package to the

same worker. Suresh and Gandhi [109] present a function-level scheduler designed to

minimise provider resource costs while meeting customer performance requirements.

In this direction of improving scheduling by reducing cold starts, Shahrad et al. [97]

introduce an empirically-informed resource management policy that mediates cold starts

and resource allocation. Silva et al. [100] propose a solution based on process snapshots:

when the user deploys the function, they generate/store a snapshot of the process that

runs that function and, when the user invokes the function, they load/run the related

snapshot.

Topology-awareness One work close to tAPP is by Sampé et al. [91], who present

an approach that allocates functions to storage workers, favouring data locality. The

main difference with our work is that the one by Sampé et al. focusses on topologies

induced by data-locality issues, while we consider topologies to begin with, and we

capture data locality as an application scenario. Banaei et al. [15] introduce a scheduling

policy that governs the order of invocation processing, depending on the availability

of the resources they use. Shillaker and Pietzuch [99] use state by supporting both

global and local state access, aiming at performance improvements for data-intensive

applications. Similarly, Jia and Witchel [52] associate each function invocation with a

shared log among serverless functions. Additionally, approaches like Pheromone, by

Yu et al. [127], combine local schedulers, which locally execute function workflows, and

global coordinators, which offload the functions when local executors are busy. The

local schedulers, combined with worker-specific shared-memory object stores, allow

functions to rapidly exchange data without going through external storage.

Looking at other work that uses localities to improve FaaS performance, Lamb-

data [110] is an OpenWhisk extension that improves its performance considering locality

and cold starts. Lambdata builds on top of both the OpenWhisk’s Controller and

Invoker components to allow users to annotate functions with explicit data intents, spec-

ifying which buckets they intend to use for reading and writing. Lambdata’s approach

is complementary to ours since APP (and its extensions) allows for more fine-grained

control over function-Invoker assignment, while Lambdata infers such assignments

from annotations. Besides resource re-utilisation, other approaches tackle the problem

128 CHAPTER 9. DISCUSSION AND CONCLUSION

9.1. RELATED WORK

of optimising function scheduling with new balancing algorithms. Steint [105] and

Akkus et al. [4] proposed new algorithms for Serverless scheduling, respectively using a

non-cooperative game-theoretic load balancing approach for response-time minimisation

and a combination of application-level sandboxing with a hierarchical message bus.

Function workflows Morevoer, recent developments in FaaS involve the definition

and management of function compositions or workflows, exemplified by AWS Step

Functions [93] and Azure Durable Functions [9]. The fundamental concept beyond

these advancements is to allow users to specify workflows by combining functions

with branching logic, parallel execution, and error-handling capabilities. Then, the

orchestrator or controller of the platform uses the defined workflow to oversee function

executions, managing aspects such as retries, timeouts, and error resolution. We consider

aAPP to be orthogonal to the function composition/workflows. Indeed, assuming a

workflow is available, the orchestrator developed for handling serverless workflows should

be extensible with an aAPP-like script to specify where to schedule the functions within

a given workflow. Future work on this integration would support the enforcement

of even more expressive policies than aAPP, like preventing function instances of the

same workflow from sharing nodes. Steinbach et al. model function composition with

TppFaaS [106], where they use Temporal Point Processes. They require no explicit

locality requirements or configurations, and the user mostly relies on the accuracy of the

underlying model. While the authors only tested their proposal in terms of accuracy

over generated trace datasets—i.e., they did not apply it to locality issues—we see their

approach interesting for applications for predictive scheduling and scaling. Kotni et

al. [60] present an approach that schedules functions within a single workflow as threads

within a single process of a container instance, reducing overhead by sharing state among

them. Baldini et al. [14] demonstrate that Serverless function composition requires

a careful evaluation of trade-offs, identifying three competing constraints that form

the “Serverless trilemma”, i.e., that without specific run-time support, compositions-

as-functions must violate at least one of the three constraints. To solve the trilemma,

they present a reactive core of OpenWhisk that enables the sequential composition of

functions. Inspiring approaches in this direction are by Pubali et al. [29], who present a

serverless platform where developers can constrain the information flow among functions

to avoid attacks due to container reuse and data exfiltration, and by Dehury et al. [33],

CHAPTER 9. DISCUSSION AND CONCLUSION 129

9.1. RELATED WORK

who propose an extension of the TOSCA standard to control the flow of data inside

Cloud applications with serverless components.

Multi-cloud and federated FaaS Beyond single-cloud deployments—i.e., which

require coordination between different providers—we mention xAFCL [87] and SkyP-

ilot [125] (although the latter is not directly related to FaaS). xAFCL [87] handles

invocations over several FaaS providers, to optimise the execution of function work-

flows by estimating the duration of each function and forwarding its invocation to

the appropriate provider. SkyPilot [125] follows a similar approach, but it acts as

middleware between the user and several cloud providers, to dynamically select the

appropriate target for requests according to cost, latency, and security requirements.

Both xAFCL and SkyPilot work at a higher level of abstraction compared to our

APP family of languages, intervening between the user and the target platform, and

one could follow their approach to coordinate work between APP-based OpenWhisk

and commercial solutions. Also an interesting domain of application is that of Sky

Computing [108], where brokers handle the placement and oversee the execution of

cloud jobs over multiple cloud providers. In the case of FaaS, we mention funcX [25],

which is a federated serverless solutions that allows users to register their infrastructure

as part of the platform’s deployment and run their functions on any node they are

authorised to access. While OpenWhisk is not suitable for such an approach (since

it has no notion of federation), one can apply tAPP to this domain by employing

topology-aware scheduling policies when users wish to run a function on a certain

endpoint or group of endpoints. We also mention a work by Nardelli and Russo [76],

which explores the concept of a decentralised serverless platform, where each node

acts as entrypoint, and can either compute functions locally or offload them to other

nodes. The scheduling in this case is completely automatic, and relies on data access

probability estimates to predict the optimal node for function invocation. While tAPP

is based on a more centralised architecture, it can be easily extended to target zones

directly, without relying on a separate controller, to integrate user knowledge with the

existing estimates.

Affinity-awareness Proposals in the direction of affinity-awareness in Serverless

applications come from the neighbouring area of microservices—the state-of-the-art

130 CHAPTER 9. DISCUSSION AND CONCLUSION

9.1. RELATED WORK

style for cloud architectures. Baarzi and Kesidis [10] present a framework for the

deployment of microservices that infers and assigns affinity and anti-affinity traits

to microservices to orient the distribution of resources and microservices replicas on

the available machines; Sampaio et al. [90], who introduce an adaptation mechanism

for microservice deployment based on microservice affinities (e.g., the more messages

microservices exchange the more affine they are) and resource usage; Sheoran et al. [98],

who propose an approach that computes procedural affinity of communication among

microservices to make placement decisions. Looking at the industry, Azure Service

Fabric [70] provides a notion of service affinity that ensures that the replicas of a service

are placed on the same nodes as those of another, affine service. Another example

is Kubernetes, which has a notion of node affinity and inter-pod (anti-)affinity to

express advanced scheduling logic for the optimal distribution of pods [64]. Overall, the

mentioned work proves the usefulness of affinity-aware deployments at lower layers than

FaaS (e.g., VMs, containers, microservices) and compels a discussion on the interplay

between aAPP and IaaS/CaaS-level affinity. Another interesting proposal, Palette [2],

uses optional opaque parameters in function invocations to inform the load balancer of

Azure Functions on the affinity with previous invocations and the data they produced.

While Palette does not support (anti-)affinity constraints, it allows users to express

which invocations benefit from running on the same node. We deem an interesting

future work extending aAPP to support a notion of (anti-)affinity that considers the

history of scheduled functions.

Cost-awareness Regarding cost-awareness, to the best of our knowledge, ours is the

first work that uses cost equations of functions to govern serverless scheduling. Some

of the mentioned works focus on applying static analysis techniques for optimising

serverless and cloud computing. For instance, Wang et al. [116] use static control and

data flow analysis to enhance performance modelling of serverless functions, achieving

accurate predictions. Obetz et al. [79] use service call graphs for static analysis of

serverless applications, enabling various program analysis applications. Looking at

the infrastructure underlying serverless, Garcia et al. [42] present a static analysis

technique for computing upper bounds of virtual machine usage in cloud environments,

using a technique similar to the one presented in Section 7.3. The inference of cost

equations and their computation with cost analyzers has been also used for estimating

CHAPTER 9. DISCUSSION AND CONCLUSION 131

9.1. RELATED WORK

the computational time of programs in an actor model [65] and for analyzing updates of

smart contracts balances due to transfers of digital assets [66]. Static-time techniques are

also proposed in the field of Implicit Computational Complexity where type inference

is used to derive (computational) costs of programs in a direct way, without resorting

to cost analyzers. Similar to our approach, the techniques are applied to restricted

languages where the cost analysis is decidable (e.g., loop programs as in [17]). It is

worth to notice that, when such techniques are applied to cAPP, the resulting costs are

less precise than those computed with cost analysers. One simple example is Listing 7.1,

when computed according to [17], whose cost is max(P,B) because, in loop programs,

conditionals are always nondeterministic. Besides static analysis, other works used

dynamic runtime analyses to visualise measure resource costs [115]. These tools operate

by injecting instructions into a program or modifying its runtime to instrument real-time

monitoring for collecting information about the behaviour of the program. Contrary

to static analyses, dynamic ones requires modifying the runtime of the platform to

collect the data needed by the analysis. Moreover, it requires the execution of the

programs/functions over an exhaustive set of inputs, which makes the application of

the technique more impractical (and could provide a partial “view” of the cases).

Cloud-Edge Serverless Platforms Looking at the work from the literature most

closely related to FunLess, we have several proposals targeting edge and cloud scenarios.

From the review by Cassel et al. [23], most of the solutions (86%) for IoT/edge

rely on some container technology while promising technologies like WebAssembly

and Unikernels represent only 2-3% of the proposals. Focusing on serverless platforms

supportingWasm runtimes, Hall and Ramachandran [45] are among the first to advocate

WebAssembly as the enabling technology to avoid the overhead of containers, which

substantially weigh on the limited hardware resources of edge computing environments.

The authors presented a serverless platform that runs WebAssembly code within the V8

JavaScript engine for execution and sandboxing of functions. Differently from FunLess,

they use a NodeJS runtime that embeds V8 for the running Wasm code. As the authors

note [45], the nesting of these layers takes a conspicuous toll on the performance of

the system. Gadepalli et al. [41] use WebAssembly to run and sandbox serverless

functions. They target only single-host deployments, requiring the deployment of the

entire platform on one node only. Moreover, they do not support WASI [123], thus

132 CHAPTER 9. DISCUSSION AND CONCLUSION

9.1. RELATED WORK

making their system potentially less portable. Gackstatter et al. [40] propose WOW,

a WebAssembly-based runtime environment for serverless edge computing integrated

within the Apache OpenWhisk platform. The authors introduce a new layer between

OpenWhisk and different Wasm runtimes which enable the execution of Wasm functions.

Compared to FunLess, WOW requires the deployment of a full installation (of a custom

version) of the OpenWhisk platform which precludes the installation of the controller

to low-power and memory-restricted edge devices.1 Lucet [68] was used by Fastly to

run Wasm on their commercial Compute platform. Lucet translated WebAssembly

to native code, which was then executed using Lucet’s runtime also on edge devices.

Unfortunately, Lucet has reached end-of-life and is no longer maintained. Cloudflare

Workers [28] is also a commercial serverless platform that supports the possibility of

defining functions in Wasm and has native support for WASI since 2022.2 Although

the runtime part of this project has recently been made open-source,3 the serverless

platform is proprietary and closed-source. It is worth mentioning the work by Shillaker

and Pietzuch [99] that, tangential to our proposal, concerns a Wasm-based serverless

runtime that uses Wasm to achieve state sharing across functions—they allow the

execution of functions that share memory regions in the same address space for possible

performance benefits. On a similar note, Zhao et al. [131] present an OpenWhisk

extension for confidential serverless computing that integrates a Wasm runtime. The

authors propose a solution to construct reusable enclaves that enable rapid enclave

reset and robust security to reduce cold start times. Although these kinds of proposals

are orthogonal to FunLess, we see them as future optimisations that the usage of a

Wasm function runtime can unlock for FunLess. Kjorveziroski and Filiposka [58] focus

on serverless orchestration using Wasm and introduce a variant of Kubernetes that

can orchestrate Wasm modules that are executed without containers. Interestingly,

also Kjorveziroski and Filiposka report that Wasm tasks enjoy faster deployment times

(two-fold) and at least one order of magnitude smaller artefact sizes, while still offering

comparable execution performance. Finally, Tzenetopoulos et al. [112] analyse the

performance of Lean OpenWhisk, an edge-focused variant of the Apache OpenWhisk

1We tried to deploy WOW on a multi-host cloud configuration for comparison purposes. Unfortu-
nately, the deployment failed (the platform relies on an old and modified version of OpenWhisk that is
not supported anymore, i.e., the last commit in the project is older than 2 years).

2https://blog.cloudflare.com/announcing-wasi-on-workers
3https://blog.cloudflare.com/workerd-open-source-workers-runtime/

CHAPTER 9. DISCUSSION AND CONCLUSION 133

https://blog.cloudflare.com/announcing-wasi-on-workers
https://blog.cloudflare.com/workerd-open-source-workers-runtime/

9.2. CONCLUSIONS

serverless platform. Their variant of the platform coalesces the scheduling and execution

components in a single entity, removes the message broker (Apache Kafka) from the

deployment, and introduces changes to reduce OpenWhisk’s overhead, making it better

suited for resource-constrained devices.

9.2 Conclusions

The primary objective of this thesis was to bridge the gap between the abstraction

provided by serverless platforms and the complexity of modern distributed systems

to enable more efficient function scheduling and better resource usage. In order to

achieve this goal, we proposed several works addressing function-execution scheduling

optimisation. We first proposed a methodology that provides developers with a declar-

ative language called APP to express scheduling policies for functions. We extended

the scheduler of OpenWhisk to use APP-defined policies and empirically tested our

extension on a use case that combines IoT, Edge, and Cloud Computing, contrasting

our implementation with a näıve one using the vanilla OpenWhisk stack to achieve the

same functional requirements. We then extended this language in several directions

to explore different applicable constraints. We introduced tAPP, as a topology-aware

APP where scripts can restrict the execution of functions within zones to help improve

the performance (e.g., by exploiting data or code locality properties), security, and

resilience of serverless applications. We again validated our approach by presenting a

prototype tAPP-based OpenWhisk, which we used to demonstrate that tAPP allows

for an easy deployment of cloud-edge serverless systems with typical topology-aware

scheduling constraints that cannot be guaranteed by standard vanilla OpenWhisk

deployments. We then presented an affinity-aware APP, aAPP, with an implementation

and validation to effectively tackle the challenge of enforcing affinity and anti-affinity

constraints in a FaaS platform. Our approach involved creating a aAPP-based Open-

Whisk, which we used to demonstrate the effectiveness in reducing latency and tail

latency in particular scenarios. These findings underscore the importance of considering

affinity requirements, particularly in multi-zone execution contexts. As a last extension,

we introduced a framework that lightens the burden on the shoulders of users by

deriving cost information from the functions, via static analysis, into a cost-aware

variant of APP that we call cAPP. We demonstrated that one can over-approximate, at

134 CHAPTER 9. DISCUSSION AND CONCLUSION

9.2. CONCLUSIONS

scheduling time, the overall latency endured by the invocation of a function f when

running on a given worker and use this information to govern its scheduling. The

extension adds new syntactic fragments to APP so that programmers can govern the

scheduling of functions towards those execution nodes that minimise their calculated

latency (e.g., increasing serverless function performance) and avoids running functions

on nodes whose execution time would exceed a maximal response time defined by

the user (e.g., enforcing quality-of-service constraints). The main technical insights

behind the extension include the usage of inference rules to extract cost equations

from the source code of the deployed functions and exploiting dedicated solvers to

compute the cost of executing a function, given its code and input parameters. As

a final contribution, we presented FunLess, a FaaS platform tailored to respond to

recent trends in serverless computing that advocate for extending FaaS to cover private

edge cloud systems, including Internet-of-Things devices. The motivation behind the

shift towards private edge cloud systems includes reduced latency, enhanced security,

and improved resource usage. Unlike existing solutions that rely on containers and

container orchestration technologies for function invocation, FunLess leverages Wasm as

its function-execution runtime environment. The reason behind this choice is to reduce

performance overheads that can prevent resource-constrained devices from running

FaaS systems. Wasm’s fundamental feature exploited by FunLess is its lightweight,

sandboxed runtime, which allows the platform to run efficiently functions in isolation

on constrained devices at the edge. Thus, Wasm provides a portable, homogeneous

way for developers to implement and deploy their functions among clusters of het-

erogeneous devices (write once, run everywhere), simplifying platform deployments,

offering flexibility in deployment options, and mitigating cold start issues. The sum

of these features makes FunLess a greener FaaS platform as evidenced by the results

of our energy-consumption comparison. Finally, FunLess also features support for

APP and cAPP as a first-class citizen, allowing developers to leverage the capabilities

of customizable scheduling. By addressing these areas, this thesis contributes to the

broader goal of making serverless computing more adaptive, efficient, and applicable to

a wide range of use cases.

CHAPTER 9. DISCUSSION AND CONCLUSION 135

9.2. CONCLUSIONS

9.2.1 Future Work

We would like to investigate the separation of concerns between developers and providers,

trying to minimise the information that providers have to share to allow developers

to schedule functions efficiently, while, at the same time, hide the complexity of their

dynamically changing infrastructure. We also plan to expand FunLess support to the

other versions of the APP language, i.e. tAPP and aAPP, and to extend the range of

tests both to include other aspects of locality (e.g., sessions) and specific components of

the platform. Regarding tests, we remark on the general need for more platform-agnostic

and realistic suites, to obtain fairer and thorough comparisons. We started to bench-

mark FunLess against existing serverless platforms and several deployment scenarios,

considering private, public, and mixed cloud-edge configurations [86]. These preliminary

experiments show that, particularly in edge scenarios, FunLess outperforms alternatives

like OpenFaaS, Fission, and Knative in terms of memory footprint without substantial

performance degradation. We also aim to extend our energy usage comparison work

to a comprehensive study on energy consumption in FaaS platforms. This involves

extending our benchmarks to include a wider range of platforms and configurations, and

developing a more detailed understanding of the energy profiles of different workloads.

By doing so, we aim to provide more accurate and actionable insights into the energy

efficiency of serverless computing, which is increasingly important in the context of

sustainable computing. Finally, we would like to support DevOps in the optimization

of their serverless applications by studying and experimenting with heuristics and

AI-based mechanisms that profile applications and suggest optimal policies. Similarly,

scheduling policies could benefit from interactions with frameworks able to specify

function compositions, e.g., Yussupov et al. [129] recently introduced a method for

modelling and deploying serverless function orchestrations which one could use to

extract execution dependencies among functions and inform the synthesis of policies

that optimise the overall execution of compositions.

136 CHAPTER 9. DISCUSSION AND CONCLUSION

CHAPTER 9. DISCUSSION AND CONCLUSION 137

Bibliography

[1] Cristina L Abad, Edwin F Boza, and Erwin Van Eyk. Package-aware scheduling of

faas functions. In Companion of the 2018 ACM/SPEC International Conference

on Performance Engineering, pages 101–106, 2018.

[2] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose M. Faleiro, Gohar Irfan

Chaudhry, Iñigo Goiri, Ricardo Bianchini, Daniel S. Berger, and Rodrigo Fonseca.

Palette Load Balancing: Locality Hints for Serverless Functions. In EuroSys,

pages 365–380. ACM, 2023.

[3] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache, An-

thony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker:

Lightweight virtualization for serverless applications. In NSDI 2020, 2020.

[4] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. {SAND}: Towards {High-
Performance} serverless computing. In 2018 Usenix Annual Technical Conference

(USENIX ATC 18), pages 923–935, 2018.

[5] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Automatic infer-

ence of upper bounds for recurrence relations in cost analysis. In Maŕıa Alpuente

and Germán Vidal, editors, Static Analysis, 15th International Symposium, SAS

2008, Valencia, Spain, July 16-18, 2008. Proceedings, volume 5079 of Lecture

Notes in Computer Science, pages 221–237. Springer, 2008.

[6] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,

Thomas Schmitz, and Keith Winstein. Secure serverless computing using dynamic

BIBLIOGRAPHY 139

BIBLIOGRAPHY

information flow control. Proc. ACM Program. Lang., 2(OOPSLA):118:1–118:26,

2018.

[7] J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: the definitive

guide: time to relax. ” O’Reilly Media, Inc.”, 2010.

[8] Apache openwhisk. https://openwhisk.apache.org/.

[9] Microsoft Azure. Azure durable functions. https://docs.microsoft.com/en-us/

azure/azure-functions/durable/.

[10] Ataollah Fatahi Baarzi and George Kesidis. Showar: Right-sizing and efficient

scheduling of microservices. In Proceedings of the ACM Symposium on Cloud

Computing, pages 427–441, 2021.

[11] Peter Bailis and Ali Ghodsi. Eventual consistency today: Limitations, extensions,

and beyond. Communications of the ACM, 56(5):55–63, 2013.

[12] Bojana Bajic, Ilija Cosic, Branko Katalinic, Slobodan Moraca, Milovan Lazarevic,

and Aleksandar Rikalovic. Edge computing vs. cloud computing: Challenges and

opportunities in industry 4.0. Annals of DAAAM & Proceedings, 30, 2019.

[13] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, Nick Mitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,

and Philippe Suter. Serverless Computing: Current Trends and Open Problems,

pages 1–20. Springer Singapore, Singapore, 2017.

[14] Ioana Baldini, Perry Cheng, Stephen J Fink, Nick Mitchell, Vinod Muthusamy,

Rodric Rabbah, Philippe Suter, and Olivier Tardieu. The serverless trilemma:

Function composition for serverless computing. In Proceedings of the 2017

ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software, pages 89–103, 2017.

[15] Ali Banaei and Mohsen Sharifi. Etas: predictive scheduling of functions on worker

nodes of apache openwhisk platform. The Journal of Supercomputing, 9 2021.

140 BIBLIOGRAPHY

https://openwhisk.apache.org/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/

BIBLIOGRAPHY

[16] Luciano Baresi and Danilo Filgueira Mendonça. Towards a serverless platform

for edge computing. In 2019 IEEE International Conference on Fog Computing

(ICFC), pages 1–10. IEEE, 2019.

[17] Amir M. Ben-Amram and Lars Kristiansen. On the edge of decidability in

complexity analysis of loop programs. International Journal of Foundations of

Computer Science, 23(7):1451–1464, 2012.

[18] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup language

(yaml™) version 1.1. Working Draft 2008-05, 11, 2009.

[19] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE

cloud computing, 1(3):81–84, 2014.

[20] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Con-

nor McMahon, and Christopher S Meiklejohn. Durable functions: semantics

for stateful serverless. Proceedings of the ACM on Programming Languages,

5(OOPSLA):1–27, 2021.

[21] Bytecode alliance. https://bytecodealliance.org/, 2024.

[22] Giuliano Casale, Matej Artač, W-J Van Den Heuvel, André van Hoorn, Pelle

Jakovits, Frank Leymann, Mike Long, Vasilis Papanikolaou, Domenico Presenza,

Alessandra Russo, et al. Radon: rational decomposition and orchestration for

serverless computing. SICS Software-Intensive Cyber-Physical Systems, 35(1):77–

87, 2020.

[23] Gustavo André Setti Cassel, Vinicius Facco Rodrigues, Rodrigo da Rosa Righi,

Marta Rosecler Bez, Andressa Cruz Nepomuceno, and Cristiano André da Costa.

Serverless computing for internet of things: A systematic literature review. Future

Gener. Comput. Syst., 128:299–316, 2022.

[24] Paul Castro, Vatche Isahagian, Vinod Muthusamy, and Aleksander Slominski.

Hybrid Serverless Computing: Opportunities and Challenges, pages 43–77. Springer

International Publishing, Cham, 2023.

BIBLIOGRAPHY 141

https://bytecodealliance.org/

BIBLIOGRAPHY

[25] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben

Blaiszik, Ian Foster, and Kyle Chard. funcx: A federated function serving fabric for

science. In Proceedings of the 29th International Symposium on High-Performance

Parallel and Distributed Computing, HPDC ’20, page 65–76, New York, NY, USA,

2020. Association for Computing Machinery.

[26] Hybrid Cloud. The nist definition of cloud computing. National institute of

science and technology, special publication, 800(2011):145, 2011.

[27] IBM Cloud. Ibm cloud functions. https://cloud.ibm.com/functions/.

[28] Cloudflare. How Workers works. https://developers.cloudflare.com/

workers/reference/how-workers-works/, 1 2024.

[29] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,

and Adam Bates. Valve: Securing function workflows on serverless computing

platforms. In Proceedings of The Web Conference 2020, pages 939–950, 2020.

[30] Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin, and

Gianluigi Zavattaro. A declarative approach to topology-aware serverless function-

execution scheduling. In 2022 IEEE International Conference on Web Services,

ICWS 2022, Barcelona, Spain, July 11–15, 2022. IEEE, 2022.

[31] Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, and Gianluigi Zavattaro.

Allocation priority policies for serverless function-execution scheduling optimi-

sation. In Proc. of ICSOC, volume 12571 of LNCS, pages 416–430. Springer,

2020.

[32] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the

ACM, 56(2):74–80, 2013.

[33] Chinmaya Kumar Dehury, Pelle Jakovits, Satish Narayana Srirama, Giorgos

Giotis, and Gaurav Garg. Toscadata: Modeling data pipeline applications in

TOSCA. J. Syst. Softw., 186:111164, 2022.

[34] Nafise Eskandani and Guido Salvaneschi. The Wonderless Dataset for Serverless

Computing. In MSR, pages 565–569. IEEE, 2021.

142 BIBLIOGRAPHY

https://cloud.ibm.com/functions/
https://developers.cloudflare.com/workers/reference/how-workers-works/
https://developers.cloudflare.com/workers/reference/how-workers-works/

BIBLIOGRAPHY

[35] Guillaume Fieni, Daniel Romero Acero, Pierre Rust, and Romain Rouvoy. Pow-

erAPI: A Python framework for building software-defined power meters. Journal

of Open Source Software, 9(98):6670, June 2024.

[36] Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex pro-

grams with cost equations. In Jacques Garrigue, editor, Programming Languages

and Systems - 12th Asian Symposium, APLAS 2014, Singapore, November 17-19,

2014, Proceedings, volume 8858 of Lecture Notes in Computer Science, pages

275–295. Springer, 2014.

[37] FunLess Repository. https://github.com/funlessdev/funless, 2024.

[38] FunLess Website. https://funless.dev/, 2024.

[39] Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, Fabrizio Montesi, Marco

Peressotti, and Stefano Pio Zingaro. No more, no less: A formal model for

serverless computing. In Coordination Models and Languages: 21st IFIP WG

6.1 International Conference, COORDINATION 2019, Held as Part of the

14th International Federated Conference on Distributed Computing Techniques,

DisCoTec 2019, Kongens Lyngby, Denmark, June 17–21, 2019, Proceedings 21,

pages 148–157. Springer, 2019.

[40] Philipp Gackstatter, Pantelis A. Frangoudis, and Schahram Dustdar. Pushing

serverless to the edge with webassembly runtimes. In 22nd IEEE International

Symposium on Cluster, Cloud and Internet Computing, CCGrid 2022, Taormina,

Italy, May 16-19, 2022, pages 140–149. IEEE, 2022.

[41] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila Cherkasova,

and Gabriel Parmer. Sledge: a serverless-first, light-weight wasm runtime for the

edge. In Dilma Da Silva and Rüdiger Kapitza, editors, Middleware ’20: 21st

International Middleware Conference, Delft, The Netherlands, December 7-11,

2020, pages 265–279. ACM, 2020.

[42] Abel Garcia, Cosimo Laneve, and Michael Lienhardt. Static analysis of cloud

elasticity. Sci. Comput. Program., 147:27–53, 2017.

BIBLIOGRAPHY 143

https://github.com/funlessdev/funless
https://funless.dev/

BIBLIOGRAPHY

[43] Gareth George, Fatih Bakir, Rich Wolski, and Chandra Krintz. Nanolambda:

Implementing functions as a service at all resource scales for the internet of things.

In 5th IEEE/ACM Symposium on Edge Computing, SEC 2020, San Jose, CA,

USA, November 12-14, 2020, pages 220–231. IEEE, 2020.

[44] Google cloud functions. https://cloud.google.com/functions/.

[45] Adam Hall and Umakishore Ramachandran. An execution model for serverless

functions at the edge. In Proceedings of the International Conference on Internet

of Things Design and Implementation, pages 225–236, 2019.

[46] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith,

Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless computing:

One step forward, two steps back, 2019.

[47] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-

mani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Serverless

computation with openlambda. In Proceedings of the 8th USENIX Conference on

Hot Topics in Cloud Computing, HotCloud’16, page 33–39, USA, 2016. USENIX

Association.

[48] Kaixing Hong, Hai Huang, Jianping Zhou, Yimin Shen, and Yujie Li. A method

of real-time fault diagnosis for power transformers based on vibration analysis.

Measurement Science and Technology, 26(11):115011, oct 2015.

[49] Kaixing Hong, Ming Jin, and Hai Huang. Transformer winding fault diagnosis

using vibration image and deep learning. IEEE Transactions on Power Delivery,

36(2):676–685, 2021.

[50] Michaela Iorga, Larry Feldman, Robert Barton, Michael J Martin, Nedim S

Goren, and Charif Mahmoudi. Fog computing conceptual model. NIST Special

Publication, 2018.

[51] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. Formal

foundations of serverless computing. Proceedings of the ACM on Programming

Languages, 3(OOPSLA):1–26, 2019.

144 BIBLIOGRAPHY

https://cloud.google.com/functions/

BIBLIOGRAPHY

[52] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing with

shared logs. In Proc. of ACM SIGOPS SOSP, page 691–707, New York, NY,

USA, 2021. ACM.

[53] Apache jmeter. https://jmeter.apache.org/.

[54] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja

Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Pat-

terson. Cloud programming simplified: A berkeley view on serverless computing,

2019.

[55] Sāsa Jurìc. Elixir in action. Manning, 2024.

[56] Daniel Kelly, Frank Glavin, and Enda Barrett. Serverless computing: Behind the

scenes of major platforms. In 2020 IEEE 13th International Conference on Cloud

Computing (CLOUD), pages 304–312. IEEE, 2020.

[57] Vojdan Kjorveziroski and Sonja Filiposka. Webassembly as an enabler for next

generation serverless computing. J. Grid Comput., 21(3):34, 2023.

[58] Vojdan Kjorveziroski and Sonja Filiposka. Webassembly orchestration in the

context of serverless computing. J. Netw. Syst. Manag., 31(3):62, 2023.

[59] Knative. https://knative.dev/, 10 2024.

[60] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. Faastlane:

Accelerating function-as-a-service workflows. In Proc. of USENIX ATC, pages

805–820. USENIX Association, 2021.

[61] Koyeb. https://www.koyeb.com/.

[62] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging

system for log processing. In Proc. of NetDB, volume 11, pages 1–7, 2011.

[63] Kubernetes. https://kubernetes.io/.

BIBLIOGRAPHY 145

https://jmeter.apache.org/
https://knative.dev/
https://www.koyeb.com/
https://kubernetes.io/

BIBLIOGRAPHY

[64] Kubernetes. Node Affinity. https://kubernetes.io/docs/tasks/

configure-pod-container/assign-pods-nodes-using-node-affinity/,

2024.

[65] Cosimo Laneve, Michael Lienhardt, Ka I Pun, and Guillermo Román-D́ıez. Time

analysis of actor programs. J. Log. Algebraic Methods Program., 105:1–27, 2019.

[66] Cosimo Laneve and Claudio Sacerdoti Coen. Analysis of smart contracts balances.

Blockchain: Research and Applications, 2(3):100020 (1–22), 2021.

[67] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli Zheng, and

Minyi Guo. Faasflow: enable efficient workflow execution for function-as-a-service.

In Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch, editors,

ASPLOS ’22: 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Lausanne, Switzerland, 28

February 2022 - 4 March 2022, pages 782–796. ACM, 2022.

[68] Lucet. https://github.com/bytecodealliance/lucet, 2020.

[69] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj

Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.

Unikernels: library operating systems for the cloud. In Proceedings of the Eigh-

teenth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’13, page 461–472, New York, NY, USA,

2013. Association for Computing Machinery.

[70] Microsoft. Azure service fabric. https://learn.microsoft.com/en-us/azure/

service-fabric/service-fabric-overview, 2024.

[71] Microsoft. Service affinity in Service Fabric. https:

//learn.microsoft.com/en-us/azure/service-fabric/

service-fabric-cluster-resource-manager-advanced-placement-rules-affinity,

2024.

[72] Microsoft azure functions. https://azure.microsoft.com/.

146 BIBLIOGRAPHY

https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://github.com/bytecodealliance/lucet
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-affinity
https://azure.microsoft.com/

BIBLIOGRAPHY

[73] ChetankumarMistry, Bogdan Stelea, Vijay Kumar, and Thomas F. J.-M. Pasquier.

Demonstrating the practicality of unikernels to build a serverless platform at the

edge. In 12th IEEE International Conference on Cloud Computing Technology

and Science, CloudCom 2020, Bangkok, Thailand, December 14-17, 2020, pages

25–32. IEEE, 2020.

[74] Anup Mohan, Harshad S. Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren

Nayak, and Vadim Sukhomlinov. Agile Cold Starts for Scalable Serverless. In

HotCloud. USENIX Association, 2019.

[75] Mqtt.org, mq telemetry transport. http://mqtt.org/.

[76] Matteo Nardelli and Gabriele Russo Russo. Function offloading and data migra-

tion for stateful serverless edge computing. In Simonetta Balsamo, William J.

Knottenbelt, Cristina L. Abad, and Weiyi Shang, editors, Proceedings of the 15th

ACM/SPEC International Conference on Performance Engineering, ICPE 2024,

London, United Kingdom, May 7-11, 2024, pages 247–257. ACM, 2024.

[77] Nerves project. https://nerves-project.org/, 2024.

[78] Nomad. https://www.nomadproject.io/, 2024.

[79] Matthew Obetz, Stacy Patterson, and Ana L. Milanova. Static call graph con-

struction in AWS lambda serverless applications. In Christina Delimitrou and Dan

R. K. Ports, editors, 11th USENIX Workshop on Hot Topics in Cloud Computing,

HotCloud 2019, Renton, WA, USA, July 8, 2019. USENIX Association, 2019.

[80] Openfaas. https://www.openfaas.com/.

[81] Openstack. https://www.openstack.org/.

[82] OpenStack. Documentation. https://docs.openstack.

org/project-deploy-guide/openstack-ansible/ocata/

app-advanced-config-affinity.html, 2024.

[83] Repository with scripts to deploy tapp openwhisk. https://github.com/

mattrent/openwhisk-deploy-kube, 04 2024.

BIBLIOGRAPHY 147

http://mqtt.org/
https://nerves-project.org/
https://www.nomadproject.io/
https://www.openfaas.com/
https://www.openstack.org/
https://docs.openstack.org/project-deploy-guide/openstack-ansible/ocata/app-advanced-config-affinity.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/ocata/app-advanced-config-affinity.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/ocata/app-advanced-config-affinity.html
https://github.com/mattrent/openwhisk-deploy-kube
https://github.com/mattrent/openwhisk-deploy-kube

BIBLIOGRAPHY

[84] Giuseppe De Palma. https://github.com/giusdp/openwhisk, 2024.

[85] Giuseppe De Palma, Saverio Giallorenzo, Cosimo Laneve, Jacopo Mauro, Matteo

Trentin, and Gianluigi Zavattaro. An OpenWhisk Extension for Topology-aware

Allocation Priority Policies. In To appear in COORDINATION. Preprint availabe

at https://arxiv.org/abs/2205.10176, 2024.

[86] Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin, and

Gianluigi Zavattaro. Funless: Functions-as-a-service for private edge cloud systems.

CoRR, abs/2405.21009, 2024.

[87] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. xafcl: Run scalable

function choreographies across multiple faas systems. IEEE Transactions on

Services Computing, 16(1):711–723, 2023.

[88] The Coders Rocket. The dangers of serverless hosting: A cautionary

tale for getting a 96,000 bill. https://medium.com/@The-coders-rocket/

the-dangers-of-serverless-hosting-a-cautionary-tale-for-getting-a-96-000-bill-2a283072f330,

2024.

[89] Mohammad Salehe, Zhiming Hu, Seyed Hossein Mortazavi, Iqbal Mohomed,

and Tim Capes. Videopipe: Building video stream processing pipelines at the

edge. In Dejan S. Milojicic and Vinod Muthusamy, editors, Proceedings of the

20th International Middleware Conference Industrial Track, Davis, CA, USA,

December 9-13, 2019, pages 43–49. ACM, 2019.

[90] Adalberto R Sampaio, Julia Rubin, Ivan Beschastnikh, and Nelson S Rosa.

Improving microservice-based applications with runtime placement adaptation.

Journal of Internet Services and Applications, 10(1):1–30, 2019.

[91] Josep Sampé, Marc Sánchez-Artigas, Pedro Garćıa-López, and Gerard Paŕıs.

Data-driven serverless functions for object storage. In Proceedings of the 18th

ACM/IFIP/USENIX middleware conference, pages 121–133, 2017.

[92] Amazon Web Services. Aws lambda. https://aws.amazon.com/lambda/.

[93] Amazon Web Services. Aws step functions. https://aws.amazon.com/

step-functions/.

148 BIBLIOGRAPHY

https://arxiv.org/abs/2205.10176
https://medium.com/@The-coders-rocket/the-dangers-of-serverless-hosting-a-cautionary-tale-for-getting-a-96-000-bill-2a283072f330
https://medium.com/@The-coders-rocket/the-dangers-of-serverless-hosting-a-cautionary-tale-for-getting-a-96-000-bill-2a283072f330
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/

BIBLIOGRAPHY

[94] Amazon Web Services. How aws’s firecracker virtual machines work.

https://www.amazon.science/blog/how-awss-firecracker-virtual-machines-work,

2020. Accessed: 2024-10-05.

[95] AmazonWeb Services. Anti-patterns in lambda-based applications. https://docs.

aws.amazon.com/lambda/latest/operatorguide/anti-patterns.html, 2024.

[96] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. Serverless computing:

A survey of opportunities, challenges, and applications. ACM Comput. Surv.,

54(11s):239:1–239:32, 2022.

[97] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul

Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and

Ricardo Bianchini. Serverless in the wild: Characterizing and optimizing the

serverless workload at a large cloud provider. In Proc. of USENIX ATC, pages

205–218, 2020.

[98] Amit Sheoran, Sonia Fahmy, Puneet Sharma, and Navin Modi. Invenio: Commu-

nication affinity computation for low-latency microservices. In Proceedings of the

Symposium on Architectures for Networking and Communications Systems, pages

88–101, 2021.

[99] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for efficient

stateful serverless computing. In Proc. of USENIX ATC, pages 419–433. USENIX

Association, 2020.

[100] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. Prebaking functions

to warm the serverless cold start. In Proc. of Middleware, page 1–13, New York,

NY, USA, 2020. ACM.

[101] Christopher Peter Smith, Anshul Jindal, Mohak Chadha, Michael Gerndt, and

Shajulin Benedict. Fado: Faas functions and data orchestrator for multiple

serverless edge-cloud clusters. In ICFEC, pages 17–25. IEEE, 2022.

[102] Khondokar Solaiman and Muhammad Abdullah Adnan. WLEC: A Not So Cold

Architecture to Mitigate Cold Start Problem in Serverless Computing. In IC2E,

pages 144–153. IEEE, 2020.

BIBLIOGRAPHY 149

https://docs.aws.amazon.com/lambda/latest/operatorguide/anti-patterns.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/anti-patterns.html

BIBLIOGRAPHY

[103] Benedikt Spies and Markus Mock. An evaluation of webassembly in non-web

environments. In 2021 XLVII Latin American Computing Conference (CLEI),

pages 1–10, 2021.

[104] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,

Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. Cloudburst:

Stateful functions-as-a-service. Proc. VLDB Endow., 13(12):2438–2452, July

2020.

[105] Manuel Stein. The serverless scheduling problem and noah. arXiv preprint

arXiv:1809.06100, 2018.

[106] Markus Steinbach, Anshul Jindal, Mohak Chadha, Michael Gerndt, and Shajulin

Benedict. Tppfaas: Modeling serverless functions invocations via temporal point

processes. IEEE Access, 10:9059–9084, 2022.

[107] Erik Stenman. Beam: a virtual machine for handling millions of messages per

second (invited talk). In Proceedings of the 10th ACM SIGPLAN International

Workshop on Virtual Machines and Intermediate Languages, VMIL 2018, page 4,

New York, NY, USA, 2018. Association for Computing Machinery.

[108] Ion Stoica and Scott Shenker. From cloud computing to sky computing. In

Sebastian Angel, Baris Kasikci, and Eddie Kohler, editors, HotOS ’21: Workshop

on Hot Topics in Operating Systems, Ann Arbor, Michigan, USA, June, 1-3,

2021, pages 26–32. ACM, 2021.

[109] Amoghvarsha Suresh and Anshul Gandhi. Fnsched: An efficient scheduler for

serverless functions. In Proceedings of the 5th international workshop on serverless

computing, pages 19–24, 2019.

[110] Yang Tang and Junfeng Yang. Lambdata: Optimizing serverless computing by

making data intents explicit. In 2020 IEEE 13th International Conference on

Cloud Computing (CLOUD), pages 294–303, 2020.

[111] Not saying you should but we’re told it’s possible to land serverless app a

’40k/month bill using a 1,000-node botnet’. https://www.theregister.com/

2021/04/21/denial of wallet/, 2021.

150 BIBLIOGRAPHY

https://www.theregister.com/2021/04/21/denial_of_wallet/
https://www.theregister.com/2021/04/21/denial_of_wallet/

BIBLIOGRAPHY

[112] Achilleas Tzenetopoulos, Evangelos Apostolakis, Aphrodite Tzomaka, Christos

Papakostopoulos, Konstantinos Stavrakakis, Manolis Katsaragakis, Ioannis Orout-

zoglou, Dimosthenis Masouros, Sotirios Xydis, and Dimitrios Soudris. Faas and

curious: Performance implications of serverless functions on edge computing

platforms. In High Performance Computing: ISC High Performance Digital 2021

International Workshops, Frankfurt Am Main, Germany, June 24 – July 2, 2021,

Revised Selected Papers, pages 428–438, Berlin, Heidelberg, 2021. Springer-Verlag.

[113] Parichehr Vahidinia, Bahar J. Farahani, and Fereidoon Shams Aliee. Cold

start in serverless computing: Current trends and mitigation strategies. In

2020 International Conference on Omni-layer Intelligent Systems, COINS 2020,

Barcelona, Spain, August 31 - September 2, 2020, pages 1–7. IEEE, 2020.

[114] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44,

2009.

[115] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael

Swift. Peeking behind the curtains of serverless platforms. In 2018 USENIX

annual technical conference (USENIX ATC 18), pages 133–146, 2018.

[116] Runan Wang, Giuliano Casale, and Antonio Filieri. Enhancing performance

modeling of serverless functions via static analysis. In Javier Troya, Brahim

Medjahed, Mario Piattini, Lina Yao, Pablo Fernández, and Antonio Ruiz-Cortés,

editors, Service-Oriented Computing - 20th International Conference, ICSOC

2022, Seville, Spain, November 29 - December 2, 2022, Proceedings, volume 13740

of Lecture Notes in Computer Science, pages 71–88. Springer, 2022.

[117] Weina Wang, Kai Zhu, Lei Ying, Jian Tan, and Li Zhang. Maptask schedul-

ing in mapreduce with data locality: Throughput and heavy-traffic optimality.

IEEE/ACM Transactions On Networking, 24(1):190–203, 2014.

[118] Zicheng Wang. Can “micro vm” become the next generation computing platform?:

Performance comparison between light weight virtual machine, container, and

traditional virtual machine. In 2021 IEEE International Conference on Computer

Science, Artificial Intelligence and Electronic Engineering (CSAIEE), pages 29–34.

IEEE, 2021.

BIBLIOGRAPHY 151

BIBLIOGRAPHY

[119] Wasmedge. https://wasmedge.org/, 8 2023.

[120] Wasmer. https://wasmer.io/, 8 2023.

[121] Wasmtime. https://wasmtime.dev/, 8 2023.

[122] Webassembly. https://webassembly.org/, 8 2023.

[123] Webassembly system interface. https://wasi.dev/, 8 2023.

[124] Qiaomin Xie, Mayank Pundir, Yi Lu, Cristina L Abad, and Roy H Camp-

bell. Pandas: robust locality-aware scheduling with stochastic delay optimality.

IEEE/ACM Transactions on Networking, 25(2):662–675, 2016.

[125] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj,

Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker,

and Ion Stoica. SkyPilot: An intercloud broker for sky computing. In 20th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

23), pages 437–455, Boston, MA, April 2023. USENIX Association.

[126] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,

Amirreza Niakanlahiji, Jian Kong, and Jason P Jue. All one needs to know

about fog computing and related edge computing paradigms. Journal of Systems

Architecture, 2019.

[127] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. Following the data,

not the function: Rethinking function orchestration in serverless computing. In

20th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 23), pages 1489–1504, Boston, MA, April 2023. USENIX Association.

[128] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao

Yang, Chenggang Qin, and Haibo Chen. Characterizing serverless platforms with

serverlessbench. In Proceedings of the 11th ACM Symposium on Cloud Computing,

SoCC ’20, page 30–44, New York, NY, USA, 2020. Association for Computing

Machinery.

152 BIBLIOGRAPHY

https://wasmedge.org/
https://wasmer.io/
https://wasmtime.dev/
https://webassembly.org/
https://wasi.dev/

BIBLIOGRAPHY

[129] Vladimir Yussupov, Jacopo Soldani, Uwe Breitenbücher, and Frank Leymann.

Standards-based modeling and deployment of serverless function orchestrations

using BPMN and TOSCA. Software: Practice and Experience, 01 2022.

[130] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and

research challenges. Journal of internet services and applications, 1:7–18, 2010.

[131] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian Zhang, and

Zhiqiang Lin. Reusable enclaves for confidential serverless computing. In Joseph A.

Calandrino and Carmela Troncoso, editors, 32nd USENIX Security Symposium,

USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023, pages 4015–4032.

USENIX Association, 2023.

BIBLIOGRAPHY 153

	Abstract
	Introduction
	I Background
	Cloud and Serverless Computing
	The Cloud Organization
	The ``as-a-Service" Models Proliferation

	Types of Cloud
	Deployment Models
	Distribution Models

	Function as a Service
	FaaS Platforms Internals
	Core Components
	Example of FaaS Platform: Apache OpenWhisk

	Functions Scheduling
	Limitations
	Scheduling in Apache Openwhisk

	II Contributions
	Allocation Priority Policies
	Introduction
	The APP Language
	APP Implementation in Apache OpenWhisk
	Experiments and Results
	Conclusions

	Topology-aware Serverless Scheduling
	Introduction
	tAPP, by example
	The tAPP Approach

	The tAPP Language
	tAPP in OpenWhisk
	Deploying tAPP-based OpenWhisk

	Case Study
	Case Study Implementation
	Overhead Analysis

	Conclusion

	Affinity-aware Serverless Scheduling
	Introduction
	The Language
	-based Apache OpenWhisk
	Performance Improvements via Affinity-awareness
	's Overhead is Negligible
	Conclusions

	Cost-aware Serverless Scheduling
	Introduction
	The mini Serverless Language
	The Inference of Cost Expressions
	From APP to cAPP
	Cost-aware policies with cAPP

	Conclusions

	FunLess: Lightweight Cloud-Edge FaaS
	Introduction
	WebAssembly
	Platform Architecture
	Design choices and limitations

	Energy Consumption Comparison
	Use Case
	Evaluation

	Conclusions

	Discussion and Conclusion
	Related Work
	Conclusions
	Future Work

	
	Bibliography

