ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DOTTORATO DI RICERCA IN
COMPUTER SCIENCE AND ENGINEERING
Ciclo 37

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

DECLARATIVE APPROACHES FOR CUSTOM CLOUD-EDGE SERVERLESS
FUNCTION SCHEDULING

Presentata da: Giuseppe De Palma

Coordinatore Dottorato Supervisore

Ilaria Bartolini Gianluigi Zavattaro

Co-Supervisore

Saverio Giallorenzo

Esame finale anno 2025



Borsa di dottorato del Programma Operativo Nazionale Ricerca e Innovazione 2014-2020 (CCI
20141T16M20P005), risorse FSE REACT-EU, Azione IV.4 “Dottorati e contratti di ricerca su
tematiche dell’innovazione” e Azione IV.5 “Dottorati su tematiche Green.” J35F21003070006

i



Abstract

Serverless computing has rapidly evolved from cloud-centric paradigms to embrace pri-
vate edge and hybrid cloud-edge systems, addressing latency and resource optimization
challenges. However, mainstream serverless platforms typically rely on rigid, hardcoded
scheduling policies that fail to support the diverse functional, topological, and perfor-
mance constraints required by modern applications. In particular cloud-edge serverless
applications, or serverless deployments, spanning multiple regions introduce the need
to govern the scheduling of functions to satisfy their functional constraints or avoid
performance degradation to meet user-defined goals. We address the problem of function-
execution scheduling in this thesis by first proposing a declarative language of Allocation
Priority Policies (APP), enabling developers to specify scheduling policies tailored to
their application needs, and we show an implementation of APP on top of Apache Open-
Whisk, validated with a cloud-edge use case. Building on this foundation, the focus shifts
to topology-aware scheduling through the development of tAPP, a language extension ca-
pable of enforcing co-existing topological constraints across hybrid deployments without
requiring custom platform modifications. We prove our approach feasible by implement-
ing a tAPP-based Apache OpenWhisk, and show that our extension naturally allows for
cloud-edge deployments with topology-aware requirements which cannot be supported
by standard deployments of vanilla OpenWhisk. We then focus on affinity-aware scenar-
ios, i.e., where, for performance and functional requirements, the allocation of a function
depends on the presence/absence of other functions on nodes. We further extend APP
to aAPP, a language that allows users to capture affinity-aware scheduling policies. An
aAPP-based prototype shows that affinity constraints can be expressed and enforced
with negligible overhead, enabling performance improvements where affinity matters..

This family of languages unlocks the capability for customizable scheduling in FaaS,
making it possible to enforce ad-hoc optimizations in serverless applications. However,
defining the “right” scheduling policy is far from trivial, often requiring rounds of
refinement that involve knowledge of the underlying infrastructure, guesswork, and
empirical testing. We start investigating how information derived from static analysis
could be incorporated into APP scheduling function policies to help users select the
best-performing workers at function allocation. To this end, we develop a cost-variant
APP called cAPP, which incorporates a pipeline capable of extracting cost equations
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from functions’ code, synthesizing cost expressions through the usage of off-the-shelf
solvers, and extending APP policies to consider this information.

Finally, recognizing the resource-constrained nature of cloud-edge scenarios, we
present FunLess, a FaaS platform capable of running bare-metal on edge devices without
the need for container orchestration layers. FunLess leverages WebAssembly (Wasm) as
its runtime, providing a lightweight execution environment with enhanced portability
and a reduced memory footprint. We also perform a comparative analysis of the energy
consumption of FunLess, OpenWhisk and a container-based service architecture. More-
over, FunLess features built-in support for APP, enabling the execution of customizable
scheduling policies even in resource-constrained environments.
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Chapter 1
Introduction

Software development and deployment have undergone multiple changes throughout the
history of computing and continues to evolve even today. From the early days of main-
frames, where computing was centralized on a single machine, to multi-tier architectures
with multiple physical nodes connected and accessible over a network, to the modern era
of cloud computing where hardware resources are virtualized and provided as a remote
service. Cloud computing has fundamentally changed how software systems are designed
and its own evolutionary line with several new paradigms have emerged. Starting from
only providing resources such as storage and machines, to providing software systems
that can compile and run applications directly, kickstarting a transition of computation
from on-premises servers to a multitude of data centers distributed across the globe.
Alongside these developments, Edge computing has also emerged to address the need for
latency-sensitive applications and the increasing amount of data generated by Internet
of Things (IoT) devices. Moving large amounts of data to the cloud for processing is not
always feasible due to bandwidth or latency constraints, so as opposed to centralizing
computation in remote data centers it is, instead, distributed across devices or servers
located nearer to users or data-generating endpoints. Modern solutions are now evolving
toward the concept of Cloud-Edge Continuum, a model that represents a spectrum of
resources aiming to integrate the large-scale centralized public clouds with distributed,
near-device computational resources. The key pattern of this evolution in computing
has been an abstraction over the hardware and the simplification of the deployment

and management of applications, reaching this newest peak with the illustrative name
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of “Serverless” Computing, where, ideally, the infrastructure is completely abstracted
away, hence servers (and devices) are no longer directly managed by the user. A
key component of this abstraction is the Function-as-a-Service (FaaS) model, which
has been gaining more and more attention both in academic research and industry.
This service model allows developers to deploy programs in the form of event-driven,
stateless and ephemeral functions, which can be executed over a large number of servers
automatically. The simplicity in deployment and scalability attracted many researchers
in exploring its usage in different scenarios, such as investigating new ways to architect
distributed systems, finding new optimizations in workload scheduling and execution,
and its applicability to IoT and Edge computing. Popularized through AWS Lambda
as the first FaaS platform offered by a major cloud provider, many other providers have
followed suit with their own proprietary or open-source platforms. Operating on the
premise of automatically allocating resources for execution offers an advantage in terms
of cost efficiency for customers, but the underlying scheduling and resource allocation
mechanisms are generally opaque and inflexible. These rigid mechanisms can fail to
adapt to heterogeneous environments that include different types of resources, equipped
with varying hardware, and that could include not only cloud data centers but also
edge devices. In such distributed environments, performance optimizations require an
awareness of resource locality, workload variability, and dynamic system constraints.
The complexity of these challenges calls for a more flexible and expressive approach to
resource management in FaaS platforms. While existing solutions often rely on prede-
fined, black-box scheduling mechanisms, a declarative language-based approach offers
the ability to precisely specify scheduling policies and reason about them systematically.
This enables developers to maintain fine-grained control over function placement while
abstracting away the low-level details of resource allocation. The driving motivation
for the works presented in this thesis lies in exploring the optimizations achievable in
FaaS platforms by allowing users to maximize usage of the resources available to them.
For example, latency-sensitive applications, such as those involving real-time tasks with
IoT-generated data, require their execution environments to be as close as possible to
the data source. Similarly, compute-intensive workloads may need to leverage powerful
cloud servers, while lightweight tasks can efficiently run on resource-constrained edge
devices. Current platforms fail to consider these diverse requirements and these lim-

itations become particularly pronounced in scenarios involving hybrid deployments. To
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tackle this class of problems, this thesis introduces a family of declarative languages and
companion frameworks for scheduling policies, namely Allocation Priority Policies (APP)
and its extensions: Topology-aware APP (tAPP) with the investigation on integrating
topology-based optimizations on function scheduling, Affinity-aware APP (aAPP) by
exploring the idea of (anti-)affinity constraints between functions and Cost-aware APP
(cAPP) by considering the cost of function execution. These frameworks enable devel-
opers and operators to specify detailed policies for function placement, incorporating

considerations such as data locality, resource availability, and their heterogeneity.

Starting with APP (in Chapter 4), we focus on the problem of optimizing function
scheduling in a heterogeneous cluster of resources. In FaaS platforms the component
responsible for function execution, often called worker, and the component responsible
for function scheduling, i.e. choosing a worker for a function to run on, are typically
distributed across one or more data centers. The open-source platforms that have
become popular over the years, such as Apache OpenWhisk [8] and OpenFaaS [80],
make use of simplistic scheduling approaches such as pseudo-random or round-robin
selection, which do not consider the computational power of the workers or the func-
tions they are currently executing. Not all workers are equal when allocating functions.
Indeed, effects like data locality [47]—due to high latencies to access data—or session
locality [47]—due to the need to authenticate and open new sessions to interact with
other services—can sensibly increase the run time of functions. To tackle the chal-
lenges and opportunities for these optimizations in function scheduling we propose APP
as the basis for a policy-driven, declarative scheduling language for FaaS platforms.
Developers can use APP to specify a scheduling policy for their functions that the
scheduler later uses to find the worker that, given the current status of the system,
best fits the constraints specified by the developer of a given function. We extended
the scheduler of OpenWhisk as well, to use APP-defined policies in the scheduling
of serverless functions, and validated our extension with an use case combining IoT,
Edge, and Cloud Computing. With the baseline ideas in place, we explored different
directions in function scheduling optimizations with several APP extensions.

Following APP, we explored scenarios where FaaS platforms are deployed across
multiple zones, each with its own set of workers and schedulers. As to OpenWhisk’s
case, platforms are deployed over a cluster of machines where, regardless of the zones

and number of replicated schedulers, any worker in the cluster could be picked to run a
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function. To handle topological information and cover multi-scheduler deployments, we
introduce tAPP (in Chapter 5) as a first extension of APP. With tAPP we enhance the
initial language with new constructs and extend OpenWhisk with new components to
capture topological information at the level of workers and schedulers, and let schedulers
and gateways follow tAPP policies depending on topological zones. We evaluated our
tAPP-enabled OpenWhisk prototype using an Industry 4.0 case study featuring a
Cloud-Edge deployment.

After tAPP, we explored the idea of affinity-aware scheduling in FaaS from obser-
vating that, at lower levels of the cloud stack, popular Infrastructure-as-a-Service (IaaS)
platforms (e.g., OpenStack [82]) and Container-as-a-Service (CaaS) systems (e.g., Kuber-
netes [64]) allow users to express affinity and anti-affinity constraints about the allocation
of VM /containers—e.g., anti-affinity constraints, to reduce overhead by shortening data
paths via co-location, to increase reliability by evenly distributing VM /containers among
different nodes, and for security, such as preventing the co-location of VM /containers be-
longing to different trust tiers. On the contrary, FaaS platforms do not natively support
the possibility to express affinity-aware scheduling, where function allocation depends
on the presence (affinity) or absence (anti-affinity) at scheduling time of other functions
in execution on the available workers. Recognising the potential of FaaS-level affinity-
aware scheduling policies, we propose aAPP (in Chapter 6) by extending APP, and we
concretise our proposal by presenting a prototype implementation of an aAPP-based
OpenWhisk able to enforce aAPP-defined FaaS (anti-)affinity scheduling constraints.

While studying the potential optimizations in function scheduling, we also focused
on another line of research that is gaining traction in the community, the costs and
sustainability of cloud computing. The advent of the cloud raised concerns about the
energy consumption and environmental impact of data centers, which power cloud
services, as major consumers of electricity, contributing to carbon emissions. As demand
for cloud services continues to rise, optimizing resource usage and minimizing energy
waste have become important challenges for both researchers and industry. By applying
these concerns on our research on FaaS platforms, we propose two contributions: i) a
novel FaaS platform, FunLess, designed to be lightweight with a focus on (mixed) edge-
cloud scenarios, and i) a Cost-aware extension of APP, named cAPP (in Chapter 7),
with an implementation on FunLess.

With FunLess, we experimented with new ideas and more recent technologies such
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as WebAssembly (Wasm) [122] to create a lightweight FaaS platform with built-in
support for APP. FunLess is a new open-source platform providing decreased resource
requirements, lightweight scalability, and portability via the Erlang’s BEAM Virtual
Machine [107] and WebAssembly for running functions. Thanks to these traits, users
can run the whole FunLess distributed platform on resource-constrained edge devices
without requiring a container runtime (e.g., Docker) and container-orchestration tech-
nologies (e.g., Kubernetes). We also studied the energy usage impact compared to more
traditional FaaS platforms.

Regarding cAPP, we propose this new extension from the observation that if an user
has knowledge about the reduced running time of a worker in performing some particular
task with an external service, .e.g. in accessing a database, the user must know about the
workers’ topology and their latencies w.r.t. the external services used by their functions.
However, users might not have such knowledge when writing their APP scripts. Moreover,
the worker-service latency is a property that can dynamically change depending, e.g.,
on the state of the network connections, including traffic and congestion. Thus, we
start investigating how information derived from static analysis could be incorporated
into APP scheduling function policies to help users select the best-performing workers
at function allocation. We substantiate our proposal by presenting a pipeline able to
extract cost equations from functions’ code, synthesising cost expressions through the
usage of off-the-shelf solvers, and extending APP to consider this information. In other
terms, we propose to use a combination of static analysis (applied on a function’s code)
and run-time monitoring (of the workers latencies in accessing the external services) to
estimate a cost for executing a function on a worker, considering what and how it uses
external services. Differently from before, the prototypical implementation of cAPP is
developed on FunLess, as it is the platform we can better control which allowed us an

integration of the needed components from the ground up.

Structure of the Thesis The remainder of this thesis is organized as follows. It
is divided in two main parts: Background and Contributions. From the Background
part, Chapter 2 provides an overview of cloud computing and its evolution over the
years with a focus on the models of distribution and deployment. Chapter 3 introduces
Function-as-a-Service as the core model of serverless computing and elaborates on its

architectural principles, scalability features, and scheduling challenges. In the first
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chapter of the Contributions part, Chapter 4, we present the design and implementa-
tion of APP, including its integration into the Apache OpenWhisk platform and the
experimental evaluations. We extend the discussion to tAPP in Chapter 5, introducing
its ability to support scheduling policies with topological constraints, and its integration
and evaluation. In Chapter 6, we move the discussion to aAPP, presenting the new
capabilities of expressing affinity and anti-affinity constraints in function scheduling,
together with its implementation and evaluation. We then introduce cAPP in Chapter 7
where we go into details on the additional components and ideas built on top of APP to
make scheduling aware of function running time, and we present FunLess in Chapter 8
with an overview of its architecture, design choices and a comparison on the energy usage
with OpenWhisk and a classical service-oriented architecture. Finally, in Chapter 9

the conclusions are drawn and some directions for future work are discussed.
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Part 1

Background







Chapter 2

Cloud and Serverless Computing

2.1 The Cloud Organization

Modern-day web software is deeply integrated with services on the cloud due to the

capabilities and flexibility they can offer. In this chapter, we give an introduction to

cloud computing and serverless computing (the focus of this thesis) and introduce the

common service models available.

Cloud computing is characterized by an easily usable and accessible pool of vir-

tualized resources based on a pay-per-use model. Customers can acquire and release

resources on demand, and when in need of scaling they can simply request more

resources. Figure 2.1 shows a simplified view of the organization of cloud computing.

Software as a Service
(SaaS)

Platform as a Service
(PaaS)

Infrastructure as a Service
(laaS)

Metal as a Service
(MaaS)

Resources managed at each layer

Application

Web services, multimedia, business apps

Platforms
Software frameworks, Storage (databases)
Infrastructure

Computation (VM), storage (block, file)

Hardware

CPU, memory, disk, bandwidth

Google AppEngine,
MS Azure App Service

Figure 2.1: Cloud Computing Layers (adapted from Zhang et al. [130]).
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2.1. THE CLOUD ORGANIZATION

We can generally divide cloud computing into four layers:

e Hardware: At the lowest layer, the cloud provider manages the physical hard-
ware. Server machines, storage equipment, networking devices but also power
and cooling systems. This physical layers is generally implemented in data cen-
ters, which are large buildings powering, cooling and housing all the necessary

equipment to run a variety of software services.

e Infrastructure: On top of the hardware there are the virtualization technolo-
gies that form the backbone for most cloud computing offerings. At this level
virtualization techniques are employed to provide customers an infrastructure

consisting of virtual machines, virtual storage and other computing resources.

e Platform: Based on the virtualized resources provided by the infrastructure layer,
a set of APIs and services provide the means to developers to easily develop and
deploy software. In practice, an application developer is offered a vendor-specific
API, which includes calls to uploading and executing a program in that vendor’s
cloud, giving an high-level abstraction of the underlying machines, storage and so
on. For example, Amazon S3 provides an API that allows users to store locally
created files in “buckets”. By doing so, the file is uploaded to Amazon’s cloud
and can be accessed remotely. Moreover, the responsibility of conserving the file

is shifted to the service provider.

e Application: This topmost layer is where applications are delivered to end-users
over the internet. Many kinds of web applications make use of cloud computing
such as web-based email, office suites (text processors, spreadsheet applications,
presentation applications), collaboration tools. These applications are executed
on the vendor’s cloud and the vendor is responsible to make them accessible

online and keep them always available without any downtime.

2.1.1 The “as-a-Service” Models Proliferation

Over the years, the cloud computing market has seen a proliferation of services that can
be grouped on top of the four layers described above. They are commonly referred to as

“as-a-Service” models, where the “as-a-Service” suffix means that the service is provided
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2.1. THE CLOUD ORGANIZATION

over the internet based on a pay-per-use model. Starting from these four layers, cloud
providers offer them to their customers as a means for outsourcing local computing
infrastructures, through various interfaces (command-line tools, APIs, and web GUISs),
making them their business model. This approach has led to the establishment of
four main service models - MaaS, TaaS, PaaS, and SaaS - which represent increasing
levels of abstraction in cloud service delivery. Fig. 2.2 shows a common representation
of these service models. Numerous specialized variations have also emerged to pro-
vide specific functionalities tailored to particular needs (such as Database-as-a-Service,

Storage-as-a-Service, and so on).

Metal-as-a-Service (MaaS)

The first kind of cloud service corresponds to a direct hardware (commonly called
bare-metal) offering, hence the name Metal as a Service. Maa$S offers to customers
dedicated, bare-metal servers installed and housed by providers. Customers can choose
from servers with various hardware configurations, such as different CPUs, GPUs,
and memory options, to meet their specific needs. In this case, customers are respon-
sible for configuring and maintaining the resources, while providers only handle the
physical installation (and power and cooling). As an example, a company running
high-performance computing tasks might want full control over the hardware and avoid

user contention on shared resources.

Infrastructure-as-a-Service (IaaS)

[aaS provides virtualized computing resources over the internet, enabling customers to
rent virtual machines (often referred to as “instances”), storage, and networking compo-
nents on demand. This model allows customers to scale their infrastructure dynamically
according to their workload requirements without the need for investing in physical hard-
ware. Providers manage the underlying physical infrastructure and ensure its availability,
while customers control and configure the operating systems and applications running on
them. For example, a company developing a web application might use TaaS to quickly
deploy and scale their servers based on user traffic, paying for the virtual machines only
when they are needed. The pervasive use of virtualization technology revolutionized the

market by providing the ability to cloud vendors to abstract from physical resources and
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2.1. THE CLOUD ORGANIZATION

run workloads belonging to different customers on the same infrastructure transparently.

Platform-as-a-Service (PaaS)

This model is a step further in the abstraction of the infrastructure, further reducing
the customer’s effort by providing a ready-to-use execution environment on which
applications can run. PaaS provides a platform (often used via APIs or web interfaces)
allowing customers to develop, run, and manage applications without dealing with the
underlying virtualized components (e.g., having to install all the necessary software
and dependencies on virtual machines). In its purest form, PaaS is just an abstraction
over the infrastructure layer with some interface to upload application code. The cloud
vendor has to spin up the virtual machines, configure them, and deploy the application.
This mechanics further delegates responsibility to the cloud provider, which is now

responsible for the execution and scalability of the application.

Software-as-a-Service (SaaS)

At the other end of the spectrum, SaaS offers the highest level of abstraction by deliv-
ering fully functional software applications over the Internet, accessible through a web
browser or mobile apps without any need for local installation or maintenance. From this
perspective, SaaS customers are the end-users of the software. A wide range of business
applications are offered as SaaS, such as Customer Relationship Management (CRM),
Enterprise Resource Planning (ERP), human resources management, and collaboration
or productivity tools like Office 365, Google Suite or Salesforce. The main benefits of
SaaS are threefold: 7) it eliminates the need for customers to purchase, install, and main-
tain software, i) it reduces I'T management costs, i) enables the customer to access the
software from any device with Internet access. Usually, SaaS software is licensed on a sub-

scription basis, with the customer paying a monthly or yearly fee to access the software.

Other “as-a-Service” Models

Based on these four main models, many other specialized services tailored to specific
needs were developed. This phenomenon became known as the “Everything as a Service”
(XaaS) model, where any kind of software can be offered as an online service based

on a pay-per-use model. For instance, Database-as-a-Service allows customers to easily
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Figure 2.2: Common representation of the responsibility offloaded to the cloud vendor
provided by the different Cloud Computing Service Models.

deploy, access and manage databases without the complexities of setup and maintenance.
Similarly, Storage as a Service provides scalable storage solutions that can be accessed re-
motely, eliminating the need for on-premises hardware. This kind of services can each fall
into their relative layer of the above-mentioned cloud computing organization. Of particu-
lar note, Backend-as-a-Service (BaaS) is a refinement of the PaaS model, where the cloud
provider integrates in the code execution platform a set of pre-configured services, such as
databases, storage, and middleware. This enhanced platform forms a complete, tighly in-
tegrated environment where the customer has access to a ready-to-use backend infrastruc-
ture. Backend-as-a-Service is one of the two components that form the basis of Serverless

Computing, the other being Function-as-a-Service (FaaS) which we discuss in Chapter 3.

2.2 Types of Cloud

Cloud computing, with its several service models, has been instrumental in expanding
the reach and capabilities of software applications. We can categorize the kind of cloud
deployments into four main types [126, 26]: private cloud, community cloud, public
cloud, and hybrid cloud. Moreover, we can consider different kinds of distribution

models, such as multi-region, multi-cloud, fog computing, and edge computing.
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2.2.1 Deployment Models
Private Cloud

A private cloud, also known as internal cloud, is designed for exclusive use by a single
organization. It is either built and managed by the organization or outsourced to a third
party. This model ensures the highest degree of control over performance, reliability,
and security. However, unlike public cloud solutions, private clouds do not typically
operate on a pay-as-you-go model, resembling traditional company-owned server farms

in their financial structure.

Community Cloud

A community cloud is a cloud computing model where infrastructure is shared among a
specific group of users, such as organizations within the same industry or with common
interests. These cloud deployments are typically owned and managed by one or more
organizations within the community, and they cater to the unique needs of this group.
While delivering computing resources like storage, networking, servers, and applications
over the Internet, community clouds are distinct from public clouds in that they are
accessible only to members of the community. This model offers benefits such as cost
efficiency, enhanced security, optimizations tailored to specific use cases, and compli-
ance with regulatory requirements. By sharing resources, community clouds reduce
infrastructure and management costs, providing a secure and compliant environment

for the community’s specialized needs.

Public Cloud

Public clouds, managed by third-party providers, offer computing resources such as stor-
age, networking, and applications over the Internet to users worldwide. These cloud de-
ployments operate on a pay-as-you-go model, allowing users to access and scale resources
as needed without the burden of maintaining their own infrastructure. While public
clouds can be cost-effective, including no initial capital investment on infrastructure, they
may not provide the same level of customization as private clouds and lack fine-grained
control over data, network, and security settings. Moreover, the services offered by the

providers are often geared towards the so called “vendor lock-in”, where customers are
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tied to a specific provider due to the integrated nature of the services offered, making

it difficult to migrate an application built on a specific provider’s cloud to another one.

Hybrid Cloud

Hybrid clouds are a combination of the public and private cloud models that try to
address the limitations of the other approaches. It allows organizations to leverage
on-premises, private, and third-party public cloud services based on their specific needs.
This approach enables fine-grained control over virtualized infrastructure, utilizing stan-
dardized or proprietary technology to integrate different cloud deployments. It makes
it possible for organizations to use public clouds for non-sensitive tasks and private
clouds for critical or sensitive workloads. However, hybrid clouds requires to carefully

determine the best split of resources and workloads between the two environments.

2.2.2 Distribution Models

Cloud computing distribution models define how cloud services are deployed and accessed
across different locations and platforms. A single centralized cloud approach could repre-
sent a single point of failure for the overall architecture, due to possible network connec-
tivity problems, human errors, unpredictable failure or natural disasters. Moreover, from
a business perspective, the above-mentioned phenomena of vendor lock-in can be a signif-
icant issue, making it difficult for customers to experiment with different cloud providers

or migrate from one to another to cut costs or take advantage of different capabilities.

Multi-Cloud

An effective solution to cloud availability and vendor lock-in issues is adopting a
Multi-Cloud strategy. Multi-Cloud involves using multiple cloud services from different
providers into a single infrastructure, including public clouds like AWS, Microsoft Azure,
and Google Cloud Platform, as well as private and on-premises solutions. This approach
generalizes the hybrid cloud model by integrating multiple public cloud providers. Opt-
ing for Multi-Cloud helps to avoid dependency on a single provider, ensuring there
are alternatives in case of outages or pricing changes. It also allows cost optimization,

as different providers may offer better pricing for specific services. Implementing
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Multi-Cloud requires resource management across platforms, which can be facilitated
by cloud management tools and standardized technologies like OpenStack [81] and
Kubernetes [63]. However, the approach may still fall short in meeting the strict locality

and high data demands of numerous connected, smart services.

Multi-Region

An alternative to the Multi-Cloud strategy is the Multi-Region approach, where ser-
vices are distributed across multiple geographic regions. This can also be enacted
within the same cloud provider. This method enhances resilience by reducing the
risk of regional failures such as natural disasters or network outages, by spreading
resources across different regions. It also makes it possible to position resources in
regions closer to end-users to reduce latency. Additionally, Multi-Region deployments
help meeting regulatory requirements by keeping data within specific geographical
boundaries. As for multi-cloud distribution, this strategy requires robust mechanisms

for data synchronization, failover management, and load balancing across the regions.

Edge Computing

Going a step further in the distribution models, Edge Computing brings resources closer
to the users, outside of centralized data centers typically at the edge of the network.
With the ubiquitous wireless Internet access and the proliferation of IoT technology
many new applications are possible in sectors such as smart cities and Industry 4.0 [12].
Traditional cloud solutions are not optimized for latency speeds, bandwidth and
connectivity availability, when it comes to a decentralized network of devices connected
to the cloud. As industries increasingly demand fast analysis and reaction, the delays
inherent in cloud computing lead to inefficiencies and delays. Additionally, the continuos
streams data generated by IoT devices require an adequate bandwidth and raise security
and privacy concerns. Adding Edge Computing to the cloud continuum enables local
optimizations of data processing, reducing the distance data must travel on the network
and minimizing delays, by positioning storage and computing resources closer to data-
producing and consuming devices. In this way, Edge Computing is perceived as a method
of optimizing Cloud Computing by performing computations (such as data analytics)

as close to the data sources as possible. Edge resources can be tailored to specific use
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cases, providing functionalities like computing offloading, data storage, caching, and
service request coordination. This proximity reduces network hops, speeding system
response and interactions. New connectivity technologies like WiFi-6 and 5G further

enhance network bandwidth, supporting parallel and continuous data transmission.

Fog Computing A related concept is Fog Computing, which is usually conflated
with Edge Computing. Fog Computing is a layered model aiming to give ubiquitous
access to a continuum of computing resources, from the cloud to the edge. The central
concept is to have “fog” nodes (physical or virtual) positioned between smart end-
devices and centralized cloud services [50]. These context-aware fog nodes, organized in
clusters, minimize request-response times and provide local computing resources while
maintaining connectivity to central services when needed. Together Edge, Fog and

Cloud form the Cloud-Edge Continuum, Figure 2.3.
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Figure 2.3: A representation of the Cloud-Edge Continuum, adapted from [50].

Cloud-Edge Continuum

Organizations can choose to adopt one or multiple cloud distribution models based on
their specific needs. Multi-cloud and edge computing are emerging as promising archi-
tectural patterns that could potentially address service availability and quality demands.

The development of an infrastructure beyond centralized data centers into the edge

CHAPTER 2. CLOUD AND SERVERLESS COMPUTING 17



2.2. TYPES OF CLOUD

forms the Cloud-Edge Continuum (commonly referred to with just Cloud Continuum),
which combines the large-scale data processing of cloud computing with the low latency,
location-aware processing of edge computing. Integrating different models within the
Cloud Continuum presents challenges in orchestrating and managing these decentralized
infrastructures. For an effective integration, systems are required to cooperate and
coordinate across various protocols and data formats, necessitating reliable and scalable
interaction mechanisms along with novel synchronization and coordination methods.
This complexity can increase development costs and hinder adoption, although new
service models, like serverless computing, try to abstract away the underlying resources
and provide a more straightforward way to deploy applications across the continuum.

In the next chapter the focus will shift to Serverless Computing, introducing its key

service model: Function-as-a-Service.
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Chapter 3
Function as a Service

Function as a Service (FaaS) is another computing model that has been gaining
popularity over the last few years [92, 27, 72, 44, 61, 80, 8, 59]. The main idea behind it is
to have a service where a developer can register code functions together with parameters
such as triggering events and data bindings. The functions are uploaded and stored in
a platform that can support indipendent invocations of the functions in response to the
triggering events. These FaaS platforms create an abstraction that allows users to operate
as if the underlying infrastructure does not exist, therefore paired with a BaaS system to
manage the FaaS platform itself, a cloud provider can offer a “Serverless” environment.
With these platforms, software developers create stateless functions, that act as the basic
execution unit, and develop software architectures as a composition of these functions.
These compositions are often referred to as workflows or pipelines. This way of building
architectures also means that users do not control where or when their code is executed.
As shown in Figure 3.1, we can extend the previous service models representation from
Figure 2.2 by including FaaS as an intermediate step between PaaS and SaaS. In FaaS,
customers have no view of the underlying runtimes of their applications, i.e., they do not
have to package their code with the necessary libraries or dependencies (or containerized)
so that it can be uploaded to a PaaS system. Furthermore, they do not have to worry
about scaling their applications, or introduce mechanisms to handle scaling for when the
PaaS platform decides to perform replications. With FaaS, customers only have to upload
code snippets (typically in the form of functions with a specific signature) and configure

the events that can trigger their execution (e.g. HTTP requests). These functions can be
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Figure 3.1: Common representation of the responsibility offloaded to the cloud vendor
provided by the different Cloud Computing Service Models.

written in the platform of choice’s supported programming languages and are (or should
be) designed to be short-lived and stateless. Under this light, everything is managed
by the cloud provider but the code itself, putting FaaS just one step below SaaS.
FaaS platforms also dynamically scale resources per request, adjusting automatically
based on demand. This functionality allows for a zero-scaling feature, meaning services
consume minimal resources when idle (as long as no functions are running due to some
triggering, the provider just runs minimal services to listen for those triggers). There is
a variety of approaches to handle functions’ execution, but the most common one is to
use containers in order to have an isolated environment to run the function. On a new
function invocation, the platform instantiates a new container, executes the function,
and then destroys the container or reuses it for future invocations. In the next section,
we will discuss the various approaches to function execution. Finally, regarding this abil-
ity to spin up resources on demand to invoke functions, cloud providers have introduced
a per-execution billing model, where customers pay only for function invocations or for

the duration of each function execution. When using a paid FaaS offering from a cloud
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vendor, it can translate into a more cost-effective solution, especially when demand of
an application is low or highly variable. Instead of paying for a fixed amount (typically
a monthly fee) to reserve resources, customers only pay for when their applications are
in use. The per-use model can also be a double-edged sword when there are unexpected
traffic spikes, or in case of a developer error that causes a function to invoke itself or
other functions continuously (a common anti-pattern [95]). In both cases, the platform

will silently try to meet demand by automatically scaling the functions up [111, 88].

3.1 FaaS Platforms Internals

In recent years many FaaS platforms have been developed by both industry and
academia. All the major cloud providers have their own Serverless computing offerings
powered by their own FaaS platforms, such as AWS Lambda, Google Cloud Functions,
Azure Functions, and IBM Cloud Functions. The latter is based on Apache OpenWhisk,
an open-source FaaS platform developed by IBM and later donated to the Apache
Software Foundation. In the open source space there are numerous other projects, with

OpenWhisk being now one of the most popular together with OpenFaaS and Knative.
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Figure 3.2: High-level FaaS architecture components.

Among all these platforms, a pattern of common architecture elements has emerged,
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as shown in Figure 3.2. In particular, a Controller component responsible for managing
and coordinating the functions, a Worker component (or many) that runs the functions,
a storage component to store the functions, their metadata possibly their results, etc.,

and a triggering mechanism to map events to function invocations.

3.1.1 Core Components
Functions

The core concept for a FaaS platform is the execution and scaling of functions, which
are code snippets written in some programming language supported by it and uploaded
by customers. These code snippets usually follow a specific signature so that a worker
can identify it and invoke it. In Listing 3.1, we show an example of a simple OpenWhisk
function written in JavaScript. OpenWhisk functions expect a “main” procedure with
a JSON input parameter, and another JSON as output. The “body” field of the output
JSON is also treated as the HTML body of the response when the function is invoked
via HTTP.

s

1 function main(args) {
2 const name = args.name || ’'World’;
3 return {
4 body: ’<h1>Hello, ’ + name + ’!</h1>’,
5 BE
6l 2
S

Listing 3.1: Example OpenWhisk Javascript function.

Controller

This component is the heart of a FaaS platform, acting as both the orchestrator for
function execution and the provider of the service to the user. It usually consists of a set
of APIs to create, read, update, and delete functions, and possibly other resources like
“packages” or “modules” that can be used to group functions together, or trigger rules that
can be used to link functions to events. The Controller is also responsible for function
scheduling, so when a function is invoked, it decides which Worker should run it. It can
also keep track of the state of the platform and the health of the Workers to inform the

scheduling decisions. Furthermore, a growing number of platforms now also offer function
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composition, allowing multiple functions to be combined into a single workflow. A popu-
lar form of composition on FaaS platforms is function chaining, where one function’s out-
put directly feeds into the next. The controller usually manages the chaining of functions,
coordinating the invocation of the next function in the chain with the output of the pre-

vious one. This chaining allows for complex processes to be built from simpler functions.

Workers

The workers, also commonly called “invokers”, are the function executors. They are
typically distributed across a cluster of nodes and are accessible by the controller to
request invocations. When such requests are received, the worker will prepare the

execution environment, run the function, and return the result.

Runtimes The technologies that Workers employ to make this happen are often
called “runtimes”. The most common approach to implement runtimes are Contain-
ers [19], but new approaches have found use in recent years such as MicroVMs [118§]
(e.g. AWS Lambda moved to MicroVMs for function execution with FireCracker [3]),
UniKernels [69], and WebAssembly [103]. The way these technologies are used is similar,
as the objective is to have an isolated environment that can be quickly instantiated
(and removed) with all the necessary dependencies to run functions.

In the early days of FaaS, platforms also used virtual machines to reach a maximum
degree of isolation between invocations [94], but the overhead of instantiating and
setting up VMs limited scaling capabilities. At that point, other approaches were
explored, namely containers and microVMs. A container consists of a lightweight,
isolated environment that packages applications with their dependencies, sharing the
host OS kernel. On the other hand, microVMs are minimal virtual machines that
include an OS kernel, keeping a similar level of isolation as VMs but with a lower
overhead, similar to containers. Unikernels [69] are highly specialized, single-purpose
machine images that include only the necessary parts of an operating system together
with the application code and run directly on a hypervisor or on bare metal. Finally,
WebAssembly [103] (commonly called Wasm) is a binary format compilation target
for languages such as C/C++, Rust, and Go. It enables execution of code written in
these languages within Web browsers with near-native speed. After the introduction

of the WebAssembly System Interface (WASI), it can also be used to run standalone
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programs through external calls (imports) to interact with a host environment, enabling

the usage of Wasm modules in server-side environments and as FaaS runtimes.

Function Distribution Besides the way Workers perform function executions, they
can follow different modalities on how they manage function instances. There are two

main approaches to function distribution:

¢ Single Function Worker: a Worker instance is created for each function deploy-
ment. Here, the Worker is a thin wrapper around the runtime. When an user up-
loads a function, the platform deploys a new Worker instance with the correspond-
ing runtime and function code, ready to accept invocation requests. The controller

can then schedule to one of the available workers designated to run the function.

e Multi-Function Worker: a single Worker instance can instantiate multiple
runtimes. This approach is also shown in Figure 3.2, where a Worker manages mul-
tiple function instances. With container-based runtimes, the Worker will manage
a pool of containers and instantiate a new one when the controller requests an invo-
cation for a specific function for the first time. It can then reuse the container for
future invocations of the same function, to avoid the overhead of spinning up a new
container. With WebAssembly runtimes, the Worker can just cache the compiled

Wasm module and instantiate a new instance of the module for each invocation.

Storage

Intuitively, a storage component is crucial for managing platform artifacts, including
function code, logs, and metadata. Multiple storage systems can be employed to store
the different types of data. Invocations requests might also be stored for monitoring,

to support workflows and retries, and for billing purposes.

Triggers

An equally-important aspect in a FaaS platforms are the triggering events that produce
invocation requests. A trigger is a logical entity responsible for detecting or receiving
external information and transforming it into internal events that initiate function

execution. They are typically mapped to one or more functions in order to invoke
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them via requests from a variety of heterogeneous sources. Depending on the platfom,
multiple protocols (e.g., HTTP, WebSockets or messaging queues) and data formats
(e.g., JSON, XML or binary) can be used. Commonly, FaaS platforms provide a set
of built-in triggers, in particular HT'TP requests and timers, to which users can add
external services such as message queues via a trigger, connected to specific functions.

The lifecycle and management of triggers are fully handled by the platform.

3.1.2 Example of FaaS Platform: Apache OpenWhisk

Apache OpenWhisk’s architecture closely resembles the one depicted in Figure 3.2 with
one, or more, Controllers and multi-function Workers (they spawn one container per
function). It is an open-source FaaS platform initially developed by IBM and donated to
the Apache Software Foundation. We report in Figure 3.3 a scheme of the architecture

of OpenWhisk.
From left to right, we first find Nginx, which acts as the gateway and load balancer to

distribute the incoming requests. Nginz forwards each request to one of the Controllers

in the current deployment.

The Controllers decide on which of the available computation nodes, called Workers!,
to schedule the execution of a given function. Controllers and Workers do not interact
directly but use Apache Kafka [62] and CouchDB [7] to respectively handle the routing
and queueing of execution requests and to manage the authorisations and the storage

of functions and of their outputs/responses.

Workers execute functions using Docker containers. To schedule executions, Con-
trollers follow a hard-coded policy that mediates load balancing and caching. This
logic works by trying to allocate requests to the same functions on the same Workers,
hence saving time by skipping the retrieval of the function from CouchDB and the

instantiation of the container already cached in the memory of the Worker.

In OpenWhisk, Workers follow the Multi-Function Worker approach, where a single

Worker instance can instantiate multiple runtimes (using containers).

OpenWhisk’s documentation uses the more specific term “invokers”.
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Figure 3.3: Apache OpenWhisk architecture.

3.2 Functions Scheduling

The Serverless development cycle is divided in two main parts: a) the writing of a
function using a programming language supported by the platform (e.g., JavaScript,
Python, C#) and b) the definition of an event that should trigger the execution of the
function. For example, an event is a request to store some data, which triggers a process
managing the selection, instantiation, scaling, deployment, fault tolerance, monitoring,
and logging of the functions linked to that event. A Serverless provider is responsible
to schedule functions on its workers, to control the scaling of the infrastructure by

adjusting their available resources, and to bill its users on a per-execution basis.

3.2.1 Limitations

When instantiating a function, the provider has to create the appropriate execution
environment for the function, as discussed in Section 3.1.1. How the provider implements
the allocation of resources and the instantiation of execution environments impacts on
the performance of the function execution [54, 13, 47, 46].

One of the main challenges to address is how should Serverless providers schedule
the functions on the available computation nodes. To visualize the problem, consider,
for example, Figure 3.4 which depicts the availability of two groups of heterogeneous
Workers and a Controller. One group contains nodes with different computational
resources, in particular one node is equipped with a GPU. The other group provides

a Data Storage service and a Worker that is close to it.
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Figure 3.4: Scenario depicting multiple zones with heterogeneous workers. A naive
scheduling algorithm would assign functions to workers without considering the kind of
computational resources available.

All the Workers can execute a function that interacts with the Data storage. When
the Controller (acting as the function scheduler) receives a request to execute the
function, it must decide on which Worker to execute it. To minimise the response time,
the Controller should consider the different computational loads of the Workers, which
influence the time they take to execute the function. Moreover, the latency to access
the Data storage plays an important role in determining the performance of function
execution. The Worker at Site 2 is close to the data storage and enjoys a faster interaction

with it while the Workers at Site 1 are farther from it and can undergo heavier latencies.

Cold Starts One of the most common slow-down issues in FaaS platforms is the
“cold start” problem, where the first invocation of a function is slower than subsequent
ones. If the provider allocates, for example, a new container for every request, the
initialisation overhead of the container would negatively affect both the performance of

the single function and heavily increase the load on the worker. The “cold start” is due
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to the time it takes for the worker to spin up the new container with the appropriate
dependencies for the function, initialize it with the function code, and then finally
launch the execution. The opposite of a cold start would be a “warm start”, where
the worker can reuse a container that has already been initialized and is ready to
run the function. A solution to tackle this problem is to maintain a “warm” pool of

already-allocated containers. This principle is usually referred to as code locality [47].

Localities Resource allocation also includes I/O operations that need to be properly
considered. For example, Wang et al. [115] report that a single function in the Amazon
serverless platform can achieve on average 538Mbps network bandwidth, an order of
magnitude slower than single modern hard drives (the authors report similar results
from Google and Azure). Those performance result from bad allocations over 1/0-
bound devices, which can be reduced following the principle of session locality [47], i.e.,
taking advantage of already established user connections to workers. Another important
aspect to consider to schedule functions, as underlined by the example in Figure 3.4,
is that of data locality, which comes into play when functions need to intensively access
(connection- or payload-wise) some data storage (e.g., databases or message queues).
Intuitively, a function that needs to access some data storage and that runs on a
worker with high-latency access to that storage (e.g., due to physical distance or thin
bandwidth) is more likely to undergo heavier latencies than if run on a worker “closer” to

it. Data locality has been subject of research in neighbouring Cloud contexts [124, 117].

3.2.2 Scheduling in Apache Openwhisk

Given a function to be executed, OpenWhisk’s controller acts as the load balancer by
forwarding the execution request to one selected worker.

The load balancing policy followed by the controller aims at maximising container
reuse. When the controller needs to schedule the execution of a function, a numeric hash
h is calculated using the action name. A worker is then selected using the remainder of
the division between h and the total number of workers n. The controller checks if the
worker is overloaded. If the chosen worker is overloaded, the index is incremented by a
step-size, which is any of the co-prime numbers smaller than the amount n of available

workers.
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When no worker is available after cycling through the entire worker pool, the load
balancer randomly selects a worker from those that are considered “healthy”—able
to sustain the workload. This happens when there are workers that are healthy but
have no capacity available when the scheduling algorithm was searching for a worker.
When there are no healthy workers, the load balancer returns an error stating that no

workers are available for executing the function.
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Chapter 4

Allocation Priority Policies

4.1 Introduction

The first challenge we address in this thesis, is the problem of function-execution
scheduling optimisation [47], as discussed in Section 3.2.1, for which we propose a
methodology that enables Serverless providers to efficiently schedule functions on avail-
able computation nodes using a declarative language called Allocation Priority Policies
(APP). Developers can use APP to specify a scheduling policy for their functions that
the scheduler later uses to find the worker that, given the current status of the system,
best fits the constraints specified by the developer of a given function. To substantiate
our proposal, we extended the scheduler of OpenWhisk to use APP-defined policies in

the scheduling of Serverless functions.

Structure of the chapter In Section 4.2 we detail the APP language and present our
prototypical implementation as an extension of OpenWhisk. To validate our extension,
in Section 4.3, we present a use case combining 0T, Edge, and Cloud Computing and in
Section 4.4 we contrast an implementation of the use case using our APP-based prototype
with a naive one using three coexisting installations of the vanilla OpenWhisk stack to
achieve the same functional requirements. We present the data on the performance of
the two deployments, providing empirical evidence of the performance gains offered by

the APP-governed scheduling. We discuss future and concluding remarks in Section 4.5.
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4.2 The APP Language

At least three aspects related to function scheduling affect the performances of function
execution in Serverless platforms: code, session, and data locality. Load balancing
policies adopted by state-of-the-art Serverless platforms like Apache OpenWhisk take
advantage only of code locality, but they currently have no way to integrate also
information on other types of locality. To take advantage of other forms of locality, the
load balancer should have knowledge on the way functions access external resources,
like I/O-bound devices or databases, whose usage depends on the implementation of
functions. As a first work to tackle this issue, we aim at bridging that information gap,
presenting a language that any Serverless platform can use in its scheduling policies to
consider those factors. Our approach is conservative: with its default settings (explained
in the next section) it can capture the status of current Serverless platforms. Then,
more advanced Serverless users and platform providers can use the features offered by
our proposal to optimise the execution of functions. Moreover, optimised scheduling
policies could be the outcome of automatic heuristic/inference systems applied to the
functions to be executed. With this chapter we address the first fundamental step,
i.e., showing the feasibility of Serverless platforms instructed with customized load
balancing rules. As previously discussed, current serverless platforms, like OpenWhisk,
come equipped with hard-coded load balancing policies. In this section, we present
the Allocation Priority Policies (APP) language, intended as a language to specify
customised load balancing policies and overcome the inflexibility of the hard-coded load
balancing ones. The idea is that both developers and providers can write, besides the
functions to be executed by the platform, a policy that instructs the platform what
workers each function should be preferably executed on. Function-specific configurations

are optional and without them the system can follow a default strategy.

As an extension of the example depicted in Figure 3.4, consider some functions that
need to access a database. To reduce latency (as per data locality principle), the best
option would be to run those functions on the same pool of machines that run the
database. If that option is not valid, then running those functions on workers in the
proximity (e.g., in the same network domain) is preferable to using workers located
further away (e.g., in other networks). Below, Listing 4.1, we provide an initial APP

script that specifies the scheduling policies only for those workers belonging to the pool
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policy_tag €  Identifiers U {default} worker_label€ Identifiers n € N

app n= lag
tag = policy_tag : - block followup?
block == workers [ "x" | = worker_label ]

(strategy [ random | platform | best_first |)?
(invalidate [ capacity_used : n%
| max_concurrent_invocations : n | overload |)?

followup = followup : [ default | fail |

Figure 4.1: The APP syntax.

of machines running the database.

At the first line, we define the policy tag, which

couchdb_query: is couchdb_query. As explained below, tags are

- workers: used to link policies to functions. Then, the key-

- DB_worker1 word workers indicates a list of worker labels,

- DB_worker?2 which identify the workers in the proximity of the
strategy: random database, i.e., DB_worker1 and DB_worker2. As ex-
invalidate: plained below, labels are used to identify workers.
capacity_used: 50% Finally, we define three parameters: the strat-

L followup: fail egy used by the scheduler to choose among the

o i ] listed worker labels, the policy that invalidates
Listing 4.1: Simple APP script for

) o the selection of a worker label, and the followup
data locality optimization.

policy in case all workers are invalidated. In the
example, we select one of the two labels randomly, we invalidate their usage if the
workers corresponding to the chosen label are used at more than the 50% of their
capacity (capacity used) and, in case all workers are invalidated (followup), we let

the request for function execution fail.

The APP syntax and semantics We report the syntax of APP in Figure 4.1. The
basic entities considered in the APP language are a) scheduling policies, identified by a

policy tag identifier to which users can associate their functions—the policy-function
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association is a one-to-many relation—and b) workers, identified by a worker label—
where a label identifies a collection of computation nodes. An APP script is a YAML [18]
file specifying a sequence of policies. Given a tag, the corresponding policy includes
a list of workers blocks, possibly closed with a followup strategy. A workers block
includes three parameters: a collection of worker labels, a possible scheduling strategy,
and an invalidate condition. A followup strategy can be either a default policy or the

notification of failure.

We discuss the APP semantics, and the possible parameters, by commenting on
a more elaborate script extending the previous one, shown in Listing 4.2. The APP
script starts with the tag default, which is a special tag used to specify the policy
for non-tagged functions, or to be adopted when a tagged policy has all its members
invalidated, and the followup option is default.

In Listing 4.2, the default tag describes the default behaviour of the serverless

platform running APP. The wildcard ”*”

for the workers represent all worker labels.
The strategy selected is the platform default (e.g., in our prototype in Section 4.3 the
platform strategy corresponds to the selection algorithm described in Section 3.2.2)
and its invalidate strategy considers a worker label non-usable when its workers are

overloaded, i.e., none has enough resources to run the function.

r

default:

- workers:

n n

*

strategy: platform

invalidate: overload

couchdb_query:
- workers:
- DB_worker1
- DB_worker?
strategy: random
invalidate: capacity_used: 50%
- workers:

- near_DB_worker1

- near_DB_worker?2
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strategy: best_first
invalidate: max_concurrent_invocations: 100

followup: fail

Listing 4.2: Example of an APP script.

Besides the default tag, the couchdb_query tag is used for those functions that
access the database. The scheduler considers worker blocks in order of appearance from
top to bottom. As mentioned above, in the first block (associated to DB_worker1 and
DB_worker2) the scheduler randomly picks one of the two worker labels and considers
a label invalid when all corresponding workers reached the 50% of capacity. Here the
notion of capacity depends on the implementation (e.g., our OpenWhisk-based APP
implementation in Section 4.3 uses information on the CPU usage to determine the
load of invokers). When both worker labels are invalid, the scheduler goes to the
next workers block, with near_DB_worker1 and near_DB_worker2, chosen following a
best _first strategy—where the scheduler considers the ordering of the list of workers,
sending invocations to the first until it becomes invalid, to then pass to the next ones in
order. The invalidate strategy of the block regards the maximal number of concurrent
invocations over the labelled workers—max_concurrent_invocations, which is set to 100.
If all the worker labels are invalid, the scheduler applies the followup behaviour, which
is to fail.

Summarising, given a policy tag, the scheduler considers the corresponding workers

blocks starting from the top. A block includes three parameters:

e workers: contains a non-empty list of worker labels or the "*" wildcard to

encompass all of them;

e strategy: defines the policy of worker label selection. APP currently supports

three strategies:

— random: labels are selected in a fair random manner;
— best first: labels are selected following their order of appearance;

— platform: labels are selected following the default strategy of the serverless

platform—in our prototype (cf. Section 4.3) the platform option corre-
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sponds to the algorithm based on identifier hashing with co-prime increments

explained in Section 3.2.2.

e invalidate: specifies when to stop considering a worker label. All invalidate
options below include as preliminary condition the unreachability of the corre-
sponding workers. When all labels in a block are invalid, the next block or the

followup behaviour is used. Current invalidate options are:

— overload: the corresponding workers lack enough computational resources

to run the function;

— capacity used: the corresponding workers reached a threshold percentage
of CPU load (although not being overloaded);

— max_concurrent_invocations: the corresponding workers have reached a

threshold number of buffered concurrent invocations.

e followup: specifies the policy applied when all the blocks in a policy tag are

considered invalid. The supported followup strategies are:

— fail: stop the scheduling of the function;

— default: follow what is defined in the default tag.

4.3 APP Implementation in Apache OpenWhisk

We have implemented a serverless platform in which load balancing policies can be
customised using the APP language. This implementation? was obtained by modifying
the OpenWhisk code base. Namely, we have replaced the load balancer module in the
OpenWhisk controller, with a new one that reads an APP script, parses it, and follows

the specified load balancing policies when OpenWhisk invokers should be selected?.

IThe kind of computational resources that determine the overload option depends on the APIs
provided by a given serverless platform. For example, in our prototype in Section 4.3 we consider a
worker label overloaded when the related invokers are declared “unhealthy” by the OpenWhisk APIs,
which use memory consumption and CPU load.

2The implementation is on an open-source a fork of Apache OpenWhisk. Available at
https://github.com/giusdp/openwhisk.

3For simplicity, we chose to associate one worker label with one invoker.
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Figure 4.2: Use case architecture representation.

To test our implementation, we used the Serverless use case depicted in Figure 4.2
encompassing three Serverless domains: 7) a private cloud with a low-power edge-device
Worker at a first location, called Site 1; i) a private cloud with the Worker at Site 1
and a mid-tier server Worker at a second location, called Site 2; ) a hybrid cloud
with the two Workers at Site 1 and Site 2 and a third mid-tier server from a Public
Cloud. Site 1 and Site 2 are respectively located in Italy and Greece while the Public
Cloud is located in northern Europe.

Site 1 is the main branch of a company and it runs both a data storage of Private
Data and the loT Devices used in their local line of production. Site 1 also hosts
the scheduler of functions, called the Load Balancer. The Worker at Site 1 can
access all resources within its site. Site 2 hosts a Worker which, belonging to the
company virtual private network (VPN), can access the Private Data at Site 1. The
company also controls a Worker in a Public Cloud and a data storage with Public
Data accessible by all Workers.

In the use case, three different function deployments need to co-exist in the same
infrastructure, marked as e . ® , and @ . Function e (edge) manages the loT

Devices at Site 1 and it can only execute on the edge Worker at the same location,
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which has access to those devices. Function @) (small) is a light-weight computation
that accesses the Private Data storage at Site 1, within the company VPN. Function
@ (big) performs heavy-load queries on the Public Data storage in the Public Cloud.
As mentioned, here data locality plays an important part in determining the performance

of Serverless function execution:

e the Worker at Site 1 can execute all functions. It is the only worker that can
execute (3 and it is the worker with the fastest access to the co-located Private
Data for 9 . It can execute @ undergoing some latency due to the physical
distance with the Public Data storage;

e the Worker at Site 2 can execute functions 9 and @ , undergoing some latency

on both functions due to its distance from both data storages;

e the Worker at the Public Cloud can execute @ , enjoying the fastest access to
the related Public Data source.

4.4 Experiments and Results

We compare the differences on the architecture and performance of the use case
above as implemented using our APP-based OpenWhisk prototype against a naive

implementation using the vanilla OpenWhisk.

Specifically, we implement the use case using a Kubernetes cluster composed of a
low-power device—with an Intel Core i7-4510U CPU with 8GB of RAM—in Italy for
Site 1, a Virtual Machine—comparable to an Amazon EC2 al.large instance—from
the Okeanos Cloud (https://okeanos.grnet.gr) located in Greece for Site 2, and a
Virtual Machine—comparable to an Amazon EC2 al.large instance—from the Public

Cloud of Microsoft Azure located in Northern Europe.

Following the requirements of the use case, we define the APP deployment plan for

the use case as follows:
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Function_E:
- workers:
- worker_sitel
followup: fail

\& y

Function_S:
- workers:
- worker_site2
- worker_sitel
strategy: random

followup: fail

Function_B:
- workers:
- worker_public_cloud
- worker_site?2
- worker_sitel

strategy: best_first

followup: fail

\& Y

Commenting the code above, we have function e represented by Function_E,
where the only invoker available is the one at Site 1 (worker_sitel). Since we do
not allow other invokers to handle (@ , we set the followup value to fail. For @
we have Function_S, where the invokers available are the ones at Site 1 and Site 2
(worker_site2). We let the two invokers split evenly the load of invocations, assigning
random as routing strategy. Also here we let the invocation fail since we do not have
other invokers able to access the Private Data storage within the company VPN. Finally,
the policy for e (Funcion_B) includes all workers (hence also worker_public_cloud
besides the ones at Site 1 and Site 2) selected according to the best first strategy.

As for @ , also here we let the invocation fail since no other invokers are available.

For the APP-based deployment, we locate the Load Balancer at Site 1 registering to
it the three Workers/invokers from Site 1, Site 2 and the Public Cloud. For the naive

implementation, we use the same cluster but we install three separate but co-existing
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vanilla OpenWhisk instances. The three separate instances are needed to implement
the functional requirements of limiting the execution of function () only on the Italian
Worker, of e only on the Italian and Greek Workers, and of @ on all Workers.

To implement the databases (both Private and Public ones) we used a CouchDB
instance deployed at Site 1 and another in the Public Cloud. To simulate the access
to IoT devices at Site 1 (function e) we implemented a JavaScript function that,
queried, returns some readings after a one-second delay. We followed a similar strategy
for 9 and @ , where two JavaScript functions perform a (respectively lighter and
heavier) query for JSON documents.

Architectural Evaluation An evident problem that arises with the triple-deployment
combination is the increased consumption of computational and memory resources to
host 3 copies of all the components, most importantly the Controller and the Invoker.
A partial solution to this is to deploy separately the Kafka, Redis, and CouchDB
components used by OpenWhisk, configuring them to be used by the three different
installations simultaneously. However, we did not perform such optimisation to minimise

the differences between the two tested architectures.

Quantitative Evaluation To have statistically relevant figures to compare the two
setups (the APP-based and the vanilla one), we fired a sequence of 1000 requests for
each function in each setup. We report the results of the tests of the APP-based
implementation in Table 4.1 and those of the vanilla one in Table 4.2. In both tables,
the first column on the left reports the tested function. The three following columns
report the number of requests served by the respective Workers at Site 1, Site 2, and
in the Public Cloud. The last two columns report the time passed from sending a
request to the reception of its response: the second-to-last column reports the average
time (in ms) and the last one reports the average time (in ms) for the fastest 95
percentile of request-responses.

We comment on the results starting from e (first row from the header in both
tables). As expected, all requests for e are executed at Site 1. The slight difference in
the two averages (APP ca. 5.6% faster than vanilla) and the two fastest 95" percentile
(APP ca. 0.6% faster than vanilla) come from the heavier resource consumption of the

vanilla deployment.
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Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

(E) 1000 0 0 1096.53 1019.03

(S ) 466 534 0 149.18 90.86

(B) 0 90 910 105.18 64.62

Table 4.1: 1000 invocation for each function in the APP-based OpenWhisk deployment.

Site 1 Site 2 Public Cloud Average (ms) 95% Average (ms)

(E) 1000 0 0 1159.90 1025.52

(S ) 19 981 0 385.30 302.08

(B) 185 815 0 265.69 215.793

Table 4.2: 1000 invocations for each function in the vanilla OpenWhisk deployment.

As expected, the impact of data locality and the performance increase provided by
the data-locality-aware policies in APP become visible for @) and @ . In the case of @
, the Load Balancer of the vanilla deployment elected Site 2 as the location of the main
invoker (passing to it 98.1% of the invocations). We remind that @) accesses a Private
Data storage located at Site 1. The impact of data locality is visible on the execution
of 6 in the vanilla deployment, being 88.35% slower than the APP-based deployment
on average and 107.5% slower for the fastest 95" percentile. On the contrary, the
APP-based scheduler evenly divided the invocations between Site 1 (46.6%) and Site
2 (53.4%) with a slight preference for the latter, thanks to its greater availability of
resources. In the case of @ , the Load Balancer of the vanilla deployment elected again
Site 2 as the location of the main invoker (passing to it 81.5% of all the invocations)
and Site 1 as the second-best (passing the remaining 18.5%). Although available to
handle computations, the invoker in the Public Cloud is never used as the other two
managed to handle the load. Since @ accesses a Public Data storage located in the
Public Cloud, also in this case the effect of data locality is strikingly visible, marking a
heavy toll on the execution of @ in the vanilla deployment, which is 86.5% slower than
the APP-based deployment on average and 107.8% slower for the fastest 95" percentile.
The APP-based scheduler, following the preference on the Public Cloud, sends the
majority of invocations to the Public Cloud (91%) while the invocations that exceed
the resource limits of the Worker in the Public Cloud are routed to Site 2 (9%), as
defined by the Function_E policy.

As a concluding remark over our experiment, we note that these results do not
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prove that the vanilla implementation of OpenWhisk is generally worse (performance-
wise) than the APP-based one. Indeed, what emerged from the experiment is the
expected result that, without proper information and software infrastructure to guide
the scheduling of functions with respect to some optimisation policies, the Load Balancer
of OpenWhisk can perform a suboptimal scheduling of function executions. Hence, there
was a chance that the Load Balance of OpenWhisk could have performed some better
scheduling strategies in our experiment, however that would have been an occasional
occurrence rather than an informed decision. Contrarily, when equipped with the
proper information (as it happens with our APP-based prototype) the Load Balancer

can reach consistent results, which is the base for execution optimisation.

4.5 Conclusions

We started addressing the problem of function-execution scheduling optimisation by
proposing a methodology that provides developers with a declarative language called
APP to express scheduling policies for functions, laying the foundation for a family of
frameworks that can be used to enhance new and existing FaaS platforms. To validate
our work, we extended the scheduler of OpenWhisk to use APP-defined policies in
the scheduling of Serverless functions and empirically tested our extension on a use
case that combines IoT, Edge, and Cloud Computing, contrasting our implementation
with a naive one using the vanilla OpenWhisk stack to achieve the same functional

requirements.
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Chapter 5

Topology-aware Serverless

Scheduling

5.1 Introduction

With APP we introduced a novel way to specify customised load-balancing policies so
that developers can optimize their serverless applications by exploiting the locality of

the resources. Use-cases like the one in Figure 5.1 motivate the need for such policies.

[ Controller ] > W,

'
LWZ ------- - i

Local Network Public Cloud

Figure 5.1: Example of function-execution scheduling problem.

We have a simple serverless system composed of two workers. One worker, W,
executes in the local network and the other, WW,, is in a public cloud. Both workers
can execute functions that interact (represented by the dashed lines) with a database

db deployed in the local network. When the Controller (acting as function scheduler)
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receives a request to execute the function, it must decide on which worker to execute it.
To minimise the response time, the Controller should consider the different computa-
tional power of the workers as well as their current loads, which influence the time they
take to execute the function. Moreover, the performance of the functions that interact
with the database depends on the latter’s access latency of the node they run on: W/ is
close to the db and enjoys a faster interaction with it while W, is farther away and can
undergo heavier latencies.

With such use-cases, APP is enough to fine-tune serverless applications to improve
resource usage. However, in more complex scenarios where the system comprises of
replicated controllers and many workers distributed and isolated in different zones, the
language fails to capture the system’s complexity. For this reason we developed an

extension of APP.

A Motivating Example We further clarify the concepts of locality-bound FaaS
scheduling with a case study from our industry partners, which we use as an example
throughout the chapter. We deem the case useful to help understand our contribution
and clarify the motivation behind our work.

The case concerns a cloud-edge-continuum system to control and perform both
predictive maintenance and anomaly detection over a fleet of robots in a production line.
The system runs three kinds of computational tasks: i) predictions of critical events,
performed by analysing data produced by the robots, ii) non-critical predictions and
generic control activities, and iii) machine learning tasks. Tasks 1) follow a closed-control
loop between the fleet that generates data and issues these tasks and the workers that
run them and can act on the fleet. Since tasks i) can avert potential risks, they must
execute with the lowest latency and their control signals must reach the fleet urgently.
The users of the system launch the other kinds of tasks, which have no time-constrains.
Tasks iii) have resource-heavy requirements. We depict the solution that we have
designed for the deployment of the system in Figure 5.2. We consider three kinds
of functions, one for each kind of tasks: critical functions (1), generic functions 0 ,
and machine learning functions ¢ 3. To guarantee low-latency and the possibility to
immediately act on the robots, we execute critical functions (t) on edge devices (workers
Wi, ...,W; in Figure 5.2) directly connected to the robots. Since machine-learning

algorithms require considerable resources, which the company prefers to provision
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Figure 5.2: Representation of the case study.

on-demand, we execute the machine-learning functions €3 on a public cloud, outside
the company’s perimeter (Wjq,...,W; in Figure 5.2). The generic functions O do
not have specific, resource-heavy requirements, but they might need to access the
database db in the local network. Hence, we schedule these preferably on the local
cluster (W;1,...,Wj, in Figure 5.2) and use on-demand public-cloud workers when the
local ones are at full capacity.

For performance and reliability, our solution considers two function-scheduling
controllers for the internal workers, i.e., the controllers LocalCtl; and LocalCtly, and one
for cloud workers, i.e., the controller CloudCtl. One local controller, namely LocalCtl;,
has a dedicated low-latency connection with the edge devices able to act on the fleet.

Finally, a Gateway acts as load balancer among the controllers. However, to follow
the requirements of the company, instead of adopting a generic round-robin policy, we
need to instruct the Gateway to forward critical functions () to LocalCtl;, the generic
functions O to one between LocalCtl; and LocalCtly, and the cloud functions €3 to

CloudCtl (or to any other controller when the latter is not available).

The APP Extension The case above presents a scenario where we need to deploy the
serverless platform over at least two zones (local network and public cloud) and where
the function-execution scheduling policy depends on a topology of different clusters

(edge-devices, local cluster, and cloud cluster). The scheduling policies influence the
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behaviour of both the gateway and the controllers, which need to know the current
status of the workers (e.g., to execute generic functions in the cloud when the local
cluster is overloaded). One can obtain a deployment of the case by modifying the
source code of all the involved components and by hard-coding their desired behaviour.
However, this solution requires a deep knowledge of the internals of the components
and is fragile and difficult to maintain.

We propose an approach based on a new declarative language, called tAPP (Topology-
aware Allocation Priority Policies), used to write configuration files describing topology-
aware function-execution scheduling policies. In this way, following the Infrastructure-as-
Code philosophy, users (typically DevOps) can keep all relevant scheduling information
in a single repository (in one or more tAPP files) which they can version, change, and

run without incurring downtimes due to system restarts to load new configurations.

Structure of the chapter We first introduce the tAPP language with an example
in Section 5.2 and detail its syntax in Section 5.3. We implement support for tAPP in
OpenWhisk, which allows us to evaluate the feasibility of topology-aware scheduling
policies, presented in Section 5.4. We show that our prototype can capture typical
functional scheduling requirements in cloud-edge deployments that cannot be supported
by standard deployments of vanilla OpenWhisk. We detail the impact of tAPP on
the locality-bound scenario described in our motivating example in Section 5.4.1. In
Section 5.4.2, we analyse the overhead of the tAPP-based extension of OpenWhisk w.r.t.
the vanilla version through test cases drawn from ServerlessBench [128], a benchmark
suite for serverless platforms. In Section 5.5 we draw conclusions discussing future

work.

5.2 tAPP, by example

The Topology-aware Allocation Priority Policy (tAPP) language is a declarative language
able to specify customised load-balancing policies and overcome the inflexibility of the
hard-coded load-balancing ones. The idea is that tAPP can support developers and
providers in optimising the execution of serverless functions. tAPP is tailored to adapt
to the different types of information on the serverless infrastructure that providers

share with developers. For example, in edge deployments (where it is important to
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know on which machine functions run), developers know which nodes are available and
their position; in the Cloud, developers think in terms of regions (e.g., west/east US,
Europe) and zones (Los Angeles, New York, Paris areas), rather than single nodes.
As exemplified in Section 5.1, tAPP policies can scale according to these needs and
adapt to cloud-edge-continuum scenarios, where policies can span single nodes, unbound
collections of these (e.g., defined by some common trait), and topological zones. tAPP
can also work in the absence of information provided to developers—without function-
specific configurations, tAPP-based platforms follow a default strategy, like the other,
hardwired alternatives.

As an extension of the example depicted in Figure 5.1, consider some functions that
need to access a database. To reduce latency (as per data locality principle), the best
option would be to run those functions on the same pool of machines that run the
database. If that option is not valid, then running those functions on workers in the
proximity (e.g., in the same network domain) is preferable than using workers located
further away (e.g., in other networks).

An initial tAPP script that specifies the scheduling policies only for those workers
belonging to the pool of machines running the database can be the same as the original
APP script showed in Listing 4.1. We can define a policy tag, associate some workers
and optionally specify a strategy, an invalidate condition and the followup rule.
Essentially, tAPP can capture the same policies as APP at its core, with the addition of

new constructs to express potential topological constraints.

5.2.1 The tAPP Approach

A tag identifies a policy (e.g., we can use a tag “critical” to identify the scheduling
behaviour of the critical () functions of our case study, cf. Section 5.1) and it marks
all those functions that shall follow the same scheduling behaviour (e.g., marking as
“critical” any function that falls into that category). Topologies are part of policies and
come in two facets. Physical topologies relate to zones, which can represent availability
zones in public clouds and plants in multi-plant industrial settings. Logical topologies
instead represent partitions of workers. The logical layer expresses the constraints of
the user and identifies the pool of workers which can execute a given function (e.g., for

performance). The smallest logical topology is the singleton, i.e., a worker, which we
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identify with a distinct label (e.g., W; in Figure 5.2). In general, policies can target
lists of singletons as well as aggregate multiple workers in different sets. The interplay
between the two topological layers determines which workers a controller can use to
schedule a function. For example, we can capture the scheduling behaviour of the
critical functions of our case study in this way: 1) we assign LocalCtl;, LocalCtly, and
Wi,...,Wy to the same zone, 2) we configure said workers to only accept requests from
co-located controllers (this, e.g., excludes access to CloudCtl), and 3) we set the policy
of the critical functions to only use the workers tagged with the edge label, #edge
in Figure 5.2. Besides expressing topological constraints, policies can include other
directions such as the strategy followed by the controller to choose a worker within
the pool of the available ones (e.g., to balance the load evenly among them) and when

workers are ineligible (e.g., due to their resource quotas).

5.3 The tAPP Language

policy_tage Identifiers U {default} label€ Identifiers n €N
app i= - tag
tag = policy_tag : - controller? workers strategy? invalidate? strategy?  followup?
controller = controller : label ( topology tolerance : (all — same —none ) )?
workers = workers: - wrk : label invalidate?
| workers: - set : label? strategy? inwvalidate?
strategy := strategy : ( random | platform | best_first )
invalidate = 1invalidate : ( capacity_used n% | max_concurrent_invocations n | overload )
followup = followup : ( default | fail )

Figure 5.3: The syntax of tAPP (the extensions from APP are highlighted ).

We report the syntax of tAPP in Figure 5.3.

tAPP scripts are YAML [18] files. The basic entities considered in the language are
a) scheduling policies, defined by a policy tag identifier to which users can associate their
functions—the policy-function association is a one-to-many relation—and b) workers,
identified by a worker label—where a label identifies a collection of computation nodes.
All identifiers are strings formed with the accepted character set as defined in [18].

Given a tag, the corresponding policy includes a list of blocks, possibly closed

with strategy and followup options. A block includes four parameters: an optional
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controller selector, a collection of workers, a possible scheduling strategy, and an
invalidate condition. The outer strategy defines the policy we must follow to select
among the blocks of the tag, while the inner strategy defines how to select workers
from the items specified within a chosen workers block. The controller defines
the identifier of a specific controller we want the gateway to redirect the invocation
request to. When used, it is possible to define a topology tolerance option to further
refine how tAPP handles failures (of controllers). The collection of workers can be
either a list of labels pointing to specific workers (wrk), or a worker set. In lists, the
user can specify the invalidate condition of each single worker, while in sets, the
invalidate condition applies to all the workers included in the set. When users specify
an invalidate condition at block level, this is directly applied to all workers items
(wrk and set) that do not define one. In sets the user can also specify a strategy
followed to choose workers within the set. Finally, the followup value defines the
behaviour to take in case no specified controller or worker in a tag is available to handle
the invocation request.

We discuss the tAPP semantics, and the possible parameters, by commenting on
a more elaborate script extending the previous one, shown in Listing 5.1. The tAPP
script starts with the tag default, which is a special tag used to specify the policy
for non-tagged functions, or to be adopted when a tagged policy has all its members
invalidated, and the followup option is default.

In Listing 5.1, the default tag describes the default behaviour of the serverless
platform running tAPP. In this case we use a workers set to select workers, with no
value specified for set which represents all worker labels. The strategy selected is the
platform default. In our prototype in Section 5.3.1 the platform strategy corresponds
to a selection algorithm, discussed in Section 3.2.2, which mediates load balancing
and code locality by associating a function to a numeric hash and a step-size. The
invalidate strategy considers a worker non-usable when it is overloaded, i.e., it does

not have enough resources to run the function.

r

- default:
- workers:

- set:

strategy: platform
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invalidate: overload

- couchdb_query:

- workers:
- wrk: DB_worker1
- wrk: DB_worker?2
strategy: random
invalidate: capacity_used 50%

- workers:
- wrk :near_DB_worker1
- wrk :near_DB_worker?2
strategy: best_first
invalidate: max_concurrent_invocations 100

followup: fail

Listing 5.1: Example of a tAPP script.

Besides the default tag, the couchdb_query tag is used for those functions that
access the database. The scheduler considers worker blocks in order of appearance
from top to bottom. As mentioned above, in the first block (associated to DB_worker1
and DB_worker2) the scheduler randomly picks one of the two worker labels and
considers the corresponding worker invalid when it reaches the 50% of capacity. Here
the notion of capacity depends on the implementation (e.g., our OpenWhisk-based tAPP
implementation uses information on the CPU usage to determine the load of invokers).
When both worker labels are invalid, the scheduler goes to the next workers block,
with near_DB_worker1 and near_DB_worker2, chosen following a best first strategy—
where the scheduler considers the ordering of the list of workers, sending invocations to
the first until it becomes invalid, to then pass to the next ones in order. The invalidate
strategy of the block (applied to the single wrk) regards the maximal number of
concurrent invocations over the labelled worker—max concurrent _invocations, which
is set to 100. If all the worker labels are invalid, the scheduler applies the followup
behaviour, which is to fail.

Users can define subsets of workers by specifying a label associated with the workers,

e.g., local selects only those workers associated to the local label.
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The scheduling on worker-sets follows the same logic of block-level worker selection:
it exhausts all workers before deeming the item invalid. Since worker-set selection/in-
validation policies are distinct from block-level ones, we let users define the strategy
and invalidate policies to select the worker in the set. For example, we can pair the

above selection with a strategy and an invalidate options, e.g.,

- workers:
- set: local
strategy: random

invalidate: capacity_used 50%

S

which tells the scheduler to adopt the random selection strategy and adopt the ca-
pacity used invalidation policy when selecting the workers in the local set. When
worker-sets omit the definition of the selection strategy we consider the default one.
When the invalidation option is omitted, we either use the one of the enclosing block
or, if the latter is missing too, the default one.

Summarising, given a policy tag, the scheduler follows the policy defined in the

strategy option to select the corresponding blocks. A block includes three parameters:

e workers: which either contains a non-empty list of worker (wrk) labels, each
paired with an optional invalidation condition, or a worker-set label (possibly
blank, to select all workers) to range over sets of workers; workers sets optionally
define the strategy and invalidate options to select workers within the set

and declare them invalid;

e strategy: defines the policy of item selection at the levels of policy_tag, workers

block, and workers sets. APP currently supports three strategies:

— random: selects items in a fair random manner;
— best first: selects items following their order of appearance;

— platform: selects items following the default strategy of the serverless

platform—in our prototype, this corresponds to a co-prime-based selection.

e invalidate: specifies when a worker (label) cannot host the execution of a func-

tion. All invalidate options include, as preliminary condition, the unreachability
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of a worker. When all labels in a block are invalid, we follow the defined strategy
to select the next block one until we either find a valid worker or we exhaust all
blocks. In the latter case, we apply the followup behaviour. Current invalidate

options are:

— overload: the worker lack enough computational resources to run the

function;!
— capacity used: the worker reached a threshold percentage of CPU load;

— max_concurrent_invocations: the worker have reached a threshold number

of buffered concurrent invocations.

e followup: specifies the policy applied when all the blocks in a policy tag are

considered invalid. The supported follow up strategies are:

— fail: drop the scheduling of the function;

— default: apply the default tag.

Since the default block is the only possible “backup” tag used when all workers
of a custom tag cannot execute a function (because they are all invalid), the followup
value of the default tag is always set to fail.

Besides the above elements, to further detail topological constraints of function
execution scheduling, we have the controller. This is an optional, block-level parameter
that identifies which of the possible, available controllers in the current deployment
we want to target to execute the scheduling policy of the current tag. Similarly to
workers, we identify controllers with a label.

As mentioned above, a controller clause can have topology tolerance as optional
parameter. When deploying controllers and workers, users can label them with the

topological zone they belong in%2. Hence, when the designated controller is unavailable,

IThe kind of computational resources that determine the overload option depends on the APIs
provided by a given serverless platform. For example, in our prototype in Section 5.3.1 we consider a
worker label overloaded when the related invokers are declared “unhealthy” by the OpenWhisk APIs,
which use memory consumption and CPU load.

2Zone labels of controllers and workers are not used in tAPP scripts, which only specify co-location
constraints, i.e., requests to consider workers in the same zone of a given controller. Zone labels are
used by the infrastructure to implement the tAPP constraints.

o4 CHAPTER 5. TOPOLOGY-AWARE SERVERLESS SCHEDULING



5.3. THE TAPP LANGUAGE

tAPP can use this topological information to try to satisfy the scheduling request by
forwarding it to some alternative controller.

The topology tolerance parameter specifies what workers an alternative controller
can use. Specifically, all is the default and most permissive option and imposes no
restriction on the topology zone of workers; same constrains the function to run on
workers in the same zone of the faulty controller (e.g., for data locality); none forbids the
forward to other controllers. As an example, we could take advantage of the topology

zones and rewrite the previous tAPP script from Listing 5.1 for the couchdb_query tag.

e.g.,

- couchdb_query:
- controller: DBZoneCtl
workers:
- set: local
strategy: random
topology_tolerance: same
followup: default

NS

this way it is guaranteed that the function will be executed always on the workers in
the same zone of the database. Lastly, tAPP lets users express a selection strategy
for policy blocks. This is represented by the optional strategy fragment of the tag
rule. By default, when we omit to define a strategy policy for blocks, tAPP allocates
functions following the blocks from top to bottom—i.e., best _first is the default policy.
Here, for example, setting the strategy to random captures the simple load-balancing

strategy of uniformly distributing requests among the available controllers.

5.3.1 tAPP in OpenWhisk

We modified OpenWhisk to support tAPP-based scheduling. In particular, to manage
the deployment of components, we pair OpenWhisk with the popular and widely-
supported container orchestrator Kubernetes.

The implementation entailed the creation and inclusion in the existing architecture
of OpenWhisk of new components—e.g., a watcher service, which informs the gateway

and the controllers on the current status of the nodes of the platform—and the extension
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Figure 5.4: Architectural view of our OpenWhisk extension. We highlight in light blue

the existing components of OpenWhisk we modified and in yellow the new ones we
introduced.

of existing ones with new functionalities—e.g., to capture topological information at
the level of workers and controllers, to enable live-reloading of tAPP policies, and let
controllers and gateways follow tAPP policies depending on topological zones.

Figure 5.4 depicts the architecture of our OpenWhisk extension, where we reuse the

Workers and the Kafka components, we modify Nginz and the Controllers (
in the picture), and we introduce two new services: the Watcher and the NES Server

(in the highlighted area of Figure 5.4).

The modifications mainly concert letting Nginx and Controllers retrieve and interpret
both tAPP scripts and data on the status of nodes, to forward requests to the selected
controllers and workers. Concerning the new services, the Watcher monitors the topology
of the Kubernetes cluster and collects its current status into the NFS Server, which

provides access to tAPP scripts and the collected data to the other components.

Topology-based Worker Distribution

To associate labels with pods, we exploit the topology labels provided by Kubernetes.
These labels are names assigned to nodes and they are often used to orient pod allocation.
Labels offer an intuitive way to describe the structure of the cluster, by annotating
their zones and attributes. In Figure 5.4 we represent labels as boxes on the side of the

controllers and workers.
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Since OpenWhisk does not have a notion of topology, all controllers can schedule
all functions on any available worker. Our extension unlocks a new design space that
administrators can use to fine-tune how controllers access workers, based on their
topology. At deployment, DevOps define the access policy used by all controllers. Our

investigation led us to identify four topological-deployment access policies:

e the default policy is the original one of OpenWhisk, where controllers have access
to a fraction of all workers’ resources. This policy has two drawbacks. First,
it tends to overload workers, since controllers race to access workers without
knowing how the other controllers are using them. Second, it gives way to a
form of resource grabbing, since controllers can access workers outside their zone,

effectively taking resources away from “local” controllers;

e the min_memory policy is a refinement of the default policy and it mitigates
overload and resource-grabbing by assigning only a minimal fraction of the worker’
resources to “foreign” controllers. For example, in OpenWhisk the resources
regard the available memory for one invocation (in OpenWhisk, 256MB). When
workers have no controller in their topological zone, or no topological zone at
all, we follow the default policy. Also this policy has a drawback: it can lead to
scenarios where smaller zones quickly become saturated and unable to handle

requests;

e the usolated policy lets controllers access only co-located workers. This reduces

overloading and resource grabbing but accentuates small-zone saturation effects;

e the shared policy allows controllers to access primarily local workers and let them
access foreign ones after having exhausted the local ones. This policy mediates
between partitioning resources and the efficient usage of the available ones,

although it suffers a stronger effect of resource-grabbing from remote controllers.

In case no tAPP script is available, controllers resort to their original, hard-coded
logic (explained in Section 3.2.2) but still prioritise scheduling functions on co-located

workers.
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5.3.2 Deploying tAPP-based OpenWhisk

The standard way to deploy OpenWhisk is by using the Docker images available for
each component of the architecture—this lets developers choose the configuration that
suits their deployment scenario, spanning single-machine deployments, where all the
components run on the same node, and clustered (e.g., via Kubernetes) deployments,
e.g., assigning a different node to each component. Since we modified the Controller
component of the architecture (see Section 5.3.1), we built a new, dedicated Docker
image and published it on DockerHub?, so that it is generally available to be used in
place of the vanilla controller. Both for reproducibility and reliability, we automate all
the levels of the deployment steps: the provisioning of the virtual machines (VMs) and
both the deployment of Kubernetes and of (our extended version of) OpenWhisk. We
programmatically provision VMs using the Google Cloud Platform via a Terraform?*
script. Since this script is tied to a specific topology, we provide more information on it

when describing our experiments in Section 5.4.1.

We wrote Ansible® scripts instead to automatically deploy the Kubernetes cluster.
Given the VMs where one wants to deploy Kubernetes on and their designated roles
(workers, etc.), our Ansible scripts configure each VM by installing the dependencies
required for Kubernetes, deploy the control-plane on the designated master VM with
the kubeadm tool, and make the other VMs join the cluster as worker nodes (again
with the kubeadm tool).

Once the Kubernetes cluster is up and running, we use the Helm® package from
openwhisk-deploy-kube [83], that we forked to implement a tAPP-specific package
for the installation with our custom controller image. This automatically deploys
every component on a Kubernetes cluster and allows the user to parameterize the
configuration of the deployment; specifically, we configure the deployment to select our

tAPP-based controller image.

All Terraform and Ansible scripts are publicly available at https://github.com/
giusdp/ow-gcp.

3https://hub.docker.com/r/mattrent/ow-controller.
*https://www.terraform.io/.
Shttps://www.ansible.com/.

Shttps://helm.sh/.
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5.4. CASE STUDY

5.4 Case Study

As a final illustration of the tAPP language, we show and comment on the salient parts
of a tAPP script—reported in Figure 5.5—that captures the scheduling semantics of

the case in Figure 5.2.

1 - critical:
2 - controller: LocalCtl_1
3 workers:
4 - set: edge
5 strategy: random
6 followup: fail
7 - machine_learning:
8 - controller: CloudCtl
9 workers:
10 - set: cloud
11 topology_tolerance: same
12 followup: default
S J
p
13 - default:
14 - controller: LocalCtl_1
15 workers:
16 - set: internal
17 strategy: random
18 - set: cloud
19 strategy: random
20 strategy: best_first
21 - controller: LocalCtl_2
22 workers: # same as above
23 strategy: best_first
24 strategy: random
. J

Figure 5.5: A tAPP script that implements the scheduling semantics of the case study
in Section 5.1 (Figure 5.2).

In the script, at lines 1-6, we define the tag associated to critical (D) functions:
only LocalCtl_1 can manage their scheduling, they can only execute on #edge workers
(Wh,...,W; in Figure 5.2), and no other policy can manage them (followup: fail). At
line 5 we specify to evenly distribute the load among all edge workers with strategy:

random.
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At lines 7-12, we find the tag of the machine_learning (¢33) functions. We define
CloudCtl as the controller and consider all #cloud workers (Wjy1,...,W; in Figure 5.2) as
executors. Notice that at line 12 we specify to use the default policy as the followup,
in case of failure. The interaction between the followup and the topology_tolerance
(line 11) parameters makes for an interesting case. Since the topology tolerance is
(the) same (zone of the controller CloudCtl), we allow other controllers to manage the
scheduling of the function (in the default tag) but we continue to restrict the execution
of machine-learning functions only to workers within the same zone of CloudCtl, which,
here, coincide with #cloud-tagged workers.

Lines 13-24 define the special,default policy tag, which is the one used with
tag-less functions (here, our generic ones O ) and with failing tags targeting it as their
followup (as seen above, line 12). In particular, the instruction at line 24 indicates
that the default policy shall randomly distribute the load on both worker blocks (lines
14-20 and 21-23), respectively controlled by LocalCtl_1 and LocalCtl_2. Since the two
blocks at lines 1420 and 21-23 are the same, besides the controller parameter, we
focus on the first one. There, we indicate two sets of valid workers: the #internal ones
(line 16, Wiy 1,...,W) in Figure 5.2) and the #cloud ones (as seen above, for lines 9-10).
The instruction at line 20 (strategy: best first) indicates a precedence: first we try
to run functions on the #local cluster and, in case we fail to find valid workers, we
offload on the #cloud workers—in both cases, we distribute the load randomly (lines
17 and 19).

5.4.1 Case Study Implementation

We now evaluate our contribution by presenting a cloud-edge-continuum case study,
taken from the literature, to both demonstrate how one can use tAPP to meet topology-
aware functional requirements and how existing serverless solutions—where no topo-
logical information is used by the function scheduler, like vanilla OpenWhisk—fail in
complying with those requirements.

The case study we consider is a simplification of the architecture described in
Section 5.1, which we depict in Figure 5.6. It is a serverless cloud-edge deployment of
the system described in [48, 49], consisting of a power transformers’ anomaly detection

application. Each power transformer to be monitored is equipped with six accelerometers
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Figure 5.6: Use case architecture: the services were separated in two zones, named Edge
and Cloud, and connected using two different networks, a local network corresponding
to the Fdge zone and a virtual private network used for the OpenWhisk cloud-edge
deployment.

that produce data at a frequency of 10kHz. At every minute, the data produced by
the six sensors are collected for one second. For each set of data produced by one
sensor, two features are extracted: FCA (based on Frequency Complexity Analysis) and
DET (based on Vibration Stationarity Analysis). These features are then combined in
two vectors (one with the six FCA features and one with the six DET features) and
classified following machine learning techniques.

In the case study, we assume that the sensors communicate their data through an
IoT-specific protocol to a message broker accessible only from machines within the same
local network, named FEdge. This prevents public access to the broker to protect it, e.g.,
from denial of service attacks. While data gathering happens locally, the elaboration of
the data requires powerful resources. For this reason, when local resources are available,
we run these analyses locally, otherwise, we run them in the Cloud.

In our serverless deployment of the use case, we have assumed that the sensors
communicate their data via a standard IoT protocol, namely MQTT [75], and that the

workflow is implemented as a pipeline of three separate functions:

e data-collection, which contacts an MQTT broker and subscribes to six topics
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- default:
- workers:
- set:
- MQTT:
- controller: LocalCtl
workers:

- set: edge
topology_tolerance: none
followup: fail

\. J
>
- DB:
- workers:
- wrk: W_2

invalidate: capacity_used 50%
- wrk: W_1
strategy: best-first

- Cloud:
- controller: CloudCtl
workers:

- set: cloud
topology_tolerance: none
followup: fail

\

Figure 5.7: Script used in the tAPP-based use case deployments.

(one for each sensor), receives the corresponding data and stores it in a local

database

e feature-extraction, which queries the database for the collected data and

extracts relevant features;

e feature-analysis, which receives the extracted features and performs the classifi-

cation task.

To perform the evaluation, we deploy the platform and services in two different
zones, as represented in Figure 5.6: a cloud zone containing the Kubernetes master
node, one OpenWhisk controller and one worker, and an edge zone containing the

MQTT broker, the database, one OpenWhisk controller and another worker. Functions
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can access the MQTT broker only from the edge zone, while they can access the
database from the entire cluster, and accordingly, from both workers.

We use a total of 6 separate VMs. Specifically, we use 3 e2-medium instances (2
vCPUs, 4GB of RAM) on Google Cloud Platform, located in the Belgian data centre
(europe-west1-b) for the cloud zone. One of these VMs acts as the Kubernetes master
node and the other 2 as the cloud Controller and the cloud worker. The other 3 VMs
for the edge zone are hosted on Digital Ocean in the Frankfurt data centre. Specifically,
one edge VM hosts the edge Controller, one the edge worker, and one both the database
and the MQTT broker. All VMs sport 2 vCPUs and 4GB of RAM each. We connect

the VMs using two separate networks:

e avirtual private network, containing the entire Kubernetes cluster (i.e., Kubernetes
master node, cloud and edge Controllers, cloud and edge workers) and the

database;

e a local network, containing the entire edge zone (i.e., edge worker, edge Controller,
MQTT broker and database).

We simulate the sensors via a Python script running on the edge VM hosting the
MQTT broker. To mimic the real system that inspired our experiments, we kept
the workflow frequency at one invocation per minute and the push frequency of the
sensors at 10kHz (i.e., ten thousand tuples pushed per second, per sensor). Since the
influence on the experiment of the specific machine learning model used for the analysis
is immaterial, we implement these steps as functions that receive/gather the data from
the database, perform a heavy workload (matrix multiplications), and then generate a
predetermined response.

Our first experiment is about the deployment of the case study by using vanilla
OpenWhisk. Repeating the experiment 10 times we observed that randomly the system
would be deployed in a way that the invocation would either work as intended or fail
every invocation of the data-collection function, invalidating the entire pipeline. The
reason for this behaviour is that OpenWhisk randomly assigns identifiers to workers
and use them to make scheduling decisions (cf. the platform strategy, Section 5.3). If
the algorithm marks the worker that cannot reach the MQTT broker as the one where
to send data-collection, this function will consistently fail to connect to the MQTT

broker.
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As shown in Figure 5.7, we overcome this limitation with tAPP by specifying the

appropriate function allocations:

e we tag data-collection (()) with MQTT, so that the LocalCtl controller decides
their scheduling, which means it allocates the functions only in the edge zone
and on workers located in the same network as the MQTT broker. By setting
the topology tolerance to none we forbid forwarding to the other controllers and

ensure this function only runs on the edge worker;

e we tag feature-extraction ({7) with DB. In this case, we do not define a
controller, but we specify a list of workers so that the controller always picks
the worker in the edge zone first. For this function, we specify a priority among
the workers since they can all reach the database, preferring to use the edge

worker—until it exceeds a capacity of 50%—since it is the closest to the db.

e we tag feature-analysis (¢3) with Cloud. Similarly to the data-collection
function, we specify a specific controller, CloudCtl, and a tolerance of none to use
the cloud zone exclusively. In this way, we simulate a situation where machine
learning tasks would be moved away from the edge machines, which usually have

fewer resources or stricter requirements.

Experimental Data We recorded the performance of the system using the vanilla
and tAPP-based OpenWhisk variants. The starting version for both tAPP-based
OpenWhisk and the vanilla OpenWhisk in the experiments originate from commit
aa7e6e?2 of the official Apache OpenWhisk repository.” For the vanilla version, we add
a logging mechanism to record the scheduling times for the invocations.

We repeated the deployments of both versions of the platform 10 times. Once
deployed, we tested the use case by performing 100 sequential invocations of the pipeline
with an interval of 1 minute between each invocation as described in the use case, and
recording the latencies of the function invocations, i.e., the time passed between a
request to a function and a response (successful or failing), and the scheduling time, i.e.,
the time the scheduler takes to pick a worker for the function invocation. We performed

these test runs with Locust®, a load testing tool.

“github.com/apache/openwhisk/commit/aa7e6e2af196ac017ae4b9ea36656bec868a9931
8https://locust.io/
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We observed that vanilla OpenWhisk picks the cloud worker as the main worker for
the data-collection function a total of 8 out of 10 times.® In these cases, the pipeline
fails to connect to the MQTT broker and the data-collection stalls until the the
timeout mechanism is triggered after 60 seconds. The other 2 functions are not invoked
as the function pipeline stops at its first step. The tAPP-based deployment has instead
a success rate of the pipeline invocation of 100%, with the data-collection function

being always allocated to the edge worker, resulting in consistent performance.
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Figure 5.8: Latencies in tAPP-based OpenWhisk (left) and vanilla OpenWhisk (right).

Figure 5.8 shows the violin plots related to the response time of the 3 functions in all
the 10 tAPP-based OpenWhisk deployments and the 2 functioning vanilla OpenWhisk
deployments. The response times cluster around 2000 ms for data-collection, less than
1000 ms for feature-extraction, and between 500 and 1000 ms for feature-analysis
for both the tAPP and vanilla OpenWhisk. In both scenarios, there are outliers,

9We remark that, while we were expecting a failure in 50% of the cases, the chosen worker from the
vanilla scheduler was almost always the cloud worker. It is beyond the scope of this thesis to ascertain
if this was due to a statistical anomaly or to OpenWhisk’s internal decisions (e.g., decisions based on a
hash from the namespace and the function name) that favour particular deployment choices.
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representing the high response times caused by cold starts when the functions are first

invoked.

For completeness, we report in Table 5.1 the aggregated mean, median, tail latency
(i.e., 99 latency percentile), and standard deviation of the tAPP-based and the 2
functioning vanilla OpenWhisk deployments—for compactness, we use the icons (),
O , €23 to represent resp. the data-collection, feature-extraction, and feature-analysis
functions. As can be seen, in case the deployment of vanilla OpenWhisk did allow the

scheduling of the data-collection function, the response times were similar.

tAPP-based Vanilla
Function | Mean | Median | Tail | Std. Dev. | Mean | Median | Tail | Std. Dev.
@ 2272 2231 | 2543 345 | 2148 2114 | 2522 361
O 652 629 | 981 91 749 727 | 1097 141
- 729 716 | 830 113 707 691 | 975 111

Table 5.1: Latency (ms) of the tAPP-based and vanilla OpenWhisk deployments.

Finally, Table 5.2 reports the mean, median, tail, and standard deviation of the
scheduling time of the tAPP-based and vanilla deployments, i.e., the time it takes the
controller to schedule a function from when the function invocation is received to when
the scheduling logic is executed and a worker is chosen. From the results, we can
conclude that the performance of vanilla OpenWhisk and tAPP are comparable—the

average scheduling time is below 2 ms for both the tAPP and vanilla OpenWhisk

deployments.
Function tAPP-based Vanilla
Mean | Median | Tail | Std. Dev. | Mean | Median | Tail | Std. Dev.
0 1.42 1.29 | 2.60 0.57 | 1.78 1.54 | 3.75 1.22
O 1.62 1.43 | 4.23 0.93 2.0 1.74 | 3.82 1.20
- 1.68 1.68 | 2.85 064 | 1.95 1.73 | 3.82 1.02

Table 5.2: Scheduling time (ms) of the tAPP-based and vanilla OpenWhisk deployments.
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5.4.2 Overhead Analysis

We investigate the performance of our tAPP extension looking at the overhead it exerts
w.r.t. vanilla OpenWhisk. To this aim, we run a set of experiments using a benchmark
suite for serverless platforms, called ServerlessBench [128]. Running the tests, we
measure both the scheduling time (the time taken to pick on which worker to allocate

a function) and the request-reply latency of functions.

ServerlessBench consists of 12 test cases exploring several metrics of serverless
computing, like communication efficiency and startup latency (cold starts). Of these
12 test cases, 6 apply to OpenWhisk: 3-6, 9, and 10. Of these, case 4 consists of 4
subtests, each with different example applications requiring different resources (i.e.,
databases, Alexa devices). Due to these special requirements, we exclude case 4 from
our analysis and focus on the remaining 5.

We run cases on both vanilla OpenWhisk and tAPP-based OpenWhisk deployments.
For the tAPP variant, we use a simple tAPP script with default settings that make the
tAPP variant behave like vanilla OpenWhisk. In this way, we perform a same-settings
comparison of the two versions of the platform. We run each case 5 times to obtain

consistent data.

Case 3 This case focuses on function composition, obtained by invoking a long
pipeline of functions. The functions in the pipeline are instances of the same one,
written in JavaScript, which increments by one the input value and returns it. We
create a “sequence” (the OpenWhisk built-in pipeline construct) with 50 of these
functions so that the platform invokes them in sequence, passing the output of one
function as the input of the next one. We invoke the pipeline 20 times to have a total
of 1000 invocations in a single test run. We report the latencies and scheduling times in
Figure 5.9. From the results, the time required to pick a worker is essentially the same
for both versions of OpenWhisk. Similarly, the total latency of the invocations—each
spanning the entire sequence and corresponding to the time required to execute all the
functions in the pipeline—is comparable, with the majority falling between the 17 to
24 seconds range. In particular, vanilla OpenWhisk shows a higher fluctuation in the
total latencies with a higher standard deviation of 2435.11 ms (and mean of 20096.86

ms), while tAPP had a more stable performance (standard deviation of 1139.1 ms and
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mean of 18901.26 ms).
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Figure 5.9: Test Case 3 latencies (left) and scheduling time (right).

Case 5 This case focuses on data transfer costs, using a sequence of 2 functions where

a file of 32KB is passed to the first function, which passes it to the second one. We

invoke the sequence 500 times to have a total of 1000 invocations in a single test run,

as in the previous case. We show the latencies and scheduling times in Figure 5.10.

Consistently with the observations of case 3, we have negligible differences in scheduling

times between the two platforms, and the total latencies are stable between 500 ms

and 2000 ms for both platforms, with some outliers reaching 4000 ms due to cold

starts. Regarding invocation latency, vanilla OpenWhisk has a slightly higher standard
deviation of 357.27 ms and a mean of 967.55 ms, while tAPP has a standard deviation
of 186.67 ms and a mean of 855.82 ms.
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Figure 5.10: Test Case 5 latencies (left) and scheduling time (right).

Both cases 6 and 9 focus on startup latency, tested by invoking functions while

inducing cold starts.
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Case 6 In case 6, we invoke a Java function that uses a custom Java container runtime
for OpenWhisk, which incurs long initialisation times. To enforce cold starts, one must
either invoke the function after 10 minutes since the last invocation—OpenWhisk keeps
a function’s container alive for 10 minutes since the last call to reduce cold starts—or
manually stop the function container on the worker. To avoid interfering with the
platform’s internal dynamics, we preferred the first option and, to keep the test times
reasonable, we opted to perform 10 invocations for each test run. We present the
latencies and scheduling times in Figure 5.11. The results are in line with the previous
test cases, with negligible differences in scheduling times between the two platforms.
The total latencies are stable between 2000 ms and 4000 ms with a mean of 2943.87 ms
for tAPP OpenWhisk and a standard deviation of 476.39 ms, and a mean of 3494.07
ms and a standard deviation of 672.62 ms for vanilla OpenWhisk.

Total Latency Scheduling Time

100% B 5 100% N 5

©

g P
80% 53 80% j
60% ﬁ 60% [gf
40% 40%

J :

20% q’;? o  tAPP 20% p; G:: o tAPP
é? Vanilla & ®° Vanilla
0% 0% >

2000 3000 4000 6000 1.0 10.0
Latency time (ms) Scheduling time (ms)

Figure 5.11: Test Case 6 latencies (left) and scheduling time (right).

Case 9 This test case covers a concurrent startup scenario to analyse how auto-scaling
impacts function startup. We use the Java and C functions of the case, and we run 10
invocations of the functions in a single test run. For each function, we send 40 requests
simultaneously, once with a maximum concurrency limit (i.e., the maximum number of
concurrent invocations of the same function per container) set to 1 and once set to 40,
effectively resulting in four subtests. We show the latencies and scheduling times in
Figure 5.12 and Figure 5.13. In all subtests, the two platforms have similar performance.
We report in Table 5.3 the aggregated mean, median, tail latency (i.e., 95 latency
percentile), and the standard deviation of the tAPP-based and vanilla OpenWhisk
deployments.
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Conc. tAPP-based Vanilla
Mean | Median Tail | S. Dev. | Mean | Median Tail | S. Dev.
C 1 8892 8692 | 10195 693 | 8808 8524 | 10421 776
Java 1 9861 9602 | 11739 931 | 10202 10245 | 11665 1026
C 40 10098 10187 | 11731 915 | 10171 9962 | 12563 1289
Java 40 8925 8767 | 10380 742 | 9433 9043 | 11361 1078

Table 5.3: Statistics of the tAPP-based and vanilla OpenWhisk deployments forf Test
Case 9 (ms).
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Figure 5.12: Test Case 9 latencies for the four subtests: C and Java functions with
concurrency 1 (top-left and top-right), C and Java functions with concurrency 40
(bottom-left and bottom-right).

Case 10 This test case focuses on the effect of implicit state with a Java function that
performs image resizing using a custom Java runtime. The function takes advantage
of "warm” containers by re-using the implicit state of the Java runtime. We invoke
the function 1000 times in a single test run, reporting in Figure 5.14 the latencies and
scheduling times. Similarly to the previous test cases, the scheduling time differences
between the two platforms are negligible. The request-reply latencies go from below
500 ms to more than 4000 ms for both platforms, with a mean of 610.67 ms and a
standard deviation of 256.67 ms for tAPP OpenWhisk and a mean of 811.44 ms and a
standard deviation of 431.69 ms for vanilla OpenWhisk.

Overall, these experiments demonstrate that the scheduling time for our tAPP
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Figure 5.13: Test Case 9 scheduling time for the four subtests: C and Java functions
with concurrency 1 (top-left and top-right), C and Java functions with concurrency 40
(bottom-left and bottom-right).
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Figure 5.14: Test Case 10 latencies (left) and scheduling time (right).

prototype is comparable to, if not better than, the vanilla implementation. Consequently,
our solution does not present any significant performance drawbacks when compared
to vanilla OpenWhisk.

5.5 Conclusion

We introduced tAPP, a declarative language that provides users with finer control

over the scheduling of serverless functions. Being topology-aware, tAPP scripts can
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restrict the execution of functions within zones and help improve the performance
(e.g., exploiting data or code locality properties), security, and resilience of serverless
applications. To validate our approach, we presented a prototype tAPP-based serverless
platform, developed on top of OpenWhisk, and we used it to show that tAPP allows
for an easy deployment of cloud-edge serverless systems with typical topology-aware
scheduling constraints that cannot be guaranteed by standard vanilla OpenWhisk
deployments. As future work we plan to expand our range of tests both to include other
aspects of locality (e.g., sessions) and specific components of the platform (e.g., message
queues, controllers). We also intend to formalise the semantics of tAPP, e.g., building
on existing “serverless calculi” [39, 51]. This is a stepping stone to mathematically

reason on scheduling policies and formally prove they provide desirable guarantees.
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Chapter 6

Affinity-aware Serverless Scheduling

6.1 Introduction

The breadth of the design space of serverless scheduling policies is witnessed by the
growing literature focused on techniques that mix one or more of these locality principles
to increase the performance of function execution, assuming some locality-bound traits
of functions [22, 56, 15, 52, 60, 101]. Besides performance, functions can have functional
requirements that the scheduler could consider. For example, users might want to ward
off allocating their functions alongside “untrusted” ones—common threat vectors in
serverless are limited function isolation and the ability of functions to (surreptitiously)
gather weaponisable information on the runtime, the infrastructure, and the other
tenants [13, 115, 6, 29]. Although one can mix different principles to expand the profile
coverage of a given platform-wide scheduler policy, the latter hardly suits all kinds
of scenarios. This shortcoming was one of the motivation for our domain-specific,
platform-agnostic, declarative language APP (and later the extension tAPP). Thanks to
APP| the same platform can support different scheduling policies, each tailored to meet
the specific needs of a set of related functions. As mentioned in Chapter 1, we study
the addition of affinity and anti-affinity constraints at the FaaS level by proposing a
new affinity-aware extension, called aAPP, after observing that other cloud platforms
like TaaS and CaaS support affinity and anti-affinity constraints for workload allocation,

which FaaS platforms lack native mechanisms for.
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Example

We introduce and motivate aAPP-based affinity-aware FaaS scheduling policies with an
example. We have a divide-et-impera data-crunching serverless application implemented
through two companion functions. The first, invoked by the users, is called divide. Its
task is to split some data into chunks, store them in a database, and invoke instances
of the second function. The second function, which the divide invokes for each stored
chunk, is called impera. Its task is to retrieve a chunk of data from the database and

process it.

We run the above functions on the FaaS infrastructure depicted on the left of
Figure 6.1. The infrastructure includes two zones (e.g., separate regions of a cloud
provider) and it has a Gateway that decides on which worker to allocate the execution
of the functions. The infrastructures also incldues three workers: w; and ws in Zone;
and ws in Zoney. Fach zone hosts an instance of an eventually-consistent distributed
database [114], used by the functions running in that zone—eventually-consistent
systems are the preferred choice for (FaaS) scenarios like our example, where one

favours throughput and availability w.r.t. e.g., overall data consistency [11].

In Figure 6.1, we represent function allocation requests with labelled document
icons sent towards the Gateway. Note that the users (the laptop icons in Figure 6.1)
launch the divide function (e.g., d3) and while the running divide invokes the impera
functions (e.g., dy requesting iy and ).

Our FaaS infrastructure executes additional applications besides the one above.
In Figure 6.1, we represent these requests with the labels hy, ho, and hz which are
compute-intensive functions—called heavy—that use a high amount of computational

resources of the worker running them.

Given this context, a first example of an affinity-aware scheduling policy is to
avoid the co-occurrence of the divide and impera functions with the heavy ones. In
this way, we can improve the performance of divide and impera by avoiding resource
contention with the heavy functions. Another improvement regards the interaction
with the database. The eventual-consistency behaviour of the database entails possible
delays to synchronise the instances. Waiting for synchronisation is necessary only
when the functions accessing the database connect to different database instances.

Moreover, to further reduce delay, we can exploit the principle of session locality and
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Figure 6.1: Example of a FaaS infrastructure (left) and an aAPP script (right).

let functions running on the same worker share the same connection with the database.
This affinity-aware scheduling policy places impera functions only on workers that

already host divide functions and avoid the overhead of re-establishing new connections.

These constraints can be encoded in aAPP as shown in the script in Figure 6.1. This
code has three top-level items: d, i, and h. These are tags that identify policies, each
describing the scheduling logic of a set of related functions. In the example, the tag d
describes the logic for the divide functions while i and h target respectively the impera
and heavy ones. The line workers: * found under all tags indicates that their related
functions can use any of the available workers. From the top, under tag d, we use the
affinity clause, introduced by aAPP, to specify that d-tagged functions should not
be scheduled on a worker that currently hosts heavy functions (!h). Specifically, this is
an example of anti-affinity, where we prevent the allocation of the tagged functions
(e.g., d) on a worker that already hosts any anti-affine function (e.g., tagged h). Tag i
declares the same anti-affinity for heavy functions, but it also indicates that i-tagged
functions are affine with d-tagged ones. Affinity means that we can schedule a function
on a candidate worker only if it currently hosts the former’s affine functions. In the
example, we use affinity to have impera functions run in the same worker of divide
functions. Finally, we use tag h to complement the anti-affinity relation expressed in

the previous tags, i.e., the heavy functions are anti-affine with both d and i functions
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and shall not be scheduled in workers that already host any of the latter.

Structure of the chapter. In Section 6.2 we present aAPP, an APP extension
with (anti)-affinity constraints. In Section 6.3, we discuss our extension of the Apache
OpenWhisk scheduler (i.e., a popular open-source FaaS solution) to support aAPP. We
use our prototype to show, in Section 6.4, that using aAPP in affinity-bound scenarios
(like the one presented above) leads to an appreciable reduction in latency. Moreover,
by using microbenchmarks, in Section 6.5, we show that the overhead of supporting

aAPP-based affinity is negligible. We draw our conclusions in Section 6.6.

6.2 The aAPP Language

In this section, we present aAPP, our extension of the FaaS function scheduling language
APP [31, 30] with affinity and anti-affinity constraints.

We report in Figure 6.2 the syntax of aAPP. From here on, we indicate syntactic
units in talics, optional fragments in grey , terminals in monospace, and lists with
bars'. The idea behind aAPP is that functions have associated a tag that identifies
some scheduling policies. An aAPP script represents: i) named scheduling policies
identified by a tag and ) policy blocks that indicate either some collection of workers,
each identified by a worker id, or the universal *. To schedule a function, we use its tag
to retrieve the scheduling policy that includes one or more blocks of possible workers.
To select the worker, we iterate top-to-bottom on the blocks. We stop at the first
block that has a non-empty list of valid workers and then select one of those workers
according to the strategy defined by the block (described later).

Each tag can define a followup clause, which specifies what to do if the policy of
the tag did not lead to the scheduling of the function; either fail, to terminate the
scheduling, or default to apply the special default-tagged policy. Each block can
define a strategy for worker selection (any selects non-deterministically one of the
available workers in the list; best first selects the first available worker in the list), a list
of constraints that invalidates a worker for the allocation (capacity used invalidates a

worker if its resource occupation reaches the set threshold; max_concurrent_invocations

'While aAPP scripts are YAML-compliant, for presentation, we slightly stylise the syntax to increase
readability. For instance, we omit quotes around strings, e.g., * instead of "*".
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invalidates a worker if it hosts more than the specified number of functions), and an
affinity clause that carries a list containing affine tag identifiers id and anti-affine
tags, represented by negated tag identifiers /id. aAPP is a minimal extension of APP
adding the possibility to use this latter affinity construct that is not available in the
original APP proposal.

As an example, Listing 6.1 shows an aAPP policy for functions tagged f_tag. The
policy has two blocks. The former restricts the allocation of the function on the workers
labelled local_w1l and local_w2 and the latter on public_w1. The first block specifies
as invalid (i.e., which cannot host the function under scheduling) the workers that reach
a memory consumption above 80%. Since the strategy is best first, we allocate the
function on the first valid worker; if none are valid, we proceed with the next block. The
function has affinity with g_tag and anti-affinity with h_tag. Hence, a valid worker
requires the presence of at least a function with tag g _tag and no functions with tag
h_tag. If both the first and second blocks do not find a valid worker, the scheduling of
the function fails (instead of continuing with the default tag).

wde Identifiers n € N
app = —tag
tag = 4d : — block followup : fopt
block ::= workers : w_opt strategy : s_opt

invalidate : — i_opt affinity : — a_opt

w_opt = *|— id
sopt == any | best first
i_opt = capacity_used n% | max_concurrent_invocations n
a_opt == id| ld
foopt = default | fail

Figure 6.2: aAPP syntax.

6.3 aAPP-based Apache OpenWhisk

We have implemented and validated an aAPP-based FaaS platform, obtained by
extending the APP prototype of Apache OpenWhisk. The main intervention we
performed to make the existing APP-based OpenWhisk architecture aAPP-compliant
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- f_tag:
- workers:
- local_w1
- local_w2
strategy: best_first
invalidate:
- capacity_used 80%
affinity: g_tag,!h_tag
- workers:
- public_w1
followup: fail

Listing 6.1: Example aAPP script.

consists of an extension of the Controller component. The extension adds a parser
for the aAPP scripts and a new scheduler that handles the given policies, but the
major challenge of implementing aAPP has been changing the Apache OpenWhisk’s
load balancer—the part of the Controller responsible for scheduling the functions—so
that it keeps track of the functions allocated to all the workers. We introduced two
lookup tables to implement this tracking functionality: the activeFunctions and the
active TagActivations. The first table associates the allocated functions (and their tags)
to their host worker and allows the load balancer to verify affinity and anti-affinity
constraints. The second table is an auxiliary one. Indeed, to update the activeFunctions
table, we need to keep track of the state of the different function instances (possibly
of the same function definition, so we cannot use their identifiers) by pairing their
activation ids with their function identifiers; when we observe the termination of an
active function, we look its function identifier up and remove that instance from the
activeFunctions table—we detect instance terminations thanks to the messages workers
send to notify the load balancer of their completion.

The scheduling algorithm following an aAPP script is straightforward. We present it
in (Python-like) pseudo-code in Listing 6.2 and Listing 6.3. In Listing 6.2, the schedule
function requires the name of the function to be scheduled (f), the map representing
the infrastructure configuration (conf), the aAPP script encoded as a Python dictionary
of objects (aapp), and a registry mapping the memory occupation and the tag for every

function (reg). The configuration of a worker is assumed to be a map, denoting with
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-
1 || def schedule(f, conf, aapp, reg):

2 (memory , tag) = reg[f]

3 blocks = aappl[tagl.blocks # get the blocks

1 if aapp[tag].followup != ’fail’:

5 blocks += aapp[’default’].blocks # add default tag blocks

6 for block in blocks:

7 if ’%’ in block[’workers’]:

8 block[’workers’] = conf.keys

9 workers = [ for worker in block[’workers’] if valid(f,worker ,bconf,reg,block)]
10 if len(workers) > @: # if at least one valid worker is found

11 if block[’strategy’] == ’best_first’:

12 return workers[0]

13 elif block[’strategy’] == ’any’:

14 return random.choice(workers)

15 raise Exception(’Function not schedulable’)

A\ J
Listing 6.2: The pseudo-code of the schedule function.

fs, memory_used, and max_memory respectively the list of functions already scheduled
on the node, the memory allocated for those functions, and the total amount of memory
of the worker. Given these inputs, in Listing 6.2 schedule gets the tag associated with
f (Line 2) and then extracts the blocks associated with this tag in the aapp script
(Line 3). If the follow-up strategy is different from “fail” the blocks associated with the
default tag are appended to the list of f’s bocks (Line 5). Then, we obtain the list of
valid workers for every block in order of appearance (Line 9). When the workers clause
uses * we consider all the workers present in the configuration (Line 8). If the list of
valid workers is non-empty, we choose the first one when the strategy is best first
(Line 12) and a random one otherwise (Line 14). If the list is empty, the schedule fails
(Line 15). The schedule function uses the valid function to check when a worker is
valid, i.e., it is available, it has enough capacity to host the function (Lines 18-19),
and that allocating on it the function satisfies all the constraints of capacity used,

max_concurrent_invocations (Lines 21-26), and affinity (Lines 27-34).

Note that in aAPP the relation of (anti-)affinity is “directional”’—similarly to the
one introduced by Microsoft in its laaS offering [71]. In particular, we do not impose any
properties like symmetry or anti-symmetry on affinity or anti-affinity. One might argue
that imposing these additional properties as well-formedness guarantees can prevent
programmers from making mistakes in their aAPP scripts (e.g., they can misconfigure
the policies of two functions that they wanted to be mutually anti-affine because they

forgot to include a constraint in some block). While avoiding these occurrences is
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1 || def valid(f, w, conf, reg, block):
2 (memory , tag) = reg[f]

3 if (w not in conf) or (conf[w]l[’memory_used’] + memory > conf[w]l[’max_memory’]):
1 return False

5 if ’7invalidate’ in block:

6 if (’capacity_used’ in block[’invalidate’]) and

7 (block[’invalidate’ ][’ capacity_used’] <= conf[w][’ memory_used’]):

8 return False

9 if (’max_concurrent_invocations’ in block[’invalidate’]) and

10 (block[’invalidate’][’max_concurrent_invocations’] <= len(conf[w]l[’fs’]1)):
11 return False

12 if ’affinity’ in block:

13 affine_tags = set([t for t in block[’affinity’] if not t.startswith(’!’)1)

14 anti_affine_tags = set([t[1:]1 for t in block[’affinity’] if t.startswith(’!’)1)
15 w_tags = set([t for (_, t) in [reg(f) for f in conf[w][’ fs’]111)

16 for t in affine_tags:

17 if t not in w_tags: return False

18 for t in anti_affine_tags:

19 if t in w_tags: return False
20 return True

\S

Listing 6.3: The pseudo-code of the valid function.

important, our objective is to allow aAPP to capture as many useful scenarios as possible

and imposing well-formedness properties would limit the expressiveness of aAPP.2
We developed the code to implement the update of the functions and changed the

scheduling algorithm in Scala, on a fork of the OpenWhisk repository [84]. The entire

system is easily deployable using Terraform and Ansible scripts.

6.4 Performance Improvements via Affinity-awareness

To validate our platform and show that the usage of (anti-)affinity constraints for
affinity-aware scenarios are beneficial, we use the example presented in Section 6.1 as
a benchmark. We show that, by enforcing (anti-)affinity constraints, we can reduce
average execution times and tail latency.

Recalling the example, we develop two functions, d and ¢, that represent a simple
dwvide-et-impera serverless architecture running in a realistic co-tenancy context. Users

invoke divide functions, requesting the solution of a problem. At invocation, divide

2For example, if we had (anti-)symmetric anti-affinity, we would not capture a scenario in which a
function init is the seeding function for a database and function query manipulates that data. The
function init should always run before query but never where query is already running, while function
query should run where init is present. To obtain this behaviour, we need init anti-affine with query
but query affine with init.
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splits the problem into sub-problems and invokes instances of the second function,
impera. The impera instances solve their relative sub-problems and store their solution
fragments on a persistent storage service. After the imperas terminated, divide retrieves
the partial solutions, assembles them, and returns the response to the user. Referencing
the aAPP script on the right of Figure 6.1, we indicate ¢ affine with d. In the multi-zone
execution context of the use case, we have workers from two data centres (which
represent the Zones of Figure 6.1), placed far apart from each other. We have two
synchronised instances of persistent storage (like db and dV' in Figure 6.1), one per
data centre. The storage implements an eventual consistency model, i.e., it trades high
availability of data off of its overall consistency. To minimise latency, both the divide
and the impera functions access the storage instance closest to them. Since it can
take some time for the two database instances to converge, the functions implement
a traditional exponential back-off retry system—each function tries to fetch its data
(sub-problems/solutions) from its local storage instance; if the data is not there, starting
from a 1-second delay, the function waits for a back-off time that exponentially increases
at each retry. We also draw the heavy functions from Figure 6.1, which simulate the

possible interferences of serverless co-tenancy.

We consider three APP/aAPP scripts to showcase the benefits of (anti-)affinity
constraints. The first, which uses the full expressiveness of aAPP, is the one reported
on the right of Figure 6.1—where imperas are affine with divide and they are both
anti-affine with the heavy functions. The second script removes the affinity constraints
between impera and divide from the first script (anti-affinity-only-aAPP). The third
script omits the anti-affinity constraints from the second one, effectively making it an
APP script.

To run the use case, we deploy the OpenWhisk versions of APP and aAPP on a
8-node Kubernetes cluster on the Digital Ocean platform; one node acts as the control
plane (and as such, it is unavailable to OpenWhisk), one hosts the OpenWhisk core
components (i.e., the Controller, the OpenWhisk internal database CouchDB; and the
messaging system Kafka), and six nodes are workers. We deploy the control plane
and the OpenWhisk core components on virtual machines with 2 vCPU and 2 GB
RAM, while we deploy 4 workers on virtual machines with 2 vCPU and 2 GB RAM
and 2 workers with 1 vCPU and 1 GB RAM. All machines run the Ubuntu Server

20.04 OS. Location-wise, we place the control plane, the OpenWhisk core components,

CHAPTER 6. AFFINITY-AWARE SERVERLESS SCHEDULING 81



6.4. PERFORMANCE IMPROVEMENTS VIA AFFINITY-AWARENESS

100%

80%

60%

40%

20%

O aAPP
o Anti-Affinity-only aAPP
APP

0% wweeeee \:‘? o

T T T T
250 500 1000 2000 4000 8000 16000 32000 64000
Latency (ms, log scale)

Figure 6.3: Sorted scatter plot of divide functions; x is the latency (ms) of the 4%
fastest invocation.

and 3 workers in Europe and 3 workers in North America (2 with the more powerful
configuration and 1 with the lesser one in each zone). To implement persistent storage,
we deploy a 2-node MongoDB replica set, one in Europe and one in North America,
using the 6.0.2 version of the Community Server. We distribute the load generated by
the heavy functions on the platform with two variants, heavy_eu and heavy_us which,
in the APP/aAPP scripts, we constrain to be resp. allocated in the Europe and the
North America data centres on the less powerful workers, to further amplify the effect of
co-tenancy they exert. All functions are in JavaScript and run on OpenWhisk NodeJS

runtime nodejs:14.

Experiments and Results FEach experiment involves 5 sequential runs. Each run
invokes the heavy_eu and heavy_us functions in non-blocking mode, followed by 10 calls
of the divide function, each one waiting for the previous to complete. Upon termination
of the heavy functions, we proceed with the remaining runs; for a total of 10 heavy and
50 divide functions per experiment. To ensure reliable results, we ran the experiment 5
times, totalling 250 calls of the divide function for each of the three APP/aAPP script.
We use Apache JMeter [53] to simulate each request, tracking its latency, number of

retries (to retrieve storage data), and outcomes (success or failure).
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The results match our expectations. The mean and median latency for the divide
functions in aAPP is resp. 1547ms and 883ms, while the 95 tail latency is 3041ms.
The corresponding figures increase for anti-affinity-only-aAPP: 2337ms (+40%), 2381ms
(+91%), and 3476ms (+13%). As expected, the latency increases even more substantially
for APP, with respectively (percentage increase vs aAPP) 8118ms (+135%), 2648ms
(+99%), and 60157ms (+180%).

To further analyse the differences, in Figure 6.3, we report the plots where we sort
the latencies of the divide functions from the shortest to the longest (z-axis). We focus
on this measure because it offers a comprehensive overview of the performance of the
architecture. In particular, it includes the latencies of the related impera functions
and its latencies are concretely the ones experienced by the users interacting with the
system. The first striking observation is that the distribution of the aAPP data points is
interrupted (there are almost no instances) between the 1000ms and the 2400ms mark.
We attribute this behaviour to having OpenWhisk core components installed in one
region, which exert some overhead on the workers of the other region when they interact
with the platform (e.g., to fetch functions and receive/send requests/notifications). We
see similar intervals, although less apparent, for APP and anti-affinity-only-aAPP.

In the 200-1000ms interval aAPP provides consistent, fast performance, while APP
and anti-affinity-only-aAPP show only a few well-performing cases—the rest, on the
same performance bracket, are shifted to the right, achieving slower results. We can
characterise the “fast” invocations as those where the divide and its two impera functions
appear on a “free” node, i.e., without the heavy function, in Europe. Specifically, when
using APP, each invocation has a 2/6 probability of appearing on a free node in Europe,
i.e., the probability of fast invocations is (2/6)> ~ 3.7%; using anti-affinity-only-aAPP
the figure becomes (1/2)>=12.5% (each invocation has a 1/2 chance of appearing on a
European free node). Finally, using aAPP the probability raises to 50%, as all three
functions go on the same node (either in the US or in the EU).

Overall, already introducing anti-affinities improves performance (mean, median,
tail latency improve resp. of 110%, 10%, and 178%), which shows the impact of sharing
a worker with heavy functions—APP shows a long tail of invocations after the ca.
3000ms mark in Figure 6.3. Looking at worst cases, using aAPP does not result in a
considerable performance increase. This is visible from the plot by noticing how the tail

high-percentage instances of anti-affinity-only-aAPP and aAPP almost overlap, resulting
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in a small (+13%) improvement in tail latency. The differences in mean (+40%) and
median (+91%) latency between having affinities or not emerges in the 250-1000ms
bracket, where not having affinity causes to have only a few data points w.r.t. to the
higher number of fast instances of aAPP. Practically, the figures and distribution show
how strongly North American allocations impact latency vs the benefit of co-location.
Besides increasing performance, aAPP succeeds in eliminating database access retries,
contrarily to anti-affinity-only-aAPP (i.e., 42 requests suffer at least one retry in APP,
23 in anti-affinity-only-aAPP, and 0 in aAPP).

6.5 aAPP’s Overhead is Negligible

We now show that the added functionalities (to track the state of functions on workers)
of our aAPP-based prototype have negligible impact on the platform’s performance.
For the experiments, we decided to use the benchmark suite used in one of our
prior works [85] to benchmark their APP-based OpenWhisk implementation. Note
that, in our settings, we are not interested in the data locality capabilities of APP but
only in checking the scheduling performances of aAPP. Thus, we decided to deploy
the platforms in only one cloud zone and use 2000 invocations for each scenario, to
simplify as much as possible the testing environment and have enough invocations to

draw meaningful comparisons. The benchmarks are:

e hello-world implements a simple echo application, and indicates the baseline

performance of the platform.

e [ong-running waits for 3 seconds and benchmarks the handling of multiple
functions running for several seconds and the management of their queueing

process;

o compute-intensive multiplies two 10? square matrices and returns the result to
the caller. This benchmark measures both the performance of handling func-
tions performing some meaningful computation and of handling large invocation

payloads.

e DB-access (light) executes a query for a document from a remote MongoDB

database. The requested document is lightweight, corresponding to a JSON
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document of 106 bytes, with little impact on computation. We used the case
to measure the impact of data locality on the overall latency. Since we have all
workers in the same cloud zone, we use it to measure the overhead of scheduling

functions that fetch small payloads from a local database.

e DB-access (heavy) regards both a memory- and bandwidth-heavy data-query
function. The function fetches a large document (124.38 MB) from a MongoDB
database and extracts a property from the returned JSON. Similarly to the
previous function, we use this one to evaluate the overhead of scheduling functions

that fetch large payloads from a local database.

e Faternal service benchmarks the performance invoking an external API (Slack).

This function was drawn from the Wonderless dataset [34].

e Code dependencies is formatter that takes a JSON string and returns a plain-
text one, translating the key-value pairings into Python-compatible dictionary

assignments. This case was also drawn from the Wonderless dataset [34].

For completeness, we note that we omitted the cold-start case from [85], which is
an echo application with sizable, unused dependencies. The peculiarity of the case is its
10-minute invocation pattern, used to check the performance of the platform against
cold-start times (so that the platform evicts cached copies of the function, requiring
costly fetch-and-startup times at any subsequent invocation). We decided to omit this
benchmark since we can observe its effects with the hello-world and code-dependency
cases.

We run the benchmarks on a one-zone Google Cloud cluster with four Ubuntu
20.04 virtual machines with 4 GB RAM each, one with 2 vCPU for the OpenWhisk
controller and three with 1 vCPU, resp. for two workers and a MongoDB instance
for the DB-access cases. We run 2000 function invocations for each case in batches
of 4 parallel requests (500 per thread), recording both the scheduling time (the time
between the arrival of a request at the controller and the issuing of the allocation)
and the execution latencies. We compare aAPP,; APP, and vanilla OpenWhisk. For a
fair comparison, with vanilla OpenWhisk, we set the APP/aAPP configurations with a
default policy that falls back to the vanilla scheduler.
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Figure 6.4: Comparison of scheduling times between vanilla, APP-, and aAPP-based
OpenWhisk. From the left, avg and st dev (in ms) and the plot of the long-running
case.

For all cases and platforms, we report on the left of Figure 6.4, in tabular form, the
average (avg) and standard deviation (st dev) of the scheduling time. On average, all
platforms allocate functions in less than 2ms, except for the compute-intensive case,
which takes less than 12ms (likely due to the large request payloads that the controller
needs to forward to workers). As expected, OpenWhisk vanilla is the fastest, closely
(under one millisecond) followed by APP and aAPP—except for the compute-intensive
case, where APP and aAPP perform better and OpenWhisk is slower by less than 2ms.
The differences between APP and aAPP are even smaller, with APP being generally
slightly (sub-millisecond) faster than aAPP. To better characterise the comparison, in
Figure 6.4, we show the plot-line distribution of the scheduling times of the long-running
case in which the average gap between aAPP and OpenWhisk is the greatest. The curve
exhibit the typical tail distribution pattern [32] of cloud workloads (which accounts
for the high standard deviation reported in Figure 6.4) and confirm our observations;

excluding the tails, they almost overlap with negligible sub-millisecond differences.

In Figure 6.5, we report instead the latencies of execution of the cases, characterised
by their average (avg), median (med), 95"% tail latency (tail lat), and standard
deviation (st dev), for each of the three considered platforms. Interestingly, if we
consider the tail latencies, it appears that aAPP slightly outperforms OpenWhisk.

We ascribe this behaviour to the high variability (as per the standard deviation in
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OpenWhisk APP aAPP
avg | med | tail lat | st dev | avg | med | tail lat | st dev | avg | med | tail lat | st dev
hello-world 88 84 126 28 78 73 114 23 76 72 109 34
long-running 3118 | 3096 | 3176 87 13094 | 3074 | 3174 86 | 3092 | 3072 | 3175 88

compute-intensive | 348 | 330 559 136 304 | 286 501 122 257 | 235 409 103
DB-access, light 131 | 111 181 289 119 | 102 156 241 125 91 139 484
DB-access, heavy 95 83 130 135 95 84 131 136 87 5 113 158
external service 627 | 613 741 230 | 640 | 625 765 308 | 647 | 630 778 305
code depend. 132 | 116 213 127 143 | 117 255 186 98 80 142 209

Figure 6.5: Latencies of the benchmarks (in ms).

Figure 6.5) of performance of the cloud instances and the inherent variability of the

cases.

6.6 Conclusions

To the best of our knowledge, aAPP is the first language that allows developers to
state (anti-)affinity constraints to better control the schedule of the functions in FaaS
platforms. By extending OpenWhisk, we have demonstrated the effectiveness of using
(anti-)affinity constraint of aAPP in reducing latency and tail latency. Furthermore,
benchmarking tests have shown that the overhead of supporting aAPP-based affinity
constraints is minimal compared to vanilla OpenWhisk and its APP-based variant.
One could realise a version of aAPP for the Infrastructure and/or the Container
layers, but we argue it is more interesting to focus on FaaS. There are mainstream
TaaS and CaaS platforms that allow users to program directly ad-hoc schedulers (e.g.,
Kubernetes exposes APIs for creating scheduler plugins that define its scheduling
policies). Since these layers afford a higher level of customisation than aAPP—at the
expense of more technical involvement on the part of the users—a variant of aAPP for
the TaaS/CaaS-levels seems less useful. On the other hand, one can use IaaS and CaaS
platforms that support affinity constraints to implement affinity-aware FaaS platforms.
We see two main problems with pursuing this path. The first regards performance. To
implement FaaS-level affinity using IaaS/CaaS affinity constraints, we need to impose a
1:1 relation between a function instance and the VM /container running it (if we let the
same VM /container run parallel copies of the same function we cannot guarantee e.g.,
self anti-affinity). A consequence of such an implementation is precluding the platform

from exploiting the ubiquitous serverless optimisation technique of VM /container reuse
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to avoid cold starts [74, 104, 102]. The second problem regards abstraction leakage,
where letting FaaS users access the underlying IaaS/CaaS layers leaks details and
control of the infrastructural components and breaks FaaS’ paradigmatic abstractions.

Regarding the constructs we have proposed for expressing (anti-)affinity constraints
in aAPP, we observe that an alternative approach could be to let the user directly
declare the properties to enforce, leaving to the platform the task to realise them
at run time. The scheduling runtime of this APP variant would allocate a function
only if the allocation satisfies the formula or fail otherwise. The problem with this
approach is scalability. Indeed, checking the satisfiability of a property’s formula can
take exponential time on the size of the formula, workers, and functions. Contrarily,
the aAPP scheduler checks whether it can allocate a function on a worker in linear time
on the size of the workers and aAPP script length.

Implementation-wise, OpenWhisk supports scenarios where multiple controllers
share the pool of available workers (e.g., for redundancy and load balancing) and take
scheduling decisions without coordination. In our aAPP-based implementation, such
multi-controller configurations present a problem since we need to prevent scheduling
races among controllers—e.g., imagine two controllers that select an available, empty
worker and, at the same time, allocate mutually anti-affine functions on it. Supporting
multi-controller deployments is important, but we deem dealing with it to be outside

the scope of this work and an interesting subject for future work.
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Chapter 7

Cost-aware Serverless Scheduling

7.1 Introduction

We present one last extension to the APP language we developed to investigate the
integration of static analysis techniques to derive cost information from functions. Fixed
and opinionated platform-wide policies to manage the allocation of function executions
does not allow the platform to adapt to function performance degradation. For instance,
a function can endure degradation depending on the worker that hosts it, e.g., due to

effects like the latency to access data relative to the worker’s location.

We visualise the issue by commenting on the minimal scenario drawn in Figure 7.1,
similar to the one in Section 5.1. We have two workers, W1 and W2, located in distinct
geographical Zones A and B, respectively. Both workers can run functions that interact
with a database (db) located in Zone A. When the function scheduler receives a request
to execute a function, it must determine which worker to use. To minimise the function
run time (and, thus, the response time), the scheduler should take into account the
different computational capabilities of the workers, as well as their current workloads.
Moreover, when functions interact with external services, it might take into account
also their latency to access them, choosing the ones that minimise it. In our example,
the scheduler should find a worker that minimises the time to access the database. In
this case, that worker is W1, thanks to its closeness to db (same geographic zone) which
allows it to undergo lower latencies than the farther worker W2. We propose to overcome

the above limitations by letting users express latency-aware selection strategies. In

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING 89



7.1. INTRODUCTION

Controller

7 -

\ 4
-
N

r

- db_query:
- workers:
- wrk: W1
- wrk: W2
strategy: best_first

T = W N =

\S

Figure 7.1: A multi-zone serverless topology and APP script.

the scenario in Figure 7.1, we expect the user to be able to express policies like the

following one:

- db_query:
- workers:

- wrk: W1

- wrk: W2

strategy: min_latency

\S

where the strategy min latency instructs the platform to give priority to the worker
expected to endure the lowest latency w.r.t. its latency in the usage of external services
(e.g., the database db in Figure 7.1).

While such high-level policies greatly alleviate the burden on users, they open a
relevant question: given a function f to be scheduled and a list of possible workers, how
can one automatically quide the scheduling of f on a worker with low-latency access to
f’s external services?

We answer to the above question by proposing a solution consisting of three

components:
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1. the quantification of (an upper bound of) of the invocations done by a function

to its external services, obtained through a static analysis of the function’s code;

2. the periodical run-time monitoring of the latencies workers endure in contacting

said external services;

3. the computation, at function scheduling time, of an upper-bound of the function-
worker overall latency by combining the quantified invocations to the function’s

external services with the workers’ expected latencies.

In other terms, we propose to use a combination of static analysis (applied on a
function’s code) and run-time monitoring (of the workers latencies in accessing the
external services) to estimate a cost for executing a function on a worker, considering
what and how it uses external services.

Thanks to such a quantification, we can support other meaningful scheduling policies

like the following one:

- db_query:
- workers:

- wrk: W1

- wrk: W2

invalidate: max_latency: 300

\S

In this case, we do not specify a selection strategy (using the platform’s default one) to
choose between the two workers, but we consider invalid any worker whose estimated
latency of running the function exceeds the threshold of 300ms.

We discuss the applicability of our approach on a minimal language, called miniSL
(standing for mini Serverless Language), for programming functions in serverless applica-
tions. We focus on a minimal language for two main reasons. First, it allows us to show
the feasibility of our approach by concentrating on basic language constructs, abstracting
away from the specific (and, in some case, idiosyncratic) constructs of the different
programming languages used in serverless computing. Second, miniSL represents an
abstract language for describing the behaviour of programs written in mainstream

programming languages, so that the theory developed in this chapter becomes directly
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applicable to any programming language.! Concretely, we define a static analysis tech-
nique that, given miniSL code, extracts a set of equations that define meaningful costs,
in particular, the number and kind of external service invocations. Then, we feed the
equations to off-the-shelf cost analysers (e.g., PUBS [5] and CoFloCo [36]) to compute
cost expressions that quantify over-approximations of said costs. The question we ask
above focusses on a theoretical problem, i.e., how we can give an abstract estimation of
the expected latencies of external service invocations done by a function scheduled on a
given worker. We also developed a concrete proposal? as an extension of our in-house
FaaS platform, FunlLess, that we will present in the next Chapter 8. Working with a
platform we have complete control over allowed us to more easily perform substantial
changes to the platform’s architecture to support latency monitoring, to parse the cost

equations and to add a service wrapping PUBS for the analyser.

Structure of the chapter. We start, in Section 7.2, by defining our minimal
language, called miniSL, which includes constructs for specifying computation flow (via
if and for constructs) and for service invocation (via a call construct). Then, in
Section 7.3, we describe how to exploit static analysis techniques, inspired by behavioural
type systems like those by Garcia et al. and Laneve and Sacerdoti Coen [42, 66], to
automatically extract a set of equations from function source codes written in miniSL
that define meaningful function costs (in our case, the number of invocation to external
services). One can feed these equations to off-the-shelf cost analyser (e.g., PUBS [5]
or CoFloCo [36]) to compute cost expressions quantifying over-approximations of the
considered costs. In Section 7.4, we present cAPP, our extension of APP for expressing

cost-aware scheduling policies. We conclude by drawing final takeaways in Section 7.5.

7.2 The mini Serverless Language

The mini Serverless Language, shortened into miniSL, is a minimal calculus that we

propose to specify the functions’ behaviour in serverless computing. miniSL focuses only

1Since serverless platforms support many disparate programming languages, we see exploring the
usage of miniSL as an abstract language for describing serverless functions too broad and tangential to
be tackled here, and leave it as interesting future work.

2Tt can be found at: https://github.com/funlessdev/funless/tree/miniSL
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on core constructs to define operations to access services, conditional behaviour with

simple guards, and iterations.

Function executions are triggered by events. At triggering time, a function receives
a sequence of invocation parameters: for this reason, we assume a countable set of
parameter names, ranged over by p, p/. We also consider a countable set of counters,
ranged over by 7, j, used as indexes in iteration statements. Integer numbers are
represented by n; service names are represented by h, g, ---. The syntax of miniSL is as

follows (we use over-lines to denote sequences, e.g., p;,p» could be an instance of p):

Fuo= @ =>{S}
Su= ¢ | callh(E)S | if (G){S}else{S} |
for (i in range(@,E)){S }

G:= E | callh(E)

Ex=n | ¢« | p | E4E | !E

bam o+ |- x| > ] <
= == | <= | & | I

A function F associates to a sequence of parameters D a statement S executed at
every occurrence of the triggering event. Statements include the empty statement &
(which is always omitted when the statement is not empty); calls to external services
by means of the call keyword; the conditional and iteration statements. The guard of
a conditional statement could be either a boolean expression or a call to an external
service which, in this case, is expected to return a boolean value. The language supports
standard expressions in which it is possible to use integer numbers and counters. Notice
that, in our simple language, the iteration statement considers an iteration variable

ranging from 0 to the value of an expression E evaluated when the first iteration starts.

In the rest of the chapter, we assume all programs to be well-formed so that all
names are correctly used (e.g., counters are declared before they are used). For each
expression used in the range of an iteration construct, we assume that its evaluation
generates an integer, and for each service invocation callh(E), we assume that h is a
correct service name and E is a sequence of expressions generating correct values to be
passed to that service. Calls to services include serverless invocations, which possibly

execute on a different worker of the caller.
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We illustrate miniSL by means of three examples. As a first example, consider the
code in Listing 7.1 representing the call of a function that selects a functionality based

on the characteristic of the invoker.

1| ( isPremiumUser, par ) => {
2 if( isPremiumUser ) {
3 call PremiumService( par )
4 } else {
5 call BasicService( par )
6| 3
73
-

Listing 7.1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on
whether it has been triggered by a premium user or not. The parameter isPremiumUser
is a value indicating whether the user is a premium member (when the value is true) or
not (when the value is false). The other invocation parameter par must be forwarded
to the invoked service. For the purposes of this chapter, this example is relevant because
if we want to reduce the latency of this function, the best node to schedule it could be
the one that reduces the latency of the invocation of either the service PremiumService
or the service BasicService, depending on whether isPremiumUser is true or false,
respectively.

Consider now the following function, where differently from the previous version, it

is necessary to call an external service to decide whether we are serving a premium or

a basic user.
1| ( username, par ) => {
2 if ( call IsPremiumUser (username) ) {
3 call PremiumService( par )
4 } else {
5 call BasicService( par )
6 }
7\
NS

Listing 7.2: Function with a conditional statement guarded by an invocation to external

service.

In this case, the first parameter carries an attribute of the user (its name) but it does

not indicate (with a boolean value) whether it is a premium user or not. Instead,
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the necessary boolean value is returned by the external service IsPremiumUser that
checks the username and returns true only if that username corresponds to that of a
premium user. Within this setting is difficult to predict the best worker to execute
such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected
execution time of the function is the sum of the latencies of the service invocations of
IsPremiumUser and PremiumService while, if the user is not a premium member, the
expected execution time is the sum of the latencies of the services IsPremiumUser and
BasicService. As an (over-)approximation of the expected delay, we could consider the
worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus the
maximum between the latencies of the services PremiumService and BasicService.
At scheduling time, we could select the best worker as the one giving the best guarantees
in the worst case, e.g., the one with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.

1|l ¢ jobs, m, r ) => {
2 for(i in range(@, m)) {
3 call Map(jobs, i)
4 for(j in range(o, r)) {
5 call Reduce(jobs, i, j)
6 }
7 }
81 3
L J

Listing 7.3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is
indicated by the parameter m. The “map” phase, which generates m “reduce” subtasks,
is implemented by an external service Map that receives the jobs and the specific
index i of the job to be mapped. The “reduce” subtasks are implemented by an
external service Reduce that receives the jobs, the specific index i of the job under
execution, and the specific index j of the “reduce” subtask to be executed — for every
i, there are r such subtasks. In this case, the expected latency of the entire function
is given by the sum of m times the latency of the service Map and of m x r times the
latency of the service Reduce. Given that such latency could be high, a user could be
interested to run the function on a worker, only if the expected overall latency is below

a given threshold.
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7.3 The Inference of Cost Expressions

In this section, we formalise the inference of a cost program from miniSL code. Once
inferred, we can feed this program to off-the-shelf tools, such as [36, 5], to calculate the
cost expression of the related miniSL code. Notice that, since these tools are designed
to handle only Presburger arithmetic, we restrict our extraction only to a subset of
miniSL, where the expressions conform to Presburger arithmetic constraints.

Cost programs are lists of equations which are terms

f@=et+> fi®m (o]

1€0..n

where variables occurring in the right-hand side and in ¢ are a subset of 7 and f and f;

are (cost) function symbols. Every function definition has a right-hand side consisting

of

e a Presburger arithmetic expression € whose syntax is

ex= x | q | ete | e—e | gxe

| maz (e, k)
where x is a variable and ¢ is a positive rational number,

e a number of cost function invocations f;(€;) where & are Presburger arithmetic

expressions,

o the Presburger guard ¢ is a linear conjunctive constraint, i.e., a conjunction of
constraints of the form e; >ey or €, =e,, where both e; and e, are Presburger

arithmetic expressions.

The intended meaning of an equation
f@=e+) fi®) (4]

is that the cost of f is given by e and the costs of f;(€;), when the guard ¢ is true.
Intuitively, e quantifies the specific cost of one execution of f without taking into

account invocations of either auxiliary functions or recursive calls. Such additional
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cost is quantified by >, . fi(€). The solution of a cost program is an expression,
quantifying the cost of the function symbol in the first equation in the list, which is
parametric in the formal parameters of the function symbol.

For example, the following cost program

fINM) = M+f(N-1LM) [N>1]
fN.M) =0 [N=0]

defines a function f that is invoked N+1 times and each invocation, excluding the last
having cost 0, costs M. The solution of this cost program is the cost expression N x M.

Our technique associates cost programs to miniSL functions following a syntax-
directed approach: we define a set of (inference) rules that, following the parse tree
bottom-up, gather fragments of cost programs that are then combined in a syntax-

directed manner.
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['(h)=e I'=S:¢; C;Q

[EPS] The:0;0;0 [cALL]
I'+callh(E)S:e+€ ; C; Q
I'FE:p I'=S:¢/; C; Q res:e"; C;Q if y fresh
— Il ’ "_ Zfﬁ(m):e/+c [90]
w=wvar(p,e ") Jvar(C,C") Q"= if (@) ="+ C' [
[IF-EXP]
IHif (E){S }else {5 }:0; if,(w) ; QQ,Q"
['(h)=e I'=S:¢; C; Q res:e"; C;Q
IF-CALL]
IHif (callh(ED{S } else { S }:e+maz(ee”) ; C+C' ; QQ
'FE:e T'+i:IntkS:e¢; C; Q = (var(e,e’)Uvar(C))\:
s | fory(i w) e+C+f07’e( +1lw) [e > 1]
Jore fresh Q= for,(i,w)=0 [i > e+1]
[FOR]

I'Ffor (i in range(@,E)){ S }:0; for,(0,w) ; Q,Q

I'S:e; C; Q  w=wvar(p,e)Uvar(C)
main fresh Q' =main(w)=e+C []

[PRG]
'@ =>{S}:Q,Q

Figure 7.2: The rules for deriving cost expressions

As usual with syntax-directed rules, we use environments I', I", which are maps. In

particular,

e [ takes a service h or a parameter name p and returns a Presburger arithmetics

expression, which is usually a variable. For example, if I'(h) = X, then X will
appear in the cost expressions of miniSL functions using h and will represent the
cost for accessing the service. As regards parameter names p, I'(p) represents

values which are known at function scheduling time,

98

CHAPTER 7. COST-AWARE SERVERLESS SCHEDULING



7.3. THE INFERENCE OF COST EXPRESSIONS

e [ takes counters 7 and returns the type Int.

When we write ['+i:Int, we assume that 7 does not belong to the domain of I'. Let C
be a sum of (cost) function invocations and let Q be a list of equations. Judgments

have the shape

e ['E:e, meaning that the value of the integer expression E in I is represented by

(the Presburger arithmetic expression) e,

e I'FE:p, meaning that the value of the boolean expression E in I' is represented

by (the Presburger guard) ¢,

e 'FS:e; C; Q, meaning that the cost of S in the environment I" is e4C given a

list Q of equations,

e 'FF:Q, meaning that the cost of a miniSL function F in the environment I is

given by the cost program Q (remember that a cost program is a list of equations).

We use the notation var(e) to address the set of variables occurring in e, which is
extended to tuples var(€y,.€,) with the standard meaning. Similarly var(} ., fi(&))
is the union of the sets of variables var(€p),-,var(g,). We use var(y) for Presburger
guards.

The inference rules for miniSL are reported in Figure 7.2. They compute the cost
of a program with respect to the calls to external services (whose cost is recorded in
the environment I'). Therefore, if a miniSL expression (or statement) has no service
invocation, its cost is 0. Notice that in the rule [IF-EXP] we use the guard [—¢], to
model the negation of a linear conjunctive constraint ¢, even if negation is not permitted

in Presburger arithmetic. Actually, such notation is syntactic sugar defined as follows:

e let ¢ (the negation of a Presburger guard ¢) be the list of Presburger guards

-(e>€)= e>e+l1
—(e=¢€)= e>e+1; e>e+l
—(ene)= —e; —€

where ; is the list concatenation operator (the list represents a disjunction of

Presburger guards),
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o let ~p=1 ; -+ ; Ym, where ¢; are Presburger guards, then

(£2) = e+ Xico.fi(®)) [
@ =e+ S0 fi@ o) | jelm).

We now comment on the inference rules reported in Figure 7.2.3

Rule [CALL] manages invocation of services: the cost of callh(E) S is the cost of S
plus the cost for accessing the service h.

Rule [1F-EXP] defines the cost of conditionals when the guard is a Presburger
arithmetic expression that can be evaluated at function scheduling time. We use a
corresponding cost function, if,, whose name is fresh,* to indicate that the cost of the
entire conditional statement is either the cost of the then-branch or the else-branch,
depending on whether the guard is true or false. As discussed above, the use of the
guard — generates a list of equations.

Rule [1F-CALL] defines an upper bound of the cost of conditionals when the guard
is an invocation to a service. At scheduling time it is not possible to determine whether
the guard is true or false — c.f. the second example in Section 7.2. Therefore the cost
of a conditional is the maximum between the cost € +C of the then-branch and the
one €4 C of the else-branch, plus the cost e to access to the service in the guard.
However, considering that the expression maz(e+C,e’+C’) is not a valid right-hand side
for the equations in our cost programs, we take as over-approximation the expression
maz(e,e)+C+C.

As regards iterations, according to [FOR], its cost is the invocation of the corre-
sponding function, for,, whose name is fresh (we assume that iterations have pairwise
different line-codes). The rule adds the counter i to I' (please recall that I'+i: Int
entails that i ¢ dom(I")). In particular, the counter 7 is the first formal parameter of
for,; the other parameters are all the variables in €, in notation var(e) plus those in
the invocations C (minus the 7). There are two equations for every iteration: one is the

case when 7 is out-of-range, hence the cost is 0, the other is when it is in range and

3We omit rules for expressions E since they are straightforward: they simply return E if E is in
Presburger arithmetics. We notice that no rule is defined if E' is not in Presburger arithmetics. In
fact, in these cases, it is not possible to derive cost equations.

4We assume that conditionals have pairwise different line-codes and £ represents the line-code of
the if in the source code.
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the cost is the one of the body plus the cost of the recursive invocation of for, with 7
increased by 1.

The cost of a miniSL program is defined by [PRG]. This rule defines an equation
for the function main and puts this equation as the first one in the list of equations °.
Once inferred, we can feed this program to off-the-shelf tools, such as [36, 5], which will
compute the cost of the the first function of the list, 7.e. the main function.

As an example, we apply the rules of Figure 7.2 to the codes in Listings 7.1, 7.2,
and 7.3. Let I'(isPremiumUser)=u, ['(par)=v, I'(PremiumService)= P and

['(BasicService)=B. For Listing 7.1, we obtain the cost program

main(u,v,P B)=ify(u,P,B) (]
ify(u,P,B)= P [u=1]
ify(u,P,B)= B [u=0]

Notice that the parameters of the main function include, initially, the values cor-
responding to the parameters of the corresponding miniSL function and then those
corresponding to the other variables occurring in the cost equations.

For Listing 7.2, let I'(username)=u, I'(par)=v,

['(IsPremiumUser) = K, I'(PremiumService) = P and I'(BasicService) = B. Then

the rules of Figure 7.2 return the single equation
main(u,v,K,P.B)= K+max(P,B) (]

For 7.3, when I'(jobs)=J. I'(m)=m, ['(r)=r, I'(Map) =M and I'(Reduce)= R, the

cost program is

main(Jm,r,M,R)= " fory(0,m,r,M R) (]

fory(iyma,M,R)= M+ for,(0,r,R)+
fory(i+1myr M,R) [m>i ]
fory(i;moy,M,R)= 0 [i>m+1 ]
for,(j;r,R)= R+fory(j+1,r,R) [r>j]
for,(jr.R)= 0 [j=>r+1]

Given that miniSL functions are anonymous, we use the default name main for the corresponding
cost function.
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The foregoing cost programs can be fed to automatic solvers such as PUBS [5] and
CoFloCo [36]. The evaluation of the cost program for Listing 7.1 returns max(P,B)
because u is unknown. On the contrary, if u is known, it is possible to obtain a more
precise evaluation from the solver: if u=1 it is possible to ask the solver to consider
main(1,v,P,B) and the solution will be P, while if u=0 it is possible to ask the solver to
consider main(0,v,P,B) and the solution will be B. The evaluation of main(u,v,K,P,B)
for Listing 7.2 gives the expression K+ maz(P,B), which is exactly what is written
in the equation. This is reasonable because, statically, we are not aware of the value
returned by the invocation of IsPremiumService. Last, the evaluation of the cost
program for Listing 7.3 returns the expression mx (M +rx R).

Since we combine miniSL and our inference system for estimating costs of functions
interacting with external services, one might wonder how relevant the approach is,
i.e., how common are serverless functions that call external services, and what is their
structure? While a systematic study is out of the scope of this thesis, we started this
process by analysing a comprehensive repository of illustrative serverless functions® for
different platforms (AWS, Azure, OpenWhisk, etc.). Our analysis reveals that 50%
(65/130) of these functions follow patterns that one can represent using miniSL by
abstracting away structured data and internal computation and estimate their cost

w.r.t. the flow of external calls, such as HT'TP invocations to external services.

7.4 From APP to cAPP

We now present the new language cAPP for expressing cost-aware function scheduling

policies, by extending the previously discussed language APP, as shown in Figure 7.3.

7.4.1 Cost-aware policies with cAPP

To support the scheduling of functions based on costs we propose two extensions to
APP. The first one is a new selection strategy named min latency. Such a strategy
selects, among some available workers, the one which minimises a given cost expression.

The second one is a new invalidation condition named max_latency. This condition

6A collection of ready-to-deploy Serverless Framework services” at https://github.com/
serverless/examples.
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policy_tag€ Identifiers U {default} label€ Identifiers n €N
app = - tag
tag = policy_tag : - block  followup?

block = workers: [ |- wrk : worker_label
(strategy: [ random | platform | best_first
| min_latency 1)?
(invalidate: [ capacity_used : n%
| max_concurrent_invocations: n

| overload
| max_latency: n
N7

)

followup == followup: [ default | fail 1)

Figure 7.3: The syntax of cAPP (the extensions from APP are highlighted ).

invalidates a worker in case the corresponding cost expression is greater than a given
threshold.
We dub cAPP the cost-aware extension of APP and illustrate its main features by

showing examples of cAPP scripts that target the functions in Listings 7.1-7.3.

- premUser:
- workers:
- wrk: W1
- wrk: W2

strategy: min_latency

Listing 7.4: cAPP script for Listings 7.1 and 7.2.

Listing 7.4 defines a cAPP tagged premUser that we will associate to both the
functions at Listing 7.1 and 7.2. In this script, we specify to follow the logic min_latency
to select among the two workers, W1 and W2 listed in the workers clause, and prioritises
the one for which the solution of the cost expression is minimal.

To better illustrate the phases of the min _latency strategy, we depict in Figure 7.4
the flow, from the deployment of the cAPP script to the scheduling of the functions in
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// name: lambdal.miniSL // name: lambda2.miniSL
// tag: premUser // tag: premUser

( isPremiumUser, par ) => { ( username, par ) => { cAPP SCI‘ipt
if( isPremiumUser ) { if( call IsPremiumUser (username)){
m call PremiumService( par ) call PremiumService( par ) - premUser:
= L W ; , =3 ; , - workers:
— ca asicService par ca asicservice par
E 3 3 - wrk: W1
Z. } } - wrk: W2
o c mimLL
= Inference of Cost Programs strategy: min_latency
=
@)
o
oy
) main(u,v.P.B) = ify(.P.B) ]
= if(u,P,B) =P [u=1] main(u,v,K,P,B) = K+ max(P,B) [] ‘
ify(u,P,B) =B [u=0]

m | W in ( W1, W2 )
s where W.latency( PremiumService )
=
= Request for lamfdal(l,v) o e mameml
Qo - i
Z W oin ( W1, w2 )
: where W.latency( IsPremiumUser )
je} + max( W.latency( PremiumService ),
&) W.latency( BasicService ) )
UIJ Request for lambda2(u_name,v) a S5 mRmimAL
O
%}

0 Cost Program Solver

Figure 7.4: Flow followed, from deployment to scheduling, of the functions at Listings
7.1 and 7.2.

Listings 7.1 and 7.2. When the cAPP script is created, the association between the
functions code and their cAPP script is specified by tagging the two functions with
the comment // tag:premUser. In this phase, assuming the scheduling policy of the
CAPP script requires the computation of the functions cost (because the strategy is
min_latency), the code of the functions is used to infer the corresponding cost program.
When the functions are invoked, i.e., at scheduling time, we can compute the solution
of the cost program, given the knowledge of the invocation parameters. The knowledge
of the invocation parameters allows for a more precise analysis. For instance, for the
function in Listings 7.1, called lambdal, it is possible to invoke the cost analyser with
either main(1,v,P,B) or main(0,v,P,B) where P represent the cost of PremiumService,
B the cost of BasicService and the first parameter is the value of the isPremiumUser

parameter.

If the invocation is lambdal(1,v) (first horizontal line in In Figure 7.4) then the
cost program (represented by the intersection point on the left) and the corresponding
cAPP policy to implement the expected scheduling policy are retrieved. At this point, a
cost analyser is used to solve the cost programs (depicted by the gear). In this case,
since the cost expression is P, which is PremiumService, the scheduling amounts to

(1) estimating the latencies to access to PremiumService from the considered workers
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and (i) choosing the worker that minimises the foregoing latency. This computation is
highlighted in the rightmost grey window corresponding to the request lambdal(1,v).

When the request is lambda2(u_name,v), the corresponding cost function is
main(u_name,v, K, P, B), where K is the cost of the service IsPremiumUser. In
this case, the cost expression is K+ max(P,B) Since lambda2.miniSL has the same
tag as lambdal.miniSL, the selected cAPP script is the same. Therefore the scheduling
amounts to minimize the latencies from the workers W1 and W2 to the services
IsPremiumUser, PremiumService and BasicService according to the expression
K + maz(P, B). This is highlighted in the rightmost grey window corresponding
to the request lambda2(u_name,v).

The controller needs also to be aware of the possibility of invalidating a worker
when the latency to access a service exceeds a certain threshold. In particular, when
max_latency is used in the invalidate clause, workers are not selected if the computed
latency is above the given value. To illustrate this item, let us consider the cAPP code

for the map-reduce function in Listing 7.5.

- mapReduce:
- workers:
- wrk: W1
- wrk: W2
strategy: random
invalidate:

max_latency: 300

-

Listing 7.5: cAPP script for Listing 7.3.

As visualised in Figure 7.5, starting from the (top-most) deployment phase box
where we tag the function (//tag:mapReduce), the cost program is computed, obtaining
the associated cost expression. Then, when a request for the function is received, the
execution of the cAPP policy is triggered, which selects one of the two workers W1 or
W2 at random and checks their validity following the logic shown at the bottom of
Figure 7.5, i.e., the cost program is solved and the parameters m and r are replaced
with the latency to contact the Map and Reduce services from the selected worker,

and possibly invalidate it if the computed value is greater than 300.
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1 // tag: mapReduce
2 ( jobs, m, r ) => {
3 for(i in range(o, m)) {
4 call Map(jobs, i)
5 for(j in range(@, r)) {
6 call Reduce(jobs, i, 3j)
7 }
8 }
9 }
S

A
main(Jm,r,M,R)=for_2(0,m,r,M,R)

[
fory(i;mr,M,R)= " M+ for,(0,r,R)+fory(i+1,myr,M,R) [m>i]
fory(i;mar,M,R)= 0 [i>m+1 ]
fOT’4(j,T‘,R): R+fOT4(j+1,7“,R) [ 7”2] ]
fory(jir.R)= 0 [j=r+1]

\
|( Cost Expression: m*(M + rxR) J
\

Woin ( W1, W2 )
where m *( W.latency( Map )

+ r x W.latency( Reduce ) )
is < 300

Figure 7.5: The map-reduce function, its cost analysis, and scheduling invalidation
logic.

7.5 Conclusions

We introduced a framework that lightens the burden on the shoulders of users by
deriving cost information from the functions, via static analysis, into a cost-aware
variant of APP that we call cAPP. To show the feasibility of the approach, we present
a prototype of such framework where we extract cost equations from functions’ code,
synthesise cost expressions through off-the-shelf solvers, and implement cAPP to support
the specification of cost-aware allocation policies. Specifically, we demonstrate that one
can over-approximate, at scheduling time, the overall latency endured by the invocation

of a function f when running on a given worker and use this information to govern its
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scheduling. To achieve this result, we present a proposal for an extension of the APP
language, called cAPP, to make function scheduling cost-aware. The extension adds
new syntactic fragments to APP so that programmers can govern the scheduling of
functions towards those execution nodes that minimise their calculated latency (e.g.,
increasing serverless function performance) and avoids running functions on nodes
whose execution time would exceed a maximal response time defined by the user (e.g.,
enforcing quality-of-service constraints).

In future work, we will address several key questions that remain open. Specifically,
we aim to investigate the scalability and performance of our approach by examining
how it would work with more complex examples and evaluating its execution times
under varied computational conditions. Since determining the exact cost of a function
is, in principle, undecidable, as future work, we will focus on exploring models and
techniques that can make this problem more tractable in practical scenarios. This
may include the development of heuristics and over-approximation methods that work
effectively for the majority of cases, while ensuring that these approaches remain
computationally efficient. Additionally, we are considering architectural solutions to
complement these techniques, such as the inclusion of caching systems to store and
reuse previously computed costs for repeated function invocations. These systems could
significantly reduce overhead by calculating the actual cost of a function only once,
avoiding redundant computations. To further enhance system reliability, we propose
integrating timeouts for particularly challenging cost calculations, paired with sensible
default strategies to maintain responsiveness. This would ensure the system remains
functional even in scenarios where exact costs cannot be computed within a reasonable

time frame.
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Chapter 8

FunLess: Lightweight Cloud-Edge
FaaS

8.1 Introduction

While public clouds are the birthplace of serverless computing, recent industrial and
academic proposals demonstrated the desirability, benefits and feasibility of moving
FaaS outside public clouds. These solutions are tailored for private, public, and hybrid
(where the infrastructure includes parts from public and private) cloud scenarios [24]
and include edge [16] and Internet-of-Things [96] components. From the industrial
point of view, several FaaS platforms are designed for edge computing (e.g., AWS
Greengrass!, Cloudfare Workers?).

In contrast to public edge-cloud computing solutions, private edge cloud systems have
the benefit of further reducing latency, increasing security and privacy, and improving
bandwidth and usage of high-end devices [96]. More precisely, private edge cloud
systems are small-scale cloud data centres in a local physical area, such as a house,
an office, a factory, or a small geographic area, where mobile devices, such as drones,
mobile robots, smartphones and fixed devices, such as sensors/actuators, workstations,
and servers are interconnected through sisngle or multiple local area networks.

In this chapter, we address the challenge of supporting FaaS in private edge cloud

https://aws.amazon.com/greengrass/.
2https://www.cloudflare.com/en-gb/learning/serverless/glossary/
serverless-and-cloudflare-workers/.
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systems. Off-the-shelf solutions to this challenge consist of deploying popular open-source
FaaS platforms (e.g., OpenFaas, Knative, Fission, OpenWhisk) on top of container
orchestration technologies (e.g., Kubernetes). However, these technologies, which usually
rely on containers and container orchestration solutions, entail performance and resource
overheads which can create issues on devices with constrained resources—they might
not have enough memory to host containers or computational power to effectively run
functions, especially in low-latency application contexts.

These problems motivated researchers and practitioners to consider alternatives
and propose runtimes that provide the isolation and parallel execution of existing
FaaS platforms yet mediate the heavy toll of the mentioned more complex runtimes.
Examples of these proposals include using virtual machines like that of Java [89] and
Python [43] or embedding functions in unikernels [73]. Unfortunately, while these
solutions achieve the goal of reducing the overhead of containers, they respectively miss
fundamental features. Java/Python VMs do not provide high-performing runtimes [51]
and properly isolate functions (e.g., exposing the users to security risks). Unikernels
are still a niche technology whose usage requires specific engineering knowledge (e.g., to
define the minimal OS stack needed to run high-level functions).

A promising alternative is WebAssembly® (Wasm) for lightweight FaaS environ-
ments [57] (introduced in more detail in Section 8.2). Indeed, Wasm comes with a
stack-based virtual machine designed for running programs in a sandbox environment
with performance close to native code and fast load times. Wasm proved to be a
valid candidate for FaaS, providing lightweight sandboxing at the edge with both
small latencies and startup times [45, 41]—recently, providers like Cloudflare proposed
closed-source solutions based on Wasm®.

FunLess. Building on these results, we propose FunlLess, a FaaS platform designed for
(mixed) edge-cloud scenarios. FunLess uses Wasm to run functions, providing many

pros:

e Security. Wasm’s inherent security and isolation mechanisms make it well-suited

for scenarios where data integrity and confidentiality are critical.

e Memory and CPU footprint. FunLess does not require a container runtime (e.g.,

3https://webassembly.org/.
4https://developers.cloudflare.com/workers/runtime-apis/webassembly/.
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Docker) and orchestrator (e.g., Kubernetes). Hence, the “bare-metal” deployment
of FunLess frees resources essential for running functions on memory-constrained

or low-power edge devices.

e Cold starts. FunLess leverages Wasm to mitigate the problem of cold starts [113],
i.e., delays in function execution due to the overhead of loading and initialising
functions—an issue that constrained-resource edge devices can accentuate. Cold-
start mitigations usually rely on caching or keeping “warm” function instances.
However, the size of containers can make these solutions unfeasible on constrained-
resource devices. FunLess’s use of Wasm minimise the cost of function caching (and
even fetch-and-load roundtrips), making cold-start mitigations more affordable.
Moreover, Wasm runtimes provide fast startup times (Wasm’s main use case
is in-browser execution, where responsiveness is crucial), allowing FunLess to

achieve small cold-start overheads.

o Consistent function development and deployment environment. Since Wasm
abstracts away the hardware and environment it runs within, FunLess provides
a consistent development and deployment experience across the diverse private
edge architectures, offering a built-in solution for the challenges of variability in
hardware and software environments of private edge-cloud scenarios. Similarly
to Java bytecode, Wasm binaries can run on any platform that can execute a
(dedicated) Wasm runtime. As illustrated in Section 8.3, the developers only need
to write once their functions®, compile them into Wasm binaries, and load them
into the platform. FunLess handles the task of running them on the possible

diverse devices and architectures of the given cloud/edge infrastructure.

o Simple and flexible platform deployments. FunlLess can use existing containerisa-
tion solutions (e.g., Kubernetes) to streamline and ease its deployment. When
container orchestration technologies are not affordable/available, users can install
FunLess by running a Core component (with metrics and storage services, e.g.,
resp. Prometheus and Postgres) on a node and a Worker component on the

nodes tasked to run the functions (cf. Section 8.3). This flexibility derives from

SFunLess users can write functions in any language supported by the platform, currently Rust, Go,
and JavaScript.
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WebAssembly (the binaries do not need an ulterior container for their isolation),

and FunlLess’ communication mechanism between nodes.

Structure of the chapter In the following, in Section 8.2, we present WebAssembly
in more detail. We detail FunLess’ architecture in Section 8.3 and show an analysis of
the energy consumption of FunLess compared to OpenWhisk and a classical container-
based service architecture in Section 8.4. We then draw our conclusions and future

work directions in Section 8.5.

8.2 WebAssembly

We dedicate this section to providing the preliminary notions useful to contextualise our
contribution. Specifically, we introduce WebAssembly—the technology underpinning
the FunLess execution runtime (cf. Section 8.3). The WebAssembly [122] technology,
Wasm for short, is a W3C standard since 2019, maintained with contributions from
Apple, Google, Microsoft, Mozilla, and other companies. The idea behind Wasm is
to provide a simple assembly-like instruction set which can run efficiently within a
browser. At its core, Wasm includes a binary instruction format and a stack-based virtual
machine that supports functions and control flow abstractions like loops and conditionals.
Although browsers are the main target of Wasm, recent initiatives, like WebAssembly
System Interface [123] (WASI), norm the implementation of Wasm runtimes to support
the execution of Wasm code outside the browser with a set of APIs that provide
POSIX capabilities (e.g., file system, network, and process management). Some
examples of open-source and proprietary WASI-compliant runtimes are Wasmtime [121],
Wasmer [120], and WasmEdge [119].

Focusing on FaaS, Wasm provides a sandboxed runtime environment for functions,
akin to containers. However, while one needs to build a container (for the same function)
for each targeted architecture, the same Wasm binary can run on different architectures
thanks to the hardware abstraction provided by the Wasm runtime. Moreover, Wasm
binaries tend to be more lightweight than containers, thanks to the fact that they do

not need to include a pre-packaged filesystem.
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8.3 Platform Architecture

We present the principles and technologies behind Funless, its architecture and discuss

our design choices (trade-offs and limitations).
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10b. Request with Code
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9b. No Code Message

Figure 8.1: Architecture of the FunLess platform with the function flow from creation
to invocation.

The main principles behind the design of Funless are the simplicity of both
function development and platform deployment and the flexibility of hardware and
deployment automation. In particular, FunLess is independent of the underlying
deployment orchestrators (if any), which avoids potential overheads and allows users
to install the entire platform on resource-constrained, low-power edge devices. For the
implementation of the platform, we used Elixir [55], which is a functional, concurrent,
high-level general-purpose programming language that runs on the BEAM virtual
machine [107] (used by the Erlang language). Specifically, Elixir and the BEAM
allowed us to simplify the creation and deployment of a distributed application without
relying on container orchestration technologies, while retaining high performance, fault-
tolerance, and resilience (provided by the BEAM’s scheduler and lightweight processes,
famous for being optimised for concurrent and distributed systems).

We represent in Figure 8.1 both the components that make up the platform’s
architecture and the typical flow developers and users follow to create and invoke
functions. Architecture-wise, FunLess consists of mainly two components: the Core

and the Worker, which we detail in the next parts of this section. Briefly, the Core acts
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as an user-facing API to i) create, fetch, update, and delete functions and i) schedule
functions on workers. The Worker is the component deployed on every node tasked to
run the functions; in the remainder, we refer to these nodes as Workers. In addition to
these two components, FunLess includes a Postgres database to store functions and
metadata and Prometheus to collect metrics from the platform.%

FunLess is an open-source project and both its source code [37] and documenta-

tion [38] are publicly available.

Core. The Core is the controller of the platform. It exposes an HT'TP REST API to
the users, handles authentication and authorization, and manages functions’ lifecycle
and invocations.

Although the Core implements the main coordination logic and functionalities of
FunlLess, it is a lightweight component. For instance, on a Raspberry Pi 3B+ its local
bare-metal deployment (that includes the database, the monitoring system and the
underlying operating system and services) occupies ca. 600 MB of RAM when idle.

Functionality-wise, FunLess users create a new function by compiling its source
code to Wasm—using either the language’s default compiler (for Rust), an alternative
one (for Go), or an external tool (for JavaScript)—and uploading the resulting binary
to the Core, assigning to it a name. Users can group functions in modules and, when
uploading a function, they can optionally specify which module the function belongs to.
Moreover, users should also specify the amount of memory reserved for the execution
of the function.

Looking at the steps reported in Figure 8.1, once the Core receives the request
to create a function (1. Upload), it stores its binary in the database (2. Store).
Fetch, update, and deletion happen via the assigned function name. When the Core
successfully creates a function, it notifies the Workers (3. Broadcast) to store a local
copy of the function binary (4. Cache) compiled from the source code with the given
metadata (i.e., module and function names). This push strategy helps to reduce part
of the overhead of cold starts. Indeed, most FaaS platforms follow a pull policy where,
if the execution nodes do not have the function in their cache (e.g., it is the first time
they execute), they fetch, cache, and load the code of the function, undergoing latency.

The small occupancy of Wasm binaries makes it affordable for FunLess to employ a

6Resp. found at https://www.postgresql.org/ and https://prometheus.io.
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push strategy, helping to reduce cold-start overheads.

Since both the Core and the Workers run on the BEAM, these components
communicate via the BEAM’s built-in lightweight distributed inter-process messaging
system, avoiding the need (complexity, weight) for additional dependencies for data
formatting, transmission, and component connection.

When a function invocation reaches the Core (5. Invoke), the latter checks the
existence of the function in the database and retrieves its code (6. Retrieve). If the
function is present in the database, the Core uses the most recent metrics—we represent
the pushing of the data, updated every 5s by default, from Prometheus to the Core
with the dashed line in Figure 8.1—to select on which of the available Workers to
allocate the function (7. Request). The selection algorithm starts from the Worker
with the largest amount of free memory to the one with the smaller. If no worker has
enough memory to host the function, the invocation will return with an error.

After the Worker successfully ran the function (we detail this part of the workflow
in the section about Workers, below) it sends back to the Core the result (if any),
which the Core relays back to the user (10a/13b. Reply). If no Worker is available at
scheduling time or there are errors during the execution, the Core returns an error.

Another important feature of FunLess is that the Core can automatically discover
the Workers in its same network. This feature derives from Elixir’s libcluster library?,
which provides a mechanism for automatically forming clusters of BEAM/Erlang
nodes. Technically, when deployed on bare metal, FunLess follows the Multicast UDP
Gossip algorithm of the library, to automatically find available workers. Instead, when
deployed using Kubernetes, FunLess relies on the service discovery capabilities of the
container orchestration engine to connect the Core with the Workers, paired with the
“Kubernetes” modality of the library. Users can manually connect Workers from other
networks via a simple message (e.g., a ping) thanks to the BEAM'’s built-in capability
of connecting to other BEAM nodes.

Worker. The Worker executes the functions requested by the Core. The Workers
employs Wasmtime, a standalone runtime for Wasm and WASI by the Bytecode
Alliance [21]. The main reasons behind this choice come from the ease of integration,

amount of contributors, and security-oriented focus of the project. While Workers

"https://hexdocs.pm/libcluster/readme.html.
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integrate Wasmtime, we modelled their architecture to abstract away the peculiarities
of specific Wasm runtimes so that future variants can use different runtimes and even
extend support for multiple ones (possibly letting users specify which one to use). When
a Worker receives a request from the Core to execute a function (7. Request), it first
checks whether it has a cached version of the function’s binary (8. Retrieve). If that is
the case, it loads and runs the function’s binary and returns to the Core the result of
the computation (9a. Result). If the Worker does not find the code of the function
in its local cache, it contacts the Core (9b. No Code Message), which responds with
a request that carries the code of the function to the Worker (10b. Request with
Code). Upon reception, the Worker compiles the code, caches the binary for future
invocations (11b. Cache), loads it to run the function, and relays the result to the Core
(12b. Result). The above mechanism is an important advantage afforded by FunLess
for the edge case. Function fetching (if needed) transmits small pieces of binary code
(rather than heavyweight containers). Wasm binaries achieve the two-fold objective
of having Workers run functions on different hardware architectures (e.g., AMD64,
ARM) and allowing users to write their functions once, knowing that they will execute
irrespective of the hardware of the Worker.

Summarising, fetching and precompiling (if any, depending on cache status) consti-
tutes most of the “cold start” overhead in FunLess, which the platform greatly reduces
w.r.t. alternatives relying on containers (which are heavier both in terms of bandwidth
and memory occupancy).

Regarding caching and eviction, Workers set a threshold for the cache memory
(configurable at deployment time). If the storing of a new function exceeds that threshold,
the Worker evicts the function with the longest period of inactivity (invocation- or
update-wise). Additionally, Workers automatically evict functions if inactive for a set

amount of time (by default, 45 minutes).

Storage. FunLess relies on PostgreSQL as its primary storage solution. The storage
component maintains the state of the platform through a well-structured database
schema that reflects the hierarchical organization of functions and modules. The
database schema centers around two main entities: the module and function tables.
The module table serves as a logical container for grouping related functions, and storing

essential metadata such as the module name and associated user owner. The function
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table maintains records of all functions in the platform, storing both metadata and the
actual WebAssembly binary. Each function entry includes the compiled WebAssembly
binary stored as a binary large object (BLOB). This storage architecture supports the
efficient operation of the Core component, enabling quick retrieval of function binaries

during cold starts and providing robust persistence for the platform’s state.

Metrics. The architecture integrates a Prometheus service as its metrics collection and
monitoring system, enabling observability of the platform’s performance and resource
utilization. Prometheus implements a pull-based architecture where it periodically
scrapes metrics from the Worker components through exposed HT'TP endpoints. The
Workers report operational metrics including memory usage and CPU utilization.
These metrics are collected at configurable intervals (default: 5 seconds) and stored in
Prometheus’s time-series database, and the Core executes PromQL queries to retrieve
up-to-date performance metrics, which inform its scheduling decisions. The monitoring
system also facilitates platform maintenance and troubleshooting by providing historical
performance data and enabling the detection of potential bottlenecks or resource

constraints.

8.3.1 Design choices and limitations

Since a small resource footprint and simplicity (of architecture and computation) are
the driving principles behind FunlLess’ implementation, we favoured design choices
(both w.r.t. the components in the architecture and the internal implementation) that
introduced the least complexity while affording flexibility (of implementation and
deployment). Below, we discuss the main aspects that FunLess trades off for the above
benefits.

Language support. FunLess requires functions to be compiled to Wasm to execute
them. Moreover, for the Wasm binary to properly integrate with the Worker, it needs
to expose a specific function that acts as a “wrapper” for the user’s function. The
wrapper performs input and output (de)serialisation, and is not a standard feature of
Wasm modules. Therefore, FunLess provides a wrapper for each supported language—
depending on the language, a wrapper can be a library, macro or compiler extension.

While offering support for different languages is not essential for this presentation,
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FunLess already supports three languages: Rust, Go and JavaScript—and we planned
support for more in the future. Specifically, we chose Rust for its performance, its
growing developer community, and its ease of compiling to Wasm; similarly, Go is
famous for its performance and widespread use in cloud computing; lastly, JavaScript

is one of the most popular languages in software development.

Resilience.  Funless’s Core component, which acts as the sole scheduler and holder of
the platform’s state, is not replicated. On the one hand, this reduces the footprint of
the platform since users just need to deploy one Core. On the other hand, the Core
is a single point of failure of the architecture. The BEAM opportunely guarantees
fault-tolerance, so that the Core can recover from software crashes. However, the
platform would stop working properly if the hardware hosting the Core failed. On
software crashes, the only data lost are the invocations in transit (which the users would
notice as timed out), but the rest of the system would recover (normal functionality,
connections to the Workers, metrics, and storage), following the connection protocols

mentioned above.

Robustness. FunLess implements an at-most-once message relay policy, hence, lost
messages between the Core and Workers imply the failure of the invocation. Imple-
menting more robust semantics, e.g., at least once, would require the inclusion of a

message broker, increasing the load on nodes and the architecture’s complexity.

Retry policies. 'The Core does not implement retry policies. Thus, if a function’s
execution fails on the chosen Worker or that Worker becomes unresponsive, the Core
does not try to run the function on another worker. Implementing retry policies would
increase the complexity platform-wide. Specifically, the Core would need to keep track of
the state of function invocations, increasing the amount of coordination/messages with
the Workers. This extension would also increase the amount of data and interactions
with the database (needed to enforce the transactional management of functions’ state
and stave off the risk of losing this data due to crashes) and further complicate the Core’s
implementation to manage back-off strategies and execution time limits. Nonetheless,
we plan to implement retries with an “opt-in” approach (the BEAM already provides
some building blocks for the task, used to implement function timeouts and monitoring),

giving users the flexibility to choose between a lighter setup or increased reliability.
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8.4 Energy Consumption Comparison

We used FunLess to perform a comparative analysis of energy consumption in FaaS
platforms. To assess the efficiency in energy usage in these kinds of platforms, we
compared different implementations of the same use case: long-running containerized
services and serverless computing functions. For the serverless approach, we further
consider two different implementations: one using OpenWhisk (functions backed by

containers) and the other with FunLess (functions in WebAssembly).

8.4.1 Use Case

The use case involes a simple distributed architecture for a laboratory environment.
The architecture, depicted in Figure 8.2, consists of a data processing pipeline composed

of three main services.

Cache

| | Parser | I
| ) service i’ ) Store
: } Aggregator ’—b
Parser
Service Dashboard
Alerts

RAW Store

Figure 8.2: Architecture of the laboratory environment use case.

It starts from the edge devices, which include various sensors such as temperature,
pressure, and humidity sensors. These sensors collect environmental data from the
laboratory and send it to a Parser service. The Parser service acts as a data receiver,
formats the data into a standardized JSON package and sends it to the Aggregator
service. The Aggregator service collects the several JSON packages from the Parser
services (one for each sensor) and prepares the data for further processing into a bundle.
The data is sent to storage that a Dashboard service in the cloud can retrieve to provide
a real-time visualization of the sensors for monitoring purposes. Additionally, the data

can be stored for future analysis and retrieval.

CHAPTER 8. FUNLESS: LIGHTWEIGHT CLOUD-EDGE FAAS 119



8.4. ENERGY CONSUMPTION COMPARISON

The analysis focuses on the three core services, therefore they have been implemented
using the three different approaches: as containerized services, as OpenWhisk functions,
and as Wasm functions for FunLess. The implementation of the services simulate the
workload for benchmarking purposes. In the case of the containerized services the
implementation is in Elixir, chosen for its built-in distribution capabilities. The Parser
service performs a creation of a JSON object simulating the reception of data from a
sensor, and is configured to forward the data to the Aggregator service. The Aggregator
service simulates the aggregation of the data from the Parser services, and performs
a simple mathematical computation in a loop with 1 million iterations to introduce
deliberate processing delays to mimic real-world data processing scenarios. Finally, the
Dashboard service simulates the visualization of the aggregated data by generating an
HTML page. For the serverless implementations, we use JavaScript for the function
logic with follow an equivalent logic to the containerized services. For FunLess, the
relative functions are compiled to WebAssembly. Following this configuration, a request
to the Parser service triggers the usage of the Aggregator service as well, while the

Dashboard service can remain idle until it is accessed by a user.

8.4.2 Evaluation

Test Setup To monitor the energy consumption we used PowerAPI [35]. PowerAPI is
an open-source framework designed to monitor and analyze the energy used of software
systems. PowerAPI utilizes the HardWare Performance Counter (HWPC) Sensor to
track the power consumption of Intel CPUs and estimate the energy usage via two
different models: RAPL (Running Average Power Limit) formula and the SmartWatts
formula. The former is a feature provided by Intel processors that allows for the
measurement, of power from the HWPC sensor, while the latter is a software-defined
power meter based on the PowerAPI toolkit, which includes HWPC metrics together
with other system events. In our evaluation, we measured the consumed milliwatts
(mW) of each service for a fixed period of time, sampling the power consumption every
second. For the comparisons, we measured the energy consumption of the indivual
services for each approach. For the containerized service architecture we measured
the three core services, for OpenWhisk we measured the Controller, CouchDB, the

Invoker, Kafka, and Zookeeper services, and for FunLess we measured the Core, Postgres,
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Prometheus, and Worker services. Finally, we analysed the total energy consumption
of the three approaches by summing the measured milliwatts of the individual services.

The tests we conducted using Apache JMeter to send requests to the services.

Scenarios The tests were conducted on a single node equipped with an Intel i7
processor with 12 cores and 32 GB of RAM. The test runs included three scenarios:
i) idling, where no requests were sent to the services; i7) constant workload, where
requests were sent at a constant frequency (5000 requests with 5 req/s); i) spiked
workload, which involved bursts of requests potentially leading to cold starts for the

FaaS platforms.

Results
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Figure 8.3: Energy-usage sample distribution (idle scenario).

Idle Scenario Starting with the idle scenario, we measured the energy used for 5
minutes, totalling 300 samples. Figure 8.3 shows the plot-line distribution of the energy
consumption, and we report in Table 8.1 the aggregated average, standard deviation,
and median. The figure shows the percentage of samples that fall below a certain value.
FaaS platforms exhibit higher consumption due to the several long-running services that
compose them, with OpenWhisk having a higher baseline consumption than the other
two approaches (generally above 1000 mW), and the containerized services showing the

lowest consumption.
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Average (mW) | Std. Dev. (mW) | Median (mW)
Cont. Services 134.40 185.18 67.2
OpenWhisk 2001.97 807.89 1757.3
FunLess 493.84 520.02 308.98

Table 8.1: Summed energy usage of the three approaches in the idle scenario.

Constant Workload Scenario In this scenario we sent 5000 requests to the services
at a constant rate of 5 requests per second, obtaining a total of 1000 samples. As shown
in Figure 8.4, the energy consumption difference between the three approaches are less
pronounced. OpenWhisk still has the highest consumption, although in the best cases
it is similar to FunLess, around 2000 mW. The metrics reported in Table 8.2 reiterate
the trend, although FunLess shows more stability than OpenWhisk.
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Figure 8.4: Energy-usage sample distribution (constant workload scenario).

Average (mW) | Std. Dev. (mW) | Median (mW)
Cont. Services 1202.56 1235.59 858.35
OpenWhisk 2766.14 2065.93 2110.00
FunLess 2299.30 1630.66 1708.9

Table 8.2: Summed energy usage of the three approaches in the constant workload
scenario.
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Spike Calls Scenario The trend changes significantly in the spiked workload scenario.
This test was run with 1 request per second for 30 seconds, followed by a sudden increase
to 10 requests per second for the next 30 seconds. After that, the rate dropped back to 1
request per second for a minute, and finally, there was a spike to 100 requests per second

for another minute. Figure 8.5 plots the energy usage over time, showing the two spikes
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Figure 8.5: Energy-usage over time (spiked workload scenario).

as they occur. In this situation the FaaS platforms handled the change in workload
more efficiently with FunLess keeping a lower energy consumption than OpenWhisk.
OpenWhisk also managed the spikes relatively well, except for the first requests where
it started scaling the function containers and cold-starts significantly impacted energy
usage. On the other hand, the containerized services performed the worst, especially
during the second, more intense spike. Figure 8.6 shows the energy-usage sample
distribution for the spiked workload scenario. The summarized energy usage metrics

are reported in Table 8.3.

Average (mW) | Std. Dev. (mW) | Median (mW)
Cont. Services 1775.46 3054.79 681.25
OpenWhisk 1397.77 1278.01 965.00
FunLess 976.64 817.73 812.10

Table 8.3: Summed energy usage of the three approaches in the spiked workload
scenario.
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Figure 8.6: Energy-usage sample distribution (spiked workload scenario).

In this last test OpenWhisk showed a higher consumption when it started scaling
due to the cold-starts. The experiments show that the OpenWhisk Invoker reaches
a peak of 7.4 Watts when the cold-start triggering requests are sent. Moreover, each
function container consumes an average of 200 mW in this use case. In FunLess’ case,
the Worker service reaches a measured peak of 4.5 Watts with cold-starts requests.
Cold-starts for Wasm functions happen when the worker has to compile the Wasm
module and instantiate the function in memory for the first request. Since the Wasm
functions are executables handled by the Worker, there is no extra overhead for the

cold-starts.
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8.5 Conclusions

We presented FunLess, a FaaS platform tailored to respond to recent trends in serverless
computing that advocate for extending FaaS to cover private edge cloud systems,
including Internet-of-Things devices. The motivation behind the shift towards private
edge cloud systems includes reduced latency, enhanced security, and improved resource
usage. Unlike existing solutions that rely on containers and container orchestration
technologies for function invocation, FunLess leverages Wasm as its function-execution
runtime environment. The reason behind this choice is to reduce performance overheads
that can prevent resource-constrained devices from running FaaS systems. Wasm’s
fundamental feature exploited by FunLess is its lightweight, sandboxed runtime, which
allows the platform to run efficiently functions in isolation on constrained devices at the
edge. Thus, Wasm provides a portable, homogeneous way for developers to implement
and deploy their functions among clusters of heterogeneous devices (write once, run
everywhere), simplifying platform deployments, offering flexibility in deployment options,
and mitigating cold start issues. FunLess is also developed with support for APP and
its extension in mind, which opens up the possibility of having a built-in and deeply
integrated system for customizing scheduling behavior. It already provides support for

APP and will be extended to support the entire family of APP languanges.

As future work, we plan to integrate new versions of Wasmtime and, with it, native
support for HI'TP and other optimisations and features of the new releases and support
for the WASI runtime. Indeed, many current Wasm runtime implementations miss
features like interface types, networking support in WASI multi-threading, atomics, and
garbage collectors. Besides Wasmtime, other projects are developing new, optimised,
and extended Wasm runtimes, which FunLess can leverage to increase its performance
(and adapt it to different application contexts). For example, the support for garbage
collection can lead to improved JavaScript runtimes and increase the performance of

this kind of functions.

From the point of view of feature support, we deem supporting function composition
in FunLess both important for the users and beneficial for performance. Indeed, FunLess
currently supports function composition by publicly exposing the functions in a flow
and chaining them via their public endpoints. In the future, we propose to study how
technologies like FaaSFlow [67], Palette [2], AWS Step Functions [93], Azure Durable
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Functions [20] work and integrate them into FunLess. In particular, since FunLess uses
Wasm, an interesting direction is exploiting memory sharing to have Wasm functions
in a flow to avoid the overhead of network communication by letting chained Wasm
functions work on the same memory block to store and retrieve their data.

We also plan to improve the reliability of the platform, allowing the support of retry
policies for failed invocations, at-least-once message delivery, and the replication of the
Core components. Following the principles of simplicity and versatility that guided the
development of FunLess, we propose to tackle these extensions as optional features to
support flexible deployments, adaptable to the different application contexts (cloud,
edge, on resource-constrained devices).

Finally, we plan to ease the deployment of FunLess by supporting other tools like,
e.g., Nomad [78] and optimise the platform for edge devices by using, e.g., Nerves [77]

to further minimise the overhead on bare-metal deployment.
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Chapter 9
Discussion and Conclusion

In this chapter, we discuss the positioning of the work presented in this thesis with
respect to the state of the art and related work, and conclude by drawing final takeaways

and future research directions.

9.1 Related Work

The industrial adoption of Serverless is spreading [14] and it is a hot research topic due
to its “untapped” potential [13, 46, 47, 54]. Cloud-edge deployments for FaaS platforms
are gaining traction, as they ease the development of applications that need to span
multiple locations and devices, while retaining the benefits of Serverless Computing
(such as event-driven function invocations and automatic scaling). In this context,
function scheduling becomes an important aspect to consider, and numerous research

efforts have been dedicated to improving it.

Serverless Functions Optimizations One of the main approaches explored in
the literature to improve Serverless performance through function scheduling comes
from improving the warm- vs cold-start of functions [46, 54]. Those techniques mainly
regard containers re-utilisation and function scheduling heuristics to avoid setting up
new containers from scratch for every new invocation. However, other techniques have
been proposed in the literature. Mohan et al. [74] present an approach focused on the

pre-allocation of network resources (one of the main bottlenecks of cold starts) which
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are dynamically associated with new containers. Abad et al. [1] present a package-aware
scheduling algorithm that tries to assign functions that require the same package to the
same worker. Suresh and Gandhi [109] present a function-level scheduler designed to
minimise provider resource costs while meeting customer performance requirements.
In this direction of improving scheduling by reducing cold starts, Shahrad et al. [97]
introduce an empirically-informed resource management policy that mediates cold starts
and resource allocation. Silva et al. [100] propose a solution based on process snapshots:
when the user deploys the function, they generate/store a snapshot of the process that
runs that function and, when the user invokes the function, they load/run the related

snapshot.

Topology-awareness One work close to tAPP is by Sampé et al. [91], who present
an approach that allocates functions to storage workers, favouring data locality. The
main difference with our work is that the one by Sampé et al. focusses on topologies
induced by data-locality issues, while we consider topologies to begin with, and we
capture data locality as an application scenario. Banaei et al. [15] introduce a scheduling
policy that governs the order of invocation processing, depending on the availability
of the resources they use. Shillaker and Pietzuch [99] use state by supporting both
global and local state access, aiming at performance improvements for data-intensive
applications. Similarly, Jia and Witchel [52] associate each function invocation with a
shared log among serverless functions. Additionally, approaches like Pheromone, by
Yu et al. [127], combine local schedulers, which locally execute function workflows, and
global coordinators, which offload the functions when local executors are busy. The
local schedulers, combined with worker-specific shared-memory object stores, allow
functions to rapidly exchange data without going through external storage.

Looking at other work that uses localities to improve FaaS performance, Lamb-
data [110] is an OpenWhisk extension that improves its performance considering locality
and cold starts. Lambdata builds on top of both the OpenWhisk’s Controller and
Invoker components to allow users to annotate functions with explicit data intents, spec-
ifying which buckets they intend to use for reading and writing. Lambdata’s approach
is complementary to ours since APP (and its extensions) allows for more fine-grained
control over function-Invoker assignment, while Lambdata infers such assignments

from annotations. Besides resource re-utilisation, other approaches tackle the problem
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of optimising function scheduling with new balancing algorithms. Steint [105] and
Akkus et al. [4] proposed new algorithms for Serverless scheduling, respectively using a
non-cooperative game-theoretic load balancing approach for response-time minimisation

and a combination of application-level sandboxing with a hierarchical message bus.

Function workflows Morevoer, recent developments in FaaS involve the definition
and management of function compositions or workflows, exemplified by AWS Step
Functions [93] and Azure Durable Functions [9]. The fundamental concept beyond
these advancements is to allow users to specify workflows by combining functions
with branching logic, parallel execution, and error-handling capabilities. Then, the
orchestrator or controller of the platform uses the defined workflow to oversee function
executions, managing aspects such as retries, timeouts, and error resolution. We consider
aAPP to be orthogonal to the function composition/workflows. Indeed, assuming a
workflow is available, the orchestrator developed for handling serverless workflows should
be extensible with an aAPP-like script to specify where to schedule the functions within
a given workflow. Future work on this integration would support the enforcement
of even more expressive policies than aAPP, like preventing function instances of the
same workflow from sharing nodes. Steinbach et al. model function composition with
TppFaaS [106], where they use Temporal Point Processes. They require no explicit
locality requirements or configurations, and the user mostly relies on the accuracy of the
underlying model. While the authors only tested their proposal in terms of accuracy
over generated trace datasets—i.e., they did not apply it to locality issues—we see their
approach interesting for applications for predictive scheduling and scaling. Kotni et
al. [60] present an approach that schedules functions within a single workflow as threads
within a single process of a container instance, reducing overhead by sharing state among
them. Baldini et al. [14] demonstrate that Serverless function composition requires
a careful evaluation of trade-offs, identifying three competing constraints that form
the “Serverless trilemma”, i.e., that without specific run-time support, compositions-
as-functions must violate at least one of the three constraints. To solve the trilemma,
they present a reactive core of OpenWhisk that enables the sequential composition of
functions. Inspiring approaches in this direction are by Pubali et al. [29], who present a
serverless platform where developers can constrain the information flow among functions

to avoid attacks due to container reuse and data exfiltration, and by Dehury et al. [33],

CHAPTER 9. DISCUSSION AND CONCLUSION 129



9.1. RELATED WORK

who propose an extension of the TOSCA standard to control the flow of data inside

Cloud applications with serverless components.

Multi-cloud and federated FaaS Beyond single-cloud deployments—i.e., which
require coordination between different providers—we mention xAFCL [87] and SkyP-
ilot [125] (although the latter is not directly related to FaaS). xAFCL [87] handles
invocations over several FaaS providers, to optimise the execution of function work-
flows by estimating the duration of each function and forwarding its invocation to
the appropriate provider. SkyPilot [125] follows a similar approach, but it acts as
middleware between the user and several cloud providers, to dynamically select the
appropriate target for requests according to cost, latency, and security requirements.
Both xAFCL and SkyPilot work at a higher level of abstraction compared to our
APP family of languages, intervening between the user and the target platform, and
one could follow their approach to coordinate work between APP-based OpenWhisk
and commercial solutions. Also an interesting domain of application is that of Sky
Computing [108], where brokers handle the placement and oversee the execution of
cloud jobs over multiple cloud providers. In the case of FaaS, we mention funcX [25],
which is a federated serverless solutions that allows users to register their infrastructure
as part of the platform’s deployment and run their functions on any node they are
authorised to access. While OpenWhisk is not suitable for such an approach (since
it has no notion of federation), one can apply tAPP to this domain by employing
topology-aware scheduling policies when users wish to run a function on a certain
endpoint or group of endpoints. We also mention a work by Nardelli and Russo [76],
which explores the concept of a decentralised serverless platform, where each node
acts as entrypoint, and can either compute functions locally or offload them to other
nodes. The scheduling in this case is completely automatic, and relies on data access
probability estimates to predict the optimal node for function invocation. While tAPP
is based on a more centralised architecture, it can be easily extended to target zones
directly, without relying on a separate controller, to integrate user knowledge with the

existing estimates.

Affinity-awareness Proposals in the direction of affinity-awareness in Serverless

applications come from the neighbouring area of microservices—the state-of-the-art
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style for cloud architectures. Baarzi and Kesidis [10] present a framework for the
deployment of microservices that infers and assigns affinity and anti-affinity traits
to microservices to orient the distribution of resources and microservices replicas on
the available machines; Sampaio et al. [90], who introduce an adaptation mechanism
for microservice deployment based on microservice affinities (e.g., the more messages
microservices exchange the more affine they are) and resource usage; Sheoran et al. [98],
who propose an approach that computes procedural affinity of communication among
microservices to make placement decisions. Looking at the industry, Azure Service
Fabric [70] provides a notion of service affinity that ensures that the replicas of a service
are placed on the same nodes as those of another, affine service. Another example
is Kubernetes, which has a notion of node affinity and inter-pod (anti-)affinity to
express advanced scheduling logic for the optimal distribution of pods [64]. Overall, the
mentioned work proves the usefulness of affinity-aware deployments at lower layers than
FaaS (e.g., VMs, containers, microservices) and compels a discussion on the interplay
between aAPP and TaaS/CaaS-level affinity. Another interesting proposal, Palette [2],
uses optional opaque parameters in function invocations to inform the load balancer of
Azure Functions on the affinity with previous invocations and the data they produced.
While Palette does not support (anti-)affinity constraints, it allows users to express
which invocations benefit from running on the same node. We deem an interesting
future work extending aAPP to support a notion of (anti-)affinity that considers the

history of scheduled functions.

Cost-awareness Regarding cost-awareness, to the best of our knowledge, ours is the
first work that uses cost equations of functions to govern serverless scheduling. Some
of the mentioned works focus on applying static analysis techniques for optimising
serverless and cloud computing. For instance, Wang et al. [116] use static control and
data flow analysis to enhance performance modelling of serverless functions, achieving
accurate predictions. Obetz et al. [79] use service call graphs for static analysis of
serverless applications, enabling various program analysis applications. Looking at
the infrastructure underlying serverless, Garcia et al. [42] present a static analysis
technique for computing upper bounds of virtual machine usage in cloud environments,
using a technique similar to the one presented in Section 7.3. The inference of cost

equations and their computation with cost analyzers has been also used for estimating
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the computational time of programs in an actor model [65] and for analyzing updates of
smart contracts balances due to transfers of digital assets [66]. Static-time techniques are
also proposed in the field of Implicit Computational Complexity where type inference
is used to derive (computational) costs of programs in a direct way, without resorting
to cost analyzers. Similar to our approach, the techniques are applied to restricted
languages where the cost analysis is decidable (e.g., loop programs as in [17]). It is
worth to notice that, when such techniques are applied to cAPP, the resulting costs are
less precise than those computed with cost analysers. One simple example is Listing 7.1,
when computed according to [17], whose cost is maz(P,B) because, in loop programs,
conditionals are always nondeterministic. Besides static analysis, other works used
dynamic runtime analyses to visualise measure resource costs [115]. These tools operate
by injecting instructions into a program or modifying its runtime to instrument real-time
monitoring for collecting information about the behaviour of the program. Contrary
to static analyses, dynamic ones requires modifying the runtime of the platform to
collect the data needed by the analysis. Moreover, it requires the execution of the
programs/functions over an exhaustive set of inputs, which makes the application of

the technique more impractical (and could provide a partial “view” of the cases).

Cloud-Edge Serverless Platforms Looking at the work from the literature most
closely related to FunLess, we have several proposals targeting edge and cloud scenarios.
From the review by Cassel et al. [23], most of the solutions (86%) for IoT/edge
rely on some container technology while promising technologies like WebAssembly
and Unikernels represent only 2-3% of the proposals. Focusing on serverless platforms
supporting Wasm runtimes, Hall and Ramachandran [45] are among the first to advocate
WebAssembly as the enabling technology to avoid the overhead of containers, which
substantially weigh on the limited hardware resources of edge computing environments.
The authors presented a serverless platform that runs WebAssembly code within the V8
JavaScript engine for execution and sandboxing of functions. Differently from FunLess,
they use a NodeJS runtime that embeds V8 for the running Wasm code. As the authors
note [45], the nesting of these layers takes a conspicuous toll on the performance of
the system. Gadepalli et al. [41] use WebAssembly to run and sandbox serverless
functions. They target only single-host deployments, requiring the deployment of the
entire platform on one node only. Moreover, they do not support WASI [123], thus
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making their system potentially less portable. Gackstatter et al. [40] propose WOW,
a WebAssembly-based runtime environment for serverless edge computing integrated
within the Apache OpenWhisk platform. The authors introduce a new layer between
OpenWhisk and different Wasm runtimes which enable the execution of Wasm functions.
Compared to FunLess, WOW requires the deployment of a full installation (of a custom
version) of the OpenWhisk platform which precludes the installation of the controller
to low-power and memory-restricted edge devices.! Lucet [68] was used by Fastly to
run Wasm on their commercial Compute platform. Lucet translated WebAssembly
to native code, which was then executed using Lucet’s runtime also on edge devices.
Unfortunately, Lucet has reached end-of-life and is no longer maintained. Cloudflare
Workers [28] is also a commercial serverless platform that supports the possibility of
defining functions in Wasm and has native support for WASI since 2022.2 Although
the runtime part of this project has recently been made open-source,® the serverless
platform is proprietary and closed-source. It is worth mentioning the work by Shillaker
and Pietzuch [99] that, tangential to our proposal, concerns a Wasm-based serverless
runtime that uses Wasm to achieve state sharing across functions—they allow the
execution of functions that share memory regions in the same address space for possible
performance benefits. On a similar note, Zhao et al. [131] present an OpenWhisk
extension for confidential serverless computing that integrates a Wasm runtime. The
authors propose a solution to construct reusable enclaves that enable rapid enclave
reset and robust security to reduce cold start times. Although these kinds of proposals
are orthogonal to Funless, we see them as future optimisations that the usage of a
Wasm function runtime can unlock for FunLess. Kjorveziroski and Filiposka [58] focus
on serverless orchestration using Wasm and introduce a variant of Kubernetes that
can orchestrate Wasm modules that are executed without containers. Interestingly,
also Kjorveziroski and Filiposka report that Wasm tasks enjoy faster deployment times
(two-fold) and at least one order of magnitude smaller artefact sizes, while still offering
comparable execution performance. Finally, Tzenetopoulos et al. [112] analyse the

performance of Lean OpenWhisk, an edge-focused variant of the Apache OpenWhisk

We tried to deploy WOW on a multi-host cloud configuration for comparison purposes. Unfortu-
nately, the deployment failed (the platform relies on an old and modified version of OpenWhisk that is
not supported anymore, i.e., the last commit in the project is older than 2 years).

2https://blog.cloudflare.com/announcing-wasi-on-workers

3https://blog.cloudflare.com/workerd-open-source-workers-runtime/
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serverless platform. Their variant of the platform coalesces the scheduling and execution
components in a single entity, removes the message broker (Apache Kafka) from the
deployment, and introduces changes to reduce OpenWhisk’s overhead, making it better

suited for resource-constrained devices.

9.2 Conclusions

The primary objective of this thesis was to bridge the gap between the abstraction
provided by serverless platforms and the complexity of modern distributed systems
to enable more efficient function scheduling and better resource usage. In order to
achieve this goal, we proposed several works addressing function-execution scheduling
optimisation. We first proposed a methodology that provides developers with a declar-
ative language called APP to express scheduling policies for functions. We extended
the scheduler of OpenWhisk to use APP-defined policies and empirically tested our
extension on a use case that combines IoT, Edge, and Cloud Computing, contrasting
our implementation with a naive one using the vanilla OpenWhisk stack to achieve the
same functional requirements. We then extended this language in several directions
to explore different applicable constraints. We introduced tAPP, as a topology-aware
APP where scripts can restrict the execution of functions within zones to help improve
the performance (e.g., by exploiting data or code locality properties), security, and
resilience of serverless applications. We again validated our approach by presenting a
prototype tAPP-based OpenWhisk, which we used to demonstrate that tAPP allows
for an easy deployment of cloud-edge serverless systems with typical topology-aware
scheduling constraints that cannot be guaranteed by standard vanilla OpenWhisk
deployments. We then presented an affinity-aware APP; aAPP, with an implementation
and validation to effectively tackle the challenge of enforcing affinity and anti-affinity
constraints in a FaaS platform. Our approach involved creating a aAPP-based Open-
Whisk, which we used to demonstrate the effectiveness in reducing latency and tail
latency in particular scenarios. These findings underscore the importance of considering
affinity requirements, particularly in multi-zone execution contexts. As a last extension,
we introduced a framework that lightens the burden on the shoulders of users by
deriving cost information from the functions, via static analysis, into a cost-aware

variant of APP that we call cAPP. We demonstrated that one can over-approximate, at
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scheduling time, the overall latency endured by the invocation of a function f when
running on a given worker and use this information to govern its scheduling. The
extension adds new syntactic fragments to APP so that programmers can govern the
scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions
on nodes whose execution time would exceed a maximal response time defined by
the user (e.g., enforcing quality-of-service constraints). The main technical insights
behind the extension include the usage of inference rules to extract cost equations
from the source code of the deployed functions and exploiting dedicated solvers to
compute the cost of executing a function, given its code and input parameters. As
a final contribution, we presented FunLess, a FaaS platform tailored to respond to
recent trends in serverless computing that advocate for extending FaaS to cover private
edge cloud systems, including Internet-of-Things devices. The motivation behind the
shift towards private edge cloud systems includes reduced latency, enhanced security,
and improved resource usage. Unlike existing solutions that rely on containers and
container orchestration technologies for function invocation, FunLess leverages Wasm as
its function-execution runtime environment. The reason behind this choice is to reduce
performance overheads that can prevent resource-constrained devices from running
FaaS systems. Wasm’s fundamental feature exploited by FunLess is its lightweight,
sandboxed runtime, which allows the platform to run efficiently functions in isolation
on constrained devices at the edge. Thus, Wasm provides a portable, homogeneous
way for developers to implement and deploy their functions among clusters of het-
erogeneous devices (write once, run everywhere), simplifying platform deployments,
offering flexibility in deployment options, and mitigating cold start issues. The sum
of these features makes FunlLess a greener FaaS platform as evidenced by the results
of our energy-consumption comparison. Finally, FunLess also features support for
APP and cAPP as a first-class citizen, allowing developers to leverage the capabilities
of customizable scheduling. By addressing these areas, this thesis contributes to the
broader goal of making serverless computing more adaptive, efficient, and applicable to

a wide range of use cases.

CHAPTER 9. DISCUSSION AND CONCLUSION 135



9.2. CONCLUSIONS

9.2.1 Future Work

We would like to investigate the separation of concerns between developers and providers,
trying to minimise the information that providers have to share to allow developers
to schedule functions efficiently, while, at the same time, hide the complexity of their
dynamically changing infrastructure. We also plan to expand FunLess support to the
other versions of the APP language, i.e. tAPP and aAPP, and to extend the range of
tests both to include other aspects of locality (e.g., sessions) and specific components of
the platform. Regarding tests, we remark on the general need for more platform-agnostic
and realistic suites, to obtain fairer and thorough comparisons. We started to bench-
mark FunLess against existing serverless platforms and several deployment scenarios,
considering private, public, and mixed cloud-edge configurations [86]. These preliminary
experiments show that, particularly in edge scenarios, FunLess outperforms alternatives
like OpenFaaS, Fission, and Knative in terms of memory footprint without substantial
performance degradation. We also aim to extend our energy usage comparison work
to a comprehensive study on energy consumption in FaaS platforms. This involves
extending our benchmarks to include a wider range of platforms and configurations, and
developing a more detailed understanding of the energy profiles of different workloads.
By doing so, we aim to provide more accurate and actionable insights into the energy
efficiency of serverless computing, which is increasingly important in the context of
sustainable computing. Finally, we would like to support DevOps in the optimization
of their serverless applications by studying and experimenting with heuristics and
Al-based mechanisms that profile applications and suggest optimal policies. Similarly,
scheduling policies could benefit from interactions with frameworks able to specify
function compositions, e.g., Yussupov et al. [129] recently introduced a method for
modelling and deploying serverless function orchestrations which one could use to
extract execution dependencies among functions and inform the synthesis of policies

that optimise the overall execution of compositions.
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