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Abstract: 

The thesis presents the results of a research activity on the operation of distribution system with the 

presence of flexibility service providers and renewable energy communities.  

The first part of the thesis focused on flexibility operations in the electric vehicle (EV) parking lots 

(PLs), i.e. parking lots equipped with several EV charging stations. The operation of the parking lot 

is affected by significant uncertainties regarding the number and characteristics of the vehicle present 

in the parking lot. For day-ahead scheduling, a multistage stochastic approach have been developed 

and adapted to the calculation of the maximum flexibility levels that the parking lot can offer to the 

distribution system operator (DSO). To reduce the computational time, k-medoid clustering procedure 

is applied. Flexibility is expressed in terms of the PL power-adjustment capacity in response to the 

DSO request, with the possibility of energy recovery in order to guarantee the fulfilment of the EV 

charging service. The DSO optimizes the voltage profile of the distribution grid using PL power 

flexibility and other distributed energy resources (DERs). A multi-objective decentralized 

formulation was used for the optimization and the results are presented for 24-hour operation of the 

IEEE 123 node test feeder with four PLs and 15 DERs, whose reactive power output can be varied. 

The results show the improvement achieved in terms of the voltage profiles compared with the case 

without any voltage optimization. 

The second part of the study includes the analysis of the provision of reactive power services by 

energy communities (ECs) in medium voltage distribution networks. The reduction of the 

penalization for low power factor operation is obtained by considering both the exchanges of active 

and reactive among prosumer participants of the community. The analysis is focused on renewable 

generation provided by photovoltaic (PV) units, equipped by battery energy storage systems (BESS). 

The optimization of the voltage profile in the network is also assisted by the presence of transformers 

equipped with on-load tap changers (OLTC). Different test cases have been considered, including 

some feeders of the distribution network of the city of Modena connected to the same high voltage- 

medium voltage substation. The research findings demonstrate that ECs can significantly contribute 

to the optimization of reactive power services by coordinating the operation of distributed generation. 

By leveraging the flexibility of these resources, ECs can also provide reactive power support to the 

grid, reducing the need for the installation of new reactive power compensation devices. 

Furthermore, the study explored the impact of multiple ECs operating within the same distribution 

network.  The pricing of the transaction within ECs is a critical aspect investigated in this thesis. The 

research proposes a methodology for determining fair and efficient prices based on shadow prices of 

balancing constraints. This approach ensures that the benefits are distributed among community 
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members. In terms of reducing energy procurement costs, the analysis demonstrates that ECs can 

offer significant economic advantages to their members. These advantages reduce with the increase 

of the number of communities in the same network.  
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Chapter 1. Introduction 

Electricity distribution systems are undergoing significant transformations, with new operating 

methods emerging to boost renewable energy production, mitigate climate change impacts, and 

support sustainable development. In various regions worldwide, new regulatory frameworks are 

encouraging greater involvement of end users in electricity markets. Initiatives like energy 

communities and peer-to-peer electricity trading between neighbors have become valuable 

opportunities in Europe and beyond. These energy exchanges and communities rely heavily on 

advanced metering infrastructure, storage systems to balance consumption and renewable energy 

production, and efficient optimization algorithms. Moreover, energy communities are anticipated to 

offer grid services, such as active and reactive power balancing, to the distribution and transmission 

networks they are linked to. Notable regulatory frameworks include the EU Directive on common 

rules for the internal electricity market (EU 2019/944) and the updated Renewable Energy Directive 

(2018/2001/EU), both enhancing the role of self-consumers and renewable energy communities. For 

instance, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) has 

launched a call for projects on local ancillary services (resolution August 3, 2021 352/2021/R/eel), 

complementing an earlier resolution (May 5, 2017 300/2017/R/eel) on global ancillary services 

acquired by the transmission system operator within the electricity market regulation (document July 

23, 2019 322/2019/R/eel). Local microgrids and renewable energy communities, using qualified 

generation and storage units, reactive power devices, and demand response techniques, are expected 

to provide these services. Another example involves communities managing sections of the public 

network connecting participants, as outlined in the ARERA resolution 120/2022/R/eel, effectively 

acting as a distribution system operator (DSO) and delivering services to both connected users and 

the transmission system operator (TSO). 

The research activity presented in this thesis relates to the analysis of the flexibility services that can 

be provided by single users and collectives or communities in order to facilitate the use of renewable 

resources.  

Specifically, the first part of the thesis focuses on flexibility services that can be provided by Electric 

Vehicle (EV) parking lots that contain a large number of EV charging stations. The calculation of the 

flexibility margin required for the participation in the local market takes into account the uncertainties 

associated with the presence of the vehicles in the parking lot, the initial charge in their batteries, and 

the parking duration. The model is implemented as stochastic optimization. 
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The second part of the thesis focuses on the provision of active and/or reactive power compensation 

services by a single or multiple energy communities connected to the same medium voltage 

distribution network. The aim of the optimization problem is the reduction of both the procurement 

costs and the penalties due to low power factor operation. Moreover, a procedure for the calculation 

of the maximum flexibility margins, both upward and downward, has been implemented.  

For the optimization calculations, the models are implemented as linear programming (LP), mixed 

integer linear programing (MILP), or (mixed integer) quadratic constant programing (QCP, MIQCP) 

depending on the specific purposes. 

 

1.1. Topics and specific contributions of the thesis 

As mentioned, the research activity addresses two main topics.  

The first topic focuses on the calculation of the flexibility margins of EV parking lots, and their use 

by the DSO for voltage profile optimization. 

The second topic is the analysis of the reactive power compensation in energy communities and the 

provision of reactive power flexibility services. Moreover, the presence of multiple communities in 

the same medium voltage distribution network has been analyzed, considering the network 

constraints.  

Here below, there is a summary of the aims, methodologies, and contributions of the thesis. The 

literature review of each topic is included in the subsequent chapters of the thesis, along with a full 

description of the developed models, the case studies, the tests, and the obtained results. Part of the 

case studies refer to real feeders of the medium voltage distribution network of the city of Modena. 

The data collection, the operational criteria analysis, and the specific application of the developed 

model have been carried out during the six months research period spent at the offices of INRETE 

Distribuzione Energia (Hera Group). 

1.1.1. EVs parking lots flexibility services 

This topic deals with the development of the model that captures the aggregated flexibility potential 

of parking lots equipped with multiple EV charging stations. The model is incorporated into a 

stochastic optimization procedure to predict the maximum flexibility margins of the parking lot in 

advance. The EV aggregator overseeing the charging stations provides intra-day ancillary services to 



19 

 

the grid by defining the range within which power consumption can be adjusted, either increasing or 

decreasing. These power variations are made in response to requests from the DSO to maintain 

adequate EV charging levels. The effectiveness of the model is evaluated for parking lots with 

different numbers of charging stations and different daily profiles of EV arrivals and departures. 

In order to reduce the number of scenarios, k-medoid clustering based is adopted. The implemented 

LP stochastic optimization is structured in 4 stages allowing the update of the decisions every 6 hours 

during the day. The objective function includes both procurement costs and the reward to the vehicle 

owners for the use of the energy already stored in their vehicles through vehicle-to-vehicle (V2V) 

exchanges. The upward and downward margin calculation takes into account the energy recovery in 

the periods following the flexibility provision. 

As mentioned, the model for the calculation of the flexibility margins is tested for different parking 

lots with several charging stations. It considers the flexibility interval of a single 15-min period, 2 

periods, and 3 consecutive periods.  

Overall, this developed procedure for the stochastic optimization of EV parking lots and flexibility 

margin calculations ensures that charging requirements are met. The optimization model aggregates 

EV battery behavior and formulates the problem as a linear one, making it computationally efficient 

even for large parking lots. It accounts for losses associated with grid charging and vehicle-to-vehicle 

energy exchanges enabled by bidirectional charging stations. To enhance the flexibility of the EV 

parking lot, power reductions and increases in consecutive periods are considered while ensuring 

schedule feasibility, by including a recovery after the interval when flexibility is requested. This 

approach operates as a day-ahead evaluation with a 4-stage stochastic process, updating the decisions 

every 6 h to reflect real-time EV data. Numerical tests on parking lots of various sizes demonstrate 

the effectiveness of the method.  

In framework of a collaboration with the power system group at the Univ. of Cassino and of the 

University of Campania, the activity also results in the development of an optimization model for 

voltage control in a distribution network, leveraging the flexibility offered by parking lots equipped 

with multiple EV charging stations.  

The optimization method for the use of EV parking lot flexibility for voltage profile optimization 

includes two major parts: calculation of the EV parking lot flexibility margins by each parking lot 

operator, and the voltage optimization carried out by the DSO. As shown in Figure 1, at the beginning 

of each 6-hour stage, the parking lot operator provides the DSO with reference power absorption 
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profiles and the corresponding up and down flexibility margins. The DSO performs real-time voltage 

profile optimization and returns power change requests and energy recovery (either up or down) to 

the PL every 15 minutes. 

 

Figure 1 Procedure scheme. 

The optimization is achieved by defining an objective function that minimizes the sum of voltage 

deviations from a reference value, constrained by a linearized set of power flow equations. The 

approach involves decoupling networks via pilot nodes and employing a linearized power flow 

model, with optimization based on a rolling horizon approach to accommodate demand recovery. A 

daily budget constraint is also considered for the cost of active and reactive power flexibility. To 

deliver ancillary services to the grid, the EV aggregator managing the charging stations can adjust 

intra-day schedules within defined flexibility margins. This ensures adequate EV charging levels 

through a stochastic optimization method. 

Applying this method to a 123-bus test network demonstrated the effectiveness of these flexibility 

services in voltage optimization. 

1.1.2. Flexible operation of energy communities 

In this thesis, the energy community is considered as a framework to allow direct transactions between 

the participants to the community, without the inclusion of incentives. The members of the community 

are connected to feeders of the same substation that provide the connection to the transmission 

network. As, shown in Figure 2 the members can transact both active and reactive power. Active 

power transactions allow to reduce the costs or increase the revenues with respect to the transactions 

with the retailer. Reactive power transactions allow to reduce the penalties associate to low power 

factor operation, considering that the reactive power of each user is partially compensated by the 

reactive power transaction with other members of the same community connected to feeders fed by 

the same high voltage-medium voltage transformer. Although Figure 2 shows a single retailer and a 
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single, in the considered framework, the members of the community may freely have a contract with 

different retailers, belong to one community or not, and multiple communities can be present in the 

same distribution network. 

 

Figure 2 Procedure scheme. 

The optimization model considers a day-ahead scheduling problem for energy resources and control 

means. The optimization horizon is 24 hours (a day) with a 15-minute resolution. The objective 

function minimizes the electricity procurement costs for the entire community, considering known 

tariffs for active power exchange with the external reseller and incorporating penalties for participants 

whose power factor falls below a specified limit. A deterministic day-ahead scheduling problem is 

considered assuming the forecast of load and photovoltaic production known without uncertainties. 

The formulation of the optimization problems and the solution computational requirements are 

suitable for the inclusion in a stochastic approach.  

The analysis of the presence of multiple independent communities in the same distribution network 

(as allowed by regulation) has been carried out by the development of a specific optimization model. 

Each community minimizes its energy procurement costs through a day-ahead scheduling of internal 

transactions among its members and available energy resources, including battery energy storage 

(BES) systems. Members of the same community may be served by different electricity retailers. 

Each retailer has different contract terms. Internal transactions are priced using the shadow prices of 

the balancing constraints between the power provided by the electricity retailer and the power 

received by other community members. The price of the energy transactions between community 

members are determined as shadow prices of balancing constraints. In addition, there is an 
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optimization problem for the DSO, which takes into account the network constraints and minimizes 

the violations of the limits of the branch currents and the bus voltages.  

Other than several test cases available in the literature, the main case study used for the application 

of the approaches is based on the part data of a real distribution network obtained in the framework 

of the collaboration with INRETE DISTRIBUZIONE as a part of the internship. The network, located 

in Modena, Italy, includes 5 real MV feeders connected to a 132/15 kV substation. The substation is 

equipped with a 50 MVA transformer and two 25 MVA transformers, all with onload tap changers, 

OLTCs. The system includes 134 buses and branches. Three electricity retailers (Pr1, Pr2, and Pr3) 

with different price profiles are considered. The load and generation profiles are obtained from the 

DSO records at each 15-minute interval, separately for each MV node, for three days in January and 

in July 2023. 

The day-ahead optimization procedure takes into account the network constraints and provides the 

prices of the internal transactions as the shadow prices of the power balancing constraints for each 

user. In addition, the procedure also allows reactive power exchanges between members of the same 

community other than active power. The results show the effectiveness in reducing both energy 

procurement costs and noncompliance costs for each community. The sensitivity analysis on the 

number of communities shows that as the number of communities increases, cost reductions and 

penalties decrease, approaching the case without internal transactions within communities.  

The widespread use of photovoltaic (PV) systems reduces local active power consumption during 

daylight hours and increases the problem of low power factor operation. The research activity 

considers the contribution of reactive power exchange among community members to mitigate low 

power factor penalties, which is a typical issue when using distributed generation, especially PV. The 

up and down margins of reactive power flexibility with respect to the reference profile are calculated 

for both users and the community, assuming a fixed reward. The flexibility margins can be used by 

the DSO for voltage reactive power optimization or offered to the TSO at the DSO-TSO interface. 

By enabling reactive power transactions, the implemented procedure not only reduces overall costs, 

but also allows the community to provide reactive power flexibility services to the grid. The results 

consistently show that using reactive power compensation resources to offset low power factor 

penalties and provide flexibility services has a minimal impact on the community's energy 

procurement costs, making the approach economically favorable. The proposed computational 

models demonstrate reasonable time efficiency, making them well suited for integration into 
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stochastic procedures that account for uncertainties in PV production, load consumption profiles, and 

the probability of DSO/TSO requests for reactive power adjustments throughout the day. 

1.1.3. Structure of the thesis 

Chapter 2 is devoted to description of the implemented modo for the flexibility exploitation of parking 

lots equipped with several charging stations. In order to limit the computational effort the batteries of 

the cars connected to the charging stations are aggregated. However, the model includes the 

evaluation of the vehicle to vehicle (V2V) energy transfers. Therefore, these transfers can be 

constrained to zero if bidirectional charging stations are not available and a revenue for the vehicles 

owner can be included to compensate for the decrease of battery health due to charging-discharging 

cycles. The chapter also describes the coupling between the EV parking lot flexible operation with of 

voltage optimization procedure of the distribution network. 

Chapter 3 is devoted to model of the energy communities. The chapter describes the assumptions and 

the regulatory framework. The energy community is represented as an agreement among final users 

and prosumers that allows direct power exchanges using the public distribution network. The chapter 

illustrates the relationships with the community members and the relevant resellers, taking into 

account the freedom for each the end-users to leave or join the community and chose a different 

reseller than the one of other community members. The analysis does not consider incentives, seen 

as a temporary support for first establishment of this type of agreements as in the Italian scenario. 

The chapter also deals with the analysis of the effects of the number of communities sharing the same 

distribution network and a mechanism is developed to include the management of the network 

congestions through the definition of a specific DSO optimization model. 

Chapter 4 is focuses on the provision of reactive power flexibility services from communities. In this 

chapter, the effect of providing reactive power on energy costs and penalties is investigated. The 

chapter describes the details of the model, with specific reference to the calculation of the penalties 

associated with low power factor operation. 

Chapter 5 concludes the thesis by reviewing the main results both relevant to the representation of 

the flexible operation of parking lots equipped with several charging stations and relevant to the 

analysis of energy communities, the definition of the internal transaction prices, the provision of 

reactive power flexibility services, and the influence of the presence of multiple communities sharing 

the same distribution network. The chapter also lists some topics that may deserve future 

investigation.  
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Chapter 2. Flexibility Exploitation: Model of the Parking Lot and Its Use for Voltage 

Optimization  

 

2.1. Flexibility modeling for parking lots with multiple EV charging stations 

2.1.1. Chapter content 

This chapter focuses on a multi-stage stochastic optimization model or a parking lot with many 

charging stations. The model is used to calculate the maximum flexibility margins both upward and 

downward for each period of the day. These flexibility margins can be offered to the DSO in a local 

market for the provision of ancillary services. 

The second part of the chapter deals with the application of the developed flexibility model for voltage 

optimization in the distribution network. The stochastic optimization model of the parking lot is 

combined with an optimal power flow procedure with the aim to minimize the voltage variations with 

respect to the reference value.  

2.1.2. EV parking lots as flexibility service providers 

Electric vehicle (EV) batteries are expected to play an expanded role in the provision of grid services, 

as described in [1] and references therein. This chapter presents a multistage stochastic optimization 

procedure for calculating the flexibility capabilities of an electric vehicle (EV) parking lot equipped 

with many charging stations. The aggregator of the charging stations offers flexibility services in 

response to the distribution system operator's (DSO) requests. This study does not address the 

possibility of concurrent participation in a wholesale flexibility market. The maximum deviations of 

the parking lot load consumption with respect to a reference profile need to be calculated in advance 

by the EV aggregator to support the DSO with the information needed to efficiently use the service.  

Other than different model-based or data-driven approaches on EV charging power forecasting (e.g., 

[2] and references therein), the literature includes several studies that explore the impact of optimizing 

the operation of EV parking lots in addressing network congestions [3] and mitigating the variability 

of renewable energy sources [4]. Additionally, various models have been proposed to represent the 

participation of EV aggregators in energy and ancillary services markets, e.g. [5], and within the 

framework of demand response programs, as in [6]. 

The flexibility in the load profile of the EV parking lot can be harnessed by the DSO to address 

voltage or congestion issues, as shown in, for example, [7]. Procuring reserve flexibility should ensure 
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the energy recovery needed for the provision of the expected charging services to the EVs [8]. 

Furthermore, the flexibility offered by EV charging stations can also play a significant role in 

optimizing the design and operation for energy communities and virtual power plants, as shown in, 

e.g., [9], [10], and  [11]. 

This chapter focuses on the calculation of the maximum flexibility margins, i.e., the maximum up 

and down feasible variations with respect to the expected reference consumption profile. These 

margins are offered in advance by the EV parking lot aggregator to the DSO. To improve the dynamic 

adaptation of the margin calculation to current parking conditions (i.e., to the number and 

characteristics of the EVs actually connected to the charging stations), a multistage stochastic 

optimization approach is integrated with an intraday decision procedure. This approach allows the 

update of the calculated margins at the beginning of each stage in which the daily horizon is divided. 

In general, this approach produces results, specifically flexibility margins, that are close to those 

estimated assuming perfect information about the future (deterministic solution) and larger than those 

obtained by considering the worst-case scenarios (robust solution). 

The chapter presents a multistage optimization procedure based on an aggregated representation of 

the EV parking lot, which takes into account several factors, including power absorbed from the grid, 

the efficiency of EV battery charging and vehicle-to-vehicle (V2V) exchanges allowed by the use of 

bidirectional charging stations, self-discharge rates, and the energy levels of EVs upon arrival and 

departure from the car park. 

The procedure begins by generating scenarios based on the forecasted number of EVs entering and 

leaving the parking lot. These scenarios account for the uncertainty associated with the daily forecast, 

considering also the EV rated battery size and diffusion, as well as the maximum charging power. 

Subsequently, a clustering procedure is applied to construct a multistage scenario tree that represents 

various possibilities of EV charging. The optimization model, which is built upon the approach 

presented in [12], calculates the reference consumption profile for the representative scenario of each 

cluster. It achieves this by minimizing the procurement costs for the EV parking lot, which include 

both those associated with purchasing the energy from the grid and the consumption of the initial 

energy stored in the vehicles. Additionally, the model determines the maximum power reduction and 

increase margins to be offered as flexibility services. 

The flexibility margins represent the maximum achievable power reduction and increase that ensure 

the maintenance of appropriate EV charging levels. Following a power change requested by the DSO, 

the considered regulatory framework allows the EV parking lot to recover its energy level within a 

predefined subsequent interval, through a constant variation in the absorbed power. 
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The following subsections of the first part of this chapter are organized as follows. Section 02.1.3 

describes the scenario management of the stochastic parameters, which represent the parked EVs, and 

the construction of the multistage scenario tree. Section 2.1.8 describes the optimization models of 

the EV parking lot that provide the demand flexibility services. Section 2.1.11 describes the case 

studies and the results for different sizes of parking lots. Section 2.3 concludes chapter 2.  

2.1.3. Stochastic parameters and scenario management 

The flexibility margins of the EV parking lot, which determine how much power consumption can be 

reduced or increased in response to a DSO request while ensuring appropriate EV charging level, are 

calculated using stochastic optimization, where some parameters and variables are subject to 

uncertainty or randomness. These uncertainties mainly relate to the characteristics and the number of 

EVs connected to the charging stations throughout the day. The description of the procedure is divided 

into two parts. The first part, which is the subject of this Section, defines the stochastic parameters by 

using scenarios, each representing a different realization of the uncertain parameters, and performs 

scenario management. This process generates the multistage tree model, which aggregates similar 

scenarios at various stages of the day-long optimization horizon. Section 2.1.8 deals with the second 

part of the procedure, which includes the definition of constraints and objectives of the stochastic 

models. A first optimization model calculates the daily reference consumption profile of the car park 

without any request for providing flexibility to the DSO. Two additional models allow the calculation 

of the maximum feasible reduction and increase in power consumption for each period. All these 

models are formulated as linear programming mathematical problems, without the inclusion of binary 

variables, ensuring computational efficiency, even when dealing with a large number of EVs and 

charging stations. This is achieved by adopting an aggregate representation of the charging stations 

and EV batteries, which preserves the accuracy of the calculation of the power exchanges with the 

network and of the charge/discharge losses, including those associated with V2V exchanges. 

2.1.4. Scenario generation 

The procedure starts by generating several scenarios for the next day. The scenario generation 

procedure assumes the availability of the forecasts of the number of EVs entering ( EV in

tN ) and leaving 

( EV out

tN ) the parking lot in each of the 96 periods of the following day. These forecasts can be obtained 

by the analysis of the EV entry and exit data from previous or similar days. All the entries and 

departures of a period are assumed to occur at the end of that period. For each scenario  , entering 

,

EV in

tN
 and leaving 

,

EV out

tN
 EV numbers are obtained by multiplying the corresponding forecast 
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sequences by 1+
tk , which accounts for the increasing forecast uncertainty throughout the day. Time 

series 
tk  is generated by using a normal distribution with the mean value set to zero, and the standard 

deviation calculated as 21 t− , where t  is a decreasing function of t . Each value obtained is 

rounded to the nearest positive integer. Moreover, for each scenario, the order of the numbers of 

leaving EVs is adjusted so that the number of parked EVs is never negative. To construct an accurate 

aggregate model of the parking lot, the sequences of arriving and departing EV numbers are 

associated with specific populations of EVs. Each EV is defined by entry and exit time periods, 

ensuring that the entire population of EVs reproduces the sequences of arriving and departing EV 

numbers. To achieve this, a simple 'first in, first out' strategy is implemented. Only those EVs that 

can connect to an available charger are considered (i.e., they are limited by park maxN ) and they are 

assumed to disconnect at their departure time. Furthermore, each EV is characterized by its rated 

battery size 
EVE , the maximum power EVP  allowed by the charging station, and the initial state of 

charge. To define the first two characteristics, the procedure uses a predefined categorization of 

currently available EV models and their market penetration. Specifically, the attributes of each EV 

are selected based on the prevalence of each category, which represents the probability that a vehicle 

entering the parking lot belongs to that category. The initial energy of the vehicles entering the car 

park follows a truncated normal distribution, with the mean and standard deviation values assumed 

to be 0.3 times the size of the battery. It is assumed that the EVs leaving the parking lot are fully 

charged or charged to the maximum level allowed by the charging power and parking duration. While 

it is possible to account for scenarios where some EVs leave the parking lot with lower energy levels 

by introducing a penalty into the objective functions, this aspect is not addressed here for the sake of 

simplicity. The results of this chapter have been obtained assuming the same rated power for all 

charging stations, but the procedure can be adapted to the case where different types of charging 

stations are present.  

2.1.5. Scenario clustering and tree construction 

The procedure has been implemented as a day-ahead evaluation considering a 4-stage stochastic 

approach (one day-ahead stage and three intraday stages), where the day-ahead evaluation is updated 

every 6 hours during the day to use information on the actual number and characteristics of the EVs 

in the parking lot. We assume that the EV parking lot aggregator provides the reference consumption 

profile and the down and up flexibility margins at the beginning of each intraday stage for each of the 

relevant 15-minute time periods. 
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For each stage s , similar scenarios are grouped into a scenario tree. For this purpose, the k -medoid 

clustering procedure is applied. Starting from a single cluster in the first (day-ahead) stage, each 

cluster can originate different clusters in the next stage. The clustering procedure provides both the 

medoid for each cluster and stage (i.e., one of the initial scenarios that minimizes the dissimilarity 

measure with respect to the other scenarios in the cluster) and probabilities 
 . Compared to the k -

means algorithm, which calculates centroids by averaging data points within clusters, the k -medoid 

approach avoids non-integer numbers of entering, leaving, and parked EVs. This ensures the 

preservation of scenario feasibility after clustering. Here is a detailed description of the procedure. 

The clustering is based on the number of parked EVs (assuming that they are all connected to a 

charging station), 
,t

EVN
. Alternatively, the clustering can use the sum of the battery sizes of the parked 

EVs. Even a combination of the two parameters can be considered, normalizing them based on their 

minimum and maximum values at each time period, as described in [13]. For each stage, the 

dissimilarity measure d , based on the Euclidean distance 
2

 between two scenarios 1 ,t

EVN
 and 2 ,t

EVN
 

is 

 ( )1 2 1 2, , , ,,
s

t t t t

EV EV EV EV

t T

d N N N N   



= −  (2.1) 

where 
sT  is the subset of periods in stage s . Regarding the clustering procedure, different distance 

definitions can be used to assess the dissimilarities between scenarios, such as the Manhattan distance, 

as shown in [14]. 

At stage 1s = , a scenario 
i  is chosen as medoid 

1

1

sC =
 such that the average dissimilarity between 

,i t

EVN


 and every other scenario 
,j t

EVN


 in the set of generated scenarios is minimized. At stage 2s =  

and subsequent stages, the set of scenarios aggregated in the previous stage is divided into K  clusters. 

The steps of the clustering routine applied in stage 2s =  and subsequent stages are the following. 

A. Selection of initial medoids: the first medoid is randomly chosen, and the remaining 1K −  

initial medoids are selected as the most distant 1K −  scenarios by using (2.1). Various methods 

for selecting initial medoids are detailed in [15]. 

B. Selection of the closest medoid: each scenario   is grouped to the medoid for which the 

distance given (2.1) is minimal. This results in the creation of K  clusters denoted as 1

sC to 
s

KC  for 

stage s . 
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C. Update of the medoids: within each cluster, the scenario that minimizes the average distance 

to every other scenario in the same cluster is chosen as the new medoid. 

D. Iteration and medoid update: after updating the medoids, the procedure is repeated starting 

from step 2. This iterative process continues until either the scenarios chosen as medoids do not 

change in consecutive iterations, or the maximum allowed number of iterations is reached. 

E. Cluster merging check: the distance between each pair of medoids and the average distance 

among the scenarios grouped in the relevant clusters is compared, and if the former is lower than 

the latter, the two clusters are merged.  

F. Scenario replacement: when stable medoids are obtained, all the scenarios of each cluster are 

replaced by the corresponding medoid, namely, the sequences of 
,

EV in

tN
 and 

,

EV out

tN
 for t  in 

sT . To 

ensure feasibility during the transition between stages, this replacement is performed at the level 

of each individual EV within the population, preserving all EV characteristics, including the rated 

battery size, maximum charging power, and initial charging level.  

G. Subsequent stages: the clustering routine is independently carried out for each cluster of the 

previous stage. 

H. Scenario tree construction: the described procedure results in the formation of a scenario tree 

composed of nodes (namely, the medoids) at each stage, connected by arcs. The probability 

associated with each node in the tree corresponds to the summation of the probabilities of each 

scenario assigned to the corresponding cluster. 

The maximum number of clusters K  is chosen to preserve the tractability of the problem by limiting 

the final number of scenarios in the tree while ensuring an adequate representation of the stochastic 

processes during the day. The scenario generation technique allows for the inclusion of specific 

metrics that assess the selection of the maximum value of K , such as the elbow method or the 

silhouette coefficient, using the obtained objective function values. Other metrics, like the value of 

stochastic solution and the expected value of perfect information, can also be considered. In this 

chapter, the results are obtained for a maximum K  equal to 3. 

2.1.6. Characterization of each scenario in the tree 

As a result of the scenario tree construction, sets 
,

in

tS
 and 

,

out

tS
 of entering and leaving EVs are 

defined, for each scenario   and period t . The aggregated storage size 
,

Smax

tE
 of the parking lot and 

the maximum charging power 
,

max

tP
 are derived by summing the corresponding data of the individual 
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arriving and departing vehicles, i.e. 
EVE , 

EVP . Moreover, the increase of stored energy due to the 

initial energy in the incoming EVs, 
,

S+

tE
, and the energy decrease due to the charged outgoing EVs, 

,

S-

tE
, are obtained as  

 ,
in

, 0
t

t

S ii S
E E



+ 
=  (2.2) 

 ,
out

,
t

t

S ii S
E E

 −

− 
=  (2.3) 

where 
0

iE  and iE−
 are the energy of the i -th EV when entering and leaving the parking lot, 

respectively. The difference between iE−
 and 

0

iE  represents the final charge gain during the parking 

time, for the thi −  EV. 

Each set of EVs that enter and leave in the same periods is grouped by means of two matrices, the 

rows of which indicate the entry periods and the columns the exit periods. Specifically, in order to 

retain the information on the period of entry and exit of the energy initially stored in the batteries, 

matrix 
,

ini,

t

jE
 is formed as the sum of 

0

iE  for the EVs that enter in period j  and exist in period t . 

Similarly, for the charge gain, matrix 
,

g,

t

jE
 is constructed as the summation of 

0

i iE E− −  for the EVs 

entering a period j  and leaving at period t . 

2.1.7. Intraday decision procedure 

The solution provided by the recourse model, which is based on the scenario tree constructed using 

the day-ahead forecasts of the number of arriving and departing EVs, generates multiple potential 

decisions at each stage beyond the first one (i.e., during the day). Consequently, a decision making 

procedure is implemented to determine the most suitable decision for each stage among those 

identified by the stochastic problem solution. This selection takes into account the current number of 

parked EVs.  

More precisely, at the beginning of each of the considered three stages after the first, the intraday 

procedure selects the scenario from the tree that offers the best match with the real number of 

parked EVs compared to those associated with the nodes/medoids of the scenario tree. 

 

2.1.8. Optimization models to represent EV parking lot flexibility 

Once the scenario tree is defined, the procedure uses the optimization models described in this 

Section. The models are formulated as linear programming problems and calculate, for each stage 
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and node of the tree, non-negative variables 
,

ref

tP
, 

,  

flex  down

t flexP  and 
,  

flex  up

t flexP , through repeated stochastic 

optimizations. Due to the aggregated structure of the EV parking lot model and its linearity, each 

optimization is computationally efficient, requiring only tens of milliseconds regardless of the number 

of EVs and charging stations. The assumptions made include an agreement between the EV parking 

lot aggregator and the DSO that allows the parking lot to recover the power change during a 

predefined interval following the flexibility provision interval. Therefore, each flexibility margin is 

associated with a maximum recovery of opposite sign within the recovery interval. The actual 

recovery is assumed to be proportional to the effective reduction requested by the DSO. It is also 

assumed that the DSO does not request any further reductions or increases during the recovery period 

and that the power variation is constant over time. The model calculates the flexibility margins 

assuming that the DSO request is limited to a single 15-min period, denoted as of 
flext . Furthermore, 

the calculation is repeated assuming that the DSO requires flexibility provision in additional 

consecutive 15-min periods after 
flext , denoted as flexn+

. These calculations are performed with the 

constraint that the flexibility margin remains the same throughout the entire flexibility interval, i.e., 

from 
flext  to 

flext + flexn+
. The values of 

,

ref

tP
 and 

,

flex

tP , along with their associated recovery profiles, 

are provided to the DSO at the beginning of each stage.  

2.1.9. Calculation of the reference consumption profiles 

The objective function for the day-ahead calculation of the parking lot consumption profile 
,tP

 is 

to minimize the procurement costs, considering probability 
  of each scenario  : 

 ( ), ,

Smin t t t

TOU

t

P t C  



   +   (2.4) 

The model considers the presence of bidirectional charging stations, used for V2V energy exchanges 

but not to inject power into the external grid. These exchanges help ensure that EVs depart with the 

maximum charge allowed by the parking duration, 
,

S-

tE
, using the energy stored in EVs expected to 

have prolonged parking times. The energy balance equation for the parking lot is: 

 
, ,( 1) , , , , , , ,

S net S net ch,grid S- S+ V2V ini,

1

(1 ) (1 )
t

t t t t t t t j t

j

j

E E E E E l E          −

=

= − + − + − + −  (2.5) 

that represents the aggregate energy stored in the parked EVs in scenario   at the end of period t . 

,

S net

tE
 takes into account not only the energy supplied by the grid 

, ,

ch,grid ch  t tE P t =   but also the 

possibility to use for V2V a part of the initial energy 
,

S+

tE
 of the EVs that entered the parking lot in 
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period t  (namely, 
, ,

S+

t tE  ). The fraction of the initial energy used is represented by non-negative 

variable 
,t , which is subject to upper bound 

,

max

t  that ensures a minimum energy margin 
mine ) 

maintained in the EV batteries. The associated cost of using the initial energy of the EVs is represented 

by 
, , ,

S S+

t t tC E  

 =  in (2.4), which can be interpreted as the remuneration of the vehicles providing 

the service. In the context of V2V energy exchanges, constraint (2.5) accounts for the associated 

energy losses through non-negative variable 
,

V2V

tl  given by 

 ( )
1

, , , , ,

V2V V2V ch,grid ch S+

1

1  
t

t t t t t

j

j

l E E E     
−

=

 
  −


− +


  (2.6) 

where 
V2V  represents the efficiency of the V2V energy exchanges, taking into account the losses in 

the power electronic converters and in the batteries. The long-term reduction in efficiency due to 

aging and demanding operation is not considered. 
,

ch

t

jE
 for t j  is the profile that ensures that the 

EVs parked in the interval  ,j   receive 
,

g, jE 
, i.e., their final charge gain, before leaving the parking 

lot. 
,

ch

t

jE
 is zero for t j . The sum of 

,

ch

t

jE
 is equal to the total net charge increase at the departure 

period   of the last EVs among those entered in period j , while it is larger before that period. The 

constraints representing 
,

ch

t

jE
 are 

 

, ,

ch, g,

1 1

,

ch,

1

, ,

ch, g,

1 1

0  for all 

0

0

i i
t t

j j

t j t j

j
t

j

t

t t

j j

t j t j

E E i

E

E E

 



 
 


= + = +

=

= + = +

−  

=

− =

 



 

 (2.7) 

where   is the departure period of the last EV among those entered in period j . In the presence of 

V2V energy exchanges, some EVs receive more energy from the grid than they need to cover their 

final charge gain during their parking time. In (2.6), the term , , , ,

ch,grid ch S+

1

t
t t t t

j

j

E E E   
=

− +  represents the 

energy from the grid that is used for V2V exchanges. According to (2.6), 
,

V2V

tl  losses are calculated 

when the excess energy is stored, not when the V2V exchange is performed. This does not affect the 

final result since 
V2V  is assumed to be constant. If the chargers are not bidirectional, both   and 

V2Vl  are set to zero. The V2V energy can also be used to add a cost in the objective function (2.4) 
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associated with the remuneration of vehicles providing the V2V service. Non-negative variable 
,

S net

tE
 

is constrained as 

 , , , ,

S net Smax ini,

1

(1 )
t

t t j t

j

j

E E E   
=

 − −  (2.8) 

Assuming that the connection of the parking lot with the external grid is limited by max,gridP  then 

 ( ), ,

max,grid maxmin ,t tP P P   (2.9) 

The solution of problem (2.4)-(2.8) provides reference profile 
, ,

ref

t tP P =  for all scenarios  . 

2.1.10. Calculation of the maximum power reduction and increase margins 

The calculation of the maximum power reduction and increase margins is performed for each period. 

It considers cases where flexibility is requested in a single period 
flext  and cases where flexibility is 

also requested in additional consecutive periods flexn+
, limited to max,flexn+

. 

The objective function is: 

 ( ), , ,

S flexmin t t t t

TOU

t

P t C R   



   + −   (2.10) 

where non-negative 
,

flex

tR
 is the revenue associated with the provision of the maximum flexibility in 

flext : 

 
,

, flex flex flex flex flex

flex

if  

0 otherwise

t t

t P t t t t n
R


  +     +

= 


 (2.11) 

Predefined tariff flex

t  is the compensation rate that the DSO pays to the flexibility provider for 

achieving a non-negative power change 
,

flex

tP  in period 
flext  compared to reference power level 

,

ref

tP

. 
,

flex

tP  is defined as: 

 

, , ,

flex ref

, , ,

flex ref

flex flex flex

for down margin

for up margin

 fo  

 

r

 t t t

t t t

P P P

P P P

t t t n

  

  

+

 = −

 = −

  +
 (2.12) 
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The model includes the possibility for the EV parking lot to recover the power change with respect 

to flex,

ref

t
P


 that occurred at 
flext  in a predefined number of periods 

recn  after flex flext n++  (with a value of 

rec 3n =  in the tests). 
,

flex

tP  is constrained to be uniform in the recovery interval by: 

 

flex flex

flex

,
, flex

flex

rec

flex flex flex flex rec

,

flex flex flex flex rec

for

0 for and

t n j
t

j t

t

P
P

n

t n t t n n

P t t t t n n






++

=

+ +

+


  −

+   + +

 =   + +



 (2.13) 

The inequality of the previous constraint becomes an equality for the flex-up scenario to prevent the 

use of incremental losses (such as unnecessary V2V exchanges) to enhance the flexibility margin. In 

the case of multiple consecutive periods of flexibility, the maximum margin is constrained to be the 

same in all the periods: 

 
flex,,

flex flex flex flex flex for .
ttP P t t t n

 + =    +
 (2.14) 

All the models are completed with nonanticipativity constraints, typical in stochastic optimization, 

which ensure that decisions made at different stages depend only on currently available information 

and not on future outcomes or information that will be revealed later. 

2.1.11. Case studies and results 

The case studies include three parking lots, denoted as PL A, B, and C, each with a maximum power 

import capacity of 3 MW. The number of available charging stations for these parking lots is 70 for 

PL A and PL B, and 45 for PL C. In all scenarios, the parking lots are empty at the beginning of the 

day, and all EVs leave before the end of the day. Figure 3 shows the different day-ahead forecasts for 

the number of EVs entering and leaving each parking lot in t = 15 min time periods. These forecasts 

are used to generate a total of 60 different daily scenarios. The 
t  function is assumed to decrease 

linearly from 0.9999 in the first period to 0.99 in the last period. Similar scenarios are grouped 

together using the k-medoid method, resulting in a 4-stage tree composed of nodes representing the 

scenarios that are the medoids obtained. The profiles of scenarios with common nodes in the tree are 

bounded at each stage based on the tree structure. Figure 4 illustrates the tree corresponding to parking 

lot PL A with 24 medoids in the last stage. 



37 

 

 

Figure 3 Day-ahead forecast profiles of the number of EVs entering (solid lines) and exiting (dashed lines) in the three 

parking lots considered: PL A in black, PL B in blue, PL C in red 

 

Figure 4 Scenario tree for parking lot PL A. The identification numbers of the medoids are shown for each stage of 6 

hours, together with, between parenthesis, both the arc probabilities and scenario probabilities   

In the tests, the types of EVs are classified into 4 categories based on their battery capacities and 

market penetration rates: 1) 
EV 25 kWhE =  with 15% penetration, 2) 

EV 45 kWhE =  with 45% 
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penetration, 3) 
EV 70 kWhE =  with 25% penetration, 4) 

EV 100 kWhE =  with 15% penetration. These 

values are derived from data available from various Internet sources. While they may be appropriate 

for the current situation in certain countries, it is essential to adapt them to the actual usage-specific 

conditions. A maximum charging power of 40 kW is assumed for each charging station, which is 

representative of typical ac charging stations installed in parking lots where EVs remain connected 

for extended periods of time. For the EV batteries,   is assumed to be zero. The charging and V2V 

energy transfer efficiencies, 
ch and V2V , are set to 0.96 and 0.92, respectively. Time of use price 

TOU

t  is equal to 72.39 €/MWh from 7 am to 11 pm and to 51.62 €/MWh at other times. If 
,

max

t  is set 

greater than 0, the price for using the initial EV energy is   = 50 €/MWh, which is lower than the 

grid price. In each period, minimum initial energy mine  is set to 20% of the sum of the rated capacity 

of the batteries of the entering EVs. For both downward and upward power flexibility provided by 

the parking lot, predefined tariff flex

t is set to 100 €/MWh, significantly higher than the grid prices. 

For all the cases, the recovery interval is 
recn =3 periods after the end of the flexibility interval.  

AIMMS Developer was used to implement the optimization procedures. The adopted LP solver is 

Gurobi V10 on 4.7-GHz processors with 32 GB of RAM, running 64-bit Windows. 

The objective function values of the stochastic optimizations for the three parking lots are: € 438 for 

PL A, € 568 for PL B, and € 242 for PL C. The average and maximum objective function reductions 

with single flexibility are: 1.32 % and 8.63 % for PL A, 1.08 % and 12.11 % for PL B, 1.37 % and 

18.71 % for PL C, respectively. These reductions depend on the difference between flex

t  and TOU

t . 

As an illustrative example of the upward and downward flexibility margin evaluations and of the 

subsequent recovery periods, Figure 5 shows the down and up margins in power variations at 
flext =29 

and 
flext =45, respectively, relative to the reference profile for scenario 56 of PL A included in the 

stochastic tree of Figure 4. The figure shows the results considering the flexibility interval given by 

a single period or 2 or 3 consecutive 15-min periods. While both up and down margins can generally 

be computed for the same interval, the figure separates the up and down flexibilities into distinct 
flext  

for clarity. 
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Figure 5 Flexibility margins and corresponding recoveries of scenario 56 of PL A: down flexibility starting at 
flext =29 

(7:15 am) and up flexibility starting at 
flext =45 (11:15 am) 

Figure 6 shows the periods when the maximum up and down flexibility margins exceed 100 kW for 

scenario 56 in PL A. It considers the flexibility interval of a single 15-min period, 2 periods, and 3 

consecutive periods (only the first period is shown in the figure). In period 46, the parking lot can 

provide both up and down flexibility for flexn+
=0. In several cases, when single period flexibility 

cannot be provided, a two- or three-period flexibility is allowed as the different recovery interval is 

more suitable.  

Figure 6 also shows the results obtained by tripling both the size (i.e., increasing the number of 

charging stations to 210) and the number of EVs entering and exiting with respect to PL A. This 

expanded scenario is referred to as PL D. As a result of the changes introduced, the operating 

conditions of the corresponding scenarios differ between the two parking lots. Nevertheless, the figure 

shows that the flexibility widens as the size of the parking lot increases, as expected. In scenario 56, 

for PL A, the maximum up flexibility is 54.0 kW with an average equal to 12.2 kW, and the maximum 

down flexibility is 70.8 kW with an average equal to 13.1 kW; for PL D, the maximum up flexibility 

is 101.0 kW with an average equal to 24.3 kW, and the maximum down flexibility is 129.2 kW with 

average equal to 38.6 kW. In time period 53, the PL D can provide both up and down flexibility for 

flexn+
= 0. The computation time for the cases considered in the chapter is always less than a few 

minutes. 
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Figure 6 Initial period of the flexibility intervals with a margin larger than 100 kW for scenario 56: a) PL A, b) PL D. 

Downward flexibility in green and upward flexibility in red. 

 

2.2. Flexible Operation of an EV Parking Lot for Voltage Control of a Distribution 

Network 

2.2.1. Introduction 

In recent years, distributed energy resources (DERs) are starting to be seen more as a resource rather 

than an obstacle for the operation of the network, especially in the paradigm of the future smart grids 

[16]. The use of various flexibility options can help system operators to cope with the imbalances in 

generation and demand, due to the unpredictable nature of some renewable power generation sources, 

and the uncertainties of load consumption and network contingencies. Flexibility services can be 

offered by single providers (e.g., passive end-users joined to demand response programs, active end-

users with renewable distributed generators and/or storage), energy communities, and electric 

vehicles (EV) aggregators, which are available to vary the injected/absorbed powers in response to a 

request of the distribution system operator (DSO) and transmission system operator (TSO). 

One of the main technical issues in the operation of distribution networks is the voltage control. 

Optimizing the voltage profile of the network, maximizing the margins with respect to the limits, 

results in an improved operation from a technical and an economic point of view.  

Some flexibilities services with specific reference to active power balancing and alleviation of voltage 

drops problems are foreseen also by the EVs aggregators, in order to reduce the impact of 

simultaneous charging of EVs on the operation of the distribution network, particularly if equipped 

with bidirectional charges (e.g., [17], [9] and references therein). The functions of aggregating the 

operation of the charging stations of a parking lot may also be incorporated in the energy community 
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framework [18], [10]. Swappable batteries, i.e., interchangeable power storage units for electric 

vehicles, may be also included, offering advantages such as quick battery exchange, reduced charging 

time, and potential scalability of charging infrastructure. 

In this chapter, a multi-stage stochastic optimization procedure is used for the calculation of the 

flexibility margins of a parking lot equipped with several EV charging stations that considers the 

uncertainty associated with variability of the number and type of cars. The flexibility margins are 

exploited in a procedure for the optimal control of the voltage profile in the network. The procedure 

is based on the solution of a voltage optimization problem, which incorporates a recently proposed 

approximate linear power flow method, and the decomposition of the network in voltage control zone 

(VCZs), each of ones characterized by a pilot node (PN) (i.e., the most representative node of the 

operating conditions of the VCZ) [19], [20]. 

The structure of the chapter follows. Section 2.2.2 describes the general methodology, including the 

model of the EV parking lot that provides the demand flexibility services, and the voltage profile 

optimization procedure of the distribution network. Section 2.2.5 describes the multistage stochastic 

optimization approach used to obtain the reference consumption profile of the EV parking lot, and 

the optimization model repeatedly applied to obtain the down and up flexibility margins. Section 2.2.7 

is devoted to the formulation of the multi-period rolling voltage optimization problem considering 

the EV parking lot flexibility.  Section 2.2.11 describes the case studies based on the IEEE-123 node 

Test Feeder and presents the results. Section 2.3 concludes the chapter 2. 

 

2.2.2. Methodology 

The procedure is divided into two parts. The first part focuses on the calculation of the flexibility 

margin of the EV parking lot, i.e., how much the power consumption can be reduced or increased, 

following a DSO request, still guaranteeing the appropriate EV charging level. As the characteristics 

and the number of cars connected to the charging stations during the day are uncertain [21], the 

procedure applies a multistage stochastic optimization approach. The second part deals with the 

centralized optimization approach for the voltage control in the distribution network, which exploits 

the flexibility margin of the EV parking lots. 

2.2.3. EV parking lot model 

Following the model described in Subsection 2.1, the procedure has been implemented as a day-ahead 

evaluation considering a 4-stages stochastic approach (one day-ahead stage and three intra-day 



42 

 

stages), in which the day-ahead evaluation is updated every 6 hours during the day, in order to use 

information on the actual number and characteristics of the EVs in the parking lot. We assume that 

the EV parking lot aggregator needs to provide the indication of the reference consumption profile 

and the down and up flexibility margins at the beginning of each interval for each 15-minute time 

period ( t ). The reference value of the profile is obtained for each stage s  by grouping similar 

scenarios in a scenario tree by using the k-medoid procedure described in subsection 2.1.4. In the 

tests, the type of cars is classified in 4 categories, as shown in Table 1, chosen by summarizing data 

available from various internet sources. While they seem appropriate for the current situation in 

certain countries, it is essential to tailor them to the specific conditions of the procedure actual use. A 

maximum charging power of 40 kW is assumed for each charging station, representing typical ac 

charging stations installed in parking lots where EVs remain connected for extended durations. 

Table 1 Characteristics of the EVs 

Type of EV Rated size of the EV storage Diffusion 

1 25 kWh 15 % 

2 45 kWh 45 % 

3 70 kWh 25 % 

4 100 kWh 15 % 

 

With the scenario tree obtained by the application of the k-medoid algorithm, the procedure 

implements the optimization model, whose linear programming formulation is described in the next 

section 2.2.5. For each stage and aggregated scenario in the tree, the model calculates 
,

ref

tP
, 

,  

flex  down

t flexP  

and 
,  

flex  up

t flexP , in each 
flext , obtained by the solution of repeated stochastic optimizations. Due to the 

aggregated structure of the EV parking lot model and its linear characteristic, each optimization 

requires a short computer time (few seconds), independent of the number of cars and charging 

stations. This makes the approach feasible from the computational point of view. We assume that the 

agreement between the EV parking lot aggregator and the DSO allows that the parking lot recovers 

the power change in period 
flext  during 

recn . Therefore, each flexibility margin is associated to a 

recovery of opposite sign in the allowed interval after flext . The actual recovering is assumed to be 

proportional to the effective reduction requested by the DSO. It is assumed that the DSO does not ask 

for a further reduction during 
recn . The recovery is constrained to follow a uniform pattern during 

recn

. 
,

ref

tP
 and the values of 

,

flex

tP  together with the associated recovery profiles are provided to the 

voltage control procedure as flexibility margins at the beginning of each stage. An intra-day procedure 
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selects the scenario of the tree that minimizes the deviation with the number of vehicles actually 

present in the parking lot. 

2.2.4. Voltage optimization of the distribution network 

The voltage optimization procedure (VOP) starts from the linearization of the DistFlow equations 

applied to the considered voltage distribution network [19]. The modeling of the distribution system 

includes  -model for lines, ZIP model for uncontrolled loads, both P-Q and P-V control for 

distributed energy resources (e.g., PV units and EV parking lots). The Distflow equations are 

linearized with respect to an initial operating point of the network so as to provide the sensitivity 

coefficients relating the variations of some network variables (e.g., 
2V ) to the variations of PVP , 

PVQ  and PLP . The initial operating condition is obtained by solving a single load-flow problem in 

a base-case.  

By exploiting the concept of electrical distance and applying hierarchical clustering methods, such 

sensitivities are firstly used to cluster the network in VCZs with PNs. Then, this simplified network 

representation is used from the DSO to optimize the voltage profiles of the PNs, subject to linearized 

DistFlow equations, nodal voltage limits, and the available DSO budget for local flexibility services, 

by acting on flexibility offered by PV systems and EV parking lots. The optimization process is 

performed through the definition of an objective function given by the sum of deviations of node 

voltages with respect to the reference value. The voltage optimization problem is solved according to 

a centralized approach based on the zoning methodology, as in [7]. In this chapter, such an approach 

is extended to take into account the inter-temporal relationships associated to the provision of active 

power flexibility services provided by EV parking lots. The maximum flexibility of the parking-lot 

station with respect to the scheduled power profile is available each 1-hour time or lower (e.g., 15 

min) within the 24 hours of the day, together with the recovery profile. 

2.2.5. Model for the representation of the EV parking lot flexibility (Calculation of the 

reference consumption profiles 

The objective function includes the minimization of the procurement costs considering probability 

and scenarios as described in 2.1.9 in equation (2.15). 

Considering that the net energy entering in the batteries from the grid is 
, ,

ch,grid ch

t tE P t =  , the 

balancing equation of the parking lot is represented by (2.16). 
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Assuming the presence of bidirectional charging stations, following [12], (2.17) includes the 

possibility to use the initial energy in the vehicles that enter the parking lot 
,

S+

tE
 at time t , for a 

fraction given by nonnegative variable ,t  constrained to be lower than a maximum value that 

allows a minimum stored energy margin in the vehicles. The associated cost in (2.18) is 

, , ,

S S+

t t tC E  

 = . The efficiency of the vehicle-to-vehicle energy exchange is 
V2V .  

Moreover, constraint (2.19) includes 
,

V2V

tl . Nonnegative 
,

V2V

tl  is given by (using indicator constraints 

in Gurobi, when needed) as illustrated in equations (2.20) and (2.21). 

If the charging stations are not bidirectional,   and 
V2Vl  are constrained to be null. 

Nonnegative variable 
,

S net

tE
 is constrained as in section 2.1.9 in equation (2.22). 

The solution of problem (2.23)-(2.24) provides reference profile 
, ,

ref

t tP P =  for all scenarios  . 

2.2.6. Calculation of the maximum power reduction and increase margins 

The calculation of the maximum margins is repeated for each period 
flext , both for reduction and 

increase flexibilities. The objective function of the maximum margins illustrated in section 2.1.10 in 

equation (2.25). 

where nonnegative 
,

flex

tR
is the revenue associated with the provision of the maximum flexibility in 

flext  as illustrated in section 2.1.10 in equation (2.26). 

Predefined tariff flex

t  is recognized by the DSO to the flexibility provider for a nonnegative power 

change in period 
flext  with respect to reference 

,

ref

tP
. In the maximum power reduction (down) and 

increase (up) margin calculations, 
,

flex

tP  is illustrated in section 2.1.10 in equation (2.27) for down/up 

margins. 

The model includes the possibility for the EV parking lot to recover the change with respect to 

flex,

ref

t
P


 at 
flext  in a predefined number of periods 

recn  after flex flext n++  (
rec 3n =  in the tests). Denoting 

the set of these recovering periods as 
recn , 

,

flex

tP  is constrained in section 2.1.10 in equation (2.28). 

2.2.7. Multi-periods voltage optimization approach 

The proposed optimization considers the same approach presented in [7]. Such an approach is 

extended in this chapter to perform a multi-periods voltage optimization. At first, it is evaluated 
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whether to use the parking lot flexibility in the interval immediately after the present one or if it is 

preferable to use it in one of the subsequent 
recn  intervals. After the most favorable time interval has 

chosen, the parking lot limits its flexibility in the following 
recn  intervals to recover the energy made 

available to the DSO in the first interval. The DSO also takes advantage of the PV flexibility, which 

does not impose constraints on subsequent intervals.  

In the following, the voltage optimization problem is directly written in variation form with respect 

to an initial operating point 
0( ) . It is illustrated for a distribution network with one main feeder 

composed of N  nodes and 1N −  branches (e.g., transformer or line) and including PV systems, EV 

parking lots and uncontrolled loads. 

Assuming rec 3n = , at time t  the flexibilities, that the PV systems and the EV parking lots can offer 

in the next time interval 1t + , are evaluated by considering the variations of the electrical variables 

in the following four time intervals 1t + , 2t + , 3t +  and 4t + . Four different voltage optimizations 

are performed (i.e., one for each time interval 1t + , 2t + , 3t +  and 4t + , respectively). 

2.2.8. Voltage optimization objective function 

At each time interval, the voltage optimization solves the overall objective function for the four 

quarter-of-hours, as follows:   

 ( )
4

ref ref ref

1

1
2T T T T

t i t i t i

iN
+ + +

=

  −   +   x Γ Γ x V Γ x V V  (2.29) 

where 
,[ ]T PV T PLT L forT

t t t t =   x x x x  is the vector of the variations of the active and reactive 

powers injected/absorbed by PV systems, EV parking lots and uncontrolled loads at time interval t ; 

, , ,
[ ]

pn PQ pn PQ pn PQV V V=Γ Γ Γ Γ  is a sensitivity matrix containing the sensitivity coefficients of the 

squared voltage amplitudes of the PN’s to the powers injected/absorbed by PV systems, EV parking 

lots and uncontrolled loads; and 
2 2

ref ref 0( ) −V V V  is defined as the vector of the variations of the 

squared voltage reference values with respect to the initial operating point. 

2.2.9.  Equality constraints 

For the first interval 1t + , the following five equality constraints are considered (e.g.
resx  is related 

to a result of a previously calculated variation): 
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The inequality constraints for the parking lot flexibility at time 1t +  can be expressed as (the 

relationship is reported only for the upward flexibility, ,PL ux , the same can be written for the 

downward one, ,PL dx ): 

 

, , ,
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 (2.31) 

2.2.10. Inequality constraints 

The voltage optimization at time interval 1t +  is subject also to voltage, PV flexibility and DSO 

constraints as reported in the following: 

• Voltage constraints 

 
2 2

min,t+1 1 max,t+1t+    V Γ x V
 (2.32) 

• PV flexibilities 

 min,t+1 1 max,t+1

PV PV PV

t+    x x x
 (2.33) 

• DSO constraint 

 

, ,

1 1 1

, , , ,

1 1 1 1
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Similar optimizations must be solved for the subsequent interval times 2t + , 3t +  and 4t + . The 

four objective functions are evaluated in the four intervals and if the best objective function turns out 
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to be that of the interval 1t + , then the flexibility is used in this interval, otherwise it is not used and 

in the following interval the procedure is repeated. 

 

 

Figure 7 The 123-bus test feeder with 4 voltage control zones (VCZ) indicated by different colors. The relevant pilot 

nodes (PN) in green circles, as well as the considered 4 PV systems (PVS) in red circles and a parking lot (PL) in a blue 

circle, are also shown in the scheme. 

 

2.2.11. Case studies and results 

The case studies refer to the medium voltage (MV) IEEE-123 node Test Feeder in Figure 7 [22], 

which has been converted into a three-phase balanced system [23], to apply the proposed approach. 

The MV feeder is supplied from the HV busbar (slack bus) by a 115-/4.16-kV substation. All 

parameters of the IEEE-123 test feeder used in this case study are available in [24]. For the sake of 

simplicity, the action of the voltage regulators has been disabled, that is, constant ratios have been 

fixed, and the status of the switches has been assumed in the basic configuration. Furthermore, no 

capacitor banks are present along the feeder. Four PVs, each one of 1.5 MW peak active power, are 

connected to the grid at nodes 3, 18, 52, 112. The selected parking lot has a rated power equal to 3 

MW and is connected at nodes 38. Concerning flexibility, the active and reactive powers of each PV 

can be reduced up to 10% and in the range ±50% of its momentary production, respectively. The 

parking lot can offer a reduction of absorbed power with respect to its scheduled value at that time 

interval. The voltage optimization is performed by applying the zoning methodology to obtain a 
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simplified representation of the distribution network suitable for voltage control. The network is 

partitioned in four VCZs with 
1PN , 

2PN , 
3PN , 

4PN  at node 8, 67, 110, 18, respectively. The 

operating conditions of the network refer to 96 quarter-of-hour during the day; in each time interval 

the power absorption and the flexibility of the parking lot can vary, as well as the power produced by 

PVs and the consumption by non-flexible loads. During the day, the total balanced load connected to 

the network can vary between 20% and 100% of their rated value, that is equal to about 
,L for

totP = 3.49 

MW and 
,L for

totQ = 1.17 MVAR, following a typical electricity consumption profile of a domestic 

customer; the power productions by the four PVs follow a standard daily profile. The costs of the 

flexibility provided by PV units and parking lot (
PVc  and 

PLc ) are considered equal to 100 €/MWh 

and the DSO's budget (
DSOb ) is four times greater (equal to a maximum of 400 €/h). 

2.2.12. Results 

As an example, Figure 8 shows the power consumption reference profile of one of the scenarios 

included in the stochastic tree of the considered parking lot with a maximum number of 45 charging 

stations, together with the down and up maximum flexibility and recovering profiles in the first and 

second part of the day.   

 

 

Figure 8 Reference and maximum flexibility profiles for: a) tflex equal to 37, i.e., at 9:15 am, (down) and 41, i.e., at 

10:15 am, (up); b) tflex equal to 75, i.e., at 6:45 pm, (down) and 88, i.e. at 10 pm, (up). 

The voltage optimization is performed during the day and the parking lot provides variable flexibility 

for four consecutive intervals from the 26th to the 29th interval, roughly between 7 and 8 in the 

morning. The voltage profile obtained by the VOP, which leverages both parking lot and PV 

flexibilities, is compared to the voltage profile obtained from classical power flow solutions (referred 

to as PF) for the 26th quarter-of-hour. This comparison is illustrated in Figure 9. CPU time for the 

considered cases was around a couple of seconds. The VOP takes advantage of the downward 
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flexibility offered by the parking lot, reducing up to 600 kW its absorption, and the PV ones absorbs 

reactive power. The same is not the case for the PF solution where the voltage drop is evident around 

node 56, where the parking lot is located according to Figure 9, and the voltage rise around node 24 

in proximity of 
3PV . In this interval the load absorption is at 20% of the nominal value and the PVs 

produce a power of approximately 230 kW, due to the early morning time. Since the parking lot 

flexibility is used in this first-time interval, in the following three intervals the parking lot is no longer 

available to provide further flexibility. However, the VOP can still exploit the flexibility of the PVs 

and take into account the recovery of the parking lot. Figure 10, Figure 11, and Figure 12 show the 

voltage profiles of the VOP and PF solutions for the 27th, 28th and 29th intervals, respectively. The 

improvements in voltage regulation introduced by the VOP compared to the PF are evident from the 

reported profiles, also for the next three-time intervals. 

 

Figure 9 The voltage profile of the 123-bus network at the 26th interval 



50 

 

 

Figure 10 The voltage profile of the 123-bus network at the 27th interval 

 

Figure 11 The voltage profile of the 123-bus network at the 28th interval 
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Figure 12 The voltage profile of the 123-bus network at the 29th interval 

 

2.3. Conclusion 

This chapter introduces a method to characterize the flexibility offered by parking lots equipped with 

EV charging stations, which can be used by the distribution system operator to address challenges 

such as voltage and congestion problems. Key aspects of the method include computing the reference 

demand profile and flexibility margins for each period of the following day, considering predefined 

incentives for load changes. The approach uses a multistage stochastic procedure that adapts to real-

time conditions and vehicle connections to the charging stations throughout the day. Scenarios for 

stochastic optimization are created based on forecasts of EV arrivals and departures, accounting for 

factors like battery size, diffusion, and maximum charging power. Clustering of similar scenarios 

using the k -medoid method reduces computational complexity while maintaining scenario 

feasibility. The optimization model aggregates EV battery behavior and formulates the problem as a 

linear one, making it computationally efficient even for large parking lots. It accounts for losses 

associated with grid charging and vehicle-to-vehicle energy exchanges enabled by bidirectional 

charging stations. To enhance the flexibility of the EV parking lot, power reductions and increases in 

consecutive periods are considered while ensuring schedule feasibility, by including a recovery after 

the interval when the flexibility is requested. This approach operates as a day-ahead evaluation with 

a 4-stage stochastic process, updating the decisions every 6 hours to reflect real-time EV data. 

Numerical tests on parking lots of various sizes demonstrate the effectiveness of the method. Overall, 

this procedure ensures that charging requirements are met and serves as a valuable tool for the EV 
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aggregator offering flexibility services to improve the operation of the power distribution network 

and mitigate the impacts of electromobility. The typical main barriers to practical implementation are 

related to the lack of an appropriate regulatory framework for the local market and an efficient 

communication infrastructure. 

The second part of the chapter presents a method to characterize and use the flexibility provided by 

parking lots equipped with EV charging stations for the optimization of the voltage profile in 

distribution networks. Assuming a predefined reward per kW of up and down load change, the EV 

charging station aggregator calculates both the reference demand profile and the flexibility margins 

in advance. For this purpose, a multistage stochastic procedure is implemented allowing a recovering 

after the period when the flexibility is requested. The flexibility margins calculated by the EV 

charging stations aggregators are incorporated as a control resource in the voltage optimization 

procedure of the distribution system operator. The procedure decouples the networks by using pilot 

nodes and applies a linearized model of the power flow equations. To consider the demand recovering 

in the period after the provision of the flexibility service, the optimization is carried out for a moving 

time horizon. A specific daily budget constraint for the expenses related to active and reactive power 

flexibility procurement is included. The procedure is applied to the 123-bus test feeder, including a 

parking lot with several charging stations. The results show the effectiveness of the flexibility services 

for the optimization of the voltage profile. To enhance the flexibility of the EV parking lot, power 

reductions and increases in consecutive periods can be enabled while ensuring schedule feasibility. 

This requires adapting the calculation of relevant margins and their utilization in the optimization 

procedure. 
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Chapter 3. Model of the energy communities  

 

3.1. Optimization model for the analysis of multiple energy communities in the same 

distribution network with different providers 

This chapter focuses on model of the energy communities. In the first part, multiple energy 

communities in IEEE-123 feeder case study with more than one provider has been analyzed, beside 

procurement costs and community effects on them. In the second part of this chapter, considers the 

presence of multiple communities in the same distribution network. The chapter analyzes the 

electricity procurement costs of both community members and non-members. The results show the 

effectiveness in reducing both energy procurement costs and noncompliance costs for each 

community.  

3.1.1. Introduction  

Energy communities are established to increase the local balance between production and 

consumption, allowing direct transactions between final users, who can behave as consumers or 

producers thanks to distributed generation (DG). The current regulatory framework, e.g., in Europe 

the EU 2019/944 electricity market directive and the 2018/2001/EU revised renewable energy 

directive [25], [26], allows the presence of more than one community in the same distribution network. 

Moreover, the users are free to take part in a community or not. They are also free to choose an energy 

provider different from those selected by the other community members. The presence of various 

energy providers characterized by specific tariffs (as well as DG power production costs, as shown in 

e.g., [27] for the case of a biogas unit) are expected to have an impact on the prices of the transactions 

among the community participants. The literature on the modeling of energy communities and peer-

to-peer trading is becoming significant, e.g. [28], [29] and references therein.  

This chapter presents a day-ahead scheduling model for the analysis of the presence of more than one 

community in the same distribution network, including users who choose not to join any community. 

The model considers the freedom of all users to select their preferred energy provider. Compared with 

other studies on the subject, i.e. [30], energy sharing between different communities is not allowed. 

The model provides the value of the fair prices of the transactions among the community members as 

shadows prices of the relevant balancing constraints. Considering renewable distributed generation 

and storage, the model is used to analyze the impact of the number of communities and of their 

characteristics (closeness of the users, size of the generating and storage units) for the IEEE 123-bus 

test feeder. The results of the day-ahead scheduling with the presence of communities are compared 

with those obtained when direct transactions among the users are forbidden. Moreover, two different 
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energy providers are considered and the impact on the prices of the transactions inside each community 

is shown.  

The structure of the chapter follows. Section 3.1.2 describes the day-ahead optimization model of the 

energy resources available in the distribution network. Section 3.1.7 describes the case studies. Section 

3.1.8 shows and compares the results. Section 3.3 concludes the chapter 3 

3.1.2. Optimization Model 

The power flow model adopts the convex relaxation approach described in e.g.,[31] [32], based on the 

DistFlow method [33], assuming the three-phase network is radial and balanced. Each branch is 

represented by a T model, with series impedance of the two branches equal to 0.5(ri + jxi) and 

admittance of the central shunt branch equal to jbi. The square of the current rms values at the two 

terminals (arbitrarily indicated as in and out) are denoted as in ,i tu  and  ,out i tu . The model is deterministic, 

but can be included in a scenario-based stochastic approach able to cope with uncertainties, as 

described in e.g., [34].  

Following the approach presented in [35], the exchanges between participant i and any other member 

of the same local energy community (LEC) k in time t are represented by variables , ,LEC k i tP  and the 

exchanges with the external energy provider are described by variables 
grid , i tP . 

3.1.3. Objective function 

The objective of the day-ahead scheduling of the available energy resources and of the transactions 

among the participants to the same community is the minimization of the function 
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where grid ,i tC are the cost/revenues of user i relevant to the energy bought from or sold to its energy 

provider during period t (including all users in the summation, both those belonging to one of the 

communities and those who have not joined any of them). The day-long time horizon is divided into 

96 periods of 15 minutes. grid ,i tC  is represented by 
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where buy ,i t  and sell ,i t  are the buying and selling tariffs (with buy , sell ,i t i t  ). grid ,i tP  is positive when 

bought and negative otherwise. 

In (3.1), 
loss ,

BES , 
LEC  are the penalization coefficients of the branch power loss, of charge and 

discharge battery energy storage (BES) losses, of the exchanges inside the LEC to avoid the reselling 

of the power bought from the provider to the other participants and vice versa. The values of 
loss , 

BES  

and 
LEC are chosen small enough so that their contribution to the objective function is negligible with 

respect to gridC . OF does not include generation costs since we assume that all the local generation is 

provided by photovoltaic (PV) units. 

Joule power loss , i t  in each branch is  

  in ,, ,0.5 0.5i i t i out i ti t r u r u= +  (3.3) 

Power losses associated with BES discharging and charging (corresponding to exchanged power PBES 

positive and negative, respectively) are 
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where dicharge i  and charge i  are efficiency factors lower than one. PBES is constrained by the maximum 

power limit of the battery system. 

Nonnegative variable ˆ
LECP  is defined by 
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 (3.5) 

where Ωk is the set of members of community k. 

3.1.4. Branch constraints 

According to the DistFlow method, for each branch i and time interval t, the relationships that link the 

square rms value of voltages at the terminals, 
inv  and 

outv , and in the central node mp of the T model,

mpv , with the active and reactive power flows that enters in terminal in (
inP ,

inQ ) and leaves from 

terminal out ( outP , outQ ) are: 
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being capQ  the reactive power injection of the utility capacitor bank if present and 

userQ  is the reactive 

power absorbed by the user both connected at terminal out (denoted as bus i). 

The flows in the network due to direct transactions among the members of community k are 

represented by 

 LEC_in , , LEC_out , ,, , k i t k i tLEC k i tP P P= −
 (3.8) 

where 
, ,LEC k i tP  (not null if i is a member of community k). 

Nonnegative variable in ,i tu  , out ,i tu are constrained to be lower than the square of the maximum branch 

current limit ( 2

max iI ) and nonnegative variables   ,in i tv ,   ,out i tv  are constrained between the square of the 

minimum and maximum bus voltage limits ( 2

min iV , 2

max iV ).  

As usually done, the DistFlow model is incorporated in the quadratically constraint problem by the 

relaxation of the apparent power equalities, namely 
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where: 

 
1 As complex power is equal to voltage and conjugate current product, the sum of the squares of the real and imaginary 

parts gives 
2 2

in , mp , in , in , in ,0.25( )i t i t i i t i i t i i i tv v r P x Q r x u− = + − +  at node in and 

2 2

mp , out , mp , mp , out ,' 0.25( )i t i t i i t i i t i i i tv v r P x Q r x u− = + − +  at node mp of Figure 29, where imp , in , n ,0.5 i i ti t i tP P r u= −  and 

,mp , in mp in ,, 0.5i t i t ii i t i tb v x uQ Q −= +  
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In a feasible solution, all (3.9) should be verified as equalities, as well as one of (3.4). A specific check 

is automatically performed in the procedure and if the mismatch is greater than a predefined small 

tolerance the optimization is repeated with the inclusion of two additional nonnegative penalizations 

in (3.1): one greater than the difference between 
BES

 and the maximum of the right side terms of (3.4) 

calculated by using the ,BES i tP  value provided by the previous solution, the other  greater than the 

difference between inu , outu  and the maximum values of ( )2 2

in in in P Q v+ , ( )2 2

mp mp mp 'P Q v+ and 

( )2 2

mp mp mp P Q v+ , ( )2 2

out , out , out ' 'i t i tP Q v+ , respectively, evaluated according to the previous solution. These 

additional penalization terms become null when a feasible solution is obtained. 

3.1.5. Constraints at the branch connections 

Square rms values of voltage out ,i tv , total power flows out ,i tP  and 
LEC_out , ,k i tP  at the sending end should 

be equal to the corresponding values of in   1,i tv + , in   1,i tP + , LEC_in   , 1,k i tP +  at receiving end of the following 

connected branch (being i as the upstream branch and 1i +  the downstream one). Generalizing to the 

case of multiple branches terminating and originating from the same bus: 
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where s

j  and r

j  denote the sets of branches connected to bus j as the sending and receiving end, 

respectively.  

The squared voltage V0
2 at the connection point to the transmission network (slack bus 0) is assumed 

to be known and constant during the day. Direct transactions among community members do not cause 

any power flow exchange with the transmission network, i.e., 

 0
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3.1.6. User constraints 

The net power for each user is given by: 
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where 
LP ,

GP ,
BESP  are the active power requested by the local load, provided by the generating unity 

and at the output of the BES system, respectively;  
LQ ,

GQ ,
BESQ  are the corresponding values of the 

reactive power; CQ  is the reactive power provided by a capacitor bank inside the user, if present. 

The adopted model of the BES unit is given by the following equations: 
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where 
,i tE  is the energy content constrained by the minimum and maximum energy limits min iE , 

max iE respectively. In the numerical tests, 
,i tE  is assumed equal to max iE  at beginning and the end of 

the optimization horizon (t = 1 and t = 96, respectively). 

The linearized ZIP model of the load (in pu) is: 
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where PZ and QZ, PI and QI, PP and QP are the known active and reactive power consumptions at the 

rated voltage of the constant impedance, constant current, and constant power components, 

respectively. 
IP and 

iQ  (different from zero only when the 
I ,i tP  and 

I ,i tQ  are not null) represent 

the linearized voltage dependence of the constant current component consumption 2: 

 

( ) 2 2
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 −

=
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 (3.18) 

The total net consumption (positive) or production (negative) of user i should balance the sum of the 

power exchanges with the energy provider and with the other members of the same community k: 

 
2 The first of Eq. (3.18) comes from ( ) ( ) 2 2

I , I , I , , out , I , I ,

2 2

( )
i t i t i t i i t i t i t i t

P P Q Q v P Q++  =+ +  by neglecting 
2

I ,i t
P  and 

2

I ,i t
Q  

and assuming the square of the voltage reference value equal to 1 pu. 
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  , d ,user gri , ,LEC k i ti t i tP P P= +  (3.19) 

3.1.7. Description of the test cases 

• Test network 

The test cases are based on 123-bus IEEE feeder [22] shown in Figure 13. The MV side of the 

substation has rated voltage equal to 4.16 kV, bus 119 rated voltage is 480 V. All the lines are assumed 

balanced with positive sequence parameters obtained by averaging self and mutual impedances and 

admittances given in [22]. The loads are assumed balanced too, by averaging the single-phase loads. 

49 PV units are added at load buses, with peak power taken equal to the peak load multiplied by a 

random number uniformly generated between 0 and 2 if the resulting generation/load ratio is greater 

than 0.9. The rated power of the PV inverters is increased by 10% respect to the PV rated powers. 

Moreover, 7 battery units are added at different buses as shown in Figure 13. 

The substation transformer and the voltage regulators feeding buses 14, 26, and 67 are equipped with 

an on-load tap changer (OLTC) that controls the voltage equal to 1 pu at the secondary side. Variable 

capacitor banks are connected to buses 83, 88, 90, 92 (with maximum power equal to the average 

values indicated in [22] for the three phases) assumed to belong to the utility. 

 

Figure 13 Scheme of the network for test cases. 

 

The test cases refer to a deterministic day-ahead optimization. The data of the test case are in the Excel 

file available at https://doi.org/10.17632/4npyd68rw8.1. The file contains the per unit load profiles 

used in all the test cases obtained by the CREST tool [36] using various numbers of dwellings, the 

https://doi.org/10.17632/4npyd68rw8.1
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profiles of πbuy and πsell for the two different power providers, and the profile of the ratio between 

power output and panel surface assumed the same for all PV units. 

 

• Assignment of each user to a provider and definition of the communities   

 

 

Figure 14 Random association of each user to a different provider. 

In the base case, we consider two providers (f1 and f2) with different daily price profiles. Each user is 

randomly associated to one of the two providers as shown in Figure 14. 

Analogously, the users are randomly grouped in three communities and the users at some nodes are 

not included in any community (so they can transact only with their own provider), considering an 

equal probability for each node to be assigned to community EC1, to EC2, to EC3 or to be not part to 

any community (group noEC). Figure 15 shows the obtained association and Table 2 shows the 

forecasted total energy demand during the day, the PV energy generation as percentage of the load, 

the total storage capacity installed in percentage of the daily PV generation, for each of the 4 groups. 
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Figure 15 Random association of each user to a different community with some nodes excluded from the communities. 

Table 2 Forecasted daily demand, PV generation as percentage of the load, total storage in percentage of PV generation, 

for each community and for the group outside the communities. 

Group Demand (MWh) PV generation (%) Installed BES (%) 
EC1 3.76 69.2 0.54 
EC2 2.75 27.7 0.79 
EC3 3.56 61.5 0.37 
NoEC 2.95 59.7 0.85 

 

3.1.8. Results and comparisons 

The procedure has been implemented in the AIMMS Developer modelling environment [37]. The 

results have been obtained by using the Gurobi 9.5 QCP solver and a computer equipped with an Intel-

i7 and 32 GB of RAM, running 64-bit Windows 10. The computational time for the cases considered 

cases is around 100 s, increasing with the number and sizes of BES units. 

3.1.8.1. Base case  

For the three communities and the set of users who do not belong to any community, Table 3 shows 

the procurement costs due to the exchanges with the two power providers (indicated as Pgrid cost) and 

the costs or revenues due to the sum of direct power exchanges PLEC between the members of the same 

community owing a contract with a different provider. Comparing these results with those of Table 4, 

which refers to the case in which PLEC are not allowed, each group of users has an advantage in 

participating in a community (i.e., the sum of Pgrid cost and PLEC cost/revenues in Table 3 is lower than 

the Pgrid cost in Table 4). 
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Table 3 and Table 4 show similar non-compliance penalties due to users who consume with a power 

factor (PF) lower than 0.9 (calculated assuming a 5 kvarh € forfeit). For community EC3, Figure 16 

compares the price daily profiles of the PLEC transactions among the community participants, 

calculated as the shadow prices of constraint (3.8), with the buy  and sell  tariff profiles of providers f1 

and f2. The prices are not shown in the periods when there are no transactions among participants.  

 

Table 3 Daily costs and PF non-compliance penalties for each community and the noEC group considering the two 

different power providers. 

 Provider 1 Provider 2  

Group Pgrid cost (€) 
PLEC cost / 

revenue (€) 
Pgrid cost (€) 

PLEC cost / 

revenue (€) 

Non-compliance 

Penalty (€) 

EC1 419 -73 156 73 458 

EC2 595 -103 219 103 1376 

EC3 504 -16 94 16 864 

noEC 319 0 304 0 269 

 

Table 4 Daily costs and PF non-compliance penalties for each group of users if direct exchanges PLEC are not allowed. 

Group Provider 1 cost (€) Provider 2 cost (€) non-compliance penalty (€) 

EC1 382 (10.5%) 341 (48.6%) 464 

EC2 586 (19.2%) 358 (11.3%) 1377 

EC3 582 (19.5%) 161 (45.4%) 864 

noEC 319 304 269 

 

 

Figure 16 Community EC3: prices of the internal transactions πEC3, prices of the transactions with the external energy 

provider f1 (πsell f1, πbuy f1) and f2 (πsell f2, πbuy f2). 
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By comparing Figure 16 with Figure 17 (which shows the net power exchanged with f1 and f2) and 

Figure 18 (which shows the net power exchanges between the prosumers who have a contract with f1 

and those who have a contract with f2), the internal transaction prices are close to buy f1  or buy f2

when the community as a whole imports power: close to buy f1   if the marginal consumer (the one 

with highest buy tariff) has a contract with f1 (periods 23-33, 50, 52, 61, 62, 64-66, 73-77, 81, 85, 89) 

and to buy f2  if the marginal consumer has a contract with f2 (periods 1-22, 35, 45, 67-72, 88, 90-96). 

Analogously, the internal transaction prices are close to sell f1  or sell f2  when the community as a 

whole exports power, depending  on whether the marginal producer (the one with the lowest selling 

rate) has a contract with f1 (periods 37-41, 43, 44, 46, 47, 53-60) or f2 (periods 34, 36-40, 42, 48, 63). 

The presence of battery may cause deviations from this general rule because the BES energy may be 

stored and used in periods with different tariffs. 

 

 

Figure 17 Community EC3: net power exchanges with provider f1 and with provider f2 (positive sign indicates power 

consumed, negative produced). 
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Figure 18 Community EC3: power exchanges PLEC inside the community, between the members with provider f1 and 

those with provider f2 (positive sign indicates power imported, negative exported). 

Similar results are obtained for the other communities EC1 and EC2. 

3.1.8.2. Communities of neighboring users 

Figure 19 shows a different composition of the three communities, obtained by grouping neighboring 

users in the same community so that the obtained values of daily demand, PV generation and installed 

BES percentages, shown in Table 5, are similar to those of Table 2. The noEC group is the same as in 

the base case. 
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Figure 19 Communities formed by neighboring members. 

 

The daily electricity provision costs in € of community EC1, EC2, and EC3 are 609, 833, 574, 

respectively, corresponding to variations of 6%, 2.4%, -4% of the base case results. These variations 

are attributed to differences in the specific characteristics of users belonging to communities rather 

than to their proximity. 

Table 5 Forecasted daily demand, PV generation as percentage of the load, total storage in percentage of PV generation, 

for each community of neighboring users. 

Group Demand (MWh) PV generation (%) Installed BES (%) 

EC1 3.76 67.2 0.51 

EC2 2.79 28.7 1.12 

EV3 3.52 63.4 0.27 

 

3.1.8.3. Different number of communities 

The calculation is repeated for different number of communities (from 1 to 18). Each user is randomly 

associated with a specific community or excluded from the communities, considering a uniform 

probability. Figure 20 shows the values of the sum of procurement costs (including both providers f1 

and f2) for all the communities and the values of the procurement costs of the users outside the 

communities. Figure 21 shows the average costs per user in the communities allowing exchanges PLEC, 

in the same communities with PLEC forbidden, and in the noEC group. 
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Figure 20 Total daily procurement costs of the communities and of the users in the noEC group, for different number of 

communities. 

 

 

Figure 21 Average daily costs per user in the communities, in the same communities with PLEC forbidden, and in the 

noEC group, for different number of communities. 

 

By increasing the number of communities, due to the uniform allocation criteria, the number of users 

not associated to any community decreases. Therefore, the costs of the noEC group tend to decrease, 

while the total cost of the communities increases. Moreover, when the number of communities 
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increases, each community becomes smaller. In small communities the procurement costs increase, as 

it is small the number of users free to transact with other participants. This is confirmed by Figure 21, 

which shows that the larger the number the communities the lower the advantage of the participation 

in the community (i.e., the lower the difference between the two black curves). 

3.1.8.4. Increase of the PV generation and of the BES units 

Figure 22 and Figure 23 show the reduction of the daily energy procurement costs due to the uniform 

increase of the PV units and of the BES units, multiplying the base case values by coefficients kPV and 

kBES, respectively. Figure 23 also shows the costs for the case without storage units (kBES = 0).  

 

 

Figure 22 Total procurement costs of all the users in the network, procurement costs of the users in the noEC group and 

of EC1, EC2 and EC3. 
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Figure 23 Procurement costs of EC1, EC2, and EC3 and of the users in the noEC group for different sizes of the BES 

units. 

3.2. Distributed Optimization and Application of the Model to a Real Distribution Network 

3.2.1. Introduction 

The development of Energy Communities (ECs) of prosumers, facilitated by the evolving regulatory 

framework, e.g., in Europe [38], is expected to further promote the integration of renewable energy 

sources and the installation of energy storage systems in distribution networks [39]. There is a 

growing literature on modeling of energy communities and optimal scheduling of the exchanges 

among their members, taking explicitly into account the limits due to the technical characteristics of 

the power distribution network. Local market structures are described, for example, in [40], [41] and 

references therein. Specifically, the model proposed in [40] takes into account the network constraints 

by including three factors in the market mechanism: voltage sensitivity coefficients, power transfer 

distribution factors, loss sensitivity factors. In [42], the proposed peer-to-peer (P2P) platform is based 

on the use of locational marginal prices to calculate network usage charges. In [43] an approach is 

proposed consisting of three layers: the market layer sending price signals to the EC controller layer, 

the controller layer for managing the energy flow, and the grid layer for studying the impact on the 

distribution grid. A Stackelberg-game framework is adopted in [44] to set prices by the distribution 

system operator (DSO). The focus is the optimal operation of distribution networks that incorporate 

ECs, by adopting a bi-level optimization scheme. The pricing scheme proposed in [45] addresses the 

challenges of energy trading in a local electricity market through a decision-making process that 

includes look-ahead energy storage scheduling. The hosting capacity of a distribution network in 
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presence of ECs is analyzed in [41]  by using Monte Carlo simulations for the entire year in order to 

represent different EC configurations and the effects on energy losses, bus voltage deviations, and 

thermal loading of branches. The impact on the medium voltage (MV) network is reduced when the 

EC is operated to minimize the power exchange between the EC and the external grid for each 

individual time stamp. Compared to earlier studies, this chapter focuses on the analysis of the 

presence of multiple ECs, with members served by different electricity retailers, in the MV power 

distribution network. The analysis is carried out by a specifically developed procedure that provides 

the daily optimization of the communities that consider direct transactions of both active and reactive 

power between their members and helps in solving network congestions. On the modeling aspects of 

multiple ECs sharing the same medium voltage (MV) distribution network. Consumption profiles 

with 15-min resolution for several days in both winter and summer are used to optimize transactions 

within each energy community. Each user is a member of one of the communities or can remain 

outside of all communities. 

In this approach, each community minimizes its energy procurement costs through a day-ahead 

scheduling of internal transactions among its members and available energy resources, including 

battery energy storage (BES) systems. Members of the same community may be served by different 

electricity retailers. Each retailer has different contract terms. Internal transactions are priced using 

the shadow prices of the balancing constraints between the power provided by the electricity retailer 

and the power received by other community members. Preliminary results using the IEEE 123-bus 

feeder test system and a centralized optimization approach have been presented in [46]. This paper 

extends the model by representing the use of reactive energy exchanges among members of each EC 

to limit the penalties due to minimum power factor (PF) operations and by adopting an iterative 

distributed optimization procedure based on the augmented Lagrangian method [47] to take into 

account violations of network constraints. Specifically, the objective function of the optimization of 

each EC is augmented by the penalization coefficients  updated at each iteration to minimize the 

violations of both bus voltage and branch current limits, using a typical sensitivity estimation [48]. 

The chapter presents the results for different numbers and configurations of communities, price 

profiles of electricity retailers, and network operating constraints. The chapter also shows the 

computational feasibility of the proposed approach. 

3.2.2. Day-ahead Distributed Optimization Procedure 

The procedure focuses on the day-ahead optimization for the next 24 hours, divided into 96 periods 

of 15 minutes each. The optimization independently performed for each community and the set of 

users outside the communities, called noEC, with the goal of minimizing the corresponding energy 

supply costs. In addition, there is an optimization problem for the DSO, which takes into account the 
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network constraints and minimizes the violations of the limits of the branch currents and the bus 

voltages. The procedure is iterative and stops when the violations of the network constraints in the 

DSO problem are less than a predefined tolerance or when there are no more improvements to the 

solution, as illustrated in Figure 24. 

 

Figure 24 The procedure stops when the violations of the network constraints in the DSO problem are less than a 

predefined tolerance or when there are no more improvements to the solution. 

 

The next two subsections describe in detail the models implemented for the communities, the noEC 

set of users, and the DSO problem. 

3.2.3. Individual and Collective User Optimization Model 

The model is a mixed-integer linear programming problem. To obtain the day-ahead scheduling of 

the available energy resources and of the transactions between the members of the same community, 

the following objective function is minimized: 
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(3.20) 

which includes the operating costs, the penalization for the low PF operation and the additional terms 

useful to limit the network constraint violations. Multipliers   are provided by the DSO model at 

each iteration. The noncompliance amount 
PF ,i tQ  is the excess reactive power with respect 

minpf . The 

value of 
PF  is assumed to be known, i.e. set by the regulator or utility. 

grid ,i tC  is constrained by equation (3.21) 

where grid ,i tP  is positive when bought and negative otherwise. Contributions ,

c

k tP  and ,

c

k tQ  to the 

power at node k  of the network are: 
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Following the approach  presented in [46], the total net consumption (positive) or production 

(negative) of user i  should balance the sum of the exchanges with the retailer and with the other 

members of the same community c  as shown in equation (3.19). 

Constraint (3.19) is associated with the condition that the sign of useri,tP  gridi,tP  and LECi,tP  is the same 

(dealt with the inclusion of binary variables associated with the sign of useri,tP ). The prices of the LECP  

transactions between the community members are calculated as the shadow prices of constraint (3.19)

. 

As grid ,i tQ  is typically constrained to be nonnegative: 
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The condition on the sign of user ,i tQ  (positive if consumed) is dealt with through specific binary 

variables. For the users of set noEC, the only difference with respect to the community model is that 

the exchange between users is prohibited, i.e. LEC , 0i tP =  and LEC , 0i tQ =  if i  in noEC. The exchange 

between the members of each community k  is balanced and the reactive power exchange is limited 

to the members of the community that are served by the same HV/MV transformer: 
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i t i t
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 (3.23) 

The net power for each user is given by: 

 

useri,t L , Gi,t BESi,t BESi,t

useri,t L , Gi,t BESi,t Ci,t

i t

i t

P P P P

Q Q Q Q Q

= − − +
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 (3.24) 

GQ , BESQ  are limited by the minimum PF of the local generator and the BES. CQ  is fixed or limited 

by the maximum power of the switchable capacitor bank (discrete switching is not represented for 

simplicity). BESP  is positive when the battery is discharged and is constrained by the maximum power 

limit of the battery system. 

BES power losses BESi,t  are: 
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where the condition on the sign of BES ,i tP  is treated with a specific binary variable. The model of the 

BES unit is given by: 
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By defining , G , C , BES , LEC ,
ˆ

i t i t i t i t i tQ Q Q Q Q= + + + , if the operating condition is not satisfying minpf , a 

penalty is applied in (3.20) ,proportional to the amount of reactive power excess, denoted as PF ,i tQ : 
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Where: 
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3.2.4. Linearized DSO Model 

The DSO problem minimizes the violations of the network constraints in both bus voltages and branch 

currents. The configuration of the MV network is radial, so excluding the slack bus, which is the 

substation HV bus, the number of nodes is equal to the number of buses. A common index k  is used 

to denote both a branch and the corresponding end. The model of the network represents each branch 

with a balanced T-model, composed of two impedances (called in and out) each equal to half the 

longitudinal impedance of the branch and a shunt admittance in the middle Figure 25. 

 

Figure 25 Generic T-model equivalent circuit 
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The model adopts the DistFlow approach [33], which uses the square rms values of the input and 

output currents in k,tu  and outk,tu , respectively, and the square rms values of the bus voltages, ,k tv . 

The nonnegative violations are: 
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By defining ( )in k,t out k,t
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minimizes the summation of the violations: 
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where M  differentiates the maximum branch current violations from the bus voltage violations. The 

application of the balanced DistFlow linearization presented in [49] to the T-model equations 

described in [50] yields, for each branch k , the relationships that relate the square rms values of the 

voltages with the power flows are: 
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where  
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The linear representation of the branch currents is:  
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that uses the power flow estimate marked with superscript 0, calculated by building the set of all 

buses that each branch feeds and then by adding the corresponding bus power, assuming bus voltages 

equal to 1 pu, as well as neglecting the control of on-load tap changers (OLTC), batteries, capacitor 

banks, and dispatchable generators. The substation transformers have 
2

ink,t 0v V= , assumed to be 
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known and constant throughout the day. They are OLTC equipped with a tap ratio in the range 

min max[ , ]t t , continuous for simplicity, so that: 

 
2 2
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 (3.34) 

For all the branches that do not represent an OLTC transformer outk,t outk,tv v= . Generalizing to the 

case of multiple branches originating and terminating on the same bus, the node equilibrium 

constraints are: 
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The values of the power at each bus are given by the solution of the optimization problem for each 

community and the users outside the community, as defined (3.21). The summation gives the total 

power at each bus of the network: 
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 (3.36) 

These constraints are associated with the shadow prices that are used to update the multipliers of 

(3.20) as described below. 

3.2.5. Multiplier Update 

In each iteration, at first the models of the communities and the noEC users are solved, then the DSO 

model is solved. Finally, the   multipliers of the previous iteration, indicated by an upper bar, are 

updated based on the values of the shadow prices from (3.36) and the violations from (3.29): 
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and analogously for 
uQ

,k t  ,and 
vQ

,k t . 

The shadow prices relevant to current and voltage violations are distinguished in 
uP

,k t , 
uQ

,k t  and 
vP

,k t

, 
vQ

,k t  respectively, by comparison with a threshold value set according to the M  value introduced in 

(3.30). These values are also normalized (indicated by the hat) with respect to the norm of the 

corresponding prices for all branches and buses.  
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3.2.6. Case study and test results 

A. Feeders and user characteristics 

The case study includes 5 real MV feeders (here referred to as A to E) connected to a 132/15 kV 

substation, located in Modena, Italy Figure 26. The substation is equipped with a 50 MVA transformer 

(T1) and two 25 MVA transformers (T2 and T3), all with OLTCs. The system includes 134 buses and 

branches: 4 in feeder A connected to transformer T2, 27 in feeder B connected to transformer T1, 22 

in feeder C connected to transformer T1, 26 in feeder D connected to transformer T1, and 55 in feeder 

E connected to transformer T3. 

 

Figure 26 Layout of the real MV test network. The HV/MV substation is indicated by a circle and, the five feeders 

considered are distinguished by different colors. 

Three electricity retailers (Pr1, Pr2, and Pr3) with different price profiles are considered: one (with 

minimum and maximum values equal to 0.093 €/kWh and 0.33 €/kWh, respectively) follows the 

typical wholesale market price behavior with two peaks in the morning (9-11 am) and in the evening 

(6-9 pm), the second profile (with the same maximum and minimum values) has a low price during 

the night and a higher price during the day, the third is a 10% discount with respect to the second one. 

The sell  profiles follow similar patterns, but with values halved. 

For illustrative purposes, PF  is assumed to be equal to 5 €/kvarh. The requested minpf  value is 

assumed to be 0.9. The bus voltage values are constrained to be within the interval 0.9 pu - 1.1 pu. 
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The load and generation profiles are obtained from the DSO records at each 15-minute interval, 

separately for each MV node, for three days in January and in July 2023. The weather data are 

summarized in Table 6 [51]. 

Table 6 weather data 

 Winter Summer 

Property 17 18 19 18 19 20 

Cloud Coverage (%) 88.1 84.1 85.5 11 25.2 34.1 

Solar Radiation (W/m2) 8 40 13 296 264 303 

Temperature (°C) 4.1 3.8 2.6 30.2 30.2 27.4 

Wind Speed (km/h) 37.1 13.2 17.1 14.8 18.4 20.5 

Precipitations (mm) 3.1 0.2 3.2 0 0 2.6 

 

The data of daily load consumption, PV generation and the generation from synchronous machines 

are summarized in Table 7. The voltage dependence of the loads is neglected. The users have batteries 

with a total capacity of 675 kWh. 

Table 7 Energy Consumption and Generation Data 

Property 
Winter Summer (July) 

17 18 19 18 19 20 

Load Consumption (MWh) 267.9 277.6 269.1 327.8 333.0 320.5 

PV Generation (MWh) 5.8 6.2 6.0 11.0 10.6 11.0 

in % wrt to Consumption 2.16 2.23 2.22 3.35 3.18 3.43 

Sync. Generation (MWh) 11.4 11.4 10.6 11.5 11.5 11.5 

 

Each user is randomly assigned to one of the three retailers. Similarly, users are randomly grouped, 

with equal probability, into three communities (EC1, EC2, EC3), or are not included in any 

community (noEC set). For the sake of simplicity, all the users connected to the same MV node are 

considered to be aggregated, and thus to belong to the same community or to the noEC set. Table 8 

shows the allocation of the total energy demand during the three days, the corresponding PV 

generation, and the total installed storage capacity. 

The test case data is available in an Excel file at: [52] https://www.doi.org/10.17632/8vzjxbxnnh\  

The next subsection presents the results for the three-community configuration described above, 

referred to as the base case. Then, the results are compared with the cases where LECQ  and also LECP  

transactions are forbidden, and with cases characterized by different numbers of communities. All the 

https://www.doi.org/10.17632/8vzjxbxnnh/
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results are obtained by implementing the optimization procedure in AIMMS with the Gurobi solver. 

The total computational time for each case is less than 2 minutes (CPU: Intel core i7, 12700H 5.2Ghz, 

RAM: 32GB). 

Table 8 Allocation of the demand, PV generation, and battery storage as percentage of the total three-day values for the 

communities and the NoEC set 

Group  
Demand (%) Generation (%) 

Installed BES (%) 
Winter Summer Winter Summer 

EC1  26.3 27.2 37.2 33.6 14.8 

EC2  15.5 14.1 5.4 14.2 44.4 

EC3  25.3 27.0 17.2 11.5 14.8 

noEC  32.9 31.7 40.2 40.7 26.0 

 

 

B. Base Case Solution 

Table 9 shows the cost of the energy provided by the retailers ( gridP  cost) and the cost due to the 

internal transactions LECP  (negative values indicate revenues) for the three days in winter and summer 

for the three communities EC and the three retailers Pr. 

Table 9 Base case: energy costs in thousands of euros for each community considering the three different retailers on 

winter (W) and summer (S) days 

Pr/EC 

 EC1 EC2 EC3 

Cost W S W S W S 

Pr1 
Pgrid 26.56 31.83 17.62 17.10 30.27 29.63 

PLEC -1.77 0.16 -0.94 -1.12 -1.72 -0.67 

Pr2 
Pgrid 22.93 29.72 10.19 8.21 48.72 71.19 

PLEC 2.83 -0.12 1.05 2.02 1.79 0.67 

Pr3 
Pgrid 37.98 43.99 26.97 28.46 11.50 13.82 

PLEC -1.07 -0.04 -0.11 -0.90 -0.06 0 

 

Table 10 shows the percentage cost reductions in the base case with respect to the case where both 

LECP  and LECQ  are prohibited and to the case where only LECQ  transactions are prohibited. The energy 

costs include both the costs/revenues related to the exchanges with the retailers ( gridP ) and those 

related to the exchanges with other community participants ( LECP ). The table shows that there are 

more reductions on winter days than in summer days. In summer, EC2 members also benefit from 
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community participation due to the presence of larger battery storage. Often, users having contracts 

with Pr1 and Pr2 benefit more from community participation than those with contracts with Pr3, 

which is the cheapest retailer. The difference between the results obtained in the reference case and 

those where only LECQ  transactions are prohibited is very small, since the energy costs depend on the 

active power exchanges. 

Table 10 Base case energy cost reductions in %  with respect to the case where 
LECP  and 

LECQ  or only 
LECQ  exchanges 

are forbidden 

Pr/EC Forbidden 
EC1 EC2 EC3 

W S W S W S 

Pr1 
LECP / LECQ  5.09 0 2.62 5.22 4.28 1.15 

LECQ  0 0 0.01 0.05 -0.02 0.22 

Pr2 
LECP / LECQ  3.34 2.97 0.01 0.04 0 0 

LECQ  0 0 0 -0.13 0 0 

Pr3 
LECP / LECQ  1.43 -0.02 0.22 1.24 0.3 0 

LECQ  0.04 -0.09 0 0.02 0 0 

 

Table 11 shows the costs due to minimum PF noncompliance. They are mainly on summer days. The 

availability of LECQ  transactions is very effective in reducing these costs, as shown by comparing the 

base case results with those cases where these transactions are forbidden. 

Table 11 Noncompliance costs (in euro) in the base case and when 
LECP  and 

LECQ  exchanges are forbidden 

 
EC1 EC2 EC3 

W S W S W S 

Base case 0 12009.2 0.1 0 0 187.5 

w/o LECQ  13.6 33886.7 9.9 5334.8 11.2 15761.6 

w/o /LEC LECP Q  19.5 33886.7 9.9 5334.8 11.2 15761.6 

 

The goal of reducing the high noncompliance costs may also affect the LECP  transactions. In general, 

this justifies the reduced benefit on summer days, when the LECP  transactions are limited to reduce 

noncompliance costs. This also justifies the small negative values in Table 10. If LECQ  are forbidden, 

then the noncompliance cost is high. If LECP  transactions are allowed, the optimization also uses LECP  

transactions to reduce the noncompliance cost, and the energy cost may increase slightly compared 

to the case where transactions are not allowed.  

The energy cost values (in thousands of euros) for the users in the noEC group are: in winter days, 

19.26, 37.73, 59.15, for the users with contracts with Pr1, Pr2, and Pr3, respectively (total energy cost 
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116.13); in summer days, 21.54, 40.45, 69.52, for the users with contracts with Pr1, Pr2, and Pr3, 

respectively (total energy cost 131.52). 

For the noEC group, in winter days, the noncompliance cost is 125.1 €; in summer days, it is 6110.1 

€. 

C. Different Number of Communities 

For different numbers of communities, Figure 27 shows the percentage difference in energy 

procurement and noncompliance costs for users who belong to a community (i.e., those who do not 

belong to the noEC set in the base case) with respect to the case where LECP  and LECQ  transactions 

are prohibited. The graphs refer to the three-day costs and penalties, in winter and summer. Without 

LECP  and LECQ  transactions, the energy procurement and noncompliance costs (in thousands of euros) 

are 237.3 and 0.034 for winter days, and 276.3 and 55.0 for summer days, respectively. 

The figure shows that as the number of communities increase, the percentage reductions decrease, 

meaning that both costs and penalties approach the values of the case without LECP  and LECQ  

transactions. 

 

Figure 27 Percentage reduction of a) energy procurement cost and b) noncompliance penalties, varying the number of 

communities, with respect to the case in which LECP  and LECQ  transactions are forbidden. 

3.3. Conclusion 

Chapter 3 presents a day-ahead scheduling procedure for the case of multiple energy communities in 

the grid. Each user is free to join a community or not. Moreover, each user can choose a different 

energy provider.  

The results obtained for the IEEE 123-bus test feeder show that each community reduces its 

procurement costs with respect to the case in which direct transactions are not allowed. Assuming the 
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presence of 2 providers characterized by different price profiles, the procedure correctly prefers to 

allocate the internal production to the consumers with higher tariff when the community globally 

imports power and prefers to use internally the generation of the producers with lower selling tariff 

when the community globally exports power.  

The procedure defines the prices of the transactions among the users of the same community by using 

the shadow prices of the relevant balancing constraints. The increase of the number of communities 

results in the increase of the procurement costs also due to the reduction of the members with which 

each participant can transact. The procedure can also be used to analyze the effects of further 

installation of production and storage units. The calculation effort is reasonably limited.   

The second part of chapter 3 presents a framework for analyzing the effects of multiple energy 

communities in the same distribution network, while preserving the user's free decision to join or not 

to join and its autonomous choice of electricity retailer. The presented day-ahead optimization 

procedure takes into account the network constraints and provides the prices of the internal transactions 

as the shadow prices of the power balancing constraints for each user. In addition, the procedure also 

allows reactive power exchanges between members of the same community other than active power. 

These reactive power transactions are performed to reduce the costs for low PF operation. The 

procedure is applied to a real MV distribution network, considering the consumption and generation 

profiles of three days in winter and summer. The results show the effectiveness in reducing both energy 

procurement costs and noncompliance costs for each community. The sensitivity analysis on the 

number of ECs shows that as the number of ECs increases, cost reductions and penalties decrease, 

approaching the case without internal transactions within ECs. 

The scheme also appears to be suitable for investigating the provision of flexibility services to the 

DSO, e.g., for congestion management in the network, as well as the interaction between ECs and 

transmission network, the effects of the presence ECs on the energy market behavior, and the socio-

economic implications for different stakeholders. These aspects are not covered in this chapter as they 

deserve further investigation. 
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Chapter 4. Reactive power services from communities  

 

4.1. Introduction 

This chapter focuses presents a procedure for the optimal operation of a community of prosumers 

connected to a medium voltage distribution network equipped with generation and storage units that 

considers the penalization for low power factor operation, the exploitation of direct exchanges of both 

active and reactive power between the prosumers and the provision of reactive power services by the 

community to the local distribution system operator and the transmission system operator. The 

proposed procedure calculates the maximum and minimum reactive power deviations that each 

community participant can provide with respect to the reference profile. 

4.2. Motivations and literature review 

The regulatory framework on energy communities is in evolution to include different perspectives of 

the transition to a low carbon society other than the technical aspects of power system operation, such 

as environmental issues, eradicating energy poverty, sustainable development (e.g., [53] and 

references therein). The integration of distributed generation may lead to a decrease in power factor 

for individual sites [54]. Moreover, energy communities are expected to provide services (such as 

active and reactive power balancing) to the distribution and transmission networks to which they are 

connected. Emerging regulations are fostering the participation of final users, single or aggregated 

collectives, in both the energy market and the ancillary services markets. These services for the 

distribution network operation are expected to be provided by microgrids and energy communities, 

with the use of qualified generating and storage units, reactive power compensation devices, and the 

implementation of demand response techniques.  

This chapter focuses on the provision of reactive power compensation services by a local energy 

community of prosumers connected to the same medium voltage (MV) distribution network. There 

is a growing literature on this specific topic both for separately managed final users or prosumers and 

for communities. In these studies, reactive and active compliant and non-compliant zones of operation 

are often considered, including penalties for non-compliant absorption of reactive power. Indeed, 

when a photovoltaic (PV) system, installed in a final user site, is operated at unitary power factor, it 

decreases the local active power demand with a corresponding worsening of the power factor of the 

site. The presence of penalties for non-compliant absorption of reactive power is indeed an issue 

There are several studies relevant to the reactive power control of distributed generators, with specific 

reference to PV systems, e.g. [55], [56], [57], [58], [59] that consider also the relationship with active 
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power curtailments and transformer control. Among the auxiliary services for distribution network 

operation, the provision of reactive power flexibility is one of the most important as it can be used to 

obtain improved voltage profiles, avoiding or postponing the need of expensive voltage control 

devices by the DSO (such as static var compensators and voltage regulators). The changes of the user 

reactive power injections or absorptions need to be coordinated with the control of the transformers 

equipped with on-load tap changers (OLTC) [60]. Optimization approaches have been developed for 

the reactive power management in grids with renewables [61], which need to consider both P-Q 

inverter capability curves and compliant regions (that may also involve the voltage value at the 

connection bus) defined in various countries [62],[63],[64].  

The preliminary calculation of the maximum deviations with respect to a reference value [65],[66] 

are useful for DSO and TSO decisions relevant to the provision of ancillary services. In [67], the 

limitations of traditional reactive power compensation methods, particularly for distributed 

generation (DG), are addressed by a distribution level reactive power market that offers variable 

payments to units equipped with smart inverters. In the context of energy communities equipped with 

energy storage systems and aggregated distributed energy resources, [68] and [69] focus on active 

load flexibility, storage capacity sharing, and voltage ancillary services, using phasor measurement 

units for control coordination.  

4.3. Contributions and chapter organization 

This work presents an optimization model for the scheduling of the community resources that 

considers both active and reactive power direct exchanges among the community participants. Active 

power exchanges allow to reduce the energy procurement costs of the community with respect to the 

case in which the users can only transact with an external energy provider; reactive power exchanges 

are aimed at reducing the noncompliance penalties associated with low power factor operation. 

A day-ahead scheduling problem of a community connected to a MV distribution network is 

considered. It is assumed that network users are members of the same community and have a common 

provider (identified for simplicity with the utility). The transactions among different users of the low 

voltage network connected to the same node of the MV network are aggregated without effects on 

the results. Daily profiles of the price of the energy bought from the utility, price profiles recognized 

for the energy sold to the utility, and penalizations for energy exchanges with low power factor are 

predefined. Direct exchanges of both active and reactive power are allowed among the community 

participants. The proposed optimization procedure of the community calculates the scheduling of 

these exchanges through the MV network and the prices of the transactions. The objective of the 

procedure minimizes the energy procurement costs of the community for the next day together with 
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the penalizations for low power factor operation. Moreover, specific optimization procedures are used 

to assess the maximum up and down reactive power variations that can be offered as a flexibility 

service by the community to the utility for the following day, being the flexibility reward tariffs 

predefined. The utility can use the reactive power flexibility service offered by the community for the 

online reactive power/voltage control in the network during the day. As these optimization procedures 

calculate the maximum reactive power increase and decrease at each node and at the substation that 

connects the distribution network with the transmission network, these flexibility capabilities can be 

exploited for both the distribution operation (by the DSO) and for the transmission system at the 

DSO/TSO interface. In any case, the community is rewarded by the variation of the reactive power 

at the connection points of the participants. 

 The developed model considers voltage control devices, such as transformers equipped with OLTC, 

capacitor banks or static var compensators, as well as the reactive power injection or absorption by 

distributed generators and storage units.  

The effectiveness of the approach is demonstrated by applying it to a set of real MV test feeders 

supplied by the same HV/MV substation, under various operating conditions. The consumption and 

production profiles have a 15-minute resolution and follow actual recordings for three consecutive 

days, in winter and in summer. There are several connected users equipped with renewable energy 

units, mainly PV units, heat, and power generators (CHP), and small hydro power (SHP) units. In 

addition, some battery energy storage systems are introduced.  

The procedure is implemented in a computer code and applied specifically to a real 15 kV power 

distribution network in Italy, and IEEE 14 and 123 bus system. 

The results highlight the benefits of the energy community compared to independent users’ operation, 

in terms of reducing energy procurement costs. This is achieved through an improved coordination 

between the scheduling of dispatchable distributed generation and storage units. Additionally, the 

analysis demonstrates the advantages of direct reactive power transactions in reducing penalties for 

low power factor operation. Coordination among distributed resources can also improve the 

community capability to provide reactive power flexibility services.  

4.4. Structure of the chapter 

Section 0 is devoted to the description of the optimization model and main assumptions. Section 4.6 

focuses on the calculation of the reactive power flexibility limits. Section 4.17 describes the real case 

study and relevant available data. Section 4.20 presents the results of the analysis. Section 0 concludes 

the chapter 4. 
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4.5. Structure of the optimization procedures 

In this chapter we consider a deterministic day-ahead scheduling problem, i.e., the optimization of 

the energy resources and control means for the 24 hours of the next day with 15 minutes resolution, 

assuming the forecast of load and photovoltaic production known without uncertainties. The 

optimization models can be adopted in scenario-based stochastic approaches and intraday rolling-

horizon procedure (as described in e.g., [34]) able to cope with uncertainties. The formulation of the 

optimization problems and the solution computational requirements are suitable for the inclusion in 

a stochastic approach, although this is beyond the scope of the chapter.  

The considered scheme includes the following steps. 

1- Reference optimization: calculation of the scheduling of both active and reactive power 

resources that minimize the energy procurement costs of the entire community assuming 

known tariffs for the active power exchanges with the external provider and considering 

the penalties for the participants that operate with power factor lower than a predefined 

limit;  

2- Qdown optimization: calculation of the maximum decrease of reactive power absorption 

or maximum increase of reactive power injection at the terminals of each community 

participant that minimizes the energy procurement costs considering the revenues (with 

predefined €/kvarh price) from the provision of a reactive power flexibility service 

consisting in the decrease with respect to the reactive power profile (assumed positive 

when power is absorbed) calculated in the reference step, according to DSO/TSO requests. 

3- Qup optimization: calculation of the maximum increase of reactive power absorption or 

maximum decrease of reactive power injection at the terminals of each community 

participant that minimizes the energy procurement costs considering the revenues from 

the reactive power increase with respect to the reference profile. 

Qdown and Qup optimizations are considered independent due to the lack of constraints relevant to 

reactive power compensation decisions taken in different times. 

Following the typical local energy community scheme, participants are allowed to provide active 

power to other participants. The role of provider and consumer can vary at each period according to 

the generation and load levels inside each participant. The proposed optimization model provides the 

fair price for each transaction as the value of the shadows price of equilibrium constraints. 

In the reference optimization, also reactive power exchanges among the participants in the community 

can be allowed, i.e., a participant that absorbs too much reactive power with the respect to active one 
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(as it operates at low power factor), can reduce the penalty by the help of the reactive power injections 

of other participants. The model is conceived so that also these internal reactive power exchanges 

among the community participants are balanced to avoid excessive reactive power exchanges with 

the grid, both positive and negative. Section 4.20 will show the results obtained with and without 

reactive power compensations between community participants for the considered test cases. 

 The optimization models consider the typical operating constraints of the distribution network: 

maximum bus voltage deviations with respect to the reference value, maximum current limits in the 

branches, limitation in the OLTC of transformers and voltage regulators, maximum reactive power of 

variable capacitor banks. 

In Qdown and Qup optimizations, the voltage control and reactive power compensation means of the 

distribution network (i.e., OLTCs and variable capacitor banks) can be operated to maximize the 

rewards (this can describe the case of an energy community that also acts as the operator for the 

relevant part of the distribution system) or can be operated to maintain the voltage profile close to the 

rated value (as in the typical case of a separate DSO from the community). Section 4.20 compares 

the results obtained for the two different ways of OLTCs and capacitor banks operation.  

For the power flow representation, we have chosen the convex relaxation approach described in e.g., 

[31],[32], based on the DistFlow method [71], considering an equivalent single-phase representation 

of the three-phase network assumed as balanced.  

Although some downsides (analyzed in e.g., [72],[73]) and the need of a careful model formulation 

to guarantee that the solution will meet the equality of the relaxed constraints, this approach appears 

suitable for a first implementation and comparison of novel objectives and strategies, to explore the 

new scenario characterized by the presence of communities, direct energy transaction among 

prosumers, and their participation to local and global ancillary service markets. 

The relationship between load modelling and volt-var optimization can be significant, as shown in 

e.g., [74] and references therein. Since the study is focused on reactive power provision services, the 

proposed model includes the voltage dependence of active and reactive power loads represented by 

the ZIP model (i.e., combination of constant impedance, constant current, and constant power loads), 

other than transformers equipped with OLTCs, capacitor banks, and the representation of the charging 

current of the branch lines (i.e., the line shunt capacitance).  

The linear representation of the ZIP model presented in [75] has been suitably adapted to be included 

in the DistFlow method. Moreover, to increase the accuracy of the solution and to avoid any link 

between loads and branch currents, the optimization is included in an iterative procedure in which, at 
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the first calculation, the ZIP models are evaluated at the voltage of the secondary side of the feeding 

OLTC transformers, and in the following iterations, loads are represented as constant power 

calculated at the bus voltage value of the previous iteration. The optimization model of the following 

iterations is simpler than that of the first iteration, as described in Section 4.16, so to significantly 

speed up the calculation. The iterative procedure stops when the maximum difference between the 

voltage values in consecutive iterations is smaller than a predefined tolerance. 

The structure of the entire procedure is illustrated in Figure 28. The figure indicates the type of 

implemented optimization problems: MIQCP refers to mixed-integer quadratically constrained 

programming and QCP refers to quadratically constrained programming (without binary variables). 

 

Figure 28 Scheme of the procedure. 

The next two sections describe the optimization model adopted in this chapter for the scheduling of 

the community resources together with the calculation of the reference reactive power profiles and 

the models for the calculation of the maximum reactive power deviations, respectively. 

4.6. Reference optimization model of the distribution network with the presence of a local 

energy community 

The T equivalent circuit is adopted as line model, which may be advantageous with respect to the Π 

line model,  adopted in other DistFlow-based optimization models as in, e.g. [76], for the easier 

calculation of the currents at the line ends. The network is assumed to be radial. The number of buses 

(excluding the connection to the transmission network) and branches is the same. The set of the bus 

and branches is denoted by Ω. For simplicity, a reference direction is assumed for the power flow 

along the lines from the external grid to the terminal buses. Each branch is denoted by the index i of 
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the sending bus. Each time interval Δt of the considered optimization horizon T is equal to 15 minutes. 

According to the DistFlow method, each generic branch of the network is represented by the line 

model connected to the input terminal or receiving bus, a transformer, a load and a shunt capacitance 

connected to the output terminal or receiving bus, as shown in Figure 29. inv , outv  denote the squared 

rms values of the voltages at the receiving and sending bus, respectively, while mpv and out'v refer to 

the internal and the sending bus of the T-model. inu , outu  are the squared rms values of the line currents 

in the two terminals of the T-model. z=r+jx is the line series impedance and jb is the line shunt 

admittance.  

The transformer can be present or not. If present, a transformer ratio tOLTC different than 1 is 

considered while the short circuit impedance and the magnetizing inductance are modelled by using 

the T equivalent circuit. 

The community participants can transact with the external energy provider and among themselves, at 

prices taken equal to the marginal costs calculated as shadow prices of specific equality constraints 

(described in Section 4.14), under the assumption that the participants of the community are not in 

competition. Extending the approach presented in [35], the exchanges between participant i and any 

other participant in time t are represented by variables ,LEC i tP , ,LEC i tQ , for active and reactive power, 

respectively. Analogously, the exchanges with the external provider, which for simplicity we identify 

with the utility, are described by variables grid , i tP  grid , i tQ . The local active and reactive power user , i tP , 

user , i tQ , measured by the meter at the participant connection, should be equal to the sum of the 

transaction with the grid with the community. For each participant, the signs of the two exchanges 

with the grid and with the other participants are constrained to be the same, to avoid reselling. 

Variables LEC_in ,i tP , LEC_in ,i tQ  and LEC_out ,i tP , LEC_out ,i tQ  allow to represent the power flows associated 

with power generated and consumed in the same t inside the community.  

At its point of connection, each community participant absorbs active and reactive power 

(nonnegative ,L i tP , ,L i tQ ), injects active and reactive power by local generator ( ,G i tP , ,G i tQ ), BES unit 

( ,BES i tP , ,BES i tQ ), and capacitor bank (nonnegative ,C i tQ  ).   
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Figure 29 Scheme of the model of a generic branch with the connection point of a user. 

4.7. Objective function 

The considered objective minimizes the objective function OF as described in section 3.2.3 (3.20). 

As the number and characteristics of the installed components are fixed in the considered day-ahead 

scheduling problem, as well as the community composition, only the costs that depend on the decision 

variables (i.e., the active and reactive power outputs of the controllable energy resources that are 

already available in the system, the transactions among the community participants, and the OLTC 

positions) are included. The objective function does not include generation costs since we assume 

here that all the local generation is provided by PV systems. If generation costs vary with production, 

they affect the optimal prices of the transactions among the community participants as shown in [27] 

where the presence of biogas units is considered. 

As the price buy, t  for buying energy from the utility is higher than the price sell, t  recognized when 

the community participants sell energy to the utility at each time t, the feasible region of cost grid ,i tC  

is defined by the minimization of following convex epigraph as described in 3.2.3 in equation (3.2). 

4.8. Penalization of low power factor operation  

The area that complies with minpf  is illustrated in Figure 30, where 

, G , C , BES , LEC ,
ˆ

i t i t i t i t i tQ Q Q Q Q= + + +  is the sum of reactive power decision variables, i.e. controllable 

reactive power resources ( G ,i tQ , C ,i tQ , BES ,i tQ ) and reactive power exchanges among the users LEC ,i tQ

. According to section 3.2.3 in equation (3.20), when the operating point is outside the compliance 

area, a penalty is applied proportional to the noncompliance amount PF ,i tQ . In some regulatory 

framework, for small active power consumption or production a fixed reactive power exchange is 

allowed without penalization, as illustrated in [60], [64] with reference to Swiss and Belgian 

regulation. For simplicity, these peculiarities are not included in the implementation of the model 

presented in this chapter, as customer penalizations for bus voltage violations.  
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QG , QBES are constrained by the minimum power factor of the local generator and BES. QC is fixed 

or limited by the maximum output of the switchable capacitor bank (for simplicity, discrete switching 

is not represented). 

 

Figure 30 Operating region that complies with the minimum power factor 

 

The noncompliance PF ,i tQ  is a nonnegative variable under the assumption that there is no reward for 

operating inside the compliance area. As the compliance area shown in Figure 30 is nonconvex, the 

representation of PF ,i tQ  includes a condition on the sign of user , i tP  (dealt with the inclusion of binary 

variables), as described in section 3.2.3, in equation (3.20).  

Joule power loss , i t  in each branch is illustrated in section 3.1.3 in equation (3.3). 

Power losses associated with BES discharging and charging (corresponding to PBES positive and 

negative) are as described in section 3.2.3, in equation (3.26). 

where dicharge i  and charge i  are efficiency factors lower than one. PBES is constrained by the 

maximum power limit of the battery. 

Nonnegative variable ˆ
LECP  is defined by 
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,

,

ˆ LEC i t

LEC i t

LEC i t

P
P

P


 

−  (4.1) 

4.9. Coupling constraints 

Values of out ,i tv , out ,i tP , out ,i tQ , LEC_out ,i tP , LEC_out ,i tQ  should be equal to the values of in   1,i tv + , in   1,i tP + , 

in   1,i tQ + , LEC_in   1,i tP + , LEC_in   1,i tQ +  considering i as the upstream branch and 1i +  the downstream one. 

Generalizing to the case of multiple branches terminating and originating from the same bus as 

illustrated in section in 3.1.5 equations (3.11), (3.12) and (3.13) and for LEC_out ,i tQ  and out ,i tQ : 

 

out , in ,
r s
j ji

i t

i

i tQ Q
 

=
 (4.2) 

 

LEC_out , LEC_in ,
r s
j j

i t

i i

i tQ Q
 

=
 (4.3) 

where ,j tv  is the squared voltage of bus j and 
r

j , 
s

j  denote the sets of branches connected to bus j 

as the sending and receiving end, respectively. The squared voltage V0
2 at the connection point to the 

transmission network (slack bus 0) is assumed to be known and, for simplicity, is here assumed 

constant during the day. 

Transactions between the participants of the community do not cause any power flow exchange 

with the utility, i.e., 

 0

LEC_in , 0i t

i

P


=
 (4.4) 

 0

LEC_in , 0i t

i

Q


=
 (4.5) 

4.10. Branch constraints 

According to the DistFlow method, for each branch i and time interval t, the relationships between 

the voltages at the terminals and the power flows are given by the following relationships as described 

in section 3.1.4 in equation (3.6) and (3.7). 

being cap ,i tQ  the reactive power injection of the utility capacitor bank connected at bus i (as shown in 

Figure 29) if present. 
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Nonnegative variable in ,i tu  , out ,i tu are constrained to be lower than the square of the maximum 

branch current limit (
2

max iI ) and nonnegative variables   ,in i tv  ,   ,out i tv  are constrained between the square 

of the minimum and maximum bus voltage limits (
2

min iV ,
2

max iV ).  

4.11. Cone constraints 

As usually done to represent the DistFlow model as a quadratically constraint problem, the apparent 

power equalities are relaxed as shown in section 3.1.4 in equations (3.9) and (3.10). 

In a feasible solution, all (3.9) should be verified as equalities, as well as one of (3.4). A specific check 

is automatically performed in the procedure and if the mismatch is greater than a predefined small 

tolerance the optimization is repeated as described in subsection 4.15. 

4.12. OLTC and capacitor constraints 

For the branches relevant to OLTC transformers, the constraints are 

 
2 2

min out , out , max out ,' 'i t i t i tt v v t v 
 (4.6) 

where maxt  and mint  are the upper and lower bounds of OLTCt  (for the branches that describes a line 

max min 1t t= = ). This formulation, for simplicity, does not explicitly represent discrete steps. A refined 

result that considers the discrete steps is obtained by the iterative optimization procedure described 

in section 4.16.   

We consider two ways to operate the OLTC:  

a) the OLTC ratio is optimized, together with the other decision variables, to minimize the 

objective function or 

b) the OLTC tap is chosen to control the voltage by the two linearized constraints (by neglecting 

2

,i tV  in the first constraint and assuming vout close to 1 pu in the second one) 

 

2

out , r r ,

, out , out ,

2

s ' s '

i t i i i t

i t R i t X i t

v V V V

V P Q

= + 

 = +
 (4.7) 

where Vr is the rated voltage at the secondary side of the transformer, sR and sX are positive 

parameters that represent the regulator compensation settings. To consider maxt  and 
mint , (4.7) 

is conditioned by (4.6) with the inclusion of three binary variables (each corresponding to 



93 

 

2

out , max out ,'i t i tv t v= , 
2

out , min out ,'i t i tv t v= , and 
out ,i tv between 

2

min out ,' i tt v  and 
2

max out ,' i tt v ) whose sum 

must be 1. 

In a) the community also operates as a DSO for the network to which the participants are connected, 

in b) DSO and community are separated so the DSO operates the transformers to control the voltage 

near to the rated value.   

Analogously, also the variable capacitor bank can be considered belonging to the community 

participant connected to the same bus or to the utility network. In both cases the nonnegative variable 

relevant reactive power injection ,C i tQ  limited by maximum value C max iQ . If the capacitor bank 

belongs to the community participant, the capacitor reactive power injection is included in the 

evaluation of Quser as shown in Figure 29. 

4.13. User plant constraints 

The net power for each user is given by as described in section 3.2.3 in equation (3.24). 

The adopted simple model of the BES unit is represented by as described in section 3.2.3 in 

equation (3.26). 

where ,i tE  is the energy content constrained by the minimum and maximum energy levels min iE , 

max iE . In the numerical tests, 
,i tE  is assumed equal to max iE  at beginning and the end of the 

optimization horizon (t=1 and t=96, respectively). 

The linearized ZIP model of the load (written in pu) described in section 3.1.6 in equation (3.17). 

where PZ and QZ represent the consumption at the rated voltage of the constant impedance 

component, PI and QI represent the consumption at the rated voltage of the constant current 

component, PP and QP represent the consumption of the constant power component, and 
I ,i tP , ,i i tQ  

(different from zero only when 
I ,i tP  and 

I ,i tQ  are not null) represent the linearized voltage dependence 

of the constant current component consumption described in (3.18) in section 3.1.6.  

4.14. Active and reactive power exchanges among the community participants 

As mentioned, each community participant can exchange active and reactive power with other 

participants (
,LEC i tP , ,LEC i tQ ) and with the utility ( grid , i tP  grid , i tQ ). The balance described in section 

3.2.3 in equation (3.22) and (3.19). 
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The representation of LECQ  exchanges includes a condition on the sign of ,LEC i tQ  (dealt with the 

inclusion of binary variables), in order to avoid that one participant may absorb reactive power from 

the utility to provide LECQ  to other participants who need it to reduce the noncompliance penalty PFQ

. 

Since it is in general avoided to inject reactive power to the grid, if not requested, grid , i tQ  is 

constrained by 

 grid , 0i tQ 
 (4.8) 

The ,LEC i tP  and ,LEC i tQ  flows in the network are represented by 

 LEC , LEC_in , LEC_out ,i t i t i tP P P−=
 (4.9) 

 LEC , LEC_in , LEC_out ,i t i t i tQ Q Q−=
 (4.10) 

The shadow prices associated with the active power constraints (3.8) are used to define the prices of 

the transactions among the participants of the community. In summary, the objective function of the 

MIQCP reference problem is given by (3.20) with constraints (4.9), (4.10), and (3.2) and the lower 

and upper limits of the variables. 

4.15. Repeated optimization to achieve a feasible solution 

The model described in the previous subsections includes the two following relaxations: 

a) the convex representation of the losses in the battery (3.25). 

b) the conic model of power flows represented by (3.9). 

Relaxation (a) is valid when the solution reaches an equality conditions for at least one constraint of 

(3.25). This condition is facilitated by the minimization of the summation of ,BES i t , explicitly 

considered in the objective function. However, since the compliance reactive power limits Qlim1 and 

Qlim2 depends on the active power consumption Puser, as shown by (3.28), and due to the relationship 

between Puser  and BES  shown by (3.24), in some cases, the lowest value of the objective function is 

achieved without reaching the minimum BES losses condition, if 
BES ,i t  are not increased so much 

that the BES power loss minimization term becomes prevalent. To avoid this issue, in constraint (3.28) 

the calculation of Puser does not include BES . 
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Relaxation (b) is valid when the solution reaches the equality conditions for all constraints in (3.9). 

The achievement of this solution is facilitated by the minimization of the branch power losses 

explicitly considered in the objective function. However, due to the voltage dependence model of the 

loads (3.17), (3.18) and the relationship between bus voltages and branch currents (3.6), in some 

cases, the lowest value of the objective function is achieved without reaching the minimum power 

losses condition, if loss ,i t  are not increased so much that the power loss minimization term becomes 

prevalent. In order to overcome this condition, in the first optimization (MIQCP), the load 

consumption is made independent from the branch currents: in (3.17) and (3.18) out ,i tv  is replaced by 

variable load ,i tv  that is equal to the voltage at the secondary side of the feeding OLTC transformer or 

to V0
2 if there are no OLTC transformers between bus i and slack bus 0. Analogously, to make the 

voltage at the secondary side of OLTC transformers independent from branch currents, in (4.6) out ,' i tv  

is replaced by V0
2 or, if there is another upstreaming OLTC, by its secondary side voltage vout. 

If at the end of an optimization neither of the two constraints (3.25) is satisfied as equality for some 

of the BES units, despite the described countermeasure, the optimization is repeated with the 

inclusion of an additional nonnegative penalization in (3.20), greater than the difference between BES  

and the maximum of the right side terms of (3.25) calculated by using the ,BES i tP  values provided by 

the previous solution. 

Analogously if at the end of an optimization, constraints (3.9) are not satisfied as equality for some 

branches, the optimization is repeated by adding a penalization in , greater than the difference between 

inu , outu  and the maximum values of ( )2 2

in in in P Q v+ , ( )2 2

mp mp mp 'P Q v+  and ( )2 2

mp mp mp P Q v+ , 

( )2 2

out out out ' ' 'P Q v+ , respectively, evaluated according to the previous solution. 

4.16. Iterative procedure to obtain a refined solution 

The iterative procedure mentioned in Figure 28 improves the accuracy of the results. The model 

(3.20) and (4.10) is iteratively solved again with these changes:  

a) the voltage at the secondary side of OLTC transformers are fixed in agreement of the step 

nearest to the previously calculated value,  

b) the sign of Puser and the sign of QLEC at each bus are fixed as previously calculated,  

c) the total power of each load is recalculated by using the bus voltage value obtained in the 

previous iteration and all load types are transformed in constant P.  
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The iterative procedure ends when the difference between the bus voltage values in two subsequent 

iterations becomes lower than a predefined tolerance. As the binary variable are fixed the model 

(3.20) and (4.10)becomes a quadratically constrained problem (QCP).  

At the end of this procedure, the reference profile ,ref i tQ  for each participant is defined equal to the 

calculated  
user , i tQ . The same reference profile is used in both the Qdown and Qup procedures 

described in the next sections. 

4.17. Calculation of the maximum and minimum reactive power deviations 

To exploit the community willingness to provide a variation of the reactive power consumptions or 

injections with respect to the reference profile, DSO and TSO needs to know the maximum amount 

of the reactive power flexibility.  

These flexibility limits are calculated by two distinct optimization models, one (Qdown) provides the 

maximum value of reactive power consumption decrease or of reactive power injection increase for 

each t and i; the other (Qup) provides the maximum value of reactive power consumption increase or 

of reactive power injection decrease for each t and i. 

In both optimizations, the objective functions the revenues for the provision of the flexibilities 

replace the penalizations for the noncompliance of the minimum power factor. 

4.18. Maximum increase of reactive power injection or decrease of reactive power 

absorption 

The considered objective function of the Qdown problem is   

 
( )

downQ grid , down down loss ,  BES ,  , , BES ,i t i it i t

i

t

t T

i t i tOF C Q t  
 

= − + + 
 (4.11) 

where down  is the amount of money that DSO/TSO gives to the community for each kvarh of 

consumption decrease or injection increase, Qdown is the variation of the reactive power at each t and 

i with respect to the reference value Qref calculated by the reference optimization procedure, i.e.: 

 down ref user, , ,i t i t i tQ Q Q= −
 (4.12) 

  Function (4.11) is conceived under two assumptions: 

a) reactive power decisions in one period do not have significant relationship with the reactive 

power decisions taken in previous periods,  
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b) the inclusion of the reward term does not significantly affect costs Cgrid (i.e., active power 

decisions). 

Indeed, as shown in the test cases, in general, the replacement of noncompliance penalization with 

the flexibility reward does not significantly modify the value of Cgrid. In cases this is not true (i.e., 

when reactive power compensation or voltage control do affect active power outputs or 

consumptions), it might be appropriate to include the expected probability t  that DSO/TSO will 

require the activation of the reactive power flexibility at period t of the next day in the objective 

function. With this change, the flexibility reward is weighted by t  and the objective function also 

includes the noncompliance penalization weighted by (1- t ). For simplicity, the consideration of this 

aspect is not addressed in the chapter. 

Problem Qdown includes constraints (3.2), (3.3), (4.3), (3.6), (4.4), (3.19), (4.9), (4.12). If the OLTC 

transformers are operated according to (4.7), the model is still MIQCP although binary variables are 

limited to those relevant to such a constraint. If (4.7) is not included (i.e., OLTCs are optimized to 

minimize the objective function), the model does not include binary variables and it is classified as 

QCP. 

The same repeated solutions and iterative procedures describe in sections 04.15 and 04.16 are also 

applied in the Qdown procedure, to achieve a feasible and accurate solution. 

4.19. Maximum decrease of reactive power injection or increase of reactive power 

absorption. 

Analogously, the objective function of Qup procedure is  

 
( )

up ,,Q grid , up up loss ,  BES BES , ,i t i tt i t

i

i i t i

t T

tOF C Q t  
 

= − + + 
 (4.13) 

where up  is the amount of money that DSO/TSO gives to the community for each kvarh of 

consumption increase or injection decrease, Qup is the variation of the reactive power at each t and i 

with respect to the reference value Qref calculated by the reference optimization procedure, i.e.: 

 up user r, , ,efi t i t i tQ Q Q= −
 (4.14) 

Problem Qup includes constraints (3.2), (3.3), (4.3), (3.6), (3.19), (4.4), (4.9),(4.14). It is a MIQCP or 

QCP model if (4.7) is included or not. The repeated solutions and iterative procedures of sections 0 

and 0 are applied to achieve a feasible and accurate solution. 
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4.20. Model implementation, test cases description and results 

The complete procedure of Figure 28, which illustrates all the described optimization models, has 

been implemented in AIMMS Developer modelling environment [37], using Gurobi 9.5 

solvers (MIQCP for the first reference optimization and QCP for Qdown, Qup and iterative solutions 

respectively). The results have been obtained by using a computer equipped with an Intel-i7 and 32 

GB of RAM, running 64-bit Windows 10. 

The numerical tests included in this chapter consider three different test cases. The complete set of 

data of the 3 test cases is included in the Excel file available at 

https://1drv.ms/x/s!Anog_gEaBkch0OIAi2WcvHrg-zBdNQ?e=yrdktC (it will be posted in a public 

domain data repository). The file contains also the schemes of the networks, the 96 period per unit 

load profiles used in all the test cases obtained by the CREST tool [36] using different numbers of 

dwellings, the daily profiles of πbuy and πsell, and the daily profile of the ratio between power output 

and panel surface, assumed the same for all PV units.  

Each prosumer may be equipped with a PV system, a load, and a BES unit. All the prosumers belong 

to the same energy community. All the calculations refer to a time window of one day, divided into 

96 periods of 15 minutes each. Noncompliance penalty tariff μPF is equal to 5 €/kvarh, flexibility 

reward tariffs πdown and πup are equal to 3 €/kvarh, in agreement with [64]. The minimum power factor 

value that complies with the requirements is assumed equal to 0.9. The bus voltages values are 

constrained to be inside of the 0.9 pu, 1.1 pu interval. 

Regarding the iterations needed to obtain feasible (section 3.8) and accurate (section 3.9) solutions, a 

predefined tolerance of 1% is adopted for both the branch maximum current limit and the difference 

between the bus voltage values in two subsequent iterations. A 1% value is also set for the mixed 

integer relative optimality tolerance of the global optimum gap in the MIQCP solver. 

A. Test case A 

The test system, adapted from [77], is a 14-bus network, in which three feeders are connected to the 

same substation bus. All the BES units can inject or absorb reactive power as determined by the 

optimization procedure. The minimum and maximum reactive power limits are ±48.43% (0.9 power 

factor) of the rated value. All PV units operate at unitary power factor. The forecasted total energy 

demand during the day is 349.4 MWh, the PV energy generation is 52.4 MWh (15% of the load), the 

total storage capacity installed is equal to 5.5 MWh (10.5% of the daily PV generation). For the 

provision of reactive power, All the BES units can inject or absorb reactive power as determined by 

https://1drv.ms/x/s!Anog_gEaBkch0OIAi2WcvHrg-zBdNQ?e=yrdktC
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the optimization procedure. The minimum and maximum reactive power limits are ±48.43% (0.9 

power factor) of the rated value. All PV units operate at unitary power factor.  

Assuming that all variable capacitor banks belong to community participants and reactive power 

exchanges between participants are allowed, Figure 31 shows the profiles of LECP  and LECQ  during 

the day. Figure 32 shows the bus voltages, Figure 33 compares the profile of the average price of the 

internal transactions LEC with buy  and sell  , i.e. the prices of the transaction with the external energy 

provider. Figure 33 also shows the profile Pgrid tot, i.e., the sum of Pgrid, i. As expected, the prices of 

the internal transactions are close to buy  as Pgrid tot always positive during the day. It has been verified 

that the both sum of all LEC iP  and LEC iQ  in each period are null and that the voltage profiles (and the 

relevant  power flows in the network) corresponds to those provided by Matpower [78]. The same 

tests have been carried out for all the other test cases. 

 

Figure 31 Profiles of the a) active and b) reactive power exchanges between community participants. Test case A. 
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Figure 32 Bus voltage profiles. Test case A. 

 

 

Figure 33 Prices of the internal transactions, prices of the transactions with the external energy provider, cumulative 

value of the power exchanged with the energy provider. Test case A. 

 

The calculations are repeated for 4 scenarios that differentiate for the type of operation of the capacitor 

banks and whether LECQ  exchanges are allowed (scenario 0 is without community, i.e., without LECP

; in all the other scenarios LECP  transactions are allowed): 

scenario 0 - all capacitors belong to the utility without community; 
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scenario 1 – all capacitors belong to the prosumers without LECQ  exchanges; 

scenario 2 – all capacitors belong to prosumers and LECQ  exchanges are allowed; 

scenario 3 – all capacitors belong to the utility and LECQ  exchanges are allowed; 

scenario 4 – all capacitors belong to the utility without LECQ  exchanges. 

Table 12, provides the values of the objective function, of the total daily costs of the exchanges with 

the energy provider and the daily value of the power factor noncompliance penalty obtained by the 

first (MIQCP) and the final of the iterative solutions (QCP), for the 4 scenarios.  

Table 13 and 

Table 14 provide the solution results for the Qdown and Qup procedures where the rewards 

corresponding to the provision of reactive power change with respect to the reference value replace 

the noncompliance penalties.  

For all the calculations, the computer time is indicated. The final solutions (denoted in 

Table 13 and  

TABLE 14 as final iter.) are achieved with a single iteration. Figure 34 compares the profiles of the 

sum of the Quser i values calculated by the reference, Qdown, and Qup procedures for the considered 

scenarios, showing the margins for each period that can be used as provision of the reactive power 

flexibility service by the community. In Table 12, the comparison between scenarios 1 and 2 and 

between scenarios 3 and 4 show the capability of QLEC exchanges to significantly reduce the 

noncompliance penalties.  

In this case, the optimization of the available capacitor banks by the prosumers (scenarios 1 and 2) 

provides a significant advantage only for the provision of the Qdown reserve, whilst the penalty in 

the reference case is not reduced, as shown by the comparison between scenarios 1 and 4.  

In all the scenarios, the energy procurement costs due to the transactions with the external energy 

provider are similar, being higher for scenario 0 (without community) especially for the reference 

case in which the voltages are kept high to increase the active power consumption by the voltage 

dependent loads and reduce the noncompliance penalties.  

The comparison between scenarios 0 and 4 for the reference case shows that, in this test case, the 

decrease of energy procurement costs by the participation in the community leads to a slightly 

increase of the noncompliance penalties. 
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Table 12  Summary of the results for the reference optimization of case study A.  

  
Objective 

function 

Cost of exchanges with 

the energy provider (k€) 

Noncompliance 

penalty (k€) 

 
  

CPU time (s) 

Scenario 0 
1st solution 230.5 103 114.8 115.6 9.0 

final iter. 228.9 103 114.1 114.7 4.9 

Scenario 1 
1st solution 229.5 103 113.0 116.4 3.2 

final iter. 227.5 103 112.2 115.2 2.6 

Scenario 2 
1st solution 112.4 103 112.2 0 3.2 

final iter. 111.6 103 111.5 0 2.4 

Scenario 3 
1st solution 159.2 103 113.1 45.9 14.7 

final iter. 157.7 103 112.5 45.1 2.2 

Scenario 4 
1st solution 229.4 103 113.0 116.3 3.0 

final iter. 227.8 103 112.3 115.4 3.0 

 

Table 13  Summary of the results for the Qdown optimization of case study A 

  Objective 

function 

Cost of exchanges with 

the energy provider (k€) 
Reward (k€) CPU time (s) 

Scenario 0 
1st solution 22.9 113.7 90.9 3.4 

final iter. 19.4 113.0 93.8 3.7 

Scenario 1 
1st solution -278.7 103 112.2 391.0 3.2 

final iter. -281.7 103 111.6 393.5 1.9 

Scenario 2 
1st solution -175.3 103 112.2 287.7 3.2 

final iter. -178.3 103 111.6 290.1 1.9 

Scenario 3 
1st solution 89.6 103 112.2 22.8 1.4 

final iter. 86.1 103 111.5 25.6 1.8 

Scenario 4 
1st solution 21.9 103 112.2 90.4 1.4 

final iter. 18.4 103 111.5 93.3 1.9 

 

Table 14  Summary of the results for the Qup optimization of case study A 

  Objective 

function 

Cost of exchanges with 

the energy provider (k€) 
Reward (k€) 

CPU time 

(s) 

Scenario 0 
1st solution -178.8 103 113.7 292.6 3.4 

final iter. -176.1 103 112.9 289.1 3.9 

Scenario 1 
1st solution -211.4 103 112.2 323.8 5.9 

final iter. -207.9 103 111.2 319.3 2.1 

Scenario 2 
1st solution -314.7 103 112.2 427.1 6.0 

final iter. -311.3 103 111.2 422.7 2.1 

Scenario 3 
1st solution -248.5 103 112.2 360.8 6.6 

final iter. -245.8 103 111.4 357.3 1.9 

Scenario 4 
1st solution -180.8 103 112.2 293.2 6.7 

final iter. -178.1 103 111.4 289.6 2.0 
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a) b)  

c)  

Figure 34 Profiles of the cumulative value of the community reactive power calculated by the reference, Qup and 

Qdown procedures for scenarios: a) 2 (like 1 not shown), b) 3, c) 4 (like 0 not shown). Test case A. 

 

For this test case A, as well as for test case B and C, it has been verified that participating in the 

community does not disadvantage any of the prosumers. 

In the case the variable capacitor banks belong to the utility, if QLEC exchanges are allowed, all the 

capability of providing reactive power by the participants is already used in the reference optimization 

to reduce noncompliance penalties. Therefore, the margin allowed for the provision of Qdown 

services is almost zero for large part of the day as shown in Figure 34) and the low value of the 

corresponding reward in 

Table 13. 

In order to show the sensitivity of the results for different values of noncompliance penalty and 

flexibility reward tariffs, Table 15 reports the summaries for scenario 3 with μPF = 0.1 €/kvarh  and 

μPF = 2.5 €/kvarh (other than 5 €/kvarh as in the previous results), πdown =πup = 1.5 €/kvarh (other than 

3 €/kvarh as in the previous results). The results show that, as expected, decreasing the value of μPF 

decreases the noncompliance penalty, whereas lowering πdown/up reduces the flexibility rewards. No 

effect is observed on the overall cost of exchanges with the energy provider. 
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Table 15 Summary of the results for case study A Scenario 3 with different values of reactive power penalty and 

flexibility reward (in parentesis, percentage variations with respect to Tables 1, 2, and 3) 

 Reference Qdown Qup 

μPF, 

πdown/up 

(€/kvarh) 

Cost of exchanges 

with the energy 

provider (k€) 

Noncompliance 

penalty 

(k€) 

Cost of exchanges 

with the energy 

provider (k€) 

Reward (k€) 

Cost of 

exchanges with 

the energy 

provider (k€) 

Reward (k€) 

0.1, 3 111.6 (-0.8) 1.1 (-97.6) 111.5 (0) 26.3 (2.7) 111.4 (0) 356.6 (-0.2) 

2.5, 3 112.5 (0) 22.7 (-49.7) 111.5 (0) 25.1 (-2.0) 111.4 (0) 357.7 (0.1) 

0.1, 1.5 111.6 (-0.8) 1.1 (-97.6) 111.5 (0) 13.1 (-48.8) 111.4 (0) 178.3 (-50.1) 

2.5, 1.5 112.5 (0) 22.7 (-49.7) 111.5 (0) 12.6 (-50.8) 111.4 (0) 178.9 (-49.9) 

5, 1.5 112.5 (0) 45.1 (0) 111.5 (0) 12.8 (-50.0) 111.4 (0) 178.7(-50.0) 

 

B. Test case B 

Test case B is based on 13-bus IEEE feeder [22]. All the branches are considered symmetrical by 

averaging the non-zero values of the diagonal and off diagonal elements of the impedance and shunt 

admittance matrices and using the positive sequence values. The loads are assumed balanced too, 

increasing the original load values indicated in [22].  

All the BES units can operate and can inject or absorb reactive power with minimum and maximum 

limits equal to ±48.43% of the rated value. All PV units operates at unitary power factor. The 

forecasted total energy demand during the day is 52.5 MWh, the PV energy generation is 24.5 MWh 

(46.7% of the load), the total storage capacity installed is equal to 1.7 MWh (6.9% of the daily PV 

generation). Both transformers at the substation and the one feeding a low voltage bus are considered 

equipped with OLTCs, between 0.9 pu and 1.1 pu. 

Assuming that OLTCs and variable capacitor banks as operated by the community with LECQ  

exchanges allowed, Figure 35 compares the profile of the average price profile of the internal 

transactions LEC  with the profile of Pgrid tot. As expected, the prices of the internal transactions are 

bounded between buy  and sell , close to buy  when Pgrid tot is positive and close to sell  when Pgrid tot 

is negative. 
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Figure 35 Comparison between the prices of the internal transactions and the prices of the transactions with the external 

energy provider. Cumulative value of the power exchanged with the energy provider. Test case B. 

 

The calculations are repeated for 9 scenarios that differentiate for the type of operation of the OLTC 

transformers, of the capacitor banks, and whether LECQ  exchanges are allowed (scenario 0 is without 

community, all the other scenarios are with LECP ): 

scenario 0 - OLTCs operated by the utility, all capacitors belong to the utility without community; 

scenario 1 – OLTCs operated by the utility, all capacitors belong to the utility without LECQ ; 

scenario 2 – OLTCs operated by the community, all capacitors belong to the utility without LECQ ; 

scenario 3 – OLTCs operated by the utility, all capacitors belong to the prosumers with LECQ ; 

scenario 4 – OLTCs operated by the community, all capacitors belong to the prosumers with LECQ  

scenario 5 – OLTCs operated by the community, all capacitors belong to the utility with LECQ ; 

scenario 6 – OLTCs operated by the community, all capacitors belong to prosumers without LECQ  

scenario 7 – OLTCs operated by the utility, all capacitors belong to the utility with LECQ ; 

scenario 8 – OLTCs operated by the utility, all capacitors belong to prosumers without LECQ . 
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Table 16 Summary of the results for the reference, Qup and Qdown optimizations of case study B. Cep indicates the 

cost of the exchanges with the energy provider, PNC indicates the noncompliance penalty, R indicates the reward. 

 Reference Qdown Qup 

 CEP (k€) PNC (k€) CEP (k€) R (k€) CEP (k€) R (k€) 

Scenario 0 12.4 45.5 12.0 20.0 11.9 98.0 

Scenario 1 10.8 45.5 10.6 20.5 10.6 97.4 

Scenario 2 9.5 40.0 9.4 21.0 12.1 115.1 

Scenario 3 10.6 0 10.7 48.0 10.5 131.4 

Scenario 4 9.4 0 9.3 35.0 12.0 163.0 

Scenario 5 9.5 22.1 9.4 8.7 12.1 127.5 

Scenario 6 9.6 39.9 9.4 80.1 12.0 118.0 

Scenario 7 10.8 28.0 10.6 7.7 10.5 110.3 

Scenario 8 10.7 45.1 10.7 78.1 10.5 101.3 

 

a) b)  

c) d)  

Figure 36 Profiles of the cumulative value of the reactive powers of the community participants calculated by the 

reference, Qup and Qdown procedures for scenarios: a) 1 (like 0 and 2 not shown), b) 4 (like 3 not shown), c) 6 (like 8 

not shown), d) 7 (like 5 not 

 

Table 16 shows the summary of the values of energy procurement cost from the external provider, 

noncompliance penalty or reactive power service reward obtained at the last iteration of the reference, 

Qdown, and Qup procedures, respectively. The average (maximum) computational times in s are: 

20.5 (44.4) for reference optimization, 3.3 (5.6) for Qdown, 3.1 (5.4) for Qup. The final solutions are 

achieved with 1 or 2 iterations. 
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Figure 36 compares the profiles of the sum of the Quser i values calculated by the reference, Qdown, and 

Qup procedures for the considered scenarios.  

The results of Table 16 show that minimum values of the noncompliance penalties are achieved when 

QLEC transactions are allowed (scenarios 3, 4, 5, and 7), reaching the complete compensation when 

the capacitor banks belong to the participants (scenarios 3 and 4).  

The effects of the different way of operation of the OLTC transformers are quite negligible for both 

the reference and the Qdown optimizations.  

Higher rewards in the Qup optimization are obtained when the OLTC transformers are operated by 

the community (scenario 2 compared to 1, scenario 4 compared to 3, scenario 5 compared to 7, and 

scenario 6 compared to 8). In the Qup optimization of these scenarios however, there is also a slight 

increase of the costs CEP relevant to the transactions with the external energy provider the Qup 

optimization (from around 10.5 in scenarios 1,3,7,8 to around 12 in scenarios 2,4,5,6). When QLEC 

transactions are allowed and the capacitor banks belong to the utility (scenarios 5 and 7), the reduction 

margin available is negligible, resulting in very low rewards in the Qdown solution, as also illustrated 

by Figure 36d). As expected, other conditions equal, the highest value of the energy procurement 

costs from the external provider are those without community (scenario 0).  

C. Test case C 

Test case C is based on 123-bus IEEE feeder [22]. All the lines are considered balanced with positive 

sequence parameters obtained by averaging self and mutual impedances and admittances given in 

[22]. The loads are assumed balanced too, by averaging the single-phase loads. 49 PV units are added 

at load buses, with peak power taken equal to the load power multiplied by a randomly generated 

factor with a uniform distribution between 0 and 2, provided the production/consumption ratio is 

greater than 0.9, otherwise taken as zero.  The apparent rated power of the PV inverters is increased 

by 10% respect to the PV rated powers. The BES units operate at unitary power factor, while the PV 

units may exchange the reactive power determined by the optimization procedure. With reference to 

the rated power of the inverter, the minimum and maximum reactive power limits are ± 48.43% if the 

produced active power is larger than 10%, ± 4.84% otherwise. 

The forecasted total energy demand during the day is 13.0 MWh, the PV energy generation is 

7.3 MWh (56.2% of the load), the total storage capacity installed is equal to 68 kWh (0.9% of the 

daily PV generation). The substation transformer and the voltage regulators feeding buses 14, 26, and 

67 are considered equipped with OLTCs, between 0.9 pu and 1.1 pu. Variable capacitor banks are 
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connected to buses 83, 88, 90, 92 (with maximum power equal to the average values indicated in [22] 

for the three phases). 

 

Figure 37 Comparison between the prices of the internal transactions and the prices of the transactions with the external 

energy provider. Cumulative value of the power exchanged with the energy provider. Test case C. 

 

Assuming that OLTCs and variable capacitor banks are operated by the community with LECQ  

exchanges allowed, Figure 37 compares the average price profile of the internal transactions LEC  

with the profile of Pgrid tot and, as in previous test cases, the prices of the internal transactions are 

bounded between buy  and sell , quite closely following the sign of Pgrid tot. The calculations are 

repeated for 5 scenarios that differentiate whether LECQ  exchanges are allowed and how the OLTC 

and capacitor banks are operated (scenario 0 is without community, all the other scenarios are with 

LECP ): 

scenario 0 – OLTCs and capacitors operated by the utility, without community; 

scenario 1 – OLTCs and capacitors operated by the utility, without LECQ ; 

scenario 2 – OLTCs and capacitors operated by the utility, with LECQ ; 

scenario 3 – OLTCs and capacitors operated by the community, without LECQ ; 

scenario 4 – OLTCs and capacitors operated by the community, with LECQ ; 
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Table 17 Summary of the results for the reference, Qup and Qdown optimizations of case study B. Cep indicates the 

cost of the exchanges with the energy provider, PNC indicates the noncompliance penalty, R indicates the reward, cpu 

indicates the total computational time 

 Reference Qdown Qup 

CEP (k€) PNC (k€) 
CPU 

(s) 
CEP (k€) R (k€) CPU (s) 

CEP 

(k€) 
R (k€) CPU (s) 

Scenario 0 2.9 3.0 135.2 2.9 10.0 43.6 2.9 32.9 43.5 

Scenario 1 2.5 3.0 141.3 2.5 9.9 47.4 2.5 33.0 53.2 

Scenario 2 2.5 1.7 464.2 2.5 9.5 48.7 2.5 33.5 52.5 

Scenario 3 2.4 2.9 153.3 2.4 9.9 54.8 2.6 34.5 49.1 

Scenario 4 2.4 1.6 127.7 2.4 8.8 50.8 2.6 35.5 49.2 

 

a) b)  

c)  

Figure 38 Profiles of the cumulative value of the reactive powers of the community participants calculated by the 

reference, Qup and Qdown procedures for scenarios: a) 1 (like 0 and 3 not shown), b) 2, c) 4. Test case B. 

 

Table 17 shows the summary of the values of energy procurement cost from the external provider, 

noncompliance penalty or reactive power service reward obtained at the last iteration of the reference, 

Qdown, and Qup procedures, respectively, as well as the total computation time for of the three 

optimizations. Figure 38 compares the profiles of the sum of the Quser i values calculated by the 

reference, Qdown, and Qup procedures for the considered scenarios. The final solutions are achieved 

with 4 or 5 iterations. 
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The results show that in this case considering the capacitor banks as included in the prosumers does 

not provide significant advantages due to the limited number and size of the banks. The operation as 

a community reduces the energy procurement costs (CEP values of scenario 0 are the highest). The 

possibility to exchange reactive power among the community participants significantly reduces the 

noncompliance penalties (the PNC values of scenarios 2 and 4 are the lowest). The values of the energy 

procurement cost, associated with the active power exchanges with the external provider, are almost 

the same in the different reactive power optimizations (there is only a slight increase for the Qup 

optimization, when OLTCs and capacitor banks are operated by the community, i.e., in scenarios 3 

and 4).  

D. Real case study and available data (Test case D) 

The case study refers to five MV feeders (here named with letters from A to E) connected to a 

132/15 kV substation, located in Modena, Italy, already described in section 3.2.6. We refer here to 

the profiles relevant to three days in January 17 and 19, 2023.  

The considered πbuy profile is described in Table 18. The πsell follows a similar pattern, but with halved 

values. 

Table 18 Assumed daily profile of the prices πbuy in €/kWh 

until 8 8-9 9-10 10-11 11 – 18 18 – 20:15 20:15 – 21:15  21:15 – 22:15 after 22:15 

0.186 0.336 0.665 0.5 0.336 0.665 0.5 0.336 0.186 

 

For illustrative purposes, noncompliance penalty tariff μPF is assumed equal to 5 €/kvarh, flexibility 

reward tariffs πdown and πup are assumed equal to 3 €/kvarh, following [64]. The minimum power 

factor value that complies with the requirements is assumed equal to 0.9. The bus voltage values are 

constrained to be within the interval 0.9 pu – 1.1 pu. 

The forecasted total energy demands for the three days are 267.9 MWh (129.7 Mvarh), 277.6 MWh 

(134.5 Mvarh), and 269.1 MWh (130.4 Mvarh), respectively. The PV energy generation in the three 

days is 5.8, 6.2, and 6 MWh, while the energy generation from synchronous machines is 11.4, 11.4, 

and 10.6 MWh, respectively. For simplicity, all costumers connected to the same MV node are 

aggregated into a single user. The voltage dependence of the loads is neglected. 

The complete data set of the test case is available in [22]. 

The calculations are performed for each day and for three different scenarios, each one can allow 

active power PLEC and reactive power QLEC or not: 



111 

 

scenario 0 – with community including all users and with LECQ ; 

scenario 1 –  with community including all users but without LECQ ; 

scenario 2 –  without community. 

In these calculations, all the users connected to the feeders are members of the community. 

Additionally, both PV inverters and synchronous generators are assumed to be controllable, allowing 

them to supply or absorb reactive power, with a minimum power factor of 0.9. 

For the three days, Figure 39 compares the profiles of the total reactive power consumed by the 

community members (obtained by the reference, Qdown and Qup calculations) in scenario 0 and 

scenario 1. Table 19 shows the total cost of the exchanges with the utility, the penalty for power factor 

noncompliance (reference calculation) and the rewards for reactive power changes (in the Qdown and 

Qup calculations), in the three scenarios. The values of the rewards correspond to a case where the 

flexibility service is required throughout the day and are therefore significantly higher than typical 

situations.  

In scenario 0, the reactive power exchange completely avoids the low power factor penalties, but the 

resources used for this purpose are not available to the Qdown flexibility service. Scenario 1 results 

show that blocking QLEC exchanges allows for Qdown changes. Qup offers are lower in scenario 1 

because the absence of QLEC increases the Qref profile. Scenario 2 shows the overall benefits of 

community participation, ensuring no disadvantages for members as transaction prices, calculated as 

shadow prices of Figure 37, closely matching the πbuy or πsell profiles during power import (as always 

happens in the considered case) or export, respectively. 

a)  
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b)  

Figure 39 Profiles of the cumulative reactive power values of the community members calculated by the reference, Qup 

and Qdown procedures for the scenarios: a) 0, b) 1. 

 

Table 19 Summary of the results for the reference, Qup and Qdown optimizations in the first three scenarios. Cgrid is the 

cost of the exchanges with the energy provider, PNC is the noncompliance penalty, R is the reward. 

 Reference Qdown Qup 

Cgrid (k€) PNC (k€) Cgrid (k€) R (k€) Cgrid (k€) R (k€) 

Scenario 0 287.82 0 287.82 0 287.82 240.27 

Scenario 1 287.82 0.16 287.82 45.15 287.82 195.13 

Scenario 2 289.75 0.16 289.75 45.15 289.75 195.13 

 

Figure 40 shows that the reactive power flow through the transformers at the substation, resulting 

from the five feeders, is lower in scenario 0 than in scenario 2 (with a similar profile to scenario 1). 

This confirms that allowing direct reactive power exchange between community members reduces 

the need for reactive power compensation of the entire network. 
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Figure 40 Comparison of the reactive power reference profiles through the HV/MV transformers at the substation due 

to the five feeders in scenario 0 and scenario 2. 

Obviously, the results vary depending on the season and weather conditions. For example, Table 20 

shows results analogous to Table 19 for three summer days (July 18-20, 2023), when the load 

consumption was 327.8 MWh, 333.0 MWh, and 320.5 MWh, respectively, the PV energy generation 

was 11.0, 10.6, and 11.0 MWh, and the energy generation from synchronous machines was 11.5 MWh 

for each of the three days. The summer days (maximum solar elevation 66.4°) were little cloudy, no 

precipitation in the first two days and little precipitation in the early morning of the third day, with 

average solar radiation of 296, 264, and 303 W/m2, average temperature of 30.2, 30.2, 27.4 °C, and 

average wind speed of 14.8, 18.4, 20.5 km/h, respectively. 

  

Table 20 Summary of analogous results of Table 19 for three summer days. 

 Reference Qdown Qup 

Cgrid (k€) PNC (k€) Cgrid (k€) R (k€) Cgrid (k€) R (k€) 

Scenario 0 323.9 16.8 323.9 0.7 323.9 311.8 

Scenario 1 323.9 71.4 323.9 50.1 323.9 262.4 

Scenario 2 324.9 86.8 324.9 35.1 324.9 207.5 

 

The comparison between Table 20 and Table 19 shows that, during summer days, the noncompliance 

penalties for low power factor operation increase with the increase in PV production. However, the 

QLEC exchanges allow a penalty reduction of more than 76%. While in Table 19 the results of 

scenarios 1 and 2 are similar (with an increase only in Cgrid), the corresponding results in Table 20 
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show the importance of PLEC exchanges also for the penalty reduction and the increase of Qdown and 

Qup revenues. 

Considering scenario 0 of the winter days as reference, the following modified scenarios are also 

analyzed to show the impact of the reactive power contribution of the PV units, the increased 

production of the PV units, the partial user participation of the users in the community, and the 

benefits due to the inclusion of battery storage systems, which were absent in the previous scenarios: 

Scenario 3 – PV units without reactive power control (power factor fixed at 1); 

Scenario 4 – PV production increased by 50% (with reactive power control); 

Scenario 5 – only some nodes in the community (randomly selected); 

Scenario 6 – with three additional batteries (without reactive power control). 

In scenario 5, the nodes within the community account for 45.16%, 45.29%, and 45.06% of the system 

consumption over the three days, respectively. The daily PV production of the restricted community 

represents 75.73%, 75.88%, and 75.75% of the total PV production, respectively. The share of the 

generation from synchronous machines is 31.29% in the first two days and increases to 33.69% in the 

last day. 

In scenario 6, the three batteries are assumed to be connected to feeder B, feeder C, and feeder E, 

with maximum power of 75 kW, 75 kW, and 20 kW, respectively. The energy capacity in kWh is 

numerically equal to the maximum power. The charging and discharging efficiencies are set to 90%. 

The procedure optimizes the active power output of the batteries (with a minimum state of charge set 

at 20%) while maintaining a unitary power factor. 

Table 21 Summary of the results for the reference, Qup and Qdown optimizations in four variations of scenario 0. 

 

Reference Qdown Qup 

Cgrid (k€) PNC (k€) Cgrid (k€) R (k€) Cgrid (k€) R (k€) 

Scenario 3 287.82 18.41 287.82 0 287.82 103.64 

Scenario 4 284.34 0 284.34 0 284.34 240.28 

Scenario 5 288.31 0.14 288.31 8.72 288.31 231.56 

Scenario 6 287.60 0.01 287.60 0 287.60 240.28 

 

In Table 21, the results of scenario 3 in the reference calculation show the importance of reactive 

power compensation from PV units as PNC penalties increase significantly compared to scenario 0 

when enforcing unitary power factor. Scenario 4 results confirm the expected reduction in energy 

procurement costs due to increased PV production. Scenario 5 results show that smaller communities 
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are less capable to reduce energy prosumer costs and compensate for PNC penalties in the reference 

case. The Qup and Qdown calculations assume that flexibility services are also provided by users 

outside the community, so that the unused reactive power margin for PNC reduction is available for 

the Qdown service. Finally, scenario 6 demonstrates the effectiveness of batteries in reducing energy 

procurement costs. 

The computation time is in the order of a few minutes for all cases considered, running on a CPU 

Intel core i7, 12700H, 5.2Ghz (during all simulations less than 3.8 Ghz was used), with 32 GB RAM. 

4.21. Conclusions 

This chapter has presented a procedure for the day-ahead scheduling of an energy community in which 

direct exchanges of both active and reactive power among the participants are allowed. Direct 

transactions of active powers allow to decrease the total costs due to energy procurement from the 

external provider with respect to the case in which each prosumer can only transact with the energy 

provider, under the (usual) assumption that the purchase tariffs are higher than sale rates. The 

procedure calculates the scheduling of the energy resources and the fair prices of the internal 

transactions among the community participants as the shadow prices of the balance constraints. As 

these prices stay between the purchase and sale rates fixed by the external provider, none of the 

prosumers suffer an economic disadvantage in participating in the community. The reactive power 

exchanges allow to reduce the noncompliance penalties that each prosumer would pay whenever it 

operates at a power factor lower than the minimum value fixed by the energy authority or the utility. 

The issue of low power factor operation is of increasing importance with the diffuse installations of 

PV units that significantly reduce, during the central hours of the day, the active power consumption. 

The optimization procedure calculates the scheduling of the available reactive power compensation 

resources, coordinated with the voltage control means of the network. For this purpose, the voltage 

dependence of the loads is considered. 

The procedure is completed by the calculation of the maximum and minimum reactive power 

deviations that can be provided by the community, following a DSO/TSO request, for each period of 

the following day. In these calculations, the noncompliance penalties are replaced by the revenues 

provided by the reactive power flexibility assuming a predefined tariff. The results obtained for three 

test cases and a real case show that the different scheduling of the reactive power compensation 

resources has a limited impact on the community energy procurement costs, making the procedures 

economically advantageous. This conclusion also applies for lower values of the noncompliance 

penalties and reactive power remuneration than those assumed in the calculations, as they would result 

in smaller reactive power compensation actions by the community participants. For this reason, and 
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due to the lack of intertemporal coupling constraints in the reactive power decisions, the assumption 

of neglecting the probability that the flexibility service will be requested during the day appears 

reasonable. 

The computation times are reasonably low for all the calculations. This makes the proposed 

deterministic models suitable to be included in stochastic procedures that consider the uncertainties 

related to the PV production and load consumption profiles, other than the already mentioned 

probability that DSO/TSO can require a reactive power reduction or increase during the day. 

In this section of thesis, all the users of the network participate in the same community and share the 

same energy provider (or at least the same buy, t  and sell, t  profiles). Although beyond the scope of 

this chapter, the presented modelling approach can be applied for the analysis of systems where the 

users belong to different communities or do not participate in any community, with the presence of 

multiple energy providers. 
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Chapter 5. Conclusions 

This thesis deals with the following main topics: flexibility exploitation with the model of the EV 

parking lot and its use for voltage optimization, model of the energy communities with the pricing of 

the internal transactions, and the provision of reactive power services from communities.  

5.1. Flexibility exploitation of EV parking lots   

For the flexibility exploitation, the model of the parking lot and its application for voltage 

optimization, described in Chapter 2, outlines a method to characterize the flexibility offered by 

parking lots with EV charging stations. This flexibility can assist distribution system operators in 

addressing challenges such as voltage regulation and congestion. The method focuses on calculating 

the reference demand profile and the flexibility margins for each time period of the following day, 

taking into account predefined incentives for adjusting loads. 

The approach uses a multistage stochastic procedure that adapts to real-time conditions and vehicle 

connections to the charging stations. The stochastic optimization scenarios are generated based on 

forecasts of EV arrivals and departures, accounting for factors like battery size, EVs penetration in 

the model, and maximum charging power.  Clustering similar scenarios utilizing the k-medoid method 

reduces computational complexity though maintaining scenario feasibility.  

The optimization model aggregates EV battery behavior and formulates the problem as a linear one, 

making it computationally efficient even for large parking lots. The optimization model is formulated 

as a linear programming problem, computationally efficient even for large scale parking lots. It makes 

possible to represent losses associated with grid charging and vehicle-to-vehicle energy exchanges 

allowed by the use of the bidirectional technology in the charging stations. 

For increasing the flexibility of the EV parking lots, power reduction and increases are regarded in 

sequential periods, ensuring schedule feasibility, by including a recovery after the interval when the 

flexibility is requested. 

Numerical tests in different scale of EV parking lots show the performance and capability of the 

method. In total, this model ensures that charging requirements are met. 

The second part of the chapter presents a method to characterize and use the flexibility provided by 

parking lots equipped with EV charging stations for the optimization of the voltage profile in 

distribution networks. The flexibility margins calculated by the EV charging stations aggregators are 

incorporated as a control resource in the voltage optimization procedure of the distribution system 

operator. The procedure is applied to the 123-bus test feeder, including a parking lot with several 



118 

 

charging stations. The results show the effectiveness of the flexibility services for the optimization of 

the voltage profile. 

5.2. Model and analysis of the energy communities 

The model of the energy communities in Chapter 3 presents a day-ahead scheduling procedure for 

the case of multiple energy communities in the grid. Each user is free to join a community or not. 

Moreover, each user can choose a different energy provider.  

The optimization model procedure considers the price of the transaction community among the users 

of the same community calculated by the shadow prices of the relevant balancing constraints. The 

increase of the number of communities results in the increase of the procurement costs also due to 

the reduction of the members with which each participant can transact. Considered optimization 

procedure could analyze the changes of further installation of production and storage units. The 

calculation effort is reasonably limited. 

The results in IEEE 123-bus test feeder case study illustrate procurement costs of each community 

have decreases beside the cases that direct transactions are forbidden. The model presents two unique 

providers with a different price profile and consider high rate cost for internal production when the 

community generally import power, in addition the model set lowest rate tariff in total when the 

community export power. 

The second part of chapter 3 presents the distributed optimization model and the application to a real 

MV distribution network, considering the consumption and generation profiles of three days in winter 

and summer. The day-ahead optimization procedure takes into account the network constraints and 

provides the prices of the internal transactions as the shadow prices of the power balancing constraints 

for each user. In addition, the optimization model considered reactive power exchanges between 

community users in the same community beside active power. Reactive power transactions support 

the cost reduction for low PF operation. 

The real MV case study includes the supply/demand profiles of three days in winter and summer. The 

results illustrate the improvements in reducing both energy procurement costs and noncompliance 

costs for each community. The analysis on the number of ECs shows that as the number of ECs 

increases, the reductions of the costs and penalties decrease, approaching the case without internal 

transactions within ECs. 

The optimization model can represent the provision of flexibility services to the DSO. The reactive 

power services from communities are dealt with in Chapter 4. The reactive power exchanges help 
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reduce penalties for prosumers who operate below the minimum power factor set by the energy 

authority. This issue is growing with the increased installation of PV units, which lower active power 

consumption during midday hours. The optimization procedure schedules reactive power 

compensation resources, coordinated with the network's voltage control, considering load voltage 

dependence. It also calculates the maximum and minimum reactive power deviations that the 

community can provide on request from the DSO/TSO for each day. These deviations replace 

penalties with revenue from reactive power flexibility at a predefined tariff. Results from three test 

cases and a real case show that different scheduling of reactive power resources has minimal impact 

on energy procurement costs, making the procedure economically advantageous. 

5.3. Future work 

Future activities can deal with the refinement of the adopted models, with specific reference to the 

implementation of network constraints able to represent unbalanced conditions. Moreover, the 

approach can be applied to the analysis of the advantages of using different types of storage units, 

such as small-pumped hydro stations in rural areas. In the context of the application of communities 

in the cities, the flexibility associated with the district heating systems equipped with heat pumps 

appears to deserve a specific analysis. 
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