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Abstract

Network monitoring has traditionally been constrained by the infrastructure’s in-
herent limitations, including diverse device capabilities, legacy systems, and the
physical separation between data generation and monitoring. These constraints
delay threat detection and response, providing adversaries opportunities to exploit
network vulnerabilities and exhaust resources. While Software-Defined Networking
(SDN) has introduced tools for enriched network visibility, its centralized nature
imposes latency, limiting real-time threat mitigation.

This thesis explores the potential of fully programmable P4 data planes to
transform network threat detection. By enabling line-rate packet processing and
custom pipelines, P4 empowers network engineers to proactively detect threats
and react with unprecedented speed. Our work demonstrates the versatility of
P4 through frameworks addressing diverse challenges. In Part II, we introduce
P4RTHENON, which combines a simple data plane anomaly detection algorithm
with control plane refinement to detect and mitigate DDoS attacks. Building
on this, we propose an adaptive anomaly detection framework leveraging active
learning to iteratively refine machine learning models, seamlessly integrating them
into P4 pipelines. Part III investigates Distributed Ledger Technologies (DLTs)
for tamper-proof alert dissemination, presenting P-IOTA, a framework linking P4-
enabled switches directly to IOTA’s ledger, bypassing intermediaries and enhanc-
ing trust in alert systems. Part IV explores P4’s applications in IIoT networks,
presenting use cases such as edge-assisted in-network computing with data integrity
and industrial tunneling mechanisms, showcasing P4’s ability to secure legacy and
resource-constrained systems.

Concluding, the thesis outlines open challenges, such as balancing real-time de-
tection with resource efficiency and extending P4’s capabilities for broader system
integration, emphasizing its role as a cornerstone for future secure networks.
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Preamble

Network monitoring has traditionally been tailored to the specific infrastructure,

including its hardware and communication protocols. The diversity of devices in

modern networks – ranging from their computational capabilities and supported

security or encryption levels to the presence of legacy software – compounds the

complexity of creating effective monitoring systems. Furthermore, the physical

and logical distance between the networking devices and monitoring control plane

has relegated network engineers to late observers of already-in-place attacks. De-

layed reaction threats can be a pivotal advantage to adversaries, which can cut

off defenders by exhausting the control channels and consequently the networking

resources [AVOW18].

The advancements in network softwarization, particularly through Software-

Defined Networking [McK09](SDNs), have provided network engineers with new

tools to enrich threat monitoring and network visibility. SDNs decouple the con-

trol plane from the data plane, enabling more dynamic management of network

resources and better situational awareness. However, while powerful, they operate

with latency inherent to centralized processing, which limits their effectiveness in

real-time threat detection and mitigation. As a result, SDN systems, though trans-

formative, are not immune to the challenges of scaling, precision, and timeliness

in threat detection.

The emergence of fully programmable P4 [Bos+14] devices represents a paradigm

shift in network security. For the first time, network engineers are empowered to

take charge of detection processes within the data plane itself. With line-rate cus-

tom processing of packets, P4 implies three significant advantages: (i) the ability to

create ad hoc pipelines specifically tailored to detect threats, (ii) the capability to

detect threats in real-time as they traverse the network, (iii) complete control over
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the pace of monitoring, enabling timely reaction to threats. This thesis explores

the potential of P4 programmability to enhance intrusion and threat detection. It

addresses critical challenges in network monitoring and proposes novel P4-centered

solutions to detect threats or improve the overall system’s security.

Part II of this work focuses on using ad hoc data structures to detect network

attacks. In Chapter 2, we introduce P4RTHENON, a framework that integrates

data plane detection mechanisms with control plane refinement to address DDoS

attacks. The data plane employs count-min sketching and sampling/thresholding

techniques to identify when an attack begins, while the control plane agent isolates

and identifies the subset of traffic that constitutes the attack. In Chapter 3, we

build on this foundation by advocating for a dynamic and adaptive approach to

anomaly detection. Using active learning, we propose selecting critical data on the

data plane and transmitting it to the control plane, where it continually updates

a machine learning (ML) model. This refined model is then compiled into a P4

pipeline and redeployed on the data plane. This step is repeated at each substantial

model update. While this solution demonstrates significant potential, challenges

such as implementing floating-point arithmetic on the data plane and ensuring

lossless runtime datapath reconfiguration remain open for further exploration.

Part III of the thesis investigates the role of Distributed Ledger Technologies

(DLTs) in supporting network threat detection. Chapter 4 presents P-IOTA, a

framework that leverages the IOTA([PL19]) DLT to distribute tamper-proof alerts

generated by P4-enabled switches. P-IOTA eliminates the need for complex inter-

mediaries between the monitoring level and the tangle, by directly integrating the

data plane with the IOTA layer.

Part IV of the thesis explores security applications of P4 in Industrial Inter-

net of Things (IIoT) networks, presenting practical implementations of in-network

computation. Chapter 5 investigates the potential of P4-enabled in-network com-

puting in edge-assisted IIoT environments. We present a framework that deploys

pipelines ensuring data integrity through symmetric encryption techniques. This

approach highlights the feasibility of moving edge computations closer to the data

plane and demonstrates how this can improve security and reduce latency. How-

ever, significant challenges remain, such as extending this solution to more diverse

IIoT networks and pushing the complexity boundaries of the data plane logic.
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Chapter 6 extends this exploration by implementing a switch-to-switch tunnel-

ing mechanism specifically designed for industrial environments. This practical

demonstration underscores the versatility and effectiveness of P4 in securing IIoT

networks without upgrading or replacing outdated devices.

The thesis concludes by discussing the challenges and interesting open problems

to address in the future (Part V).
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Chapter 1

Threat Detection in modern

networks

The primary objective of network monitoring is to ensure the availability, per-

formance, and security of networks by observing, analyzing, and diagnosing their

behavior. Over the decades, network monitoring technologies have evolved to ad-

dress the increasing complexity and dynamic nature of modern networks. This

chapter examines the evolution of network monitoring to detect network threats

and the pivotal role of data plane programmability in detecting modern attacks.

1.1 The evolution of network monitoring

Network monitoring has significantly evolved since its inception, adapting to the

changing demands of increasingly complex networks. Early approaches [Muu83;

Jac88] were basic, providing minimal insights into network behavior and lacking the

scalability required for expanding infrastructures. These methods were primarily

manual and focused on monitoring connectivity and performance.

With technological advancement came more structured monitoring systems

that enabled the collection and analysis of network metrics. These systems [Cis96]

improved operational efficiency by providing visibility into the state of devices

and traffic flows. However, they were predominantly designed for performance

management and often lacked robust mechanisms for identifying and responding
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1.2. CHALLENGES IN MODERN NETWORK MONITORING

to security threats.

As networks grew in size and speed, the limitations of early methods became

apparent, prompting the development of more advanced monitoring techniques.

Aggregating and analyzing network data provides valuable insights into traffic

patterns and helps detect anomalies indicative of potential threats.

Despite their improvements, these systems faced challenges in addressing the

evolving threat landscape. Reliance on predefined rules and static analysis made

them less effective in pinpointing threats inside sophisticated crafted attack traffic.

This gap highlighted the need for holistic monitoring systems, to detect anomalies

at different granularities.

1.2 Challenges in Modern Network Monitoring

The modern network landscape is characterized by:

• Increased Complexity: The proliferation of devices, virtualization, and

multi-cloud environments has made networks more intricate.

• Dynamic Traffic Patterns: Applications like video streaming, Internet

of Things (IoT), and real-time communications generate traffic with highly

dynamic and unpredictable behaviors.

• Timely deployment of countermeasures: Modern attacks (like pulse-

wave DDoS [Kie23]) are becoming quicker and hence harder to detect and

even so to be mitigated, especially in polling-based monitoring systems.

Traditional monitoring solutions lack the flexibility and programmability to

adapt to changing network conditions and emerging threats. Moreover, if the

attacker knows the deployed monitoring system (especially if it is static), they can

easily infer how to avoid it and craft malicious ad-hoc traffic.

8 CHAPTER 1. THREAT DETECTION IN MODERN NETWORKS



1.3. PINPOINTING THREATS WITH SOFTWARE DEFINED
NETWORKING

Figure 1.1: Software Defined Networking.

1.3 Pinpointing threats with Software Defined

Networking

Software-defined networking [McK09] (SDN) provides means to tackle these chal-

lenges. It is an approach to network management that separates the control plane

(decision-making) from the data plane (traffic forwarding), as shown in Figure 1.1.

This decoupling provides centralized control and programmability of the network.

In the context of threat detection, the data plane can monitor traffic at line

rate, allowing quick identification of anomalous attacking patterns. However, its

computational capabilities are limited, restricting it to simple tasks like packet

counting or basic filtering. Data plane inspection enables real-time processing of

packet-level information and in-line monitoring, ideal for fine-grain analysis.

The control plane has greater computational resources and can perform more

complex threat analysis, such as correlation across flows or deep packet inspection.

Monitoring at this level enables the detection of high-level anomalies, such as

abnormal traffic volumes or routing instabilities. However, polling networking

data delays threat detection and reaction.

This trade-off highlights the complementary roles of the control and data planes

in SDN-based threat detection, balancing speed and analysis depth. Depending

on the threat, moving the computation closer to the data plane may be beneficial

for prompt detection and reaction.

CHAPTER 1. THREAT DETECTION IN MODERN NETWORKS 9



1.4. OPEN CHALLENGES AND FUTURE DIRECTIONS IN SDN SECURITY

Figure 1.2: Keywords distribution in [Mel+23] articles dataset (image generated
with VOS viewer).

1.4 Open Challenges and Future Directions in

SDN Security

This section outlines key challenges and future research directions in Software

Defined Networking (SDN) security, derived from a systematic study [Mel+23] we

carried out. Figure 1.2 provides a visual outlook of the most popular keywords

in the article abstracts’ dataset: the smaller dots roughly coincide with the less

studied topics at the time (∼ 2015− 2021).

SDN’s architectural approach introduces inherent vulnerabilities, particularly

due to its centralized design. The SDN controller and the control channel are

primary targets for security threats. Although current technologies offer potential

solutions, a comprehensive analysis of the security challenges posed by SDN is

essential for improving defensive measures. Future efforts should aim to address

these challenges while leveraging SDN’s strengths.

The centralized SDN controller remains a single point of failure. Research

should focus on tools that enforce security policies across SDN systems. Data

plane programmability can provide mechanisms to monitor the system’s health

10 CHAPTER 1. THREAT DETECTION IN MODERN NETWORKS



1.4. OPEN CHALLENGES AND FUTURE DIRECTIONS IN SDN SECURITY

and enhance the prevention, detection, and mitigation of attacks, or offload some

intelligence from the control plane to the data plane.

A lack of standardized threat models tailored to SDN has also been identified.

Developing such models would help categorize and address SDN-specific threats,

including denial of service (DoS) attacks, facilitating the creation of secure applica-

tions and architectural designs. Current research, however, primarily emphasizes

prevention and detection, with limited focus on mitigation. Building active defense

systems capable of autonomously counteracting attacks in real time represents a

critical area for future work.

Moreover, the limited and under-documented range of technologies supporting

SDN architecture hinders progress. Expanding the variety of technologies and

thoroughly documenting them could enable the design of more secure systems.

New technologies may directly address well-known SDN vulnerabilities, enhancing

security by design.

Machine Learning (ML) plays a pivotal role in advancing SDN security, par-

ticularly in prevention and detection mechanisms. Promising approaches such as

Reinforcement Learning (RL) can enable real-time network reconfiguration in re-

sponse to detected attacks. Adversarial ML is also gaining traction for simulating

and stress-testing intrusion detection systems. Future ML applications should

expand their scope to include mitigation techniques.

Denial of Service (DoS) attacks remain the most prevalent and damaging threat

to SDN environments. Recent threats such as Low-rate DoS (LDoS) and Economic

DoS (EDoS) attacks pose significant challenges. From this rises the urge for effec-

tive lightweight detection and mitigation strategies.

Finally, distributed ledger technologies (DLTs), including blockchain, offer

substantial potential to enhance SDN security. These technologies provide cer-

tified models and monitoring layers, ensuring integrity in programmable data

plane ecosystems. Further exploration of performance optimization in blockchain-

enabled SDN systems is needed.

These challenges emphasize the necessity for continued innovation in SDN

security, focusing on architecture resilience, advanced mitigation strategies, and

the integration of emerging technologies. This study clearly indicated that pro-

grammable data planes provide more scalability and expressiveness than tradi-

CHAPTER 1. THREAT DETECTION IN MODERN NETWORKS 11



1.5. BRIDGING THE GAP WITH ADVERSARIES USING P4

tional SDN architectures, allowing for more effective threat detection and preven-

tion.

1.5 Bridging the gap with adversaries using P4

While traditional SDN architectures enable a degree of programmability (due to

the use of Openflow [Ope]), emerging technologies like P4 [Bos+14] (Programming

Protocol-Independent Packet Processors) take this a step further [But17]. P4

allows developers to define how packets are processed within network devices,

providing unprecedented flexibility.

P4 offers significant advantages in network monitoring and threat detection by

enabling custom forwarding behaviors and advanced stateful analysis directly in

the data plane. It allows programmable control over packet processing, enabling

tailored rules to tag suspicious traffic or implement unique detection protocols.

By leveraging stateful elements such as registers and counters, P4 can maintain

traffic states (e.g., packet rates or byte counts) to quickly detect anomalies without

relying on the slower control plane. Techniques like thresholding, where metrics

like packet rates trigger alerts upon exceeding defined limits, sketching, which

summarizes traffic using compact data structures to detect patterns or deviations,

and sampling, which efficiently monitors subsets of traffic, empower P4 to identify

threats like DDoS attacks or abnormal flows in real-time. For example, a P4

program could monitor packet rates per source IP and block traffic immediately if

it exceeds a threshold, mitigating threats swiftly while minimizing overhead. These

capabilities make P4 a powerful tool for timely and efficient threat interception in

modern networks.

1.6 In-network computing to protect vulnerable

devices

A powerful side-effect brought by data plane programmability and P4 is in-network

computing [KT22], where network devices, traditionally limited to forwarding

packets, can perform simple computations directly in the data plane. This includes

12 CHAPTER 1. THREAT DETECTION IN MODERN NETWORKS



1.7. TACKLING RELEVANT SECURITY THREATS WITH P4

tasks like simple encryption, hashing, and basic arithmetic operations, which can

be particularly beneficial for offloading computation from resource-constrained de-

vices, such as IoT devices or legacy systems in Operational Technology (OT) en-

vironments.

These devices often lack the computational power to implement robust security

features, leaving them vulnerable to attacks. For instance, many IoT devices

natively communicate using lightweight or outdated protocols that do not support

encryption or other modern security measures. With P4, network switches or

routers can symmetrically encrypt sensitive data fields, verifying packet integrity,

or adding authentication tags before forwarding packets.

This reduces the computational burden of IoT devices, enabling them to oper-

ate securely without expensive hardware upgrades. By shielding vulnerable devices

and enabling real-time deployment of security measures, P4 extends its utility be-

yond anomaly detection to actively supporting and securing the broader network

ecosystem. Moreover, in-network computation in edge-assisted networks [Kon+22]

can move the detection closer to the target.

1.7 Tackling relevant security threats with P4

P4 has enabled innovative applications in the data plane, spanning multiple do-

mains of network security and monitoring. In machine learning-based threat de-

tection, P4 can be used to implement lightweight decision trees or random

forests [CSF22] directly in the data plane, enabling fast classification of traffic

patterns to identify anomalies or potential threats without involving the control

plane. These models can be simply encoded on a P4 pipeline with the use of

MATs and ad-hoc processing stages. P4 allows in-network encryption via the im-

plementation of cryptographic algorithms, such as AES [Che20], directly on

network devices. This facilitates secure data transmission by encrypting sensitive

traffic flows in real-time, protecting vulnerable endpoints. Lastly, in stateful data

plane threat detection, P4 enables the deployment of advanced data structures

like packet distributions, count-min sketches, and Bloom filters. These structures

allow efficient detection of DDoS attacks or unusual traffic behaviors by detect-

ing significant deviations in traffic volumes [Din+21; GHV21]. These applications

CHAPTER 1. THREAT DETECTION IN MODERN NETWORKS 13



1.8. ALWAYS KEEP IN MIND PACKET FORWARDING

demonstrate the versatility of P4 in enhancing real-time network security through

data plane programmability.

1.8 Always keep in mind packet forwarding

While P4 offers complete programmability in the data plane, its primary goal

remains high-speed packet forwarding. Indeed, the P4 language operates with

limited memory resources, which restricts the size and complexity of data struc-

tures that can be maintained. In addition to memory constraints, P4 employs

strict limitations on control flow and data types. Constructs like loops, which

could lead to variable execution times, are not permitted. Similarly, P4 does not

support floating-point operations.

However, adding complex data structures and multiple forwarding stages can

still increase the processing overhead, potentially slowing down packet forward-

ing. For instance, implementing advanced stateful mechanisms involves additional

memory lookups and computations, which can accumulate latency, especially un-

der high traffic loads.

These language constraints limit P4 programming to simple and efficient pipelines,

with the end goal of ensuring that added functionalities do not slow down packet

forwarding. However, trade-offs between programmability and performance should

still be part of the design of our P4 monitoring solution.

14 CHAPTER 1. THREAT DETECTION IN MODERN NETWORKS
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Chapter 2

A framework for in-line DDoS

detection *

In this Part, we are going to analyze how programmable data planes (PDP)

can help the control-plane spotting threats by running in-line detection algorithms.

Networks are becoming by the day more pervasive in the processes of our daily lives,

from work to leisure. This creates unimaginable opportunities but also opens the

floor to new threats. For this reason, modern networks should promptly respond to

unexpected events to safeguard the running services and avoid service disruption.

Thus, to cope with legacy network technologies, modern infrastructures require

in-depth and responsive network monitoring, management, and control.

Two key points, also relevant in the 5G world [Gro16], are (i) Control and User

Plane Separation (CUPS) and (ii) network programmability. CUPS improves

flexibility and scalability by de-coupling the logic problems from the pure data

forwarding issues, while programmability allows networks to react to unwanted

situations [Cal+16]. This envisions a closed-loop approach where the control plane

collects real-time information about the status of the underlying network and

reacts, by issuing suitable directives to the data plane, to modify its behavior

[Bor+23; Mel+20].

In this chapter, we present P4RTHENON, a viable approach to implement

*Part of the material presented in this chapter is based on the following publications: Amir

Al Sadi et al. “Unleashing Dynamic Pipeline Reconfiguration of P4 Switches for Efficient Network

Monitoring”. In: IEEE Transactions on Network and Service Management (2024)
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a closed-loop monitoring system, which can intercept network behaviors and take

real-time actions. P4RTHENON stems from the idea of minimizing the congestion

of the control channel between data and control planes [Zha+18], especially in the

occurrence of abnormal behaviors.

We validate our solution by devising a volumetric Distributed Denial of Service

(DDoS) attack detection over P4RTHENON, to showcase how we can minimize

the impact on the control channel and keep high detection rates. P4RTHENON

follows the Software Defined Networking (SDN) paradigm: the detection logic is

split between a simple data plane logic and a more complex control plane strategy.

In this latter landscape, the goal of our approach is to achieve the best possible

trade-off between monitoring performance, computational complexity, and control

channel utilization.

To this aim, P4RTHENON splits the monitoring task into two phases called

coarse-grained and fine-grained monitoring, i.e., Coarse Grained Monitoring (CGM)

and Fine Grained Monitoring (FGM), respectively. The peculiarity of our ap-

proach is that FGM comes into place only when needed after an appropriate run-

time data plane pipeline reconfiguration. For the sake of the proposed use case

we implemented (i) CGM DDoS strategy to detect the traffic portion suspected

to belong to a DDoS attack, and (ii) FGM DDoS strategy to deeply analyze the

suspect traffic in the control plane and classify it in the right DDoS class if proven

to be malicious.

We implemented CGM DDoS as a simple in-network P4-based solution that

calculates the degree of traffic asymmetry between two end hosts A and B in the

two directions (A→ B and B → A), assuming that traffic is strongly asymmetric

when a DDoS attack is in place, and flagging as suspect all the flows characterized

by a high asymmetry degree. This strategy, based on a Count-min Sketch [CM05],

over-estimates the number of DDoS attack flows, leading to some false positives

while keeping the number of false negatives low.

Once suspect flows are identified by CGM DDoS, P4RTHENON triggers FGM

DDoS (i) to extract relevant features from their packets in the data plane and (ii)

to mirror this data to the control plane in the form of P4 digests. The collected

features are then given as input to a trained Convolutional Neural Network (CNN),

i.e., LUCID [DC+20], performing ML inference and classifying any suspect flow
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as belonging to a DDoS attack class or as benign. According to our results,

FGM DDoS can substantially reduce false positives with respect to CGM DDoS,

thus achieving high Precision while keeping the control channel utilization low.

To summarize, the main contributions of this chapter are:

• A new architecture, i.e., P4RTHENON, to dynamically reconfigure the data

plane pipeline at runtime and remodel the control plane accordingly, to min-

imize the control channel utilization.

• A lightweight P4 strategy to early detect Volumetric DDoS flows, i.e., Asym-

metric Count-Min Sketch (ACMS).

• A validation of P4RTHENON to detect volumetric DDoS attacks, which an-

alyzes the tradeoff between memory consumption/control channel occupa-

tion and the detection performance, leveraging a state-of-the-art ML agent

[DC+20] in the control plane.

The chapter is organized as follows. We start by summarizing the state of the

art on existing P4-based (i.e., in-network) and ML-based monitoring solutions

(Section 2.1), outlining their limitations. Section 2.2 details the principles of our

proposal, P4RTHENON, and its architectural components. Section 2.3 presents

the DDoS detection use case, from the scenario to the implementation of a testbed,

and the performance of the proposed solution is evaluated in Section 2.4. Finally,

we discuss the results in Section 2.5.

2.1 Related Work

In this Section, we analyze the state of the art regarding SDN monitoring solu-

tions. Table 2.1 summarizes them. First, we sum up the existing PDP monitoring

solutions. Then, we investigate how ML-based monitoring is exploited in the SDN

control plane. We proceed to give an overview of works that integrate data plane

and ML-centered control plane solutions for monitoring. We conclude the Section

by analyzing the pipeline reconfiguration methods proposed in the literature, to

better position our architectural choice.
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Category Works
PDP

monitoring
[Din+22], [Tan+21], [Jey+14], [Li+19], [Kat+17], [BB+16], [BB+18],
[THL20], [BG+19], [CSF22], [Swa+22], [Qin+20], [Sir+22], [Raz+22]

ML control-plane [DC+20], [Ddo], [Shi+12]

PDP + ML control-plane [Zha+20], [Zhe+22], [MGB21], [Mus+22], [Bar+21]

Pipeline reconf. [Xin+22], [Fen+21]

Table 2.1: Summary of the Related Work.

2.1.1 Monitoring solutions with programmable data planes

Offloading part of the control plane intelligence to the data plane has become in-

creasingly popular in SDN [Lia+23] thanks to the rise of data plane programmabil-

ity (DPP). DPP opened the field to greater monitoring expressiveness on network

devices since it can be leveraged to describe arbitrary, albeit simple packet ma-

nipulation strategies on top of regular forwarding. In recent years, programmable

data planes have proven to be effective in supporting complex monitoring strate-

gies by coding part of them directly on the data plane [Din+22], most commonly

exploiting the P4 language [Con20].

The most straightforward approach showing how DPP can be exploited to sup-

port network monitoring is In-band Network Telemetry (INT) [Tan+21], a frame-

work proposed by some of the biggest networking companies in conjunction with

the P4 Working Group. INT allows gathering monitoring information by transpar-

ently adding custom headers to users’ packets, which are then extrapolated and

forwarded to a centralized collector. INT has been extensively used to support

traffic engineering [Jey+14], congestion control [Li+19], and routing [Kat+17].

Another possibility to take advantage of DPP for network monitoring consists

in exploiting the stateful memory made available by P4-based programmable data

planes (i.e., P4 registers), to implement customized data structures (i.e., sketches

[Han+22]) for advanced in-network monitoring [Dar+17]. Thanks to these data

structures, it is possible to support complex tasks, such as intrusion or anomaly

detection, by keeping track of flows’ state and aggregate statistics directly in the

data plane. For instance, many strategies have been proposed to detect heavy
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flows (or heavy hitters) [BB+16], using different data structures such as hash

tables [BB+18] or invertible sketches [THL20].

Work ML model Limitation
[Swa+22] CNN, DNN, SVM Model accuracy for DNN below 70%
[BG+19] RF Evaluated using an arbitrary F1Score threshold
[CSF22] RF Requires a minimum of 63 rules to work
[Qin+20] BNN Low Recall in certain datasets
[Sir+22] DT Low detection performance in certain datasets
[Raz+22] DNN 8-bit floating point arithmetic

Table 2.2: Limitations of current P4-based ML data plane solutions.

Recently, some works have also proposed to offload ML inference to the data

plane, meaning that the whole ML model is made executable in the data plane

pipeline in support of widely different monitoring tasks. For example, pForest

[BG+19] and BACKORDERS [CSF22] have proposed to offload a random forest

(RF) [Bre01] on the data plane for in-network inference. These works either require

a large amount of Match-Action Tables (MAT) installed or use arbitrary F1Score

thresholds to rate the detection quality. A further step in this domain has been

made by Taurus [Swa+22], which offloads CNN [ON15], Deep Neural Networks

(DNN) [Sam+21], and Support Vector Machine (SVM) [SS16] models to the data

plane exploiting MapReduce [DG08]. However, Taurus shows limitations already

at model-level accuracy, which is below 70% for the DNN, while we could not find

accuracy benchmarks for the other two models. Other works, such as [Qin+20;

Sir+22; Raz+22], offload different ML models, among which Decision Trees (DT)

and Binary Neural Networks (BNN), to the data plane. Especially, DT and BNN

exhibit low inference performance. This is because the DT can only have limited

depths and BNN adopts simple binary weights to overcome data plane operational

limitations. Razavi et al. [Raz+22] implement a DNN, but the authors encoded

weights’ floating point numbers with 8-bit integers, leading to similar performance

degradation as [Qin+20; Sir+22]: this is a major limitation that they also clearly

highlight in the paper.

Table 2.2 provides a brief summary of the aforementioned ML-based data plane

solutions, all exploiting the P4 language technology, outlining their limitations. To
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summarize, trying to fit ML models to the programmable data plane is not simple,

requires nontrivial operations to optimize the code and memory consumption,

and high inference performance is hard to achieve. These are the reasons why

P4RTHENON relies on simple sketch-based strategies in the data plane for CGM,

while a ML-based in-depth analysis, as that performed by FGM (see Section 2.1.2),

leverages the more powerful control plane computational capabilities.

DDoS attack detection: As specified in the Introduction, in this chapter we

focus on DDoS attack detection as a use case. To address this problem, many

solutions based on DPP have been proposed [AlS+22]. ML-based methods in the

data plane have also been proposed, as BACKORDERS [CSF22] already discussed

above. Other works, e.g. [DSS21; SI+20], adopt a coarse-grained strategy by def-

inition, where the data plane is employed as a valid support to roughly detect

anomalies. Ding et al. [Din+21] propose INDDoS, a pragmatic way to detect vic-

tims targeted by a DDoS attack using Direct Bitmap combined with a Count-min

Sketch. P4RTHENON’s DDoS detection implementation indeed relates to other

P4-based solutions mentioned in the AlSabeh et al. survey [AlS+22]. However,

none of the considered schemes provides an in-depth analysis of the memory and

control channel utilization when data and control planes interact while ensuring

acceptable DDoS detection performance. Moreover, our P4 implementation of

asymmetric flow detection is a novel contribution. We argue that our analysis

not only validates the scalability of P4RTHENON, but also demonstrates how it

is possible to match the detection performance of state-of-the-art solutions while

drastically reducing the management overhead. In fact, our proposed CGM DDoS

strategy takes inspiration from the cited works, but it simplifies the strategy even

further at the expense of increasing the false positive rate, which is then corrected

by FGM DDoS.

2.1.2 ML-based monitoring with SDN control planes

The effectiveness of ML-based solutions involving the SDN centralized control

plane for monitoring has been thoroughly demonstrated [Zha+19]. The most im-

portant factors contributing to their success are the following [Xie+18]: (i) a single

ML model can be deployed on top of the centralized controller to monitor network-
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wide scenarios; (ii) centralizing data collection is key for precise prediction; (iii)

relevant data can be retrieved in real-time by the controller. In the following,

we will specifically focus on monitoring tasks related to ML-based DDoS attack

detection, from which we took inspiration to design FGM DDoS.

Work Model Dataset Features True Pos. (%) Training Time
[GK18] SVM CAIDA [Ddo] 60 87.35% N/A

[YLL17]
CNN
RNN

ISCX [Shi+12] 20 ∼98%, unclear
N/A,

[DC+20] says > 25 h

[DC+20] CNN
CAIDA [Ddo],
ISCX [Shi+12],

and more
12 ∼99% 4500 s

Table 2.3: Comparison between ML-based control plane DDoS detection solutions.

DDoS attack detection: A thorough high-level analysis of ML techniques to

detect DDoS attacks is proposed by He et al. [HZL17], which outlines detection

performance differences when selecting various features and models. This work also

suggests that classic ML approaches are usually highly dependent on feature choice

and datasets. To better generalize the model and loosen the constraint of select-

ing a fixed set of features, Deep Learning-based schemes have become extremely

popular in detecting DDoS attacks. Among them, Ghanbari et al. [GK18] propose

a solution that leverages a CNN, achieving high detection rates on a very well-

known dataset, i.e., UNB ISCX intrusion detection evaluation dataset [Shi+12].

DeepDefense [YLL17] is another example that combines a CNN and a Recurrent

Neural Network (RNN), evaluated with good performance in the CAIDA DDoS

2007 attack dataset [Ddo]. However, both solutions require a high number of fea-

tures and do not suit real-time scenarios given their complexity. LUCID, proposed

by Doriguzzi et al. [DC+20], adopts similar concepts but in a way that makes the

trained ML model suitable for online scenarios. LUCID is a lightweight CNN that

classifies each traffic flow as belonging to a known DDoS class or as benign. With

a rather fast training phase and a limited number of needed features, LUCID is

capable of high detection rates.

Table 2.3 reports a comparison summary of the three works discussed above.
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LUCID ensures limited training time while keeping detection performance high,

and thus it is a suitable solution to be adopted on top of an SDN control plane.

However, it needs to inspect all the network traffic to provide good prediction

rates.

Mirroring packets to the control plane during a volumetric attack could con-

gest the control channel [Son+16; DC+24], in fact propagating it. Our proposed

FGM DDoS strategy exploits LUCID to classify network traffic, but it adds a

data plane data aggregation logic to relieve the control channel, by delivering to

the control plane, via P4 digests, only features extracted from suspect traffic in

the data plane.

2.1.3 Data and ML-based control planes interaction

Some works in literature have proposed monitoring architectures envisioning a

tight interaction between programmable data and control planes in an SDN en-

vironment, with the goal of implementing refined strategies to optimize such an

interaction: this is to some extent also the main objective of P4RTHENON. It is

important to note that all the previous work on this topic focuses on anomaly/at-

tack detection tasks.

Zhang et al. propose POSEIDON [Zha+20], a framework to map attack coun-

termeasures to the programmable data plane and to servers. They propose a

language for hardware abstraction and a runtime environment to orchestrate the

real-time reaction to attacks. However, this solution requires multiple technologies

and components and is bound to the language proposed by the authors, making it

hardly replicable. A general solution that jointly maps ML-assisted detection in

a programmable data plane and in a control plane is IIsy [Zhe+22]. Two models

are proposed: a lighter one, fully deployed in the data plane, and a heavier one, in

the control plane. They intensively tested the deployment of different models in

the data plane, but do not consider the possibility of swapping between different

configurations at runtime.

ORACLE [MGB21] and the work proposed by Musumeci et al. [Mus+22] fo-

cus on two architectural approaches that envision a collaboration between control

and programmable data plane to detect DDoS attacks. In both cases, aggregated
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statistics from packets’ flows are computed by the programmable data plane and

forwarded to the control plane, where they are processed by an ML engine to detect

attacks through ML inference. Although simple and effective, these solutions re-

quire intense and constant communication between the data and the control plane,

even when the attack is not happening, as they require the data plane to constantly

send the aggregated statistics to the control plane. While taking inspiration from

these proposals, our solution is the first attempt known to us to design a two-phase

system for the optimization of control channel usage: in-network monitoring is au-

tonomously performed by the programmable data plane to detect suspect traffic,

and a more refined ML-based analysis takes place in the control plane. Differently

from [MGB21; Mus+22], the latter is performed on categorical features extracted

from packets belonging to suspect flows. Extracting packets’ categorical features

(e.g. IP flags) instead of computing flows aggregated statistics is another pecu-

liarity of our proposal. Thanks to this, multi-class classification can be better

performed (e.g. to which type of DDoS attack the packet belongs, if malicious) in-

stead of only performing binary classification (DDoS/benign) as done in [MGB21;

Mus+22].

FlowLens [Bar+21] is another work that resembles our solution regarding pur-

pose and scope. Its authors propose an SDN architecture that leverages pro-

grammable switches to efficiently support multi-purpose ML-based security appli-

cations. FlowLens collects features related to packet distribution at line speed and

classifies flows directly in the switches, using their CPU. However, though highly

flexible and reliable, FlowLens cannot benefit from the network-wide view provided

by a centralized SDN control plane. In addition, it does not envision any data plane

pipeline reconfiguration at runtime, as supported by P4RTHENON. Reconfiguring

the data plane pipeline makes it possible to install specialized pipelines, instead

of using a general-purpose one, and to optimize the amount of data exchanged

between data and control plane.

2.1.4 Programmable data planes pipeline reconfiguration

The potential advantages of runtime data plane pipeline reconfiguration have al-

ready attracted the attention of the research community. We argue that the work
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presented by Xing et al. [Xin+22] is the most convincing attempt to (re)program

a switch at runtime. In this work, the authors propose an extension of the P4

language that enables partial reconfiguration of the data plane with minimum re-

source overhead, without service disruption, and guaranteeing consistent packet

processing. By allowing developers to load new features at runtime on a reserved

memory area, the authors propose a solution to the notorious problems of repop-

ulating all the existing tables and of the introduced delay when a switch firmware

is replaced. This work does not consider any specific application domain and it is

not clear what the impact would be if the whole pipeline had to be reconfigured.

A similar proposal was advanced by Feng et al. [Fen+21]. The authors designed

a specific real-time upgradable architecture called In-situ Programmable Switch

Architecture (IPSA). This approach allows to implement more efficient reconfigu-

ration, but at the cost of having to upgrade the whole network to adopt switches

whose architecture follows the IPSA one, which may not be feasible in large-scale

scenarios.

In contrast to the existing works, P4RTHENON leverages the native feature

made available by the P4Runtime specification [Con20] that allows a P4 pipeline

reconfiguration at runtime. We chose this approach because P4Runtime is a

well-established Application Programming Interface (API) for controlling the data

plane elements of a device whose behavior is specified by a P4 program, and thus

no architectural change is needed as long as a P4-enabled device is adopted. To

the best of our knowledge, the few experiments that we were able to find about

partial or total pipeline reconfiguration have never focused on the optimization

of the burden on the control channel. Conversely, P4RTHENON is specifically

designed to minimize the amount of data exchanged between the involved planes,

while ensuring high monitoring performance.

2.2 P4RTHENON: Monitoring Architecture

In this Section, we describe the main concepts behind P4RTHENON, our general-

purpose real-time solution to describe and implement monitoring policies. The

main goal of P4RTHENON is minimizing the amount of data exchanged between

data and control planes while achieving high performance of monitoring engines
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running in the control plane that require detailed features extracted from packets,

such as ML-based ones.

P4RTHENON executes monitoring tasks in two phases: (i) in the first phase,

an approximate traffic analysis is performed, which identifies the flows that should

be monitored more in depth (i.e., Coarse-Grained Monitoring); (ii) in the second

phase, an accurate analysis is done on the flows selected by CGM, with the aim of

further discriminating what flows meet the behavior specified by the monitoring

policies (i.e., Fine-Grained Monitoring). Each phase is associated with a specific

strategy deployed by the control plane, which requires a runtime reconfiguration

of the data plane pipeline.

Specifically, CGM is meant to run completely in the data plane, meaning that

just a few data points need to be forwarded to the control plane in this phase.

Based on the information gathered during CGM, when meeting some pre-defined

condition, the control plane triggers FGM, with a consequent reconfiguration of

the data plane pipeline. FGM is data-intensive as it requires traffic features to be

mirrored from the data plane to the control plane. However, the features mirrored

during FGM are only those extracted from flows selected by CGM: this significantly

reduces the amount of data to be forwarded and analyzed, enhancing Precision

by lowering the input detection noise and reducing the burden on the control

channel. Whenever some other pre-defined condition is met (e.g. after a user-

defined timeout expiration), P4RTHENON triggers the return to the execution of

CGM and the pipeline is reconfigured to the previous status accordingly. Figure

2.1 illustrates the architecture of the system, also showing the specific strategies

adopted in our DDoS detection use case, whose design and implementation will be

detailed in Section 2.3. In the following we will provide further details on CGM

and FGM, on design principles, and on the main enabling technologies.

2.2.1 Coarse-Grained Monitoring vs. Fine-Grained Moni-

toring

CGM is the default strategy installed in the data plane. It is designed to be

executed on top of the regular forwarding with a low-added overhead. It relies on

a very simple monitoring strategy that (i) continuously monitors the traffic; (ii)

CHAPTER 2. A FRAMEWORK FOR IN-LINE DDOS DETECTION 27



2.2. P4RTHENON: MONITORING ARCHITECTURE

Control Plane

Data Plane

DDoS detection: Asymmetric Count-Min Sketch (ACMS)
 1. Coarse-Grained Monitoring (CGM)

 2. Fine-Grained Monitoring(FGM)
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PacketN
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Flow 2: <IP src2, IP dst2> = MALICIOUS

Flow 1: <IP src1, IP dst1> = BENIGN

Figure 2.1: P4RTHENON architecture with a focus on the DDoS detection use case
(Section 2.3).

identifies the set of flows that meet some monitoring requirements. CGM is fully

executed by the programmable data plane, and exchanges minimal data with the

control plane. In fact, the data plane occasionally sends management messages

to the control plane updating it with a summary of the current network status.

Then, the control plane inspects the collected data and, if a condition is met, the

execution of FGM is triggered.

FGM is instead deployed by the control plane whenever some traffic needs to be

inspected with higher Precision. CGM is responsible for identifying the traffic flows

worth being monitored by FGM. Unlike CGM, FGM’s logic is evenly split between

data and control planes. In the data plane, FGM extracts relevant features (e.g.

IP flag, TCP ports, etc.) from packets of selected flows and mirrors them to the

control plane. In the control plane, a specialized agent (e.g. a trained ML model)

takes as input the extracted features and performs a deeper monitoring (e.g. flow

classification).
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2.2.2 Main design principles of P4RTHENON

CGM and FGM should be designed to ensure that CGM is able to recognize

all (ideally) the flows that may need attention, but it could include in such a

set also flows that are wrongly selected as interesting. Instead, FGM should be

capable of further discriminating, from the set of flows selected by CGM, the flows

that are truly relevant. The use case presented later in this chapter (see Section

2.3), which refers to DDoS detection, will show that CGM DDoS is effective in

identifying a superset of flows that belong to DDoS attacks, hence finding all the

true positives with a certain degree of false positives, while FGM DDoS is very

efficient at trimming out all the false positives. As far as these design principles are

met, P4RTHENON could be adopted for widely different monitoring tasks other

than DDoS detection.

2.2.3 Programming and interaction of the architectural el-

ements

The data plane pipeline’s behavior is specified by a program written in the P4

language [Con21]. Each P4-programmable pipeline consists of a set of processing

blocks, which can modify the packet headers and gather packet-related data (e.g.

the features required by FGM). As Southbound Interface (SBI) we adopt the well-

known P4Runtime [Con20], which is exploited to (i) install match-action rules

(enabling the selective per-flow features’ mirroring in FGM) and (ii) send data to

the control plane (e.g. extracted features) by means of digest messages.

The digest is a type of message specified in the P4Runtime specification [Con20]

that can be adapted to send one-way data recovered by the data plane to the

control plane. As the documentation explains, it differs from packet-in messages

[Ope] as it is optimized to only send some packet’s header fields and metadata,

while packet-in is generally used to also send the payload. Multiple digests can be

aggregated by P4Runtime into larger messages to reduce their number.

The control plane retrieves the digest data as a JSON collection, where each

JSON encapsulates a digest associated with a packet. The FGM specialized agent

(see Fig. 2.1), which is implemented as a Python script, is continuously fed by the
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Packet
exits the
pipeline

Packet
enters the
pipeline

Figure 2.2: Asymmetric Count-min Sketch description. A detailed explanation can be
found in Section 2.3.2.

JSON collection, relying on a RESTful communication.

2.3 P4RTHENON use case: DDoS detection

This section illustrates the use case we chose to validate our approach. The pro-

duced code has been open-sourced [Uni]. We considered volumetric DDoS detec-

tion as an example to showcase P4RTHENON peculiarities. We will refer to the

specialized versions of CGM and FGM as CGM DDoS and FGM DDoS, respec-

tively. A preliminary investigation on the considered use case can be found in

[Sad+23].

2.3.1 Asymmetric Count-min Sketch (ACMS)

To detect suspect DDoS attacks in the data plane, we devised a simple sketch-based

algorithm implemented in P4 called Asymmetric Count-min Sketch (ACMS, see

Fig. 2.2). ACMS was designed by observing the behavior of volumetric DDoS

attacks, which usually generate a large number of packets toward the victim by

means of a large number of compromised clients belonging to a botnet. In partic-

ular, ACMS is designed to detect flows with an unexpected asymmetry rate. In

this condition, the traffic volume between the compromised client and the victim

is expected to be much larger than the traffic volume in the opposite direction.

It should be noted however that P4RTHENON could be configured to support
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different types of attacks and multiple flavors of DDoS attacks, e.g. DDoS attacks

that target a specific destination (as analyzed in [Din+21]).

ACMS incorporates two algorithms, i.e., Count-min Sketch and asymmetric

flow detection:

Count-min Sketch (CMS) [CM05]

It exploits a probabilistic, low-memory data structure (i.e., sketch) that can be

used to estimate flows’ packet count, i.e., the number of packets carried by any

network flow in a time window. It relies on two operations carried out on the

sketch: (i) Update, to keep the count of incoming packets updated in the sketch;

(ii) Query, to estimate the number of counted packets for a given flow. CMS relies

on d different pairwise-independent hash functions, each with an output size w.

The data structure is composed of a matrix of d · w counters: the packet-count

estimation accuracy increases as the two dimensions increase, and vice versa, with

theoretical bounds that have been proven [CM05].

Asymmetric flow detection

It is a simple in-network algorithm (proposed in P-SCOR [Mel+20]) that calculates

whether a flow is part of a potential DDoS attack. It uses a fixed Threshold, a

data structure called R that includes w counters, and a hashing function h that

returns a number between 0 and w − 1. Every time a packet crosses the switch,

k is calculated as the hash of the s =< IPsrc, IPdst > string, i.e., h(s) = k.

The counter of R in the k-th position, i.e., R(k), is then incremented (R(k) =

R(k) + 1). The algorithm then calculates h(s′) = j, where s′ =< IPdst, IPsrc >,

and the asymmetry rate asym = |R(k) − R(j)|: if asym > Threshold, the flow

is marked as a potential DDoS attack, as the difference of the traffic volume in

the two directions is abnormal. The choice of identifying and tracking network

flows considering the < IPsrc, IPdst > couple rather than the more typical 5-tuple

flow definition (< IPsrc, IPdst, portsrc, portdst, protocol >) has been made to ensure

a slim approach in the data plane. Distinguishing 5-tuple malicious flows within

< IPsrc, IPdst > is a duty left to the control plane.
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2.3.2 Strategies Description

CGM DDoS

The strategy leverages ACMS as follows (Fig. 2.2). When a packet enters the data

plane pipeline, the algorithm updates a CMS to increase the packets’ counter for

the considered flow. Then, the CMS is queried to retrieve the packet count estima-

tion for the flow in the forward direction represented by the key < IPsrc, IPdst >,

i.e., srctodst. The CMS is then queried again using the key < IPdst, IPsrc > to

retrieve the estimated packet count in the backward direction, i.e., dsttosrc. The

asymmetry rate is then computed as asym = |srctodst− dsttosrc|: if asym is higher

than a value Threshold the flow is labeled as suspect, and an alert is sent to the

control plane in the form of a digest. This alert will be registered by the control

plane, which will install a mirroring MAT during FGM DDoS (we explain this

thoroughly in Section 2.3.2). The CMS is reset by the control plane every time a

fixed time window expires.

It must be noted that setting the most appropriate Threshold is not trivial and

could affect the detection performance in both CGM DDoS and FGM DDoS. In

Section 2.4 we will report the results of a sensitivity analysis aimed at determining

what Threshold best suits our scenario.

FGM DDoS

It comes into place, through a data plane pipeline reconfiguration, following an

alert that is sent to the control plane during CGM DDoS. It includes both a data

plane and a control plane logic.

The data plane logic in the P4-programmable pipeline combines two sub-

strategies, namely (i) ACMS and (ii) optimized mirroring. ACMS is the same

as that deployed in CGM DDoS, and it is needed to keep monitoring any new

suspect flow once the data plane pipeline has been reconfigured. Optimized mir-

roring is instead deployed to extract relevant features from packets and forward

them to the control plane through digests. We call it optimized mirroring because

it is meant to minimize the amount of data flowing on the control channel. It only

mirrors features from packets belonging to flows deemed suspect by ACMS, both

the ones marked as such during CGM DDoS and, if any, those detected during
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Figure 2.3: Flow diagram of transitions between CGM DDoS and FGM DDoS (top)
and timeline (bottom).

FGM DDoS. To further reduce the burden on the control channel, it also employs

packet sampling, meaning that features from only 1 out of N (i.e., sampling rate

of 1/N) suspect packets, flowing through the pipeline, are forwarded. N is a pa-

rameter that needs to be carefully set to strike the best balance between detection

performance and control channel utilization, as we will show in Section 2.4.

The control plane collects and stores the features extracted from the network

traffic that are mirrored through the control channel. This data is then fed to a

specialized online ML algorithm based on a pre-trained CNN model, i.e., LUCID

[DC+20], which pre-process it and performs a classification task to determine

what suspect flows truly belong to a DDoS attack and what are instead benign.

LUCID enriches CGM DDoS analysis on < IPsrc, IPdst > to further discriminate

the 5-tuple malicious flows between source and destination.

2.3.3 Transition between CGM DDoS and FGM DDoS

The time is slotted in time windows, which starts at integer time reference ts = t̄

and lasts until te = t̄ + 1. At the beginning of each time window, it is possible

to switch from CGM DDoS to FGM DDoS or vice-versa. Figure 2.3 shows an

example of how the transition between the two strategies occurs. The top part of
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the figure reports a flow diagram showing state transitions in the face of a DDoS

attack, while the bottom part focuses on a time perspective. Let’s assume, as

shown in the bottom part of the figure, that a DDoS attack starts during the

second time window (in between ts = 1 and te = 2) and expires in the sixth time

window (in between ts = 5 and te = 6). No other DDoS attack is in place in our

time horizon, meaning that at the beginning of the first time window, CGM DDoS

is installed for coarse-grained traffic analysis.

During the first time window, nothing is detected by ACMS and no interaction

between data and control plane occurs. During the second time window, as soon

as the DDoS attack begins, CGM DDoS starts sending alerts to the control plane

every time a flow is considered to be suspect, as its asymmetry rate computed

by ACMS overcomes the pre-defined threshold. After being notified of a possible

attack, the control plane waits until the end of the current time window and

then switches to FGM DDoS, which requires a data plane pipeline reconfiguration:

this happens at the beginning of the third time window, i.e., at ts = 2. The

reconfigured data plane starts extracting and mirroring features from (sampled)

packets of the suspect flows identified by ACMS during CGM DDoS, and at the

same time monitors the rest of the traffic for potential new suspect flows. In

the meantime, the control plane feeds the ML-based agent with packets’ extracted

features to identify malicious flows with high confidence. This condition holds until

the DDoS attack ends, in this case during the sixth time window. As soon as this

happens, the asymmetry rate of all flows falls behind the specified threshold, and at

the beginning of the seventh time windows, CGM DDoS can replace FGM DDoS

again.

2.3.4 Implementation

CGM DDoS

To develop CGM DDoS, we wrote ∼250 lines of P4 code. Our implementation of

Asymmetric Count-min Sketch is summarized in Algorithm 1, including a descrip-

tion of the developed functions in P4.

The P4 program specifies a CMS data structure as an array of P4 registers,

which is used to summarize the number of packets per flow (i.e., packet count)

34 CHAPTER 2. A FRAMEWORK FOR IN-LINE DDOS DETECTION



2.3. P4RTHENON USE CASE: DDOS DETECTION

in any direction. CMS is updated and queried leveraging a set of CRC32 hash

functions (H), and the asymmetry Threshold used to evaluate abnormal packet

count differences in forward and backward flow directions is hard-coded in the

program. Every time a packet enters the P4 pipeline, the following operations are

sequentially performed:

• updateCMS: the CMS is updated. The packet count for the < ipsrc, ipdst >

flow is increased by one unit. This is done by accessing, for each row i

of the data structure, the cell with index equivalent to the hash value of

< ipsrc, ipdst >, obtained by considering the i-th hash function from the set

H, and increasing its value accordingly (see [CM05]).

• queryCMS: the operation is similar to the one illustrated in updateCMS but,

instead of updating the value from the cell in each row i, the minimum

among the stored values in the cells are kept to estimate the packet count

for the corresponding flow (see [CM05]). queryCMS is executed twice, first

to estimate the packet count for the forward flow < ipsrc, ipdst >, and then

for the backward flow < ipdst, ipsrc >. Those values are called minfwd and

minbwd respectively.

• The asymmetry rate (asym) is finally computed as asym = |minfwd −
minbwd| and if it exceeds the value Threshold, the < ipsrc, ipdst > flow is

considered suspect of belonging to a DDoS attack. When this happens, an

alert is sent to the control plane in the form of a digest, which wraps 64 bits

containing ipsrc and ipdst of the flow. To reduce the burden on the control

channel, such an alert is generated only once per time window, at the first

time that < ipsrc, ipdst > leads to an asym value greater than the Threshold.

Note that multiple alerts can be sent within the same time window, but the

duplicates are ignored by the control plane.

Every ∆t (time window size; in this chapter we consider a ∆t = 30 s) the

switch sends a digest notifying the expiration of the window, which can result in

two different outcomes: (i) if no flow is deemed suspect during the time slot, no

action is required apart from resetting the counters of CMS; (ii) if at least one
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alert has been sent to the control plane during the window, the controller triggers

FGM DDoS.

Algorithm 1: Asymmetric Count-min Sketch
Input: packet,H,CMS, Threshold
Output: sendAlert

1 src← packet.ipsrc, dst← packet.ipdst
2 CMS ← updateCMS(CMS,H, src, dst)
3 minfwd ← queryCMS(CMS,H, src, dst),

minbwd ← queryCMS(CMS,H, dst, src)
4 asym← |minfwd −minbwd|
5 if asym > Threshold and < src, dst >/∈ suspectflows then
6 suspectflows ←< src, dst >, sendAlert(src, dst)

7 return
8 Function updateCMS(CMS,H, src, dst):
9 for i← 0 to |H| − 1 do

10 h← Hi(src, dst), CMSi[h]← CMSi[h] + 1

11 return CMS

12 Function queryCMS(CMS,H, src, dst):
13 min←∞
14 for i← 0 to |H| − 1 do
15 h← Hi(src, dst), if CMSi[h] < min then
16 min← CMSi[h]

17 return min

FGM DDoS

The P4-based data plane pipeline logic of FGM DDoS is a superset of the logic of

CGM DDoS.

In fact it includes ACMS (see Alg. 1) in its whole, with in addition:

1. A feature extraction logic to retrieve relevant features from packets flowing

through the pipeline;

2. A feature forwarding logic to forward to the control plane only features (i)

extracted from packets pertaining to suspect flows through ACMS and (ii)

meeting the sampling requirements.
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Algorithm 2: Optimized Mirroring: Feature Extraction
Input: packet
Output: metadata

1 Parser() if packet is IPv4 then
2 metadata.ip(∗) ← packet.ip(∗)

3 if packet is ICMP then
4 metadata.icmptype ← packet.icmptype

5 if packet is UDP then
6 metadata.udplen ← packet.udplen

7 if packet is TCP then
8 metadata.tcp(∗) ← packet.tcp(∗)

9 return metadata
10 Ingress() metadata.timestamp← ingresstimestamp

11 return metadata

Together, 1) and 2) define the optimized mirroring strategy as described in

Section 2.3.2. The feature extraction logic is detailed in Alg. 2 (it must be noted

that we only consider IPv4 packets for compatibility with the control plane CNN),

while the feature forwarding logic encapsulates the extracted metadata in a digest

with a total size of 281 bits, which is sent to the control plane through the control

channel using P4Runtime [Con20]. The procedure is shown in Alg. 3. The control

plane then decodes the digest’s data and saves the features in a JSON list. Simply

put, Alg. 1 and Alg. 3 define the main logic of the ingress control block of the

V1Model P4 pipeline, while Alg. 2 defines the parser logic.

Algorithm 3: Optimized Mirroring: Feature Forwarding
Input: metadata,Nsampling, suspectflows

Output: sendDigest
1 counter ← 0
2 if < metadata.ipsrc,metadata.ipdst >∈ suspectflows then
3 counter ← counter + 1
4 if counter == Nsampling then
5 sendDigest(metadata), counter ← 0

The control plane exploits LUCID [DC+20] for a finer-grained detection of

DDoS attacks. LUCID includes a trained ML model (i.e., CNN) and a prepro-

CHAPTER 2. A FRAMEWORK FOR IN-LINE DDOS DETECTION 37



2.4. PERFORMANCE EVALUATION

cessing algorithm, needed to reorganize retrieved features as required by the ML

model (i.e., on a per-flow basis).

Feature Description Collected in Protocol
ipsrc Source IP address of the packet Parser IPv4
ipdst Destination IP address of the packet Parser IPv4
ipflags IP flags used for fragmentation of the packet Parser IPv4
ipprotocol Higher-layer protocol header encapsulated in the packet Parser IPv4

iptotalLength Size of the entire IP packet in bytes Parser IPv4
icmptype ICMP type of the ICMP packet Parser ICMP
udplen Length of the UDP segment in byte Parser UDP
tcplen Length of the TCP segment in byte Parser TCP
tcpack Acknowledgement number of the TCP segment Parser TCP
tcpflags TCP flags of the segment (URG, ACK, PSH, RST, SYN, FIN) Parser TCP
tcpsrcPort Source port number of the TCP connection Parser TCP
tcpdstPort Destination port number of the TCP connection Parser TCP
tcpwinSize Window size of the TCP connection in bytes Parser TCP

ingresstimestamp Timestamp of when packet is received in the ingress queue Ingress Control Block -

Table 2.4: Packet features encapsulated in the digest sent to the control plane by opti-
mized mirroring. The features in red are used by LUCID [DC+20] in the preprocessing
stage, but not for detection.

For an online detection (i.e., classification) of malicious flows, the JSON list

including the features is continuously sent to LUCID via RESTful communication.

LUCID then aggregates and splits the traffic into flows, marking them as mali-

cious or as benign by means of ML inference (Table 2.4 lists the features used for

detection). The JSON list is emptied every ∆t seconds, i.e., every time window

expiration. This is done to reduce the amount of data stored in the control plane

and to keep it updated on the current shape of the underlying traffic. If LUCID

is fed with the most recent traffic, it is possible to spot whether a flow previously

deemed as malicious starts behaving legitimately. In this case, the flow can be

ruled out from the list of malicious flows.

2.4 Performance Evaluation

This Section presents a performance evaluation of P4RTHENON, with respect to

the considered use case of DDoS detection, both from a resource consumption and

detection capability point of view.
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2.4.1 Evaluation metrics and methodology

The tests here presented are based on a labeled PCAP dataset (details in Section

2.4.2), containing both true positives (TP , i.e., flows that belong to DDoS classes)

and true negatives (TN , i.e., flows of benign traffic). The total number of flows is

T = TP + TN . In each experiment, we obtain both false positives (FP , i.e., all

the flows wrongly deemed belonging to a DDoS attack) and false negatives (FN ,

i.e., all those flows wrongly deemed benign). The detection performance is thus

analysed by means of three metrics:

• Precision = TP
TP+FP

. It measures how many of the positive predictions are

correct. The higher the value, the lower the noise from false positives.

• Recall = TP
TP+FN

. It measures how many positive cases are recognized. The

higher the value, the lower the number of attacks escaping detection.

• F1Score = 2·Precision·Recall
Precision+Recall

. It is computed as the harmonic mean of Precision

and Recall, indicating an overall quality of the detection.

We also measure the average Control Channel Utilization (CCU), which is

defined as the amount of data transmitted on the control channel, which we call

collectedDatasize, in an observation time window ∆t, i.e., CCU = collectedDatasize
∆t

.

The higher CCU , the less efficient the strategy in terms of data-control plane

interaction.

We divided our evaluation into four parts:

• CGM DDoS evaluation, which presents a performance evaluation of our so-

lution if only in-network data plane detection is performed. We compare it

to an effective state-of-the-art in-network solution.

• FGM DDoS evaluation, which analyses and validates our solution when ML-

based control plane logic is installed. We evaluate the effectiveness and

efficiency of the strategy over multiple combinations of ACMS thresholds

and sampling rates.

• Overall evaluation, which summarises the results of CGM DDoS and FGM DDoS

when combined, clearily pointing out the benefits of P4RTHENON with re-

spect to other approaches.
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• Data plane pipeline reconfiguration evaluation, which reports a brief discus-

sion on the time needed by P4RTHENON to reconfigure the data plane

pipeline while swapping between CGM DDoS and FGM DDoS.

Before delving into the obtained results, in the following, we give a concise

description of the testbed and its settings.

2.4.2 Description of the testbed environment and param-

eters

Our experiments were carried out on in a virtual environment that consists of:

• An emulated single-switch network running on Mininet [KSG14] with bmv2

[Con+19] as P4 virtual switch target;

• A controller, developed in Go [Goo23], responsible of (i) the information

exchange with the data plane and (ii) reconfiguring the pipeline using the

P4Runtime APIs.

• A process running LUCID, interacting with the controller via RESTful com-

munication. LUCID was pre-trained using a dataset provided in its official

repository [dor], and model hyperparameters were set as the default ones

specified in the paper [DC+20]. For further details on LUCID’s configura-

tion the reader should refer to [DC+20].

• A process simulating the DDoS attack by means of tcpreplay [Lin23], which

replays network traffic at 50 Mbps speed for a 6-minute long attack. We used

a pre-generated PCAP sample dataset containing roughly 2 GB of traffic. It

is composed of 10% of benign traffic (taken from the CIC-IDS2017 dataset

[Cic]) and 90% of DDoS traffic (generated with the hping3 [Lin22] Linux

utility). The attack speed is designed to saturate the switch, while the 6-

minute duration allows replaying the dataset ∼ 2 times. We generated traffic

datasets with different numbers of malicious < IPsrc, IPdst > flows (from 30

to 120) to stress the CMS with various traffic volumes: this aspect will be

analyzed later in this section.
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All the components were executed on an Ubuntu 20.04 LTS Server with 14GB

of RAM and 3 CPU cores KVM machine.

The in-network P4-based ACMS strategy uses a (d = 2) × (w = 1024) CMS,

where every 48 bits are allocated to each cell, resulting in 2 · 1024 · 48 ∼ 9.8Kb

memory occupation. The two adopted hash functions are available by default in

the bmv2’s v1model.p4 [Conb], i.e., crc16 and crc32.

2.4.3 CGM DDoS evaluation

Sensitivity analysis of ACMS

To choose the right values d and w for CMS we conducted a detailed sensitivity

analysis. Table 2.5 shows a comparison between different values of d for w = 1024.

It reports how the F1Score improves for d = 2 with respect to d = 1, and does

not significantly improve further for d = 3 or more, meaning that d = 2 is a

valid compromise between good detection performance and acceptable memory

consumption.

Depth Precision Recall F1Score Memory in switch (Kb)
d = 1 0.54 0.95 0.69 4.9
d = 2 0.69 0.97 0.81 9.8
d = 3 0.71 0.97 0.82 14.7

Table 2.5: Detection comparison of ACMS while varying d (with w = 1024 fixed).

Figure 2.4 shows the orthogonal analysis, for fixed d = 2. Here, the Precision,

Recall, and F1Score are collected over a variable number of malicious flows, with

fixed w (Figure 2.4a) and fixed ACMS thresholds (Figure 2.4b). This analysis

suggests that for w = 1024, the F1Score is significantly higher for any number of

malicious flows compared with w = 512, and almost matches w = 2048. On the

other hand, for Threshold = 750, the F1Score outperforms every other configura-

tion. The threshold analysis anticipates the result we will further discuss in Section

2.4.4. This investigation suggests that the best parameters for CGM DDoS, given

our settings, should be d = 2 and w = 1024. Moreover, in all the following

experiments we will focus on a number of malicious flows equal to 60.
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Figure 2.4: CGM DDoS: Detection performance for different ACMS widths (with d = 2
and Threshold = 750) and thresholds (with d = 2 and w = 1024 ) while varying the
number of malicious flows.

Comparison with the state of the art

Strategy Precision Recall F1Score CCU (Kbps) Memory(Kb)
[Din+21] 0.86 1 0.93 0.001 3145.7

CGM DDoS 0.80 0.97 0.88 0.03 9.8

Table 2.6: Detection comparison between an in-network state-of-the-art strategy
[Din+21] and CGM DDoS.

We compare CGM DDoS with an open-source [Din], state-of-the-art solution

called INDDoS [Din+21]. As CGM DDoS, INDDoS is an in-network P4-based

solution that detects hosts targeted by volumetric DDoS attacks. It is threshold-

based, like ACMS, i.e., the core strategy of CGM DDoS: it estimates the per-

destination flow cardinality (number of sources contacting a specific destination)

and, if it is above a threshold value, the destination is considered under attack. To

estimate it, BACON sketch is used: a data structure that combines a CMS and

a Bitmap to Update and Query the per-destination flow cardinality once a packet
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enters the P4 pipeline. When the queried value crosses the specified threshold, a

digest wrapping the IP destination of the victim is sent to the control plane.

The main difference between INDDoS and ACMS is that they focus on two

different properties of volumetric DDoS attacks to detect them: the former on

per-destination flow cardinality (which is expected to be high for destinations

under attack), the latter on flows’ asymmetry rate (which is expected to be high

for malicious flows). We want to stress that INDDoS could replace ACMS as the

core in-network algorithm of CGM DDoS. However, if we look at Table 2.6, some

aspects can be highlighted.

We decided to test CGM DDoS and INDDoS considering their best configura-

tion in terms of detection performance (F1Score) which are:

• INDDoS: Threshold = 60, BACON sketch of size (d = 3) × (w = 1024) ×
(m = 1024) [Din+21].

• CGM DDoS: Threshold = 750, CMS of size (d = 2)× (w = 1024) (as shown

in the previous subsection);

From Table 2.6 it can be seen that much more memory is used by INDDoS with

respect to CGM DDoS. In fact, the memory occupied by BACON sketch, consider-

ing that 1 bit is allocated to each cell [Din+21], is 3 ·1024 ·1024 = 3145.7Kb, which

is more than 300 times higher than the memory occupied by the CMS adopted by

CGM DDoS (i.e., 9.8Kb). However, INDDoS outperforms CGM DDoS in terms

of Precision, Recall, and F1Score. This is explained by the higher complexity (and

required memory) of INDDoS compared with CGM DDoS, which makes it a more

performing stand-alone solution. However, Recall of both solutions is high (1 or

close to 1), while Precision of both is just decent, with slightly worse performance

for CGM DDoS.

In addition, CCU of CGM DDoS, although only in the order of tens of bps,

is higher than CCU of INDDoS. This happens for two reasons: (i) the higher

frequency of sent alerts, as CGM DDoS sends an alert every time it spots a suspect

flow, while INDDoS groups alerts by destination; (ii) the higher size of the digests

payload, as CGM DDoS sends 8-bytes alerts (IP source and IP destination of the

flow), while INDDoS sends only 4-bytes alerts (IP address of the victim). In our
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testbed, the size of a CGM DDoS alert is around 100 bits after being encapsulated

in a JSON structure, while the size of an INDDoS alert is around 50 bits.

To summarize, INDDoS provides a superior detection performance compared

to CGM DDoS. However, as specified in Section 2.2.2, P4RTHENON requires a

low number of false negatives for CGM, which is guaranteed by both strategies

(high Recall), while it is tolerant to false positives, which can be filtered out by

FGM. So, although CGM DDoS Precision is slightly lower and CGM DDoS CCU

higher (but still low in absolute terms), its adoption in the place of INDDoS is

fully justified by its much lower memory usage.

2.4.4 FGM DDoS evaluation

In this Section, we analyze the benefits of FGM DDoS. We provide an overview

of the configurations we tested in the environment described in Section 2.4.2,

setting different ACMS thresholds and different sampling rates. The goal is to

explore the existing trade-offs between detection performance (in terms of Recall,

Precision, F1Score) and Control Channel Utilization, as these two configuration

parameters are the most impactful on the above-mentioned metrics. Furthermore,

we compare these results with a näıve strategy that we call Mirror All and is

inspired by [DC+24]: it does not provide ACMS-aided optimized mirroring, but

it simply performs features extraction and forwarding from any packet, regardless

of that it belongs to a suspect flow or not. In other words, it does not embed

any ACMS logic and discriminating between benign and malicious flows is fully

enforced by the control plane. As for FGM DDoS, it is possible to reduce the

burden on the control channel through sampling, i.e., by only forwarding features

extracted from one packet out of N .

We tested different combinations of ACMS thresholds and sampling rates: in

the following we report only the most significant combinations for the sake of

conciseness. Figures 2.5 and 2.7 report the results for our tests, where for each

configuration Precision, Recall, F1Score and CCU are reported.

With respect to CCU reported values, we want to stress that in FGM DDoS

the size of a digest, including the packet’s features, is around 2Kb, i.e., 20 times

the size of the CGM DDoS one. Moreover, in CGM DDoS a much lower number
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Figure 2.5: FGM DDoS vs. Mirror All: Detection performance and Control Channel
Utilization for different thresholds (sampling rate fixed).

of digests is sent to the control plane, as only one digest per suspect flow, in any

time window, is forwarded to the control plane. This is the reason why CCU

for FGM DDoS is several orders of magnitude higher than for CGM DDoS (as

reported in Table 2.6).

Figure 2.5 reports the detection performance and CCU under four chosen sam-

pling rates, namely, 1, 1/50, 1/75, 1/100, and varying the ACMS threshold. Note

that Mirror All is insensitive to the threshold as ACMS is not adopted, and thus in

the left-hand-side subfigures its Precision, Recall and F1Score values are reported

as single points. We can see that by increasing the threshold a negative impact on

Recall is experienced, as the number of false negatives significantly increases. In

fact, only flows with very high asymmetry rates are deemed suspect by ACMS and

thus some malicious flows, with lower asymmetry rate, are neglected by ACMS.

On the other hand, choosing a higher threshold has a very good impact on CCU,

as features extracted by packets belonging to fewer flows (i.e., only those suspect)

need to be forwarded to the control plane. Instead, Precision is not strongly af-

fected and is always high, meaning that LUCID has a very good ability to filter

out false positives.

Figure 2.5 also shows that lowering the sampling rate from 1 to 1/50 is beneficial
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Figure 2.6: FGM DDoS vs. Mirror All: Control Channel Utilization for different sam-
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Figure 2.7: FGM DDoS vs. Mirror All: Detection performance for different sampling
rates (threshold fixed). M.A. = Mirror All, Prec. = Precision, Rec. = Recall, F1Sc. =
F1Score.
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for both detection performance and Control Channel Utilization for high thresh-

olds. CCU is lowered by one order of magnitude, while the detection performance

(in terms of F1Score) increases. This phenomenon may seem counter-intuitive,

however, by lowering the amount of data sent to the control plane, congestion on

the control channel is reduced with consequent benefits on detection performance.

In fact, congestion causes uncontrolled digests’ discard, meaning that lower con-

gestion reduces the amount of noise (in terms of flows’ patterns alteration) given

as input to LUCID. By further decreasing the sampling rate, e.g. 1/75 and 1/100,

the number of packets’ features sent to the control plane decreases up to a point

that LUCID has not enough data to perform a proper classification. CCU is low

but Precision, Recall, and F1Score are also low regardless of the threshold value.

The same trend is confirmed by looking at Figs. 2.7 and 2.6, which report the

detection performance (Fig. 2.7) and CCU (Fig. 2.6) under four chosen value of

the ACMS threshold, namely 750, 850, 950, 1450, and while varying the sampling

rate.

Fig. 2.7 shows that the detection performance peeks for sampling rates higher

than 1/50. However, the most important trend is clearly highlighted in Fig. 2.6:

whenever sampling is performed, CCU for both Mirror All and FGM DDoS drops

significantly. For very low sampling rates (< 1/75) the same considerations as

those done for Fig. 2.5, with respect to high thresholds, apply: in these cases,

the amount of informative data sent to the control plane is too limited to ensure

robust detection performance. Also the case for threshold values of 750 and 850

is interesting. With respect to detection performance (Fig. 2.7) they behave the

same for any sampling rate, but CCU (Fig. 2.6) is reduced by 30% in the case of

a threshold of 850.

By comparing FGM DDoS with Mirror All, we can see that Mirror All performs

best for sampling rates of 1/50 and 1/75. Its counter-intuitive worse detection

performance with a sampling rate of 1 is due to the high congestion on the control

channel. However, in all the cases, Mirror All leads to a much higher CCU than

FGM DDoS. Specifically, the same detection performance of Mirror All can be

obtained by FGM DDoS with a sampling rate 1/50 and threshold of 750, while

reducing CCU by around three times.

In summary, our results show that by choosing the most appropriate sampling
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rate and ACMS threshold our strategy makes it possible to find a good balance

between detection performance and amount of traffic on the control channel.

Strategy Precision Recall F1Score CCU (Kbps) Memory(Kb)
CGM DDoS 0.80 0.97 0.88 0.03 9.8
[Din+21] 0.86 1 0.93 0.001 3145.7

FGM DDoS 1 0.98 0.99 55.3 9.8
Mirror All 1 1 1 92.7 0

P4RTHENON 1 0.98 0.99 22.7 9.8

Table 2.7: Overall comparison between the different strategies.

2.4.5 Overall evaluation

Table 2.7 summarizes the results obtained in Sections 2.4.3 and 2.4.4, with respect

to the following strategies and related configuration parameters:

• CGM DDoS: Threshold = 750, CMS of size (d = 2)× (w = 1024);

• INDDoS: Threshold = 60, BACON Sketch of size (d = 3) × (w = 1024) ×
(m = 1024) [Din+21].

• FGM DDoS: Threshold = 750, Sampling rate = 1/50, CMS of size (d =

2)× (w = 1024).

• Mirror All: Sampling rate = 1/75.

• P4RTHENON: Threshold = 750, Sampling rate = 1/50, CMS of size (d =

2)× (w = 1024).

P4RTHENON combines CGM DDoS and FGM DDoS via data plane pipeline re-

configuration, as specified in Sections 2.2 and 2.3. The parameters of each strategy

has been chosen to maximize the detection performance (in terms of F1Score) as

first objective and, in the case of multiple settings with the same detection perfor-

mance, the one that minimizes CCU.

Table 2.7 shows how P4RTHENON, FGM DDoS and Mirror All outperform

in terms of F1Score the in-network strategies that are fully executed in the data

plane (i.e., CGM DDoS and INDDoS). However, Recall is always high, meaning
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Figure 2.8: Control Channel Utilization over time between P4RTHENON and Mirror
All in their best configurations.

that all strategies, also those fully executed in the data plane, are good at effectively

identifying true positives (i.e., the malicious traffic). It follows that the strategies

relying on LUCID as an ML engine in the control plane (i.e., FGM DDoS, Mirror

All and P4RTHENON) have a much higher Precision, meaning that by deeply

analyzing in the control plane the traffic features extracted from packets is very

effective it to keep the number of false positives low. In the case of FGM DDoS

and P4RTHENON this property can be effectively exploited to filter out in the

control plane the flows that are identified as suspect by ACMS in the data plane,

which instead are benign. Aside from detection quality considerations, resource

allocation and utilization are the aspects that make our proposed solution stands

out. If we analyze CCU we can see that the in-network strategies lead to minimal

usage of the control channel, while the others, for which feature extraction and

forwarding to the control plane is needed, pay the price of a much higher average

channel occupation. However, FGM DDoS and especially P4RTHENON have a

reduced CCU with respect to Mirror All, of around 40% and 75% respectively, as

they benefit from the presence of ACMS to only forward features from suspect

flows. P4RTHENON reduces CCU even further by having almost no interaction

between control and data plane when CGM DDoS is installed and attacks are not

under stricter scrutiny.

Moreover, by looking at the occupied memory in the switch, we can stress again

how INDDoS allocates a much higher amount of memory (3145.7Kb) than ACMS

(9.8Kb), which is used in CGM DDoS, FGM DDoS and P4RTHENON. Instead,
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Mirror All does not require any data structure in the data plane, so it does not

consume memory. This, however, comes at the expense of a significantly higher

CCU.

Finally, a comprehensive look at Table 2.7 shows how P4RTHENON, thanks

to its peculiarities, strikes the best balance between detection performance, CCU,

and memory occupation with respect to the other strategies. Figure 2.8 confirms

the speculation we drew from Table 2.7 and reports a comparison between the two

strategies with the best detection performance, i.e., Mirror All and P4RTHENON,

in terms of CCU overtime during an attack, which is marked by a red area. The

attack starts at t̄ = 30s: for P4RTHENON, CGM DDoS is in place before this

time instant, and a negligible amount of data is sent on the control channel. After

t̄, CGM DDoS starts identifying suspect flows and after another ∆t, at t′ = 60s,

FGM DDoS is installed and optimized mirroring starts (correspondingly, CCU

increases). Then, the attack ends at t′′ = 420s and, in the next time window,

CGM DDoS is restored and CCU drops to almost zero. By looking instead at Mir-

ror All, we can see an almost constant CCU of around 90 Kbps as the features are

extracted and forwarded from any packet, also when no attack is happening. More-

over, when the attack is in place, the data plane logic adopted by P4RTHENON

(i.e., ACMS) makes it possible to save much control channel bandwidth by only

forwarding features from suspect flows.

2.4.6 Data plane pipeline reconfiguration evaluation

We performed some experiments to evaluate the system downtime when a real-

time P4 pipeline reconfiguration is performed to swap between CGM DDoS and

FGM DDoS. It is important to stress that such an evaluation is strongly dependent

on the adopted emulated environment and software switch target, and further tests

will be performed as future work on hardware testbeds to confirm our findings.

In our experiment we swapped between CGM DDoS and FGM DDoS 100 times

and we measured the downtime during each transition, then calculating mean

and variance. The computed mean is 263.4 ms, with a very low variance (0.6).

Reconfiguring the pipeline, at least on Mininet with bmv2, is quick and stable.
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2.5 Discussion

Minimizing data exchanged on the control channel for data-driven monitoring

tasks is pivotal in complex networks. In fact, introducing a new feature or service

should not be detrimental to the system. P4RTHENON is a scheme that sup-

ports the employment of lightweight and precise monitoring tasks to meet these

requirements. It leverages P4-assisted real-time reconfiguration of programmable

network devices, with minimal overhead and traffic loss.

We demonstrate the validity of our scheme by formulating a P4RTHENON-

assisted solution to detect volumetric DDoS attacks. This strategy leverages two

phases: (i) a pre-filtering stage to select the important portions of suspect traffic to

analyze, and (ii) a fine-grained strategy that leverages optimized packet features’

mirroring from the data plane towards the control plane, where a ML-based spe-

cialized agent attests what portion of suspect traffic is indeed malicious. This use

case shows how P4RTHENON can reduce the cross-plane communication overhead

by almost 80% while keeping high DDoS detection rates.

Being the use case is of practical significance, we foresee to proceed in its

improvement by investigating its performance on a hardware testbed and by au-

tomating parameters’ optimization (i.e., ACMS threshold and sampling rate) ac-

cording to the traffic shape. In addition, we believe that the presented approach

could be applied with profit to other, more complex network monitoring scenarios;

our line of research will be correspondingly widened to encompass other use cases

for a broader validation of P4RTHENON.
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Chapter 3

Continual detection upgrade*

We previously analyzed how we can empower network monitoring with data

plane programmability to detect attacks in-line with the computation capabilities

of an ML-powered control plane. In this chapter, we are going to analyze how

to continually upgrade the anomaly detector by selecting relevant features on the

data plane. Machine Learning (ML) has lately become a prominent research area

for the networking community, with applications in a broad range of topics such

as traffic classification [Wic+22], routing [Cha+23], congestion control [AYC20],

and traffic forecasting [Qia+22]. In particular, in-network ML has become very

attractive, as it allows to leverage the expressiveness of ML models at data plane

speed [Swa+22; XZ19]. The common denominator between many in-network ML

use cases is to train a model in the control plane using annotated historical data,

and then deploy the model in the data plane for near real-time inference [SSB18;

SB18; XZ19]. Unfortunately, the training data will eventually become outdated

(a phenomenon formally known as “distribution shift” or “concept drift”), causing

the deployed ML model to suffer from performance degradation [MC18; Mal+22].

While the necessity for frequent model updates has already been raised [ALS23],

three fundamental questions remain: (1) When should we update our model?

The answer is (in theory) fairly simple: continuously. We should assume that the

input patterns observed by a deployed ML model may change at any point in time;

*Part of the material presented in this chapter is based on the following publications: Nicola

Di Cicco et al. “Poster: Continual Network Learning”. In: Proceedings of the ACM SIGCOMM

2023 Conference. 2023, pp. 1096–1098
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Figure 3.1: Distribution shift of TCP flow features from a real-world commercial
backbone link [CAI19]. The distribution shift of flow duration and inter-arrival
time (IAT) causes performance degradation of a ML model trying to predict them.

(2) Which data should we select for model updates? Again, the answer is

(in theory) simple: only the data that is useful for learning new things. (3) What

should our model learn? In principle, everything. We want a model that

dynamically expands its predictive power without forgetting past experiences.

In this chapter, we aim to take a step towards designing a solution that an-

swers those questions. We propose combining Active Learning (AL) [Set12], which

enables filtering relevant information from a vast pool of unannotated data, and

Continual Learning (CL) [DL+22], which allows us to learn from streaming data

without forgetting past concepts. The former, implemented in the switch ASIC,

allows us to choose the right amount of information that shall be mirrored to the

control plane, where the model is updated continually. Finally, the new model can

be installed back in the data plane.

Implementing this solution is nontrivial and needs answering the following re-

search questions: (1) how to implement AL-based filtering in the data plane?; (2)

how selective should AL be for network learning?; (3) which ML models are most

suitable for continual learning of network traffic?; and (4) how to dynamically

reconfigure the data plane?
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3.1 The case for continual learning

We run some tests on real-world traces to characterize the amount of distribution

shift in TCP flow features. We extracted commonly used features from real-world

traces [CAI19] (e.g., flow duration, inter-arrival time (IAT), and packet size statis-

tics). We observed a shift in the flow duration and in the maximum IAT for

small time scales (∼one hour) and for large time scales (∼a year), respectively. To

quantify the impact of these shifts, we consider ad-hoc regression tasks (because

CAIDA traces do not have task-specific class labels) where the targets are either

the flow duration or the maximum IAT. We observe (for visualization purposes,

we focus on the ranges [5, 20]s for flow duration and [0, 1.5]s for inter-arrival time)

that the test error is significantly larger than training, a phenomenon that is im-

putable to the observed feature drifts (Fig. 3.1). Indeed, classical ML models will

work properly only if the train and test data are approximately i.i.d. [Bis06]. As

such, practical in-network ML calls for smart, adaptive approaches.

Why can’t we run existing proposals in a loop? Literature has been

active in proposing efficient means for offloading trained ML models to the data

plane [Zhe+22; Swa+23; CSF22; Swa+22]. We here consider an orthogonal prob-

lem: how to train a ML model continually from packet streams with the optimal

amount of annotated training data. Though Online Learning approaches have

been explored [MC18; Swa+22], they 1) assume that every streamed data point is

labeled, and 2) do not pay attention about forgetting the past as long as the model

is fit to the current experience. In our proposal, we want not only to learn adap-

tively, but also to remember (and therefore exploit) everything that was observed

in the past. In this way, our model will not need additional data for re-learning

already-observed concepts.

3.2 Our approach

Fig. 3.2 illustrates our proposal: to incorporate in a single closed-loop framework

the following building blocks:

1. Model training: update the ML model over the time with CL.
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Figure 3.2: Our approach. The ML model is created (1) and then deployed in the
switch ASIC (2), to perform inference at data plane speed (3). Selective mirroring
(4) with Active Learning is deployed to keep the ML updated with Continual
Learning.

2. Model deployment: deploy the new ML model in the data plane.

3. In-network inference: enable inference at data plane speed.

4. Selective mirroring: mirror to the control plane only the data useful for expand-

ing the knowledge of the model with AL.

As a proof-of-concept experiment, we consider a subset of the CIC2019 dataset

for DDoS classification [Sha+19]. We consider DDoS classes to represent disjoint

learning tasks, which are presented to the model in sequence. For each task, the

model must not only discriminate between benign and malicious flows but also

place the malicious flows in the right class.

We implement a baseline Continual Random Forest (CRF), consisting of a

RF augmented with a replay buffer storing the most informative past exemplars.

We use the vote count as AL query strategy, selecting only data points whose

predictions had less than 90% majority. We retrain after each query, which is

computationally efficient for RFs. We consider an Adaptive Random Forest (ARF)

as a purely online (but not continual) state-of-the-art baseline [Gom+17; MC18].

In contrast to CRF, ARF assumes that every data point is labeled. We also
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Figure 3.3: Adaptive vs. Continual Random Forests for class-incremental DDoS
classification on CIC2019. At the end of the stream, CRF achieves performance
close to an “oracle” while requiring only ∼1% of the data.

consider an ”oracle” RF trained on the full dataset as an upper-bound on the

average performance over all tasks.

Fig. 3.3 shows the performance of CRF and ARF over the sequential tasks,

and the percentage of queried labels by CRF relative to the full stream size. A

purely adaptive learner such as ARF, though able to master individual tasks,

quickly forgets past concepts. Instead, our baseline CRF achieves a performance

close to the oracle upper-bound, while requiring labeling only ∼1% of the observed

samples.

3.3 Challenges

Challenge #1: implementing AL-based filtering in the data plane. Vote

count in our baseline CRF is a decent query strategy, but information-theoretic

quantities [Hou+11; BS+23] are among the state-of-the-art. Their data plane

implementation is not trivial, as it would require floating-point arithmetics. Even

if not standard, authors in [Pat+22] propose a way to implement floating-point

arithmetics in P4.

Challenge #2: how selective should AL be. A small selectivity implies a large

mirroring overhead, whereas a large selectivity implies a potential information loss.

Applying AL to streaming data is, as of today, a novel twist on classical techniques

[Sar+23]: investigating these trade-offs opens up interesting research directions.
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Challenge #3: choosing the right CL strategy. Our baseline leverages

a slowly-growing experience buffer, which may not be desirable. Strategies for

maintaining the buffer of fixed size can be investigated [Reb+17]. Other solutions,

e.g., regularized neural networks, do not require any storage overhead other than

the model [Kir+17], but are ill-advised for tabular data [SZA21]. Ultimately, the

choice depends on the available storage/computational resources and the goodness-

of-fit to the characteristics of task-specific data.

Challenge #4: runtime dataplane reconfiguration. Currently, if we want

to add a new functionality to a switch, we need first to reroute the traffic of that

switch, flush a new image in its ASIC and then restore the original traffic policy

configuration. This process can lead to dramatic consequences if performed care-

lessly [Jan21]. Programming the switch at run-time is possible [Xin+22], but not

for RMT [Bos+13], the common commercial devices architecture [Int20; AMD19].

Researchers have also explored means to enable isolation between offloaded pro-

grams [SZ20; ZBH18; Wan+22], which we will investigate to isolate the Active

Learning processing and the rest of the pipeline.
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DLTs
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Chapter 4

IOTA to safely propagate data

plane alerts*

In this Part, and particularly in this chapter, we will investigate how to combine

the in-line attack detection with DTLs to distribute alerts in decentralized sys-

tems. Modern systems heavily adopt decentralized systems that rely on a network

of nodes for computation and data storage. These systems facilitate the collabora-

tive and distributed use of computational resources, instead of relying on a central

authority, leading to more efficient resource utilization and greater resilience. At-

tackers, however, find in the very architectural features of distributed technologies

exploitable vulnerabilities. One of the most famous attacks that leverage these

architectures is the Distributed Denial of Service (DDoS) [OCD16], which seeks

to disrupt network services and host connectivity in a distributed environment

by overloading the network with unnecessary requests. Avoiding and mitigating

DDoS attacks is a primary concern for many organizations.

Software-defined Networking (SDN) is a cutting-edge networking approach that

divides management over control and data plane layers. In SDN, the physical

network layer is seen as fully programmable, resulting in increased customization

of data packet processing. Such a feature has greatly contributed to its widespread

across different cloud infrastructures. In this direction, the Programming Protocol-

*Part of the material presented in this chapter is based on the following publications: Amir Al

Sadi et al. “P-IOTA: A cloud-based geographically distributed threat alert system that leverages

P4 and IOTA”. in: Sensors 23.6 (2023), p. 2955
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independent Packet Processors (P4) has emerged as an innovative programming

language, operating at the data plane level, to configure network devices in a

highly customizable manner. P4 allows full programming of networking devices

while being target-independent. Furthermore, the capability of programming the

data plane boosts the ability to detect network attacks.

How to effectively and securely share information to detect attacks is a challeng-

ing task. Distributed ledger technologies (DLTs), such as blockchain, are digital

systems spread across multiple locations that securely store information (trans-

actions) without a central entity. Blockchain represents the most famous type of

DLTs: its data structure foresees a chain of blocks connected through hashes and

validated by 3rd-party entities (i.e., miners or validators) following a consensus

protocol. However, the validation process consumes significant amounts of time

and energy, which can hinder blockchain’s efficiency and adoption for information

sharing. To address these concerns, alternative DLTs such as IOTA are recently

emerging as promising solutions. IOTA offers the same security features of the

blockchain (i.e., immutability, traceability, and transparency) while addressing ef-

ficiency concerns.

The differences between IOTA and blockchains have been widely investigated

in the literature [Als+22; Auh+22; Reb+21], with numerous studies showing that

IOTA is a superior solution in terms of scalability, transaction rate, efficiency, and

reducing energy consumption. IOTA outperforms traditional blockchains due to

its low latency and the ability to send transactions without any fees [Als+22].

[Reb+21] presents an in-depth comparison of the performance of multiple consen-

sus protocols where IOTA achieves the best performance with a transaction rate

that is several orders of magnitude higher than the other protocols. Therefore, its

lightweight consensus protocol makes it one of the few truly suitable technologies

for Internet of Things (IoT) devices [Auh+22]. These properties are particularly

relevant in SDN-based environments due to the strict latency requirements of the

data plane. At the state-of-the-art, there are very few examples of research pro-

posals that integrate P4 and DLTs. We argue that one of the main reasons is

that traditional blockchain-like technology, such as Ethereum, introduces consid-

erable overhead to compute blocks, clashing with the real-time attack detection

capabilities of P4.
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This chapter presents P-IOTA, a system that leverages P4 and IOTA to detect

ongoing network attacks in real-time. Our solution offers high performance and

enables real-time communication of events in a distributed manner. P-IOTA can

be employed to address a wide range of attack scenarios. We developed a proof-

of-concept using a well-known P4 implementation for DDoS attack detection and

we simulated a SYN flooding attack. The experimental results demonstrate that

P-IOTA outperforms blockchain-based proposals in detecting and communicating

attacks in real-time while correcting false attack notifications.

The chapter is organized as follows. In Section 4.1, we introduce the relevant

background information regarding DTLs. The relevant literature is reviewed in

Section 4.2 to present the background concepts used in our work and the limita-

tions of existing solutions. In Section 4.3 we describe P-IOTA, including its main

components and features. Then, Section 4.4 documents the experimental results

of a simulated SYN flooding attack. Finally, we discuss our results in Section 4.5.

4.1 Background

In this section, we provide essential background information about DLTs with a

specific emphasis on IOTA.

4.1.1 Distributed Ledger Technology

Distributed Ledger Technologies (DLTs) are types of distributed database that

avoids data centralization and do not require administration functionality. The

stored information is replicated on multiple nodes that maintain a copy of the

entire database. Since DLTs do not use centralization or third-party entities, the

data source is built collaboratively, allowing multiple entities to contribute data.

Unlike traditional databases, data memorized on a DLT can neither be modified

nor deleted, as they are usually implemented as append-only data structures. They

rely on Peer-to-Peer (P2P) networks as they are decentralized systems. The lack of

a centralized control entity avoids the single point of failure issue. For this reason,

DLTs adopt consensus protocols to keep the nodes in the network synchronized.

Trust between participants is established through these protocols, based on strong

cryptographic principles.
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It is possible to distinguish many categories of DLTs according to specific char-

acteristics. The first factor is the data structure chosen to store the information.

The most popular are blockchains and directed acyclic graphs (DAGs). As the

name suggests, blockchains store information in blocks linked together by hash

pointers. This mechanism is natively tamper-proof since changing a block would

break the chain. A directed acyclic graph is a data structure no longer organized as

a linked list of blocks but as a cycles-free directed graph. DLTs can be divided into

two different access models: permissionless and permissioned. In the first model,

the ledger is public and open access, hence, anyone can participate in the net-

work and the consensus protocol. It is fully decentralized across unknown parties.

In the second model, participation is mediated by permissions: participants have

restrictions on writing, or both reading and writing. Both models are partially

decentralized. DLTs can also be classified into tokenized and tokenless ledgers. In

a tokenized ledger, transactions involve some type of purely digital asset (token)

represented within the ledger. Tokens generally serve two main purposes: (i) as

an economic incentive for protocol participants to form consensus in decentralized

systems, (ii) as a way to prevent spam and DoS attacks, since each operation in-

volves a nominal fee and creating a large number of transaction is expensive. In

a tokenless scenario, the ledger does not offer any incentive to join and does not

expect any payment for implementing smart contracts. For this reason, tokenless

ledgers are typically permissioned and thus a strong trust has already been es-

tablished during the registration process. Some ledgers also allow the simulation

of a Turing machine. For example, Ethereum or Hyperledger Fabric can execute

Turing machines. This allows programs written in Turing-complete programming

languages to be stored and executed directly on the ledger. These programs are

often called smart contracts.

4.1.2 IOTA

First-generation blockchains exhibit significant efficiency issues [Cha+18] that

make them unsuitable for environments where resources can be extremely het-

erogeneous (i.e., IoT). IOTA [Pop] is a next-generation DLT engineered to tackle

the scalability limits of the blockchain while still providing the same security ca-
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Figure 4.1: The tangle.

pabilities such as immutability, traceability, and transparency. IOTA owes its high

scalability to the adopted data structure named Tangle (sketched in Fig. 4.1), a

DAG composed of several connected nodes that store transactions. Each node is

a transaction, while each edge represents a validation of that transaction. The

tangle enables achieving remarkable performance due to the lack of a middleman

since there are no block producers (i.e., miners and validators). Thus, everyone

can submit a transaction and attach them to different nodes. However, in order to

achieve a secure shared state, a new transaction has to verify the two transactions

to which it is directly connected. Furthermore, since transactions are not vali-

dated by someone that has to be rewarded, it also enables zero-value transactions.

This feature is particularly relevant for certain scenarios where there are a huge

amount of data to send resulting in an extremely large number of transactions.

Since zero-value transactions do not involve any transfer value, they are attached

to the tangle without the need to be validated by participants of the network

(i.e., double spending cannot occur), thus, remarkably reducing the time to share

information.

An IOTA network can be deployed as private or public. A private network

only provides access to certain users. On the other hand, a public network can be

accessed by anyone without any kind of restrictions: every participant is aware of

the history of transactions and sent new transactions.

IOTA distinguishes clients and nodes. A client is any entity (i.e., human or not)

that submits transactions to a node, to have them attached to the tangle; nodes

have to verify the correctness of the transactions and in case of success, add them

to the tangle. Furthermore, an IOTA network comprises additional node types
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named Coordinator and Permanode. In each IOTA network, there is a unique

Coordinator that regularly produces milestones, trusted signed transactions used

by nodes to confirm transactions. The signature guarantees that nobody can fake

the signatures on milestones, thus, milestones are always legit. In particular, a

transaction is confirmed only when directly or indirectly referenced by a milestone

that nodes have validated. The use of the Coordinator is temporary, it will be soon

removed in incoming updates. Permanodes are responsible for keeping the history

of all the transactions that occurred. Such a component is particularly relevant in

specific scenarios since nodes may be constrained devices that cannot memorize

the entire tangle. Therefore, they periodically delete recorded transactions using

a pruning operation.

4.2 Related Work

This section reviews existing works on the integration of blockchain with SDN

and P4. Furthermore, it also analyzes some research efforts that employ P4 for

thwarting SYN flooding attacks.

4.2.1 SDN and Blockchain

The combination of SDN and blockchain can find various applications, motivated

by both the necessity to address SDN’s inherent security issues and infrastruc-

tural problems such as limiting energy consumption of devices [RR17]. Some

researchers exploited the distributed nature of blockchains to secure IoT infras-

tructures. Yazdinejad et al. [Yaz+20a] proposed a scheme to provide an efficient

and secure mechanism to transfer files between IoT devices, to overcome the com-

putational limitations of such devices. IoT devices are clustered around their

respective SDN controller and are able to communicate over a P2P network using

a public blockchain. The computational need is eased by removing the Proof of

Work (PoW) process thanks to the controller’s role, the clustered nature of the

architecture, and an ad-hoc distributed trust algorithm. Inside the clusters, a pri-

vate blockchain is used to keep track of the newly added IoT devices and every

transaction. To transfer a file between devices, a preliminary block that contains
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the sender and receiver signature and public keys is designed. After the block is

validated by the network, the file is then sent to the intended recipient, which is

the only one that can decode it. A similar use case is shown in [BS17], where

with the use of OpenStack and Pythereum, a blockchain-enabled SDN is imple-

mented and tested. The role of the blockchain in this architecture is to present

indelible and transparent records of any file transfer, that the network then vali-

dates. Jiasi et al. [Jia+19] present a proof-of-concept practical design in which a

blockchain layer is placed between the control and data layers, to record network

events and resources associated with every controller and build smart contracts

that automatically implement security protocols.

To tackle the Single Point Of Failure (SPOF) architectural vulnerability, while

having the purpose of enhancing SDN’s security level, Abou et al. [AEHHK19]

propose an architecture that incorporates the blockchain as a way to make multiple

SDN-based domains collaborate and share DDoS attack information in a decen-

tralized manner. This work exploits a Smart Contract where collaborators can

publish and share blacklisted IPs. The authors deployed the Smart Contract on

an Ethereum testbed network. The choice of deploying the solution on a public

blockchain enabled information sharing between different clouds to achieve collab-

oration, especially needed in IoT environments as shown in [TPK17].

Rahman et al. [Rah+21] present a framework that exploits the Ethereum

blockchain to publish all the flow rules of the switches: the controller periodi-

cally creates a block as an update only if all the switches agree on the proposed

list of rules. The immutability and consistency of the blockchain allow the man-

agement of flow rules and the detection of their violations on devices. However,

the authors reach the conclusion that deploying this kind of architecture in the

real world is rather complex because of the amount of transaction needed, which

can entail a considerable cost. Similarly, Sharma et al. [Sha+17] present a dis-

tributed secure SDN architecture for IoT using the blockchain technology concept

to improve security, scalability, and flexibility, without the need for a central con-

troller. The blockchain is employed as a distributed peer-to-peer network where

non-authenticated members can interact with each other without a trusted inter-

mediary. The blockchain is deployed in order to allow untrusted interactions to

update a flow rule table, securely verify and validate a version of the flow rule
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table, and download the latest flow rules table for IoT forwarding devices. In

addition, the DistBlockNet architecture provides proactive and reactive incident

prevention by dynamically adapting to the threat landscape without having to

include security administrators to manually process a huge number of advisories

and approvals.

4.2.2 Blockchain Interaction with P4-enabled Switches

The efficiency of the solutions described in section 4.2.1 is validated by comparing

it with existing models, as highlighted in [Als+21]. However, we believe they do

not fully exploit the potential of the programmable data plane. To the best of

our knowledge, only few works attempted to integrate blockchain and SDN by

leveraging the P4 language.

Febro et al. [Feb+22] present a botnet DDoS defense framework using P4, SDN,

and blockchain at the network edge. It implements a synchronized defense within

an organization or also spanning multiple organizations. The framework comprises

two main agents, ShieldSDN and ShieldCHAIN. ShieldSDN is an SDN controller

managing edge devices with P4 capabilities, responsible for synchronizing packet

filters provided by the switches within an organization using a smart contract

deployed in the Ethereum blockchain. It is responsible for inter-organization syn-

chronization: when a publisher or organization wants to share attack fingerprints

with the community, ShieldCHAIN creates a transaction. The subscriber can then

retrieve the current state of attack, and ShieldCHAIN then installs the required

countermeasures in the data plane. The authors performed four experiments to

validate their solution against botnets-based DDoS. The main drawbacks of this

solution include requiring high computational power to run the public blockchain

and with that added overhead.

Yazdine et al. [Yaz+20b] propose a P4 and blockchain-enabled packet parser

(BPP) in the data plane and implemented on FPGA. BPP implements a custom

header in P4 that fits the blockchain structure. BPP is able to recognize blockchain

hash blocks to enforce control policies, such as match+action tables using specific

fields in these packets. The workflow outlined by the authors involves the data

plane, the control plane, and the application layer. It begins with packet pro-
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cessing in the BPP module, which leverages the intrusion detection functions in

relation to attack types (five categories of patterns: Normal, Remote to Local

(R2L), DoS, User to Root (U2R), and Probing Attack (Probe)) to detect attacks.

If an anomaly is detected, a transaction is prepared to be validated and then added

to a block in the ledger for that specific attack. Then, the BPP submits a transac-

tion to a validator in the control plane and alerts the controller. Subsequently, the

SDN controller can use a Merkle Tree to evaluate the transaction. If this process

is successful, the transaction will be marked as valid in the whole network. Con-

currently, the blockchain will be updated and the BPP will be re-programmed, if

necessary.

Ref. SDN P4 IoT Ethereum
Recording
events

File
trans-
fers

Security

[Yaz+20a] X X X X
[BS17] X X

[AEHHK19] X X X
[TPK17] X X X X
[Rah+21] X X X X
[Sha+17] X X X
[Feb+22] X X X X X
[Yaz+20b] X X X

Table 4.1: Related works list of analyzed topics.

4.2.3 P4 for Thwarting SYN Flooding Attacks

SYN flooding attacks are a type of attack that attempts to concurrently establish

a large number of connections to disrupt the networking capabilities. The attack

involves flooding the network with SYN/ACK TCP packets targeting a host in

an effort to establish TCP connections and block the available ports. P4 is a

promising candidate for designing and deploying in-network detection and miti-

gation strategies for SYN flooding attacks. It allows keeping track, in real-time,

of the ratio of SYN/ACK sent in a flow compared with the corresponding ACK-

/FINs. The literature shows how real-time data plane detection enables accurate
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assess whether a network flow is malicious or not. One such implementation is re-

ported in P-SCOR [Mel+20], where a simple asymmetric-flow detection algorithm

is proposed.

Shen et al. [She+21] propose a P4-based SYN and UDP flooding mitigation

strategy that combines the 2 steps of attack identification:

1. Source authentication: by using an SYN cookie, the source of traffic authen-

ticates in the system.

2. Anomaly detection: after the authentication step, the real three-way hand-

shake takes place and the P4 program supervises the correctness of the pro-

cess.

Such operations allow early detection of ongoing attacks on the authentication

phase and prune the remaining malicious traffic in the second phase. The results

show a drastic reduction in the server SYN queue usage when the P4 firmware

is deployed in the network. Similarly, another three steps solution is proposed

by Lin et al. [Lin+20]. Differently from[She+21], the authors merge overlapping

switch rules to minimize the number of dropped benign flows. Three concurrent

components make up the solution. A detection oversees the ratio of SYN/ACK

and ACK/FIN packets related to each network flow. Meanwhile, a merging phase

is employed: here, multiple entries on a switch are simplified to a larger prefix

to minimize the number of installed rules. The defense mechanism matches each

attacker in a flow table rule: if the rule installed in the switches is LPM and an

attacker is in that IP range the rule is deleted, while if the rule is an exact match

the IP is dropped.

SYN flooding attacks are one of the most threatening attacks in distributed

environments, hence, we claim they can be a remarkable example to showcase the

potential of our solution.

The scientific research on P4 solutions that incorporate blockchain technologies

is limited. Most of the existing solutions choose the Ethereum blockchain, and the

focus is mainly on security applications in IoT environments. There is a lack of

studies on P4 and blockchain in cloud environments and few works that leverage

the blockchain to propagate P4 alerts in the case of detected attacks. To the
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best of our knowledge, there are no works that employ alternative DLTs such as

IOTA, which has been shown to be more efficient than popular blockchain-based

solutions, especially for IoT environments.

4.2.4 Considerations about P4 Employment in Blockchain

Solutions

The scientific literature on P4 solutions that exploit blockchain technologies is very

limited, with most of the existing solutions that choose the Ethereum blockchain.

Table 4.1 shows what are the main topics treated by each paper mentioned in the

related works. These works mainly focus on security applications in IoT environ-

ments. Two of the analyzed works focus on recording events, while only one covers

file transfers. By reviewing the literature, we observed a lack of studies on P4 and

blockchain in cloud environments and few works that leverage the blockchain to

propagate P4 alerts in the case of detected attacks. On the other hand (as shown

in Section 4.2.3), a large number of works use P4 as the enabling technology to

deploy detection strategies to spot abnormal behaviors on the data plane, i.e. SYN

flooding attacks.

To the best of our knowledge, there are no works that employ alternative DLTs

such as IOTA, which has been shown to be more efficient than popular blockchain-

based solutions, especially for IoT environments.

4.3 P-IOTA Architecture

In this section, we present the design of our solution, which is depicted in Fig. 4.2.

P-IOTA is tailored for distributed networks that belong to multiple organizations,

such as cloud infrastructures, where computational and networking resources are

often spread across geographic locations and critical information is stored. These

types of networks are often treated as local networks (e.g., cloud-hosted installa-

tions) by system administrators, but it can be challenging to quickly detect and

block threats while spreading alerting information in such a distributed environ-

ment.

The main goal of this framework is to facilitate the dissemination of network
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Figure 4.2: The P-IOTA architecture.

attack alerts through IOTA. In order to generate alerts in a highly customized and

efficient way, P-IOTA leverages an SDN-based architecture, involving a P4 data

plane layer that detects network attacks. The generated alerts are then used to

notify other controllers through the IOTA layer. The infrastructure consists of

three main components:

• IOTA Layer: whose main role is to notify and log alarms from the data plane,

and to share mitigation strategies. The IOTA layer notifies the portions of

the network that can be impacted by the detected attack and disseminates

the policy that should be applied to mitigate it.

• Control Plane: is responsible for managing and configuring the underlying

physical network. It contains multiple local network managers (i.e., con-

trollers), each of which controls a specific subnet. The controllers interact

with the IOTA layer using an IOTA client and with the data plane using

P4Runtime.

• Data Plane: this layer hosts the physical devices that forward traffic. By

using P4 and the programmable data plane, part of the detection intelligence
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can be moved from the control plane to the data plane. This allows for deep

packet inspection and network-level probing to detect anomalies.

P-IOTA is designed to propagate real-time alerts from the data plane and

deliver them quickly throughout a distributed environment. The IOTA tangle

maintains an immutable list of alerts in the form of a log, allowing for further

investigations on the attack history offline without the risk of log cleaning. More-

over, the tangle can be leveraged to share the countermeasure needed to mitigate

detected attacks. Hence, our solution offers intrusion detection capabilities on the

data plane in the form of in-network detection, offloading a significant amount of

detection intelligence to networking devices.

In this chapter, we demonstrate how IOTA significantly reduces the overhead

compared to traditional blockchain solutions, highlighting its potential in the net-

work security field.

4.3.1 IOTA Layer

The IOTA layer comprises the IOTA nodes that hold a unified view of the tangle.

Our decision to use IOTA to share information across different sites [Maz+22] is

motivated by the following features:

• Efficient lookup: each transaction can be tagged, making it easier to collect

IPs from the tangle. If another DLT were adopted, an additional tag within

the transaction message would significantly slow down the time it takes to

find a transaction.

• Zero-value transactions: IOTA enables neglecting cryptocurrency, reducing

the complexity of managing IPs. In contrast, each controller would need to

have sufficient funds to perform operations.

• Scalability: the tangle allows parallel validation of transactions without any

intermediary. Such capability overcomes blockchain-based solutions, where

a transaction is not recorded until it is stored in a block.

Finally, the tangle structure also shortens the time needed to record a new

transaction. Transactions are recorded on the tangle as soon as they are created,
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whereas, in blockchain-based solutions, they must wait until they are stored in a

block.

IOTA Node

In a federation, each participating enterprise should have at least one IOTA node

to receive notifications from other organizations. However, a company may not

collaborate with external parties and may have multiple sites located in different

regions. Therefore, to reduce latency and facilitate swift mitigation, a company

may choose to deploy an IOTA node at each of its sites.

IOTA Tangle

The Tangle is the data structure employed to share information, such as alarms

and mitigation, among different controllers. This information is shared through

zero-value transactions that do not require validation and, hence, help maintain

a unified view of the tangle while keeping low latency and energy consumption.

As discussed in the previous section, these features make IOTA a suitable choice

for SDN-based scenarios where threat alerts and mitigation have to be quickly

disseminated among devices that may have limited capabilities.

4.3.2 Control Plane

The control plane is responsible for managing, configuring, and monitoring the

physical network. It consists of multiple geographically dispersed controllers which

are in charge of managing a single network. These controllers work together and

receive alerts from the IOTA layer, which informs the correct nodes of potential

attacks, as shown in Fig. 4.3. Each controller acts as the primary management

point for a local network. It keeps track of the status of networking devices,

communicates with other controllers to make decisions about local network man-

agement strategies, and provides common control place services to monitor and

administrate the data plane.

The control plane is made up of multiple controller instances, which are con-

nected through messages. The components of each controller are:
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Figure 4.3: An example of organizations managing controllers associated with
different subnets. In a federated environment, if an alert (1) is generated from a
node, all interested controllers across organizations are notified (2).

• IOTA Client: which is responsible for connecting the controller instance to

the corresponding IOTA node in the IOTA layer. It communicates with the

IOTA node to send and receive alerts.

• Controller Business Logic: which handles the forwarding alerts to the IOTA

client, sending management messages (e.g., congestion, link failures, etc) to

other controllers, and communicating with P4Runtime.

• P4Runtime: which is in charge of interacting with the networking through

the P4Runtime Southbound Interface. It receives alerts generated from the

data plane and installs the rules to react to these alerts.

As highlighted in Fig. 4.3, organizations may manage multiple controllers, and

if a controller detects a potential attack it will communicate it to the IOTA node,

which then notifies the interested controllers through the IOTA tangle.
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IOTA Client

The role of each controller in detecting and mitigating attacks is accomplished

through the integration of an IOTA client. This client serves as a bridge between

the controller and the IOTA node, allowing the exchange of information between

the controller and the IOTA tangle. One of the advantages of using IOTA clients

is their lightweight design, which makes them suitable for deployment on devices

with limited resources.

Control Plane alerting and management

This component plays a key role in managing and controlling the underlying net-

work. It is responsible for expressing policies and communicating configuration

or resource changes to neighboring controllers via management messages. The

management messages are used to exchange information between physically close

controllers, while the IOTA layer is in charge of disseminating alarms and mitiga-

tion strategies across a distributed network. In summary, the main functions of a

controller include:

• Management messaging: sending messages to communicate with neighbors’

controllers.

• Alerting: forwarding alerts coming from the data plane to the IOTA node

for further dissemination.

• Network configuration: interacting with and configuring the underlying net-

work for forwarding or mitigation purposes.

This controller acts as the centralized core that manages the subnet and demon-

strates the intelligence of the administration.

P4Runtime Client

This component is the client for the Southbound Interface that connects the con-

troller business logic and the data plane level. P4Runtime abstracts the underlying
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Figure 4.4: Network Topology used for the testing phase. From the top-left cor-
ner, clockwise: Single Switch Topology; Linear Topology; Ring Topology; Full
Connected Topology.

hardware or software and offers agnostic APIs to the control plane to communi-

cate with the physical network. The P4Runtime client is responsible for receiving

communications from the data plane and performing two key functions:

• Installing match-action rules: it installs rules that specify forwarding logic

or threat detection and mitigation strategies.

• Event listening: it listens for alerts from the data plane that indicate poten-

tial threats.
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4.3.3 Data Plane

The data plane is in charge of processing and forwarding traffic. It includes net-

working devices such as switches and routers. Each controller is paired with one

or more P4 border routers that are capable of monitoring the traffic flowing in a

given subnet and detecting abnormal behaviors.

This allows the P4 switch to centrally inspect each network flow and deter-

mine if an attack is taking place. The programmability of P4 and the data plane

has enabled us to design pipelines that incorporate the detection of ongoing net-

work attacks and normal forwarding behaviors. In Fig.4.4, we report the network

topology used for experiments.

Over different possible attack scenarios, we focus on the two we considered

more relevant:

• An organization is comprised of multiple physical subnets within the IOTA-

controlled network. If an attacker is detected, the alert must be propagated

to each geographically dispersed network subnet.

• The same physical network is used by multiple organizations (such as in

public or hybrid cloud platforms). In this scenario, an attack may potentially

affect each organization operating in that portion of the data center.

P-IOTA handles both of these scenarios in a consistent manner since each IOTA

node is tied to its organization. Similarly, as depicted in Fig. 4.4, each controller

is connected to its IOTA node and can configure its network independently.

4.4 Case Study

To validate the proposed architecture and compare it with the existing literature,

we consider a real-world use case scenario. This section aims to showcase a prac-

tical implementation of the SYN flooding detection and alerting workflow using

the P-IOTA architecture. Therefore, we conducted a proof-of-concept evaluation

of P-IOTA by focusing on SYN flooding, which is a common and harmful net-

working attack in distributed environments. This attack falls within the DDoS,
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notoriously known to disrupt the network forwarding capabilities and to lever-

age SDNs to threaten cloud infrastructures [YY15]. As discussed previously, the

programmable data plane in P4 can mitigate these threats, as it addresses the cen-

tralized nature of traditional SDN controllers. There have been several successful

implementations of P4 in mitigating DDoS attacks, demonstrating the effectiveness

of the technology in securing distributed networks.

We conducted a proof-of-concept evaluation of our architecture by implement-

ing a SYN flooding scenario. To detect the DDoS attack, we used the InDDoS

solution proposed by Ding et al. [Din+21]. This solution, which is fully located

on the data plane, identifies potential DDoS victims based on data structures and

thresholds. The solution has been validated with state-of-the-art datasets and has

shown high detection precision. We deployed InDDoS using its open-source code

available at [Din]. We selected this solution as it aligns with our scenario: the

Southbound Interface is minimally used, with each alert consisting of just 4 bytes

(an IP). To simulate the network environment, we used Mininet [Min21] and bmv2

with a single-switch and two host network topologies. The attack was generated

using the Linux utility Hping3 [Lin22].

4.4.1 Experimental Setup

We set up an IOTA network and evaluated the time it takes to make all controllers

aware of the victims’ IPs. To do this, we used zero-value transactions to share

information on the IOTA network. The transactions were embedded with the

attacked IP and were made immutable by the tangle. However, this may lead to

false positives if an IP is wrongly reported. Therefore, we enriched the message

of transactions with an ”action” field that indicates the type of operation being

performed (i.e., add or delete). To delete an IP incorrectly detected as suspicious,

a controller has to send a transaction where the action field is set to ”delete” and

the IP field reports the wrong IP. An example of the message structure used to

share information is shown in Listing 1.

IOTA enables binding a tag to a transaction, simplifying how IPs are collected.

Each controller retrieves all the transactions indexed by a specific tag and builds

the firewall rule table. In case multiple subnets are simultaneously attacked, IOTA
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{

"action": <add | delete>,

"IP": <IP>

}

Listing 1: Message structure.

will receive as many transactions as the number of detected attacks. All these

transactions are indexed through the same tag. Hence, the controllers leverage

that tag to retrieve all the corresponding alerts. The pseudocode of the algorithm

implemented by IOTA clients is shown in Alg. 4.

Algorithm 4: IOTA Client

Input: −
Output: −

1 Procedure SendAlert
2 tag ← "newAlert"

3 action, IP ← getAlertFromController()

4 message← createMessage(action, IP)

5 sendToIOTA(tag,message)

6 Procedure ReceiveAlert
7 tag ← "newAlert"

8 messages← getMessagesFromIOTA(tag)
9 foreach m ∈ messages do

10 action, IP ← m
11 sendAlertToController(action, IP )

However, since the order of the collected transactions may be different from

that of the detection, it is necessary to embed a temporal reference within each

transaction, resulting in a different structure of the message shown in Fig. 1. The

controllers then use this information to reconstruct the temporal order properly.

In the scenario described, the primary concern is to detect and notify an at-

tack as soon as possible to minimize the attack window. Therefore, the following

experiments were implemented:

• Experiment 1: Notify of Detected Attack - The first experiment aims
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to evaluate the time needed to notify a controller from another organization

about a detected attack.

• Experiment 2: Update a Wrong Detection - The second experiment is

about updating a wrongly reported alert.

Furthermore, to better justify the effectiveness of our solution, P-IOTA’s per-

formances are compared to the framework presented in [Feb+22], which is the only

work in the literature that employs a DLT for similar purposes. For the sake of

fairness, we conduct the same experiments:

• Experiment 3: Collect Alerts - The third experiment measures the per-

formances of the P4-based data plane layer.

• Experiment 4: Publish - The fourth experiment refers to organizations

that share information, such as the victim’s IP, with a community through

transactions published on the tangle.

• Experiment 5: Subscribe - The fifth experiment involves community

members that retrieve alerts previously published on the tangle.

• Experiment 6: Packet Filter Installation - The sixth experiment installs

the appropriate filtering rules on switches based on the collected information

to mitigate the ongoing attack.

4.4.2 Experiments

Each experiment was conducted by simulating a workload of 100 detected alerts,

which was repeated 100 times for accuracy and consistency. In the scenario under

consideration, the main objective for a community is to synchronize a defense

posture in the lowest possible time, so our analysis focuses on the latency metrics

required for the main operations. Fig. 4.5 shows the results of the first and

second experiments. In Fig. 4.6, we devise the remaining experiments based on

the components under evaluation. The results of the experiments that pertain to

the SDN components can be seen in Fig. 4.6a for Experiments 3 and 6, while the

results of the experiments related to the IOTA network are shown in Fig. 4.6b for

Experiments 4 and 5.
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Figure 4.5: Experiment 1 and 2 - Latency statistics.

4.4.3 Experiment 1: Notify a Detected Attack

Firstly, we evaluate the time that elapses between the notification of an attack by

a controller and its availability to all the other controllers in the control plane.

In particular, the elapsed time includes the creation of a transaction, its retrieval

through indexing, and its conversion into a useful representation. The results are

shown in Fig. 4.5, where two types of latency time (declined among mean, variance,

and standard deviation) are represented. We can claim that a notification, reported

in blue requires an average of about 500ms to make the alert available to other

organizations.

4.4.4 Experiment 2: Update a Wrong Detection

In the second experiment, we evaluate the ability to update wrongly reported

attacks. In this case, the average latency is almost doubled. We expected such

an outcome due to the immutability feature of DLT. As a transaction cannot be

removed from the tangle, modification deems two transactions: one to invalidate

the previous one and another one to update it. The results are shown in red in
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Figure 4.6: Experiments 3, 4, 5, and 6 - Latency statistics for SDN components
(a) and for the IOTA network (b).

Fig. 4.5.

4.4.5 Experiment 3: Collect Alerts

The third experiment measures the time required by the P4 target to generate and

send an alert to the controller. This time is the sum of the latencies collected in

the following three steps:

• Create the digest packet describing the alert;

• Send it over the P4Runtime channel;

• Extract the alert in the control plane.

A programmable P4 switch allows for describing custom features that improve the

performance of certain actions. This is reflected in the results of this experiment,

as P-IOTA is able to shrink the content of the alert up to 4 bytes, i.e. the IP ad-

dress of the victim. The comparison between P-IOTA and[Feb+22], whose results

are reported in Table 4.2, demonstrate that P-IOTA outperforms the compared

approach by three orders of magnitude. Fig. 4.6a shows the mean, variance, and

standard deviation of Experiment 3, collected over 100 measurements.
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4.4.6 Experiment 4: Publish

The fourth experiment aims to demonstrate the effectiveness of our proposal in

sharing threat intelligence with the community. The results of the experiment,

which involves embedding each detected alert within a transaction, are shown in

Fig. 4.6b. As the number of detected alerts increases, so does the number of

transactions published on the tangle. Thus, detecting 100 alerts will result in 100

transactions published on the tangle. Our proposal performs better due to the

fact that IOTA does not have the concept of blocks, allowing transactions to be

attached to the tangle as soon as they are collected by underlying layers.

4.4.7 Experiment 5: Subscribe

The fifth experiment proves the advantages of using IOTA’s index feature for re-

trieving transactions from the tangle. According to the results shown in Fig. 4.6b,

it takes P-IOTA less than 4 seconds to collect 100 transactions, representing alerts.

The close-to-zero variance and standard deviation indicate high consistency in the

time taken to collect transactions. As anticipated, Fig. 4.6b also demonstrates

that the average latency for reading transactions is significantly lower, by one order

of magnitude, compared to the latency for publishing.

4.4.8 Experiment 6: Packet Filter Installation

The sixth experiment assesses the time to install a mitigation rule delivered through

the IOTA layer. The rule is deployed by P-IOTA using the P4Runtime API and

the Southbound Interface of P4 4.3.2. Similarly to the third experiment, we com-

pared our solution to [Feb+22]. We demonstrate that P-IOTA outperforms the

compared approach since we only install one rule to perform the mitigation (Table

4.2). Fig. 4.6a shows the mean, variance, and standard deviation of Experiment

6, based on 100 measurements.

4.4.9 Time and Computational Analysis

Time and computational analysis are critical in evaluating whether our proposal

can be deployed in real-world scenarios. Fig. 4.7 outlines that, in the IOTA net-
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Figure 4.7: The latency trend of published detected attacks (a) and their retrieval
(b).

work, the latency increases with an approximated O(n) complexity as the number

of notified attacks scales up, both for publishing detected attacks (Fig. 4.7a) and

retrieving them (Fig. 4.7b).

Moreover, computational considerations are essential in evaluating the prac-

ticality and efficiency of the IOTA network. The IOTA tangle is designed to be

lightweight and energy-efficient, making it ideal for deployment on low-power de-

vices. Official experiments [IOT22] have shown that the IOTA network can operate

successfully on devices such as Raspberry Pi 3 and 4 with very low energy con-

sumption, ranging from 2J to 6J approximately. This is a significant advantage for

the IOTA network, as it not only reduces its environmental impact but also makes

it more accessible and cost-effective for a wide range of applications, including

those based on SDN.

Regarding the SDN layer, Figure 4.8 illustrates the correlation between the

number of alerts detected and the time required to forward them to the IOTA

node. The graph shows a linear relationship for a rate of up to 7000 detected

attacks. However, beyond that threshold, the latency increases gradually due

to the limited bandwidth of the Southbound Interface, which has a maximum

capacity of 14 Mbps in bmv2. It is worth noting that this test is not applicable to

CHAPTER 4. IOTA TO SAFELY PROPAGATE DATA PLANE ALERTS 85



4.4. CASE STUDY

1 1000 7000 10000

·104

0

2

4

6

·105

Number of detected alerts

L
at
en
cy

(m
s)

Figure 4.8: The relationship between the number of detected alerts and the latency
in the Southbound Interface channel.

the retrieval phase. Installing thousands of rules on a switch can cause congestion

in the match-action table, which should be minimally used.

4.4.10 Discussion

As a yardstick for comparison, we consider a proposal that uses Ethereum, which

is one of the most widely used blockchains. In 2022, Ethereum switched to a

PoS consensus protocol, with a block-adding time of 12 seconds as stated in the

official documentation [Eth22]. However, adding a block to the chain does not

guarantee its validity. To ensure the block’s validity, it is necessary to wait until it

is finalized, meaning it cannot be modified without a significant amount of ETH

getting burned. In Ethereum, this is done through ”checkpoint blocks” that are

issued every 32 blocks added. If a pair of checkpoints attracts votes, representing

at least 2/3 of the validators, all blocks prior to the least recent checkpoint are

considered finalized. Therefore, it is necessary to wait for at least 64 blocks,

approximately 12 minutes, to ensure block validity.

According to literature [Als+22; Auh+22; Reb+21], IOTA emerges as the best

solution for the proposed case study because of its low latency, high throughput,
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Exp. 3 Exp. 4 Exp. 5 Exp. 6
[Feb+22] 64000 ms 517330 ms 100000 ms 80000 ms
P-IOTA 35.54 ms 71640 ms 3720 ms 126.83 ms

Table 4.2: Comparison between P-IOTA and [Feb+22].

and low power consumption. These are key features in scenarios where fast re-

sponse times are necessary to mitigate attacks. Additionally, routing devices often

have limited resources, making it imperative to use lightweight protocols like that

of IOTA.

These considerations are also supported by the results in Table 4.2, which com-

pare P-IOTA and [Feb+22] in terms of average latency. The experimental results

show that our solution significantly outperforms solutions that adopt Ethereum

technologies, decreasing the time taken to alert the other nodes, including the time

to forward the alert from data to the control plane and the time to notify other

nodes.

4.5 Discussion

In this chapter, we present P-IOTA, an architecture for detecting attacks and

alerting potentially affected nodes that are geographically distributed. Our pro-

posal leverages the P4 programmable data plane to implement the detection logic

and uses IOTA to disseminate alarms to nodes belonging to the same organization

or, in the case of the federation, to different organizations. P-IOTA also enables

keeping the history of the detected attacks.

We implemented a prototype of our solution to evaluate its performance while

reporting and notifying threat alerts during an SYN flooding attack. Specifically,

we measured the latency in sending a notification and updating incorrect alerts.

The experimental results demonstrate that IOTA enables these operations with a

latency lower than 1 ms, outperforming traditional blockchains that typically take

minutes to confirm a block.

In light of the foregoing results, we believe that this work proves that IOTA is a

promising technology for alerting nodes about threats in SDN-based environments.

It can be also leveraged to handle various attack scenarios in which multiple en-

CHAPTER 4. IOTA TO SAFELY PROPAGATE DATA PLANE ALERTS 87



4.5. DISCUSSION

tities need to be notified (i.e., threat intelligence). In future research, we plan to

encompass mitigation policies.
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Chapter 5

In-network computing for

enhanced data integrity*

We previously focused on distributed network attack detection and alerting.

In this Part, we are going to focus on the use of DPP to provide computation ca-

pabilities to low-end IIoT devices, to deliver more integrity or simple encryption.

In recent years, due to the increasing pervasiveness of data processing capabilities

across the whole network, service instantiation has been moving from core net-

works towards the edge of the infrastructure, leading to the emergence of the Edge

Computing (EC) paradigm [Cap+19]. User devices as well as data sources can

greatly benefit from this transition, as they are in constant demand for real-time

and latency-sensitive processing [Yu+18]. Along with meeting these requirements,

the adoption of EC also promises an optimization of network traffic, an improve-

ment of the user experience, and an enhancement of privacy and security for a

number of applications, including industrial automation. Indeed, EC can be piv-

otal in augmenting services offered by the network with new processing capabilities,

making up for the scarcity of computing power or software compatibility typically

displayed by specialized equipment, e.g., by providing low-power legacy devices

with packet encryption functionalities. In doing that, DPP can be of great help,

as devices in the PDP can easily be programmed to perform simple and quick

*Part of the material presented in this chapter is based on the following publications: Gaetano

Francesco Pittalà et al. “Leveraging Data Plane Programmability to enhance service orchestra-

tion at the edge: A focus on industrial security”. In: Computer Networks (2024), p. 110397

CHAPTER 5. IN-NETWORK COMPUTING FOR ENHANCED DATA
INTEGRITY

91



traffic processing, opening up to a large set of functionalities that can be offered

to network services.

In industrial environments, clusters of sensors and actuators are typically de-

ployed across the scenario, in arrangements often referred to as Industrial Internet

of Things (IIoT) networks. They present specific architectural challenges and

weaknesses [Sch+22], stemming from their peculiarities. These types of networks

are usually heterogeneous, unsuitable for computation-intensive operations, and

prone to security issues. In the mean time, these devices require to always be

connected to the Internet while lacking energy-demanding security software mod-

ules. Data Plane Programmability (DPP)-based solutions can help tackle these

problems, in multiple ways. The Programming Protocol-Independent Packet Pro-

cessors (P4) language has emerged as a powerful tool to control Programmable

Data Plane (PDP) devices, allowing network operators and service providers to

define the behavior of the network devices at a packet-level granularity, enabling

them to create custom forwarding and processing pipelines tailored to specific ap-

plications [KCBH21]. By using P4 to include cross-level headers, packet processing

can be offloaded to a single or few network devices provisioned with more resources,

supporting simple encryption or integrity checking. Moreover, DPP can facilitate

deploying security countermeasures without touching the IIoT devices.

In this chapter we explore the potential of DPP to enhance service offload-

ing at the Edge, focusing on industrial security applications. Including DPP in a

framework for flexible service provisioning, we can enable the customization and

adaptability needed to improve services offered at the Edge. This calls for the

introduction of a service orchestration entity, capable of taking advantage of a

pool of heterogeneous (computing and networking) resources to enable efficient

and swift service provisioning. In other words, we abstract the functionalities of

PDP devices and make them comparable to those of computing nodes, then we

apply policy-based placement strategies to pick the most suitable resource to pro-

vide a given service. As a case study, we refer to an industrial environment, where

the security of remote maintenance services can be enhanced by activating proper

services offered at the Edge. We emulate the use case scenario to evaluate the

performance of implementing data integrity functions on PDP devices in compar-

ison to general-purpose computing nodes. Finally, leveraging on the results of the
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emulation, we assess through simulation how the availability of P4 switches can

improve the efficiency, performance, and scalability of service offloading. In the

context of this work, we refer as service to the composition of functionalities (e.g.,

data processing, traffic steering, etc.) that may be deployed in a distributed way

over the network and EC infrastructures, and typically offered to the user as a

cohesive bundle. Service components (i.e., the single parts being composed) are

the abstracted elements representing the underlying physical or virtual resources

that can be configured to perform those functionalities.1

The remainder of the chapter is structured as follows. In Sect. 5.1 we offer a

recollection of state-of-the-art security challenges for industrial environments, as

well as solutions for service orchestration at the Edge. In Sect. 5.2 we introduce

the architecture and working principles of the service orchestration framework we

employed. In Sect. 5.3 we present the scenario in which this chapter is articulated,

outlining the typical structure of an industrial network, its main challenges, and

what issues we aim to solve with our proposed solution. In Sect. 5.4 we describe

the topology for our emulated environment and provide its evaluation, along with

a commentary of preliminary results that assess the potential of employing PDP

devices in the delineated orchestration context. In Sect. 5.5 we showcase through

simulation results the benefits offered by our approach in the offloading of services

at the Edge, focusing on the described use case. In Sect. 5.6 we discuss our results

and highlight future research directions.

5.1 Related Work

In this section, we first review research efforts that highlight the potential of em-

ploying DPP to cope with shortcomings of IIoT networks, with a focus on process-

ing offloading to network devices. We then provide a summary of state-of-the-art

solutions for the orchestration of services at the Edge. In doing that, we use the

terms EC and Fog Computing (FC) interchangeably, as their definition may over-

lap in scenarios such as the one depicted in this work. Indeed, from the point

of view of cloud service providers, EC resources are typically referred to as “near

edge,” whereas FC resources are classified as “far edge,” justifying the terminology

1In the following, depending on the context, for the sake of readability we may refer to “the
function performed by a single service component” simply as a service.
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we adopt here [SC+19].

5.1.1 Data Plane Programmability for in-network offload-

ing

DPP enables reshaping packet processing procedures to smartly exploit the hard-

ware capabilities of networking resources. This architectural advantage can be

leveraged to implement custom packet programming for multiple purposes. PDP

devices can be employed to support security and ease communication within IoT

environments.

Some work analyzing this matter can be found in the literature. P4 can be

employed in IIoT scenarios, as argued in [SSG21] and in [Ves+20], which propose

a framework to describe in-network computation tasks, respectively to support AI-

based scenarios and event detection over a publish/subscribe architecture (using

hardware targets like FPGAs and SmartNICs).

P4 can also enable communication over complex wireless networks, as argued

in [Udd+18], as well as [Gyö+23] and [Eng+19], which provide examples of how

to exploit P4 devices to enable peer-to-peer communication, manage link load and

enable WiFi communication over distributed Internet of Things (IoT) wireless

networks. The common denominator of these approaches is that P4 introduce

little to no communication overhead.

One of the few DPP-based IoT architectural solutions for multi-access net-

works is proposed in [Tac+22], employing P4 and In-band Network Telemetry

(INT) [Tan+21] over a P4 target to dynamically offload tasks on the network.

Hence, in-network offloading can help service management systems drastically

cut some operational overhead and allow for finer-grained network inspection. This

is especially relevant in environments revolving around IIoT, usually composed of

nodes with limited computational power. Moreover, these networks use hetero-

geneous means of communication and require ad hoc clients and servers to send

and receive information. Thus, DPP and P4 can be helpful to potentially offload

part of the server-side computation since programmable targets can be used and

programmed like regular nodes. In fact, a P4 switch can handle multiple or even

custom protocols, and hence be used as gateways for communications inside the
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plant, as well as run simple in-line computation when processing packets. These

features allow for service offloading on the data plane, so that network devices

can be instrumented to perform network services computation at line rate. In this

chapter, we show the advantages of such offloading features in an IIoT context

focusing on security applications.

5.1.2 Service orchestration at the Edge

The EC paradigm enables efficient and distributed computation closer to the net-

work’s edge, bringing significant benefits in terms of latency, privacy, and band-

width utilization. However, effective resource orchestration in EC environments

remains a challenging task, due to the dynamic and heterogeneous capabilities of

such systems.

While substantial steps have been made to standardize service orchestration

systems, e.g. the OpenFog [Ope17] and Mobile Edge Computing (MEC) [Mao+17]

projects, open-source implementations of fully-compliant orchestration systems

are still lacking. However, we present here a comprehensive overview of state-of-

the-art orchestration systems, to give context to the system we relied on for our

evaluations.

In [San+17] the authors propose a novel orchestration architecture for FC en-

vironments. Such architecture is divided into three tiers, namely “cloud tier”,

“edge cloudlets”, and “edge gateways”, and arranged by the distance from the

user to the requested resources (e.g., the edge gateway nodes are positioned closer

to the user than the edge cloudlets nodes, offering applications with better latency

performance). The workload placement is regulated to meet the demands of fog

applications. The authors of [DB+17] created a prototype EC orchestrator, ad-

dressing the heterogeneity of the IoT environment as well as the capabilities of

involved devices and the imposed constraints. The orchestrator is logically cen-

tralized, and an agent needs to run in every controlled node, to manage local

virtual instances (i.e., containers). They focused their evaluation on two critical

performance factors, namely the time performance of the system while orchestrat-

ing different services in different configurations (e.g., varying image size, image

location, etc.), and the success rate of the system in instantiating the services as
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requested. A hybrid architecture to manage resources in the Fog-to-Cloud contin-

uum is presented in [Vel+17]. It suggests a solution for the distributed manage-

ment of applications and services in the IoT and Fog domains, while it recommends

using a centralized strategy for the orchestration in the Edge and Cloud domains,

to benefit from global awareness of the available network resources. In [Ala+18],

the authors provide a layered and modular architecture with containerized services

and microservices that operate on the Fog-to-Cloud continuum. A hierarchically

lower layer is responsible for performing sensing and operations, while a middle

layer handles intermediate computing resources and routing, and an upper layer

deals with wider-view operations such as long-term global storage. The aforemen-

tioned works propose new architectures for service orchestration in EC scenarios,

emphasizing the distributed character of these systems and the demand for ac-

curate monitoring and data on the availability of resources for both nodes and

services. These solutions, however, only combine the information on available re-

sources to pick a node on which to deploy the service, without considering different

service provisioning models, nor considering the specific performance users expect

of services after their activation. On the contrary, the authors of [Dav+21] pro-

pose a service-centric approach, that leverages the inherent flexibility offered by

the cloud-native Everything-as-a-Service (XaaS) model to provision services in a

more dynamic way. This solution still makes use of data gathered from available

resources to decide where and how to deploy services, but in doing so it also con-

siders the nature of the requested service, including the possibility of deploying

it in multiple ways, along with the present state of the system. This orchestra-

tor was subsequently extended in [Pit+22] and in [DC+23a], making it a suitable

choice for our purposes here. The novelty of this work resides in (i) the adoption

of PDP devices for the offloading of security-critical network service functions in

an IIoT scenario, and (ii) the inclusion of DPP as a tool to enhance availability

and flexibility of services in a XaaS-aware service orchestration framework.

96 CHAPTER 5. IN-NETWORK COMPUTING FOR ENHANCED DATA
INTEGRITY



5.2. ORCHESTRATING SERVICES USING PROGRAMMABLE DATA
PLANES

5.2 Orchestrating Services using Programmable

Data Planes

Orchestrating services over a heterogeneous set of resources requires to coordi-

nate monitoring, management, and decision processes. In this section, we describe

the structure, functional elements, and working principles of the service orches-

tration framework we employed. Such framework is based on that introduced

in [Dav+21; Pit+22]. It retains the original XaaS approach, which makes the sys-

tem aware of different service deployment models, borrowing from the XaaS de-

ployment paradigm typical of Cloud Computing scenarios, and extends it with the

support for services offered by networking resources. Specifically, the orchestrator

can instantiate services according to five different service provisioning paradigms:

• Infrastructure-as-a-Service (IaaS), for the deployment of a generic virtual-

ization engine (e.g., Docker) on a computing resource;

• Platform-as-a-Service (PaaS), to provide the user with a software framework

(e.g., the Python SDK) including tools, libraries, and interpreters, for the

execution of generic programs;

• Software-as-a-Service (SaaS), to offer a specific application (e.g., a Web-

based one) that users may access through a dedicated interface;

• Function-as-a-Service (FaaS), to provide the user with a lightweight service

component, reduced to a single function (e.g., real-time video transcoding),

handled entirely by the computing resource on which it is deployed in an

event-driven, serverless manner;

• Programmable-Data-Plane-as-a-Service (PDPaaS), exposing packet level pro-

cessing a networking resources programmability (i.e., PDP devices) to the

user, e.g., to steer traffic or process packets as they cross the network, with

potentially significant performance advantages.

Leveraging the flexibility offered by this approach, the orchestration system can

combine different paradigms to obtain the desired service efficiently and effectively.

For instance, if a service is not natively available on a computing resource, but such
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resource is capable of hosting a compatible version of it, then the requested service

can be deployed there. In other words, the orchestrator may decide to deploy an

application (i.e., a SaaS-native element) on top of a virtualization engine (i.e.,

a IaaS-native element) running on a computing resource that did not previously

offer that specific application. This introduces great adaptability, albeit at the

expense of greater service activation complexity that may entail drawbacks such

as an increased service activation time.
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Figure 5.1: Service orchestration framework architecture.

The orchestration system architecture is represented in Fig. 5.1. At a macro-

scopic level, the framework consists of two layers, namely the Orchestration level

and the Resource level. The former comprises the functional elements of the logi-

cally centralized orchestrator, while the latter encompasses all the distributed and

dynamic network resources available in the infrastructure for the orchestrator to

activate services.

The functional elements of the service orchestrator are structured in a way

that reflects the need for abstraction of the service activation process, while also

facilitating a modular implementation. Starting from the top of the figure and
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moving downwards, the point of contact between the orchestrator and the exter-

nal world is provided by the Service gateway, which allows users and other systems

to access the functionalities of the orchestrator. Immediately below, it comes the

Service intelligence element, which implements the core functionalities of the or-

chestration process; it is tasked with making service activation decisions to satisfy

external requests while enforcing predefined policies. The monitoring information

is made available to the decision-making module by the Service monitoring el-

ement, which handles the processed telemetry data that describes the status of

active services and the availability of components to instantiate new ones. Its

functions are complemented by the Service management element, which handles

the lifecycle of services, ensuring that their deployment and decommissioning is

operated in compliance with the decisions coming from the Service Intelligence.

The role of the Resource aggregator element is that of providing the abstractions

that allow the elements above to work with abstracted service components that

lack any technology-specific details. Similarly to their overlaying counterparts, the

Resource monitoring and Resource management elements are in charge of collect-

ing telemetry data and handling the deployment processes, respectively, but at a

lower level of abstraction, interacting with resource domains with their specific in-

terfaces. Lastly, the Resource connector element is in charge of the communication

between the service orchestrator and the underlying infrastructure, facilitating the

integration of diverse domains into a pool of resources visible to the orchestration

processes.

Here, we introduce the support for some additional services that may lever-

age DPP, depending on the availability of PDP devices. We make the practical

assumption that the code needed to provision the newly introduced services is al-

ready available in the PDP devices, to simplify their deployment by just activating

them when needed, without running a re-configuration of the pipeline.

Activating a service through the orchestration system typically starts with the

intended user requesting a list of the offered services. This list reports information

in a symbolic format, representing the available services as well as those that the

orchestrator can deploy. The user may then request the activation of a specific

service. The activation process is entirely handled by the cooperation among

the functional elements in the service orchestrator. The steps of such process are
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Figure 5.2: Interactions between functional elements of the orchestration system.

displayed in Fig. 5.2, where the interactions pertaining to the activation of services

are labeled with A, whereas those related to the monitoring process are labeled

with M. The former chain of actions is triggered by the request coming from the

user, while the latter happens periodically. The numbers on the labels represent

the order in which those interactions take place. In summary, when receiving a

service activation request, the orchestrator will leverage the periodically refreshed

monitoring information on the available resources to determine how to activate

the requested service. It will then trigger the required steps to configure the

underlying resources for the provisioning of the service to the user. At the end

of the procedure, the orchestrator will inform the user of the outcome, allowing

it to access the service. To showcase the support for the PDPaaS paradigm,

we extended the orchestrator with the ability to interact with the PDP. From

the point of view of the orchestrator, and specifically of its Service intelligence

element, all resources are comparable, as they are described in terms of their

features by means of abstractions provided by the Resource aggregator element.

This makes it so that PDP devices are regarded in the same way as any other

resource, allowing PDP resources to be included, alongside computing resources,

in the same pool from which the placement algorithm picks for the activation of the

requested service. Also consistently with the implementation of the other instances

of the XaaS paradigm, the same principles for the monitoring and management

of computing resources are applied to PDP resources. In practice, this translates

to the introduction of a REpresentational State Transfer (REST) interface on the

control plane of the programmable switches, enabling the interaction with the

orchestrator for monitoring and management purposes.
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The principles and mechanisms described in this section can be leveraged to

address significant issues in the reference scenario, as detailed in the following.

5.3 Industrial security: a focus on legacy devices

In this section, we outline the Industrial Control Systems (ICS) context to which

the use case discussed in this chapter pertains. We specifically describe some of

the most important challenges on the orchestration and management of services in

this context, and how our solution can help tackle some of those challenges, such

as those related to remote maintenance.

ICS are composed of interconnected Cyber and Physical components that mon-

itor and manage physical processes. They are responsible for the safety and oper-

ations of the industrial process, which implies the management of heterogeneous

hardware and software. They include devices such as sensors, actuators, super-

visory control and data acquisition (SCADA) systems, Human Machine Inter-

faces (HMI), and dedicated subsystems such as programmable logic controllers

(PLC) [CDT21]. This heterogeneity obviously translates into system complexity,

which implies more effort to manage and prevent anomalies. The Purdue Enter-

prise Reference Architecture [Wil94] is the reference networking architecture for

ICS systems, adopted in the ANSI/ISA-95 standard, and we can use it to analyze

each segment of a typical ICS.

As depicted in Fig. 5.3, the Purdue Architecture divides the ICS network into

six layers which are arranged into three logical segments: the layers from 0 to 3

constitute the Manufacturing Zone, while levels 4 and 5 constitute the Enterprise

Zone, with a Demilitarized Zone of convergence between them.

The Enterprise Zone, also referred to as Information Technology (IT) net-

work, incorporates traditional IT devices and systems where the primary business

functions of the enterprise occur, including the orchestration of manufacturing op-

erations and services. On the other hand, the Manufacturing Zone is known as

Operational Technology (OT) network because it contains systems and devices

responsible for the control, monitoring, and automation of physical processes. At

level 0 of the Manufacturing Zone, sensors and actuators are deployed to interact

directly with the physical process while level 1 is composed of PLCs which im-
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Figure 5.3: ICS Purdue Reference Architecture.

plement systems control logic by observing sensor readings and by consequently

updating actuators signals. Level 2 (SCADA, HMI) and level 3 devices are re-

sponsible for control, data acquisition, and monitoring in order to manage plant

operations. Edge nodes at level 3 are also responsible for running applications that

need to interact with OT devices and for providing security for the Manufactur-

ing network. In addition, devices belonging to those two levels can communicate

with the Enterprise Zone through the demilitarized zone (DMZ), which manages

the connection between the IT and the OT networks while maintaining the two

worlds isolated from each other. The DMZ serves as a controlled buffer zone,

enabling secure data exchange and access management while maintaining distinct

security protocols suited to each network’s priorities: IT focuses on data integrity

and confidentiality while OT prioritizes system availability and physical safety.
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Additionally, the DMZ architecture aids in regulatory compliance by establish-

ing a clear boundary that can be audited according to industry standards [Iso].

The reliability of the OT network is paramount: failures cannot be acceptable

due to the critical nature of the physical processes monitored and faults would

imply shutting down the entire industry, leading to potential economic losses. Fi-

nally, it is important to highlight that the risk impact is also different considering

that, in the IT network, the principal risk is the loss or unauthorized alteration

of data. Instead, in the OT environment, a security breach can jeopardize both

production and equipment, while in the worst case, can cause a loss of lives or

environmental damage [CDT21]. This alignment with cybersecurity best practices

underscores the DMZ’s vital role in safeguarding industrial infrastructure, making

it an essential component of modern network design.

5.3.1 Threats on legacy devices: the OPC UA protocol

ICS employs a wide range of protocols, depending on the specific objectives of each

system. Real-time constraints and legacy hardware are two of the most important

challenges that industrial protocols are specifically made to address. Legacy com-

ponents in particular are one of the main source of issues in modern ICS. Legacy

devices usually lack proper security measures. At the same time, protecting and

managing these devices becomes necessary because replacing them is often a com-

plex and expensive process. These devices typically show limited flexibility and

frequently lack the capability to be updated to meet modern standards. As a conse-

quence, these devices may exhibit shortcomings such as the absence of mechanisms

for firmware management. This often leads to issues derived from outdated soft-

ware (SW) and firmware (FW) such as limited connectivity, insecurity of channel

communication, unverified data integrity, uninsured data confidentiality, or lack of

access control monitoring policies.

In this context, a new building model, OPC UA [OPC22a] has emerged as

the de-facto standard for machine-to-machine communication because, compared

to other common industrial features, it enables platform-independent and secure

communication by design. It has become popular with the advent of Industry 4.0,

a paradigm that aims to create new business logic and markets while opening the
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old OT industrial segment to the Internet, legacy devices included.

Adopting this protocol in an industrial environment enables the integration

of heterogeneous hardware, which is instead a constraint brought by proprietary

protocols (like Siemens S7). At the same time, the advanced security-by-design

capabilities of the protocol reduce some of the typical security risks of ICS (such

as lack of message authentication or encryption). Two communication strategies

are possible, namely client-server and publisher-subscriber. Even though OPC

UA does not strictly enforce the use of security mechanisms, both communication

models allow messages to be signed to ensure authenticity and encrypted to add

confidentiality. Actually, OPC UA messages can be exchanged in one of three

Security Modes: None for unprotected communication, Sign for authenticated

communication, SignAndEncrypt for authenticated and encrypted communication

[OPC22b].

Despite the benefits of the protocol, supporting the security features of OPC

UA by product vendors, libraries implementing the standard, and end-users re-

mains challenging, preventing companies from adopting proper security mecha-

nisms. Currently, roughly 14.6% of OPC UA device vendors do not support secu-

rity features at all, while 64.6% of them present issues or errors in the Trustlist

management, enable Rogue Client, Rogue Server, and Man-in-the-middle attacks,

and only 20.8% of them correctly implement the security features offered by the

OPC UA protocol [EMT22].

We argue that, despite its potential, the OPC UA architecture needs to be

backed by additional mechanisms when the adoption of its security features is

limited or nonexistent.

5.3.2 Use case: Remote Maintenance of Industrial Plants

With the ever-growing need for operational efficiency and negligible downtime,

remote maintenance is becoming a critical tool for industrial plant maintainers.

In fact, the possibility of connecting with the industrial plant remotely (e.g., from

the premises where the IT is located) enables quick ordinary reconfiguration and

prompt reaction to unexpected events, at all times. In this section, we describe

a typical remote maintenance use case and outline the security threat that may
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occur.

In our use case scenario, a technician needs to operate on equipment situated in

the industrial plant, but from an external location, through a remote connection.

Such connection may carry text-based data (e.g., for command line operation on

a terminal) or multimedia data (e.g., for visual control of machinery).

The technological requirements to establish this kind of remote session are

mostly already met in modern industrial environments. However, their activation

is often hard to automate, since the OT is generally managed in local networks,

and it may include specialized hardware (e.g., an industrial gateway that performs

security duties) [HHH22]. Moreover, it is prone to security and privacy threats,

arising from the exchange of potentially critical information outside of the private

network of the company. Furthermore, in order to guarantee maximum efficacy,

the Quality of Service (QoS) perceived by the user (i.e., the technician, in this

example) should be high enough to support the workflow without impediments or

delays.

The traffic generated by the remotely controlled equipment needs to cross mul-

tiple network segments. For instance, the data may be generated on a device

connected to a server (e.g. OPC-UA) located on a PLC in the OT segment.

From there, it needs to cross the OT network, which is composed of devices such

as PLCs, SCADAs, and actuators, which typically have low computation capa-

bilities. Then it goes through the IT network, which usually hosts most of the

computation power. Finally, it crosses the Internet, which exposes it to a num-

ber of potential threats [AHZ19]. All things considered, the technology implied

is not enough to grant confidentiality and integrity of the data, while of course

availability depends on the switching and firewall configuration. More specifically,

we can analyze the Confidentiality, Integrity, Availability (CIA) risks of each of

the traversed domains. Based on computation capability, the crossed path can be

divided into two portions, namely OT-IT (low capability route) and IT-Internet

(high capability route). In the OT-IT portion, confidentiality is not threatened,

as data travels within the private network of the company. Its integrity, how-

ever, can be undermined by the fact that legacy devices do not usually support

integrity checks. On the other hand, in the IT-Internet portion, data is prone to

confidentiality threats, since more personal or company data are shared as well as
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integrity issues that may cause data flow disruption or alteration. In both por-

tions, data availability is threatened by out-of-domain connections that can lead

to denial-of-service attacks.

Companies often leverage Virtual Private Network (VPN) technology to estab-

lish a private end-to-end connection between the client and the IT (which usually

comprises a VPN server), ensuring Confidentiality and Integrity of the transmitted

data. All things considered, we can still identify two main points that need to be

addressed to achieve automated deployment of safe remote maintenance sessions

in the industrial plant. The first is the lack of CIA in the OT-IT portion, due

to the scarce computation capabilities of the involved devices. The second is the

automatic deployment of remote service components to support the maintenance

session on client request, keeping CIA requirements into account.

For the purpose of this work, we have defined and implemented instances of

such support services, which we refer to as Maintenance Services (MSs), and their

goal is to enhance the reliability of the remote maintenance routine, consistent

with the use case presented in this section. This is achieved by applying hashing

to the data flow, according to one of four different hashing algorithms, namely

CRC32, XXH64, MD5, and SHA256. The data flow may be either text-based

(e.g., for remote terminal operation) or video-based (e.g., for remote inspection),

resulting in a total of eight new services offered to the user.

In Sect. 5.4, we provide a proof of concept to tackle the aforementioned concerns

by leveraging service orchestration and PDPaaS through the activation of MSs.

5.4 Proof of Concept: Emulation of an Indus-

trial Environment

This section must be intended as a motivation chapter to introduce the evaluation

on Section 5.5. In fact, the testbed used to draw the results shown in this section

is emulated. Thus, the results must be interpreted as a simple prototype of our

solution, which we believe can be reasonably scaled up to a real-world scenario.

Figure 5.4 shows the emulated industrial environment used for the tests, which

is inspired by the architecture described in Sect.5.3.
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Figure 5.4: Topology of the Proof-of-Concept implementation.

The IT and the OT are separated by a DMZ: on the IT side, it is accessed via

a traditional router, while the OT devices are reached through a P4 programmable

switch. The P4 switch can be managed by the orchestration framework to pro-

vide specific PDPaaS services. Since the goal is to establish a remote maintenance

connection, our system provides a remote VPN connection to the industrial net-

work for a client located on the Internet. The VPN server is placed in the IT

network, alongside the workstations and the orchestrator presented in Sect.5.2. In

particular, the orchestrator is responsible for deploying services both in the IT and

the OT. The types of services that can be managed by the orchestrator are also

described in Sect.5.2.

When compared to the Purdue reference architecture, the OT network is sim-

plified to only one level, in which two main elements are located, namely OPC UA
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servers and Edge Nodes. Edge Nodes supply computational power to the Man-

ufacturing Zone and can support the deployment of PDPaaS services to provide

integrity along the OT-IT path. OPC UA servers, instead, are legacy devices with

low computing and networking capabilities. Considering this aspect, we assume

that they can only operate in Security Mode None. In addition, OPC UA servers

are connected to monitoring cameras, as described in [OPC19], which observe the

assembly line and allow the remote maintainer to discover faults in the production

processes.

5.4.1 Experimental setup

We implemented the emulated industrial testbed using the Kathará framework

[Bon+18]. Our Kathará topology and all the test scripts are open-source and pub-

lic at [RAS23]. All elements of the testbed are implemented as Docker containers,

except for a separate node on IT premises hosting the Service Orchestrator. The re-

mote client hosts an OPC UA client process capable of connecting to a VPN server

located in the IT network. We built a specific Docker container image published

to Docker Hub to implement these functionalities, employing the opcua-asyncio2

Python library for the OPC UA client functionalities. Edge nodes and IT worksta-

tions are general-purpose Debian-based Docker containers; edge nodes have higher

computing capabilities, in terms of RAM and CPU power, than the others. OPC

UA servers, on the other hand, are equipped with less RAM and less CPU power,

to account for the fact that they represent legacy devices, and they are based on

the same image as the ones that represent the remote client. The VPN server is

an OpenVPN server that pushes the route to reach the OT private subnets to the

remote client. Between the OT and the IT segments, there is a traditional Open

vSwitch [Pfa+15] which acts as a firewall by means of IPTables rules, with the

goal of allowing only VPN traffic. A container emulating the P4 switch is placed

between the IT nodes and the Open vSwitch connecting the OT and the IT net-

works. It is equipped with a simple level 2 forwarding pipeline3 and configured

to only forward traffic to the end hosts: the P4 code is compiled for the reference

2https://github.com/FreeOpcUa/opcua-asyncio
3https://github.com/UniboSecurityResearch/P4-Forch_KatharaTopo/blob/master/

router1/root/p4/program.p4
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virtual target bmv2. On top of this, we developed a P4 program for each payload

size and hashing function, i.e., 256 and 1024 bytes, for a total of 8 pipelines (i.e., 2

different payload sizes and 4 hashes). To develop the hash functions, we exploited

the idea of P4 extern [Cona]. An extern is an API that uses an external depen-

dency, which can be queried by the target. Each hash function is implemented in

the form of

hash(output, input[])

where the output is the hash produced by hashing the concatenation of the input

payload chunks, each chunk being 256 bytes since bmv2 only allows for variables

with a size up to 2048 bits. Each hash extern leverages standard C++ implemen-

tations of the hashing functions.

Each pipeline hashes the payload in the ingress queue control, by simply calling

the extern and adding the hashed payload in the custom field at the start of the

payload, as summarized in Alg. 5.

Algorithm 5: Hashing in the ingress pipeline

Input : a packet packet containing
H packet header, hash payload hash custom field,
P payload;

Output: hashedP = hashed P
1 hash← hash(hashedP , P ): we set the custom hash field in the packet,

which is then carried in the network.

We tested the topology on a Ubuntu 20.04 LTS Server with 14GB of RAM and

3 CPU cores KVM machine.

5.4.2 Hashing performance comparison

To evaluate our solution we compared the performance of the programmable nodes

and traditional edge nodes in performing the CRC32, XXH64, MD5, and SHA256

hashing functions. To do so, we ran some tests calculating the effectiveness of the

two different options to hash OPC UA packet payloads. The results obtained can

then be used by the orchestrator when deciding on whether a switch or an edge

node should be chosen as a resource to deploy the integrity hashing function on

the plant.
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As we can see from Fig. 5.5, the payload processing time of the switch increases

depending on the type of hash function.
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Figure 5.5: Payload Processing Time for 1024 bytes payloads. In blue, is the time
to process the OPC UA payload without having it, and in red is the added time
to hash it with different functions.

We chose a simple metric to calculate the added hashing overhead, the Total

Time Increment (TTI). Given the average processing time to process an OPC

UA packet by a switch (Tbaseline) over a number N of analyzed packets with a

processing time Ti

Tbaseline =

∑N
i=1 Ti

N

and given the time to hash an OPC UA packet by a switch or an edge node (Thash)

over a number N of analyzed packets with a processing time Hi

Thash =

∑N
i=1 Hi

N

The Total Time Increment (TTI) is defined as the percentage increase of the

hashing time with the baseline, calculated as:

TTI(%) =
Thash − Tbaseline

Tbaseline

· 100

We calculated the TTI for three different payload sizes: 256 bytes (Fig. 5.6)

and 1024 bytes (Fig. 5.7), for different traffic rates. We gathered data for traffic
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Figure 5.6: Total Time Increment values for 256 bytes payload packets measured on
a switch (a) or an edge node (b), for each hashing function (CRC32, XXH64, MD5,
SHA256) with variable traffic volume.
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Figure 5.7: Total Time Increment values for 1024 bytes payload packets measured on
a switch (a) or an edge node (b), for each hashing function (CRC32, XXH64, MD5,
SHA256) with variable traffic volume.

lower than 4 Mbps since in our configuration the topology has packet loss for

traffic above that threshold. These limitations come from the use of a virtualized

environment and bmv2.

Figures 5.6 and 5.7 show the TTI for OPC UA payloads of 256 bytes, comparing

switch and edge node hashing to the baseline. By looking at the figures, we can

summarize two main outcomes:

1. Computing hashes on the edge nodes entails a TTI that is 4 orders of mag-

nitude bigger than hashing on the switch.

2. The TTI of the switch varies depending on the hashing function.
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Statement 1. is explained by the fact that the processing time of the edge node is

calculated between the ingress and egress interfaces of the container. In fact, this

time is the composition of the time to move the packet sniffed with the Scapy4

library from kernel to user space, the time to hash the payload with a Python

script, and the time to move back the packet from user to kernel space. Moreover,

the node TTI depends more on the traffic rate than the hashing function.

The switch TTI results roughly confirm the expected behavior in terms of

hashing complexity [RAD15]. In fact, the SHA256 hash calculation takes more

steps than CRC32, XXH64, and MD5.

SWITCH
hashes

NODE
hashes

Figure 5.8: TTI resulting from performing the hashing on the switch or on the
edge node.

Fig. 5.8 groups the TTI curves for 1024 bytes payload, using a logarithmic

TTI scale. Each set of curves is graphically grouped with a colored circle, based

on the type of device that performs the hash. The logarithmic scale outlines the

difference between the node TTIs and switch TTIs.

As an overall comparison, Fig. 5.9 sums up how the average processing time

for a packet on the switch completely outperforms the respective one on the edge

node. This suggests that, if choosing between an edge node and a switch for service

placement purposes, the obvious choice is the programmable switch.

4https://scapy.net/
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Figure 5.9: Edge node and switch average delay comparison for different hashing
functions.

5.5 Evaluation Process and Results

As implied by the results presented in Sect. 5.4.2, offloading the computation

required for MSs to PDP devices allows to achieve better performance compared

to using conventional computing devices for the same task, while also requiring

no replacement of legacy devices that are already deployed in the scenario. In

this section, we evaluate the feasibility and the performance of the orchestration

of those services in an environment such as the one described in Sect. 5.4. To do

so, we implemented a Python-based discrete event simulator.

In the simulator, the orchestration system is actually reduced to its Service

intelligence element, as no real telemetry data is collected from – and no manage-

ment action is applied to – underlying resources. The intelligence of the simulated

orchestrator is in charge of making placement decisions while enforcing a given

policy, and, as the simulation progresses, the availability of resources is affected

by the decisions made up to that point. For performance evaluation purposes,

we implemented three policies, so as to have the orchestrator prioritize different

aspects while making its decisions.

The first policy is denoted as Random (R), and instructs the orchestrator to

make a completely random decision on the action to apply to any service request,

including the choice of where and how to activate the service or block the service

activation altogether. Such actions are uniformly distributed and independent of
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one another, meaning that each service request might be served by a comput-

ing resource, a networking resource (if available), or be blocked, with the same

probability. This placement algorithm is represented in Alg. 6.

Algorithm 6: Service placement with Random policy

Input : set Rc of computing resources
Rc = {rci | i ∈ N ∧ i ≤ amount of computing resources}; set Rn

of networking resources,
Rn =

{
rnj | j ∈ N ∧ j ≤ amount of networking resources

}
;

combined set R of available resources
R = {r ∈ Rc ∪Rn | r is not completely busy}

Output: service placement decision p
1 p← choice({r ∈ R} ∪ {block}), where choice represents a random

selection of an element from the input set, with uniform probability

The second policy is called Load balancing (LB), according to which the or-

chestrator is expected to balance the service placement between computing and

networking resources, with a particular focus on network utilization. In other

words, when enforcing this policy, the orchestrator tries to balance the overall

load due to service placement across the resources. This favors the choice of a

networking resource over a computing one when the network load grows, lever-

aging the better ability of networking resources in providing specific services. As

detailed in Alg. 7, when applying this policy, the orchestrator sorts the available

resources based on the collected metrics (CPU, RAM, disk, network usage, etc.),

from the least to the most loaded. It then picks the resource with the lowest

network occupation between the first computing resource and the first networking

resource in the sorted list.

The third and final policy considered is referred to as User QoS (UQoS) because

it aims at optimizing all aspects perceived by users, including the service activa-

tion time and overall latency, as discussed in 5.4. The rationale behind this is in

the consideration that activating a service on a PDP device with a pre-configured

pipeline is much faster than doing it on a computing resource, as will be further

argued later on in this section. Additionally, the performance in terms of service

fruition of PDP devices have been shown to be superior to that of computing

resources. For these reasons, if the objective is to enhance the overall user experi-
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Algorithm 7: Service placement with Load Balancing policy

Input : set R of available resources r as defined in Alg. 6; current status
s of each resource as a collection of metrics,
s(r) = {CPU, RAM, etc.} ,∀r ∈ R;

Output: service placement decision p
1 if R = ∅ then
2 p← block
3 return

4 if |R| = 1 then
5 p← the only available resource
6 return

7 Create the ordered set RO by sorting elements of R by their metrics,
starting from the least busy one

8 if no networking resource in RO then
9 p← the first element of RO

10 return

11 if network load of least busy networking resource < network load of least
busy computing resource then

12 p← the least busy networking resource

13 else
14 p← the least busy computing resource

ence as much as possible, networking resources should be favored over computing

ones at all times. In line with what is represented in Alg. 8, when activating a

service, the orchestrator will always select the P4 switch if it is available, or the

least occupied edge node otherwise, blocking the request if none of these resources

is available.

In each simulation run, the orchestrator receives a sequence of service requests,

which may require any of the supported services to be activated, including the

newly-implemented MSs, that may leverage DPP. The service requests are gen-

erated following a Poisson process, with the service duration being exponentially

distributed. Specifically, service requests are randomly generated out of a pool of

50 different services, of which 8 are MSs and 42 belong to the other service models

with the following proportion: 10% IaaS, 20% PaaS, 30% SaaS, and 40% FaaS.

Each request may pose different requirements in terms of computing power, mem-
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Algorithm 8: Service placement with User QoS policy

Input : set of available resources R as defined in Alg. 6; current status s
of each resource as defined in Alg. 7

Output: service placement decision p
1 if R = ∅ then
2 p← block
3 return

4 if |R| = 1 then
5 p← the only available resource
6 return

7 Create the ordered set RO by sorting elements of R by their metrics,
starting from the least busy one

8 if ∃ networking resource ∈ R then
9 p← the least busy networking resource

10 return

11 p← the least busy resource

ory, storage, and network capabilities, as well as in terms of service provisioning

mechanisms (referred to the XaaS paradigm detailed in Sect. 5.2). Based on the

policy to be enforced, the details specified in the request, and the current status of

the underlying resources, the orchestrator needs to make a decision on how and on

which resource to activate the service, or to block the request in case no suitable

resource is available. In the simulation, no actual telemetry data is collected, so all

resources are considered to be fully available at the beginning of each run, while at

each simulation step they are assigned to an incoming service request, and released

at its completion.

We estimate the service activation delay, defined as the additional time re-

quired by the orchestrator to activate the service (not including network time),

by counting the amount of times that a MS was activated according to each of

the different models supported, and multiply that amount by the average time

required to activate a service in that way, as evaluated in [Pit+22].

The simulation scenario stems from the topology depicted in Fig. 5.4, instan-

tiated in the simulator in three different configurations, with either 1, 4, or 9

compute nodes and a P4 switch available, for a total of 2, 5, or 10 available items
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in the resource pool the orchestrator can choose from. Industrial environments are

very diverse, in that the amount and distribution of computing and networking

resources can vary widely among different premises. In such environments, we

expect to have a limited amount of computing resources in the IT and at most one

programmable switch (along with potentially multiple non-programmable ones)

between OT and IT. We argue that the different scenarios we showcased repre-

sent real-world industrial ones, both from the point of view of the technological

solutions involved (i.e., P4) [CDT21], as well as from that of the infrastructural

network models [Don+24]. Based on the same topology, we further distinguish two

cases, differentiated by whether the P4 switch is available or not – in other words,

whether the orchestrator can rely on heterogeneous (computing and networking)

resources or not.

We simulated each different scenario given by the combination of configuration

of nodes, switch availability, policy, and traffic intensity. In particular, available

nodes were allowed to vary freely between simulations, but at least one of them

was required to support the IaaS model. Moreover, we let the traffic intensity (the

ratio between arrival rate and service rate) vary from 10 to 1500, in steps of 10.

For each scenario, we run the simulation 20 times, with different seeds, to obtain

different incoming service requests at each run. We generated and submitted 105

service requests for each run. We then computed the sample mean over the 20

runs and reported them in the figures as the solid and dashed lines, surrounded

by shaded areas depicting the 95% confidence interval.

To begin with, we assessed the probability of a service request being blocked by

the orchestration system. This was computed as the ratio between the number of

blocked requests and the number of offered ones. As shown in Fig. 5.10, the results

show an Erlang-B formula behavior, as can be expected, given the distributions

of the service request arrival rate (Poisson) and of the service duration (exponen-

tial), as well as the fact that the orchestrator behaves like a multiple-server system

without queuing space. We can also confirm the intuitive expectation that the

blocking probability is higher for scenarios with a lower amount of available re-

sources, and for those using the Random service placement policy. The difference

between Fig. 5.10a and Fig. 5.10b is in the availability of the P4 switch. In the

former case, the switch can be leveraged to provision services. In the latter case,
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Figure 5.10: Probability of the orchestration system in blocking a generic service
request due to insufficient available resources. The curves represent the perfor-
mance of different service placement policies with different amounts of available
resources, as indicated by acronyms and numbers in the legend.

the switch is assumed pre-loaded with other tasks, making it unavailable for the

orchestrator. The policy that is most influenced by this difference is the User QoS,

as it prioritizes the use of the PDP device. Also the Load Balancing policy shows

some sensitivity to the availability of networking resources for a very small amount

of overall resources, as in that case the policy can no longer reduce the load on the

compute nodes.

As a further evaluation, we assessed the impact of the activation of MSs on the

workflow of the user. In other words, we wanted to evaluate the delay caused by

the additional deployment time of the service components needed to apply hashing

to the text or video stream that the user employs to perform remote operations

and compare the impact of different service policies. We defined a metric, called

Mean Activation Time (MAT), that is computed at the end of the simulation of
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Figure 5.11: Mean Activation Time of Management Services for different service
placement policies and amounts of available resources.

each scenario, as the ratio between the total time taken by the activation of MS

instances over the number of such instances activated in the simulation run, where

all kinds of service requests are generated. In practical terms, if MAT is zero, the

activation of services by the orchestrator did not introduce any tangible delay in

the remote operations of the user. For instance, this is possible when the MS is

deployed on a P4 switch pre-loaded with the code needed to perform the service,

requiring only a signal (e.g., a REST HTTP request) to activate the additional

traffic processing, without the need for a reconfiguration of the pipeline. To be

precise, this would still inevitably require a small time, but we can reasonably

approximate it to zero, as it would be seamless to the workflow of the user. Any

value of MAT larger than zero means that the user is subjected to a small delay

while the hashing mechanisms are activated.

This MAT is represented in Fig. 5.11, focusing on the case when a PDP device

is available. Such switch is consistently leveraged by the policy User QoS for the

deployment of services, allowing that policy to achieve a negligible MAT. The

MAT related to the other policies depends on the traffic intensity. In particular,

the decrement of the MAT with larger values of traffic intensity is due to the

decreasing availability of edge nodes, forcing the two policies to choose between

the PDP device or blocking the request. To fully understand this result, one must

consider that the activation of services on compute nodes takes longer for the

first MS instances deployed on them, due to the need to download the required

software (e.g., the Docker image) and set it running. The activation time decreases

as further requests for the same services are served, as the software components
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will already be on the node. When considering small values of traffic intensity, the

impact of the first requests (i.e., the ones taking longer to be activated) will still

be relevant with respect to the following ones (i.e., those served in a shorter time),

leading to a higher value of MAT. In line with this rationale, one would expect all

curves to exhibit a maximum for the lowest value of traffic intensity.
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Figure 5.12: Probability of the orchestration system in blocking a request for a
Management Service due to insufficient available resources. The curves represent
the performance of different service placement policies with different amount of
available resources, as indicated by acronyms and numbers in the legend.

However, that is not so for the Load balancing case, as this policy places services

on the resource that is least involved in handling network traffic, generally favoring

compute nodes in an initial phase, until the point where it can no longer keep up

with the increasing traffic intensity as resources are saturated, resulting in choosing

the PDP device. The small number of requested MSs in comparison to other

generic services (on average 8 out of 50) are typically served by the PDP device.

On the other hand, the Random policy exhibits a trend compliant with its working
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principle of randomly selecting a service placement action, and such actions are

restricted to activating the service on the PDP device or blocking the request.

The horizontal line denoted as “Threshold” represents the mean of the MAT value

across all the policies when the PDP device is completely busy, thus unavailable

to the service placement process. The fact that this line is never crossed is due to

the availability of the PDP device, showing that, when the nature of the services

allows it, leveraging DPP always leads to better performance compared to using

compute nodes alone.

As a last evaluation, we assessed the blocking probability again, but limiting

the requested services only to those that can be deployed on the programmable

switch, i.e., to MSs. In Fig. 5.12a we can see that if the switch is available, the

only policy experiencing blocking is the Random one, as the other policies always

pick the switch to provide the service. This is the reason for the apparent better

performance of the Random policy for low values of traffic intensity in Fig. 5.11:

the policy is actually blocking numerous requests. Conversely, when the switch

is not available, the situation is comparable to when the switch is available but

overloaded, making Fig. 5.12b resemble Fig. 5.10a.

5.6 Discussion

In this chapter, we demonstrated how DPP can be employed to enhance service

orchestration over a heterogeneous infrastructure, consisting of a diversified set of

resources. We focused on an industrial environment, which is particularly prone

to security threats, and suggested solutions to mitigate the issue. We considered

a number of different methods to improve data integrity, implementing services

employing them, and making them available to a service orchestration system

that is able to activate them at need over heterogeneous resources. The evaluation

consisted of two parts, the former focused on the data integrity mechanisms, and

the latter on the service orchestration solution.

We demonstrated how the use of PDP devices can be largely beneficial to the

execution of data integrity mechanisms compared to regular container-based ser-

vices on the edge nodes. In fact, the programmable switches completely outperform

the edge nodes in terms of processing time since the integrity calculation is placed
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inside the network nodes and performed on the flowing traffic. We evaluated the

orchestration solution with the use case of remote maintenance in mind, addressing

various technical, policy, and performance aspects. We focused on the offloading

of computation for MS to PDP devices, showing that this approach offers superior

performance compared to conventional computing devices without requiring the

replacement of legacy equipment. We considered multiple distinct service place-

ment policies that allow the orchestration systems to make intelligent decisions

in line with their objectives and resource availability. We aimed at replicating

real-world conditions, where MS orchestration must handle a dynamic sequence of

service requests with varying requirements. We measured the likelihood of service

requests being blocked due to resource constraints, as well as the delay introduced

by MS activation, showing that the presence and availability of PDP devices may

have a significant impact on the achieved user QoS.

In conclusion, this research contributes to a deeper understanding of how to

optimize the orchestration of management services in industrial settings. By ad-

dressing technical, policy-driven, and resource-specific aspects, our study provides

guidance for achieving better resource utilization, reduced service activation de-

lays, and improved user experiences.
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Chapter 6

Switch-to-switch IIoT tunneling*

In this chapter, we are going to present how DPP can be used to implement

simple switch-to-switch tunnelling in low-computation IIoT networks. Communi-

cation between assets and systems is one of the key concepts behind the Industry

4.0(I4.0) paradigm. It exploits two logical network infrastructures: the legacy

Information Technology (IT) network that connects the many distributed applica-

tions referring to the management and logical operations of the company, and the

Operations Technology (OT) network [Ber+23]. Generally speaking, the OT is

the set of all the hardware and software components that detect or cause changes

in the production or operational processes of a manufacturing plant [Gar22].

The OT network was traditionally made up of many separate sections, serving

specific machines or production lines, implementing the communication of the so-

called Industrial Control Systems [CDT21]. ICSs are equipped with sensors and

actuators and are usually controlled by Programmable Logic Controllers (PLCs).

ICSs were traditionally physically isolated from IT. This has changed since ma-

chines, devices, and production lines compliant with the I4.0 paradigm are capable

of collecting and communicating with each other, to achieve highly scalable levels

of coordination and collaboration [Gho18].

The opening of OT to IT and the Internet exposes it novel cybersecurity threats

*Part of the material presented in this chapter is based on the following publications: Lorenzo

Rinieri et al. “In-Network Encryption for Secure Industrial Control Systems Communications”.

In: 2024 IEEE 10th International Conference on Network Softwarization (NetSoft). IEEE. 2024,

pp. 190–194
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to the manufacturing environment (with several examples that have made head-

lines in newspapers [HF+18]), making IIoT security a top priority concern for

ICSs. Securing communication between devices through encryption should be a

basic requirement, especially for networks exposed to the Internet. However, many

ICS protocols do not implement any encryption, exposing OT devices to textbook

vulnerabilities. One of the reasons why this is common practice is that the OT

devices are designed to prioritize efficiency and speed, making encryption just

unneeded overhead. Furthermore, operational continuity is always preferred to

functional updates: hence, it is common practice to keep legacy software running

on the OT rather than performing regular updates. On a side note, edge OT

devices are usually simple gateways and data collectors that are unlikely to per-

form any packet or flow inspection. Consequently, it is difficult for the developer

to enforce any flow-based encryption to protect vulnerable traffic. In this chap-

ter we argue that we can address these issues by showing that Software Defined

Network (SDN) based in-network computation can be used to provide secure com-

munication between the OT and the IT, without modifying the end devices. The

end user is not affected by this solution, as it is used to filter out any possible

communication-related device-to-device threats. The solution presented exploits

data plane programmability and the P4 language. P4 lets the network programmer

describe how the switch should process the packets, thus adding functionalities to

the network, by exposing the packet processing logic to the control plane to enable

a systematic, fast, and complete reconfiguration. This allows flexibility, intended

as the capacity of changing functions or services at will [Sad+23; Pit+24]. The

chapter is structured as follows. In Section 6.1 we describe the use case we con-

sidered to test this work. In Section 6.2 we present the experimental test bed that

was implemented to experiment and validate the proposed solution and then in

Section 6.3 we present performance numerical results. In Section 6.4 we discuss

our results.

6.1 Use case scenario

We consider a scenario where several OT components must communicate but do

not support encryption. In their stead encryption will be managed, when needed,

directly by the network nodes using in-network processing.
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The considered OT architecture is a manufacturing plant where working sta-

tions perform some complex task, integrating several components and machines.

These working stations coordinate by exchanging data over the OT network, as

well as talking with the management processes in the IT. We assume that the net-

work section within the working station is secure, since it is isolated. The attacker

can harm the system exploiting the interconnection part of the OT as well as in the

interworking between the OT and the IT [EMT22]. For this reason, communication

between these network sections should be secured via encryption.

This use case considers Modbus, a stable and well-known ICS communication

protocol. Open, standard, and widely, it allows broad monitoring and management

of individual PLCs within an ICS. It accounts for about 10% of the new installa-

tions [HMS24]. Nonetheless, we argue this solution can be seamlessly applied to

multiple protocols.

Modbus can be simply emulated in virtual test beds with limited effort while

still maintaining its full functionalities. In this use case we consider plaintext

Modbus, which is what can be found in most deployed of the OT plants nowadays.

However, a standard implementation of Modbus supporting TLS for end-to-end

encryption was released in 2018 [Modb], which we will use as a baseline offers

to compare our solution. Fig. 6.1a shows the typical call flow of a Modbus-TLS

connection [Modb]. The figure shows that the TCP three-way handshake is fol-

lowed by the TLS handshake and by the encrypted application data exchange.

Here encryption happens end-to-end from the source to the destination. Fig. 6.1b

shows the call flow of our solution. We assume that the end nodes do not support

encryption, wither because they do not possess enough computation capabilities

or because they have not been updated to avoid plant downtime. For this reason,

we place P4-enabled programmable switches in the network border areas, which

we consider safe.

The switches are responsible to:

• Analyze the crossing traffic, with a custom processing P4 pipeline - we will

exhaustively explain the P4 logic later in the chapter.

• Identify the traffic that may be considered at risk, based on the destination

or content of the packet.
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• Start a switch-to-switch encrypted tunnel whenever traffic at risk is found

between two nodes.

It should be noted that end users are completely unaffected by our solution.
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Figure 6.1: Comparison of the sequence flow of Modbus security and our proposed
approach.

6.2 Testbed set-up

The operational principle described above was implemented in a virtual environ-

ment, as shown in Figure 6.2. We exploited the Kathará framework [Bon+18], in

which all elements are emulated by Docker containers. We built specific Docker

container images published to Docker Hub to implement the Modbus client and

server functionalities, employing the PyModbus [Pyt] Python library. For com-

parison purposes, the Modbus client and server were developed to support both

traditional Modbus communication without any security guarantees and secure

Modbus communication over TLS.

The Modbus Client and Server are connected by P4 switches implemented

by means of two Docker containers. They are equipped with a simple level 2

forwarding pipeline and configured to only forward traffic to the end hosts: the P4
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Figure 6.2: Virtualized testbed implemented for the use case scenario.

code is compiled for the reference virtual target bmv2. A custom implementation

of the control plane is also implemented, which manages network monitoring and

configuration. We use the P4Runtime APIs [Con20], the standard Southbound

API protocol to interact with P4 devices, to reconfigure the P4 pipeline at runtime.

We developed a specific P4 pipeline to handle the Modbus payload [Moda],

with variable length. The steps performed are as follows:

1. the parser extracts the Ethernet and the IP headers from each packet;

2. if the Protocol field of the IPv4 header is equal to six (i.e. the TCP protocol),

then the TCP header is extracted;

3. knowing the field Total Length of the IPv4 header field and the field Data

Offset of the TCP header, the P4 parser calculates the actual length of the

TCP header, including the TCP options, and the total payload size;

4. if the source and destination ports are equal to 502 (i.e. the default port as-

signed by IANA to the Modbus protocol), the Modbus Application (MBAP)

header is parsed;
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5. finally, the Modbus payload is extracted depending on the value of the Length

field in the MBAP header.

The described parsing allows the switch to recognize the source and destination

endpoints that require encryption. With this information and with the parsed

Modbus payload, the switch is able to secure the data exchanged between those

specific sources and destinations.

We chose and implemented 128-bit key AES to secure the channel. In the

proposed use case, symmetric AES keys can be pre-installed in the P4 switches at

configuration time or can be exchanged between the controllers via Diffie-Hellman

key agreement [Gil16] at runtime and then installed on the switches. Practically

speaking, the secure tunnel between the two bmv2 switches can be activated:

• once and for all at system start-up, in such a way that all communication

requiring encryption will be conveyed through that tunnel;

• ad hoc for any specific traffic flow depending on the communication end-

point, so that a new encrypted traffic channel is established of each specific

flow.

The controller is configured by the network administration to install the suitable

pipelines at any given moment. If they choose to configure it to support ad hoc

tunnels, the controller will install a pipeline that will automatically activate a new

encrypted tunnel for the specific flow, with no need for high-level actions.

To develop the AES encryption and decryption functions, we use a P4 extern

[Cona]. An extern is an API that uses an external dependency, which can be

queried by the target. In this case, the implemented extern leverages standard

C++ implementations of the AES 128-bit encryption and decryption functions.

Each switch performs both encryption and decryption, depending on the flow

direction. As depicted in Fig. 6.2, only the Modbus payload is encrypted inside

the secure tunnel: considering that the maximum payload size of Modbus TCP is

253 bytes [Moda] each encrypted chunk will have a dimension of 128 or 256 bytes,

given the AES key size. This is an important aspect to highlight, since we can fit

our solution inside the boundaries of bmv2, which allows for variables with a size

of up to 2048 bits.
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Each pipeline encrypts and decrypts the payload in the ingress queue control,

by simply calling the extern and emitting the encrypted/decrypted payload in the

Deparser pipeline, as summarized in Alg. 9 and Alg. 10.

Algorithm 9: Encrypt action in the bmv2 Ingress Pipeline

Input : The Modbus payload p of the input packet.
Output: The encrypted data enc correspondent to the Modbus payload p.

1 enc← Encrypt(p): call P4 extern AES Encrypt function;
2 Update the value of the IPv4 header field Total Length;
3 Update the value of the Modbus header field Length;
4 p.setInvalid(): do not emit the original payload in the Deparser;
5 enc.setV alid(): emit the encrypted payload in the Deparser.

Algorithm 10: Decrypt action in the bmv2 Ingress Pipeline

Input : The encrypted Modbus data enc of the input packet.
Output: The decrypted Modbus payload p.

1 p← Decrypt(enc): call P4 extern AES Decrypt function;
2 Update the value of the IPv4 header field Total Length;
3 Update the value of the Modbus header field Length;
4 enc.setInvalid(): do not emit the encrypted data in the Deparser;
5 p.setV alid(): emit the decrypted payload in the Deparser.

6.3 Results

We argue that the proposed approach may achieve realistic performance for the

use case of securing ICS communications while complying with industrial real-time

constraints. In addition, the proposed solution allows to secure critical network

segments even when low computing power and legacy devices are at one end of

the communication.

We performed three types of tests to prove the effectiveness of this approach,

as described in the following. All the tests were run in the virtualized industrial

testbed described in Section 6.2 exploiting Kathará version 3.7.1 and Docker engine

version 25.0.0, hosted in a Ubuntu 22.04 LTS PC (Linux kernel version 5.15.0-
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92.102) with 32GB of dual-channel RAM and an i7-1265U 12th generation Intel

processor.

6.3.1 Overall Performance

To evaluate the overall performance of the proposed in-network encryption solu-

tion, first of all, we designed a test considering two Modbus operations:

1. Read Input Registers, where we read the first register of the Modbus server;

2. Write Single Register, where we write a random value in the first register of

the Modbus server.

We performed the aforementioned operations in three different scenarios:

1. traditional Modbus communication without any security mechanism;

2. In-Network encryption via in-network computation;

3. Modbus security over the TLS protocol, exploiting the Modbus TLS exten-

sion.

For each considered scenario, we repeated each operation 100000 times, recording

the time needed to complete it. The average times expressed in milliseconds with

their corresponding standard deviations are reported in Fig. 6.3, grouped by type

of operation (i.e. read or write). As we can see, the performance of this solution is

very close to the traditional Modbus communication and better than the Modbus

TLS.

6.3.2 Encryption and Decryption Overhead

We estimated the encryption and decryption overhead by calculating the average

Packet Processing Time and the average Packet Dequeuing Time inside the two

switches for Modbus Read Input Register and Write Single Register. The results

are the average of 100000 samples and are reported respectively in Fig. 6.4 and

in Fig. 6.5. Taking into account that each switch processes one Modbus request

and one Modbus response for every Read Input Register and Write Single Register

operation, we consider the encryption and decryption costs as acceptable.
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Figure 6.3: Comparison of the time needed to complete Read Input Register and
Write Single Register Modbus operations, in the three scenarios: Modbus, In-
Network encryption, and Modbus TLS. The reported values are the average of
100000 samples, and the error bars report the standard deviation of the measure.
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Figure 6.4: Average Packet Processing Time of Read Input Register and Write
Single Register Modbus operations, calculated inside the two P4 switches, with
and without the encrypted tunnel.

6.3.3 Key Exchange Overhead

The last test was designed to assess the time needed to establish the encrypted

tunnel: we compared it with Modbus and Modbus TLS connection establishment

times. The average results with their corresponding standard deviations are out-

lined in Fig. 6.6, computed over 10000 connection attempts.
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Figure 6.5: Average Dequeuing Time of Read Input Register andWrite Single Reg-
ister Modbus operations, calculated inside the two P4 switches, with and without
the encrypted tunnel.
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Figure 6.6: Connection establishment average time comparison.

In particular, the three bars depicted represent:

1. Modbus Connection time, i.e. the time to complete the TCP three-way

handshake.

2. Modbus TLS Connection establishment time comprises the TCP and the

TLS handshake times.
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3. Connection with Diffie-Hellman (DH) encompasses (1) the time to perform

the Diffie-Hellman key exchange for the negotiation of the symmetric key

between two controllers, (2) the time to install the symmetric key into the

P4 switches, and (3) the TCP handshake time.

Most notably, the average connection with the DH exchange and the TLS con-

nection establishment times are within the same order of magnitude. Deploying

the encrypted tunnel after the execution of DH permits achieving a higher level of

security by avoiding the reuse of symmetric keys [Ela+16].

However, it is important to highlight that if the symmetric keys are pre-installed

in the P4 switches the encrypted tunnel establishment time is reduced to the

Modbus Connection time.

6.4 Discussion

In this chapter, we demonstrated that it is possible to exploit P4 programmable

switches to provide secure communication in Industrial Control Systems while

respecting the real-time constraints of these environments. As a use case scenario,

we considered a widespread OT protocol, Modbus, and its extended version which

enables confidentiality of the transmitted data through the TLS protocol. The

results show that our solution offers performance better than Modbus TLS and not

significantly worse than unencrypted Modbus. Sacrificing end-to-end encryption

increases the security posture of vulnerable devices, without OT downtime or

unwanted configurations.
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Challenges and open problems

In this section, I will present some challenges and open problems stemming from

the work carried out during my thesis. The points raised here are limited to the

scope of the thesis, as an exhaustive analysis of these topics would require a much

broader and more detailed exploration.

Increasing anomaly detection precision: Estimating traffic anomalies with

precision in a programmable data plane, particularly in the context of the P4 lan-

guage, presents significant challenges. One issue is the problem of thresholding,

where dynamically adapting thresholds based on historical traffic patterns can help

refine anomaly detection. But how do we set the right threshold? Many effective

ways of updating the threshold can be found in literature [Hyn11; BM61], and can

be simplified and implemented in the data plane. However, most of the promising

solutions in literature [DSS21; Yan24] require control plane support to calibrate

and update the threshold depending on the overall trend of the traffic. On the

same note, probabilistic data structures such as count-min sketches [CM05], often

used for efficient traffic estimation, introduce another layer of complexity. These

structures, while compact, are prone to collisions, leading to false positives and

false negatives that undermine the accuracy of anomaly detection. Indeed, using

a local control plane to update the switching rules, mitigates most of these limita-

tions. However, specific problems [Zha+20; Liu+21] require updating the pipeline

logic at runtime the required detection logic. This is indeed a powerful feature,

but requires recompilation and redeployment of the program, which momentar-

ily halts packet forwarding. This pause, albeit brief, is particularly disruptive in

systems with stringent latency requirements, such as data centers, where even min-

imal interruptions can significantly degrade performance. These challenges high-
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light the inherent difficulty of achieving precise and efficient anomaly detection in

programmable data planes, especially when resource constraints and operational

continuity must be balanced. Hence, although multiple works have pushed the

boundaries of anomaly detection in P4 in terms of promptness and precision with

relatively low added overhead and seamless data plane updates ([Swa+22; Zhe+22;

CSF22; Liu+16]), we argue that still a lot can be done (an example can be what

we propose in Chapter 3).

Full network programmability: While programmable P4 aim to fully soft-

warize networking hardware, the practical implementation often falls short due

to the constraints imposed by specific hardware targets. These targets typically

expose hardware-specific APIs that limit the expressiveness of P4, restricting the

ability of developers to fully leverage the language’s potential [Pat+18]. For exam-

ple, writing a P4 pipeline for a Tofino [Int20] switch is significantly more complex

than for a bmv2 software switch, as Tofino imposes strict resource limitations such

as fixed memory sizes, table depths, and pipeline stages. Such differences force

developers to make target-specific pipelines and trade-offs in their designs, ulti-

mately making more error-prone and less portable code. These limitations extend

beyond programming expressiveness to the entire detection system, influencing

how effectively anomalies can be identified and managed. This creates challenges

for developers, who must navigate the intricacies of specific platforms without a

unified perspective on available resources. To address this, there is a need for a

reliable and stable intermediate representation of system requirements [Krö+24].

Such a representation would allow network engineers to specify their needs in a

platform-agnostic manner, offering a consistent and clear view of the underlying

infrastructure. This approach would not only streamline resource management but

also enable a more holistic understanding of the programmable data plane’s ca-

pabilities, fostering better alignment between system requirements and hardware

realities.

Fully unleashing P4 capabilities in IIoT threat monitoring: P4 has sig-

nificant potential as a foundation for an Intrusion Detection System (IDS) in In-

dustrial Internet of Things (IIoT) environments, offering the flexibility and pro-
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grammability required to address the unique challenges of these systems [SSG21;

Zan+22; Zan+23]. My thesis has only begun to explore the surface of what is pos-

sible with P4 in this context. With its ability to define custom packet parsers and

match-action pipelines, P4 can be used to develop solutions tailored to the het-

erogeneous characteristic of industrial networks, including implementing custom

protocols.

P4 nodes are capable to be programmed to take localized decisions, such as

dropping suspicious packets, deprioritizing non-critical traffic, or rerouting it for

deeper inspection. This decision-making process could be further developed with

distributed traffic analysis, allowing multiple P4 devices to collaboratively enforce

security policies or inject ad-hoc pipelines to enhance security across the network

(we discussed some examples in Chapters 5 and 6). This vision of seamlessly

adding security would be particularly valuable in IIoT networks, where downtime

should always be avoided.

The integration of Distributed Ledger Technologies (DLTs), such as IOTA

[AS+23], into the IIoT security infrastructure adds another layer of robustness by

providing an immutable and distributed archive of critical information. For exam-

ple, device certificates and permissions could be securely stored on a DLT, allowing

the network to verify whether a specific device is authorized to operate within the

system. The immutable nature of DLTs ensures that this information cannot be

tampered with, providing absolute certainty and trust in the authentication pro-

cess. This combination of P4’s programmability and DLTs’ security properties

could create a powerful and resilient system capable of adapting to threats while

maintaining a trusted, decentralized repository for critical data. However, fully

realizing this potential will require further research into scalable designs, real-time

reconfigurability, and robust anomaly detection algorithms tailored to P4-based

systems.

Detecting otherwise invisibile threats with ad-hoc data structures: P4

presents a powerful yet underutilized tool for detecting traffic anomalies directly

within the network, offering the potential to address sophisticated attacks that

evade traditional detection methods. One such example is pulse wave attacks,

where adversaries send sharp, transient spikes in traffic that often go undetected
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[Kie23]. Often times, monitoring systems – especially those that base their detec-

tion on polling statistics from the data plane – fail to capture these brief anoma-

lies. Current state-of-the-art solutions, such as ACC-turbo [Alc+22], attempt to

mitigate this issue by clustering traffic based on features extracted from headers,

such as IP or TCP fields, and deprioritizing traffic that exhibits similar patterns.

However, this approach can be circumvented by designing attack traffic that delib-

erately avoids similarity in the monitored features – such as generating traffic with

a wide range of dissimilar IP addresses to bypass clustering mechanisms based on

IP fields.

In my ongoing research, I am exploring the potential of reconfigurable registers,

such as Stat4 [GHV21], as a way to address this challenge. These structures can

be used to sample traffic distributions and track key statistics like packet counts,

SYN requests, or distinct flows over time. Leveraging such mechanisms, P4-based

systems could detect deviations in traffic patterns indicative of anomalies with

greater precision. Additionally, by deploying these data structures across different

nodes and configuring them to monitor distinct statistics, it becomes possible

to drill down into the specifics of an attack, offering a scalable and distributed

approach to anomaly detection. This research underscores how P4’s flexibility

can address critical gaps in current detection systems, but much remains to be

explored to fully harness its potential.
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Conclusions

In this thesis, we explored how the programmable data plane can serve as a piv-

otal infrastructural component in the network, to enhance overall system security.

By leveraging the flexibility of P4, we developed multiple frameworks and proof-

of-concept solutions to seamlessly detect and mitigate complex attacks, provide

in-network computation to bolster security, and achieve faster and more efficient

monitoring by reducing the data processed by the monitoring system. These con-

tributions showcased the versatility of P4 in multiple systems, regardless of size or

available resources, by designing simple pipelines with minimal processing stages

and memory usage.

However, we also acknowledged the inherent challenges of network device soft-

warization, particularly its potential impact on packet processing and traffic dis-

ruption in high-speed environments. Despite these limitations, our research showed

that little-to-no-state P4 pipelines can effectively detect threats while maintaining

high-speed performance, underscoring their practical viability.

Looking ahead, there remains significant potential to further advance in-network

security. Probing the network to extract only essential monitoring information

could facilitate early threat detection and swift countermeasure deployment. Addi-

tionally, establishing standardized guidelines for resource-efficient in-network com-

putation would enable broader adoption of such techniques while ensuring minimal

impact on network operations.

This thesis underscores the broader potential of P4 as an integral component for

intrusion detection and system security. Particularly in IIoT and legacy systems

– where traditional monitoring solutions are either impractical or non-existent

– data plane programmability offers an unprecedented opportunity to empower

system administrators to anticipate and counter threats effectively. By enabling
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affordable and lightweight security appliances, P4 – and similar technologies either

existing or that will be developed in the future – can significantly enhance the

security posture of systems that are otherwise challenging and costly to protect.
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