

DOTTORATO DI RICERCA IN

MATEMATICA

Ciclo 37

Settore Concorsuale: 01/A5 - ANALISI NUMERICA

Settore Scientifico Disciplinare: MAT/08 - ANALISI NUMERICA

NOZZLE AND MULSTREG: NUMERICAL OPTIMIZATION TOOLS FOR ENERGY
INDUSTRY BLACK-BOX OPTIMIZATION FOR CLEAN ENERGY TECHNOLOGIES

Presentata da: Filippo Marini

Supervisore

Margherita Porcelli

Esame finale anno 2025

Coordinatore Dottorato

Giovanni Mongardi

Alma Mater Studiorum − Università di Bologna

DOTTORATO DI RICERCA IN
MATEMATICA

Ciclo XXXVII

Settore Concorsuale: 01/A5 - ANALISI NUMERICA

Settore Scientifico Disciplinare: MAT/08 - ANALISI NUMERICA

NOZZLE and MUℓSTREG:

Numerical Optimization Tools for Energy Industry

Black-Box Optimization for clean energy technologies

Presentata da: Filippo Marini

Coordinatore Dottorato:

Prof. Giovanni Mongardi
Supervisore:

Prof.ssa Margherita Porcelli
Prof.ssa Elisa Riccietti

Esame finale anno 2025

Borsa di dottorato del Programma Operativo Nazionale
Ricerca e Innovazione 2014-2020 (CCI 2014IT16M2OP005),

risorse FSE REACT-EU, Azione IV.4 “Dottorati e contratti di
ricerca su tematiche dell’innovazione” e Azione IV.5 “Dottorati

su tematiche Green”, CUP J35F21003200006.

iii

Contents

Abstract vi

Introduction viii

NOZZLE: a Black-Box Optimization tool . xi
MUℓSTREG: a Multilevel Stochastic Gradient method xiv
Thesis contributions . xviii

1 NOZZLE 1

1.1 Optimization model for the impingement cooling system 2
1.1.1 The objective function . 3

1.1.1.1 Problem geometry and variables 4
1.1.1.2 Florschuetz correlation 6

1.1.2 The constraints . 12
1.1.2.1 Temperature constraints 12
1.1.2.2 Pressure constraints . 15
1.1.2.3 Feasibility linear constraints 17

1.2 Black-box definition . 18
1.3 DFO for the solution of the black-box model 22

1.3.1 The overall constrained BBO formulation 22
1.3.2 Our DFO proposal: the ℓ1−penalty BFO method 23

1.4 Experimental results . 25
1.4.1 Laboratory case . 27
1.4.2 Industrial case . 28
1.4.3 Comments on the numerical results 29

iv

CONTENTS v

2 MUℓSTREG 32
2.1 The multilevel stochastic regularized gradient

method . 36
2.1.1 Hierarchical representation of problem (2.1) 36
2.1.2 The step computation . 37
2.1.3 The step acceptance . 39
2.1.4 MU2STREG: the two-level case 40

2.2 Convergence theory . 42
2.2.1 Convergence analysis . 45

2.3 MUℓSTREG for finite-sum minimization 64
2.3.1 Algorithmic details . 65
2.3.2 Similarity with SVRG . 68

2.4 Numerical experiments . 71
2.4.1 Implementation issues and test problem set 72
2.4.2 Preliminary parameter tuning: number of levels and sample set

cardinalities . 74
2.4.2.1 Two-level hierarchy . 74
2.4.2.2 Three-level hierarchy . 76
2.4.2.3 Five-level hierarchy . 77

2.4.3 Comparison with SVRG . 78
2.4.3.1 Convex problem: logistic classification problem (Pb-LOG) 79
2.4.3.2 Nonconvex problem: nonlinear Least Squares (Pb-LS) . 80

2.4.4 Numerical investigation on the finest sample size 82

Conclusions 87

Bibliography 90

Abstract

In this work, we study how to exploit Derivative-Free Optimization (DFO) and Black-Box
Optimization (BBO) in the design and validation phases of a cooling system in a gas turbine.
For the first phase, we define NOZZLE, a numerical model of a section of the cooling system,
and we use an optimization method to obtain an efficient design of the section; for the second
one, we develop MUℓSTREG: an optimization method to enhance the validation procedures of
an entire cooling system.

NOZZLE is a Black-Box function that simulates an impingement cooling system for a turbine
nozzle starting from a model well-known in the literature that correlates the design features of
the cooling system with efficiency parameters. The optimization model is defined as a mixed-
variable constrained BBO problem and we numerically illustrate how to use DFO algorithms
to find a reference solution that is useful for practitioners.

MUℓSTREG is a new multilevel stochastic framework for the solution of optimization prob-
lems where the value of the objective function is affected by random noise. In this work, we
focus on data-fitting problems with random uncertainty that arise in the validation phase of
a complete cooling system in a gas turbine. The proposed approach uses random regularized
first-order models that exploit an available hierarchical description of the problem, being either
in the classical variable space or in the function space, meaning that different levels of accuracy
for the objective function are available. The convergence analysis of the method is conducted
and its numerical behavior is tested on the solution of finite-sum minimization problems. In-
deed, the multilevel framework is tailored to the solution of such problems resulting in fact in a
nontrivial variance reduction technique with adaptive step-size that outperforms standard ap-
proaches when solving nonconvex problems. Differently from classical deterministic multilevel
methods, our stochastic method does not require the finest approximation to coincide with the
original objective function. This allows us to avoid the evaluation of the full sum in finite-sum
minimization problems, opening to the solution of classification problems with large data sets.

Keywords Cooling systems, gas turbine, Black-Box Optimization, Derivative-Free Opti-

vi

vii

mization, direct search algorithm, multilevel methods, stochastic optimization, adaptive regu-

larization, variance reduction methods.

Introduction

One of the most important challenges of the present and future is meeting the growing
demand for energy from all countries around the world. Moreover, this demand must be
met in a way that has the lowest environmental impact possible. From this point of view,
the last few decades have witnessed an extraordinary development of power generation
technologies from renewable sources, such as solar power and wind power, which are in
addition to the well-known hydropower. Some of the main advantages of these renewable
energy sources are that they are more evenly distributed over the planet and emit far
fewer greenhouse gases than fossil energy sources. However, renewable energy sources
are also intermittent, since they depend mainly on atmospheric (solar power and wind
power) or hydrogeological (hydroelectricity) phenomena, which are unpredictable and
uncontrollable; this difficulty will be overcome in the long run with the increase and
diversification of renewable energy installations and the redesign of energy distribution
grids, but in the short and medium term it is essential to integrate these new energy
sources with existing ones.

In this sense in the current context of power generation technologies, gas turbines

Compressor Combustion
chamber

Turbine Blades
(rotating)

Nozzles (fixed)

Air inlet

Exhaust

Figure 1: Simple representation of a gas turbine

viii

ix

play a key role. Indeed, it is a technology that has been successfully used for more than
fifty years, during which it has been studied, developed, and spread enormously, with an
ability to provide efficient, flexible power generation with lower greenhouse gas emissions
than technologies using other fossil fuels. These characteristics make gas turbines an
ideal technology to complement renewable energy sources during the energy transition.
For this reason, optimizing the performance of gas turbines has become a priority. An-
other important reason for optimizing the performance of turbines is the possibility of
using them with non-fossil fuels, such as hydrogen, whose combustion does not produce
greenhouse gases.

This thesis, supported by the program “Programma Operativo Nazionale Ricerca
e Innovazione 2014-2020" - Azione IV.5 "Dottorati e contratti di ricerca su tematiche
green"1, takes place in this context: developing, implementing and validating algorithms
and numerical tools that helps increasing the efficiency of a gas turbine through opti-
mization methods.

A gas turbine (schematically shown in Figure 1) is a system that converts thermal
energy from gas combustion into mechanical energy through the Brayton cycle. Its
operation consists of three stages. In the first stage, a compressor takes external air and
channels it at a certain pressure into the combustion chamber, in the so-called primary
flow. Then, in the second stage, the air is heated in the combustion chamber by burning
gas, typically methane, increasing the temperature and specific volume of the air-gas
mixture. Finally, the expanded mixture flows through the turbine, which is composed of
fixed (the nozzles) and rotating (the blades) elements; during this phase, the movement
of the blades generates kinetic energy that can be used for various purposes, such as, for
instance, run an electric power generator [42].

To achieve higher efficiency at the same pressures, it is necessary for the gas com-
bustion temperature to be as high as possible, thus raising it above the melting point of
the materials used to craft the turbine nozzles and blades. Therefore, it is essential to
design an efficient cooling system for all the turbine components.

This thesis aims to develop a suitable optimization framework to improve the design
of a turbine cooling system.

1“Programma Operativo Nazionale Ricerca e Innovazione 2014-2020 (CCI2014IT16M2OP005)" -
Azione IV.5 "Dottorati e contratti di ricerca su tematiche green" XXXVII ciclo, code DOT1303154-
4, CUP J35F21003200006.

x INTRODUCTION

Depending on the size of a turbine, the components that need to be cooled can number
in the hundreds or thousands, making the cooling system of a gas turbine extremely
complex. Therefore, its design and fine-tuning involve several stages in which numerical
models and optimization methods can be used. In this thesis, we focus on two of these
stages. The first one is the numerical modeling of a section of the cooling system involving
a single type of component and using optimization methods to get the design of that
section to improve its performance. The second one is the development of numerical
methods that improve the final validation procedures of the design. In the following
two chapters, we study two possible applications of optimization to these two stages.
Indeed, in Chapter 1 we study and implement a numerical tool called NOZZLE that
coupled with a suitable optimization method can be used to design a cooling system
for a specific type of turbine component. In Chapter 2 we develop a general numerical
method called MUℓSTREG that can be used for data-matching during the validation
phase of the design of an entire cooling system.

For both applications, we consider Derivative-Free Optimization (DFO) [8, 26], a field
of nonlinear optimization that addresses the optimization of functions whose derivatives
are not available. Indeed, the gradient of a function may not be computable for many
reasons; for example, the function might be defined as the output of a simulation software
or other numerical procedures, so the analytical expression of the function might be
unknown or not available for licensing reasons, and consequently the same happens for
its gradient. In another situation the value of the objective function is obtained by solving
a particularly complex system of equations thus the definition of a closed formulation
for the gradient is even more complex or impossible. The use of DFO methods is also
suitable in cases where the analytical formulation of the derivatives of the objective
function is known: in fact, in some cases, the size and complexity of the problem make
the computational cost of evaluating or estimating the derivatives too high; in other
cases, the objective function is noisy (and thus its derivatives) so that the evaluation
or approximation of the derivatives is unreliable and therefore useless. When we have
access only to the input and the output of the objective function and its derivative is
neither available nor efficiently approximable we deal with black-box functions, and when
DFO methods are applied to such functions we refer to Black-Box Optimization (BBO)
[9, 26].

xi

NOZZLE: a Black-Box Optimization tool

As we mentioned earlier, one of the main topics of this work is the development of
a numerical tool for optimizing the design of a specific device for cooling one type of
turbine component: a fixed nozzle.

Before getting more specific, let us provide an outline of how the cooling of turbine
components occurs.

Cooling in gas turbines. Primarily, the cooling system is supplied by diverting a
fraction of the primary flow of air into a so-called secondary flow within a network of
ducts, which distributes the air to all the turbine components that need to be cooled.
Finally, the air is expelled outside the turbine along with the exhaust gases.

Component cooling is essentially accomplished by heat transfer. In particular, the
air in the secondary flow exchanges heat with the metal surface of the component which
is heated by the hot flow. There are three main ways in which heat exchange occurs:
conduction, convection, and radiation. We are only interested in convection heat transfer,
which is the basis of the cooling system discussed in this thesis.

Between two systems there is heat exchange by convection when in addition to having
a transfer of energy due to an interaction between elementary volumes with more energy
(i.e., warmer) with elementary volumes with less energy (i.e., colder), as in conduction,
there is also a transfer of internal energy from one point to another in the system, due to
the relative motion that the volumes constituting a continuous medium have with respect
to each other. As in gas turbines, this phenomenon involves the cooling air and the solid
parts of the components, thus convection affects only the fluid. There are several ways
to implement a cooling system based on convective heat transfer, but now we focus on
one of the most used ones: the impingement cooling system.

Impingement cooling. For a nozzle, an impingement cooling device is an internal
cooling system implemented by creating near the inner wall of the nozzle a series of jets
allowing the cooling air to hit directly against the wall itself. This increases the turbu-
lence of the internal flow, causing heat exchange through convection. An example of an
impingement system is shown in Figure 2, and it is easy to realize that the improvement
of the design of the impingement insert is the main issue. So far, there is no generalized
and rigorous way to approach this issue and, in most cases, this phase depends on the
experience of the engineers that are working at the moment on that particular machine.

xii INTRODUCTION

Figure 2: Section of an impingement cooling system of a nozzle. The green area is the section of the
impingement insert with holes on its boundary.

Moreover, whenever a new design for the impingement insert is proposed, due to the
hydro- and thermodynamics involved, it must be tested in a Computational Fluid Dy-
namics and Thermodynamics simulation to validate the expected performance and to
check that there is no violation of any engineering constraint. This kind of simulation
often requires a huge computational effort. Therefore, we propose the definition of the
black-box function NOZZLE which together with a derivative-free technique constitutes
a fast and automatic method to improve the design of the impingement cooling system.
We want NOZZLE to be a (computationally) cheap simulator of an impingement cooling
system with outputs sufficiently close to reality and that takes into account the engi-
neering constraints that are present in such a real-life application. Defining NOZZLE as
a suitable black-box function to be used in a DFO framework allows us great freedom
in defining all its components, since the only information used by the DFO framework
are the inputs and outputs. Indeed, DFO is the most suitable approach for this kind of
industrial application, see e.g.[9, 45, 63].

As we explain in more detail in Chapter 1, the analysis and development of the Black-
Box function and DFO framework to solve this particular industrial optimization problem
lead us to formulate a constrained BBO problem (see (1.35)) with real and categorical
variables, i.e. non-numeric, unconstrained and implicitly unordered variables. There
are two main issues in this formulation that influence the choice of the DFO approach:
the presence of black-box constraints and the use of mixed continuous and categorical

xiii

variables (see Section 1.1.2.3).
DFO literature overview. Focusing on Derivative-Free Optimization methods

for constrained BBO, three different approaches can be found in the literature: filter
approaches, model-based approaches, and penalty approaches. For a more complete
overview refer to [47].

Filter methods aim to address black-box constraints and algebraic constraints by
concurrently minimizing both objective and constraint violation. Audet and Dennis
introduced in [6] a pattern-search technique for general constrained optimization that
accepts steps that improve either the objective or the violation of black-box constraints.
Further approaches can be found in [30, 64].

Model-based approaches define a surrogate problem by building models to replace
the simulation-based functions (objective and constraints). Powell in [65] develops a
direct search method for constrained optimization which approximates the objective and
constraint functions using linear models defined over a simplex. Bürmen et al. in [19]
presented a version of Mesh Adaptive Direct Search (MADS) applied to a surrogate prob-
lem defined using strongly convex quadratic model for the objective function and linear
models for the constraints. In [59], a trust-region method employing fully linear models of
both constraint and objective functions was developed. An alternative method employs
interpolating radial basis function surrogates of the objective and constraint functions
(CONORBIT) [67]. Finally, in [27] a simplex-gradient-based approach is considered to
approximate normal cones when black-box constraints are quantifiable.

Regarding penalty methods, Audet and Dennis [7] propose a progressive-barrier
method within MADS method with quadratic penalty for relaxable black-box constraints
and an extreme-barrier penalty for unrelaxable ones; in [40], an extreme-barrier penalty
is used again to handle unrelaxable constraints, while an exact penalty is used for relax-
able ones, everything within a Directional Direct Search (DDS) framework; the paper
[31] proposes a line-search method with a sequence of quadratic penalty functions to ad-
dress non-differentiable constraint and objective functions; Sampaio and Toint propose a
derivative-free variant of trust-funnel method to deal equality constraints without using
neither merit functions nor filters, see [70]. Finally, two augmented Lagrangian frame-
works, one developed in [60] where the merit function is defined using Gaussian process
models of the objective and constraint functions, and the other presented in [52] where
the linear constraints are treated outside the augmented Lagrangian merit function.

xiv INTRODUCTION

The literature comprising DFO algorithms that handle mixed variables is not very
extensive. Papers by Audet and Dennis [5], by Lucidi et al. [54] and by Abramson [2]
consider the presence of categorical variables. In particular, the work [2] extends the
MADS algorithms for solving constrained mixed variable optimization problems. These
algorithms have been successfully applied to relevant engineering applications, see e.g.
[1, 45]. Finally, we mention the recent work [62] where the pattern search method Brute
Force Optimizer (BFO) proposed in [61] for solving problems with continuous and dis-
crete variables, has been extended to handle categorical variables. More details on BFO
are provided in Section 1.3.2.

To summarize, in Chapter 1 we develop a possible model for optimizing the efficiency
of an impingement cooling system in a nozzle as a constrained BBO problem. The study
of the problem leads to the development and implementation of NOZZLE, a black-box
function that simulates impingement cooling in a turbine nozzle. We also provide a
description of a DFO approach to couple with NOZZLE to solve the constrained BBO
problem and we validate it with numerical tests derived from real-world scenarios.

MUℓSTREG: a Multilevel Stochastic Gradient method

The second topic covered in this work concerns one of the final stages in the design of a
cooling system. Specifically, once the design phase of a complete cooling system has been
concluded, it is necessary to build and test it on the turbine. During the testing phase,
a certain number N of measurements of characteristic quantities of the cooling system
(e.g., flow rates or pressures) distributed evenly over the entire cooling system network
are taken, and the agreement between the measurements and the quantities predicted
by the numerical model is checked. If there is a discrepancy between the measurements
and the numerical results, a correction of the model is made, which consists of tuning a
certain number n of parameters, for instance, the discharge coefficients at certain nodes
in the network of ducts that distribute the secondary flow of cooling air to all the cooling
systems of the individual components. This operation is called data-matching (or data-
fitting) and can be interpreted as a minimization problem of the form

xv

min
x∈Rn

f(x) (1)

where x ∈ Rn are the parameter to be tuned and f is a function that models the error
between the N measurements and the numerical data. This type of problem is suitable
to be addressed with DFO approaches because, within the definition of f , we have a
numerical model (or a simulator) of the cooling system, making it extremely difficult
to obtain an analytical expression for f and its derivative. This problem poses further
issues. The first concerns its scale: indeed, the number n of parameters and the number
N of measurements influence the computational cost of any minimization method, and
if n and/or N increase too much the computational effort and the time needed to obtain
a solution will be very high. In an industrial context, the complexity of the machinery
being tested often results in a high number n of parameters (i.e. variables) to tune, and
the reliability of the testing process requires a large number N of measurements. Thus,
our data-fitting problem is on a very large scale. Another issue arises from the fact that
the definition of f involves measurements that may be affected by random uncertainty
or, more generally, by random noise that cannot be neglected. These challenges make our
data-fitting problem a large-scale stochastic problem. Many other modern applications
require the solution of large-scale stochastic optimization problems, i.e., the minimization
of functions whose value can only be computed with some noise [3]. This can happen,
for instance, in medicine in the design of laboratory experiments to collect data on the
efficacy of a new drug, in traffic engineering to set the timing of traffic lights in a traffic
network, or in business to make short- and long-term investments decisions [71].

Moreover, being N the number of measurements taken, f could be defined as an
average over the number of measurements, so the problem may have the following for-
mulation:

min
x∈Rn

1

N

N∑
i=1

fi(x) (2)

where fi defines the error on the i-th measurement. The problem (2) is called finite-sum
minimization problem.

Stochastic variance reduced gradient methods. In the particular case of prob-
lem (2), where the objective function is defined by finite sums, many strategies have
been proposed to handle cases where the number of elements N is very large. Many

xvi INTRODUCTION

of these strategies are based on (random) subsampling and are mainly variations of the
Stochastic Gradient (SG) method. The main problem with such methods is the tuning
of the step size, which is a difficult task that requires trial and error. Moreover, to ensure
convergence of the methods it is often necessary to employ a decreasing step size, which
leads to really slow convergence. In order to avoid this issue, variance reduction methods
have been proposed in the literature [16], i.e., techniques to reduce the variance of the
stochastic gradient estimates. Among them, we focus on gradient aggregation methods,
which improve the quality of the search directions by storing gradient estimates corre-
sponding to samples employed in previous iterations, updating one (or some) of these
estimates in each iteration, and defining the search direction as a weighted average of
these estimates. Among these we mention SVRG and SAGA [28, 44, 66]. SVRG was
originally proposed in [44] with a convergence analysis for smooth and strongly convex
objective function. Since then the practical behavior of the method and strategies to fix
the hyperparameters have been studied in [4] and [66] for both the convex and nonconvex
cases.

Multilevel methods. In classical scientific computing a powerful class of methods
has been developed to cope with structured optimization problems where the limiting
factor is the size n of the variable: multilevel methods. When the structure of the problem
at hand allows for a hierarchical description of the problem itself, these methods reduce
the cost of the problem’s solution by considering a hierarchy of surrogate functions
defined on subspaces of progressively smaller dimensions. Thanks to this, they achieve
not only a considerable reduction in computational effort but also an improvement in the
solution quality in various applications, spanning from the solution of partial differential
equations to image reconstruction [38, 48, 49, 57].

As a natural extension of multigrid methods [18] to a nonlinear context, multilevel
methods were first proposed by Nash through the MG/OPT framework [57] and later
extended to trust-region schemes [38]. Recently these methods have been extended to
other contexts: high-order models [20], non-smooth optimization [49], machine learning
[36, 37, 46]. A multilevel method that exploits hierarchies in the function space has been
explored in [17], where a multilevel variance reduction method is proposed for deter-
ministic convex problems of the form (2.2) leveraging the multilevel scheme of MG/OPT
developed in [57]. Recent research [36] proposes a (deterministic) multilevel version of the
Objective Function Free Optimization (OFFO) method that does not require function

xvii

evaluations and that is based on the classical multilevel scheme constructed on the vari-
able space. Existing multilevel methods are however limited to a deterministic context
and are thus unsuitable to address stochastic optimization problems. Moreover, most
of them have always been used on problems whose structure allows for the construction
of a hierarchy in the variables space, such as problems arising from the discretization of
infinite dimensional ones on selected grids. However, in many modern applications, the
limiting factor can be the accuracy of the function estimates rather than the size of the
model. Indeed, in this thesis we focus on this case: the objective function is the outcome
of a simulation or arises from a data-fitting application over a large dataset.

Derivative free optimization. Since the objective function of our problem is noisy,
the same occurs to its derivatives making them unreliable. Thus, as we said before, the
problem we are considering is suitable to be addressed with DFO approaches. In order to
address large-scale problems (as ours), in the last years there have been some contribu-
tions to DFO literature that carry an idea close to that of multilevel methods to alternate
between accurate steps and cheap steps using more or less information. One of them can
be found in full-low evaluation derivative-free optimization for direct search methods [13,
69]. Another technique that has been considered to reduce the cost of the problems is
random subset selection [22]. In [14] the authors propose a Levenberg-Marquardt adap-
tation of the Stochastic Optimization with Random Models (STORM) framework (see
[24]) for stochastic derivative-free least squares problems. As in our work, the step size in
this context is updated through a regularization parameter. We inherited from this work
the dependence of the regularization parameter from the norm of the gradient (cf. (2.3)
below) and the definition of accurate models (cf. Definition 1). The recent literature on
variants of the standard trust-region method based on the use of random models is very
extensive, we refer to [10–12, 41, 68] to name a few and references therein.

In Chapter 2 we present the MUℓSTREG method to address the general problem
(1). The proposed approach is an extension of multilevel methods to a stochastic setting
and uses random regularized first-order models that exploit an available hierarchical de-
scription of the problem, being either in the classical variable space or in the function
space, meaning that different levels of accuracy for the objective function are available.
We provide a convergence analysis and we perform some numerical tests for an adap-
tation of MUℓSTREG for binary classification problems of the form (2). Indeed, the

xviii INTRODUCTION

multilevel framework is tailored to the solution of such problems resulting in fact in a
nontrivial variance reduction technique with adaptive step-size that outperforms stan-
dard approaches when solving nonconvex problems. Remarkably, our method allows us
to avoid the full evaluation of the objective sum opening at the solution of classification
problems with large data sets.

Thesis contributions

The main contributions in Chapter 1, devoted to the design of an impingement cooling
system and the development of NOZZLE, are the following.

• The new BBO model for the optimization of the design of an impingement cooling
system for the nozzle of a gas turbine that results in a new example derived from
a real-world application.

• A simple but still quite accurate numerical simulator that has been implemented
and validated to be used by the scientific community as a test case for any kind of
BBO method.

• A Derivative-Free Optimization approach that, coupled with the use of our black-
box function, defines an automatic and reliable procedure for the optimization of
the efficiency of a cooling system in a gas turbine.

• A standalone version of NOZZLE is available in the S2PMJ [39] format on GitHub

page https://github.com/GrattonToint/S2MPJ/blob/main/matlab_problems/
NOZZLEfp.m in Matlab, Python and Julia.

These contributions are also presented in the paper

■ L. Cocchi, F. Marini, M. Porcelli, and E. Riccietti, “Black-box optimization for the
design of a jet plate for impingement cooling,” Optim. Eng., 2025. doi: 10.1007/
s11081-025-09981-0.

Chapter 2, dedicated to the study and development of MUℓSTREG, brings the fol-
lowing contributions.

https://github.com/GrattonToint/S2MPJ/blob/main/matlab_problems/NOZZLEfp.m
https://github.com/GrattonToint/S2MPJ/blob/main/matlab_problems/NOZZLEfp.m
https://doi.org/10.1007/s11081-025-09981-0
https://doi.org/10.1007/s11081-025-09981-0

xix

• MUℓSTREG is the first stochastic framework for multilevel methods, that are cur-
rently limited to the deterministic case.

• The proposed multilevel framework allows for hierarchies in the function space,
i.e., building by considering function approximation with variable accuracy.

• The developed stochastic multilevel framework allows us to overcome the limiting
factor of classical deterministic multilevel methods whose convergence theory re-
quires the fine level function to coincide with the original target function, so that
such methods cannot be used in cases where the original problem has a too large
size.

• MUℓSTREG is the first stochastic analysis of first-order adaptive regularization
methods (our multilevel framework also covers the classical one-level case).

• Our method can be specialized for finite-sum problems and offers a variance reduc-
tion technique with an adaptive step size that outperforms mini-batch SVRG on
nonconvex problems.

These contributions are also presented in the preprint:

■ F. Marini, M. Porcelli, and E. Riccietti, A multilevel stochastic regularized first-
order method with application to training, 2024. arXiv: 2412.11630 [math.OC].
[Online]. Available: https://arxiv.org/abs/2412.11630.

https://arxiv.org/abs/2412.11630
https://arxiv.org/abs/2412.11630

xx INTRODUCTION

Chapter 1

NOZZLE

In this chapter, we define the NOZZLE black-box function that simulates the operation of
an impingement cooling system for a fixed nozzle, and we will use it to set up a derivative-
free framework to optimize the cooling of the nozzle. Starting from the well-known model
by Florschuetz et al. [32, 33] we develop a numerical model for a simulation that includes
the estimation of temperature distribution both on the internal and external wall of the
nozzle, and the estimation of the outlet pressure. Once the simulator is defined, we
embed it in a Black-Box Optimization framework in order to optimize the design of the
impingement system so that the highest possible cooling efficiency is achieved.

In more detail, we look for an insert design that maximizes the Heat Transfer Co-
efficient (HTC) hc of the coolant in the feasible set V ⊂ Rn defined by the engineering
constraints. If we identify the main geometric variables that characterize the design of
the impingement insert with the vector v ∈ Rn, we are interested in the solution of the
optimization problem:

max
v∈Rn

H(v) (1.1)

s.t. v ∈ V,

where the function H : Rn → R is a scalar-valued function that models the correlation
between the geometric variables v and the value of the HTC hc. Specifically, since the
HTC is a nonconstant distribution within the cooling system, the function H has to
return a scalar value that is representative of the overall heat transfer as, for example,

1

2 CHAPTER 1. NOZZLE

the mean, the quadratic mean, or the root mean square (RMS) of the HTC distribution.
The numerical solution of (1.1) poses several challenges that are due to the fact that

the overall black-box problem is a mixed variable problem: some geometric variables
are continuous and one is categorical, that is non-numeric, unconstrained and implicitly
unordered. In addition, the feasible set V is determined by black-box constraints. We,
therefore, propose to use a new flexible and robust penalized DFO approach that handles
the constraints using an ℓ1-penalty function and the Brute Force Optimizer (BFO) [61,
62], which is able to handle the mentioned above problem peculiarities, for the solution
of the resulting penalized problem.

Chapter 1 is organized as follows. In Section 1.1 we illustrate the modeling for
problem (1.1) that we employ by defining the geometric variables v, the function H

and the inequalities characterizing the feasible set V . In Section 1.2 we describe the
construction of the function H and of the constraints as black-box functions and in
Section 1.3 we describe the proposed strategy to solve the arising optimization problem
through a DFO approach. Finally, we numerically illustrate in Section 1.4 that our
strategy allows us to automatically find an improved design for the cooling system taking
into account the main engineering requirements.

1.1 Optimization model for the impingement cooling

system

The cooling system of a gas turbine nozzle is broadly structured as shown in Figure 1.1.
The nozzle is surrounded by hot gas, characterized by a temperature Tg and an HTC
hg, coming from the combustion chamber. Inside the nozzle we have a duct called the
impingement insert where the coolant fluid flows at pressure pinc and temperature Tc, the
fluid exits from the insert through orifices, it hits the inner wall of the nozzle plate and
finally exits the nozzle through an opening at the tail of the nozzle with pressure poutc .

When the cool fluid impinges on the inner wall of the nozzle, there is a heat exchange
between the surface and the fluid, whereby the cool air subtracts heat from the nozzle wall
that has been heated by the hot gas on the outside. Because of the thermal conductivity
of the wall, by subtracting heat from inside the nozzle we are then able to cool the
external wall of the nozzle. In this way, we reduce the damage caused to the nozzle by

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 3

Figure 1.1: Section of an impingement cooling system of a nozzle

the high temperature of the surrounding external gas.

For an impingement cooling system, the main component is the impingement insert;
in particular, its efficiency depends on the position of the insert inside the nozzle and on
the size and disposition of the orifices on its surface.

A fluid that is often used in turbine cooling systems is air, which is drawn in from
the surrounding environment. Most of this flow is used in the primary flow for the fuel
combustion process, while a portion is diverted as secondary flow into the cooling system.
Throughout our discussion, we assume that the cooling fluid used is air.

The air employed in the cooling system does not actively contribute to work genera-
tion by the gas turbine engine. Moreover, coolant ejection in the main flow can generate
secondary flows and mixing losses which may reduce the aerodynamic efficiency of the
airfoil [42]. These evidences justify the need to maximize the efficiency of cooling sys-
tems, i.e., obtain the desired cooling effect using a (minimum) fixed coolant mass flow
rate.

1.1.1 The objective function

A major parameter for evaluating heat transfer coefficients is the nondimensional Nusselt
number Nu, which is the ratio of the heat flux exchanged by convection to that exchanged
by conductivity, in this way the measurement of the HTC is related only to the properties
of the cooling air. The number Nu is related to the coolant HTC hc by the following

4 CHAPTER 1. NOZZLE

relation:
Nu =

hcd

kc
; (1.2)

where the constant kc is the thermal conductivity of the cooling air and d is the diam-
eter of the orifices through which the coolant flow occurs. Therefore, once we get the
distribution of Nu, we are able to get hc inverting (1.2), giving

hc =
kcNu
d

. (1.3)

Hence our objective function H has as its core a model for a correlation between
geometric parameters and (the distribution of) the Nusselt number within the cooling
system.

Given the wide use of impingement cooling systems, many mathematical models have
been developed over time to describe their functioning and study the correlations between
design features and performance. An extensive collection of impingement heat transfer
correlations can be found in the work by Zuckerman and Lior [72].

The mathematical model we choose to build the objective function H is the experi-
mental correlation developed by L. W. Florschuetz et al. [32–34]. This model was chosen
for several reasons. First, it is a relatively simple model, since starting from the char-
acteristics of the cooling system it returns a one-dimensional distribution of the Nusselt
number; therefore, it is a model with a very low computational cost and the returned
results are simple to interpret.

Another reason why it was chosen is that it was developed for an array of orifices
placed on a single plate, which is the configuration closest to that of our interest for the
design of the impingement insert; in fact, the insert is made from a metal plate that
is drilled following the desired layout and then it is bent to obtain the final shape (see
Figure 1.1).

Thus, the correlation by Florschuetz represents a good trade-off between low compu-
tational costs and meaningful modeling of the impingement cooling system.

1.1.1.1 Problem geometry and variables

Let us now introduce the geometry of the cooling system defined in Florschuetz’s work
to which we refer for further details [32, 33].

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 5

The geometry of the impingement cooling system studied by Florschuetz is schemat-
ically depicted in Figure 1.2 and consists of a plate of jets of size Lx × Ly placed at
a distance zn from the target surface. We have set up the reference system in Figure
1.2 such that the cooling air, once it leaves the jets, flows out of the duct made by the
impingement plate and the target surface in the direction of the x-axis in our reference
system. Because of this, the x-direction is called stream-wise, while the y−direction is
called span-wise.

z y

x

yn
xn

d

zn

External nozzle wall

Internal nozzle wall

Impingement plate

Figure 1.2: Reference geometry of the impingement cooling system

On the plate, round orifices of diameter d are arranged to have distance between
centers xn along the direction of the abscissa and yn along the direction of the ordinate.
It is also imposed that the distances to the edges of the first row are xn

2
in the x direction

and yn
2

in the y direction (see Figure 1.3).
Concerning the direction stream-wise, given two points A(xA, yA) and B(xB, yB) on

the plate, A is said to be ‘upstream of’ B if xA < xB and at the same time B is said to
be ‘downstream of’ A.

Holes could be arranged in two different ways on the plate: inline or staggered. In
both cases we have Nx := ⌊Lx

xn
⌋ span-wise rows each containing Ny := ⌊Ly

yn
⌋ orifices. In

the inline layout the centers of the orifices on the same span-wise row have the same
x−coordinate and the ones on the same stream-wise row have the same y−coordinate
(see Figure 1.3, left). Staggered layout derives from the inline layout by shifting by yn

2

the span-wise rows of even position, counting from upstream (see Figure 1.3, right).
After this initial explanation, it is already possible to define the design variables that

are the components of the input vector v of our objective function H. The variables are

• d: the diameter of the impingement holes;

• xn: stream-wise distance between the centers jet holes;

6 CHAPTER 1. NOZZLE

d

xn

yn

yn
2

xn
2

d

xn

yn

ynyn
2

xn
2

Staggered layoutInline layout

Figure 1.3: The two possible layouts of the holes on the jet plate: inline (left) and staggered (right).

• yn: span-wise distance between the centers jet holes;

• zn: distance of the impingement plate from the target surface (meatus width);

• layout: specifies the hole pattern.

We must notice that, while d, xn, yn, and zn are positive real continuous variables, layout
is a non-ordinal categorical variable that can take two values: inline and staggered 1.

1.1.1.2 Florschuetz correlation

The correlation between the design variables v = (xn, yn, zn, d, layout) of the impinge-
ment plate introduced in the previous chapter and the stream-wise distribution of the
Nusselt number Nu is defined by the following equation:

Nu(xi) = AReαj (xi)Pr
1
3
c

(
1−B

(
zn
d

[
Gc(xi)

Gj(xi)

])β
)
,

for xi = xn

(
i− 1

2

)
, with i = 1, ..., Nx;

(1.4)

where xi is the x-coordinate of the centers of the holes of the i-th stream-wise row and
Prc denotes the Prandtl number of the coolant; the coefficients A, α, B e β depend on

1We remark that in the current problem formulation, the layout variable can take two values and
therefore it could be treated as a binary variable. For the sake of generality, we prefer to treat it as a
categorical variable as it is of engineering interest to investigate models that admit orifice arrangements
other than inline and staggered (see Chapter 2.4.4).

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 7

the geometric parameters xn, yn, zn, d and layout according to the following relationship:

⋆(xn, yn, zn, d) = C⋆

(xn
d

)γ⋆x (yn
d

)γ⋆y (zn
d

)γ⋆z
, with ⋆ ∈ {A,α,B, β}; (1.5)

where the constants C⋆, γ⋆x, γ⋆y e γ⋆z were estimated empirically and are displayed
in Table 1.1 (see [33]). Note that the values of the constants presented in the table
differ depending on the value taken by the categorical variable layout (i.e. inline or
staggered).

Inline pattern Staggered pattern
⋆ C⋆ γ⋆x γ⋆y γ⋆z C⋆ γ⋆x γ⋆y γ⋆z

A 1.18 -0.944 -0.642 0.169 1.87 -0.771 -0.999 -0.257
α 0.612 0.059 0.032 -0.022 0.571 0.028 0.092 0.039
B 0.437 -0.095 -0.219 0.275 1.03 -0.243 -0.307 0.059
β 0.092 -0.005 0.599 1.04 0.442 0.098 -0.003 0.304

Table 1.1: Coefficients A, α, B e β for (1.5)

The layout variable is also important in defining the feasible set V , but this topic will
be covered in Subsection 1.1.2.

In (1.4) we also have the quantities Gj(xi), Gc(xi) and Rej(xi) distributed along the
x-coordinate and dependent on the geometric variables.

z y

x

Gj

Gc
zn

Ly

Figure 1.4: Representation of jet mass velocity Gj (blue) and crossflow mass velocity Gc (green).

Gj(xi) is the mass velocity (unit: kg · m−2 · s−1) of the flow of cooling air passing
through a single jet of abscissa xi referred to the area of the jet hole (in blue in Figure
1.4). In particular, let us consider that our cooling system receives a certain flow rate
ṁtot (unit: kg · s−1) of cooling air that is distributed among the span-wise rows of jets.

8 CHAPTER 1. NOZZLE

If a row having abscissa xi and Ny jets of area Aj has a mass flow rate ṁj, then we have
that

ṁj(xi) = Gj(xi)AjNy ⇒ Gj(xi) =
ṁj(xi)

AjNy

, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx; (1.6)

moreover, Gj is considered constant along the dimension y, so each span-wise row is
characterized by a single value of Gj.

Gc is the crossflow mass velocity and it is thus related to the area of the cross-section
of the duct, given by the product znLy (in green in Figure 1.4). Therefore, if we have a
transverse flow rate ṁc at x−coordinate xi of a certain row of jets we have

ṁc(xi) = Gc(xi)Lyzn ⇒ Gc(xi) =
ṁc(xi)

Lyzn
, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx. (1.7)

We assume that Gc is constant along y−direction. Particularly, in (1.4) we can notice
that the distribution of the Nusselt number depends on the ratio[

Gc

Gj

]
(xi) :=

Gc(xi)

Gj(xi)
, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx. (1.8)

Finally, in (1.4) we have the contribution of the distribution of the Reynolds number of
the cooling air flowing through an orifice in position xi. The Reynolds number is the
nondimensional ratio between inertia forces and internal viscous forces of fluid, and it is
related to the jet mass velocity Gj(xi) by the relation

Rej(xi) =
Gj(xi)d

µc

, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx; (1.9)

where µc is the dynamic viscosity coefficient of the cooling air (unit: kg ·m−1 ·s−1) and d
the diameter of the jet hole. The coefficient µc depends on the coolant’s characteristics
and mainly on its temperature Tc and it can be estimated via interpolation since the
cooling fluid is air and it is known the behavior of µc with respect to temperature.

So, in order to determine the Nusselt number distribution with (1.4) it is necessary
to estimate the distributions of Gj, Gc and Rej.

The distribution of Gj can be derived directly from a mathematical model developed
by Florschuetz [33] for the stream-wise distribution of the ratio of the jet mass velocity

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 9

Gj to the average jet mass velocity Gj (see [33])

[
Gj

Gj

]
(xi) =

δNx cosh
(
δ xi

xn

)
sinh (δNx)

, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx; (1.10)

where δ is a constant defined by

δ =
CD

√
2

ynzn

πd2

4
=
CD

√
2Aj

ynzn
;

with CD being the discharge coefficient for every hole.

Note that Gj is constant and depends only on the total flow rate of cooling air ṁtot

supplied to the system and the sum of the areas of all jets on the plate Atot
j according to

the relationship:

Gj =
ṁtot

Atot
j

; (1.11)

where Atot
j = NxNyAj.

By substituting (1.11) in (1.10) we obtain the following analytical model for the
distribution of the jet mass velocity:

Gj(xi) =
ṁtot

Atot
j

δNx cosh
(
δ xi

xn

)
sinh (δNx)

, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx. (1.12)

To determine the crossflow mass velocity distribution, one must refer to the geometry
in Figure 1.4. In this representation, the duct between the impingement plate and the
target surface is closed at one end; this implies that the crossflow has only one direction.
Thus it is reasonable to assume that the crossflow at a point of abscissa xi is due to the
contribution of the flows passing through all the jets upstream of xi; in particular, we
can assume that the crossflow mass velocity at xi is due to the sum of all the jet mass

10 CHAPTER 1. NOZZLE

velocities coming from upstream, so for Gc we have

Gc(x1) = 0,

Gc(xi) =
ṁc(xi)

Lyzn
=

1

Lyzn

i−1∑
k=1

ṁj(xk) =
AjNy

Lyzn

i−1∑
k=1

Gj(xk),

for i = 2, ..., Nx.

(1.13)

Thanks to the model (1.12) and the assumption (1.13), we can estimate the distri-
bution of the ratio Gc/Gj following the simple procedure shown in Algorithm 1.

Algorithm 1 Estimation of the distribution of Gc/Gj

Initialization
1: Take the variables v = (xn, yn, zn, d, layout) and the parameters Lx, Ly, ṁtot, CD.
2: Compute Nx = ⌊Lx

xn
⌋, Ny = ⌊Ly

yn
⌋ and Aj =

πd2

4 .
3: Define the vector xj = 1

2xn : xn : (Nx − 1
2)xn of the x-coordinate of the centers of the span-wise

rows.
Jet mass velocity distribution

4: Obtain the distribution Gj(xi) for i = 1, ..., Nx with (1.12).
Crossflow mass velocity distribution

5: Set Gc(x1) = 0, because there is no flow coming from upstream.
6: for i = 2, ..., Nx do
7: Using (1.13) obtain crossflow mass velocity

Gc(xi) =
1

Lyzn

i−1∑
k=1

ṁj(xk).

8: end for
Evaluation of the ratio Gc

Gj

9: for i = 1, ..., Nx do
10: Set [

Gc

Gj

]
(xi) =

Gc(xi)

Gj(xi)

11: end for

To finally determine the distribution of Nu we still need to derive the Prandtl number
Prc and the dynamic viscosity µc of the refrigerant fluid. Moreover, in order to use (1.3)
to get the distribution of hc we must estimate the thermal conductivity kc of the cooling
air. These three coefficients depend mainly on temperature Tc and fluid composition and
can be easily estimated by nonlinear interpolation.

The procedure for determining the stream-wise distribution of HTC hc is outlined in

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 11

Algorithm 2.

Algorithm 2 HTC stream-wise distribution
Initialization

1: Take the variables v = (xn, yn, zn, d, layout) and the parameters Lx, Ly, Tc, Tg, hg, ṁtot, CD.
2: Compute Nx = ⌊Lx

xn
⌋, Ny = ⌊Ly

yn
⌋ e Aj =

πd2

4 .
3: Define the vector xj = 1

2xn : xn : (Nx − 1
2)xn of the x-coordinate of the centers of the span-wise

rows.
4: Calculation by nonlinear interpolation of µc := µc(Tc), Prc := Prc(Tc) and kc := kc(Tc) of the

coolant fluid.
Mass velocity distributions

5: Estimation of the distributions of Gj and Gc

Gj
using Algorithm 1.

Jet Reynolds number distribution
6: Computation of the distributions of jet Reynolds number Rej(xi) using (1.9).

HTC hc distribution
7: Using (1.4) and (1.5) obtain the stream-wise distribution of the Nusselt number Nu.
8: Compute the distribution of hc with (1.3):

hc(xi) =
Nu(xi)kc

d
, i = 1, ..., Nx.

Algorithm 2 is straightforward; after receiving the input v = (xn, yn, zn, d, layout)
and the parameters derived from the boundary conditions it computes the number Nx of
span-wise rows, the number Ny of holes for every span-wise row and the area of a single
hole Aj; then defines the vector containing the x−coordinate of the centers of the holes
on the span-wise rows (Step 1 - Step 3). In Step 4 it uses the inlet temperature Tc of
the cooling air as a query point to interpolate the dynamic viscosity coefficient µc, the
Prandtl number Prc and the thermal conductivity kc. Step 5 computes the distribution
of the jet mass velocity Gj and of the ratio Gc

Gj
via Algorithm 1. Step 6 computes the

distribution of the jet Reynolds number Rej(xi) using (1.9). Finally, in Step 7 and Step
8 the algorithm uses Florschuetz’s model (1.4) to get the distribution of the Nusselt
number Nu and uses (1.3) to estimate the distribution hc of the HTC of the cooling air.

Let us remark that Algorithm 2 returns a one-dimensional distribution of hc, so
hc(v) ∈ RNx . In order to define the scalar objective function H(v) we use the root mean
square (RMS) of hc(v), then

H(v) := (hc(v))RMS =
∥hc(v)∥2√

Nx

. (1.14)

12 CHAPTER 1. NOZZLE

1.1.2 The constraints

The design of a cooling system, like many other industrial applications, is subject to
constraints that arise from the need to have solutions that are actually applicable in a
real-world context or at least retain a minimum of relevance to the physics of the problem
we are solving.

In our particular case, the constraints arise from several requirements. First, the
cooling system must be efficient enough to ensure a minimal durability of the nozzle, this
means that the design of the impingement insert must avoid configurations that allow
the external heat to cause excessive damage to the nozzle walls. Secondly, it is necessary
that the system is actually manufacturable so, for example, the solution to the problem
cannot lead to an impingement plate with holes that are too small or too close. Finally,
since our objective function is derived from the empirically developed mathematical
model (1.4), the variables must be constrained in a space in which the model has been
validated; this is because outside that space the validity of the model is not guaranteed.
All these requirements are represented by a set of constraint functions that involve the
design variables v = (xn, yn, zn, d, layout), the distributions of the temperatures on the
internal and external nozzle walls and the (outlet) pressure of the cooling air.

In this section, the constraints necessary for the final formulation of the problem are
defined and explained.

1.1.2.1 Temperature constraints

To get an idea of the efficiency of the cooling system, we need to quantify how much
it can cool the inner and outer nozzle wall, so we need to estimate the stream-wise
distributions of the internal and external nozzle wall temperature, which we denote as
Twi and Twe respectively. All temperatures are in kelvin (unit:K).

To do this, we can assume that heat transfer occurs from the external of the nozzle,
where we have the hot gas with temperature Tg and HTC hg, to the inside of the nozzle
where we have the cool air with temperature Tc and HTC hc. We can further assume
that the heat transfer from the external to the internal of the nozzle consists of three
phases. In the first stage, heat from the external gas is transferred by convection to
the external wall of the nozzle, then heat is transferred to the inside of the nozzle by
thermal conductivity from the external wall to the inner one (not considering the thermal

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 13

conductivity that occurs perpendicularly to this direction), and finally, heat is transferred
from the inside wall to the cooling fluid again by convection. This process is represented
in Figure 1.5.

Twe

(conduction)

Twi

(convection)

(convection)

kw

(Tg, hg)

(Tc, hc)

∆s

Figure 1.5: Scheme of the heat transfer through the nozzle wall.

Given these assumptions, and having derived the heat transfer coefficient of the cool-
ing air, we can calculate the distributions of Twi and Twe by solving for every i = 1, ..., Nx

the following linear systemhc(xi) (Twi(xi)− Tc) =
kw
∆s

(Twe(xi)− Twi(xi))

kw
∆s

(Twe(xi)− Twi(xi)) = hg (Tg − Twe(xi))
; (1.15)

where kw and ∆s are respectively the thermal conductivity (unit: kg ·m · s−3 ·K−1) and
the thickness of the nozzle wall. This formulation comes from the time-independent heat
equation 

∇2Tin = 0 on Ω,

∂Tin

∂n
= qg on Γg,

∂Tin

∂n
= qc on Γc,

∂Tin

∂n
= 0 on ∂Ω \ (Γg ∪ Γc) .

(1.16)

Here Tin is the temperature distribution inside the nozzle wall, the domain Ω is the
rectangular section of the nozzle wall with size Lx ×∆s, the boundaries Γg and Γc are
the surfaces subject to convective heat flow of the hot gas and cooling air respectively.
The remaining boundary of Ω is supposed to be adiabatic [43]. If we discretize Ω in
Nx rectangular elements of size xn ×∆s and we use the Finite Differences (FD) method

14 CHAPTER 1. NOZZLE

assuming that there is no heat flow between two contiguous elements we obtain the
system (1.15).

(Tin)1 (Tin)2 (Tin)Nx−1 (Tin)Nx· · ·
Γg

Γc

(Tc, hc)

(Tg, hg)

Figure 1.6: Discretization of the heat transfer on the nozzle wall.

A more accurate, but computationally more expensive, estimation of Twi and Twe can
be obtained in two steps. First, we solve (1.16) with FD taking into account the heat
transfer between adjacent elements in order to obtain the one-dimensional distribution of
Tin which is the stream-wise temperature distributions inside the nozzle wall (see Figure
1.6); then we substitute the distribution of Tin in system (1.15), in particular, we put Tin
in place of Twe in the first equation and in place of Twi in the second equation, obtaining
two separate equations:

hc(xi) (Twi(xi)− Tc) =
kw
∆s

(Tin(xi)− Twi(xi)) (1.17)

kw
∆s

(Twe(xi)− Tin(xi)) = hg (Tg − Twe(xi)) . (1.18)

We use the distributions Twi and Twe to define two constraint functions. The first
one bounds the external wall temperature Twe and it is defined as

(Twe(v))RMS ≤ Tmax
we . (1.19)

By setting this constraint we guarantee that the mechanical properties of the material
are sufficient to allow the component to reach the expected life span.

The second constraint function is defined to bound the temperature gradient between
the external and internal walls; in our case, it means to set a bound for the distribution
of the difference between Twe and Twi, thus

(∆T (v))RMS ≤ ∆Tmax; (1.20)

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 15

where ∆T (v) = Twe(v) − Twi(v). This constraint is necessary to prevent structural
damage to the nozzle wall caused by thermal deformation due to an excessive difference
between the external and internal temperatures on the wall.

1.1.2.2 Pressure constraints

Another factor that affects the performance of an impingement cooling system is the
pressure of the cooling air. In particular, in our case, we consider the ratio of the outlet
pressure poutc to the inlet pressure pinc of the cooling air

rp :=
poutc

pinc
. (1.21)

In our case rp ∈ (0, 1]. This is because, since fluids move in the opposite direction of the
pressure gradient, to have air flow there must be a pressure difference. If pinc = poutc , that
is, if rp = 1, we have no flow of cooling air through the system. It is not possible to have
the case poutc > pinc , which means rp > 1, because if so the flow would be in the opposite
direction, and this is ruled out by the way we have defined the model that simulates the
impingement cooling. On the other hand, rp > 0 since pressure is strictly positive by
definition.

The ratio rp is related to the flow rate of air through the cooling system and thus its
velocity. The lower rp, the higher the mass flow rate and the jet velocity. This is true until
the velocity approaches the speed of sound. In particular, if the flow becomes sonic in the
nozzle the so-called choked condition is reached, corresponding to the maximum flow rate:
further reducing the discharge pressure does not lead to an increase in coolant flow rate
but results in an underexpanded supersonic jet. In this regime, complex shock patterns
and a recirculation pattern at the stagnation point occur, resulting in a degradation of
heat transfer performance [35].

In order to keep the ratio rp away from zero we set the following constraint

rp ≥ r̃; (1.22)

with r̃ ∈ (0, 1).
Recall that in the case of our interest the inlet pressure pinc of the cooling air is constant

and is given as a boundary condition, while the outlet pressure poutc is unknown, hence to

16 CHAPTER 1. NOZZLE

check constraint (1.22) it is necessary to estimate poutc with respect to the design variables
vector v.

We assume that poutc (v) is equal to the outlet pressure at the most downstream row
of orifices, i.e. the row with centers of abscissa xNx . Focusing on this last row, from the
theory of isentropic flow the pressure ratio rp is related to the mass flow rate of cooling
air through the last row ṁj (xNx) by the equation

ṁj (xNx) = NyAjCD

(
poutc

pinc

) 1
γ

√√√√ 2γ

γ − 1

pinc
ρinc

[
1−

(
poutc

pinc

) γ−1
γ

]
, (1.23)

where γ = cP
cV

is ratio of specific heats of the air, CD is the jet discharge coefficient,
Aj = πd2/4 is the surface of a single orifice, Ny is the number of holes in every row and
ρinc = pinc

RTc
is the density of inlet cooling air, with R being the ideal gas constant (unit:

kg ·m2 · s−2 ·K−1 ·mol−1) [35].

On the other hand, we know from (1.6) that

ṁj (xNx) = AjNyGj(xNx); (1.24)

where the jet flow mass velocity Gj(xNx) for the last row can be evaluated using (1.12).

Thus, substituting (1.24) in (1.23) and simplifying we obtain the equation

Gj(xNx) = CD

(
poutc

pinc

) 1
γ

√√√√ 2γ

γ − 1

pinc
ρinc

[
1−

(
poutc

pinc

) γ−1
γ

]
. (1.25)

It is possible to estimate the value of poutc (v) for a given design vector v as the solution
of a scalar nonlinear equation

f(p) := p
1
γ

√
(pinc)

γ−1
γ − p

γ−1
γ (pinc)

γ−1
2γ − Gj(xNx)

CD

√
γ − 1

2γ
RTc = 0, (1.26)

where the function f : [0, pinc] → R is derived from (1.25). It can be shown that problem
(1.26) admits two solutions in (0, pinc) with one in the open sub-interval (p∗, pinc) (see e.g.

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 17

0 2 4 6 8 10

p [Pa] #105

0

0.05

0.1

0.15

0.2

f(
p)

/p
cin

p*

f(p*)/pc
in

pc
in

Figure 1.7: Graphical representation of the function f(p)/pinc , with f(p) defined in (1.26) in the interval[
0, pinc

]
, for pinc = 2 · 106 Pa.

Figure 1.7), where p∗ is the critic pressure defined as

p∗ =

(
2

γ + 1

) γ
γ−1

pinc . (1.27)

We look for the solution in (p∗, pinc), since for poutc ≤ p∗ supersonic flow surely occurs
somewhere in the cooling system. Once we have estimated poutc we can check the con-
straint (1.22), which can be rearranged as a constraint on pressure difference in the
following way

∆pc (v) := pinc − poutc (v) ≤ (1− r̃) pinc =: ∆pmax
c . (1.28)

1.1.2.3 Feasibility linear constraints

Feasibility linear constraints are meant to ensure a meaningful and applicable solution.
We do not want to get an uncraftable or physically meaningless design for an impingement
plate. Some unacceptable designs are, for example, ones with holes too small, ones
with jet rows too close to each other, or ones with overlapping holes. Most of these
unwanted results can be avoided by setting suitable box constraints for the continuous
variables (xn, yn, zn, d), while the variable layout is "unconstrained" since it is a non-
ordinal categorical variable which admits only two values.

Moreover, the validity of Florschuetz’s model (1.4) has to be ensured and, it is thus

18 CHAPTER 1. NOZZLE

important to keep the variables in a subspace where (1.4) has been validated. To this
end, the following linear constraints

1 ≤zn
d

≤ 3, (1.29)

4 ≤yn
d

≤ 8, (1.30)

6.25 · 10−1 ≤xn
yn

≤ 3.75, (1.31)

5 ≤xn
d

≤

15 if layout = inline

10 if layout = staggered
. (1.32)

have to be satisfied. The coefficients and the form of the inequalities above were em-
pirically defined in [32, 33]. Note that depending on the value of the variable layout,
the constraint (1.32) changes. It is easy to show that when constraints (1.29)-(1.32) are
fulfilled, overlapping holes are avoided in the design of the impingement plate, both for
inline and staggered layout.

1.2 Black-box definition

In this section, we merge all the ingredients defined in Section 1.1 to present the black-
box formulation of NOZZLE for the modeling of the impingement cooling system for a
nozzle in a gas turbine. We remind that by black-box we mean a set of computational
models for the optimization problem (objective and constraints) that can be evaluated
to simulate the cooling system under consideration.

The basic structure of NOZZLE is represented in the flow chart in Figure 1.8 and
described with more detail in Algorithm 3. NOZZLE takes as input the variable vector
v = (xn, yn, zn, d, layout) that defines the design of the impingement plate, and the fixed
parameters given by assumptions and boundary conditions: the inlet temperature Tc
and pressure pinc of the cooling air, the total mass flow ṁtot of cooling air coming from
upstream of the cooling system, the temperature Tg and HTC hg of the hot gas that
surrounds the nozzle, the discharge coefficient CD of the holes and the sizes Lx and Ly

of the rectangular impingement plate (Step 1).

The inlet temperature Tc is used to interpolate the values of the dynamic viscosity

1.2. BLACK-BOX DEFINITION 19

Tc ← Tc+mean(Twi)
2

kc

Prc

µc

Variables
(xn, yn, zn, d, layout)

Parameters
Lx, Ly, Tc, p

in
c ,

Tg, hg, ṁtot

Interpolation
µc(Tc), P rc(Tc), kc(Tc)

Distribution estimation
Gj , Gc, Rej

Florschuetz’s
model

Nu ⇒ hc

Objective value
H = RMS(hc)

Temperature
distribution
Twi, Twe

Temperature
constraints

Twe(v) ≤ Tmax
we

∆T (v) ≤ ∆Tmax

Pressure constraint
pinc − poutc (v) ≤ ∆pmax

c

Tc

Film temperature loop to better estimate µc, Prc and kc

Input

Output

Figure 1.8: NOZZLE’s flowchart.

µc, the thermal conductivity kc, and Prandtl number Prc for the cooling air (Step 4).

The design variables v, together with the dynamic viscosity µc and the parameters
Lx, Ly, ṁtot and CD are given as inputs to Algorithm 1 to estimate the stream-wise
distributions at every row of holes of the flow mass velocities to the jets Gj and to the
cross-section Gc and of the jet Reynolds number Rej.

Distributions of Gj and Gc are then used to estimate the outlet pressure poutc of the
cooling air by solving the nonlinear equation (1.26) (Steps 5-7).

The HTC distribution hc(v) of the cooling air is estimated using the variables v, the
distributions Gj, Gc and Rej and the coefficients kc and Prc with Florschuetz’s model
(1.4) and (1.3) (Steps 8-10).

The HTC distribution hc(v) is then used to calculate the objective value H (v) =

(hc(v))RMS and to estimate the wall temperature distributions Twi (v) and Twe (v) using
one of the two approaches explained in Subsection 1.1.2.1 (Step 24).

The black-box returns as outputs the HTC distribution hc to obtain the objective
value H (v) and the temperature distributions Twi and Twe and the value of poutc to verify
the constraints (1.19)-(1.20) and (1.28) respectively.

We observe that the wall temperature distributions are not only used to define con-
straints. Indeed, the distribution of Twi is also used for better estimation of the thermal
conductivity kc of the cooling air. As discussed in Subsection 1.1.1.2, the value of this

20 CHAPTER 1. NOZZLE

coefficient is obtained by interpolation using Tc as query value; however, assuming Tc

as the temperature of the cooling air in the boundary layer near the inner nozzle wall
is quite inaccurate because in that region the cooling air is affected by the temperature
of the wall, heated by conduction. So, as query value, we use the film temperature Tf
which is an approximation of the temperature of a fluid inside a convection boundary
layer [32, 33], and it is defined as

Tf =
mean (Twi) + Tc

2
. (1.33)

After a first interpolation of kc := kc(Tc) it is necessary to estimate again the distribu-
tions of hc, Twi and Twe. We recall that kc is involved directly in (1.3) for the evaluation
of the distribution hc and consequently in (1.15) for the estimation of Twi and Twe. We
include all these steps into a loop that in every iterate generates new estimations hc, Twi,
and Twe and it ends when the relative error between two subsequent estimations of hc is
below a certain tolerance tolh, i.e.

∥hc − (hc)old∥2
∥(hc)old∥2

≤ tolh. (1.34)

This loop is described in Steps 9-23 of Algorithm 3. Note that this loop does not
involve the other coefficients µc and Prc, that is because in that case assuming Tc as the
query for the interpolation is acceptable. Furthermore, the loop does not involve directly
the distribution of the external wall temperature Twe.

We note that the evaluation of the feasibility constraints (1.29)-(1.32) is not included
in Algorithm 3 as they can be easily treated outside the black-box.

Finally, we note that the NOZZLE implementation of the black-box results in a
computational cost for the evaluation of the objective function and of the constraints
that is rather cheap. This is due to the small number of variables (four continuous
and one categorical) and to the small size of the distributions handled by the function
(e.g. Twe, Twi, hc). Moreover, most of the auxiliary quantities and distributions needed
are obtained straightforwardly, with the only exception of the solution of the nonlinear
equation (1.26) to get the outlet pressure poutc , which uses an iterative method. Thus,
a single evaluation of the black-box requires a small amount of computational time and
memory.

1.2. BLACK-BOX DEFINITION 21

Algorithm 3 NOZZLE
Initialization

1: Take the variables v = (xn, yn, zn, d, layout) and the parameters Lx, Ly, Tc, Tg, hg, ṁtot, CD.
2: Compute Nx = ⌊Lx

xn
⌋, Ny = ⌊Ly

yn
⌋ e Aj =

πd2

4 .
3: Define the vector xj = 1

2xn : xn : (Nx − 1
2)xn of the x-coordinate of the centers of the span-wise

rows.
4: Calculation by nonlinear interpolation of µc := µc(Tc), Prc := Prc(Tc).

Mass velocity distributions
5: Estimation of the distributions of Gj and Gc

Gj
using Algorithm 1.

Jet Reynolds number distribution
6: Computation of the distributions of jet Reynolds number Rej(xi) using (1.9).

Outlet pressure estimation
7: Estimate poutc as a solution of (1.26).

Nu distribution
8: Using (1.4) and (1.5) obtain the stream-wise distribution of the Nusselt number Nu.

First interpolation of kc and first evaluation of hc, Twi and Twe

9: Calculation by nonlinear interpolation of (kc)old := kc(Tc) of the coolant fluid.
10: Compute the distribution of (hc)old using (1.3):

(hc)old (xi) =
Nu(xi) (kc)old

d
, i = 1, ..., Nx.

11: Estimate of the distribution of (Twi)old and (Twe)old via solving (1.15).
Film temperature loop

12: for it = 1, 2, ... do
13: Set

Tf =
(Twi)old + Tc

2
.

14: Interpolate kc := kc(Tf).
15: Evaluate

hc(xi) =
Nu(xi)kc

d
, i = 1, ..., Nx.

16: Estimate new distribution Twi and Twe via solving (1.15) using hc.
17: Compute the relative error εrel as

εrel =
∥hc − (hc)old∥2

∥(hc)old∥2
.

18: if εrel ≤ tolh then
19: Break.
20: else
21: Set

(hc)old = hc; (Twi)old = Twi; (Twe)old = Twe.

22: end if
23: end for

Objective value
24: Set H = (hc)RMS

Outputs
25: Return H, Twi, Twe and poutc .

22 CHAPTER 1. NOZZLE

1.3 DFO for the solution of the black-box model

In this section, we embed the NOZZLE simulator described in the previous sections
in the DFO framework. We therefore describe the main model features and propose a
DFO-based procedure for its minimization.

1.3.1 The overall constrained BBO formulation

In Subsection 1.1.1 we have described the formulation of the objective function H(v)

while in Subsection 1.1.2 we have defined and motivated the constraint functions on wall
temperature distributions Twi(v), Twe(v), on the outlet pressure poutc (v) and on design
variables v = (xn, yn, zn, d, layout). We can gather all the functions defined so far to
formulate our problem as a standard minimization problem as follows.

min
v

−H(v)

s.t. c1(v) := (Twe(v))RMS − Tmax
we ≤ 0;

c2(v) := (∆T (v))RMS −∆Tmax ≤ 0;

c3(v) := ∆pc(v)−∆pmax
c ≤ 0;

c4(v) := 1− zn
d

≤ 0;

c5(v) :=
zn
d

− 3 ≤ 0;

c6(v) := 4− yn
d

≤ 0;

c7(v) :=
yn
d

− 8 ≤ 0;

c8(v) :=
xn
yn

− 3.75 ≤ 0;

c9(v) := 6.25 · 10−1 − xn
yn

≤ 0;

c10(v) := 5− xn
d

≤ 0;

c11(v) :=

xn

d
− 15 ≤ 0 if layout = inline

xn

d
− 10 ≤ 0 if layout = staggered

;

(xn, yn, zn, d) ∈ B ⊂ R4
>0; layout ∈ {inline, staggered} .

(1.35)

1.3. DFO FOR THE SOLUTION OF THE BLACK-BOX MODEL 23

Formulation (1.35) represents a constrained Black-Box Optimization problem, where the
objective −H(v) is the negative RMS of the HTC distribution hc defined in (1.14) and
is returned as one of the NOZZLE outputs defined in Section 1.2. The other outputs
of NOZZLE are used to define the constraint functions c1(v), c2(v), c2(v) which are
derived, respectively, from (1.19), (1.20) and (1.28). The constraint functions ci(v) with
i = 4, ..., 11 are derived directly from the feasibility constraints (1.29)-(1.32). We note
that in (1.35) the first three constraint functions are not as dimensionless as the others,
and this could be a source of poor scaling for the problem. To overcome this issue we
simply divide c1, c2 and c3 respectively by Tmax

we , ∆Tmax and ∆pmax
c .

Referring to the Black-Box Optimization constraint taxonomy presented in [50] we
can identify two kinds of constraint functions in (1.35). Functions c1, c2, and c3 are
black-box simulation-based, thus any kind of (sub-)gradient is unavailable, and they are
also relaxable since an impingement plate design that violates these constraints is still
meaningful and can be post-processed. The remaining functions, from c4 to c11, are
algebraic since they are expressed in an explicit form but they are unrelaxable because,
as we explained in Subsection 1.1.2.3, they describe the validity space of Florschuetz’s
model used to define the black-box.

1.3.2 Our DFO proposal: the ℓ1−penalty BFO method

The structure of the optimization problem (1.35) clearly calls for DFO tools. We propose
a new DFO penalty method that uses the general ℓ1− penalty method for derivative-
based optimization, see e.g. [58]. Indeed we consider problem (1.35), and define the
penalty function ϕ1(v, ε) as

ϕ1(v, ε) = −H(v) + εC (v) , (1.36)

where ε > 0 is the penalty parameter and the constraint violation function gathers all
the constraint functions C (v) as follows

C (v) :=
11∑
j=1

max {0, cj(v)} . (1.37)

24 CHAPTER 1. NOZZLE

By choosing an increasing sequence of penalty parameters {εk}k∈N such that εk → ∞ we
define a sequence of unconstrained minimization problems of the form

min
v

ϕ1(v, εk) = −H(v) + εkC (v)

s.t. (xn, yn, zn, d) ∈ B ⊂ R4
>0, layout ∈ {inline, staggered} ,

(1.38)

where we penalize constraint violations more severely, thereby forcing the minimizer of
the penalty function closer to the feasible region for problem (1.35). Then, we use a
derivative-free algorithm for solving (1.38) for every value of εk. In particular, our choice
for the inner solver is the Brute Force Optimizer (BFO) [61, 62].

BFO is a simple random pattern search algorithm specifically designed for Black-Box
Optimization since it can deal with unconstrained (it only handles simple bounds on the
variables) optimization problems without any regularity or convexity assumption on the
objective function. In particular, BFO is suitable for the minimization of the nonsmooth
black-box function (1.36).

As a pattern search method, for every iterate v, BFO creates a polling set of directions
P that defines a finite local mesh around v, BFO searches for any improvement of the
objective function on this mesh by evaluating all the points on the mesh and if it succeeds
in finding a better value for the objective function at a new point v̂ the iterate is updated;
otherwise if BFO fails in finding an improvement on the local mesh, the mesh is refined
(i.e. a new mesh is defined closer to v) and a new search is performed.

BFO can handle different types of variables like continuous, integer, discrete, mixed,
or categorical. If the optimization problem has mixed variables, e.g. continuous and
categorical variables, the search phase is more articulated and is called tree-search strat-
egy, see further details in [61, 62]. More precisely, the search phase is firstly performed
involving only the continuous components of the iterate v while the discrete ones are
kept fixed, then, if there are no improvements on the continuous mesh, instead of re-
fining the mesh a further search is performed by exploring the meshes defined around
an iterate defined by fixing successively each of the non-continuous variables to a value
neighboring that present in v. As an example let us consider the vector of the design
variables v =

(
xn, yn, zn, d, staggered

)
, at first the mesh is built around the continuous

part
(
xn, yn, zn, d

)
while keeping fixed layout = staggered; if BFO fails in finding an

improvement another search is done on the same mesh for the continuous part but setting

1.4. EXPERIMENTAL RESULTS 25

layout = inline.
The overall proposed algorithm is detailed in Algorithm 4.

Algorithm 4 The ℓ1−penalty BFO scheme
1: Given vs

0, ε0 > 0, ν > 1, τ > 0, kmax > 0
2: for k = 0, 1, ..., kmax do
3: Use BFO to find a minimizer vk of ϕ1(v, εk), starting from vs

k.
4: if C(vk) ≤ τ then
5: Stop and return vk.
6: end if
7: Set εk+1 = νεk.
8: Set vs

k+1 = vk.
9: end for

In the beginning, we choose an initial guess vs
0 and an initial value ε0 > 0 for the

penalty parameter. We also fix the update coefficient ν > 1 to increase the penalty
parameter, we set a tolerance τ > 0 for the constraint violation and a maximum number
of iterations kmax. At every k-th iteration BFO is called to find a minimizer of the
penalty function ϕ1(v, εk), where the penalty parameter is kept fixed, returning a point
vk. Then the value of the constraint violation function C(vk) is checked and if C(vk) ≤ τ

then vk is accepted as an acceptable solution and the procedure stops. Otherwise, the
penalty parameter εk+1 is increased by a factor ν, and the new starting point vs

k+1 is set
equal to the minimizer just found vk and a new iteration starts. The update strategy
for the new starting point at Step 8 is motivated by the fact that with a good choice
of the initial penalty parameter ε0, it is possible to obtain from the first iteration an
approximate minimizer that does not excessively violate the constraints, so it will be
sufficient to search for an admissible solution in a neighborhood of the last minimizer
found, having chosen an appropriate parameter ν for the penalty update.

1.4 Experimental results

In this section, we numerically solve problem (1.35) using NOZZLE with the ℓ1−penalty
BFO algorithm.

Recalling that we aim to find "better" geometric variables xn, yn, zn, d, and layout
that define the design for an impingement plate for a fixed nozzle of a gas turbine,
we consider two different problem settings obtained considering two different sets of

26 CHAPTER 1. NOZZLE

boundary conditions. The first, called here the "laboratory case", represents a situation
that is encountered on a laboratory test bench, that is conditions similar to those under
which Florschuetz and collaborators carried out the experiments to derive the model
(1.4) (see [32]) are reproduced. The second has boundary conditions that reflect the
typical values of an actual gas turbine and, for this reason, it will be referred to as the
"industrial case". The boundary conditions and the upper bounds for both experimental
cases are gathered in Table 1.2. At the moment we emphasize that for both situations we
use the same value for the discharge coefficient CD and mass flow rate ṁtot. In addition,
the upper limit for the pressure difference ∆pmax

c is also somewhat the same, specifically
the two values for ∆pmax

c are chosen such that the ratio of the pressure difference to the
inlet pressure has as an upper limit equal to 0.04, i.e. we look for a configuration that
allows a pressure difference lower than the 4% of pinc .

For the evaluation of the distributions of the wall temperature we solve the general
problem defined in (1.16) using finite differences as described in Subsection 1.1.2.1.

All the experiments have been carried out using Matlab R2023a on an Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz machine with 16 GB RAM and the new release 2.0
of the Matlab BFO package available at https://github.com/m01marpor/BFO. Default
parameters have been set for BFO while ε0 = 1.5, ν = 10, τ = 10−3 and kmax = 15 have
been set in Algorithm 4.

Parameter Description [Unit] Laboratory value Industrial value
Lx Plate stream-wise length [m] 1.27 · 10−1 5 · 10−2

Ly Plate span-wise length [m] 1.22 · 10−1 5 · 10−2

Tc Cooling air inlet temperature [K] 2.93 · 102 7.73 · 102

pinc Cooling air inlet pressure [Pa] 2.03 · 105 1.01 · 106

Tg External hot gas temperature [K] 3.73 · 102 1.27 · 103

hg External hot gas HTC [W m−2K−1] 1 · 102 1 · 103

ṁtot Cooling air mass flow rate [kg s−1] 1.00 · 10−2 1.00 · 10−2

CD Jet discharge coefficient [-] 0.85 0.85

kw Wall thermal conductivity [W m−1K−1] 1 · 102 2 · 101

∆s Wall thickness [m] 1.00 · 10−2 3.00 · 10−3

∆Tmax Upper bound for Twe − Twi [K] 3.00 · 101 6.00 · 101

Tmax
we Upper bound for Twe [K] 3.43 · 102 1.07 · 103

∆pmax
c Upper bound for pinc − poutc [Pa] 8.11 · 103 4.04 · 104

Table 1.2: Parameters for boundary conditions and bounds for black-box constraints for laboratory (3rd
column) and industrial (4th column) cases.

https://github.com/m01marpor/BFO

1.4. EXPERIMENTAL RESULTS 27

1.4.1 Laboratory case

Referring to the third column of Table 1.2, the temperature Tg of the hot gas is around
100◦C with low HTC hg while the inlet temperature of the cooling air Tc is around 50◦C
and inlet pressure pinc is about twice the atmospheric pressure. The impingement plate
is nearly square with approximately 12 cm per side, and the target surface is 1 cm thick
with good thermal conductivity. In this experiment, we start from an initial guess vs

0

chosen with xn = 1.75 · 10−2 m, yn = 8.40 · 10−3 m, zn = 6.30 · 10−3 m, d = 2.10 · 10−3

m and layout = staggered as it shown in Figure 1.9. The initial guess has a value for
the objective value H (vs

0) = 2.03 · 102W m−2K−1. In this way vs
0 satisfies the algebraic

constraints (1.29)-(1.32) and the box constraints defined by the set B ⊂ R4
>0

B :=

{
(xn, yn, zn, d) ∈

[
Lx

30
,
Lx

2

]
×
[
Ly

30
,
Ly

5

]
×
[
10−3m, 10−2m

]
×
[
2 · 10−3m,

Ly

2

]}
.

(1.39)
This definition of B allows a very simple design for the impingement plate. After only

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

x [m]

0

0.02

0.04

0.06

0.08

0.1

0.12

y
[m

]

Initial Layout

Figure 1.9: 2-D representation of the initial guess for the laboratory case.

one iteration of ℓ1−penalty BFO method and 346 evaluations of NOZZLE the procedure
converges to a solution ṽ such that C (ṽ) ≤ τ . In particular the geometric variables of
this solution are xn = 2.54·10−2 m, yn = 1.53·10−2 m, zn = 4.60·10−3 m, d = 2.00·10−3 m
and layout = inline with a corresponding objective value H (ṽ) = 4.16 · 102W m−2K−1;
in Figure 1.11 (right) we show in 2-D the resulting layout.

28 CHAPTER 1. NOZZLE

0 0.05 0.1

x [m]

395

400

405

410

415

420

425

430

435

440

445

H
T

C

HTC distribution

0 0.05 0.1

x [m]

308.2

308.4

308.6

308.8

309

309.2

309.4

T
[K

]

Wall temperature distributions

Twe

Twi

Figure 1.10: Laboratory case: On the left is the 1-D distribution of the HTC hc of the cooling air.
On the right is the 1-D distribution of the internal and external wall temperature distributions.

In Figures 1.10 and 1.11 there are some plots to show the distribution of the HTC of
the cooling air hc (Figure 1.10, left), the distributions of the wall temperatures (Figure
1.10, right) and the distribution of the wall temperature difference (Figure 1.11, left).
This last plot shows very low values for the difference between external and internal
temperature, and this is due to the thickness of the wall combined with its thermal
conductivity. From the other plots, it is possible to see that there are no violations in
temperature constraints.

1.4.2 Industrial case

In this case, the temperatures are significantly higher. In fact the temperature Tg of the
external hot gas is 1000◦C and the inlet temperature Tc is 500◦C. From the 4th column
of Table 1.2, we can see that also the HTC of the hot gas hg is higher and that the inlet
pressure pinc of the cooling air is ten times the atmospheric pressure. On the other hand,
we are considering a smaller impingement plate (a square with with 5cm-long side) and
a thinner target surface (only 3mm thick) with a lower thermal conductivity. Since the
boundary conditions change, the upper bounds for the temperature constraints must be
increased (see Table 1.2, 4th column). The box constraints B are identical to the ones
defined previously in the "laboratory case" with only one change for the constraint on
the hole diameter d. In particular, since the plate is smaller, we allow d to be smaller,

1.4. EXPERIMENTAL RESULTS 29

0 0.05 0.1

x [m]

0.625

0.63

0.635

0.64

0.645

0.65

0.655

T
[K

]

T
we

-T
wi

0 0.05 0.1

x [m]

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

y
[m

]

Resulting Layout

Figure 1.11: Laboratory case: On the left is the 1-D distribution of the difference between external and
internal wall temperatures. On the right is a 2-D representation of the final layout of the impingement
plate.

thus the constraint on d becomes d ∈
[
5 · 10−4m, Ly

2

]
.

The initial guess vs
0 has values xn = 5.00 ·10−3 m, yn = 4.00 ·10−3 m, zn = 3.00 ·10−3

m, d = 1.00 · 10−3 m and layout = staggered and has an objective value of H (vs
0) =

1.01 · 103W m−2K−1. The initial layout is shown in Figure 1.12.
Again, with only one iteration of ℓ1−penalty BFO method and 252 NOZZLE evalu-

ations the procedure converges to a solution ṽ with H (ṽ) = 2.71 · 103W m−2K−1. The
geometric variables have the following values xn = 6.28 · 10−3 m, yn = 3.87 · 10−3 m,
zn = 1.46 ·10−3 m, d = 5.00 ·10−4 m and layout = inline. The resulting layout is shown
in Figure 1.14 (right).

In Figure 1.13 are plotted the distribution of HTC hc (left) and the distributions of
the wall temperatures (right); in Figure 1.14, on the left, we have the distribution of the
temperature difference on the target wall. Also in this case there is no violation of the
temperature constraints.

1.4.3 Comments on the numerical results

Summarizing, in both the problem settings, our DFO approach allows us to compute
solutions that improve the performance of the cooling system with low computational
effort (only a few hundred function evaluations). In particular, we improve the RMS

30 CHAPTER 1. NOZZLE

0 0.01 0.02 0.03 0.04 0.05

x [m]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

y
[m

]

Initial Layout

Figure 1.12: 2-D representation of the initial guess for the industrial case.

heat transfer hc from 2.03 · 102W m−2K−1 to 4.16 · 102W m−2K−1 for the "laboratory
case" and from 1.01 · 103W m−2K−1 to 2.71 · 103W m−2K−1 for the "industrial case". In
addition, the behavior of the temperature distributions shown in Figures 1.10, 1.11, 1.13
and 1.14 are consistent with the studies previously done (see [32, 33]). Let us notice that
both the computed solutions are not "far" from the initial guesses, that is because the
procedure described in Algorithm 4 is a local optimization strategy, i.e. the algorithm
strongly depends on the choice of the initial guess. On the other hand, we remark the
switch in the value of the categorical layout from staggered to inline.

1.4. EXPERIMENTAL RESULTS 31

0 0.01 0.02 0.03 0.04

x [m]

2500

2550

2600

2650

2700

2750

2800

2850

2900

2950

H
T

C

HTC distribution

0 0.01 0.02 0.03 0.04

x [m]

880

890

900

910

920

930

940

950

960

T
[K

]

Wall temperature distributions

Twe

Twi

Figure 1.13: Industrial case: On the left is the 1-D distribution of the HTC hc of the cooling air. On
the right is the 1-D distribution of the internal and external wall temperature distributions.

0 0.01 0.02 0.03 0.04

x [m]

48.4

48.6

48.8

49

49.2

49.4

49.6

49.8

50

50.2

50.4

T
[K

]

T
we

-T
wi

0 0.02 0.04

x [m]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

y
[m

]

Resulting Layout

Figure 1.14: Laboratory case: On the left is the 1-D distribution of the difference between external and
internal wall temperatures. On the right is a 2-D representation of the final layout of the impingement
plate.

Chapter 2

MUℓSTREG

In this chapter, we propose a new multilevel framework for the solution of stochastic
optimization problems.

More specifically, we consider the solution of

min
x∈Rn

f(x) (2.1)

where f is a function that is assumed to be smooth and bounded from below, whose
value can only be computed with some noise. When considering problem (2.1), it is
usually assumed that realizations of f of the form f(x, ε) are available, with ε a random
variable [14, 24]. In this work, we allow for more flexibility by assuming that we have
access to a hierarchy of noisy representations of f , built either by reducing the dimension
in the variables space or by reducing the noise of the function approximation, or both.
A level ℓ thus corresponds to a subset of variables and to a noise level in the function
approximation. As in the classical case, a multilevel method in this context alternates
"fine steps", i.e., steps computed considering large subsets of variables and accurate
function approximations, and "coarse steps" computed taking into account just small
subsets of variables and inaccurate function approximations. However, differently from
the classical setting, the steps at each level are stochastic.

A strong motivation for the interest in this setting is given by the following approxi-
mation of (2.1)

min
x∈Rn

1

N

N∑
i=1

fi(x) (2.2)

32

33

with fi : Rn → R for i = 1, . . . , N smooth and bounded from below. Usually, either n
or N (or both) are really large. This problem has indeed its origin in large-scale data
analysis applications where models depending on a large number of parameters n are
fitted to a large set of N training samples.

Stochastic optimization problems, in both forms (2.1) and (2.2), can arise from data-
matching problems such as those arising from validating an engineering design. In the
particular context of this work, as we anticipated in the Introduction, we focused on
validating the design of a complete cooling system for a gas turbine. The validation is
done by identifying a setting of n parameters to minimize the error with respect to N
measurements defined by the objective function f . Since it is a data-matching problem
between measured values and values predicted by a simulator of the cooling system
defined by the design to be validated, random noise sources can come from a random
uncertainty either on the N measurements or they can be intrinsic to the simulator, both
possibilities can occur at the same time.

Several methods have been developed to cope with the large sizes of the datasets
(N) in problem (2.2). In particular, optimization techniques based on subsampling
techniques have been proposed, among them the numerous variations of the classical
Stochastic Gradient Descent (SGD) method.

When considering problem (2.2), there is a natural way of building a hierarchy in the
"function space" through the definition of nested subsample sets S l ⊆ {1, .., N} such that
∅ ≠ S1 ⊂ ... ⊂ S l ⊂ ... ⊂ S lmax−1 ⊂ S lmax ⊆ {1, ..., N} and by considering a hierarchy of
subsampled functions obtained by averaging the functions fi in S l. As in the classical
case, a multilevel method in this context can alternate "fine steps", i.e., steps computed
considering large subsets of data and "coarse steps" computed taking into account just
small subsets of data. The coarse steps are computed by minimizing a model that is
built from the coarse level approximations by adding a correction term, usually known
as "first-order coherence" in the multilevel literature, which (in this context) accounts for
the discrepancy between the full gradient and the subsampled gradient. This is similar to
the same term that is added in the reduced variance gradient estimate of the mini-batch
version of SVRG [44] (cf. equations (2.60) and (2.57) below). Multilevel methods can
thus also be interpreted as variance reduction methods, cf. [17]. Their advantage is that
they allow for an automatic choice of the step size, either in the form of a line-search [57]
or in the form of a trust-region-like strategy [38]. Indeed, even if this usually requires a

34 CHAPTER 2. MUℓSTREG

function evaluation per iteration, by keeping the number of steps taken at the finest level
limited and by leveraging the coarse steps, updating the step-size remains feasible even
when evaluating the objective function for large datasets, thus resulting in a variance
reduction method with automatic step-size selection.

We propose a stochastic multilevel first-order Adaptive Regularization (AR1) tech-
nique named MUℓSTREG for MUltilevel STochastic REegularized Gradient1. Adaptive
Regularization methods are globally convergent deterministic optimization techniques
that builds a sequence of points {xk} by minimizing local models of the objective func-
tion. Every model is defined starting from the information at the current iterate and
the model minimizer is used to define the next iterate. In particular, ARq methods
work with regularized models which are the combination of a Taylor polynomial of the
objective function of order q (for a suitable q ∈ N) and a regularization term of order
q+1. Thus in the specific case of AR1 methods, we have a first-order Taylor polynomial
and a quadratic regularization term. For example, let us assume we want to minimize a
smooth function g : Rn → R, and let us consider a generic iterate xk. The model mk of
g around xk is defined, for every s ∈ Rn, as:

mk(s) := g(xk) +∇xg(xk)
T s+

1

2
λk∥s∥2 := Tk [g] (s) +

1

2
λk∥s∥2,

where λk > 0 is the regularization parameter. To move from xk to xk+1 we define a step
sk as the minimizer of mk(s), which means that sk takes the form

sk = −∇xg(xk)

λk
.

As in classical Levenberg-Marquardt and trust region methods, once we have sk we would
like to use it to define xk+1 = xk + sk, but before doing so, we have to check for the
decrease g(xk)− g(xk + sk) and compare it with the decrease for the Taylor polynomial
Tk [g] (0)− Tk [g] (sk). This check is performed by computing the ratio ρk as

ρk =
g(xk)− g(xk + sk)

Tk [g] (0)− Tk [g] (sk)
= λk

g(xk)− g(xk + sk)

∥∇xg(xk)∥2
.

If ρk ≈ 1, we have a sufficient decrease of g, thus we can accept the step sk, set xk+1 =

1The ℓ denotes the number of levels in the hierarchical problem description.

35

xk + sk and reduce the regularization parameter λk. Otherwise, we keep the iterate
unchanged, i.e. xk+1 = xk, and we increase λk. The regularization term changes at each
iteration based on the outcome of the previous iteration, and this also affects the size
of sk. If in fact at iteration k − 1 we had sufficient decrement then λk is smaller than
λk−1 and this allows a longer sk step along the direction of the antigradient −∇xg(xk).
If, on the other hand, we have had failure λk is larger than λk−1, hence the step sk

will be shorter. We choose to focus on AR1 since it is easier to adapt to a multilevel
context than the Trust Region [20] and it has the same evaluation complexity bounds as
first-order trust-region method [21, Theorem 2.4.4].

In this chapter, we present the MUℓSTREG method to address the general problem
(2.1). In particular, we focus on a version with a two-level hierarchy that we use to
prove the convergence properties of the method. After that, we show in detail a ver-
sion of MUℓSTREG specific for problem (2.2) that exploits a hierarchy in the function
approximations only. This gives us the chance to investigate from a practical point of
view the behavior of multilevel methods as variance reduction methods with adaptive
regularization. We test the resulting method on both convex and nonconvex problems
and we compare it to a mini-batch SVRG, due to the close relation of our method to
variance reduction methods. We show that while achieving comparable performance of
non-fined tuned versions of mini-batch SVRG on convex problems, our method greatly
outperforms SVRG on nonconvex ones. Moreover, we investigate the theoretical and
practical advantages of the stochastic multilevel framework. Notably, differently from
deterministic multilevel schemes, the stochastic framework does not require the fine-level
objective function to coincide with the original objective. Thus in the context of prob-
lem (2.2), considering the full sample set is not necessary, while it is required by the
convergence theory of classical variance reduction methods. We show in practice that
the method remains robust without dropping accuracy when considering fine levels with
smaller sample sets.

The chapter is organized as follows. In Section 2.1 we introduce our MUℓSTREG
method both in its general formulation and in a two-level version (MU2STREG); we
propose the convergence analysis using MU2STREG, in Section 2.2. In Section 2.3 we
specialize the MUℓSTREG framework to the finite-sum setting of problem (2.2) and we
analyze the numerical performance of the method in Section 2.4.

36 CHAPTER 2. MUℓSTREG

2.1 The multilevel stochastic regularized gradient

method

In this section, we describe our new MUltilevel STochastic REegularized Gradient method
(MUℓSTREG) for the solution of problem (2.1).

2.1.1 Hierarchical representation of problem (2.1)

We assume access to a hierarchy of stochastic functions {f ℓ} for ℓ = 1, . . . , ℓmax, that
approximate f . More precisely, our function approximations will take the form f ℓ :=

fh(xh, εl), where {εl}lmax
l=1 are random variables such that, for fixed h, the evaluation

of fh(xh, εl) is more accurate (less noisy) than the evaluation of fh(xh, εl−1) for each
l = 2, . . . , lmax. Moreover, fh for h = 1, . . . , hmax are function approximations de-
fined on lower dimensional spaces, i.e., xh ∈ Vh, with V1 ⊆ V2 ⊆ · · · ⊆ Vhmax . This
structure defines a stochastic multilevel problem description of problem (2.1), where
f ℓmax = fhmax(xhmax , εlmax) corresponds to the fine level function and f ℓ = fh(xh, εl)

are the coarse approximations for ℓ = (h, l), ℓ = 2, . . . , ℓmax. For each level ℓ, ϕℓ(x) will
denote a computable version of fh(xh, εl), where εl is a random variable, and we assume
that ∇ϕℓ(x) is available as well. If the hierarchy is built both in variable space and
function space, the level ℓ = (h, l) is identified by a subset of variables and a noise level
l, such that h ≤ h+ 1 and l ≤ l+ 1 and at least one of these inequalities is strict. As in
classical multilevel methods, we assume to have at disposal some transfer operators Rℓ

(restriction) and P ℓ (prolongation) to transfer the information (variables and gradients)
from level ℓ to level ℓ − 1 and vice-versa, such that Rℓ = ν(P ℓ)T for some ν > 0 [18].
Differently from the classical framework, such operators may be random. If the hierarchy
is built just in the functions space all the variables will have the same dimension and the
transfer operators will thus just be the identity.

Example 1. In the case of Problem (2.2), if the hierarchy is built just in the sample
space (i.e., h = hmax for all ℓ) the approximations ϕℓ would be the averaged sum of the
fi over nested subsets of this large set, that is ϕℓ := fSℓ where:

fSℓ

(x) =
1

|Sℓ|
∑
i∈Sℓ

fi(x),

2.1. THE MULTILEVEL STOCHASTIC REGULARIZED GRADIENT METHOD 37

for Sℓ ⊆ Sℓ+1 for all ℓ (cf. Section 2.3). If the sampling is done randomly, such function
approximations will depend on a random variable εl, that defines hierarchy in the function
space.

Example 2. Consider the following problem:

min
x∈Rn

n∑
j=1

(Au(xj)− g(xj))
2 +

∑
i∈M

(u(xi)− ūi)
2

arising from the discretization of a partial differential equation on a grid with n points.
The first term takes into account the residual of the partial differential equation and the
second one is a data-fitting term to a set of available measures M = {ūi}. For this
problem, we can build a hierarchy in both spaces. Let us consider a level ℓ = (h, l): h
will be associated to a coarser grid, i.e., to a subset of the variables Vh ⊂ Rn, while l
to a subset of the measurements S l, drawn randomly from M. In classical multigrid,
such subsets are chosen in a deterministic way, in our framework they can be chosen
randomly. The function approximation for level ℓ will thus be

ϕℓ(x) = ∥Au(x)− g(x)∥2 +
∑
i∈Sl

(u(xi)− ūi)
2, x ∈ Vh.

Example 3. Consider the setting proposed in [22]: given xk ∈ Rn, assume to randomly
choose a p-dimensional affine space Yk ⊂ Rn with p < n given by the range of Qk ∈ Rn×p,
i.e.,

Yk = {xk +Qkŝ : ŝ ∈ Rp}.

A random lower-dimensional approximation to f would be given by

ϕ(x) = f(xk +Qkx), for x ∈ Rp.

2.1.2 The step computation

For any level ℓ and at each iteration k, our multilevel gradient method can choose between
two different types of stochastic steps: a gradient step, which is known as the fine step,
or a coarse step computed by exploiting the approximations of f . Notice that the steps
are all stochastic as, differently from classical deterministic multilevel schemes, all the

38 CHAPTER 2. MUℓSTREG

function approximations (including ϕℓmax , which does not need to be equal to f) are
random approximations. In both cases, given the objective function f ℓ of that level, the
step is computed by minimizing a regularized model of the form

mR,ℓ
k (s) = mℓ

k(s) +
λℓk∥∇xf

ℓ(xℓk)∥
2

∥s∥2, (2.3)

for some λℓk > 0. If ℓ = ℓmax then f ℓ = ϕℓmax is the finest approximation. For the lower
levels, f ℓ is the regularized model from the immediate upper level, as specified below.
The definition of mℓ

k also depends on the kind of step taken.

• Fine step. In this case, we define mℓ
k as the first-order Taylor series

Tk[f
ℓ](s) := f ℓ(xℓk) +∇xf

ℓ(xℓk)
T s,

of f ℓ in xℓk, the objective function of that level. Minimizing the regularized model
(2.3) thus amounts to choosing the step

sℓk = − 1

λℓk∥∇f ℓ(xℓk)∥
∇xf

ℓ(xℓk),

i.e., a classical (stochastic) gradient step, where the step-size depends on the norm
of the gradient as in [14], cf. discussion in [14, section 3.1].

• Coarse step. The random model mℓ
k is in this case built exploiting the stochastic

approximations {ϕℓ}ℓmax
ℓ=1 of f and is thus either defined in a lower dimensional

space, or employs inaccurate function approximations, or both. The algorithm in
this case recursively calls itself to find the coarse step. More precisely, starting at
the finest level ℓmax = (hmax, ℓmax) and considering the finest approximation ϕℓmax

of f and the immediately coarser approximation ϕℓmax−1 , at iteration k we define
mℓmax

k = φ
ℓmax−1

k where

φ
ℓmax−1

k (sℓmax−1) = ϕℓmax−1(Rℓmaxxℓmax
k + sℓmax−1)

+ (Rℓmax∇xϕ
ℓmax(xℓmax

k)−∇xϕ
ℓmax−1(Rℓmaxxℓmax

k))T s
ℓmax−1

k ,

i.e., φℓmax−1
k is a modification of the coarse function ϕℓmax−1 through the addition

of a correction term. This correction aims to enforce the following relation for

2.1. THE MULTILEVEL STOCHASTIC REGULARIZED GRADIENT METHOD 39

sℓmax = Psℓmax−1 :

∇sφ
ℓmax−1
k (0)T sℓmax−1 = Rℓmax∇xϕ

ℓmax(xℓmax
k),

which ensures that the behaviour of the coarse model is coherent with the fine
objective function, up to order one.

The regularized modelmR,ℓ
k is then (approximately) minimized wrt s, by recursively

calling the multilevel procedure, thus taking either a fine step on level ℓ − 1 or
building a coarse model for mR,ℓmax

k (s) involving the approximation ϕℓmax−2 and so
on. The recursive call is stopped as soon as a step sℓ−1

k is found that satisfies the
following conditions:

mR,ℓ
k (sℓ−1

k) < mR,ℓ
k (0),

∥∥∥∇sm
R,ℓ
k (sℓ−1

k)
∥∥∥ ≤ ϵℓ−1∥sℓ−1

k ∥, (2.4)

for some ϵℓ−1 > 0, and we set sℓk := P ℓsℓ−1
k . As we will see, these conditions

will ensure the convergence of the multilevel method in the spirit of the Adaptive-
Regularization algorithm with a first-order model described e.g., in [21, Sec. 2.4.1].
Note that even if we use a first-order model at the fine level, we could use a higher-
order method to minimize the lower level model.

To be meaningful, the coarse steps are restricted to iterations such that

∥Rℓ∇xf
ℓ(xℓk)∥ ≥ κℓ∥∇xf

ℓ(xℓk)∥,

for κℓ ∈ (0,min{1, ∥Rℓ∥}) [38].

This framework is flexible and encompasses several actual implementations: at each
iteration k one needs to choose whether to employ the fine or the coarse step. A sketch
of a possible MUℓSTREG cycle of iterations is depicted in Figure 2.1.

2.1.3 The step acceptance

The step sℓk is used to define a trial point xℓk+sℓk and two estimates of f ℓ(xℓk) and f ℓ(xℓk+

sℓk), denoted by f ℓ,0
k and f ℓ,s

k , which involve approximations of f ℓ(xℓk) and f ℓ(xℓk + sℓk).
The achieved reduction given by f ℓ,0

k − f ℓ,s
k over the predicted reduction mℓ

k(0)−mℓ
k(s

ℓ
k)

40 CHAPTER 2. MUℓSTREG

ϕℓmax

ϕℓmax−1

ϕ2

ϕ1

Level ℓmax:

Level ℓmax − 1:

Level 2:

Level 1:

xℓmax
k xℓmax

k+1 = xℓmax
k + sℓmax

k

Figure 2.1: Sketch of a possible iteration scheme for MUℓSTREG.

is computed to decide whether to accept the trial point or not. More precisely, the step
acceptance is based on the ratio:

ρk =
f ℓ,0
k − f ℓ,s

k

mℓ
k(0)−mℓ

k(s
ℓ
k)
. (2.5)

A successful iteration is declared if the model is accurate, i.e., ρk is larger than or equal
to a chosen threshold η1 ∈ (0, 1) and ∥∇f ℓ

k(x
ℓ
k)∥ ≥ η2

λℓ
k

for some η2 > 0; otherwise the
iteration is declared unsuccessful and the step is rejected. The test for the step acceptance
is combined with the update of the regularization parameter λℓk for the next iteration.
The update is still based on the ratio (2.5). If the step is successful, the regularization
parameter is decreased, otherwise it is increased.

The full multilevel procedure with ℓ levels, specialized for the problem (2.2), is de-
scribed in Algorithm 6 and will be introduced in Section 2.3. In the following section,
for the sake of simplicity, we detail the procedure in the two-level case.

2.1.4 MU2STREG: the two-level case

We assume here that we have just two approximations to our objective at our disposal
and therefore we omit the superscript ℓ: we denote by Φ the approximation at the
highest level (Φ = ϕℓmax = φℓmax in the previous notation) and by ϕ the other less
accurate approximation available. Moreover, let n1 and n2 be the dimensions of the fine
and coarse spaces, respectively, and let R and P be the grid operators. We sketch the
MUℓSTREG procedure in Algorithm 5 where we rename it as MU2STREG. Below we
collect the main assumptions on the algorithmic steps that will be used in the convergence
analysis in the next section.

2.1. THE MULTILEVEL STOCHASTIC REGULARIZED GRADIENT METHOD 41

Assumption 1. At each iteration k of Algorithm 5 let

mR
k (s) = mk(s) +

λk∥∇xΦ(xk)∥
2

∥s∥2, (2.6)

and

mk(s) =

Tk[Φ](s) := Φ(xk) +∇xΦ(xk)
T s, (fine step),

φk(s) := ϕ(Rxk + s) + (R∇xΦ(xk)−∇xϕ(Rxk))
T s, (coarse step).

(2.7)

The step sk ∈ Rn1 is computed so that either:

sk = − ∇xΦ(xk)

λk∥∇xΦ(xk)∥
, (fine step) or (2.8)

sk = Ps∗, s∗ ∈ Rn2 , (coarse step) (2.9)

where

mR
k (s

∗) < mR
k (0) and ∥∇sm

R
k (s

∗)∥ = ∥∇sφk(s
∗) + λk∥∇xΦ(xk)∥s∗∥ ≤ θ∥s∗∥ (2.10)

for some θ > 0. The definition of the coarse model ensures that

∇sφk(0) = R∇xΦ(xk). (2.11)

The use of the coarse step is restricted to iterations k such that

∥R∇xΦ(xk)∥ ≥ κH∥∇xΦ(xk)∥ (2.12)

for κH ∈ (0,min{1, ∥R∥}). We assume that R = νP T with ν = 1, without loss of
generality, and that ∥R∥ = ∥P∥ ≤ κR for κR > 0.

Remark 1. From (2.6), (2.7) and (2.10), when the coarse model is used, it follows:

φk(s
∗)− φk(0) < −1

2
λk∥∇xΦ(xk)∥∥s∗∥2. (2.13)

Notice that Algorithm 5 is a flexible framework encompassing several actual implemen-
tations: at Step 2 one needs to choose whether to employ the fine or the coarse step.

42 CHAPTER 2. MUℓSTREG

Algorithm 5 MU2STREG(x0,Φ, ϕ, λ0, ϵ) two-level stochastic regularized gradient
method
1: • Initialization: Choose x0 ∈ Rn and λ0 > λmin with λmin > 0. Set the constants

η1 ∈ (0, 1), η2 > 0 and γ ∈ (0, 1). Set k = 0.
2: • Model choice: If (2.12) holds, choose if to use the fine level model and go to Step 3, or

the coarse level model and go to Step 4. Otherwise, go to Step 3.
3: • Fine step computation: Define mk(s) = Tk[Φ](s) = Φ(xk) + ∇xΦ(xk)

T s. Set sk =

− ∇xΦ(xk)
λk∥∇xΦ(xk)∥ . Go to Step 5.

4: • Coarse step computation: Define a lower level model and its regularized version as:

φk(s) = ϕ(Rxk + s) + [R∇xΦ(xk)−∇xϕ(Rxk)]
T s,

mR
k (s) = φk(s) +

1

2
λk∥∇xΦ(xk)∥∥s∥2.

Approximately minimize mR
k , yielding an approximate solution sk satisfying (2.10). Define

mk(s) = φk(s).
5: • Acceptance of the trial point and regularization parameter update: Obtain esti-

mates f0
k and fs

k of f(xk) and f(xk + sk), respectively and compute ρk =
f0
k − fs

k

mk(0)−mk(sk)
.

If ρk ≥ η1 and ∥∇xΦ(xk)∥ ≥ η2/λk then set xk+1 = xk + sk and λk+1 = γλk.
Else set xk+1 = xk and λk+1 = γ−1λk.

6: • Check stopping criterion. If satisfied stop, otherwise set k = k + 1 and go to Step 2.

2.2 Convergence theory

In this section, we provide a theoretical analysis of the proposed multilevel method
proving the global convergence to first-order critical points. Note that, as the method is
recursive, we can restrict the analysis to the two-level case. We thus focus on MU2STREG
as described in Subsection 2.1.4. The analysis follows the scheme proposed in [24] and is
extended to adaptive regularization methods and adapted to include also the multilevel
steps.

Let us now first state our assumptions: we need some regularity assumptions as in
[15].

Assumption 2. Let f : Rn → R,Φ : Rn1 → R and ϕ : Rn2 → R with n ≥ n1 ≥ n2, be
continuously differentiable and bounded below functions. Let us assume that the gradients
of f , Φ and ϕ are Lipschitz continuous, i.e., that there exist constants Lf , LΦ, Lϕ such

2.2. CONVERGENCE THEORY 43

that

∥∇xf(x)−∇xf(y)∥ ≤ Lf ∥x− y∥ for all x, y ∈ Rn,

∥∇xΦ(x)−∇xΦ(y)∥ ≤ LΦ ∥x− y∥ for all x, y ∈ Rn1 ,

∥∇xϕ(x)−∇xϕ(y)∥ ≤ Lϕ ∥x− y∥ for all x, y ∈ Rn2 .

We assume that the models we are considering are random functions and so is their
behavior and influence on the iterations. Hence, Mk will denote a random model in
the k-th iteration, while we will use the notation mk = Mk(ω) for its realizations. As
a consequence of using random models, the iterates Xk, the regularization parameter
Λk and the steps Sk are also random quantities, and so xk = Xk(ω), λk = Λk(ω),
sk = Sk(ω) will denote their respective realizations. Similarly, let random quantities
F 0
k , F

s
k denote the estimates of f(Xk) and f(Xk + Sk), with their realizations denoted

by f 0
k = F 0

k (ω) and f s
k = F s

k (ω). In other words, Algorithm 5 results in a stochastic
process {Mk, Xk, Sk,Λk, F

0
k , F

s
k}. Our goal is to show that under certain conditions on

the sequences {Mk} and {F 0
k , F

s
k} the resulting stochastic process has desirable conver-

gence properties with probability one. In particular, we will assume that models Mk and
estimates F 0

k , F
s
k are sufficiently accurate with sufficiently high probability, conditioned

on the past. To formalize conditioning on the past, let FM ·F
k−1 denote the σ-algebra gen-

erated by M0, . . . ,Mk−1 and F0, . . . , Fk−1 and let FM ·F
k−1/2 denote the σ-algebra generated

by M0, . . . ,Mk and F0, . . . , Fk−1. To formalize sufficient accuracy we use the measure
for the accuracy introduced in [14], which adapts to regularized models those originally
proposed in [24].

Definition 1. Suppose that ∇f is Lipschitz continuous. Given λk > 0, a function m is
a κ-fully linear model of f around the iterate xk provided for κ = (κf , κg), that for all y
in a neighborhood of xk:

∥∇xf(y)−∇xm(y)∥ ≤ κg
λk
, (2.14)

|f(y)−m(y)| ≤ κf
λ2k
. (2.15)

Remark 2. The first-order correction imposed on the coarser levels ensures that (at least
locally) the coarse model is fully linear. Thus we will ask for this requirement on the fine

44 CHAPTER 2. MUℓSTREG

level model Tk[Φ]. Imposing this condition on the fine level only will be enough to ensure
convergence of the method.

Specifically, we will consider probabilistically fully linear models, according to the
following definition [24]:

Definition 2. A sequence of random models {Mk} is said to be α-probabilistically κ-fully
linear with respect to the corresponding sequence {Xk,Λk} if the events

Ik = {Mk is a κ-fully linear model of f around Xk} (2.16)

satisfy the condition
P(Ik|FM F

k−1) ≥ α,

where FM F
k−1 is the σ-algebra generated by M0, . . . ,Mk−1 and F0, . . . , Fk−1.

We will also require function estimates to be sufficiently accurate.

Definition 3. The estimates f 0
k and f s

k are said to be ϵf -accurate estimates of f(xk) and
f(xk + sk) respectively, for a given λk if

|f 0
k − f(xk)| ≤

ϵf
λ2k

and |f s
k − f(xk + sk)| ≤

ϵf
λ2k
.

In particular, we will consider probabilistically accurate estimates as in [24]:

Definition 4. A sequence of random estimates {F 0
k , F

s
k} is said to be β-probabilistically

ϵf -accurate with respect to the corresponding sequence {Xk,Λk, Sk} if the events

Jk =
{
F 0
k , F

s
k are ϵf -accurate estimates of f(xk) and f(xk + sk), respectively, for Λk

}
(2.17)

satisfy the condition
P(Jk|FM F

k−1/2) ≥ β,

where ϵf is a fixed constant and FM F
k−1/2 is the σ-algebra generated by M0, . . . ,Mk and

F0, . . . , Fk−1.

Following [24], in our analysis we will require that our method has access to α-
probabilistically κ-fully linear models, for some fixed κ and to β-probabilistically ϵf

2.2. CONVERGENCE THEORY 45

accurate estimates, for some fixed, sufficiently small ϵf . Cf. [24, Section 5] for proce-
dures for constructing probabilistically fully linear models, and probabilistically accurate
estimates. Basically, when the function approximations come from a subsampling this
construction is possible if the model accounts for enough samples. Notice that we will
assume this condition only on the finest level, for the coarse ones this is not necessary
thanks to (2.11), obtained from the definition of the coarse model.

2.2.1 Convergence analysis

We start by recalling three useful relations, following from Taylor’s theorem, see for
example [21, Corollary A.8.4].

Lemma 1. Let g : Rn → R be a continuously differentiable function with Lipschitz
continuous gradient, with L the corresponding Lipschitz constant. Given its first order
truncated Taylor series in x T [g](s) := g(x) +∇xg(x)

T s, it holds:

g(x+ s) = T [g](s) +

∫ 1

0

[∇xg(x+ ξs)−∇xg(x)]
T s dξ, (2.18)

|g(x+ s)− T [g](s)| ≤ L

2
∥s∥2, (2.19)

∥∇xg(x+ s)−∇sT [g](s)∥ ≤ L∥s∥. (2.20)

We now propose two technical lemmas on the coarse step.

Lemma 2. Let Assumptions 1 and 2 hold. Consider a realization of Algorithm 5 where
at iteration k the coarse model is used and let sk = Ps∗ be the resulting step. Then it
holds:

|φk(0)− φk(s
∗)− (Tk[Φ](0)− Tk[Φ](sk))| ≤

Lϕ

2
∥s∗∥2. (2.21)

Proof. Using the first order Taylor expansion of φk and (2.18) applied to φk, and con-
sidering that from (2.11), ∇sφk(0)

T s∗ = ∇xΦ(xk)
T sk, we can write:

φk(0)− φk(s
∗) = −∇xΦ(xk)

T sk −
∫ 1

0

[∇sφk(ξs
∗)−∇sφk(0)]

T s∗ dξ.

Since ∇xΦ(xk)
T sk = Tk[Φ](sk)− Tk[Φ](0), using Assumption 2 and recalling that φk

46 CHAPTER 2. MUℓSTREG

and ϕ differ just by a linear term, we obtain:

|φk(0)− φk(s
∗)− (Tk[Φ](0)− Tk[Φ](sk))|

≤
∫ 1

0

|[∇sφk(ξs
∗)−∇sφ(0)]

T s∗| dξ ≤
∫ 1

0

∥∇sφk(ξs
∗)−∇sφk(0)∥∥s∗∥ dξ ≤

Lϕ

2
∥s∗∥2.

Lemma 3. Under Assumptions 1 and 2, for any realization of Algorithm 5 and for each
iteration k where the coarse step is used, it exists a constant K > 0 such that:

∥R∇xΦ(xk)∥ ≤ (K + λk∥∇xΦ(xk)∥)∥s∗∥, with K = 2LΦκ
2
R + Lϕ + θ. (2.22)

Proof. From the Lipschitz continuity of ∇xΦ(xk), we have:

∥R∇xΦ(xk)∥ ≤ ∥R(∇xΦ(xk)−∇xΦ(xk + sk))∥+ ∥R∇xΦ(xk + sk)∥

≤ LΦ∥R∥∥sk∥+ ∥R∇xΦ(xk + sk)∥ ≤ LΦκ
2
R∥s∗∥+ ∥R∇xΦ(xk + sk)∥

where the last inequality follows from sk = Ps∗. Moreover,

∥R∇xΦ(xk + sk)∥ ≤∥R(∇xΦ(xk + sk)−∇sTk[Φ](sk))∥

+ ∥R∇sTk[Φ](sk)−∇sφk(s
∗)∥

+ ∥−λk∥∇xΦ(xk)∥∥s∗∥+∇sφk(s
∗)∥

+ λk∥∇xΦ(xk)∥∥s∗∥.

Let us consider the first three terms separately.

1. By (2.20),

∥R(∇xΦ(xk + sk)−∇sTk[Φ](sk))∥ ≤ LΦκR∥sk∥ ≤ LΦκ
2
R∥s∗∥.

2. For the second term, using the definition of Tk[Φ](s) and φk(s) in (2.7) and the

2.2. CONVERGENCE THEORY 47

Lipschitz continuity of ∇xϕ(x), it holds:

∥R∇sTk[Φ](sk)−∇sφk(s
∗)∥

= ∥R∇xΦ(xk)−∇xϕ(Rxk + s∗)− (R∇xΦ(xk)−∇xϕ(Rxk))∥

= ∥R∇xΦ(xk)−∇xϕ(Rxk + s∗)−R∇xΦ(xk) +∇xϕ(Rxk)∥

= ∥∇xϕ(Rxk)−∇xϕ(Rxk + s∗)∥ ≤ Lϕ∥s∗∥.

3. The third term from (2.10) is bounded by θ∥s∗∥.

Thus we finally obtain the thesis.

The following lemma relates the coarse step size and the regularization parameter λ.

Lemma 4. Let Assumptions 1 and 2 hold. Assume that at iteration k the coarse step is
used. Let K be defined as in (2.22) and assume that

1

λk
≤ min

{ 1

K
,

1

2Lϕ

}
∥∇xΦ(xk)∥, (2.23)

then
κH
2λk

≤ ∥s∗∥ ≤ 4κR
λk

. (2.24)

Proof. The first inequality follows from assumption (2.23), (2.22) and (2.12):

∥s∗∥ ≥ ∥R∇xΦ(xk)∥
K + λk∥∇xΦ(xk)∥

≥ κH∥∇xΦ(xk)∥
K + λk∥∇xΦ(xk)∥

≥ κH
2λk

. (2.25)

The second inequality follows from (2.19) applied to φk:

|φk(s
∗)− φk(0)| − |∇sφk(0)

T s∗| ≤ |φk(s
∗)− φk(0)−∇sφk(0)

T s∗| ≤ Lϕ

2
∥s∗∥2,

where we have used the fact that from Assumption 2 and (2.7) φk is Lϕ smooth. Thus,
from (2.11),

φk(0)− φk(s
∗) ≤ |∇sφk(0)

T s∗|+ Lϕ

2
∥s∗∥2 = |∇xΦ(xk)

T sk|+
Lϕ

2
∥s∗∥2

≤ ∥∇xΦ(xk)∥∥sk∥+
Lϕ

2
∥s∗∥2 ≤ κR∥∇xΦ(xk)∥∥s∗∥+

Lϕ

2
∥s∗∥2.

48 CHAPTER 2. MUℓSTREG

Combining this with (2.13) we have:

1

2
λk∥∇xΦ(xk)∥∥s∗∥2

(2.13)
≤ φk(0)− φk(s

∗) ≤ κR∥∇xΦ(xk)∥∥s∗∥+
Lϕ

2
∥s∗∥2.

Thus (
1

2
λk∥∇xΦ(xk)∥ −

Lϕ

2

)
∥s∗∥2 ≤ κR∥∇xΦ(xk)∥∥s∗∥.

From (2.23) 1
2
λk∥∇xΦ(xk)∥ − Lϕ

2
≥ 1

4
λk∥∇xΦ(xk)∥ and thus

1

4
λk∥∇xΦ(xk)∥∥s∗∥ ≤ κR∥∇xΦ(xk)∥.

In the following lemma, we measure the decrease predicted by the model.

Lemma 5. Let Assumptions 1 and 2 hold. For any realization of Algorithm 5 and for
each k it holds:

mk(sk)−mk(0) ≤

−∥∇xΦ(xk)∥
λk

if fine step

−λk∥∇xΦ(xk)∥
2

∥s∗∥2 if coarse step
(2.26)

Proof. If the fine step is used,

mk(sk)−mk(0) = Tk[Φ](sk)− Tk[Φ](0)

= ∇xΦ(xk)
T sk = − ∥∇xΦ(xk)∥2

λk∥∇xΦ(xk)∥
= −∥∇xΦ(xk)∥

λk
.

If the coarse step is used:

mk(sk)−mk(0) = φk(s
∗)− φk(0)

(2.13)
≤ −λk∥∇xΦ(xk)∥

2
∥s∗∥2.

We now prove some auxiliary lemmas that provide conditions under which the de-
crease of the true objective function f is guaranteed. The first lemma states that if the
regularization parameter is large enough relative to the size of the model gradient and

2.2. CONVERGENCE THEORY 49

if the model is fully linear, then the step sk provides a decrease in f proportional to the
size of the model gradient.

Lemma 6. Under Assumptions 1 and 2, suppose that Tk[Φ] is a (κf , κg)-fully linear
model of f in a neighborhood of xk. If

1

λk
≤ min

{
1

K
,
κ2H
64κf

,
1

2Lϕ

}
∥∇xΦ(xk)∥, (2.27)

then the trial step sk leads to an improvement in f(xk + sk) such that

f(xk + sk)− f(xk) ≤ −κ
2
H

32

∥∇xΦ(xk)∥
λk

.

Proof. We distinguish two cases depending on the used step.

1. In the fine step case, from (2.26) we get

f(xk + sk)− f(xk) = f(xk + sk)− Tk[Φ](sk) + Tk[Φ](sk)−

− Tk[Φ](0) + Tk[Φ](0)− f(xk)

(2.15)
≤ 2κf

λ2k
− ∥∇xΦ(xk)∥

λk
(2.27)
≤ −1

2

∥∇xΦ(xk)∥
λk

≤− κ2H
32

∥∇xΦ(xk)∥
λk

.

where we have used that, from (2.27), 1
λk

≤ κ2
H

64κf
∥∇xΦ(xk)∥ ≤ 1

4κf
∥∇xΦ(xk)∥.

2. When the coarse step is used, we have

f(xk + sk)− f(xk) = f(xk + sk)− Tk[Φ](sk)

+ Tk[Φ](sk)− Tk[Φ](0)− φk(s
∗) + φk(0)

− φk(0) + φk(s
∗)

+ Tk[Φ](0)− f(xk).

The first and the last terms are bounded by κf

λ2
k

from (2.15). The second term from

Lemma 2 is bounded by Lϕ

2
∥s∗∥2. The third term is bounded by −λk∥∇xΦ(xk)∥

2
∥s∗∥2

50 CHAPTER 2. MUℓSTREG

from (2.13). Thus

f(xk + sk)− f(xk) ≤
2κf
λ2k

+

(
Lϕ

2
− λk∥∇xΦ(xk)∥

2

)
∥s∗∥2

(2.27)
≤ 2κf

λ2k
− λk∥∇xΦ(xk)∥

4
∥s∗∥2

(2.24)
≤ 2κf

λ2k
− ∥∇xΦ(xk)∥κ2H

16λk
(2.27)
≤ −κ

2
H

32

∥∇xΦ(xk)∥
λk

.

The next lemma shows that for a sufficiently large regularization parameter λk relative
to the size of the true gradient ∇xf(xk), the guaranteed decrease in the objective function,
provided by sk, is proportional to the size of the true gradient.

Lemma 7. Let Assumptions 1 and 2 hold and suppose that Tk[Φ] is a (κf , κg)-fully linear
model of f in a neighborhood of xk. If

1

λk
≤ min

{
1

K + κg
,

1

(64κf/κ2H) + κg
,

1

2Lϕ + κg

}
∥∇xf(xk)∥, (2.28)

then the trial step sk leads to an improvement in f(xk + sk) such that

f(xk + sk)− f(xk) ≤ −C1
∥∇xf(xk)∥

λk
, (2.29)

with C1 :=
κ2
H

32
max

{
K

K+κg
,

64κf

64κf+κgκ2
H
,

2Lϕ

2Lϕ+κg

}
.

Proof. We first prove that the assumption of Lemma 6 is satisfied, and we use its result
to deduce the decrease of the objective function in terms of ∥∇xf(xk)∥ rather than
∥∇xΦ(xk)∥, by linking these two quantities through the assumption of κ-fully linear
model, which yields that

∥∇xΦ(xk)∥ ≥ ∥∇xf(xk)∥ −
κg
λk
. (2.30)

2.2. CONVERGENCE THEORY 51

From assumption (2.28) it holds

∥∇xf(xk)∥ ≥ max
{
K + κg, 64κf/κ

2
H + κg, 2Lϕ + κg

} 1

λk
,

and thus from (2.30) we have

∥∇xΦ(xk)∥ ≥ ∥∇xf(xk)∥ −
κg
λk

≥ max{K, 64κf/κ2H , 2Lϕ}
1

λk
.

Thus the assumption of Lemma 6 is satisfied and

f(xk + sk)− f(xk) ≤ −κ
2
H

32

∥∇xΦ(xk)∥
λk

.

In the same way from (2.28) and (2.30) we have

∥∇xΦ(xk)∥ ≥ ∥∇xf(xk)∥ −
κg
λk

≥ ∥∇xf(xk)∥ − κg min
{ 1

K + κg
,

1

64κf/κ2H + κg
,

1

2Lϕ + κg

}
∥∇xf(xk)∥

= max
{ K

K + κg
,

64κf
64κf/κ2H + κg

,
2Lϕ

2Lϕ + κg

}
∥∇xf(xk)∥ := C̃1∥∇xf(xk)∥.

We conclude that

f(xk + sk)− f(xk) ≤ −κ
2
H

32

∥∇xΦ(xk)∥
λk

≤ −κ
2
HC̃1

32

∥∇xf(xk)∥
λk

:= −C1
∥∇xf(xk)∥

λk
.

We now prove a lemma that states that, if the estimates are sufficiently accurate, the
fine model is fully linear and the regularization parameter is large enough with respect
to the size of the model gradient, then a successful step is guaranteed.

Lemma 8. Let Assumptions 1 and 2 hold. Suppose that Tk[Φ] is a (κf , κg)-fully linear
model in a neighborhood of xk and that the estimates {f 0

k , f
s
k} are ϵf -accurate with ϵf ≤

κf . If

1

λk
≤ min

{ 1

K
,
1

η2
,

1− η1
32κf/κ2H + Lϕ

}
∥∇xΦ(xk)∥, (2.31)

52 CHAPTER 2. MUℓSTREG

then the k-th iteration is successful.

Proof. Let us consider ρk in Step 5. of Algorithm 5:

ρk =
f 0
k − f s

k

mk(0)−mk(sk)

=
f 0
k − f(xk)

mk(0)−mk(sk)
+

f(xk)−mk(0)

mk(0)−mk(sk)
+
mk(0)−mk(sk)

mk(0)−mk(sk)

+
mk(sk)− f(xk + sk)

mk(0)−mk(sk)
+
f(xk + sk)− f s

k

mk(0)−mk(sk)
:= ϱk + 1. (2.32)

Let us now consider the numerators in this expression. Those of the first and the last
terms are bounded from the assumption on the function estimates (cf. Definition 3):

|f 0
k − f(xk)| ≤

ϵf
λ2k

≤ κf
λ2k
, |f s

k − f(xk + sk)| ≤
ϵf
λ2k

≤ κf
λ2k
.

To bound the other terms, let us now consider two cases. First, when the fine step is
used mk = Tk[Φ], which is a κ-fully linear model of f by assumption, thus the numerator
of the second and fourth terms are bounded by (2.15). Consequently, the numerator
of |ϱk| = |ρk − 1| is bounded by 4κf

λ2
k
. The denominator is given in (2.26). Thus by the

assumption

|ϱk| = |ρk − 1| ≤ 4κf
λk∥∇xΦ(xk)∥

≤ 1− η1.

If the coarse step is used we have mk = φk and we need to further develop the expression
of ρk:

ρk =
f 0
k − f s

k

mk(0)−mk(sk)

=
f 0
k − f(xk)

mk(0)−mk(sk)
+
f(xk)− Tk[Φ](0)

mk(0)−mk(sk)
+

−Tk[Φ](sk)− φk(0) + φk(s
∗) + Tk[Φ](0)

mk(0)−mk(sk)

+
φk(0)− φk(s

∗)

φk(0)− φk(s∗)
+
Tk[Φ](sk)− f(xk + sk)

mk(0)−mk(sk)
+
f(xk + sk)− f s

k

mk(0)−mk(sk)

= ϱk + 1 +
−Tk[Φ](sk)− φk(0) + φk(s

∗) + Tk[Φ](0)

mk(0)−mk(sk)
.

Concerning the previous development we thus just have an additional term. Let us

2.2. CONVERGENCE THEORY 53

bound its absolute value:

∣∣∣∣∣−Tk[Φ](sk)− φk(0) + φk(s
∗) + Tk[Φ](0)

mk(0)−mk(sk)

∣∣∣∣∣ (2.21)+(2.13)
≤

Lϕ

2
∥s∗∥2

λk∥∇xΦ(xk)∥
2

∥s∗∥2
=

Lϕ

λk∥∇xΦ(xk)∥
.

(2.33)

The numerators of the terms in ϱk can be bounded as in the first case. We thus have

|ϱk|
(2.13)
≤

4κf

λ2
k

λk∥∇xΦ(xk)∥
2

∥s∗∥2
(2.24)
≤

4κf

λ2
k

λk∥∇xΦ(xk)∥
2

κ2
H

4λ2
k

=
32κf

λk∥∇xΦ(xk)∥κ2H
. (2.34)

Thus from (2.31)

|ρk − 1| ≤ 32κf/κ
2
H + Lϕ

λk∥∇xΦ(xk)∥
≤ 1− η1.

Hence in every case ρk ≥ 1. Moreover, since ∥∇xΦ(xk)∥ ≥ η2
λk

from (2.31), the k-th
iteration is successful

Finally, we state and prove the lemma that guarantees an amount of decrease of the
objective function on a true successful iteration.

Lemma 9. Under Assumptions 1 and 2, suppose that the estimates {f 0
k , f

s
k} are ϵf -

accurate with ϵf <
η1η2κ2

H

16
. If a trial step sk is accepted then the improvement in f is

bounded below by:

f(xk+1)− f(xk) ≤ −C2

λ2k
(2.35)

where C2 =
η1η2κ2

H

8
− 2ϵf > 0.

Proof. If the iteration is successful, this means that ∥∇xΦ(xk)∥ ≥ η2
λk

and ρk ≥ η1. Thus,
if the fine step is used,

f 0
k − f s

k ≥ η1(mk(0)−mk(sk))
(2.26)
≥ η1

∥∇xΦ(xk)∥
λk

≥ η1η2
λ2k

.

54 CHAPTER 2. MUℓSTREG

If the coarse step is used

f 0
k − f s

k ≥ η1(mk(0)−mk(sk))
(2.26)
≥ η1

2
λk∥∇xΦ(xk)∥∥s∗∥2

(2.24)
≥ η1κ

2
H

8
λk∥∇xΦ(xk)∥

1

λ2k
≥η1η2κ

2
H

8

1

λ2k
.

Then, since the estimates are ϵf -accurate, we have that the improvement in f can be
bounded as

f(xk + sk)− f(xk) = f(xk + sk)− f s
k + f s

k − f 0
k + f 0

k − f(xk) ≤ −C2

λ2k
,

where C2 =
η1η2κ2

H

8
− 2ϵf > 0.

To prove convergence of Algorithm 5 we need to assume that the models {Mk} and
the estimates {F 0

k , F
s
k} are sufficiently accurate with sufficiently high probability. We

recall that in this case, the models Mk are the models defined for the fine step in (2.7).

Assumption 3. Given values of α, β ∈ (0, 1) and ϵf > 0, there exist κg and κf such
that the sequence of models {Mk} and estimates {F 0

k , F
s
k} generated by Algorithm 1 are,

respectively, α-probabilistically (κf , κg)-fully linear and β-probabilistically ϵf -accurate.

The following theorem states that the regularization parameter λk converges to +∞
with probability one. Together with its corollary, it gives conditions on the existence of
κg and κf given α, β and ϵf . The proof of the theorem follows similar ideas to the proof
of [24, Theorem 4.11].

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied and assume that in Algorithm 5
the following holds.

• The step acceptance parameter η2 is chosen so that

η2 ≥ max{K, 24κf}. (2.36)

• The accuracy parameter of the estimates satisfies

ϵf ≤ min

{
κf ,

η1η2κ
2
H

32

}
. (2.37)

2.2. CONVERGENCE THEORY 55

Then α and β can be chosen so that, if Assumption 3 holds for these values, then the
sequence of regularization parameters {Λk} generated by Algorithm 5 satisfies

∞∑
k=0

1

Λ2
k

<∞ (2.38)

almost surely.

Proof. The scheme of the proof is the same as that of [24, Theorem 4.11]. We denote
with xk, λk, sk and mk the realizations of random quantities defined by Algorithm 5 Xk,
Λk, Sk and Mk, respectively.

Let us fix the constant ν ∈ (0, 1) such that

ν

1− ν
> max

{
4

γ2ζC1

,
16

γ2η1η2κ2H
,

1

γ23κf

}
; (2.39)

where C1 is defined like in Lemma 7. We then use ν to define the random function

Ψk = νf(Xk) + (1− ν)
1

Λ2
k

; (2.40)

and we denote with ψk the realization of Ψk.
In order to prove (2.38) we want to show that there exist σ > 0 such that

E
[
Ψk+1 −Ψk|FM ·F

k−1

]
≤ −σ 1

Λ2
k

< 0, ∀k. (2.41)

Since f is bounded from below and 1
Λk

> 0, then Ψk is bounded from below for every
k; thus if (2.41) holds for every iteration of Algorithm 5, then by summing (2.41) over
k ∈ N and taking the expected value on both sides we obtain that (2.38) holds with
probability 1.

Then we must prove (2.41), and to do this we need to estimate the decrease ψk+1−ψk

for any iteration k and any realization of Algorithm 5. To prove that (2.41) holds for
every k, we consider two separate cases depending on the value of ∥∇xf(xk)∥. Let us
choose a constant ζ such that

ζ ≥ κg +max

{
η2,

64κf/κ
2
H + Lϕ

1− η1

}
. (2.42)

56 CHAPTER 2. MUℓSTREG

The first case considers iterations for which ∥∇xf(xk)∥ ≥ ζ
λk

, while the second case
considers iterations for which ∥∇xf(xk)∥ < ζ

λk
. We will prove that (2.41) holds in both

cases.

Each iteration k is characterized by the occurrence or non-occurrence of the events
Ik and Jk, defined in (2.16) and (2.17). Thus, for both cases (∥∇xf(xk)∥ ≥ ζ

λk
and

∥∇xf(xk)∥ < ζ
λk

), we will consider the following four combinations defined with the
events Ik and Jk. In the first one, we have the occurrence of both Ik and Jk. In the
second one, we have the occurrence of Ik and the non-occurrence of Jk. In the third one,
we have the non-occurrence of Ik and the occurrence of Jk. Finally, in the fourth one,
we have the non-occurrence of both Ik and Jk.

A further distinction that must be made at each iteration k, regardless of events Ik
and Jk, is between successful and unsuccessful iterations. In particular, let us consider
a realization of Algorithm 5. In all successful iterations we have xk+1 = xk + sk and
λk+1 = max {λmin, γλk}, with γ ∈ (0, 1), hence

ψk+1 − ψk ≤ ν (f(xk+1)− f(xk)) + (1− ν)

(
1

γ2
− 1

)
1

λ2k
. (2.43)

On the other hand, for all unsuccessful iterations, we have xk+1 = xk and λk+1 = λk

γ
,

thus
ψk+1 − ψk = (1− ν)

(
γ2 − 1

) 1

λ2k
=: b1 < 0. (2.44)

The main idea is to show that if at iteration k we have the occurrence of at least one
of the events Ik and Jk, which means that we have either a good model or good estimates
of f (or both), we can choose a parameter ν ∈ (0, 1) close enough to one such that the
decrease in ψk is greater in the case of successful iteration than in the case unsuccessful
of iteration. If, on the other hand, we have no occurrence of neither Ik nor Jk, so we have
a bad model and bad estimates, an increase in ψk can occur. This increase is bounded by
a value proportional to 1

λ2
k

when ∥∇xf(xk)∥ < ζ
λk

. When ∥∇xf(xk)∥ ≥ ζ
λk

, though, the

increase in ψk may be proportional to ∥∇xf(xk)∥
λk

. However, we will show that iterations
in which we have a good model and good estimates, thus the occurrence of both Ik and
Jk, also provide a decrease in ψk proportional to the ∥∇xf(xk)∥

λk
; thus by choosing values

of α and β close enough to 1 we can ensure the decrease in expected value of ψk, and
thus the validity of (2.41) for every iteration.

2.2. CONVERGENCE THEORY 57

Case 1: ∥∇xf(xk)∥ ≥ ζ
λk

.

(a) We have both Ik and Jk, thus good models and good estimates on iteration k.
From the definition of ζ we have

∥∇xf(xk)∥ ≥
(
κg +max

{
η2,

64κf/κ
2
H + Lϕ

1− η1

})
1

λk
.

Condition (2.28) of Lemma 7 holds thanks to κ−fully linearity of Tk [Φ] to-
gether with assumptions (2.36) and (2.37). Thus,

f(xk + sk)− f(xk) ≤ −C1
∥∇xf(xk)∥

λk
,

with C1 :=
κ2
H

32
max

{
K

K+κg
,

64κf

64κf+κgκ2
H
,

2Lϕ

2Lϕ+κg

}
.

Moreover, since

∥∇xΦ(xk)∥ ≥ ∥∇xf(xk)∥−
κg
λk

≥ (ζ − κg)
1

λk
≥ max

{
η2,

64κf/κ
2
H + Lϕ

1− η1

}
1

λk
,

and the estimates f 0
k and f s

k are ϵf -accurate, with ϵf ≤ κg, it holds condition
(2.31) of Lemma 8, thus iteration k is successful, meaning that xk+1 = xk+sk

and λk+1 = max {λmin, γλk}. Combining (2.29) and (2.43) we obtain

ψk+1 − ψk ≤ −νC1
∥∇xf(xk)∥

λk
+ (1− ν)

(
1

γ2
− 1

)
1

λ2k
=: b2, (2.45)

with C1 defined as in Lemma 7. Due to the fact that ∥∇xf(xk)∥ ≥ ζ
λk

we
have

b2 ≤
[
−νC1ζ + (1− ν)

(
1

γ2
− 1

)]
1

λ2k
< (1− ν)

(
γ2 − 1

) 1

λ2k
= b1, (2.46)

with ν ∈ (0, 1) satisfying (2.39).

(b) If Ik occurs and Jk does not, we have a good model mk but bad estimates
{f 0

k , f
s
k} at iterate k. Lemma 7 always holds and sk brings sufficient decrease

in f , so if iteration k is successful we get again (2.45) and (2.46).

However, because of inaccurate estimates of f , step sk could be (mistakenly)

58 CHAPTER 2. MUℓSTREG

rejected. So we will have an unsuccessful iterate k and consequently (2.44)
would hold. Since the condition on ν (2.39) holds, we have that

b2 ≤
[
−νC1ζ + (1− ν)

(
1

γ2
− 1

)]
1

λ2k
< b1;

Thus (2.44) holds whether the iteration is successful or not.

(c) If, on the other hand, Ik does not occur but Jk does, it means that we have a
bad model (not κ-fully linear) and good estimates {f 0

k , f
s
k} at iterate k. In this

case, the iteration may or may not be successful. If it is unsuccessful it holds
(2.44). On the other hand, if it is successful since {f 0

k , f
s
k} are ϵf−accurate

and (2.37) holds, then by Lemma 9 it holds (2.35) thus we have

ψk+1 − ψk ≤
[
−νC2 + (1− ν)

(
1

γ2
− 1

)]
1

λ2k
< b1. (2.47)

As in case b, since we choose ν such that (2.39) is satisfied, we have that
(2.44) holds both for successful and unsuccessful iterations.

(d) If neither Ik nor Jk occurs, it means we have a bad model and bad estimates
at iteration k. The inaccuracy of estimates {f 0

k , f
s
k} can make the algorithm

accept an increasing step for f . In such case ψk+1 − ψk can be positive.
However, the increase of f can be bounded from above by combining the
Taylor expansion of f(xk) at xk + sk and the Lipschitz continuity of ∇xf .
From Lemma 1 we have that (2.19) holds. Thus dropping the absolute value
and rearranging the terms in (2.19) we have

f(xk + sk)− f(xk) ≤ ∇xf(xk)
T (sk) +

Lf

2
∥sk∥2. (2.48)

Note that if the step sk is the fine step defined in (2.8) then ∥sk∥ = 1
λk

.
Otherwise if sk is defined as the coarse step (2.9) we have that Lemma 4
holds, then using (2.24) and the fact that the prolongation operator P has
norm ∥P∥ = κR we have that

∥sk∥ = ∥Ps∗∥ ≤ ∥P∥∥s∗∥ ≤ 4κ2R
λk

.

2.2. CONVERGENCE THEORY 59

Combining these observations and recalling that ∥∇xf(xk)∥ ≥ ζ
λk

we can
bound the increase of f(xk) with

f(xk + sk)− f(xk) ≤ C3∥∇xf(xk)∥
1

λk
,

with C3 :=
40Lf

ζ
+4. Hence we can bound the difference in ψk in the following

way

ψk+1 − ψk ≤ νC3∥∇xf(xk)∥
1

λk
+ (1− ν)

(
1

γ2
− 1

)
1

λ2k
=: b3. (2.49)

Now we take the conditioned expected value for Ψk+1−Ψk when ∥∇xf(xk)∥ ≥ ζ
λk

.

Due to Assumption 3 we know that case (a) occurs with probability (conditioned
on the past) αβ and in that case ψk+1 − ψk ≤ b2 < 0 with b2 defined in (2.45).

Case (d) occurs with probability (1 − α)(1 − β) and in that case ψk+1 − ψk ≤ b3,
b3 > 0 defined in (2.49).

Case (b) and (c) occur respectively with probability α(1− β) and (1− α)β and in
these two cases ψk+1 − ψk ≤ b1 < 0, with b1 defined in (2.44). Note that b1 > b2

because we choose ν in order to satisfy (2.39).

Finally we can combine (2.44), (2.45),(2.47) and (2.49) and denote with B1, B2 and
B3 the random variables that have respectively b1, b2 and b3 as their realizations
in order to get the following bound

E
[
Ψk+1 −Ψk

∣∣∣∣FM ·F
k−1 ,

{
∥∇xf(Xk)∥ ≥ ζ

Λk

}]
≤ αβB2 + [α(1− β) + (1− α)β]B1 + (1− α)(1− β)B3

= αβ

[
−νC1

∥∇xf(Xk)∥
Λk

+ (1− ν)

(
1

γ2
− 1

)
1

Λ2
k

]
+

+ [α(1− β) + (1− α)β] (1− ν)
(
γ2 − 1

) 1

Λ2
k

+

+ (1− α)(1− β)

[
νC3∥∇xf(Xk)∥

1

Λk
+ (1− ν)

(
1

γ2
− 1

)
1

Λ2
k

]
.

60 CHAPTER 2. MUℓSTREG

Rearranging the terms we get

E
[
Ψk+1 −Ψk

∣∣∣∣FM ·F
k−1 ,

{
∥∇xf(Xk)∥ ≥ ζ

Λk

}]
(2.50)

≤ [−νC1αβ + (1− α)(1− β)νC3]
∥∇xf(Xk)∥

Λk

+

+
[
αβ − γ2 (α(1− β) + (1− α)β) + (1− α)(1− β)

]
(1− ν)

(
1

γ2
− 1

)
1

Λ2
k

≤ [−C1αβ + (1− α)(1− β)C3] ν
∥∇xf(Xk)∥

Λk

+ (1− ν)

(
1

γ2
− 1

)
1

Λ2
k

,

where the last inequality is true because

αβ − γ2 (α(1− β) + (1− α)β) + (1− α)(1− β) ≤ [α + (1− α)] [β + (1− β)] = 1.

Let us choose α and β in (0, 1) such that(
αβ − 1

2

)
(1− α)(1− β)

≥ C3

C1

,

which implies

[C1αβ − (1− α)(1− β)C3] ≥
C1

2
≥ 2

(1− ν)
(

1
γ2 − 1

)
νζ

,

where the last inequality holds because of (2.39).

Recalling that ∥∇xf(xk)∥ < ζ
λk

we can continue bounding (2.50), thus

[−C1αβ + (1− α)(1− β)C3] ν
∥∇xf(Xk)∥

Λk

+ (1− ν)

(
1

γ2
− 1

)
1

Λ2
k

≤ [−C1αβ + (1− α)(1− β)C3] ν
∥∇xf(Xk)∥

Λk

≤ −1

4
C1ν

∥∇xf(Xk)∥
Λk

.

In this way we have

E
[
Ψk+1 −Ψk

∣∣∣∣FM ·F
k−1 ,

{
∥∇xf(Xk)∥ ≥ ζ

Λk

}]
≤ −1

4
C1ν

∥∇xf(Xk)∥
Λk

(2.51)

2.2. CONVERGENCE THEORY 61

and

E
[
Ψk+1 −Ψk

∣∣∣∣FM ·F
k−1 ,

{
∥∇xf(Xk)∥ ≥ ζ

Λk

}]
≤ −1

2
(1− ν)

(
1

γ2
− 1

)
1

Λ2
k

. (2.52)

For the proof of this theorem (and also for Theorem 2) bound (2.52) is enough.
Bound (2.51) is used to prove Theorem 3.

Case 2: ∥∇xf(xk)∥ < ζ
λk

.
First, let us notice that if ∥∇xΦ(xk)∥ < η2

λk
iteration k is unsuccessful and (2.44)

holds. Let us then assume that ∥∇xΦ(xk)∥ ≥ η2
λk

and we are going to consider the
four combinations of events as we did in the previous case.

(a) We have the occurrence of both Ik and Jk, thus good model and good estimates
on iteration k. If k is successful the κ−fully linearity of the model ensures a
decrease for f . We can use the same arguments of Case 1c to conclude that
(2.44) holds both in case of a successful iteration or case of an unsuccessful
one.

(b) We have the occurrence of Ik and no occurrence of Jk which means good model
and bad estimates at iteration k. If it is unsuccessful, (2.44) holds. Otherwise
from Lemma 5 we have that

mk(sk)−mk(0) ≤

−∥∇xΦ(xk)∥
λk

if fine step

−λk∥∇xΦ(xk)∥
2

∥s∗∥2 if coarse step.

Let us consider the case of the coarse step. Using also Lemma 4 and the fact
that ∥∇xf(xk)∥ < ζ

λk
we have

mk(0)−mk(sk) ≥
κ2Hη2
8λ2k

.

Since Ik occurs, the model mk is κ−fully linear, considering (2.36), we can

62 CHAPTER 2. MUℓSTREG

write

f(xk)− f(xk + sk)

= f(xk)−mk(0) +mk(0)−mk(sk) +mk(sk)− f(xk + sk)

≥
(
κ2Hη2
8

− 2κf

)
1

λ2k
≥ −3κf

λ2k
.

As a consequence, if the k−th iterate is successful, we have

ψk+1 − ψk ≤
[
−3νκf + (1− ν)

(
1

γ2

)]
1

λ2k
. (2.53)

Since we choose ν ∈ (0, 1) in order to satisfy (2.39), we have that the right-
hand side of (2.53) is strictly smaller than b1 defined in (2.44). Thus (2.44)
holds in any case, successful or not. If we use the fine step, i.e.

mk(0)−mk(sk) ≥
η2
λ2k

we can analogously get the same result.

(c) The event Ik does not occur while Jk does. Here we have a bad model and
good estimates at iteration k. We can proceed in the very same way as Case
1c to conclude again that (2.44) holds in any case.

(d) None of the events Ik and Jk occur, thus we have a bad model and bad esti-
mates. Similarly to Case 1d we can bound the increase in f using Lipschitz
continuity of ∇xf , thus

f(xk + sk)− f(xk) ≤
C3ζ

λ2k
.

We use this bound for the difference of ψk:

ψk+1 − ψk ≤
[
νC3ζ + (1− ν)

(
1

γ2
− 1

)]
1

λ2k
. (2.54)

Now we can bound the expected value of ψk+1 − ψk as we did in Case 1; but in
Case 2 we only use (2.54), which occurs with probability (1−α)(1−β), and (2.44),

2.2. CONVERGENCE THEORY 63

which occurs otherwise. Then

E
[
Ψk+1 −Ψk

∣∣∣∣FM ·F
k−1 ,

{
∥∇xf(Xk)∥ <

ζ

Λk

}]
≤

≤ [αβ + α(1− β) + (1− α)β] (1− ν)(γ2 − 1)
1

Λ2
k

+

+ (1− α)(1− β)

[
νC3ζ + (1− ν)

(
1

γ2
− 1

)]
1

Λ2
k

≤

≤ (1− ν)(γ2 − 1)
1

Λ2
k

+ (1− α)(1− β)

[
νC3ζ + (1− ν)

(
1

γ2
− γ2

)]
1

Λ2
k

.

By choosing α ∈ (0, 1) and β ∈ (0, 1) such that

(1− α)(1− β) ≤
1
γ2 − 1

1
γ4 − 1 + 2C3ζν

γ2(1−ν)

,

we have

E
[
Ψk+1 −Ψk

∣∣∣∣FM ·F
k−1 ,

{
∥∇xf(Xk)∥ <

ζ

Λk

}]
≤ −1

2
(1− ν)

(
γ2

γ2 − 1

)
1

Λ2
k

. (2.55)

Finally, combining (2.52) and (2.55), and observing that 1− γ2 < 1
γ2 − 1 we have

E
[
Ψk+1 −Ψk

∣∣∣∣FM ·F
k−1

]
≤ −1

2
(1− ν)

(
1− γ2

) 1

Λ2
k

.

This means that (2.41) holds with σ = 1
2
(1− ν) (1− γ2) > 0.

The choice of α and β is specified in the following corollary.

Corollary 1. Let all assumptions of Theorem 1 hold. The statement of Theorem 1 holds
if α and β are chosen to satisfy the following conditions:

αβ − 1
2

(1− α)(1− β)
≥

40Lf

ζ
+ 4

C1

and

(1− α)(1− β) ≤
1
γ2 − 1

1
γ4 − 1 + 1

γ2 (40Lf + 4ζ)max
{

4
ζC1

, 16
η1η2κ2

H
, 1
3κf

} ,

64 CHAPTER 2. MUℓSTREG

with C1 =
κ2
H

32
max

{
K

K+κg
,

64κf

64κf+κgκ2
H
,

2Lϕ

2Lϕ+κg

}
and ζ = κg + η2.

In practice, the probabilities α and β depend on the characteristics of the optimization
problem. For a more specific discussion we refer to [24].

The following results can be derived as in [24, Theorem 4.16], [24, Lemma 4.17] and
[24, Theorem 4.18], thus for the proof we refer to [24].

Theorem 2. Let the assumptions of Theorem 1 and Corollary 1 hold. Then the sequence
of random iterates generated by Algorithm 5, {Xk}, almost surely satisfies

lim inf
k→∞

∥∇xf(Xk)∥ = 0.

Lemma 10. Let the assumptions of Theorem 2 hold. Let {Xk} and {Λk} be the se-
quences of random iterates and random regularization parameters generated by Algorithm
5. Fix ϵ > 0 and define the sequence {Kϵ} consisting of the natural numbers k for which
∥∇xf(Xk)∥ > ϵ. Then almost surely

∑
k∈{Kϵ}

1

Λk

<∞.

Theorem 3. Let the assumptions of Theorem 2 hold. Let {Xk} be the sequence of
random iterates generated by Algorithm 5. Then, almost surely,

lim
k→∞

∥∇xf(Xk)∥ = 0.

2.3 MUℓSTREG for finite-sum minimization

In this section, we describe how to adapt Algorithm 5 to the solution of finite-sum mini-
mization problems of the form (2.2) using a multilevel setting with ℓ levels. In particular,
in Subsection 2.3.1 we show in detail the algorithmic properties of the MUℓSTREG ver-
sion to address problem (2.2), while in Subsection 2.3.2 we explicitly show the similarity
between Stochastic Variance Reduced Gradient (SVRG) and MUℓSTREG specialized on
finite sums.

2.3. MUℓSTREG FOR FINITE-SUM MINIMIZATION 65

2.3.1 Algorithmic details

Considering problem (2.2), we assume that N ≫ n and we consider hierarchies built
just in the sample space, thus ℓ = l (see Subsection 2.1.1). We first assume that the
computation of the objective function is affordable and we postpone to Subsection 2.4.4
a discussion on the case when N is too large to evaluate the full sum.

Recalling that the objective function in (2.2) is the average of the set of functions
{fi}Ni=1, we can easily define a hierarchy of approximations by subsampling. In particular,
given the number of levels ℓmax ≥ 2, for every ℓ ∈ {1, ..., ℓmax} we define the subsampled
function as:

fSℓ

(x) =
1

|Sℓ|
∑
i∈Sℓ

fi(x);

where Sℓ ⊆ {1, .., N} is a subsample set such that ∅ ̸= S1 ⊂ ... ⊂ Sℓ ⊂ ... ⊂ Sℓmax−1 ⊂
Sℓmax = {1, ..., N}. In this particular case, R and P are both the identity and all the
iterates belong to Rn. We thus drop here the indexes ℓ from the iterates and the steps.

We use the functions
{
fSℓ
}ℓmax

ℓ=1
to define the regularized models

{
mR,ℓ

}ℓmax

ℓ=1
that are

minimized at each level in a recursive way. Note that each model mR,ℓ should be indexed
by the index of the iterate at level ℓ + 1 for which it was defined. We omit this index
here to avoid confusion with the index k of the iterate considered to define, given mR,ℓ,
its lower level model. In the notations of Section 2.1, the fSℓ corresponds to the ϕℓ.

In particular, at level 1 < ℓ ≤ ℓmax, given the objective function of that level mR,ℓ

and an iterate xk we define the objective function mR,ℓ−1
k at xk for the lower level ℓ− 1

as
mR,ℓ−1

k (s) =
[
mR,ℓ

]Sℓ−1

(xk + s) + (vℓ−1
k)T s+ regℓ−1

k (s) (2.56)

where
[
mR,ℓ

]Sℓ−1

(xk) denotes the subsampled version of mR,ℓ evaluated at xk,

vℓ−1
k = ∇xm

R,ℓ(xk)−∇x

[
mR,ℓ

]Sℓ−1

(xk), (2.57)

and regℓk(s) =
1
2
λℓk∥∇xm

R,ℓ(xk)∥∥s∥2 with λℓk > 0 if ℓ < ℓmax, and zero otherwise.

At the finest level
[
mR,ℓmax

]Sℓmax−1

=
[
fSℓmax

]Sℓmax−1

is simply fSℓmax−1 . However,
when ℓ < ℓmax, mR,ℓ incorporates also the regularization and the vector vℓk. Given that
these quantities are not defined on a sample set, the subsampled version of mR,ℓ differs
from mR,ℓ just for the term fSℓ−1 that is subsampled on Sℓ−2, while the correction and

66 CHAPTER 2. MUℓSTREG

the regularization vectors remain unchanged. Notice that each time we go down a level
we accumulate in mR,ℓ a regularization term and a vector vℓ.

We report in Algorithm 6 the complete MUℓSTREG algorithm for problem (2.2) and
we now discuss its main steps.

Algorithm 6 is recursive and a generic level ℓ ≥ 1 of the hierarchy is described. The
main hyperparameters of the algorithm are the number of levels in the hierarchy ℓmax

and the cardinality N ℓ of the subsample sets Sℓ for every level of the hierarchy. At the
very first call MUℓSTREG starts from the top level ℓmax and the objective function is
set as f ℓmax .

At each iteration k the algorithm either calls itself recursively or performs a fine step
at level ℓ, except ℓ = 1. For ℓ = 1 the bottom of the hierarchy is reached and no more
recursions are allowed. An approximate minimizer of mR,1

k is sought that satisfies (2.10)
by the Adaptive-Regularization algorithm with a first-order model (AR1) described e.g.
in [21, Sec. 2.4.1] with a regularization parameter weighted by the norm of the gradient
of mR,1

k at the current approximation. Notice however that the theoretical results would
still hold if the minimization algorithm was replaced by another one, provided that the
stopping criterion can be satisfied.

When ℓ > 1 the algorithm can be called recursively and, if we choose to use the
lower-level model, the surrogate minimization problem of the new approximation mR,ℓ−1

k

is built by sampling a subset of indices Sℓ−1 ⊂ Sℓ by drawing randomly N ℓ−1 indices
from Sℓ (Step 4) and MUℓSTREG is recursively called at Step 12 providing the search
direction sℓk.

Steps 15-23 are dedicated to the standard step acceptance rule and regularization
parameter update based on the ratio ρℓk defined at Step 14. We remark that the condi-
tion ∥∇mR,ℓ(xk)∥ ≥ η2/λ

ℓ
k is checked at the beginning of each iteration to save useless

computations in case it fails.

The stopping criterion checks if the norm of the gradient is below some tolerance
that depends (implicitly) on the level ℓ and on the iteration k. Indeed, when ℓ = ℓmax

the tolerance is a positive scalar ϵ chosen by the user and we get a classical stopping
criterion

∥∇xf
Sℓmax

(xk)∥ ≤ ϵ. (2.58)

Else if ℓ < ℓmax, we use the stopping condition (2.4). A safeguard is added imposing a

2.3. MUℓSTREG FOR FINITE-SUM MINIMIZATION 67

Algorithm 6 MUℓSTREG for finite-sum - MUℓSTREG
(
x0,
{(

f ℓ, N ℓ, ϵℓ
)}ℓmax

ℓ=1

)
Input: x0 ∈ Rn, {fℓ}ℓmax

ℓ=1 , fℓ : Rn → R defined on Nℓ samples with Nℓ−1 < Nℓ, tolerance ϵℓ > 0 .
Given 0 < η1 ≤ η3 < 1, η2 > 0, 0 < γ2 ≤ γ1 < 1 < γ3, λmin > 0.

1: k = 0
2: while the stop criterion for level ℓ is not satisfied do

Hierarchy definition
3: if ℓ > 1 then
4: Build Sℓ−1 ⊂ Sℓ drawing Nℓ−1 indices randomly.
5: else
6: Go to Step 9.
7: end if

Model choice
8: Choose to go to Step 9 or to Step 10.

Regularized Taylor step
9: Define mℓ

k(s) = T ℓ
k(s) the first-order Taylor series of fℓ in xk. Set sℓk = − ∇fℓ(xk)

λℓ
k
∥∇fℓ(xk)∥

. Go to Step 14.

Sub-sampled model
10: Compute the correction vector vℓ−1

k as in (2.57) to define the lower level model φℓ−1
k (s) and its regularization

mR,ℓ−1
k (s) as

φℓ−1
k (s) =

[
fℓ−1

]Sℓ−1

(xk + s) +

(
∇sf

ℓ(xk)−∇x

[
fℓ
]Sℓ−1

(xk)

)T

s;

mR,ℓ−1
k (s) = φℓ−1

k (s) +
1

2
λℓ
k∥∇xf

ℓ(xk)∥∥s∥2.

11: Recursive call
12: Call MUℓSTREG

(
0,
{(

mR,j
k , Nj , ϵj

)}ℓ−1

j=1

)
to find approximate solution s∗ of the problem

min
s∈Rn

mR,ℓ−1
k (s),

such that condition (2.4) is satisfied.
13: Set sℓk = s∗ and mℓ

k(s) = φℓ−1
k (s).

Step acceptance of trial point

14: Compute ρℓk :=
fℓ(xk)−fℓ(xk+sℓk)

mℓ
k
(0)−mℓ

k
(sℓ

k
)

.

15: if ρk ≥ η1 and ∥∇xfℓ(xk)∥ ≥ η2/λℓ
k then

16: xk+1 = xk + sℓk
17: else
18: xk+1 = sℓk
19: end if

Regularization parameter update
20: if ρℓk ≥ η1 and ∥∇xfℓ(xk)∥ ≥ η2/λℓ

k then
21:

λℓ
k+1 =

{
max{λmin, γ2λ

ℓ
k}, if ρℓk ≥ η3,

max{λmin, γ1λ
ℓ
k}, if ρℓk < η3

22: else
23: λℓ

k+1 = γ3λℓ
k.

24: end if
25: k = k + 1
26: end while

maximum number of iterations.

68 CHAPTER 2. MUℓSTREG

Notice that the choice of the alternating scheme between coarse and fine steps is left
to the user.

2.3.2 Similarity with SVRG

As we already mentioned, MUℓSTREG for problem (2.2) can be interpreted as a variance-
reduced method similar to SVRG. An analogous interpretation was given for the line-
search based MLVR (MultiLevel Variance Reduction) method presented in [17]. We
now show the details of the similarity between the MUℓSTREG and SVRG by writing
explicitly the generic update of the iterate xk+1 from xk. We start from SVRG giving
also a little explanation which will be useful in the following.

Algorithm 7 SVRG(x0,f ,α,b,m)

Given x0 ∈ Rn, the learning rate α > 0, the mini-batch size b and an integer m.
1: for k = 0, 1, ... do
2: Compute the full gradient ∇xf(xk).
3: Set x̃0 = xk.
4: for t = 0, ...,m do
5: Draw randomly the mini-batch It ⊂ {1, .., N}, such that |It| = b.
6: Define p(k)t , i.e. the t−th direction built in xk as:

p
(k)
t =

1

b

∑
i∈It

∇xfi(x̃t) +

(
∇xf(xk)−

1

b

∑
i∈It

∇xfi(xk)

)
. (2.59)

7: Set x̃t+1 = x̃t + αp
(k)
t .

8: end for
9: Set xk+1 = x̃m+1

10: end for

The SVRG method is introduced in [44], and it is described in Algorithm 7. The hy-
perparameters that characterize SVRG are the numberm, the learning rate (or steplength)
α, and the mini-batch size b. The parameter m is the number of internal iterations in
which the algorithm performs random updates using the gradient aggregation (Steps
4-8), α (used at Step 7) defines the size of the step along the search direction for every
update and b is used in Step 5 to select randomly the subsample set It.

Given the parameters m, α, b and an iterate xk we want the explicit expression of

2.3. MUℓSTREG FOR FINITE-SUM MINIMIZATION 69

xk+1. Thus, from Step 9 we have xk+1 = x̃m+1 and considering the loop in Steps 4-8 we
can write

xk+1 = xk − α

m∑
t=0

p
(k)
t

(2.59)
=

= xk − α
m∑
t=0

[
1

b

∑
i∈It

∇xfi(x̃t) +

(
∇xf(xk)−

1

b

∑
i∈It

∇xfi(xk)

)]
.

Observing that x̃0 = xk from Step 3, we can write the SVRG update as:

xk+1 = xk − α
m∑
t=1

[
1

b

∑
i∈It

∇xfi(x̃t)−
1

b

∑
i∈It

∇xfi(xk)

]
− α(m+ 1)∇xf(xk). (2.60)

Now we want to write explicitly the update of xk+1 from xk for MUℓSTREG. Since
MUℓSTREG is recursive and does not have a fixed steplength like SVRG the description
of the update for MUℓSTREG with a generic number of levels ℓmax becomes very cum-
bersome; therefore we limit ourselves to the case with two levels MU2STREG. Hence,
let us now follow one iteration of MU2STREG for finite-sum, assuming to use only the
coarse step. Thus, ℓmax = 2 and we have fixed the cardinalities of the subsample sets
|S1| = N1 < N ℓmax = N = |S2|, with a certain iterate xk. Since we start from level
ℓmax = 2, following Algorithm 6, in particular according to Steps 4 and 10 we draw
randomly N1 samples to define S1 ⊂ {1, ..., N} and we define the functions φ1

k(s) and
mR,1

k (s) as

φ1
k(s) =

1

N1

∑
i∈S1

fi(xk + s) +

[
∇xf(xk)−

1

N1

∑
i∈S1

∇xfi(xk)

]T
s; (2.61)

mR,1
k (s) = φ1

k(s) +
1

2
λ
(2)
k ∥∇xf(xk)∥∥s∥2. (2.62)

In particular, the gradient ∇sm
R,1
k (s) is

∇sm
R,1
k (s) =

1

N1

∑
i∈S1

∇xfi(xk + s) +∇xf(xk)−
1

N1

∑
i∈S1

∇xfi(xk) + λ
(2)
k ∥∇xf(xk)∥s;

(2.63)
Once again, notice that ∇sm

R,1
0 (0) = ∇xf(xk).

70 CHAPTER 2. MUℓSTREG

Following the recursive step (Step 12) in Algorithm 6, we call MU2STREG on mR,1
k (s)

with the initial guess s0 = 0 ∈ Rn and a parameter λ(1)0 in order to find the minimizer s∗.
Since we are at the bottom level of the hierarchy we use the AR1 method to minimize
mR,1

k (s) (as in Step 9), leading to define s1 = s0 + p0 with update p0 defined as

p0 = − ∇sm
R,1
0 (s0)

λ
(1)
0 ∥∇sm

R,1
0 (s0)∥

= − ∇xf(xk)

λ
(1)
0 ∥∇xf(xk)∥

; (2.64)

where the last equation derives from the fact that s0 = 0. Let us now assume that we
accept the update p0 according to the acceptance step (Step 14), thus we have s1 =

s0 + p0 = p0 and λ(1)1 . Now we define s2 = s1 + p1, again with p1 defined as

p1 = − ∇sm
R,1
0 (s1)

λ
(1)
1 ∥∇sm

R,1
0 (s1)∥

=

= − 1

λ
(1)
1 ∥∇sm

R,1
0 (s1)∥

(
1

N1

∑
i∈S1

∇xfi(xk + s1) +∇xf(xk)−

− 1

N1

∑
i∈S1

∇xfi(xk) + λ
(2)
k ∥∇xf(xk)∥s1

)
.

Now, knowing that s1 = p0 and substituting (2.64) in the last term inside the round
brackets and gathering all the coefficients of ∇xf(xk), we obtain

p1 = − 1

λ
(1)
1 ∥∇sm

R,1
0 (s1)∥

[
1

N1

∑
i∈S1

∇xfi(xk + s1)−

− 1

N1

∑
i∈S1

∇xfi(xk) +

(
1 +

λ
(2)
k

λ
(1)
0

)
∇xf(xk)

]
.

(2.65)

Assuming to accept also the update p1, we have now defined s2 and for the sake of
simplicity let us assume that s2 satisfies the stopping condition (2.10). So s2 is the
minimizer s∗ we look for. Recalling that for problem (2.2) there is no hierarchy on the
variable space and assuming to accept the update s∗ for the iterate xk, we can set

xk+1 = xk + s∗ = xk + s2 = xk + s1 + p1 = xk + p0 + p1; (2.66)

2.4. NUMERICAL EXPERIMENTS 71

hence, using the expressions (2.64) and (2.65) and gathering again all the coefficients of
∇xf(xk), we have the expression

xk+1 = xk −
1

λ
(1)
1 ∥∇sm

R,1
0 (s1)∥

[
1

N1

∑
i∈S1

∇xfi(xk + s1)−
1

N1

∑
i∈S1

∇xfi(xk)

]
−

−

(
λ
(1)
0 + λ

(2)
k

λ
(1)
0 λ

(1)
1 ∥∇sm

R,1
0 (s1)∥

+
1

λ
(1)
0 ∥∇xf(xk)∥

)
∇xf(xk).

(2.67)

If we compare (2.60) and (2.67), the similarity between SVRG and MUℓSTREG
appears quite clear. In both cases in the square brackets, we have a difference between
the subsampled gradient computed in an intermediate subiterate, which in (2.60) is x̃t
while in (2.67) we have xk + s1, and the subsampled gradient computed in the current
iterate xk. In (2.60) we have a summation on the internal iterates t = 1, ...,m that we
do not have in case (2.67), and this is because of our choice to avoid unnecessarily heavy
notation, but in the extreme case m = 1 the similarity is even more evident. Moreover,
in both cases, we have a full gradient contribution. Clearly, the difference in the choice of
step length of the two methods (fixed for SVRG, adaptive for MUℓSTREG) is reflected
in the scalars that appear in the two expressions.

2.4 Numerical experiments

In this section, we illustrate the performance of MUℓSTREG for the computation of an
approximate first-order critical point of the finite-sum minimization problem (2.2).

This section is organized as follows. First, we introduce some implementation details
and the problem test set in Subsection 2.4.1, then we study in Subsection 2.4.2 the
tuning of the hyperparameters of Algorithm 6, in particular, the number of levels and
the sample set cardinalities and we compare the performance of all the variants to the
reference one-level method. The method that shows the best performance is a three-level
method that we refer to as MU3STREG. In Section 2.3 we compare it to a mini-batch
version of SVRG. Finally, we investigate the behavior of MU3STREG when the size of
sample size Nmax at the finest level is smaller than the full size N .

72 CHAPTER 2. MUℓSTREG

2.4.1 Implementation issues and test problem set

Algorithm 6 has been implemented in MATLAB R2024a using HPE ProLiant DL560
Gen10 with 4 Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz with 512 Gb RAM2. The
algorithmic parameters are chosen as follows:

η1 = 0.5, η2 = 10−3, η3 = 0.75, γ1 = 0.5, γ2 = 0.3, γ3 = 2, λmin = 10−4.

The algorithm terminates when condition (2.58) holds with ϵ = 10−3 or 104 iterations
are performed. Moreover we set θ = 10−3 in (2.10). Also for every recursive call at level
ℓ ≤ ℓmax − 1, we set a maximum number of iterations maxitℓ = 5. Finally, for ℓ > 1 we
set λℓ0 = 10−4 and λ10 = 10−3. In every test, all the runs are repeated 5 times for different
random initial guesses x0.

Notice that Algorithm 6 is quite generic and allows for different multilevel schemes.
Here, we used a recursion scheme that encompasses a fine step after each recursive call, as
depicted in Figure 2.2 where the horizontal arrows represent the fine steps. Notice that
this involves computing the full gradient of the function f ℓ (for ℓ > 1) with increasing
computational cost depending on the level ℓ, thus the uses of such step for high ℓ should
be limited.

fS3
(x)Level 3:

xk

fS2
(x)Level 2:

fS1
(x)Level 1:

xk+1 = xk + skS3

S2

S1

Figure 2.2: Iteration scheme used in our implementation of MUℓSTREG.

SVRG has been implemented in MATLAB too and we chose different configurations
for the parameters m, b and α as proposed in [66] for nonconvex problems. We thus set
the mini-batch size b = 10 and b = 20 and m = N/b while we set α ∈ {10−2, 10−1, 0.5}.
We used the same stopping criterion for SVRG as for MUℓSTREG 3.

In order to compare the efficiency of the various methods, we considered the number of

2We kindly acknowledge the Department of Mathematics of the University of Bologna for making
the department’s HPC resources available for this work.

3The stopping criterion is thus checked for SVRG only every m iterations and is checked for
MUℓSTREG only at fine level

2.4. NUMERICAL EXPERIMENTS 73

weighted gradient evaluations performed during the execution: a full-gradient evaluation
is counted as 1, while the sub-sampled one as Nℓ

N
, where N ℓ = |Sℓ| is the size of the sub-

sample set. In the same way, the weighted objective function evaluations are taken into
account. Taking into account the size of the gradients n, the same system of gradient
weights is used for the objective function and its sub-models, just multiplied by 1

n
. From

now on we will consider the sum of the weighted evaluations of gradients and functions as
a measure of the efficiency of the method and we will refer to this sum as computational
effort or more simply weighted number of evaluations, which will be denoted by #f/g.

Besides the efficiency of the methods, we also take into account the quality of the
solutions found. In particular, we focus on the classification accuracy (in percentage) on
the testing set that will be denoted by %tA.

Finally, we will also use performance profiles in the forthcoming Figures 2.4 and 2.6.
We remind the reader that a performance profile graph pA(τ) of an algorithm A at point
τ shows the fraction of the test set for which the algorithm is able to solve within a factor
of τ of the best algorithm for the given measure [29]. The measure used in Figures 2.4
and 2.6 is the total number of #f/g to get the maximum %tA.

In our experiments, we consider two binary classification problems with different
losses. The first problem considers the logistic classification loss with ℓ2 regularization:

min
x∈Rn

f(x) =
1

2N

N∑
i=1

log(1 + exp(−yixT zi)) +
1

2N
∥x∥2, (Pb-LOG)

where for every i = 1, . . . , N the pairs (zi, yi) ∈ Rn ×{−1, 1} contain the features vector
and the corresponding label. Note that (Pb-LOG) is a strongly convex problem.

The second one is a nonlinear least squares problem with sigmoid loss:

min
x∈Rn

f(x) =
1

2N

N∑
i=1

(
yi −

1

1 + exp(−yixT zi)

)2

. (Pb-LS)

Here (zi, yi) ∈ Rn × {0, 1}, for every i = 1, . . . , N .

The tests are performed over four different datasets for binary classification: MNIST

[51], MUSH [56], A9A and IJCNN1 [23]. The data sets are divided into a training set and a
testing set as specified in Table 2.1.

74 CHAPTER 2. MUℓSTREG

Data set nr. of features (n) Training set size (N) Testing set size (Nt)
MNIST 784 60000 10000
MUSH 112 6503 1621
A9A 123 22793 9768
IJCNN1 22 49990 91701

Table 2.1: Data sets with number of features n and number of instances of the training set N and the
testing set Nt.

2.4.2 Preliminary parameter tuning: number of levels and sam-

ple set cardinalities

Our method is characterized by two parameters that may be problem-dependent: the
number of levels ℓmax and the cardinalityN ℓ of each sub-sample set Sℓ, for ℓ = 1, ..., ℓmax−
1 with N ℓmax = N . Clearly, these parameters affect the weight of each gradient and
function evaluation during the execution of the method.

In this section, we present the results of the experimental investigation on the influ-
ence of these parameters on the performance of the method by comparing the perfor-
mance of different variants of MUℓSTREG against the one-level version of our algorithm
that corresponds in fact to a weighted AR1 method.

In Tables 2.2, 2.4 and 2.6 we consider the weighted evaluations. We report the
for both problems (Pb-LOG) and (Pb-LS) the values normalized with respect to the
one-level version, for which we indicate also in parenthesis the total number of weighted
evaluations. In every column, we underline the best result (minimum number of weighted
evaluations) for the multilevel variants and we highlight in italics the results that are
worse than those of the one-level version (those corresponding to a factor larger than
one). Moreover Tables 2.3, 2.4 and 2.7 report the maximum classification accuracy (in
percentage) achieved by the considered methods.

2.4.2.1 Two-level hierarchy

In this section, we fix ℓmax = 2, that is |S2| = N2 = N , and consider different values for
the cardinality of S1. Since N depends on the dataset, we choose the values of N1 = |S1|
proportional to N in order to have a fixed ratio r := |S1|

N
∈ {0.5, 0.2, 0.1, 0.05, 0.025, 0.01}.

The methods reach convergence for both problems and for every dataset. For the
efficiency, Table 2.2 shows that the use of a two-level hierarchy yields improvements in

2.4. NUMERICAL EXPERIMENTS 75

Pb-LOG Pb-LS
MNIST MUSH A9A IJCNN1 MNIST MUSH A9A IJCNN1

1-level 1 (1308) 1 (94) 1 (139) 1 (21) 1 (1158) 1 (103) 1 (119) 1 (18)

2-
le

ve
ls

r= 0.5 1.2 0.6 2.3 1.1 1.0 0.4 2.4 1.2
r= 0.2 1.3 0.5 1.6 0.6 0.6 0.4 1.6 0.8
r= 0.1 0.9 0.4 1.6 0.6 0.4 0.2 1.1 0.7
r= 0.05 0.9 0.4 1.7 0.6 0.5 0.4 1.3 0.7
r= 0.025 0.7 0.5 1.3 0.6 0.3 0.3 1.2 0.6
r= 0.01 0.5 0.4 1.2 0.7 0.4 0.3 1.1 0.6

Table 2.2: One-level vs. two-levels: computational effort. Different variants of two-level methods
based on r = |S1|/N . Value of #f/g to reach convergence, normalized with respect to the one-level
version, for which #f/g is reported in parenthesis.

Pb-LOG Pb-LS
MNIST MUSH A9A IJCNN1 MNIST MUSH A9A IJCNN1

1-level 89.7 98.7 84.7 91.5 89.9 99.4 84.7 91.7

2-
le

ve
ls

r= 0.5 89.6 99.1 84.8 91.5 89.6 97.2 84.7 91.7
r= 0.2 89.5 98.2 84.8 91.5 89.7 97.5 84.7 91.7
r= 0.1 89.5 98.5 84.8 91.5 89.6 96.2 84.7 91.8
r= 0.05 89.5 98.1 84.8 91.5 89.6 96.6 84.7 91.8
r= 0.025 89.6 98.5 84.8 91.5 89.7 96.0 84.7 91.8
r= 0.01 89.6 98.2 84.8 91.5 89.7 97.3 84.7 91.7

Table 2.3: One-level vs. two-levels: testing set accuracy. Different variants of two-level methods
based on r = |S1|/N . Value of %tA at convergence.

lowering the number of evaluations for most of the problems and for most of the values
of the cardinality ratios r, and is especially favorable when the ratio of the cardinalities
is low.

Notably, for the MUSH dataset for both the convex and nonconvex problems we have
a significant reduction in the number of evaluations in each test with two levels. On the
other hand, for the A9A dataset the use of our two-level method with any cardinality of S1

results in even more computational effort than the case with one level. In between these
two cases, for the rest of the datasets, we always have a decrease of computational effort
with respect to the one-level method with |S1| ≤ 0.1N (MNIST) or |S1| ≤ 0.2N (IJCNN1).
Note however that the correlation between the ratio |S1|

N
and the computational effort

is not monotonic, meaning that with the decrease of the cardinality of S1 there is no
systematic decrease in the number of evaluations.

From Table 2.3, we note that the classification accuracy reached by MU2STREG is
comparable with that obtained with the one-level version, with the only exception of the

76 CHAPTER 2. MUℓSTREG

MUSH dataset where we have a small increase in the convex case with MU2STREG with
|S1| = 0.5N and a decrease for all the two-level versions in the nonconvex case.

2.4.2.2 Three-level hierarchy

We now investigate what happens with a deeper hierarchy and we set ℓmax = 3 and, as
in the previous section, we choose the cardinality of the sub-sampling sets by fixing the
same fraction of the number of samples N for all datasets in both problems. Specifically,
given |S3| = N , we fix the cardinality of S2 such that |S2|

N
= 0.1 and vary the cardinality

of S1 so that r = |S1|
N

∈ {0.025, 0.01, 0.005, 0.001}.
MU3STREG is now compared with the one-level method and with one version of the

two-level method. Taking into account the experiments conducted in Subsection 2.4.2.1,
we choose the two-level method with |S2| = N and |S1| = 0.1N for which the three-level
methods tested here are a natural extension.

Pb-LOG Pb-LS
MNIST MUSH A9A IJCNN1 MNIST MUSH A9A IJCNN1

1-level 1 (1308) 1 (94) 1 (139) 1 (21) 1 (1158) 1 (103) 1 (119) 1 (18)
2-levels r= 0.1 0.9 0.4 1.6 0.6 0.4 0.2 1.1 0.7

3-
le

ve
ls r= 0.025 0.1 0.4 0.2 0.5 0.2 0.1 0.4 0.4

r= 0.01 0.1 0.3 0.2 0.4 0.1 0.1 0.4 0.4
r= 0.005 0.1 0.4 0.1 0.5 0.1 0.2 0.4 0.4
r= 0.001 0.1 0.5 0.2 0.5 0.1 0.2 0.4 0.5

Table 2.4: One-level, two-levels vs. three-levels: computational effort. Different variants of
three-level methods based on r = |S1|/N (|S2|/N = 0.1). Value of #f/g to reach convergence, normalized
with respect to the one-level version, for which #f/g is reported in parenthesis and the same value for
the two-level version with r = 0.1.

Pb-LOG Pb-LS
MNIST MUSH A9A IJCNN1 MNIST MUSH A9A IJCNN1

1-level 89.7 98.7 84.7 91.5 89.9 99.4 84.7 91.7
2-levels r= 0.1 89.5 98.5 84.8 91.5 89.6 96.2 84.7 91.8

3-
le

ve
ls r= 0.025 89.6 98.0 85.0 91.5 89.6 99.1 84.9 91.7

r= 0.01 89.6 98.8 84.9 91.5 89.6 98.5 84.7 92.3
r= 0.005 89.7 98.5 84.9 91.5 89.8 99.3 84.7 91.7
r= 0.001 89.6 97.5 85.0 91.5 89.6 99.1 84.7 91.7

Table 2.5: One-level, two-levels vs. three-levels: testing set accuracy. Different variants of
three-level methods based on r = |S1|/N (|S2|/N = 0.1), the two-level method with r = 0.1 and the
one-level version. Value of %tA at convergence.

2.4. NUMERICAL EXPERIMENTS 77

It can be seen from Table 2.4 that for each problem type (convex or nonconvex) and for
each dataset the method that uses the least number of evaluations is always a three-level
method. More interestingly, Table 2.4 reveals that the use of MU3STREG results in a
significant drop in the number of evaluations needed to achieve convergence with respect
to the one and two-level variants. Moreover, Table 2.5 shows that the classification
accuracy obtained using the one-level method, MU2STREG and MU3STREG are similar,
regardless of problem type and dataset.

2.4.2.3 Five-level hierarchy

The results on the three-level hierarchy shown in Subsection 2.4.2.2 give us good indica-
tions for choosing the number of levels ℓmax and the cardinalities of the subsampling sets{
Sℓ
}ℓmax

ℓ=1
. But we want to investigate a little bit further, and in this paragraph we illus-

trate the results of a test on a five-level version of MUℓSTREG, thus called MU5STREG,
and compare it with the one-, two- and three-level versions. Since a five-level hierarchy
does not allow us many choices for the cardinality of the sample sets, we chose a single
configuration of the hierarchy that could fit all the data sets considered. Thus, the car-
dinalities of the five sample sets are as follows: |S5| = N , |S4| = 0.1N , |S3| = 0.05N ,
|S2| = 0.01N and |S1| = 0.001N .

The MU5STREG is compared with those two- and three-level versions that were best
for almost all datasets and problems, namely the two-level method with |S2| = N and
|S1| = 0.1N and the three-level method with |S3| = N , |S2| = 0.1N and |S1| = 0.01N .

Looking at Tables 2.6 and 2.7 we can conclude that the five-level version in most cases
is not better than the three-level version. In fact, referring to Table 2.6 we see how the
computational cost to achieve convergence of MU5STREG is greater than the three-level
version in almost all cases, the only exceptions are for the convex problem (Pb-LOG)
with the MNIST dataset and for the nonconvex problem (Pb-LS) with the A9A dataset;
furthermore, looking at Table 2.7, we see how there is no substantial improvement in
classification accuracy, in fact where there is an increase of accuracy with respect to
three-level method it is at most of the 0.7% (e.g. problem (Pb-LOG) with MUSH). The
worse performance of MU5STREG compared to MU3STREG could be due to the fact
that a five-level hierarchy warps too much the original problem. In a hierarchy of five
levels, the function mR,1

k , defined according to (2.56), surely is very different from the

78 CHAPTER 2. MUℓSTREG

Pb-LOG Pb-LS
MNIST MUSH A9A IJCNN1 MNIST MUSH A9A IJCNN1

1-level 1 (1308) 1 (94) 1 (139) 1 (21) 1 (1158) 1 (103) 1 (119) 1 (18)
2-levels r= 0.1 0.87 0.39 1.65 0.61 0.43 0.24 1.10 0.71
3-levels r= 0.01 0.06 0.33 0.19 0.42 0.11 0.12 0.37 0.40
5-levels 0.04 0.50 0.22 0.87 0.46 0.44 0.26 0.63

Table 2.6: One-level, two-levels, three-levels vs. five-levels: computational effort. One five-
level hierarchy: |S5| = N , |S4| = 0.1N , |S3| = 0.05N , |S2| = 0.01N and |S1| = 0.001N . Value of #f/g
to reach convergence, normalized with respect to the one-level version, for which #f/g is reported in
parenthesis and the same value for the two-level version with r = 0.1 and for the three-level version
with S2 = 0.1 and r = 0.01.

Pb-LOG Pb-LS
MNIST MUSH A9A IJCNN1 MNIST MUSH A9A IJCNN1

1-level 89.71 98.70 84.74 91.51 89.86 99.44 84.75 91.66
2-levels r= 0.1 89.52 98.52 84.83 91.51 89.64 96.18 84.72 91.80
3-levels r= 0.01 89.55 98.77 84.89 91.49 89.57 98.46 84.68 92.25
5-levels 89.56 99.44 84.86 91.57 89.34 95.74 85.16 92.67

Table 2.7: One-level, two-levels, three-levels vs. five-levels: testing set accuracy. One five-
level hierarchy: |S5| = N , |S4| = 0.1N , |S3| = 0.05N , |S2| = 0.01N and |S1| = 0.001N ; the three-level
method with S2 = 0.1 and r = 0.01, the two-level method with r = 0.1 and the one-level version. Value
of %tA at convergence.

same mR,1
k that we find at the bottom of a hierarchy with only three levels. Probably,

the step sℓmax
k obtained after a full descent of five levels and back provides a smaller

improvement than the one provided by a step sℓmax
k obtained after a descent of only three

levels. Hence to reach the maximum accuracy on the testing set MU5STREG needs
more iterations and consequently more functions and gradient (weighted) evaluations,
resulting in a less efficient method than MU3STREG.

2.4.3 Comparison with SVRG

In this section, we compare MUℓSTREG against a mini-batch version of SVRG on the
convex problem (Pb-LOG) and on the nonconvex one (Pb-LS) using the four datasets
MNIST, MUSH, A9A and IJCNN1. Specifically, for each problem and for each dataset we
perform five runs starting from five different random initial guesses for a total of forty
numerical tests.

We use the version of MUℓSTREG that gave the best performance for most of
the problems in the tuning tests reported in Subsection 2.4.2, that is the three-level

2.4. NUMERICAL EXPERIMENTS 79

MU3STREG version with the sample cardinalities N3 = |S3| = N , N2 = |S2| = 0.1N

and N1 = |S1| = 0.01N .

MU3STREG and SVRG are compared reporting the maximum classification accuracy
on the testing set achieved and the corresponding required computational effort. More-
over, we declare a run as a failure when the achieved classification accuracy is below
80%.

2.4.3.1 Convex problem: logistic classification problem (Pb-LOG)

Here we consider the results of the tests performed on problem (Pb-LOG). Figure 2.3
shows the classification accuracy on the testing set against the number of evaluations
for every dataset selecting, for each solver, among the five runs per problem, the one
that returns the highest accuracy. Table 2.8 shows mean values of the five runs, instead,
together with the standard deviation for the classification accuracy. We only report
the runs obtained with b = 10 for SVRG (and three choices for the learning rate α) as
those obtained with b = 20 are rather similar. Both values of the mini-batch size b are
considered in Figure 2.4.

On these tests both SVRG and MU3STREG always reach convergence with an ac-
curacy on the testing set higher than 80%, moreover the maximum accuracy for each
dataset does not vary much depending on the method applied (see Table 2.8).

Regarding the efficiency of the various methods, looking at the plots in Figures 2.3
we can see that SVRG is quite effective on these convex problems. In these cases, the
choice of the step-size is not very critical and a quite large one (α = 0.5) can be safely
used for all the datasets with the best results. In these experiments, our MU3STREG
does not outperform the best version of SVRG, but it shows comparable performance to
SVRG with α = 0.1 and is (almost) always better than the worst version of SVRG, with
the advantage of not requiring the tuning of the step-size.

This is clearly summarized in Figure 2.4, where we show the performance profiles of
MU3STREG against the three versions of SVRG with mini-batch size b = 10 in the left-
hand side plot and b = 20 on the right-hand side. Each profile is constructed from the
twenty runs performed and is based on the weighted number of gradient and objective
function evaluations to achieve maximum accuracy on the testing set. We can see that
on average MU3STREG is comparable to/slightly better than SVRG with α = 0.1 and

80 CHAPTER 2. MUℓSTREG

(a) MNIST dataset

0 50 100 150
70

75

80

85

90

#f/g

te
st

ac
cu

ra
cy

(b) MUSH dataset

0 5 10 15
70

80

90

100

#f/g

te
st

ac
cu

ra
cy

(c) A9A dataset

0 20 40
70

75

80

85

#f/g

te
st

ac
cu

ra
cy

(d) IJCNN1 dataset

2 4 6 8 10
80

85

90

#f/g

te
st

ac
cu

ra
cy

MU3STREG SVRG α = 10−2 SVRG α = 10−1 SVRG α = 0.5

Figure 2.3: (Pb-LOG) Comparison between MU3STREG and SVRG with mini-batch size b = 10 on
MNIST(2.3a), MUSH(2.3b), A9A(2.3c) and IJCNN1(2.3d) datasets. Plot of classification accuracy on testing
set against the number of function and gradient evaluations for the successful run with the highest
accuracy for every method.

far better than SVRG with small step-size.

2.4.3.2 Nonconvex problem: nonlinear Least Squares (Pb-LS)

In this section, we report the results of the tests on the nonconvex problem (Pb-LS).
As in the previous section, for each dataset, we perform five tests with random initial
guesses. Then we show the averaged values in Table 2.9, while in Figure 2.5 we plot for
each method the run that gives the maximum accuracy, and the performance profiles in
Figure 2.6 take into account the whole 20 runs.

In general, all the methods tested reach convergence but the accuracy reached varies
a lot because of the nonconvexity of the problem. In particular, many versions of SVRG

2.4. NUMERICAL EXPERIMENTS 81

MNIST
SVRG b = 10 MU3STREG

α = 0.01 α = 0.1 α = 0.5
Avg. %tA 89.70 89.73 89.73 89.62
StD %tA 0.02 0.01 0.03 0.10
Avg. # f/g 105.00 14.40 21.60 138.70
StD # f/g 9.25 3.29 2.51 25.97

MUSH
SVRG b = 10 MU3STREG

α = 0.01 α = 0.1 α = 0.5
Avg. %tA 97.42 97.51 97.68 97.88
StD %tA 0.27 0.27 0.20 1.45
Avg. # f/g 989.10 102.57 17.99 13.63
StD # f/g 25.66 2.51 8.48 2.13

A9A
SVRG b = 10 MU3STREG

α = 0.01 α = 0.1 α = 0.5
Avg. %tA 84.74 84.77 84.87 84.75
StD %tA 0.07 0.05 0.06 0.05
Avg. # f/g 144.59 15.60 8.40 25.28
StD # f/g 16.07 1.34 2.51 6.66

IJCNN1
SVRG b = 10 MU3STREG

α = 0.01 α = 0.1 α = 0.5
Avg. %tA 91.50 91.50 91.50 91.54
StD %tA 0.01 0.00 0.02 0.05
Avg. # f/g 250.20 30.00 6.00 8.05
StD # f/g 17.31 0.00 0.00 0.98

Table 2.8: (Pb-LOG) Comparison between MU3STREG and SVRG with mini-batch size b = 10. Average
of maximum classification accuracy and number of evaluations, with corresponding standard deviation.

find solutions with a classification accuracy lower than 80% and are therefore considered
as a failure. The number of failures is reported in Table 2.9 as # fails. If the failure
occurs for all the initial guesses, the symbol "-" is used. Generally, SVRG fails with large
values of the step size α, which are feasible just for the IJCNN1 dataset.

On the other hand, MU3STREG is quite efficient on these nonconvex problems and
not only always returns solutions that lead to a classification accuracy greater than 80%,
but also always proves to be by far the most efficient method in terms of computational
effort to obtain these solutions.

All of this is further summarized in Figure 2.6 in which the performance profiles over
the twenty tests of MU3STREG against the three versions of SVRG with b = 10 (Figure
2.6, left) and b = 20 (Figure 2.6, right) are shown. The advantage of an automatic step

82 CHAPTER 2. MUℓSTREG

5 10 15 20
0

0.2

0.4

0.6

0.8

1

τ

p A
(τ
)

(Pb-LOG) - MU3STREG vs SVRG (b = 10)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

τ

p A
(τ
)

(Pb-LOG) - MU3STREG vs SVRG (b = 20)

MU3STREG SVRG α = 10−2 SVRG α = 10−1 SVRG α = 0.5

Figure 2.4: (Pb-LOG) Number of weighted evaluations to achieve maximum classification accuracy
performance profile: MU3STREG and SVRG with mini-batch size b = 10 (left) and b = 20 (right) with
various stepsizes α.

selection is thus clear in the context of nonconvex problems.

2.4.4 Numerical investigation on the finest sample size

We recall that Algorithm 6 is in fact the adaptation of Algorithm 5 to problem (2.2)
assuming that the finest level function fSℓmax is the exact objective f in (2.2), that is
that N is such that the full sum can be computed. However, the stochastic framework of
Algorithm 5 discussed in sections 2.1 and 2.2 is by far more general. Indeed it allows for
inexact approximations of f at the finest level, thus allowing for the solution of problems
in which the full sample evaluation is not affordable, a situation that is not covered by
SVRG convergence theory.

Specifically, in the definition of ρℓmax
k at Line 14 the values f ℓmax(xk) and f ℓmax(xk+sk)

do not need to coincide with f(xk) and f(xk+sk). Algorithm 6 can thus be called at fine
level with a function fSℓmax defined on a subset Sℓmax ⊂ {1, . . . , N}, as long as the Taylor
model at fine level remains a fully linear model for f , or, even if the full sample set is
used to evaluate the gradient and to compute the step, the functions approximations can
be evaluated on a smaller subset.

In Table 2.10 we investigate these settings and we report the results obtained using
MU3STREG varying

N ℓmax = {1, 0.85, 0.75}N. (2.68)

2.4. NUMERICAL EXPERIMENTS 83

(a) MNIST dataset

0 50 100 150
70

75

80

85

90

#f/g

te
st

ac
cu

ra
cy

(b) MUSH dataset

0 5 10 15
70

80

90

100

#f/g

te
st

ac
cu

ra
cy

(c) A9A dataset

0 10 20 30
70

75

80

85

#f/g

te
st

ac
cu

ra
cy

(d) IJCNN1 dataset

2 4 6 8
80

85

90

#f/g

te
st

ac
cu

ra
cy

MU3STREG SVRG α = 10−2 SVRG α = 10−1 SVRG α = 0.5

Figure 2.5: (Pb-LS) Comparison between MU3STREG and SVRG with mini-batch size b = 10 on
MNIST(2.5a), MUSH(2.5b), A9A(2.5c) and IJCNN1(2.5d).Plot of classification accuracy on testing set against
the number of function and gradient evaluations for the successful run with the highest accuracy for
every method. The curves that are not plotted correspond to methods that fail for every run for that
dataset.

If the full gradient is not evaluated, the stopping criterion (2.58) might not be meaningful.
Below we thus use a heuristic stopping test. When (2.58) is satisfied for the first time,
after a fine or a coarse step, a new set of N ℓmax randomly chosen samples are drawn and
fine steps are taken until (2.58) is satisfied again. In our tests, one additional fine step
was sufficient for the stopping criterion to be satisfied.

In Table 2.10 results in the columns with header f are obtained by computing the
full gradient (i.e., taking into account all the N samples) at the finest level and using the
usual stopping criterion on the gradient norm, while the computation of ρℓmax

k involves
the objective function averaged on N ℓmax samples as given in (2.68). Differently, results

84 CHAPTER 2. MUℓSTREG

MNIST
SVRG b = 10 SVRG b = 20 MU3STREG

α = 0.01 α = 0.1 α = 0.5 α = 0.01 α = 0.1 α = 0.5
fails 0 2 5 0 5 5 0
Avg. %tA 90.28 90.23 - 90.43 - - 89.84
StD %tA 0.01 0.01 - 0.13 - - 0.03
Avg. # f/g 29646.60 20032.00 - 17843.40 - - 84.86
StD # f/g 217.25 3156.21 - 6336.56 - - 7.14

MUSH
SVRG b = 10 SVRG b = 20 MU3STREG

α = 0.01 α = 0.1 α = 0.5 α = 0.01 α = 0.1 α = 0.5
fails 0 0 5 0 0 5 0
Avg. %tA 98.78 98.49 - 98.69 99.27 - 98.04
StD %tA 0.27 0.03 - 0.25 0.55 - 0.84
Avg. # f/g 125.36 885.33 - 341.89 230.33 - 20.23
StD # f/g 19.37 14.75 - 722.65 121.18 - 2.70

A9A
SVRG b = 10 SVRG b = 20 MU3STREG

α = 0.01 α = 0.1 α = 0.5 α = 0.01 α = 0.1 α = 0.5
fails 0 0 5 0 5 5 0
Avg. %tA 84.66 85.15 - 85.00 - - 84.66
StD %tA 0.02 0.04 - 0.05 - - 0.10
Avg. # f/g 1310.88 1199.29 - 840.77 - - 23.61
StD # f/g 15.44 582.12 - 300.51 - - 4.11

IJCNN1
SVRG b = 10 SVRG b = 20 MU3STREG

α = 0.01 α = 0.1 α = 0.5 α = 0.01 α = 0.1 α = 0.5
fails 0 0 0 0 0 0 0
Avg. %tA 91.68 91.72 90.43 91.68 90.52 89.89 91.69
StD %tA 0.00 0.00 0.01 0.00 0.00 0.01 0.18
Avg. # f/g 2785.20 303.60 76.80 553.87 31.80 34.80 9.28
StD # f/g 22.51 1.34 1.64 1.64 1.64 4.55 0.55

Table 2.9: (Pb-LS) Comparison between MU3STREG and SVRG with mini-batch size b = 10 and b = 20.
Average of maximum classification accuracy reached and number of evaluations, with corresponding
standard deviation. The average is evaluated only on the successful tests.

in the columns with header f,∇f are obtained by averaging both the objective function
and its gradient on N ℓmax samples, and using the proposed heuristic stopping criterion.

As in the previous section, results are averaged over 5 runs (for 5 random initial
guesses) in the solution of (Pb-LS) on the 4 data sets.

We can observe that in all cases, the classification accuracy is not affected by the
value of N ℓmax and the computational effort mildly varies for the datasets MUSH, A9A and
IJCNN1. The only exception is the case of MNIST, where the average number of evalua-

2.4. NUMERICAL EXPERIMENTS 85

5 10 15 20
0

0.2

0.4

0.6

0.8

1

τ

p A
(τ
)

(Pb-LS) - MU3STREG vs SVRG (b = 10)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

τ

p A
(τ
)

(Pb-LS) - MU3STREG vs SVRG (b = 20)

MU3STREG SVRG α = 10−2 SVRG α = 10−1 SVRG α = 0.5

Figure 2.6: (Pb-LS) Number of weighted evaluations to achieve maximum classification accuracy per-
formance profile: MU3STREG and SVRG with mini-batch size b = 10 (left) and b = 20 (right) with
various stepsizes α.

tions #f/g increases as N ℓmax decreases. The 2 fails in the solution of MUSH when using
inexactness in both gradient and function values (columns header f,∇f), correspond to
the computation of stationary points with an unsatisfactory classification accuracy.

86 CHAPTER 2. MUℓSTREG

MNIST

100% 85% 75%
f f , ∇f f f , ∇f

fails 0 0 0 0 0
Avg. %tA 89.84 89.85 89.92 89.87 90.01
StD %tA 0.03 0.02 0.03 0.04 0.08
Avg. #f/g 84.86 176.08 200.42 170.08 438.67
StD #f/g 7.14 31.56 51.83 20.84 166.86

MUSH

100% 85% 75%
f f , ∇f f f , ∇f

fails 0 0 0 1 1
Avg. %tA 98.04 97.96 98.37 97.90 98.52
StD %tA 0.84 0.35 0.39 1.03 0.42
Avg. #f/g 20.23 28.53 33.03 31.35 30.58
StD #f/g 2.70 15.04 5.50 8.63 4.01

A9A

100% 85% 75%
f f , ∇f f f , ∇f

fails 0 0 0 0 0
Avg. %tA 84.66 84.74 84.84 84.76 84.85
StD %tA 0.10 0.05 0.10 0.13 0.08
Avg. #f/g 23.61 37.88 32.55 31.07 29.06
StD #f/g 4.11 8.18 5.87 10.92 11.18

IJCNN1

100% 85% 75%
f f , ∇f f f , ∇f

fails 0 0 0 0 0
Avg. %tA 91.69 91.63 91.76 91.67 91.74
StD %tA 0.18 0.08 0.05 0.06 0.06
Avg. #f/g 9.28 30.99 33.76 29.80 29.71
StD #f/g 0.55 6.02 0.76 5.56 2.92

Table 2.10: (Pb-LS) Comparison between MU3STREG varying N ℓmax = {1, 0.85, 0.75}N . In every
column is shown the average of maximum classification accuracy reached by every method and every
dataset with corresponding standard deviation and the average number of evaluations with standard
deviations.

Conclusions

In this work, we applied Derivative-Free Optimization methods with the possible use of
Black-Box functions, to energy production technologies to improve their efficiency and
reduce their environmental impact.

In our research project, we focused on gas turbines which are a technology that will
play a key role in the short- and medium-term future of the energy transition. In more
detail, we focused on optimization methods applied to the cooling system of gas turbines
and we analyzed two particular instances of this topic achieving remarkable results.

The first result is the definition from scratch of a framework for optimizing the im-
pingement cooling system for a gas turbine nozzle. We proposed a mathematical for-
mulation of the problem in (1.35), resulting in a mixed variable constrained Black-Box
Optimization problem that we numerically addressed using DFO algorithms. While
studying a suitable DFO approach for this problem, we also defined and implemented
the black-box function NOZZLE which simulates the functioning of the cooling system
inside a turbine nozzle and returns as output the parameters to evaluate its efficiency;
NOZZLE results in a simple numerical tool for the design of an impingement cooling
system. Finally, we combine NOZZLE together with BFO solver in a Derivative-free
ℓ1−penalty method and we validate our approach through numerical tests. The result-
ing procedure allows for the design of an efficient impingement cooling system and for its
improvement without having to rely on the operator’s experience and by also reducing
the time required with respect to the standard procedure.

The obtained preliminary results form the basis for future developments involving
both the black-box function formulation and the optimization method. The NOZZLE
function can be improved by starting from a problem with different boundary conditions.
In particular, instead of knowing the total mass flow rate ṁtot provided to the cooling
system we impose a fixed value for the outlet pressure of the cooling air poutc . This change

87

88 CHAPTER 2. MUℓSTREG

would allow us to remove the constraint on the pressure (1.28) so we do not need to solve
the nonlinear equation (1.26), saving some computational effort.

Another improvement of the simulator is to allow the variable layout to assume more
than two values. Our definition of NOZZLE and the related problem could in fact
be treated using a binary variable instead of the categorical variable layout , since the
latter admits only two values, inline and staggered. Indeed, there are DFO methods
for constrained mixed-integer variable problems that can be adapted to handle binary
variables, like the one proposed by Liuzzi et al. [53]. Another possible strategy would be
to solve two separate constrained Black-Box Optimization problems in which the variable
layout is fixed to inline and staggered, respectively, and pick the best solution.

But keeping the variable layout as categorical, we leave open many more possibilities
for the design of an impingement plate. Clearly, since the Florschuetz model that we
used to define NOZZLE admits only two values for layout, it is obvious that to admit a
layout with values other than inline and staggered one must overcome the Florschuetz
model. Or at least, overcome the use of only Florchuetz’s model inside NOZZLE. In fact,
while we can think of completely replacing the old Florschuetz model, we can also stand
alongside and complement it. In the latter way, we do not give up using a model that has
proven to be reliable despite its simplicity. One possible idea is schematically represented
in Figure 2.7. Here on the left, we have a representation of the choice we made to define
this version of NOZZLE: we have the impingement plate where we use Florschuetz’s
model, thus we have only two possible layouts, inline and staggered. But what if we
split the impingement plate into two regions to allow one layout per region? In this way,
considering only the inline and staggered, we can have four possible layouts for the whole
plate given by the combinations of inline and staggered on every half-plate, as shown on
the right of Figure 2.7. As the figure shows, we could apply Florschuetz’s model to the
half of the plate that is upstream of the cooling air flow (whose direction is represented
by the blue arrow), while for the downstream half, it is necessary to find another model.
This is because downstream we are no longer in the exact configuration for which the
Florschuetz model was developed, in fact in the first row of jets we will have a nonzero
crossflow mass velocity since we will have the contribution coming from the upstream
half. Recall that the Florschuetz model was instead developed for a configuration such
as that shown on the left in Figure 2.7, in which we have no crossflow coming from
upstream of the plate. So a different model needs to be applied to the downstream half.

2.4. NUMERICAL EXPERIMENTS 89

Florschuetz’s
model

Florschuetz’s
model

New model

Two layouts

Four layouts

Inline Staggered

Inline - Inline Staggered - Inline

Inline - Staggered Staggered - Staggered

Current layouts New layouts

Figure 2.7: Left: the current choice used to define NOZZLE with two layouts. Right: a hint for a
(possible) new idea to allow four layouts.

This different model will be the subject for future research.

Regarding the optimization method, we observed in Section 1.4 that the ℓ1−penalty
BFO method is a local optimization method. However, practitioners often need a global
solution. Therefore, the next step will be devoted to the implementation of a global
optimization strategy that is suitable for the problem under consideration.

The second contribution of this work is the MUℓSTREG optimization method de-
veloped for large problems with a noisy objective function. MUℓSTREG was originally
conceived as a method to be applied to a validation phase of the design of a complete
cooling system. During this validation, we typically have data-matching between the
results of a numerical simulation of the cooling system and empirical data. Typically
these are large-scale problems and are affected by random uncertainties either in the
measured data or in the simulation processes. We have proposed a new framework for
the multilevel solution of stochastic problems, assuming that the stochastic objective
function can be represented at different levels of accuracy. Our framework encompasses
both hierarchies in the variables space and in the function space and it is, to our knowl-
edge, the first stochastic framework for multilevel methods, that are currently limited to
the deterministic case.

90 CHAPTER 2. MUℓSTREG

The proposed method MUℓSTREG is a new multilevel stochastic gradient method
based on adaptive regularization that generalizes the AR1 method [21] and we propose
a stochastic convergence analysis for it. This convergence theory is the first stochastic
convergence study both for multilevel methods and for adaptive regularization methods.

We show that MUℓSTREG can be interpreted as a variance reduction method for
finite-sum minimization problems and we numerically compare it to a mini-batch version
of SVRG. We show the advantage of our automatic step selection in the context of
nonconvex problems. We also investigate the practical advantages of the stochastic
framework over the deterministic one, which allows for the solution of finite-sum problems
without the need to evaluate the function/gradient over the full sample set. This makes
our method feasible also for problems defined over very large sample sets, a situation
that is not covered by the convergence theory of standard variance reduction methods.

Supported by these theoretical and experimental results, in the near future we aim
to continue the experimentation by applying MUℓSTREG on data-fitting problems to
validate the design of the entire network of cooling systems of a gas turbine so that
we can test MUℓSTREG on a stochastic optimization problem that allows us to define a
hierarchy on both the space of variables and the approximations of the objective function.

Bibliography

[1] M. A. Abramson, “Mixed variable optimization of a load-bearing thermal insulation
system using a filter pattern search algorithm,” Optim. Eng., vol. 5, pp. 157–177,
2004.

[2] M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston, “Mesh adaptive
direct search algorithms for mixed variable optimization,” Optim. Lett., vol. 3,
pp. 35–47, 2009.

[3] S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel, “Two
decades of blackbox optimization applications,” EURO J. Comput. Optim., vol. 9,
p. 100 011, 2021.

[4] Z. Allen-Zhu, “Natasha: Faster non-convex stochastic optimization via strongly
non-convex parameter,” in International Conference on Machine Learning, PMLR,
2017, pp. 89–97.

[5] C. Audet and J. E. Dennis Jr, “Pattern search algorithms for mixed variable pro-
gramming,” SIAM J. Optim., vol. 11, no. 3, pp. 573–594, 2001.

[6] C. Audet and J. E. Dennis Jr, “A pattern search filter method for nonlinear pro-
gramming without derivatives,” SIAM J. Optim., vol. 14, no. 4, pp. 980–1010,
2004.

[7] C. Audet and J. E. Dennis Jr, “A progressive barrier for derivative-free nonlinear
programming,” SIAM J. Optim., vol. 20, no. 1, pp. 445–472, 2009.

[8] C. Audet and W. Hare, Derivative-free and Blackbox Optimization (Springer Series
in Operations Research and Financial Engineering). Cham, Switzerland: Springer,
2017.

91

92 BIBLIOGRAPHY

[9] C. Audet and M. Kokkolaras, “Blackbox and derivative-free optimization: Theory,
algorithms and applications,” Optim. Eng., vol. 17, pp. 1–2, 2016.

[10] A. Bandeira, K. Scheinberg, and L. Vicente, “Convergence of trust-region methods
based on probabilistic models,” SIAM J. Optim., vol. 24, no. 3, pp. 1238–1264,
2014.

[11] S. Bellavia, G. Gurioli, B. Morini, and P. L. Toint, “Trust-region algorithms: Proba-
bilistic complexity and intrinsic noise with applications to subsampling techniques,”
EURO J. Comput. Optim., vol. 10, p. 100 043, 2022.

[12] S. Bellavia, N. Krejić, B. Morini, and S. Rebegoldi, “A stochastic first-order trust-
region method with inexact restoration for finite-sum minimization,” Comput. Op-
tim. Appl., vol. 84, no. 1, pp. 53–84, 2023.

[13] A. S. Berahas, O. Sohab, and L. N. Vicente, “Full-low evaluation methods for
derivative-free optimization,” Optim. Methods Softw., vol. 38, no. 2, pp. 386–411,
2023.

[14] E. H. Bergou, Y. Diouane, V. Kungurtsev, and C. W. Royer, “A stochastic levenberg–
marquardt method using random models with complexity results,” SIAM/ASA J.
Uncert. Quant., vol. 10, no. 1, pp. 507–536, 2022.

[15] E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, and P. L. Toint,
“Worst-case evaluation complexity for unconstrained nonlinear optimization using
high-order regularized models,” Math. Program., vol. 163, pp. 359–368, 2017.

[16] L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-scale ma-
chine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.

[17] V. Braglia, A. Kopaničáková, and R. Krause, “A multilevel approach to training,”
arXiv preprint arXiv:2006.15602, 2020.

[18] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial. SIAM,
2000.

[19] A. Bűrmen, J. Olenšek, and T. Tuma, “Mesh adaptive direct search with second di-
rectional derivative-based hessian update,” Comput. Optim. Appl., vol. 62, pp. 693–
715, 2015.

BIBLIOGRAPHY 93

[20] H. Calandra, S. Gratton, E. Riccietti, and X. Vasseur, “On high-order multilevel
optimization strategies,” SIAM J. Optim., vol. 31, no. 1, pp. 307–330, 2021.

[21] C. Cartis, N. I. M. Gould, and P. L. Toint, Evaluation complexity of algorithms for
nonconvex optimization. MOS-SIAM Series on Optimization, 2022.

[22] C. Cartis and R. Roberts, “Scalable subspace methods for derivative-free nonlinear
least-squares optimization,” Math. Program., vol. 199, pp. 461–524, 2023.

[23] C. Chang and C. Lin, “LIBSVM: A library for support vector machines,” tist, vol. 2,
27:1–27:27, 3 2011, Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[24] R. Chen, M. Menickelly, and K. Scheinberg, “Stochastic optimization using a trust-
region method and random models,” Math. Program., vol. 169, pp. 447–487, 2018.

[25] L. Cocchi, F. Marini, M. Porcelli, and E. Riccietti, “Black-box optimization for the
design of a jet plate for impingement cooling,” Optim. Eng., 2025. doi: 10.1007/
s11081-025-09981-0.

[26] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-free Op-
timization (MPS-SIAM Series on Optimization). Philadelphia, USA: SIAM, 2009.

[27] C. Davis and W. Hare, “Exploiting known structures to approximate normal cones,”
Math. Oper. Res., vol. 38, no. 4, pp. 665–681, 2013.

[28] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives,” Adv. Neural
Inf. Process. Syst., vol. 27, 2014.

[29] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with perfor-
mance profiles,” Math. Program., vol. 91, pp. 201–213, 2002.

[30] N. Echebest, M. L. Schuverdt, and R. P. Vignau, “An inexact restoration derivative-
free filter method for nonlinear programming,” J. Comput. Appl. Math., vol. 36,
pp. 693–718, 2017.

[31] G. Fasano, G. Liuzzi, S. Lucidi, and F. Rinaldi, “A linesearch-based derivative-free
approach for nonsmooth constrained optimization,” SIAM J. Optim., vol. 24, no. 3,
pp. 959–992, 2014.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1007/s11081-025-09981-0
https://doi.org/10.1007/s11081-025-09981-0

94 BIBLIOGRAPHY

[32] L. W. Florschuetz, D. E. Metzger, D. I. Takeuchi, and R. A. Berry, “Multiple jet
impingement heat transfer characteristic: Experimental investigation of in-line and
staggered arrays with crossflow,” Tech. Rep., 1980.

[33] L. W. Florschuetz, D. E. Metzger, D. I. Takeuchi, and R. A. Berry, “Jet array im-
pingement with crossflow-correlation of streamwise resolved flow and heat transfer
distributions,” Tech. Rep., 1981.

[34] L. W. Florschuetz, C. R. Truman, and D. E. Metzger, “Streamwise flow and
heat transfer distributions for jet array impingement with crossflow,” in Turbo
Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers,
vol. 79634, 1981.

[35] R. W. Fox, P. J. Pritchard, and A. T. McDonald, Introduction to Fluid Mechanics.
John Wiley & Sons, 2010, isbn: 9780470547557. [Online]. Available: https://
books.google.it/books?id=kiFJRQAACAAJ.

[36] S. Gratton, A. Kopaničáková, and P. L. Toint, “Multilevel objective-function-free
optimization with an application to neural networks training,” SIAM J. Optim.,
vol. 33, no. 4, pp. 2772–2800, 2023.

[37] S. Gratton, V. Mercier, E. Riccietti, and P. L. Toint, “A block-coordinate ap-
proach of multi-level optimization with an application to physics-informed neural
networks,” Comput. Optim. Appl., 2024.

[38] S. Gratton, A. Sartenaer, and P. L. Toint, “Recursive trust-region methods for
multiscale nonlinear optimization,” SIAM J. Optim., vol. 19, pp. 414–444, 2008.

[39] S. Gratton and P. L. Toint, “S2mpj and cutest optimization problems for matlab,
python and julia,” arXiv preprint arXiv:2407.07812, 2024.

[40] S. Gratton and L. N. Vicente, “A merit function approach for direct search,” SIAM
J. Optim., vol. 24, no. 4, pp. 1980–1998, 2014.

[41] Y. Ha, S. Shashaani, and R. Pasupathy, “Complexity of zeroth-and first-order
stochastic trust-region algorithms,” arXiv preprint arXiv:2405.20116, 2024.

[42] J. Han, S. Dutta, and S. Ekkad, Gas turbine heat transfer and cooling technology.
CRC press, 2012.

https://books.google.it/books?id=kiFJRQAACAAJ
https://books.google.it/books?id=kiFJRQAACAAJ

BIBLIOGRAPHY 95

[43] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Incropera’s
Principles of Heat and Mass Transfer. John Wiley & Sons, Incorporated, 2017,
isbn: 9781119382911. [Online]. Available: https://books.google.it/books?id=
PGIAMQAACAAJ.

[44] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predic-
tive variance reduction,” Adv. in Neural Information Proc. Sys., vol. 26, 2013.

[45] M. Kokkolaras, C. Audet, and J. E. Dennis Jr, “Mixed variable optimization of
the number and composition of heat intercepts in a thermal insulation system,”
Optim. Eng., vol. 2, pp. 5–29, 2001.

[46] A. Kopaničáková and R. Krause, “Globally Convergent Multilevel Training of Deep
Residual Networks,” SIAM J. Sci. Comput., vol. 0, no. 0, S254–S280, 2022. doi:
10.1137/21M1434076.

[47] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization methods,”
Acta Numer., vol. 28, pp. 287–404, 2019.

[48] G. Lauga, A. Repetti, E. Riccietti, N. Pustelnik, P. Gonçalves, and Y. Wiaux, “A
multilevel framework for accelerating usara in radio-interferometric imaging,” in
2024 32nd European Signal Processing Conference (EUSIPCO), 2024, pp. 2287–
2291. doi: 10.23919/EUSIPCO63174.2024.10715263.

[49] G. Lauga, E. Riccietti, N. Pustelnik, and P. Gonçalves, “Iml fista: A multilevel
framework for inexact and inertial forward-backward. application to image restora-
tion,” SIAM J. Imaging Sc., vol. 17, no. 3, pp. 1347–1376, 2024.

[50] S. Le Digabel and S. M. Wild, “A taxonomy of constraints in black-box simulation-
based optimization,” Optim. Eng., pp. 1–19, 2023.

[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, https:
//keras.io/api/datasets/mnist/.

[52] R. M. Lewis and V. Torczon, “A direct search approach to nonlinear programming
problems using an augmented lagrangian method with explicit treatment of linear
constraints,” in Technical Report of the College of William and Mary, 2010, pp. 1–
25.

https://books.google.it/books?id=PGIAMQAACAAJ
https://books.google.it/books?id=PGIAMQAACAAJ
https://doi.org/10.1137/21M1434076
https://doi.org/10.23919/EUSIPCO63174.2024.10715263
https://keras.io/api/datasets/mnist/
https://keras.io/api/datasets/mnist/

96 BIBLIOGRAPHY

[53] G. Liuzzi, S. Lucidi, and F. Rinaldi, “Derivative-free methods for mixed-integer
constrained optimization problems,” J. Optim. Theory Appl., vol. 164, pp. 933–
965, 2015.

[54] S. Lucidi, V. Piccialli, and M. Sciandrone, “An algorithm model for mixed variable
programming,” SIAM J. Optim., vol. 15, no. 4, pp. 1057–1084, 2005.

[55] F. Marini, M. Porcelli, and E. Riccietti, A multilevel stochastic regularized first-
order method with application to training, 2024. arXiv: 2412.11630 [math.OC].
[Online]. Available: https://arxiv.org/abs/2412.11630.

[56] Mushroom, UCI Machine Learning Repository, DOI: https://doi.org/10.24432/C5959T,
1981.

[57] S. G. Nash, “A multigrid approach to discretized optimization problems,” Optim.
Methods Softw., vol. 14, no. 1-2, pp. 99–116, 2000.

[58] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[59] “Nowpac: A provably convergent derivative-free nonlinear optimizer with path-
augmented constraints,” arXiv preprint arXiv:1403.1931, 2014.

[60] V. Picheny, R. B. Gramacy, S. M. Wild, and S. Le Digabel, “Bayesian optimiza-
tion under mixed constraints with a slack-variable augmented lagrangian,” Adv. in
Neural Information Proc. Sys., vol. 29, 2016.

[61] M. Porcelli and P. L. Toint, “Bfo, a trainable derivative-free brute force optimizer
for nonlinear bound-constrained optimization and equilibrium computations with
continuous and discrete variables,” ACM Trans. Math. Software, vol. 44, no. 1,
pp. 1–25, 2017.

[62] M. Porcelli and P. L. Toint, “Exploiting problem structure in derivative free opti-
mization,” ACM Trans. Math. Software, vol. 48, no. 1, pp. 1–25, 2022.

[63] M. Pourbagian, B. Talgorn, W. G. Habashi, M. Kokkolaras, and S. Le Diga-
bel, “Constrained problem formulations for power optimization of aircraft electro-
thermal anti-icing systems,” Optim. Eng., vol. 16, pp. 663–693, 2015.

[64] T. Pourmohamad, “Combining multivariate stochastic process models with filter
methods for constrained optimization,” Ph.D. dissertation, UC Santa Cruz, 2016.

https://arxiv.org/abs/2412.11630
https://arxiv.org/abs/2412.11630

BIBLIOGRAPHY 97

[65] M. J. D. Powell, A direct search optimization method that models the objective and
constraint functions by linear interpolation. Springer, 1994.

[66] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic variance reduc-
tion for nonconvex optimization,” in International conference on machine learning,
PMLR, 2016, pp. 314–323.

[67] R. G. Regis and S. M. Wild, “Conorbit: Constrained optimization by radial basis
function interpolation in trust regions,” Optim. Methods Softw., vol. 32, no. 3,
pp. 552–580, 2017.

[68] F. Rinaldi, L. Vicente, and D. Zeffiro, “Stochastic trust-region and direct-search
methods: A weak tail bound condition and reduced sample sizing,” SIAM J. Op-
tim., vol. 34, no. 2, pp. 2067–2092, 2024.

[69] C. W. Royer, O. Sohab, and L. N. Vicente, “Full-low evaluation methods for bound
and linearly constrained derivative-free optimization,” Comput. Optim. Appl., pp. 1–
37, 2024.

[70] P. R. Sampaio and P. L. Toint, “Numerical experience with a derivative-free trust-
funnel method for nonlinear optimization problems with general nonlinear con-
straints,” Optim. Methods Softw., vol. 31, no. 3, pp. 511–534, 2016.

[71] J. C. Spall, “Stochastic optimization,” in Handbook of Computational Statistics:
Concepts and Methods, J. E. Gentle, W. K. Härdle, and Y. Mori, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 173–201, isbn: 978-3-642-21551-
3. doi: 10.1007/978-3-642-21551-3_7. [Online]. Available: https://doi.org/
10.1007/978-3-642-21551-3_7.

[72] N. Zuckerman and N. Lior, “Jet impingement heat transfer: Physics, correlations,
and numerical modeling,” in ser. Advances in Heat Transfer, G. A. Greene, P. A.
Hartnett†, A. Bar-Cohen, and Y. I. Cho, Eds., vol. 39, Elsevier, 2006, pp. 565–631.
doi: https://doi.org/10.1016/S0065-2717(06)39006-5. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0065271706390065.

https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/https://doi.org/10.1016/S0065-2717(06)39006-5
https://www.sciencedirect.com/science/article/pii/S0065271706390065

	Abstract
	Introduction
	NOZZLE: a Black-Box Optimization tool
	MUSTREG: a Multilevel Stochastic Gradient method
	Thesis contributions

	NOZZLE
	Optimization model for the impingement cooling system
	The objective function
	Problem geometry and variables
	Florschuetz correlation

	The constraints
	Temperature constraints
	Pressure constraints
	Feasibility linear constraints

	Black-box definition
	DFO for the solution of the black-box model
	The overall constrained BBO formulation
	Our DFO proposal: the 1-penalty BFO method

	Experimental results
	Laboratory case
	Industrial case
	Comments on the numerical results

	MUSTREG
	The multilevel stochastic regularized gradient method
	Hierarchical representation of problem (2.1)
	The step computation
	The step acceptance
	MU2STREG: the two-level case

	Convergence theory
	Convergence analysis

	MUSTREG for finite-sum minimization
	Algorithmic details
	Similarity with SVRG

	Numerical experiments
	Implementation issues and test problem set
	Preliminary parameter tuning: number of levels and sample set cardinalities
	Two-level hierarchy
	Three-level hierarchy
	Five-level hierarchy

	Comparison with SVRG
	Convex problem: logistic classification problem (Pb-LOG)
	Nonconvex problem: nonlinear Least Squares (Pb-LS)

	Numerical investigation on the finest sample size

	Conclusions
	Bibliography

