ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DOTTORATO DI RICERCA IN
MATEMATICA

Ciclo 37

Settore Concorsuale; 01/A5 - ANALISI NUMERICA

Settore Scientifico Disciplinare: MAT/08 - ANALISI NUMERICA

NOZZLE AND MULSTREG: NUMERICAL OPTIMIZATION TOOLS FOR ENERGY
INDUSTRY BLACK-BOX OPTIMIZATION FOR CLEAN ENERGY TECHNOLOGIES

Presentata da: Filippo Marini

Coordinatore Dottorato Supervisore

Giovanni Mongardi Margherita Porcelli

Esame finale anno 2025

Alma Mater Studiorum — Universita di Bologna

DOTTORATO DI RICERCA IN
MATEMATICA

Ciclo XXXVII

Settore Concorsuale: 01/A5 - ANALISI NUMERICA
Settore Scientifico Disciplinare: MAT/08 - ANALISI NUMERICA

NOZZLE and MU‘STREG:

Numerical Optimization Tools for Energy Industry

Black-Box Optimization for clean energy technologies

Presentata da: Filippo Marini

Coordinatore Dottorato: Supervisore:
Prof. Giovanni Mongardi Prof.ssa Margherita Porcelli

Prof.ssa Elisa Riccietti

Esame finale anno 2025

Borsa di dottorato del Programma Operativo Nazionale
Ricerca e Innovazione 2014-2020 (CCI 2014IT16M20P005),
risorse FSE REACT-EU, Azione IV.4 “Dottorati e contratti di
ricerca su tematiche dell’innovazione” e Azione IV.5 “Dottorati
su tematiche Green”, CUP J35F21003200006.

11

Contents

[Abstractl vi
(Introduction| viii
(NOZZLE: a Black-Box Optimization tool| xi
IMU‘STREG: a Multilevel Stochastic Gradient method| xiv
[Thesis contributions xviii

1 NOZZLE] 1
(1.1 Optimization model for the impingement cooling system| 2
(1.1.1 'T'he objective function| 3

(1.1.1.1 Problem geometry and variables|. 4

[L11.2 Florschuetz correlationl 6

(L1.2 The constraints Lo 12

(1.1.2.1 "Temperature constraints| 12

[L12.2 Pressure constraints 15

(1.1.2.3 Feasibility linear constramnts| 17

(.2 Black-box defimitionl.o 18
(1.3 DFO for the solution of the black-box modell 22
(L.3.1 The overall constrained BBO formulationl. 22

(1.3.2 Our DFO proposal: the /;—penalty BFO method 23

(1.4 Experimental results| 0. 25
(1.4.1 Laboratory case[. 27

(.42 Industrial casel.o 28

(1.4.3 Comments on the numerical results 29

v

CONTENTS v

2 MU'STREG 32
2.1 'The multilevel stochastic regularized gradient |

| methodl 36
[2.1.1 Hierarchical representation of problem (2.1) 36

[2.1.2 'T'he step computation| 37

[2.1.3 The step acceptance| 39

2.1.4 MU*STREG: the two-level casel 40

2.2 Convergence theory| o 42
[2.2.1 Convergence analysis| 45

2.3 MU’STREG for finite-sum minimizationl 64
[2.3.1 Algorithmic details| 65

[2.3.2 Similarity with SVRG|o o000 68

2.4 Numerical experiments| 0L 71
[2.4.1 Implementation issues and test problem set| 72

[2.4.2 Preliminary parameter tuning: number of levels and sample set |
cardinalities] 74

[2.4.2.1 'Iwo-level hierarchy|. 74

[2.4.2.2 'T'hree-level hierarchy| 76

[2.4.2.3 Five-level hierarchy|. 7

[2.4.3 Comparison with SVRG| 78

[2.4.3.1 Convex problem: logistic classification problem (Pb-LOG])| 79

[2.4.3.2 Nonconvex problem: nonlinear Least Squares (Pb-LS)| . 80

[2.4.4 Numerical investigation on the finest sample size{. 82
[Conclusions| 87

(Bibliography| 90

Abstract

In this work, we study how to exploit Derivative-Free Optimization (DFO) and Black-Box
Optimization (BBO) in the design and validation phases of a cooling system in a gas turbine.
For the first phase, we define NOZZLE, a numerical model of a section of the cooling system,
and we use an optimization method to obtain an efficient design of the section; for the second
one, we develop MU!STREG: an optimization method to enhance the validation procedures of
an entire cooling system.

NOZZLE is a Black-Box function that simulates an impingement cooling system for a turbine
nozzle starting from a model well-known in the literature that correlates the design features of
the cooling system with efficiency parameters. The optimization model is defined as a mixed-
variable constrained BBO problem and we numerically illustrate how to use DFO algorithms
to find a reference solution that is useful for practitioners.

MU‘STREG is a new multilevel stochastic framework for the solution of optimization prob-
lems where the value of the objective function is affected by random noise. In this work, we
focus on data-fitting problems with random uncertainty that arise in the validation phase of
a complete cooling system in a gas turbine. The proposed approach uses random regularized
first-order models that exploit an available hierarchical description of the problem, being either
in the classical variable space or in the function space, meaning that different levels of accuracy
for the objective function are available. The convergence analysis of the method is conducted
and its numerical behavior is tested on the solution of finite-sum minimization problems. In-
deed, the multilevel framework is tailored to the solution of such problems resulting in fact in a
nontrivial variance reduction technique with adaptive step-size that outperforms standard ap-
proaches when solving nonconvex problems. Differently from classical deterministic multilevel
methods, our stochastic method does not require the finest approximation to coincide with the
original objective function. This allows us to avoid the evaluation of the full sum in finite-sum

minimization problems, opening to the solution of classification problems with large data sets.
Keywords Cooling systems, gas turbine, Black-Box Optimization, Derivative-Free Opti-

vi

vil

mization, direct search algorithm, multilevel methods, stochastic optimization, adaptive regu-

larization, variance reduction methods.

Introduction

One of the most important challenges of the present and future is meeting the growing
demand for energy from all countries around the world. Moreover, this demand must be
met in a way that has the lowest environmental impact possible. From this point of view,
the last few decades have witnessed an extraordinary development of power generation
technologies from renewable sources, such as solar power and wind power, which are in
addition to the well-known hydropower. Some of the main advantages of these renewable
energy sources are that they are more evenly distributed over the planet and emit far
fewer greenhouse gases than fossil energy sources. However, renewable energy sources
are also intermittent, since they depend mainly on atmospheric (solar power and wind
power) or hydrogeological (hydroelectricity) phenomena, which are unpredictable and
uncontrollable; this difficulty will be overcome in the long run with the increase and
diversification of renewable energy installations and the redesign of energy distribution
grids, but in the short and medium term it is essential to integrate these new energy
sources with existing ones.

In this sense in the current context of power generation technologies, gas turbines

. Turbine Blades

Air inlet (rotating)
ﬁ el N>
A .
C ‘.
-
:~ =
—— f
Exhaust
Compressor Combustion
chamber Nozzles (fixed)

Figure 1: Simple representation of a gas turbine

viil

X

play a key role. Indeed, it is a technology that has been successfully used for more than
fifty years, during which it has been studied, developed, and spread enormously, with an
ability to provide efficient, flexible power generation with lower greenhouse gas emissions
than technologies using other fossil fuels. These characteristics make gas turbines an
ideal technology to complement renewable energy sources during the energy transition.
For this reason, optimizing the performance of gas turbines has become a priority. An-
other important reason for optimizing the performance of turbines is the possibility of
using them with non-fossil fuels, such as hydrogen, whose combustion does not produce
greenhouse gases.

This thesis, supported by the program “Programma Operativo Nazionale Ricerca
e Innovazione 2014-2020" - Azione IV.5 "Dottorati e contratti di ricerca su tematiche
green'l] takes place in this context: developing, implementing and validating algorithms
and numerical tools that helps increasing the efficiency of a gas turbine through opti-
mization methods.

A gas turbine (schematically shown in Figure 1)) is a system that converts thermal
energy from gas combustion into mechanical energy through the Brayton cycle. Its
operation consists of three stages. In the first stage, a compressor takes external air and
channels it at a certain pressure into the combustion chamber, in the so-called primary
flow. Then, in the second stage, the air is heated in the combustion chamber by burning
gas, typically methane, increasing the temperature and specific volume of the air-gas
mixture. Finally, the expanded mixture flows through the turbine, which is composed of
fixed (the nozzles) and rotating (the blades) elements; during this phase, the movement
of the blades generates kinetic energy that can be used for various purposes, such as, for
instance, run an electric power generator [42].

To achieve higher efficiency at the same pressures, it is necessary for the gas com-
bustion temperature to be as high as possible, thus raising it above the melting point of
the materials used to craft the turbine nozzles and blades. Therefore, it is essential to
design an efficient cooling system for all the turbine components.

This thesis aims to develop a suitable optimization framework to improve the design

of a turbine cooling system.

“Programma Operativo Nazionale Ricerca e Innovazione 2014-2020 (CCI20141T16M20P005)" -
Azione IV.5 "Dottorati e contratti di ricerca su tematiche green" XXXVII ciclo, code DOT1303154-
4, CUP J35F21003200006.

X INTRODUCTION

Depending on the size of a turbine, the components that need to be cooled can number
in the hundreds or thousands, making the cooling system of a gas turbine extremely
complex. Therefore, its design and fine-tuning involve several stages in which numerical
models and optimization methods can be used. In this thesis, we focus on two of these
stages. The first one is the numerical modeling of a section of the cooling system involving
a single type of component and using optimization methods to get the design of that
section to improve its performance. The second one is the development of numerical
methods that improve the final validation procedures of the design. In the following
two chapters, we study two possible applications of optimization to these two stages.
Indeed, in Chapter [I] we study and implement a numerical tool called NOZZLE that
coupled with a suitable optimization method can be used to design a cooling system
for a specific type of turbine component. In Chapter [2] we develop a general numerical
method called MU‘STREG that can be used for data-matching during the validation

phase of the design of an entire cooling system.

For both applications, we consider Derivative-Free Optimization (DFO) |8, 26|, a field
of nonlinear optimization that addresses the optimization of functions whose derivatives
are not available. Indeed, the gradient of a function may not be computable for many
reasons; for example, the function might be defined as the output of a simulation software
or other numerical procedures, so the analytical expression of the function might be
unknown or not available for licensing reasons, and consequently the same happens for
its gradient. In another situation the value of the objective function is obtained by solving
a particularly complex system of equations thus the definition of a closed formulation
for the gradient is even more complex or impossible. The use of DFO methods is also
suitable in cases where the analytical formulation of the derivatives of the objective
function is known: in fact, in some cases, the size and complexity of the problem make
the computational cost of evaluating or estimating the derivatives too high; in other
cases, the objective function is noisy (and thus its derivatives) so that the evaluation
or approximation of the derivatives is unreliable and therefore useless. When we have
access only to the input and the output of the objective function and its derivative is
neither available nor efficiently approximable we deal with black-box functions, and when
DFO methods are applied to such functions we refer to Black-Box Optimization (BBO)
19, [26].

NOZZLE: a Black-Box Optimization tool

As we mentioned earlier, one of the main topics of this work is the development of
a numerical tool for optimizing the design of a specific device for cooling one type of
turbine component: a fixed nozzle.

Before getting more specific, let us provide an outline of how the cooling of turbine
components occurs.

Cooling in gas turbines. Primarily, the cooling system is supplied by diverting a
fraction of the primary flow of air into a so-called secondary flow within a network of
ducts, which distributes the air to all the turbine components that need to be cooled.
Finally, the air is expelled outside the turbine along with the exhaust gases.

Component cooling is essentially accomplished by heat transfer. In particular, the
air in the secondary flow exchanges heat with the metal surface of the component which
is heated by the hot flow. There are three main ways in which heat exchange occurs:
conduction, convection, and radiation. We are only interested in convection heat transfer,
which is the basis of the cooling system discussed in this thesis.

Between two systems there is heat exchange by convection when in addition to having
a transfer of energy due to an interaction between elementary volumes with more energy
(i.e., warmer) with elementary volumes with less energy (i.e., colder), as in conduction,
there is also a transfer of internal energy from one point to another in the system, due to
the relative motion that the volumes constituting a continuous medium have with respect
to each other. As in gas turbines, this phenomenon involves the cooling air and the solid
parts of the components, thus convection affects only the fluid. There are several ways
to implement a cooling system based on convective heat transfer, but now we focus on
one of the most used ones: the impingement cooling system.

Impingement cooling. For a nozzle, an impingement cooling device is an internal
cooling system implemented by creating near the inner wall of the nozzle a series of jets
allowing the cooling air to hit directly against the wall itself. This increases the turbu-
lence of the internal flow, causing heat exchange through convection. An example of an
impingement system is shown in Figure[2] and it is easy to realize that the improvement
of the design of the impingement insert is the main issue. So far, there is no generalized
and rigorous way to approach this issue and, in most cases, this phase depends on the

experience of the engineers that are working at the moment on that particular machine.

xii INTRODUCTION

Cooling Air

\Impingement\ Hole

_ Insert
~

Nozzle

Figure 2: Section of an impingement cooling system of a nozzle. The green area is the section of the
impingement insert with holes on its boundary.

Moreover, whenever a new design for the impingement insert is proposed, due to the
hydro- and thermodynamics involved, it must be tested in a Computational Fluid Dy-
namics and Thermodynamics simulation to validate the expected performance and to
check that there is no violation of any engineering constraint. This kind of simulation
often requires a huge computational effort. Therefore, we propose the definition of the
black-box function NOZZLE which together with a derivative-free technique constitutes
a fast and automatic method to improve the design of the impingement cooling system.
We want NOZZLE to be a (computationally) cheap simulator of an impingement cooling
system with outputs sufficiently close to reality and that takes into account the engi-
neering constraints that are present in such a real-life application. Defining NOZZLE as
a suitable black-box function to be used in a DFO framework allows us great freedom
in defining all its components, since the only information used by the DFO framework
are the inputs and outputs. Indeed, DFO is the most suitable approach for this kind of
industrial application, see e.g.[9} 45| 63].

As we explain in more detail in Chapter [T} the analysis and development of the Black-
Box function and DFO framework to solve this particular industrial optimization problem
lead us to formulate a constrained BBO problem (see (1.35)) with real and categorical
variables, i.e. non-numeric, unconstrained and implicitly unordered variables. There
are two main issues in this formulation that influence the choice of the DFO approach:

the presence of black-box constraints and the use of mixed continuous and categorical

xiii

variables (see Section [1.1.2.3)).

DFO literature overview. Focusing on Derivative-Free Optimization methods
for constrained BBO, three different approaches can be found in the literature: filter
approaches, model-based approaches, and penalty approaches. For a more complete
overview refer to [47].

Filter methods aim to address black-box constraints and algebraic constraints by
concurrently minimizing both objective and constraint violation. Audet and Dennis
introduced in |6] a pattern-search technique for general constrained optimization that
accepts steps that improve either the objective or the violation of black-box constraints.
Further approaches can be found in |30} 64].

Model-based approaches define a surrogate problem by building models to replace
the simulation-based functions (objective and constraints). Powell in [65] develops a
direct search method for constrained optimization which approximates the objective and
constraint functions using linear models defined over a simplex. Biirmen et al. in |19
presented a version of Mesh Adaptive Direct Search (MADS) applied to a surrogate prob-
lem defined using strongly convex quadratic model for the objective function and linear
models for the constraints. In [59], a trust-region method employing fully linear models of
both constraint and objective functions was developed. An alternative method employs
interpolating radial basis function surrogates of the objective and constraint functions
(CONORBIT) [67]. Finally, in [27] a simplex-gradient-based approach is considered to
approximate normal cones when black-box constraints are quantifiable.

Regarding penalty methods, Audet and Dennis [7] propose a progressive-barrier
method within MADS method with quadratic penalty for relaxable black-box constraints
and an extreme-barrier penalty for unrelaxable ones; in [40], an extreme-barrier penalty
is used again to handle unrelaxable constraints, while an exact penalty is used for relax-
able ones, everything within a Directional Direct Search (DDS) framework; the paper
[31] proposes a line-search method with a sequence of quadratic penalty functions to ad-
dress non-differentiable constraint and objective functions; Sampaio and Toint propose a
derivative-free variant of trust-funnel method to deal equality constraints without using
neither merit functions nor filters, see |70]. Finally, two augmented Lagrangian frame-
works, one developed in |60] where the merit function is defined using Gaussian process
models of the objective and constraint functions, and the other presented in [52| where

the linear constraints are treated outside the augmented Lagrangian merit function.

xiv INTRODUCTION

The literature comprising DFO algorithms that handle mixed variables is not very
extensive. Papers by Audet and Dennis [5], by Lucidi et al. [54] and by Abramson |[2]
consider the presence of categorical variables. In particular, the work [2] extends the
MADS algorithms for solving constrained mixed variable optimization problems. These
algorithms have been successfully applied to relevant engineering applications, see e.g.
|1, 45]. Finally, we mention the recent work [62] where the pattern search method Brute
Force Optimizer (BFO) proposed in |61] for solving problems with continuous and dis-
crete variables, has been extended to handle categorical variables. More details on BFO

are provided in Section [1.3.2

To summarize, in Chapter [I| we develop a possible model for optimizing the efficiency
of an impingement cooling system in a nozzle as a constrained BBO problem. The study
of the problem leads to the development and implementation of NOZZLE, a black-box
function that simulates impingement cooling in a turbine nozzle. We also provide a
description of a DFO approach to couple with NOZZLE to solve the constrained BBO

problem and we validate it with numerical tests derived from real-world scenarios.

MU‘STREG: a Multilevel Stochastic Gradient method

The second topic covered in this work concerns one of the final stages in the design of a
cooling system. Specifically, once the design phase of a complete cooling system has been
concluded, it is necessary to build and test it on the turbine. During the testing phase,
a certain number N of measurements of characteristic quantities of the cooling system
(e.g., flow rates or pressures) distributed evenly over the entire cooling system network
are taken, and the agreement between the measurements and the quantities predicted
by the numerical model is checked. If there is a discrepancy between the measurements
and the numerical results, a correction of the model is made, which consists of tuning a
certain number n of parameters, for instance, the discharge coefficients at certain nodes
in the network of ducts that distribute the secondary flow of cooling air to all the cooling
systems of the individual components. This operation is called data-matching (or data-

fitting) and can be interpreted as a minimization problem of the form

XV

min f(x) (1)

zeRn
where x € R" are the parameter to be tuned and f is a function that models the error
between the N measurements and the numerical data. This type of problem is suitable
to be addressed with DFO approaches because, within the definition of f, we have a
numerical model (or a simulator) of the cooling system, making it extremely difficult
to obtain an analytical expression for f and its derivative. This problem poses further
issues. The first concerns its scale: indeed, the number n of parameters and the number
N of measurements influence the computational cost of any minimization method, and
if n and/or N increase too much the computational effort and the time needed to obtain
a solution will be very high. In an industrial context, the complexity of the machinery
being tested often results in a high number n of parameters (i.e. variables) to tune, and
the reliability of the testing process requires a large number N of measurements. Thus,
our data-fitting problem is on a very large scale. Another issue arises from the fact that
the definition of f involves measurements that may be affected by random uncertainty
or, more generally, by random noise that cannot be neglected. These challenges make our
data-fitting problem a large-scale stochastic problem. Many other modern applications
require the solution of large-scale stochastic optimization problems, i.e., the minimization
of functions whose value can only be computed with some noise |3|. This can happen,
for instance, in medicine in the design of laboratory experiments to collect data on the
efficacy of a new drug, in traffic engineering to set the timing of traffic lights in a traffic

network, or in business to make short- and long-term investments decisions |71].

Moreover, being N the number of measurements taken, f could be defined as an
average over the number of measurements, so the problem may have the following for-
mulation:

1=
min ; fi(2) (2)

where f; defines the error on the i-th measurement. The problem is called finite-sum

minimization problem.

Stochastic variance reduced gradient methods. In the particular case of prob-
lem , where the objective function is defined by finite sums, many strategies have

been proposed to handle cases where the number of elements N is very large. Many

xvi INTRODUCTION

of these strategies are based on (random) subsampling and are mainly variations of the
Stochastic Gradient (SG) method. The main problem with such methods is the tuning
of the step size, which is a difficult task that requires trial and error. Moreover, to ensure
convergence of the methods it is often necessary to employ a decreasing step size, which
leads to really slow convergence. In order to avoid this issue, variance reduction methods
have been proposed in the literature [16], i.e., techniques to reduce the variance of the
stochastic gradient estimates. Among them, we focus on gradient aggregation methods,
which improve the quality of the search directions by storing gradient estimates corre-
sponding to samples employed in previous iterations, updating one (or some) of these
estimates in each iteration, and defining the search direction as a weighted average of
these estimates. Among these we mention SVRG and SAGA |28, 44, 66]. SVRG was
originally proposed in [44] with a convergence analysis for smooth and strongly convex
objective function. Since then the practical behavior of the method and strategies to fix
the hyperparameters have been studied in [4] and |66] for both the convex and nonconvex

cases.

Multilevel methods. In classical scientific computing a powerful class of methods
has been developed to cope with structured optimization problems where the limiting
factor is the size n of the variable: multilevel methods. When the structure of the problem
at hand allows for a hierarchical description of the problem itself, these methods reduce
the cost of the problem’s solution by considering a hierarchy of surrogate functions
defined on subspaces of progressively smaller dimensions. Thanks to this, they achieve
not only a considerable reduction in computational effort but also an improvement in the
solution quality in various applications, spanning from the solution of partial differential
equations to image reconstruction |38 48, 49, |57].

As a natural extension of multigrid methods [18] to a nonlinear context, multilevel
methods were first proposed by Nash through the MG/OPT framework [57] and later
extended to trust-region schemes [38]. Recently these methods have been extended to
other contexts: high-order models [20], non-smooth optimization [49], machine learning
[36, 137, 46]. A multilevel method that exploits hierarchies in the function space has been
explored in |17], where a multilevel variance reduction method is proposed for deter-
ministic convex problems of the form leveraging the multilevel scheme of MG /OPT
developed in [57]. Recent research [36] proposes a (deterministic) multilevel version of the

Objective Function Free Optimization (OFFO) method that does not require function

Xvil

evaluations and that is based on the classical multilevel scheme constructed on the vari-
able space. Existing multilevel methods are however limited to a deterministic context
and are thus unsuitable to address stochastic optimization problems. Moreover, most
of them have always been used on problems whose structure allows for the construction
of a hierarchy in the variables space, such as problems arising from the discretization of
infinite dimensional ones on selected grids. However, in many modern applications, the
limiting factor can be the accuracy of the function estimates rather than the size of the
model. Indeed, in this thesis we focus on this case: the objective function is the outcome

of a simulation or arises from a data-fitting application over a large dataset.

Derivative free optimization. Since the objective function of our problem is noisy,
the same occurs to its derivatives making them unreliable. Thus, as we said before, the
problem we are considering is suitable to be addressed with DFO approaches. In order to
address large-scale problems (as ours), in the last years there have been some contribu-
tions to DFO literature that carry an idea close to that of multilevel methods to alternate
between accurate steps and cheap steps using more or less information. One of them can
be found in full-low evaluation derivative-free optimization for direct search methods |13,
69]. Another technique that has been considered to reduce the cost of the problems is
random subset selection |22|. In [14] the authors propose a Levenberg-Marquardt adap-
tation of the Stochastic Optimization with Random Models (STORM) framework (see
[24]) for stochastic derivative-free least squares problems. As in our work, the step size in
this context is updated through a regularization parameter. We inherited from this work
the dependence of the regularization parameter from the norm of the gradient (cf.
below) and the definition of accurate models (cf. Definition[l)). The recent literature on
variants of the standard trust-region method based on the use of random models is very

extensive, we refer to [10-12, 41} [68] to name a few and references therein.

In Chapter [2] we present the MU‘STREG method to address the general problem
. The proposed approach is an extension of multilevel methods to a stochastic setting
and uses random regularized first-order models that exploit an available hierarchical de-
scription of the problem, being either in the classical variable space or in the function
space, meaning that different levels of accuracy for the objective function are available.

We provide a convergence analysis and we perform some numerical tests for an adap-
tation of MU‘STREG for binary classification problems of the form . Indeed, the

xviii INTRODUCTION

multilevel framework is tailored to the solution of such problems resulting in fact in a
nontrivial variance reduction technique with adaptive step-size that outperforms stan-
dard approaches when solving nonconvex problems. Remarkably, our method allows us
to avoid the full evaluation of the objective sum opening at the solution of classification

problems with large data sets.

Thesis contributions

The main contributions in Chapter [1, devoted to the design of an impingement cooling

system and the development of NOZZLE, are the following.

e The new BBO model for the optimization of the design of an impingement cooling
system for the nozzle of a gas turbine that results in a new example derived from

a real-world application.

e A simple but still quite accurate numerical simulator that has been implemented
and validated to be used by the scientific community as a test case for any kind of

BBO method.

e A Derivative-Free Optimization approach that, coupled with the use of our black-
box function, defines an automatic and reliable procedure for the optimization of

the efficiency of a cooling system in a gas turbine.

e A standalone version of NOZZLE is available in the S2PMJ [39] format on GitHub
pagehttps://github.com/GrattonToint/S2MPJ/blob/main/matlab_problems/
NOZZLEfp.m in Matlab, Python and Julia.

These contributions are also presented in the paper

B L. Cocchi, F. Marini, M. Porcelli, and E. Riccietti, “Black-box optimization for the
design of a jet plate for impingement cooling,” Optim. Eng., 2025. DOI: 10.1007/
s11081-025-09981-0.

Chapter , dedicated to the study and development of MU‘STREG, brings the fol-

lowing contributions.

https://github.com/GrattonToint/S2MPJ/blob/main/matlab_problems/NOZZLEfp.m
https://github.com/GrattonToint/S2MPJ/blob/main/matlab_problems/NOZZLEfp.m
https://doi.org/10.1007/s11081-025-09981-0
https://doi.org/10.1007/s11081-025-09981-0

Xix

e MU‘STREG is the first stochastic framework for multilevel methods, that are cur-

rently limited to the deterministic case.

e The proposed multilevel framework allows for hierarchies in the function space,

i.e., building by considering function approximation with variable accuracy.

e The developed stochastic multilevel framework allows us to overcome the limiting
factor of classical deterministic multilevel methods whose convergence theory re-
quires the fine level function to coincide with the original target function, so that
such methods cannot be used in cases where the original problem has a too large

size.

e MU‘STREG is the first stochastic analysis of first-order adaptive regularization

methods (our multilevel framework also covers the classical one-level case).

e Our method can be specialized for finite-sum problems and offers a variance reduc-
tion technique with an adaptive step size that outperforms mini-batch SVRG on

nonconvex problems.

These contributions are also presented in the preprint:

B F. Marini, M. Porcelli, and E. Riccietti, A multilevel stochastic reqularized first-
order method with application to training, 2024. arXiv: 2412.11630 [math.0C].
[Online|. Available: https://arxiv.org/abs/2412.11630.

https://arxiv.org/abs/2412.11630
https://arxiv.org/abs/2412.11630

XX

INTRODUCTION

Chapter 1

NOZZLE

In this chapter, we define the NOZZLE black-box function that simulates the operation of
an impingement cooling system for a fixed nozzle, and we will use it to set up a derivative-
free framework to optimize the cooling of the nozzle. Starting from the well-known model
by Florschuetz et al. |32} 133] we develop a numerical model for a simulation that includes
the estimation of temperature distribution both on the internal and external wall of the
nozzle, and the estimation of the outlet pressure. Once the simulator is defined, we
embed it in a Black-Box Optimization framework in order to optimize the design of the

impingement system so that the highest possible cooling efficiency is achieved.

In more detail, we look for an insert design that maximizes the Heat Transfer Co-
efficient (HTC) h, of the coolant in the feasible set V' C R™ defined by the engineering
constraints. If we identify the main geometric variables that characterize the design of
the impingement insert with the vector v € R", we are interested in the solution of the

optimization problem:

max H(v) (1.1)
st. vev,

where the function H : R" — R is a scalar-valued function that models the correlation
between the geometric variables v and the value of the HTC h,. Specifically, since the
HTC is a nonconstant distribution within the cooling system, the function H has to

return a scalar value that is representative of the overall heat transfer as, for example,

2 CHAPTER 1. NOZZLE

the mean, the quadratic mean, or the root mean square (RMS) of the HTC distribution.

The numerical solution of poses several challenges that are due to the fact that
the overall black-box problem is a mixed variable problem: some geometric variables
are continuous and one is categorical, that is non-numeric, unconstrained and implicitly
unordered. In addition, the feasible set V' is determined by black-box constraints. We,
therefore, propose to use a new flexible and robust penalized DFO approach that handles
the constraints using an ¢;-penalty function and the Brute Force Optimizer (BFO) |61,
62|, which is able to handle the mentioned above problem peculiarities, for the solution
of the resulting penalized problem.

Chapter [1] is organized as follows. In Section [l.1] we illustrate the modeling for
problem that we employ by defining the geometric variables v, the function H
and the inequalities characterizing the feasible set V. In Section we describe the
construction of the function H and of the constraints as black-box functions and in
Section [I.3] we describe the proposed strategy to solve the arising optimization problem
through a DFO approach. Finally, we numerically illustrate in Section that our
strategy allows us to automatically find an improved design for the cooling system taking

into account the main engineering requirements.

1.1 Optimization model for the impingement cooling

system

The cooling system of a gas turbine nozzle is broadly structured as shown in Figure|l.1
The nozzle is surrounded by hot gas, characterized by a temperature 7, and an HTC
hg, coming from the combustion chamber. Inside the nozzle we have a duct called the
impingement insert where the coolant fluid flows at pressure p™ and temperature T, the

fluid exits from the insert through orifices, it hits the inner wall of the nozzle plate and

out

finally exits the nozzle through an opening at the tail of the nozzle with pressure p?

When the cool fluid impinges on the inner wall of the nozzle, there is a heat exchange
between the surface and the fluid, whereby the cool air subtracts heat from the nozzle wall
that has been heated by the hot gas on the outside. Because of the thermal conductivity
of the wall, by subtracting heat from inside the nozzle we are then able to cool the

external wall of the nozzle. In this way, we reduce the damage caused to the nozzle by

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 3

FIOW (pCianC) Hot gas (Tglhg)

Cooling Air

Outlet

Impingement Flow(p.Lut)

Insert

Figure 1.1: Section of an impingement cooling system of a nozzle

the high temperature of the surrounding external gas.

For an impingement cooling system, the main component is the impingement insert;
in particular, its efficiency depends on the position of the insert inside the nozzle and on
the size and disposition of the orifices on its surface.

A fluid that is often used in turbine cooling systems is air, which is drawn in from
the surrounding environment. Most of this flow is used in the primary flow for the fuel
combustion process, while a portion is diverted as secondary flow into the cooling system.
Throughout our discussion, we assume that the cooling fluid used is air.

The air employed in the cooling system does not actively contribute to work genera-
tion by the gas turbine engine. Moreover, coolant ejection in the main flow can generate
secondary flows and mixing losses which may reduce the aerodynamic efficiency of the
airfoil [42|. These evidences justify the need to maximize the efficiency of cooling sys-
tems, i.e., obtain the desired cooling effect using a (minimum) fixed coolant mass flow

rate.

1.1.1 The objective function

A major parameter for evaluating heat transfer coefficients is the nondimensional Nusselt
number Nu, which is the ratio of the heat flux exchanged by convection to that exchanged
by conductivity, in this way the measurement of the HTC is related only to the properties
of the cooling air. The number Nu is related to the coolant HTC h. by the following

4 CHAPTER 1. NOZZLE

relation:

Nu = ; (1.2)

where the constant k. is the thermal conductivity of the cooling air and d is the diam-
eter of the orifices through which the coolant flow occurs. Therefore, once we get the
distribution of Nu, we are able to get h. inverting (1.2)), giving

k.Nu

he = ==, (1.3)

Hence our objective function H has as its core a model for a correlation between
geometric parameters and (the distribution of) the Nusselt number within the cooling
system.

Given the wide use of impingement cooling systems, many mathematical models have
been developed over time to describe their functioning and study the correlations between
design features and performance. An extensive collection of impingement heat transfer
correlations can be found in the work by Zuckerman and Lior |72].

The mathematical model we choose to build the objective function H is the experi-
mental correlation developed by L. W. Florschuetz et al. [32-34]. This model was chosen
for several reasons. First, it is a relatively simple model, since starting from the char-
acteristics of the cooling system it returns a one-dimensional distribution of the Nusselt
number; therefore, it is a model with a very low computational cost and the returned
results are simple to interpret.

Another reason why it was chosen is that it was developed for an array of orifices
placed on a single plate, which is the configuration closest to that of our interest for the
design of the impingement insert; in fact, the insert is made from a metal plate that
is drilled following the desired layout and then it is bent to obtain the final shape (see
Figure .

Thus, the correlation by Florschuetz represents a good trade-off between low compu-

tational costs and meaningful modeling of the impingement cooling system.

1.1.1.1 Problem geometry and variables

Let us now introduce the geometry of the cooling system defined in Florschuetz’s work
to which we refer for further details [32] 33].

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 5

The geometry of the impingement cooling system studied by Florschuetz is schemat-
ically depicted in Figure [I.2] and consists of a plate of jets of size L, x L, placed at
a distance z, from the target surface. We have set up the reference system in Figure
such that the cooling air, once it leaves the jets, flows out of the duct made by the
impingement plate and the target surface in the direction of the x-axis in our reference
system. Because of this, the z-direction is called stream-wise, while the y—direction is

called span-wise.

Impingement plate

V.

T

External nozzle wall

Figure 1.2: Reference geometry of the impingement cooling system

On the plate, round orifices of diameter d are arranged to have distance between
centers x,, along the direction of the abscissa and y,, along the direction of the ordinate.
X

Zn ip the x direction

It is also imposed that the distances to the edges of the first row are %

and % in the y direction (see Figure .

Concerning the direction stream-wise, given two points A(z4,y4) and B(zp,yp) on
the plate, A is said to be ‘upstream of’ B if x4 < xp and at the same time B is said to
be ‘downstream of” A.

Holes could be arranged in two different ways on the plate: inline or staggered. In
both cases we have N, := Li—zj span-wise rows each containing N, := L%J orifices. In
the inline layout the centers of the orifices on the same span-wise row have the same
r—coordinate and the ones on the same stream-wise row have the same y—coordinate
(see Figure left). Staggered layout derives from the inline layout by shifting by %
the span-wise rows of even position, counting from upstream (see Figure right).

After this initial explanation, it is already possible to define the design variables that

are the components of the input vector v of our objective function H. The variables are
e d: the diameter of the impingement holes;

e 1,: stream-wise distance between the centers jet holes;

6 CHAPTER 1. NOZZLE

O O O O
1 O 1

O Qy O@dﬂn@
| Q

O Gu® %O

o 0 @ "o

Inline layout Staggered layout

Figure 1.3: The two possible layouts of the holes on the jet plate: inline (left) and staggered (right).

e y,: span-wise distance between the centers jet holes;

e 2,: distance of the impingement plate from the target surface (meatus width);

e [ayout: specifies the hole pattern.
We must notice that, while d, z,,, y,, and z, are positive real continuous variables, layout
is a non-ordinal categorical variable that can take two values: inline and staggered El
1.1.1.2 Florschuetz correlation

The correlation between the design variables v = (x,, Yn, zn, d, layout) of the impinge-
ment plate introduced in the previous chapter and the stream-wise distribution of the

Nusselt number Nu is defined by the following equation:

Nua;) = ARe} (z,)Pr <1 - B (% {gggﬂ)ﬁ> ’ (1.4)

1
for x; = x, (z — 5) ,withi=1,..., N

where x; is the z-coordinate of the centers of the holes of the i-th stream-wise row and

Pr. denotes the Prandtl number of the coolant; the coefficients A, o, B e 8 depend on

'We remark that in the current problem formulation, the layout variable can take two values and
therefore it could be treated as a binary variable. For the sake of generality, we prefer to treat it as a
categorical variable as it is of engineering interest to investigate models that admit orifice arrangements
other than inline and staggered (see Chapter .

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 7

the geometric parameters z,,, y,, z,, d and layout according to the following relationship:

T, Yny 2, d) = Cy (%)V*z (%)Ml (%)Vﬁ , with x € {A,a, B, 5}; (1.5)

where the constants C, Yuz, 7Yy € Vx> Were estimated empirically and are displayed
in Table (see [33]). Note that the values of the constants presented in the table

differ depending on the value taken by the categorical variable layout (i.e. inline or

staggered).

Inline pattern Staggered pattern
C. Vaz Viy Yoz C. Vix Yoy Viz

*

A 118 -0944 -0.642 0.169 1.87 -0.771 -0.999 -0.257
a 0.612 0.059 0.032 -0.022 0.571 0.028 0.092 0.039
B 0437 -0.095 -0.219 0.275 1.03 -0.243 -0.307 0.059
g 0.092 -0.006 0.599 1.04 0.442 0.098 -0.003 0.304

Table 1.1: Coefficients A, o, B e 8 for (|1.5)

The layout variable is also important in defining the feasible set V', but this topic will
be covered in Subsection [L.1.2]
In (1.4) we also have the quantities G;(x;), G.(x;) and Re;(x;) distributed along the

x-coordinate and dependent on the geometric variables.

T

T

Figure 1.4: Representation of jet mass velocity G; (blue) and crossflow mass velocity G. (green).

G;(x;) is the mass velocity (unit: kg -m™2 - s7!) of the flow of cooling air passing
through a single jet of abscissa x; referred to the area of the jet hole (in blue in Figure
. In particular, let us consider that our cooling system receives a certain flow rate

Mo (unit: kg - s™1) of cooling air that is distributed among the span-wise rows of jets.

8 CHAPTER 1. NOZZLE

If a row having abscissa x; and N, jets of area A; has a mass flow rate 72, then we have
that

1 ()

(@) = Gy(zi) 4Ny = Gjlw) = -~
]y

1
T, = T (z — 5) yfori=1,..., N, (1.6)

moreover, G is considered constant along the dimension y, so each span-wise row is
characterized by a single value of G;.

(. is the crossflow mass velocity and it is thus related to the area of the cross-section
of the duct, given by the product z,L, (in green in Figure . Therefore, if we have a

transverse flow rate 1. at r—coordinate x; of a certain row of jets we have

.]
me(z;) = Ge(z;)Lyz, = Ge(x;) = . X=X (z — 5) yfori=1,..,N,. (1.7)

We assume that G. is constant along y—direction. Particularly, in ((1.4)) we can notice
that the distribution of the Nusselt number depends on the ratio

& -

1
, Tj = Tp <Z—§) s for i = 17---7N:r- (18)

Finally, in ((1.4) we have the contribution of the distribution of the Reynolds number of
the cooling air flowing through an orifice in position x;. The Reynolds number is the
nondimensional ratio between inertia forces and internal viscous forces of fluid, and it is

related to the jet mass velocity G(x;) by the relation

Rej ([L’l) = 0

. X, =T, (z—%) yfori=1,..., Ny; (1.9)
where . is the dynamic viscosity coefficient of the cooling air (unit: kg-m~'-s7!) and d
the diameter of the jet hole. The coefficient y. depends on the coolant’s characteristics
and mainly on its temperature 7, and it can be estimated via interpolation since the
cooling fluid is air and it is known the behavior of y. with respect to temperature.

So, in order to determine the Nusselt number distribution with it is necessary
to estimate the distributions of G, G, and Re;.

The distribution of GG; can be derived directly from a mathematical model developed

by Florschuetz 33| for the stream-wise distribution of the ratio of the jet mass velocity

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 9

G to the average jet mass velocity G; (see [33])

G, ON, cosh (32) o |
{:} (x;) = Sh(ON,) T; = Ty, (z — 5) ,fori=1,..., Ny; (1.10)

where ¢ is a constant defined by

5= CD\/§7Td2 . CD\/§AJ‘.

YnZn 4 YnZn
with C'p being the discharge coefficient for every hole.
Note that FJ is constant and depends only on the total flow rate of cooling air 1,

supplied to the system and the sum of the areas of all jets on the plate A;Ot according to

the relationship:

= Mot

i= A;ot;

Q

(1.11)

where A;Ot = N, N, A;.

By substituting (L.11]) in ((1.10) we obtain the following analytical model for the

distribution of the jet mass velocity:

Mo 0N, cosh (5;—;)

my

1 ,
Gj(z;) = AT Smh (6N, T, = Ty (z — 5) ,fori=1,...,N,. (1.12)

To determine the crossflow mass velocity distribution, one must refer to the geometry
in Figure In this representation, the duct between the impingement plate and the
target surface is closed at one end; this implies that the crossflow has only one direction.
Thus it is reasonable to assume that the crossflow at a point of abscissa z; is due to the
contribution of the flows passing through all the jets upstream of x;; in particular, we

can assume that the crossflow mass velocity at z; is due to the sum of all the jet mass

10 CHAPTER 1. NOZZLE

velocities coming from upstream, so for G we have

Gc(xl) =0,
. i1 i—1
me(x;) 1 , A;N,
Ge(z;) = — = E =Y\ Gi(ap), 1.13
(x) LyZn LyZn —1 m](l"k) LyZn 1 J(zk) ()
fori=2,...,N,.

Thanks to the model (1.12) and the assumption (|1.13)), we can estimate the distri-
bution of the ratio G./G; following the simple procedure shown in Algorithm .

Algorithm 1 Estimation of the distribution of G./G;

Initialization
1: Take the variables v = (2, Yn, #n, d, layout) and the parameters Ly, Ly, 1o, Cp.
2: Compute N, = Li—:j, N, = L%J and A; = ”sz.
3: Define the vector z; = %xn fxp (N — %)xn of the z-coordinate of the centers of the span-wise
TOwWS.
Jet mass velocity distribution
4: Obtain the distribution G;(x;) for i = 1, ..., N, with (L.12).
Crossflow mass velocity distribution
5: Set G.(xz1) = 0, because there is no flow coming from upstream.
fori=2,..., N, do
T Using obtain crossflow mass velocity

Ik

Lyzn k=1
8: end for
Evaluation of the ratio g—J
9: for i =1,...,N, do
10: Set . o
c c\Tq
{G} @)= G
J (@)
11: end for

To finally determine the distribution of Nu we still need to derive the Prandtl number
Pr. and the dynamic viscosity pu. of the refrigerant fluid. Moreover, in order to use ([1.3))
to get the distribution of h, we must estimate the thermal conductivity k. of the cooling
air. These three coefficients depend mainly on temperature 7, and fluid composition and
can be easily estimated by nonlinear interpolation.

The procedure for determining the stream-wise distribution of HT'C h,. is outlined in

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 11

Algorithm

Algorithm 2 HTC stream-wise distribution

Initialization

1: Take the variables v = (2, Yn, 2n, d, layout) and the parameters L., Ly, T., Ty, hg, Mo, Cp.

2: Compute N, = Lﬁ—zj, Ny = L%j e A; = %ﬁ.

3: Define the vector z; = %azn DXyt (N — %)xn of the z-coordinate of the centers of the span-wise
rOws.

4: Calculation by nonlinear interpolation of u. := p.(T¢.), Pr. := Pr.(T.) and k. := k.(T.) of the
coolant fluid.
Mass velocity distributions

5: Estimation of the distributions of G; and g—; using Algorithm
Jet Reynolds number distribution

6: Computation of the distributions of jet Reynolds number Re;(x;) using (L.9).
HTC h,. distribution

7: Using and obtain the stream-wise distribution of the Nusselt number Nu.

8: Compute the distribution of h. with :

ho(w;) = ——22¢ i =1,...,N,.

Algorithm [2] is straightforward; after receiving the input v = (2, Yn, 2n, d, layout)
and the parameters derived from the boundary conditions it computes the number N, of
span-wise rows, the number N, of holes for every span-wise row and the area of a single
hole A;; then defines the vector containing the x—coordinate of the centers of the holes
on the span-wise rows (Step || - Step . In Step 4] it uses the inlet temperature 7T, of
the cooling air as a query point to interpolate the dynamic viscosity coefficient ., the
Prandtl number Pr. and the thermal conductivity k.. Step [5| computes the distribution
of the jet mass velocity GG; and of the ratio g—j via Algorithm [1} Step |§| computes the
distribution of the jet Reynolds number Re;(z;) using . Finally, in Step El and Step
the algorithm uses Florschuetz’s model to get the distribution of the Nusselt

number Nu and uses (|1.3)) to estimate the distribution h. of the HTC of the cooling air.
Let us remark that Algorithm [2] returns a one-dimensional distribution of k., so

he(v) € RN=. In order to define the scalar objective function H(v) we use the root mean
square (RMS) of h.(v), then

H) = (ho(¥)) s = % (1.14)

12 CHAPTER 1. NOZZLE

1.1.2 The constraints

The design of a cooling system, like many other industrial applications, is subject to
constraints that arise from the need to have solutions that are actually applicable in a
real-world context or at least retain a minimum of relevance to the physics of the problem
we are solving.

In our particular case, the constraints arise from several requirements. First, the
cooling system must be efficient enough to ensure a minimal durability of the nozzle, this
means that the design of the impingement insert must avoid configurations that allow
the external heat to cause excessive damage to the nozzle walls. Secondly, it is necessary
that the system is actually manufacturable so, for example, the solution to the problem
cannot lead to an impingement plate with holes that are too small or too close. Finally,
since our objective function is derived from the empirically developed mathematical
model , the variables must be constrained in a space in which the model has been
validated; this is because outside that space the validity of the model is not guaranteed.
All these requirements are represented by a set of constraint functions that involve the
design variables v = (2, Yn, 2n, d, layout), the distributions of the temperatures on the
internal and external nozzle walls and the (outlet) pressure of the cooling air.

In this section, the constraints necessary for the final formulation of the problem are

defined and explained.

1.1.2.1 Temperature constraints

To get an idea of the efficiency of the cooling system, we need to quantify how much
it can cool the inner and outer nozzle wall, so we need to estimate the stream-wise
distributions of the internal and external nozzle wall temperature, which we denote as
Twi and T, respectively. All temperatures are in kelvin (unit: K).

To do this, we can assume that heat transfer occurs from the external of the nozzle,
where we have the hot gas with temperature 7, and HTC hg, to the inside of the nozzle
where we have the cool air with temperature 7, and HTC h.. We can further assume
that the heat transfer from the external to the internal of the nozzle consists of three
phases. In the first stage, heat from the external gas is transferred by convection to
the external wall of the nozzle, then heat is transferred to the inside of the nozzle by

thermal conductivity from the external wall to the inner one (not considering the thermal

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 13

conductivity that occurs perpendicularly to this direction), and finally, heat is transferred
from the inside wall to the cooling fluid again by convection. This process is represented

in Figure [1.5

T Ty
(convection)

Figure 1.5: Scheme of the heat transfer through the nozzle wall.

Given these assumptions, and having derived the heat transfer coefficient of the cool-
ing air, we can calculate the distributions of T,,; and T, by solving for every ¢ =1, ..., N,

the following linear system

he(ws) (Tyi(w;) — Tt) = % (Twe(xi) — Twi(i))

; (1.15)
% (Twe(w:) — Twi(xi)) = hg (Ty — Tiwe(:))

where k,, and As are respectively the thermal conductivity (unit: kg-m-s2- K1) and

the thickness of the nozzle wall. This formulation comes from the time-independent heat

equation
.
V3T, =0 on {2,
oT;
n — onl',,
on = o ’ (1.16)
% =4 on I,
| G =0 on 9Q\ (T, UT,).

Here Tj, is the temperature distribution inside the nozzle wall, the domain €2 is the
rectangular section of the nozzle wall with size L, x As, the boundaries I'; and I'; are
the surfaces subject to convective heat flow of the hot gas and cooling air respectively.
The remaining boundary of is supposed to be adiabatic [43]. If we discretize Q in

N, rectangular elements of size x,, x As and we use the Finite Differences (FD) method

14 CHAPTER 1. NOZZLE

assuming that there is no heat flow between two contiguous elements we obtain the

system (L.15)).
SN T

(Tin)1 <> (Tin)o <> =+ - <«t> (Tin) N+t (Tin)n,

SR A

Figure 1.6: Discretization of the heat transfer on the nozzle wall.

A more accurate, but computationally more expensive, estimation of T,,; and T, can
be obtained in two steps. First, we solve (|1.16)) with FD taking into account the heat
transfer between adjacent elements in order to obtain the one-dimensional distribution of
T;, which is the stream-wise temperature distributions inside the nozzle wall (see Figure
; then we substitute the distribution of T}, in system , in particular, we put Tj,
in place of Ty, in the first equation and in place of T,,; in the second equation, obtaining

two separate equations:

i) (Tua(m) = T2) = 22 (T (1) — () (1.17)
A (Toel) = Toal) = g (Ty = e (2). (118)

We use the distributions 7,,; and T,,. to define two constraint functions. The first

one bounds the external wall temperature T, and it is defined as
(TwE(V>>RMS < Ty (1.19)

By setting this constraint we guarantee that the mechanical properties of the material
are sufficient to allow the component to reach the expected life span.

The second constraint function is defined to bound the temperature gradient between
the external and internal walls; in our case, it means to set a bound for the distribution
of the difference between T, and T,,;, thus

(AT(V)) gars < AT™, (1.20)

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 15

where AT(v) = Tye(v) — Twi(v). This constraint is necessary to prevent structural
damage to the nozzle wall caused by thermal deformation due to an excessive difference

between the external and internal temperatures on the wall.

1.1.2.2 Pressure constraints

Another factor that affects the performance of an impingement cooling system is the
pressure of the cooling air. In particular, in our case, we consider the ratio of the outlet

pressure p°* to the inlet pressure p of the cooling air

out

e

— 1.21

Tp
In our case r, € (0,1]. This is because, since fluids move in the opposite direction of the
pressure gradient, to have air flow there must be a pressure difference. If p™ = p%* that

is, if r, = 1, we have no flow of cooling air through the system. It is not possible to have

out

out > pi which means r, > 1, because if so the flow would be in the opposite

the case p
direction, and this is ruled out by the way we have defined the model that simulates the
impingement cooling. On the other hand, r, > 0 since pressure is strictly positive by
definition.

The ratio r, is related to the flow rate of air through the cooling system and thus its
velocity. The lower 7, the higher the mass flow rate and the jet velocity. This is true until
the velocity approaches the speed of sound. In particular, if the flow becomes sonic in the
nozzle the so-called choked condition is reached, corresponding to the maximum flow rate:
further reducing the discharge pressure does not lead to an increase in coolant flow rate
but results in an underexpanded supersonic jet. In this regime, complex shock patterns
and a recirculation pattern at the stagnation point occur, resulting in a degradation of
heat transfer performance [35].

In order to keep the ratio r, away from zero we set the following constraint
Ty > T (1.22)

with 7 € (0,1).

Recall that in the case of our interest the inlet pressure p' of the cooling air is constant

out

o“* is unknown, hence to

and is given as a boundary condition, while the outlet pressure p

16 CHAPTER 1. NOZZLE

check constraint ([1.22) it is necessary to estimate p2“* with respect to the design variables

C

vector v.

out

o (v) is equal to the outlet pressure at the most downstream row

We assume that p
of orifices, i.e. the row with centers of abscissa xy,. Focusing on this last row, from the
theory of isentropic flow the pressure ratio r, is related to the mass flow rate of cooling

air through the last row 1m; (xy,) by the equation

2=

—1
out

. o 2 pén ngt WT
i (xn,) = NyA;Cp <pin) 7——71% [1 - (pin)] 7 (1.23)

where v = i—g is ratio of specific heats of the air, Cp is the jet discharge coefficient,
A; = wd*/4 is the surface of a single orifice, N, is the number of holes in every row and

in _ P
pc ~ RT.
kg-m?-s72- K1 -mol™') |35)].

is the density of inlet cooling air, with R being the ideal gas constant (unit:

On the other hand, we know from (|1.6)) that
mj (en,) = AjNyGj(xw,); (1.24)
where the jet flow mass velocity G;(xy,) for the last row can be evaluated using (|1.12]).

Thus, substituting (1.24)) in ((1.23) and simplifying we obtain the equation

out L 1 t =1
P ¥ 2,}/ pm pou ¥
G»xz——CD(C,> = 1—<‘?> . 1.25

out
c

It is possible to estimate the value of p®“*(v) for a given design vector v as the solution

of a scalar nonlinear equation

1 N e -t - Gy(ay,) [y —1
= P in) Ty — Ty (ptt) 2y — = T. =0, 1.2
fp)=p \/ (p") p o (p) & Vo RI. =0 (1.26)

where the function f : [0, p?"] — R is derived from ((1.25)). It can be shown that problem

C

(1.26) admits two solutions in (0, p™) with one in the open sub-interval (p*, p™) (see e.g.

1.1. OPTIMIZATION MODEL FOR THE IMPINGEMENT COOLING SYSTEM 17

f(p")/p"

0.2

0.15 -

in
Cc

f(p)/p

0.1

0.05 -

0 * in
L v K
0 2 4 6 8 10
p [Pa] x10°

Figure 1.7: Graphical representation of the function f(p)/pi®, with f(p) defined in (1.26)) in the interval
[0, pi"], for pi"* = 2-10° Pa.

Figure [1.7)), where p* is the critic pressure defined as

v

9 \ 7T
p* — <—) plcn, (1.27)

We look for the solution in (p*,p™), since for p2** < p* supersonic flow surely occurs

out

o“* we can check the con-

somewhere in the cooling system. Once we have estimated p
straint , which can be rearranged as a constraint on pressure difference in the
following way

Ape(v) i= P — p(v) < (1—) pli = Ap. (1.28)

c

1.1.2.3 Feasibility linear constraints

Feasibility linear constraints are meant to ensure a meaningful and applicable solution.
We do not want to get an uncraftable or physically meaningless design for an impingement
plate. Some unacceptable designs are, for example, ones with holes too small, ones
with jet rows too close to each other, or ones with overlapping holes. Most of these
unwanted results can be avoided by setting suitable box constraints for the continuous
variables (Z,,Yn, zn,d), while the variable layout is "unconstrained" since it is a non-
ordinal categorical variable which admits only two values.

Moreover, the validity of Florschuetz’s model has to be ensured and, it is thus

18 CHAPTER 1. NOZZLE

important to keep the variables in a subspace where (1.4]) has been validated. To this

end, the following linear constraints

1< <3, (1.29)
1<t <s, (1.30)
6.25 - 107" _g—" < 3.75, (1.31)
. S% S 15 if layout = inline (1.32)

10 if layout = staggered .

have to be satisfied. The coefficients and the form of the inequalities above were em-
pirically defined in [32, 33|. Note that depending on the value of the variable layout,
the constraint changes. It is easy to show that when constraints — are
tulfilled, overlapping holes are avoided in the design of the impingement plate, both for

inline and staggered layout.

1.2 Black-box definition

In this section, we merge all the ingredients defined in Section [I.1] to present the black-
box formulation of NOZZLE for the modeling of the impingement cooling system for a
nozzle in a gas turbine. We remind that by black-box we mean a set of computational
models for the optimization problem (objective and constraints) that can be evaluated
to simulate the cooling system under consideration.

The basic structure of NOZZLE is represented in the flow chart in Figure [1.8| and
described with more detail in Algorithm [8] NOZZLE takes as input the variable vector
vV = (Zpn, Yn, 2n, d, layout) that defines the design of the impingement plate, and the fixed
parameters given by assumptions and boundary conditions: the inlet temperature T,
and pressure p™ of the cooling air, the total mass flow 74, of cooling air coming from
upstream of the cooling system, the temperature 7, and HTC h, of the hot gas that
surrounds the nozzle, the discharge coefficient Cp of the holes and the sizes L, and L,

of the rectangular impingement plate (Step [1)).

The inlet temperature T, is used to interpolate the values of the dynamic viscosity

1.2. BLACK-BOX DEFINITION 19

Film temperature loop to better estimate ., Pr. and k.

T . Tc+me;n(Twi)

Parameters

Florschuetz’s
model

Temperature
distribution

Lq, Ly, Tc., J2 Interpolatlon PT
Ty, hg, tivgor = P (T Prc 2) ‘

: ; luC ¥ Nu = h, Tois Tove
Variables : Distribution estimation
t (@0, Yn, 20, d, layout)) Gy, GC, Re;

Input R
R S : ‘ pressure constmait Objective value
pc out V) < Apmax H = RMS

Temperature
constraints
Twe(v) < Tipe™

AT (v) < ATmax

Figure 1.8: NOZZLE’s flowchart.

[, the thermal conductivity k., and Prandtl number Pr. for the cooling air (Step .

The design variables v, together with the dynamic viscosity u. and the parameters
L,, L,, myy and Cp are given as inputs to Algorithm |I| to estimate the stream-wise
distributions at every row of holes of the flow mass velocities to the jets G; and to the
cross-section G, and of the jet Reynolds number Re;.

Distributions of G; and G. are then used to estimate the outlet pressure p2“* of the
cooling air by solving the nonlinear equation 6) (Steps o .

The HTC distribution h.(v) of the cooling air is estimated using the variables v, the
distributions G, G, and Re; and the coefficients k. and Pr. with Florschuetz’s model
and (Steps [SHL0).

The HTC distribution h.(v) is then used to calculate the objective value H (v) =
(he(V)) gpars and to estimate the wall temperature distributions 7,,; (v) and Ty (v) using
one of the two approaches explained in Subsection m 1.1.2.1| (Step [24 .

The black-box returns as outputs the HTC distribution h. to obtain the objective
value H (v) and the temperature distributions 7,,; and T, and the value of p2* to verify
the constraints — and respectively.

We observe that the wall temperature distributions are not only used to define con-
straints. Indeed, the distribution of T;,; is also used for better estimation of the thermal
conductivity k. of the cooling air. As discussed in Subsection [I.1.1.2] the value of this

20 CHAPTER 1. NOZZLE

coefficient is obtained by interpolation using 7, as query value; however, assuming 7T,
as the temperature of the cooling air in the boundary layer near the inner nozzle wall
is quite inaccurate because in that region the cooling air is affected by the temperature
of the wall, heated by conduction. So, as query value, we use the film temperature 7T’
which is an approximation of the temperature of a fluid inside a convection boundary
layer |32, 33|, and it is defined as

(1.33)

After a first interpolation of k. := k.(7T.) it is necessary to estimate again the distribu-
tions of h., T,,; and T,,.. We recall that k. is involved directly in for the evaluation
of the distribution h. and consequently in for the estimation of T,,; and T,,.. We
include all these steps into a loop that in every iterate generates new estimations h.., Ty,
and T,,. and it ends when the relative error between two subsequent estimations of A, is

below a certain tolerance toly, i.e.

1he = (he)grall
1(Fe) otall

This loop is described in Steps [9{23] of Algorithm [3] Note that this loop does not

involve the other coefficients p. and Pr., that is because in that case assuming 7, as the

< toly. (1.34)

query for the interpolation is acceptable. Furthermore, the loop does not involve directly

the distribution of the external wall temperature T,,..

We note that the evaluation of the feasibility constraints (1.29)-(1.32)) is not included
in Algorithm [3] as they can be easily treated outside the black-box.

Finally, we note that the NOZZLE implementation of the black-box results in a
computational cost for the evaluation of the objective function and of the constraints
that is rather cheap. This is due to the small number of variables (four continuous
and one categorical) and to the small size of the distributions handled by the function
(e.g. Twe, Twi, he). Moreover, most of the auxiliary quantities and distributions needed
are obtained straightforwardly, with the only exception of the solution of the nonlinear
equation to get the outlet pressure p®, which uses an iterative method. Thus,

a single evaluation of the black-box requires a small amount of computational time and

memory.

1.2. BLACK-BOX DEFINITION 21

Algorithm 3 NOZZLE

Initialization
1: Take the variables v = (2y, Yn, 2n, d, layout) and the parameters L, Ly, Tc, Ty, hg, 1o, Cp.
2: Compute N, = Lﬁ—zj, N, = L%J e Aj = 7%2.
3: Define the vector z; = 3z, : @, : (N, — %
rOws.
4: Calculation by nonlinear interpolation of u. := p.(T¢.), Pr. := Pr.(T¢).
Mass velocity distributions
5: Estimation of the distributions of G; and g—j using Algorithm
Jet Reynolds number distribution
6: Computation of the distributions of jet Reynolds number Re;(x;) using .
Outlet pressure estimation
7: Estimate p2"* as a solution of (L.26]).
Nu distribution
8: Using and obtain the stream-wise distribution of the Nusselt number Nu.
First interpolation of k. and first evaluation of h., T,,; and T,
9: Calculation by nonlinear interpolation of (k.),,,; := kc(T%) of the coolant fluid.
10: Compute the distribution of (h.),,, using (1.3):

Nu(z;) (ke) 14
d

)z, of the z-coordinate of the centers of the span-wise

(hc)old (z:) = , t=1,...,N,.

11: Estimate of the distribution of (T%;),,; and (Twe),,; via solving (1.15).
Film temperature loop
12: for it =1,2,... do

13: Set
Tf (Twi)old + Tc
2
14: Interpolate k. := k.(T}).
15: Evaluate N 5
he(:) = % i=1,..,N,.
16: Estimate new distribution T,,; and Ty, via solving (|1.15)) using h..
17: Compute the relative error ,.,; as
e = (he) grall,
5rel TN TR
1(7e) 1l

18: if €, < toly, then

19: Break.
20: else
21: Set
(he)ota = Pes (Twi) g = Twis (Twe)p1qg = Twe-
22: end if
23: end for

Objective value
24: Set H = (he) gurs
Outputs
25: Return H, Ty, Tye and p2t.

22 CHAPTER 1. NOZZLE

1.3 DFO for the solution of the black-box model

In this section, we embed the NOZZLE simulator described in the previous sections
in the DFO framework. We therefore describe the main model features and propose a

DFO-based procedure for its minimization.

1.3.1 The overall constrained BBO formulation

In Subsection we have described the formulation of the objective function H(v)

while in Subsection [[LT.2] we have defined and motivated the constraint functions on wall

out

out(v) and on design

temperature distributions Ty;(v), Twe(V), on the outlet pressure p
variables v = (2., Yn, zn, d, layout). We can gather all the functions defined so far to

formulate our problem as a standard minimization problem as follows.

min — H(v)
st. (V) = (Twe(V) garg — Tipe™ < 0;
c(v) = (AT(V)) pppg — AT < 0;
c3(v) == Ap.(v) — Ap™ < 0;
Zn,
C4(V) =1- E S O,
Zn,
C5(V) :E_Sgov
c6(V) :4—% <0;
cr(v) == %" —8<0; (1.35)
cs(v) = z—" —3.75 < 0

co(v) = 6.25- 107! — ? <0

c1o(v) :=5— %L < 0;

In — 15 <0 if layout = inline
en(v) =< ¢ ;
o —10 <0 if layout = staggered

(Tpy Un, 2, d) € BCRY,; layout € {inline,staggered} .

1.3. DFO FOR THE SOLUTION OF THE BLACK-BOX MODEL 23

Formulation (|1.35]) represents a constrained Black-Box Optimization problem, where the
objective —H (v) is the negative RMS of the HTC distribution A, defined in and
is returned as one of the NOZZLE outputs defined in Section [1.2 The other outputs
of NOZZLE are used to define the constraint functions ¢;(v), ¢2(v), ca(v) which are
derived, respectively, from (1.19), and (1.28). The constraint functions ¢;(v) with
1 = 4,...,11 are derived directly from the feasibility constraints —. We note
that in the first three constraint functions are not as dimensionless as the others,

and this could be a source of poor scaling for the problem. To overcome this issue we

max
c .

simply divide ¢;, ¢ and c¢3 respectively by T2 AT™** and Ap

we
Referring to the Black-Box Optimization constraint taxonomy presented in [50] we
can identify two kinds of constraint functions in ([1.35). Functions ¢, ¢y, and c3 are
black-box simulation-based, thus any kind of (sub-)gradient is unavailable, and they are
also relaxable since an impingement plate design that violates these constraints is still
meaningful and can be post-processed. The remaining functions, from ¢4 to ci1, are
algebraic since they are expressed in an explicit form but they are unrelaxable because,
as we explained in Subsection [[.1.2.3] they describe the validity space of Florschuetz’s
model used to define the black-box.

1.3.2 Owur DFO proposal: the /;—penalty BFO method

The structure of the optimization problem ([1.35)) clearly calls for DFO tools. We propose
a new DFO penalty method that uses the general /;— penalty method for derivative-
based optimization, see e.g. [58]. Indeed we consider problem ([1.35)), and define the

penalty function ¢;(v,¢) as
¢1(v,e) = —H(v) +eC(v), (1.36)

where € > 0 is the penalty parameter and the constraint violation function gathers all

the constraint functions C (v) as follows

C(v) = ZmaX{O,cj(v)}. (1.37)

24 CHAPTER 1. NOZZLE

By choosing an increasing sequence of penalty parameters {ej}, .y such that e, — oo we

define a sequence of unconstrained minimization problems of the form

min 6y(v,2) = —H(v) +2.C (v)
v (1.38)
st. (Tn,Yn, 2n,d) € BCRY,, layout € {inline, staggered},

where we penalize constraint violations more severely, thereby forcing the minimizer of
the penalty function closer to the feasible region for problem (|1.35)). Then, we use a
derivative-free algorithm for solving for every value of €;. In particular, our choice
for the inner solver is the Brute Force Optimizer (BFO) [61}, 62].

BFO is a simple random pattern search algorithm specifically designed for Black-Box
Optimization since it can deal with unconstrained (it only handles simple bounds on the
variables) optimization problems without any regularity or convexity assumption on the
objective function. In particular, BFO is suitable for the minimization of the nonsmooth
black-box function (|1.36)).

As a pattern search method, for every iterate v, BFO creates a polling set of directions
P that defines a finite local mesh around v, BFO searches for any improvement of the
objective function on this mesh by evaluating all the points on the mesh and if it succeeds
in finding a better value for the objective function at a new point ¢ the iterate is updated;
otherwise if BFO fails in finding an improvement on the local mesh, the mesh is refined

(i.e. a new mesh is defined closer to T) and a new search is performed.

BFO can handle different types of variables like continuous, integer, discrete, mixed,
or categorical. If the optimization problem has mixed variables, e.g. continuous and
categorical variables, the search phase is more articulated and is called tree-search strat-
egy, see further details in [61, 62]. More precisely, the search phase is firstly performed
involving only the continuous components of the iterate ¥ while the discrete ones are
kept fixed, then, if there are no improvements on the continuous mesh, instead of re-
fining the mesh a further search is performed by exploring the meshes defined around
an iterate defined by fixing successively each of the non-continuous variables to a value
neighboring that present in v. As an example let us consider the vector of the design
variables v = (a:_n, Tres Zms staggered), at first the mesh is built around the continuous
part (a:_n, Uns Zns c_l) while keeping fixed layout = staggered; if BFO fails in finding an

improvement another search is done on the same mesh for the continuous part but setting

1.4. EXPERIMENTAL RESULTS 25

layout = inline.

The overall proposed algorithm is detailed in Algorithm [4]

Algorithm 4 The ¢;—penalty BFO scheme

1: Given v, €0 >0, v > 1, 7 >0, kpax >0
2: for k=0,1, ..., kpnax do
3: Use BFO to find a minimizer vy of ¢1(v,¢ey), starting from v§.
if C(vy) <7 then
Stop and return v.
end if
Set ex41 = veg.
Set vi, 4 = Vk.
end for

In the beginning, we choose an initial guess v{ and an initial value ¢y > 0 for the
penalty parameter. We also fix the update coefficient ¥ > 1 to increase the penalty
parameter, we set a tolerance 7 > 0 for the constraint violation and a maximum number
of iterations k... At every k-th iteration BFO is called to find a minimizer of the
penalty function ¢;(v,ey), where the penalty parameter is kept fixed, returning a point
vi. Then the value of the constraint violation function C'(vy) is checked and if C'(vy) <7
then v, is accepted as an acceptable solution and the procedure stops. Otherwise, the
penalty parameter £, is increased by a factor v, and the new starting point v, is set
equal to the minimizer just found v, and a new iteration starts. The update strategy
for the new starting point at Step [§] is motivated by the fact that with a good choice
of the initial penalty parameter g, it is possible to obtain from the first iteration an
approximate minimizer that does not excessively violate the constraints, so it will be
sufficient to search for an admissible solution in a neighborhood of the last minimizer

found, having chosen an appropriate parameter v for the penalty update.

1.4 Experimental results

In this section, we numerically solve problem using NOZZLE with the /; —penalty
BFO algorithm.

Recalling that we aim to find "better" geometric variables x,,, y,, z,, d, and layout
that define the design for an impingement plate for a fixed nozzle of a gas turbine,

we consider two different problem settings obtained considering two different sets of

26 CHAPTER 1. NOZZLE

boundary conditions. The first, called here the "laboratory case", represents a situation
that is encountered on a laboratory test bench, that is conditions similar to those under
which Florschuetz and collaborators carried out the experiments to derive the model
(1.4) (see [32]) are reproduced. The second has boundary conditions that reflect the
typical values of an actual gas turbine and, for this reason, it will be referred to as the
"industrial case". The boundary conditions and the upper bounds for both experimental
cases are gathered in Table[I.2] At the moment we emphasize that for both situations we
use the same value for the discharge coefficient Cp and mass flow rate ;. In addition,

the upper limit for the pressure difference Ap** is also somewhat the same, specifically

max

X are chosen such that the ratio of the pressure difference to the

the two values for Ap
inlet pressure has as an upper limit equal to 0.04, i.e. we look for a configuration that
allows a pressure difference lower than the 4% of p".

For the evaluation of the distributions of the wall temperature we solve the general
problem defined in using finite differences as described in Subsection

All the experiments have been carried out using Matlab R2023a on an Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz machine with 16 GB RAM and the new release 2.0
of the Matlab BFO package available at https://github.com/m01marpor/BFQ. Default
parameters have been set for BFO while eg = 1.5, v = 10, 7 = 1073 and kpax = 15 have

been set in Algorithm [

Parameter Description [Unit] Laboratory value | Industrial value
L, Plate stream-wise length [m] 1.27-1071 5-1072
L, Plate span-wise length [m] 1.22-1071 5-1072
T, Cooling air inlet temperature [K] 2.93 - 102 7.73 - 102
pin Cooling air inlet pressure [Pa] 2.03-10° 1.01-106
T, External hot gas temperature [K] 3.73 - 102 1.27- 103
hg External hot gas HTC [W m~2K 1] 1-10? 1-103

Mot Cooling air mass flow rate [kg s~!] 1.00- 1072 1.00- 1072
Cp Jet discharge coefficient [-| 0.85 0.85
K Wall thermal conductivity [W m~1K~!] 1-10? 2-10!
As Wall thickness [m] 1.00-1072 3.00-1073

Amax Upper bound for Twe — Thi [K] 3.00 - 10! 6.00 - 10!
Tmax Upper bound for Ty [K] 3.43 - 102 1.07-10%
Aprax Upper bound for pi® — p2“? [Pa] 8.11-10° 4.04 - 10*

Table 1.2: Parameters for boundary conditions and bounds for black-box constraints for laboratory (3rd
column) and industrial (4th column) cases.

https://github.com/m01marpor/BFO

1.4. EXPERIMENTAL RESULTS 27

1.4.1 Laboratory case

Referring to the third column of Table the temperature T} of the hot gas is around
100°C with low HT'C h, while the inlet temperature of the cooling air 77 is around 50°C
and inlet pressure p™ is about twice the atmospheric pressure. The impingement plate
is nearly square with approximately 12 cm per side, and the target surface is 1 cm thick
with good thermal conductivity. In this experiment, we start from an initial guess v§
chosen with z,, = 1.75-10"2 m, ¥, = 8.40-102 m, 2, = 6.30- 103 m, d = 2.10 - 1073
m and layout = staggered as it shown in Figure [[.9, The initial guess has a value for
the objective value H (v§) = 2.03 - 10°W m~2K~'. In this way v{ satisfies the algebraic
constraints — and the box constraints defined by the set B C R%,

L, L, L, L, _3 9 5. Ly
= — — —, — 1 1 2-1 — .
B {(a:n,yn,zn,d)e[go, Q}X[BO’ 5}><[0 m, 10™°m] x 0 °m, 5
(1.39)

This definition of B allows a very simple design for the impingement plate. After only

Initial Layout

0.12 o ° °
o o o o
o) o
o o))
L °) o
01 o °))
o ° o
o o ° o
o o o
0.08 o [+] (] -]
° ° o
o ° ° o
T o o o
o o o)
—0.06)))
>
° ° o o
o o °
o o))
°) o
0.04 o °))
° o o
o o ° o
o o o
o)) °
0.02 ° ° °
o o o o
o o °
o o o)
o ‘ ‘ ‘ ‘ ‘ ‘ ‘
-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
x [m]

Figure 1.9: 2-D representation of the initial guess for the laboratory case.

one iteration of /; —penalty BFO method and 346 evaluations of NOZZLE the procedure
converges to a solution v such that C'(v) < 7. In particular the geometric variables of
this solution are x,, = 2.54-107?m, y, = 1.53-1072m, 2,, = 4.60-1073 m, d = 2.00-103 m
and layout = inline with a corresponding objective value H (¥) = 4.16 - 10°W m—2K™!;
in Figure (right) we show in 2-D the resulting layout.

28 CHAPTER 1. NOZZLE

HTC distribution Wall temperature distributions
445 : 309.4 :
440}] e
435 | | 309.2f ° 1
€ Twe
430t : Y
309 1
425+ : o
%) =
E 420t 1 Z.3088¢t
T =
415+
308.6
410t
405
308.4
400 |
395 ‘ 308.2 ‘
0 0.05 0.1 0 0.05 0.1
x [m] x [m]

Figure 1.10: Laboratory case: On the left is the 1-D distribution of the HTC h. of the cooling air.
On the right is the 1-D distribution of the internal and external wall temperature distributions.

In Figures and there are some plots to show the distribution of the HT'C of
the cooling air h, (Figure left), the distributions of the wall temperatures (Figure
1.10} right) and the distribution of the wall temperature difference (Figure left).
This last plot shows very low values for the difference between external and internal
temperature, and this is due to the thickness of the wall combined with its thermal
conductivity. From the other plots, it is possible to see that there are no violations in

temperature constraints.

1.4.2 Industrial case

In this case, the temperatures are significantly higher. In fact the temperature 7} of the
external hot gas is 1000°C and the inlet temperature 7, is 500°C. From the 4th column
of Table we can see that also the HTC of the hot gas h, is higher and that the inlet
pressure p" of the cooling air is ten times the atmospheric pressure. On the other hand,
we are considering a smaller impingement plate (a square with with 5cm-long side) and
a thinner target surface (only 3mm thick) with a lower thermal conductivity. Since the
boundary conditions change, the upper bounds for the temperature constraints must be
increased (see Table 4th column). The box constraints B are identical to the ones
defined previously in the "laboratory case" with only one change for the constraint on

the hole diameter d. In particular, since the plate is smaller, we allow d to be smaller,

1.4. EXPERIMENTAL RESULTS 29

-T
0.655 we W Resulting Layout
0.16
0.65 0.14
0.12
0.645 | 1 01f o ° o .
008 ° ° ° °
< L 'g‘ ° ° ° °
oo Soosr , ., .,
0.04[o . N o
0.635 | oozl . . .
° ° ° °
0
0.63f
0.02
0.04 ‘ ‘
0.625 :
0 0.05 0.1 0 0.05 0.1
x [m] x [m]

Figure 1.11: Laboratory case: On the left is the 1-D distribution of the difference between external and
internal wall temperatures. On the right is a 2-D representation of the final layout of the impingement
plate.

thus the constraint on d becomes d € [5 -107%m, %})

The initial guess v§ has values z,, = 5.00- 1073 m, y,, = 4.00- 1073 m, z, = 3.00-1073
m, d = 1.00 - 107® m and layout = staggered and has an objective value of H (v§) =
1.01-10°W m~2K™!. The initial layout is shown in Figure [1.12|

Again, with only one iteration of /;—penalty BFO method and 252 NOZZLE evalu-
ations the procedure converges to a solution v with H (v) = 2.71 - 10°W m~2K~*. The
geometric variables have the following values z,, = 6.28 - 1072 m, v, = 3.87 - 1073 m,
2p = 1.46-1073 m, d = 5.00-10~* m and layout = inline. The resulting layout is shown
in Figure (right).

In Figure are plotted the distribution of HTC h, (left) and the distributions of
the wall temperatures (right); in Figure on the left, we have the distribution of the
temperature difference on the target wall. Also in this case there is no violation of the

temperature constraints.

1.4.3 Comments on the numerical results

Summarizing, in both the problem settings, our DFO approach allows us to compute
solutions that improve the performance of the cooling system with low computational

effort (only a few hundred function evaluations). In particular, we improve the RMS

30 CHAPTER 1. NOZZLE

Initial Layout
o

0.035 |-
0.03 -
—0.025
>
0.02 -
0.015

0.01r

o 0 0 0 0 0 0 0 0 0 O ©
0O O 0O 0O 0O 0O O OO O O0 O
0O O 0O O O OO OO O O

0O 0 0 0 0 0 0 0 0 0 0 o
0O 0O 0O 0O 0O OO OO O O0 O

0.005 |-

0O 0 0 0 0O 0O 0 0 0 0 0 O
AO O 0O 0 0O 0O 0 0 0 0 0 ©
O 0 0 0 0 0O 0 0 0 0 0 O
AO o 0 0 0 0 0 0 0 0 0 o
AO O 0 0 0 0 0 0 0 0 0 O

o
o
o
=
o
o+
N
o
o
@

0.04 0.05
x[m]

Figure 1.12: 2-D representation of the initial guess for the industrial case.

heat transfer h, from 2.03 - 10°W m—2K™" to 4.16 - 10°W m—2K™! for the "laboratory
case" and from 1.01-10°W m=2K ™! to 2.71- 10°W m 2K~ for the "industrial case". In
addition, the behavior of the temperature distributions shown in Figures [T.10], [T.11], [T.13]
and [L.14] are consistent with the studies previously done (see [32,33]). Let us notice that

both the computed solutions are not "far" from the initial guesses, that is because the

procedure described in Algorithm [4] is a local optimization strategy, i.e. the algorithm
strongly depends on the choice of the initial guess. On the other hand, we remark the

switch in the value of the categorical layout from staggered to inline.

1.4. EXPERIMENTAL RESULTS 31

HTC distribution Wall temperature distributions
2950 T T T T 960 T T T T
2900 gs0l o
o
2850 o
940 o
[c;
2800 f
930 T
o 2750 _ T
= £0207
2700 f
910
2650 -
2600 900 |
2550 890]
2500 : : : 880 : : : :
0 001 002 003 0.04 0 001 002 003 004
x [m] x [m]

Figure 1.13: Industrial case: On the left is the 1-D distribution of the HTC h, of the cooling air. On
the right is the 1-D distribution of the internal and external wall temperature distributions.

-T
504 we wi ‘ Resulting Layout
50.2 0.06
50 0.05
P T
49.8 1 004k o + o s+ e e
:
49.6 1 © e e e e e e
_ — 003Fe o ¢ o o o
é 494 L é
Moozl Il Il
49.2 ¢ R
0l 001 e
¢ e e e s e e
48.8 1 0
48.6 -0.011
48.4 ‘ ‘ ‘ ‘ ‘ ‘
0 001 002 0.03 0.04 0 0.02 0.04
X m] x [m]

Figure 1.14: Laboratory case: On the left is the 1-D distribution of the difference between external and
internal wall temperatures. On the right is a 2-D representation of the final layout of the impingement
plate.

Chapter 2

MU‘STREG

In this chapter, we propose a new multilevel framework for the solution of stochastic
optimization problems.
More specifically, we consider the solution of

gel]% f(x) (2.1)

where f is a function that is assumed to be smooth and bounded from below, whose
value can only be computed with some noise. When considering problem , it is
usually assumed that realizations of f of the form f(z,¢) are available, with € a random
variable |14} [24]. In this work, we allow for more flexibility by assuming that we have
access to a hierarchy of noisy representations of f, built either by reducing the dimension
in the variables space or by reducing the noise of the function approximation, or both.
A level ¢ thus corresponds to a subset of variables and to a noise level in the function
approximation. As in the classical case, a multilevel method in this context alternates
"fine steps", i.e., steps computed considering large subsets of variables and accurate
function approximations, and "coarse steps" computed taking into account just small
subsets of variables and inaccurate function approximations. However, differently from
the classical setting, the steps at each level are stochastic.

A strong motivation for the interest in this setting is given by the following approxi-

mation of (2.1)

1 N
ggﬁ{iﬁzfi(x) (2.2)
i—1

32

33

with f; : R" — R for ¢ = 1,..., N smooth and bounded from below. Usually, either n
or N (or both) are really large. This problem has indeed its origin in large-scale data
analysis applications where models depending on a large number of parameters n are
fitted to a large set of NV training samples.

Stochastic optimization problems, in both forms and , can arise from data-
matching problems such as those arising from validating an engineering design. In the
particular context of this work, as we anticipated in the Introduction, we focused on
validating the design of a complete cooling system for a gas turbine. The validation is
done by identifying a setting of n parameters to minimize the error with respect to N
measurements defined by the objective function f. Since it is a data-matching problem
between measured values and values predicted by a simulator of the cooling system
defined by the design to be validated, random noise sources can come from a random
uncertainty either on the N measurements or they can be intrinsic to the simulator, both
possibilities can occur at the same time.

Several methods have been developed to cope with the large sizes of the datasets
(N) in problem (2.2)). In particular, optimization techniques based on subsampling
techniques have been proposed, among them the numerous variations of the classical
Stochastic Gradient Descent (SGD) method.

When considering problem , there is a natural way of building a hierarchy in the
"function space" through the definition of nested subsample sets S' C {1, .., N} such that
P#£Stc..c8 cC.. C8mx-1CSmaxC{1,.. N} and by considering a hierarchy of
subsampled functions obtained by averaging the functions f; in S'. As in the classical
case, a multilevel method in this context can alternate "fine steps", i.e., steps computed
considering large subsets of data and "coarse steps" computed taking into account just
small subsets of data. The coarse steps are computed by minimizing a model that is
built from the coarse level approximations by adding a correction term, usually known
as "first-order coherence" in the multilevel literature, which (in this context) accounts for
the discrepancy between the full gradient and the subsampled gradient. This is similar to
the same term that is added in the reduced variance gradient estimate of the mini-batch
version of SVRG [44] (cf. equations (2.60) and (2.57) below). Multilevel methods can

thus also be interpreted as variance reduction methods, cf. [17]. Their advantage is that

they allow for an automatic choice of the step size, either in the form of a line-search |57|

or in the form of a trust-region-like strategy [38]. Indeed, even if this usually requires a

34 CHAPTER 2. MU‘STREG

function evaluation per iteration, by keeping the number of steps taken at the finest level
limited and by leveraging the coarse steps, updating the step-size remains feasible even
when evaluating the objective function for large datasets, thus resulting in a variance
reduction method with automatic step-size selection.

We propose a stochastic multilevel first-order Adaptive Regularization (AR1) tech-
nique named MU‘STREG for MUlItilevel STochastic REegularized Gradientﬂ Adaptive
Regularization methods are globally convergent deterministic optimization techniques
that builds a sequence of points {z;} by minimizing local models of the objective func-
tion. Every model is defined starting from the information at the current iterate and
the model minimizer is used to define the next iterate. In particular, ARg methods
work with regularized models which are the combination of a Taylor polynomial of the
objective function of order ¢ (for a suitable ¢ € N) and a regularization term of order
¢+ 1. Thus in the specific case of AR1 methods, we have a first-order Taylor polynomial
and a quadratic regularization term. For example, let us assume we want to minimize a
smooth function g : R” — R, and let us consider a generic iterate xy. The model my of

g around x;, is defined, for every s € R", as:
T 1 2 1 2
mi(s) = g(zx) + Veg(ar)™s + SAlls|” = Tic[g] () + S Aells]

where A\, > 0 is the regularization parameter. To move from z; to xp,; we define a step

sy as the minimizer of my(s), which means that s; takes the form

e

S = —

As in classical Levenberg-Marquardt and trust region methods, once we have s, we would
like to use it to define z;1 = x; + s, but before doing so, we have to check for the
decrease g(xy) — g(xy + s) and compare it with the decrease for the Taylor polynomial

Ty [g] (0) — Ty [g] (sg). This check is performed by computing the ratio py as

g(xr) —glon +sx) kg(ifk) — g(xk + k)
Ty [9] (0) — Tk [g] (s1) 1V2g(2r)]?

Pk =

If pr = 1, we have a sufficient decrease of g, thus we can accept the step s, set xp 1 =

!The ¢ denotes the number of levels in the hierarchical problem description.

35

x, + s and reduce the regularization parameter \;. Otherwise, we keep the iterate
unchanged, i.e. xxy; = xk, and we increase \;. The regularization term changes at each
iteration based on the outcome of the previous iteration, and this also affects the size
of s;. If in fact at iteration £ — 1 we had sufficient decrement then A, is smaller than
Ar—1 and this allows a longer s, step along the direction of the antigradient —V,g(xy).
If, on the other hand, we have had failure)\, is larger than \,_;, hence the step si
will be shorter. We choose to focus on ARI since it is easier to adapt to a multilevel
context than the Trust Region |20] and it has the same evaluation complexity bounds as
first-order trust-region method |21, Theorem 2.4.4].

In this chapter, we present the MU‘STREG method to address the general problem
(2.1). In particular, we focus on a version with a two-level hierarchy that we use to
prove the convergence properties of the method. After that, we show in detail a ver-
sion of MU*STREG specific for problem that exploits a hierarchy in the function
approximations only. This gives us the chance to investigate from a practical point of
view the behavior of multilevel methods as variance reduction methods with adaptive
regularization. We test the resulting method on both convex and nonconvex problems
and we compare it to a mini-batch SVRG, due to the close relation of our method to
variance reduction methods. We show that while achieving comparable performance of
non-fined tuned versions of mini-batch SVRG on convex problems, our method greatly
outperforms SVRG on nonconvex ones. Moreover, we investigate the theoretical and
practical advantages of the stochastic multilevel framework. Notably, differently from
deterministic multilevel schemes, the stochastic framework does not require the fine-level
objective function to coincide with the original objective. Thus in the context of prob-
lem , considering the full sample set is not necessary, while it is required by the
convergence theory of classical variance reduction methods. We show in practice that
the method remains robust without dropping accuracy when considering fine levels with

smaller sample sets.

The chapter is organized as follows. In Section we introduce our MU*STREG
method both in its general formulation and in a two-level version (MU?STREG); we
propose the convergence analysis using MU2STREG, in Section . In Section we
specialize the MU‘STREG framework to the finite-sum setting of problem and we

analyze the numerical performance of the method in Section [2.4]

36 CHAPTER 2. MU‘STREG

2.1 The multilevel stochastic regularized gradient

method

In this section, we describe our new MUItilevel STochastic REegularized Gradient method

(MU‘STREG) for the solution of problem (2.1).

2.1.1 Hierarchical representation of problem (2.1

We assume access to a hierarchy of stochastic functions {f*} for £ = 1,..., fpay, that
approximate f. More precisely, our function approximations will take the form f* :=
fh(azh e, where {e'}m+ are random variables such that, for fixed h, the evaluation
of f(z",€') is more accurate (less noisy) than the evaluation of f(z" £/=1) for each
Il = 2,...lmax. Moreover, f* for h = 1,..., hmax are function approximations de-
fined on lower dimensional spaces, i.e., 2" € V" with V! C V? C ... C Vhmax This
structure defines a stochastic multilevel problem description of problem , where
flmax = fhmax(ghmax clmax) corresponds to the fine level function and f¢ = f(z", €')
are the coarse approximations for £ = (h,1), £ = 2,..., lyax. For each level £, ¢*(x) will
denote a computable version of f"(x", '), where €' is a random variable, and we assume
that V¢!(z) is available as well. If the hierarchy is built both in variable space and
function space, the level ¢ = (h,l) is identified by a subset of variables and a noise level
[, such that h < h+1and ! <[+ 1 and at least one of these inequalities is strict. As in
classical multilevel methods, we assume to have at disposal some transfer operators R’
(restriction) and P’ (prolongation) to transfer the information (variables and gradients)
from level £ to level £ — 1 and vice-versa, such that R® = v(P*)T for some v > 0 [18].
Differently from the classical framework, such operators may be random. If the hierarchy
is built just in the functions space all the variables will have the same dimension and the

transfer operators will thus just be the identity.

Example 1. In the case of Problem (2.2)), if the hierarchy is built just in the sample
space (i.e., h = huyay for all £) the approzimations ¢* would be the averaged sum of the

fi over nested subsets of this large set, that is ¢* = fS[Z where:

0 1
f5 () = 157 > fil),

ieSt

2.1. THE MULTILEVEL STOCHASTIC REGULARIZED GRADIENT METHOD 37

for 8¢ € S for all 4 (cf. Section . If the sampling is done randomly, such function
approzimations will depend on a random variable €', that defines hierarchy in the function

space.

Example 2. Consider the following problem:

min 2. (Au(z;) — g(x;))* + ZEZM(U(%‘) — ;)
arising from the discretization of a partial differential equation on a grid with n points.
The first term takes into account the residual of the partial differential equation and the
second one is a data-fitting term to a set of available measures M = {u;}. For this
problem, we can build a hierarchy in both spaces. Let us consider a level £ = (h,l): h
will be associated to a coarser grid, i.e., to a subset of the variables V* C R™, while
to a subset of the measurements S, drawn randomly from M. In classical multigrid,
such subsets are chosen in a deterministic way, in our framework they can be chosen

randomly. The function approximation for level £ will thus be

¢'(x) = | Au(z) — g(@)|* + D _(u(w;) —w)?, =€V

ieSt

Example 3. Consider the setting proposed in [22]: given z), € R™, assume to randomly
choose a p-dimensional affine space Vi, C R™ with p < n given by the range of Q) € R™*P,

1.e.,

Vi = {z + Qi : 5 € RP}.

A random lower-dimensional approzimation to f would be given by

o(z) = f(xp + Qrex), forxz € RP.

2.1.2 The step computation

For any level £ and at each iteration k, our multilevel gradient method can choose between
two different types of stochastic steps: a gradient step, which is known as the fine step,
or a coarse step computed by exploiting the approximations of f. Notice that the steps

are all stochastic as, differently from classical deterministic multilevel schemes, all the

38 CHAPTER 2. MU'STREG

function approximations (including ¢‘m»x, which does not need to be equal to f) are
random approximations. In both cases, given the objective function f* of that level, the
step is computed by minimizing a regularized model of the form

MlVe fz(3l Is|2.

my " (s) = mi(s) + (2.3)

for some Ay > 0. If £ = (., then f* = ¢ is the finest approximation. For the lower
levels, f¢ is the regularized model from the immediate upper level, as specified below.

The definition of m{ also depends on the kind of step taken.

e Fine step. In this case, we define my, as the first-order Taylor series

Tilf)(s) = fo(ak) + Vo f(21)"s,

of f*in xf, the objective function of that level. Minimizing the regularized model
(2.3) thus amounts to choosing the step

Z 1

_ Oy L
%= ey)

i.e., a classical (stochastic) gradient step, where the step-size depends on the norm

of the gradient as in [14], cf. discussion in |14, section 3.1].

e Coarse step. The random model my, is in this case built exploiting the stochastic
approximations {(be}[‘“”‘ of f and is thus either defined in a lower dimensional
space, or employs inaccurate function approximations, or both. The algorithm in
this case recursively calls itself to find the coarse step. More precisely, starting at
the finest level {ax = (Pmax, fmax) and considering the finest approximation plmax
of f and the immediately coarser approximation ¢‘=x-1 at iteration k we define

mzma" = gokm‘“‘ ! where

(pimax -1 (Semax -1) — ¢€max_1 (Remax ximax _|_ ngax —1)

+ (Rgmax Vx¢€max (ximax) _ ngbgmax*l (Remaxmimax))Tsimax -1 ,

-1

ie., gpi““‘" is a modification of the coarse function ¢‘»=x~1 through the addition

of a correction term. This correction aims to enforce the following relation for

2.1. THE MULTILEVEL STOCHASTIC REGULARIZED GRADIENT METHOD 39

Semax — Psémax—lz

vsgoll;maxfl (O)Tsemaxfl — Rémax vx¢€max (x]l;max) ,

which ensures that the behaviour of the coarse model is coherent with the fine

objective function, up to order one.

The regularized model m,f”e is then (approximately) minimized wrt s, by recursively
calling the multilevel procedure, thus taking either a fine step on level £ — 1 or
building a coarse model for mkR’Z"‘a"(s) involving the approximation ¢‘»=x—2 and so
on. The recursive call is stopped as soon as a step si‘l is found that satisfies the

following conditions:
mi (517 < mi0), || Ve 57 < st (2.4)

for some ¢! > 0, and we set st = Pesf;_l. As we will see, these conditions
will ensure the convergence of the multilevel method in the spirit of the Adaptive-
Regularization algorithm with a first-order model described e.g., in |21} Sec. 2.4.1].
Note that even if we use a first-order model at the fine level, we could use a higher-

order method to minimize the lower level model.

To be meaningful, the coarse steps are restricted to iterations such that
IRV, fA (i) | = KV fo (),
for k* € (0, min{1, ||R|}) 38

This framework is flexible and encompasses several actual implementations: at each
iteration k one needs to choose whether to employ the fine or the coarse step. A sketch
of a possible MU*STREG cycle of iterations is depicted in Figure .

2.1.3 The step acceptance

The step s, is used to define a trial point x% + st and two estimates of f¢(x%) and f(x% +

st), denoted by fi° and f{*, which involve approximations of ff(z}) and f(zf + s}).

The achieved reduction given by f{° — f* over the predicted reduction mé(0) — m{(st)

40 CHAPTER 2. MU'STREG

Lrnax ‘ ‘ ‘
T plmax — plmax | lma
Level £pax: ¢€max k E+1 k k

Level £ — 1: ¢€

Level 2: ¢2

Level 1: ¢1

Figure 2.1: Sketch of a possible iteration scheme for MU*STREG.

is computed to decide whether to accept the trial point or not. More precisely, the step

acceptance is based on the ratio:

L0 pls

P = T (0) = mi (o) (25)

A successful iteration is declared if the model is accurate, i.e., py is larger than or equal
to a chosen threshold n; € (0,1) and ||V f{(«%)| > 1\7—2 for some 7 > 0; otherwise the
iteration is declared unsuccessful and the step is rejected. The test for the step acceptance
is combined with the update of the regularization parameter)% for the next iteration.
The update is still based on the ratio . If the step is successful, the regularization
parameter is decreased, otherwise it is increased.

The full multilevel procedure with ¢ levels, specialized for the problem , is de-
scribed in Algorithm [6] and will be introduced in Section In the following section,

for the sake of simplicity, we detail the procedure in the two-level case.

2.1.4 MU?2STREG: the two-level case

We assume here that we have just two approximations to our objective at our disposal
and therefore we omit the superscript ¢: we denote by ® the approximation at the
highest level (® = ¢fmax = fmax in the previous notation) and by ¢ the other less
accurate approximation available. Moreover, let n; and n, be the dimensions of the fine
and coarse spaces, respectively, and let R and P be the grid operators. We sketch the
MU*’STREG procedure in Algorithm [5| where we rename it as MU2STREG. Below we
collect the main assumptions on the algorithmic steps that will be used in the convergence

analysis in the next section.

2.1. THE MULTILEVEL STOCHASTIC REGULARIZED GRADIENT METHOD 41

Assumption 1. At each iteration k of Algorithm[j let

mit(s) = mi(s) + 22 o (2:6)

ma(s) = T[®](s) := ®(x1,) + V. P(zx) s, (fine step), 2.7)
or(s) = d(Ray + s) + (RV P (xy) — Voo(Rry))T's, (coarse step).

The step s € R™ is computed so that either:

Sp= ————7", ne step) or 2.8
s = Ps*, s* € R™, (coarse step) (2.9)

where
mi(s*) <mi(0) and [[Vemil(s)|| = [|Vspr(s™) + Ml Va®(ay) |57 < 0]ls*[(2.10)
for some 0 > 0. The definition of the coarse model ensures that
Vspi(0) = RV, @ (zy). (2.11)
The use of the coarse step is restricted to iterations k such that
RV ®(xi)|| = rullVa® (2] (2.12)

for ky € (0,min{1,||R||}). We assume that R = vPT with v = 1, without loss of
generality, and that ||R|| = | P|| < kg for kg > 0.

Remark 1. From (2.6), and (2.10), when the coarse model is used, it follows:
* 1 *
r(57) = @r(0) < =S MlIVa® (@) ls]1* (2.13)

Notice that Algorithm [5|is a flexible framework encompassing several actual implemen-

tations: at Step [2] one needs to choose whether to employ the fine or the coarse step.

42 CHAPTER 2. MU‘STREG

Algorithm 5 MU2STREG(xg, @, ¢, \g,€) two-level stochastic regularized gradient
method
1: e Initialization: Choose g € R™ and A\g > Amin With Apin > 0. Set the constants
m € (0,1), 2 >0 and v € (0,1). Set k= 0.
2: e Model choice: If holds, choose if to use the fine level model and go to Step 3], or
the coarse level model and go to Step [l Otherwise, go to Step [3
3: e Fine step computation: Define my(s) = Ty[®](s) = ®(zx) + Vo ®(z)Ts. Set s5, =
_%&;Z)”. Go to Step ‘ . . .
4: e Coarse step computation: Define a lower level model and its regularized version as:

or(s) = d(Rxp + s) + [RVo®(21) — Vad(Rxp)] s,

1
mi (s) = pr(s) + 5)‘k||vccq)($k)””5”2’

Approximately minimize mkR, yielding an approximate solution sj satisfying (2.10]). Define
mi(s) = pr(s).

5: e Acceptance of the trial point and regularization parameter update: Obtain esti-
fo — 1
my(0) — mi(sk)

If pr. > m1 and ||V, ®(xk)|| > n2/Ak then set x1 = xx + s and Mgy = YAk
Else set 211 = 2 and Ap41 = I
6: o Check stopping criterion. If satisfied stop, otherwise set k = k£ 4+ 1 and go to Step

mates f and ff of f(xx) and f(zy + si), respectively and compute pj, =

2.2 Convergence theory

In this section, we provide a theoretical analysis of the proposed multilevel method
proving the global convergence to first-order critical points. Note that, as the method is
recursive, we can restrict the analysis to the two-level case. We thus focus on MU2STREG
as described in Subsection2.1.4 The analysis follows the scheme proposed in [24] and is
extended to adaptive regularization methods and adapted to include also the multilevel

steps.

Let us now first state our assumptions: we need some regularity assumptions as in
[15].

Assumption 2. Let f : R* - R,® : R™ - R and ¢ : R™ — R with n > ny; > no, be
continuously differentiable and bounded below functions. Let us assume that the gradients

of f, ® and ¢ are Lipschitz continuous, i.e., that there exist constants Ly, Le, Ly such

2.2. CONVERGENCE THEORY 43

that

IVaf (@) = VoWl < Lylle =yl for all 2,y € RY,
Ve ®(2) = Vo ®(y)l| < L lz =yl forall z,y € R™,
IVad(2) = Vad()ll < Lo [l =yl forall z,y € R™.

We assume that the models we are considering are random functions and so is their
behavior and influence on the iterations. Hence, M, will denote a random model in
the k-th iteration, while we will use the notation my = My (w) for its realizations. As
a consequence of using random models, the iterates X, the regularization parameter
Ax and the steps Sy are also random quantities, and so z; = Xi(w), A = Ax(w),
s = Sk(w) will denote their respective realizations. Similarly, let random quantities
FY, F¢ denote the estimates of f(X}) and f(Xjy + Sk), with their realizations denoted
by f) = FP(w) and fi = F{(w). In other words, Algorithm [5 results in a stochastic
process { My, Xy, Sk, Ay, FY, F}. Our goal is to show that under certain conditions on
the sequences { My} and {F?, F;} the resulting stochastic process has desirable conver-
gence properties with probability one. In particular, we will assume that models M} and
estimates F}), F¢ are sufficiently accurate with sufficiently high probability, conditioned
on the past. To formalize conditioning on the past, let FM" denote the o-algebra gen-
erated by My, ..., M;_1 and Fy, ..., Fr_1 and let .7-",?{‘52 denote the o-algebra generated
by My, ..., My and Fy,..., Fy_1. To formalize sufficient accuracy we use the measure
for the accuracy introduced in [14], which adapts to regularized models those originally

proposed in |24].

Definition 1. Suppose that V f is Lipschitz continuous. Given A\, > 0, a function m is
a k-fully linear model of f around the iterate x), provided for k = (K¢, K,), that for all y

in a neighborhood of xy:

IVaf(y) — Vem(y)| < j—k (2.14)
[f(y) —m(y)| < % (2.15)
k

Remark 2. The first-order correction imposed on the coarser levels ensures that (at least

locally) the coarse model is fully linear. Thus we will ask for this requirement on the fine

44 CHAPTER 2. MU'STREG
level model Ty[®]. Imposing this condition on the fine level only will be enough to ensure

convergence of the method.

Specifically, we will consider probabilistically fully linear models, according to the

following definition [24]:
Definition 2. A sequence of random models { My} is said to be a-probabilistically k-fully
linear with respect to the corresponding sequence { Xy, Ay} if the events
Iy = { My, is a k-fully linear model of f around Xy} (2.16)
satisfy the condition
P(L|Fili) > o

where FM I is the o-algebra generated by My, ..., My and Fy, ..., Fy_;.

We will also require function estimates to be sufficiently accurate.

Definition 3. The estimates fy and f; are said to be €;-accurate estimates of f(xy) and

f(zx + sg) respectively, for a given Ay if

Ef €

|fr = flan)] < v and |fi — f(ar + sp)| <)\—J;
A i

In particular, we will consider probabilistically accurate estimates as in [24]:

Definition 4. A sequence of random estimates {Fy, F} is said to be B-probabilistically

ef-accurate with respect to the corresponding sequence { Xy, Ay, Sk} if the events

Ji = {F,g, F;} are ef-accurate estimates of f(xy) and f(xy + sk), respectively, for Ak}
(2.17)
satisfy the condition
P(Jp|Filis) = B,

where €5 1s a fived constant and F,ﬁ‘ffﬂ 15 the o-algebra generated by My, ..., My and
Fo,...,F_1.

Following [24], in our analysis we will require that our method has access to a-

probabilistically s-fully linear models, for some fixed £ and to [-probabilistically €

2.2. CONVERGENCE THEORY 45

accurate estimates, for some fixed, sufficiently small e;. Cf. |24, Section 5| for proce-
dures for constructing probabilistically fully linear models, and probabilistically accurate
estimates. Basically, when the function approximations come from a subsampling this
construction is possible if the model accounts for enough samples. Notice that we will
assume this condition only on the finest level, for the coarse ones this is not necessary
thanks to , obtained from the definition of the coarse model.

2.2.1 Convergence analysis

We start by recalling three useful relations, following from Taylor’s theorem, see for

example |21, Corollary A.8.4].

Lemma 1. Let g : R® — R be a continuously differentiable function with Lipschitz
continuous gradient, with L the corresponding Lipschitz constant. Given its first order

truncated Taylor series in x T[g)(s) := g(x) + Vg(x)Ts, it holds:

olat5) = Tlol(s) + [[Vagla+¢5) = Vgl (218)
oz +) = Tlg)(s)] < 2 sl (219)
Vg -+) = VTlgl(5)] < sl (2.20)

We now propose two technical lemmas on the coarse step.

Lemma 2. Let Assumptions[1] and[g hold. Consider a realization of Algorithm[5 where
at iteration k the coarse model is used and let s = Ps* be the resulting step. Then it
holds:

|0£(0) = @r(s") = (Tr[®](0) — Ti[®](sk))| < %IIS*HQ‘ (2.21)

Proof. Using the first order Taylor expansion of ¢, and ([2.18]) applied to ¢y, and con-
sidering that from (2.11)), V405 (0)Ts* = V,® ()7 s1,, we can write:

o0(0) — u(s) = — V() sy — / Vapn(Es™) — Vpe(0)]7 s° de.

Since V,®(xx)" sy = Ty [®](s1) — T1.[®](0), using Assumption [2 and recalling that ¢y

46 CHAPTER 2. MU‘STREG

and ¢ differ just by a linear term, we obtain:

— ¢k(s") = (Te[®](0) — Ti[®@](s1))]

|90k
T x ! * * L¢> *1([2
/ [Vspr(€s™) = Vip(0)]" s |d5§/0 IVaspr(€s™) = Var(O)[lls™l de < —~1s[1%

]

Lemma 3. Under Assumptions[]] and[3, for any realization of Algorithm[3 and for each

iteration k where the coarse step is used, it exists a constant K > 0 such that:

IRV, ®(24)]| < (K + Ml|Va®@(@p)D]|s*]l, with K = 2Lek% + Ly + 6. (2.22)

Proof. From the Lipschitz continuity of V,® (), we have:

| RV ® ()| < [[R(Va®(2r) — Vo @(ap + 5¢)) || + | RV Pz + 1) ||
< Lo||R||||skll + |RV®(zk + si)|| < Lorh||s*|| + | RV ®(zk + si)||

where the last inequality follows from s, = Ps*. Moreover,

RV @(zk + s)|| <[R(Ve@(zk + si) — VTi[P](sk))|
+ [RVT[®](sk) — Vison(sT) |l
+ =Ml Ve @ (@) [s*[| + Vspr(s™)|
+ Ml [V @ (@) ||| s*]]-

Let us consider the first three terms separately.

1. By (2.20),

|R(Vo®(2k + sk) — VT [®](sk))|| < Lakrllsell < Lorg|ls*|-

2. For the second term, using the definition of T;[®](s) and @g(s) in (2.7) and the

2.2. CONVERGENCE THEORY 47

Lipschitz continuity of V,¢(x), it holds:

1BV T3 [®](s1) — Vior(sT)]
= |RV,®(21) — Vod(Ray + 57) — (RV,®(2x) — Vo (Ray)) |
= | RV, ®(21) — Vod(Ray + 57) — RV, ®(x1) + Vo (Ray) |
= [Vad(Ray) = Vop(Ray + 57)|| < Lolls™][-

3. The third term from ({2.10) is bounded by 6||s*||.
Thus we finally obtain the thesis. O]
The following lemma relates the coarse step size and the regularization parameter \.

Lemma 4. Let Assumptions[]] and[3 hold. Assume that at iteration k the coarse step is
used. Let K be defined as in (2.22) and assume that

1

i < mm{ll(o, }||V D ()]l (2.23)

then

4/‘€R
s <l < 5 (2.24)

Proof. The first inequality follows from assumption (2.23), (2.22)) and (2.12):

IRV, 00l sullVa®ll o rn

(2.25)

[s*]l =
The second inequality follows from (2.19)) applied to ¢x:

* * * * L *
[k(5) = @r(0)] = [Vspr(0)7s™| < [ior(s) — u(0) = Vigpr(0)"s"| < %’Hs 17,

where we have used the fact that from Assumption 2 and (2.7) ¢ is L, smooth. Thus,

from (ZT1)),

pi(0) — (™) < [Vopr(0)"s™| + ¢|IS I = [Vo®(zk)" sel + ¢||8 I

< [IVa®(zi)[[llskll + 7HS*H2 < Kg[IVa@(zp)[[lls™] + 7‘75];3*|\2.

48 CHAPTER 2. MU'STREG

Combining this with (2.13]) we have:

FMIVa@@ 57" < 0r(0) = u(s7) < mall Vo (i) ls°] + 7¢HS I

Thus) I
(ATl = 52) 151 < el 9.7

From (2:23) I\[| Vo ®(as)]| — 22 > 10|V, ®(24)| and thus

1 *
Ve @)ls*] < mpll Vo (i)l

In the following lemma, we measure the decrease predicted by the model.

Lemma 5. Let Assumptions[1] and [q hold. For any realization of Algorithm [3 and for
each k it holds:

IV ® (i)l ;
— if fine ste
mi(se) — ma(0) < X J fine step (2.26)
Akl Ve ® ()l '
— okl 2| s*(12 if coarse step

Proof. If the fine step is used,

mi(sx) — mi(0) = Ty [@](sx) — T[P](0)
CVeR(@)? (Ve P (@)l
Ael[Vo @ (@) | e

= qu)(xk)Tsk =

If the coarse step is used:

BED ||V (), .
ma(s:) = mi(0) = oul(s") = p(0) = ~2IVL e

]

We now prove some auxiliary lemmas that provide conditions under which the de-
crease of the true objective function f is guaranteed. The first lemma states that if the

regularization parameter is large enough relative to the size of the model gradient and

2.2. CONVERGENCE THEORY 49

if the model is fully linear, then the step s, provides a decrease in f proportional to the

size of the model gradient.

Lemma 6. Under Assumptions [1] and [, suppose that Ty[®] is a (ky, kg)-fully linear
model of f in a neighborhood of x). If

1 1 kL 1
— <mind —, 2~ Ly &), 2.27
< m{K S 2L¢,}”V (o)l (2.27)

then the trial step sy leads to an improvement in f(xy + sx) such that

kg [Va®(ai)|
32 N\

[+ sk) — f(ar) <
Proof. We distinguish two cases depending on the used step.

1. In the fine step case, from (2.26)) we get

flar+sk) — fzr) = flog + sk) — Te[®](sk) + Ti[P](sk)—
— T3,[®](0) + T3, [®](0) — f(z)
2l<df . Hvxq)(xk)l‘

Y Ak
D 1Vl Ve ()]
B 2 Ak - 32 N)

1 < 1
where we have used that, from (2.27), 1~ < IV P ()] < e |V P ()]

— 64ky

2. When the coarse step is used, we have

f(ay +si) — flxr) = fag + sp) — Ti[@](s1)
+ Ti[®](sk) — Ti[®](0) — @r(s”) + 01 (0)
— (0) + i (s?)
+ T,[®)(0) — f (@)

The first and the last terms are bounded by 3 from (2.15). The second term from
k

Lemmais bounded by % ||s*[|%. The third term is bounded by —24[¥Ve2el]|| |2

50 CHAPTER 2. MU'STREG

from (2.13)). Thus

flae 4 1) — fx) < 2 (ﬂ — M) || s*]|?

a2\ 2 2
2/€f .)\kHV:v(I)(xk)H ||S*H2
265 IV ®(zy)||K5
- /\z 16,
R IV ® ()|

]

The next lemma shows that for a sufficiently large regularization parameter A\ relative
to the size of the true gradient V. f(zy), the guaranteed decrease in the objective function,

provided by s, is proportional to the size of the true gradient.

Lemma 7. Let Assumptions[l] and[d hold and suppose that Ty,[®] is a (ky, kg)-fully linear
model of f in a neighborhood of xy. If

1 1 1 1
= < mi V., , 2.28
A _mm{K—i—/ﬁg’ (64/<;f//<;%{)+/£g’2L¢+/£g}H el (2.28)

then the trial step sy leads to an improvement in f(xy + sy) such that

[Vaf (i)l

[+ sp) = fla) < =Cy h : (2.29)
k

. . K2 K 64k 2L
with Cl T 3_f21 max { K+kg' 64l-£f+nfgn%1) 2L¢—fmg }
Proof. We first prove that the assumption of Lemma [6] is satisfied, and we use its result
to deduce the decrease of the objective function in terms of ||V, f(xy)|l rather than
|V ®(zx)||, by linking these two quantities through the assumption of x-fully linear
model, which yields that

V28| > 192 f ()]l = {2 (230

2.2. CONVERGENCE THEORY 51

From assumption it holds
IV f(zr)|| > max {K + Ky, 64k p /K3 + kg, 2Ly + /ig})\ik,
and thus from ([2.30) we have
IVl > Ve ()l = 52 > max{ K, 64y /3y 2L}

Thus the assumption of Lemma [6] is satisfied and

i [[Va®(a) |

[y +) — f(ar) < 39 "

In the same way from (12.28]) and (2.30) we have

IV ®(z) | > Ve f ()| — i_i

1 1 1
> ||V, _ . { ’ 7
2 [Vaf (@l = g min K+ Ky 64/€f/l€%1+lig 2Ly + Ky
K 64k ¢ 2L, } N
-+ ’ ’ Vi =C V. .
K+ kg 64y /K + Ky 2L + kg 1V f (i)l I Ve f (@)l

IV sl

:max{

We conclude that

ot o) — flon) < F VR OISl

[V f ()

Ak

O

We now prove a lemma that states that, if the estimates are sufficiently accurate, the
fine model is fully linear and the regularization parameter is large enough with respect

to the size of the model gradient, then a successful step is guaranteed.

Lemma 8. Let Assumptions (1] and[d hold. Suppose that Ty[®] is a (ky, ky)-fully linear

model in a neighborhood of x), and that the estimates {f7, fi} are €;-accurate with e; <
Ry.]f

— < min

Ak

T qu) 5 2.31
{% me F2my ity 1+ Ly N1 V2)l (2:31)

52 CHAPTER 2. MU‘STREG

then the k-th iteration is successful.

Proof. Let us consider py in Step [5} of Algorithm [5}

K=
mk(()) — mk(sk)
fo— flay) fzr) —me(0) mg(0) —my(sk)
= e (0) — mn(e) | m(0) — m(sk) | ma(0) — me(se)
mi(sk) — f(xn + sk) N floe +s1) — fi
mk(O) — mk(sk) mk(O) — mk(sk) .

Pk =

= op + 1. (2.32)

Let us now consider the numerators in this expression. Those of the first and the last

terms are bounded from the assumption on the function estimates (cf. Definition [3):
€ 5 €
R =)l <35 <53 2 = P+ sl < 55 < 53

To bound the other terms, let us now consider two cases. First, when the fine step is
used my, = Ti[®], which is a s-fully linear model of f by assumption, thus the numerator
of the second and fourth terms are bounded by (2.15] Consequently, the numerator
of |ox| = |pr — 1| is bounded by . The denommator is given in (2.26). Thus by the

assumption

4/'1]0
= 1< —— <1 —n.

If the coarse step is used we have m; = ¢ and we need to further develop the expression

of pg:

a < > mi(s)
f(xy) f(op) = T [®](0) —T%[®](sk) — wr(0) + pr(s*) + Ti[®](0)

() mi(sk) mp(0) — my(sk) my(0) — my(sk)
0i(0) — or(s*) Ti[®](sk) — floe+s6) | flag+sk) — [

R (B o R (B ey e [e

- T[] (s1) — 2k (0) + 9i(s") + Th[@](0)

=or+1+ mk(O) mk<3k) .

Concerning the previous development we thus just have an additional term. Let us

2.2. CONVERGENCE THEORY 53

bound its absolute value:

—Ti[®](sk) = 01 (0) + i(s™) + T [®](0) | E2DET st Ly
mk(O) — mk(Sk) =)\k“Vz;I)(Ik)H ||S*H2 o)\kHvxq)(xk)H

(2.33)

The numerators of the terms in g, can be bounded as in the first case. We thus have

4I€f 4I€f
@.13) Byl (2:24) Byl 32Ky

o] < < = :
MHS*HQ >\k||vz2¢‘(mk)”% el Vo @ () || k%

(2.34)

Thus from (2.31))

32k /K3 + Lg
-1 < <1-—m.

Hence in every case p, > 1. Moreover, since ||V ®(zx)|| = 3 from (2.31), the k-th

iteration is successful O

Finally, we state and prove the lemma that guarantees an amount of decrease of the

objective function on a true successful iteration.

Lemma 9. Under Assumptions |1 and @ suppose that the estimates {f¢, fi} are e;-

accurate with €5 < %. If a trial step sy is accepted then the improvement in f is
bounded below by:
&
f(@r1) = flay) < By} (2.35)
where Cy = % — 2¢; > 0.

Proof. If the iteration is successful, this means that ||V, ®(zy)| > 2 and px > m1. Thus,
if the fine step is used,

v,
£ F = mlme(0) = me(s)) =) A:an > W
k

54 CHAPTER 2. MU‘STREG

If the coarse step is used

2.26))
fE = Fi 2 mmi(0) = mi(s)) = SV (an)llls P

B29 1y k% 1 _mmery 1
> || V@ —> 2
Z g k| (xk)ll)\i_ RSy,

Then, since the estimates are eg-accurate, we have that the improvement in f can be

bounded as

_&
A2’

flaw+se) = flax) = flan+s0) — fi + fo — fi + fo =) <

2
where 02:%—26f>0. O

To prove convergence of Algorithm [5| we need to assume that the models { M} and
the estimates {F?, F;} are sufficiently accurate with sufficiently high probability. We
recall that in this case, the models M}, are the models defined for the fine step in (2.7)).

Assumption 3. Given values of o, 5 € (0,1) and e, > 0, there exist K, and Ky such
that the sequence of models { My} and estimates {FY, Fi} generated by Algorithm 1 are,

respectively, a-probabilistically (K¢, ky)-fully linear and (-probabilistically € ¢-accurate.

The following theorem states that the regularization parameter \; converges to +oo
with probability one. Together with its corollary, it gives conditions on the existence of

kg and Ky given o, B and €;. The proof of the theorem follows similar ideas to the proof
of |24, Theorem 4.11].

Theorem 1. Let Assumptions [}, [4 and [3 be satisfied and assume that in Algorithm [
the following holds.

e The step acceptance parameter ny is chosen so that

no > max{ K, 24k} (2.36)

e The accuracy parameter of the estimates satisfies

2
€r < min {/{f, 7717;251{} .

(2.37)

2.2. CONVERGENCE THEORY %)

Then o and B can be chosen so that, if Assumption [3 holds for these values, then the

sequence of regularization parameters {Ay} generated by Algom'thm@ satisfies

= 1
— < 2.38

0

ol NV

almost surely.

Proof. The scheme of the proof is the same as that of [24, Theorem 4.11]. We denote
with zj, A\g, si and my the realizations of random quantities defined by Algorithm 5| X,
Ay, Si and My, respectively.

Let us fix the constant v € (0, 1) such that

4 16 1
> max , , ; 2.39
{’72C01 YEnmeKy 723/€f} (2:39)

1—v

where C} is defined like in Lemma [7, We then use v to define the random function

1
U =vf(Xg) + (1 — I/)A—Z; (2.40)
and we denote with 1, the realization of Wy.
In order to prove (2.38) we want to show that there exist ¢ > 0 such that
E [Urpr — U FYT] < <0, Vk. (2.41)

O'
2
Ak

Since f is bounded from below and Aik > 0, then Wy is bounded from below for every
k; thus if holds for every iteration of Algorithm , then by summing over
k € N and taking the expected value on both sides we obtain that holds with
probability 1.

Then we must prove , and to do this we need to estimate the decrease g1 — Yy
for any iteration k and any realization of Algorithm [5| To prove that holds for
every k, we consider two separate cases depending on the value of ||V, f(xy)||. Let us

choose a constant (such that

64k s /w2 + L
s ¢}. (2.42)

>k +max{ ;
g T2 11—

26 CHAPTER 2. MU‘STREG

The first case considers iterations for which ||V, f(zg)| > %, while the second case
considers iterations for which ||V, f(x)| < % We will prove that (2.41)) holds in both

cases.

Each iteration k is characterized by the occurrence or non-occurrence of the events

I, and Ji, defined in (2.16) and (2.17). Thus, for both cases (||V.f(xx)| > % and

IVaf(xp)| < /\%), we will consider the following four combinations defined with the
events [, and J,. In the first one, we have the occurrence of both I, and Jy. In the
second one, we have the occurrence of I and the non-occurrence of Ji. In the third one,
we have the non-occurrence of I}, and the occurrence of J;. Finally, in the fourth one,

we have the non-occurrence of both I, and Jj.

A further distinction that must be made at each iteration k, regardless of events I},
and Ji, is between successful and unsuccessful iterations. In particular, let us consider
a realization of Algorithm In all successful iterations we have xp,1 = zr + sx and
A1 = max {Amin, YA }, With v € (0, 1), hence

1 1
brar =0 <0 (flae) —) + =) (1) (243
k
On the other hand, for all unsuccessful iterations, we have xp,1 = xp and Ay = ’\7’“,
thus .
Ve — Ve =(1—v) (v = 1) = =:b; <0. (2.44)

A

The main idea is to show that if at iteration k& we have the occurrence of at least one
of the events I} and Ji, which means that we have either a good model or good estimates
of f (or both), we can choose a parameter v € (0,1) close enough to one such that the
decrease in 9, is greater in the case of successful iteration than in the case unsuccessful
of iteration. If, on the other hand, we have no occurrence of neither I nor .Ji, so we have
a bad model and bad estimates, an increase in v, can occur. This increase is bounded by
a value proportional to /\—1]% when ||V, f(xp)|| < ﬁ When ||V, f(zg)] > é, though, the

IVa f(zi)ll
Ak

increase in v, may be proportional to . However, we will show that iterations

in which we have a good model and good estimates, thus the occurrence of both I and

Ifo\”_i“)H; thus by choosing values

Jy, also provide a decrease in 9, proportional to the |
of a and S close enough to 1 we can ensure the decrease in expected value of v, and

thus the validity of (2.41)) for every iteration.

2.2. CONVERGENCE THEORY D7
Case 1: ||V, f(zg)]| > /\%

(a) We have both I;, and J, thus good models and good estimates on iteration k.

From the definition of ¢ we have

64k /K3 + Lg }) 1

1920l = (v + maox {on, % L
—

A

Condition (2.28) of Lemma [7] holds thanks to x—fully linearity of T} [®] to-
gether with assumptions (2.36)) and (2.37]). Thus,

[Vaf (i)

fQop +) — fla) < —C4 S :
k

2
. Ry K 64r 2L,
with C = 3 maX{K—Hﬁg’ Gdrptrgrly 2Lgthg |

Moreover, since

64r /K3 + Ly 1
Ak

K 1
> 9> (= - > il
V@ ()|l = [[Vaf ()] N (S N o max {772, o

and the estimates fp and f; are ej-accurate, with €; < k,, it holds condition
(2.31)) of Lemma , thus iteration k is successful, meaning that xp 1 = xx + sy

and A\g1 = max {A\pin, YAk }. Combining ([2.29) and (2.43)) we obtain

V. 1 1
Y1 — e < —Vcluf\—ixk)” +(1=v) (¥ - 1) N2 =: b, (2.45)

with C defined as in Lemma |7} Due to the fact that ||V, f(zg)] > % we

have

1 1 1
by < |—vCi(+(1—v) (? - 1)1 bY] <(l-v)(v¥-1) N b, (2.46)
with v € (0, 1) satisfying (2.39).
(b) If I} occurs and Jy does not, we have a good model my but bad estimates

{12, fi} at iterate k. Lemma always holds and s brings sufficient decrease
in f, so if iteration k is successful we get again ([2.45)) and ([2.46]).

However, because of inaccurate estimates of f, step sx could be (mistakenly)

58

CHAPTER 2. MU‘STREG

rejected. So we will have an unsuccessful iterate k and consequently ((2.44))
would hold. Since the condition on v (2.39)) holds, we have that

1

1
by < —1/0164‘(1—1/) <¥_1):|)_i <bl;

Thus (2.44) holds whether the iteration is successful or not.

(c) If, on the other hand, I} does not occur but J; does, it means that we have a
bad model (not x-fully linear) and good estimates { f2, fi} at iterate k. In this
case, the iteration may or may not be successful. If it is unsuccessful it holds
(2.44). On the other hand, if it is successful since {fy, fi} are e;—accurate

and (2.37) holds, then by Lemma [9] it holds (2.35) thus we have

Vors — by < {—VOQ +(1—v) (% - 1)} 1 (2.47)

A
As in case b, since we choose v such that (2.39)) is satisfied, we have that
(2.44) holds both for successful and unsuccessful iterations.

(d) If neither I nor Ji occurs, it means we have a bad model and bad estimates
at iteration k. The inaccuracy of estimates {f7, fi} can make the algorithm
accept an increasing step for f. In such case ¥ri1 — ¥, can be positive.
However, the increase of f can be bounded from above by combining the
Taylor expansion of f(xy) at xp + s, and the Lipschitz continuity of V,f.
From Lemma [I| we have that holds. Thus dropping the absolute value
and rearranging the terms in we have

Flont 56 = Floe) < Vol) () + Llsel?. (249

Note that if the step si is the fine step defined in then ||sgx|]| = i
Otherwise if s; is defined as the coarse step we have that Lemma
holds, then using and the fact that the prolongation operator P has
norm || P|| = kg we have that

. . 4k?
Jsell = 1Ps°) < 1P < 20

2.2. CONVERGENCE THEORY 29

Combining these observations and recalling that ||V, f(zg)| > é we can

bound the increase of f(x)) with

flan+ si) — flaw) < cg||v$f<xk>|r§k,

with Cj := % +4. Hence we can bound the difference in v in the following

way

Vi1 — Y < V03||V$f(xk;)||)\ik +(1-v) (% — 1) % =: bs. (2.49)
k

Now we take the conditioned expected value for Wy — Wy when ||V, f(x)|| > /\%

Due to Assumption [3| we know that case (a) occurs with probability (conditioned
on the past) a8 and in that case ¥y 1 — ¥y < by < 0 with by defined in (2.45)).

Case (d) occurs with probability (1 — «)(1 —) and in that case ¥y — ¥y < b,

b3 > 0 defined in (2.49)).

Case (b) and (c) occur respectively with probability a(1 —) and (1 —«)f and in
these two cases Y11 — Y < by < 0, with b; defined in (2.44)). Note that b; > b
because we choose v in order to satisfy ([2.39)).

Finally we can combine ([2.44)), (2.45)),(2.47) and (2.49)) and denote with B;, By and
Bj; the random variables that have respectively by, by and b3 as their realizations

in order to get the following bound

E |:\I/k+1 — Uy

FME {Hvxﬂxk)u > ACkH

< afBa + [a(1 - §) + (1 - a)8] By + (1 - a)(1 - §) By
N 816 N A B
= ﬁ[Ch AL +(1)(72 1> Az]-i—
(L= 8)+ (1= a)B] (1= 0) (7~ 1) 1+

k

=)0 - 8) Pl 0l + (-0 (1) o]

60

CHAPTER 2. MU‘STREG

Rearranging the terms we get

s = 0 2L {19000 2 -} (250
< [vCiap+ (1 a)(1 - By V=IO
k
) 1 1
#of =7 (el =9) + (=) + (=) =B 1= (5-1) 5

1

< [=Ciap+ (1=) - el N) (S -1) 45

Ay, Y
where the last inequality is true because
af =7 (a(l-B)+(1-a)f)+(1-a)1-F) <la+(1-a)[B+(1-p)=1
Let us choose a and (5 in (0, 1) such that

@-1 o
1-—a)1-p)~

which implies

5ol _V)V(j? - 1))

|

[Craf = (1 —a)(1 - p)Cs] >

[\]

where the last inequality holds because of (2.39)).

Recalling that ||V, f(zx)|| < ﬁ we can continue bounding (2.50)), thus

~cas+-ay - gl g (S o1) 4

[Vof 0l 1, IVFXR)I

< [=Ciaf + (1 —a)(1 = B)Cs)v Ax = 4 Ay

In this way we have

E |:\Ilk+1 — Uy

Feti {Hfo(Xk)II > A%H < —icluw (2.51)

2.2. CONVERGENCE THEORY 61

and

E {\Ifkﬂ — v, =

Frl, {Hvxf(Xk)H > A%H < —% (1-v) (i — 1) Aig (2.52)

For the proof of this theorem (and also for Theorem [2) bound (2.52)) is enough.
Bound ([2.51)) is used to prove Theorem

Case 2: ||V, f(zp)| < i
First, let us notice that if [[V,®(zy)|| < §# iteration & is unsuccessful and ({2.44)
holds. Let us then assume that ||V, ®(zy)| > £ and we are going to consider the

four combinations of events as we did in the previous case.

(a) We have the occurrence of both I}, and J, thus good model and good estimates
on iteration k. If k£ is successful the k—fully linearity of the model ensures a
decrease for f. We can use the same arguments of Case 1c to conclude that
holds both in case of a successful iteration or case of an unsuccessful

one.

(b) We have the occurrence of I and no occurrence of J, which means good model
and bad estimates at iteration k. If it is unsuccessful, (2.44]) holds. Otherwise
from Lemma [l we have that

_ V2 ®(a)]]
Ak

Ak ||V ®
_ Al o (xk)||||8*||2

if fine step
my(sg) — my(0) <
if coarse step.

Let us consider the case of the coarse step. Using also Lemma [4] and the fact
that ||V, f(xp)| < /\C—k we have

Since [j occurs, the model my is k—fully linear, considering ([2.36[), we can

62 CHAPTER 2. MU‘STREG

write

fxr) — flog + si)
= f(zr) — mg(0) + my(0) — mp(sx) + mu(sk) — f(@x + k)

K2ms 1 3K
> (LB 9k,) — > -2
—(8 ’€f> TADY:

As a consequence, if the k—th iterate is successful, we have

1 1
wk-i-l — ¢k < |:—3I//€f + (1 — I/) (—2):| T3 (253)
g Ak
Since we choose v € (0,1) in order to satisfy (2.39), we have that the right-
hand side of (2.53) is strictly smaller than by defined in (2.44)). Thus ({2.44))
holds in any case, successful or not. If we use the fine step, i.e.

2

we can analogously get the same result.

(c) The event I does not occur while J;, does. Here we have a bad model and

good estimates at iteration k. We can proceed in the very same way as Case
lc to conclude again that (2.44)) holds in any case.

(d) None of the events Ij, and J; occur, thus we have a bad model and bad esti-
mates. Similarly to Case 1d we can bound the increase in f using Lipschitz
continuity of V, f, thus

Cs6

[+ sk) — flan) < BVR
k

We use this bound for the difference of)y:

1

'@Dk—&-l — ¢k S |:I/03C + (1 — V) (% — 1):| 13- (254)
g Ak

Now we can bound the expected value of 1,11 — ¢ as we did in Case 1; but in
Case 2 we only use (2.54)), which occurs with probability (1—«)(1—), and ([2.44)),

2.2. CONVERGENCE THEORY 63

which occurs otherwise. Then

B W = 0 2L {19000 < -} <
<fofi+a(l = 6) + (1=)3 (1 - V)" ~ Dz
F-a)1=9) e+ (1= (5-1)] <
< W=D~ D + (-1 - 0) peag+ (1-0) (5577 | 3

By choosing o € (0,1) and 3 € (0, 1) such that

5 -1

(1_Oé)(1_ﬁ>— 71 _’1_’_ 2?341,)7
we have
1 2 1
B [- w7 (1900l <] < -Ja-n (55]) 5 e

Finally, combining (2.52) and (2.55)), and observing that 1 —~? < 7% — 1 we have

1 1
E (W — | Flf | <=1 =v) (1 -9%) -
2 ¥
This means that (2.41)) holds with o = 3(1 — v) (1 —~?) > 0. O

The choice of a and [is specified in the following corollary.

Corollary 1. Let all assumptions of Theorem[1] hold. The statement of Theorem[] holds

if a and B are chosen to satisfy the following conditions:

af—3 R
I-a)1-=8) " G
and
-1
(1-a)(1-p) < .

16 1]
__1+ (40Lf+4C)1rnaux{cc1 e, ,:,mf}

64 CHAPTER 2. MU‘STREG

2
. _ Kmg K 64K 5 2L4 o
with Cy = Z4 max { Ry ® 0n g ? 2Ly ey and ¢ = Kqg + 1.

In practice, the probabilities a and 3 depend on the characteristics of the optimization

problem. For a more specific discussion we refer to [24].

The following results can be derived as in [24] Theorem 4.16|, |24, Lemma 4.17] and
[24, Theorem 4.18], thus for the proof we refer to [24].

Theorem 2. Let the assumptions of Theorem[]] and Corollary[1] hold. Then the sequence
of random iterates generated by Algorithm@ { Xk}, almost surely satisfies

lim inf |/ (X¢)|| = 0.

Lemma 10. Let the assumptions of Theorem |9 hold. Let {Xy} and {Ay} be the se-
quences of random iterates and random reqularization parameters generated by Algorithm

E. Fiz € > 0 and define the sequence {K.} consisting of the natural numbers k for which
|Vof (Xp)|l > €. Then almost surely

> Ai<oo.

kE{Ke} K

Theorem 3. Let the assumptions of Theorem |9 hold. Let {Xy} be the sequence of

random iterates generated by Algorithm[J. Then, almost surely,

lim [V, /(X)) = 0.
k—00

2.3 MU'STREG for finite-sum minimization

In this section, we describe how to adapt Algorithm [5| to the solution of finite-sum mini-
mization problems of the form ([2.2) using a multilevel setting with ¢ levels. In particular,
in Subsection we show in detail the algorithmic properties of the MU*STREG ver-
sion to address problem ([2.2)), while in Subsection we explicitly show the similarity
between Stochastic Variance Reduced Gradient (SVRG) and MU*STREG specialized on

finite sums.

2.3. MU'STREG FOR FINITE-SUM MINIMIZATION 65

2.3.1 Algorithmic details

Considering problem , we assume that N > n and we consider hierarchies built
just in the sample space, thus ¢ = [(see Subsection . We first assume that the
computation of the objective function is affordable and we postpone to Subsection [2.4.4]
a discussion on the case when N is too large to evaluate the full sum.

Recalling that the objective function in is the average of the set of functions
{ fi}i]ip we can easily define a hierarchy of approximations by subsampling. In particular,

given the number of levels £y, > 2, for every ¢ € {1, ..., {iax } We define the subsampled

(@) = Zfz

zeS‘f
where S C {1,.., N} is a subsample set such that () # S' C ... € §* C ... C Stmex-1 C
Stmax = {1 .. N}. In this particular case, R and P are both the identity and all the
iterates belong to R™. We thus drop here the indexes ¢ from the iterates and the steps.
We use the functions { fsé}im?x to define the regularized models {mRZ}ZmaX that are

function as:

minimized at each level in a recursive way. Note that each model m®™¢ should be indexed

by the index of the iterate at level ¢ + 1 for which it was defined. We omit this index

here to avoid confusion with the index k of the iterate considered to define, given m?,

its lower level model. In the notations of Section [2.1} the f st corresponds to the ¢°.

In particular, at level 1 < ¢ < /.y, given the objective function of that level mf®*
and an iterate x; we define the objective function m,gR’Z_1 at xp for the lower level £ — 1
as

N (s) = [(w4 5) + (0f)T + regl L (s) (2.56)

—1

R’qs (71) denotes the subsampled version of mf* evaluated at x,

where [m
= v,m(z,) - V, [mR’qSZil (xg), (2.57)

and regj (s) = AL Vo () ||[|s||* with Aj, > 0 if £ < lyax, and zero otherwise.
Lmax—1) S[maxfl R
At the finest level [mR’ZmaX]S = [e is simply f$™". However,

R incorporates also the regularization and the vector v%. Given that

when ¢ < lpax, m
these quantities are not defined on a sample set, the subsampled version of mf* differs

from m®* just for the term £~ that is subsampled on S*~2, while the correction and

66 CHAPTER 2. MU‘STREG

the regularization vectors remain unchanged. Notice that each time we go down a level

R a regularization term and a vector v’.

We report in Algorithm |§| the complete MU‘STREG algorithm for problem (2.2)) and

we now discuss its main steps.

we accumulate in m

Algorithm [6] is recursive and a generic level £ > 1 of the hierarchy is described. The
main hyperparameters of the algorithm are the number of levels in the hierarchy /.«
and the cardinality N* of the subsample sets S¢ for every level of the hierarchy. At the
very first call MU‘STREG starts from the top level ¢, and the objective function is

set as ffmax,

At each iteration k the algorithm either calls itself recursively or performs a fine step
at level £, except £ = 1. For ¢ = 1 the bottom of the hierarchy is reached and no more
recursions are allowed. An approximate minimizer of m,f’l is sought that satisfies
by the Adaptive-Regularization algorithm with a first-order model (AR1) described e.g.
in |21} Sec. 2.4.1] with a regularization parameter weighted by the norm of the gradient
of mkR’1 at the current approximation. Notice however that the theoretical results would
still hold if the minimization algorithm was replaced by another one, provided that the

stopping criterion can be satisfied.

When ¢ > 1 the algorithm can be called recursively and, if we choose to use the
lower-level model, the surrogate minimization problem of the new approximation mkR’e_1
is built by sampling a subset of indices S*! C &’ by drawing randomly N*~! indices
from S (Step E[) and MU‘STREG is recursively called at Step |12| providing the search

direction s.

Steps are dedicated to the standard step acceptance rule and regularization
parameter update based on the ratio pf, defined at Step We remark that the condi-
tion |[|[VmB4(xy)|| > na/A; is checked at the beginning of each iteration to save useless
computations in case it fails.

The stopping criterion checks if the norm of the gradient is below some tolerance
that depends (implicitly) on the level ¢ and on the iteration k. Indeed, when ¢ = £}«
the tolerance is a positive scalar € chosen by the user and we get a classical stopping

criterion

IV fS™ (@)l < e. (2.58)

Else if ¢ < fax, We use the stopping condition (2.4). A safeguard is added imposing a

2.3. MU'STREG FOR FINITE-SUM MINIMIZATION 67

Algorithm 6 MU‘STREG for finite-sum - MU‘STREG (:co, {(f%, N,) ﬁ’:f)

Input: z¢ € R", {fz}ﬁr:l‘x, ff:R™ — R defined on N* samples with N¢—1 < N¢ tolerance ¢! > 0 .
Given 0 <n1 <13 <1,1m2>0,0<72 <71 <1<73, Amin > 0.

1: k=0
2: while the stop criterion for level ¢ is not satisfied do
Hierarchy definition
3: if £ > 1 then
4: Build 8¢~! ¢ S* drawing N¢~! indices randomly.
5: else
6: Go to Step EI
7 end if
Model choice
8: Choose to go to Step Elor to Step
Regularized Taylor step
¢
9: Define mf (s) = T{(s) the first-order Taylor series of f¢ in zj. Set sf = fﬁéfi% Go to Step
Sub-sampled model
10: Compute the correction vector v£71 as in (2.57) to define the lower level model cpiil(s) and its regularization
mkR’z_l(s) as
01 187! ¢ st !
e M@= [T @+ (Ve @) = Ve [T @) s
R—1 o 1
my T (s) = @y, 1(8)+gAﬁHszg(wk)llHSH2~
11: Recursive call ,
C -1
12: Call MU‘STREG (07 { (mkR’J , NI, 63)}] 1) to find approximate solution s* of the problem
j=
. R,0—1
Inin g, (s),

such that condition (2.4) is satisfied.
13: Set s{ = s* and m{(s) = @i_l(s).
Step acceptance of trial point
_ = @t

. 0 .
14: Compute pf, 1= il (©)—ml (1)
15: if pp > 1 and ||Veff(zk)|| > n2/AL then
16: Tyl =X + si
17: else
18: Tl+1 = Sf;
19: end if
Regularization parameter update
%(1): if pf, > m and ||V f(zx)[| > n2/Af, then
)\2 _ { max{)\min7’72)‘£}7 if P% 2 ns,
k1 max{Amin, 1AL}, if p§ <3
22: else
23:)\i+1 = ’yg)\i.
24: end if

25: k=k+1
26: end while

maximum number of iterations.

68 CHAPTER 2. MU'STREG

Notice that the choice of the alternating scheme between coarse and fine steps is left

to the user.

2.3.2 Similarity with SVRG

As we already mentioned, MU*STREG for problem can be interpreted as a variance-
reduced method similar to SVRG. An analogous interpretation was given for the line-
search based MLVR (MultiLevel Variance Reduction) method presented in [17]. We
now show the details of the similarity between the MU‘STREG and SVRG by writing
explicitly the generic update of the iterate x;,; from z,. We start from SVRG giving

also a little explanation which will be useful in the following.

Algorithm 7 SVRG(zo,f,a,b,m)
Given xg € R"™, the learning rate a > 0, the mini-batch size b and an integer m.
1: for k=0,1,... do
2 Compute the full gradient V, f(zx).
3 Set i’g = Tk
4: fort=0,...,m do
5
6

Draw randomly the mini-batch Z, C {1, .., N}, such that |Z;| = b.
Define pgk), i.e. the t—th direction built in zj as:

W = 5 S VehilE) + (me(xk) -3 vxfxxk)) @)

1€Lt 1€Lt
7 Set Ty =T + ongk).
8: end for
9: Set xk+1 = jm+1
10: end for

The SVRG method is introduced in [44], and it is described in Algorithm [} The hy-
perparameters that characterize SVRG are the number m, the learning rate (or steplength)
«, and the mini-batch size b. The parameter m is the number of internal iterations in
which the algorithm performs random updates using the gradient aggregation (Steps
, a (used at Step m) defines the size of the step along the search direction for every
update and b is used in Step [5] to select randomly the subsample set Z;.

Given the parameters m, «, b and an iterate z;, we want the explicit expression of

2.3. MU'STREG FOR FINITE-SUM MINIMIZATION 69

Tg+1. Thus, from Step [9] we have x4 = Zp,+1 and considering the loop in Steps we

can write

m
_ Yo B
Tyl = T — pt =
t=0

=z —a) [% > Vafildn) + (vxf(m - % > vxfi(m)] :

1€L; i€Ly

Observing that #o = x, from Step [3, we can write the SVRG update as:

Thy1 = Tfp — Oéz [% Z Vo fi(@) — %Z V. fi(zy)
t=1

i€t 1€t

—a(m+1)V.f(zx). (2.60)

Now we want to write explicitly the update of x4, from z; for MU‘STREG. Since
MU‘STREG is recursive and does not have a fixed steplength like SVRG the description
of the update for MU‘STREG with a generic number of levels /,,.x becomes very cum-
bersome; therefore we limit ourselves to the case with two levels MU2STREG. Hence,
let us now follow one iteration of MU2STREG for finite-sum, assuming to use only the
coarse step. Thus, /... = 2 and we have fixed the cardinalities of the subsample sets
|SY = N < Nfmax = N = |§?|, with a certain iterate xy. Since we start from level
lmax = 2, following Algorithm [6] in particular according to Steps [and [10] we draw
randomly N' samples to define S' C {1,..., N} and we define the functions ¢} (s) and

mit(s) as
Loy] 1 '
on(s) = N Z filxr +)+ | Vaof(zr) — ~NT Z Vaofilze)| s (2.61)
€St €St
1
m (s) = 9i(s) + 5N IVaf ol (2.62)

In particular, the gradient V,mi"'(s) is

1 1
€St €St

(2.63)
Once again, notice that Vym' (0) = V. f (k).

70 CHAPTER 2. MU'STREG

Following the recursive step (Step|12)) in Algorithm |§|, we call MU2STREG on m," (s)
with the initial guess sy = 0 € R"™ and a parameter)\(()1) in order to find the minimizer s*.

Since we are at the bottom level of the hierarchy we use the AR1 method to minimize

mkR’l(s) (as in Step @), leading to define s; = sg + pp with update py defined as

Vemg(so) __ Vaf(z) (2.64)

ANVemE o)l AV Ve ()]

Po =

where the last equation derives from the fact that so = 0. Let us now assume that we
accept the update py according to the acceptance step (Step , thus we have s; =
50 + po = po and)\gl). Now we define s, = s + p;, again with p; defined as

P VsmORJ(Sl)
1 = —_— 1 =
AV [V mi (s1)]

1 1
= — — Vafi(wr +s1) + Vo f(zr)—
XDV (s1)] (Nl 2 Vallants) o)

ieS?t

- % > Vafilak) + >\§<2)||fo(951~:)||31> :

eS8t

Now, knowing that s; = py and substituting (2.64]) in the last term inside the round
brackets and gathering all the coefficients of V, f(xy), we obtain

1 1
NG Rl jzvxfi(fk%-&)—
AL Vsmg (s1)| N ieS!
" (2.65)
1 A
- N1 > Vafilwy) + (1 + ﬁ) Va:f(xk:)] :
1St 0

Assuming to accept also the update p;, we have now defined s, and for the sake of
simplicity let us assume that s, satisfies the stopping condition (2.10). So s, is the
minimizer s* we look for. Recalling that for problem ([2.2)) there is no hierarchy on the

variable space and assuming to accept the update s* for the iterate xy, we can set

Tpp1 =X + 8" =T + S =2 + 81+ p1 = Tk + po + p1; (2.66)

2.4. NUMERICAL EXPERIMENTS 71

hence, using the expressions (2.64)) and (2.65)) and gathering again all the coefficients of

V. f(zx), we have the expression

1 1 1
Tk+1 = Tk —) Rl [ﬁ Z Vo fi(Ty +s1) — Nt Z Va filxr) | —
NIV (o)l [V G 2,67

AP + AP 1)
(Aél)Agl)HVsm(lf’l(Sl)H A9 f)|

If we compare and , the similarity between SVRG and MU‘STREG
appears quite clear. In both cases in the square brackets, we have a difference between
the subsampled gradient computed in an intermediate subiterate, which in is Ty
while in we have xp + s1, and the subsampled gradient computed in the current
iterate x;. In we have a summation on the internal iterates ¢t = 1,...,m that we
do not have in case , and this is because of our choice to avoid unnecessarily heavy
notation, but in the extreme case m = 1 the similarity is even more evident. Moreover,
in both cases, we have a full gradient contribution. Clearly, the difference in the choice of
step length of the two methods (fixed for SVRG, adaptive for MU‘STREG) is reflected

in the scalars that appear in the two expressions.

2.4 Numerical experiments

In this section, we illustrate the performance of MU*STREG for the computation of an

approximate first-order critical point of the finite-sum minimization problem ({2.2]).

This section is organized as follows. First, we introduce some implementation details
and the problem test set in Subsection [2.4.1) then we study in Subsection the
tuning of the hyperparameters of Algorithm [6] in particular, the number of levels and
the sample set cardinalities and we compare the performance of all the variants to the
reference one-level method. The method that shows the best performance is a three-level
method that we refer to as MU3STREG. In Section we compare it to a mini-batch
version of SVRG. Finally, we investigate the behavior of MUSSTREG when the size of

sample size N™* at the finest level is smaller than the full size V.

72 CHAPTER 2. MU‘STREG

2.4.1 Implementation issues and test problem set

Algorithm [6] has been implemented in MATLAB R2024a using HPE ProLiant DL560
Genl0 with 4 Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz with 512 Gb RAMP| The

algorithmic parameters are chosen as follows:
m =05, 1=10"2 13 =0.75, v = 0.5, 5= 0.3, 73 =2, Anin = 1074,

The algorithm terminates when condition holds with € = 1073 or 10* iterations
are performed. Moreover we set # = 1072 in ([2.10)). Also for every recursive call at level
< lhax — 1, we set a maximum number of iterations maxit, = 5. Finally, for £ > 1 we
set \j = 107* and \} = 1073, In every test, all the runs are repeated 5 times for different
random initial guesses xg.

Notice that Algorithm [0] is quite generic and allows for different multilevel schemes.
Here, we used a recursion scheme that encompasses a fine step after each recursive call, as
depicted in Figure where the horizontal arrows represent the fine steps. Notice that
this involves computing the full gradient of the function f* (for £ > 1) with increasing
computational cost depending on the level ¢, thus the uses of such step for high ¢ should
be limited.

: Th1 =T+ S
Level 3: 83 fsq(x) ,,, kil k k

Level 2: 82 fSQ(m) ,,,,,,,,,,,,,,,

Level 1: S* f‘sl(x)

Figure 2.2: Iteration scheme used in our implementation of MU‘STREG.

SVRG has been implemented in MATLAB too and we chose different configurations
for the parameters m, b and « as proposed in [66] for nonconvex problems. We thus set
the mini-batch size b = 10 and b = 20 and m = N/b while we set a € {1072,107%,0.5}.
We used the same stopping criterion for SVRG as for MU‘STREG

In order to compare the efficiency of the various methods, we considered the number of

2We kindly acknowledge the Department of Mathematics of the University of Bologna for making
the department’s HPC resources available for this work.

3The stopping criterion is thus checked for SVRG only every m iterations and is checked for
MU‘STREG only at fine level

2.4. NUMERICAL EXPERIMENTS 73

weighted gradient evaluations performed during the execution: a full-gradient evaluation
is counted as 1, while the sub-sampled one as NWZ, where N* = |S%| is the size of the sub-
sample set. In the same way, the weighted objective function evaluations are taken into
account. Taking into account the size of the gradients n, the same system of gradient
weights is used for the objective function and its sub-models, just multiplied by % From
now on we will consider the sum of the weighted evaluations of gradients and functions as
a measure of the efficiency of the method and we will refer to this sum as computational

effort or more simply weighted number of evaluations, which will be denoted by #f/g.

Besides the efficiency of the methods, we also take into account the quality of the
solutions found. In particular, we focus on the classification accuracy (in percentage) on
the testing set that will be denoted by %tA.

Finally, we will also use performance profiles in the forthcoming Figures and 2.6
We remind the reader that a performance profile graph p4(7) of an algorithm A at point
7 shows the fraction of the test set for which the algorithm is able to solve within a factor
of 7 of the best algorithm for the given measure [29]. The measure used in Figures
and is the total number of #f/g to get the maximum %tA.

In our experiments, we consider two binary classification problems with different

losses. The first problem considers the logistic classification loss with ¢y regularization:

N
. 1 . 1,
min f(z) = 5 ;1 log(1 +exp(—yiz” 2i)) + 2%, (Pb-LOG)
where for every i = 1,..., N the pairs (z;,y;) € R” x {—1,1} contain the features vector

and the corresponding label. Note that (Pb-LOG]) is a strongly convex problem.

The second one is a nonlinear least squares problem with sigmoid loss:

N

, 1 1 2
g flz) = IN Z <yi T 14 eXp(—inL‘TZZ‘)> : (Pb-LS)

=1

Here (z;,y;) € R" x {0,1}, for every i =1,..., N.

The tests are performed over four different datasets for binary classification: MNIST
[51], MUSH [56], A9A and IJCNN1 |23|. The data sets are divided into a training set and a
testing set as specified in Table 2.1]

74 CHAPTER 2. MU‘STREG

Data set nr. of features (n) Training set size (V) Testing set size (Ny)

MNIST 784 60000 10000
MUSH 112 6503 1621
A9A 123 22793 9768
IJCNN1T 22 49990 91701

Table 2.1: Data sets with number of features n and number of instances of the training set N and the
testing set N;.

2.4.2 Preliminary parameter tuning: number of levels and sam-

ple set cardinalities

Our method is characterized by two parameters that may be problem-dependent: the
number of levels £y, and the cardinality N* of each sub-sample set S*, for £ = 1, ..., {rax—
1 with Nfmax = N. Clearly, these parameters affect the weight of each gradient and
function evaluation during the execution of the method.

In this section, we present the results of the experimental investigation on the influ-
ence of these parameters on the performance of the method by comparing the perfor-
mance of different variants of MU‘STREG against the one-level version of our algorithm
that corresponds in fact to a weighted AR1 method.

In Tables 2.2 and we consider the weighted evaluations. We report the
for both problems and the values normalized with respect to the
one-level version, for which we indicate also in parenthesis the total number of weighted
evaluations. In every column, we underline the best result (minimum number of weighted
evaluations) for the multilevel variants and we highlight in italics the results that are
worse than those of the one-level version (those corresponding to a factor larger than
one). Moreover Tables and report the maximum classification accuracy (in

percentage) achieved by the considered methods.

2.4.2.1 Two-level hierarchy

In this section, we fix £y = 2, that is |[S?| = N? = N, and consider different values for
the cardinality of S'. Since N depends on the dataset, we choose the values of N! = |S?|
proportional to IV in order to have a fixed ratio r := % € {0.5,0.2,0.1,0.05,0.025,0.01}.

The methods reach convergence for both problems and for every dataset. For the

efficiency, Table [2.2] shows that the use of a two-level hierarchy yields improvements in

2.4. NUMERICAL EXPERIMENTS 1)

[Pb-LOG]| [Pb-LS|

MNIST MUSH A9A IJCNN1 MNIST MUSH A9A IJCNN1

1-level 1(1308) | 1 (94) | 1 (139) | 1 (21) | I (1158) | 1 (103) | 1 (119) | 1 (1)
r= 0.5 1.2 0.6 2.3 1.1 1.0 0.4 2. 1.2
w | = 0.2 1.3 0.5 1.6 0.6 0.6 0.4 1.6 0.8
¢ [r=01 0.9 0.4 1.6 0.6 0.4 0.2 1.1 0.7
2 [r=0.05 0.9 0.4 1.7 0.6 0.5 0.4 1.3 0.7
N 7= 0.025 0.7 0.5 1.3 0.6 0.3 0.3 1.2 0.6
r= 0.01 0.5 0.4 1.2 0.7 0.4 0.3 1.1 0.6

Table 2.2: One-level vs. two-levels: computational effort. Different variants of two-level methods
based on r = |S!|/N. Value of #f/g to reach convergence, normalized with respect to the one-level
version, for which #f{/g is reported in parenthesis.

[Pb-LOG]| [Pb-LS|
MNIST | MUSH | ASA | IJCNN1 | MNIST | MUSH | A9A | IJCNN1
1-level 89.7 | 987 | 847 | 915 | 899 | 994 | 847 | 9L7
r= 0.5 80.6 | 99.1 | 848 | 915 | 89.6 | 97.2 | 847 | 9L7
o | 1= 0.2 89.5 | 98.2 | 848 | 915 | 89.7 | 97.5 | 847 | 917
¢ [r=0.1 89.5 | 98.5 | 848 | 915 | 89.6 | 962 | 84.7 | 918
2 [r=10.05 | 89.5 | 981 | 848 | 915 | 89.6 | 96.6 | 84.7 | 9L8
& [r=0.025 | 89.6 | 985 | 848 | 915 | 89.7 | 96.0 | 84.7 | 91.8
r=0.01 | 89.6 | 982 | 848 | 915 | 897 | 97.3 [847 | 9L7

Table 2.3: One-level vs. two-levels: testing set accuracy. Different variants of two-level methods
based on r = |St|/N. Value of %tA at convergence.

lowering the number of evaluations for most of the problems and for most of the values
of the cardinality ratios r, and is especially favorable when the ratio of the cardinalities

is low.

Notably, for the MUSH dataset for both the convex and nonconvex problems we have
a significant reduction in the number of evaluations in each test with two levels. On the
other hand, for the A9A dataset the use of our two-level method with any cardinality of S*
results in even more computational effort than the case with one level. In between these
two cases, for the rest of the datasets, we always have a decrease of computational effort

with respect to the one-level method with |S'| < 0.1N (MNIST) or |S!| < 0.2N (IJCNN1).
|S!]
N
is not monotonic, meaning that with the decrease of the cardinality of S!' there is no

Note however that the correlation between the ratio and the computational effort

systematic decrease in the number of evaluations.

From Table we note that the classification accuracy reached by MU?STREG is

comparable with that obtained with the one-level version, with the only exception of the

76 CHAPTER 2. MU‘STREG

MUSH dataset where we have a small increase in the convex case with MU?STREG with

|S'| = 0.5N and a decrease for all the two-level versions in the nonconvex case.

2.4.2.2 Three-level hierarchy

We now investigate what happens with a deeper hierarchy and we set /.., = 3 and, as
in the previous section, we choose the cardinality of the sub-sampling sets by fixing the
same fraction of the number of samples N for all datasets in both problems. Specifically,
given |S3| = N, we fix the cardinality of S? such that % = 0.1 and vary the cardinality
of 8t so that r = % € {0.025,0.01,0.005,0.001}.

MU3STREG is now compared with the one-level method and with one version of the
two-level method. Taking into account the experiments conducted in Subsection [2.4.2.1
we choose the two-level method with |S?| = N and |S'| = 0.1N for which the three-level

methods tested here are a natural extension.

[Pb-LOG] [Pb-LS|

MNIST | MUSH | A9A | IJCNNL | MNIST | MUSH A9A | IJCNN1

1-level 1(1308) | 1(94) [1 (139) | 1 (21) | 1 (1158) | 1 (103) | 1 (119) | 1 (18)
2-levels r— 0.1 0.9 0.4 1.6 0.6 0.4 0.2 1.1 0.7
» | T= 0.025 0.1 0.4 0.2 0.5 0.2 0.1 0.4 0.4
¢ [r=0.01 0.1 0.3 0.2 0.4 0.1 0.1 0.4 0.4
2 [r=0.005 0.1 0.4 0.1 0.5 0.1 0.2 0.4 0.4
® r= 0.001 0.1 0.5 0.2 0.5 0.1 0.2 0.4 0.5

Table 2.4: One-level, two-levels vs. three-levels: computational effort. Different variants of
three-level methods based on r = |S*|/N (|S§?|/N = 0.1). Value of #f/g to reach convergence, normalized
with respect to the one-level version, for which #f/g is reported in parenthesis and the same value for
the two-level version with r = 0.1.

[Pb-LOG| [Pb-LS|
MNIST | MUSH | A9A | IJCNN1 | MNIST | MUSH | A9A | IJCNN1
1-level 80.7 | 98.7 | 847 | 915 | 89.9 | 99.4 | 847 | 917
2-levels r— 0.1 | 895 | 985 | 84.8 | 915 | 89.6 | 962 | 84.7 | 918
s | T—0.025 | 89.6 | 980 | 85.0 | 915 | 89.6 | 99.1 | 849 | 917
¢ [r= 0.01 89.6 | 93.8 | 849 | 915 | 89.6 | 985 |84.7 | 923
& [T=10005 | 897 | 985 [84.9 | 915 | 89.8 | 99.3 | 847 | 9L7
© [r=0.001 | 89.6 | 975 | 850 | 915 | 89.6 | 99.1 | 847 | 917

Table 2.5: One-level, two-levels vs. three-levels: testing set accuracy. Different variants of
three-level methods based on r = |S'|/N (|S?|/N = 0.1), the two-level method with r = 0.1 and the
one-level version. Value of %tA at convergence.

2.4. NUMERICAL EXPERIMENTS 7

It can be seen from Table[2.4that for each problem type (convex or nonconvex) and for
each dataset the method that uses the least number of evaluations is always a three-level
method. More interestingly, Table reveals that the use of MU3STREG results in a
significant drop in the number of evaluations needed to achieve convergence with respect
to the one and two-level variants. Moreover, Table 2.5 shows that the classification
accuracy obtained using the one-level method, MU?2STREG and MU*STREG are similar,
regardless of problem type and dataset.

2.4.2.3 Five-level hierarchy

The results on the three-level hierarchy shown in Subsection [2.4.2.2 give us good indica-
tions for choosing the number of levels /,,,., and the cardinalities of the subsampling sets
{Se E:;w But we want to investigate a little bit further, and in this paragraph we illus-
trate the results of a test on a five-level version of MU‘STREG, thus called MU’STREG,
and compare it with the one-, two- and three-level versions. Since a five-level hierarchy
does not allow us many choices for the cardinality of the sample sets, we chose a single
configuration of the hierarchy that could fit all the data sets considered. Thus, the car-
dinalities of the five sample sets are as follows: |S5| = N, |S*| = 0.1N, |S?| = 0.05N,
|S?| = 0.01N and |S'| = 0.001N.

The MU®STREG is compared with those two- and three-level versions that were best
for almost all datasets and problems, namely the two-level method with |S;| = N and
|S1| = 0.1N and the three-level method with |S3| = N, |Sz| = 0.1N and |S;| = 0.01N.

Looking at Tables 2.6 and [2.7] we can conclude that the five-level version in most cases
is not better than the three-level version. In fact, referring to Table 2.6] we see how the
computational cost to achieve convergence of MU’STREG is greater than the three-level
version in almost all cases, the only exceptions are for the convex problem
with the MNIST dataset and for the nonconvex problem with the A9A dataset;
furthermore, looking at Table 2.7, we see how there is no substantial improvement in
classification accuracy, in fact where there is an increase of accuracy with respect to
three-level method it is at most of the 0.7% (e.g. problem with MUSH). The
worse performance of MU’STREG compared to MU?STREG could be due to the fact
that a five-level hierarchy warps too much the original problem. In a hierarchy of five
levels, the function mkR’l, defined according to (2.50)), surely is very different from the

78 CHAPTER 2. MU'STREG

[Pb-LOG]| [Pb-LS)|
MNIST | MUSH | A9A | IJCNNi | MNIST | MUSH | A9A | IJCNN1
1-level 1(1308) | 1(94) | 1 (139) | 1 (21) | 1 (1158) | 1 (103) | 1 (119) | 1 (18)
2-levels r— 0.1 0.87 039 | 1.65 0.61 0.43 0.24 1.10 0.71
3-levels r=— 0.01 | 0.06 033 | 0.9 0.42 0.11 0.12 0.37 0.40
5-levels 0.04 050 | 0.22 0.87 0.46 0.44 0.26 0.63

Table 2.6: One-level, two-levels, three-levels vs. five-levels: computational effort. One five-
level hierarchy: |S®| = N, [S*| = 0.1N, |S3| = 0.05N, |S?| = 0.01N and |S!| = 0.001N. Value of #f/g
to reach convergence, normalized with respect to the one-level version, for which #{/g is reported in
parenthesis and the same value for the two-level version with » = 0.1 and for the three-level version
with 82 = 0.1 and » = 0.01.

[Pb-LOG| [Pb-LS|
MNIST | MUSH A9A IJCNN1 | MNIST | MUSH A9A IJCNN1
1-level 89.71 | 98.70 | 84.74 | 91.51 | 89.86 | 99.44 | 84.75 | 91.66

2-levels r= 0.1 89.52 | 98.52 | 84.83 | 91.51 89.64 | 96.18 | 84.72 | 91.80
3-levels r= 0.01 | 89.55 | 98.77 | 84.89 | 91.49 89.57 | 98.46 | 84.68 | 92.25
5-levels 89.56 | 99.44 | 84.86 | 91.57 89.34 | 95.74 | 85.16 | 92.67

Table 2.7: One-level, two-levels, three-levels vs. five-levels: testing set accuracy. One five-
level hierarchy: |S®| = N, [S*| = 0.1N, |S3| = 0.05N, |S?| = 0.01N and |S!| = 0.001N; the three-level
method with S? = 0.1 and r = 0.01, the two-level method with r = 0.1 and the one-level version. Value
of %tA at convergence.

same m,,CR’1 that we find at the bottom of a hierarchy with only three levels. Probably,
the step sf;ma" obtained after a full descent of five levels and back provides a smaller
improvement than the one provided by a step sima" obtained after a descent of only three
levels. Hence to reach the maximum accuracy on the testing set MUSTREG needs
more iterations and consequently more functions and gradient (weighted) evaluations,
resulting in a less efficient method than MU3STREG.

2.4.3 Comparison with SVRG

In this section, we compare MU’STREG against a mini-batch version of SVRG on the
convex problem and on the nonconvex one using the four datasets
MNIST, MUSH, A9A and IJCNN1. Specifically, for each problem and for each dataset we
perform five runs starting from five different random initial guesses for a total of forty
numerical tests.

We use the version of MU‘STREG that gave the best performance for most of
the problems in the tuning tests reported in Subsection [2.4.2] that is the three-level

2.4. NUMERICAL EXPERIMENTS 79

MU?STREG version with the sample cardinalities N* = |S?*| = N, N? = |§?| = 0.1N
and N!' = |S'| = 0.01N.,

MU3STREG and SVRG are compared reporting the maximum classification accuracy
on the testing set achieved and the corresponding required computational effort. More-

over, we declare a run as a failure when the achieved classification accuracy is below
80%.

2.4.3.1 Convex problem: logistic classification problem (Pb-LOG]|)

Here we consider the results of the tests performed on problem (Pb-LOG]|). Figure
shows the classification accuracy on the testing set against the number of evaluations
for every dataset selecting, for each solver, among the five runs per problem, the one
that returns the highest accuracy. Table shows mean values of the five runs, instead,
together with the standard deviation for the classification accuracy. We only report
the runs obtained with b = 10 for SVRG (and three choices for the learning rate «) as
those obtained with b = 20 are rather similar. Both values of the mini-batch size b are
considered in Figure 2.4

On these tests both SVRG and MU*STREG always reach convergence with an ac-
curacy on the testing set higher than 80%, moreover the maximum accuracy for each
dataset does not vary much depending on the method applied (see Table [2.8)).

Regarding the efficiency of the various methods, looking at the plots in Figures
we can see that SVRG is quite effective on these convex problems. In these cases, the
choice of the step-size is not very critical and a quite large one (a = 0.5) can be safely
used for all the datasets with the best results. In these experiments, our MU*STREG
does not outperform the best version of SVRG, but it shows comparable performance to
SVRG with o = 0.1 and is (almost) always better than the worst version of SVRG, with
the advantage of not requiring the tuning of the step-size.

This is clearly summarized in Figure where we show the performance profiles of
MU3STREG against the three versions of SVRG with mini-batch size b = 10 in the left-
hand side plot and b = 20 on the right-hand side. Each profile is constructed from the
twenty runs performed and is based on the weighted number of gradient and objective

function evaluations to achieve maximum accuracy on the testing set. We can see that
on average MUSSTREG is comparable to/slightly better than SVRG with a = 0.1 and

80 CHAPTER 2. MU'STREG
(a) MNIST dataset (b) MUSH dataset
I T T 100 I T T
> >
O O
< &y
= 5 90
3 3
< &y
70 H ! ! 70
0 50 100 150
/g #i/g
(c) A9A dataset (d) IJCNN1 dataset
85 ‘ ‘ lllllllllllllllll ‘-I-l
- = 90 :
O O
= =
= =
3] 3
< < &) -
70 ‘ : 80 :
0 20 40 8 10

#i/g
— MU3STREG --=- SVRG a = 102

SVRG o = 1071+ SVRG a=0.5

Figure 2.3: (Pb-LOG)) Comparison between MU?STREG and SVRG with mini-batch size b = 10 on
MNIST(2.3a)), MUSH(2.3b)), A9A and IJCNNl datasets. Plot of classification accuracy on testing
set against the number of function and gradient evaluations for the successful run with the highest
accuracy for every method.

far better than SVRG with small step-size.

2.4.3.2 Nonconvex problem: nonlinear Least Squares (Pb-LS|)

In this section, we report the results of the tests on the nonconvex problem (Pb-LS)).
As in the previous section, for each dataset, we perform five tests with random initial
guesses. Then we show the averaged values in Table [2.9] while in Figure we plot for
each method the run that gives the maximum accuracy, and the performance profiles in
Figure take into account the whole 20 runs.

In general, all the methods tested reach convergence but the accuracy reached varies

a lot because of the nonconvexity of the problem. In particular, many versions of SVRG

2.4. NUMERICAL EXPERIMENTS 81

MNIST
SVRG b=10 3
a=001 | a=0.1| a=0.5 MU’STREG
Avg. %tA 89.70 89.73 89.73 89.62
StD %tA 0.02 0.01 0.03 0.10
Avg. # f/g 105.00 14.40 21.60 138.70
StD # f/g 9.25 3.29 2.51 25.97
MUSH
SVRG b=10 3
a=001 | a=0.1| a=0.5 MU’STREG
Avg. %tA 97.42 97.51 97.68 97.88
StD %tA 0.27 0.27 0.20 1.45
Avg. # f/g 989.10 102.57 17.99 13.63
StD # f/g 25.66 2.51 8.48 2.13
A9A
SVRG b=10 3
a=001 | a=0.1| a=0.5 MU’STREG
Avg. %tA 84.74 84.77 84.87 84.75
StD %tA 0.07 0.05 0.06 0.05
Avg. # f/g 144.59 15.60 8.40 25.28
StD # f/g 16.07 1.34 2.51 6.66
IJCNN1
SVRG b=10 3
a=001 | a=0.1| a=0.5 MU’STREG
Avg. %tA 91.50 91.50 91.50 91.54
StD %tA 0.01 0.00 0.02 0.05
Avg. # f/g 250.20 30.00 6.00 8.05
StD # f/g 17.31 0.00 0.00 0.98

Table 2.8: (Pb-LOG]) Comparison between MU3STREG and SVRG with mini-batch size b = 10. Average
of maximum classification accuracy and number of evaluations, with corresponding standard deviation.

find solutions with a classification accuracy lower than 80% and are therefore considered
as a failure. The number of failures is reported in Table as 7+ fails. If the failure
occurs for all the initial guesses, the symbol "-" is used. Generally, SVRG fails with large
values of the step size «, which are feasible just for the TJCNN1 dataset.

On the other hand, MU3STREG is quite efficient on these nonconvex problems and
not only always returns solutions that lead to a classification accuracy greater than 80%,
but also always proves to be by far the most efficient method in terms of computational
effort to obtain these solutions.

All of this is further summarized in Figure [2.6] in which the performance profiles over
the twenty tests of MU*STREG against the three versions of SVRG with b = 10 (Figure
, left) and b = 20 (Figure , right) are shown. The advantage of an automatic step

82 CHAPTER 2. MU‘STREG

(PE-LOG)) - MU3STREG vs SVRG (b= 10) (PB-LOG)) - MU3STREG vs SVRG (b = 20)

1 e Tommmrmes] IR
osi s - 0.8} 1
T 06} Hfr | T 06 |

< <
= 04 prememend < 04| |
jj —t
0211 :........' i 0.2 IEFSEIEE v "
() brmemanm, \-."- 3 ! ! i () Eemamams lmamamamem a:': - ! 7
5 10 15 20 5 10 15 20
T T

— MU3STREG =-=* SVRG a = 1072 SVRG a = 1071+ SVRG a = 0.5

Figure 2.4: (Pb-LOG| Number of weighted evaluations to achieve maximum classification accuracy
performance profile: MU3STREG and SVRG with mini-batch size b = 10 (left) and b = 20 (right) with
various stepsizes a.

selection is thus clear in the context of nonconvex problems.

2.4.4 Numerical investigation on the finest sample size

We recall that Algorithm |§| is in fact the adaptation of Algorithm [5| to problem ([2.2)
assuming that the finest level function fS™ is the exact objective f in ([2-2), that is
that N is such that the full sum can be computed. However, the stochastic framework of
Algorithm [5| discussed in sections and is by far more general. Indeed it allows for
inexact approximations of f at the finest level, thus allowing for the solution of problems
in which the full sample evaluation is not affordable, a situation that is not covered by
SVRG convergence theory.

Specifically, in the definition of pi™* at Linethe values ffmex(z;) and fmex(z;,+s)
do not need to coincide with f(zx) and f(zj+si). Algorithm[6]can thus be called at fine
level with a function 5™ defined on a subset Sfmsx {1,..., N}, as long as the Taylor
model at fine level remains a fully linear model for f, or, even if the full sample set is
used to evaluate the gradient and to compute the step, the functions approximations can
be evaluated on a smaller subset.

In Table we investigate these settings and we report the results obtained using
MU3STREG varying

N = £1,0.85,0.75}N. (2.68)

2.4. NUMERICAL EXPERIMENTS 83

(a) MNIST dataset (b) MUSH dataset
T T T T

90 | . 100
§ 85 A-\,‘r".“}-,"-"',""""& §
= G = 90
S 80 o | S
g 75 i] g %
(1) e — ‘ 70
0 50 100 150
#f/g #t/g
(c) A9A dataset (d) IJCNN1 dataset
. K"_’_/ ------) . 90 | [A
s "4"' < r
2 80| * 5 {
S “,.' & 85| ; |
s ’ EE
| | | :I. | | |
vy 10 20 30 80, 4 6 8
#f/g #t/g

— MU3STREG -*- SVRG a = 1072 SVRG a = 1071+ SVRG a =0.5

Figure 2.5: (Pb-LS)) Comparison between MU3STREG and SVRG with mini-batch size b =10 on

MNIST({2.5a)), MUSH({2.5D)), A9A([2.5d) and TJCNN1(2.5d]).Plot of classification accuracy on testing set against
the number of function and gradient evaluations for the successful run with the highest accuracy for
every method. The curves that are not plotted correspond to methods that fail for every run for that

dataset.

If the full gradient is not evaluated, the stopping criterion might not be meaningful.
Below we thus use a heuristic stopping test. When is satisfied for the first time,
after a fine or a coarse step, a new set of N‘m»x randomly chosen samples are drawn and
fine steps are taken until is satisfied again. In our tests, one additional fine step

was sufficient for the stopping criterion to be satisfied.

In Table results in the columns with header f are obtained by computing the
full gradient (i.e., taking into account all the N samples) at the finest level and using the
usual stopping criterion on the gradient norm, while the computation of pf;"“’" involves

the objective function averaged on N*max samples as given in (2.68)). Differently, results

84 CHAPTER 2. MU‘STREG

MNIST
SVRG b =10 SVRG b =20 3
a=001 | a=01 | a=05 | a=001 | a=0.1 | a=0.5 MU’STREG
fails 0 2) 0 5 5 0
Avg. %tA 90.28 90.23 - 90.43 - - 89.84
StD %tA 0.01 0.01 - 0.13 - - 0.03
Avg. # f/g | 29646.60 | 20032.00 - 17843.40 - - 84.86
StD # f/g 217.25 3156.21 - 6336.56 - - 7.14
MUSH
SVRG b =10 SVRG b =20 3
a=001 | a=0.1 | a=05 | a=001 | =01 | x=0.5 MUSTREG
fails 0 0 5 0 0 5 0
Avg. %tA 98.78 98.49 - 98.69 99.27 - 98.04
StD %tA 0.27 0.03 - 0.25 0.55 - 0.84
Avg. # f/g 125.36 885.33 - 341.89 230.33 - 20.23
StD # f/g 19.37 14.75 - 722.65 121.18 - 2.70
A9A
SVRG b =10 SVRG b =20 3
a=001l | «a=01 | a=05 | a=001 | a=0.1 | a=0.5 MU’STREG
fails 0 0) 0 5 5 0
Avg. %tA 84.66 85.15 - 85.00 - - 84.66
StD %tA 0.02 0.04 - 0.05 - - 0.10
Avg. # f/g 1310.88 1199.29 - 840.77 - - 23.61
StD # f/g 15.44 582.12 - 300.51 - - 4.11
IJCNN1
SVRG b =10 SVRG b =20 3
a=001 | a=0.1 | a=05 | =001 | a=0.1 | xa=0.5 MUSTREG
fails 0 0 0 0 0 0 0
Avg. %tA 91.68 91.72 90.43 91.68 90.52 89.89 91.69
StD %tA 0.00 0.00 0.01 0.00 0.00 0.01 0.18
Avg. # f/g 2785.20 303.60 76.80 553.87 31.80 34.80 9.28
StD # f/g 22.51 1.34 1.64 1.64 1.64 4.55 0.55

Table 2.9: ([Pb-LS)) Comparison between MU3STREG and SVRG with mini-batch size b = 10 and b = 20.
Average of maximum classification accuracy reached and number of evaluations, with corresponding
standard deviation. The average is evaluated only on the successful tests.

in the columns with header f, V f are obtained by averaging both the objective function

and its gradient on N*‘max samples, and using the proposed heuristic stopping criterion.

As in the previous section, results are averaged over 5 runs (for 5 random initial

guesses) in the solution of (Pb-LS)) on the 4 data sets.

We can observe that in all cases, the classification accuracy is not affected by the
value of N®max and the computational effort mildly varies for the datasets MUSH, A9A and

IJCNN1. The only exception is the case of MNIST, where the average number of evalua-

2.4. NUMERICAL EXPERIMENTS 85

(PH-LS) - MUSSTREG vs SVRG (b=10) (Pb-LS) - MU3STREG vs SVRG (b = 20)

1 L
081 8 0.8+ B
= 06 8 = 06} .
< 04 | S 04 1
0.2} GETTmTTTT 0.2 ?....___:'.'.'.'::'.'.'.'.':'.'.'.':::'.'.'.' --------- =
0 _,.._i.:l.l.-...::. | | | 0 -....":- | | | |

5 10 15 20 5 10 15 20
T T

— MU3STREG -:-+ SVRG «a = 1072 SVRG a = 1071 SVRG a =0.5

Figure 2.6: (Pb-LS)) Number of weighted evaluations to achieve maximum classification accuracy per-
formance profile: MU3STREG and SVRG with mini-batch size b = 10 (left) and b = 20 (right) with
various stepsizes .

tions #f/g increases as N decreases. The 2 fails in the solution of MUSH when using
inexactness in both gradient and function values (columns header f,V f), correspond to

the computation of stationary points with an unsatisfactory classification accuracy.

86 CHAPTER 2. MU‘STREG

MNIST

85% 75%
100% 5 w7 7 [, V/
fails 0 0 0 0 0
Avg. %tA 89.84 89.85 89.92 89.87 90.01
StD %tA 0.03 0.02 0.03 0.04 0.08
Avg. #f/g | 84.86 | 176.08 | 200.42 | 170.08 | 438.67
StD #f/g 7.14 31.56 51.83 20.84 166.86
MUSH

85% 75%
100% — <7 7 [/, V7
fails 0 0 0 1 1
Avg. %tA 98.04 97.96 98.37 97.90 98.52
StD %tA 0.84 0.35 0.39 1.03 0.42
Avg. #f/g 20.23 28.53 33.03 31.35 30.58
StD #f/g 2.70 15.04 5.50 8.63 4.01
A9A

85% 75%
100% 5 w7 7 [, VI
fails 0 0 0 0 0
Avg. %tA 84.66 84.74 84.84 84.76 84.85
StD %tA 0.10 0.05 0.10 0.13 0.08
Avg. #f/g | 23.61 | 37.88 | 32.55 | 31.07 | 29.06
StD #f/g 4.11 8.18 5.87 10.92 11.18
TJCNN1

85% 75%
100% — <7 T 7 [/, V7
fails 0 0 0 0 0
Avg. %tA 91.69 91.63 91.76 91.67 91.74
StD %tA 0.18 0.08 0.05 0.06 0.06
Avg. #f/g 9.28 30.99 33.76 29.80 29.71
StD #f/g 0.55 6.02 0.76 5.56 2.92

Table 2.10: (Pb-LS) Comparison between MU3STREG varying N%max = {1,0.85,0.75}N. In every
column is shown the average of maximum classification accuracy reached by every method and every
dataset with corresponding standard deviation and the average number of evaluations with standard
deviations.

Conclusions

In this work, we applied Derivative-Free Optimization methods with the possible use of
Black-Box functions, to energy production technologies to improve their efficiency and
reduce their environmental impact.

In our research project, we focused on gas turbines which are a technology that will
play a key role in the short- and medium-term future of the energy transition. In more
detail, we focused on optimization methods applied to the cooling system of gas turbines
and we analyzed two particular instances of this topic achieving remarkable results.

The first result is the definition from scratch of a framework for optimizing the im-
pingement cooling system for a gas turbine nozzle. We proposed a mathematical for-
mulation of the problem in , resulting in a mixed variable constrained Black-Box
Optimization problem that we numerically addressed using DFO algorithms. While
studying a suitable DFO approach for this problem, we also defined and implemented
the black-box function NOZZLE which simulates the functioning of the cooling system
inside a turbine nozzle and returns as output the parameters to evaluate its efficiencys;
NOZZLE results in a simple numerical tool for the design of an impingement cooling
system. Finally, we combine NOZZLE together with BFO solver in a Derivative-free
¢1—penalty method and we validate our approach through numerical tests. The result-
ing procedure allows for the design of an efficient impingement cooling system and for its
improvement without having to rely on the operator’s experience and by also reducing
the time required with respect to the standard procedure.

The obtained preliminary results form the basis for future developments involving
both the black-box function formulation and the optimization method. The NOZZLE
function can be improved by starting from a problem with different boundary conditions.
In particular, instead of knowing the total mass flow rate 7, provided to the cooling

system we impose a fixed value for the outlet pressure of the cooling air p2*. This change

87

88 CHAPTER 2. MU'STREG

would allow us to remove the constraint on the pressure (1.28)) so we do not need to solve

the nonlinear equation (|1.26), saving some computational effort.

Another improvement of the simulator is to allow the variable layout to assume more
than two values. Our definition of NOZZLE and the related problem could in fact
be treated using a binary variable instead of the categorical variable layout, since the
latter admits only two values, inline and staggered. Indeed, there are DFO methods
for constrained mixed-integer variable problems that can be adapted to handle binary
variables, like the one proposed by Liuzzi et al. [53]|. Another possible strategy would be
to solve two separate constrained Black-Box Optimization problems in which the variable

layout is fixed to inline and staggered, respectively, and pick the best solution.

But keeping the variable layout as categorical, we leave open many more possibilities
for the design of an impingement plate. Clearly, since the Florschuetz model that we
used to define NOZZLE admits only two values for layout, it is obvious that to admit a
layout with values other than inline and staggered one must overcome the Florschuetz
model. Or at least, overcome the use of only Florchuetz’s model inside NOZZLE. In fact,
while we can think of completely replacing the old Florschuetz model, we can also stand
alongside and complement it. In the latter way, we do not give up using a model that has
proven to be reliable despite its simplicity. One possible idea is schematically represented
in Figure[2.7] Here on the left, we have a representation of the choice we made to define
this version of NOZZLE: we have the impingement plate where we use Florschuetz’s
model, thus we have only two possible layouts, inline and staggered. But what if we
split the impingement plate into two regions to allow one layout per region? In this way,
considering only the inline and staggered, we can have four possible layouts for the whole
plate given by the combinations of inline and staggered on every half-plate, as shown on
the right of Figure As the figure shows, we could apply Florschuetz’s model to the
half of the plate that is upstream of the cooling air flow (whose direction is represented
by the blue arrow), while for the downstream half, it is necessary to find another model.
This is because downstream we are no longer in the exact configuration for which the
Florschuetz model was developed, in fact in the first row of jets we will have a nonzero
crossflow mass velocity since we will have the contribution coming from the upstream
half. Recall that the Florschuetz model was instead developed for a configuration such
as that shown on the left in Figure 2.7, in which we have no crossflow coming from

upstream of the plate. So a different model needs to be applied to the downstream half.

2.4. NUMERICAL EXPERIMENTS 89

Current layouts New layouts
> >

)
Florschuetz’s Florschuetz’s: New model
model model !

Four layouts

T
000,000

T
ogo.ooo
000,000 0201000
Two layouts 000,000 0901000
000,000 0%01000
0000000 0%90%0%0 -
0000000 090%6%0 Inline - Inline Staggered - Inline
0000000 0%20%09%0
0000000 0°0%0°0 T
ggg.ogo 0901090
Inline Staggered o000 : 8 o g 8 o g : 8 o g
000,6%0 0%010°%0

Inline - Staggered Staggered - Staggered

Figure 2.7: Left: the current choice used to define NOZZLE with two layouts. Right: a hint for a
(possible) new idea to allow four layouts.

This different model will be the subject for future research.

Regarding the optimization method, we observed in Section that the ¢; —penalty
BFO method is a local optimization method. However, practitioners often need a global
solution. Therefore, the next step will be devoted to the implementation of a global

optimization strategy that is suitable for the problem under consideration.

The second contribution of this work is the MU‘STREG optimization method de-
veloped for large problems with a noisy objective function. MU*STREG was originally
conceived as a method to be applied to a validation phase of the design of a complete
cooling system. During this validation, we typically have data-matching between the
results of a numerical simulation of the cooling system and empirical data. Typically
these are large-scale problems and are affected by random uncertainties either in the
measured data or in the simulation processes. We have proposed a new framework for
the multilevel solution of stochastic problems, assuming that the stochastic objective
function can be represented at different levels of accuracy. Our framework encompasses
both hierarchies in the variables space and in the function space and it is, to our knowl-
edge, the first stochastic framework for multilevel methods, that are currently limited to

the deterministic case.

90 CHAPTER 2. MU'STREG

The proposed method MU‘STREG is a new multilevel stochastic gradient method
based on adaptive regularization that generalizes the AR1 method |21] and we propose
a stochastic convergence analysis for it. This convergence theory is the first stochastic
convergence study both for multilevel methods and for adaptive regularization methods.

We show that MU‘STREG can be interpreted as a variance reduction method for
finite-sum minimization problems and we numerically compare it to a mini-batch version
of SVRG. We show the advantage of our automatic step selection in the context of
nonconvex problems. We also investigate the practical advantages of the stochastic
framework over the deterministic one, which allows for the solution of finite-sum problems
without the need to evaluate the function/gradient over the full sample set. This makes
our method feasible also for problems defined over very large sample sets, a situation
that is not covered by the convergence theory of standard variance reduction methods.

Supported by these theoretical and experimental results, in the near future we aim
to continue the experimentation by applying MU‘STREG on data-fitting problems to
validate the design of the entire network of cooling systems of a gas turbine so that
we can test MU‘STREG on a stochastic optimization problem that allows us to define a

hierarchy on both the space of variables and the approximations of the objective function.

Bibliography

[1]

2]

13l

4]

5]

6]

17l

18]

M. A. Abramson, “Mixed variable optimization of a load-bearing thermal insulation
system using a filter pattern search algorithm,” Optim. Eng., vol. 5, pp. 157-177,
2004.

M. A. Abramson, C. Audet, J. W. Chrissis, and J. G. Walston, “Mesh adaptive
direct search algorithms for mixed variable optimization,” Optim. Lett., vol. 3,
pp. 35-47, 2009.

S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel, “Two
decades of blackbox optimization applications,” FURO J. Comput. Optim., vol. 9,
p. 100011, 2021.

7. Allen-Zhu, “Natasha: Faster non-convex stochastic optimization via strongly
non-convex parameter,” in International Conference on Machine Learning, PMLR,

2017, pp. 89-97.

C. Audet and J. E. Dennis Jr, “Pattern search algorithms for mixed variable pro-
gramming,” STAM J. Optim., vol. 11, no. 3, pp. 573-594, 2001.

C. Audet and J. E. Dennis Jr, “A pattern search filter method for nonlinear pro-
gramming without derivatives,” SIAM J. Optim., vol. 14, no. 4, pp. 980-1010,
2004.

C. Audet and J. E. Dennis Jr, “A progressive barrier for derivative-free nonlinear
programming,” SIAM J. Optim., vol. 20, no. 1, pp. 445-472, 2009.

C. Audet and W. Hare, Derivative-free and Blackbox Optimization (Springer Series
in Operations Research and Financial Engineering). Cham, Switzerland: Springer,

2017.

91

92

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

C. Audet and M. Kokkolaras, “Blackbox and derivative-free optimization: Theory,
algorithms and applications,” Optim. Eng., vol. 17, pp. 1-2, 2016.

A. Bandeira, K. Scheinberg, and L. Vicente, “Convergence of trust-region methods
based on probabilistic models,” SIAM J. Optim., vol. 24, no. 3, pp. 1238-1264,
2014.

S. Bellavia, G. Gurioli, B. Morini, and P. L. Toint, “Trust-region algorithms: Proba-
bilistic complexity and intrinsic noise with applications to subsampling techniques,”
EURO J. Comput. Optim., vol. 10, p. 100043, 2022.

S. Bellavia, N. Kreji¢, B. Morini, and S. Rebegoldi, “A stochastic first-order trust-
region method with inexact restoration for finite-sum minimization,” Comput. Op-
tim. Appl., vol. 84, no. 1, pp. 53-84, 2023.

A. S. Berahas, O. Sohab, and L. N. Vicente, “Full-low evaluation methods for
derivative-free optimization,” Optim. Methods Softw., vol. 38, no. 2, pp. 386411,
2023.

E. H. Bergou, Y. Diouane, V. Kungurtsev, and C. W. Royer, “A stochastic levenberg—
marquardt method using random models with complexity results,” SIAM/ASA J.
Uncert. Quant., vol. 10, no. 1, pp. 507-536, 2022.

E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos, and P. L. Toint,
“Worst-case evaluation complexity for unconstrained nonlinear optimization using
high-order regularized models,” Math. Program., vol. 163, pp. 359-368, 2017.

L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-scale ma-
chine learning,” SIAM Rewv., vol. 60, no. 2, pp. 223-311, 2018.

V. Braglia, A. Kopanicdkova, and R. Krause, “A multilevel approach to training,”
arXw preprint arXw:2006.15602, 2020.

W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial. STAM,
2000.

A. Biirmen, J. Olensek, and T. Tuma, “Mesh adaptive direct search with second di-
rectional derivative-based hessian update,” Comput. Optim. Appl., vol. 62, pp. 693—
715, 2015.

BIBLIOGRAPHY 93

[20]

[21]

22]

23]

[24]

[25]

26]

27]

28]

[29]

[30]

[31]

H. Calandra, S. Gratton, E. Riccietti, and X. Vasseur, “On high-order multilevel
optimization strategies,” SIAM J. Optim., vol. 31, no. 1, pp. 307-330, 2021.

C. Cartis, N. I. M. Gould, and P. L. Toint, Fvaluation complezity of algorithms for
nonconvex optimization. MOS-SIAM Series on Optimization, 2022.

C. Cartis and R. Roberts, “Scalable subspace methods for derivative-free nonlinear

least-squares optimization,” Math. Program., vol. 199, pp. 461-524, 2023.

C. Chang and C. Lin, “LIBSVM: A library for support vector machines,” tist, vol. 2,
27:1-27:27, 3 2011, Software available at http://www.csie.ntu.edu.tw/ cjlin/

libsvm.

R. Chen, M. Menickelly, and K. Scheinberg, “Stochastic optimization using a trust-
region method and random models,” Math. Program., vol. 169, pp. 447-487, 2018.

L. Cocchi, F. Marini, M. Porcelli, and E. Riccietti, “Black-box optimization for the
design of a jet plate for impingement cooling,” Optim. Eng., 2025. DOI: 10.1007/
511081-025-09981-0.

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-free Op-
timization (MPS-SIAM Series on Optimization). Philadelphia, USA: STAM, 2009.

C. Davis and W. Hare, “Exploiting known structures to approximate normal cones,”
Math. Oper. Res., vol. 38, no. 4, pp. 665681, 2013.

A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives,” Adv. Neural
Inf. Process. Syst., vol. 27, 2014.

E. D. Dolan and J. J. Moré, “Benchmarking optimization software with perfor-
mance profiles,” Math. Program., vol. 91, pp. 201-213, 2002.

N. Echebest, M. L. Schuverdt, and R. P. Vignau, “ An inexact restoration derivative-
free filter method for nonlinear programming,” J. Comput. Appl. Math., vol. 36,
pp. 693-718, 2017.

G. Fasano, G. Liuzzi, S. Lucidi, and F. Rinaldi, “A linesearch-based derivative-free
approach for nonsmooth constrained optimization,” SIAM J. Optim., vol. 24, no. 3,

pp- 959-992, 2014.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1007/s11081-025-09981-0
https://doi.org/10.1007/s11081-025-09981-0

94

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

|41]

42|

BIBLIOGRAPHY

L. W. Florschuetz, D. E. Metzger, D. I. Takeuchi, and R. A. Berry, “Multiple jet
impingement heat transfer characteristic: Experimental investigation of in-line and

staggered arrays with crossflow,” Tech. Rep., 1980.
L. W. Florschuetz, D. E. Metzger, D. 1. Takeuchi, and R. A. Berry, “Jet array im-

pingement with crossflow-correlation of streamwise resolved flow and heat transfer
distributions,” Tech. Rep., 1981.

L. W. Florschuetz, C. R. Truman, and D. E. Metzger, “Streamwise flow and

)

heat transfer distributions for jet array impingement with crossflow,” in Turbo

Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers,

vol. 79634, 1981.

R. W. Fox, P. J. Pritchard, and A. T. McDonald, Introduction to Fluid Mechanics.
John Wiley & Sons, 2010, 1SBN: 9780470547557. |Online|. Available: https: //
books.google.it/books?id=kiFJRQAACAAJ.

S. Gratton, A. Kopani¢akova, and P. L. Toint, “Multilevel objective-function-free
optimization with an application to neural networks training,” SIAM J. Optim.,
vol. 33, no. 4, pp. 2772-2800, 2023.

S. Gratton, V. Mercier, E. Riccietti, and P. L. Toint, “A block-coordinate ap-
proach of multi-level optimization with an application to physics-informed neural

networks,” Comput. Optim. Appl., 2024.

S. Gratton, A. Sartenaer, and P. L. Toint, “Recursive trust-region methods for
multiscale nonlinear optimization,” SIAM J. Optim., vol. 19, pp. 414-444, 2008.

S. Gratton and P. L. Toint, “S2mpj and cutest optimization problems for matlab,
python and julia,” arXiv preprint arXiv:2407.075812, 2024.

S. Gratton and L. N. Vicente, “A merit function approach for direct search,” STAM
J. Optim., vol. 24, no. 4, pp. 1980-1998, 2014.

Y. Ha, S. Shashaani, and R. Pasupathy, “Complexity of zeroth-and first-order
stochastic trust-region algorithms,” arXiv preprint arXiv:2405.20116, 2024.

J. Han, S. Dutta, and S. Ekkad, Gas turbine heat transfer and cooling technology.
CRC press, 2012.

https://books.google.it/books?id=kiFJRQAACAAJ
https://books.google.it/books?id=kiFJRQAACAAJ

BIBLIOGRAPHY 95

[43]

[44]

[45]

|46]

147]

48]

[49]

[50]

[51]

[52]

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Incropera’s
Principles of Heat and Mass Transfer. John Wiley & Sons, Incorporated, 2017,
ISBN: 9781119382911. |Online|. Available: https://books.google.it/books?id=
PGIAMQAACAAJL

R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predic-

tive variance reduction,” Adv. in Neural Information Proc. Sys., vol. 26, 2013.

M. Kokkolaras, C. Audet, and J. E. Dennis Jr, “Mixed variable optimization of
the number and composition of heat intercepts in a thermal insulation system,”
Optim. Eng., vol. 2, pp. 5-29, 2001.

A. Kopanic¢akova and R. Krause, “Globally Convergent Multilevel Training of Deep
Residual Networks,” SIAM J. Sci. Comput., vol. 0, no. 0, S254-S280, 2022. DOI:
10.1137/21M1434076.

J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization methods,”
Acta Numer., vol. 28, pp. 287—404, 2019.

G. Lauga, A. Repetti, E. Riccietti, N. Pustelnik, P. Gongalves, and Y. Wiaux, “A
multilevel framework for accelerating usara in radio-interferometric imaging,” in
2024 32nd European Signal Processing Conference (EUSIPCO), 2024, pp. 2287—
2291. DOI: 10.23919/EUSIPC063174.2024.10715263.

G. Lauga, E. Riccietti, N. Pustelnik, and P. Gongalves, “Iml fista: A multilevel
framework for inexact and inertial forward-backward. application to image restora-
tion,” SIAM J. Imaging Sc., vol. 17, no. 3, pp. 13471376, 2024.

S. Le Digabel and S. M. Wild, “A taxonomy of constraints in black-box simulation-
based optimization,” Optim. Eng., pp. 1-19, 2023.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998, https:
//keras.io/api/datasets/mnist/.

R. M. Lewis and V. Torczon, “A direct search approach to nonlinear programming
problems using an augmented lagrangian method with explicit treatment of linear
constraints,” in Technical Report of the College of William and Mary, 2010, pp. 1-
25.

https://books.google.it/books?id=PGIAMQAACAAJ
https://books.google.it/books?id=PGIAMQAACAAJ
https://doi.org/10.1137/21M1434076
https://doi.org/10.23919/EUSIPCO63174.2024.10715263
https://keras.io/api/datasets/mnist/
https://keras.io/api/datasets/mnist/

96 BIBLIOGRAPHY

[53] G. Liuzzi, S. Lucidi, and F. Rinaldi, “Derivative-free methods for mixed-integer
constrained optimization problems,” J. Optim. Theory Appl., vol. 164, pp. 933—
965, 2015.

[54] S. Lucidi, V. Piccialli, and M. Sciandrone, “An algorithm model for mixed variable
programming,” SIAM J. Optim., vol. 15, no. 4, pp. 1057-1084, 2005.

[55] F. Marini, M. Porcelli, and E. Riccietti, A multilevel stochastic reqularized first-
order method with application to training, 2024. arXiv: 2412 .11630 [math.0C].
[Online|. Available: https://arxiv.org/abs/2412.11630.

[56] Mushroom, UCI Machine Learning Repository, DOI: https://doi.org/10.24432/C5959T,
1981.

[57] S. G. Nash, “A multigrid approach to discretized optimization problems,” Optim.
Methods Softw., vol. 14, no. 1-2, pp. 99-116, 2000.

[58] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[59] “Nowpac: A provably convergent derivative-free nonlinear optimizer with path-

augmented constraints,” arXiw preprint arXiv:1405.1931, 2014.
[60] V. Picheny, R. B. Gramacy, S. M. Wild, and S. Le Digabel, “Bayesian optimiza-

tion under mixed constraints with a slack-variable augmented lagrangian,” Adv. in
Neural Information Proc. Sys., vol. 29, 2016.

[61] M. Porcelli and P. L. Toint, “Bfo, a trainable derivative-free brute force optimizer
for nonlinear bound-constrained optimization and equilibrium computations with
continuous and discrete variables,” ACM Trans. Math. Software, vol. 44, no. 1,
pp. 1-25, 2017.

[62] M. Porcelli and P. L. Toint, “Exploiting problem structure in derivative free opti-
mization,” ACM Trans. Math. Software, vol. 48, no. 1, pp. 1-25, 2022.

[63] M. Pourbagian, B. Talgorn, W. G. Habashi, M. Kokkolaras, and S. Le Diga-
bel, “Constrained problem formulations for power optimization of aircraft electro-

thermal anti-icing systems,” Optim. Eng., vol. 16, pp. 663-693, 2015.

[64] T. Pourmohamad, “Combining multivariate stochastic process models with filter

methods for constrained optimization,” Ph.D. dissertation, UC Santa Cruz, 2016.

https://arxiv.org/abs/2412.11630
https://arxiv.org/abs/2412.11630

BIBLIOGRAPHY 97

[65]

[66]

67]

[68]

[69]

[70]

71

[72]

M. J. D. Powell, A direct search optimization method that models the objective and

constraint functions by linear interpolation. Springer, 1994.

S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic variance reduc-
tion for nonconvex optimization,” in International conference on machine learning,
PMLR, 2016, pp. 314-323.

R. G. Regis and S. M. Wild, “Conorbit: Constrained optimization by radial basis
function interpolation in trust regions,” Optim. Methods Softw., vol. 32, no. 3,
pp. 552-580, 2017.

F. Rinaldi, L. Vicente, and D. Zeffiro, “Stochastic trust-region and direct-search
methods: A weak tail bound condition and reduced sample sizing,” SIAM J. Op-
tim., vol. 34, no. 2, pp. 2067-2092, 2024.

C. W. Royer, O. Sohab, and L. N. Vicente, “Full-low evaluation methods for bound
and linearly constrained derivative-free optimization,” Comput. Optim. Appl., pp. 1-
37, 2024.

P. R. Sampaio and P. L. Toint, “Numerical experience with a derivative-free trust-
funnel method for nonlinear optimization problems with general nonlinear con-
straints,” Optim. Methods Softw., vol. 31, no. 3, pp. 511-534, 2016.

J. C. Spall, “Stochastic optimization,” in Handbook of Computational Statistics:
Concepts and Methods, J. E. Gentle, W. K. Héardle, and Y. Mori, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 173-201, 1SBN: 978-3-642-21551-
3. DOI: 10.1007/978-3-642-21551-3_7. |Online|. Available: https://doi.org/
10.1007/978-3-642-21551-3_7.

N. Zuckerman and N. Lior, “Jet impingement heat transfer: Physics, correlations,
and numerical modeling,” in ser. Advances in Heat Transfer, G. A. Greene, P. A.
Hartnettt, A. Bar-Cohen, and Y. I. Cho, Eds., vol. 39, Elsevier, 2006, pp. 565—631.
DOI: https://doi.org/10.1016/50065-2717(06)39006-5. [Online|. Available:
https://www.sciencedirect.com/science/article/pii/S0065271706390065.

https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/https://doi.org/10.1016/S0065-2717(06)39006-5
https://www.sciencedirect.com/science/article/pii/S0065271706390065

	Abstract
	Introduction
	NOZZLE: a Black-Box Optimization tool
	MUSTREG: a Multilevel Stochastic Gradient method
	Thesis contributions

	NOZZLE
	Optimization model for the impingement cooling system
	The objective function
	Problem geometry and variables
	Florschuetz correlation

	The constraints
	Temperature constraints
	Pressure constraints
	Feasibility linear constraints

	Black-box definition
	DFO for the solution of the black-box model
	The overall constrained BBO formulation
	Our DFO proposal: the 1-penalty BFO method

	Experimental results
	Laboratory case
	Industrial case
	Comments on the numerical results

	MUSTREG
	The multilevel stochastic regularized gradient method
	Hierarchical representation of problem (2.1)
	The step computation
	The step acceptance
	MU2STREG: the two-level case

	Convergence theory
	Convergence analysis

	MUSTREG for finite-sum minimization
	Algorithmic details
	Similarity with SVRG

	Numerical experiments
	Implementation issues and test problem set
	Preliminary parameter tuning: number of levels and sample set cardinalities
	Two-level hierarchy
	Three-level hierarchy
	Five-level hierarchy

	Comparison with SVRG
	Convex problem: logistic classification problem (Pb-LOG)
	Nonconvex problem: nonlinear Least Squares (Pb-LS)

	Numerical investigation on the finest sample size

	Conclusions
	Bibliography

