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ABSTRACT

Fast Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry is a powerful, non-destructive

technique used to investigate molecular dynamics and structures across a wide range of systems, including

environmental, biological, and food-related applications. By operating at low magnetic field intensities, FFC-

NMR enables the exploration of slow molecular dynamics and o!ers detailed insights into molecular motion

across diverse timescales within a single experiment. Despite its broad applicability, accurately identifying

parameters from NMR Dispersion (NMRD) profiles remains a significant computational challenge.

This thesis introduces and evaluates advanced inverse methods based on regularization strategies and

machine learning approaches to enhance the analysis of NMRD profiles. The model-free framework is ex-

plored, representing the NMRD profile R1 as a linear combination of Lorentzian functions. To address the

ill-conditioned nature of the parameter identification problem, three regularization-based methodologies are

reviewed and validated: (1) a locally adaptive L2 regularization method (MF-UPen), (2) an L1-penalized

approach (MF-L1 ), and (3) a hybrid method combining local L2 and global L1 penalties (MF-MUPen).

These algorithms are further enhanced with automated regularization parameter selection using Balancing

and Uniform Penalty principles, improving robustness and reproducibility.

Additionally, a constrained L1-regularized non-linear least squares framework is proposed for modeling

the parameter identification problem in the presence of the quadrupolar interaction, i.e., the quadrupolar

relaxation enhancement (QRE) e!ect, due to electric interactions between nuclei with spins greater than

1/2 (e.g., 14N) and the electric fields nearby. Building on prior methodologies, this approach decomposes

the relaxation profiles into contributions associated with 1H →
1H dipole-dipole interaction and 1H →

14N

quadrupolar one. The regularization parameter is iteratively computed via the Balancing Principle, while

model parameters are optimized using a non-linear Gauss-Seidel algorithm. Several tests on both synthetic

and real datasets validate the convergence properties and e!ectiveness of this approach. Additionally, the

developed MATLAB tool based on this method is freely available for further research applications.

Finally, this thesis proposes a novel machine-learning framework based on the philosophy of the Plug-

and-Play (PnP) technique to address the QRE phenomenon observed in FFC-NMR. A pre-trained feed-

forward neural network incorporated into a coordinate descent optimization algorithm is employed to extract

quadrupolar parameters and fit NMRD profiles. The network’s custom loss function combines L1 loss

with accuracy in predicting quadrupolar components, enabling precise parameter extraction. Experimental

validation against traditional optimization inverse methods highlights the framework’s accuracy and potential

for processing large datasets e”ciently, particularly in industry applications.

This work advances the computational toolkit for FFC-NMR relaxometry, o!ering robust algorithms and

machine-learning solutions that enhance the understanding of molecular dynamics across diverse systems.

Keywords: Nuclear Magnetic Resonance, Fast Field-Cycling, Relaxometry, Molecular Dynamics, Reg-

ularization Strategies, Inverse Problems, Quadrupole Relaxation Enhancement, Plug-And-Play, Machine

Learning.
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Introduction

This PhD thesis is developed under the project Dottorati PON - Bando 2021 - Cycle 37 (XXXVII) - Action

IV.5 - Doctorates on Green topics - DOT1303154-2 supported by the Italian Ministry of Education and

Merit, focusing on Innovation and Green topics. The National Operational Program (PON-green) aims to

provide funds for research activities regarding green transition, ecosystem preservation, and reduction of

climate change impacts. This project holds a constrained topic, i.e., Mathematical Models and Numerical

Methods for Environmental Application of Fast Field Cycling Nuclear Magnetic Resonance.

Fast Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry is a powerful, non-destructive

magnetic resonance technique designed to explore slow molecular dynamics, accessible only at extremely low

magnetic field strengths. Unlike standard NMR relaxation experiments, which are limited to a fixed and

relatively large magnetic field determining the resonance frequency of the investigated molecules, FFC-NMR

relaxometry enables relaxation studies across a vast frequency range (approximately 1 kHz to 40 MHz).

This is achieved by varying the strength of the applied magnetic field to measure the longitudinal relaxation

rate, R1, forming Nuclear Magnetic Resonance Dispersion (NMRD) profiles. These profiles provide insights

into molecular motion over a wide range of timescales (from milliseconds to picoseconds) within a single

experiment.

Frequency-dependent relaxation studies have exceptional potential to reveal the timescales of molecular

motion and the underlying mechanisms driving these motions. When the proper constraints are fulfilled [1, 2],

spin relaxation can be described as a linear combination of spectral density functions, which are Fourier

transforms of the time correlation functions. These functions capture the motional frequencies and their

intensities in the correlation function. However, complex spin dynamical interactions, such as Quadrupole

Relaxation Enhancement (QRE), can arise from intramolecular magnetic dipolar coupling with quadrupole

nuclei (e.g., 14N, with spin S ↑ 1) [3, 4]. For these systems, QRE appears as local maxima or peaks in the

R1 profiles, with peak positions and shapes dependent on quadrupole parameters determined by the electric

field gradient tensor at the 14N position. Subtle changes in the electronic structure around 14N can thus

significantly a!ect the QRE signature, making it a sensitive fingerprint of molecular arrangements. This

sensitivity has been exploited in diverse applications, including environmental science [5], ionic liquids [6],

proteins [4], and food systems [2, 7].

Despite its broad utility, the adoption of FFC-NMR relaxometry faces challenges, including the complex-

ity of data analysis and the absence of a unified computational framework for automating the interpretation of

NMRD profiles. Specifically, for instance, selecting the correct approach to analyze data is highly dependent

on the specific characteristics of the sample and the acquisition.

In the literature, there exist di!erent software tools to address the analysis of NMRD profiles. For

example, one of the most used in this research area, and widely well-known is Fitteia↭. This software is

an open-access web service (available at http://fitteia.org) that provides a user-friendly package for

model fitting and data analysis [8]. This software, beyond the intuitiveness, incorporates the accumulated

knowledge from the large number of model-fitting problems addressed by the authors, resulting in a powerful

tool, especially in the NMR analysis data, which generally requires performing model fits of multi-dimensional

1

http://fitteia.org


2 Introduction

data sets and multi-dimensional model parameters space [8, 9, 10, 11].

Other interesting available software tools specifically for NMR analysis data, besides the more general

ones (e.g., OriginPro [12], or QtiPlot [13]), are collected in a very interesting web service called NMRbox [14],

where, depending on the problem, it is possible to find already developed packages and software to perform

the analysis.

Although numerous software solutions have been developed to address the problem, a comprehensive

framework remains lacking.

Applications of FFC-NMR relaxometry are numerous and extend to food science, material science, en-

vironmental studies, and biological research. In material science, for example, FFC-NMR has been applied

to monitor molecular dynamics and subtle structural changes in macromolecular systems, providing a link

between functional properties and molecular motion [15].

Regarding food science, for instance, this technique has proven valuable for quality control and authen-

tication, such as distinguishing between authentic and adulterated cheeses like Pecorino and Parmigiano

Reggiano [16, 17]. The non-destructive nature of FFC-NMR further allows continuous monitoring of food

properties without altering the sample, enabling real-time quality assessments [18].

Similarly, in environmental research, FFC-NMR is widely used to study soil organic matter, contaminant

interactions, and the porous structures of rocks. These studies contribute to a deeper understanding of

carbon cycling, contaminant transport, and resource management [19, 20, 21, 22].

Despite these advancements, the adoption of FFC-NMR remains limited due to the sophisticated in-

strumentation and the need for specialized expertise in NMR and materials physics. Although artificial

intelligence (AI) techniques have gained attraction in magnetic resonance imaging, their application to

FFC-NMR is still emerging. Some AI-driven methods, such as convolutional neural networks (CNNs) for

food quality assessment [23] and deep neural networks for reconstructing sparsely sampled spectra in NMR

spectroscopy [24], suggest promising directions for future developments in this field.

This PhD work addresses the challenges of data analysis and the lack of a standardized computational

framework for automating the interpretation of NMRD profiles and it relies on the Model-Free (MF) ap-

proach [25, 26] which represents the R1 profile as a linear combination of Lorentzian functions. To analyze

the data and identify the MF parameters, the problem is reformulated as an ill-conditioned least-squares

problem that requires robust regularization techniques to ensure stable solutions [27, 28]. One critical aspect

of this process is the selection of appropriate regularization parameters, which is essential for balancing

prior information with data accuracy. Building on this foundation, after an in-depth discussion of the phys-

ical background and the Model-Free approach, the first part focuses on the discussion of inverse problems,

regularization techniques, and the automatic computation of the regularization parameter.

The second part of this thesis, which illustrates the contribution of the PhD work, aims to explore

several strategies consisting of both classical regularization techniques for ill-conditioned inverse problems,

and hybrid techniques, based on AI approaches. In particular, regularization techniques, such as those

based on L1 or L2 penalties, can be enhanced by incorporating machine learning models to infer meaningful

priors or parameters from experimental datasets. Conversely, learning-based approaches can benefit from

improved stability and interpretability when paired with regularization strategies rooted in physical model-

ing. For instance, hybrid frameworks that embed neural networks within traditional optimization schemes

can simultaneously exploit the expressiveness of data-driven models and the theoretical rigor of regularized

formulations. The proposed strategies demonstrate state-of-the-art performance, providing both computa-

tional e”ciency and improved interpretability, which are crucial for advancing the analysis and inversion of

FFC-NMR relaxometry data.
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Application of NMR in Environmental and Food Research

The FFC-NMR technique plays a critical role in diverse areas of environmental research. Principal issues

can be categorized into two main areas: molecular structure and molecular interactions [19].

Considering the first area, the NMR can be used to unravel the structure of soil organic matter (SOM).

In environmental science, FFC-NMR aids in analyzing SOM and its response to climate change and agri-

cultural practices. SOM was thought to consist mainly of humic substances cross-linked to form a unique

chemical category. The use of NMR demonstrated that SOM is extremely complex. The alkaline extractable

component of soil is dominated by plant and microbial biopolymers at various states of decay [20, 21]. Un-

derstanding SOM composition as a mixture of microbial and plant residues at di!erent stages of degradation

requires the use of specific NMR techniques such as FFC to study soil aggregate structure, humification

processes, fertility, and stability, and in turn, better predict how this cast carbon pool responds to climate

change, intensive agriculture, and land-use change [29]. Moreover, it is interesting to study results from

FFC-NMR on dissolved organic matter (DOM). Understanding DOM structure and function is fundamental

for comprehending global carbon cycling, contaminant transport and ocean chemistry in general [30].

The second area (interactions) investigates where and how contaminants bind in soils, sediments, and

living species [31]. Understanding the interactions with soil and sediment will improve our knowledge of

bioavailability and how to best proceed with remediation. Moreover, this learning can help to explain uptake,

distribution, excretion, and bioaccumulation predicting more subtle long-term e!ects of exposure [21].

Another interesting application of the FFC-NMR technique is represented by the analysis of the porous

structure of rocks that hold underground fluids. It could be possible to accurately estimate many petrophys-

ical parameters, such as porosity, saturation, or permeability. Nowadays, borehole 1H NMR is extensively

used in oil and gas reservoir characterization, and recent developments have led to tools suitable for envi-

ronmental applications [32].

Finally, a di!erent field of application could be represented by food research. Nowadays, high-field NMR

spectroscopy techniques are generally used to qualify and quantify the metabolites present in plant and

animal tissues, to determine the composition and formulation of packaging materials, to food authentication,

to optimize food processing parameters, to ensure microbial safety, and to inspect the physical and chemical

quality of food [33, 34]. Despite the low resolution of low-field devices, the information obtained from FFC

relaxation analysis is su”cient to study water content, compartments, di!usion, and movement [35]. The

challenge is to find a well-stable model and numerical methods to robustly analyze the acquired NMRD

profiles.

All these improvements and employments lead to increasing and enhancing e”ciency in terms of energy

and environment, but also in economic terms, because low-field devices have less environmental impact

compared to high-field NMR devices considering energy consumption and the quantity of cryogenic liquids

needed to keep magnets at low temperatures, aligning with sustainability goals [36].

Contributions and Outline

This thesis is structured into two parts, covering a total of 7 chapters. In Part I the background concepts

are comprehensively presented and discussed. In Part II, the proposed methods to address the problem of

interest are introduced and analyzed.

Part I is divided into 4 chapters:

• Chapter 1 introduces the principles of Nuclear Magnetic Resonance (NMR), focusing on nuclear spin

dynamics and their interaction with magnetic fields. The chapter details the Fast Field Cycling (FFC)

NMR technique, its historical evolution, and its use in analyzing Nuclear Magnetic Relaxation Dis-
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persion (NMRD) profiles to study molecular dynamics. It concludes with a discussion of physical

models for interpreting FFC data, emphasizing the model-free approach, which supports the numerical

methods developed in this thesis.

• In Chapter 2, the essential regularization strategies and the optimization methods for developing the

numerical methods proposed in later sections are described in a general context. In the first part,

Tikhonov regularization for linear and non-linear problems is detailed [37]. The chapter concludes with

the block non-linear Gauss-Seidel method, as proposed by Grippo and Sciandrone [38, 39], forming the

foundation for the algorithm detailed in Chapter 6.

• In Chapter 3, the automatic techniques to compute the regularization parameter are described. Specif-

ically, the first part of this chapter discusses the augmented Tikhonov framework, and it introduces

the Balancing Principle (BP) [37], which is employed in the proposed methods later detailed. The

chapter concludes with an introduction to the Uniform Penalty principle [40], based on L2 regulariza-

tion with locally adapted regularization parameters, providing the basis for strategies developed for

NMRD profile analysis, and described later in Chapter 5.

• In Chapter 4, the mathematical foundations of machine learning are introduced, emphasizing its role

in solving complex problems. The chapter then explores integrated models that merge traditional op-

timization with data-driven techniques. The final section focuses on the Plug-and-Play (PnP) method,

highlighting its use of pre-trained denoisers within iterative algorithms. This framework’s philosophy

sets the stage for the novel method developed in this PhD work and described in Chapter 7.

Part II is divided into 3 chapters, presenting the proposed solution methods based on classical regularization

and optimization strategies, and a hybrid technique based on the combination of a machine learning technique

with a coordinate descent optimization algorithm:

• In Chapter 5, three approaches for analyzing NMRD profiles are proposed: MF-UPen, which uses

locally adapted L2 regularization; MF-L1, based on an L1 penalty; and MF-MUPen, combining locally

adapted L2 and global L1 penalties. All methods employ automatic parameter selection via the

Balancing Principle and Uniform Penalty principles. Contributions include the implementation and

testing of the MF-UPen and MF-MUPen algorithms, along with a dispersion analysis procedure to

assess parameter estimation ranges. The chapter concludes with a comparison of algorithmic results,

focusing on fit quality and correlation time distribution, supported by tests on representative NMRD

profile datasets.

• In Chapter 6, a computational framework for automating FFC-NMR analysis is introduced, addressing

the parameter identification problem for o!set terms, correlation time distribution, and QRE parame-

ters. This problem is formulated as a regularized non-linear least squares problem with box constraints,

using an L1-based regularization to promote sparse solutions. The estimation process employs an iter-

ative approach where the regularization parameter is computed via the Balancing Principle, and the

constrained optimization problem is solved using a two-block non-linear Gauss-Seidel method. The

proposed method e!ectively separates the contributions of relaxation distributions and quadrupolar

relaxation parameters, achieving accurate fits for NMRD profiles, including QRE-related local max-

ima. The chapter concludes with numerical experiments on synthetic and real data, demonstrating the

robustness and e”ciency of the algorithm.

• In Chapter 7, a machine learning framework is presented for NMRD profile inversion, focusing on the

QRE phenomenon. A pre-trained feed-forward neural network, designed to predict QRE parameters, is
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integrated into the NMRD data fitting process using the Plug-and-Play (PnP) approach. This method

incorporates a novel loss function and a tailored training procedure, marking the first application of

PnP techniques to FFC-NMR data analysis. Results are compared with robust optimization methods,

showing strong agreement and highlighting the potential of neural networks to streamline the anal-

ysis of large datasets. The chapter concludes with numerical tests on food-related NMRD profiles,

demonstrating the framework’s e!ectiveness.
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Preliminaries





Chapter 1

Physics Background

This chapter lays the theoretical groundwork for understanding Nuclear Magnetic Resonance (NMR) and its

advanced applications, comprehensively exploring the interplay between nuclear spin dynamics and magnetic

fields. It begins with a discussion of the NMR phenomenon, delving into the quantum mechanical principles

governing nuclear spin transitions and their interactions with external magnetic fields, which form the basis

for signal detection and analysis. The second section introduces the Fast Field Cycling (FFC) NMR tech-

nique, an essential tool for this study. It traces its historical evolution and its role in mapping relaxation

phenomena by analyzing Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. These profiles serve

as fingerprints of molecular dynamics, o!ering insights into interactions within bulk liquids and confined

environments. The final section describes physical models used to interpret FFC data, with special attention

given to the model-free approach, which is the basis for developing advanced numerical methods and strate-

gies presented in this thesis work. This model avoids the constraints of predetermined assumptions about

molecular dynamics, enabling the extraction of robust and adaptable insights across diverse systems. The

chapter thus establishes a theoretical foundation for the innovative methodologies employed in subsequent

analyses.

1.1 Nuclear Magnetic Resonance Phenomenon

Nuclear Magnetic Resonance (NMR) is a physical phenomenon in which atomic nuclei in a static magnetic

field are perturbed by an externally applied Radio-Frequency (RF) pulse. This perturbation induces a

resonant electromagnetic response from the nuclei, characterized by a frequency specific to the local magnetic

environment experienced by the nucleus.

The process involves nuclear spin transitions between discrete quantum energy levels associated with

angular momentum, with the energy di!erences typically on the order of thermal energy 1.

In 1938, Isidor Rabi extended the Stern-Gerlach experiment to measure nuclear magnetic resonance in

molecular beams for the first time [41]. His pioneering work earned him the Nobel Prize in Physics.

Currently, NMR refers predominantly to phenomena in condensed matter systems, rather than the iso-

lated atomic beams used in Rabi’s experiments. Specifically, NMR today typically refers to nuclear spin

transitions detected via energy absorption from RF pulses. The first experimental observations of NMR in

condensed matter were independently made in 1946 by two research groups: E. M. Purcell, H. C. Torrey,

and R. V. Pound at Harvard University, using para”n [42], and F. Bloch, W. W. Hansen, and M. Packard

at Stanford University, using water [43]. These discoveries led to Purcell and Bloch sharing the Nobel Prize

in Physics in 1952.

1Energy in the range of thermal energy: kT → 25meV.

9
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1.1.1 Resonance Condition

For the nuclear magnetic resonance phenomenon, atomic nuclei must possess a magnetic moment, enabling

interaction with a typically constant and homogeneous magnetic field, known as polarizing or Zeeman field,

and denoted as B0. This interaction leads to achieving an order between energy levels, influenced by the

magnetic field and opposed by thermal agitation (kT ).

When an atomic nucleus interacts with a uniform and constant magnetic field, B0, its nuclear magnetic

moment, µ, tends to align with the direction of the magnetic field. Consequently, the external magnetic

field exerts a torque on the magnetic moment:

ω = µ↓B0

This interaction causes the nuclear magnetic moment, µ, to precess around the direction of the magnetic

field at a specific angular frequency, ε0, known as the Larmor frequency. This frequency depends only on

the nuclear species and on the intensity of the magnetic field B0. From this point onward, bold symbols will

denote vector quantities, while non-bold symbols will represent their magnitudes.

On a macroscopic scale, this results in establishing an equilibrium nuclear magnetization, M , which can

be detected to extract information about the system.

The phenomenon consists of manipulating the magnetization by supplying energy to the system, which

must satisfy the resonance condition. Using appropriate hardware, the evolution of the magnetization, as it

returns to equilibrium, can be monitored.

In an NMR experiment, the signal is detected by a coil as an electric signal induced by the changing

magnetic flux caused by the movement of the nuclear magnetization, M(t), in a rotating reference frame at

the resonance frequency. The intensity of M(t) has the same units as the nuclear magnetic moment ([J/T]),

which is proportional to the spin, I, of the nucleus n with spin:

µ = ϑn
h

2ϖ
I (1.1)

where ϑn is the gyromagnetic ratio of the nuclear species n, which characterized it (its unit is [MHz/T])

and h is the Planck’s constant, i.e., h = 6.63 · 10→34 Js. Therefore, for nuclear magnetic resonance to occur,

nuclei must have I ↔= 0.

In the following Table 1.1, the most common nuclear species employed in NMR experiments are reported

with their characteristics, i.e., proton and neutron numbers, spin, and gyromagnetic ratio expressed as ϑ/2ϖ.

Nuclei Odd Protons Odd Neutrons Spin ϑ/2ϖ [MHz/T]
1H 1 0 1/2 42.58
2H 1 1 1 6.54
14N 1 1 1 3.08
13C 0 1 1/2 10.71
19F 1 0 1/2 40.08

Table 1.1: Characteristics of the most common nuclear species employed in NMR experiments.

For a system with a single spin, the quantum mechanical Hamiltonian operator representing the energy

is given by Hz = →ϑ⊋IzB0, where ⊋ is the reduced Planck’s constant, i.e., ⊋ = h/2ϖ = 1.05457 · 10→34 Js.

In the presence of an external magnetic field, the Zeeman e!ect arises, which involves the splitting

or shifting of spectral lines. The corresponding energy levels are determined by the eigenvalues of the

Hamiltonian operator [44]:

Em = →ϑ⊋mB0 (1.2)



1.1 Nuclear Magnetic Resonance Phenomenon 11

where →I ↗ m ↗ +I.

For instance, in the case of hydrogen atoms, the energy di!erence between the two energy levels, corre-

sponding to transitions between them, is #E = ϑ⊋B0. By supplying the system with electromagnetic waves

of energy hε0, matching #E, the resonance condition is satisfied, leading to the Larmor frequency :

#E = ϑ⊋B0 = hε0 = 2ϖ⊋ε0 = ⊋ϱ0 ↘ ϱ0 = ϑB0

The ϱ0 is the Larmor angular velocity, i.e., ϱ0 = 2ϖε0. From now on, the Larmor resonance condition is

identified by ϱ0.

For example, for 1H nuclei in a magnetic field B = 1 T, the frequency is ε = (ϑ/2ϖ)B = 42.6 MHz.

Since this frequency falls in the megahertz range, it lies within the radio wave portion of the electromagnetic

spectrum.

When a sample is placed in a region where a uniform magnetic field, B0, is applied, the splitting of

energy levels can be observed.

m

m-2

-1

0

1

-1/2

1/2

2

I = 2

I = 1/2

Figure 1.1: Energy level diagram illustrating spins under a Zeeman Hamiltonian. The left figure depicts a

system with I = 2, while the right figure shows one with I = 1/2. The bold line represents the relative

population of each state for an ensemble of systems in thermal equilibrium.

Nuclei are distributed across the 2I + 1 energy levels according to the Boltzmann distribution, with the

lower energy levels being the most populated

nm→1

nm

= exp

{
→
⊋ϱ0

kT

}

where k is the Boltzmann’s constant (i.e., k = 1.38 · 10→23 J/K). In a magnetic field B0 of magnitude

2 T , corresponding to a frequency of approximately 100 MHz, the exponent is on the order of 10→5. This

indicates that kT ≃ hϱ0, resulting in a population di!erence between energy levels that is proportional to

the magnitude of B0. The phenomenon is referred to as the Curie law.

Under this condition, the nuclear spin magnetization per volume unit is a vector aligned with the direction

of B0; it has the same orientation, and its magnitude is given by:

M0 = N
ϑ2⊋2I(I + 1)

3kT
B0 (1.3)

This outcome can be derived by examining the energy levels’ population. For simplicity, let us consider

nuclei with a spin I = 1/2. In this case there are 2I + 1 = 2 ·
1
2 + 1 = 2 possible states, with m = +1/2

(spin up) and m = →1/2 (spin down). The energy di!erence between these states is #E = ϑ⊋B0 and the

populations per volume unit of the two levels are denoted as N+ and N→. The total number of nuclei per

volume unit is N = N+ +N→, which are distributed according to the Boltzmann distribution:

N+

N→
= exp

{
#E

kT

}
= exp

{
⊋ϑB0

kT

}
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Figure 1.2: M0 evolution. At a low-intensity field, M0 is linearly proportional to B0/kT , while at a higher-

intensity field, M0 saturates to Nµ, with all dipoles aligned with the field.

From the previous result, the populations per volume unit of the two levels follow:

N+ =
N

1 + exp (→ϑ⊋B0/kT )
N→ =

N

1 + exp (+ϑ⊋B0/kT )

and the equilibrium magnetization, M0, is proportional to the surplus of spins up on spins down

M0 = µ(N+ →N→)

where µ is the nuclear magnetic moment. Hence

M0 = Nµ
1→ exp (→ϑ⊋B0/kT )

1 + exp (→ϑ⊋B0/kT )
= Nµ tanh

(
ϑ⊋B0

2kT

)

Thus, M0 is typically not directly proportional to the applied field. However, the dependence on B0/kT

remains linear at low magnetic fields, a condition that is generally upheld in experimental settings. At higher

field strengths, the magnetization reaches saturation at Nµ, indicating that all magnetic dipoles are fully

aligned with the field.

To meet this condition, i.e., ⊋ϑB0 << 2kT , the tanh function can be approximated using a first-order

expansion:

M0 =
Nµ⊋ϑ
2kT

B0 =
N⊋2ϑ2

4kT
B0

where µ = ⊋ϑI = 1
2⊋ϑ. If the spin is I = 1/2, the Curie law becomes (1.3).

Consequently, nuclei are distributed among the energy levels, primarily occupying the lower energy

states. This results in an equilibrium magnetization per volume unit that aligns with the direction of B0.

At the quantum level, when the system is irradiated with photons satisfying the resonance condition, the

probabilities of absorption and stimulated emission are equal. However, since the lowest energy level is the
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most populated, there is a net energy absorption, leading to a modification of the equilibrium magnetization

vector. Information about the system can be obtained from the return of the nuclear magnetization to its

equilibrium state following these changes.

1.1.2 Nuclear Spin Magnetization

Considering an NMR experiment, a spin ensemble behaviour can be described using the nuclear magnetiza-

tion vector motion, which refers to the precession of M about a magnetic field according to the equation:

dM

dt
= ϑM ↓B0

Precession happens when the vector M is not aligned with the polarizing magnetic field B0. To move

M and excite the system, another RF magnetic field B1, which is perpendicular to B0 and oscillates at

a frequency ε0, needs to be applied. This allows for the measurement of how M returns to equilibrium,

providing valuable information about the system.

Let us consider a B0 aligned to the z-axis of a reference frame, and let us apply a radio-frequency (RF)

pulse B1 perpendicular to the polarizing field which precesses about z-axis with the same angular velocity of

M (i.e., resonance condition). The magnetizationM will move from the equilibrium of an angle proportional

to the time and the amplitude of the RF pulse2 The angle is called flip angle and it is given by

ς = ϑB1t

This process, described in the so-called laboratory frame, is shown in Figure 1.3, where the M precesses

around B0 toward xy plane with a helical shape.

Figure 1.3: Evolution of M in the laboratory frame in the presence of a polarizing field B0, and a transverse

RF pulse, B1. When ε = ε0, M simultaneously precesses about B0 at ε0, and about B1 at ε1.

In this frame, the M components are

Mx(t) = M0 sin (ϱ1t) sin (ϱ0t)

My(t) = M0 sin (ϱ1t) cos (ϱ0t)

Mz(t) = M0 cos (ϱ1t)

2The moving does not occur instantaneously, but lasts for the duration of the applied RF pulse.
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(a) On-resonance RF pulse. (b) O!-resonance RF pulse.

Figure 1.4: Evolution of M in the rotating frame.

1.1.3 NMR signal and Relaxation

The vector M gradually precesses to 0 following an exponential process, hence the NMR signal detected by

a coil is a damped sine wave, known as Free Induction Decay (FID). This signal is directly related to the

intensity of the magnetization in the xy plane. The damping occurs because, once the spins are in the xy

plane, they start to lose their phase coherence due to spin-spin interactions. The system tends to return to

thermal equilibrium, characterized by

Mz(equilibrium) = M0

Mxy(equilibrium) = 0

Figure 1.5: Free Induction Decay (FID).

This return to the equilibrium state is called relaxation, and the physical processes which regulate it

after the application of an RF pulse are di!erent for the longitudinal and the transverse magnetization

components. For the longitudinal case, the process is an energetic process type, where the spins returning

to the equilibrium yield their energy to the lattice, while, for the transverse case, the process is an entropic

process type, which corresponds to decoherence of the transverse nuclear spin magnetization. The initial

phase coherence of spins is lost until the phases are eventually disordered and there is no net Mxy. This is

due to random fluctuations of the local magnetic field, which lead to random variations in the instantaneous

NMR precession frequency of di!erent spins.
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The nuclear magnetization motion equation for an ensemble of free spins in the presence of a homogeneous

field follows the so-called Bloch equations :

dM

dt
= ϑM ↓B (1.4)

where M is the magnetization vector, B is the magnetic field vector, and ϑ is the gyromagnetic ratio of the

specific nuclei under consideration.

Considering a polarizing static field applied along the z -axis, i.e., Bz = B0, the return to equilibrium

Mz = M0 of the longitudinal magnetization, after shutting down the radio frequency pulse, depends on the

velocity of the redistribution of spins on energy levels following Boltzmann distribution, so it is proportional

to the di!erence between longitudinal equilibrium magnetization and longitudinal magnetization itself and

it decreases in time:
dMz(t)

dt
= →

Mz(t)→M0

T1
(1.5)

where T1 is the longitudinal (or spin-lattice) relaxation time, which represents the decay constant for the

recovery of the z component of the nuclear spin magnetization towards its thermal equilibrium value.

Similarly, for the transverse component, the return to equilibrium depends on the di!erence between its

current value and its equilibrium value, which corresponds to 0. Hence, in the rotating frame,

dMxy(t)

dt
= →

1

T2
Mxy(t) (1.6)

where T2 is the transverse (or spin-spin) relaxation time, and it refers to the decay constant for the component

of M perpendicular to B0. Because T2 relaxation only involves the phase coherence loss between spins, while

T1 relaxation involves an energy transfer and also a phase coherence loss, it always holds T2 ↗ T1.

The evolution of the magnetization vector is described by the solutions of the Bloch equations (Figure 1.6).

Mz(t) = Mz(0)e
→ t

T1 +M0

(
1→ e→

t
T1

)

Mxy(t) = Mxy(0)e
→ t

T2

Figure 1.6: Evolution of the magnetization vector considering an RF pulse applied to have a flip angle

ς = →180↑. The initial value of the magnetization, M(0) = →M0, hence Mz(t) = M0(1→ 2e→t/T1).
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In practice, considering the transverse relaxation, it is impossible to have a completely homogeneous

polarizing field B0 applied in the entire volume of interest, therefore the inhomogeneities of the field con-

tribute to dephasing. This depends on slight di!erences in the local magnetic field which lead spins to not

precess with the same frequency, and it is manifested as a loss of signal. For this reason, the signal will relax

faster to 0 with a decay constant smaller than T2. This decoherence due to the inhomogeneities is not a true

relaxation process, and it depends on the location of the molecules in the magnet. Considering molecules

that are not moving (i.e., neglecting the di!usion process), the deviation from ideal relaxation is consistent

over time, and the signal can be recovered by performing a specific NMR experiment.

The time constant in this case is known as T ↓
2 , and it usually is smaller than T2

1

T ↓
2

=
1

T2
+

1

Tinhom
=

1

T2
+ ϑ#B0

where #B0 is the variation of the magnitude of the local field.

A FID is generated by applying one single pulse, but most of the NMR experiments, or sequences (i.e.,

a sequence of applied RF pulses), are based on the combination of di!erent kinds of pulses.

Applying two successive RF pulses a Spin Echo (SE) signal will be produced, and the time passing

between the application of the first pulse and the peak of the spin echo signal is known as Echo Time

(TE) [45].

The application of the second RF pulse causes a refocusing of spin phase information lost during the

decay FID produced by the first RF pulse. This is possible because many of the T ↓
2 processes that produce

the decay of the FID are symmetrically reversible, i.e., most of the signal after the first pulse is not destroyed,

but becomes disorganized.

The generation of an echo is represented in Figure 1.7. Let us consider the vector representation (Fig-

ure 1.7 (b)). The first pulse is a 90↑ pulse (at Larmor frequency), which flips the spins into the xy plane

(image 1 ). The spins will start to lose coherence due to the inhomogeneities in the polarizing field, and

some spin groups may precess faster than others (i.e., gaining phase) (image 2 ). Successively, a 180↑ pulse

is applied on the xy plane, rotating on the same plane and changing the verse of rotation of them (image

3 ). Then, the spins will start to refocus (image 4 ) reaching the peak of the spin echo signal (image 5 )

at3 t = TE and eventually, without the application of another pulse, spins will continue to rotate losing

coherence and free decaying (image 6 ). Spin echoes will form each time two successive pulses of any flip

angle are applied to the system. The combination of pulses described before (90↑ and 180↑) produces the

maximum possible echo signal and it is the most employed one. The echo formed in this case is called Hahn

echo.

The application of more than two pulses generates a stimulated echo (STE). Let us consider the Figure 1.8,

where three pulses (indicated on the image with numbers, i.e., 1, 2, and 3) are applied to the system. The

echoes A, B, and C are Hahn echoes, where A is generated by pulses 1, and 2; B is generated by pulses

2, and 3; and C is generated by pulses 1, and 3. The echo D is a secondary spin echo obtained by the

application of the pulse 3 on spins of echo A. Specifically, in correspondence with the peak of echo A, spins

are in phase in the transverse plane. Then, spins dephase with T ↓
2 . The pulse 3 (located exactly midway

between A and D) a!ects some of these spins, allowing them to refocus into echo D. Finally, echo E is called

stimulated echo. The generation in a vector spin diagram is shown in Figure 1.9, where only 4 spins (a, b,

c, and d) are considered for simplicity: First, a 90↑ pulse is applied, flipping spins into xy plane (a); then

the spins start to dephase (b). Spins are considered in pairs (a → b, c → d), where each one presents local

fields o!set of the same magnitude, but opposite polarities. Thus, a spin gains or loses phase corresponding

to its partner at the same relative rate. The spins a and c move in local fields with lower intensity than B0,

thus they precess slightly slower and lose phase, while b and d precess faster and gain phase because their

3TE corresponds to the double of the time between two RF pulses.
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(a) (b)

Figure 1.7: Spin Echo generation.

Figure 1.8: Sequence with 3 RF pulses applied and generation of a STE.
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(a) (b) (c)

(d) (e) (f)

Figure 1.9: Generation of a stimulated echo from three 90↑ pulses.

local fields have higher intensity. Then, a second 90↑ pulse is applied (c) flipping the spins into xz plane.

The z components remain aligned to the B0 direction, not precessing. The longitudinal relaxation occurs,

having a net growth along z→axis (d), and for this reason, stimulated echo presents a T1-weighting. The z

components are flipped back to the xy plane due to the last 90↑ pulse, and they start to precess (e) rephasing

along the y-axis and generating the stimulated echo (f). The amplitude of this echo is lower and it is spread

out more widely in time because not all components rephase at the exactly same time.

Finally, increasing the number of pulses, n, leads to an exponential increase in the number of echoes,

following Nechoes =
3n→1→1

2 .

1.1.4 Steady-State solution of Bloch Equations

In an arbitrary homogeneous field, the equation of the motion of the nuclear magnetization for an ensemble

of free spins is represented by (1.4). In a polarizing static field with Bz = B0 applied along the z→axis,

the trend of the magnetization towards its equilibrium value represented by Mz = M0 = φ0B0 can often be

described with good accuracy by (1.5). The variable φ0 represents the magnetic susceptibility, and it can be

derived from (1.3), i.e., φ0 = Nω
2⊋2

I(I+1)
3kT . Moreover, if an RF pulse is applied such that the magnetization

gains a component perpendicular to the magnetic field B0, the local magnetic field variations, arising from

spin-spin and spin-lattice interactions, lead to a decay of the transverse magnetization at a rate characterized

by (1.6). Alternatively, this decay can be described by considering its two components separately:

dMx
dt

= →
Mx
T2

dMy

dt
= →

My

T2

Finally, in the presence of an applied field, i.e., the sum of the polarizing field and a much smaller radio-

frequency field, the motion due to the relaxation can be superposed on the motion of the free spins, leading

to the following equation:

dM

dt
= ϑM ↓B →

Mxi
↔ +Myj

↔

T2
→

Mz →M0

T1
k
↔ (1.7)
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where i
↔, j↔, and k

↔ are the unit vectors of the laboratory frame of reference.

Let us assume that the applied field is the sum of a polarizing field B0 applied along the z -axis,

Bz = B0 = →
ε

ω
, and of an RF field B1 of amplitude B1 = →

ε1
ω

rotating at a frequency ϱ in the neighbour-

hood of ϱ0. The RF field will be usually one of the components of the rotating applied field Bx = 2B1 cos (ϱt)

linearly polarized along the x -axis of the laboratory frame, neglecting the e!ect of the counter-rotating com-

ponent.

The e!ective field in the rotating frame is

Be! =

(
B0 +

ϱ

ϑ

)
k +B1i =

(ϱ → ϱ0)k → ϱ1i

ϑ
=

#ϱk → ϱ1i

ϑ

where i, j, and k = k
↔ are the unit vectors of the rotating frame, and ϱ0 = →ϑB0, ϱ1 = →ϑB1. The

equation (1.7) in the rotating frame becomes

dM

dt
= ϑ (M ↓Be!)→

M̃xi+ M̃yj

T2
→

Mz →M0

T1
k (1.8)

where M̃x, and M̃y are the components of M in the transverse plane in that frame. Equation (1.8) can be

rewritten as
dM̃x
dt

= →
M̃x
T2

+#ϱM̃y

dM̃y

dt
= →#ϱM̃x →

M̃y

T2
→ ϱ1Mz

dM̃z
dt

= ϱ1M̃y →
Mz→M0

T1

(1.9)

where #ϱ = (ϱ → ϱ0).

For fixed values of the parameters, the solution of (1.9) is a sum of decreasing exponential terms and of

a steady-state solution obtained by setting the following condition

dM̃x

dt
=

dM̃y

dt
=

dMz

dt
= 0

and, after a su”ciently long time for the transient exponentials to have decayed, the steady solution can be

written as [46]

M̃x = →
”εωB1T

2
2

1+(T2”ε)2+ω2B2
1T1T2

M0

M̃y = →
ωB1T2

1+(T2”ε)2+ω2B2
1T1T2

M0

Mz = →
1+(”εT2)

2

1+(T2”ε)2+ω2B2
1T1T2

M0

(1.10)

The transverse components in the laboratory frame can be derived starting from the rotating frame ones

following

Mx + iMy =
(
M̃x + iM̃y

)
eiεt =↘

{
Mx = M̃x cos (ϱt)→ M̃y sin (ϱt)

My = M̃x sin (ϱt) + M̃y cos (ϱt)

The three components of M are proportional to M0 because, in the absence of initial polarization, i.e.,

of populations’ inequalities between magnetic energy levels, the nuclear magnetic phenomenon cannot be

observed.

The solutions (1.10) can be geometrically represented, where the locus of the vector M as a function

of B1, and #ϱ is an ellipsoid with axes 2ax = 2ay = M0

√
T2/T1, 2az = M0, and centred at the point

x = y = 0, z = 1
2M0.

1.1.5 Modified Bloch equations in low fields

It is interesting to discuss how nuclear spin magnetization (and thus the signal) behaves in the presence of

low-intensity fields, considering that the Fast Field Cycling NMR sequence is a low-field technique.
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When the intensity of the polarizing static field is comparable either to the radio-frequency one or to

1/ϑT2, the Bloch equations (1.7) and their steady-state solutions (1.10) must be modified. Specifically, if

a radio-frequency field B1(t) is applied, the assumption of magnetization relaxing towards the equilibrium

value M0 = φ0B0 should be replaced by that of relaxation towards the instantaneous value φ0(B0 +B1(t)).

If B1 is not small compared with B0, the condition of relaxation towards the value φ0(B0 + B1(t)) is such

that the following assumption holds T1 = T2 = T [46].

Therefore, the modified Bloch equations can be rewritten as follows:

dM

dt
= ϑM ↓B →

M → φ0B

T
(1.11)

Now, it is necessary to distinguish between the response to an oscillating field and to a rotating field,

particularly considering the counter-rotating component in cases where B1 is comparable in magnitude to

B0.

The equations (1.9) in the rotating field can be rewritten as follows:

dM̃x
dt

= →
M̃x→ϑ0B1

T
+#ϱM̃y

dM̃y

dt
= →#ϱM̃x →

M̃y

T
→ ϱ1Mz

dMz
dt

= ϱ1M̃y →
Mz→M0

T

(1.12)

Following the formalism described in [46], the steady-state solutions of (1.12) can be expressed using

the RF susceptibilities φ
↑
M

R
(ϱ), and φ

↑↑
M

R
(ϱ), where R stands for rotating and M identifies the modified

Bloch equations. The susceptibilities φ↔(ϱ), and φ↔↔(ϱ) represent the real and the imaginary parts of the RF

susceptibility φ = φ↔
→ iφ↔↔, defined by the relations Bx = 2B1Re {eiεt

}, Mx = 2B1Re {eiεt
}

φ
↑
M

R
= M̃x

2B1
= →

1
2

ε0”εT
2→[1+(ωB1T )2]

1+(T”ε)2+(ωB1T )2
φ0

φ
↑↑
M

R
= →

M̃y

2B1
= 1

2
εT

1+(T”ε)2+(ωB1T )2
φ0

(1.13)

In case of negligible saturation (|ϑ|B1T << 1), the equation (1.13) becomes

φ
↑
M

R
= φ

↑

R
+

1

ϱ0T
φ

↑↑

R
, φ

↑↑
M

R
= φ

↑↑

R
→

1

ϱ0T
φ

↑

R

where

φ
↑

R
= →

φ0

2

ϱ0#ϱT 2

1 + (T#ϱ)2
, φ

↑↑

R
=

φ0

2

ϱ0T

1 + (T#ϱ)2

are the rotating field susceptibilities for the unmodified Bloch equations ((1.7)). Following this, Mz will be

Mz = φ0

[
B0 +

(ϱ/ϑ) (ϑB1T )
2

1 + (T#ϱ)2 + (ϑB1T )
2

]
(1.14)

This result is in contrast to the result obtained in the unmodified case (1.10), which can be rewritten as

Mz = φ0

[
B0 +

(ϱ0/ϑ) (ϑB1T )
2

1 + (T#ϱ)2 + (ϑB1T )
2

]
(1.15)

A comparison of these last results for Mz reveals that when B0 = →ϱ0/ϑ = 0, equation (1.14) predicts

a non-zero steady-state magnetization, in contrast to equation (1.15). This outcome makes sense from a

physics perspective: in the rotating frame, the spins experience an e!ective static field Be! with components

Bz = →ϱ/ϑ, Bx = B1, around which they precess, while gradually relaxing towards M0
x
= φ0B1. This leads

to an asymmetry between positive and negative values of Mz, creating a non-zero steady-state value for it.

The theoretical predictions from equation (1.14) have been experimentally verified [47].
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Figure 1.10: Observed signal in a static field B0 as a function of RF amplitude in solid diphenyl, picril hy-

drazil. The full curves give the theoretical prediction of equation (1.14), assuming T1 = T2 = T = 6.2·10→8 s,

measured independently [46].

The Figure 1.10 [46] presents #Mz = Mz → φ0B0 predicted by equation (1.14) as a function of the

rotating field’s strength B1 for the cases B0 = →ϱ/ϑ, and B0 = 0, with experimental points. The agreement

between theory and experiment confirms that the unmodified Bloch equations which predict Mz = 0 when

B0 = 0 are inaccurate.

Let us consider a simple specific case where B0 = 0. The modified Bloch equation (1.11) can be rewritten

as
dMx
dt

= →
Mx→ϑ02B1 cos (εt)

T
dMy

dt
= 2ϑMzB1 cos (ϱt)→

My

T

dMz
dt

= →2ϑMyB1 cos (ϱt)→
Mz
T

(1.16)

The exact steady-state solution of the previous system (1.16) is immediately obtained

My = Mz = 0

Mx = 2φ0B1
cos (εt)+(εT ) sin (εt)

1+(εT )2

In a more general low-field case, with Bz ↔= 0 and an RF field Bx = 2B1 cos (ϱt) the system (1.11)

cannot be analytically solved, hence numerical approaches have been used to study the evolution of the

magnetization in low-field conditions.

1.2 Fast Field Cycling NMR Technique

This section provides an in-depth examination of the Fast Field Cycling (FFC) NMR Technique, which is

essential for this thesis’s data collection and analysis. The discussion begins with an explanation of FFC as

the technique from which data is derived. It highlights its critical role in developing the numerical methods

and strategies employed to interpret Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. By eluci-

dating the principles and historical context of FFC, this section establishes a framework for understanding

how the acquired data informs the models utilized in subsequent analyses. The unique characteristics of

NMRD profiles, which serve as distinct fingerprints for di!erent materials, further underscore the relevance
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of FFC in advancing research across various scientific disciplines, including material science, food science,

and pharmaceuticals [16, 17, 18, 22].

1.2.1 Introduction and Historical Outline

The analysis of the longitudinal (spin-lattice) relaxation rate, i.e., the inverse of the longitudinal relaxation

time, on the polarizing B0 field provides exhaustive information into events at the molecular level beyond

the reach of many other techniques [48, 1, 49, 50, 51, 52].

The Field Cycling (FC) technique allows measurements of the nuclear magnetic relaxation rates, as a

function of the Larmor angular frequency (ϱ0 = 2ϖε0 = ϑB0), thus mapping the spectral energy distribution

of all the molecular motions a!ecting magnetic moments.

These methods were introduced shortly after the NMR phenomenon’s discovery, but their development

has been slower than other techniques, e.g., imaging and spectroscopy. The reasons lie in the complex nature

of the NMR relaxation theories, and molecular dynamics models to analyze the acquired Nuclear Magnetic

Relaxation Dispersion (NMRD) profiles (i.e., the relaxation rate profile), but also in technical challenges in

building optimized equipment.

Significant molecular dynamics e!ects are observed at low magnetic fields, where the relaxation times

tend to become shorter at lower fields, and the intensity of the signal generated by a system of spins in a

B0 field approximately decreases as B3/2
0 . In this regimen (i.e., low B0, with Larmor frequency on the order

of a few kHz), the local field may become comparable or higher than B0, and the T1 may be shorter than

the longest correlation time, ↼c, hence the ”weak collision” condition is violated (i.e., it is expected T1 ≃ ↼c
when the fluctuating perturbations are of small intensity compared to the splitting energy due to B0).

Moreover, in this low field condition, for nuclei with spins 1/2, the predominant longitudinal relaxation

mechanism depends on the fluctuations due to dipole-dipole couplings, while for spins 1, nuclei with their

electric quadrupole moment couple with molecular electric field local gradients, dominating the relaxation

process.

The most powerful characteristic of the NMRD profiles is that they are unique for each material or

substance, resulting in a single fingerprint for material identification. Fast Field Cycling applies to many

fields, from research to industry, including food science applications [2, 7], material science [5, 6], and

pharmaceutical [4] to name a few.

Historically, the first experiments regarding the FC approach were performed by N.F. Ramsey and R.V.

Pound at Harvard, in 1949-1951. Then, between the 1950s and 1970s, this technique was improved by

many groups of researchers mostly in the United States. The developed technique consisted of manually or

mechanically moving the sample between two magnets (i.e., shuttling processes). The shuttling process is

cyclically repeated, and for this reason, the technique was called field-cycling NMR relaxometry. Later, a

new approach was proposed consisting of holding still the sample and switching the magnetic field using an

air core electromagnet, speeding up the procedure. This led to calling the new method Fast Field-Cycling

NMR relaxometry, which was first investigated by A.G. Redfield, F. Noack, S.H. Koenig, and R. Kimmich.

Finally, the first commercial FFC-NMR relaxometer based on the Noack-Schweikert technology was produced

in Italy by Stelar company in 1996. Since then, several improvements in both hardware and software have

been introduced to extend the range of applications [53].

1.2.2 Quantum Formalism

From a quantum perspective, the nuclear spins’ dynamics can be studied using the time-dependent Shrödinger

equation, where all the information about the spin states, positions, and velocities of electrons and nuclei, is
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completely described by a wave function |$⇐
4. To maintain consistency with standard quantum mechanical

notation, the wave function |$⇐ is represented using the bra-ket formalism, where |$⇐ denotes a vector in

a Hilbert space. Despite the Shrödinger equation being complete, it cannot be used in practice, thus it is

necessary to introduce a simplified approach, the spin Hamiltonian hypothesis, which only uses the nuclear

spin states.
d

dt
|$spin(t)⇐ ⇒ →

i

⊋H
spin

|$spin(t)⇐

where H
spin represents the nuclear spin Hamiltonian, and |$spin⇐ is the wave function of the spin state of

the nuclei. Henceforth, for simplicity, |$⇐ will represent the nuclear spin state, and H is the nuclear spin

Hamiltonian.

This approximation relies on the concept of timescale separation, which implies statistical independence

between nuclear and electronic movements. Essentially, the motion of electrons is so fast that nuclear

spins are influenced only by the average e!ect of the fields produced by the electrons over time. Moreover,

the energies associated with nuclear spins are typically too small to have any impact on the behaviour of

the electrons or the overall motion of the molecules. Thus, it is reasonable to assume that, under typical

temperature conditions, the approximation of the nuclear spin Hamiltonian holds for nearly all systems.

The eigenvalues of the quantum mechanics operator H are the energy values of the quantum system,

while the eigenfunctions form an orthonormal basis |n⇐ (i.e., an eigenbasis)

H |n⇐ = En |n⇐

in which En represents the energy level of the steady state |n⇐. Moreover, the wave function of a spin system

can be represented as a linear combination of eigenbasis

|$⇐ =
∑

n

cn |n⇐

In this equation, the cn coe”cients are associated with the probability of the system existing in the state

|n⇐. This equation illustrates the principle of state superposition, which is a key concept in NMR theory.

Electric and Magnetic spin Hamiltonian

Using solely symmetry principles, without complex calculations, it can be demonstrated that electric in-

teractions are non-existent for nuclei with spin I = 1/2, Hele = 0. Specifically, for these spin-1/2 nuclei,

no electrical energy terms rely on the nucleus’s internal structure or orientation. However, for nuclei with

spin I > 1/2, the electric charge distribution lacks spherical symmetry, causing the nucleus’s electric en-

ergy to vary based on its orientation relative to the molecule’s structure. Consequently, the nuclear electric

quadrupole moment interacts with the surrounding electric field gradient, resulting in an electric quadrupole

interaction term in the spin Hamiltonian H
ele = H

Q.

The quadrupole interaction is influenced by both the nuclear quadrupole moment and the electric field

gradient, which is determined by the molecular environment. This makes the NMR of quadrupolar nuclei

more complex than that of spins-1/2, as both electric and magnetic factors a!ect molecular dynamics.

Recalling (1.1) and (1.2), the quantum expression for the energy of a magnetic moment interacting with

a magnetic field B is Hmag = →µ ·B.

The magnetic energy is lowest when µ is parallel to B and highest when they are antiparallel. The

magnetic and electric fields a!ecting a nuclear spin can originate from external equipment (external spin

interactions) or the sample itself (internal spin interactions). External spin interactions are exclusively

4Alternatively, one may adopt the Heisenberg formalism, wherein the time dependence is embedded in the operators, instead

of wave functions.
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magnetic, with various applied magnetic fields used to manipulate nuclear spins. For spin-1/2, internal

spin interactions are purely magnetic, while spins I > 1/2 also experience electric quadrupolar interactions.

Nuclear spins typically couple more strongly with external apparatus than with the molecular environment,

as external interactions are generally more intense.

In NMR relaxometry, the external perturbations are not weak, and this means that the measuring

instrument becomes, in a sense, part of the system under investigation.

External Spin Interactions

As previously described in Section 1.1, in an NMR experiment a polarizing homogeneous and static magnetic

field labelled as B0 is applied to the sample. This can be generated by a permanent, electromagnetic, or

superconducting magnet. The system is excited using RF oscillating fields, labelled as B1. Generally, these

pulses are generated by a coil in the probe and are as spatially homogeneous as possible and perpendicular to

B0. Moreover, depending on the experiment, some spectrometers also present gradient coil, which generates

a magnetic field gradient, labelled as Bgrad(r, t), and which depend on the position and can also depend on

time. Usually Bgrad ⇑ B0.

Hence, considering the Hamiltonian formulation, the external part is

H
ext = H

static +H
RF(t) +H

grad(r, t)

Considering H
static
i

the interactions between B0 and the spins Ii, the previous total spin Hamiltonian related

to the static field will beHstatic =
∑

i
H

static
i

. Similarly, the other terms of the Hamiltonian in (1.2.2) describe

the interactions between spins and B1, and Bgrad.

From 1.1.1, defining ϱi = →ϑiB0 the Larmor angular frequency of spin Ii, the Hamiltonian term corre-

sponding to the static field (directed along the z→axis) is

H
static
i

= →ϑiB0Iiz

while, the term related to the RF pulse, during the application, can be approximated with:

H
RF
i

(t) = →ϱnut
i

[
cos (ϱreft+ ↽)Iix + sin (ϱreft+ ↽)Iiy

]

where ϱnut
i

represents the nutation frequency, i.e., a measure of the RF intensity experienced by spins in

angular frequency units, ϱref represents the spectrometer reference frequency, and ↽ is the initial phase of

the RF field.

Finally, considering an applied external gradient field directed along the three laboratory frame axes, the

intensity is usually much lower than the polarizing one, thus, the transverse component can be neglected,

and e.g., the correspondent Hamiltonian for a gradient along x→axis is

H
grad
i

(r, t) = →ϑiGx(t)xIiz

In the same way, for Gy, and Gz.

Internal Spin Interactions

Generally, the spin-spin couplings cannot be neglected in most NMR experiments and for most samples. The

e!ect of the electromagnetic fields generated from the sample itself on the nuclei can be represented with

the internal Hamiltonian, i.e.,

H
int = f

∑

k

F (k)O(k)
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where f represents a specific constant depending on the interaction, F (k) are the functions related to the

fluctuating structure, i.e., random functions of the relative positions of two spins, and O(k) represents

the spin-operator functions acting on the spin variables. For instance, F (k) in the case of intramolecular

Hamiltonian dipolar coupling (where the interdipole distance can be considered constant), can be described

through the second-order spherical harmonics Y2,m(⇀,↽), with m = 0, ±1, ±2, and ⇀(t), and ↽(t) the polar

and the azimuthal angles respectively.

Assuming the substances in question are diamagnetic -that is, devoid of unpaired electron spins (specifi-

cally, free of paramagnetic impurities)- the list of relevant spin interactions can be summarized as follows:

• Direct dipole-dipole coupling (Figure 1.11 (a)) refers to the immediate interactions between nuclear

spins, which occur independently of the surrounding molecular electron cloud. Each nucleus possesses

a magnetic dipole moment, generating a magnetic field that influences other nuclear magnetic moments.

This interaction can be classified as intradipolar when it involves nuclei within the same molecule, or

interdipolar when it occurs between nuclei of di!erent molecules. Additionally, these interactions can

be homonuclear if the participating nuclei are of the same type or heteronuclear if they di!er in species.

• Quadrupolar coupling (Figure 1.11 (b)) refers to the interactions of an electric nature between nuclei

that possess a spin greater than 1/2 and the electric fields in their vicinity. Unlike simpler nuclear

spins, these nuclei have a charge distribution that extends over a volume, allowing them to interact

with the gradient of the electric field generated by surrounding electron clouds. This type of coupling

is significant in understanding the behaviour of certain nuclei in various environments, as it reveals

how their electric quadrupole moments respond to external electric field variations. By examining

quadrupolar coupling, valuable insights can be obtained into molecular symmetry, dynamics, and the

local electronic environment surrounding these nuclei.

• Chemical shift (Figure 1.11 (c)) refers to the indirect interaction between the external magnetic field

and nuclear spins, mediated by the electrons that orbit the nuclei. This interaction can lead to a

subtle shift in the resonance frequency of the nuclei. Chemical shifts can be classified as isotropic

or anisotropic, with the latter known as Chemical Shift Anisotropy (CSA). In an isotropic scenario,

the orientation of the sample relative to the magnetic field does not influence the chemical shift; it is

solely dependent on the strength of the applied magnetic field (B0). Conversely, in anisotropic cases,

the orientation of the sample can significantly a!ect the observed shifts, providing deeper insights into

molecular structure and dynamics.

• J-coupling (Figure 1.11 (d)), also known as scalar coupling, refers to the indirect interactions between

nuclear spins that occur through the mediation of valence electrons. Unlike other types of coupling,

J-coupling is not influenced by the strength of the external magnetic field (B0).

• Spin–rotation interaction (Figure 1.11 (e)) refers to the coupling between the nuclear magnetic moment

and the magnetic fields produced by the electric currents that arise from the rotational motion of

molecules. This interaction is significant in understanding how molecular rotation influences nuclear

spins. As molecules rotate, they generate varying magnetic fields, which can a!ect the behaviour of

nearby nuclear spins. This interplay provides valuable insights into molecular dynamics and structure.

Quadrupole coupling is generally the most significant interaction in terms of internal spin interactions;

however, it vanishes for nuclei with a spin of 1/2.

The mathematical description of nuclear spin interactions can be complex. Nevertheless, a more straight-

forward version of the internal Hamiltonian is frequently applicable, especially under the assumption of a

very strong external magnetic field -this is referred to as the secular approximation- and when molecular mo-

tion is rapid, known as motional averaging. The parts of the Hamiltonian that are typically excluded pertain
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(a) Direct dipole-dipole coupling.

Distribution of electric charge in the nucleus

Electrons

(b) Quadrupolar coupling.

Electrons

B0

(c) Chemical shift.

Electrons

(d) J-coupling.

Rotation of molecule

(e) Spin-rotation interaction.

Figure 1.11: Internal spin interactions. The yellow part represents the electron cloud.
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Molecule

Intra

Inter

Figure 1.12: Schematic representation of inter- and intra- molecular interactions.

to relaxation phenomena in nuclear spin systems, which are a!ected by various timescales and demonstrate

intricate reciprocal relationships. The secular approximation holds when the dynamics of nuclear spins are

predominantly governed by a robust interaction with the external magnetic field, rendering some inter-

nal spin interactions insignificant. This approximation is generally e!ective in most scenarios, except for

cases involving quadrupolar spin interactions, which may necessitate a more detailed examination. In such

instances, the secular approximation allows for substituting the term H
int with a simplified version, Hint0.

Motional averaging takes place when molecules are in rapid motion, causing fluctuations in interaction

terms over time; consequently, the previous Hamiltonian, Hint0, can be represented by an averaged value,

H̄
int0. This method is usually appropriate for gases and liquids where molecular motion is not overly sluggish.

There are three key types of molecular motion to consider: translational motion, rotational motion, and

internal molecular movements. The impact of these motions on spin interactions varies depending on whether

they involve nuclei within the same molecule (intramolecular) or between di!erent molecules (intermolecular)

(see Figure 1.12 for a schematic representation).

In various solids, gases, and liquids, the orientation of molecules is not static and varies over time. This

temporal dependence allows for the application of the ergodic hypothesis, which states that the average

orientation of a molecule over a long period can be considered equivalent to the average orientation of a

collection of molecules at a single moment.

In gaseous states, both rotational and translational motions (di!usion) occur at very high velocities. Con-

sequently, intramolecular spin interactions tend to average out to their isotropic values, while intermolecular

interactions are minimized to the point of being negligible.

Conversely, in liquids, di!usion happens at a considerably slower rate compared to gases, influenced

by factors such as molecular size and fluid viscosity. In isotropic liquids, intramolecular spin interactions

are averaged to isotropic values due to the rotational motion of the molecules. Short-range intermolecular

interactions -those occurring within the spatial region where a molecule di!uses before experiencing NMR

relaxation- average out to zero. However, long-range intermolecular interactions between molecules that

lie outside their respective di!usion domains remain una!ected by this averaging process. In anisotropic

liquids, the motionally averaged spin interactions are contingent upon the orientation of the liquid’s director

(the alignment direction of the liquid crystal) relative to the magnetic field. The rapid motion of molecules

e!ectively diminishes short-range intermolecular interactions while preserving long-range interactions. Ad-

ditionally, the rotational motion of molecules can lead to intramolecular spin interactions that di!er from

isotropic averages.

In solids, atomic movement is typically highly restricted, resulting in an internal spin Hamiltonian sig-

nificantly influenced by the solid’s orientation concerning the magnetic field. As a result, there is limited
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averaging of internal spin interactions, allowing both intramolecular and intermolecular interactions to re-

main relevant.

For spins-1/2, generally, dipole-dipole>CSA>spin-rotation. The chemical shift anisotropy (CSA) becomes

significant compared to dipole-dipole interactions at higher magnetic fields. The spin–rotation mechanism

may also be important for small molecules in non-viscous liquids or gases.

While, for nuclei with spins greater than 1/2, quadrupole≃dipole-dipole>CSA>spin-rotation. At low

magnetic fields, dipole-dipole and quadrupole interactions are typically the most significant contributors to

relaxation processes.

1.2.3 The autocorrelation function

The mathematical description of the NMR relaxation induced by the magnetic field variations requires the

introduction of some terms.

The rapidity of the fluctuations of the polarizing field B0 is described by the autocorrelation function,

G(t), defined as

G(↼) = ⇓B(t) ·B(t+ ↼)⇐ (1.17)

These parentheses can refer to an average over a long time for a single spin, or an average over the ensemble

of n spins at a given time (due to the ergodic hypothesis). The time interval ↼ is fixed, and B(t) term

represents the molecular position and/or orientation expressed in terms of polar coordinates.

Two fundamental properties apply to stochastic fluctuations:

• Stationarity. The autocorrelation function is invariant under shifts in the time origin, i.e., it varies with

the interval ↼ but remains una!ected by the absolute time t. As a result, for simplification purposes,

the origin is frequently set to zero, i.e., G(↼) = ⇓B(0) ·B(↼)⇐.

• Time-reversal. The autocorrelation function remains unchanged when the sign of ↼ is reversed. In

other words, G(↼) are even functions of ↼ , i.e., G(↼) = G(→↼) = G(|↼ |).

When the interval ↼ is relatively short compared to the timescale of fluctuations, the values of the field

at the two-time points are quite similar, i.e., G(↼) ⇔= ⇓B2(0)⇐. In contrast, when ↼ is long relative to the

timescale of fluctuations, the system e!ectively loses its ’memory’. As a result, no consistent relationship

exists between the function values, leading the ensemble average to approach zero. Thus, generally, G(↼)

tends to be large for small values of ↼ and tends to zero for large values of ↼ .

Often, the autocorrelation function takes a simple exponential form

G(↼) = ⇓B2
⇐ e→

ω
ωc

where ↼c is the characteristic time of the correlation decay defined by

↼c =
1

G(0)→G(↖)

∫ ↗

0
[G(t)→G(↖)] dt

Correlation time is the duration over which fluctuations in a field are observed. In other words, it indicates

how long it takes for these fluctuations to reverse their sign, i.e., extended fluctuations lead to large values

of ↼c, while shorter fluctuations lead to short values of ↼c. From (1.17)

↼c =

∫ ↗

0
e→

t
ωc dt

To define G(↼) in terms of molecular dynamics, let’s introduce a function f(r(t)), with r a stochastic

position vector. f is real (fϖ = f , where fϖ is the complex conjugate of f), and stationary, i.e., it is invariant



1.2 Fast Field Cycling NMR Technique 29

under transformations of the time variable. Hence, the autocorrelation function is defined as

G(↼) = ⇓f(0) · f(↼)⇐ =

∫

R3

∫

R3
0

f(r)f(r0)P (r, r0, ↼)P0(r0)d
3
r0d

3
r

where P (r, r0, ↼) represents the conditional probability that a molecule is at the position r at time ↼ starting

from r0 at time 0, while P (r0) represents the probability to have the molecule in r0 at t0 = 0.

In general terms, this physical quantity is related to F (k) from (1.2.2), thus, it is related to the order

k, Gk(t). In the case of the spatial harmonics function Y2,m, there will be three correlation functions, i.e.,

G0(t), G1(t), G2(t). Considering rotational or translational di!usion, the probability P (r, r0, ↼) can be

derived from the classical di!usion equation.

Finally, considering molecules in a confined environment, and using the normalized correlation function

G(↼) = ↘f(0)·f(ϱ)≃
↘|f |2≃ , distinguishing between the individual reduced correlation functions is practically not

necessary in most cases, i.e., G0(t) = G1(t) = G2(t) = G(t). Hence, with G(0) = 1, and assuming G(↖) = 0

↼c =

∫ ↗

0
G(t)dt

It is now necessary to introduce the last term, the spectral density, J(ϱ). This term is obtained by the

Fourier transform of the autocorrelation function G(t)

J(ϱ) =

∫ +↗

→↗
G(t)e→iεtdt

Spectral density measures the molecular motion at the specific frequency required to produce the relaxation.

It is important to note that the field will influence the spins only if it oscillates at the corresponding

Larmor frequency. Hence, The function J(ϱ) characterizes field fluctuations resulting from thermal molecular

motions in the frequency domain. It represents the conjugate counterpart to the correlation function in the

time domain.

Given that G(t) is real and even, it follows that also J(ϱ) will be real and even (J(→ϱ) = J(ϱ))

J(ϱ) =

∫ +↗

→↗
G(t)e→iεtdt = 2

∫ ↗

0
G(t) cos (ϱt)dt

From the normalized autocorrelation function G(t), the normalized spectral density function is derived

J (ϱ) =

∫ +↗

→↗
G(t)e→iεtdt

This quantity satisfies the two following properties:

J (0) =

∫ +↗

→↗
G(t)dt = 2↼c

1

2ϖ

∫ +↗

→↗
J (ϱ)dϱ = G(0) = 1

By utilizing the quantities defined above, one can establish that the frequency dependence of the spin-

lattice relaxation rate R1(ϱ) specifically in the context of intradipolar interactions among like spins, adheres

to a relationship similar to that described by Bloch, Wangsness, and Redfield theory[54, 55]

R1(ϱ) =
1

T1(ϱ)
↙ J (ϱ) + 4J (2ϱ) (1.18)

Eventually, it is possible to derive a similar result for R2(ϱ)

R2(ϱ) =
1

T2(ϱ)
↙ 3J (0) + 5J (ϱ) + 2J (2ϱ)
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1.3 Physical Models to interpret FFC Data

In studying nuclear magnetic relaxation dispersion profiles acquired through field-cycling techniques, various

mathematical models serve as essential tools for characterizing the molecular dynamics of liquids, both in

bulk systems and under confinement conditions. Several models have been developed and proposed, and

they enable the interpretation of relaxation phenomena across a range of Larmor frequencies, typically

ε0 ∝ [10 → 4000] · 103 kHz, subject to the limitations of the instrumentation. To accurately capture these

dynamics, certain approximations must be introduced. The following section discusses the most well-known

models in this field, including the model subject of study of this PhD thesis, i.e., the Model-Free (MF).

1.3.1 Spin Dynamics in Bulk Liquids

The behaviour of spin-bearing molecules in bulk liquids is shaped by intermolecular and intramolecular

interactions, which operate on di!erent timescales. Intermolecular interactions exhibit slower fluctuations

compared to their intramolecular counterparts. Specifically, intermolecular couplings are influenced by trans-

lational Brownian motion, which occurs over distances that exceed the size of the molecules. In contrast,

intramolecular interactions are governed by the rapid process of molecular rotational di!usion.

Dipole-dipole interactions can occur within a single molecule (intramolecular) and between di!erent

molecules (intermolecular), whereas quadrupolar interactions are restricted to intramolecular scenarios. The

influence of intermolecular dipole-dipole interactions on longitudinal relaxation is significant primarily un-

der conditions of anisotropic molecular dynamics, where these interactions manifest at lower frequencies.

However, their impact is considerably reduced in isotropic environments.

When considering that rotational and translational di!usion are statistically independent, the total lon-

gitudinal relaxation rate can be represented as the sum of contributions from intermolecular and intramolec-

ular dipole-dipole interactions among spins that may be categorized as ”like” or ”unlike.” For diamagnetic

samples, this relationship can be articulated mathematically as:

1

T1(ϱ)
=

1

T inter
1 (ϱ)

+
1

T intra
1 (ϱ)

The degree to which these relaxation rates contribute to the overall rate depends on various system-

specific factors, including composition, molecular dynamics, and the frequency range utilized in FFC-NMR

experiments. In cases where quadrupolar couplings are present, these interactions can influence relaxation

across all frequencies. Due to their stronger nature compared to dipolar couplings, intramolecular quadrupo-

lar interactions often dominate longitudinal relaxation when paramagnetic particles are absent:

1

T1(ϱ)
′

1

T inter
1 (ϱ)

To accurately capture spin dynamics, it is essential to develop a conceptual model that reflects the pro-

cesses and interactions occurring within the pore volume. This model accounts for interactions between spins

as well as between spins and pore surfaces, facilitating the derivation and calculation of the autocorrelation

function. The spectral density function J(ϱ) can then be obtained through the Fourier transform of G(t),

linking it to relaxation dispersion curves for both T1 and T2 relaxation times.

In this context, all relevant interactions can be described using fluctuating spherical coordinates that

represent variations in dipole-dipole vectors or electric field gradients. For instance, dipolar interactions can

be characterized by spherical coordinates defined by internuclear distance and azimuthal and polar angles,

r = r(t), ↽ = ↽(t), and ⇀ = ⇀(t) respectively. In contrast, for quadrupolar couplings, only azimuthal and

polar angles are necessary, with changes in internuclear distance considered negligible.
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1.3.2 BPP Theory

One of the most well-known theories related to the relaxation processes was proposed in 1948 by Nicolaas

Bloembergen, Edward Mills Purcell, and Robert Pound, and it is known as BPP theory. This theory

describes the relaxation process in scenarios characterized by a high-intensity magnetic field (known as

a ’weak collision’ regime) where isotropic rotational molecules di!usion, and intramolecular dipole-dipole

interactions within two-spin 1
2 systems which exhibit similar spin properties (i.e., I = S, and ϑI = ϑS) occur

in bulk liquids.

Considering the case of isotropic rotational di!usion in bulk liquids, the reduced correlation function

is a mono-exponential function, i.e., G(t) = e→
t
ωc , (with G(0) = 1). Therefore, the correspondent spectral

density function is defined as J (ϱ) =
 +↗
→↗ G(t)e→iεtdt = 2ϱc

1+(εϱc)
2 , presenting a Lorentzian form.

Hence, in the BPP model, the relaxation rates expressed as a function of J(ϱ) are defined as [56]

R1(ϱ) =
1

T1(ϱ0)
=

1

5

(µ0

4ϖ

)2 ϑ4⊋2
r6

I (I + 1) [J(ϱ0) + 4J(2ϱ0)]

R2(ϱ) =
1

T2(ϱ0)
=

1

10

(µ0

4ϖ

)2 ϑ4⊋2
r6

I (I + 1) [3J(0) + 5J(ϱ0) + 2J(2ϱ0)]

and by substituting the J (ϱ) expression, for the dipolar coupling of two spins 1
2 systems:

R1(ϱ) =
1

T1(ϱ0)
=

3

10

(µ0

4ϖ

)2 ϑ4⊋2
r6

[
↼c

1 + ϱ2
0↼

2
c

+
4↼c

1 + (2ϱo↼c)
2

]

R2(ϱ) =
1

T2(ϱ0)
=

3

20

(µ0

4ϖ

)2 ϑ4⊋2
r6

[
3↼c +

5↼c
1 + ϱ2

0↼
2
c

+
2↼c

1 + (2ϱo↼c)
2

]

where ϱ0 = ϑB0 is the Larmor angular frequency, ϑ is the gyromagnetic ratio, ⊋ is the reduced Planck

constant, i.e., ⊋ = h/2ϖ, and µ0 is the magnetic field constant.

In case of extreme narrowing conditions, e.g., in non-viscous liquids, with ϱ0↼c ⇑ 1, the rates have the

same value.

1

T1
=

1

T2
=

3

2

(µ0

4ϖ

)2 ϑ4⊋2
r6

↼c

The BPP model, assuming the mono-exponential correlation function, represents ideal cases, allowing

one to describe and agree to easy experimental situations, e.g., experiments with pure substances.

1.3.3 Quadrupolar coupling in NMRD profiles

In specific systems, interesting behaviours arise when dipolar I -spins interact with quadrupolar S -spins,

particularly when the S-spins undergo additional quadrupolar interactions with electric-field gradients pro-

duced by nearby host molecules. When a quadrupolar energy level of the S-spin nuclei coincides with the

Larmor frequency of the I -spins, this alignment can lead to the appearance of distinct quadrupolar features

in the NMRD profile. These features are characterized by dips, and peaks in the T1(ϱ), and in the R1(ϱ)

dispersion curves respectively.

As the polarizing field approaches the low-field limit, i.e., B0 ∞ 0, the electric-field gradient becomes the

dominant quantization field. In cases where molecular motion is constrained, the quadrupolar interaction of

the S -spins leads to zero-field splitting of their energy levels. Conversely, in the high-field limit, where B0 is

the quantization field, and the Zeeman splitting of the S -spin energy levels prevail. Under both limits, the

S -spins maintain thermal equilibrium, una!ected by fluctuations in the I -spin states.
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In general, the gyromagnetic ratio of dipolar I -spins is considerably higher than that of quadrupolar

S -spins, i.e., |ϑI | ≃ |ϑS |. Under conditions where the B0 field is relatively weak and the resonance of the

S -spin remains within the low-field regime, the quadrupolar interaction becomes predominant, establishing

the main energy level splitting. In this context, there exists a possibility for the resonance frequency of the

I -spin, which is determined by Zeeman interaction, to align with that of the S -spin.

The intersection of resonant frequencies occurs when the resonance frequency of quadrupolar S -spins in

a low-field environment aligns with that of the I -spin, ϱS = ϱI = ϑIB0. This synchronization triggers a

zero-quantum “flip-flop” mechanism, which results in a decreased spectral density term that peaks at the

di!erence between the frequencies, ϱI → ϱS , with the dipolar correlation time, ↼dip is subject to various

influences that introduce fluctuations in the dipole-dipole interactions between I -spins and S -spins

J(ϱI → ϱS) ↙
↼dip

1 + (ϱI → ϱS)
2 ↼2dip

This phenomenon is reflected as a distinct peak in the relaxation rate curve across the magnetic field,

typically referred to as a quadrupole peak.

1.3.4 Spin Dynamics in Confined Fluids

The magnetic field dependence of the longitudinal relaxation rate o!ers a precise means to test theoretical

models that elucidate the behaviour of confined liquids, where the influence of reduced dimensionality alters

molecular interactions significantly. Developing comprehensive models that link the molecular dynamics of

fluids in porous networks to the frequency-dependent behaviour of NMRD relaxometry enables probing fluid

dynamics at the nanoscale with unprecedented insight.

The BPP theory successfully characterized bulk glycerin through the assumption of an exponentially

decaying G(t), reflecting molecular tumbling in a bulk phase. However, when investigating fluids in confined

environments -such as those occupying porous matrices or surrounding high surface area particles- the

interaction landscape becomes considerably more intricate, as molecular dynamics are now mediated by

surface and interfacial interactions, deviating from bulk behaviour.

Several analytical models have emerged to address this complexity in Magnetic Resonance of Porous

Media (MRPM) and complex fluids. These models reduce the dimensional intricacies of confined fluid sys-

tems while retaining critical physical phenomena essential for the accurate interpretation of NMRD profiles.

Notably, Levitz et al. advanced a surface-mediated di!usion model tailored to biological contexts, focusing

on the impact of surface dynamics on relaxation [57]. In parallel, Kimmich and co-workers, inspired by By-

chuk and O’Shaughnessy’s foundational 1995 work, developed the bulk-mediated surface di!usion (BMSD)

model [1]. This framework posits a sequential mechanism whereby molecules desorb from a surface, undergo

di!usion in a bulk-like interfacial layer, and subsequently re-adsorb onto the surface, thereby capturing the

interplay between near-surface and bulk-like di!usion.

Among the more comprehensive frameworks, Korb and colleagues developed a generalized model in the

early 1990s for describing relaxation dispersion in confined fluids [58, 59]. Their model emphasizes the

dominant relaxation pathways for hydrogen-containing molecules through heteronuclear dipolar interactions

with paramagnetic ions (e.g., Fe3+ or Mn2+ ) distributed on pore surfaces. Primarily applicable at low

frequencies and over extended timescales, these models are often categorized within quasi-two-dimensional

(Q2D) frameworks, relying on three distinct correlation times to represent the complex relaxation dynamics

of fluids in geometrically constrained environments.

Expanding on the Q2D approach, Faux et al. introduced the 3↼ model in the early 2000s [60]. This model

provides a refined description of di!usion correlation times across both thin surface-adjacent layers and the

bulk phase, accommodating the nuanced relaxation dynamics at the fluid-solid interface. By integrating
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numerical estimation techniques, the 3↼ model extends the applicability of Q2D frameworks, o!ering a

robust approach for simulating confined fluid behaviour across diverse porous architectures.

Porous Media: E!ects of Surface Impurities

Korb and collaborators categorized high-surface-area systems into two principal types: proton-rich solid

phases, such as biological macromolecules and engineering polymers, and proton-poor solid phases, including

microporous glasses, zeolites, plaster, cement, and various clay minerals. In the proton-rich class, the

magnetic field dependence of the relaxation rate is largely governed by cross-relaxation processes between

protons in the liquid phase and those embedded within the solid matrix. By contrast, in proton-poor

materials, the relaxation of liquid spins is predominantly influenced by alternative mechanisms, especially

those associated with translational di!usion of the fluid near the solid surfaces [61].

In high-surface-area media containing paramagnetic centres (e.g., certain cement and geological materi-

als), the presence of paramagnetic ions, such as manganese (Mn2+) and iron (Fe3+), can profoundly a!ect

the behaviour of NMR relaxation. These ions possess large magnetic moments, producing localized dipolar

fields that interact with nearby di!using spins in the fluid. The substantial magnetic moments of these

paramagnetic centres significantly dominate the 1H longitudinal relaxation process at low magnetic field

strengths. Additionally, theoretical models exist for cases where no paramagnetic contaminants are present,

providing a comprehensive approach to analysing the longitudinal relaxation in confined fluid systems.

Confined fluid relaxation times are generally characterized by two distinct limiting behaviours: di!usion-

limited (slow-di!usion) relaxation, where the relaxation is governed by bulk di!usion, and surface-limited

(fast-di!usion) relaxation, where the interactions with the surface prevail. In the surface-limited regime, the

total proton relaxation rate 1/T1 is described as a linear combination of the surface relaxation rate 1/T1,s

and the bulk relaxation rate 1/T1,b. Here, the first one occurs within a thin layer of fluid, approximately ω

thick, adjacent to the solid surface, where adsorbed protons undergo di!usion before eventually desorbing

and di!using into the bulk phase. Notably, in the frequency ranges used for porous media analysis via

FFC-NMR, the second one remains independent of the Larmor angular frequency.

To assess the impact of the surface distribution of paramagnetic sites on a proton located at a maximum

distance ω from the interface of a solid grain (typically several microns in size), the surface of the pore can

be approximated as flat, given that the curvature of the pore wall is considerably larger than ω. T1,s can be

expressed as a composite contribution from two processes: the relaxation contribution 1/T1,2D of protons

di!using near immobilized paramagnetic centres, and the relaxation rate 1/T1,p of protons trapped in the

ligand fields of these centres

1

T1(ϱ)
=

1

T1,b
+

NS

Nb

1

T1,2D(ϱ)
+

NP

Nb

1

T1,p(ϱ)

In this model, NS denotes the number of di!using molecules within the transient layer ω near the pore

surface, NP the number of liquid molecules associated with paramagnetic impurities on the surface, and Nb

the population of molecules in the bulk liquid phase.

Furthermore, the nature of the saturating fluid significantly impacts relaxation behaviour, with fluids

classified as either protic or aprotic [62]. Protic liquids, which can exchange protons, allow mobile protons

to be temporarily trapped within the ligand fields of paramagnetic sites on the pore surface. Aprotic liquids,

lacking proton exchange capacity, restrict the movement of protons, preventing such trapping interactions

with surface paramagnetic sites.

For the protic liquids, the protons (I) might be trapped in the paramagnetic ion (S) field for a time

longer than the bulk or surface correlation times. The value for the 1/T1,p rate is given by [59]

1

T1,p(ϱI)
=

2

15

ϑ2
I
ϑ2
S
⊋2S(S + 1)

D6
min

T1,elec(ϱS)

[
3

1 + ϱ2
I
T 2
1,elec(ϱS)

+
7

1 + ϱ2
S
T 2
1,elec(ϱS)

]
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where Dmin represents the distance of minimal approach between the paramagnetic site and the proton, ϱI ,

and ϱS are the proton and the electronic angular frequency respectively. The electronic correlation time is

given by 1
T1,elec

= H2
S
↼ς


1

1+ε
2
Sϱ2

ε
+ 4

1+4ε2
Sϱ2

ε


, with H2

S
the intensity of electron-spin fluctuations, and ↼ς the

correlation time for the electron-lattice fluctuating interaction.

Finally, for the case of the aprotic liquid, the contribution given by T1,p can be neglected because the

protons tend to not get trapped in the paramagnetic ion field. The longitudinal relaxation rate can be

modelled [62] at low frequencies as

1

T1(ϱI)
=

1

T1,b
+

(µ0

4ϖ

)2 ϖSP ⇁liqσSϑ2
I
ϑ2
S
⊋2S(S + 1)

ωD2
min(1 + x2)

↼m



3 ln




1 + ϱ2

I
↼2
m(

ϱm
ϱS

)2
+ ϱ2

I
↼2
c



+ 7 ln




1 + ϱ2

S
↼2
m(

ϱm
ϱS

)2
+ ϱ2

S
↼2
c









where ↼S is the surface residence time, which indicates the duration that proton-bearing molecules spend

at a pore surface. This time reflects how long these molecules di!use within the thin surface layer, ω, and

serves as an indication of the duration for which protons remain associated with paramagnetic impurities.

On the other hand, ↼m denotes the translational correlation time, which is linked to the individual molecular

movements occurring near the surface. The parameter x serves to account for the variable distance, Dmin,

representing the minimal approach between proton spins and impurity spins in relation to the diameter, D,

of the liquid molecules. Conclusively, σS = ηS⇁S▷ represents the surface density of a small quantity of fixed

paramagnetic species with S-spins that are evenly distributed across the pore surfaces. Here, ⇁S denotes the

density of the solid matrix, ηS indicates the volume concentration of paramagnetic ions, and ▷ refers to the

thin layer of paramagnetic ions.

3↼ Model

An alternative to the Korb model to analyse the NMRD profiles acquired from porous media saturated with
1H fluids has been proposed in the early 2000 by Faux and McDonald [60], and it is known as 3↼ model.

The composition of the porous media and the intricate internal structure makes very complex the dynamic

of the fluids, and therefore to model it. If the porous material has paramagnetic ions, the proton-proton

interactions become negligible and the relaxation mechanism is predominantly governed by dipolar interac-

tions between proton spins and the paramagnetic ions; otherwise, in the absence of paramagnetic ions, the

relaxation depends on the combination of interactions between pairs of protons in relative motion.

The 3↼ model is based on the idea of defining the pore geometry as a quasi-two-dimensional (Q2D)

system with locally flat surfaces containing a bulk liquid of thickness h [6, 63], and defining three correlation

times:

• ↼b is the bulk fluid correlation di!usion time constant related to the water di!usion coe”cient

Db = σ2/(6↼b). The value of σ is 0.27 · 10→9 m, which roughly represents the intermolecular dis-

tance between water molecules.

• ↼φ is the di!usion correlation time for the fluid slowly moving parallel at the pore surface, related to

the di!usion coe”cient Dφ = σ2/(6↼φ).

• ↼d is the desorption time, which represents the time a water molecule stays on the surface before the

desorption, taking the rate of spins desorption as an exponential decreasing function, i.e., e→
t
ωd .

The model provides longitudinal relaxation rates for each interaction.

For the interaction between the layer of spins of the paramagnetic impurity in the crystal (σ) and the

surface (◁) the relaxation rate is 1
T1,ϑϖ

, while between σ and the bulk (b) fluids, the relaxation rate is 1
T1,ϑb

.
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Considering the surface water moves very slowly compared to the bulk fluid, hence, it can be considered

e!ectively immobile due to its extremely slow movement, i.e., ↼φ ≃ ↼b, the relaxation rate for the interaction

between bulk spins and surface fluid is defined as 1
T1,ϖb

.

For the pore surface layer, 1
T1,ϖϖ

represents the relaxation rate for the layer-layer spin interactions, while
1

T1,ϖϖ
is the relaxation rate for the bulk-bulk spins interactions.

Finally, the relaxation rate due to paramagnetic ions, e.g., manganese, dispersed in water is defined as
1

TMn
.

Hence, taking into account all these contributions, and ignoring the last one, for the case of systems

containing paramagnetic impurities, the measured relaxation rate can be modelled as

R1 =
nφ

nφ + nb

1

T1,↼φ
+

(
1→

nφ

nφ + nb

)
1

T1,↼b

where nϖ
nϖ+nb

defines the amount of spins in the surface layer volume. While, the relaxation rate in the case

of systems not containing paramagnetic impurities, is

R1 =
nφ

nφ + nb

(
1

T1,φb
+

1

T1,φφ

)
+

(
1→

nφ

nφ + nb

)(
1

T1,bφ
+

1

T1,bb

)

where 1
T1,bϖ

= Nb
Nϖ

1
T1,ϖb

, with Nb, and Nφ the spin volume density of the bulk fluids and surface layer respec-

tively.

To cover the full-time domain, the analytical expression of the correlation time function in this model is

numerically computed via Monte Carlo simulations. The correspondent spectral density function is obtained

by numerical integration. Moreover, the parameters of the Monte Carlo simulations are derived through

molecular dynamics simulations of bulk water and water in Q2D systems. This means that the model

requires a single formulation of the G(t) for each interaction described before, i.e., Gφb(t), Gφφ(t), Gbb(t),

G↼b(t), and G↼φ(t).

Firstly, the probability density function P (r0 ∈ r, t) is defined. This defines the probability that the

distance between two spins at t = 0 is r0, and then at time t it becomes r. This probability depends on

a set of parameters related to the various interactions between pairs of spins, i.e., the correlation times.

Then, recalling from 1.2.2, the spherical harmonic functions of degree 2 can be expressed through cylindrical

coordinates, i.e, Y2,m(x, y, z)5. Therefore, the general expression for the correlation function is[63]

G(t) =
4ϖ

5

∫

R3

∫

R3
0

[
2∑

m=→2

Y2,m(x0, y0, z0)Y ↓
2,m(x, y, z)

r
3
0r

3

]
P (r0 ∈ r, t)d3r0d

3
r

and the spectral density function is obtained by the Fourier transform of G(t), i.e.,

J(ϱ) = 2
↗
0 G(t) cos (ϱt)dt.

The longitudinal relaxation rate for the systems with and without paramagnetic ions respectively are

defined as [63]

Rparam
1 (ϱ) =

1

3

(µ0

4ϖ

)2
ϑ2
I
ϑ2
S
⊋2S (S + 1) [7J(ϱS) + 3J(ϱ)]

R1(ϱ) =
1

5

(µ0

4ϖ

)2
ϑ4
I
⊋2I (I + 1) [J(ϱ) + 4J(ϱ)]

where ϑS and ϑI are the impurities and the proton gyromagnetic ratios respectively, while ϱ = 2ϖε represents

the proton Larmor angular frequency, and ϱS = 658.2ϱ represents the electron Larmor angular frequency of

the impurity spins (typically Mn2+, and Fe3+). I = 1
2 , and generally S = 5

2 .

The 3↼ model was initially developed for porous materials with flat pores of depth h. It has been

shown that when pore thickness exceeds 5 · 10→9 m, the dispersion of longitudinal relaxation time becomes

5with Y → the complex conjugate.
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una!ected by the pore’s thickness [64]. Consequently, this model can be adapted to systems where the

fluid is contained within pores with at least two dimensions larger than 5 · 10→9 m. However, despite

its theoretical potential, practical application remains challenging. This di”culty arises mainly from the

complex calculations necessary to derive the theoretical R1 curve from the model, which complicates its

alignment with experimental data. Faux et al. also developed a code based on this model, which allows

users to perform least squares fitting on data (loading pre-calculated data sets based on the model for a

pre-defined grid of values for ↼b, ↼φ, and ↼d) [65].

1.3.5 Model-Free

The model-free approach, a breakthrough in nuclear magnetic resonance dispersion (NMRD) analysis, was

first developed in the early 1980s by scientists including Lipari, Szabo, King, and Jardetzky [66]. This

methodology, which allows for detailed insights into molecular motion without the need for explicit modeling,

was later advanced by Halle and collaborators [25], who expanded its utility for both experimental and

theoretical applications, leading to a more rigorous interpretation of relaxation dynamics.

This technique has proven especially powerful in cases where molecular dynamics are complex or hetero-

geneous, as it allows for the study of a wide variety of motional modes without the risk of oversimplification

inherent in rigid interpretative models.

In situations where experimental NMRD data spans the full frequency range -covering both the low- and

high-frequency plateaus- it becomes possible to extract dynamic parameters that describe molecular motions

independently of a specific molecular model. This feature lies at the heart of the model-free approach, as

it enables the direct extraction of physical information from data without the assumptions that typically

constrain model-based interpretations.

The rate of nuclear spin relaxation becomes dependent on frequency when the motional frequencies that

a!ect the spin-lattice coupling are comparable to the energy level separations within the spin system[46]. In

the regime known as motional narrowing, the influence of a fluctuating classical lattice variable V (t) on the

behaviour of spin relaxation can be e!ectively described through the time correlation function

G(↼) = ⇓V (t) · V (t+ ↼)⇐

The function G(↼) is a real-valued quantity. In dynamic models that adhere to the detailed balance condition,

G(t) exhibits invariance under time reversal, meaning its properties remain consistent even when the direction

of time is reversed, i.e., G(↼) = G(→↼).

The complex-valued spectral density function is defined as

J(ϱ) =

∫ ↗

→↗
G(↼)e→iεϱd↼ = 2

∫ +↗

0
G(↼) cos (ϱ↼)d↼

It’s worth noting that

J(0) = 2

∫ ↗

0
G(↼)d↼ (1.19)

hence G(↼) must be an integrable function, i.e., G(↼) ∞ 0
ϱ⇐↗

.

Let us consider a simple dynamic case, as rotational di!usion of spherical-top molecules in an isotropic

environment. In this case, G(↼) = G(0)e→
|ω|
ωc , with ↼c describing the V (t) fluctuations time scale, and

G(0) = ⇓V 2
⇐ represents the mean square amplitude of the fluctuations. Then, the spectral density function

will have a Lorentzian form, only depending on two parameters, G(0), and ↼c:

J(ϱ) = G(0)
2↼c

1 + (ϱ↼c)
2
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From (1.18), R1 is proportional to J minus a constant, K, which depends on the specific spins coupling

R1(ϱ) = K [J(ϱ) + 4J(2ϱ)]

NMRD profiles typically exhibit a broader frequency range, characterized by a stretched dispersion,

compared to what would be expected from a purely Lorentzian spectral density. While a stretched dispersion

provides additional insights into the system, a Lorentzian dispersion can be fully described using just two

parameters.

The first one is represented by the integral of the dispersion profile, which represents the mean-square

fluctuations of the lattice variable V (t). Hence, taking into account that G is real and satisfies the time

reversal property,
∫ ↗

0
J(ϱ)dϱ =

1

2

∫ ↗

→↗
J(ϱ)dϱ =

1

2

∫ ↗

→↗

(∫ ↗

→↗
G(↼)e→iεϱd↼

)
dϱ =

=
1

2

∫ ↗

→↗
G(↼)

(∫ ↗

→↗
e→iεϱdϱ

)
d↼ =

1

!2

∫ ↗

→↗
G(↼)!2ϖ0(↼)d↼

where 0(↼) is the Dirac function, i.e., 0(↼) = 1
2↽

↗
→↗ e→iεϱdϱ. Hence,

∫ ↗

0
J(ϱ)dϱ = ϖG(0)

The second parameter required to describe the Lorentzian dispersion is the mean motion duration related

to stretched dispersion, i.e., the integral over the time of the reduced time correlation function. Consider-

ing (1.19),

⇓↼c⇐ =
1

G(0)

∫ ↗

0
G(↼)d↼ =

1

2

J(0)

G(0)
(1.20)

These two quantities can be derived by fitting experimental raw data through a mathematical model

capable of physically correctly representing the NMRD profiles. The stretched spectral density can be

represented as a sum of N Lorentzian terms

J(ϱ) =
N∑

n=1

cn
2↼n

1 + (ϱ↼n)
2 (1.21)

while the correlation function is represented as a sum of exponentials

G(↼) =
N∑

n=1

cne
→ |ω|

ωn

Calculating the set of parameters {↼n, cn}, one can be compute the molecular dynamics quantities G(0),

and ⇓↼c⇐. Starting from the integration of the spectral density function

∫ ↗

0
J(ϱ)dϱ =

N∑

n=1

cn↼n

∫ ↗

0

2

1 + (ϱ↼n)
2 dϱ = 2
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cn""↼n


1

""↼n
arctan (ϱ↼n)
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0

=

= 2
N∑
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cn
ϖ
2
→ 0


= ϖ

N∑

n=1

cn = ϖG(0)

one obtains

G(0) =
N∑

n=1

cn

and, setting setting ϱ = 0 in (1.21), one obtains J(0) = 2
∑

N

n=1 cn↼n, and the (1.20) becomes

⇓↼c⇐ =
1

2

J(0)

G(0)
=

1

!2
!2
∑

N

n=1 cn↼n∑
N

n=1 cn
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The set of parameters {cn, ↼n} can be fitted following two approaches, i.e., the non-linear discrete ap-

proach, or the linear quasi-continuous approach. Mathematically, identifying the model-free parameters

starting from the experimental observation represents an ill-conditioned non-linear inverse problem. The

necessary theoretical preliminaries related to inverse problems are presented in Chapters 2, and 3.

The two approaches are successively expressed. Specifically, the second approach defines some of the

contributions of this PhD thesis and it is comprehensively adapted and described in Chapters 5, and 6.

Non-linear Discrete Model-Free

The non-linear discrete model-free approach finds the set of parameters by solving the classical non-linear

least squares problem [53].

Let us consider the set of parameters organized in two separate vectors c ∋ (c1, . . . , cn)T , and

ω ∋ (↼1, . . . , ↼n)T . The residual vector r as a function of c, and ↼ is derived as the di!erence between

the NMRD profile experimental measured points (Rexp
1 ), and the NMRD profile from the theoretical fitted

model (Rth
1 ):

r(c, ω ) ∋ Rexp
1 (ϱi)→Rth

1 (ϱi) , i = 1, . . . ,M

Therefore, the constrained non-linear weighted least squares problem to find c ↑ 0, and ω ↑ 0, is

min
(c,ω )⇒0

M∑

i=1

wir (c, ω )
2 (1.22)

where wi ↑ 0 represents the i → th weight related to the data noise, with i = 1, . . . ,M . If the noise is

independent of i, wi = 1, otherwise it depends on the noise standard deviation either by the σi at the signal

point R1(wi), i.e., wi = 1/σ2
i
, either by using strategies to derive the standard deviation from experimental

data, e.g., solving (1.22), with wi = 1, △i, and then using the fitted dispersion profile Rfit
1 :

wi =
1

Rfit
1 (i)

where Rfit
1 (i) is derived considering a threshold ErrF it =

∑
M̄

j=1
(rM̄ (j))2

M̄
, with rM̄ contains M̄ ′ 101 small-

est components of the residual vector R1(ϱi)→R1i, as follows: Rfit
1 (i) = min (|R1i|, ErrF it), i = 1, . . . ,M .

The minimization procedure of (1.22) can be carried out using the Projected Newton Method [67], with

the Hessian matrix modified as in the Levemberg-Marquardt method [68].

Finally, it is important to find a correct strategy to find how many Lorentzian functions should be used

in the fitting procedure. One solution can be to adapt the number of Lorentzian terms, N , through the

F-test, utilizing the reduced φ2
r
merit function defined as follows

φ2
r
=

1

M → 2N

M∑

i=1

wiri (c, ω )
2

If the data errors are normally distributed, then the ratio φ2
r
(N)/φ2

r
(N + 1) follows an F-distribution. One

can start setting N = 1, and then increasing the number of N until the F-probability satisfies the following:

P (N + 1) < P0, with 0.8 ↗ P0 ↗ 0.9 cut-o!.

Linear Quasi-Continuous Model-Free

The system’s microscopic dynamics can be characterized through a normalized distribution of correlation

times f(↼) [26]. The nuclear spin-lattice relaxation rate R1 is related to this distribution through a Fredholm

integral equation of the first kind:

R1(ϱ) =

∫ ↗

0
K(↼,ϱ)f(↼) d↼ (1.23)
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where K(↼,ϱ) is the Lorentzian kernel:

K(↼,ϱ) = ↼


1

1 + (ϱ↼)2
+

4

1 + (2ϱ↼)2


(1.24)

For numerical implementation, we discretize the problem using:

• A set of logarithmically spaced correlation times {↼j}Nj=1 in the interval [10→4, 102] µs,

• A set of experimental Larmor frequencies {ϱi}
M

i=1, where typically M < N .

This leads to the discrete matrix equation:

Kf = R1 (1.25)

where K ∝ RM⇑N is the kernel matrix with elements

Ki,j = K(↼j ,ϱi),

and R1 ∝ RM is the vector of relaxation rates

R1(i) = R1(ϱi), i = 1, . . . ,M.

Due to the ill-conditioned nature of K, various regularization strategies are examined in Chapters 5, 6,

and 7.
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List of Acronyms and Symbols of the Chapter 1

Acronyms

• NMR Nuclear Magnetic Resonance.

• RF Radio-Frequency.

• FFC Fast Field Cycling.

• FID Free Induction Decay.

• SE Spin Echo.

• TE Echo Time.

• NMRD Nuclear Magnetic Relaxation Dispersion.

• CSA Chemical Shift Anisotropy.

• MF Model-Free.

Symbols

• B0. Polarizing or Zeeman field.

• µ. Nuclear magnetic moment.

• ε0. Larmor angular frequency.

• M . Magnetization vector.

• ϑ. Gyromagnetic ratio.

• h. Planck’s constant.

• ⊋. Reduced Planck’s constant.

• ϱ0. Larmor angular velocity.

• B1. Radio-frequency magnetic field.

• ς. Flip angle.

• T1. Longitudinal or spin-lattice relaxation time.

• T2. Transversal or spin-spin relaxation time.

• φ0. Magnetic susceptibility.

• H. Nuclear spin Hamiltonian.

• G(↼). Autocorrelation function.

• ↼c. Characteristic correlation time.

• J(ϱ). Spectral density.

• R1. Longitudinal Relaxation Rate.



Chapter 2

Regularization and Optimization for

Inverse Problems

The motivation for this discussion arises from the need to address the challenges associated with the model-

free approach used during PhD research.

This chapter describes the regularization strategies and the optimization methods for inverse problems

that are required later to derive the proposed numerical algorithms. Specifically, in the first section of the

chapter, Tikhonov regularization for linear and non-linear problems is described in a more general context.

The last section discusses the block non-linear Gauss-Seidel method and its convergence properties [38, 39, 69]

This algorithm represents the backbone of the algorithms studied and proposed during the PhD work, which

are later described in Chapter 6, and 7, with their convergence properties.

Only a few proofs are reported. For a comprehensive dissertation refer to [70, 27, 37, 38, 39, 69].

2.1 Tikhonov Regularization

2.1.1 Linear Inverse Problems

Inverse problems are pervasive in scientific and engineering fields, where the goal is to reconstruct unknown

parameters or inputs from observed data. Typically, they su!er from instability, increasing the di”culty in

finding a stable and accurate solution. One of the most powerful techniques to solve inverse problems has

been introduced by A.N. Tikhonov, and it is well-known as Tikhonov regularization [71, 72, 73]. In this

section, we discuss in a more general context Tikhonov regularization for linear inverse problems of the form:

Ku = g↓ (2.1)

where K : X ∞ Y is a bounded linear operator between Banach spaces X and Y . In practice, the only

available data, g⇀, are a!ected by noise. The accuracy to the exact data, g↓ = Ku↓ (u↓ represents the true

solution), is quantified in some error metric, %(u, g⇀), that measures the model output g↓ relative to the

measurement data g⇀.

Tikhonov regularization tackles the ill-posed problem (2.1) by solving the following well-posed optimiza-

tion problem:

min
u⇓C

{J⇁(u) = %(u, g⇀) + ς$(u)} (2.2)

and takes its minimizer, u⇀

⇁
, as a solution [37]. The functional J⇁(u), called Tikhonov functional, depends on

the error metric, known as the fidelity term %(u, g⇀), and the regularization term, $(u), which encodes prior

41
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information about the solution, e.g., smoothness, sparsity. The positive scalar ς represents the regularization

parameter, and it balances the fidelity term and the regularization term. The choice of this parameter is

fundamental to successfully applying Tikhonov regularization. The set C ▽ X is assumed to be convex and

closed, and it represents the constraint coming from the desired solution, e.g. physical constraint.

An appropriate choice of the functionals % and $ depends on the specific applications, or more correctly,

on the noise model and prior information, respectively [37].

In this thesis, we consider Gaussian additive noise, hence the L2 fidelity function is used:

%(u, g⇀) = ̸Ku→ g⇀̸2 (2.3)

where ̸ · ̸ represents the L2-norm, and the noise level is such that 0 ↑ ̸g⇀ → g↓̸2.

Well-posedness of Tikhonov Regularization

This section discusses the criteria for well-posedness, including existence, uniqueness, and stability of solu-

tions. The most important results are stated without proof. For detailed proofs and a more comprehensive

exploration of these concepts, the reader is referred to [74, 37, 27].

To proceed with the analysis of Tikhonov regularization, we state the following foundational Assump-

tion 2.1 that ensures the well-posedness of the problem. It imposes specific conditions on the involved

functionals and the properties of the underlying spaces, drawing from established results in the literature

(e.g., Assumption 3.1 in [37]).

Assumption 2.1 Let us assume the set C ▽ X is convex and closed, and X is reflexive. Then, the non-

negative functionals %(u, g⇀) (2.3), and $(u) satisfy the following conditions:

(a) The functional J⇁(u) as in (2.2) is coercive, i.e., for any sequence {un} with {J⇁(un)} uniformly

bounded, the sequence {un} is uniformly bounded in X.

(b) The functional $(u) as in (2.2) is sequentially weakly lower semicontinuous.

(c) The operator K : X ∞ Y is bounded.

Now, let us recall the H-property of a functional $ (from Definition 3.1 in [37]).

Definition 2.1 The functional $(u) satisfies the H-property on the space X if any sequence {un} ▽ X that

satisfies un ∞ u weakly for some u ∝ X, and $(un) ∞ $(u) imply that un converges to u in X.

Remark 2.1 Norms on Hilbert spaces and Lp(&) spaces, with 1 < p < ↖ satisfy the H-property.

We now present the following result concerning the existence of minimizers for the functional J⇁(u). As

stated in Theorem 3.1 in [37], this guarantees the existence of at least one minimizer under the specified

assumptions.

Theorem 2.1 (Existence of Minimizers) Let Assumption 2.1 hold, then △ς > 0 there exists at least one

minimizer u⇀

⇁
to the functional J⇁ defined by (2.2).

The next result concerns the stability of minimizers under perturbations in the data. It guarantees the

convergence of minimizers as the input sequence approaches the true data and provides conditions for strong

convergence. As stated in Theorem 3.2 in [37], the result is as follows.

Theorem 2.2 (Stability of Minimizers) Let Assumption 2.1 hold. Let the sequence {gn} ▽ Y be con-

vergent to g⇀ ∝ Y , and un be a minimizer to the functional J⇁ as in (2.2) with gn in place of g⇀. Then the

sequence {un} contains a subsequence converging to a minimizer to J⇁. Moreover, if the minimizer to J⇁
is unique, then the whole sequence converges. Lastly, if the functional $ satisfies the H-property, then the

convergence is strong.
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Next, the behavior of the minimizer u⇀

⇁
, as the noise level 0 approaches zero, is examined. A crucial aspect of

the Tikhonov regularization method is determining whether the approximate solution u⇀

⇁
, as the noise level

0 tends to zero, converges to the true solution, i.e., the $-minimizing solution u↓ (defined in the following

Definition 2.2 as stated in Definition 3.2 in [37]). This property is commonly referred to as consistency in

the literature.

Definition 2.2 ($-Minimizing Solution) An element u↓
∝ X is called a $-minimizing solution to the

problem Ku = g↓ if it satisfies the following:

Ku↓ = g↓ and $(u↓) ↗ $(u) △u ∝ {u ∝ C : Ku = g↓}.

where g↓ are the exact observational data.

The existence of a $-minimizing solution follows from Assumption 2.1.

The following Theorem 2.3 establishes the existence of at least one $-minimizing solution to the inverse

problem. This result ensures that under the conditions specified in Assumption 2.1, the problem admits a

solution that minimizes the regularization functional. As stated in Theorem 3.3 of [37], the result is presented

below.

Theorem 2.3 Let Assumption 2.1 hold. Then there exists at least one $→minimizing solution to (2.1).

Finally, the following Theorem 2.4 establishes the conditions under which minimizers converge as the noisy

data sequence approaches the true data. It provides criteria for weak and strong convergence based on the

behavior of the regularization parameter. As stated in Theorem 3.4 of [37], the result is presented below.

Theorem 2.4 (Consistency of Minimizers) Let the assumption 2.1 hold. Let {g⇀n
n
} ▽ Y be a sequence

of noisy data satisfying 0n = ̸g⇀ → g↓̸ ∞ 0. Then the sequence of minimizers {u⇀n
⇁n

} has a subsequence

converging weakly to a $-minimizing solution u↓, if the regularization parameter ςn ∋ ς(0n) satisfies

lim
n⇐↗

02
n

ςn

= 0 and lim
n⇐↗

ςn = 0

Moreover, if the $-minimizing solution u↓ is unique, then the whole sequence converges weakly. Lastly, if

the functional $ satisfies the H-property, then the convergence is actually strong.

These properties collectively validate the e!ectiveness of Tikhonov regularization as a robust approach

for addressing ill-posed inverse problems. Building on the framework established for linear problems, the

following section extends these concepts to nonlinear inverse problems.

2.1.2 Nonlinear Inverse Problems

In this paragraph, we want to deal with the nonlinear case. Nonlinear inverse problems are formulated as

solving the ill-posed nonlinear operator equations

K(u) = g↓ (2.4)

where K : X ∞ Y is a nonlinear operator between Banach spaces X and Y , u ∝ X is the unknown to be

determined, and g↓ ∝ Y represents the exact data.

In this case, the fidelity term is

%(u, g⇀) = ̸K(u)→ g⇀̸2

The functional J⇁(u) as in (2.2) with %(u, g⇀) as above is minimized over a closed convex subset C ⊆ X,

ensuring that the solution adheres to additional constraints (e.g., u ↑ c almost everywhere).
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Well-posedness of Tikhonov Regularization

As with the linear case, extending the analysis of Tikhonov regularization to nonlinear inverse problems

requires establishing conditions to ensure the well-posedness of the associated functional J⇁(u). The following

Assumption 2.2 aligns with established results in the literature (see Assumption 4.1 in [37]).

Assumption 2.2 The operator K : X ∞ Y , X being reflexive, and the non-negative functional $ : Y ∞ R+

satisfy

(i) The functional J⇁(u) as in (2.2) is coercive, i.e., J⇁(un) ∞ ↖ as ̸un̸X ∞ ↖.

(ii) The operator K : X ∞ Y is sequentially weakly closed, meaning that un ∞ u↓ weakly in X implies

K(un) ∞ K(u↓) weakly in Y .

(iii) The regularization functional $(u) as in (2.2) is proper, convex, and weakly lower semicontinuous.

The first property to establish for nonlinear inverse problems is the existence of minimizers. The following

Theorem 2.5 ensures that, under the conditions specified in Assumption 2.2, a minimizer for the functional

J⇁(u) exists for any ς > 0. As stated in Theorem 4.1 of [37], the result is presented below.

Theorem 2.5 (Existence of Minimizers) Let the assumption 2.2 hold. Then, for any ς > 0, there exists

a minimizer to J⇁(u).

Stability is a crucial property that ensures the minimizer of J⇁(u) varies continuously with perturbations

in the data. The following Theorem 2.6 guarantees that the minimizers of the Tikhonov functional remain

stable under such perturbations. As stated in Theorem 4.2 of [37], the result is presented below.

Theorem 2.6 (Stability of Minimizers) Let the assumption 2.2 hold. Let {gn} be a sequence converging

to g⇀ ∝ Y , and let {un} be the sequence of minimizers to J⇁, with gn in place of g⇀. Then the sequence {un}

contains a weakly convergent subsequence, and the limit is a minimizer to the functional J⇁. Moreover, if

the minimizer is unique, the entire sequence converges weakly. Lastly, if $ satisfies the H-property, then the

convergence is strong (Theorem 4.2 in [37]).

In addition to stability with respect to data perturbations, the Tikhonov minimizer u⇀

⇁
must also remain

stable under variations in the regularization parameter ς. The following Theorem 2.7 extends the stability

property by addressing the dependence of minimizers on the regularization parameter. As stated in Theorem

4.3 of [37], the result is presented below.

Theorem 2.7 Let the assumption 2.2 hold. Let {ςn} ▽ R+ be a sequence converging to ς > 0 in Y ,

and {u⇀

⇁n
} be the sequence of minimizers to J⇁n . Then the sequence {u⇀

⇁n
} contains a weakly convergent

subsequence, and the limit is a minimizer to the functional J⇁. Moreover, if the minimizer is unique, the

entire sequence convergences weakly, and if the functional $ satisfies the H-property, then the convergence

is strong.

In the context of nonlinear inverse problems, the notion of a $-minimizing solution is formalised in the

following Definition 2.3. The description follows directly the Definition 4.1 of [37].

Definition 2.3 An element u↓
∝ X is called an $-minimizing solution if

$(u↓) ↗ $(u) , △u ∝ {u ∝ C : K(u) = g↓}

The following Theorem 2.8 guarantees that, under the given assumptions, at least one $-minimizing solution

exists for the inverse problem. This result is directly stated in Theorem 4.4 of [37].
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Theorem 2.8 Let the assumption 2.2 hold, and there exists a solution to (2.4). Then there exists at least

one $-minimizing solution.

Finally, the Theorem 2.9 addresses the consistency of minimizers, i.e., the convergence of minimizers u⇀

⇁
to a

$-minimizing solution as the noise level 0 tends to zero. Assumption 2.2, in connection with an appropriate

rule for selecting ς, is su”cient to guarantee this result. Theorem 4.5 of [37] formally states this and is

presented below.

Theorem 2.9 (Consistency of Minimizers) Let the assumption 2.2 hold. Let the sequence {0n} be con-

vergent to zero, and g⇀n satisfy ̸g⇀n → g↓̸ = 0n. Moreover, the parameter ς(0n) is chosen such that

lim
⇀n⇐0

ς(0n) = 0 and lim
⇀n⇐0

02
n

ς(0n)
= 0

Let {u⇀n

⇁(⇀n)
} be a sequence of minimizers to J⇁(⇀n) with g⇀n in place of g⇀. Then it contains a subsequence

converging weakly to a $-minimizing solution. In addition, if the $-minimizing solution u↓ is unique, then

the entire sequence converges weakly, and, finally, if the functional $ satisfies the H-property, then the

convergence is strong.

With the theoretical framework of Tikhonov regularization for both linear and nonlinear inverse prob-

lems established, we now continue by addressing the optimization challenges associated with solving the

resulting regularized inverse problems of this thesis. The Block Nonlinear Gauss-Seidel method o!ers an

e!ective iterative approach by decomposing complex problems into subproblems of small size and exploiting

their structure. This method provides a robust framework for constrained optimization and serves as a

foundational tool in the numerical strategies developed in this thesis.

2.2 Block Nonlinear Gauss-Seidel Method

One of the most well-known sequential decomposition schemes, which can be interpreted as an extension of

the Gauss-Seidel (GS) method for solving systems of linear equations, is the block nonlinear Gauss-Seidel,

consisting of a sequence of global minimizations with respect to individual blocks.

Consider the problem of minimizing a function f : Rn
∞ R continuously di!erentiable

min
x⇓X

f(x) (2.5)

where X is given by the Cartesian product of closed, nonempty, and convex subsets Xi ⊆ Rni for i = 1, . . . ,m

(with
∑

m

i=1 ni = n). Hence, X = X1↓ · · ·↓Xm ▽ Rn. If the vector x ∝ Rn is partitioned into m component

vectors xi ∝ Rni , then the problem (2.5) can be addressed through the block non linear Gauss-Seidel (GS)

method, defined by the following iteration

x(k+1)
i

= argmin
yi⇓Xi

f(x(k+1)
1 , . . . , x(k+1)

i→1 , yi, x
(k)
i+1, . . . , x

(k)
m

) , i = 1, . . . ,m

that updates in turn the components of x starting from a given initial point x(0)
∝ X and generates the

sequence {x(k)
} = {(x(k)

1 , . . . , x(k)
m )}.

The GS method may not converge, producing a sequence where the limit points do not represent the

critical points of the problem [75, 76].

Notation and terminology follow standard conventions.

In correspondence to the partition of the vector x, i.e., (x1, x2, . . . , xm), the function value f(x) is indi-

cated by f(x1, x2, . . . , xm), and the partial gradient of f with respect to xi, evaluated at x for i = 1, 2, . . . ,m

is defined by ∀if(x) = ∀if(x1, x2, . . . , xm) ∝ Rni .
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x̄ ∝ X is a critical point for the problem (2.5) if ∀f(x̄)T (y→ x̄) ↑ 0, △y ∝ X, where ∀f(x) ∝ Rn denotes

the gradient of f at x. Considering both x̄ and y partitioned into component vectors, x̄ is a critical point

for the problem 2.5 if and only, for all i = 1, . . . ,m the following assumption is satisfied:

∀if(x̄)
T (yi → x̄i) ↑ 0 , △yi ∝ Xi

The level set of f relative to X corresponding to a given point x(0)
∝ X is denoted as

L 0
X

: {x ∝ X : f(x) ↗ f(x(0))}.

2.2.1 Feasible Descent via Line Search

To address the convergence properties of the GS method, it is essential to recall some well-known properties

of an Armijo-type line search algorithm along a feasible direction, which will be utilized in subsequent

analyses.

Let {z(k)} ∝ X be a sequence partitioned into components z(k)
i

= (z(k)1 , . . . , z(k)m ), with z(k)
i

∝ Xi for

i = 1, . . . ,m. At each iteration, the following search direction is computed

d(k)
i

= w(k)
i

→ z(k)
i

, w(k)
i

∝ Xi (2.6)

such that the following Assumption 2.3 holds.

Assumption 2.3 Let

d(k)
i


be the sequence of search directions defined by (2.6), then:

(i) there exists a number M > 0 such that ̸d(k)
i

̸ ↗ M △k.

(ii) ∀if
(
z(k)

)T
d(k)
i

< 0 for all k.

An Armijo-type line search algorithm can be represented as follows

Algorithm 1 Armijo Line Search

1: Data: ϑi ∝ (0, 1), 0i ∝ (0, 1).

2: Compute

ς(k)
i

= max
j=0,1,...


(0i)

j : f(z(k)1 , . . . , z(k)
i

+ (0i)
jd(k)

i
, . . . , z(k)

m
) ↗ f(z(k)) + ϑi(0i)

j
∀if(z

(k))T d(k)
i


(2.7)

Here, ϑi and 0i regulate the step size.

The following Proposition 2.1 describes the behavior of the Gauss-Seidel method when combined with

a line search procedure. It guarantees the existence of a finite step size that meets the acceptability con-

dition (2.7) and characterizes the convergence of the gradient along descent directions as the sequence

progresses.

Proposition 2.1 Let
{
z(k)

}
be a sequence of points in X and let


d(k)
i


be a sequence of directions such

that Assumption 2.3 is satisfied. Let ς(k)
i

be computed using Algorithm 1. Then:

(i) there exists a finite integer j such that ς(k)
i

= (0i)j satisfies the acceptability condition (2.7).

(ii) if
{
z(k)

}
converges to z̄ and limk⇐+↗ f(z(k))→ f(z(k)1 , . . . , z(k)

i
+ ς(k)

i
d(k)
i

, . . . , z(k)m ) = 0, then

lim
k⇐↗

∀if(z
(k))T d(k)

i
= 0 (2.8)
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2.2.2 The m-Block Gauss-Seidel Method

Now, the m→block GS method is presented below following the scheme in [39].

Algorithm 2 Gauss-Seidel Method

1: Set k = 0 and x(0) = (x(0)
1 , . . . , x(0)

m ) ∝ X.

2: repeat

3: k = k + 1

4: For i = 1, . . . ,m compute

x(k+1)
i

= argmin
yi⇓Xi

f(x(k+1)
1 , . . . , yi, . . . , x

(k)
m

) (2.9)

5: End For

6: Set x(k+1) = (x(k+1)
1 , . . . , x(k+1)

m ).

7: until the stopping condition.

Unless specified, we assume that the updating rule (2.9) is well-defined, and each subproblem has solu-

tions. Moreover, let us introduce the vectors which belong to X:

w(k, 0) = x(k)

w(k, i) = (x(k+1)
1 , . . . , x(k+1)

i→1 , x(k+1)
i

, x(k)
i+1, . . . , x

(k)
m

) , i = 1, . . . ,m→ 1

w(k,m) = x(k+1)

w(k,m+ 1) = w(k + 1, 1)

By construction, for each i ∝ 1, . . . ,m, it follows from (2.9) that w(k, i) is the constrained global minimizer

of f in the i→th component subspace, hence it satisfies the following optimality condition [39]

∀if(w(k, i))
T (yi → x(k+1)

i
) ↑ 0 , △yi ∝ Xi (2.10)

The following Propositions 2.2, and 2.3 establish fundamental properties regarding the convergence and

optimality of the iterates generated by the Gauss-Seidel method. These results outline conditions ensuring

the convergence of function values and describe the optimality conditions at limit points of the iterates.

Proposition 2.2 Let us suppose that for some i ∝ {0, . . . ,m} the sequence {w(k, i)} admits a limit point

w̄, then △j ∝ {0, . . . ,m}, we have:

lim
k⇐↗

f(w(k, j)) = f(w̄)

Proof. Let us consider an infinite subset K ⊆ {0, 1, . . . , }, and an index i ∝ {0, . . . ,m} such that the

subsequence {w(k, i)}K converges to w̄. Using the Algorithm 2 f(w(k + 1, i)) ↗ f(w(k, i)). Because of

the continuity of the function f and the convergence of {w(k, i)}K , then {f(w(k, i))} has a subsequence

converging to f(w̄). Moreover, because {f(w(k, i))} is non-increasing, it is bounded from below and it

converges to f(w̄). This follows from

f(w(k + 1, i)) ↗ f(w(k + 1, j)) ↗ f(w(k, i)) , for 0 ↗ j ↗ i

and

f(w(k + 2, i)) ↗ f(w(k + 1, j)) ↗ f(w(k + 1, i)) , for i < j ↗ m

↭
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Proposition 2.3 If, for some i ∝ {1, . . . ,m}, the sequence {w(k, i)} has a limit point w̄, then

∀if(w̄)
T (yi → w̄i) ↑ 0 , △yi ∝ Xi (2.11)

and

∀i↓f(w̄)
T (yi↓ → w̄i↓) ↑ 0 , △yi↓ ∝ Xi↓ (2.12)

where i↓ = i( mod m) + 1.

Proof. Let {w(k, i)}K be the subsequence converging to w̄. From (2.10), considering the continuity

assumption on ∀if , the (2.11) is obtained.

To prove the second statement (2.12), let us consider i ∝ {1, . . . ,m} such that i↓ = i + 1, and by

contradiction, let us assume that there exists a vector ỹ ∝ Xi+1 such that

∀i+1f(w̄)
T (ỹi+1 → w̄i+1) < 0 (2.13)

Then, letting

d(k)
i+1 = ỹi+1 → w(k, i)i+1 = ỹi+1 → x(k)

i+1

as {w(k, i)}K is convergent, we obtain that the sequence {d(k)
i+1}K is bounded. From (2.13) and considering

the continuity assumption on ∀if , there exists a subset K1 ⊆ K such that ∀i+1f(w(k, i))T d
(k)
i+1 < 0,

△k ∝ K1. Thus, the two sequences {w(k, i)}K1 , and {d(k)
i+1}K1 are such that Assumption 2.3 holds, provided

that {z(k)} is identified as {w(k, i)}k1 .

Now, △k ∝ K1 let us compute ς(k)
i+1 by Algorithm 1, then

f(x(k+1)
1 , . . . , x(k+1)

i
, x(k)

i+1 + ς(k)
i+1d

(k)
i+1, . . . , xm) ↗ f(w(k, i))

Moreover, because x(k)
i+1 ∝ Xi+1, x(k)

i+1 + d(k)
i+1 ∝ Xi+1, ς(k)

i+1 ∝ (0, 1], and Xi+1 is convex, then

x(k)
i+1 + ς(k)

i+1d
(k)
i+1 ∝ Xi+1. Hence, recalling

f(w(k, i+ 1)) = min
yi+1⇓Xi+1

f(x(k+1)
1 , . . . , x(k+1)

i
, yi+1, . . . , x

(k)
m

)

it is possible to write the following

f(w(k, i+ 1)) ↗ f(x(k+1)
1 , . . . , x(k+1)

i
, x(k)

i+1 + ς(k)
i+1d

(k)
i+1, . . . , x

(k)
m

) ↗ f(w(k, i)) (2.14)

From Proposition 2.2, the sequences {f(w(k, j))} are convergent to a unique limit △j ∝ {0, . . . ,m}, hence

lim
k⇐↗, k⇓K1

f(w(k, i))→ f(x(k+1)
1 , . . . , x(k+1)

i
, x(k)

i+1 + ς(k)
i+1d

(k)
i+1, . . . , x

(k)
m

) = 0

From Proposition 2.1, having {z(k)} as {w(k, i)}K1 , it follows ∀i+1f(w̄)T (ỹi+1 → w̄i+1) = 0, that contra-

dicts (2.13). So it follows that (2.12) has been proved when i ∝ {1, . . . ,m→ 1}. When i = m, so that i↓ = 1,

the procedure can be repeated noting that w(k,m+ 1) = w(k + 1, 1). ↭
The previous proposition indicates that every limit point of the sequence {x(k)

} produced by the GS

method is a critical point concerning the components x1, and xm within the established ordering. This can

be formally expressed by the following corollary [39].

Corollary 2.1 Let {x(k)
} be the sequence generated by the GS method, and suppose a limit point x̄ exists.

Then,

∀1f(x̄)
T (y1 → x̄1) ↑ 0 , △y1 ∝ X1

and

∀mf(x̄)T (ym → x̄m) ↑ 0 , △ym ∝ Xm

Finally, in the last part of this section, we present the two-block nonlinear Gauss-Seidel method, which

has been selected for analysis due to its relevance and application in the current numerical method proposed

in this PhD research.
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2.2.3 The Two-Block Gauss-Seidel Method

After examining the general framework of the m-block nonlinear Gauss-Seidel method, we now show the

specific case where m = 2, referred to as the two-block Gauss-Seidel method. This case holds particular

significance as it aligns with the structure of the inverse problem studied in this work, detailed later in

Chapters 6 and 7. The algorithm for this method is presented below employing the notation and the form

used in the proposed algorithms of the chapters of part II of this thesis.

Algorithm 3 Two-Block Gauss-Seidel Method

1: Set k = 0 and x(0) = (x(0)
1 , x(0)

2 ) ∝ X.

2: repeat

3: k = k + 1

4: Compute

x(k)
1 = argmin

ξ⇓X1

f(▷, x(k→1)
2 ) (2.15)

5: Compute

x(k)
2 = argmin

ξ⇓X2

f(x(k)
1 , ▷) (2.16)

6: until the stopping condition.

7: return (x(k)
1 , x(k)

2 )

This chapter has detailed the theoretical principles underlying regularization and optimization methods

for inverse problems, concluding with the presentation of the two-block Gauss-Seidel method. By iteratively

updating variable subsets, this method provides a structured framework for solving constrained optimization

problems, ensuring feasibility and convergence under appropriate conditions. Now, it is essential to identify a

suitable strategy for computing the regularization parameter to balance model complexity and data fidelity,

ultimately enhancing the stability and accuracy of the solutions. The next chapter presents strategies for

the automatic computation of the regularization parameter, with particular emphasis on the Balancing and

Uniform Penalty principles.
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Chapter 3

Automatic Computation of the

Regularization Parameter

In the previous Chapter 2, the theoretical foundations and well-posedness results have been discussed in the

general context of Tikhonov regularization for linear and nonlinear problems. These results illustrate the

critical role of regularization in stabilizing inverse problems. The analysis emphasizes the balance between

fidelity to observed data and the incorporation of prior information, achieved via parametrized regularization

terms.

To e!ectively determine an appropriate regularization parameter in inverse problems, various parameter

selection strategies have been developed in the literature, primarily for L2-regularization methods. Significant

examples include the Discrepancy Principle, the Hanke-Raus rule, and the Quasi-optimality criterion, which

have been extensively discussed in works such as [37, 27, 77, 74]. These techniques focus on balancing data

fidelity and regularization to stabilize solutions. However, for example, the case of parameter selection for

L1-regularization remains less explored. Some e!orts, such as [78, 79], have analyzed the applicability of the

discrepancy principle in this context. Despite these advances, practical implementation remains challenging

due to the need for prior knowledge of the noise level and the non-guaranteed existence of a solution to the

discrepancy equation. As a consequence of these problems, in this chapter, we discuss another automatic

selection rule employed in the numerical algorithms proposed in this thesis (see Chapter 5, 6, and 7): the

Balancing Principle (BP). The BP determines the regularization parameter by balancing the contributions

of the data fidelity and regularization terms, up to a multiplicative factor ϑ. This method, proposed in [80],

o!ers a practical framework that does not require prior knowledge of the noise level and avoids solving a

potentially ill-posed discrepancy equation.

Specifically, the first part of this chapter discusses the augmented Tikhonov framework extending the pre-

vious ideas through hierarchical Bayesian modeling and introducing the balancing principle to automatically

search and optimize the regularization parameter and solution simultaneously.

In the final section of this chapter, a regularization framework known as the Uniform Penalty principle [40]

is introduced and analyzed, focusing on a principle designed to distribute the influence of regularization terms

uniformly across the domain. Unlike traditional methods that rely on a single global parameter, this approach

employs a set of distinct parameters, each associated with specific points in the distribution. By enabling

localized control over the regularization process, the framework e!ectively adapts to variations within the

solution, ensuring a balanced and consistent contribution throughout. The principle has been used to derive

new strategies to analyze NMRD profiles described in Chapter 5.

51
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3.1 The Balancing Principle

This section examines the augmented Tikhonov regularization approach, emphasizing the balancing princi-

ple [80] and a convergent fixed-point iterative scheme for its realization.

The balancing principle determines the optimal regularization parameter by ensuring that the contri-

butions of fidelity and penalty terms are harmonized. It prevents overfitting by stabilizing solutions under

noisy data while preserving key features of the model.

3.1.1 Augmented Tikhonov Regularization

The augmented Tikhonov regularization extends the classical Tikhonov functional by incorporating prob-

abilistic modelling [81]. Specifically, it minimizes the augmented functional for the maximum a posteriori

estimator:

J(u,ω, ↼) = ↼%(u, g⇀) + ω$(u) + b0ω→ a↔0 lnω+ b1↼ → a↔1 ln ↼ (3.1)

where:

• %(u, g⇀) = 1
2̸Ku→ g

⇀
̸
2 represents the fidelity term, penalizing the discrepancy between Ku and g

⇀.

• $(u) = 1
2̸Lu̸

2 is the regularization term, enforcing specific properties via the regularization matrix

L ∝ Rm
↑⇑m, which is of full column rank.

• a0, b0, a1, b1 are hyperparameters derived from prior distributions of ω and ↼ . Specifically,

a↔0 = m

2 → 1 + a0, a↔1 = n

2 → 1 + a1. The meaning of ω and ↼ is described in the next paragraph.

Considering the terms of (3.1), the first follows from an independent identically distributed Gaussian as-

sumption on the noise in the data g
⇀. The parameter ↼ is the inverse of the variance of the Gaussian noise,

i.e., the precision. The second term assumes a Markov random field on the unknown, with the interaction

structure encoded by L. The parameter ω weights the strength of the interactions between neighbouring

sites. The last two terms assume a Gamma distribution on the precision ↼ , and scale ω, with parameter pair

being (a0, b0), and (a1, b1) respectively (ω ⇔ G(ω; a0, b0), and ↼ ⇔ G(↼ ; a1, b1)).

This functional (3.1) is called augmented Tikhonov regularization. The first two terms reproduce the

classical Tikhonov regularization described in the previous sections (with the regularization parameter

ς = ω↼→1). The other terms give the mechanism to automatically determine the noise precision ↼ and

the parameter ω.

The augmented formulation solves for u, ω, and ↼ simultaneously. The critical novelty lies in automatically

determining ω and ↼ through Bayesian-inspired terms, reducing the need for external parameter selection.

By considering the limit of the discrete functional, the general augmented Tikhonov functional is given

by

J(u,ω, ↼) = ↼%(u, g⇀) + ω$(u) + b0ω→ a0 lnω+ b1↼ → a1 ln ↼ (3.2)

The parameter pairs (a0, b0), and (a1, b1) should be the limit of the discrete values.

The following Definition 3.1 introduces the concept of a critical point for the functional J(u,ω, ↼). Fol-

lowing Definition 3.5 in [37], the formal description is given below.

Definition 3.1 (Critical Point) The critical point (u↓,ω↓, ↼↓) ∝ X↓R+
↓R+ for the functional J(u,ω, ↼)

satisfies:

u↓ = arg min
u⇓X

{
%(u, g⇀) + ω↓(↼↓)→1$(u)

}

$(u↓) + b0 →
a0
ω↓ = 0 , %(u↓, g⇀) + b1 →

a1
↼↓

= 0.
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The regularization parameter ς = ω/↼ emerges naturally from the above conditions. Substituting ω↓ and

↼↓, one obtains:

ς↓ =
1

ϑ

%(u↓, g⇀) + b1
$(u↓) + b0

where ϑ = a1
a0

is determined by prior knowledge.

3.1.2 Balancing Principle

The balancing principle [80] provides a systematic approach to determine ς↓. It balances the contributions

of the fidelity and penalty terms by finding ς↓ > 0 such that:

%(u⇁↓ , g⇀) = ϑς↓$(u⇁↓) (3.3)

where u⇁↓ = argmin
u⇓X

{%(u, g⇀) + ς↓$(u)}.

Therefore, the BP selects the regularization parameter by balancing, up to a multiplicative factor ϑ, the

contributions of the data fidelity and regularization terms. For the estimation of ϑ various strategies have

been proposed [82, 83, 84].

It is worth highlighting the case where ϑ = 1, commonly referred to as the zero-crossing method, which

is widely used in medical engineering applications [85, 86]. In the algorithms developed to address the

parameter estimation problem within the model-free approach, as presented in Chapters 5, 6 and 7, this

formulation has been consistently adopted with ϑ = 1.

3.1.3 Fixed-point Algorithm for Computing the Regularization Parameter

The balancing principle can be implemented via an iterative fixed-point algorithm that alternates between

updating the solution u⇁ and the regularization parameter ς. The fixed-point algorithm proceeds as follows.

Algorithm 4 Fixed Point Algorithm for Regularization Parameter

1: Set k = 0, and choose a starting guess ς0.

2: repeat

3: Set k = k + 1

4: Solve for u⇀

⇁k
with ς = ςk by minimizing

u⇁k ∝ arg min
u⇓X

{
%(u, g⇀) + ςk$(u)

}

5: Update the regularization parameter ςk+1 by

ςk+1 =
1

ϑ

%(u⇀

⇁k
, g⇀)

$(u⇀
⇁k

)

6: until the stopping condition (3.4) is satisfied.

7: return approximation (u⇀

⇁k
,ςk).

The algorithm stops when the following condition (3.4) is satisfied.

|ςk+1 → ςk| < Tol , with Tol > 0. (3.4)

This algorithm generates a sequence {ςk} which converges to the local minimizer as established in [80, 37].

In summary, the balancing principle provides a robust framework for determining the regularization pa-

rameter by harmonizing fidelity and penalty terms. This principle not only generalizes classical regularization
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strategies but also extends their applicability to more complex models, highlighting their significance in in-

verse problem-solving. Starting from this principle the numerical methods and the iterative solutions studied

and proposed in the following Chapters 5, 6, and 7 to analyse the NMRD profiles have been developed.

The next section introduces the Uniform Penalty Principle, which employs localized regularization pa-

rameters to adapt to variations within the solution, o!ering an alternative approach for addressing ill-posed

inverse problems, particularly in the context of NMR data inversion.

3.2 The Uniform Penalty Principle

This last section of this chapter describes the Uniform Penalty approach [40] based on L2 regularization with

locally adapted regularization parameters.

The problem in this section is described as applied to a general NMR relaxation problem, where, con-

sidering an NMR signal generated following the formulation introduced in section 1.1.3, the purpose is to

extract the relaxation time distributions for T1, and T2.

During the PhD work, this method has been studied and extended to the FFC-NMR estimation param-

eters problem and is formally presented and described in Chapter 5.

3.2.1 NMR Data Inversion Problem

NMR data are represented as a signal recorded at specific sampling points typically corresponding to evo-

lution times. However, they can also correspond to other experiment variables, e.g., frequencies for an FFC

experiment.

Let us consider a 2D NMR relaxation signal acquired through standard Inversion-Recovery, and CPMG

pulse train sequence (IR-CPMG) [87]. This sequence is used to acquire 2D data by measuring both spin-

lattice (T1) and spin-spin (T2) relaxation times. It begins with an inversion recovery (IR) pulse (generally

a 180↑ pulse), which inverts the magnetization of the sample and allows it to recover towards equilibrium,

providing insights into T1. Following this, a series of CPMG refocusing pulses generate echoes that measure

T2. In this setup, the two evolution times, t1 corresponding to the relaxation generated by IR, and t2
corresponding to CPMG, are two independent variables. The measured relaxation signal can be represented

as follows:

S(t1, t2) =

∫ ∫ ↗

0
k1(t1, T1)k2(t2, T2)F (T1, T2)dT1dT2 + e(t1, t2)

This is a first-kind Fredholm integral equation, thus representing an ill-posed problem. Its kernel is defined

by the product of the functions k1(t1, T1) = 1→ 2e→
t1
T1 , and k2(t2, T2) = e→

t2
T2 . The last term, e(t1, t2) is the

additive noise, generally modelled by a Gaussian distribution. While, the function F (T1, T2) represents the

relaxation times distribution and F (T1, T2) ↑ ⇁, where ⇁ ∝ R. For this description, let us consider ⇁ = 0.

To discretize the problem, we consider M1 ↓M2 sampling points for the evolution times t1 and t2. The

resulting observations, denoted by S ∝ RM1⇑M2 , are reshaped into a vector s ∝ RM , where M = M1 ↓M2.

Similarly, the unknown relaxation time distribution, initially expressed as F ∝ RNx⇑Ny , is vectorized into

f ∝ RN , with N = Nx ↓Ny. The discretized problem can now be expressed in matrix-vector form as

Kf + e = s (3.5)

where the matrix K is the Kronecker product of the matrices K1 ∝ RM1⇑Nx and K2 ∝ RM2⇑Ny obtained

by discretization of the functions k1 and k2 at M1 ↓Nx and M2 ↓Ny points, respectively as follows

K = K2 ∃K1 (3.6)

Finally, the vector e ∝ RM represents the discretization of the noise function e(t1, t2).
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3.2.2 Local Regularization through the Uniform Penalty Principle

The linear system (3.5) is an ill-conditioned inverse problem, meaning that small perturbations in the input

data (e.g., noise) can lead to significant errors in the estimated solution.

To address this problem, the Tikhonov regularization (Section 2.1) is employed, which reframes it as the

following minimization task

min
f

{
̸Kf → s̸

2 + ς̸Lf̸
}

(3.7)

where the first term is the fidelity term, %, of Chapter 2. The ̸ · ̸ represents the L2 norm. The second term

represents the regularization term introduced in the previous chapter, $. Specifically, L ∝ RN⇑N is the

discrete Laplacian operator, and ς > 0 is the regularization parameter which balances the data fidelity and

the solution smoothness. There is no universal rule to select the best value of ς. For example, let us assume

to have suitable bounds on the fidelity and regularization terms of the exact solution f
↓, ̸Kf

↓
→ s̸

2 = 12,

̸Lf̸
2 = E2. Then, from Miller [88], ς = ε

2

E2 . Using this value of the regularization parameter, the

solution f
⇁

of (3.7) satisfies ̸Kf
⇁
→ s̸

2
↗ 12, and ̸Lf

⇁
̸
2
↗ E2. Thus, at the regularized solution

f
⇁
, ̸Kf

⇁
→ s̸

2 + ς̸Lf
⇁
̸
2
↗ 212. Having an ς value such that the fidelity term and the regularization

one are comparable, the result is stable in the presence of noise. While e!ective, Tikhonov regularization

often introduces biases, particularly in regions where the solution exhibits rapid variations, giving distorted

solutions which present undesired peaks.

One strategy to avoid this problem is represented by the multiple-parameter Tikhonov regularization,

having the following minimum problem:

min
f

{
̸Kf → s̸

2 +
N∑

i=1

ωi (Lf)2
i

}
(3.8)

where (Lf)
i
represents the i→th element of the vector Lf . Instead of employing a single global regularization

parameter ς, the framework introduces a set of N distinct regularization parameters ωi, each corresponding

to a specific point within the distribution f . This approach allows for localized control over the regularization

process, enabling the method to adapt to variations in the solution. The UPEN methodology establishes the

values of these parameters ωi based on the Uniform Penalty Principle, which ensures that the contributions

of the regularization terms are uniformly distributed across the solution domain. This localized adjustment

mitigates over-smoothing in regions of rapid variation while maintaining stability in smoother areas.

Definition 3.2 (Uniform Penalty Principle) Choose the regularization parameters of the multiple-

parameter Tikhonov regularization (3.8) such that, at a solution f , the terms ωi(Lf)2
i

are constant

△i = 1, . . . , N with (Lf)2
i
↔= 0, i.e.

ωi(Lf)2
i
= c , △i = 1, . . . , N s.t. (Lf)2

i
↔= 0 (3.9)

with c positive constant.

If the non-null terms ωi(Lf)2
i
have all the same constant value, the regularization parameter ωi is inversely

proportional to (Lf)2
i
. This means that the value ωi is smaller when f has fast changes and oscillations,

while it is larger in smooth and flat regions of f . Thus, regularization is enforced in points where the

distribution is smooth.

The basic properties of the UPEN principle as a parameter selection rule are stated in the following

lemmas.

Lemma 3.1 If the UPEN principle holds with

c =
12

N0
(3.10)
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where N0 is the number of non-null terms (Lf)2
i
, and if f satisfies ̸Kf → s̸

2
↗ 12, then

̸Kf → s̸
2 +

N∑

i=1

ωi(Lf)2
i
↗ 212 (3.11)

Contrarily, any f which satisfies (3.11), and the UPEN principle with (3.10), also satisfies ̸Kf →s̸
2
↗ 12.

Proof. Let f be such ̸Kf → s̸
2
↗ 12, then if the UPEN principle is satisfied with (3.10), it holds the

following

̸Kf → s̸
2 +

N∑

i=1

ωi(Lf)2
i
↗ 12 +

N0∑

i=1

12

N0
= 212

Contrarily, if the UPEN principle with (3.10), and the (3.11) hold, then

212 ↑ ̸Kf → s̸
2 +

N∑

i=1

ωi(Lf)2
i
= ̸Kf → s̸

2 +
N0∑

i=1

12

N0
= ̸Kf → s̸

2 + 12

↭
From this, every solution of (3.8), f▷, with every ωi component chosen through the UPEN principle, is

feasible with respect to the data-fidelity constraint ̸Kf → s̸
2
↗ 12.

Lemma 3.2 Let us define the operator

R▷ =
(
K

T
K +L

T
DL

)→1
K

T

with D the diagonal matrix with diagonal elements

Di,i =

{
ωi, if (Lf)i ↔= 0

ϑ12, otherwise

where ϑ is a positive constant and the ωi are chosen according 3.10. Then

lim
ε⇐0

R▷Kf = f

Proof. From 3.9, and 3.10, it follows

ωi =
12

N0(Lf
i
)2

△ i = 1, . . . , N such that (Lf
i
)2 ↔= 0

Thus, the proof immediately follows since for all i

lim
◁⇐0

Di,i = 0

↭
This result states that f▷ is a regularized solution of the problem (3.5).

The following iterative scheme (Algorithm 5) has been proposed by Bortolotti et al. [40], consisting of,

starting from an initial guess f (0), both a solution to (3.8) and suitable values of ωi, approximately satisfying

the UPEN principle, are computed.

Algorithm 5 Iterative Scheme UPEN

1: Compute ω(k)
i

= ⇔Kf (k)→s⇔2

N
(k)
0 (Lf (k))2

i

, with N (k)
0 , the number of non-null terms of (Lf

(k))2
i
.

2: Compute f
(k+1) by solving (3.8) with ωi = ω(k)

i
.

3: Set k = k + 1.
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In the Algorithm 5, the k→th residual norm ̸Kf
(k)

→ s̸ is employed to approximate 1 that, in case of

noisy data, it is the noise norm ̸e̸.

When in the first step, one of the terms (Lf
(k))i is negligible, it is not possible (or not meaningful)

to make ωi large enough to maintain a truly uniform penalty at such points. Moreover, a term (Lf
(k))i

could be equal to zero in non-flat regions due to noise and approximation errors generated throughout the

iterations.

Consequently, to have more information about the shape of the distribution, it may be helpful to relax

the strict uniform-penalty requirement by considering both second- and first-order derivative information in

a neighborhood of the i→th point in the selection rule.

Let us define the matrix C of dimension Nx ↓Ny, such that lexicographically reorders its element and

gives the vector Lf . Furthermore, let us introduce another matrix P of same dimensions, with elements

Pφ,µ = ̸∀F φ,µ̸. Finally, let us denote with c, and p the N vectors obtained by reordering the elements of

C and P .

Therefore, the regularization parameters ω(k)
i

are derived according to the following relaxed UPEN prin-

ciple [40]:

ω(k)
i

=
̸Kf

(k)
→ s̸

2

N

(
20 + 2p maxµ⇓Ii

(
p
(k)
µ

)2
+ 2c maxµ⇓Ii

(
c
(k)
µ

)2
) , i = 1, . . . , N (3.12)

where the Ii are the indices subsets related to the neighborhood of the i→th entry. The 2 parameters are

positive. Specifically, the 20 parameter prevents division by zero and is a compliance floor, which should be

small enough to prevent undersmoothing, and large enough to avoid oversmoothing. The optimum values

of 2 parameters could substantially change with the nature of the measured sample. As a general rule,

20 should be considerably smaller than the two other 2 parameters, which should be of the same order of

magnitude.

The regularization parameters obtained by 3.12 are locally adapted: the selection of the values ωi is

based on local information about the shape of the desired solution.

This chapter has presented the theoretical methods for the automatic computation of regularization pa-

rameters, including the balancing principle and the uniform penalty principle. These approaches provide

robust frameworks for addressing ill-posed inverse problems by ensuring stability, adaptability, and con-

sistency with problem-specific constraints. The methodologies analyzed here form the foundation for the

strategies proposed in this work, which are described in detail in the following chapters.

The next chapter explores the intersection of traditional optimization techniques and emerging data-

driven approaches, highlighting the role of machine learning in advancing inverse problem-solving frame-

works.
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Chapter 4

Machine Learning for NMR

Machine learning has become a powerful tool for addressing problems in every domain, particularly when

deriving explicit solutions from physical models could be challenging. Moreover, through statistical learning

principles, it is possible to derive a mathematical formulation for machine learning. The first part of this

chapter is focused on this argument.

Furthermore, the integrated models, which combine traditional optimization methods with data-driven

techniques are presented in the second part of the chapter. Among the described strategies, a specific focus

in the last part is dedicated to the Plug-and-Play (PnP) method, which represents a very powerful tool in

imaging and it is based on the integration of pre-trained denoisers into iterative algorithms to decouple the

data acquisition process from the learned priors. This description serves as a starting point to present in

the further chapters the novel proposed method developed during this PhD work, which is based on the

philosophy of the PnP method.

4.1 The Mathematical Principles of Machine Learning

This section outlines the foundational principles of machine learning, establishing a basis for the topics

addressed in the subsequent chapters. Specifically, the problem of supervised learning is formalized through

the framework of statistical learning theory [89, 90]. As this work focuses on a specific class of integrated

models, a comprehensive review of all employed machine learning methodologies is beyond the scope of this

thesis work.

4.1.1 Statistical Learning Framework

Let x be the input vector of X ⊆ Rp which represents the space of all possible inputs described with an

unknown probability p(x). Let y be the output vector, where y ∝ Y , and Y ⊆ Rq is the space of the possible

outputs. The output y for every input x is provided, according to an unknown, but fixed conditional

probability p(y|x). The purpose of the supervised learning approach is to approximate a joint probability

distribution p(x,y) = p(x)p(y|x), called data generating distribution, and which represents the relationship

between X, and Y , to derive y, starting from x.

Let ◁ : Y ↓Y ∞ R be the loss function to compute the distance between two elements in Y , the expected

risk of a function f : X ∞ Y is defined as follows:

J (f) = E [◁(y, f(x))] =

∫

X⇑Y

◁(y, f(x))dp(x,y) (4.1)

59



60 4. Machine Learning for NMR

Identifying a function that minimizes (4.1) represents the goal of the learning task and a performance

selection criterion. Moreover, because generally ◁ is a distance function, the equation (4.1) can be rewritten

using the conditional expectation as follows:

J (f) = E [E [◁(y, f(x))|x]] =

∫

X

E [◁(y, f0(x))|x = x̄] dp(x̄)

The expected risk is minimized at the Bayes predictor f↓ : X ∞ Y , which pointwise is defined as:

f↓(x̄) ∝ argmin
z⇓Y

E [◁(y, z)|x = x̄] , △x̄ ∝ X (4.2)

The Bayes risk correspondent to the Bayes predictor f↓ is given by:

J
↓ = E


inf
z⇓Y

E [◁(y, z)|x = x̄]


(4.3)

The Bayes predictor minimizes the expected risk, and while it is not necessarily unique, all such predictors

yield the same Bayes risk. To evaluate the performance of a given function f , the deviation from this

minimum, referred to as the excess risk of f , is quantified by J (f) → J
↓. This quantity is inherently

non-negative, from (4.3).

Theoretically, the optimal model is described in (4.2) by the conditional distribution p(y|x) for any input

x ∝ X. However, the underlying distribution p(x,y) is often unknown in practical applications, as only a

finite observation set is usually available. To address this, the empirical risk ĴS(f), an estimate based on

available training samples, is used. The training samples are in a set, commonly called training set, which

can be formally expressed as

S = {(xi,yi
) ∝ X ↓ Y |i = 1, . . . , s}

where each pair (xi,yi
) represents a sample drawn from the joint distribution p(x,y). Using this finite

dataset S, one can compute the empirical risk of a predictor f , which averages the loss function over the

training samples. This is given by:

ĴS(f) =
1

s

s∑

i=1

◁(y
i
, f(xi))

The empirical risk is an unbiased estimate of the true expected risk and often is used as a surrogate

objective in learning tasks, given that the true distribution is typically inaccessible. Moreover, it is commonly

called training error.

To address this, the learning process is recast as an optimization problem, where the search space is

limited to a parametrized family of functions, referred to as the hypothesis space, or, identically on the

parameter space. This is defined as:

H := {f0 : X ∞ Y |⇀ ∝ ’}

where ’ ∝ Rp represents the space of all the possible parameter values. Restricting the learning to this

family allows practical implementation while preserving the goal of minimizing risk. Therefore, the learning

problem is reformulated by the minimization of the empirical risk on the hypothesis space as

⇀↓ ∝ argmin
0⇓#

ĴS(f0) (4.4)

By constraining the search to parametrized functions within the hypothesis space H, an approximation

error is introduced which can be derived by decomposing the excess risk of f↓
0
as follows:

J (f0↓)→ J
↓ =

(
J (f0↓)→ inf

0⇓#
J (f0)

)

︸ ︷︷ ︸
estimation error

+

(
inf
0⇓#

J (f0)→ J
↓
)

︸ ︷︷ ︸
approximation error

(4.5)
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The last term is known as approximation error. It is always non-negative, not depending on the optimization

parameters, but only on the chosen class of parametrized functions. Moreover, it evaluates how closely the

functions f0 can approximate a Bayes estimator. This error can be reduced as the considered ’ is large

enough, e.g., in the case of the neural networks; furthermore, the functions can be arbitrarily approximated

by the chosen parametric function [91].

Instead, the first term of (4.5) is known as estimation error and can be further decomposed, taking into

account that ⇀̄ ∝ argmin
0⇓#

J (f0) the following relation holds:

J (f0↓)→ J (f
0̄
) =

(
J (f0↓)→ Ĵ (f0↓)

)
+

(
ĴS(f0↓)→ ĴS(f0̄)

)

︸ ︷︷ ︸
empirical optimization error

+
(
ĴS(f0̄)→ J (f

0̄
)
)

The second term is called empirical optimization error, and it is bounded by sup
0⇓#

(
ĴS(f↓

0
)→ ĴS(f0)

)
, which

in principle should be zero for the minimality assumption on ⇀↓, but in practice, it must be considered

when iterative optimization algorithms are adopted to minimize the empirical risk. Finally, the other two

terms are bounded by sup
0⇓#

∣∣∣ĴS(f0)→ J (f0)
∣∣∣ that increases as the size of ’ increases, and decreases with the

samples number in S.

4.1.2 Generalization

The process of learning is framed as an empirical risk minimization problem. This formulation, while

conceptually intuitive and mathematically straightforward, faces significant challenges in practice. The

primary di”culty lies in developing models that can accurately predict outcomes for new, unseen data that

was not part of the training set. This crucial ability to perform well on previously unobserved data is referred

to as generalization. While empirical risk provides a measure of performance on the training data, it may

fail to capture the generalization capability of a model, which is the ultimate objective in most real-world

applications.

To evaluate generalization, it is standard practice to partition the dataset into two disjoint subsets: the

training set and the test set. The training set is used to learn the model, while the test set is reserved

for evaluating its performance on independent samples drawn from the same underlying distribution. This

separation ensures that the evaluation reflects the model’s ability to generalize beyond the examples seen

during training. The ultimate goal of any learning task is to minimize the generalization error, defined as

the empirical risk computed on the test set, although during the training, only the empirical risk on the

training set is minimized. Therefore, for a model to exhibit strong generalization, it must achieve two critical

conditions: a low training error, and a minimization of the training-test error gap.

If these conditions are not jointly achieved, the model is likely to su!er from one of two classical issues in

machine learning: underfitting, or overfitting. Underfitting occurs when the model struggles to achieve a low

training error, often due to its inability to capture the underlying patterns in the data. Overfitting, on the

other hand, arises when the model learns the training data too well, including its noise and idiosyncrasies,

leading to a significant gap between training and test errors. In this case, the model performs poorly on

unseen data, failing to generalize e!ectively.

To mitigate underfitting and overfitting, a crucial strategy involves controlling the capacity of the model.

The term capacity loosely describes the power of a model to represent a diverse range of functions. Models

with insu”cient capacity may lack the flexibility needed to fit the training data, while those with excessive

capacity risk overfitting by adhering too closely to the training set.

It is essential to distinguish between two aspects of model capacity:
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1. The representational capacity refers to the size of the hypothesis space H and the model’s ability to

represent a wide class of functions. One practical approach to regulating representational capacity

is through regularization techniques, which constrain the model’s parameters either by limiting their

magnitude or by introducing additional terms in the objective function. A regularized empirical risk

minimization problem can be expressed as follows:

⇀↓ ∝ argmin
0⇓#


ĴS(f0) + ω$(⇀)


(4.6)

where ω represents a regularization term previously described in Chapter 2, and $(⇀) : ’ ∞ R+

represents the regularization function implicitly controlling the complexity of f0.

2. The e!ective capacity. This concept pertains to the actual capacity of the model as influenced by the

optimization algorithm used during training. Optimization methods, particularly iterative algorithms

like gradient descent, often impose additional constraints on the function representation, which can

lead to approximations of the true minimizer. In the realm of deep learning, determining the e!ective

capacity is particularly challenging due to the non-convex nature of the loss landscape and the limited

theoretical understanding of stochastic optimization methods, such as those involving momentum or

adaptive learning rates.

Quantifying model capacity and its e!ect on generalization has been a focus of theoretical research.

Various studies have sought to derive formal bounds to characterize the discrepancy between training error

and generalization error [92, 93]. Typically, this discrepancy is bounded by a term that grows with the

model’s capacity and decreases as the size of the training dataset increases. Thus, a trade-o! emerges

between the expressiveness of the model and the availability of data. In the context of modern deep learning

systems, where models often have millions or even billions of parameters, this balance becomes even more

critical.

4.1.3 Optimization Techniques for Minimizing Empirical Risk

To minimize the empirical risk (4.6) iterative first-order methods are applied because the computation of

a closed-form solution is not practicable. The most common and well-known as well as e”cient algorithm

used to derive the gradient of the objective function is the backpropagation algorithm, introduced in separate

works at the same time, such as [94, 95], and later refined in [96].

Often referred to as the reverse mode of automatic di!erentiation, this approach gained widespread

adoption in the learning framework through [97, 98]. Today, it serves as a core technique in popular neural

network libraries and toolboxes like TensorFlow, and PyTorch for Python, but also Deep Learning Tool-

box [99] in MATLAB. The general update rule for a first-order gradient-based method typically follows this

form:

⇀(k+1) = ⇀(k) → ςDkgk(⇀
(k))

where ς represents the so-called learning rate in the machine learning research community, Dk ∝ Rp⇑p is a

diagonal matrix, and finally gk : Rp
∞ Rp is dependent on the empirical risk gradient.

The simplest gradient-based approach is standard gradient descent, where updates move in the direction

opposite to the gradient [76]. In this case, the function gk(⇀(k)) = ∀0ĴS(f0(k)), and the diagonal matrix

Dk = Ip. However, when dealing with large datasets, stochastic adaptations of gradient descent are preferred

due to their e”ciency [100, 101]. In these methods, a randomly selected subset of the training data, referred

to as minibatch, is used to compute an approximate gradient at each iteration. By drawing s samples from

S, the function gk is computed at each iteration as follows:

gk(⇀) =
1

s

∑

(x,y)⇓Sk

∀0◁ (y, f0(x))
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where Sk ▽ S is a subset of the training set S consisting of s samples drawn at each iteration. This reduces the

computational cost compared to evaluating the gradient over the entire dataset. However, the approximated

gradient inherently includes noise, introducing some variability into the optimization trajectory.

Such stochastic approaches, while computationally e”cient, come with trade-o!s. The gradient estimates,

derived from minibatches, do not always point directly toward minimizing the empirical risk. Instead, the

randomness injected into the process can lead to significant fluctuations in the objective function, with no

guarantee that the algorithm will converge to a minimum or even a stationary point.

The size of the minibatches used during training plays a critical role in gradient estimation. Larger mini-

batches tend to yield more precise gradient calculations, while smaller ones, though noisier, often introduce

a beneficial regularization e!ect throughout the optimization process [102]. To mitigate the variance in these

gradient estimates, advanced techniques leverage both first-order and second-order moment approximations,

constructing appropriate scaling of the matrix Dk to enhance stability and convergence.

Given the inherent non-convexity of deep learning problems, momentum-based optimization methods

have been developed to address avoiding entrapment in local minima. By incorporating information about

previous gradient updates, these methods expedite learning and help maintain a steady progression toward

more promising regions of the loss landscape [103, 104].

Among the most widely adopted optimization techniques for training deep neural networks is the Adam

optimizer [105], which e!ectively combines inertia-like updates with mechanisms to reduce variance in the

gradients. This method relies on the computation of specific scaling matrix Dk, and gradient estimates gk,

significantly improving the e”ciency and robustness of the training process.

Despite the empirical success of algorithms like Adam in minimizing empirical risk or finding stationary

points, the no free lunch theorem asserts that, when averaged across all potential data-generating distri-

butions, every optimization algorithm achieves the same error rate [106, 107]. This fundamental limitation

implies that designing highly e!ective algorithms for specific applications often requires assumptions about

the underlying data-generating process.

4.1.4 Architectural Frameworks for Neural Networks

In machine learning, the hypothesis space chosen for a model profoundly impacts its ability to represent

data, as this determines the achievable approximation error (4.5). Over the past decade, artificial neural

networks (ANNs) have gained prominence due to their versatility in approximating complex functions. These

networks mimic biological neural systems and consist of a series of layers, each functioning as a set of units,

known as neurons, interconnected to adjacent layers. Several architectures can be obtained by organizing

the layers in di!erent configurations. The first layer is called the input layer, and it receives input data;

while the last one is called the output layer and it is responsible for producing the output of the network.

The layers between these two are called hidden layers.

The most simple architecture consists of a fully connected layer, where each neuron in one layer is

connected to every neuron of the previous layer. This relationship is represented by the following:

z̄ = σ (Wz) (4.7)

where z̄ ∝ Rm, z ∝ Rn represent the output and the input data respectively, and W ∝ Rm⇑n is the weight

matrix defining the connection strengths between two consecutive layers. The function σ : Rn
∞ Rm is the

activation function applied elementwise.

The fully connected layer has theoretical significance because of the universal approximation theorem,

which asserts that even shallow networks can approximate any continuous function defined on a compact do-

main, provided they are equipped with su”cient neurons [108, 109]. However, achieving such approximations

in practice often requires an enormous number of neurons. A practical solution to enhance representational
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capacity without excessively increasing parameters is represented by the use of deeper networks formed by

stacking several fully connected layers. These are called Deep Fully Connected Network [110, 111]. Despite

their versatility, this architecture experiences exponential growth in the number of weights as the number of

layers increases, resulting in the training being computationally demanding [112].

To overcome this limitation, convolutional layers were developed, which rely on localized connections

instead of full connectivity. This architecture is briefly described given its relevance in this research area,

but it does not represent the purpose of this thesis, because, considering the dimension of the addressed

problem, a deep neural network has been su”cient, without demanding very long and complex training.

Conceptually, a convolutional layer can be thought of as a fully connected layer, wherein the weight matrix

W is a sparse Toeplitz matrix [113]. This structure reduces the number of parameters significantly by sharing

weights within localized regions of the input, i.e., the outputs are connected only within a local region of the

input, decreasing the number of weights. These regions are commonly referred to as convolutional kernels.

These kernels are particularly e!ective at identifying localized patterns, such as edges in images [114].

A representation of the two layers structures is shown in Figure 4.1, with the fully connected one on the

left, and the convolutional one on the right.

(a) (b)

Figure 4.1: Comparison of neural network layers: (a) Fully connected layer, where each neuron is connected

to all neurons in the next layer, and (b) Convolutional layer, where local connections are represented by

limited links between layers. In red the neurons of the input layer, i.e., z in (4.7), while in green the neurons

of the output one, i.e., z̄ in (4.7).

Convolutional layers also assure shift-invariance, enabling the detection of features regardless of their spa-

tial location. This property accelerates learning while significantly reducing computational complexity [115].

Neural networks that include at least one convolutional layer are known as Convolutional Neural Networks

(CNNs). The foundational concepts of CNNs were inspired by studies of the primary visual cortex [116, 117].

The performance of machine learning methods depends generally on the data representation utilized.

Therefore, it is common practice to encode raw data to extract meaningful features for the learning task

at hand. This process can be particularly challenging since the most important features are not known in

advance. As a result, the model must learn the appropriate representations itself. The complexity of the

extracted features depends on the task’s di”culty, with high-level abstract features often being formed by

combining simpler, lower-level blocks. The approach that utilizes multiple layers in the network is known

as Deep Learning. Among its many applications, Convolutional Neural Networks (CNNs) are particularly

important due to their capacity to learn hierarchical feature representations directly from complex data.

Furthermore, the use of convolutional layers with smaller receptive fields enabled the development of deeper

CNN architectures, increasing their capacity to learn from vast amounts of data. These deep architectures

have led to an expanded receptive field, allowing models to capture long-range dependencies.

To further enhance training, additional strategies such as residual blocks and skip connections are utilized

to maintain information flow and address issues like vanishing gradients [118]. Batch normalization is another
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commonly employed method, which stabilizes training by normalizing mini-batch inputs [119]. The use

of diverse activation functions introduces non-linearity, profoundly a!ecting both model performance and

training e”ciency [120]. Finally, techniques like weight initialization and regularization are employed to

combat overfitting and improve the model’s robustness [92].

4.2 Integrated Models

One of the most interesting approaches in this learning process involves using a direct inversion method. In

this way, it is possible to incorporate a physical knowledge of the acquisition model [121].

When the direct inversion of the acquisition model is feasible, one can employ preprocessing techniques

to map the given measurement b, e.g., a signal such as the relaxation rate, R1, introduced in Chapter 1, into

the correlation time distribution, f , domain through operations such as K
T
R1 or K

†
R1. These methods

have been introduced and deeply investigated specifically for imaging problems, where the idea is based on

consists of obtaining a naive reconstruction with artefacts and then using a trained neural network to correct

the approximated restoration [122, 123, 124]. However, following this philosophy, this method can also be

extended to di!erent domains. Therefore, the last contribution presented in this PhD thesis is based on the

idea behind this class of approaches and it is comprehensively described in Chapter 7.

Mathematically, the learned operator can be expressed as the composition f0¬K
T , defining f0 : Rn

∞ Rm

the trained neural network to correct the initial estimate. The problem can be reformulated as follows:

⇀↓ ∝ argmin
0

1

s

s∑

i=1

◁
(
f0

(
K

T
bi

)
,ui

)

where ◁ is a suitable loss function, bi are the measurements, and ui represent the corresponding ground-

truth signals. However, a common problem is represented by overfitting. The usual strategy involves the

introduction of a regularization term, trying to enforce specific characteristics of the reconstruction, which

may be a priori known. Following this, the problem can be rewritten as:

⇀↓argmin
0

1

s

s∑

i=1


◁
(
f0

(
K

T
bi

)
,ui

)
+ ω$

(
f0

(
K

T
bi

))

where ω represents the regularization parameter, and $ the function inducing some bias to the reconstruc-

tion. Generally, the introduction of the regularization term is tricky because it involves strong assumptions

underlying the distribution. Moreover, a good choice of the regularization parameter can only be estimated

after the training process.

In recent years, numerous improvements have been made in merging neural networks and classical vari-

ational methods, paving the way for hybrid approaches. The strength of these models is represented by

the capability to leverage the expressiveness of deep learning while maintaining the interpretability and

robustness of traditional frameworks. This led to enhanced trustworthiness in these models and reduced

dependence on training data, especially for inverse problems.

The development of integrated models remains an active area of research with an increasing number of

contributions. A comprehensive review of all approaches is beyond the scope of this thesis. Therefore, in

the next section di!erent techniques and their applications in inverse problems are mentioned and briefly

described, before introducing the integrated model which has been the starting point for the work developed

in this PhD: the Plug-and-Play (PnP) method.

4.2.1 Key Techniques in Integrated Modelling

Unfold Methods This method consists of unfolding and unrolling an iterative procedure for a finite

number of steps. The iteration can be thought of as a layer of a neural network. By the concatenation of
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them, it is possible to build a deep neural network. This allows this framework to learn complex mappings

between output and input, maintaining interpretability. Essentially, this strategy is identical to running

an iterative procedure for a select number of iterations. This method is trained on a specific training set,

considering the parameters as the network hyperparameters. This approach has been introduced by LeCun

and Gregor [125] and during the last years has been improved showing its potential in several domains, i.e.,

inverse problems, image reconstruction, and also signal processing [126, 127, 128, 129, 130].

Bilevel Methods Bilevel optimization represents a class of integrated models based on the idea of solving

two interdependent optimization problems at the same time. One is an upper-level problem to find the

optimal parameters for the model, the other is a lower-level problem to find the optimal solutions. The first

one is generally a training to minimize the loss function (4.4), and the latter one represents usually a specific

optimization problem. By using this method, the best hyperparameters to minimize the loss function are

refined while the model is adapting to the data distribution. A review of this method can be found in [131].

Generative Methods This class of methods is profoundly important in the entire artificial intelligence

sector because able to mime and understand very complex data distributions. Examples of generative models

are represented by Generative Adversarial Networks (GANs), or Variational Autoencoders (VANs), which

with advanced training strategies, and architectures succeed in learning the underlying data distributions.

The idea behind the GANs is to exploit two neural networks competing against each other in a zero-sum

game, where a gain for one of them represents a loss for the other one. Starting from a training set, this

technique learns how to create new data having the same statistics as the initial training set. The training

consists of employing a generator, i.e., one of the two neural networks, to create ”realistic” input, and a

discriminator, i.e., the other neural network, to evaluate their authenticity. This allows the model to learn

in an unsupervised mode. This method has been formulated by Goodfellow and its formalization can be

found in [132].

The VANs instead focus on learning a probabilistic latent space to generate realistic reconstruction.

[133].

Building on the advantages of integrated modelling, the PnP method o!ers a flexible solution for inverse

problems by decoupling data acquisition from learned priors.

4.2.2 Plug-and-Play

The Plug-and-Play (PnP) method has been proposed by Venkatakrishnan et al. [134] and it represents an

e!ective strategy to solve inverse problems integrating model-based optimization with data-driven priors.

One of the main problems related to this learning method is the stability of the model [135]. Specifically,

the noise in the data can drive the reconstruction to produce artifacts [136]. Moreover, in contrast to

variational approaches, the learning ones need to be retrained every time the acquisition model changes.

This problem has been addressed by the PnP method, creating a flexible model which involves separating

the degradation process from the learned prior. The idea behind this method is to employ the modularity

of iterative algorithms, integrating available denoisers methods. This allows the method to obtain robust

reconstructions without relying on specific training data, extending this technique to several di!erent prob-

lems.

The first formulation introduced in [134] is based on the fact that many proximal algorithms, which rely

on variable splitting techniques [137, 138, 139], require the computation of the proximal operator for the



4.2 Integrated Models 67

regularizer. This is performed by solving a subproblem as follows:

prox
µ$(z) := argmin

u⇓Rn

1

2
̸u→ z̸

2
2 + µ$(u) (4.8)

with µ > 0 weighting the regularization.

The proximal operator is well-defined when the regularizer, $, is a proper, lower semi-continuous convex

function, ensuring that the minimum is unique. Moreover, for many non-smooth regularizers, the solutions

to (4.8) can be derived through closed-form expressions, removing the need for explicit di!erentiation [140].

Furthermore, the subproblem can be considered as an image denoising problem of an image z a!ected by

additive white Gaussian noise from a statistical modelling point of view. To formalise this mathematically,

the operator (4.8) can be substituted by a general denoiser D : Rn
∞ Rn in the iterative algorithm, following:

D(z) ⫅̸ argmin
u⇓Rn

1

2
̸u→ z̸

2
2 + µ$(u)

The substitution limits the theoretical interpretation of the resulting model, in the sense that a generic

denoiser may not always be seen as the proximal mapping of a specific function when it is not-expansive [141],

resulting in the absence of an explicit objective function minimized during the Plug-and-Play iterations and,

therefore, complicating theoretical analysis and making it di”cult to adapt standard convergence guarantees.

These limitations have been addressed by some alternative assumptions on the properties of the denoiser,

to guarantee the fixed-point convergence [142, 143].

Given that the regularizer is implicitly defined by the denoising process, the focus has been directed to

the identification of an explicit objective function to minimize during the training, producing several types

of denoisers, which can be grouped into these three following main categories:

Regularization by denoising (RED). In this kind of framework, the regularization term is defined in

an explicit form as

$(u) =
1

2
u
T (u→ D(u))

with D a generic denoiser.

In imaging, conceptually, this regularization tends to put a penalty on images which deviate from the

natural image manifold and present artefacts. This is obtained by measuring the di!erence between the

input and its residual after undergoing the denoising process.

The most interesting advantage of this method is represented by the ability to derive a practical expression

for its gradient, demanding specific stringent conditions are met, such as local homogeneity, strong passivity,

and the symmetry of the Jacobian. Following these assumptions, the gradient becomes the residual:

∀$(u) = (u→ D(u))

This framework has been proven to succeed in many inverse problems applied to imaging [144, 145].

However, several denoisers do not satisfy the local homogeneity to derive the residual gradient [146]. To

address this problem, there have been proposed alternative formulations of RED to provide a stronger

theoretical foundation and justify its e!ectiveness [146]. Nevertheless, several challenges are unsolved, as the

conditions necessary for rigorous convergence analysis are often impractical or di”cult to satisfy in practical

scenarios.

Minimum Mean Square Estimator (MMSE). Another category is obtained by the minimization of

the expected value of the loss function that defines the di!erence between the noisy image and a random
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variable which represents the natural image. If the loss is chosen as the squared Euclidean norm, the Bayes

estimator 4.2 that minimizes the mean squared error is defined pointwise as:

D(z) = E[u|z] =
∫

Rn

up(u|z)du

However, MMSE denoisers can be non-expansive [147], leading to the impossibility of computing the

posterior distribution, which requires complex Monte Carlo sampling techniques for high-dimensional inte-

gration [148].

Gribonval formally established an explicit regularizer, demonstrating that the MMSE denoiser can be

interpreted as the proximal operator of this regularizer [149]. Starting from this, numerous convergence

results have been derived for this category of methods under general conditions [150].

Gradient Step Denoiser. In this last category, the gradient considered in the RED framework is derived

using the gradient descent step realized on a potential function, g : Rn
∞ R, as follows:

D(u) = u→∀g(u)

This denoiser is known as gradient step denoiser [151].

Under broad assumptions, such as ensuring that the gradient satisfies the contraction property, it can

be shown that the class of denoisers are proximal operators [152]. This result is based on the characteri-

zation theorems of proximity operators outlined in [153]. The existence of the potential function such as

D0 = prox$ϱ
, with its properties, can be used to analyse the convergence analysis of iterative Plug-and-Play

algorithms [152].
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Chapter 5

Regularization For Dipole-Dipole

Relaxation

This chapter is based on the publication [154] where three potential approaches to analyse the NMRD profiles

have been submitted:

• MF-UPen, which employs locally adapted L2 regularization.

• MF-L1, an algorithm based on the L1 penalty.

• MF-MUPen, that utilizes both locally adapted L2 and global L1 penalties.

In all these approaches the regularization parameters are computed through automatic procedures founded

on the Balancing Principle (BP) [80] and the Uniform Penalty principle [40].

Two-dimensional time-domain NMR relaxometry techniques inspire all the algorithms. The locally

adapted L2 regularization was originally introduced by Bortolotti et al. in [40], where the regularization

parameters are determined by applying the Uniform Penalty principle. The global L1 regularization has

been applied in [155] which addresses the more complex problem of data exhibiting spurious peaks caused

by Quadrupolar Relaxation Enhancement, and it is described in the next Chapter 6. Finally, the coupling of

locally adapted L2 and global L1 penalties was originally introduced by Bortolotti et al. in [22] for inverting

two-dimensional NMR relaxation data and has been adapted to NMRD profiles.

The contributions of this work are the following:

• The implementation and experimental testing of the MF-UPen algorithm, featuring a novel rule for

automatically computing the threshold parameter 20.

• The implementation and experimental testing of the MF-MUPen algorithm.

• Development of a dispersion analysis procedure, enabling the determination of the existence range for

estimated parameters.

The diversity of results achievable with di!erent algorithms is shown, focusing on fit quality and corre-

lation time distribution.

Following this introduction, the mathematical problem and numerical methods are detailed in sections 5.1

and 5.2, respectively. Section 5.3 then discusses the results from testing on two sets of NMRD profiles, each

representing significant potential scenarios.

71
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5.1 The Discrete Model for Dipole-Dipole Relaxation

As introduced in Section 1.2, spin relaxation theory represents the relaxation rates as linear combinations

of spectral density functions of the motion modulating the interactions, i.e., Fourier transform of the time

correlation function.

Depending on the sample under investigation, di!erent spin dynamical interactions may occur. Generally,

at low field, for spins-1/2 the dipole-dipole interaction is the most significant contributor to the relaxation

process. In this chapter, let us focus on data acquired by FFC-NMR experiments from samples having

spins-1/2. Hence, the contribution one has to take into account will be the dipole-dipole relaxation by 1H

nuclei.

Starting from the formulation of the model-free introduced by Conte et al. in [26], the NMRD profile,

R1, can be formulated as follows:

R1(ϱ) = R0 +RHH(ϱ) (5.1)

where ϱ is the angular frequency, R0 is a non-negative o!set keeping into account very fast molecular

motions, and the term RHH(ϱ) describes the correlation time distribution function f(↼) as follows:

RHH(ϱ) =

∫ ↗

0


↼

(1 + (ϱ↼)2)
+

4↼

(1 + 4(ϱ↼)2)


f(↼)d↼ (5.2)

where the correlation time ↼ is the average time required by a molecule to rotate one radiant or to move for

a distance as large as its radius of gyration. The integral form described by (5.2) unconstrainedly retrieves

only the number of possible correlation times representing the dynamics of the overall physical system. The

other typical FFC data analysis approaches, on the contrary, rely on employing ad-hoc mathematical models

containing information about both the number and meaning of the correlation times which describe the

dynamic of a given system. Therefore, using (5.2) allows one to obtain a fingerprint of the possible motion

regimes without the physical-chemical interpretation, which can be reasonably attempted further considering

the chemistry of the sample under investigation.

The NMRD profile acquired by an FFC-NMR experiment is sampled at a finite number of angular

frequencies. Let us introduce the following notation before describing the discretization of the continuous

model (5.1). Let ε ∝ Rm be the vector of the m Larmor angular frequency values at which the profile R1 is

evaluated (with ϱ = 2ϖε, and ε in [MHz]). Let y ∝ Rm the vector which discretizes the R1, i.e., yi = R1(ϱi),

with i = 1, . . . ,m. Finally, let f ∝ Rn the vector obtained by sampling the correlation time distribution

function f(↼) in n finite number logarithmically equispaced values ↼1, . . . , ↼n.

By discretizing the equation (5.1), the following linear system is obtained:

y = F(f , R0) ∋ F1(f) +R0 (5.3)

where F : Rn+1
∞ Rm. Specifically, the first term, F1 : Rn

∞ Rm, is a linear function, depending only on

f , obtained by the discretization of the Fredholm integral equation (5.2), and can be expressed as:

F1(f) ∋ Kf (5.4)

where the matrix K ∝ Rm⇑n represents the Lorentzian kernel (equation (1.24), section 1.3.5) as follows:

Ki,j =
↼j(

1 + (ϱi↼j)
2
) +

4↼j(
1 + 4 (ϱi↼j)

2
) , i = 1, . . . ,m , j = 1, . . . , n (5.5)

In a typical FFC-NMR experiment, the number of elements in R1 is much smaller than the number of

sampling values of the correlation time, i.e., m ⇑ n.
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Finally, the last term in F of (5.3) is the constant parameter R0 ↑ 0, representing the o!set in the

NMRD profile.

Moreover, the previous equation (5.3) can be rewritten in a more compact form by introducing the

following change of variables x ∋ (f , R0) ∝ Rn+1, and Ke = [K 1] ∝ Rm⇑(n+1):

y = Kex (5.6)

To address the problem of estimating the parameters x, starting from y, di!erent solutions are presented

in the next sections, representing one of the contributions of this thesis. The mathematical problem, being

ill-conditioned, is reformulated as an inverse problem with specific regularization strategies to take into

account some a priori information from physics and chemistry.

5.2 Numerical Methods Proposed

Recalling the notation from Chapter 2, for all three proposed algorithms, the fidelity term is the following

%(x,y) = ̸y →Kex̸
2
2

while, considering the regularization term, defined as $(x), di!erent kinds of regularization strategies have

been employed, following the theory discussed in Chapters 2, and 3.

Specifically, the MF-UPen algorithm is based on locally adapted L2 regularization, the MF-L1 algorithm

is L1→based regularization, and finally, MF-MUPen based on multi-penalty regularization, i.e., local-L2, and

L1 penalties (described in 3.2).

5.2.1 MF-UPen Algorithm

This algorithm, implementing the locally adapted L2 regularization, solves the following constrained mini-

mization problem:

min
x⇒0


̸y →Kex̸

2
2 +

∑
n

i=1 ωi (Lx)2
i


(5.7)

with L = [#,0] ∝ Rn⇑(n+1) where # is the discretization of the second derivative operator, according

to central finite di!erence formulas, and 0 is the n→components null column vector. Observe that the

regularization is imposed only on the parameter f since the sum in (5.7) ranges for indices i from 1 to

n. The regularization parameters ωi, i = 1, . . . , n are computed according to the following relaxed UPEN

principle (3.12) described in section 3.2 and introduced in [40]:

ωi =
̸y →Kex̸

2

n
(
20 + 2p maxµ⇓Ii

(
p
µ

)2
+ 2c maxµ⇓Ii (cµ)

2
) , i = 1, . . . , n (5.8)

where c = Lx, p = [∀,0]x and the Ii are the indices subsets related to the neighbourhood of the i→th

entry, i.e. Ii = {i→ 1, i, i+ 1}. The 2’s are positive parameters. The parameter 20 prevents division by zero

and is a compliance floor, which should be small enough to prevent under-smoothing and large enough to

avoid over-smoothing. The optimum value of 2’s could substantially change with the nature of the measured

sample.

The parameters 2p,2c are used to enhance or mitigate the local e!ects of slope or curvature. A preliminary

trial value that often yields satisfactory results is 2p = 2c = 1. The parameter 20, however, is more critical;

its value should not exceed the threshold defined by

max
i

{
2p max

µ⇓Ii

(
p
µ

)2
+ 2c max

µ⇓Ii

(cµ)
2
}

(5.9)
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while a too-small value, especially in cases where slope (p) and curvature (c) approach zero, would lead to

an extremely ill-conditioned problem, hence causing computational challenges.

Therefore, an automatic rule for determining 20 based on the estimate of (5.9) has been proposed, and

obtained from a tentative solution f̂ computed by the Truncated Singular Value Decomposition [156] of the

matrix K = U(V T :

f̂ =
∑

↼i>Tolϑ

u
T

i
y

σi

vi , Tol↼ = 10→6σ1

where σ1 ↑ σ2 ↑ · · · ↑ σi ↑ · · · represent the singular values, and the vectors ui,vi represent the i-th

columns of U and V , respectively [157].

By setting:

Vi = 2p max
µ⇓Ii

(
p̂
µ

)2
+ 2c max

µ⇓Ii

(ĉµ)
2 , i = 1, . . . , n,

where ĉ = #f̂ and p̂ = ∀f̂ , the 20 term can be derived as follows:

20 = ⇁̸V ̸↗ , 0 < ⇁ < 1. (5.10)

The advantage of this approach is that it substitutes the parameter 20, which can range in (0,↖), with

the parameter ⇁, which is confined within the interval (0, 1). This substitution ensures that 20 remains lower

than the highest values of V but higher than the lowest ones. This makes determining 20 more intuitive,

particularly when supported by a visual representation of V .

Summarizing, MF-UPen is an iterative scheme where, given an initial guess ω(0)
i

, i = 1, . . . , n, an ap-

proximate solution x
(k)

∋ (f (k), R(k)
0 ) is computed by solving (5.7) for fixed ω(k)

i
, i = 1, . . . , n, and the

regularization parameters values are updated according to (5.8). The minimization problem (5.7) is solved

by the Newton projection method (NP) [76].

MF-UPen is stated in the following Algorithm 6. The iterations are stopped when the following condition

is satisfied
n∑

i=1

|ω(k+1)
i

→ ω(k)
i

| < Tol
n∑

i=1

|ω(k)
i

| (5.11)

where Tol is a fixed tolerance.

Algorithm 6 MF-UPen

1: Set k = 0, and choose a starting guess ω(0)
i

, i = 1, . . . , n.

2: Compute 20 according to (5.10).

3: repeat

4: k = k + 1

5: NMRD parameters update. By using the Newton Projection method compute

x
(k) = argmin

x
̸y →Kex̸

2
2 +

n∑

i=1

ω(k→1)
i

(Lx)2
i

6: Regularization parameter update. Set

ω(k)
i

=

∥∥y →Kex
(k)

∥∥2

n

(
20 + 2p maxµ⇓Ii

(
p
(k)
µ

)2
+ 2c maxµ⇓Ii

(
c
(k)
µ

)2
) , i = 1, . . . , n

7: until converge condition (5.11)

8: return (f , R0) = x
(k) 3 Result (f , R0)
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5.2.2 MF-L1 Algorithm

This algorithm employs an L1→norm-based penalty, which is preferred for inducing sparsity in f . This

approach is based on the assumption that the f(↼) distribution is a sparse function characterized by only a

few non-zero terms.

The problem of parameter identification is reformulated as the following optimization problem:

min
x⇒0

{
̸y →Kex̸

2
2 + ς̸x̸1

}
(5.12)

where ς > 0 is the regularization parameter computed according to the Balancing Principle (BP) introduced

in Section 3.1.

Following [155], the equation (5.12) can be rewritten as

min
x

{
̸y →Kex̸

2
2 + ς̸x̸1 + η̸x̸22

}

s.t. x ↑ 0
(5.13)

In this new formulation (5.13) the last L2-based penalty term, η̸x̸22, has been introduced only to ensure

that KT

e
Ke + ηI is a definite positive matrix to ensure that (5.13) is well-posed. It is not a regularization

term and a small positive value for η ⇒ 10→10 is fixed. A complete discussion about the introduction of this

term is in the next Chapter (6), and in [155].

The MF-L1 algorithm is an iterative procedure where, starting from an initial guess ω(0), at each iteration

k, an estimate of the parameters (f (k), R(k)
0 ) is computed by solving the parameter estimation problem (5.13)

for fixed ς(k), by the truncated Newton interior-point method [158] (see Algorithm 7, step (4)). Then a new

value ς(k+1) is determined by using the BP (see Algorithm 7, step (5)). The BP selects the regularization

parameter ς so that the data fidelity and the regularization terms are balanced up to a multiplicative factor

ϑ, i.e.,:

ϑς̸x̸1 = ̸y →Kex̸
2
2 + η̸x̸22. (5.14)

Using the value for ϑ = 1 [85], the following rule for the parameter selection is obtained:

ς =
̸y →Kex̸

2
2 + η̸x̸22

̸x̸1
. (5.15)

The MF-L1 method is summarized in the following Algorithm 7.

Algorithm 7 MF-L1

1: Set k = 0, η = 10→10, and choose a starting guess ς(0).

2: repeat

3: k = k + 1

4: NMRD parameters update. By using the truncated Newton interior-point method, compute

x
(k) = argmin

x⇒0
̸y →Kex̸

2
2 + ς(k→1)

̸x̸1 + η̸x̸22

5: Regularization parameter update. Set

ς(k) =
̸y →Kex

(k)
̸
2
2 + η̸x(k)

̸
2
2

̸x(k)̸1

6: until ̸ς(k)
→ ς(k→1)

| ↗ Tol|ς(k)
|

7: return (f , R0) = x
(k) 3 Result (f , R0)

An extension of this algorithm, taking into account the QRE e!ect, is presented in the next Chapter 6.
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5.2.3 MF-MUPen Algorithm

This last algorithm implements the multi-penalty approach, proposed in [40] for the two-dimensional NMR

relaxometry data. MF-MUPen solves the following unconstrained minimization problem:

min
x

{
̸y →Kex̸

2
2 +

n∑

i=1

ωi(Lx)2
i
+ ς̸x̸1

}
(5.16)

which incorporates both penalty functions from MF-UPen and MF-L1. The regularization parameters are

then calculated using (5.8) for ωi, i = 1, . . . , n and (5.15) for ς.

Summarizing, MF-MUPen is an iterative scheme where, given an initial guess ω(0)
i

, i = 1, . . . , n, a

parameter estimate (f (k), R(k)
0 ) is computed by solving (5.16) for fixed ω(k)

i
, i = 1, . . . , n+1. Problem (5.16)

is solved by the FISTA method proposed in [159] which is one of the most popular methods for minimizing

L1-penalized least squares functions.

MF-MUPen algorithm is stopped when the following condition is satisfied

n∑

i=1

|ω(k+1)
i

→ ω(k)
i

|+ |ς(k+1)
→ ς(k)

| < Tol

(
n∑

i=1

|ω(k)
i

|+ |ς(k)
|

)
(5.17)

MF-MUPen is sketched in the following Algorithm 8.

Algorithm 8 MF-MUPen

1: Set k = 0, and choose a starting guess ω(0)
i

, i = 1, . . . , n, ς(0).

2: repeat

3: k = k + 1

4: NMRD parameters update. By using the FISTA method, compute

x
(k) = argmin

x
̸y →Kex̸

2
2 +

n∑

i=1

ω(k→1)
i

(Lx)2
i
+ ς(k→1)

̸x̸1

5: Regularization parameter update. Set

ω(k)
i

=

∥∥y →Kex
(k)

∥∥2

n

(
20 + 2p maxµ⇓Ii

(
p
(k)
µ

)2
+ 2c maxµ⇓Ii

(
c
(k)
µ

)2
) , i = 1, . . . , n

ς(k) =

∥∥y →Kex
(k)

∥∥2

n̸x(k)̸1

6: until converge condition (5.17)

7: return (f , R0) = x
(k) 3 Result (f , R0)

These three Algorithms 6, 7 and 8 require an initial estimate for the regularization parameters. This can

be obtained by computing a rough approximation x̃ to the following nonnegatively constrained least squares

problem

min
x⇒0

̸y →Kex̸
2
2

and then by using the Balancing and Uniform Penalty principles to get the initial guess. More precisely,

ς(0) =
̸y →Kex̸̃

2
2 + η̸x̸̃22

̸x̸̃1



5.3 Results and Discussion 77

in Algorithms 7, 8 and

ω(0)
i

=
̸y →Kex̸̃

2

n
(
20 + 2p maxµ⇓Ii

(
p̃
µ

)2
+ 2c maxµ⇓Ii (c̃µ)

2
) , i = 1, . . . , n

in Algorithms 6 and 8.

5.3 Results and Discussion

This section reports and discusses the results obtained by the proposed algorithms on samples of two di!erent

materials that represent typical case tests.

In the first part, i.e., Section 5.3.1, the metrics to quantitatively evaluate the results’ quality and the

experimental setting are introduced; then, in the last part, i.e., Sections 5.3.2 and 5.3.3, the results obtained

by the three algorithms are shown and discussed.

Numerical computations were carried out using Matlab R2022b on a laptop equipped with an Apple M1

processor with 16 GB of 2133 MHz RAM.

It should be noted that throughout the section, the frequencies ε are used instead of the angular fre-

quencies ϱ, where ε ∋ ϱ/(2ϖ).

5.3.1 Experimental Setting

The fitted NMRD profiles, computed by Algorithms 6, 7 and 8 are compared to the R1 data by means of

the φ2 value defined as follows:

φ2 =
m∑

i=1

(ei → yi)2

m→ 1
(5.18)

where e is the estimated data value, i.e.

e = Kf̃ + R̃0

with (f̃ , R̃0) the computed parameters.

The computed correlation time distributions, f , derived by the three algorithms are quantitatively com-

pared by determining the peak values and the area below the distribution in the neighbourhood of the

correspondent peak, referring to this value as SpecificWeight. To describe this variable, let us introduce the

following notation. Let us assume that f has np local maxima at the correlation times ↼cϖ , ◁ = 1, . . . , np.

Then let Iφ be the neighbourhood of interest through the Full Width at Half Maximum parameter, as follows:

Iφ ∋ [↼ low
φ

, ↼up
φ

] s.t. f(↼ low
φ

) = f(↼up
φ

) =
1

2
f(↼cϖ) ◁ = 1, . . . , np

Let the SpecificWeight metric represents the value for each peak ↼cϖ , such as:

SpecificWeight
φ
=

nϖ∑

j=1

↼cjf(↼cj ) , ↼cj ∝ Iφ (5.19)

where nφ is the number of correlation times belonging to Iφ, ◁ = 1, . . . , np.

The value of the tolerance parameters used in the stopping criteria of all algorithms is Tol = 10→2.

Moreover, a maximum number k = 10 of iterations has been set but never reached. The computational cost

is evaluated in terms of execution time.

Finally, the algorithms’ robustness has been tested by applying them to a set of s = 500 artificial profiles

obtained by adding to R1 uniformly distributed noise within the experimental error intervals. The purpose of

these tests referred to as dispersion analysis, is to evaluate the intervals containing the recovered parameter

R0, and how the computed estimates scatter around the average value. Additionally, the aim is to examine

how the position and value of the peaks vary in the recovered correlation times distributions.
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5.3.2 Numerical results from FFC measures

The results obtained by applying all the algorithms to NMRD profiles acquired from two experimental

samples, i.e., Manganese and Poplar, are presented in this section.

Both systems are considered a gold standard in relaxometry studies, especially when the involvement of

paramagnetic species is necessary. The relaxometric properties of aqueous manganese solutions have been

thoroughly investigated [160, 161], and as such, these solutions are routinely utilized to assess the performance

and stability of instruments. Additionally, the characteristics of Poplar char have been extensively studied

[162], making it an e!ective model for examining the textural properties and functional mobility of solvents

within these porous materials. The NMRD profile for the manganese sample was acquired by the authors,

while the data pertaining to Poplar char were taken from [163].

These two samples show how the algorithms’ results can complement each other to improve the overall

quality of the information provided. The global quality of the examined methods has been evaluated in

terms of ϑ2, o!set R0 and computation time.

The R1 data for the Manganese Sample is measured at 26 frequency values ε, ranging within the interval

[10→2
→ 101] MHz. The error intervals for these measurements vary from ±0.4 to ±1.1 [s→1]. These are

illustrated by the black error bars in the left panel of Figure 5.1.

Figure 5.1: Comparison of R1 relaxation rates for the Manganese and Poplar samples. The plots show

the comparative analysis between the actual data (in black) and the results from the MF-UPen (in green),

MF-L1 (in blue), and MF-MUPen (in red) algorithms.

Table 5.1: Manganese Sample. Computational results of the proposed methods.

Algorithm R0 [s→1] ϑ
2 [→] Computation time [s]

MF-UPen 6.64 · 100 6.23 · 10→1 9.86 · 10→1

MF-L1 1.19 · 101 5.55 · 10→1 1.35 · 10→1

MF-MUPen 9.98 · 100 4.10 · 10→1 1.24 · 100

The Table 5.1 presents the estimated parameter R0, the goodness-of-fit measure ϑ2, and the computation

time in seconds obtained by the three algorithms. The MF-L1 algorithm achieves a moderate ϑ
2 value and

the shortest computation time. In contrast, the MF-UPen algorithm shows a slightly higher ϑ
2 value and

requires a longer computation time. Finally, the MF-MUPen algorithm achieves the best fit, indicated by
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the lowest ϑ2, suggesting superior model accuracy, albeit with a reasonable increase in computation time as

a trade-o!.

Considering the Poplar sample, the R1 data is measured at 21 frequency values ε, within the interval

[10→2
→ 101] MHz. The error intervals for these measurements vary from ±0.06 to ±0.3 [s→1]. These are

illustrated by the black error bar in the right panel of Figure 5.1.

Table 5.2: Poplar Sample. Computational results of the proposed methods.

Algorithm R0 [s→1] ϑ
2 [→] Computation time [s]

MF-UPen 5.40 · 100 7.94 · 10→3 7.41 · 10→2

MF-L1 5.41 · 100 8.84 · 10→3 6.65 · 10→2

MF-MUPen 5.41 · 100 2.19 · 10→2 3.76 · 10→1

The Table 5.2 outlines the computational results obtained for the Poplar sample by the three algorithms.

Specifically, MF-UPen and MF-L1 both report nearly identical values for R0, with minimal ϑ2 and very

short computation times, indicating e”cient and e!ective performance. However, MF-MUPen, while yielding

a similar R0 to the other two algorithms, shows a higher ϑ2 value, suggesting a slightly poorer fit. Moreover,

MF-MUPen requires longer computation time.

The outcomes for the Manganese and Poplar samples represent two scenarios, each indicative of the

potential variability in sample analysis. This diversity highlights the importance of utilizing multiple methods

to fully understand sample characteristics under varying conditions.

The peak analysis for both the Manganese and Poplar samples across the three methods is performed

by plotting the correlation times amplitudes f computed by each method in Figure 5.2 and reporting in the

Tables 5.3, 5.4 peaks positions amplitudes, half-width and SpecificWeights for each sample.

Considering the manganese peaks in Table 5.3, a perfect agreement is observed among the three methods

in locating the peak at the longest correlation time, ↼c = 7.74 · 10→1 µs. Meanwhile, MF-UPen and MF-L1

show a quite good agreement at intermediate correlation times: ↼c = 3.76 · 10→2 µs and ↼c = 4.23 · 10→2 µs,

respectively. The distribution pattern in Figure 5.2, left panel, shows similarity features between MF-UPen

and MF-MUPen and reveals a tendency of MF-L1 to resolve multiple components at the shortest times.

(a) Manganese sample. (b) Poplar sample.

Figure 5.2: Distribution intensity as a function of ↼c. The plots show the results from the MF-UPen (in

green), MF-L1 (in blue), and MF-MUPen (in red) algorithms.
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Table 5.3: Manganese Sample Analysis. Position (↼c) and amplitude f(↼c) of the distribution peaks sorted

by f(↼c).

Algorithm
↼c f(↼c) Half-width SpecificWeight

[µs] [a.u.] [µs] [a.u.]

MF-UPen

8.30 · 10→3 9.78 · 101 8.19 · 10→3 6.94 · 100

3.76 · 10→2 2.95 · 101 8.47 · 10→3 2.13 · 100

7.74 · 10→1 9.61 · 100 1.18 · 10→1 1.09 · 101

4.86 · 10→1 4.63 · 100 5.67 · 10→2 2.25 · 100

3.43 · 10→1 4.85 · 10→2 4.98 · 10→2 2.17 · 10→2

MF-L1

1.05 · 10→2 5.13 · 102 1.34 · 10→3 6.30 · 100

4.23 · 10→2 3.63 · 101 5.36 · 10→3 1.75 · 100

7.74 · 10→1 1.16 · 101 1.21 · 10→1 1.24 · 101

3.43 · 10→1 2.28 · 100 4.00 · 10→2 7.84 · 10→1

1.63 · 10→3 3.79 · 10→3 7.04 · 10→4 5.17 · 10→5

MF-MUPen

9.33 · 10→3 8.49 · 101 1.09 · 10→2 6.98 · 100

4.75 · 10→2 1.09 · 101 1.55 · 10→2 1.47 · 100

7.74 · 10→1 1.15 · 101 1.23 · 10→1 1.24 · 101

3.43 · 10→1 1.49 · 100 5.24 · 10→2 7.56 · 10→1

Table 5.4: Poplar Sample Analysis. Position (↼c) and amplitude f(↼c) of the distribution peaks sorted by

f(↼c).

Algorithm
↼c f(↼c) Half-width SpecificWeight

[µs] [a.u.] [µs] [a.u.]

MF-UPen

4.23 · 10→2 1.02 · 100 3.92 · 10→2 3.54 · 10→1

3.05 · 10→1 4.65 · 10→1 1.25 · 10→1 5.00 · 10→1

1.56 · 100 1.75 · 10→1 5.38 · 10→1 8.05 · 10→1

3.51 · 100 5.53 · 10→2 9.32 · 10→1 4.53 · 10→1

MF-L1

4.75 · 10→2 3.77 · 100 1.04 · 10→2 3.34 · 10→1

2.72 · 10→1 1.59 · 100 3.50 · 10→2 5.11 · 10→1

1.56 · 100 4.85 · 10→1 1.89 · 10→1 8.20 · 10→1

3.94 · 100 1.15 · 10→1 4.60 · 10→1 4.55 · 10→1

MF-MUPen

4.23 · 10→2 1.87 · 100 2.13 · 10→2 3.40 · 10→1

2.72 · 10→1 7.80 · 10→1 7.49 · 10→2 5.11 · 10→1

1.56 · 100 4.41 · 10→1 2.02 · 10→1 8.19 · 10→1

3.94 · 100 1.14 · 10→1 4.60 · 10→1 4.50 · 10→1

In the case of the Poplar sample, as shown in the right panel of Figure 5.2 and Table 5.4, a tighter

clustering of peaks is observed across the methods, particularly at the highest amplitude peak around

↼c = 4.23 · 10→2 µs. This indicates that all three methods are in agreement regarding the main features of

the Poplar sample’s distribution.
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5.3.3 Dispersion Analysis

The robustness of the methods is investigated through the dispersion analysis, described in 5.3.1. The

boxplots in Figure 5.3 o!er a comparative view of algorithmic performance on the two samples. Each

boxplot outlines the algorithms’ interquartile range (IQR) and median of φ2 values.

Uniformity in the medians is observed for the Manganese sample, with outliers indicated by red plus

symbols, suggesting occasional significant deviations for MF-UPen. The symmetry of the data is apparent

from the lengths of the whiskers.

Conversely, the Poplar sample exhibits a tighter IQR for each algorithm, denoting less variability. Despite

the close median values indicating consistent algorithmic performance, outliers for MF-L1 reveal notable

deviations in some cases.

Figure 5.3: Boxplot of the φ2 values for the Manganese and Poplar samples, comparing the results of the

di!erent algorithms on 500 data realizations.

Table 5.5 compares the R0 confidence intervals [164], mean R0, and medians for both Manganese and

Poplar samples across the three algorithms.

The confidence intervals and mean R0 values suggest a wider range of estimates for the Manganese

sample, indicating a less uniform agreement among the algorithms. The median values, while closer, still

reflect a notable variation between the algorithms, suggesting that the model fit depends on the algorithm

applied.

Conversely, the Poplar sample demonstrates remarkable consistency, with both confidence intervals and

mean R0 values being nearly identical across all three algorithms. The median values also closely align,

reinforcing the observation of uniform performance. This indicates that for the Poplar sample, the choice of

algorithm does not significantly influence the outcome, and all three algorithms provide equivalent informa-

tion.

Table 5.5 represents two distinct scenarios that may emerge when these algorithms are applied to samples

with varying characteristics. In the case of the Poplar sample, the outcome from all three algorithms is con-

gruent, implying that the algorithms are robust and interchangeable for this type of sample. Conversely, the

Manganese sample demonstrates less consistency across the algorithms, suggesting that additional insights

from alternative investigative methods are necessary to supplement the analysis.

Regarding the distribution intensities, the mean distribution obtained by each method was computed,

and the peak positions and amplitudes were analysed in a manner analogous to Tables 5.1 and 5.4 for the

single samples.
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Table 5.5: Comparison of R0 Confidence Intervals, Mean R0, and Median for Manganese and Poplar samples.

Sample Algorithm
R0 Confidence Interval R0 Mean Median

[s→1] [s→1] [s→1]

Manganese

MF-UPen [5.240, 9.253] 7.25 · 100 8.26 · 100

MF-L1 [9.251, 12.12] 1.07 · 101 1.12 · 101

MF-MUPen [9.652, 11.38] 1.05 · 101 1.05 · 101

Poplar

MF-UPen [5.363, 5.406] 5.39 · 100 5.39 · 100

MF-L1 [5.370, 5.413] 5.39 · 100 5.39 · 100

MF-MUPen [5.370, 5.416] 5.39 · 100 5.39 · 100

From Tables 5.6 and 5.7, it is observed that MF-L1 identifies a greater number of peaks compared to

the other two methods, indicating a higher sensitivity of the algorithm.

In the case of the Manganese sample, the data reported in Table 5.6 show that there is a perfect corre-

spondence in peak position at the longest correlation time ↼c = 7.743 · 10→1 µs among the three algorithms.

While the peaks at shortest and intermediate times are split into multiple components.

Concerning the Poplar sample (Table 5.7), it is observed that all algorithms exhibit identical peak posi-

tions corresponding to the largest amplitude, occurring at the shortest correlation time, ↼c = 4.229 ·10→2 µs.

At longest correlation times, MF-UPen finds a single peak around ↼c = 1.748 ·100 µs while MF-L1 and MF-

MUPen split the amplitudes in two peaks at ↼c = 1.556 ·100, 1.963 ·100 µs and ↼c = 1.556 ·100, 2.205 ·100 µs

respectively.

However, despite the di!erences in the number of peaks identified, Figure 5.4 shows that all three algo-

rithms exhibit a fundamental robustness in the localization of the positions of the highest peaks.

From Table 5.5, it is observed that MF-MUPen exhibits the smallest confidence intervals in both samples.

Additionally, Figure 5.3 indicates that the number of outliers is smaller for MF-MUPen compared to the

other methods. Combined with the observations from Figure 5.4, these results suggest a higher robustness

of MF-MUPen compared to the other methods.

This consistency suggests the algorithms’ e!ectiveness in capturing the primary characteristics of both

samples, indicating their reliability in identifying the central features of the distributions regardless of sample

di!erences.

In Appendix A, the scatter plots related to the computed R0 and some plots of the computed profiles,

and correlation time distributions are shown as examples.
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(a) Manganese sample. (b) Poplar sample.

Figure 5.4: Mean distribution amplitude over 500 data realizations. The plots show the results from the

MF-UPen (in green), MF-L1 (in blue), and MF-MUPen (in red) algorithms.

Table 5.6: Manganese Sample. Analysis of mean distribution over 500 realizations. Position (↼c) and

amplitude f(↼c) of the distribution peaks sorted by f(↼c).

Algorithm
↼c f(↼c) Half-width SpecificWeight

[µs] (a.u.) [µs] [a.u.]

MF-UPen

9.326 · 10→3 8.640 · 101 8.889 · 10→3 6.949 · 100

3.765 · 10→2 1.727 · 101 9.075 · 10→3 1.617 · 100

7.743 · 10→1 9.004 · 100 1.385 · 10→1 1.168 · 101

5.462 · 10→1 9.534 · 10→1 1.139 · 10→1 4.464 · 100

5.995 · 10→2 7.407 · 10→1 7.643 · 10→3 1.208 · 10→1

MF-L1

1.048 · 10→2 1.642 · 102 4.173 · 10→3 6.216 · 100

6.579 · 10→3 3.024 · 101 4.493 · 10→4 5.120 · 10→1

7.743 · 10→1 1.061 · 101 1.264 · 10→1 1.215 · 101

3.765 · 10→2 8.763 · 100 1.897 · 10→2 1.702 · 100

3.854 · 10→1 5.470 · 10→1 7.072 · 10→2 5.642 · 10→1

4.863 · 10→1 3.761 · 10→1 3.575 · 10→2 4.885 · 10→1

2.420 · 10→1 1.233 · 10→1 1.700 · 10→2 7.589 · 10→2

MF-MUPen

1.048 · 10→2 8.461 · 101 9.725 · 10→3 6.954 · 100

7.743 · 10→1 9.675 · 100 1.466 · 10→1 1.219 · 101

4.229 · 10→2 5.630 · 100 2.526 · 10→2 2.163 · 100

4.863 · 10→1 4.064 · 10→1 1.402 · 10→1 9.117 · 10→1
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Table 5.7: Poplar Sample. Analysis of mean distribution over 500 realizations. Position (↼c) and amplitude

f(↼c) of the distribution peaks sorted by f(↼c).

Algorithm
↼c f(↼c) Half-width SpecificWeight

[µs] (a.u.) [µs] [a.u.]

MF-UPen

4.229 · 10→2 7.234 · 10→1 5.094 · 10→2 3.369 · 10→1

2.719 · 10→1 1.830 · 10→1 8.540 · 10→2 2.547 · 10→1

1.748 · 100 7.503 · 10→2 1.211 · 100 1.091 · 100

MF-L1

4.229 · 10→2 1.652 · 100 1.794 · 10→2 2.811 · 10→1

2.719 · 10→1 2.662 · 10→1 1.465 · 10→1 4.595 · 10→1

8.498 · 10→2 1.744 · 10→1 2.187 · 10→2 6.473 · 10→2

1.204 · 10→1 1.287 · 10→1 1.081 · 10→2 3.840 · 10→2

1.963 · 100 8.927 · 10→2 1.045 · 100 1.007 · 100

1.556 · 100 8.810 · 10→2 1.176 · 10→1 3.459 · 10→1

6.136 · 10→1 2.873 · 10→2 7.136 · 10→2 4.805 · 10→2

7.925 · 100 1.298 · 10→3 5.589 · 10→1 2.304 · 10→2

MF-MUPen

4.229 · 10→2 1.312 · 100 2.518 · 10→2 3.009 · 10→1

2.420 · 10→1 2.697 · 10→1 1.420 · 10→1 4.568 · 10→1

1.072 · 10→1 1.047 · 10→1 2.110 · 10→2 5.096 · 10→2

1.556 · 100 7.936 · 10→2 1.204 · 100 1.180 · 100

2.205 · 100 7.194 · 10→2 1.217 · 10→1 2.996 · 10→1

6.893 · 10→1 2.774 · 10→2 1.504 · 10→1 8.125 · 10→2

4.431 · 100 7.331 · 10→3 2.851 · 10→1 7.834 · 10→2



Chapter 6

Regularization For Quadrupolar

Relaxation Enhancement E!ect

This chapter is based on the publication [155].

As described in Section 1.2, the presence of nuclei with spins greater than 1/2 in the sample under exam-

ination results in the presence of the Quadrupolar Relaxation Enhancement (QRE) e!ect which contributes

to the relaxation process. This complex e!ect is described in Sections 1.2, and 1.3. Essentially, it refers

to electric interactions between these nuclei and the electric fields nearby, due to their charge distributions

interacting with the gradient of the electric field generated by the surrounding electron clouds. The presence

of the QRE phenomenon is represented by the presence of local maxima or distinct peaks across the NMRD

profile acquired, due to resonant phenomena. To formalize this, let us focus on the contribution by the

interaction between hydrogen (1H) and nitrogen (14N), which, for example, is typically manifested in the

dynamics of solid proteins [3, 4]. The position of the peaks depends on the quadrupole parameters which are

determined by the electric field gradient tensor at the 14N position. Hence, slight changes in the electronic

structure around 14N cause changes in the position and the shape of the quadrupole peaks. Therefore, the

QRE represents a very sensitive fingerprint of molecular arrangement which has a wide range of applications

in several domains, from the study of ionic liquids, proteins [4], food science [17, 16, 26, 7], to environmental

science [5].

Despite the consistent literature about the modelling of relaxation rate R1 of protons fluids within a

confined environment (see Section 1.3) and applications of FFC-NMR (see for instance [165] and references

therein), the study of a computational framework for the automatization of the FFC-NMR analysis was still

missing.

Therefore, the analysis of the NMRD profiles requires the solution of a parameter identification problem

dealing with the estimation of the o!set term, and the correlation time distribution (as presented in the

previous Chapter), but also of the QRE parameters when in the presence of the QRE e!ect.

In the present contribution, the parameter identification problem is formulated as a regularized non-linear

least squares problem with box constraints and, a completely automatic strategy for its solution is proposed.

In particular, the objective function contains a non-linear least squares term, imposing data consistency,

and a L1-based regularization term. An L1-based regularization term, added to the L2-data fitting term,

promotes sparse solutions since it forces only some components to be non-null while, at the same time, it

pushes all the other components to zero. Since the correlation time distribution function is known to be

sparse, i.e., to have only a few non-null values, L1-based regularization is a suitable choice compared to

L2-based regularization, which indeed promotes smooth solutions. The data-fitting and regularization terms

are balanced by the regularization parameter, and the physical constraints on the unknown parameters lead

85
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to bound constraints in the optimization problem.

The parameter identification problem crucially depends on the regularization parameter whose value has

to be properly identified to perform a meaningful NMRD analysis. Therefore, the proposed mathematical

model depends on several parameters: the NMRD parameters (i.e. the o!set, the correlation time distri-

bution), the QRE parameters, and the regularization parameter. The estimation of all these parameters

is carried out by an iterative process where, at each iteration, the regularization parameter is computed

according to a balancing principle (introduced in Section 3.1) [80]. The NMRD and QRE parameters are

estimated by solving the corresponding constrained optimization problem by the constrained two-blocks

non-linear Gauss-Seidel (GS) method (presented in Section 2.2.3) [39, 38] since the unknown NMRD and

QRE parameters can be naturally partitioned into two blocks. In the GS method, the objective function

is iteratively minimized with respect to the o!set and the correlation time distribution while the QRE pa-

rameters are held fixed; then, fixed the updated values for the o!set and the correlation time distribution,

the objective is minimized with respect to the QRE parameters. The first subproblem involves solving a

constrained linear least squares problem, obtained by the model-free approach [26], with an L1 regularization

term. The second subproblem requires the solution of a constrained non-linear least squares problem.

This computational approach, separating the contribution due to the o!set and the relaxation distribu-

tions from the parameters of the quadrupolar relaxation, can provide a very accurate fit not only of the

overall NMRD profile but also of the local maxima due to the QRE.

Besides analyzing the convergence of the proposed approach, the method was on synthetic and real data

aiming to illustrate its e”ciency and robustness to data noise.

The remainder of this chapter is organized as follows: in Section 6.1 the mathematical model, its dis-

cretization, and the parameter identification problem are described; in Section 6.2 the solution method is

introduced, and its properties are analyzed presenting the AURORA algorithm. The results from several

numerical experiments are reported and discussed in Section 6.3.

6.1 The Discrete Model for QRE E!ect

Following the model-free approach introduced in [26], let us now consider the case in the presence of the

QRE e!ect, represented by the non-linear term RHN to add in the equation (5.1) as follows:

R1(ϱ) = R0 +RHH(ϱ) +RHN (ϱ) (6.1)

For convenience, let us recall all the variables: the non-negative o!set R0 takes into account very fast

molecular motions, the variable ϱ is the angular frequency, and the term RHH(ϱ) is the linear term defining

the correlation time distribution f(↼) described by the following integral:

RHH(ϱ) =

∫ ↗

0


↼

(1 + (ϱ↼)2)
+

4↼

(1 + 4(ϱ↼)2)


f(↼)d↼ (6.2)

Let us also recall that the integral form represented by (6.2) freely identifies the number of potential corre-

lation times that characterize the overall dynamics of the physical system. In contrast, conventional FFC

data analysis methods typically depend on pre-defined mathematical models, which incorporate assumptions

about both the number and the interpretation of the correlation times that describe the system’s dynamics.

Therefore, applying (6.2) provides a broad fingerprint of the potential motion regimes without immediately

assigning a physical-chemical meaning. This interpretation can later be refined by considering the specific

chemical properties of the sample under study.

Finally, the last term RHN (ϱ) represents the QRE phenomenon describing the occurrence of the

quadrupolar peaks and it follows:
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RHN (ϱ) = CHN

(
1
3 + sin2(’) cos2(%), 1

3 + sin2(’) sin2(%), 1
3 + cos2(’)

)
·





↼Q
1 + (ϱ → ϱ→)2↼2Q

+
↼Q

1 + (ϱ + ϱ→)2↼2Q
↼Q

1 + (ϱ → ϱ+)2↼2Q
+

↼Q
1 + (ϱ + ϱ+)2↼2Q

↼Q
1 + (ϱ →#ϱ)2↼2

Q

+
↼Q

1 + (ϱ +#ϱ)2↼2
Q




(6.3)

remarking that · operator in (6.3) denotes the scalar product between two vectors. The term RHN depends

on six parameters, detailed as follows:

i) CHN refers to the gyromagnetic ratios and the average interaction distance of the nuclei;

ii) ’ and % are two angles accounting for the orientation of the 1H →
14 N dipole-dipole axis with respect

to the principal axis system of the electric field gradient at the position of 14N ;

iii) ↼Q is the correlation time for the 1H →
14N quadrupolar interaction;

iv) ϱ→ and ϱ+ are the angular frequency position of the peaks on the NMRD profiles (where #ϱ is the

angular frequency di!erence ϱ+ → ϱ→).

Interpolating experimentally acquired data by using the model equation (6.1) can be considered as the

combination of the free model approach given by (6.2) for the homonuclear linear RHH term, with the

non-linear function developed in the work [3], represented in (6.3) for the quadrupolar RHN term.

In order to discretize this model, the same notation of the previous chapter is used, i.e., ε ∝ Rm is

the vector of the m Larmor angular frequency values at which the profile R1 is evaluated (with ϱ = 2ϖε,

and ε in [MHz]); the vector y ∝ Rm discretizes the R1, i.e., yi = R1(ϱi), with i = 1, . . . ,m; and f ∝ Rn

represents the vector obtained by sampling the correlation time distribution function f(ω ) in n finite number

logarithmically equispaced values ↼1, . . . , ↼n. Moreover, let ϖ ∝ R6 the vector collecting all the quadrupolar

parameters, defined as follows:

ϖ ∋ (41,42,43,44,45,46) ∋
(
CHN , sin2 (’), sin2 (%), ↼Q,ϱ→,ϱ+

)
(6.4)

By discretizing the continuous model (6.1), the discrete model derived is the following:

y = F(f ,ϖ, R0) ∋ F1(f) + F2(ϖ) +R0 (6.5)

where F : Rn+6+1
∞ Rm.

The first term has been introduced in the previous chapter in (5.4), and it is the linear function depending

only on f obtained by the discretization of the Fredholm integral equation (6.2):

F1(f) ∋ Kf (6.6)

where the matrix K ∝ Rm⇑n is defined as follows:

Ki,j =
↼j(

1 + (ϱi↼j)
2
) +

4↼j(
1 + 4 (ϱi↼j)

2
) , i = 1, . . . ,m , j = 1, . . . , n (6.7)

Recalling that in a typical FFC-NMR experiment m ⇑ n.

The second term, F2(ϖ) : R6
∞ Rm represents the discretization of the quadrupolar component

RHN (6.3), and it only depends on the quadrupolar parameters 4j , j = 1, . . . , 6. It can be expressed

as follows:
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(F2(ϖ))
i
= 41

(
1
3 + 42(1→ 43),

1
3 + 42 · 43,

1
3 + (1→ 42)

)
·





44

1 + (ϱi → 45)242
4

+
44

1 + (ϱi + 45)242
4

44

1 + (ϱi → 46)242
4

+
44

1 + (ϱi + 46)242
4

44

1 + (ϱi → (46 → 45))242
4

+
44

1 + (ϱi + (46 → 45))242
4)




(6.8)

for i = 1, . . . ,m.

Finally, the last term in F is the constant parameter R0 ↑ 0, representing the o!set in the NMRD profile.

The di!erence compared to the case presented in Chapter 5 is essentially related to introducing the

non-linear term. Nevertheless, as for the correlation time distribution f , it is typically possible to derive a

priori information from the physics and the chemistry of the sample related to the quadrupolar parameters

one wants to extract in this case, represented by the boundary set of ϖ:

Bε =
{
ϖ : 41 ∝ [0, C̄];42,43 ∝ [0, 1];44 ∝ [0, ↼̄ ];45,46 ∝ [ϱl,ϱu]

}
(6.9)

A deeper discussion on this topic is in the next Section 6.3.1.

In this case, to stabilize the parameter identification procedure, knowing (6.1) is an ill-conditioned inverse

problem, the L1 regularization has been used to induce sparsity of f , since the distribution f(↼) is known

to be a sparse function with only a few non-null terms. Therefore, the parameter identification problem is

reformulated as the following optimization problem:

min
f ,ε,R0

̸y → (F1(f) + F2(ϖ) +R0) ̸22 + ω̸f̸1

s.t. f ↑ 0

ϖ ∝ Bε

R0 ↑ 0

(6.10)

where, the first term of (6.10) represents the fidelity term, %, of Chapter 2; while the second term of (6.10)

is the L1 regularization term, $, and it is weighted by the regularization parameter ω > 0. The parameters

(f ,ϖ, R0) obtained by solving (6.10) depend critically on the value of ω.

6.2 Numerical Method

The presented parameter identification method is an iterative procedure where, at each iteration, a value of

the regularization parameter ω is provided and the corresponding parameters (f
▷
,ϖ

▷
, R0,ς) are computed

by solving problem (6.10). The constrained two-block non-linear Gauss-Seidel (GS) method (described

in [38, 39], and here in Section 2.2.3) is used for its solution. In the following, first, for useful purposes, the

GS method is recalled with its convergence properties, then, the iterative procedure for the regularization

parameter computation is introduced, and, finally, the overall parameter identification procedure is drawn.

6.2.1 The constrained two-blocks Gauss-Seidel method

In this subsection, the GS method used for the solution of the constrained optimization problem (6.10)

for a fixed value of the regularization parameter ω is described. To this end, the unknowns in (6.10) are

partitioned into two blocks, such that the data fitting term becomes linear with respect to the first block

and non-linear with respect to the second block. Consequently, problem (6.10) is reformulated as follows:

min
x1,x2

g(x1,x2) = ̸y →Kex1 → F2(x2)̸
2
2 + ω̸x1̸1 + η̸x1̸

2
2

s.t. x1 ∝ X1

x2 ∝ X2

(6.11)
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where, as in the previous case, let x1 ∋ (f , R0) ∝ X1 be the linear vector collecting the correlation time

distribution vector and the constant o!set, and X1 = {x1 ↑ 0}; while x2 ∋ ϖ ∝ X2, with X2 ∋ Bε.

Moreover, let us recall Ke = [K 1] ∝ Rm⇑(n+1).

The last L2-based penalty term η̸x1̸
2
2 in the objective function has been introduced to ensure that

K
T

e
Ke + ηI is positive definite; to this and, a small value for η, as η = 10→10 for example, can be fixed.

Moreover, observe that in (6.11), the parameter R0 has been included in the L1-based penalty term.

The closed subsets X1 ⊆ Rn+1 and X2 ⊆ R6 are both convex; the objective function g(x1,x2) is

continuous and it is convex with respect to x1 for fixed x2, but it is not convex with respect to x2 for fixed

x1. However, since K
T

e
Ke + ηI is positive definite and X2 is bounded, it is easy to show that g is coercive

on X1 ↓X2.

Definition 6.1 A function g : Rq
∞ R is called coercive in X if, for every sequence {x

(k)
} ∝ X such that

̸x
(k)

̸ ∞ ↖, we have

lim
k⇐↗

g(x(k)) = +↖

Proposition 6.1 The function g : Rn+1+6
∞ R such that

g(x1,x2) = ̸y →Kex1 → F2(x2)̸
2
2 + ω̸x1̸1 + η̸x1̸

2
2

is coercive in X1 ↓X2.

Proof. The function g can be rewritten as

g(x1,x2) = x
T

1 (K
T

e
Ke + ηI)x1 + 2xT

1 K
T

e
(F2(x2)→ y) + ̸F2(x2)→ y̸

2 + ω̸x1̸1

where K
T

e
Ke + ηI is positive definite. Let {(x(k)

1 ,x(k)
2 )} be a sequence in X1 ↓ X2 such that

limk⇐↗ ̸(x(k)
1 ,x(k)

2 )̸ = ↖. Since X2 is bounded, we have

lim
k⇐↗

̸x
(k)
1 ̸ = ↖ and lim

k⇐↗
̸x

(k)
2 ̸ < ↖ (6.12)

Let µ > 0 be the smallest eigenvalue of KT

e
Ke + ηI. It holds

g(x(k)
1 ,x(k)

2 ) ↑ µ̸x(k)
1 ̸

2
→ 2̸KT

e
(F2(x

(k)
2 )→ y)̸̸x(k)

1 ̸+ ω̸x(k)
1 ̸+ ̸K

T

e
(F2(x

(k)
2 )→ y)̸2

↑

(
µ̸x(k)

1 ̸ → 2̸KT

e
(F2(x

(k)
2 )→ y)̸+ ω

)
̸x

(k)
1 ̸

From (6.12), it follows that µ̸x(k)
1 ̸ → 2̸KT

e
(F2(x

(k)
2 )→ y)̸+ ω > 0 for su”ciently large k. Therefore,

lim
k⇐↗

g(x(k)
1 ,x(k)

2 ) = +↖

↭
Continuity and coerciveness ensure the existence of at least one global minimizer of g(x1,x2) in

X1 ↓X2 [76].

In the constrained two-blocks Gauss-Seidel method, at each iteration, the objective function is minimized

with respect to each of the block coordinate vectors xi over the subsets Xi, i = 1, 2, as recalled in the

Algorithm 9, where the convergence condition is:

|g(x(k)
1 ,x(k)

2 )→ g(x(k→1)
1 ,x(k→1)

2 )| ↗ TolGS |g(x
(k)
1 ,x(k)

2 )| (6.13)

It is noted that the GS method is well-defined since each subproblem has solutions. Indeed, the function

g is strictly convex with respect to x1 and hence there exists at most one global minimum of f over X1 for
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Algorithm 9 Constrained two-blocks non-linear Gauss-Seidel method

1: function GS(x(0)
1 ,x(0)

2 )

2: Set k = 0 and x
(0) = (x(0)

1 ,x(0)
2 )

3: repeat

4: k = k + 1

5: Set x(k)
1 ∝ argmin

z⇓X1

g(z,x(k→1)
2 )

6: Set x(k)
2 ∝ argmin

z⇓X2

g(x(k)
1 , z)

7: until convergence condition (6.13)

8: return (x(k)
1 ,x(k)

2 )

9: end function

fixed x2. On the other hand, Weierstrass’s theorem guarantees the existence of at least one global minimum

of g over X2 for fixed x1 since g is continuous and X2 is a closed and bounded set.

For general nonconvex, constrained problems, the convergence of sequences generated by the GS method

to critical points has been proved in [39]. For the reader’s convenience, the main convergence result for the

GS method is reported, referring to [39] for its proof.

Theorem 6.1 Consider the problem
min
x1,x2

g(x1,x2)

s.t. x1 ∝ X1

x2 ∝ X2

(6.14)

where g is a continuously di!erentiable function and the subsets Xi are closed, nonempty and convex for

i = 1, 2. Suppose that the sequence {(x(k)
1 ,x(k)

2 )} generated by the two-blocks GS method has limit points.

Then, every limit point of {(x(k)
1 ,x(k)

2 )} is a critical point of the problem.

It has already been observed that the objective function g in (6.11) is coercive; since the level sets of

continuous coercive functions are compact, the sequence {(x(k)
1 ,x(k)

2 )} generated by the GS method has

limit points (eventually, it has a convergent subsequence); hence, the GS method converges to critical points

of (6.11).

This subsection concludes with a remark regarding the solution of the two constrained subproblems that

must be addressed at each iteration of Algorithm 9. The first subproblem at step 5 is an L1-regularized least

squares problem with nonnegativity constraints:

min
z

̸ε →Kez̸
2
2 + ω

m+1∑

i=1

zi

s.t. zi ↑ 0 , i = 1, . . . ,m+ 1

(6.15)

where ε = y → F2(x
(k)
2 ). For its solution, the truncated Newton interior-point method has been used

described in [158].

The second subproblem in step 6 is a bound-constrained non-linear least squares problem:

min
z

̸F2(z)→ ε̸
2

s.t. z ∝ X2

(6.16)

where ε = Kex
(k+1)
1 → y. For its solution, the Newton Projection method has been used [67, 68] where the

Hessian matrix is approximated as in the Levenberg-Marquardt method [166] since the Jacobian of F2 is

ill-conditioned.
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6.2.2 Computation of the regularization parameter ω

To correctly analyze the NMRD profiles, it is necessary to choose an appropriate value for the regularization

parameter ω. Even if several parameter selection rules have been proposed in the literature for L2-regularized

minimization problems, the case of L1-based regularization remains largely unexplored (see Chapter 3).

In [78, 79], the discrepancy principle has been investigated for nonsmooth regularization. This principle is

di”cult to be realized since it requires prior knowledge of the noise norm and a solution of the discrepancy

equation is not guaranteed to exist. In [80], the Balancing Principle (BP) has been proposed where the

regularization parameter is selected by balancing, up to a multiplicative factor ϑ, the data fidelity, and the

regularization term, i.e.,

ϑω̸x1̸1 = ̸y →Kex1 → F2(x2)̸
2
2 + η̸x1̸

2
2 (6.17)

The regularization properties of the BP have been deeply investigated and a convergent fixed-point iterative

scheme for its realization has been proposed in [80], and some are presented in section 3.1. The constant ϑ

is set equal to 1, following [85], which gives the following rule for the regularization parameter selection:

ω =
̸y →Kex1 → F2(x2)̸22 + η̸x1̸

2
2

̸x1̸1

6.2.3 The parameter identification method

The proposed iterative method for the identification of both the NMRD parameters f , ϖ and R0 and the

regularization parameter ω is outlined in Algorithm 10 where, given an initial guess for ω, at each iteration,

the NMRD parameters are computed by solving problem (6.10) by the GS method and the regularization

parameter value is updated by the BP until the following convergence condition is met:

|ω(k+1)
→ ω(k)

| ↗ Tol▷|ω
(k)

| , Tol▷ > 0 (6.18)

This method is referred to as AURORA (Automatic L1-Regularized Model-Free Analysis).

Algorithm 10 AURORA

1: Set k = 0, η = 10→10 and choose a starting guess ω(0).

2: repeat

3: k = k + 1

4: NMRD and QRE parameters update

By Algorithm 9 compute (x(k)
2 ,x(k)

2 ) = GS(x(k→1)
1 ,x(k→1)

2 ) i.e.

(x(k)
1 ,x(k)

2 ) ∝ argmin
x1⇓X1
x2⇓X2

̸y →Kex1 → F2(x2)̸
2
2 + ω(k)

̸x1̸1 + η̸x2̸
2
2

5: Regularization parameter update

ω(k+1) =
̸y →Kex

(k)
1 → F2(x

(k)
2 )̸22 + η̸x(k)

2 ̸
2
2

̸x
(k)
1 ̸1

6: until convergence condition (6.18)

7: return (f , R0) = x
(k)
1 and ϖ = x

(k)
2 3 Result (f , R0,ϖ)

Following the analysis of the BP performed in [80], algorithm AURORA can be viewed as a fixed point-like

scheme (Algorithm 4) for the problem

(x↓
1,x

↓
2) = argmin

x1⇓X1
x2⇓X2

̸y →Kex1 → F2(x2)̸
2
2 + ω↓

̸x1̸1 + η̸x1̸
2
2
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ω↓ =
̸y →Kex

↓
1 → F2(x↓

2)̸
2
2 + η̸x↓

1̸
2
2

̸x
↓
1̸1

The monotone convergence of the sequence {ω(k)
} generated by the fixed point scheme has been proved

in [80] when ω(0) is chosen in an interval containing only one solution of equation (6.17).

6.3 Results and Discussion

In this section, the results obtained from a set of numerical experiments are presented and discussed to

evaluate the proposed algorithm’s accuracy, robustness, and e”ciency.

First, the experimental setting is described in 6.3.1. The Subsection 6.3.2 presents an evaluation of the

algorithm, denoted as AURORA, on a synthetic NMRD profile R1, which is computed using the model (6.1)

with predefined values for the parameters ϖ, f , and R0. The computational e”ciency and accuracy of

AURORA are assessed by comparison with several algorithms available in the MATLAB Optimization

Toolbox. Additionally, the robustness of the algorithm is examined in the presence of data noise.

Finally, Subsection 6.3.3 reports the results of the analysis of NMRD profiles obtained from two distinct

samples: Dry Nanosponge (DN) and Parmigiano-Reggiano (PR) cheese.

6.3.1 Numerical Experimental Setting

Numerical computations were carried out using Matlab R2022b on a laptop equipped with an Apple M1

processor with 16 GB of 2133 MHz RAM.

It should be noted that throughout the section, the frequencies ε are used instead of the angular fre-

quencies ϱ, where ε ∋ ϱ/(2ϖ).

For all tests, the values C̄ and ↼̄ in the constraints set B1 (6.9) are set equal to a value large enough

so that the intermediate solutions 4(k)
1 and 4(k)

4 never reach such bounds. The suitable values for the test

chosen have been C̄ = ↼̄ = 100.

Moreover, the interval [ϱφ,ϱu] in (6.9), representing the region where R1 interrupts its decaying behaviour

due to QRE, is defined by inspection of the NMRD profile. The starting guess for the parameter 4(0)
1 ∋ CHN

is obtained by the literature [4]:

CHN =
2

3

(
µ0

4ϖ

ϑHϑN⊋
r3
HN

)2

⇒ 0.18
µs
s2


(6.19)

where the values of the physical constants are reported in Table 6.1.

Table 6.1: Characteristic constants for CHN in (6.19).

Constant Description Value

µ0 permeability of vacuum 10→7 [T 2J→1m3]

ϑH 1H gyromagnetic factor 2.577 106 [T→1s→1]

ϑN 14N gyromagnetic factor 3.078 106 [T→1s→1]

⊋ reduced Planck’s constant 1.05472 10→34 [J s]

rHN
1H →

14 N inter-spin distance 1.4 10→10 [m]

Concerning the quadrupolar parameters, 4(0)
2 ∋ sin2 ’(0), 4(0)

3 ∋ sin2 %(0), describing the orientation of

the 1H →
14 N dipole–dipole axis with respect to the principal axis system of the electric field gradient at
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the position of 14N , the initial values are equal to the mean of the corresponding upper and lower bounds

in Bε, i.e., 1/2.

The initial value of 4(0)
4 ∋ ↼Q, i.e., the correlation time characterizing fluctuations of the 1H →

14 N

dipole-dipole coupling, is set to 1, while 4(0)
5 ∋ ϱ(0)

→ , and 4(0)
6 ∋ ϱ(0)

+ are defined as follows:

4(0)
5 = ϱφ +

1

4
|ϱu → ϱφ| , 4(0)

6 = ϱu →
1

4
|ϱu → ϱφ|

they correspond to the peaks of the QRE observed in the NMRD profile.

The computed results are evaluated by the Mean Squared Error (MSE)

MSE =
̸R1 → F(f ,ϖ, R0)̸2

m

and the Parameter Relative Error (PRE):

PRE(x) =
̸xexact

→ xcomputed
̸
2

̸xexact̸2

with x representing either the vector f or the scalars R0, 4i, i = 1, . . . , 6.

The components of the vector ϖ are referenced by the name in the physical model (6.3), according to

the mapping introduced in section 6.1, and reported in Table (6.2) for convenience.

Table 6.2: Quadrupolar parameters mapping.

CHN % ’ ↼Q ϱ→ ϱ+

41 asin(
∅
42) asin(

∅
43) 44 45 46

All the tests apply Algorithm 10 with Tol▷ = 10→2 in (6.18) and Algorithm 9 with TolGS = 10→6 in (6.13).

The computational cost is evaluated in terms of execution time and number of iterations.

Finally, regarding the test performed on real experimental data, the dispersion analysis 5.3.3 has been

performed to evaluate the robustness of the algorithm and to extract the confidence intervals of the computed

parameters.

6.3.2 Synthetic Test Problem

The algorithm AURORA has been initially tested on the synthetic NMRD profile R1, shown in Figure 6.1(a)

to examine the properties.

This profile is obtained by setting the parameters of model (6.1) as specified in the second column of

Table 6.3, with the distribution function f
↓ depicted in red in Figure 6.2(a).

The accuracy of the computed results can be appreciated in the correlation distribution f and R1 curves

shown in Figure 6.2.

The convergence behaviour has been tested by evaluating the PRE and the MSE at each step of the GS

method in the algorithm 9. Figure 6.3 (a) shows the the behaviour of the relative errors for each parameter

(f , R0, CHN ,%,’, ↼Q, ε→, ε+) compared to their reference values.

The convergence to reference parameter values is initially non-monotonic for most parameters except ↼Q
and ε→. On the contrary, MSE has a monotonic decrease as reported in Figure 6.3 (b).

The values of the computed parameters and relative errors reported in the third and fourth columns of

Table 6.3 confirm the excellent accuracy obtained by the proposed algorithm.

The computed value of the regularization parameter is ω↓ = 1.216 10→9 with computation time of

90.44± 0.3 s.
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Table 6.3: Model parameters: reference (second column), AURORA computed values (third column) and

PRE (fourth column).

reference computed PRE

R0 3.69 3.6868 7.0267 10→4

CHN 18.84 18.8453 6.1449 10→5

↼Q 0.96 0.9554 8.5033 10→6

’ 1.09 1.0901 6.1449 10→5

% 0.57 0.5696 6.9199 10→4

ε→ 2.15 2.1502 5.7363 10→6

ε+ 2.87 2.8696 1.1316 10→6

(a) Full profile. (b) Zoom of the profile.

Figure 6.1: Synthetic sample NMRD profile. In Figure (b) the zoom is shown in the reference interval [εφ, εu]

represented by the left and right green vertical lines. Left and right black vertical lines represent the values
1

(0)
5

(2↽) ,
1

(0)
6

(2↽) respectively.

(a) Correlation time distribution. (b) NMRD profile.

Figure 6.2: Synthetic sample computed results (in blue) obtained by the AURORA algorithm compared to

reference one (in red).
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(a) PRE values per iteration. (b) MSE values per iteration.

Figure 6.3: Synthetic R1 results to test the convergence of the algorithm.

The computation cost, evaluated in terms of inner iterations of the two Gauss-Seidel blocks in Algorithm 9,

consists of 147 iterations of the Newton Projection method and 74258 iterations of the truncated Newton

interior point method. Note that the greater computational weight lies in truncated Newton interior-point

iterations due to the larger size of problem (6.15) compared to (6.16).

Although the convergence of the update formula (6.17) depends on the initial guess ω(0), the convergence

for ω(0) has been found in a quite large interval ([10→16, 100]). In Figure 6.4, the sequences ω(k), k = 0, . . . , 15

obtained by Algorithm 10 with ω(0)
∝
{
10→16, 10→6, 10→4, 10→2, 100

}
are represented. Optimal convergence

(k = 1) is obtained for 10→16
↗ ω(0)

↗ 10→4 while ω(0) > 10→4 causes a slight increase of the iterations

number, still preserving the convergence up to ω(0) = 1, which is usually considered as a standard starting

guess. Therefore, to keep computations e”cient, ω(0) = 10→6 is used throughout the numerical experiments

of this section.

Figure 6.4: SyntheticR1. Sequence {ω(k)
}, obtained byAURORA with ω(0)

∝
{
10→16, 10→6, 10→4, 10→2, 100

}
.
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Comparison with Matlab solvers

This test problem is designed to compare AURORA with several methods implemented by the MATLAB

function fmincon, including the interior-point (ip), active-set (as), sequential quadratic programming (sqp),

and trust-region-reflective (trr) methods.

It is important to note that AURORA automatically computes the value of the regularization parameter

ω, whereas the MATLAB function fmincon solves the optimization problem (6.10) for a fixed value of

ω. Consequently, the GS Algorithm 9 is compared with ip, as, sqp, and trr using the same fixed value

ω = 1 · 10→8, which was heuristically determined to be suitable for all methods.

Besides the automatic computation of the regularization parameter ω, AURORA splits the unknown

parameters into two blocks and alternatively minimizes the objective function for (R0,f), the o!set and

correlation distribution, and for the quadrupolar parameters ϖ. Two di!erent methods are used for the

solution of the corresponding sub-problems. On the contrary, fmincon computes all the parameters applying

the same method.

Table 6.4 shows the PRE and MSE values (last row) obtained by AURORA (second column) and by the

Matlab solvers, highlighting the smallest values.

Table 6.4: Parameter relative errors (PRE) and MSE of AURORA and methods implemented by the

Matlab function fmincon.

PRE

Parameter AURORA ip active-set sqp trr

f 4.2834 · 10→1 1.5509 1.4497 1.3020 8.5279 · 10→1

R0 7.0032 · 10→4 9.9629 · 10→1 1.0000 2.7930 10→1 1.3671 · 10→1

CHN 5.8238 · 10→5 4.2908 9.6353 · 10→1 1.5045 · 10→5 1.1591 10→2

’ 6.9108 · 10→4 6.5929 · 10→2 7.7862 · 10→2 7.2072 10→4 1.5758 · 10→2

% 8.7093 · 10→6 5.5535 · 10→1 2.1372 2.6548 10→5 7.2619 · 10→3

↼Q 1.5660 · 10→4 9.9228 · 10→1 3.1584 · 101 1.8903 10→4 1.1033 · 10→2

ε→ 5.7679 · 10→6 4.0856 · 10→1 2.2756 · 10→1 5.6228 · 10→6 5.9438 · 10→5

ε+ 1.1391 · 10→6 5.5197 · 10→2 3.3362 · 10→2 1.2084 · 10→6 1.8516 · 10→5

MSE 2.8131 · 10→6 9.1906 9.0766 3.1658 · 10→6 2.8289 · 10→3

The distribution f computed by sqp is shown in Figure 6.5.

The algorithm AURORA has globally superior accuracy both in data fitting, and parameter estimation.

Only sqp reaches an MSE value (3.1658 · 10→6) similar to AURORA (2.8131 · 10→6), and a slightly better

PRE for parameters CHN and ε→, but the amplitude distribution in Figure 6.5 shows too many spurious

peaks. Regarding all the other methods, the obtained results are much larger values compared to AURORA.

Test with Noisy Data

In this paragraph, the robustness of the algorithm to data perturbations is assessed by generating noisy data

y
⇀
∝ Rm from a random uniformly distributed vector v ∝ Rm with values in the interval [→1, 1], such that

y⇀
i
= yi(1 + 0vi) , i = 1, . . . ,m.

The cases 0 = 1%, 5%, 10% are considered.

The computation times (averaged over 10 runs) and the iteration numbers, presented in Table 6.5, indicate

that both the iteration numbers and computation times decrease as the noise percentage increases. This
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Figure 6.5: Correlation time distribution f computed by sqp method.

behaviour can be attributed to the e!ect of increasing noise on the computed regularization parameters, as

shown in the third column of Table 6.5.

Table 6.5: Computation times and iteration numbers with noise 0 = 1%, 5%10%.

0 Time Total iterations (6.15) Total iterations (6.16) ω

1 · 10→2 38.39± 0.28 52217 89 5.8405 10→5

5 · 10→2 14.39± 0.16 44414 72 1.8803 10→3

1 · 10→1 4.90± 0.10 16846 28 9.3561 10→3

The relations between the execution times are not found precisely in the number of iterations because

they do not take into account the backtracking steps internal to the Newton method.

By computing 500 noisy samples y⇀

j
, the AURORA algorithm is executed, and the errors on the estimated

parameters as well as the reconstructed NMRD profiles are compared.

For the noise levels 0 = 1%, 5%, 10%, the mean Parameter Relative Error for each parameter is calculated.

The mean values are represented in the bar plot shown in Figure 6.6, alongside the product CHN
· ↼Q.

The mean PRE and MSE are reported in Table 6.6.

The computed R1 curves and the zoom in the QRE interval are shown in Figures 6.7, 6.8, and 6.9 for

0 = 1%, 5%, 10% respectively.
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Figure 6.6: Mean parameter values computed by 500 noisy NMRD profiles with noise 0 = 1%, 5%10%.

Table 6.6: Mean PRE and MSE on 500 noisy NMRD profiles with 0 = 1%, 5%, 10%.

PRE

1% 5% 10%

f 5.9019 · 10→1 1.1816 1.4509

R0 3.6393 · 10→2 1.6726 · 10→1 1.8099 · 10→1

CHN 3.3625 · 10→2 2.7021 · 10→1 4.7742 · 10→1

’ 2.3023 · 10→2 1.0678 · 10→1 2.1726 · 10→1

% 3.5151 · 10→2 4.0280 · 10→1 6.5910 · 10→1

↼Q 4.4998 · 10→2 1.8862 1.1095 · 101

ε→ 4.3917 · 10→3 4.8712 10→2 7.2441 · 10→2

ε+ 3.0889 · 10→3 3.8712 10→2 5.6856 · 10→2

MSE 1.5980 · 10→1 3.1441 1.0055 · 101

(a) Full profile. (b) Zoom of the profile in QRE interval.

Figure 6.7: Fit of NMRD obtained from 500 noisy Synthetic NMRD curves with noise 0 = 1%, where the

500 fitted R1 curves are in light grey, the reference NMRD curve is in red, and the average over 500 fitted

R1 values is in blue.
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(a) Full profile. (b) Zoom of the profile in QRE interval.

Figure 6.8: Fit of NMRD obtained from 500 noisy Synthetic NMRD curves with noise 0 = 5%, where the

500 fitted R1 curves are in light grey, the reference NMRD curve is in red, and the average over 500 fitted

R1 values is in blue.

(a) Full profile. (b) Zoom of the profile in QRE interval.

Figure 6.9: Fit of NMRD obtained from 500 noisy Synthetic NMRD curves with noise 0 = 10%, where the

500 fitted R1 curves are in light grey, the reference NMRD curve is in red, and the average over 500 fitted

R1 values is in blue.

In Figure 6.6, it is observed that data noise primarily a!ects the values of CHN , ↼Q, and %. However,

when considering the product CHN↼Q, represented by the second group in Figure 6.6, it is evident that the

value is preserved for noise levels 0 = 1% and 5%. This behavior reflects a physical characteristic, supporting

the accuracy of the associated parameters.

Although the average MSE increases with data noise, the computed average R1 curves show a very good

agreement with the reference NMRD profiles (Figures 6.7, 6.8 and 6.9). The QRE is well reproduced even

with high noise (Figures 6.7 (b), 6.8 (b) and 6.9 (b)).

6.3.3 NMRD Profiles from FFC Measures

The NMRD profiles obtained from two di!erent materials described in [26] have been considered and tested.
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• A sample of 24-month-aged Parmigiano-Reggiano (PR) cheese. The NMRD profile repre-

sented in Figure 6.10 (a) has m = 48 values with confidence intervals ranging from ±0.35% to ±3.07%

of the value. The quadrupolar peaks, represented in Figure 6.11 (a), correspond to frequency values

ε→ = 2.1 and ε+ = 2.8 of values R1→ = 32.2 s→1 and R1+ = 30.7 s→1 respectively.

• A sample of Dry nanosponge (DN). In this case the NMRD profile represented in Figure 6.10

(b) has m = 44 values with confidence intervals ranging from ±0.47% to ±1.54% of the value. The

quadrupolar peaks, represented in Figure 6.10 (b), correspond to frequency values ε→ = 2.4991 MHz

and ε+ = 3.1488 MHz of values R1→ = 104.85 s→1 and R1+ = 104.85 s→1 respectively.

(a) Parmigiano-Reggiano (PR) sample. (b) Dry Nanosponge (DN) sample.

Figure 6.10: NMRD profiles.

(a) Parmigiano-Reggiano (PR) sample. (b) Dry Nanosponge (DN) sample.

Figure 6.11: Zoom of the profile in QRE interval.

The proposed AURORA method has been used to compute the model parameters reported in Table 6.7.

The obtained correlation distributions are represented in Figure 6.12 in a dark green line.

Concerning the fit of the NMRD profiles, the MSE has been measured and reported in the last row of

Table 6.7. Notably, the PR sample exhibits a low MSE of 7.8887 · 10→2, reflecting a high degree of accuracy

in capturing the underlying data behavior. In contrast, the DN sample yields an MSE of 2.7853, indicating a
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Table 6.7: Values of the parameters fitted by AURORA and MSE in the last row.

Parameter values

PR DN

R0 3.23 2.73

CNH 5.66 69.00

’ 1.25 0.91

% 0.86 0.87

↼Q 1.02 0.74

ε→ 2.1 2.56

ε+ 2.8 3.17

MSE 7.8887 · 10→2 2.7853

(a) Parmigiano-Reggiano (PR) sample. (b) Dry Nanosponge (DN) sample.

Figure 6.12: Correlation distribution (dark green lines).

less precise identification. This discrepancy likely arises from intrinsic di!erences in the data characteristics

of the two samples.

The fitted NMRD profiles, represented in Figure 6.13, show in blue line the data and error bars while

the fitted curves are represented in red line for both samples.

The zoom in the frequencies of the QRE interval is shown in Figure 6.14.

The results confirm the excellent fit to the NMRD profile (Figure 6.13) also in the QRE interval (Figure 6.14).

Dispersion Analysis on Profiles with QRE

Finally, the dispersion analysis introduced in the previous chapter, in section 5.3.3, has been applied in this

case of the AURORA algorithm analysing NMRD curves with QRE e!ect to extract confidence intervals of

the computed parameters.

Tables 6.8, and 6.9 compare the computed parameters, i.e., {R0, CHN ,’,%, ↼Q, ε→, ε+}, confidence in-

tervals [164], mean, and medians for both Parmigiano and Nanosponge samples obtained by the algorithm.

For the PR sample, parameters such as R0, CHN , and ↼Q exhibit relatively narrow confidence intervals

and small discrepancies between the mean and median, indicating consistent and symmetric distributions.

In contrast, the DN sample demonstrates broader confidence intervals, particularly for CHN , suggesting
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(a) Parmigiano-Reggiano (PR) sample. (b) Dry Nanosponge (DN) sample.

Figure 6.13: NMRD data and error bars (blue lines) and fitted curve (red lines).

(a) Parmigiano-Reggiano (PR) sample. (b) Dry Nanosponge (DN) sample.

Figure 6.14: Zoom of data and fitted curves in the QRE intervals. NMRD data and error bars (blue lines)

and fitted curves (red lines).

Table 6.8: Comparison of the Confidence Intervals, Mean, and Median for PR sample.

Confidence Interval Mean Median

R0 [s→1] [2.316, 4.013] 3.308·100 3.252·100

CHN [µs/s2] [5.285, 6.351] 5.736·100 5.733·100

’[rad] [1.058, 1.253] 1.214·100 1.253·100

%[rad] [0.828, 0.891] 0.860·100 0.859·100

↼Q [µs] [0.937, 1.106] 1.020·100 1.020·100

ε→ [MHz] [2.080, 2.111] 2.096·100 2.095·100

ε+ [MHz] [2.808, 2.821] 2.815·100 2.814·100

greater variability in this computed parameter. Across both samples, the parameters ε→ and ε+ show

negligible di!erences between the mean and median, reflecting symmetric distributions. These findings

underscore di!erences in variability and central tendencies between the PR and DN samples for the analysed
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Table 6.9: Comparison of the Confidence Intervals, Mean, and Median for DN sample.

Confidence Interval Mean Median

R0 [s→1] [1.905, 3.510] 2.736·100 2.749·100

CHN [µs/s2] [57.865, 70.670] 6.011·101 6.010·101

’[rad] [0.891, 1.075] 1.057·100 1.058·100

%[rad] [0.862, 0.883] 0.872·100 0.873·100

↼Q [µs] [0.701, 0.756] 0.731·100 0.732·100

ε→ [MHz] [2.125, 2.720] 2.525·100 2.525·100

ε+ [MHz] [2.989, 3.340] 3.131·100 3.131·100

parameters.

In Appendix A, the obtained results are shown in the scatter plots for the 500 repetitions, reporting some

figures for both the computed profiles and the correlation time distributions as examples.
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Chapter 7

Neural Network-Based Inversion of

NMR Dispersion Profiles

This chapter is based on the publication [167].

Despite the widespread recognition and application of artificial intelligence methods across various dis-

ciplines, e.g., magnetic resonance imaging, their utilization in NMR remains relatively under-explored and

the adoption of these advanced computational tools is limited. Some AI-based approaches applied to NMR

can be found in the literature. For instance, Weisman et al. developed a supervised learning method applied

to the food industry. Specifically, a convolutional neural network (CNN) has been trained to classify the

transversal relaxation time to identify the oil oxidation level [23]. In NMR spectroscopy, Hansen recon-

structs the sparsely sampled spectra acquired by fast acquisition multi-dimensional NMR spectra techniques

employing a deep neural network [24].

However, the widespread adoption of FFC-NMR is hindered by the complexity of the analytical instru-

ments and the need for deep expertise in NMR and materials physics. Addressing this challenge, this chap-

ter describes a machine learning framework tailored to the QRE phenomenon, utilizing a neural network to

compute the parameters characterizing the quadrupolar relaxation model. A pre-trained feed-forward neural

network is embedded into the NMRD data fitting procedure according to the philosophy of the Plug-and-

Play (PnP) approach, facilitating integration with NMRD data inversion software based on the coordinate

descent method (two-block non-linear Gauss-Seidel) [155, 168].

Since their introduction, PnP methods have become standard tools for computational imaging [134, 169],

providing practical approaches to integrating learned models with imaging physics to solve inverse imaging

problems. In this work, a similar procedure is followed, embedding the neural network in an alternate

minimization procedure.

The contributions of this work can be summarized as follows:

• Design of a neural network to predict QRE parameters.

• Definition of an appropriate training procedure.

• Proposal and application of a novel specific loss function for network training and prediction.

To my knowledge, no applications of PnP methods to NMRD data inversion exist, making the proposed

method the first example of applying PnP to NMR-FFC data treatment.

This contribution demonstrates the e!ectiveness of using neural networks for NMRD profile inversion.

The results are tested and compared with those obtained using a previously developed robust optimization

105
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method (Chapter 6, [155]), showing strong concordance. This suggests that neural network-based approaches

have the potential to significantly expedite the analysis of extensive datasets in this field.

Following this introduction, section 7.1 details the physical model and the mathematical parameter

estimation problem. Section 7.2 describes the proposed neural network approach and the computational

framework of the algorithm. Section 7.3 presents and discusses the numerical results from testing on two

sets of NMRD profiles, each illustrating significant potential scenarios in food analysis [16].

7.1 Towards an Enhanced Framework

As described in the previous chapters, the relaxation rates can be represented as linear combinations of

spectral density functions of the motion modulating the interactions.

Let us briefly recall for convenience the discrete model (6.5) required to describe the last proposed method

to extract the parameters and analyze the NMRD curves:

y = R0 +Kf + F2(ϖ) (7.1)

where the second term in the right-hand side of (7.1) is the linear function derived from the discretization

of the integral for RHH in (6.2) with K ∝ Rm⇑n:

Ki,j =
↼j

(1 + (ϱi↼j)2)
+

4↼j
(1 + 4(ϱi↼j)2)

, i = 1, . . . ,m, j = 1, . . . , n

and f ∝ Rn, a sparse vector of the sampled correlation distribution function.

The third term in (7.1) models the QRE term RHN (ϱi), i = 1, . . . ,m in (6.3). It

is represented by the function F2 : R6
∞ Rm, depending on the quadrupolar parameters

ϖ ∋ (41,42,43,44,45,46)T ∋ (CHN , sin2(’), sin2(%), ↼Q,ϱ→,ϱ+)T . Let us rewrite it in the following

more compact form:

(F2(ϖ))i = 41





1
3 + 42(1→ 43)

1
3 + 4243

1
3 + (1→ 42)





T

·





44

1 + (ϱi → 45)242
4

+
44

1 + (ϱi + 45)242
4

44

1 + (ϱi → 46)242
4

+
44

1 + (ϱi + 46)242
4

44

1 + (ϱi →#45,6)242
4

+
44

1 + (ϱi +#45,6)242
4)




(7.2)

where #45,6 = (46 → 45).

Since the problem is ill-conditioned, and the proposed strategy is an integrated method that employs a

machine learning approach, let us also recall the L1-regularized least squares inverse problem:

min
f ,ε,R0

̸(Kf + F2(ϖ) +R0)→ y̸
2
2 + ω̸f̸1

s.t. f ↑ 0

ϖ ∝ Bε

R0 ↑ 0

(7.3)

where the set Bε defines the box constraints on ϖ:

Bε =
{
ϖ : 41 ∝ [0, C̄]; 42,43 ∝ [0, 1]; 44 ∝ [0, ↼̄ ]; 45,46 ∝ [ϱφ,ϱu]

}
(7.4)

with the values C̄, ↼̄ , and ϱφ,ϱu quite delicate to choose as they depend on the physical properties of

the analysed sample and significantly influence the quality of the result. Therefore, they need to be set

appropriately, requiring knowledge of NMR and the physical structure of the studied material.
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Considering the objective function (7.3), the first term represents the fidelity term of Chapter 2, %, and

it imposes R1 data consistency; while the second component is the regularization term, $, introduced to

stabilize the problem exploiting a priori knowledge on the sparsity of f . The regularization parameter ω > 0

weights the contribution of the L1 regularization term. In the previous chapter, a practical and e!ective

solution has been described, consisting of an automatic rule, based on the balancing principle framework [80]

for the choice of the regularization parameter ω. Then, for each value of the regularization parameter, a

two-block nonlinear Gauss-Seidel method has been used for the solution of (7.3).

This means that, from an algorithmic point of view, there are two main nested loops: an outer balancing

principle loop, using the counter ◁, tailored to update ω(φ) according to the balancing principle, and an

inner Gauss-Seidel loop to compute the current solution (f ,ϖ, R0) for each ω(φ). In particular, the two-block

nonlinear Gauss-Seidel method finds the current solution, for each choice of ω(φ), by alternately approximating

the quadrupolar parameters ϖ and the components (f , R0) as follows:

(f (k+1), R(k+1)
0 ) ∝ argmin

f⇒0,R0⇒0
̸(Kf +R0)→ (y → F2(ϖ

(k)))̸22 + ω̸f̸1 + η̸f̸22 (7.5)

ϖ
(k+1)

∝ argmin
ε⇓Bω

̸F2(ϖ)→ (y → (Kf
(k+1) +R(k+1)

0 ))̸22 (7.6)

with k ↑ 0 and initial guesses (f (0), R(0)
0 ) and ϖ

(0). This reformulation of the GS of the solution presented

in the previous chapter is applied for each regularization parameter. For simplicity of notation, the iteration

index ◁ of the outer loop has been omitted. Moreover, let us remember that the last L2-based regularization

term η̸f̸22 in (7.5), where η is a fixed small positive value, has been introduced to guarantee the convergence

of the proposed Gauss-Seidel method as proven in the last chapter. This subproblem was e”ciently solved

with the truncated Newton interior-point method [158].

The second subproblem (7.6) is a bound-constrained nonlinear least squares problem. In the last chapter,

the Newton projection method [67, 68] was described as a solution for this subproblem, with the Hessian

matrix approximated using the Levenberg-Marquardt method [166], due to the ill-conditioning of the Jaco-

bian of F2. The main challenges of this problem are related to the ill-conditioning of the Jacobian matrix,

which requires an appropriate implementation of the Levenberg-Marquardt method, and the need for proper

setting of the box constraints. Therefore, the possibility of using a neural network in this context has been

explored.

7.2 Proposed Neural Network and Plug-and-Play Algorithm

Inspired by the PnP prior approach described in section 4.2.2, the design of the PnP algorithm where a

neural network replaces the Newton projection method for the solution of (7.6) has been investigated. Just

as a denoiser can replace the proximal step related to the prior update in the ADMM algorithm [134], the

presented proposal consists of using a suitably trained neural network instead of the Newton projection

method to update the quadrupolar parameters.

Let us start the description of the proposed neural network by recalling for convenience the changing of

variables introduced in the previous chapter:

x1 ∋ (f , R0) ∝ X1 , x2 ∋ ϖ ∝ X2

X1 ∋ {x1 ↑ 0} , X2 ∋ Bε

and

Ke = [K 1] ∝ Rm⇑(n+1)

and rewriting (7.3) as follows:
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x
(k+1)
1 ∝ argmin

x1⇓X1

̸(Kex1 → (y → F2(x
(k)
2 ))̸22 + ω̸Dn,0x1̸1 + η̸Dn,0x1̸

2
2 (7.7)

x
(k+1)
2 ∝ argmin

x2⇓X2

̸F2(x2)→ (y →Kex
(k+1)
1 )̸22 (7.8)

where Dn,0 = I → en+1eTn+1, I is the identity matrix of size n + 1 and en+1 is the last column of I. A

key observation for conceptualizing this neural network regards one possible interpretation of the Gauss-

Seidel algorithm. A closer look at (7.7)→(7.8) reveals that the basic idea of the Gauss-Seidel method is to

alternately approximate the quadrupolar component of the NMRD profile RHN↓ := y
↓
→ (Kex

↓
1), and the

non-quadrupolar component y
↓
→ F2(x↓

2), where (x↓
1,x

↓
2) are the true parameters generating the noiseless

observations y↓.

Therefore, a neural network ε# : Rm
∞ R6 has been proposed. It is required to be able to invert the

general quadrupolar function F2 by solving the following constrained least square problem, derived by (7.8):

ε#(R
HN(k+1)) ∝ argmin

x2⇓R6

̸F2(x2)→RHN(k+1)
̸
2
2 (7.9)

s.t. x2 ∝ X2

where RHN(k+1) := y → (Kex
(k+1)
1 ) is the (k + 1)-th approximation of the true quadrupolar component

RHN↓, estimated by means of solution x
(k+1)
1 of subproblem (7.7). A schematic representation of the

proposed method can be found in figure 7.1.

Figure 7.1: PnP-GS scheme.

In summary, this neural network takes as input the current approximation of the quadrupolar component

of the NMRD profileRHN(k+1), computed as the di!erence between the data y and the current approximation

of the non-quadrupolar component of the NMRD profile Kex
(k+1)
1 . The network then outputs the current

estimation of the quadrupolar parameters x(k+1)
2 := ε#(RHN(k+1)).

To train ε# for this task, the following procedure has been used: given N sets of quadrupolar parameters

{x2l}
N

l=1, satisfying the physical bounds (7.4), RHN

l
:= F2(x2l) for each l = 1, . . . , N is computed. Then,

the following loss function is defined:

L(’) :=
N∑

l=1

(1→ ς)̸ε#(R
HN

l
)→ x2l̸

p

p
+ ς̸F2(ε#(R

HN

l
))→RHN

l
̸
p

p
, p = 1, 2 (7.10)



7.2 Proposed Neural Network and Plug-and-Play Algorithm 109

Therefore, the following minimum problem is addressed:

’↓ = argmin
#

L(’)

The resulting network ε#↓ computes:

ε#↓(RHN(k+1)) ∝ argmin
x2⇓X2

(1→ ς)P(x2) + ς̸F2(x2)→RHN(k+1)
̸
2
2 (7.11)

where P(x2) is a prior term on the quadrupolar parameters learned by the network from the training data,

and ς is a hyper-parameter to be tuned. This new hyper-parameter can be interpreted as an additional

regularization parameter introduced to solve the inverse subproblem (7.9) of inverting F2. The necessity of

including this parameter is discussed in section 7.3.

Concerning the architecture of ε#, a feed-forward fully connected neural network with 7 hidden layers

of di!erent dimensions was considered. Specifically, the first one presents 512 neurons, while the next 4

hidden layers have 256 neurons, and the last two have 64 and 32 neurons, respectively. The input layer has

a dimension that depends on the length of the acquired experimental signal.

In the presented case, the experimental signals have a length of 45 acquired points therefore input layer

has 45 neurons. Finally, the output layer has dimension 6, which corresponds to the number of the QRE

parameters to extract. To constrain the output belonging to the bounding box (7.4), an absolute sine wave

activation layer after the output layer has been introduced. Specifically, it takes the prediction vector from

the output layer, x̂2, and the constraint box X2 as input, and returns the predicted values x2 ∝ X2:

x2 = SineWaveFunc (x̂2,X2)

This is obtained by first normalizing x̂2 to the interval of each quadrupolar parameter by dividing the

di!erence between itself and the lower boundary by the range of the boundaries:

x̂2 ℜ
(x̂2 →L)

(U →L)
(7.12)

where L, and U represent the lower and the upper boundary vectors respectively. Then, the absolute value

of the sine function is applied to the normalization result:

x̂2 = | sin (x̂2)|

Consequently, the vector is re-scaled in the corresponding expected intervals by the inverse operation

of (7.12):

x2 ℜ (x̂2 ℑ (U →L)) +U

The last step of the function is applied to the two final elements of the vector x2, which are the angular

frequency position of the peaks on the NMRD profiles, i.e., ϱ→, and ϱ+. In particular, based on prior

physical considerations, we want to ensure that the following condition is always satisfied

ϱ→ < ϱ+

Therefore we apply a mask to maintain this condition and substitute the corrected values in the vector x2.

After the training, the neural network is plugged into the proposed iterative algorithm. The algorithm is

referred to as Plug and Play - Gauss-Seidel (PnP-GS ).

In the algorithm, at each iteration, the objective function is minimized with respect to each of the block

coordinate vectors xi over the subsets Xi, i = 1, 2, as summarized in Algorithm 11.

The stopping condition is the relative distance between two successive values of the objective function:

g(x1,x2) = ̸(Kex1 → (y → F2(x2))̸
2
2 + ω̸Dn,0x1̸1 + η̸Dn,0x1̸

2
2
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i.e.,

̸g(x(k)
1 ,x(k)

2 )→ g(x(k→1)
1 ,x(k→1)

2 )̸2 ↗ Tol̸g(x(k)
1 ,x(k)

2 )̸2 , Tol > 0 (7.13)

Algorithm 11 PnP-GS

1: Set k = 0, and choose a starting guess (x(0)
1 ,x(0)

2 ).

2: repeat

3: k = k + 1

4: Linear parameters update. By using the truncated Newton interior-point method, compute

x
(k)
1 ∝ argmin

z⇓X1

g(z,x(k)
2 )

5: Quadrupolar parameters update. By using the trained neural network ε#, compute the predic-

tion

x
(k)
2 = ε#

z⇓X2

(
g(x(k)

1 , z)
)

6: until the stopping condition is satisfied (7.13)

7: return (f , R0) = x
(k)
1 and ϖ = x

(k)
2 3 Result (f , R0,ϖ)

The PnP-GS algorithm, as described before, is a variant of the two-block nonlinear Gauss-Seidel method

used in the previous Chapter 6 [39, 155]. A critical property of the traditional Gauss-Seidel method is the

monotonic decrease of the objective function g at each iteration, i.e.,

g(x(k)
1 ,x(k)

2 ) ↗ g(x(k)
1 ,x(k→1)

2 ) ↗ g(x(k→1)
1 ,x(k→1)

2 )

In the proposed PnP-GS algorithm, we replace the update of the second block x2 with a prediction from a

trained neural network, ε#.

Since ε# is a learned predictor, it does not inherently enforce the descent condition:

g(x(k)
1 ,x(k)

2 ) < g(x(k)
1 ,x(k→1)

2 ) (7.14)

In contrast to explicit optimization steps, the neural network’s output cannot be assumed to guarantee a

monotonic decrease in the objective function at every iteration.

The adopted approach in this proposed method is to verify the decreasing behavior of the algorithm

through empirical observation. In practice, the evolution of the objective function g is monitored throughout

the iterative process. Empirical evidence indicates that, in the vast majority of iterations, the condition (7.14)

is satisfied. Hence, although the neural network update does not intrinsically guarantee a monotonic descent

of the objective function, the overall iterative scheme mimics the convergence behavior analogous to that

of the traditional Gauss-Seidel method. This empirical control provides evidence of the robustness and

reliability of the proposed approach.

7.3 Numerical Results and Discussion

In this section, the results produced by the proposed framework when applied to food samples of two distinct

types of cheese, e!ectively illustrating typical test scenarios are presented and discussed. Specifically, the

following samples have been considered (taken from [26, 16]):

• [PC]: A sample of Pecorino cheese produced from livestock raised in a region characterized by brown

soil.
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• [PR]: A sample of 24-month aged Parmigiano - Reggiano cheese.

Details on the generation of the training set, the training procedure, and the error metrics used for eval-

uation are provided in sections 7.3.1 and 7.3.2. The experiments involving analysis of the loss function

in equation (7.10) are discussed in 7.3.3. Finally, in 7.3.4, a comprehensive report and discussion of the

algorithm’s performance are presented, comparing the results obtained with those produced by the Model-

FreeFFC Matlab software [168] based on the AURORA algorithm described in the previous Chapter (6).

The numerical computations were performed using Matlab R2023b on a laptop with a 2 GHz Quad-Core

Intel Core i5 processor and 16 GB of 3733 MHz RAM. The neural network was implemented using the Deep

Learning Toolbox. Also in this result section, the frequencies f1 are considered instead of angular frequencies

ϱ, using the relationship f ∋ ϱ/(2ϖ).

7.3.1 Training Procedure

The neural network ε#, which takes into input the quadrupolar part of the NMRD signal RHN , has been

trained using a training set composed of synthetic signals. Specifically, signals were obtained by randomly

sampling sets of the quadrupolar parameters from uniform and continuous distributions in the Bε range and

using the model (7.2).

The values C̄, and ↼̄ in the constraints set Bε (7.4) are set equal rounding up to the nearest integer of

the maximum value between the correspondent values for both samples. The interval [ϱφ,ϱu] in (7.4), which

represents the region where R1 interrupts its decaying due to the quadrupolar relaxation e!ect, is defined

by inspection of the NMRD profile and rounding up to the nearest integer of the minimum and maximum

value of both samples. The values for the angles ’, and %, which represent the orientation of the molecular

system, were constrained within the interval [0, 1]. This range was selected to cover the full possible span of

angular values, providing flexibility for the network to adapt to the varied quadrupolar interactions present

in the cheese samples without bias towards a specific orientation. In Table 7.1 the range of Bε is collected.

Table 7.1: Range of the parameters, Bε, selected to generate the training set.

Variable Interval

CHN [µs/s2] [0, 8]

’ [rad] [0, 1]

% [rad] [0, 1]

↼Q [µs] [0, 3]

[ϱφ,ϱu] [rad/µs] [10, 20]

Figure 7.2 presents a portion of the training set, where several signals are plotted. It is worth noting

that the peaks are shifted in position and exhibit varying amplitudes, depending on the randomly sampled

values used to generate each corresponding signal, capturing the diversity within the synthetic dataset.

In Table 7.2, the training characteristics are specified. Moreover, ADAM optimizer [105] has been used

to minimize the loss function. The network training has been performed several times, varying the value of

ς in the quadrupolar loss function (7.10). Starting from a very small value, 1 ·10→3, which corresponds to an

almost null influence of the profile fitting in the minimization of the loss function, to 1, which corresponds

to not taking into account the prediction error by the network. The following ς values have been used:

ς = {1 · 10→3, 1 · 10→1, 3 · 10→1, 5 · 10→1, 7 · 10→1, 9 · 10→1, 9.99 · 10→1, 1}.

1The notation f is used to refer to frequencies instead of the usual ω to avoid confusion with the neural network, ωω. Moreover,

it is worth pointing out that the notation f di!ers from f . The latter refers to the correlation time distributions and it is always

presented as a function of the correlation times, i.e., f(εc).
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Figure 7.2: A subset of synthetic signals in the training set, generated randomly sampling ϖ
m

∝ Bε,

m = 1, . . . , 104 from a uniform and continuous distribution.

Table 7.2: Training parameters selected to train ε#.

Dimension of the training set 104

Computational time for a single training [s] 103

Number of epochs 103

Learning rate 10→4

7.3.2 Testing Procedure

Next, the method used to test the neural network is detailed. This includes the initial parameter guesses,

stopping criteria, and the computational setup for the numerical tests.

As for the previous algorithm (AURORA 10), the starting guess for the parameter 4(0)
1 ∋ CHN is

obtained from the literature [4]:

CHN =
2

3

(
µ0

4ϖ

ϑHϑN⊋
r3
HN

)2

⇒ 0.18
µs
s2


(7.15)

with the values of physical constants reported in Table 6.1 of the previous Chapter 6.

Considering the other quadrupolar parameters, the starting values are reported in Table 7.3.

The value of the tolerance parameters used in the stopping criteria of the algorithms is Tol = 10→2, while

the maximum number of 103 iterations k has been set, but never reached.

The computational cost of the algorithm is evaluated in terms of execution time, which encompasses

the duration required for processing the testing dataset. The number of iterations needed to reach the stop

condition has been also considered in terms of e”ciency. By analyzing both execution time and iteration

count, insights into the e”ciency and scalability of the neural network can be gained, informing its practical

applicability in real-world scenarios.
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Table 7.3: Starting guess selected for the quadrupolar parameters.

Starting guess Parameter correspondent Value

4(0)
1 CHN [µs/s2] 0.18

4(0)
2 sin2 (’) [rad] 1/2

4(0)
3 sin2 (%) [rad] 1/2

4(0)
4 ↼Q [µs] 1

4(0)
5 ϱφ [rad/µs] 12

4(0)
6 ϱu [rad/µs] 18

Error Metrics

To evaluate the performance of the network during training and testing, specific error metrics have been

used. The fitted NMRD profiles, computed by the Algorithm 11, and AURORA (10), are compared to the

experimental acquired R1 employing the φ2 value defined as follows:

φ2 =
m∑

i=1

(Rest
1i →R1i)

2

(m→ 1)
(7.16)

where R
est
1 is the estimated data value, i.e.,

R
est
1 = Kf̃ + R̃0 + F2(ϖ̃)

where (f̃ , R̃0, ϖ̃) are the computed parameters.

To obtain a global parameter that accounts for both fit and parameter error predictions to select the

best value for ς in the training step, the following L2 squared norm-based metric computed as follows has

been proposed:

E⇁ =
̸R1 →R

est
1 ̸

2
2

̸R1̸
2
2

+
̸f → f

est
̸
2
2

̸f̸
2
2

+
̸R0 →Rest

0 ̸
2
2

̸R0̸
2
2

+
̸ϖ →ϖ

est
̸
2
2

̸ϖ̸
2
2

(7.17)

The proposed metric comprehensively accounts not only for the relative error in the network’s predictions

but also incorporates the fitting error and the error associated with the linear components. This holistic

approach ensures a more robust and accurate evaluation of the model’s performance.

Finally, as in the work presented in Chapter 5, the computed correlation time distribution f extracted

by the two algorithms have been quantitatively compared determining the peak values and the area below

f in the neighbourhood of such peaks, defining such a value as SpecificWeight (5.19).

Let us briefly recall the formula for the SpecificWeight:

SpecificWeight
φ
=

nϖ∑

j=1

↼cjf(↼cj ) , ↼cj ∝ Iφ

where nφ is the number of correlation times inside the neighborhood of interest Iφ (using the Full Width at

Half Maximum parameter), and with ◁ = 1, . . . , np, number of local maxima in f .

7.3.3 Model Loss and Trained Network Selection

The choice of the model loss has been validated by training experiments. Specifically, the network perfor-

mance has been analyzed by varying both the considered norm (p = 1 for the L1-norm and p = 2 for the

L2-norm in (7.10)) and the parameter ς ∝ [0, 1] in (7.11). In this paragraph, the results related to this

analysis are shown.
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(a) Training loss. (b) Validation loss.

Figure 7.3: In red the expression for the model loss with p = 1, while in blue the expression with p = 2. The

di!erent curves refer to di!erent values of ς.

In Figure 7.3, the training and validation loss evolution are respectively shown. As evident from the

figure, the network trained with the L1 norm exhibits a steeper decline in both training and validation losses

compared to the L2 norm case. In both cases, the loss functions rapidly decrease in the initial epochs and

continue to decrease consistently throughout the training period for the L1 norm case. From the training loss

evolution, this suggests that this norm facilitates faster convergence during training compared to L2; while

from the validation loss evolution, this suggests that the L1 norm enhances the generalization capability of

the model.

The only exception is represented for the case of ς = 1, where the loss function evolutions are constant,

meaning that the network is not learning. These cases represent the cases where the network tries to learn

only from the NMRD fitting and it doesn’t take into account the error on predictions (see (7.11) with ς = 1),

and it is an expected result. For clarity, in Figure 7.4 only this case is shown.

(a) Training loss. (b) Validation loss.

Figure 7.4: Case model losses with ς = 1, i.e., the network during the training only takes into account the

error on NMRD profile fitting, while it does not consider the error on the quadrupolar predictions. In red

the expression for the model loss with p = 1, while in blue the expression with p = 2.
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7.3.4 Results for Cheese Samples

In this part, the results obtained by applying the two algorithms (PnP-GS, and AURORA) to NMRD

real profiles obtained by two experimental samples, already discussed at the beginning of this section are

presented. The Pecorino cheese sample is referred to as PC, while the Parmigiano cheese sample to as PR.

Regarding the samples, the PC sample has been produced from livestock raised in a region characterized

by brown soil; while the PR sample is a 24-month-aged Parmigiano-Reggiano cheese. These samples were

selected to illustrate the impact of varying compositional and environmental factors relevant to the food

industry in the experimental analysis.

The R1 data for both samples are measured at 45 frequency values f, ranging from 10→2 to 101 MHz.

The error intervals for the PR case vary from ±0.1 to ±4.4, while for the PC case from ±0.4 to ±4.1. These

experimental signals are illustrated in Figure 7.5, where in blue and black are plotted the PR and the PC

samples respectively.

Figure 7.5: Test set: NMRD real profiles with error intervals from cheese samples. Specifically, in black is

the PC sample, while in blue is the PR sample.

In the case of the proposed integrated method, the numerical tests were performed by using the best

result from the model loss selection training procedure shown in Figure 7.3, i.e., p = 1, and by varying

the hyper-parameter ς. The global quality of the method is evaluated using the metrics described in the

paragraph 7.3.2, showing the E⇁, and the φ2 evolution varying ς for both samples. Finally, the NMRD

profile fit and the correlation time distributions for the best ς found are presented.

It is important to emphasize that the neural network was never exposed to the experimental signals from

the test set during training.

Pecorino Cheese (PC) Sample

The following results refer to the first analyzed sample, i.e., the Pecorino cheese (PC) sample. In Figure 7.6

the proposed method performances are shown in terms of E⇁ (7.17) varying ς in the model loss. The best

result obtained is at ς = 0.7, showing the importance of taking into account both the error on the predictions,

and the error on NMRD fitting during the network training. In Table 7.4, the values of E⇁ and the last value

of φ2 computed by the algorithm are indicated for each value of ς. Figure 7.7 shows the evolution of the

φ2 values in the outer iteration loop (regularization parameter update) for each value of ς. It is shown that
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Figure 7.6: PC sample analysis. E⇁ evolution varying ς in the model loss function during the network

training.

Table 7.4: PC sample analysis. E⇁ and last value of φ2 varying ς in the model loss function during the

network training.

ς = 0.001 ς = 0.1 ς = 0.3 ς = 0.5 ς = 0.7 ς = 0.9 ς = 0.999 ς = 1

E⇁ 1.562 0.312 0.284 0.325 0.232 0.745 1.365 1.896

φ2 (last) 0.630 0.518 0.497 0.554 0.479 0.575 0.591 0.806

the minimum value for φ2 at the final iteration is achieved for ς = 0.7, confirming the observation made

during the training phase.

Additionally, it is important to note the worst results occur for ς = 1. In this case, the φ2 values are

higher and remain constant compared to other cases. This outcome aligns with the network training results

for ς = 1 (see Figure 7.4), where the training loss remains constant, indicating no learning. Incorporating

this poorly trained network into the proposed algorithm results in suboptimal predictions, a!ecting both

the linear part solved by numerical methods and the non-linear part addressed by the neural network. The

fitted profile presented in Figure 7.8 (a) shows in black line the data and error bars, while the fitted curves

are represented in red line for the case of the proposed PnP-GS algorithm and in green line for the case

of AURORA. The zoom in the frequencies of the QRE interval is shown in Figure 7.8 (b). Qualitatively,

it is evident the excellent agreement between the two methods, showing that the proposed algorithm can

perfectly fit the experimental data. The predictions obtained by the two algorithms and the error metrics

are presented in Table 7.5, showing a perfect agreement between the two methods. Moreover, in terms of φ2,

the PnP-GS algorithm performs better, with a lower value compared to AURORA. An interesting result is

the e”ciency of the algorithm that uses the neural network to extract the quadrupolar parameters compared

to the AURORA algorithm. Hence, measuring the e”ciency in terms of the number of iterations and

computational time, it is shown that the PnP-GS algorithm requires an order of magnitude fewer iterations

and significantly less computational time than the AURORA algorithm (after training).

Concerning the extracted correlation time distributions by the two methods, in Table 7.6, a perfect

agreement among the two algorithms in locating the peak at shortest correlation time, ↼c = 1.87 · 10→2 µs

is observed. The algorithms present a quite good agreement at the other two correlation times, especially

at the longest one. This result is qualitatively presented in Figure 7.9, showing that all two methods agree
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Figure 7.7: PC sample analysis. φ2 evolution varying ς in the model loss function during the network

training.

(a) Full profile. (b) Zoom of the profile in QRE interval.

Figure 7.8: PC sample analysis. The NMRD data and error bars are in black, while the fitted curves by

AURORA, and by PnP-GS are in green and red respectively.

concerning the main features of the PC sample’s distribution.

Parmigiano-Reggiano Cheese (PR) Sample

The analysis of the Parmigiano-Reggiano cheese sample follows. The evolution of the error metrics is provided

and the obtained results are compared with those obtained using AURORA.

The method performance in terms of E⇁ is presented in Figure 7.10, showing the same result obtained

for the PC sample, i.e., the minimum value is obtained at ς = 0.7. The numerical values of E⇁ and the last

value of φ2 varying ς are specified in Table 7.7. The φ2 evolution is shown in Figure 7.11, confirming that

the best algorithm result is obtained using the trained network with ς = 0.7 in the model loss function. The

NMRD profile fitting in the case for the best value obtained (ς = 0.7) is shown in Figure 7.12 (the full profile
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Table 7.5: PC sample analysis. Predictions obtained by PnP-GS, and by AURORA.

PnP-GS AURORA

R0 8.968 8.930

CNH 2.753 2.014

⇀ 1.049 1.061

5 0.9735 1.085

↼Q 1.391 1.266

ε→ 2.043 2.178

ε+ 2.762 2.727

φ2 0.497 0.755

Number of iterations 20 122

Computational time [s] 10 180

Table 7.6: PC sample analysis. Position (↼c) and amplitude f(↼c) of the distribution peaks sorted by f(↼c).

Algorithm ↼c [µs] f(↼c) Half-width SpecificWeight

AURORA

0.9770 55.2006 0.2397 108.7355

0.1353 36.5104 0.0158 36.5484

0.0187 24.8273 0.0023 26.6269

PnP-GS

1.0975 99.8717 0.1307 108.7280

0.1707 24.6778 0.0349 36.5321

0.0187 14.7087 0.0045 26.6457

Figure 7.9: PC sample analysis. Correlation time distribution f(↼c) extracted by AURORA (green lines),

and by PnP-GS (red lines).

(a), while the zoom in QRE interval (b)). This result confirms the excellent agreement between the two

methods and the experimental data. Also, in this case, a perfect agreement between the predictions of the

two methods is obtained (Table 7.8). PnP-GS is faster and more e”cient, as is shown from the φ2 values of

the two methods, as well as from the computational time and the number of iterations. Finally, considering
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Figure 7.10: PR sample analysis. E⇁ evolution varying ς in the model loss function during the network

training.

Table 7.7: PR sample analysis. E⇁ and last value of φ2 varying ς in the model loss function during the

network training.

ς = 0.001 ς = 0.1 ς = 0.3 ς = 0.5 ς = 0.7 ς = 0.9 ς = 0.999 ς = 1

E⇁ 1.217 2.687 2.314 2.389 1.236 2.974 3.335 3.578

φ2 (last) 0.191 0.388 0.228 0.233 0.120 0.446 0.776 1.328

Figure 7.11: PR sample analysis. φ2 evolution varying ς in the model loss function during the network

training.

the correlation time distribution analysis in the PR case, AURORA identifies more peaks compared to the

PnP-GS algorithm. Qualitatively, from Figure 7.13, the two peaks at lower correlation times and the one at

the longest correlation time show a good agreement. Concerning the second longer, PnP-GS finds a peak

at ↼c = 0.2719 µs, while AURORA splits that peak into two at ↼c = 0.1717 µs, and ↼c = 0.6893 µs. The

mismatch is related to the ill-posedness of the mathematical problem.
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(a) Full profile. (b) Zoom of the profile in QRE interval.

Figure 7.12: PR sample analysis. The NMRD data and error bars are in black, while the fitted curves by

AURORA, and by PnP-GS are in green and red respectively.

Table 7.8: PR sample analysis. Predictions obtained by PnP-GS, and by AURORA.

PnP-GS AURORA

R0 3.832 3.290

CNH 5.784 5.664

⇀ 0.989 1

5 1.046 0.859

↼Q 1.386 1.022

ε→ 2.065 2.096

ε+ 2.839 2.815

φ2 0.120 1.189

Number of iterations 40 189

Computational time [s] 9 45

Table 7.9: PR sample analysis. Position (↼c) and amplitude f(↼c) of the distribution peaks sorted by f(↼c).

Algorithm ↼c [µs] f(↼c) Half-width SpecificWeight

AURORA

0.1707 43.0202 0.0202 44.3755

1.7475 22.1196 0.7016 85.2641

0.0266 19.4388 0.0058 38.1599

0.6893 9.5693 0.2278 34.3516

0.0023 8.6636 3.4447·10→4 11.6631

0.0010 6.0052·10→4 7.3211·10→5 0.0017

PnP-GS

1.9630 71.5316 0.3623 67.1817

0.2719 55.7332 0.0363 0.4441

0.0236 24.1669 0.0053 38.1577

0.0026 3.0452 5.3259·10→4 11.6695
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Figure 7.13: PR sample analysis. Correlation time distribution f(↼c) extracted by AURORA (green lines),

and by PnP-GS (red lines).

The observed results demonstrate the construction of a PnP neural network capable of returning the

quadrupolar QRE parameters for two di!erent types of cheese. Embedding this network in software to fit

the NMRD profiles makes its use more robust and e!ective. These preliminary results form the basis for

large-scale application. By enriching the training set with appropriately measured samples, it will be possible

to proceed with the automatic identification of the characteristics of the examined samples.
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Conclusions

This thesis has provided a comprehensive investigation into advanced methodologies for analyzing Nuclear

Magnetic Relaxation Dispersion (NMRD) profiles. The work focused on designing, developing, and validat-

ing innovative algorithms tailored to address key challenges in this domain. The presented approaches to

this application encompass traditional numerical techniques, regularization-based optimization, and neural

network-based methods. These contributions have demonstrated significant potential to enhance the toolkit

available to researchers for characterizing molecular dynamics in a range of materials and application sce-

narios. Below, the key contributions of each chapter of the second part of this thesis are summarized in

detail.

In Chapter 5, a comparative study was conducted to evaluate three algorithms based on di!erent reg-

ularization strategies, i.e., MF-MUPen, based on locally adapted L2 regularization, MF-L1, based on L1

regularization, and MF-MUPen, based on multi-penalty regularization, consisting of local-L2, and L1 penal-

ties. These three methods were proposed to analyze NMRD profiles derived from experimental data.

The study was performed using two datasets representative of di!erent applicative scenarios. All three algo-

rithms demonstrated consistency in identifying primary peak positions, indicating fundamental robustness

in capturing the core characteristics of the samples. Among these, the MF-MUPen algorithm stood out

for its robustness in the presence of noisy data. However, di!erences in the number of peaks detected and

their respective amplitudes highlighted variations in the sensitivity and adaptability of each algorithm. This

analysis underscores that while all methods are e!ective in their core task, the choice of algorithm should

be guided by the specific noise levels and sensitivity requirements of the intended application [154]. These

findings would allow researchers to make more precise and context-specific decisions when designing and

executing practical experimental setups to investigate the molecular dynamics of di!erent samples.

In Chapter 6, a strategy to address a more complex challenge of analyzing NMRD profiles is presented.

Specifically, the focus is on profiles influenced by the Quadrupolar Relaxation Enhancement. This intro-

duced a nonlinear model, requiring the solution of a constrained nonlinear least-squares problem. To tackle

this, a novel methodology was proposed, integrating a model-free approach with L1 regularization. The op-

timization problem was e!ectively solved using a two-block nonlinear Gauss-Seidel method, with theoretical

guarantees established for the existence of a solution and the convergence of the iterative process to critical

points. Furthermore, following the Balancing Principle introduced by Ito, an automatic update rule for the

regularization parameter is proposed, ensuring adaptability and robustness across diverse scenarios. The

resulting algorithm, AURORA, has been validated using first a synthetic dataset, and then by applying it

to real data. The results demonstrated its ability to accurately estimate correlation time distributions and

model the quadrupolar function.

Moreover, the algorithm can be viewed as a reference framework to construct parameter estimation proce-

dures when the model parameters can be split into independent blocks allowing the use of di!erent compu-

tational approaches for each block [155].

The AURORA algorithm has been included in the Matlab software tool

ModelFreeFFC Tool for the inversion of NMRD profiles with QRE (available at
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https://site.unibo.it/softwaredicam/en/software/modelfree).

Chapter 7 introduced a novel approach by developing the first neural network-based framework for

analyzing NMRD profiles in the presence of QRE. Unlike traditional inverse methods presented in the

previous chapters, this approach treated the problem as a black-box optimization task, achieving results

consistent with those of validated numerical algorithms.

The neural network model was validated on real datasets and demonstrated superior computational speed

once trained, o!ering a significant advantage for high-throughput industrial applications. However, it is im-

portant to note that this comparison does not take into account the training time required for the network,

which remains manageable at approximately 103 seconds, even with a training set consisting of 104 signals.

Once the network is trained and integrated into the algorithm, no retraining is necessary, enabling rapid

processing of large datasets from various samples and allowing for accurate characterization of material prop-

erties. Unlike AURORA, which requires careful initialization for each application, the proposed algorithm

o!ers a more streamlined, automated solution for e”ciently processing real signals.

It demonstrates high accuracy in estimating correlation time distributions and quadrupolar parameters,

reinforcing its potential for use in fast-paced industrial environments [167]. For instance, it can be applied

to monitor ageing and ripening processes in cheeses and other fermented foods, analyze moisture content

in dairy products, meats, and processed foods, and potentially predict shelf life or detect early signs of

deterioration in fresh and packaged foods.

Despite its promising capabilities, the current approach has some limitations. First, the need for specialized

and costly FFC-NMR equipment, which is not commonly available in standard food testing laboratories,

may restrict its widespread use. Additionally, the accuracy of the neural network heavily relies on the

quality and quantity of the training data. While the method was validated on specific cheese types using

synthetic signals, applying it to other food products would require generating suitable training data, limiting

its immediate applicability to a broader range of food matrices. However, the highly automated nature of

the proposed method o!ers a significant advantage, as it reduces the need for manual intervention and expert

knowledge, making it easier to adapt and scale once the appropriate data is available, potentially overcoming

these limitations in the long term.

In conclusion, this thesis represents an advancement in the field of NMRD profile analysis. The al-

gorithms and methodologies developed herein address critical challenges in robustness, adaptability, and

computational e”ciency. By bridging the gap between traditional numerical methods and modern machine

learning techniques, this work contributes to the growing demand for accurate, e”cient, and automated

tools for molecular dynamics studies. The outcomes of this research not only advance the state-of-the-

art but also lay the groundwork for future innovations, ensuring broad applicability across scientific and

industrial domains.

https://site.unibo.it/softwaredicam/en/software/modelfree


Appendix A

Dispersion Analysis Applied to

NMRD Profiles

The dispersion analysis presented in sections 5.3.3, and 6.3.3 has been carried out to investigate the robustness

of the proposed methods and to extract the confidence interval of the computed parameters.

In this work, the analysis consisted of applying the algorithm of interest to a set of s artificial profiles ob-

tained by adding to the curve uniformly distributed noise within the experimental error intervals. Generally,

all the tests were performed setting s = 500.

In this appendix, some results obtained by this analysis are shown both on samples presenting the QRE

e!ect and not. The most important consequences required from this analysis were already discussed in the

previous chapters, hence here the figures are shown for the sake of completeness.

Manganese Sample

Referring to the manganese sample of Chapter 5, i.e., a case where the experimental profile does not present

local maxima because the QRE e!ect does not occur, Figure A.1 shows the correlation time distributions

(a) and the NMRD profiles (b) obtained by applying the MF-L1 Algorithm (7) of Chapter 5 to a set of 500

synthetic signals obtained starting from the real acquired one. Specifically, all the results for the 500 data are

in light grey, the reference computed on the real data set is in red, and the mean values obtained averaging

over the 500 set in blue. In Figure ?? the scatter plot representing the 500 computed R0 parameters is shown,

with the horizontal red line representing the mean value, i.e., R̄0 = 1.19 · 101 s→1 (reported in Table 5.1 of

Chapter 5).

Parmigiano-Reggiano Sample

Here, the Parmigiano-Reggiano (PR) sample from Chapter 6, which presents the QRE e!ect, is analyzed.

Figure A.3 displays the correlation time distributions (a) and NMRD profiles (b) obtained by applying

AURORA to 500 synthetic signals derived from the real acquired data. The results for all 500 datasets are

shown in light gray, with the reference computed on the real data in red and the mean values averaged over

the set in blue. Figure A.4 presents the scatter plots for the R0 (a), CHN (b), and ↼Q (c) parameters, where

the horizontal red line indicates the mean value. Similarly, Figures A.5 and A.6 show scatter plots for ’, %,

ε→, and ε+. For reference, the mean values and confidence intervals are summarized in Table A.1, recalling

Table 6.8.
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(a) 500 Computed correlation time distribution. (b) 500 computed NMRD profiles.

Figure A.1: Manganese Sample. Computation of correlation time distributions and fitting profiles by MF-L1

to 500 data set. In (b) the real experimental data and the error bars are black.

Figure A.2: Manganese Sample. Scatter plot reporting the 500 R0 computed values by MF-L1.

Table A.1: Comparison of the Confidence Intervals, Mean, and Median for PR sample.

Confidence Interval Mean Median

R0 [s→1] [2.316, 4.013] 3.308·100 3.252·100

CHN [µs/s2] [5.285, 6.351] 5.736·100 5.733·100

’[rad] [1.058, 1.253] 1.214·100 1.253·100

%[rad] [0.828, 0.891] 0.860·100 0.859·100

↼Q [µs] [0.937, 1.106] 1.020·100 1.020·100

ε→ [MHz] [2.080, 2.111] 2.096·100 2.095·100

ε+ [MHz] [2.808, 2.821] 2.815·100 2.814·100
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(a) 500 Computed correlation time distribution. (b) 500 computed NMRD profiles.

Figure A.3: PR sample. Computation of correlation time distributions and fitting profiles by AURORA to

500 data set. In (b) the real experimental data and the error bars are black.

(a) R0. (b) CHN .

(c) εQ.

Figure A.4: PR sample. Scatter plot reporting the 500 computed values by AURORA.
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(a) ”. (b) #.

Figure A.5: PR sample. Scatter plot reporting the 500 computed values by AURORA.

(a) ω↑. (b) ω+.

Figure A.6: PR sample. Scatter plot reporting the 500 computed values by AURORA.



Bibliography

[1] R. Kimmich and E. Anoardo. Field-cycling NMR relaxometry. Progress in Nuclear Magnetic Resonance

Spectroscopy, 44(3):257–320, 2004.

[2] Pellegrino Conte. Applications of fast field cycling NMR relaxometry. In Annual Reports on NMR

Spectroscopy, volume 104, pages 141–188. Elsevier, 2021.

[3] P. H. Fries and E. Belorizky. Simple expressions of the nuclear relaxation rate enhancement due to

quadrupole nuclei in slowly tumbling molecules. The Journal of Chemical Physics, 143(4):044202,

2015.

[4] D. Kruk, E. Masiewicz, A. M. Borkowska, P. Rochowski, P. H. Fries, L. M. Broche, and D. J. Lurie. Dy-

namics of solid proteins by means of nuclear magnetic resonance relaxometry. Biomolecules, 9(11):652,

2019.

[5] T. Jeoh, N. Karuna, N. D. Weiss, and L. G. Thygesen. Two-dimensional 1H-nuclear magnetic resonance

relaxometry for understanding biomass recalcitrance. ACS Sustainable Chemistry & Engineering,

5(10):8785–8795, 2017.

[6] D. A. Faux, P. J. McDonald, and N. C. Howlett. Nuclear-magnetic-resonance relaxation due to the

translational di!usion of fluid confined to quasi-two-dimensional pores. Phys. Rev. E, 95:033116, Mar

2017.

[7] E. G. Ates, V. Domenici, M. Florek-Wojciechowska, A. Gradǐsek, D. Kruk, N. Maltar-Strmečki, M. Oz-
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