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ABSTRACT

Fast Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry is a powerful, non-destructive
technique used to investigate molecular dynamics and structures across a wide range of systems, including
environmental, biological, and food-related applications. By operating at low magnetic field intensities, FFC-
NMR enables the exploration of slow molecular dynamics and offers detailed insights into molecular motion
across diverse timescales within a single experiment. Despite its broad applicability, accurately identifying
parameters from NMR, Dispersion (NMRD) profiles remains a significant computational challenge.

This thesis introduces and evaluates advanced inverse methods based on regularization strategies and
machine learning approaches to enhance the analysis of NMRD profiles. The model-free framework is ex-
plored, representing the NMRD profile R; as a linear combination of Lorentzian functions. To address the
ill-conditioned nature of the parameter identification problem, three regularization-based methodologies are
reviewed and validated: (1) a locally adaptive Lo regularization method (MF-UPen), (2) an L;-penalized
approach (MF-L1), and (3) a hybrid method combining local Ly and global L; penalties (MF-MUPen).
These algorithms are further enhanced with automated regularization parameter selection using Balancing
and Uniform Penalty principles, improving robustness and reproducibility.

Additionally, a constrained Lj-regularized non-linear least squares framework is proposed for modeling
the parameter identification problem in the presence of the quadrupolar interaction, i.e., the quadrupolar
relaxation enhancement (QRE) effect, due to electric interactions between nuclei with spins greater than
1/2 (e.g., 1“N) and the electric fields nearby. Building on prior methodologies, this approach decomposes
the relaxation profiles into contributions associated with 'H — ' H dipole-dipole interaction and 'H — *N
quadrupolar one. The regularization parameter is iteratively computed via the Balancing Principle, while
model parameters are optimized using a non-linear Gauss-Seidel algorithm. Several tests on both synthetic
and real datasets validate the convergence properties and effectiveness of this approach. Additionally, the
developed MATLAB tool based on this method is freely available for further research applications.

Finally, this thesis proposes a novel machine-learning framework based on the philosophy of the Plug-
and-Play (PnP) technique to address the QRE phenomenon observed in FFC-NMR. A pre-trained feed-
forward neural network incorporated into a coordinate descent optimization algorithm is employed to extract
quadrupolar parameters and fit NMRD profiles. The network’s custom loss function combines L loss
with accuracy in predicting quadrupolar components, enabling precise parameter extraction. Experimental
validation against traditional optimization inverse methods highlights the framework’s accuracy and potential
for processing large datasets efficiently, particularly in industry applications.

This work advances the computational toolkit for FFC-NMR relaxometry, offering robust algorithms and

machine-learning solutions that enhance the understanding of molecular dynamics across diverse systems.

Keywords: Nuclear Magnetic Resonance, Fast Field-Cycling, Relaxometry, Molecular Dynamics, Reg-
ularization Strategies, Inverse Problems, Quadrupole Relaxation Enhancement, Plug-And-Play, Machine

Learning.
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Introduction

This PhD thesis is developed under the project Dottorati PON - Bando 2021 - Cycle 87 (XXXVII) - Action
1V.5 - Doctorates on Green topics - DOT1303154-2 supported by the Italian Ministry of Education and
Merit, focusing on Innovation and Green topics. The National Operational Program (PON-green) aims to
provide funds for research activities regarding green transition, ecosystem preservation, and reduction of
climate change impacts. This project holds a constrained topic, i.e., Mathematical Models and Numerical
Methods for Environmental Application of Fast Field Cycling Nuclear Magnetic Resonance.

Fast Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry is a powerful, non-destructive
magnetic resonance technique designed to explore slow molecular dynamics, accessible only at extremely low
magnetic field strengths. Unlike standard NMR relaxation experiments, which are limited to a fixed and
relatively large magnetic field determining the resonance frequency of the investigated molecules, FFC-NMR
relaxometry enables relaxation studies across a vast frequency range (approximately 1 kHz to 40 MHz).
This is achieved by varying the strength of the applied magnetic field to measure the longitudinal relaxation
rate, Ry, forming Nuclear Magnetic Resonance Dispersion (NMRD) profiles. These profiles provide insights
into molecular motion over a wide range of timescales (from milliseconds to picoseconds) within a single
experiment.

Frequency-dependent relaxation studies have exceptional potential to reveal the timescales of molecular
motion and the underlying mechanisms driving these motions. When the proper constraints are fulfilled [11 2],
spin relaxation can be described as a linear combination of spectral density functions, which are Fourier
transforms of the time correlation functions. These functions capture the motional frequencies and their
intensities in the correlation function. However, complex spin dynamical interactions, such as Quadrupole
Relaxation Enhancement (QRE), can arise from intramolecular magnetic dipolar coupling with quadrupole
nuclei (e.g., N, with spin S > 1) [3, 4]. For these systems, QRE appears as local maxima or peaks in the
R, profiles, with peak positions and shapes dependent on quadrupole parameters determined by the electric
field gradient tensor at the N position. Subtle changes in the electronic structure around *N can thus
significantly affect the QRE signature, making it a sensitive fingerprint of molecular arrangements. This
sensitivity has been exploited in diverse applications, including environmental science [5], ionic liquids [6],
proteins [4], and food systems [2} [7].

Despite its broad utility, the adoption of FFC-NMR relaxometry faces challenges, including the complex-
ity of data analysis and the absence of a unified computational framework for automating the interpretation of
NMRD profiles. Specifically, for instance, selecting the correct approach to analyze data is highly dependent
on the specific characteristics of the sample and the acquisition.

In the literature, there exist different software tools to address the analysis of NMRD profiles. For
example, one of the most used in this research area, and widely well-known is Fitteia®. This software is
an open-access web service (available at http://fitteia.org) that provides a user-friendly package for
model fitting and data analysis [8]. This software, beyond the intuitiveness, incorporates the accumulated
knowledge from the large number of model-fitting problems addressed by the authors, resulting in a powerful

tool, especially in the NMR analysis data, which generally requires performing model fits of multi-dimensional
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data sets and multi-dimensional model parameters space [8], 9] [10, [11].

Other interesting available software tools specifically for NMR, analysis data, besides the more general
ones (e.g., OriginPro [12], or QtiPlot [13]), are collected in a very interesting web service called NMRbox [14],
where, depending on the problem, it is possible to find already developed packages and software to perform

the analysis.

Although numerous software solutions have been developed to address the problem, a comprehensive

framework remains lacking.

Applications of FFC-NMR relaxometry are numerous and extend to food science, material science, en-
vironmental studies, and biological research. In material science, for example, FFC-NMR has been applied
to monitor molecular dynamics and subtle structural changes in macromolecular systems, providing a link

between functional properties and molecular motion [15].

Regarding food science, for instance, this technique has proven valuable for quality control and authen-
tication, such as distinguishing between authentic and adulterated cheeses like Pecorino and Parmigiano
Reggiano [16] [17]. The non-destructive nature of FFC-NMR further allows continuous monitoring of food

properties without altering the sample, enabling real-time quality assessments [18].

Similarly, in environmental research, FFC-NMR is widely used to study soil organic matter, contaminant
interactions, and the porous structures of rocks. These studies contribute to a deeper understanding of

carbon cycling, contaminant transport, and resource management [19, 20} 211 [22].

Despite these advancements, the adoption of FFC-NMR remains limited due to the sophisticated in-
strumentation and the need for specialized expertise in NMR and materials physics. Although artificial
intelligence (AI) techniques have gained attraction in magnetic resonance imaging, their application to
FFC-NMR is still emerging. Some Al-driven methods, such as convolutional neural networks (CNNs) for
food quality assessment [23| and deep neural networks for reconstructing sparsely sampled spectra in NMR

spectroscopy [24], suggest promising directions for future developments in this field.

This PhD work addresses the challenges of data analysis and the lack of a standardized computational
framework for automating the interpretation of NMRD profiles and it relies on the Model-Free (MF) ap-
proach [25] 26] which represents the Ry profile as a linear combination of Lorentzian functions. To analyze
the data and identify the MF parameters, the problem is reformulated as an ill-conditioned least-squares
problem that requires robust regularization techniques to ensure stable solutions |27} [28]. One critical aspect
of this process is the selection of appropriate regularization parameters, which is essential for balancing
prior information with data accuracy. Building on this foundation, after an in-depth discussion of the phys-
ical background and the Model-Free approach, the first part focuses on the discussion of inverse problems,

regularization techniques, and the automatic computation of the regularization parameter.

The second part of this thesis, which illustrates the contribution of the PhD work, aims to explore
several strategies consisting of both classical regularization techniques for ill-conditioned inverse problems,
and hybrid techniques, based on AI approaches. In particular, regularization techniques, such as those
based on L; or Ly penalties, can be enhanced by incorporating machine learning models to infer meaningful
priors or parameters from experimental datasets. Conversely, learning-based approaches can benefit from
improved stability and interpretability when paired with regularization strategies rooted in physical model-
ing. For instance, hybrid frameworks that embed neural networks within traditional optimization schemes
can simultaneously exploit the expressiveness of data-driven models and the theoretical rigor of regularized
formulations. The proposed strategies demonstrate state-of-the-art performance, providing both computa-
tional efficiency and improved interpretability, which are crucial for advancing the analysis and inversion of
FFC-NMR relaxometry data.
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Application of NMR in Environmental and Food Research

The FFC-NMR technique plays a critical role in diverse areas of environmental research. Principal issues
can be categorized into two main areas: molecular structure and molecular interactions [19].

Considering the first area, the NMR can be used to unravel the structure of soil organic matter (SOM).
In environmental science, FFC-NMR aids in analyzing SOM and its response to climate change and agri-
cultural practices. SOM was thought to consist mainly of humic substances cross-linked to form a unique
chemical category. The use of NMR demonstrated that SOM is extremely complex. The alkaline extractable
component of soil is dominated by plant and microbial biopolymers at various states of decay [20] 21]. Un-
derstanding SOM composition as a mixture of microbial and plant residues at different stages of degradation
requires the use of specific NMR techniques such as FFC to study soil aggregate structure, humification
processes, fertility, and stability, and in turn, better predict how this cast carbon pool responds to climate
change, intensive agriculture, and land-use change [29]. Moreover, it is interesting to study results from
FFC-NMR on dissolved organic matter (DOM). Understanding DOM structure and function is fundamental
for comprehending global carbon cycling, contaminant transport and ocean chemistry in general [30].

The second area (interactions) investigates where and how contaminants bind in soils, sediments, and
living species [3I]. Understanding the interactions with soil and sediment will improve our knowledge of
bioavailability and how to best proceed with remediation. Moreover, this learning can help to explain uptake,
distribution, excretion, and bioaccumulation predicting more subtle long-term effects of exposure [21].

Another interesting application of the FFC-NMR technique is represented by the analysis of the porous
structure of rocks that hold underground fluids. It could be possible to accurately estimate many petrophys-
ical parameters, such as porosity, saturation, or permeability. Nowadays, borehole ' H NMR is extensively
used in oil and gas reservoir characterization, and recent developments have led to tools suitable for envi-
ronmental applications [32].

Finally, a different field of application could be represented by food research. Nowadays, high-field NMR
spectroscopy techniques are generally used to qualify and quantify the metabolites present in plant and
animal tissues, to determine the composition and formulation of packaging materials, to food authentication,
to optimize food processing parameters, to ensure microbial safety, and to inspect the physical and chemical
quality of food [33] [34]. Despite the low resolution of low-field devices, the information obtained from FFC
relaxation analysis is sufficient to study water content, compartments, diffusion, and movement [35]. The
challenge is to find a well-stable model and numerical methods to robustly analyze the acquired NMRD
profiles.

All these improvements and employments lead to increasing and enhancing efficiency in terms of energy
and environment, but also in economic terms, because low-field devices have less environmental impact
compared to high-field NMR, devices considering energy consumption and the quantity of cryogenic liquids

needed to keep magnets at low temperatures, aligning with sustainability goals [36].

Contributions and Outline

This thesis is structured into two parts, covering a total of 7 chapters. In Part I the background concepts
are comprehensively presented and discussed. In Part II, the proposed methods to address the problem of

interest are introduced and analyzed.
Part I is divided into 4 chapters:

e Chapter (1| introduces the principles of Nuclear Magnetic Resonance (NMR), focusing on nuclear spin
dynamics and their interaction with magnetic fields. The chapter details the Fast Field Cycling (FFC)

NMR technique, its historical evolution, and its use in analyzing Nuclear Magnetic Relaxation Dis-
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persion (NMRD) profiles to study molecular dynamics. It concludes with a discussion of physical
models for interpreting FFC data, emphasizing the model-free approach, which supports the numerical

methods developed in this thesis.

e In Chapter [2] the essential regularization strategies and the optimization methods for developing the
numerical methods proposed in later sections are described in a general context. In the first part,
Tikhonov regularization for linear and non-linear problems is detailed [37]. The chapter concludes with
the block non-linear Gauss-Seidel method, as proposed by Grippo and Sciandrone [38] [39], forming the
foundation for the algorithm detailed in Chapter [6}

e In Chapter [3] the automatic techniques to compute the regularization parameter are described. Specif-
ically, the first part of this chapter discusses the augmented Tikhonov framework, and it introduces
the Balancing Principle (BP) [37], which is employed in the proposed methods later detailed. The
chapter concludes with an introduction to the Uniform Penalty principle [40], based on Ly regulariza-
tion with locally adapted regularization parameters, providing the basis for strategies developed for
NMRD profile analysis, and described later in Chapter

e In Chapter 4l the mathematical foundations of machine learning are introduced, emphasizing its role
in solving complex problems. The chapter then explores integrated models that merge traditional op-
timization with data-driven techniques. The final section focuses on the Plug-and-Play (PnP) method,
highlighting its use of pre-trained denoisers within iterative algorithms. This framework’s philosophy
sets the stage for the novel method developed in this PhD work and described in Chapter [7}

Part II is divided into 3 chapters, presenting the proposed solution methods based on classical regularization
and optimization strategies, and a hybrid technique based on the combination of a machine learning technique

with a coordinate descent optimization algorithm:

e In Chapter |p| three approaches for analyzing NMRD profiles are proposed: MF-UPen, which uses
locally adapted Lo regularization; MF-L1, based on an L; penalty; and MF-MUPen, combining locally
adapted Lo and global L; penalties. All methods employ automatic parameter selection via the
Balancing Principle and Uniform Penalty principles. Contributions include the implementation and
testing of the MF-UPen and MF-MUPen algorithms, along with a dispersion analysis procedure to
assess parameter estimation ranges. The chapter concludes with a comparison of algorithmic results,
focusing on fit quality and correlation time distribution, supported by tests on representative NMRD

profile datasets.

e In Chapter[6] a computational framework for automating FFC-NMR analysis is introduced, addressing
the parameter identification problem for offset terms, correlation time distribution, and QRE parame-
ters. This problem is formulated as a regularized non-linear least squares problem with box constraints,
using an Li-based regularization to promote sparse solutions. The estimation process employs an iter-
ative approach where the regularization parameter is computed via the Balancing Principle, and the
constrained optimization problem is solved using a two-block non-linear Gauss-Seidel method. The
proposed method effectively separates the contributions of relaxation distributions and quadrupolar
relaxation parameters, achieving accurate fits for NMRD profiles, including QRE-related local max-
ima. The chapter concludes with numerical experiments on synthetic and real data, demonstrating the

robustness and efficiency of the algorithm.

e In Chapter [7] a machine learning framework is presented for NMRD profile inversion, focusing on the

QRE phenomenon. A pre-trained feed-forward neural network, designed to predict QRE parameters, is
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integrated into the NMRD data fitting process using the Plug-and-Play (PnP) approach. This method
incorporates a novel loss function and a tailored training procedure, marking the first application of
PnP techniques to FFC-NMR data analysis. Results are compared with robust optimization methods,
showing strong agreement and highlighting the potential of neural networks to streamline the anal-
ysis of large datasets. The chapter concludes with numerical tests on food-related NMRD profiles,

demonstrating the framework’s effectiveness.
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Preliminaries






Chapter 1
Physics Background

This chapter lays the theoretical groundwork for understanding Nuclear Magnetic Resonance (NMR) and its
advanced applications, comprehensively exploring the interplay between nuclear spin dynamics and magnetic
fields. It begins with a discussion of the NMR phenomenon, delving into the quantum mechanical principles
governing nuclear spin transitions and their interactions with external magnetic fields, which form the basis
for signal detection and analysis. The second section introduces the Fast Field Cycling (FFC) NMR tech-
nique, an essential tool for this study. It traces its historical evolution and its role in mapping relaxation
phenomena by analyzing Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. These profiles serve
as fingerprints of molecular dynamics, offering insights into interactions within bulk liquids and confined
environments. The final section describes physical models used to interpret FFC data, with special attention
given to the model-free approach, which is the basis for developing advanced numerical methods and strate-
gies presented in this thesis work. This model avoids the constraints of predetermined assumptions about
molecular dynamics, enabling the extraction of robust and adaptable insights across diverse systems. The
chapter thus establishes a theoretical foundation for the innovative methodologies employed in subsequent

analyses.

1.1 Nuclear Magnetic Resonance Phenomenon

Nuclear Magnetic Resonance (NMR) is a physical phenomenon in which atomic nuclei in a static magnetic
field are perturbed by an externally applied Radio-Frequency (RF) pulse. This perturbation induces a
resonant electromagnetic response from the nuclei, characterized by a frequency specific to the local magnetic
environment experienced by the nucleus.

The process involves nuclear spin transitions between discrete quantum energy levels associated with
angular momentum, with the energy differences typically on the order of thermal energy

In 1938, Isidor Rabi extended the Stern-Gerlach experiment to measure nuclear magnetic resonance in
molecular beams for the first time [41]. His pioneering work earned him the Nobel Prize in Physics.

Currently, NMR refers predominantly to phenomena in condensed matter systems, rather than the iso-
lated atomic beams used in Rabi’s experiments. Specifically, NMR today typically refers to nuclear spin
transitions detected via energy absorption from RF pulses. The first experimental observations of NMR in
condensed matter were independently made in 1946 by two research groups: E. M. Purcell, H. C. Torrey,
and R. V. Pound at Harvard University, using paraffin [42], and F. Bloch, W. W. Hansen, and M. Packard
at Stanford University, using water [43]. These discoveries led to Purcell and Bloch sharing the Nobel Prize
in Physics in 1952.

1Energy in the range of thermal energy: kT ~ 25meV.
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1. Physics Background

1.1.1 Resonance Condition

For the nuclear magnetic resonance phenomenon, atomic nuclei must possess a magnetic moment, enabling
interaction with a typically constant and homogeneous magnetic field, known as polarizing or Zeeman field,
and denoted as By. This interaction leads to achieving an order between energy levels, influenced by the
magnetic field and opposed by thermal agitation (kT).

When an atomic nucleus interacts with a uniform and constant magnetic field, By, its nuclear magnetic
moment, p, tends to align with the direction of the magnetic field. Consequently, the external magnetic
field exerts a torque on the magnetic moment:

T:[,I,XBO

This interaction causes the nuclear magnetic moment, p, to precess around the direction of the magnetic
field at a specific angular frequency, vy, known as the Larmor frequency. This frequency depends only on
the nuclear species and on the intensity of the magnetic field By. From this point onward, bold symbols will
denote vector quantities, while non-bold symbols will represent their magnitudes.

On a macroscopic scale, this results in establishing an equilibrium nuclear magnetization, M, which can
be detected to extract information about the system.

The phenomenon consists of manipulating the magnetization by supplying energy to the system, which
must satisfy the resonance condition. Using appropriate hardware, the evolution of the magnetization, as it
returns to equilibrium, can be monitored.

In an NMR experiment, the signal is detected by a coil as an electric signal induced by the changing
magnetic flux caused by the movement of the nuclear magnetization, M (t), in a rotating reference frame at
the resonance frequency. The intensity of M (t) has the same units as the nuclear magnetic moment ([J/T]),
which is proportional to the spin, I, of the nucleus n with spin:

h
=1 1.1
H= g (1.1)

where 7, is the gyromagnetic ratio of the nuclear species n, which characterized it (its unit is [MHz/T])
and h is the Planck’s constant, i.e., h = 6.63 - 10734 Js. Therefore, for nuclear magnetic resonance to occur,
nuclei must have I # 0.

In the following Table the most common nuclear species employed in NMR experiments are reported

with their characteristics, i.e., proton and neutron numbers, spin, and gyromagnetic ratio expressed as v/27.

Nuclei Odd Protons Odd Neutrons Spin /27 [MHz/T]
'H 1 0 1/2 42.58
H 1 1 1 6.54
N 1 1 1 3.08
BC 0 1 1/2 10.71
R 1 0 1/2 40.08

Table 1.1: Characteristics of the most common nuclear species employed in NMR, experiments.

For a system with a single spin, the quantum mechanical Hamiltonian operator representing the energy
is given by H, = —yhlI, By, where h is the reduced Planck’s constant, i.e., h = h/27 = 1.05457 - 10734 Js.
In the presence of an external magnetic field, the Zeeman effect arises, which involves the splitting
or shifting of spectral lines. The corresponding energy levels are determined by the eigenvalues of the
Hamiltonian operator [44]:
E,, = —vhmBy (1.2)
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where —1 < m < +1.
For instance, in the case of hydrogen atoms, the energy difference between the two energy levels, corre-
sponding to transitions between them, is AE = vABy. By supplying the system with electromagnetic waves

of energy hvg, matching AFE, the resonance condition is satisfied, leading to the Larmor frequency:
AFE = ’yhBo = hvy = 2whvg = hwg = wo = vBy

The wq is the Larmor angular velocity, i.e., wg = 27wry. From now on, the Larmor resonance condition is
identified by wy.

For example, for ' H nuclei in a magnetic field B = 1 T, the frequency is v = (y/27)B = 42.6 MHz.
Since this frequency falls in the megahertz range, it lies within the radio wave portion of the electromagnetic
spectrum.

When a sample is placed in a region where a uniform magnetic field, By, is applied, the splitting of

energy levels can be observed.

Figure 1.1: Energy level diagram illustrating spins under a Zeeman Hamiltonian. The left figure depicts a
system with I = 2, while the right figure shows one with I = 1/2. The bold line represents the relative

population of each state for an ensemble of systems in thermal equilibrium.

Nuclei are distributed across the 21 + 1 energy levels according to the Boltzmann distribution, with the

lower energy levels being the most populated

N1 { hwo}
=expl ———

N

where k is the Boltzmann’s constant (i.e., & = 1.38 - 10723 J/K). In a magnetic field By of magnitude
2 T, corresponding to a frequency of approximately 100 MHz, the exponent is on the order of 107®. This
indicates that kT > hwyq, resulting in a population difference between energy levels that is proportional to
the magnitude of By. The phenomenon is referred to as the Curie law.

Under this condition, the nuclear spin magnetization per volume unit is a vector aligned with the direction

of By; it has the same orientation, and its magnitude is given by:
272

My = N%BO (1.3)
This outcome can be derived by examining the energy levels’ population. For simplicity, let us consider
nuclei with a spin I = 1/2. In this case there are 2] +1 = 2- £ + 1 = 2 possible states, with m = +1/2
(spin up) and m = —1/2 (spin down). The energy difference between these states is AE = /By and the
populations per volume unit of the two levels are denoted as N and N_. The total number of nuclei per
volume unit is N = Ny 4+ N_, which are distributed according to the Boltzmann distribution:

Ne _ AL _ Wb
N OPVYET [ TP kT
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Mg N,u —————————————————————————————————————————

By/kT

Figure 1.2: Mj evolution. At a low-intensity field, My is linearly proportional to Bo/kT, while at a higher-
intensity field, My saturates to Ny, with all dipoles aligned with the field.

From the previous result, the populations per volume unit of the two levels follow:

N
— N — N
1+ exp (—yhBy/kT) 1+ exp (+yhBo/kT)

Ny
and the equilibrium magnetization, My, is proportional to the surplus of spins up on spins down
Mo = p(Ny — N-)

where p is the nuclear magnetic moment. Hence

1 —exp (—vhBy/kT) ~vhBy
My =N = Nptanh
0T Y exp (—AhBykT) M CokT

Thus, M is typically not directly proportional to the applied field. However, the dependence on By/kT
remains linear at low magnetic fields, a condition that is generally upheld in experimental settings. At higher
field strengths, the magnetization reaches saturation at Ny, indicating that all magnetic dipoles are fully
aligned with the field.

To meet this condition, i.e., hyBy << 2kT, the tanh function can be approximated using a first-order

expansion:

N phy Nh2~?
M = B =

07 okT T T 4kT
where y = hyl = $hy. If the spin is I = 1/2, the Curie law becomes (L1.3).

By

Consequently, nuclei are distributed among the energy levels, primarily occupying the lower energy
states. This results in an equilibrium magnetization per volume unit that aligns with the direction of By.
At the quantum level, when the system is irradiated with photons satisfying the resonance condition, the

probabilities of absorption and stimulated emission are equal. However, since the lowest energy level is the
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most populated, there is a net energy absorption, leading to a modification of the equilibrium magnetization
vector. Information about the system can be obtained from the return of the nuclear magnetization to its

equilibrium state following these changes.

1.1.2 Nuclear Spin Magnetization

Considering an NMR, experiment, a spin ensemble behaviour can be described using the nuclear magnetiza-

tion vector motion, which refers to the precession of M about a magnetic field according to the equation:

dM
— =7M x B
dt Y 0
Precession happens when the vector M is not aligned with the polarizing magnetic field By. To move
M and excite the system, another RF magnetic field By, which is perpendicular to By and oscillates at
a frequency wyq, needs to be applied. This allows for the measurement of how M returns to equilibrium,

providing valuable information about the system.

Let us consider a B aligned to the z-axis of a reference frame, and let us apply a radio-frequency (RF)
pulse B perpendicular to the polarizing field which precesses about z-axis with the same angular velocity of
M (i.e., resonance condition). The magnetization M will move from the equilibrium of an angle proportional
to the time and the amplitude of the RF puls The angle is called flip angle and it is given by

a =vBit

This process, described in the so-called laboratory frame, is shown in Figure[1.3] where the M precesses

around By toward zy plane with a helical shape.

l%n
4

—
N~— ]

]

M
ot~ B,

Figure 1.3: Evolution of M in the laboratory frame in the presence of a polarizing field By, and a transverse

RF pulse, B;. When w = w(, M simultaneously precesses about B at wg, and about By at wi.

In this frame, the M components are

M, (t) = My sin (w1t) sin (wot)
M, (t) = My sin (wit) cos (wot)
M, (t) = My cos (wit)

2The moving does not occur instantaneously, but lasts for the duration of the applied RF pulse.
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(a) On-resonance RF pulse. (b) Off-resonance RF pulse.

Figure 1.4: Evolution of M in the rotating frame.

1.1.3 NMR signal and Relaxation

The vector M gradually precesses to 0 following an exponential process, hence the NMR signal detected by
a coil is a damped sine wave, known as Free Induction Decay (FID). This signal is directly related to the
intensity of the magnetization in the xy plane. The damping occurs because, once the spins are in the zy
plane, they start to lose their phase coherence due to spin-spin interactions. The system tends to return to

thermal equilibrium, characterized by

M. (equilibrium) = M,
M,y (equilibrium) = 0

Figure 1.5: Free Induction Decay (FID).

This return to the equilibrium state is called relazation, and the physical processes which regulate it
after the application of an RF pulse are different for the longitudinal and the transverse magnetization
components. For the longitudinal case, the process is an energetic process type, where the spins returning
to the equilibrium yield their energy to the lattice, while, for the transverse case, the process is an entropic
process type, which corresponds to decoherence of the transverse nuclear spin magnetization. The initial
phase coherence of spins is lost until the phases are eventually disordered and there is no net M,,. This is
due to random fluctuations of the local magnetic field, which lead to random variations in the instantaneous

NMR precession frequency of different spins.
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The nuclear magnetization motion equation for an ensemble of free spins in the presence of a homogeneous
field follows the so-called Bloch equations:

% =+vyM x B (1.4)

where M is the magnetization vector, B is the magnetic field vector, and + is the gyromagnetic ratio of the
specific nuclei under consideration.

Considering a polarizing static field applied along the z-axis, i.e., B, = By, the return to equilibrium
M, = My of the longitudinal magnetization, after shutting down the radio frequency pulse, depends on the
velocity of the redistribution of spins on energy levels following Boltzmann distribution, so it is proportional
to the difference between longitudinal equilibrium magnetization and longitudinal magnetization itself and
it decreases in time:

dM.(t) _ M(t) — Mo

= — 1.
dt T (15)

where T} is the longitudinal (or spin-lattice) relaxation time, which represents the decay constant for the

recovery of the z component of the nuclear spin magnetization towards its thermal equilibrium value.
Similarly, for the transverse component, the return to equilibrium depends on the difference between its
current value and its equilibrium value, which corresponds to 0. Hence, in the rotating frame,
dMy(t) 1
—— = —— M, (t 1.6
S = Moy (1) (16)
where T5 is the transverse (or spin-spin) relaxation time, and it refers to the decay constant for the component
of M perpendicular to By. Because T5 relaxation only involves the phase coherence loss between spins, while
T, relaxation involves an energy transfer and also a phase coherence loss, it always holds Tb < Tj.
The evolution of the magnetization vector is described by the solutions of the Bloch equations (Figure|l.6]).

M.(t) = M. (0)e™ ™% + M, (1 - e*%)
t

My, (t) = My, (0)e 7

Figure 1.6: Evolution of the magnetization vector considering an RF pulse applied to have a flip angle
o = —180°. The initial value of the magnetization, M (0) = —My, hence M, (t) = My(1 — 2e~*/1).
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In practice, considering the transverse relaxation, it is impossible to have a completely homogeneous
polarizing field B applied in the entire volume of interest, therefore the inhomogeneities of the field con-
tribute to dephasing. This depends on slight differences in the local magnetic field which lead spins to not
precess with the same frequency, and it is manifested as a loss of signal. For this reason, the signal will relax
faster to 0 with a decay constant smaller than 75. This decoherence due to the inhomogeneities is not a true
relaxation process, and it depends on the location of the molecules in the magnet. Considering molecules
that are not moving (i.e., neglecting the diffusion process), the deviation from ideal relaxation is consistent
over time, and the signal can be recovered by performing a specific NMR, experiment.

The time constant in this case is known as T3, and it usually is smaller than 75

1 1 1 1
- — — 4 4AB
T To  Tomom To 000

where A By is the variation of the magnitude of the local field.

A FID is generated by applying one single pulse, but most of the NMR experiments, or sequences (i.e.,
a sequence of applied RF pulses), are based on the combination of different kinds of pulses.

Applying two successive RF pulses a Spin Echo (SE) signal will be produced, and the time passing
between the application of the first pulse and the peak of the spin echo signal is known as Fcho Time
(TE) [45].

The application of the second RF pulse causes a refocusing of spin phase information lost during the
decay FID produced by the first RF pulse. This is possible because many of the T processes that produce
the decay of the FID are symmetrically reversible, i.e., most of the signal after the first pulse is not destroyed,
but becomes disorganized.

The generation of an echo is represented in Figure Let us consider the vector representation (Fig-
ure (b)). The first pulse is a 90° pulse (at Larmor frequency), which flips the spins into the zy plane
(image @) The spins will start to lose coherence due to the inhomogeneities in the polarizing field, and
some spin groups may precess faster than others (i.e., gaining phase) (image @) Successively, a 180° pulse
is applied on the zy plane, rotating on the same plane and changing the verse of rotation of them (image
@) Then, the spins will start to refocus (image @) reaching the peak of the spin echo signal (image @)
atﬂ t = TE and eventually, without the application of another pulse, spins will continue to rotate losing
coherence and free decaying (image @) Spin echoes will form each time two successive pulses of any flip
angle are applied to the system. The combination of pulses described before (90° and 180°) produces the
maximum possible echo signal and it is the most employed one. The echo formed in this case is called Hahn
echo.

The application of more than two pulses generates a stimulated echo (STE). Let us consider the Figure
where three pulses (indicated on the image with numbers, i.e., 1, 2, and 3) are applied to the system. The
echoes A, B, and C are Hahn echoes, where A is generated by pulses 1, and 2; B is generated by pulses
2, and 3; and C is generated by pulses 1, and 3. The echo D is a secondary spin echo obtained by the
application of the pulse 3 on spins of echo A. Specifically, in correspondence with the peak of echo A, spins
are in phase in the transverse plane. Then, spins dephase with T5. The pulse 3 (located exactly midway
between A and D) affects some of these spins, allowing them to refocus into echo D. Finally, echo E is called
stimulated echo. The generation in a vector spin diagram is shown in Figure where only 4 spins (a, b,
¢, and d) are considered for simplicity: First, a 90° pulse is applied, flipping spins into zy plane (a); then
the spins start to dephase (b). Spins are considered in pairs (a — b, ¢ — d), where each one presents local
fields offset of the same magnitude, but opposite polarities. Thus, a spin gains or loses phase corresponding
to its partner at the same relative rate. The spins a and ¢ move in local fields with lower intensity than By,

thus they precess slightly slower and lose phase, while b and d precess faster and gain phase because their

3TE corresponds to the double of the time between two RF pulses.
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Figure 1.7: Spin Echo generation.
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Figure 1.8: Sequence with 3 RF pulses applied and generation of a STE.
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Figure 1.9: Generation of a stimulated echo from three 90° pulses.

local fields have higher intensity. Then, a second 90° pulse is applied (c) flipping the spins into zz plane.
The z components remain aligned to the By direction, not precessing. The longitudinal relaxation occurs,
having a net growth along z—axis (d), and for this reason, stimulated echo presents a Tj-weighting. The z
components are flipped back to the zy plane due to the last 90° pulse, and they start to precess (e) rephasing
along the y-axis and generating the stimulated echo (f). The amplitude of this echo is lower and it is spread
out more widely in time because not all components rephase at the exactly same time.

Finally, increasing the number of pulses, n, leads to an exponential increase in the number of echoes,
3n -1

following Nechoes = 2

1.1.4 Steady-State solution of Bloch Equations

In an arbitrary homogeneous field, the equation of the motion of the nuclear magnetization for an ensemble
of free spins is represented by . In a polarizing static field with B, = By applied along the z—axis,
the trend of the magnetization towards its equilibrium value represented by M, = My = x9Bg can often be
described with good accuracy by . The variable xg represents the magnetic susceptibility, and it can be
derived from (1.3, i.e., xo = % Moreover, if an RF pulse is applied such that the magnetization
gains a component perpendicular to the magnetic field By, the local magnetic field variations, arising from
spin-spin and spin-lattice interactions, lead to a decay of the transverse magnetization at a rate characterized

by (1.6). Alternatively, this decay can be described by considering its two components separately:

dMy _ _ M,
dt T>
aMy, _ My
dat T>

Finally, in the presence of an applied field, i.e., the sum of the polarizing field and a much smaller radio-
frequency field, the motion due to the relaxation can be superposed on the motion of the free spins, leading
to the following equation:

dM M, + Myj" M, — My

— =7M x B —

K 1.
dt T Ty (1.7)
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where ', ', and k" are the unit vectors of the laboratory frame of reference.

Let us assume that the applied field is the sum of a polarizing field By applied along the z-axis,
B, =By = f%, and of an RF field B; of amplitude B; = f% rotating at a frequency w in the neighbour-
hood of wy. The RF field will be usually one of the components of the rotating applied field B, = 2B cos (wt)
linearly polarized along the z-axis of the laboratory frame, neglecting the effect of the counter-rotating com-
ponent.

The effective field in the rotating frame is

(w—wo)k—wit  Awk —wii

Beug = (Bo+:))k+B1i:

Y Y
where 4, j, and k = k" are the unit vectors of the rotating frame, and wy = —vBy, w1 = —yB;. The
equation (1.7) in the rotating frame becomes
dM Myi+ Myj M. — M,
—— =5 (M X Beg) — vl _ k 1.8
o ¢ off) 7 T (1.8)

where M,, and My are the components of M in the transverse plane in that frame. Equation (1.8) can be

rewritten as

dM, _ _ M, Y
@ =1 T AwMy
P = —AwM, — 7 — wi M, (1.9)

dM, _ T M.—My
dt —wlMy 7T1

where Aw = (w — wp).
For fixed values of the parameters, the solution of ([1.9) is a sum of decreasing exponential terms and of

a steady-state solution obtained by setting the following condition

dM, dM, dM,

dt dt a0

and, after a sufficiently long time for the transient exponentials to have decayed, the steady solution can be

written as [46]
2
= 1+(T2AA:;U)72§;€2]3§T1T2 Mo
- _1+(T2A:)]zf:y2"‘lng1Tg Mo (1.10)
M, =~ 1+(T21At;()A21:22)BfT1T2 My

M,
M,

The transverse components in the laboratory frame can be derived starting from the rotating frame ones
following
M, +iM, = (NI, + il ) e = {Mx = M, cos (wt) — My sin (w?)
M, = M, sin (wt) + M, cos (wt)

The three components of M are proportional to My because, in the absence of initial polarization, i.e.,
of populations’ inequalities between magnetic energy levels, the nuclear magnetic phenomenon cannot be
observed.

The solutions can be geometrically represented, where the locus of the vector M as a function
of By, and Aw is an ellipsoid with axes 2a, = 2a, = My \/m, 2a, = My, and centred at the point

mzyzO,z:%MO.

1.1.5 Modified Bloch equations in low fields

It is interesting to discuss how nuclear spin magnetization (and thus the signal) behaves in the presence of

low-intensity fields, considering that the Fast Field Cycling NMR sequence is a low-field technique.
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When the intensity of the polarizing static field is comparable either to the radio-frequency one or to
1/~4T3, the Bloch equations and their steady-state solutions must be modified. Specifically, if
a radio-frequency field B (t) is applied, the assumption of magnetization relaxing towards the equilibrium
value My = xoBy should be replaced by that of relaxation towards the instantaneous value xo(Bg + Bi(t)).
If B is not small compared with By, the condition of relaxation towards the value xo(By + Bi(t)) is such
that the following assumption holds Ty = T5 = T' [46].

Therefore, the modified Bloch equations can be rewritten as follows:

dM M — xoB

= —yM xB-

1.11
dt T ( )

Now, it is necessary to distinguish between the response to an oscillating field and to a rotating field,
particularly considering the counter-rotating component in cases where B; is comparable in magnitude to
By.

The equations in the rotating field can be rewritten as follows:

dM, _  My—xoB ~
ai = — e + Awl,
P — _AwM, — 22— M, (1.12)

aM, __ v M., — M,
=wiMy — =0

Following the formalism described in [46], the steady-state solutions of can be expressed using
the RF susceptibilities X;év[(w), and X;;M (w), where R stands for rotating and M identifies the modified
Bloch equations. The susceptibilities x'(w), and x”(w) represent the real and the imaginary parts of the RF
susceptibility x = x’ — ix”, defined by the relations B, = 2B;Re {¢“!}, M, = 2B Re {e!*!}

Sy MT _ 1 wkoT27[1+('yB1T)2}
XR T 2By = T2 15 (TAw)’ 1 (7B T)Z X0
) (1.13)
"Mo_ My, 1 wT
XR = T23By T 214 (TAw)’+( BT X0

In case of negligible saturation (|y|B1T << 1), the equation (1.13) becomes

!’ ’ 1 " 1" " 1 /7
Mo Mo_
XrR = XrR T onXR ) XR XR onXR
where
' Xo woAwT? v Xo  wol
X = 5 X =
T2 14 (TAw)? 72 1 4 (TAw)?

are the rotating field susceptibilities for the unmodified Bloch equations ((|1.7))). Following this, M, will be

M. =xo0 |Bo +

(w/v) (YBLT)°
1+ (TAw)? + (YB1T)? |

(1.14)

This result is in contrast to the result obtained in the unmodified case (1.10]), which can be rewritten as

M, = xo |Bo +

(wo/7) (VB T)?
1+ (TAw)® + (’yBlT)Q_

(1.15)

A comparison of these last results for M, reveals that when By = —wy /v = 0, equation predicts
a non-zero steady-state magnetization, in contrast to equation . This outcome makes sense from a
physics perspective: in the rotating frame, the spins experience an effective static field Beg with components
B. = —w/v, B, = By, around which they precess, while gradually relaxing towards M2 = xoB;. This leads
to an asymmetry between positive and negative values of M,, creating a non-zero steady-state value for it.
The theoretical predictions from equation have been experimentally verified [47].
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Figure 1.10: Observed signal in a static field By as a function of RF amplitude in solid diphenyl, picril hy-
drazil. The full curves give the theoretical prediction of equation (1.14), assuming 7} = Tp = T = 6.2-107% s,
measured independently [46].

The Figure [46] presents AM, = M, — xoBo predicted by equation as a function of the
rotating field’s strength B; for the cases By = —w/7v, and By = 0, with experimental points. The agreement
between theory and experiment confirms that the unmodified Bloch equations which predict M, = 0 when
By = 0 are inaccurate.

Let us consider a simple specific case where By = 0. The modified Bloch equation can be rewritten

as

dM, _  Mz—x02B; cos (wt)
g~ = 2yM_. B cos (wt) — = (1.16)
dé\{z = —2vM,B; cos (wt) — %

The exact steady-state solution of the previous system (1.16]) is immediately obtained

M, =M, =0
M$ _ 2X0B1 cos (wtiiigggjm (wt)

In a more general low-field case, with B, # 0 and an RF field B, = 2Bj cos (wt) the system (1.11)
cannot be analytically solved, hence numerical approaches have been used to study the evolution of the

magnetization in low-field conditions.

1.2 Fast Field Cycling NMR Technique

This section provides an in-depth examination of the Fast Field Cycling (FFC) NMR Technique, which is
essential for this thesis’s data collection and analysis. The discussion begins with an explanation of FFC as
the technique from which data is derived. It highlights its critical role in developing the numerical methods
and strategies employed to interpret Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. By eluci-
dating the principles and historical context of FFC, this section establishes a framework for understanding
how the acquired data informs the models utilized in subsequent analyses. The unique characteristics of

NMRD profiles, which serve as distinct fingerprints for different materials, further underscore the relevance
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of FFC in advancing research across various scientific disciplines, including material science, food science,
and pharmaceuticals [16] [17] [18] [22].

1.2.1 Introduction and Historical Outline

The analysis of the longitudinal (spin-lattice) relaxation rate, i.e., the inverse of the longitudinal relaxation
time, on the polarizing By field provides exhaustive information into events at the molecular level beyond
the reach of many other techniques [48| [1I, 49} 50, 511 [52].

The Field Cycling (FC) technique allows measurements of the nuclear magnetic relaxation rates, as a
function of the Larmor angular frequency (wy = 2wy = vBp), thus mapping the spectral energy distribution
of all the molecular motions affecting magnetic moments.

These methods were introduced shortly after the NMR phenomenon’s discovery, but their development
has been slower than other techniques, e.g., imaging and spectroscopy. The reasons lie in the complex nature
of the NMR relaxation theories, and molecular dynamics models to analyze the acquired Nuclear Magnetic
Relaxation Dispersion (NMRD) profiles (i.e., the relaxation rate profile), but also in technical challenges in
building optimized equipment.

Significant molecular dynamics effects are observed at low magnetic fields, where the relaxation times
tend to become shorter at lower fields, and the intensity of the signal generated by a system of spins in a
By field approximately decreases as Bg/ % In this regimen (i.e., low By, with Larmor frequency on the order
of a few kHz), the local field may become comparable or higher than By, and the 77 may be shorter than
the longest correlation time, 7., hence the ”weak collision” condition is violated (i.e., it is expected T1 > 7.
when the fluctuating perturbations are of small intensity compared to the splitting energy due to By).

Moreover, in this low field condition, for nuclei with spins 1/2, the predominant longitudinal relaxation
mechanism depends on the fluctuations due to dipole-dipole couplings, while for spins 1, nuclei with their
electric quadrupole moment couple with molecular electric field local gradients, dominating the relaxation
process.

The most powerful characteristic of the NMRD profiles is that they are unique for each material or
substance, resulting in a single fingerprint for material identification. Fast Field Cycling applies to many
fields, from research to industry, including food science applications [2l [7], material science [5l 6], and
pharmaceutical [4] to name a few.

Historically, the first experiments regarding the FC approach were performed by N.F. Ramsey and R.V.
Pound at Harvard, in 1949-1951. Then, between the 1950s and 1970s, this technique was improved by
many groups of researchers mostly in the United States. The developed technique consisted of manually or
mechanically moving the sample between two magnets (i.e., shuttling processes). The shuttling process is
cyclically repeated, and for this reason, the technique was called field-cycling NMR relaxometry. Later, a
new approach was proposed consisting of holding still the sample and switching the magnetic field using an
air core electromagnet, speeding up the procedure. This led to calling the new method Fast Field-Cycling
NMR relaxometry, which was first investigated by A.G. Redfield, F. Noack, S.H. Koenig, and R. Kimmich.
Finally, the first commercial FFC-NMR relaxometer based on the Noack-Schweikert technology was produced
in Ttaly by Stelar company in 1996. Since then, several improvements in both hardware and software have

been introduced to extend the range of applications [53].

1.2.2 Quantum Formalism

From a quantum perspective, the nuclear spins’ dynamics can be studied using the time-dependent Shrodinger

equation, where all the information about the spin states, positions, and velocities of electrons and nuclei, is
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completely described by a wave function W)EL To maintain consistency with standard quantum mechanical
notation, the wave function |¥) is represented using the bra-ket formalism, where |¥) denotes a vector in
a Hilbert space. Despite the Shrodinger equation being complete, it cannot be used in practice, thus it is
necessary to introduce a simplified approach, the spin Hamiltonian hypothesis, which only uses the nuclear

spin states.
d

dt

where H®P'" represents the nuclear spin Hamiltonian, and |Wgpin) is the wave function of the spin state of

7 .
[Wspin(t)) & — 3 7P [Wspin(t))

the nuclei. Henceforth, for simplicity, |¥) will represent the nuclear spin state, and H is the nuclear spin
Hamiltonian.

This approximation relies on the concept of timescale separation, which implies statistical independence
between nuclear and electronic movements. Essentially, the motion of electrons is so fast that nuclear
spins are influenced only by the average effect of the fields produced by the electrons over time. Moreover,
the energies associated with nuclear spins are typically too small to have any impact on the behaviour of
the electrons or the overall motion of the molecules. Thus, it is reasonable to assume that, under typical
temperature conditions, the approximation of the nuclear spin Hamiltonian holds for nearly all systems.

The eigenvalues of the quantum mechanics operator H are the energy values of the quantum system,

while the eigenfunctions form an orthonormal basis |n) (i.e., an eigenbasis)
H|n) = En |n)

in which E,, represents the energy level of the steady state |n). Moreover, the wave function of a spin system

can be represented as a linear combination of eigenbasis
0) = culn)
n

In this equation, the ¢, coefficients are associated with the probability of the system existing in the state

[n). This equation illustrates the principle of state superposition, which is a key concept in NMR theory.

Electric and Magnetic spin Hamiltonian

Using solely symmetry principles, without complex calculations, it can be demonstrated that electric in-
teractions are non-existent for nuclei with spin I = 1/2, H®'® = 0. Specifically, for these spin-1/2 nuclei,
no electrical energy terms rely on the nucleus’s internal structure or orientation. However, for nuclei with
spin I > 1/2; the electric charge distribution lacks spherical symmetry, causing the nucleus’s electric en-
ergy to vary based on its orientation relative to the molecule’s structure. Consequently, the nuclear electric
quadrupole moment interacts with the surrounding electric field gradient, resulting in an electric quadrupole
interaction term in the spin Hamiltonian H¢® = H<.

The quadrupole interaction is influenced by both the nuclear quadrupole moment and the electric field
gradient, which is determined by the molecular environment. This makes the NMR of quadrupolar nuclei
more complex than that of spins-1/2, as both electric and magnetic factors affect molecular dynamics.

Recalling and , the quantum expression for the energy of a magnetic moment interacting with
a magnetic field B is H™* = —u - B.

The magnetic energy is lowest when p is parallel to B and highest when they are antiparallel. The
magnetic and electric fields affecting a nuclear spin can originate from external equipment (external spin

interactions) or the sample itself (internal spin interactions). External spin interactions are exclusively

4 Alternatively, one may adopt the Heisenberg formalism, wherein the time dependence is embedded in the operators, instead
of wave functions.



24

1. Physics Background

magnetic, with various applied magnetic fields used to manipulate nuclear spins. For spin-1/2, internal
spin interactions are purely magnetic, while spins I > 1/2 also experience electric quadrupolar interactions.
Nuclear spins typically couple more strongly with external apparatus than with the molecular environment,
as external interactions are generally more intense.

In NMR relaxometry, the external perturbations are not weak, and this means that the measuring

instrument becomes, in a sense, part of the system under investigation.

External Spin Interactions

As previously described in Section[I.1] in an NMR experiment a polarizing homogeneous and static magnetic
field labelled as By is applied to the sample. This can be generated by a permanent, electromagnetic, or
superconducting magnet. The system is excited using RF oscillating fields, labelled as B;. Generally, these
pulses are generated by a coil in the probe and are as spatially homogeneous as possible and perpendicular to
Bj. Moreover, depending on the experiment, some spectrometers also present gradient coil, which generates
a magnetic field gradient, labelled as Bgraa(7,t), and which depend on the position and can also depend on
time. Usually Bgraq < By.

Hence, considering the Hamiltonian formulation, the external part is
/Hext _ Hstatic + HRF (t) + ngad (,,,’ t)

Considering H:*4¢ the interactions between By and the spins I;, the previous total spin Hamiltonian related
to the static field will be Fstatic = S~ 3{static Similarly, the other terms of the Hamiltonian in describe
the interactions between spins and B, and Bgrad.

From defining w; = —v; By the Larmor angular frequency of spin I;, the Hamiltonian term corre-
sponding to the static field (directed along the z—axis) is

Hstatic _ _W’BOI’
while, the term related to the RF pulse, during the application, can be approximated with:
HZRF (t) = —wit [cos (wWrett + ©)I;, + sin (wyert + cp)Iiy]

where w!™* represents the nutation frequency, i.e., a measure of the RF intensity experienced by spins in
angular frequency units, wy.s represents the spectrometer reference frequency, and ¢ is the initial phase of
the RF field.

Finally, considering an applied external gradient field directed along the three laboratory frame axes, the
intensity is usually much lower than the polarizing one, thus, the transverse component can be neglected,

and e.g., the correspondent Hamiltonian for a gradient along r—axis is
HE (r,t) = =7, G (D)2,

In the same way, for G, and G.

Internal Spin Interactions

Generally, the spin-spin couplings cannot be neglected in most NMR experiments and for most samples. The
effect of the electromagnetic fields generated from the sample itself on the nuclei can be represented with

the internal Hamiltonian, i.e.,

Hint _ fZF(k)O(k)
k
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where f represents a specific constant depending on the interaction, F(*) are the functions related to the
fluctuating structure, i.e., random functions of the relative positions of two spins, and O®*) represents
the spin-operator functions acting on the spin variables. For instance, F*) in the case of intramolecular
Hamiltonian dipolar coupling (where the interdipole distance can be considered constant), can be described
through the second-order spherical harmonics Y ., (6, ), with m = 0, £1, £2, and 6(¢), and ¢(t) the polar
and the azimuthal angles respectively.

Assuming the substances in question are diamagnetic -that is, devoid of unpaired electron spins (specifi-

cally, free of paramagnetic impurities)- the list of relevant spin interactions can be summarized as follows:

e Direct dipole-dipole coupling (Figure m (a)) refers to the immediate interactions between nuclear
spins, which occur independently of the surrounding molecular electron cloud. Each nucleus possesses
a magnetic dipole moment, generating a magnetic field that influences other nuclear magnetic moments.
This interaction can be classified as intradipolar when it involves nuclei within the same molecule, or
interdipolar when it occurs between nuclei of different molecules. Additionally, these interactions can

be homonuclear if the participating nuclei are of the same type or heteronuclear if they differ in species.

e Quadrupolar coupling (Figure [I.11] (b)) refers to the interactions of an electric nature between nuclei
that possess a spin greater than 1/2 and the electric fields in their vicinity. Unlike simpler nuclear
spins, these nuclei have a charge distribution that extends over a volume, allowing them to interact
with the gradient of the electric field generated by surrounding electron clouds. This type of coupling
is significant in understanding the behaviour of certain nuclei in various environments, as it reveals
how their electric quadrupole moments respond to external electric field variations. By examining
quadrupolar coupling, valuable insights can be obtained into molecular symmetry, dynamics, and the

local electronic environment surrounding these nuclei.

e Chemical shift (Figure [1.11] (c)) refers to the indirect interaction between the external magnetic field
and nuclear spins, mediated by the electrons that orbit the nuclei. This interaction can lead to a
subtle shift in the resonance frequency of the nuclei. Chemical shifts can be classified as isotropic
or anisotropic, with the latter known as Chemical Shift Anisotropy (CSA). In an isotropic scenario,
the orientation of the sample relative to the magnetic field does not influence the chemical shift; it is
solely dependent on the strength of the applied magnetic field (By). Conversely, in anisotropic cases,
the orientation of the sample can significantly affect the observed shifts, providing deeper insights into

molecular structure and dynamics.

o J-coupling (Figure (d)), also known as scalar coupling, refers to the indirect interactions between
nuclear spins that occur through the mediation of valence electrons. Unlike other types of coupling,
J-coupling is not influenced by the strength of the external magnetic field (By).

e Spin-rotation interaction (Figure[L.11](e)) refers to the coupling between the nuclear magnetic moment
and the magnetic fields produced by the electric currents that arise from the rotational motion of
molecules. This interaction is significant in understanding how molecular rotation influences nuclear
spins. As molecules rotate, they generate varying magnetic fields, which can affect the behaviour of

nearby nuclear spins. This interplay provides valuable insights into molecular dynamics and structure.

Quadrupole coupling is generally the most significant interaction in terms of internal spin interactions;
however, it vanishes for nuclei with a spin of 1/2.

The mathematical description of nuclear spin interactions can be complex. Nevertheless, a more straight-
forward version of the internal Hamiltonian is frequently applicable, especially under the assumption of a
very strong external magnetic field -this is referred to as the secular approximation- and when molecular mo-

tion is rapid, known as motional averaging. The parts of the Hamiltonian that are typically excluded pertain
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Figure 1.11: Internal spin interactions. The yellow part represents the electron cloud.
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Figure 1.12: Schematic representation of inter- and intra- molecular interactions.

to relaxation phenomena in nuclear spin systems, which are affected by various timescales and demonstrate
intricate reciprocal relationships. The secular approximation holds when the dynamics of nuclear spins are
predominantly governed by a robust interaction with the external magnetic field, rendering some inter-
nal spin interactions insignificant. This approximation is generally effective in most scenarios, except for
cases involving quadrupolar spin interactions, which may necessitate a more detailed examination. In such
instances, the secular approximation allows for substituting the term ™ with a simplified version, H™t0.

Motional averaging takes place when molecules are in rapid motion, causing fluctuations in interaction
terms over time; consequently, the previous Hamiltonian, H", can be represented by an averaged value,
H™0 This method is usually appropriate for gases and liquids where molecular motion is not overly sluggish.

There are three key types of molecular motion to consider: translational motion, rotational motion, and
internal molecular movements. The impact of these motions on spin interactions varies depending on whether
they involve nuclei within the same molecule (intramolecular) or between different molecules (intermolecular)
(see Figure for a schematic representation).

In various solids, gases, and liquids, the orientation of molecules is not static and varies over time. This
temporal dependence allows for the application of the ergodic hypothesis, which states that the average
orientation of a molecule over a long period can be considered equivalent to the average orientation of a
collection of molecules at a single moment.

In gaseous states, both rotational and translational motions (diffusion) occur at very high velocities. Con-
sequently, intramolecular spin interactions tend to average out to their isotropic values, while intermolecular
interactions are minimized to the point of being negligible.

Conversely, in liquids, diffusion happens at a considerably slower rate compared to gases, influenced
by factors such as molecular size and fluid viscosity. In isotropic liquids, intramolecular spin interactions
are averaged to isotropic values due to the rotational motion of the molecules. Short-range intermolecular
interactions -those occurring within the spatial region where a molecule diffuses before experiencing NMR,
relaxation- average out to zero. However, long-range intermolecular interactions between molecules that
lie outside their respective diffusion domains remain unaffected by this averaging process. In anisotropic
liquids, the motionally averaged spin interactions are contingent upon the orientation of the liquid’s director
(the alignment direction of the liquid crystal) relative to the magnetic field. The rapid motion of molecules
effectively diminishes short-range intermolecular interactions while preserving long-range interactions. Ad-
ditionally, the rotational motion of molecules can lead to intramolecular spin interactions that differ from
isotropic averages.

In solids, atomic movement is typically highly restricted, resulting in an internal spin Hamiltonian sig-

nificantly influenced by the solid’s orientation concerning the magnetic field. As a result, there is limited
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averaging of internal spin interactions, allowing both intramolecular and intermolecular interactions to re-
main relevant.

For spins-1/2, generally, dipole-dipole> CSA> spin-rotation. The chemical shift anisotropy (CSA) becomes
significant compared to dipole-dipole interactions at higher magnetic fields. The spin—rotation mechanism
may also be important for small molecules in non-viscous liquids or gases.

While, for nuclei with spins greater than 1/2, quadrupole>> dipole-dipole> CSA> spin-rotation. At low
magnetic fields, dipole-dipole and quadrupole interactions are typically the most significant contributors to

relaxation processes.

1.2.3 The autocorrelation function

The mathematical description of the NMR relaxation induced by the magnetic field variations requires the
introduction of some terms.
The rapidity of the fluctuations of the polarizing field B is described by the autocorrelation function,
G(t), defined as
G(1)=(B(t)- B(t+ 7)) (1.17)

These parentheses can refer to an average over a long time for a single spin, or an average over the ensemble
of n spins at a given time (due to the ergodic hypothesis). The time interval 7 is fixed, and B(t) term
represents the molecular position and/or orientation expressed in terms of polar coordinates.

Two fundamental properties apply to stochastic fluctuations:

e Stationarity. The autocorrelation function is invariant under shifts in the time origin, i.e., it varies with
the interval 7 but remains unaffected by the absolute time t. As a result, for simplification purposes,
the origin is frequently set to zero, i.e., G(7) = (B(0) - B(1)).

e Time-reversal. The autocorrelation function remains unchanged when the sign of 7 is reversed. In

other words, G(7) are even functions of 7, i.e., G(1) = G(—1) = G(|7|).

When the interval 7 is relatively short compared to the timescale of fluctuations, the values of the field
at the two-time points are quite similar, i.e., G(7) = (B?(0)). In contrast, when 7 is long relative to the
timescale of fluctuations, the system effectively loses its 'memory’. As a result, no consistent relationship
exists between the function values, leading the ensemble average to approach zero. Thus, generally, G(7)
tends to be large for small values of 7 and tends to zero for large values of 7.

Often, the autocorrelation function takes a simple exponential form
G(r) = (B*) e 7
where 7. is the characteristic time of the correlation decay defined by

1 oo

Correlation time is the duration over which fluctuations in a field are observed. In other words, it indicates
how long it takes for these fluctuations to reverse their sign, i.e., extended fluctuations lead to large values
of 7., while shorter fluctuations lead to short values of 7.. From (|1.17)

o0 t
Tc:/ e Tedt
0

To define G(7) in terms of molecular dynamics, let’s introduce a function f(r(¢)), with = a stochastic

position vector. f isreal (f* = f, where f* is the complex conjugate of f), and stationary, i.e., it is invariant
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under transformations of the time variable. Hence, the autocorrelation function is defined as
G(r) = (F0) - £7) = [ [ 7))l ro, ) Pofro)drod’s
R3 JR3

where P(r,rg, T) represents the conditional probability that a molecule is at the position r at time 7 starting
from ry at time 0, while P(r() represents the probability to have the molecule in r¢ at ¢y = 0.

In general terms, this physical quantity is related to F*) from , thus, it is related to the order
k, Gi(t). In the case of the spatial harmonics function Y3 ,,, there will be three correlation functions, i.e.,
Go(t), G1(t), Go(t). Considering rotational or translational diffusion, the probability P(r,rq,7) can be
derived from the classical diffusion equation.

Finally, considering molecules in a confined environment, and using the normalized correlation function
G(r) = %, distinguishing between the individual reduced correlation functions is practically not
necessary in most cases, i.e., Go(t) = G1(t) = Ga(t) = G(t). Hence, with G(0) = 1, and assuming G(c0) =0

.= /OOO G(t)dt

It is now necessary to introduce the last term, the spectral density, J(w). This term is obtained by the

Fourier transform of the autocorrelation function G(t)

o0 )
J(w) = G(t)e ™“'dt
—0o0
Spectral density measures the molecular motion at the specific frequency required to produce the relaxation.
It is important to note that the field will influence the spins only if it oscillates at the corresponding
Larmor frequency. Hence, The function J(w) characterizes field fluctuations resulting from thermal molecular
motions in the frequency domain. It represents the conjugate counterpart to the correlation function in the
time domain.
Given that G(t) is real and even, it follows that also J(w) will be real and even (J(—w) = J(w))
“+oo ) [}
Jw = [ Getar =2 / G(t) cos (wt)dt
0

— 00

From the normalized autocorrelation function G(t), the normalized spectral density function is derived

J(w) = /+°0 g(t)eﬂ'wtdt

— 00

This quantity satisfies the two following properties:

J(0) = /ﬁo G(t)dt = 27,

—o0
1 [t
] J(w)dw = G(0) =1
By utilizing the quantities defined above, one can establish that the frequency dependence of the spin-
lattice relaxation rate Ry (w) specifically in the context of intradipolar interactions among like spins, adheres

to a relationship similar to that described by Bloch, Wangsness, and Redfield theory[54] 55]

Ri(w) = ﬁ x T (w) + 47 (20) (1.18)

Eventually, it is possible to derive a similar result for Ra(w)

Ro(w) = ﬁ 5 37(0) + 57 (w) + 27 (20)
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1.3 Physical Models to interpret FFC Data

In studying nuclear magnetic relaxation dispersion profiles acquired through field-cycling techniques, various
mathematical models serve as essential tools for characterizing the molecular dynamics of liquids, both in
bulk systems and under confinement conditions. Several models have been developed and proposed, and
they enable the interpretation of relaxation phenomena across a range of Larmor frequencies, typically
vy € [10 — 4000] - 10® kHz, subject to the limitations of the instrumentation. To accurately capture these
dynamics, certain approximations must be introduced. The following section discusses the most well-known
models in this field, including the model subject of study of this PhD thesis, i.e., the Model-Free (MF).

1.3.1 Spin Dynamics in Bulk Liquids

The behaviour of spin-bearing molecules in bulk liquids is shaped by intermolecular and intramolecular
interactions, which operate on different timescales. Intermolecular interactions exhibit slower fluctuations
compared to their intramolecular counterparts. Specifically, intermolecular couplings are influenced by trans-
lational Brownian motion, which occurs over distances that exceed the size of the molecules. In contrast,
intramolecular interactions are governed by the rapid process of molecular rotational diffusion.

Dipole-dipole interactions can occur within a single molecule (intramolecular) and between different
molecules (intermolecular), whereas quadrupolar interactions are restricted to intramolecular scenarios. The
influence of intermolecular dipole-dipole interactions on longitudinal relaxation is significant primarily un-
der conditions of anisotropic molecular dynamics, where these interactions manifest at lower frequencies.
However, their impact is considerably reduced in isotropic environments.

When considering that rotational and translational diffusion are statistically independent, the total lon-
gitudinal relaxation rate can be represented as the sum of contributions from intermolecular and intramolec-
ular dipole-dipole interactions among spins that may be categorized as ”like” or "unlike.” For diamagnetic

samples, this relationship can be articulated mathematically as:

N S|
Tiw)  TP™(w)  TP(w)

The degree to which these relaxation rates contribute to the overall rate depends on various system-
specific factors, including composition, molecular dynamics, and the frequency range utilized in FFC-NMR,
experiments. In cases where quadrupolar couplings are present, these interactions can influence relaxation
across all frequencies. Due to their stronger nature compared to dipolar couplings, intramolecular quadrupo-

lar interactions often dominate longitudinal relaxation when paramagnetic particles are absent:

11
Ti(w) — Ty (w)

To accurately capture spin dynamics, it is essential to develop a conceptual model that reflects the pro-
cesses and interactions occurring within the pore volume. This model accounts for interactions between spins
as well as between spins and pore surfaces, facilitating the derivation and calculation of the autocorrelation
function. The spectral density function J(w) can then be obtained through the Fourier transform of G(t),
linking it to relaxation dispersion curves for both 77 and T, relaxation times.

In this context, all relevant interactions can be described using fluctuating spherical coordinates that
represent variations in dipole-dipole vectors or electric field gradients. For instance, dipolar interactions can
be characterized by spherical coordinates defined by internuclear distance and azimuthal and polar angles,
r =1(t), ¢ = ¢(t), and 0 = 0(t) respectively. In contrast, for quadrupolar couplings, only azimuthal and

polar angles are necessary, with changes in internuclear distance considered negligible.



1.3 Physical Models to interpret FFC Data

31

1.3.2 BPP Theory

One of the most well-known theories related to the relaxation processes was proposed in 1948 by Nicolaas
Bloembergen, Edward Mills Purcell, and Robert Pound, and it is known as BPP theory. This theory
describes the relaxation process in scenarios characterized by a high-intensity magnetic field (known as
a 'weak collision’ regime) where isotropic rotational molecules diffusion, and intramolecular dipole-dipole
interactions within two-spin % systems which exhibit similar spin properties (i.e., I =S, and v; = ~s) occur
in bulk liquids.

Considering the case of isotropic rotational diffusion in bulk liquids, the reduced correlation function
is a mono-exponential function, i.e., G(t) = e_%é, (with G(0) = 1). Therefore, the correspondent spectral
density function is defined as J(w) = fjoooc G(t)e widt = H(QW#TC)Q, presenting a Lorentzian form.

Hence, in the BPP model, the relaxation rates expressed as a function of J(w) are defined as [56]

I (w) = T1(1wo) N % <4%2)2 ’Yr? HI+ D (o) + 4 (2w0))
2 452
Ra(w) = 7 (1wo) - %0 (42) VT? (I +1)[37(0) + 57 (wo) + 27 (2w0)]

and by substituting the J(w) expression, for the dipolar coupling of two spins % systems:

1 3 /po\2 yh? Te 47,
= = 5 ()
1(&)) T (wo) 10 \ 47 r6 1+ w(Q)Tg + 1+ (20.)07'5)2
1 3 /poN2 vh? 5T, 27,
= g S (2
2(w) To(wo) 20 \4m 76 Te ¥ 1+ wir? * 1+ (2w07'c)2

where wg = By is the Larmor angular frequency, v is the gyromagnetic ratio, h is the reduced Planck
constant, i.e., h = h/2m, and pg is the magnetic field constant.
In case of extreme narrowing conditions, e.g., in non-viscous liquids, with woT. < 1, the rates have the

same value.

47

Te

I 1 _3(,u0>274h2
T1 o TQ o 2 7’6
The BPP model, assuming the mono-exponential correlation function, represents ideal cases, allowing

one to describe and agree to easy experimental situations, e.g., experiments with pure substances.

1.3.3 Quadrupolar coupling in NMRD profiles

In specific systems, interesting behaviours arise when dipolar I-spins interact with quadrupolar S-spins,
particularly when the S-spins undergo additional quadrupolar interactions with electric-field gradients pro-
duced by nearby host molecules. When a quadrupolar energy level of the S-spin nuclei coincides with the
Larmor frequency of the I-spins, this alignment can lead to the appearance of distinct quadrupolar features
in the NMRD profile. These features are characterized by dips, and peaks in the T} (w), and in the R;(w)
dispersion curves respectively.

As the polarizing field approaches the low-field limit, i.e., By — 0, the electric-field gradient becomes the
dominant quantization field. In cases where molecular motion is constrained, the quadrupolar interaction of
the S-spins leads to zero-field splitting of their energy levels. Conversely, in the high-field limit, where By is
the quantization field, and the Zeeman splitting of the S-spin energy levels prevail. Under both limits, the

S-spins maintain thermal equilibrium, unaffected by fluctuations in the I-spin states.
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In general, the gyromagnetic ratio of dipolar I-spins is considerably higher than that of quadrupolar
S-spins, i.e., |yr] > |vs|- Under conditions where the By field is relatively weak and the resonance of the
S-spin remains within the low-field regime, the quadrupolar interaction becomes predominant, establishing
the main energy level splitting. In this context, there exists a possibility for the resonance frequency of the
I-spin, which is determined by Zeeman interaction, to align with that of the S-spin.

The intersection of resonant frequencies occurs when the resonance frequency of quadrupolar S-spins in
a low-field environment aligns with that of the I-spin, wg = w; = v7By. This synchronization triggers a
zero-quantum “flip-flop” mechanism, which results in a decreased spectral density term that peaks at the
difference between the frequencies, w; — wg, with the dipolar correlation time, 74;p is subject to various

influences that introduce fluctuations in the dipole-dipole interactions between I-spins and S-spins

Tdip

1+ (wr — OJS)2 T(%ip

J(wr —wg) x

This phenomenon is reflected as a distinct peak in the relaxation rate curve across the magnetic field,

typically referred to as a quadrupole peak.

1.3.4 Spin Dynamics in Confined Fluids

The magnetic field dependence of the longitudinal relaxation rate offers a precise means to test theoretical
models that elucidate the behaviour of confined liquids, where the influence of reduced dimensionality alters
molecular interactions significantly. Developing comprehensive models that link the molecular dynamics of
fluids in porous networks to the frequency-dependent behaviour of NMRD relaxometry enables probing fluid
dynamics at the nanoscale with unprecedented insight.

The BPP theory successfully characterized bulk glycerin through the assumption of an exponentially
decaying G(t), reflecting molecular tumbling in a bulk phase. However, when investigating fluids in confined
environments -such as those occupying porous matrices or surrounding high surface area particles- the
interaction landscape becomes considerably more intricate, as molecular dynamics are now mediated by
surface and interfacial interactions, deviating from bulk behaviour.

Several analytical models have emerged to address this complexity in Magnetic Resonance of Porous
Media (MRPM) and complex fluids. These models reduce the dimensional intricacies of confined fluid sys-
tems while retaining critical physical phenomena essential for the accurate interpretation of NMRD profiles.
Notably, Levitz et al. advanced a surface-mediated diffusion model tailored to biological contexts, focusing
on the impact of surface dynamics on relaxation [57]. In parallel, Kimmich and co-workers, inspired by By-
chuk and O’Shaughnessy’s foundational 1995 work, developed the bulk-mediated surface diffusion (BMSD)
model [1]. This framework posits a sequential mechanism whereby molecules desorb from a surface, undergo
diffusion in a bulk-like interfacial layer, and subsequently re-adsorb onto the surface, thereby capturing the
interplay between near-surface and bulk-like diffusion.

Among the more comprehensive frameworks, Korb and colleagues developed a generalized model in the
early 1990s for describing relaxation dispersion in confined fluids [58) [59]. Their model emphasizes the
dominant relaxation pathways for hydrogen-containing molecules through heteronuclear dipolar interactions
with paramagnetic ions (e.g., Fe3t or Mn?* ) distributed on pore surfaces. Primarily applicable at low
frequencies and over extended timescales, these models are often categorized within quasi-two-dimensional
(Q2D) frameworks, relying on three distinct correlation times to represent the complex relaxation dynamics
of fluids in geometrically constrained environments.

Expanding on the Q2D approach, Faux et al. introduced the 37 model in the early 2000s [60]. This model
provides a refined description of diffusion correlation times across both thin surface-adjacent layers and the

bulk phase, accommodating the nuanced relaxation dynamics at the fluid-solid interface. By integrating
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numerical estimation techniques, the 37 model extends the applicability of Q2D frameworks, offering a

robust approach for simulating confined fluid behaviour across diverse porous architectures.

Porous Media: Effects of Surface Impurities

Korb and collaborators categorized high-surface-area systems into two principal types: proton-rich solid
phases, such as biological macromolecules and engineering polymers, and proton-poor solid phases, including
microporous glasses, zeolites, plaster, cement, and various clay minerals. In the proton-rich class, the
magnetic field dependence of the relaxation rate is largely governed by cross-relaxation processes between
protons in the liquid phase and those embedded within the solid matrix. By contrast, in proton-poor
materials, the relaxation of liquid spins is predominantly influenced by alternative mechanisms, especially
those associated with translational diffusion of the fluid near the solid surfaces [61].

In high-surface-area media containing paramagnetic centres (e.g., certain cement and geological materi-
als), the presence of paramagnetic ions, such as manganese (Mn?*) and iron (Fe3*t), can profoundly affect
the behaviour of NMR relaxation. These ions possess large magnetic moments, producing localized dipolar
fields that interact with nearby diffusing spins in the fluid. The substantial magnetic moments of these
paramagnetic centres significantly dominate the ' H longitudinal relaxation process at low magnetic field
strengths. Additionally, theoretical models exist for cases where no paramagnetic contaminants are present,
providing a comprehensive approach to analysing the longitudinal relaxation in confined fluid systems.

Confined fluid relaxation times are generally characterized by two distinct limiting behaviours: diffusion-
limited (slow-diffusion) relaxation, where the relaxation is governed by bulk diffusion, and surface-limited
(fast-diffusion) relaxation, where the interactions with the surface prevail. In the surface-limited regime, the
total proton relaxation rate 1/T} is described as a linear combination of the surface relaxation rate 1/T1 s
and the bulk relaxation rate 1/} ;. Here, the first one occurs within a thin layer of fluid, approximately A
thick, adjacent to the solid surface, where adsorbed protons undergo diffusion before eventually desorbing
and diffusing into the bulk phase. Notably, in the frequency ranges used for porous media analysis via
FFC-NMR, the second one remains independent of the Larmor angular frequency.

To assess the impact of the surface distribution of paramagnetic sites on a proton located at a maximum
distance A from the interface of a solid grain (typically several microns in size), the surface of the pore can
be approximated as flat, given that the curvature of the pore wall is considerably larger than A. T} s can be
expressed as a composite contribution from two processes: the relaxation contribution 1/T4 op of protons
diffusing near immobilized paramagnetic centres, and the relaxation rate 1/T} , of protons trapped in the
ligand fields of these centres

1 1 Ng 1 Np 1

Ti(w) Ty Ny Tiep(w) N Thp(w)

In this model, Ng denotes the number of diffusing molecules within the transient layer \ near the pore

surface, Np the number of liquid molecules associated with paramagnetic impurities on the surface, and N,
the population of molecules in the bulk liquid phase.

Furthermore, the nature of the saturating fluid significantly impacts relaxation behaviour, with fluids
classified as either protic or aprotic [62]. Protic liquids, which can exchange protons, allow mobile protons
to be temporarily trapped within the ligand fields of paramagnetic sites on the pore surface. Aprotic liquids,
lacking proton exchange capacity, restrict the movement of protons, preventing such trapping interactions
with surface paramagnetic sites.

For the protic liquids, the protons (I) might be trapped in the paramagnetic ion (S) field for a time
longer than the bulk or surface correlation times. The value for the 1/T} , rate is given by [59)]

1 B 37?72525(5 +1) 3 7

- T elec\Ws
Toplr) 15 Doy, veelws) | T o Y T T, ws)




34

1. Physics Background

where D, represents the distance of minimal approach between the paramagnetic site and the proton, wy,

and wg are the proton and the electronic angular frequency respectively. The electronic correlation time is

1 _ g2 1 4
Ti,clec HSTV |:1+w§7'3 + 1+4w272 |
correlation time for the electron-lattice fluctuating interaction.

given by with HZ the intensity of electron-spin fluctuations, and 7, the

Finally, for the case of the aprotic liquid, the contribution given by 77 , can be neglected because the
protons tend to not get trapped in the paramagnetic ion field. The longitudinal relaxation rate can be

modelled [62] at low frequencies as

11 . (@)2 wspphqagﬁygﬁs(s + 1)Tm 3o 1+ w?r? 7 1+ wit2
Tl(wl) Tl,b 47 )‘Dmin(l + 932)
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where 7g is the surface residence time, which indicates the duration that proton-bearing molecules spend

3
(Tfm) +wir?

Ts

at a pore surface. This time reflects how long these molecules diffuse within the thin surface layer, X, and
serves as an indication of the duration for which protons remain associated with paramagnetic impurities.
On the other hand, 7,,, denotes the translational correlation time, which is linked to the individual molecular
movements occurring near the surface. The parameter x serves to account for the variable distance, Dy,
representing the minimal approach between proton spins and impurity spins in relation to the diameter, D,
of the liquid molecules. Conclusively, og = ngpsé represents the surface density of a small quantity of fixed
paramagnetic species with S-spins that are evenly distributed across the pore surfaces. Here, pg denotes the
density of the solid matrix, ng indicates the volume concentration of paramagnetic ions, and & refers to the

thin layer of paramagnetic ions.

37 Model

An alternative to the Korb model to analyse the NMRD profiles acquired from porous media saturated with
L H fluids has been proposed in the early 2000 by Faux and McDonald [60], and it is known as 37 model.

The composition of the porous media and the intricate internal structure makes very complex the dynamic
of the fluids, and therefore to model it. If the porous material has paramagnetic ions, the proton-proton
interactions become negligible and the relaxation mechanism is predominantly governed by dipolar interac-
tions between proton spins and the paramagnetic ions; otherwise, in the absence of paramagnetic ions, the
relaxation depends on the combination of interactions between pairs of protons in relative motion.

The 37 model is based on the idea of defining the pore geometry as a quasi-two-dimensional (Q2D)
system with locally flat surfaces containing a bulk liquid of thickness h [6][63], and defining three correlation

times:

e 7 is the bulk fluid correlation diffusion time constant related to the water diffusion coefficient
Dy = 0?/(675). The value of o is 0.27 - 107? m, which roughly represents the intermolecular dis-
tance between water molecules.

e 7, is the diffusion correlation time for the fluid slowly moving parallel at the pore surface, related to
the diffusion coefficient Dy = 02 /(67;).

e 74 is the desorption time, which represents the time a water molecule stays on the surface before the

_t
desorption, taking the rate of spins desorption as an exponential decreasing function, i.e., e 7.

The model provides longitudinal relaxation rates for each interaction.

For the interaction between the layer of spins of the paramagnetic impurity in the crystal (o) and the

surface (¢) the relaxation rate is ﬁ, while between ¢ and the bulk (b) fluids, the relaxation rate is ﬁ
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Considering the surface water moves very slowly compared to the bulk fluid, hence, it can be considered

effectively immobile due to its extremely slow movement, i.e., 7, > 73, the relaxation rate for the interaction
1

Trep "

For the pore surface layer, ﬁ represents the relaxation rate for the layer-layer spin interactions, while

ﬁ is the relaxation rate for the bulk-bulk spins interactions.

1 Finally, the relaxation rate due to paramagnetic ions, e.g., manganese, dispersed in water is defined as

_1
Trvn”

Hence, taking into account all these contributions, and ignoring the last one, for the case of systems

between bulk spins and surface fluid is defined as

containing paramagnetic impurities, the measured relaxation rate can be modelled as

Ny 1 Ny 1
1= +(1-
ng +np Th 0 ng+ny ) Thop

Ny
ng+np

of systems not containing paramagnetic impurities, is

R — ng<1+1)+<1 ng><1+1>
T et Tiew T ng +ny Tive Tipy

with Ny, and N, the spin volume density of the bulk fluids and surface layer respec-

where defines the amount of spins in the surface layer volume. While, the relaxation rate in the case

1 _ Ny 1
Ty b0 Ng Ty ,0°

where
tively.

To cover the full-time domain, the analytical expression of the correlation time function in this model is
numerically computed via Monte Carlo simulations. The correspondent spectral density function is obtained
by numerical integration. Moreover, the parameters of the Monte Carlo simulations are derived through
molecular dynamics simulations of bulk water and water in Q2D systems. This means that the model
requires a single formulation of the G(t) for each interaction described before, i.e., G (t), Gee(t), Gpo(t),
Gop(t), and Gge(t).

Firstly, the probability density function P(7r¢ N, t) is defined. This defines the probability that the
distance between two spins at ¢ = 0 is rg, and then at time ¢ it becomes r. This probability depends on
a set of parameters related to the various interactions between pairs of spins, i.e., the correlation times.
Then, recalling from the spherical harmonic functions of degree 2 can be expressed through cylindrical

coordinates, i.e, Y2 n, (2, y, z)ﬂ Therefore, the general expression for the correlation function is[63]

2

4 Y m\ L0, Yo, 2 Y*m x,Y,z
G(t) = l/ / [ 3 2,m (%0, Y0, 20) Y51 (2, Y, 2) Pro A, ) drodr
) R3 Rg

373
=, ror
and the spectral density function is obtained by the Fourier transform of G(t), i.e.,
J(w) =2 ;7 G(t) cos (wt)dt.
The longitudinal relaxation rate for the systems with and without paramagnetic ions respectively are

defined as [63]

Ri)aram(w) _ % (%)QW%VghQS (S + 1) [7J(OJS) + 3J(w)]

1 2
Riw) = 5 (52) AR L+ D[ (@) + 4T ()
where g and ~; are the impurities and the proton gyromagnetic ratios respectively, while w = 27v represents
the proton Larmor angular frequency, and wg = 658.2w represents the electron Larmor angular frequency of
the impurity spins (typically Mn?*, and Fe3t). I = %, and generally S = %

The 37 model was initially developed for porous materials with flat pores of depth h. It has been

shown that when pore thickness exceeds 5-10~% m, the dispersion of longitudinal relaxation time becomes

Swith Y* the complex conjugate.
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unaffected by the pore’s thickness [64]. Consequently, this model can be adapted to systems where the
fluid is contained within pores with at least two dimensions larger than 5- 107 m. However, despite
its theoretical potential, practical application remains challenging. This difficulty arises mainly from the
complex calculations necessary to derive the theoretical R; curve from the model, which complicates its
alignment with experimental data. Faux et al. also developed a code based on this model, which allows
users to perform least squares fitting on data (loading pre-calculated data sets based on the model for a

pre-defined grid of values for 7, 74, and 74) [65].

1.3.5 Model-Free

The model-free approach, a breakthrough in nuclear magnetic resonance dispersion (NMRD) analysis, was
first developed in the early 1980s by scientists including Lipari, Szabo, King, and Jardetzky [66]. This
methodology, which allows for detailed insights into molecular motion without the need for explicit modeling,
was later advanced by Halle and collaborators [25], who expanded its utility for both experimental and
theoretical applications, leading to a more rigorous interpretation of relaxation dynamics.

This technique has proven especially powerful in cases where molecular dynamics are complex or hetero-
geneous, as it allows for the study of a wide variety of motional modes without the risk of oversimplification
inherent in rigid interpretative models.

In situations where experimental NMRD data spans the full frequency range -covering both the low- and
high-frequency plateaus- it becomes possible to extract dynamic parameters that describe molecular motions
independently of a specific molecular model. This feature lies at the heart of the model-free approach, as
it enables the direct extraction of physical information from data without the assumptions that typically
constrain model-based interpretations.

The rate of nuclear spin relaxation becomes dependent on frequency when the motional frequencies that
affect the spin-lattice coupling are comparable to the energy level separations within the spin system[46]. In
the regime known as motional narrowing, the influence of a fluctuating classical lattice variable V(¢) on the

behaviour of spin relaxation can be effectively described through the time correlation function
G(r)=(V({t)-V(t+7))

The function G(7) is a real-valued quantity. In dynamic models that adhere to the detailed balance condition,
G(t) exhibits invariance under time reversal, meaning its properties remain consistent even when the direction
of time is reversed, i.e., G(1) = G(—7).

The complex-valued spectral density function is defined as

o0 +o0
J(w) = /_ G(r)e ™7Tdr =2 ; G(7) cos (wT)dr

It’s worth noting that
J(0) =2 / G(r)dr (1.19)
0

hence G(7) must be an integrable function, i.e., G(7) — 0.
T—00
Let us consider a simple dynamic case, as rotational diffusion of spherical-top molecules in an isotropic
L7|
environment. In this case, G(7) = G(0)e” =, with 7. describing the V(¢) fluctuations time scale, and
G(0) = (V?) represents the mean square amplitude of the fluctuations. Then, the spectral density function

will have a Lorentzian form, only depending on two parameters, G(0), and 7.:

27,

J(w) = G(O)m
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From (1.18)), R; is proportional to J minus a constant, K, which depends on the specific spins coupling
Ri(w) = K [J(w) + 4J(2w)]

NMRD profiles typically exhibit a broader frequency range, characterized by a stretched dispersion,
compared to what would be expected from a purely Lorentzian spectral density. While a stretched dispersion
provides additional insights into the system, a Lorentzian dispersion can be fully described using just two
parameters.

The first one is represented by the integral of the dispersion profile, which represents the mean-square
fluctuations of the lattice variable V(¢). Hence, taking into account that G is real and satisfies the time

/000 J(w)dw = ;/_(: J(w)dw = ;/_O:O (/:1 G(T)@‘“”dT) dw =
- /_ o; G(r) ( /_ O:O e—wdw> dr = % /_ o:o G (r)2ro(r)dr

o0

reversal property,

where 6(7) is the Dirac function, i.e., §(7) = 5= [*_ e ™7 dw. Hence,

oo

/J — 7G(0)

The second parameter required to describe the Lorentzian dispersion is the mean motion duration related

to stretched dispersion, i.e., the integral over the time of the reduced time correlation function. Consider-

»s 119, 1 1.J(0)
(Te) = @/0 G(r)dr = 2G(0) (1.20)

These two quantities can be derived by fitting experimental raw data through a mathematical model
capable of physically correctly representing the NMRD profiles. The stretched spectral density can be

represented as a sum of N Lorentzian terms

Z p——— (1.21)

= 1+ an)

while the correlation function is represented as a sum of exponentials

N

Z _lrl
= Ch€ "n

n=1

Calculating the set of parameters {7, ¢, }, one can be compute the molecular dynamics quantities G(0),

and (7.). Starting from the integration of the spectral density function

LS N o 0
/0 J(w)dw = ;c,ﬂ—n/o 1_’_(i”_n)dw = 2; CnFA [j{arctan (an)] ; =
N
Z [——0}—7Tch—7TG
n=1
one obtains
N
G(0) = Z Cn
n=1

and, setting setting w = 0 in , one obtains J(0) = 2 Zn 1 CnTn, and the (| - ) becomes

1JO) 1 Zzn 1CnTn

<Tc> - 2 G(O) Z 27]:7:1 en
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The set of parameters {c,,7,} can be fitted following two approaches, i.e., the non-linear discrete ap-
proach, or the linear quasi-continuous approach. Mathematically, identifying the model-free parameters
starting from the experimental observation represents an ill-conditioned non-linear inverse problem. The
necessary theoretical preliminaries related to inverse problems are presented in Chapters [2] and

The two approaches are successively expressed. Specifically, the second approach defines some of the
contributions of this PhD thesis and it is comprehensively adapted and described in Chapters [ and [6}

Non-linear Discrete Model-Free

The non-linear discrete model-free approach finds the set of parameters by solving the classical non-linear
least squares problem [53].
Let us consider the set of parameters organized in two separate vectors ¢ = (c1,...,c,)7, and
T = (11,--.,7)T. The residual vector = as a function of ¢, and 7 is derived as the difference between
the NMRD profile experimental measured points (R7*"), and the NMRD profile from the theoretical fitted
model (RM):
r(c,7) = R (w;) — R (w;) i=1,...,M

Therefore, the constrained non-linear weighted least squares problem to find ¢ > 0, and 7 > 0, is

mln sz c,T) (1.22)

where w; > 0 represents the ¢ — th weight related to the data noise, with ¢ = 1,..., M. If the noise is
independent of 4, w; = 1, otherwise it depends on the noise standard deviation either by the o; at the signal
point Ry(w;), i.e., w; = 1/02, either by using strategies to derive the standard deviation from experimental
data, e.g., solving (L.22), with w; = 1, Vi, and then using the fitted dispersion profile Rf:

1
Wi = =7~
Ri* (i)
where Rt (i) is derived considering a threshold Err Fiit = \/Zj]\?il W, with 77 contains M ~ 10* small-
est components of the residual vector R;(w;) — Ry;, as follows: Rt(i) = min (|Ry;|, ErrFit), i =1,..., M.

The minimization procedure of can be carried out using the Projected Newton Method [67], with
the Hessian matrix modified as in the Levemberg-Marquardt method [68].

Finally, it is important to find a correct strategy to find how many Lorentzian functions should be used
in the fitting procedure. One solution can be to adapt the number of Lorentzian terms, N, through the

F-test, utilizing the reduced x? merit function defined as follows

M

1
2 _ s 2
Xr = M — 9N ;wzrz (e,7)
If the data errors are normally distributed, then the ratio x2(N)/x%(N + 1) follows an F-distribution. One
can start setting NV = 1, and then increasing the number of N until the F-probability satisfies the following:
P(N +1) < Py, with 0.8 < Py < 0.9 cut-off.

Linear Quasi-Continuous Model-Free

The system’s microscopic dynamics can be characterized through a normalized distribution of correlation
times f(7) [26]. The nuclear spin-lattice relaxation rate Ry is related to this distribution through a Fredholm

integral equation of the first kind:

w):/o K(r,w)f(r)dr (1.23)
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where K(7,w) is the Lorentzian kernel:

1 4

M) =7 | T o T T3 2w

For numerical implementation, we discretize the problem using:

o A set of logarithmically spaced correlation times {7; };VZI in the interval [10~%,10%] pus,

e A set of experimental Larmor frequencies {w;}},, where typically M < N.

This leads to the discrete matrix equation:
Kf =R,

where K € RM*N g the kernel matrix with elements
Ki; = K(7j,wi),
and Ry € RM is the vector of relaxation rates

Rl(i)le(wi), iZl,...,M.

(1.24)

(1.25)

Due to the ill-conditioned nature of K, various regularization strategies are examined in Chapters [5] [6}

and [1



40

1. Physics Background

List of Acronyms and Symbols of the Chapter 1

Acronyms

NMR Nuclear Magnetic Resonance.
RF Radio-Frequency.

FFC Fast Field Cycling.

FID Free Induction Decay.

SE Spin Echo.

TE Echo Time.

NMRD Nuclear Magnetic Relaxation Dispersion.

CSA Chemical Shift Anisotropy.

MF Model-Free.

Symbols

By. Polarizing or Zeeman field.

. Nuclear magnetic moment.

vg. Larmor angular frequency.

M. Magnetization vector.

~. Gyromagnetic ratio.

h. Planck’s constant.

h. Reduced Planck’s constant.

wp. Larmor angular velocity.

B;. Radio-frequency magnetic field.

a. Flip angle.

T;. Longitudinal or spin-lattice relaxation time.
T5. Transversal or spin-spin relaxation time.
Xo- Magnetic susceptibility.

H. Nuclear spin Hamiltonian.

G(7). Autocorrelation function.

7.. Characteristic correlation time.

J(w). Spectral density.

R;. Longitudinal Relaxation Rate.



Chapter 2

Regularization and Optimization for

Inverse Problems

The motivation for this discussion arises from the need to address the challenges associated with the model-
free approach used during PhD research.

This chapter describes the regularization strategies and the optimization methods for inverse problems
that are required later to derive the proposed numerical algorithms. Specifically, in the first section of the
chapter, Tikhonov regularization for linear and non-linear problems is described in a more general context.
The last section discusses the block non-linear Gauss-Seidel method and its convergence properties [38) 39 [69)
This algorithm represents the backbone of the algorithms studied and proposed during the PhD work, which
are later described in Chapter [6} and [7] with their convergence properties.

Only a few proofs are reported. For a comprehensive dissertation refer to 70} 27, [37] [38] [39, [69].

2.1 Tikhonov Regularization

2.1.1 Linear Inverse Problems

Inverse problems are pervasive in scientific and engineering fields, where the goal is to reconstruct unknown
parameters or inputs from observed data. Typically, they suffer from instability, increasing the difficulty in
finding a stable and accurate solution. One of the most powerful techniques to solve inverse problems has
been introduced by A.N. Tikhonov, and it is well-known as Tikhonov regularization |71l [72], [73]. In this

section, we discuss in a more general context Tikhonov regularization for linear inverse problems of the form:
Ku=g"* (2.1)

where K : X — Y is a bounded linear operator between Banach spaces X and Y. In practice, the only
available data, g%, are affected by noise. The accuracy to the exact data, g* = Ku* (u* represents the true
solution), is quantified in some error metric, ®(u, ¢°), that measures the model output g* relative to the
measurement data ¢°.

Tikhonov regularization tackles the ill-posed problem by solving the following well-posed optimiza-
tion problem:

min{Jo (1) = ®(u, g") + a¥(w)} (2.2)

)

9, as a solution [37]. The functional J,(u), called Tikhonov functional, depends on

and takes its minimizer, u
the error metric, known as the fidelity term ®(u, g°), and the regularization term, ¥(u), which encodes prior

41
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information about the solution, e.g., smoothness, sparsity. The positive scalar a represents the regularization
parameter, and it balances the fidelity term and the regularization term. The choice of this parameter is
fundamental to successfully applying Tikhonov regularization. The set C' C X is assumed to be convex and
closed, and it represents the constraint coming from the desired solution, e.g. physical constraint.

An appropriate choice of the functionals ® and ¥ depends on the specific applications, or more correctly,
on the noise model and prior information, respectively [37].

In this thesis, we consider Gaussian additive noise, hence the Lo fidelity function is used:
®(u,g’) = | Ku—¢°| (2.3)

where || - || represents the Ly-norm, and the noise level is such that & > [|g° — g*||2.

Well-posedness of Tikhonov Regularization

This section discusses the criteria for well-posedness, including existence, uniqueness, and stability of solu-
tions. The most important results are stated without proof. For detailed proofs and a more comprehensive
exploration of these concepts, the reader is referred to [74] [37] 27].

To proceed with the analysis of Tikhonov regularization, we state the following foundational Assump-
tion that ensures the well-posedness of the problem. It imposes specific conditions on the involved
functionals and the properties of the underlying spaces, drawing from established results in the literature
(e.g., Assumption 3.1 in [37]).

Assumption 2.1 Let us assume the set C C X is convex and closed, and X is reflexive. Then, the non-

negative functionals ®(u,g?) (2.3), and ¥(u) satisfy the following conditions:

(a) The functional Jo(u) as in (2.2) is coercive, i.e., for any sequence {un} with {Jo(un)} uniformly
bounded, the sequence {u,} is uniformly bounded in X.

(b) The functional U(u) as in (2.2)) is sequentially weakly lower semicontinuous.
(c) The operator K : X — 'Y is bounded.
Now, let us recall the H-property of a functional ¥ (from Definition 3.1 in [37]).

Definition 2.1 The functional W(u) satisfies the H-property on the space X if any sequence {u,} C X that
satisfies u, — u weakly for some u € X, and V(u,) = U(u) imply that u, converges to u in X.

Remark 2.1 Norms on Hilbert spaces and LP(QY) spaces, with 1 < p < oo satisfy the H-property.

We now present the following result concerning the existence of minimizers for the functional J,(u). As
stated in Theorem 3.1 in [37], this guarantees the existence of at least one minimizer under the specified

assumptions.

Theorem 2.1 (Existence of Minimizers) Let Assumption@ hold, then Yo > 0 there exists at least one
minimizer ul, to the functional J, defined by (2.2).

The next result concerns the stability of minimizers under perturbations in the data. It guarantees the
convergence of minimizers as the input sequence approaches the true data and provides conditions for strong
convergence. As stated in Theorem 3.2 in [37], the result is as follows.

Theorem 2.2 (Stability of Minimizers) Let Assumption [2.1 hold. Let the sequence {g,} C Y be con-
vergent to g° €Y, and u, be a minimizer to the functional Jo as in with g, in place of ¢°. Then the
sequence {u,} contains a subsequence converging to a minimizer to J,. Moreover, if the minimizer to J,
s unique, then the whole sequence converges. Lastly, if the functional U satisfies the H-property, then the

convergence is strong.
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Next, the behavior of the minimizer u%, as the noise level § approaches zero, is examined. A crucial aspect of
5

9, as the noise level

the Tikhonov regularization method is determining whether the approximate solution w
d tends to zero, converges to the true solution, i.e., the ¥-minimizing solution u* (defined in the following
Definition as stated in Definition 3.2 in [37]). This property is commonly referred to as consistency in

the literature.

Definition 2.2 (U-Minimizing Solution) An element u* € X is called a ¥-minimizing solution to the

problem Ku = g* if it satisfies the following:
Ku*=g¢" and V(u*)<U(u) Yue{uelC:Ku=g"}.
where g* are the exact observational data.

The existence of a ¥-minimizing solution follows from Assumption [2.1

The following Theorem establishes the existence of at least one W-minimizing solution to the inverse
problem. This result ensures that under the conditions specified in Assumption the problem admits a
solution that minimizes the regularization functional. As stated in Theorem 3.3 of [37], the result is presented

below.
Theorem 2.3 Let Assumptz'on hold. Then there exists at least one W—minimizing solution to (2.1)).

Finally, the following Theorem establishes the conditions under which minimizers converge as the noisy
data sequence approaches the true data. It provides criteria for weak and strong convergence based on the

behavior of the regularization parameter. As stated in Theorem 3.4 of [37], the result is presented below.

Theorem 2.4 (Consistency of Minimizers) Let the assumptionlz hold. Let {go*} CY be a sequence
of noisy data satisfying 6, = ||g° — g*|| — 0. Then the sequence of minimizers {uiﬁ;} has a subsequence

converging weakly to a W-minimizing solution u*, if the reqularization parameter o, = a(d,,) satisfies

lim = =0 and lim a, =0
n—00 Uy, n—o00

Moreover, if the U-minimizing solution u* is unique, then the whole sequence converges weakly. Lastly, if

the functional U satisfies the H-property, then the convergence is actually strong.

These properties collectively validate the effectiveness of Tikhonov regularization as a robust approach
for addressing ill-posed inverse problems. Building on the framework established for linear problems, the

following section extends these concepts to nonlinear inverse problems.

2.1.2 Nonlinear Inverse Problems

In this paragraph, we want to deal with the nonlinear case. Nonlinear inverse problems are formulated as

solving the ill-posed nonlinear operator equations
K(u)=g" (2.4)

where K : X — Y is a nonlinear operator between Banach spaces X and Y, u € X is the unknown to be
determined, and g* € Y represents the exact data.
In this case, the fidelity term is
®(u,g°) = | K(u) = g°|I?

The functional J,(u) as in ([2.2) with ®(u, g°) as above is minimized over a closed convex subset C' C X,

ensuring that the solution adheres to additional constraints (e.g., u > ¢ almost everywhere).
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Well-posedness of Tikhonov Regularization

As with the linear case, extending the analysis of Tikhonov regularization to nonlinear inverse problems
requires establishing conditions to ensure the well-posedness of the associated functional J, (v). The following
Assumption aligns with established results in the literature (see Assumption 4.1 in [37]).

Assumption 2.2 The operator K : X — Y, X being reflexvive, and the non-negative functional ¥ : Y — RT
satisfy

(i) The functional Jo(u) as in (2.2) is coercive, i.e., Jo(un) — 00 as ||uy|x — 0.

(i) The operator K : X —'Y is sequentially weakly closed, meaning that u, — u* weakly in X implies
K(u,) = K(u*) weakly in'Y.

(iii) The regularization functional ¥(u) as in (2.2)) is proper, convex, and weakly lower semicontinuous.

The first property to establish for nonlinear inverse problems is the existence of minimizers. The following
Theorem ensures that, under the conditions specified in Assumption a minimizer for the functional
Jo(u) exists for any o > 0. As stated in Theorem 4.1 of [37], the result is presented below.

Theorem 2.5 (Existence of Minimizers) Let the assumption@ hold. Then, for any a > 0, there exists

a minimizer to Jo(u).

Stability is a crucial property that ensures the minimizer of J,(u) varies continuously with perturbations
in the data. The following Theorem guarantees that the minimizers of the Tikhonov functional remain

stable under such perturbations. As stated in Theorem 4.2 of [37], the result is presented below.

Theorem 2.6 (Stability of Minimizers) Let the assumption@ hold. Let {g,} be a sequence converging
to g° €Y, and let {u,} be the sequence of minimizers to J, with g, in place of g°. Then the sequence {u,}
contains a weakly convergent subsequence, and the limit is a minimizer to the functional J,. Moreover, if
the minimizer is unique, the entire sequence converges weakly. Lastly, if U satisfies the H-property, then the

convergence is strong (Theorem 4.2 in [37]).

)

9, must also remain

In addition to stability with respect to data perturbations, the Tikhonov minimizer u
stable under variations in the regularization parameter a. The following Theorem extends the stability
property by addressing the dependence of minimizers on the regularization parameter. As stated in Theorem

4.3 of |37], the result is presented below.

Theorem 2.7 Let the assumption @ hold. Let {an} C RY be a sequence converging to a > 0 in Y,
and {u‘fx} be the sequence of minimizers to J,,. Then the sequence {u‘sa} contains a weakly convergent
subsequence, and the limit is a minimizer to the functional J,. Moreover, if the minimizer is unique, the
entire sequence convergences weakly, and if the functional U satisfies the H-property, then the convergence

18 strong.

In the context of nonlinear inverse problems, the notion of a ¥-minimizing solution is formalised in the
following Definition The description follows directly the Definition 4.1 of [37].

Definition 2.3 An element u* € X is called an V-minimizing solution if
U(u*) < U(u) |, Vue{ueC:K(u)=g"}

The following Theorem guarantees that, under the given assumptions, at least one ¥-minimizing solution

exists for the inverse problem. This result is directly stated in Theorem 4.4 of [37].
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Theorem 2.8 Let the assumptz’on@ hold, and there exists a solution to (2.4). Then there exists at least

one V-minimizing solution.

Finally, the Theorem [2.9|addresses the consistency of minimizers, i.e., the convergence of minimizers uS, to a
W-minimizing solution as the noise level § tends to zero. Assumption in connection with an appropriate
rule for selecting «, is sufficient to guarantee this result. Theorem 4.5 of [37] formally states this and is

presented below.

Theorem 2.9 (Consistency of Minimizers) Let the assumption[2.2 hold. Let the sequence {0, } be con-

vergent to zero, and g satisfy ||g° — g*|| = 6,. Moreover, the parameter a(6,,) is chosen such that

2
li 0n) =0 d 1 n_ =0
m,o0n) =0 and - Jim, )
Let {ui’zén)} be a sequence of minimizers to Jus,) with g% in place of g°. Then it contains a subsequence
converging weakly to a V-minimizing solution. In addition, if the V-minimizing solution u* is unique, then
the entire sequence converges weakly, and, finally, if the functional ¥ satisfies the H-property, then the

convergence is strong.

With the theoretical framework of Tikhonov regularization for both linear and nonlinear inverse prob-
lems established, we now continue by addressing the optimization challenges associated with solving the
resulting regularized inverse problems of this thesis. The Block Nonlinear Gauss-Seidel method offers an
effective iterative approach by decomposing complex problems into subproblems of small size and exploiting
their structure. This method provides a robust framework for constrained optimization and serves as a

foundational tool in the numerical strategies developed in this thesis.

2.2 Block Nonlinear Gauss-Seidel Method

One of the most well-known sequential decomposition schemes, which can be interpreted as an extension of
the Gauss-Seidel (GS) method for solving systems of linear equations, is the block nonlinear Gauss-Seidel,
consisting of a sequence of global minimizations with respect to individual blocks.

Consider the problem of minimizing a function f : R®™ — R continuously differentiable

i 2.5
min f(z) (2:5)
where X is given by the Cartesian product of closed, nonempty, and convex subsets X; C R™ fori=1,...,m

(with Zﬁl n; =n). Hence, X = X; x---x X,;, C R™. If the vector x € R" is partitioned into m component
vectors x; € R™ then the problem (2.5 can be addressed through the block non linear Gauss-Seidel (GS)

method, defined by the following iteration
xEkH) = arg minf(acgk"rl), ce :vz(-lflrl), Ui, :rl(i)l, ce xﬁ’;))
Yi €Xi

, t=1,....m

that updates in turn the components of z starting from a given initial point 2(?) € X and generates the
sequence {z(F)} = {(:v(lk)7 . ,zgf))}.

The GS method may not converge, producing a sequence where the limit points do not represent the
critical points of the problem [75] [76].

Notation and terminology follow standard conventions.

In correspondence to the partition of the vector x, i.e., (x1,x2,..., %), the function value f(x) is indi-
cated by f(x1,x2,...,2m), and the partial gradient of f with respect to z;, evaluated at = fori =1,2,...,m
is defined by V, f(z) = V,;f(x1,22,...,2,m) € R™.
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T € X is a critical point for the problem ([2.5)) if Vf(z)T(y —z) > 0, Yy € X, where Vf(z) € R" denotes
the gradient of f at x. Considering both Z and y partitioned into component vectors, T is a critical point
for the problem if and only, for all i = 1,...,m the following assumption is satisfied:

Vif@) " (yi —2:) >0 Vyi € X
The level set of f relative to X corresponding to a given point z(® € X is denoted as

LY {ze X1 f(2) < f@O)).

2.2.1 Feasible Descent via Line Search

To address the convergence properties of the GS method, it is essential to recall some well-known properties

of an Armijo-type line search algorithm along a feasible direction, which will be utilized in subsequent

analyses.
Let {z®} € X be a sequence partitioned into components zi(k) = (z%k), .. .,z,gf)), with zi(k) € X, for
i=1,...,m. At each iteration, the following search direction is computed

A —u® 0 W ey, 2.6
such that the following Assumption holds.
Assumption 2.3 Let {dgk)} be the sequence of search directions defined by (2.6)), then:

(i) there exists a number M > 0 such that HdEk)H < M Vk.
(ii) Vif (:0)"d® <0 for all k.

An Armijo-type line search algorithm can be represented as follows

Algorithm 1 Armijo Line Search
1: Data: ~v; € (0, 1), §; € (0, 1)
2: Compute

o = max {@)7: fEP, 2P+ @)7dP, . 20) < FE) 0 Vi) TA Y (27)

Here, 7; and §; regulate the step size.

The following Proposition describes the behavior of the Gauss-Seidel method when combined with
a line search procedure. It guarantees the existence of a finite step size that meets the acceptability con-
dition and characterizes the convergence of the gradient along descent directions as the sequence

progresses.

Proposition 2.1 Let {z(k)} be a sequence of points in X and let {dz(-k)} be a sequence of directions such
that Assumption @ is satisfied. Let o™ pe computed using Algorithm Iz Then:

(i) there exists a finite integer j such that agk) = (6;)7 satisfies the acceptability condition (2.7)).
(i) if {z(F)} converges to z and limy_ o f(z*)) — f(z§k), cee zi(k) + az(k)dz(»k), cee zy(,lf)) =0, then

Jlim Vif(z0) 7 =0 (28)
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2.2.2 The m-Block Gauss-Seidel Method

Now, the m—block GS method is presented below following the scheme in [39].

Algorithm 2 Gauss-Seidel Method
1: Set k=0 and (¥ = (33:([0), . ,x,SS)) € X.

2: repeat
3: k=k+1
4: For ¢ =1,...,m compute
x§k+1) = arg minf(x§k+l), VA1 (2 (2.9)
yi €Xi
5: End For
k41 k+1
6: Set :c(kJrl):(:L“g ),...,chn )).

7: until the stopping condition.

Unless specified, we assume that the updating rule (2.9) is well-defined, and each subproblem has solu-

tions. Moreover, let us introduce the vectors which belong to X:

w(k,0) = z*)

w(k,i) = (xgkﬂ), . ,xq(;]iJlrl),xEkH),x(.i)l, . ,xgj)) , i=1,....m—1
w(k,m) = z*+D

wlk,m+1)=wk+1,1)

By construction, for each ¢ € 1,...,m, it follows from (2.9) that w(k,?) is the constrained global minimizer
of f in the i—th component subspace, hence it satisfies the following optimality condition [39)

Vif(w(k,i)) (g —2Fy >0 Vy; € X, (2.10)

The following Propositions [2.2] and [2.3] establish fundamental properties regarding the convergence and
optimality of the iterates generated by the Gauss-Seidel method. These results outline conditions ensuring
the convergence of function values and describe the optimality conditions at limit points of the iterates.

Proposition 2.2 Let us suppose that for some i € {0,...,m} the sequence {w(k,i)} admits a limit point
w, then Vj € {0,...,m}, we have:
lim f(w(k,j)) = f(w)

k— o0
Proof. Let us consider an infinite subset K C {0,1,...,}, and an index i € {0,...,m} such that the
subsequence {w(k,)}x converges to w. Using the Algorithm [2| f(w(k + 1,i)) < f(w(k,i)). Because of
the continuity of the function f and the convergence of {w(k,i)}k, then {f(w(k,4))} has a subsequence
converging to f(w). Moreover, because {f(w(k,4))} is non-increasing, it is bounded from below and it
converges to f(w). This follows from

flw(k+1,7) < f(w(k+1,7)) < flw(k,i) for 0 <j<i

and
Flw(k+2,4) < fwk+1,5) < f(w(k +1,7) for i<j<m
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Proposition 2.3 If, for some i € {1,...,m}, the sequence {w(k,i)} has a limit point w, then
Vif (@) (yi —wi) >0, Yy € X; (2.11)

and

where * = i( mod m) + 1.

Proof. Let {w(k,i)}x be the subsequence converging to w. From (2.10), considering the continuity

assumption on V, f, the (2.11)) is obtained.
To prove the second statement (2.12), let us consider ¢ € {1,...,m} such that * = ¢ + 1, and by
contradiction, let us assume that there exists a vector § € X; 1 such that

Vit (@) (Fir1 — Wir1) <0 (2.13)

Then, letting
di('j-)l = Git1 — w(k,0)iv1 = Jir1 — xz('i)l
as {w(k,1)}x is convergent, we obtain that the sequence {dl(i)l} k is bounded. From and considering
the continuity assumption on V,f, there exists a subset K1 C K such that VHlf(w(k,i))TdEi)l < 0,
Vk € K;. Thus, the two sequences {w(k,4)}k,, and {dgi)l} K, are such that Assumption @ holds, provided
that {z(M} is identified as {w(k,q)}, .
Now, Vk € K, let us compute 0%(‘?1 by Algorithm then

FEED D, (k) JFO‘z(i)ldEi)lv--' m) < flw(k,q))

(k) (k)

Moreover, because z;\; € X1, xg_]f_)l +diy € Xy, a(-i)l € (0,1], and X;y1 is convex, then

x(i)l + agi)ldg_lf_)l € X,4+1. Hence, recalling
f(U)(k, 1 + 1)) = yv+11réi§v+1f(m(1k+1)a R 7x(k+1)a Yit1y---y 7(75))

it is possible to write the following
, k k k k) (k .
i+ ) < e rafhdl L al) < Flwh i) (2.14)
From Proposition the sequences { f(w(k, j))} are convergent to a unique limit Vj € {0, ..., m}, hence

. N (k+1) (k+l) (k) (k) (k ) (k)Y —
kﬁogrrkleKlf(w(kJ)) fley 7, 1o adi, e ry’) =0

From Proposition having {z(¥} as {w(k,i)}k,, it follows V1 f(0)7 (§i41 — Wiy 1) = 0, that contra-
dicts . So it follows that has been proved when ¢ € {1,...,m —1}. When ¢ = m, so that i* = 1,
the procedure can be repeated noting that w(k,m + 1) = w(k + 1, 1). O

The previous proposition indicates that every limit point of the sequence {x(k)} produced by the GS
method is a critical point concerning the components x1, and x,, within the established ordering. This can

be formally expressed by the following corollary [39].

Corollary 2.1 Let {x(k)} be the sequence generated by the GS method, and suppose a limit point T exists.
Then,

Vif(@) (p—21) >0, Yy € Xy
and

me(j)T(ym - i'm) >0 , Yym € Xin

Finally, in the last part of this section, we present the two-block nonlinear Gauss-Seidel method, which
has been selected for analysis due to its relevance and application in the current numerical method proposed
in this PhD research.
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2.2.3 The Two-Block Gauss-Seidel Method

After examining the general framework of the m-block nonlinear Gauss-Seidel method, we now show the
specific case where m = 2, referred to as the two-block Gauss-Seidel method. This case holds particular
significance as it aligns with the structure of the inverse problem studied in this work, detailed later in
Chapters [6] and [7] The algorithm for this method is presented below employing the notation and the form
used in the proposed algorithms of the chapters of part II of this thesis.

Algorithm 3 Two-Block Gauss-Seidel Method

. Set k=0 and 2@ = (20,2 € x.

1
2: repeat
3: k=k+1
4 Compute

xgk) = arg minf(f,xék_l)) (2.15)

£exy
5: Compute
xgk) = arg minf(xgk),f) (2.16)
£eXs

@

until the stopping condition.
(k) (k)
1Ty )

o

return (x

This chapter has detailed the theoretical principles underlying regularization and optimization methods
for inverse problems, concluding with the presentation of the two-block Gauss-Seidel method. By iteratively
updating variable subsets, this method provides a structured framework for solving constrained optimization
problems, ensuring feasibility and convergence under appropriate conditions. Now, it is essential to identify a
suitable strategy for computing the regularization parameter to balance model complexity and data fidelity,
ultimately enhancing the stability and accuracy of the solutions. The next chapter presents strategies for
the automatic computation of the regularization parameter, with particular emphasis on the Balancing and

Uniform Penalty principles.
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Chapter 3

Automatic Computation of the

Regularization Parameter

In the previous Chapter [2] the theoretical foundations and well-posedness results have been discussed in the
general context of Tikhonov regularization for linear and nonlinear problems. These results illustrate the
critical role of regularization in stabilizing inverse problems. The analysis emphasizes the balance between
fidelity to observed data and the incorporation of prior information, achieved via parametrized regularization
terms.

To effectively determine an appropriate regularization parameter in inverse problems, various parameter
selection strategies have been developed in the literature, primarily for Lo-regularization methods. Significant
examples include the Discrepancy Principle, the Hanke-Raus rule, and the Quasi-optimality criterion, which
have been extensively discussed in works such as [37, 27, [77] [74]. These techniques focus on balancing data
fidelity and regularization to stabilize solutions. However, for example, the case of parameter selection for
L;-regularization remains less explored. Some efforts, such as [78| [79], have analyzed the applicability of the
discrepancy principle in this context. Despite these advances, practical implementation remains challenging
due to the need for prior knowledge of the noise level and the non-guaranteed existence of a solution to the
discrepancy equation. As a consequence of these problems, in this chapter, we discuss another automatic
selection rule employed in the numerical algorithms proposed in this thesis (see Chapter @ and : the
Balancing Principle (BP). The BP determines the regularization parameter by balancing the contributions
of the data fidelity and regularization terms, up to a multiplicative factor 4. This method, proposed in [80],
offers a practical framework that does not require prior knowledge of the noise level and avoids solving a

potentially ill-posed discrepancy equation.

Specifically, the first part of this chapter discusses the augmented Tikhonov framework extending the pre-
vious ideas through hierarchical Bayesian modeling and introducing the balancing principle to automatically

search and optimize the regularization parameter and solution simultaneously.

In the final section of this chapter, a regularization framework known as the Uniform Penalty principle [40]
is introduced and analyzed, focusing on a principle designed to distribute the influence of regularization terms
uniformly across the domain. Unlike traditional methods that rely on a single global parameter, this approach
employs a set of distinct parameters, each associated with specific points in the distribution. By enabling
localized control over the regularization process, the framework effectively adapts to variations within the
solution, ensuring a balanced and consistent contribution throughout. The principle has been used to derive
new strategies to analyze NMRD profiles described in Chapter

o1
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3.1 The Balancing Principle

This section examines the augmented Tikhonov regularization approach, emphasizing the balancing princi-
ple [80] and a convergent fixed-point iterative scheme for its realization.

The balancing principle determines the optimal regularization parameter by ensuring that the contri-
butions of fidelity and penalty terms are harmonized. It prevents overfitting by stabilizing solutions under

noisy data while preserving key features of the model.

3.1.1 Augmented Tikhonov Regularization

The augmented Tikhonov regularization extends the classical Tikhonov functional by incorporating prob-
abilistic modelling [81]. Specifically, it minimizes the augmented functional for the maximum a posteriori
estimator:

J(u, A\, 7) = 7®(u,g°) + ANV (u) + boA —ahIn X+ b7 —a) InT (3.1)
where:

o O(u,g’) = %HK’U, — g°||? represents the fidelity term, penalizing the discrepancy between Ku and g°.

e U(u) = 3||Lu|? is the regularization term, enforcing specific properties via the regularization matrix

L e lexm, which is of full column rank.

e ag, by, a1, by are hyperparameters derived from prior distributions of A and 7. Specifically,

ag =% —1+ap, a} = § — 14 a;. The meaning of X\ and 7 is described in the next paragraph.

Considering the terms of , the first follows from an independent identically distributed Gaussian as-
sumption on the noise in the data g°. The parameter 7 is the inverse of the variance of the Gaussian noise,
i.e., the precision. The second term assumes a Markov random field on the unknown, with the interaction
structure encoded by L. The parameter A weights the strength of the interactions between neighbouring
sites. The last two terms assume a Gamma distribution on the precision 7, and scale A, with parameter pair
being (ag,bg), and (a1, b1) respectively (A ~ G(\;ap,bo), and 7 ~ G(7;a1,b1)).

This functional is called augmented Tikhonov regularization. The first two terms reproduce the
classical Tikhonov regularization described in the previous sections (with the regularization parameter
a = At7!). The other terms give the mechanism to automatically determine the noise precision 7 and
the parameter .

The augmented formulation solves for u, A, and 7 simultaneously. The critical novelty lies in automatically
determining A and 7 through Bayesian-inspired terms, reducing the need for external parameter selection.

By considering the limit of the discrete functional, the general augmented Tikhonov functional is given
by

J(u, A7) = 7®(u, g°) + AV (u) + boA — apIn A+ by 7 —a; In T (3.2)

The parameter pairs (ag, bp), and (a1, b1) should be the limit of the discrete values.
The following Definition introduces the concept of a critical point for the functional J(u, A, 7). Fol-

lowing Definition 3.5 in [37], the formal description is given below.

Definition 3.1 (Critical Point) The critical point (u*, \*,7*) € X x RT xR for the functional J(u, \,T)
satisfies:
* . ) ¥ _x\—1
u” = arg min {®(u,¢°) + X (%)W (v) }

\P(u*)+bof%:0 , @(u*,gé)+blf%:0.
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The regularization parameter « = A/7 emerges naturally from the above conditions. Substituting \* and
T7*, one obtains:
. 10w, g%)+b
Ty W(u) + b
ai

where 7 = ¢ is determined by prior knowledge.

3.1.2 Balancing Principle

The balancing principle [80] provides a systematic approach to determine o*. It balances the contributions

of the fidelity and penalty terms by finding o* > 0 such that:
B(uas,g°) = 70" ¥ (uq-) (3.3)

where - = arg min{®(u, g°) + a*¥(u)}.
ueX
Therefore, the BP selects the regularization parameter by balancing, up to a multiplicative factor -, the

contributions of the data fidelity and regularization terms. For the estimation of  various strategies have
been proposed [82] 183] [84].

It is worth highlighting the case where v = 1, commonly referred to as the zero-crossing method, which
is widely used in medical engineering applications [85 [86]. In the algorithms developed to address the
parameter estimation problem within the model-free approach, as presented in Chapters [} [6] and [7] this

formulation has been consistently adopted with v = 1.

3.1.3 Fixed-point Algorithm for Computing the Regularization Parameter

The balancing principle can be implemented via an iterative fixed-point algorithm that alternates between

updating the solution u, and the regularization parameter o. The fixed-point algorithm proceeds as follows.

Algorithm 4 Fixed Point Algorithm for Regularization Parameter

1: Set k =0, and choose a starting guess «y.

2: repeat

3: Set k=k—+1

4 Solve for uik with @ = o by minimizing

Uy, € arg 5%1)1(1 {®(u, )+ ¥ (u)}

5: Update the regularization parameter ajy1 by

®(ud, ,g°)
Oék+1 - \:[17

1
v oU(us,)

<@

until the stopping condition (3.4)) is satisfied.

7: return approximation (ugk,ak).

The algorithm stops when the following condition (3.4) is satisfied.
|ag+1 — ag| < Tol with Tol > 0. (3.4)

This algorithm generates a sequence {ay} which converges to the local minimizer as established in [80] [37].
In summary, the balancing principle provides a robust framework for determining the regularization pa-

rameter by harmonizing fidelity and penalty terms. This principle not only generalizes classical regularization
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strategies but also extends their applicability to more complex models, highlighting their significance in in-
verse problem-solving. Starting from this principle the numerical methods and the iterative solutions studied
and proposed in the following Chapters [5] [6] and [7] to analyse the NMRD profiles have been developed.
The next section introduces the Uniform Penalty Principle, which employs localized regularization pa-
rameters to adapt to variations within the solution, offering an alternative approach for addressing ill-posed

inverse problems, particularly in the context of NMR data inversion.

3.2 The Uniform Penalty Principle

This last section of this chapter describes the Uniform Penalty approach [40] based on Lo regularization with
locally adapted regularization parameters.

The problem in this section is described as applied to a general NMR relaxation problem, where, con-
sidering an NMR signal generated following the formulation introduced in section the purpose is to
extract the relaxation time distributions for 77, and T5.

During the PhD work, this method has been studied and extended to the FFC-NMR estimation param-
eters problem and is formally presented and described in Chapter

3.2.1 NMR Data Inversion Problem

NMR data are represented as a signal recorded at specific sampling points typically corresponding to evo-
lution times. However, they can also correspond to other experiment variables, e.g., frequencies for an FFC
experiment.

Let us consider a 2D NMR relaxation signal acquired through standard Inversion-Recovery, and CPMG
pulse train sequence (IR-CPMG) [87]. This sequence is used to acquire 2D data by measuring both spin-
lattice (71) and spin-spin (7%) relaxation times. It begins with an inversion recovery (IR) pulse (generally
a 180° pulse), which inverts the magnetization of the sample and allows it to recover towards equilibrium,
providing insights into 7T;. Following this, a series of CPMG refocusing pulses generate echoes that measure
T5. In this setup, the two evolution times, ¢; corresponding to the relaxation generated by IR, and ¢,
corresponding to CPMG, are two independent variables. The measured relaxation signal can be represented
as follows: -

S(ty,ta) = // k1 (t1, T )ka(to, To) F (T1, T2)dT1dTs + e(ty, ta)

This is a first-kind Fredholm integral equation, thus representmg an ill- posed problem. Its kernel is defined
by the product of the functions ki (¢1,77) =1 —2e~ 7 , and ko(te,Th) = e~ 7 . The last term, e(t1,ts) is the
additive noise, generally modelled by a Gaussian distribution. While, the function F'(T7,75) represents the
relaxation times distribution and F(Ty,T5) > p, where p € R. For this description, let us consider p = 0.
To discretize the problem, we consider M7 x M, sampling points for the evolution times t; and ¢5. The
resulting observations, denoted by § € RM1*M2  are reshaped into a vector s € RM, where M = M, x M.

RN” X Ny

Similarly, the unknown relaxation time distribution, initially expressed as F' € , is vectorized into

f €RY, with N = N, x Ny. The discretized problem can now be expressed in matrix-vector form as
Kf+e=s (3.5)

where the matrix K is the Kronecker product of the matrices K; € RM*Ne and Ko € RM2XNy gbtained

by discretization of the functions ki and ko at M; x N, and M; x N, points, respectively as follows
K=K, K; (3.6)

Finally, the vector e € RM represents the discretization of the noise function e(t1, t2).
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3.2.2 Local Regularization through the Uniform Penalty Principle

The linear system is an ill-conditioned inverse problem, meaning that small perturbations in the input
data (e.g., noise) can lead to significant errors in the estimated solution.
To address this problem, the Tikhonov regularization (Section is employed, which reframes it as the
following minimization task
min {[|K £ — 5| + ol L]} (3.7)

where the first term is the fidelity term, @, of Chapter [2l The || - || represents the Ly norm. The second term
represents the regularization term introduced in the previous chapter, W. Specifically, L € RN*¥ is the
discrete Laplacian operator, and « > 0 is the regularization parameter which balances the data fidelity and
the solution smoothness. There is no universal rule to select the best value of o. For example, let us assume
to have suitable bounds on the fidelity and regularization terms of the exact solution f*, || K f* — s||?> = &2,
ILf||*> = E?. Then, from Miller [88], o = 2—22 Using this value of the regularization parameter, the
solution f, of satisfies | K f, — s[> < €2, and |[Lf,||> < E?. Thus, at the regularized solution
Fos IKf, — s||> +a||Lf,||* < 2e2. Having an « value such that the fidelity term and the regularization
one are comparable, the result is stable in the presence of noise. While effective, Tikhonov regularization
often introduces biases, particularly in regions where the solution exhibits rapid variations, giving distorted
solutions which present undesired peaks.

One strategy to avoid this problem is represented by the multiple-parameter Tikhonov regularization,

having the following minimum problem:

N
m;n{|Kfs|2+ZAi (Lf)?} (3.8)
i=1
where (L f), represents the i—th element of the vector L f. Instead of employing a single global regularization
parameter «, the framework introduces a set of IV distinct regularization parameters \;, each corresponding
to a specific point within the distribution f. This approach allows for localized control over the regularization
process, enabling the method to adapt to variations in the solution. The UPEN methodology establishes the
values of these parameters \; based on the Uniform Penalty Principle, which ensures that the contributions
of the regularization terms are uniformly distributed across the solution domain. This localized adjustment

mitigates over-smoothing in regions of rapid variation while maintaining stability in smoother areas.

Definition 3.2 (Uniform Penalty Principle) Choose the regularization parameters of the multiple-
parameter Tikhonov regularization (13,8) such that, at a solution f, the terms N(Lf)? are constant
Vi=1,...,N with (Lf)? #£0, i.c.

NILF)Z2=c Vi=1,...,N s.t (LF)?#0 (3.9)
with ¢ positive constant.

If the non-null terms \;(L f)? have all the same constant value, the regularization parameter \; is inversely
proportional to (Lf)?. This means that the value )\; is smaller when f has fast changes and oscillations,
while it is larger in smooth and flat regions of f. Thus, regularization is enforced in points where the
distribution is smooth.

The basic properties of the UPEN principle as a parameter selection rule are stated in the following
lemmas.

Lemma 3.1 If the UPEN principle holds with

c=— (3.10)
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where Ny is the number of non-null terms (Lf)?, and if f satisfies | Kf — s||?> < &2, then

77

N
IKF—s|®+ > N(Lf); <2 (3.11)

i=1
Contrarily, any f which satisfies (3.11), and the UPEN principle with (3.10)), also satisfies | K f — s||* < £2.

Proof. Let f be such |[Kf — s|* < &2, then if the UPEN principle is satisfied with (3.10), it holds the
following
N No 2
2 2 2 _ 5.2
|Kf— s +;>‘i(Lf)i <e +;m =2
Contrarily, if the UPEN principle with (3.10), and the (3.11)) hold, then
N No 2
2e2 > |Kf — s|? MN(LF)? =||Kf —s|? — = |Kf—s|?*+¢&?
€J|fﬂ+zg(ﬂzﬂf ﬂ+;M’Hszﬂ
O
From this, every solution of (3.8), fx, with every A; component chosen through the UPEN principle, is
feasible with respect to the data-fidelity constraint | K f — s||? < &2.

Lemma 3.2 Let us define the operator
-1
R\ = (K"K +L'DL) K’
with D the diagonal matriz with diagonal elements

{m if (Lf)i #0

D; ;=
ve?,  otherwise

)

where v is a positive constant and the \; are chosen according|3.10. Then
lim R\Kf=f
e—0

Proof. From[3.9] and [3.10] it follows

62

R ATAE

YV i=1,...,N suchthat (Lf;,)>#0

Thus, the proof immediately follows since for all ¢
limD;; =0
e—0 ’

|
This result states that f) is a regularized solution of the problem .
The following iterative scheme (Algorithm [5) has been proposed by Bortolotti et al. [40], consisting of,
starting from an initial guess f (O), both a solution to and suitable values of \;, approximately satisfying
the UPEN principle, are computed.

Algorithm 5 Iterative Scheme UPEN

1: Compute )\gk) = %, with Nék)7 the number of non-null terms of (Lf(k))?.
0 i

2. Compute fF+1 by solving (3.8) with A; = Agk).
3: Set k =k + 1.
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In the Algorithm |5, the k—th residual norm ||Kf(k) — s|| is employed to approximate € that, in case of
noisy data, it is the noise norm ||e]|.

When in the first step, one of the terms (Lf*)); is negligible, it is not possible (or not meaningful)
to make \; large enough to maintain a truly uniform penalty at such points. Moreover, a term (L f(k))i
could be equal to zero in non-flat regions due to noise and approximation errors generated throughout the
iterations.

Consequently, to have more information about the shape of the distribution, it may be helpful to relax
the strict uniform-penalty requirement by considering both second- and first-order derivative information in
a neighborhood of the i—th point in the selection rule.

Let us define the matrix C of dimension N, x NN, such that lexicographically reorders its element and
gives the vector Lf. Furthermore, let us introduce another matrix P of same dimensions, with elements
Py, =||VFy,|. Finally, let us denote with ¢, and p the N vectors obtained by reordering the elements of
C and P.

Therefore, the regularization parameters )\Ek) are derived according to the following relaxed UPEN prin-
ciple [40]:

AR = 1K £ ;3”2 .
N (60 + 611 max,ecr; (p/Etk)> + ﬂc max,er; (CEL]C)) )

i=1,...,N (3.12)

where the I; are the indices subsets related to the neighborhood of the i—th entry. The § parameters are
positive. Specifically, the 8y parameter prevents division by zero and is a compliance floor, which should be
small enough to prevent undersmoothing, and large enough to avoid oversmoothing. The optimum values
of 8 parameters could substantially change with the nature of the measured sample. As a general rule,
Bo should be considerably smaller than the two other 8 parameters, which should be of the same order of
magnitude.

The regularization parameters obtained by are locally adapted: the selection of the values \; is

based on local information about the shape of the desired solution.

This chapter has presented the theoretical methods for the automatic computation of regularization pa-
rameters, including the balancing principle and the uniform penalty principle. These approaches provide
robust frameworks for addressing ill-posed inverse problems by ensuring stability, adaptability, and con-
sistency with problem-specific constraints. The methodologies analyzed here form the foundation for the
strategies proposed in this work, which are described in detail in the following chapters.

The next chapter explores the intersection of traditional optimization techniques and emerging data-
driven approaches, highlighting the role of machine learning in advancing inverse problem-solving frame-

works.
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Chapter 4

Machine Learning for NMR

Machine learning has become a powerful tool for addressing problems in every domain, particularly when
deriving explicit solutions from physical models could be challenging. Moreover, through statistical learning
principles, it is possible to derive a mathematical formulation for machine learning. The first part of this
chapter is focused on this argument.

Furthermore, the integrated models, which combine traditional optimization methods with data-driven
techniques are presented in the second part of the chapter. Among the described strategies, a specific focus
in the last part is dedicated to the Plug-and-Play (PnP) method, which represents a very powerful tool in
imaging and it is based on the integration of pre-trained denoisers into iterative algorithms to decouple the
data acquisition process from the learned priors. This description serves as a starting point to present in
the further chapters the novel proposed method developed during this PhD work, which is based on the
philosophy of the PnP method.

4.1 The Mathematical Principles of Machine Learning

This section outlines the foundational principles of machine learning, establishing a basis for the topics
addressed in the subsequent chapters. Specifically, the problem of supervised learning is formalized through
the framework of statistical learning theory [89] [90]. As this work focuses on a specific class of integrated
models, a comprehensive review of all employed machine learning methodologies is beyond the scope of this

thesis work.

4.1.1 Statistical Learning Framework

Let & be the input vector of X C R? which represents the space of all possible inputs described with an
unknown probability p(x). Let y be the output vector, where y € Y, and Y C R? is the space of the possible
outputs. The output y for every input x is provided, according to an unknown, but fixed conditional
probability p(y|x). The purpose of the supervised learning approach is to approximate a joint probability
distribution p(x,y) = p(x)p(y|x), called data generating distribution, and which represents the relationship
between X, and Y, to derive y, starting from x.

Let £:Y xY — R be the loss function to compute the distance between two elements in Y, the expected
risk of a function f : X — Y is defined as follows:

T(f) =E [y, f(z))] = / Uy, f(x))dp(x, ) (4.1)

XxXY
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Identifying a function that minimizes (4.1)) represents the goal of the learning task and a performance
selection criterion. Moreover, because generally ¢ is a distance function, the equation (4.1) can be rewritten

using the conditional expectation as follows:
7(5) = E Bty f@)lall = [ Ellw. fo@)le = aldn(@)
The expected risk is minimized at the Bayes predictor f* : X — Y, which pointwise is defined as:

f*(&) € argminkE [((y, z)|x = T] Ve e X (4.2)
z€Y

The Bayes risk correspondent to the Bayes predictor f* is given by:

J*=E|infE[l(y,z)|lx = Z] (4.3)
z2€Y
The Bayes predictor minimizes the expected risk, and while it is not necessarily unique, all such predictors
yield the same Bayes risk. To evaluate the performance of a given function f, the deviation from this
minimum, referred to as the excess risk of f, is quantified by J(f) — J*. This quantity is inherently
non-negative, from .
Theoretically, the optimal model is described in by the conditional distribution p(y|x) for any input
x € X. However, the underlying distribution p(x,y) is often unknown in practical applications, as only a
finite observation set is usually available. To address this, the empirical risk js( f), an estimate based on
available training samples, is used. The training samples are in a set, commonly called training set, which
can be formally expressed as
S={(z;,y;,) e X xY|i=1,...,s}

where each pair (x;,y;) represents a sample drawn from the joint distribution p(x,y). Using this finite
dataset S, one can compute the empirical risk of a predictor f, which averages the loss function over the

training samples. This is given by:
~ 1<
Is(f) = 5 Zg(yia f(x:))
i=1

The empirical risk is an unbiased estimate of the true expected risk and often is used as a surrogate
objective in learning tasks, given that the true distribution is typically inaccessible. Moreover, it is commonly
called training error.

To address this, the learning process is recast as an optimization problem, where the search space is
limited to a parametrized family of functions, referred to as the hypothesis space, or, identically on the
parameter space. This is defined as:

H:={fo: X =>Y|0 €O}

where © € RP represents the space of all the possible parameter values. Restricting the learning to this
family allows practical implementation while preserving the goal of minimizing risk. Therefore, the learning

problem is reformulated by the minimization of the empirical risk on the hypothesis space as

0" € arg minjs(fg) (4.4)
0co

By constraining the search to parametrized functions within the hypothesis space H, an approximation

error is introduced which can be derived by decomposing the excess risk of f; as follows:

o) =" = (T0) = ot 760)) + (g7 - ) (1.5

estimation error approximation error
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The last term is known as approximation error. It is always non-negative, not depending on the optimization
parameters, but only on the chosen class of parametrized functions. Moreover, it evaluates how closely the
functions fy can approximate a Bayes estimator. This error can be reduced as the considered © is large
enough, e.g., in the case of the neural networks; furthermore, the functions can be arbitrarily approximated
by the chosen parametric function [91].

Instead, the first term of is known as estimation error and can be further decomposed, taking into
account that 6 € ar;g r(ralinj (fo) the following relation holds:

€

I(fo) = TUa) = (TUe) = TUa)) + (Tslfor) = Tstha)) + (Tslfa) = T(fa)

empirical optimization error

The second term is called empirical optimization error, and it is bounded by sup (js( 3 — js( fg)), which
)
in principle should be zero for the minimality assumption on 6*, but in practice, it must be considered

when iterative optimization algorithms are adopted to minimize the empirical risk. Finally, the other two
terms are bounded by sup ‘js( fo) — T (fe)| that increases as the size of © increases, and decreases with the
EG)

samples number in S.

4.1.2 Generalization

The process of learning is framed as an empirical risk minimization problem. This formulation, while
conceptually intuitive and mathematically straightforward, faces significant challenges in practice. The
primary difficulty lies in developing models that can accurately predict outcomes for new, unseen data that
was not part of the training set. This crucial ability to perform well on previously unobserved data is referred
to as generalization. While empirical risk provides a measure of performance on the training data, it may
fail to capture the generalization capability of a model, which is the ultimate objective in most real-world
applications.

To evaluate generalization, it is standard practice to partition the dataset into two disjoint subsets: the
training set and the test set. The training set is used to learn the model, while the test set is reserved
for evaluating its performance on independent samples drawn from the same underlying distribution. This
separation ensures that the evaluation reflects the model’s ability to generalize beyond the examples seen
during training. The ultimate goal of any learning task is to minimize the generalization error, defined as
the empirical risk computed on the test set, although during the training, only the empirical risk on the
training set is minimized. Therefore, for a model to exhibit strong generalization, it must achieve two critical
conditions: a low training error, and a minimization of the training-test error gap.

If these conditions are not jointly achieved, the model is likely to suffer from one of two classical issues in
machine learning: underfitting, or overfitting. Underfitting occurs when the model struggles to achieve a low
training error, often due to its inability to capture the underlying patterns in the data. Overfitting, on the
other hand, arises when the model learns the training data too well, including its noise and idiosyncrasies,
leading to a significant gap between training and test errors. In this case, the model performs poorly on
unseen data, failing to generalize effectively.

To mitigate underfitting and overfitting, a crucial strategy involves controlling the capacity of the model.
The term capacity loosely describes the power of a model to represent a diverse range of functions. Models
with insufficient capacity may lack the flexibility needed to fit the training data, while those with excessive
capacity risk overfitting by adhering too closely to the training set.

It is essential to distinguish between two aspects of model capacity:
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1. The representational capacity refers to the size of the hypothesis space H and the model’s ability to
represent a wide class of functions. One practical approach to regulating representational capacity
is through regularization techniques, which constrain the model’s parameters either by limiting their
magnitude or by introducing additional terms in the objective function. A regularized empirical risk
minimization problem can be expressed as follows:

6" € argmin {j}( fo) + )\\I/(H)} (4.6)
0co
where \ represents a regularization term previously described in Chapter |2} and ¥(0) : © — RT

represents the regularization function implicitly controlling the complexity of fy.

2. The effective capacity. This concept pertains to the actual capacity of the model as influenced by the
optimization algorithm used during training. Optimization methods, particularly iterative algorithms
like gradient descent, often impose additional constraints on the function representation, which can
lead to approximations of the true minimizer. In the realm of deep learning, determining the effective
capacity is particularly challenging due to the non-convex nature of the loss landscape and the limited
theoretical understanding of stochastic optimization methods, such as those involving momentum or

adaptive learning rates.

Quantifying model capacity and its effect on generalization has been a focus of theoretical research.
Various studies have sought to derive formal bounds to characterize the discrepancy between training error
and generalization error [92 93]. Typically, this discrepancy is bounded by a term that grows with the
model’s capacity and decreases as the size of the training dataset increases. Thus, a trade-off emerges
between the expressiveness of the model and the availability of data. In the context of modern deep learning
systems, where models often have millions or even billions of parameters, this balance becomes even more

critical.

4.1.3 Optimization Techniques for Minimizing Empirical Risk

To minimize the empirical risk iterative first-order methods are applied because the computation of
a closed-form solution is not practicable. The most common and well-known as well as efficient algorithm
used to derive the gradient of the objective function is the backpropagation algorithm, introduced in separate
works at the same time, such as [94] 95], and later refined in [96].

Often referred to as the reverse mode of automatic differentiation, this approach gained widespread
adoption in the learning framework through [97, [98]. Today, it serves as a core technique in popular neural
network libraries and toolboxes like TensorFlow, and PyTorch for Python, but also Deep Learning Tool-
box [99] in MATLAB. The general update rule for a first-order gradient-based method typically follows this
form:

o+ = 9k — 4 Dygr(0™)

where « represents the so-called learning rate in the machine learning research community, Dy € RP*? is a
diagonal matrix, and finally g; : R? — RP is dependent on the empirical risk gradient.

The simplest gradient-based approach is standard gradient descent, where updates move in the direction
opposite to the gradient [76]. In this case, the function g (%)) = ngs(f(,(k)), and the diagonal matrix
D), = I,,. However, when dealing with large datasets, stochastic adaptations of gradient descent are preferred
due to their efficiency [100, [101]. In these methods, a randomly selected subset of the training data, referred
to as minibatch, is used to compute an approximate gradient at each iteration. By drawing s samples from

S, the function gy is computed at each iteration as follows:

g0) == Y Vol (y, fo(w))

(z,y)ESk
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where S, C S is a subset of the training set S consisting of s samples drawn at each iteration. This reduces the
computational cost compared to evaluating the gradient over the entire dataset. However, the approximated
gradient inherently includes noise, introducing some variability into the optimization trajectory.

Such stochastic approaches, while computationally efficient, come with trade-offs. The gradient estimates,
derived from minibatches, do not always point directly toward minimizing the empirical risk. Instead, the
randomness injected into the process can lead to significant fluctuations in the objective function, with no
guarantee that the algorithm will converge to a minimum or even a stationary point.

The size of the minibatches used during training plays a critical role in gradient estimation. Larger mini-
batches tend to yield more precise gradient calculations, while smaller ones, though noisier, often introduce
a beneficial regularization effect throughout the optimization process [102]. To mitigate the variance in these
gradient estimates, advanced techniques leverage both first-order and second-order moment approximations,
constructing appropriate scaling of the matrix Dy to enhance stability and convergence.

Given the inherent non-convexity of deep learning problems, momentum-based optimization methods
have been developed to address avoiding entrapment in local minima. By incorporating information about
previous gradient updates, these methods expedite learning and help maintain a steady progression toward
more promising regions of the loss landscape [103] [104].

Among the most widely adopted optimization techniques for training deep neural networks is the Adam
optimizer [105], which effectively combines inertia-like updates with mechanisms to reduce variance in the
gradients. This method relies on the computation of specific scaling matrix Dy, and gradient estimates gy,
significantly improving the efficiency and robustness of the training process.

Despite the empirical success of algorithms like Adam in minimizing empirical risk or finding stationary
points, the no free lunch theorem asserts that, when averaged across all potential data-generating distri-
butions, every optimization algorithm achieves the same error rate [L06] [107]. This fundamental limitation
implies that designing highly effective algorithms for specific applications often requires assumptions about

the underlying data-generating process.

4.1.4 Architectural Frameworks for Neural Networks

In machine learning, the hypothesis space chosen for a model profoundly impacts its ability to represent
data, as this determines the achievable approximation error . Over the past decade, artificial neural
networks (ANNs) have gained prominence due to their versatility in approximating complex functions. These
networks mimic biological neural systems and consist of a series of layers, each functioning as a set of units,
known as neurons, interconnected to adjacent layers. Several architectures can be obtained by organizing
the layers in different configurations. The first layer is called the input layer, and it receives input data;
while the last one is called the output layer and it is responsible for producing the output of the network.
The layers between these two are called hidden layers.

The most simple architecture consists of a fully connected layer, where each neuron in one layer is

connected to every neuron of the previous layer. This relationship is represented by the following:
z=0(W2) (4.7)

where Z € R™, z € R" represent the output and the input data respectively, and W € R™*" is the weight
matrix defining the connection strengths between two consecutive layers. The function o : R™ — R™ is the
activation function applied elementwise.

The fully connected layer has theoretical significance because of the universal approximation theorem,
which asserts that even shallow networks can approximate any continuous function defined on a compact do-
main, provided they are equipped with sufficient neurons [108] [109]. However, achieving such approximations

in practice often requires an enormous number of neurons. A practical solution to enhance representational
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capacity without excessively increasing parameters is represented by the use of deeper networks formed by
stacking several fully connected layers. These are called Deep Fully Connected Network [110} [111]. Despite
their versatility, this architecture experiences exponential growth in the number of weights as the number of
layers increases, resulting in the training being computationally demanding [112].

To overcome this limitation, convolutional layers were developed, which rely on localized connections
instead of full connectivity. This architecture is briefly described given its relevance in this research area,
but it does not represent the purpose of this thesis, because, considering the dimension of the addressed
problem, a deep neural network has been sufficient, without demanding very long and complex training.

Conceptually, a convolutional layer can be thought of as a fully connected layer, wherein the weight matrix
W is a sparse Toeplitz matrix [113]. This structure reduces the number of parameters significantly by sharing
weights within localized regions of the input, i.e., the outputs are connected only within a local region of the
input, decreasing the number of weights. These regions are commonly referred to as convolutional kernels.
These kernels are particularly effective at identifying localized patterns, such as edges in images [114].

A representation of the two layers structures is shown in Figure [4.1] with the fully connected one on the

left, and the convolutional one on the right.

Figure 4.1: Comparison of neural network layers: (a) Fully connected layer, where each neuron is connected
to all neurons in the next layer, and (b) Convolutional layer, where local connections are represented by
limited links between layers. In red the neurons of the input layer, i.e., z in , while in green the neurons
of the output one, i.e., Z in .

Convolutional layers also assure shift-invariance, enabling the detection of features regardless of their spa-
tial location. This property accelerates learning while significantly reducing computational complexity [115].

Neural networks that include at least one convolutional layer are known as Convolutional Neural Networks
(CNNs). The foundational concepts of CNNs were inspired by studies of the primary visual cortex [116][117].

The performance of machine learning methods depends generally on the data representation utilized.
Therefore, it is common practice to encode raw data to extract meaningful features for the learning task
at hand. This process can be particularly challenging since the most important features are not known in
advance. As a result, the model must learn the appropriate representations itself. The complexity of the
extracted features depends on the task’s difficulty, with high-level abstract features often being formed by
combining simpler, lower-level blocks. The approach that utilizes multiple layers in the network is known
as Deep Learning. Among its many applications, Convolutional Neural Networks (CNNs) are particularly
important due to their capacity to learn hierarchical feature representations directly from complex data.
Furthermore, the use of convolutional layers with smaller receptive fields enabled the development of deeper
CNN architectures, increasing their capacity to learn from vast amounts of data. These deep architectures
have led to an expanded receptive field, allowing models to capture long-range dependencies.

To further enhance training, additional strategies such as residual blocks and skip connections are utilized

to maintain information flow and address issues like vanishing gradients [118]. Batch normalization is another
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commonly employed method, which stabilizes training by normalizing mini-batch inputs [119]. The use
of diverse activation functions introduces non-linearity, profoundly affecting both model performance and
training efficiency [120]. Finally, techniques like weight initialization and regularization are employed to

combat overfitting and improve the model’s robustness [92].

4.2 Integrated Models

One of the most interesting approaches in this learning process involves using a direct inversion method. In
this way, it is possible to incorporate a physical knowledge of the acquisition model [121].

When the direct inversion of the acquisition model is feasible, one can employ preprocessing techniques
to map the given measurement b, e.g., a signal such as the relaxation rate, Ry, introduced in Chapter [I} into
the correlation time distribution, f, domain through operations such as K7 R; or K'R;. These methods
have been introduced and deeply investigated specifically for imaging problems, where the idea is based on
consists of obtaining a naive reconstruction with artefacts and then using a trained neural network to correct
the approximated restoration [122] [123| [124]. However, following this philosophy, this method can also be
extended to different domains. Therefore, the last contribution presented in this PhD thesis is based on the
idea behind this class of approaches and it is comprehensively described in Chapter

Mathematically, the learned operator can be expressed as the composition fgo K7, defining fp : R" — R™

the trained neural network to correct the initial estimate. The problem can be reformulated as follows:

0" argeminé zs:f <f9 (KTbi) ,Uz‘)
i=1

where ¢ is a suitable loss function, b; are the measurements, and w; represent the corresponding ground-
truth signals. However, a common problem is represented by overfitting. The usual strategy involves the
introduction of a regularization term, trying to enforce specific characteristics of the reconstruction, which

may be a priori known. Following this, the problem can be rewritten as:

e*argemin% Z {Z (fe (KTbi) “) +AY (f“’ (KTbi))}
=1

where A\ represents the regularization parameter, and ¥ the function inducing some bias to the reconstruc-
tion. Generally, the introduction of the regularization term is tricky because it involves strong assumptions
underlying the distribution. Moreover, a good choice of the regularization parameter can only be estimated
after the training process.

In recent years, numerous improvements have been made in merging neural networks and classical vari-
ational methods, paving the way for hybrid approaches. The strength of these models is represented by
the capability to leverage the expressiveness of deep learning while maintaining the interpretability and
robustness of traditional frameworks. This led to enhanced trustworthiness in these models and reduced
dependence on training data, especially for inverse problems.

The development of integrated models remains an active area of research with an increasing number of
contributions. A comprehensive review of all approaches is beyond the scope of this thesis. Therefore, in
the next section different techniques and their applications in inverse problems are mentioned and briefly
described, before introducing the integrated model which has been the starting point for the work developed
in this PhD: the Plug-and-Play (PuP) method.

4.2.1 Key Techniques in Integrated Modelling

Unfold Methods This method consists of unfolding and unrolling an iterative procedure for a finite

number of steps. The iteration can be thought of as a layer of a neural network. By the concatenation of
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them, it is possible to build a deep neural network. This allows this framework to learn complex mappings
between output and input, maintaining interpretability. Essentially, this strategy is identical to running
an iterative procedure for a select number of iterations. This method is trained on a specific training set,
considering the parameters as the network hyperparameters. This approach has been introduced by LeCun
and Gregor [125] and during the last years has been improved showing its potential in several domains, i.e.,

inverse problems, image reconstruction, and also signal processing [126] [127], [128] [129] [130].

Bilevel Methods Bilevel optimization represents a class of integrated models based on the idea of solving
two interdependent optimization problems at the same time. One is an upper-level problem to find the
optimal parameters for the model, the other is a lower-level problem to find the optimal solutions. The first
one is generally a training to minimize the loss function , and the latter one represents usually a specific
optimization problem. By using this method, the best hyperparameters to minimize the loss function are

refined while the model is adapting to the data distribution. A review of this method can be found in [131].

Generative Methods This class of methods is profoundly important in the entire artificial intelligence
sector because able to mime and understand very complex data distributions. Examples of generative models
are represented by Generative Adversarial Networks (GANs), or Variational Autoencoders (VANs), which
with advanced training strategies, and architectures succeed in learning the underlying data distributions.

The idea behind the GANS is to exploit two neural networks competing against each other in a zero-sum
game, where a gain for one of them represents a loss for the other one. Starting from a training set, this
technique learns how to create new data having the same statistics as the initial training set. The training
consists of employing a generator, i.e., one of the two neural networks, to create "realistic” input, and a
discriminator, i.e., the other neural network, to evaluate their authenticity. This allows the model to learn
in an unsupervised mode. This method has been formulated by Goodfellow and its formalization can be
found in [132].

The VANSs instead focus on learning a probabilistic latent space to generate realistic reconstruction.
[133].

Building on the advantages of integrated modelling, the PnP method offers a flexible solution for inverse

problems by decoupling data acquisition from learned priors.

4.2.2 Plug-and-Play

The Plug-and-Play (PnP) method has been proposed by Venkatakrishnan et al. [134] and it represents an
effective strategy to solve inverse problems integrating model-based optimization with data-driven priors.

One of the main problems related to this learning method is the stability of the model [135]. Specifically,
the noise in the data can drive the reconstruction to produce artifacts [136]. Moreover, in contrast to
variational approaches, the learning ones need to be retrained every time the acquisition model changes.

This problem has been addressed by the PnP method, creating a flexible model which involves separating
the degradation process from the learned prior. The idea behind this method is to employ the modularity
of iterative algorithms, integrating available denoisers methods. This allows the method to obtain robust
reconstructions without relying on specific training data, extending this technique to several different prob-
lems.

The first formulation introduced in [134] is based on the fact that many proximal algorithms, which rely

on variable splitting techniques [137] [138] [139], require the computation of the proximal operator for the
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regularizer. This is performed by solving a subproblem as follows:
.1 2
prox,y(z) := arg lﬂ?miHu —z||5 + n¥(u) (4.8)
ueR”

with g > 0 weighting the regularization.

The proximal operator is well-defined when the regularizer, ¥, is a proper, lower semi-continuous convex
function, ensuring that the minimum is unique. Moreover, for many non-smooth regularizers, the solutions
to can be derived through closed-form expressions, removing the need for explicit differentiation [140].

Furthermore, the subproblem can be considered as an image denoising problem of an image z affected by
additive white Gaussian noise from a statistical modelling point of view. To formalise this mathematically,
the operator can be substituted by a general denoiser D : R™ — R"™ in the iterative algorithm, following:

1
D(z) ~ argmin— ||u — z||2 + p¥(u)
u€eR™ 2

The substitution limits the theoretical interpretation of the resulting model, in the sense that a generic
denoiser may not always be seen as the proximal mapping of a specific function when it is not-expansive [141],
resulting in the absence of an explicit objective function minimized during the Plug-and-Play iterations and,
therefore, complicating theoretical analysis and making it difficult to adapt standard convergence guarantees.

These limitations have been addressed by some alternative assumptions on the properties of the denoiser,
to guarantee the fixed-point convergence [142] [143].

Given that the regularizer is implicitly defined by the denoising process, the focus has been directed to
the identification of an explicit objective function to minimize during the training, producing several types

of denoisers, which can be grouped into these three following main categories:

Regularization by denoising (RED). In this kind of framework, the regularization term is defined in
an explicit form as
1
W(u) = u” (u—D(u))
with D a generic denoiser.

In imaging, conceptually, this regularization tends to put a penalty on images which deviate from the
natural image manifold and present artefacts. This is obtained by measuring the difference between the
input and its residual after undergoing the denoising process.

The most interesting advantage of this method is represented by the ability to derive a practical expression
for its gradient, demanding specific stringent conditions are met, such as local homogeneity, strong passivity,

and the symmetry of the Jacobian. Following these assumptions, the gradient becomes the residual:
V¥(u) = (u—D(u))

This framework has been proven to succeed in many inverse problems applied to imaging [144] [145].
However, several denoisers do not satisfy the local homogeneity to derive the residual gradient [146]. To
address this problem, there have been proposed alternative formulations of RED to provide a stronger
theoretical foundation and justify its effectiveness [146]. Nevertheless, several challenges are unsolved, as the
conditions necessary for rigorous convergence analysis are often impractical or difficult to satisfy in practical

scenarios.

Minimum Mean Square Estimator (MMSE). Another category is obtained by the minimization of

the expected value of the loss function that defines the difference between the noisy image and a random
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variable which represents the natural image. If the loss is chosen as the squared Euclidean norm, the Bayes

estimator that minimizes the mean squared error is defined pointwise as:

D(z) = E[u|z] :/ up(u|z)du
R7
However, MMSE denoisers can be non-expansive [147], leading to the impossibility of computing the
posterior distribution, which requires complex Monte Carlo sampling techniques for high-dimensional inte-
gration [148].
Gribonval formally established an explicit regularizer, demonstrating that the MMSE denoiser can be
interpreted as the proximal operator of this regularizer [149]. Starting from this, numerous convergence

results have been derived for this category of methods under general conditions [150].

Gradient Step Denoiser. In this last category, the gradient considered in the RED framework is derived

using the gradient descent step realized on a potential function, g : R™ — R, as follows:
D(u) = u — Vg(u)

This denoiser is known as gradient step denoiser [151].

Under broad assumptions, such as ensuring that the gradient satisfies the contraction property, it can
be shown that the class of denoisers are proximal operators [152]. This result is based on the characteri-
zation theorems of proximity operators outlined in [153]. The existence of the potential function such as
Do = proxy,, with its properties, can be used to analyse the convergence analysis of iterative Plug-and-Play
algorithms [152].
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Chapter 5

Regularization For Dipole-Dipole

Relaxation

This chapter is based on the publication [154] where three potential approaches to analyse the NMRD profiles

have been submitted:
e MF-UPen, which employs locally adapted Ly regularization.
¢ MF-L1, an algorithm based on the L; penalty.
¢ MF-MUPen, that utilizes both locally adapted Ly and global L; penalties.

In all these approaches the regularization parameters are computed through automatic procedures founded
on the Balancing Principle (BP) [80] and the Uniform Penalty principle [40].

Two-dimensional time-domain NMR relaxometry techniques inspire all the algorithms. The locally
adapted Lo regularization was originally introduced by Bortolotti et al. in [40], where the regularization
parameters are determined by applying the Uniform Penalty principle. The global L; regularization has
been applied in [155] which addresses the more complex problem of data exhibiting spurious peaks caused
by Quadrupolar Relaxation Enhancement, and it is described in the next Chapter [6] Finally, the coupling of
locally adapted Lo and global Ly penalties was originally introduced by Bortolotti et al. in [22] for inverting
two-dimensional NMR relaxation data and has been adapted to NMRD profiles.

The contributions of this work are the following:

e The implementation and experimental testing of the MF-UPen algorithm, featuring a novel rule for

automatically computing the threshold parameter (.
e The implementation and experimental testing of the MF-MUPen algorithm.

e Development of a dispersion analysis procedure, enabling the determination of the existence range for

estimated parameters.

The diversity of results achievable with different algorithms is shown, focusing on fit quality and corre-
lation time distribution.

Following this introduction, the mathematical problem and numerical methods are detailed in sections|5.1]
and respectively. Section then discusses the results from testing on two sets of NMRD profiles, each

representing significant potential scenarios.

71
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5.1 The Discrete Model for Dipole-Dipole Relaxation

As introduced in Section spin relaxation theory represents the relaxation rates as linear combinations
of spectral density functions of the motion modulating the interactions, i.e., Fourier transform of the time
correlation function.

Depending on the sample under investigation, different spin dynamical interactions may occur. Generally,
at low field, for spins-1/2 the dipole-dipole interaction is the most significant contributor to the relaxation
process. In this chapter, let us focus on data acquired by FFC-NMR, experiments from samples having
spins-1/2. Hence, the contribution one has to take into account will be the dipole-dipole relaxation by ' H
nuclei.

Starting from the formulation of the model-free introduced by Conte et al. in [26], the NMRD profile,
Ry, can be formulated as follows:

Ri(w) = Ry + RFH (W) (5.1)

where w is the angular frequency, Ry is a non-negative offset keeping into account very fast molecular

motions, and the term RH#(w) describes the correlation time distribution function f(7) as follows:

* T 4T
RHH(W):/O e a0 (5:2)

where the correlation time 7 is the average time required by a molecule to rotate one radiant or to move for
a distance as large as its radius of gyration. The integral form described by unconstrainedly retrieves
only the number of possible correlation times representing the dynamics of the overall physical system. The
other typical FFC data analysis approaches, on the contrary, rely on employing ad-hoc mathematical models
containing information about both the number and meaning of the correlation times which describe the
dynamic of a given system. Therefore, using allows one to obtain a fingerprint of the possible motion
regimes without the physical-chemical interpretation, which can be reasonably attempted further considering
the chemistry of the sample under investigation.

The NMRD profile acquired by an FFC-NMR, experiment is sampled at a finite number of angular
frequencies. Let us introduce the following notation before describing the discretization of the continuous
model . Let w € R™ be the vector of the m Larmor angular frequency values at which the profile R; is
evaluated (with w = 27v, and v in [MHz]). Let y € R™ the vector which discretizes the Ry, i.e., y; = Ry (w;),
with ¢ = 1,...,m. Finally, let f € R™ the vector obtained by sampling the correlation time distribution
function f(7) in n finite number logarithmically equispaced values 71, ..., 7,.

By discretizing the equation , the following linear system is obtained:

y=F(f,Ro) = F1(f) + Ro (5.3)

where F : R*t! — R™. Specifically, the first term, F; : R® — R™, is a linear function, depending only on
f, obtained by the discretization of the Fredholm integral equation (5.2)), and can be expressed as:

F(f)=Kf (5.4)
where the matrix K € R™*" represents the Lorentzian kernel (equation (1.24)), section [1.3.5) as follows:

Ki;= . +

(1 + (WiTj)Q)

In a typical FFC-NMR, experiment, the number of elements in R; is much smaller than the number of

47']‘

(1 —|—4(wi7'j)2)

, i1=1,....m , j=1,...,n (5.5)

sampling values of the correlation time, i.e., m < n.
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Finally, the last term in F of is the constant parameter Ry > 0, representing the offset in the
NMRD profile.

Moreover, the previous equation can be rewritten in a more compact form by introducing the
following change of variables x = (f, Ry) € R"*!, and K, = [K 1] € Rm™x(+1);

Yy = K.x (56)

To address the problem of estimating the parameters «, starting from y, different solutions are presented
in the next sections, representing one of the contributions of this thesis. The mathematical problem, being
ill-conditioned, is reformulated as an inverse problem with specific regularization strategies to take into

account some a priori information from physics and chemistry.

5.2 Numerical Methods Proposed

Recalling the notation from Chapter [2 for all three proposed algorithms, the fidelity term is the following
O(z,y) = |ly — Kexll3

while, considering the regularization term, defined as W(x), different kinds of regularization strategies have
been employed, following the theory discussed in Chapters [2] and

Specifically, the MF-UPen algorithm is based on locally adapted Ly regularization, the MF-L1 algorithm
is L1 —based regularization, and finally, MF-MUPen based on multi-penalty regularization, i.e., local-Ly, and
Ly penalties (described in [3.2).

5.2.1 MF-UPen Algorithm

This algorithm, implementing the locally adapted Lo regularization, solves the following constrained mini-

mization problem:
min { ly - Kl + S0, A (La)] | (5.7)

with L = [A,0] € R**(»+1) where A is the discretization of the second derivative operator, according
to central finite difference formulas, and 0 is the n—components null column vector. Observe that the
regularization is imposed only on the parameter f since the sum in ranges for indices 7 from 1 to
n. The regularization parameters \;, i = 1,...,n are computed according to the following relaxed UPEN
principle described in section and introduced in [40]:
2
A = ly — K.z : i=1,....n (5.8)
n (Bo + Bymaxyer, (p,)" + femaxer, (€4)°)

where ¢ = Lz, p = [V,0]x and the I; are the indices subsets related to the neighbourhood of the i—th
entry, i.e. I; = {i — 1,4,4 + 1}. The §’s are positive parameters. The parameter Sy prevents division by zero
and is a compliance floor, which should be small enough to prevent under-smoothing and large enough to
avoid over-smoothing. The optimum value of s could substantially change with the nature of the measured
sample.

The parameters 8, . are used to enhance or mitigate the local effects of slope or curvature. A preliminary
trial value that often yields satisfactory results is 3, = 3. = 1. The parameter 3y, however, is more critical;
its value should not exceed the threshold defined by

e { o () + 5. ma (c0° (59)
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while a too-small value, especially in cases where slope (p) and curvature (¢) approach zero, would lead to
an extremely ill-conditioned problem, hence causing computational challenges.

Therefore, an automatic rule for determining 5y based on the estimate of has been proposed, and
obtained from a tentative solution }E computed by the Truncated Singular Value Decomposition [156] of the
matrix K = UXV7T:

2 UZT?J —6
f= Z v; Tol, = 100y
0
o;>Tol,
where 01 > 09 > -+ > 0; > --- represent the singular values, and the vectors w;, v; represent the i-th

columuns of U and V, respectively [157].
By setting:

_ =~ \2 ~\2 .
Vi = fp max (P,)" + Be max (6,)° i=1,...,n,
where ¢ = A} and p = V}, the By term can be derived as follows:
Bo=rVls 0<p<l (5.10)

The advantage of this approach is that it substitutes the parameter [, which can range in (0, 00), with
the parameter p, which is confined within the interval (0,1). This substitution ensures that Sy remains lower
than the highest values of V' but higher than the lowest ones. This makes determining /3y more intuitive,
particularly when supported by a visual representation of V.

Summarizing, MF-UPen is an iterative scheme where, given an initial guess )\EO), i=1,...,n, an ap-
proximate solution x(®) = (f(k)7Rék)) is computed by solving for fixed )\Ek)7 t =1,...,n, and the
regularization parameters values are updated according to . The minimization problem is solved
by the Newton projection method (NP) [76].

MF-UPen is stated in the following Algorithm[6] The iterations are stopped when the following condition
is satisfied

n n
STIAEY A < Tl Y AP (5.11)
i=1 i=1

where Tol is a fixed tolerance.

Algorithm 6 MF-UPen

(0)

7

: Set k =0, and choose a starting guess A

: Compute By according to ([5.10).

1 ,i=1,...,n.
2

3: repeat

4

5

k=k+1
NMRD parameters update. By using the Newton Projection method compute

z® = argmin|ly — K.z|? + Z /\Ek_l) (Lm)f
x =1

6: Regularization parameter update. Set

2
A\ ly — K| , i=1,....n

i 2 2
n <BO + ﬂp max,cr; (p/(l«k)) + B max,cr,; (C/S,k)) >

7: until converge condition (5.11)
return (f, Ry) = =*) > Result (f, Ro)

o
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5.2.2 MF-L1 Algorithm

This algorithm employs an L;—norm-based penalty, which is preferred for inducing sparsity in f. This
approach is based on the assumption that the f(7) distribution is a sparse function characterized by only a
few non-zero terms.

The problem of parameter identification is reformulated as the following optimization problem:

Imn>i%{||y_Kex”§+aH$”1} (5.12)

where a > 0 is the regularization parameter computed according to the Balancing Principle (BP) introduced
in Section [3.11
Following [155], the equation (5.12)) can be rewritten as

min {|ly — Kez|3 + afzll + 7|3}

(5.13)
st. x>0

In this new formulation the last Lo-based penalty term, n||z||3, has been introduced only to ensure
that K” K, + nI is a definite positive matrix to ensure that is well-posed. It is not a regularization
term and a small positive value for n ~ 10719 is fixed. A complete discussion about the introduction of this
term is in the next Chapter (6), and in [155].

The MF-L1 algorithm is an iterative procedure where, starting from an initial guess A(?), at each iteration
k, an estimate of the parameters (f (k), R(()k)) is computed by solving the parameter estimation problem
for fixed a(*), by the truncated Newton interior-point method [158] (see Algorithm step (4)). Then a new
value a**+1) is determined by using the BP (see Algorithm |7} step (5)). The BP selects the regularization

parameter « so that the data fidelity and the regularization terms are balanced up to a multiplicative factor

v, i.e.,:

vallzlh = [ly — Kexll3 +nll|3. (5.14)
Using the value for v =1 [85], the following rule for the parameter selection is obtained:
_ Ny — Kez|l5 +nll=|3
et
The MF-L1 method is summarized in the following Algorithm [7]

(5.15)

Algorithm 7 MF-L1

1: Set k=0, 7 =101, and choose a starting guess (%),

2: repeat

3: k=k+1

4 NMRD parameters update. By using the truncated Newton interior-point method, compute

z® = arg min[|y — Kea|3+a® D)y +nlle|}
T2

5: Regularization parameter update. Set
iy Ka 3+ le®)3
(e B
6: until |[a®) — aF=D| < Tol|a®|
7. return (f, Ry) = x*) > Result (f, Rp)

An extension of this algorithm, taking into account the QRE effect, is presented in the next Chapter [6]
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5.2.3 MF-MUPen Algorithm

This last algorithm implements the multi-penalty approach, proposed in [40] for the two-dimensional NMR,

relaxometry data. MF-MUPen solves the following unconstrained minimization problem:

n
mmin{lly—KewH%+ZAi(Lm)§+a||:c|1} (5.16)

=1

which incorporates both penalty functions from MF-UPen and MF-L1. The regularization parameters are

then calculated using (5.8) for A;,i =1,...,n and (5.15) for a.
(0)

Summarizing, MF-MUPen is an iterative scheme where, given an initial guess A;
parameter estimate (f*, R(()k)) is computed by solving (5.16) for fixed )\Ek), i=1,...,n+1. Problem (/5.16)
is solved by the FISTA method proposed in [159] which is one of the most popular methods for minimizing

, 1 =1,...,n, a

Lq-penalized least squares functions.

MF-MUPen algorithm is stopped when the following condition is satisfied

ST AP+ ok — o W] < Tol <Z A 4 [a®) ) (5.17)
=1

=1

MF-MUPen is sketched in the following Algorithm

Algorithm 8 MF-MUPen

1: Set k =0, and choose a starting guess /\EO), i=1,...,n, a©.

2: repeat

3: k=k+1

4 NMRD parameters update. By using the FISTA method, compute

a® = argmin|ly — Kex|3+ Y M7V (Lx)? + oY |z,
T

i=1
5: Regularization parameter update. Set
(k) ly - K2’
A= 5 3 i=1,...,n
(k) (k)
n | Bo + Bp max,er, (pu ) + e max,er; (Cu )
o112
o - K|
nflz®) |,

6: until converge condition (5.17)
7. return (f, Ry) = x*) > Result (f, Ro)

These three Algorithms [6] [7] and [§ require an initial estimate for the regularization parameters. This can
be obtained by computing a rough approximation & to the following nonnegatively constrained least squares

problem

: _ 2
min [ly — Kez|;
and then by using the Balancing and Uniform Penalty principles to get the initial guess. More precisely,

o _ Iy = K25 +nl]3
[t
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_K.#l?
2O _ ly 2| 7 i=1,....n

n (50 + Bp maXueIi (IN)M)Q + ﬁc maxpeli (éu)2)

in Algorithms [6] and

5.3 Results and Discussion

This section reports and discusses the results obtained by the proposed algorithms on samples of two different
materials that represent typical case tests.

In the first part, i.e., Section the metrics to quantitatively evaluate the results’ quality and the
experimental setting are introduced; then, in the last part, i.e., Sections and the results obtained
by the three algorithms are shown and discussed.

Numerical computations were carried out using Matlab R2022b on a laptop equipped with an Apple M1
processor with 16 GB of 2133 MHz RAM.

It should be noted that throughout the section, the frequencies v are used instead of the angular fre-

quencies w, where v = w/(27).

5.3.1 Experimental Setting

The fitted NMRD profiles, computed by Algorithms [6] [7] and [8] are compared to the R; data by means of
the x? value defined as follows:

X? = i e wa)” (5.18)

where e is the estimated data value, i.e.

with (}', E)) the computed parameters.

The computed correlation time distributions, f, derived by the three algorithms are quantitatively com-
pared by determining the peak values and the area below the distribution in the neighbourhood of the
correspondent peak, referring to this value as SpecificWeight. To describe this variable, let us introduce the
following notation. Let us assume that f has n, local maxima at the correlation times 7.,, £ = 1,...,n,.
Then let Z; be the neighbourhood of interest through the Full Width at Half Maximum parameter, as follows:

. 1
T, = [t} 7,7 s.t. f(Téow):f(Tg‘p)zif(Tw) L=1,...,n,
Let the SpecificWeight metric represents the value for each peak 7.,, such as:

ng
SpecificWeight, = Z e, f(Te;) Te; € Iy (5.19)
j=1
where ny is the number of correlation times belonging to Z,, £ =1,...,n,.

The value of the tolerance parameters used in the stopping criteria of all algorithms is Tol = 1072.
Moreover, a maximum number k = 10 of iterations has been set but never reached. The computational cost
is evaluated in terms of execution time.

Finally, the algorithms’ robustness has been tested by applying them to a set of s = 500 artificial profiles
obtained by adding to R; uniformly distributed noise within the experimental error intervals. The purpose of
these tests referred to as dispersion analysis, is to evaluate the intervals containing the recovered parameter
Ry, and how the computed estimates scatter around the average value. Additionally, the aim is to examine

how the position and value of the peaks vary in the recovered correlation times distributions.
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5.3.2 Numerical results from FFC measures

The results obtained by applying all the algorithms to NMRD profiles acquired from two experimental
samples, i.e., Manganese and Poplar, are presented in this section.

Both systems are considered a gold standard in relaxometry studies, especially when the involvement of
paramagnetic species is necessary. The relaxometric properties of aqueous manganese solutions have been
thoroughly investigated [160}[161], and as such, these solutions are routinely utilized to assess the performance
and stability of instruments. Additionally, the characteristics of Poplar char have been extensively studied
[162], making it an effective model for examining the textural properties and functional mobility of solvents
within these porous materials. The NMRD profile for the manganese sample was acquired by the authors,
while the data pertaining to Poplar char were taken from [163].

These two samples show how the algorithms’ results can complement each other to improve the overall
quality of the information provided. The global quality of the examined methods has been evaluated in
terms of x2, offset Ry and computation time.

The R; data for the Manganese Sample is measured at 26 frequency values v, ranging within the interval
[1072 — 10'] MHz. The error intervals for these measurements vary from +0.4 to +1.1 [s7].
illustrated by the black error bars in the left panel of Figure

These are
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Figure 5.1: Comparison of R; relaxation rates for the Manganese and Poplar samples. The plots show
the comparative analysis between the actual data (in black) and the results from the MF-UPen (in green),
MF-L1 (in blue), and MF-MUPen (in red) algorithms.

Table 5.1: Manganese Sample. Computational results of the proposed methods.

Algorithm Rg [s7] x? [-] Computation time [s]
MF-UPen 6.64-10° 6.23-107! 9.86-101
MF-L1 1.19-10" 5.55-107" 1.35-107!
MF-MUPen  9.98-10° 4.10-107! 1.24-10°

The Table presents the estimated parameter Ry, the goodness-of-fit measure x?, and the computation
time in seconds obtained by the three algorithms. The MF-L1 algorithm achieves a moderate x? value and
the shortest computation time. In contrast, the MF-UPen algorithm shows a slightly higher x? value and
requires a longer computation time. Finally, the MF-MUPen algorithm achieves the best fit, indicated by
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the lowest x?, suggesting superior model accuracy, albeit with a reasonable increase in computation time as
a trade-off.

Considering the Poplar sample, the R; data is measured at 21 frequency values v, within the interval
[1072 — 10'] MHz. The error intervals for these measurements vary from +0.06 to 0.3 [s~!]. These are

illustrated by the black error bar in the right panel of Figure [5.1

Table 5.2: Poplar Sample. Computational results of the proposed methods.

Algorithm  Rp [s7}] x2 [-] Computation time [s]
MF-UPen 5.40-10° 7.94-1073 7.41-1072
MF-L1 5.41-10° 8.84-107° 6.65- 102
MF-MUPen  5.41-10° 2.19-1072 3.76- 107!

The Table outlines the computational results obtained for the Poplar sample by the three algorithms.
Specifically, MF-UPen and MF-L1 both report nearly identical values for Ry, with minimal x? and very
short computation times, indicating efficient and effective performance. However, MF-MUPen, while yielding
a similar Ry to the other two algorithms, shows a higher x? value, suggesting a slightly poorer fit. Moreover,
MF-MUPen requires longer computation time.

The outcomes for the Manganese and Poplar samples represent two scenarios, each indicative of the
potential variability in sample analysis. This diversity highlights the importance of utilizing multiple methods
to fully understand sample characteristics under varying conditions.

The peak analysis for both the Manganese and Poplar samples across the three methods is performed
by plotting the correlation times amplitudes f computed by each method in Figure [5.2] and reporting in the
Tables peaks positions amplitudes, half-width and SpecificWeights for each sample.

Considering the manganese peaks in Table a perfect agreement is observed among the three methods
in locating the peak at the longest correlation time, 7, = 7.74 - 10~! pus. Meanwhile, MF-UPen and MF-L1
show a quite good agreement at intermediate correlation times: 7. = 3.76 - 1072 us and 7, = 4.23 - 1072 pus,
respectively. The distribution pattern in Figure left panel, shows similarity features between MF-UPen

and MF-MUPen and reveals a tendency of MF-L1 to resolve multiple components at the shortest times.
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Figure 5.2: Distribution intensity as a function of 7.. The plots show the results from the MF-UPen (in
green), MF-L1 (in blue), and MF-MUPen (in red) algorithms.
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Table 5.3: Manganese Sample Analysis. Position (7.) and amplitude f(7.) of the distribution peaks sorted
by f(7e)-

Te f(7e) Half-width ~ SpecificWeight
m [a.u] (5] [a.u)
830-10=2  9.78-10" 8.19-1073 6.94 - 10°
3.76-102  2.95-10' 847-1073 2.13 - 109
MF-UPen 7.74-10"1 9.61-10° 1.18-107! 1.09 - 10!
4.86-10"1  4.63-10° 5.67-1072 2.25-10°
3.43-1071  4.85-1072 4.98-1072 2.17-1072

Algorithm

1.05-1072  5.13-10> 1.34-1073 6.30 - 109
4.23-1072  3.63-10" 5.36-1073 1.75 - 10°
MF-L1 7.74.10~1 1.16-10% 1.21-107' 1.24 - 10"
3.43-1071  2.28-10° 4.00-1072 7.84-1071
1.63-1073% 3.79-1072 7.04-10"* 5.17-107°

9.33-102  8.49-10" 1.09-1072 6.98 - 10°
475-1072  1.09-10' 1.55-1072 1.47-10°
7.74-101 1.15-10% 1.23-107! 1.24 - 10"
3.43-1071 1.49-10° 5.24-1072 7.56-1071

MF-MUPen

Table 5.4: Poplar Sample Analysis. Position (7.) and amplitude f(7.) of the distribution peaks sorted by
f(7e).

) Te f1e) Half-width  SpecificWeight
Algorithm
[11] [a.u.] [11] [a.u.]
423-1072 1.02-10° 3.92.1072 3.54-1071
3.05-107Y 4.65-107' 1.25-107! 5.00- 107!
MF-UPen

1.56-10° 1.75-10~! 5.38-107! 8.05- 107!
3.51-10° 5.53-1072 9.32-107! 4.53-107!

4.75-1072  3.77-10° 1.04-1072 3.34-1071
2.72-107'  1.59-10° 3.50-102 5.11-1071
MF-L1 1.56-10° 4.85-107' 1.89-10"! 8.20-1071
3.94-10° 1.15-10! 4.60-107! 4.55-1071

423-1072 1.87-10° 2.13.1072 3.40-1071
2.72-107' 7.80-10"! 7.49-1072 5.11-10!
1.56-10° 4.41-107' 2.02-10"1! 8.19-1071
3.94.10° 1.14-107! 4.60-107! 4.50-1071

MF-MUPen

In the case of the Poplar sample, as shown in the right panel of Figure and Table a tighter
clustering of peaks is observed across the methods, particularly at the highest amplitude peak around
T, = 4.23 - 1072 ps. This indicates that all three methods are in agreement regarding the main features of

the Poplar sample’s distribution.
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5.3.3 Dispersion Analysis

The robustness of the methods is investigated through the dispersion analysis, described in The
boxplots in Figure [5.3] offer a comparative view of algorithmic performance on the two samples. Each
boxplot outlines the algorithms’ interquartile range (IQR) and median of y? values.

Uniformity in the medians is observed for the Manganese sample, with outliers indicated by red plus
symbols, suggesting occasional significant deviations for MF-UPen. The symmetry of the data is apparent
from the lengths of the whiskers.

Conversely, the Poplar sample exhibits a tighter IQR for each algorithm, denoting less variability. Despite
the close median values indicating consistent algorithmic performance, outliers for MF-L1 reveal notable

deviations in some cases.
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Figure 5.3: Boxplot of the y? values for the Manganese and Poplar samples, comparing the results of the

different algorithms on 500 data realizations.

Table compares the Ry confidence intervals [164], mean Ry, and medians for both Manganese and
Poplar samples across the three algorithms.

The confidence intervals and mean Ry values suggest a wider range of estimates for the Manganese
sample, indicating a less uniform agreement among the algorithms. The median values, while closer, still
reflect a notable variation between the algorithms, suggesting that the model fit depends on the algorithm
applied.

Conversely, the Poplar sample demonstrates remarkable consistency, with both confidence intervals and
mean R values being nearly identical across all three algorithms. The median values also closely align,
reinforcing the observation of uniform performance. This indicates that for the Poplar sample, the choice of
algorithm does not significantly influence the outcome, and all three algorithms provide equivalent informa-
tion.

Table [5.5|represents two distinct scenarios that may emerge when these algorithms are applied to samples
with varying characteristics. In the case of the Poplar sample, the outcome from all three algorithms is con-
gruent, implying that the algorithms are robust and interchangeable for this type of sample. Conversely, the
Manganese sample demonstrates less consistency across the algorithms, suggesting that additional insights
from alternative investigative methods are necessary to supplement the analysis.

Regarding the distribution intensities, the mean distribution obtained by each method was computed,
and the peak positions and amplitudes were analysed in a manner analogous to Tables and for the

single samples.
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Table 5.5: Comparison of Ry Confidence Intervals, Mean Ry, and Median for Manganese and Poplar samples.

Sample  Algorithm Ry Confidence Interval Ro Mean — Median

[s7'] [s7] [s7]
MF-UPen [5.240, 9.253] 7.25-10° 8.26-10°
Manganese MF-L1 [9.251, 12.12] 1.07-10% 1.12- 10!
MF-MUPen [9.652, 11.38] 1.05-10' 1.05-10*
MF-UPen [5.363, 5.406] 5.39-10° 5.39-10°
Poplar MF-L1 [5.370, 5.413] 5.39-10° 5.39-10°
MF-MUPen [5.370, 5.416] 5.39-10° 5.39-10°

From Tables and it is observed that MF-L1 identifies a greater number of peaks compared to
the other two methods, indicating a higher sensitivity of the algorithm.

In the case of the Manganese sample, the data reported in Table show that there is a perfect corre-
spondence in peak position at the longest correlation time 7, = 7.743 - 10~! us among the three algorithms.
While the peaks at shortest and intermediate times are split into multiple components.

Concerning the Poplar sample (Table 7 it is observed that all algorithms exhibit identical peak posi-
tions corresponding to the largest amplitude, occurring at the shortest correlation time, 7, = 4.229-1072 ps.
At longest correlation times, MF-UPen finds a single peak around 7, = 1.748-10° us while MF-L1 and MF-
MUPen split the amplitudes in two peaks at 7. = 1.556-10°,1.963 - 10° s and 7. = 1.556 - 10°,2.205 - 10° us
respectively.

However, despite the differences in the number of peaks identified, Figure shows that all three algo-
rithms exhibit a fundamental robustness in the localization of the positions of the highest peaks.

From Table[5.5] it is observed that MF-MUPen exhibits the smallest confidence intervals in both samples.
Additionally, Figure indicates that the number of outliers is smaller for MF-MUPen compared to the
other methods. Combined with the observations from Figure these results suggest a higher robustness
of MF-MUPen compared to the other methods.

This consistency suggests the algorithms’ effectiveness in capturing the primary characteristics of both
samples, indicating their reliability in identifying the central features of the distributions regardless of sample
differences.

In Appendix [A] the scatter plots related to the computed Ry and some plots of the computed profiles,

and correlation time distributions are shown as examples.
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Figure 5.4: Mean distribution amplitude over 500 data realizations. The plots show the results from the
MF-UPen (in green), MF-L1 (in blue), and MF-MUPen (in red) algorithms.

Table 5.6: Manganese Sample.

amplitude f(7.) of the distribution peaks sorted by f(7.).

Analysis of mean distribution over 500 realizations.

Position (7.) and

Al ‘th T, f(7e) Half-width  SpecificWeight
gorithm
[115] (a.u.) [115] [a.u.]
9.326-1073 8.640-10" 8.889-103 6.949 - 10°
3.765 - 102 1.727-10'  9.075-1073 1.617 - 10°
MF-UPen 7.743 .10~ 9.004-10° 1.385-10! 1.168 - 10*
5.462-10"1 9.534-10"' 1.139-10"! 4.464 - 109
5.995.1072  7.407-10"' 7.643-1073 1.208 - 101
1.048 - 102 1.642-10%2 4.173-1073 6.216 - 10°
6.579 - 1073 3.024-10" 4.493-10~* 5.120-107!
7.743-10~1  1.061-10' 1.264-107! 1.215- 10!
MF-L1 3.765 - 1072 8.763-100 1.897-102 1.702 - 10°
3.854-1071  5470-10"' 7.072-102 5.642 - 1071
4863-1071 3.761-10"! 3.575-1072  4.885-107!
2.420-10"1  1.233-10"! 1.700-10"2 7.589-1072
1.048 - 102 8.461-10" 9.725.1073 6.954 - 10°
MEMUP 7.743-1071  9.675-10° 1.466- 101 1.219 - 10*
- en
4.229.1072 5.630-100  2.526 - 102 2.163 - 10°
4.863-10"1  4.064-10~' 1.402-1071 9.117-1071
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Table 5.7: Poplar Sample. Analysis of mean distribution over 500 realizations. Position (7.) and amplitude
f(7¢) of the distribution peaks sorted by f(7.).

Te f(7e) Half-width  SpecificWeight

[s] (a.u.) (5] la.u.]
4.229-1072 7.234-10"' 5.094-1072  3.369-10"!
MF-UPen 2.719-107'  1.830-10"' 8.540-1072  2.547-107!
1.748-10°  7.503-10"2  1.211-10° 1.091 - 10°

Algorithm

4.229.1072 1.652-10° 1.794-1072 2.811-1071
2.719-107'  2.662-107' 1.465-10"'  4.595-10"!
8.498-1072 1.744-107' 2.187-1072  6.473-1072
1.204-10"%  1.287-10"' 1.081-10"2  3.840-10"2

1.963-10°  8.927-1072  1.045-10° 1.007 - 10°
1.556-10°  8.810-1072 1.176-10"!  3.459-107!
6.136-10"' 2.873-107%2 7.136-10"2  4.805-1072
7.925-10°  1.298-10"% 5.589-10"'  2.304-1072

MF-L1

4.229.1072 1.312-10° 2.518-1072  3.009-10!

2.420-107'  2.697-107' 1.420-10"'  4.568-10"!

1.072-107"  1.047-10"' 2.110-1072  5.096 - 1072

MF-MUPen  1.556-10°  7.936-10"2  1.204-10° 1.180 - 10°
2.205 - 10° 7.194-1072 1.217-107! 2.996 - 101

6.893-10"1 2.774-1072 1.504-10"'  8.125-1072

4.431-10° 7.331-107% 2.851-107!  7.834-102




Chapter 6

Regularization For Quadrupolar

Relaxation Enhancement Effect

This chapter is based on the publication [155].

As described in Section the presence of nuclei with spins greater than 1/2 in the sample under exam-
ination results in the presence of the Quadrupolar Relaxation Enhancement (QRE) effect which contributes
and Essentially, it refers

to electric interactions between these nuclei and the electric fields nearby, due to their charge distributions

to the relaxation process. This complex effect is described in Sections [1.2]
interacting with the gradient of the electric field generated by the surrounding electron clouds. The presence
of the QRE phenomenon is represented by the presence of local maxima or distinct peaks across the NMRD
profile acquired, due to resonant phenomena. To formalize this, let us focus on the contribution by the
interaction between hydrogen (! H) and nitrogen (*N), which, for example, is typically manifested in the
dynamics of solid proteins [3,[4]. The position of the peaks depends on the quadrupole parameters which are
determined by the electric field gradient tensor at the 'V position. Hence, slight changes in the electronic
structure around N cause changes in the position and the shape of the quadrupole peaks. Therefore, the
QRE represents a very sensitive fingerprint of molecular arrangement which has a wide range of applications
in several domains, from the study of ionic liquids, proteins [4], food science [17} [16] 26] [7], to environmental
science [5].

Despite the consistent literature about the modelling of relaxation rate R; of protons fluids within a
confined environment (see Section and applications of FFC-NMR (see for instance [165] and references
therein), the study of a computational framework for the automatization of the FFC-NMR analysis was still
missing.

Therefore, the analysis of the NMRD profiles requires the solution of a parameter identification problem
dealing with the estimation of the offset term, and the correlation time distribution (as presented in the
previous Chapter), but also of the QRE parameters when in the presence of the QRE effect.

In the present contribution, the parameter identification problem is formulated as a regularized non-linear
least squares problem with box constraints and, a completely automatic strategy for its solution is proposed.
In particular, the objective function contains a non-linear least squares term, imposing data consistency,
and a Li-based regularization term. An L;-based regularization term, added to the Lo-data fitting term,
promotes sparse solutions since it forces only some components to be non-null while, at the same time, it
pushes all the other components to zero. Since the correlation time distribution function is known to be
sparse, i.e., to have only a few non-null values, L;-based regularization is a suitable choice compared to
Ls-based regularization, which indeed promotes smooth solutions. The data-fitting and regularization terms

are balanced by the regularization parameter, and the physical constraints on the unknown parameters lead
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to bound constraints in the optimization problem.

The parameter identification problem crucially depends on the regularization parameter whose value has
to be properly identified to perform a meaningful NMRD analysis. Therefore, the proposed mathematical
model depends on several parameters: the NMRD parameters (i.e. the offset, the correlation time distri-
bution), the QRE parameters, and the regularization parameter. The estimation of all these parameters
is carried out by an iterative process where, at each iteration, the regularization parameter is computed
according to a balancing principle (introduced in Section [3.1) [80]. The NMRD and QRE parameters are
estimated by solving the corresponding constrained optimization problem by the constrained two-blocks
non-linear Gauss-Seidel (GS) method (presented in Section [39] 138] since the unknown NMRD and
QRE parameters can be naturally partitioned into two blocks. In the GS method, the objective function
is iteratively minimized with respect to the offset and the correlation time distribution while the QRE pa-
rameters are held fixed; then, fixed the updated values for the offset and the correlation time distribution,
the objective is minimized with respect to the QRE parameters. The first subproblem involves solving a
constrained linear least squares problem, obtained by the model-free approach [26], with an L; regularization
term. The second subproblem requires the solution of a constrained non-linear least squares problem.

This computational approach, separating the contribution due to the offset and the relaxation distribu-
tions from the parameters of the quadrupolar relaxation, can provide a very accurate fit not only of the
overall NMRD profile but also of the local maxima due to the QRE.

Besides analyzing the convergence of the proposed approach, the method was on synthetic and real data
aiming to illustrate its efficiency and robustness to data noise.

The remainder of this chapter is organized as follows: in Section the mathematical model, its dis-
cretization, and the parameter identification problem are described; in Section the solution method is
introduced, and its properties are analyzed presenting the AURORA algorithm. The results from several

numerical experiments are reported and discussed in Section [6.3

6.1 The Discrete Model for QRE Effect

Following the model-free approach introduced in [26], let us now consider the case in the presence of the
QRE effect, represented by the non-linear term R”? to add in the equation (5.1) as follows:

Ri(w) = Ry + RFH(w) + RN (w) (6.1)

For convenience, let us recall all the variables: the non-negative offset R takes into account very fast
molecular motions, the variable w is the angular frequency, and the term R7# (w) is the linear term defining
the correlation time distribution f(7) described by the following integral:

~ T 47
RHH(W) Z {(1 + (wr)?) + (14 4(wr)?) f(r)dr (6.2)

Let us also recall that the integral form represented by (6.2]) freely identifies the number of potential corre-

lation times that characterize the overall dynamics of the physical system. In contrast, conventional FFC
data analysis methods typically depend on pre-defined mathematical models, which incorporate assumptions
about both the number and the interpretation of the correlation times that describe the system’s dynamics.
Therefore, applying provides a broad fingerprint of the potential motion regimes without immediately
assigning a physical-chemical meaning. This interpretation can later be refined by considering the specific
chemical properties of the sample under study.

Finally, the last term RYM(w) represents the QRE phenomenon describing the occurrence of the

quadrupolar peaks and it follows:
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RAN(w) = CHV (14 5in%(0) cos?(®), 4 +5in*(©)sin(B), § +cos*(@) )-

0 N 0
I+ (w—w )13 1+ (w+w )7
TQ + TQ
T+ (w—w)?d 14 (w+wy)?7d
TQ n TQ
I+ (w—Aw)?1d 1+ (w+ Aw)?7d

(6.3)

remarking that - operator in (6.3) denotes the scalar product between two vectors. The term RV depends

on six parameters, detailed as follows:
i) CHYN refers to the gyromagnetic ratios and the average interaction distance of the nuclei;

ii) © and ® are two angles accounting for the orientation of the ' H —1* N dipole-dipole axis with respect

to the principal axis system of the electric field gradient at the position of M N;
iii) 7¢ is the correlation time for the 'H — 14N quadrupolar interaction;

iv) w_ and wy are the angular frequency position of the peaks on the NMRD profiles (where Aw is the
angular frequency difference wy —w_).

Interpolating experimentally acquired data by using the model equation can be considered as the
combination of the free model approach given by for the homonuclear linear R”H term, with the
non-linear function developed in the work [3], represented in for the quadrupolar RN term.

In order to discretize this model, the same notation of the previous chapter is used, i.e., w € R™ is
the vector of the m Larmor angular frequency values at which the profile Ry is evaluated (with w = 27y,
and v in [MHz)); the vector y € R™ discretizes the Ry, i.e., y; = Ri(w;), with ¢ = 1,...,m; and f € R
represents the vector obtained by sampling the correlation time distribution function f(7) in n finite number
logarithmically equispaced values 71, ..., 7,. Moreover, let 1» € RS the vector collecting all the quadrupolar

parameters, defined as follows:
W = (Y1, Y2, Y3, Y, U5, 006) = (CTN sin® (O), sin® (@), 70, w—, w ) (6.4)
By discretizing the continuous model , the discrete model derived is the following:
y=F(f,%,Ro) = F1(f) + F2(¥) + Ro (6.5)

where F : R?6+L 5 R™,
The first term has been introduced in the previous chapter in (5.4), and it is the linear function depending
only on f obtained by the discretization of the Fredholm integral equation (6.2):

Fi(f)=Kf (6.6)
where the matrix K € R™*" is defined as follows:
. A7
K= 7 + i , i=1,....m , j=1,...,n (6.7)

(1 + (wiTj)Q) (1 +4 (wiTj)2)

Recalling that in a typical FFC-NMR experiment m < n.

The second term, Fo(t) : R® — R™ represents the discretization of the quadrupolar component
RHN (6.3), and it only depends on the quadrupolar parameters v, 7 = 1,...,6. It can be expressed
as follows:



6. Regularization For Quadrupolar Relaxation Enhancement Effect

(Fo@)); =1 (3 +02(1—ws), tta-ts, F+(1—1) )

Py n Py
T+ (wi —¥5)202 1+ (w; + ¥5)2¢3
4 4

1+ (w; — 6)%03 - 1+ (wi + )93
4 Yy

1+ (wi — (Y6 — 95))%03 "1 + (wi + (Y6 — 15))293)

(6.8)

fori=1,...,m.
Finally, the last term in F is the constant parameter Ry > 0, representing the offset in the NMRD profile.
The difference compared to the case presented in Chapter [5] is essentially related to introducing the
non-linear term. Nevertheless, as for the correlation time distribution f, it is typically possible to derive a
priori information from the physics and the chemistry of the sample related to the quadrupolar parameters

one wants to extract in this case, represented by the boundary set of 1:

By = {9 : 1 €10,Cl;92,93 € [0,1]; ¢4 € [0,7]; 95,96 € [wi,wu] } (6.9)

A deeper discussion on this topic is in the next Section

In this case, to stabilize the parameter identification procedure, knowing is an ill-conditioned inverse
problem, the L; regularization has been used to induce sparsity of f, since the distribution f(7) is known
to be a sparse function with only a few non-null terms. Therefore, the parameter identification problem is

reformulated as the following optimization problem:

min  [ly — (F1(f) + F2(¥) + Ro) |13 + Al £llx

f¥,Ro
(VRS B¢
Ry >0

where, the first term of (6.10) represents the fidelity term, ®, of Chapter 2} while the second term of ([6.10))
is the L regularization term, ¥, and it is weighted by the regularization parameter A > 0. The parameters
(f,1, Ry) obtained by solving (6.10) depend critically on the value of A.

6.2 Numerical Method

The presented parameter identification method is an iterative procedure where, at each iteration, a value of
the regularization parameter X is provided and the corresponding parameters (fy, %y, Ro,,) are computed
by solving problem . The constrained two-block non-linear Gauss-Seidel (GS) method (described
in [38,139], and here in Section is used for its solution. In the following, first, for useful purposes, the
GS method is recalled with its convergence properties, then, the iterative procedure for the regularization

parameter computation is introduced, and, finally, the overall parameter identification procedure is drawn.

6.2.1 The constrained two-blocks Gauss-Seidel method

In this subsection, the GS method used for the solution of the constrained optimization problem
for a fixed value of the regularization parameter A is described. To this end, the unknowns in are
partitioned into two blocks, such that the data fitting term becomes linear with respect to the first block
and non-linear with respect to the second block. Consequently, problem is reformulated as follows:

min - g(x,@2) = ||y — Kexy — Fa(@2)|l3 + Az [l + e

L1,T2

s.t. xr € X, (611)
xo € Xo
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where, as in the previous case, let 1 = (f, Ro) € X1 be the linear vector collecting the correlation time
distribution vector and the constant offset, and X; = {x; > 0}; while 3 = ¢ € X5, with Xy = By .
Moreover, let us recall K, = [K 1] € R™*(+1),

The last La-based penalty term n|/z1]|3 in the objective function has been introduced to ensure that
KT K, + I is positive definite; to this and, a small value for 7, as n = 10710 for example, can be fixed.
Moreover, observe that in , the parameter Ry has been included in the L;-based penalty term.

The closed subsets X; C R"*! and Xy, C RS are both convex; the objective function g(x1,x2) is
continuous and it is convex with respect to x; for fixed x5, but it is not convex with respect to @, for fixed
x1. However, since K eTK e + I is positive definite and X5 is bounded, it is easy to show that ¢ is coercive
on X; X Xo.

Definition 6.1 A function g : R? — R is called coercive in X if, for every sequence {x®)} € X such that
|2®) || — oo, we have
lim g(z®) = 400

k00
Proposition 6.1 The function g : R**176 5 R such that
g(@r,@2) = |ly — Keay — Fa(aa)|3 + Nz [l + 7|2 13
1s coercive in X1 X Xo.
Proof. The function g can be rewritten as

g(@1,@2) = 2] (KL K.+ 1)@y + 207 K (Fa(x2) — y) + || Fa(z2) — y)|* + M|z |y

where KT K. + nI is positive definite.  Let {(wgk),:c(zk))} be a sequence in X; X X such that

limg 00 ||(:v:(lk)7wgk))|| = 00. Since X5 is bounded, we have
lim ngk)ﬂ =00 and lim ||wgk)|\ < 00 (6.12)
k—o0 k—o0

Let & > 0 be the smallest eigenvalue of KZK'e +nlI. It holds

g@®. 28y > plle?)? - 2| KT (Fa(@8) — )] + Al )| + | KT (Fa(2h) — )2
k k k
> (ol - 21 KT (Fa(al?) - y)ll + ) 28]

From (6.12), it follows that ullz{® || — 2| KT (Fy(x$) — y)|| + A > 0 for sufficiently large k. Therefore,
lim g(at?, 2f) = +oo
k—o0

|

Continuity and coerciveness ensure the existence of at least one global minimizer of g(xi,x3) in
X1 x X5 [76].

In the constrained two-blocks Gauss-Seidel method, at each iteration, the objective function is minimized

with respect to each of the block coordinate vectors x; over the subsets X;, i = 1,2, as recalled in the

Algorithm [9] where the convergence condition is:
k) (k k—1) _ (k-1 k) (k
g1, 23”) — g(ai™V, @) < Tolas|g(ar”, 24| (6.13)

It is noted that the GS method is well-defined since each subproblem has solutions. Indeed, the function

g is strictly convex with respect to @7 and hence there exists at most one global minimum of f over X; for
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Algorithm 9 Constrained two-blocks non-linear Gauss-Seidel method

1: function GS(w(lo),m;O))

2 Set k=0 and z(©) = (w§0)7 :Béo))

3: repeat

4 k=Fk+1

5 Set mgk) € arg min g(z,a:ék_l))
zeX,

6: Set wgk) € arg min g(:cgk)7 z)
z€Xo

7: until convergence condition (6.13)

8: return (w(lk), wék))

9: end function

fixed x2. On the other hand, Weierstrass’s theorem guarantees the existence of at least one global minimum
of g over Xj for fixed x; since ¢ is continuous and X, is a closed and bounded set.

For general nonconvex, constrained problems, the convergence of sequences generated by the GS method
to critical points has been proved in [39]. For the reader’s convenience, the main convergence result for the
GS method is reported, referring to [39] for its proof.

Theorem 6.1 Consider the problem

min  g(z1,x2)
r1,T2

s.t. x1 € X, (614)
Ty € X2

where g is a continuously differentiable function and the subsets X; are closed, nonempty and convex for

i = 1,2. Suppose that the sequence {(xik),mék))

k k
2y

} generated by the two-blocks GS method has limit points.

Then, every limit point of {(x } is a critical point of the problem.

It has already been observed that the objective function g in is coercive; since the level sets of
continuous coercive functions are compact, the sequence {(wgk),wék))} generated by the GS method has
limit points (eventually, it has a convergent subsequence); hence, the GS method converges to critical points
of .

This subsection concludes with a remark regarding the solution of the two constrained subproblems that
must be addressed at each iteration of Algorithm[J] The first subproblem at step 5 is an Lq-regularized least

squares problem with nonnegativity constraints:

m+1
min o — Kez|3 + A ; z (6.15)
st. 2z >0 i=1,....m+1

where w = y — Fg(azgk)).
described in [158].

The second subproblem in step 6 is a bound-constrained non-linear least squares problem:

For its solution, the truncated Newton interior-point method has been used

min || Fa(z) — w|?
i 173(2) - ol 610
s.t. z € Xy

where w = K em(lkH) —y. For its solution, the Newton Projection method has been used [67] [68] where the
Hessian matrix is approximated as in the Levenberg-Marquardt method [166] since the Jacobian of F3 is

ill-conditioned.
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6.2.2 Computation of the regularization parameter \

To correctly analyze the NMRD profiles, it is necessary to choose an appropriate value for the regularization
parameter \. Even if several parameter selection rules have been proposed in the literature for Lo-regularized
minimization problems, the case of Lj-based regularization remains largely unexplored (see Chapter [3).
In [78, [79], the discrepancy principle has been investigated for nonsmooth regularization. This principle is
difficult to be realized since it requires prior knowledge of the noise norm and a solution of the discrepancy
equation is not guaranteed to exist. In [80], the Balancing Principle (BP) has been proposed where the
regularization parameter is selected by balancing, up to a multiplicative factor v, the data fidelity, and the
regularization term, i.e.,

il = lly — Kear — Fa(aa) |3 + |23 (6.17)

The regularization properties of the BP have been deeply investigated and a convergent fixed-point iterative
scheme for its realization has been proposed in [80], and some are presented in section The constant

is set equal to 1, following [85], which gives the following rule for the regularization parameter selection:

_ ly = Kemi — Fo(x2)[I5 + nll=1 3

A
1|1

6.2.3 The parameter identification method

The proposed iterative method for the identification of both the NMRD parameters f, 1 and Ry and the
regularization parameter A is outlined in Algorithm [I0] where, given an initial guess for A, at each iteration,
the NMRD parameters are computed by solving problem (6.10) by the GS method and the regularization

parameter value is updated by the BP until the following convergence condition is met:
IAEFD _ A®) | < Toly AF)| Toly > 0 (6.18)

This method is referred to as AURORA (Automatic L;-Regularized Model-Free Analysis).

Algorithm 10 AURORA

1: Set k=0, 7 = 10712 and choose a starting guess A(?).
2: repeat

3: k=k+1

4 NMRD and QRE parameters update

By Algorithm [9] compute (acgk), a:ék)) = GS(mgk_l), a:(Qk_l)) ie.

k k .
(@, 23") e argmin |ly — Kewr — Fo(wz) 5+ A® [z 1 + |2

r1eX1

xra€Xo

5: Regularization parameter update

k k k
iy = Kol — Fa(@)[3 + nllg” |3

il
6: until convergence condition (6.18)
7. return (f, Ry) = mgk) and ¥ = m(Qk) > Result (f, Ro, )

Following the analysis of the BP performed in [80], algorithm AURORA can be viewed as a fixed point-like
scheme (Algorithm ) for the problem
(@], 25) = argmin ||y — Ky — Fo(z2)[3 + Al +nll2 |13

x1E€X1
T2€ X2
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_ |y = Kext — Fa(x5)[[5 + nll=713
(e

A*

The monotone convergence of the sequence {A\(*)} generated by the fixed point scheme has been proved
in [80] when A(®) is chosen in an interval containing only one solution of equation (6.17).

6.3 Results and Discussion

In this section, the results obtained from a set of numerical experiments are presented and discussed to
evaluate the proposed algorithm’s accuracy, robustness, and efficiency.

First, the experimental setting is described in [6.3.1] The Subsection [6.3.2] presents an evaluation of the
algorithm, denoted as AURORA, on a synthetic NMRD profile Ry, which is computed using the model
with predefined values for the parameters 1, f, and Ry. The computational efficiency and accuracy of
AURORA are assessed by comparison with several algorithms available in the MATLAB Optimization
Toolbox. Additionally, the robustness of the algorithm is examined in the presence of data noise.

Finally, Subsection reports the results of the analysis of NMRD profiles obtained from two distinct
samples: Dry Nanosponge (DN) and Parmigiano-Reggiano (PR) cheese.

6.3.1 Numerical Experimental Setting

Numerical computations were carried out using Matlab R2022b on a laptop equipped with an Apple M1
processor with 16 GB of 2133 MHz RAM.

It should be noted that throughout the section, the frequencies v are used instead of the angular fre-
quencies w, where v = w/(2m).

For all tests, the values C' and 7 in the constraints set By, are set equal to a value large enough
so that the intermediate solutions w%k) and wik) never reach such bounds. The suitable values for the test
chosen have been C' = 7 = 100.

Moreover, the interval [wy, w,] in , representing the region where R; interrupts its decaying behaviour
due to QRE, is defined by inspection of the NMRD profile. The starting guess for the parameter wio) = CHN
is obtained by the literature [4]:

2 n\>
CHN = 2 (L2 THINZ) 0.8 [B] (6.19)
3\4m 1y 52

where the values of the physical constants are reported in Table

Table 6.1: Characteristic constants for CH#¥ in (6.19).

Constant  Description Value
1o permeability of vacuum 1077 [T?J~tm3)
YH LH gyromagnetic factor 2.577 10% [T—1s71]
YN 14N gyromagnetic factor 3.078 106 [T—1s71]
h reduced Planck’s constant 1.05472 10734 [J &]
THN LH —'% N inter-spin distance 1.4 10710 [m]

Concerning the quadrupolar parameters, wéo) =sin? 0O, ¢§0) = sin® ®©), describing the orientation of

the 'H —1* N dipole-dipole axis with respect to the principal axis system of the electric field gradient at
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the position of '*N, the initial values are equal to the mean of the corresponding upper and lower bounds
in By, ie., 1/2.
The initial value of 1/}510) = 7@, i.e., the correlation time characterizing fluctuations of the g -4 N

dipole-dipole coupling, is set to 1, while wéo) = wg)), and 1/)((50) = wf) are defined as follows:

(0) _

O _ 4 ey — el — o — wu — wil
5 C 4 C ’ 6 4

they correspond to the peaks of the QRE observed in the NMRD profile.
The computed results are evaluated by the Mean Squared Error (MSE)

||R1 - f(f?d’aRO)”Q

m

MSE =

and the Parameter Relative Error (PRE):

erzact _ xcomputed H2

PRE(z) =

||xea:act ”2

with = representing either the vector f or the scalars Ry, v;, i =1,...,6.
The components of the vector v are referenced by the name in the physical model (6.3), according to
the mapping introduced in section and reported in Table (6.2 for convenience.

Table 6.2: Quadrupolar parameters mapping.

CcHN ¢ ) TQ wW- Wy

Y1 asin(vy)  asin(vdhs) a5 Y

All the tests apply Algorithmwith Toly = 102 in and Algorithm@with Tolgs = 10~% in .

The computational cost is evaluated in terms of execution time and number of iterations.

Finally, regarding the test performed on real experimental data, the dispersion analysis has been
performed to evaluate the robustness of the algorithm and to extract the confidence intervals of the computed

parameters.

6.3.2 Synthetic Test Problem

The algorithm AURORA has been initially tested on the synthetic NMRD profile Ry, shown in Figure a)
to examine the properties.

This profile is obtained by setting the parameters of model as specified in the second column of
Table with the distribution function f* depicted in red in Figure a).

The accuracy of the computed results can be appreciated in the correlation distribution f and R; curves
shown in Figure 6.2

The convergence behaviour has been tested by evaluating the PRE and the MSE at each step of the GS
method in the algorithm [9] Figure (a) shows the the behaviour of the relative errors for each parameter
(f,Ro,CN & 0,79, v_,v}) compared to their reference values.

The convergence to reference parameter values is initially non-monotonic for most parameters except 7
and v_. On the contrary, MSE has a monotonic decrease as reported in Figure (b).

The values of the computed parameters and relative errors reported in the third and fourth columns of
Table confirm the excellent accuracy obtained by the proposed algorithm.

The computed value of the regularization parameter is \* = 1.216 10~ with computation time of
90.44 + 0.3 s.
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Table 6.3: Model parameters: reference (second column), AURORA computed values (third column) and
PRE (fourth column).

reference computed PRE

Ry 3.69 3.6868 7.0267 10~

CHN 18.84 18.8453  6.1449 107°

TQ 0.96 0.9554 8.5033 106

(S 1.09 1.0901 6.1449 10~°

o 0.57 0.5696 6.9199 104

v_ 2.15 2.1502  5.7363 1076

vy 2.87 2.8696  1.1316 10~°
250 75 : . .
s ]
N A ]
*.‘.‘ i :;"I | [
— 150 ", P : j' : * : :
) aw B
T 100 "oy « i ! Y ! i
mm“‘u.‘. i : 5 : ,+"*""'-.‘ :
N”“’"+.4,_ I ! *w ! ‘,* i
0 e sl l l 4

107 107" 10° 10’ 10° 16 18 2 22 24 26 28 3 32
v [MHz] v [MHZ]
(a) Full profile. (b) Zoom of the profile.

Figure 6.1: Synthetic sample NMRD profile. In Figure (b) the zoom is shown in the reference interval [y, v,,]

represented by the left and right green vertical lines. Left and right black vertical lines represent the values
0,
zl);w), (26—#) respectively.

1000 250
—Reference +R 4 data
—AURORA . -0R1 it
= 800 200 %, I
",
5 600 — 150 'Q..
i o, "8,
= 3
p - o,
£ 40 € 100 %%,
A 200 50 “\%
8.
09
0 A 0 bt
104 10 102 10! 10° 10’ 10 102 107 10° 10’ 10?
7 [ps] v [MHz]
(a) Correlation time distribution. (b) NMRD profile.

Figure 6.2: Synthetic sample computed results (in blue) obtained by the AURORA algorithm compared to
reference one (in red).
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Inner iterations Inner iterations
(a) PRE values per iteration. (b) MSE values per iteration.

Figure 6.3: Synthetic R; results to test the convergence of the algorithm.

The computation cost, evaluated in terms of inner iterations of the two Gauss-Seidel blocks in Algorithm[9]
consists of 147 iterations of the Newton Projection method and 74258 iterations of the truncated Newton
interior point method. Note that the greater computational weight lies in truncated Newton interior-point
iterations due to the larger size of problem compared to .

Although the convergence of the update formula depends on the initial guess A(?), the convergence
for A(9) has been found in a quite large interval ([10~6,10°]). In Figure the sequences \¥) k' =0,...,15
obtained by Algorithm (10| with A(®) € {10716,1076,107*,1072,10°} are represented. Optimal convergence
(k = 1) is obtained for 10716 < A(® < 107* while A(?) > 10~* causes a slight increase of the iterations
number, still preserving the convergence up to A(?) = 1, which is usually considered as a standard starting
guess. Therefore, to keep computations efficient, A(?) = 10~ is used throughout the numerical experiments
of this section.

107+ w
_)\(0) = 10-6
—(0) _ -4
102- A9 - 10
i A0 = 102
10_4: —)\(0)=100 ]
: —\0 - 1079 -
107 E
10°8: 3
10""; E
10712
10714z -
—16E | | | | |
0% 1 2 3 4 5 6 7 8

Figure 6.4: Synthetic R;. Sequence {\(®)}, obtained by AURORA with \(®) ¢ {10716,1075,1074,1072,10°}.
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Comparison with Matlab solvers

This test problem is designed to compare AURORA with several methods implemented by the MATLAB
function fmincon, including the interior-point (ip), active-set (as), sequential quadratic programming (sqp),
and trust-region-reflective (trr) methods.

It is important to note that AURORA automatically computes the value of the regularization parameter
A, whereas the MATLAB function fmincon solves the optimization problem for a fixed value of
A. Consequently, the GS Algorithm [9] is compared with ip, as, sqp, and trr using the same fixed value
A =1-10"8, which was heuristically determined to be suitable for all methods.

Besides the automatic computation of the regularization parameter A\, AURORA splits the unknown
parameters into two blocks and alternatively minimizes the objective function for (Ry, f), the offset and
correlation distribution, and for the quadrupolar parameters @». Two different methods are used for the
solution of the corresponding sub-problems. On the contrary, fmincon computes all the parameters applying
the same method.

Table [6.4] shows the PRE and MSE values (last row) obtained by AURORA (second column) and by the
Matlab solvers, highlighting the smallest values.

Table 6.4: Parameter relative errors (PRE) and MSE of AURORA and methods implemented by the
Matlab function fmincon.

PRE
Parameter AURORA ip active-set sqp trr
f 4.2834-1071 1.5509 1.4497 1.3020 8.5279 - 101
Ry 7.0032 .10~ 9.9629- 10" 1.0000 2.7930 10~ 1.3671-107!
CHN 5.8238 - 10~° 4.2908 9.6353-10~' 1.5045-10~° 1.1591 102
e) 6.9108 - 10~% 6.5929-1072 7.7862-1072  7.207210~*  1.5758-1072
i) 8.7093-10~% 5.5535-10"! 2.1372 2.6548 1075  7.2619-10~3
0 1.5660 - 10—* 9.9228-10~'  3.1584 - 10" 1.8903 10~  1.1033-1072
v_ 5.7679-1076%  4.0856-10~' 2.2756-10"' 5.6228-10"% 5.9438-10°
vy 1.1391-107% 5.5197-1072 3.3362-1072  1.2084-107%  1.8516-107°
MSE \ 2.8131-10° 9.1906 9.0766 3.1658-1076  2.8289-103

The distribution f computed by sqp is shown in Figure

The algorithm AURORA has globally superior accuracy both in data fitting, and parameter estimation.
Only sqp reaches an MSE value (3.1658 - 1076) similar to AURORA (2.8131 - 1079), and a slightly better
PRE for parameters CHYN and v_, but the amplitude distribution in Figure shows too many spurious
peaks. Regarding all the other methods, the obtained results are much larger values compared to AURORA.

Test with Noisy Data
In this paragraph, the robustness of the algorithm to data perturbations is assessed by generating noisy data
y? € R™ from a random uniformly distributed vector v € R™ with values in the interval [~1, 1], such that

The cases 6 = 1%, 5%, 10% are considered.
The computation times (averaged over 10 runs) and the iteration numbers, presented in Table indicate

that both the iteration numbers and computation times decrease as the noise percentage increases. This
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behaviour can be attributed to the effect of increasing noise on the computed regularization parameters, as

shown in the third column of Table

Table 6.5: Computatio

()

n times and iteration numbers with noise § = 1%, 5%10%.

1) Time

Total iterations (6.15) Total iterations ([6.16)) A

1- 1072 | 38.39+0.28
5. 1072 | 14.39 +£0.16
1-107Y | 4.90+0.10

52217 89 5.8405 10~°
44414 72 1.8803 103
16846 28 9.3561 1073

The relations between the execution times are not found precisely in the number of iterations because

they do not take into account the backtracking steps internal to the Newton method.

By computing 500 noisy samples

y?, the AURORA algorithm is executed, and the errors on the estimated

parameters as well as the reconstructed NMRD profiles are compared.

For the noise levels § = 1%, 5%, 1
The mean values are represented in

0%, the mean Parameter Relative Error for each parameter is calculated.
the bar plot shown in Figure alongside the product CHN . 74.

The mean PRE and MSE are reported in Table

The computed R; curves and the zoom in the QRE interval are shown in Figures and for

§ = 1%, 5%, 10% respectively.
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Figure 6.6: Mean parameter values computed by 500 noisy NMRD profiles with noise § = 1%, 5%10%.

Table 6.6: Mean PRE and MSE on 500 noisy NMRD profiles with § = 1%, 5%, 10%.

PRE
1% 5% 10%
I 5.9019 - 1071 1.1816 1.4509

Ro | 3.6393-102 1.6726-10"' 1.8099 10!
CHN | 33625-1072 2.7021-10"' 4.7742-10!
© |23023-1072 1.0678-10"1 2.1726-10"!
) 3.5151-1072 4.0280-10~! 6.5910-10~"
o | 4.4998-1072 1.8862 1.1095 - 10
v_ | 4.3917-107%  4.87121072  7.2441-1072
vy | 3.0889-1073 3.871210°%2  5.6856- 102

MSE | 1.5980- 10! 3.1441 1.0055 - 10!
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(a) Full profile. (b) Zoom of the profile in QRE interval.

Figure 6.7: Fit of NMRD obtained from 500 noisy Synthetic NMRD curves with noise § = 1%, where the
500 fitted R; curves are in light grey, the reference NMRD curve is in red, and the average over 500 fitted

R, values is in blue.
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Figure 6.8: Fit of NMRD obtained from 500 noisy Synthetic NMRD curves with noise § = 5%, where the
500 fitted R; curves are in light grey, the reference NMRD curve is in red, and the average over 500 fitted

Ry values is in blue.
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(a) Full profile. (b) Zoom of the profile in QRE interval.

Figure 6.9: Fit of NMRD obtained from 500 noisy Synthetic NMRD curves with noise § = 10%, where the
500 fitted Ry curves are in light grey, the reference NMRD curve is in red, and the average over 500 fitted

R; values is in blue.

In Figure it is observed that data noise primarily affects the values of CHY, Tg, and ®. However,
when considering the product CH#¥ 74, represented by the second group in Figure it is evident that the
value is preserved for noise levels § = 1% and 5%. This behavior reflects a physical characteristic, supporting
the accuracy of the associated parameters.

Although the average MSE increases with data noise, the computed average Ry curves show a very good
agreement with the reference NMRD profiles (Figures and . The QRE is well reproduced even

with high noise (Figures (b), (b) and (b)).

6.3.3 NMRD Profiles from FFC Measures

The NMRD profiles obtained from two different materials described in [26] have been considered and tested.
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e A sample of 24-month-aged Parmigiano-Reggiano (PR) cheese. The NMRD profile repre-
sented in Figure (a) has m = 48 values with confidence intervals ranging from +0.35% to +3.07%
of the value. The quadrupolar peaks, represented in Figure (a), correspond to frequency values
v_ =21 and vy = 2.8 of values R1_ = 32.2 s7% and R1, = 30.7 s~! respectively.

e A sample of Dry nanosponge (DN). In this case the NMRD profile represented in Figure
(b) has m = 44 values with confidence intervals ranging from +0.47% to +1.54% of the value. The
quadrupolar peaks, represented in Figure (b), correspond to frequency values v_ = 2.4991 M Hz
and v, = 3.1488 M Hz of values R1_ = 104.85 s~! and R1, = 104.85 s~ respectively.
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(a) Parmigiano-Reggiano (PR) sample. (b) Dry Nanosponge (DN) sample.

Figure 6.10: NMRD profiles.
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Figure 6.11: Zoom of the profile in QRE interval.

The proposed AURORA method has been used to compute the model parameters reported in Table [6.7]

The obtained correlation distributions are represented in Figure in a dark green line.

Concerning the fit of the NMRD profiles, the MSE has been measured and reported in the last row of
Table |6_7L Notably, the PR sample exhibits a low MSE of 7.8887 - 102, reflecting a high degree of accuracy
in capturing the underlying data behavior. In contrast, the DN sample yields an MSE of 2.7853, indicating a
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Table 6.7: Values of the parameters fitted by AURORA and MSE in the last row.

‘ Parameter values

| PR DN
Ry 3.23 2.73
CNH 5.66 69.00
<] 1.25 0.91
i) 0.86 0.87
0 1.02 0.74
v_ 2.1 2.56
Vi 2.8 3.17

MSE | 7.8887-10"2 2.7853
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(a) Parmigiano-Reggiano (PR) sample. (b) Dry Nanosponge (DN) sample.

Figure 6.12: Correlation distribution (dark green lines).

less precise identification. This discrepancy likely arises from intrinsic differences in the data characteristics
of the two samples.

The fitted NMRD profiles, represented in Figure show in blue line the data and error bars while
the fitted curves are represented in red line for both samples.

The zoom in the frequencies of the QRE interval is shown in Figure
The results confirm the excellent fit to the NMRD profile (Figure[6.13) also in the QRE interval (Figure[6.14).

Dispersion Analysis on Profiles with QRE

Finally, the dispersion analysis introduced in the previous chapter, in section has been applied in this
case of the AURORA algorithm analysing NMRD curves with QRE effect to extract confidence intervals of
the computed parameters.
Tables and compare the computed parameters, i.e., {Rg, CV, 0O, ®, 7o, v_,v4 }, confidence in-
tervals [164], mean, and medians for both Parmigiano and Nanosponge samples obtained by the algorithm.
For the PR sample, parameters such as Ry, CHY, and 7 exhibit relatively narrow confidence intervals
and small discrepancies between the mean and median, indicating consistent and symmetric distributions.

In contrast, the DN sample demonstrates broader confidence intervals, particularly for CH¥ suggesting
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Figure 6.13: NMRD data and error bars (blue lines) and fitted curve (red lines).
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Figure 6.14: Zoom of data and fitted curves in the QRE intervals. NMRD data and error bars (blue lines)

and fitted curves (red lines).

Table 6.8: Comparison of the Confidence Intervals, Mean, and Median for PR sample.

Confidence Interval Mean Median
Ro [s71] 2.316, 4.013 3.308-10°  3.252-10°
CHN [us/s?] 5.285, 6.351 5.736-10° 5.733-10°
Ol[rad] 1.058, 1.253 1.214-10%  1.253-10°9

[ ]
[ ]
[ ]
d[rad] [0.828, 0.891] 0.860-10°  0.859-10°
[ ]
[ ]
[ ]

70 [us] 0.937, 1.106 1.020-10°  1.020-10°
v_ [MHz] 2.080, 2.111 2.096-10°  2.095-10°
v4 [MHz] 2.808, 2.821 2.815-10°  2.814-10°

greater variability in this computed parameter. Across both samples, the parameters v_ and v, show
negligible differences between the mean and median, reflecting symmetric distributions. These findings

underscore differences in variability and central tendencies between the PR and DN samples for the analysed
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Table 6.9: Comparison of the Confidence Intervals, Mean, and Median for DN sample.

Confidence Interval Mean Median
Ry [s7Y] [1.905, 3.510] 2.736-100  2.749-10°
CHN [us/s?] [57.865, 70.670] 6.011-10*  6.010-10!
O[rad] [0.891, 1.075] 1.057-10°  1.058-10°
d[rad] [0.862, 0.883] 0.872-10° 0.873-10°
TQ [ps] [0.701, 0.756] 0.731-10°  0.732-10°
v_ [MHz] [2.125, 2.720] 2.525-100  2.525-10°
vy [MHz] [2.989, 3.340] 3.131-10°  3.131-10°

parameters.
In Appendix[A] the obtained results are shown in the scatter plots for the 500 repetitions, reporting some

figures for both the computed profiles and the correlation time distributions as examples.



104 6. Regularization For Quadrupolar Relaxation Enhancement Effect




Chapter 7

Neural Network-Based Inversion of
NMR Dispersion Profiles

This chapter is based on the publication [167].

Despite the widespread recognition and application of artificial intelligence methods across various dis-
ciplines, e.g., magnetic resonance imaging, their utilization in NMR remains relatively under-explored and
the adoption of these advanced computational tools is limited. Some Al-based approaches applied to NMR
can be found in the literature. For instance, Weisman et al. developed a supervised learning method applied
to the food industry. Specifically, a convolutional neural network (CNN) has been trained to classify the
transversal relaxation time to identify the oil oxidation level [23]. In NMR spectroscopy, Hansen recon-
structs the sparsely sampled spectra acquired by fast acquisition multi-dimensional NMR, spectra techniques
employing a deep neural network [24].

However, the widespread adoption of FFC-NMR is hindered by the complexity of the analytical instru-
ments and the need for deep expertise in NMR and materials physics. Addressing this challenge, this chap-
ter describes a machine learning framework tailored to the QRE phenomenon, utilizing a neural network to
compute the parameters characterizing the quadrupolar relaxation model. A pre-trained feed-forward neural
network is embedded into the NMRD data fitting procedure according to the philosophy of the Plug-and-
Play (PnP) approach, facilitating integration with NMRD data inversion software based on the coordinate
descent method (two-block non-linear Gauss-Seidel) [155] [168].

Since their introduction, PnP methods have become standard tools for computational imaging [134] [169],
providing practical approaches to integrating learned models with imaging physics to solve inverse imaging
problems. In this work, a similar procedure is followed, embedding the neural network in an alternate
minimization procedure.

The contributions of this work can be summarized as follows:

e Design of a neural network to predict QRE parameters.

e Definition of an appropriate training procedure.

e Proposal and application of a novel specific loss function for network training and prediction.

To my knowledge, no applications of PnP methods to NMRD data inversion exist, making the proposed
method the first example of applying PnP to NMR-FFC data treatment.
This contribution demonstrates the effectiveness of using neural networks for NMRD profile inversion.

The results are tested and compared with those obtained using a previously developed robust optimization

105
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method (Chapter@, [155]), showing strong concordance. This suggests that neural network-based approaches
have the potential to significantly expedite the analysis of extensive datasets in this field.

Following this introduction, section details the physical model and the mathematical parameter
estimation problem. Section describes the proposed neural network approach and the computational
framework of the algorithm. Section presents and discusses the numerical results from testing on two

sets of NMRD profiles, each illustrating significant potential scenarios in food analysis [16].

7.1 Towards an Enhanced Framework

As described in the previous chapters, the relaxation rates can be represented as linear combinations of
spectral density functions of the motion modulating the interactions.
Let us briefly recall for convenience the discrete model (6.5)) required to describe the last proposed method

to extract the parameters and analyze the NMRD curves:
y=Ro+ Kf+ Fa(h) (7.1)

where the second term in the right-hand side of ([7.1)) is the linear function derived from the discretization
of the integral for RH in (6.2) with K € R™*":
T 4r;

Ki4: + s Z':17...7m, ':1,...77’7/
T 0 H (wmy)?) | (L 4(wim)?) J

and f € R", a sparse vector of the sampled correlation distribution function.

The third term in (7.1) models the QRE term R"N(w;), i = 1,...,m in (6.3). It
is represented by the function F» : R® — R™, depending on the quadrupolar parameters

P = (Y1, 2,903,041, 05,06)T = (CHN | sin?(0), sin?(®), 79, w_,w;)T. Let us rewrite it in the following

more compact form:

V4 n P4
Lida—v) | Lo (o - o) T o 1 a0
Fo@)i=vr | d+vats | | TrouER TG T ER (7.2)
%Jr(l ) ((-’:2;4 V6)*] (wi Ji’ﬁ) (o

1+ (w; — Ay )23 * 1+ (w; + Ats6)203)

Where A’(/J5,6 = (¢6 — ’(/)5)
Since the problem is ill-conditioned, and the proposed strategy is an integrated method that employs a
machine learning approach, let us also recall the Li-regularized least squares inverse problem:

min [[(Kf + F2(y) + Ro) — yll3 + Al flh

f,Ro

s.t. f=0 (7.3)
P € Bv,
Ry >0

where the set By, defines the box constraints on :

By = {9 : ¢1 €[0,C]; 2,3 € [0,1]; 1hs € [0,7]; 5,06 € [we, wa) } (7.4)

with the values C, 7, and wy,w, quite delicate to choose as they depend on the physical properties of
the analysed sample and significantly influence the quality of the result. Therefore, they need to be set
appropriately, requiring knowledge of NMR and the physical structure of the studied material.
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Considering the objective function , the first term represents the fidelity term of Chapter |2 ®, and
it imposes R; data consistency; while the second component is the regularization term, ¥, introduced to
stabilize the problem exploiting a priori knowledge on the sparsity of f. The regularization parameter A\ > 0
weights the contribution of the L; regularization term. In the previous chapter, a practical and effective
solution has been described, consisting of an automatic rule, based on the balancing principle framework [80]
for the choice of the regularization parameter A. Then, for each value of the regularization parameter, a
two-block nonlinear Gauss-Seidel method has been used for the solution of .

This means that, from an algorithmic point of view, there are two main nested loops: an outer balancing
principle loop, using the counter ¢, tailored to update A() according to the balancing principle, and an
inner Gauss-Seidel loop to compute the current solution (f, ), Ry) for each MO In particular, the two-block
nonlinear Gauss-Seidel method finds the current solution, for each choice of A(), by alternately approximating

the quadrupolar parameters 1 and the components (f, Ry) as follows:

(FED RIHYY € argmin [|(Kf + Ro) — (y — Fa( )3+ A fll + )l £112 (7.5)
F>0,Ro>0
P ¢ arg min|Fa(1$) — (y - (K& 4 RFFDY) |2 (7.6)
€Ly

with k > 0 and initial guesses (f(©, Réo)) and 4©. This reformulation of the GS of the solution presented
in the previous chapter is applied for each regularization parameter. For simplicity of notation, the iteration
index /£ of the outer loop has been omitted. Moreover, let us remember that the last Lo-based regularization
term 7| f]|3 in , where 7 is a fixed small positive value, has been introduced to guarantee the convergence
of the proposed Gauss-Seidel method as proven in the last chapter. This subproblem was efficiently solved
with the truncated Newton interior-point method [158].

The second subproblem is a bound-constrained nonlinear least squares problem. In the last chapter,
the Newton projection method [67, 68] was described as a solution for this subproblem, with the Hessian
matrix approximated using the Levenberg-Marquardt method [166], due to the ill-conditioning of the Jaco-
bian of F5. The main challenges of this problem are related to the ill-conditioning of the Jacobian matrix,
which requires an appropriate implementation of the Levenberg-Marquardt method, and the need for proper
setting of the box constraints. Therefore, the possibility of using a neural network in this context has been

explored.

7.2 Proposed Neural Network and Plug-and-Play Algorithm

Inspired by the PnP prior approach described in section the design of the PnP algorithm where a
neural network replaces the Newton projection method for the solution of has been investigated. Just
as a denoiser can replace the proximal step related to the prior update in the ADMM algorithm [134], the
presented proposal consists of using a suitably trained neural network instead of the Newton projection
method to update the quadrupolar parameters.

Let us start the description of the proposed neural network by recalling for convenience the changing of

variables introduced in the previous chapter:
z1 = (f,Ro) € X1, 2 =9 € X»

X15{$120} s XQEB¢

and
K.=[K 1] e R™*("+1)

and rewriting ([7.3)) as follows:
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2" € argmin||(K e — (y = Fa(@l) 3 + MDno 1 + 1D o I (7.7)
xrr1eX1

2 € argmin] Fawa) — (y — Ko™ )3 (7.8)
T2 2

where Dy g = I — en+1ez+1, I is the identity matrix of size n + 1 and e,y is the last column of I. A
key observation for conceptualizing this neural network regards one possible interpretation of the Gauss-
Seidel algorithm. A closer look at — reveals that the basic idea of the Gauss-Seidel method is to
alternately approximate the quadrupolar component of the NMRD profile RAN* := y* — (K x}), and the
non-quadrupolar component y* — Fo(x}), where (x},x3) are the true parameters generating the noiseless
observations y*.

Therefore, a neural network ve : R™ — RS has been proposed. It is required to be able to invert the

general quadrupolar function F» by solving the following constrained least square problem, derived by ([7.8)):

ve(RTNEHDY ¢ arg min|| Fy(xy) — RENF+1)|2 (7.9)
2 ERE
s.t. o € Xo

where REN(G+D) .— 4 _ (Kewgkﬂ)) is the (k + 1)-th approzimation of the true quadrupolar component
RHIN* estimated by means of solution :cgkﬂ) of subproblem ([7.7). A schematic representation of the

proposed method can be found in figure

Rl(w)

k k+1
—> R{'— > g > RV >
8 I
L > f(k) g f(k—i—l >
] Ve
@
(k) 3

- > 1/)(’?4‘1) _‘

Figure 7.1: PnP-GS scheme.

In summary, this neural network takes as input the current approximation of the quadrupolar component

of the NMRD profile RFN*+1) " computed as the difference between the data y and the current approximation

of the non-quadrupolar component of the NMRD profile K emgkﬂ)

estimation of the quadrupolar parameters mékﬂ) = vg (RHN K+,

. The network then outputs the current

To train vg for this task, the following procedure has been used: given N sets of quadrupolar parameters
{x2, 1Y, satisfying the physical bounds (7.4), RN := Fy(xy,) for each [ = 1,..., N is computed. Then,
the following loss function is defined:

N
=) (1 —a)lve(RI™) — a2 |} + al Fa(ve (RI'™)) — RIS, p=12 (7.10)
=1
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Therefore, the following minimum problem is addressed:

©" = argminl(O)
©

The resulting network vg- computes:

ve-(RENFHDY € argmin(1 — a)P(x2) + af| Fa(ws) — RANGE+D |2 (7.11)
Z2€X 2
where P(x5) is a prior term on the quadrupolar parameters learned by the network from the training data,
and « is a hyper-parameter to be tuned. This new hyper-parameter can be interpreted as an additional
regularization parameter introduced to solve the inverse subproblem of inverting F5. The necessity of
including this parameter is discussed in section

Concerning the architecture of vg, a feed-forward fully connected neural network with 7 hidden layers
of different dimensions was considered. Specifically, the first one presents 512 neurons, while the next 4
hidden layers have 256 neurons, and the last two have 64 and 32 neurons, respectively. The input layer has
a dimension that depends on the length of the acquired experimental signal.

In the presented case, the experimental signals have a length of 45 acquired points therefore input layer
has 45 neurons. Finally, the output layer has dimension 6, which corresponds to the number of the QRE
parameters to extract. To constrain the output belonging to the bounding box , an absolute sine wave
activation layer after the output layer has been introduced. Specifically, it takes the prediction vector from

the output layer, Z5, and the constraint box X as input, and returns the predicted values x5 € Xo:
x2 = SineWaveFunc (22, X 2)

This is obtained by first normalizing 5 to the interval of each quadrupolar parameter by dividing the
difference between itself and the lower boundary by the range of the boundaries:
., ([@-1I)

=D (7.12)

where L, and U represent the lower and the upper boundary vectors respectively. Then, the absolute value

of the sine function is applied to the normalization result:
Ty = |sin (Z2)]

Consequently, the vector is re-scaled in the corresponding expected intervals by the inverse operation

of (7.12)):
Ty (20 (U—-L)+U

The last step of the function is applied to the two final elements of the vector s, which are the angular
frequency position of the peaks on the NMRD profiles, i.e., w_, and w4. In particular, based on prior

physical considerations, we want to ensure that the following condition is always satisfied
w_ < W4

Therefore we apply a mask to maintain this condition and substitute the corrected values in the vector xs.
After the training, the neural network is plugged into the proposed iterative algorithm. The algorithm is
referred to as Plug and Play - Gauss-Seidel (PnP-GS).
In the algorithm, at each iteration, the objective function is minimized with respect to each of the block
coordinate vectors x; over the subsets X;, ¢ = 1,2, as summarized in Algorithm

The stopping condition is the relative distance between two successive values of the objective function:

g(@1,@2) = [|[(Kexy — (y — Fa(x2)) I3 + A Doz |1 + 1l Dn oz |13
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ie.,
k k k— k— k k
lg(@F, 25) - g(@P 1 28 )|lo < Toll|g(=F, 28] Tol > 0 (7.13)

Algorithm 11 PnP-GS

: Set k =0, and choose a starting guess (:ngo), :cg])).

1

2: repeat

3: k=k+1
4

Linear parameters update. By using the truncated Newton interior-point method, compute

k) (k)

€ argming(z, ;)
zeX

z

o

Quadrupolar parameters update. By using the trained neural network vg, compute the predic-
tion

azék): Vo (g(azgk)7z)>
zeXo

@

until the stopping condition is satisfied (7.13)
return (f, Ry) = wgk) and ¢ = wék) > Result (f, Ro, )

)

The PnP-GS algorithm, as described before, is a variant of the two-block nonlinear Gauss-Seidel method
used in the previous Chapter @ [39 [155]. A critical property of the traditional Gauss-Seidel method is the

monotonic decrease of the objective function g at each iteration, i.e.,
k k k k—1 k—1 k—1
9@\, 2y") < g(@i”, @y ™Y) < gl TV, 2l 7Y)

In the proposed PnP-GS algorithm, we replace the update of the second block x5 with a prediction from a
trained neural network, vg.

Since vg is a learned predictor, it does not inherently enforce the descent condition:
k k k k—1
g(@i @) < gla 2fY) (7.14)

In contrast to explicit optimization steps, the neural network’s output cannot be assumed to guarantee a
monotonic decrease in the objective function at every iteration.

The adopted approach in this proposed method is to verify the decreasing behavior of the algorithm
through empirical observation. In practice, the evolution of the objective function g is monitored throughout
the iterative process. Empirical evidence indicates that, in the vast majority of iterations, the condition
is satisfied. Hence, although the neural network update does not intrinsically guarantee a monotonic descent
of the objective function, the overall iterative scheme mimics the convergence behavior analogous to that
of the traditional Gauss-Seidel method. This empirical control provides evidence of the robustness and

reliability of the proposed approach.

7.3 Numerical Results and Discussion

In this section, the results produced by the proposed framework when applied to food samples of two distinct
types of cheese, effectively illustrating typical test scenarios are presented and discussed. Specifically, the

following samples have been considered (taken from [26] [16]):

e [PC]: A sample of Pecorino cheese produced from livestock raised in a region characterized by brown

soil.
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e [PR]: A sample of 24-month aged Parmigiano - Reggiano cheese.

Details on the generation of the training set, the training procedure, and the error metrics used for eval-
uation are provided in sections and The experiments involving analysis of the loss function
in equation are discussed in m Finally, in a comprehensive report and discussion of the
algorithm’s performance are presented, comparing the results obtained with those produced by the Model-
FreeFFC Matlab software [168] based on the AURORA algorithm described in the previous Chapter @

The numerical computations were performed using Matlab R2023b on a laptop with a 2 GHz Quad-Core
Intel Core i5 processor and 16 GB of 3733 MHz RAM. The neural network was implemented using the Deep
Learning Toolbox. Also in this result section, the frequencies {'|are considered instead of angular frequencies
w, using the relationship f = w/(27).

7.3.1 Training Procedure

The neural network veg, which takes into input the quadrupolar part of the NMRD signal R¥Y  has been
trained using a training set composed of synthetic signals. Specifically, signals were obtained by randomly
sampling sets of the quadrupolar parameters from uniform and continuous distributions in the By, range and
using the model .

The values C, and 7 in the constraints set By are set equal rounding up to the nearest integer of
the maximum value between the correspondent values for both samples. The interval [wg,w,] in , which
represents the region where R interrupts its decaying due to the quadrupolar relaxation effect, is defined
by inspection of the NMRD profile and rounding up to the nearest integer of the minimum and maximum
value of both samples. The values for the angles ©, and ®, which represent the orientation of the molecular
system, were constrained within the interval [0, 1]. This range was selected to cover the full possible span of
angular values, providing flexibility for the network to adapt to the varied quadrupolar interactions present
in the cheese samples without bias towards a specific orientation. In Table the range of By, is collected.

Table 7.1: Range of the parameters, By, selected to generate the training set.

Variable Interval
CMN [us/s?) [0, 8]
© [rad] [0,1]
O [rad] [0,1]
7Q [ps] [0, 3]

[we, wy] [rad/us]  [10,20]

Figure presents a portion of the training set, where several signals are plotted. It is worth noting
that the peaks are shifted in position and exhibit varying amplitudes, depending on the randomly sampled
values used to generate each corresponding signal, capturing the diversity within the synthetic dataset.

In Table the training characteristics are specified. Moreover, ADAM optimizer [105] has been used
to minimize the loss function. The network training has been performed several times, varying the value of
« in the quadrupolar loss function . Starting from a very small value, 1-10~3, which corresponds to an
almost null influence of the profile fitting in the minimization of the loss function, to 1, which corresponds
to not taking into account the prediction error by the network. The following a values have been used:
a={1-10"31-10"1,3-10"1,5-1071,7-1071,9-107%,9.99 - 1071, 1}.

IThe notation f is used to refer to frequencies instead of the usual v to avoid confusion with the neural network, vy. Moreover,
it is worth pointing out that the notation f differs from f. The latter refers to the correlation time distributions and it is always
presented as a function of the correlation times, i.e., f(7¢).
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Figure 7.2: A subset of synthetic signals in the training set, generated randomly sampling ),, € By,
m=1,...,10* from a uniform and continuous distribution.

Table 7.2: Training parameters selected to train vg.

Dimension of the training set 10*
Computational time for a single training [s] 103
Number of epochs 103
Learning rate 1074

7.3.2 Testing Procedure

Next, the method used to test the neural network is detailed. This includes the initial parameter guesses,

stopping criteria, and the computational setup for the numerical tests.

As for the previous algorithm (AURORA , the starting guess for the parameter wgo) = CHN is

obtained from the literature [4]:

2 B\ 2
CHN = 2 (BOTHIND) .18 [ﬁ] (7.15)
3\4r iy 52

with the values of physical constants reported in Table of the previous Chapter [6]
Considering the other quadrupolar parameters, the starting values are reported in Table

The value of the tolerance parameters used in the stopping criteria of the algorithms is Tol = 10~2, while

the maximum number of 10? iterations k has been set, but never reached.

The computational cost of the algorithm is evaluated in terms of execution time, which encompasses
the duration required for processing the testing dataset. The number of iterations needed to reach the stop
condition has been also considered in terms of efficiency. By analyzing both execution time and iteration
count, insights into the efficiency and scalability of the neural network can be gained, informing its practical

applicability in real-world scenarios.
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Table 7.3: Starting guess selected for the quadrupolar parameters.

Starting guess Parameter correspondent Value

go) CHN [us/s?] 0.18
0 sin® (©) [rad] 1/2
{0 sin? (@) [rad] 1/2
3 7Q [ps] 1
éO) wye [rad/ps] 12
éo) wy, [rad/ps] 18

Error Metrics

To evaluate the performance of the network during training and testing, specific error metrics have been
used. The fitted NMRD profiles, computed by the Algorithm and AURORA , are compared to the

experimental acquired R; employing the x? value defined as follows:

m Rebt Rl )

-y

i=1

(7.16)

where R$™ is the estimated data value, i.e.,
Ry = Kf + Ry + Fa(v)

where (}, Ro, 177) are the computed parameters.

To obtain a global parameter that accounts for both fit and parameter error predictions to select the
best value for « in the training step, the following Lo squared norm-based metric computed as follows has
been proposed:

IR R T W RS
[ R [l5 113 [ Roll3 1913
The proposed metric comprehensively accounts not only for the relative error in the network’s predictions

o =

(7.17)

but also incorporates the fitting error and the error associated with the linear components. This holistic
approach ensures a more robust and accurate evaluation of the model’s performance.

Finally, as in the work presented in Chapter [5] the computed correlation time distribution f extracted
by the two algorithms have been quantitatively compared determining the peak values and the area below
f in the neighbourhood of such peaks, defining such a value as SpecificWeight .

Let us briefly recall the formula for the SpecificWeight:

nyg
SpecificWeight, = Z 7o, f(Te;) Te; €Ly
j=1
where ny is the number of correlation times inside the neighborhood of interest Z, (using the Full Width at

Half Maximum parameter), and with £ = 1,...,n,, number of local maxima in f.

7.3.3 Model Loss and Trained Network Selection

The choice of the model loss has been validated by training experiments. Specifically, the network perfor-
mance has been analyzed by varying both the considered norm (p = 1 for the Li-norm and p = 2 for the
Lo-norm in ) and the parameter o € [0,1] in . In this paragraph, the results related to this
analysis are shown.
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(a) Training loss. (b) Validation loss.

Figure 7.3: In red the expression for the model loss with p = 1, while in blue the expression with p = 2. The

different curves refer to different values of .

In Figure the training and validation loss evolution are respectively shown. As evident from the
figure, the network trained with the L; norm exhibits a steeper decline in both training and validation losses
compared to the Lo norm case. In both cases, the loss functions rapidly decrease in the initial epochs and
continue to decrease consistently throughout the training period for the L; norm case. From the training loss
evolution, this suggests that this norm facilitates faster convergence during training compared to Lo; while
from the validation loss evolution, this suggests that the L; norm enhances the generalization capability of
the model.

The only exception is represented for the case of a = 1, where the loss function evolutions are constant,
meaning that the network is not learning. These cases represent the cases where the network tries to learn
only from the NMRD fitting and it doesn’t take into account the error on predictions (see with a = 1),
and it is an expected result. For clarity, in Figure only this case is shown.

10° 10°
S S
c
2 2
£ E
. g
_L1 norm _L1 norm
_L2 norm _L2 norm
-1 -1
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(a) Training loss. (b) Validation loss.

Figure 7.4: Case model losses with a = 1, i.e., the network during the training only takes into account the
error on NMRD profile fitting, while it does not consider the error on the quadrupolar predictions. In red

the expression for the model loss with p = 1, while in blue the expression with p = 2.
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7.3.4 Results for Cheese Samples

In this part, the results obtained by applying the two algorithms (PnP-GS, and AURORA) to NMRD
real profiles obtained by two experimental samples, already discussed at the beginning of this section are
presented. The Pecorino cheese sample is referred to as PC, while the Parmigiano cheese sample to as PR.
Regarding the samples, the PC sample has been produced from livestock raised in a region characterized
by brown soil; while the PR, sample is a 24-month-aged Parmigiano-Reggiano cheese. These samples were
selected to illustrate the impact of varying compositional and environmental factors relevant to the food
industry in the experimental analysis.

The R; data for both samples are measured at 45 frequency values f, ranging from 1072 to 10! MHz.
The error intervals for the PR case vary from £0.1 to +4.4, while for the PC case from +0.4 to +4.1. These
experimental signals are illustrated in Figure where in blue and black are plotted the PR and the PC

samples respectively.

-1-PC sample
-#-PR sample
T
9
1 .
10 ..
1072 107 10° 10° 102

f [MHz]

Figure 7.5: Test set: NMRD real profiles with error intervals from cheese samples. Specifically, in black is
the PC sample, while in blue is the PR sample.

In the case of the proposed integrated method, the numerical tests were performed by using the best
result from the model loss selection training procedure shown in Figure [7.3] i.e., p = 1, and by varying
the hyper-parameter . The global quality of the method is evaluated using the metrics described in the
paragraph showing the &,, and the x? evolution varying o for both samples. Finally, the NMRD
profile fit and the correlation time distributions for the best a found are presented.

It is important to emphasize that the neural network was never exposed to the experimental signals from

the test set during training.

Pecorino Cheese (PC) Sample

The following results refer to the first analyzed sample, i.e., the Pecorino cheese (PC) sample. In Figure
the proposed method performances are shown in terms of &, varying « in the model loss. The best
result obtained is at @ = 0.7, showing the importance of taking into account both the error on the predictions,
and the error on NMRD fitting during the network training. In Table the values of £, and the last value
of x% computed by the algorithm are indicated for each value of o. Figure Iﬁl shows the evolution of the

x? values in the outer iteration loop (regularization parameter update) for each value of . It is shown that
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Figure 7.6: PC sample analysis. &, evolution varying a in the model loss function during the network

training.

Table 7.4: PC sample analysis. &, and last value of x? varying « in the model loss function during the

network training.

a=0001 a=01 a=03 a=05 aoa=07 a=09 «=0999 a=1
Ea 1.562 0.312 0.284 0.325 0.232 0.745 1.365 1.896
X2 (last) 0.630 0.518 0.497 0.554 0.479 0.575 0.591 0.806

the minimum value for x? at the final iteration is achieved for a = 0.7, confirming the observation made
during the training phase.

Additionally, it is important to note the worst results occur for e = 1. In this case, the x? values are
higher and remain constant compared to other cases. This outcome aligns with the network training results
for a = 1 (see Figure , where the training loss remains constant, indicating no learning. Incorporating
this poorly trained network into the proposed algorithm results in suboptimal predictions, affecting both
the linear part solved by numerical methods and the non-linear part addressed by the neural network. The
fitted profile presented in Figure (a) shows in black line the data and error bars, while the fitted curves
are represented in red line for the case of the proposed PnP-GS algorithm and in green line for the case
of AURORA. The zoom in the frequencies of the QRE interval is shown in Figure (b). Qualitatively,
it is evident the excellent agreement between the two methods, showing that the proposed algorithm can
perfectly fit the experimental data. The predictions obtained by the two algorithms and the error metrics
are presented in Table showing a perfect agreement between the two methods. Moreover, in terms of x?,
the PnP-GS algorithm performs better, with a lower value compared to AURORA. An interesting result is
the efficiency of the algorithm that uses the neural network to extract the quadrupolar parameters compared
to the AURORA algorithm. Hence, measuring the efficiency in terms of the number of iterations and
computational time, it is shown that the PnP-GS algorithm requires an order of magnitude fewer iterations
and significantly less computational time than the AURORA algorithm (after training).

Concerning the extracted correlation time distributions by the two methods, in Table a perfect
agreement among the two algorithms in locating the peak at shortest correlation time, 7. = 1.87 - 1072 us
is observed. The algorithms present a quite good agreement at the other two correlation times, especially
at the longest one. This result is qualitatively presented in Figure showing that all two methods agree
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Figure 7.7: PC sample analysis.

x? evolution varying o in the model loss function during the network

training.
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Figure 7.8: PC sample analysis. The NMRD data and error bars are in black, while the fitted curves by

AURORA, and by PnP-GS are in green and red respectively.

concerning the main features of the PC sample’s distribution.

Parmigiano-Reggiano Cheese (PR) Sample

The analysis of the Parmigiano-Reggiano cheese sample follows. The evolution of the error metrics is provided

and the obtained results are compared with those obtained using AURORA.

The method performance in terms of &, is presented in Figure showing the same result obtained

for the PC sample, i.e., the minimum value is obtained at o = 0.7. The numerical values of £, and the last
value of x? varying a are specified in Table The x? evolution is shown in Figure confirming that
the best algorithm result is obtained using the trained network with e = 0.7 in the model loss function. The
NMRD profile fitting in the case for the best value obtained (o = 0.7) is shown in Figure (the full profile
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Table 7.5: PC sample analysis. Predictions obtained by PnP-GS, and by AURORA.

PnP-GS AURORA

Ry 8.968 8.930
chNH 2.753 2.014
0 1.049 1.061
10} 0.9735 1.085
TQ 1.391 1.266
v_ 2.043 2.178
Vi 2.762 2.727
Y2 0.497 0.755
Number of iterations 20 122

Computational time [s] 10 180

Table 7.6: PC sample analysis. Position (7.) and amplitude f(7.) of the distribution peaks sorted by f(7.).

Algorithm 7, [us]  f(7.)  Half-width SpecificWeight
0.9770 55.2006 0.2397 108.7355
0.1353 36.5104 0.0158 36.5484
AURORA
0.0187 24.8273 0.0023 26.6269
1.0975 99.8717 0.1307 108.7280
0.1707 24.6778 0.0349 36.5321
PnP-GS
0.0187 14.7087 0.0045 26.6457
100~ - AURORA
----- PnP-GS
9
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Figure 7.9: PC sample analysis. Correlation time distribution f(7.) extracted by AURORA (green lines),

and by PnP-GS (red lines).

(a), while the zoom in QRE interval (b)).

This result confirms the excellent agreement between the two

methods and the experimental data. Also, in this case, a perfect agreement between the predictions of the
two methods is obtained (Table[7.8). PnP-GS is faster and more efficient, as is shown from the x? values of

the two methods, as well as from the computational time and the number of iterations. Finally, considering
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Figure 7.10: PR sample analysis. &, evolution varying « in the model loss function during the network

training.

Table 7.7: PR sample analysis. &, and last value of x? varying « in the model loss function during the

network training.

@
Q
b
§
0.6 0.7 0.8 0.9 1

a = 0.001 a=03 a=05 a=07 a=09 a=099 ao=1
Ea 1.217 2.314 2.389 1.236 2.974 3.335
X2 (last) 0.191 0.228 0.233 0.120 0.446 0.776

1.8
1.6

1.4

1.2

Figure 7.11: PR sample analysis. x2? evolution varying a in the model loss function during the network

training.

the correlation time distribution analysis in the PR case, AURORA identifies more peaks compared to the
PnP-GS algorithm. Qualitatively, from Figure the two peaks at lower correlation times and the one at
the longest correlation time show a good agreement. Concerning the second longer, PnP-GS finds a peak
at 7. = 0.2719 ps, while AURORA splits that peak into two at 7. = 0.1717 us, and 7. = 0.6893 us. The

*a: 0.001
=a: 0.1

a: 0.3
*a: 0.5
=a: 0.7

a: 0.9
=a: 0.999
*a: 1

20
lterations

mismatch is related to the ill-posedness of the mathematical problem.
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Figure 7.12: PR sample analysis. The NMRD data and error bars are in black, while the fitted curves by
AURORA, and by PnP-GS are in green and red respectively.

Table 7.8: PR sample analysis. Predictions obtained by PnP-GS, and by AURORA.

PnP-GS AURORA

Ry 3.832 3.290
cNH 5.784 5.664
0 0.989 1

& 1.046 0.859
TQ 1.386 1.022
v_ 2.065 2.096
vy 2.839 2.815
Y2 0.120 1.189
Number of iterations 40 189
Computational time [s] 9 45

Table 7.9: PR sample analysis. Position (7.) and amplitude f(7.) of the distribution peaks sorted by f(7.).

Algorithm 7, [us] f(7e) Half-width  SpecificWeight
0.1707 43.0202 0.0202 44.3755
1.7475 22.1196 0.7016 85.2641
0.0266 19.4388 0.0058 38.1599

AURORA
0.6893 9.5693 0.2278 34.3516
0.0023 8.6636 3.4447-1074 11.6631
0.0010 6.0052-10—* 7.3211.10° 0.0017
1.9630 71.5316 0.3623 67.1817

271 7332 . 4441

PuP-CS 0.2719 55.733 0.0363 0
0.0236 24.1669 0.0053 38.1577
0.0026 3.0452 5.3259-10~4 11.6695
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Figure 7.13: PR sample analysis. Correlation time distribution f(7.) extracted by AURORA (green lines),
and by PnP-GS (red lines).

The observed results demonstrate the construction of a PnP neural network capable of returning the
quadrupolar QRE parameters for two different types of cheese. Embedding this network in software to fit
the NMRD profiles makes its use more robust and effective. These preliminary results form the basis for
large-scale application. By enriching the training set with appropriately measured samples, it will be possible

to proceed with the automatic identification of the characteristics of the examined samples.
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Conclusions

This thesis has provided a comprehensive investigation into advanced methodologies for analyzing Nuclear
Magnetic Relaxation Dispersion (NMRD) profiles. The work focused on designing, developing, and validat-
ing innovative algorithms tailored to address key challenges in this domain. The presented approaches to
this application encompass traditional numerical techniques, regularization-based optimization, and neural
network-based methods. These contributions have demonstrated significant potential to enhance the toolkit
available to researchers for characterizing molecular dynamics in a range of materials and application sce-
narios. Below, the key contributions of each chapter of the second part of this thesis are summarized in
detail.

In Chapter |5, a comparative study was conducted to evaluate three algorithms based on different reg-

ularization strategies, i.e., MF-MUPen, based on locally adapted Lo regularization, MF-LI1, based on L
regularization, and MF-MUPen, based on multi-penalty regularization, consisting of local-Lo, and L; penal-
ties. These three methods were proposed to analyze NMRD profiles derived from experimental data.
The study was performed using two datasets representative of different applicative scenarios. All three algo-
rithms demonstrated consistency in identifying primary peak positions, indicating fundamental robustness
in capturing the core characteristics of the samples. Among these, the MF-MUPen algorithm stood out
for its robustness in the presence of noisy data. However, differences in the number of peaks detected and
their respective amplitudes highlighted variations in the sensitivity and adaptability of each algorithm. This
analysis underscores that while all methods are effective in their core task, the choice of algorithm should
be guided by the specific noise levels and sensitivity requirements of the intended application [154]. These
findings would allow researchers to make more precise and context-specific decisions when designing and
executing practical experimental setups to investigate the molecular dynamics of different samples.

In Chapter [6] a strategy to address a more complex challenge of analyzing NMRD profiles is presented.
Specifically, the focus is on profiles influenced by the Quadrupolar Relaxation Enhancement. This intro-
duced a nonlinear model, requiring the solution of a constrained nonlinear least-squares problem. To tackle
this, a novel methodology was proposed, integrating a model-free approach with L, regularization. The op-
timization problem was effectively solved using a two-block nonlinear Gauss-Seidel method, with theoretical
guarantees established for the existence of a solution and the convergence of the iterative process to critical
points. Furthermore, following the Balancing Principle introduced by Ito, an automatic update rule for the
regularization parameter is proposed, ensuring adaptability and robustness across diverse scenarios. The
resulting algorithm, AURORA, has been validated using first a synthetic dataset, and then by applying it
to real data. The results demonstrated its ability to accurately estimate correlation time distributions and
model the quadrupolar function.

Moreover, the algorithm can be viewed as a reference framework to construct parameter estimation proce-
dures when the model parameters can be split into independent blocks allowing the use of different compu-
tational approaches for each block [I55].

The AURORA algorithm has been included in the Matlab software tool
ModelFreeFFC Tool for the inversion of NMRD profiles with QRE (available at
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https://site.unibo.it/softwaredicam/en/software/modelfree).

Chapter [7] introduced a novel approach by developing the first neural network-based framework for
analyzing NMRD profiles in the presence of QRE. Unlike traditional inverse methods presented in the
previous chapters, this approach treated the problem as a black-box optimization task, achieving results
consistent with those of validated numerical algorithms.

The neural network model was validated on real datasets and demonstrated superior computational speed
once trained, offering a significant advantage for high-throughput industrial applications. However, it is im-
portant to note that this comparison does not take into account the training time required for the network,
which remains manageable at approximately 10% seconds, even with a training set consisting of 10* signals.
Once the network is trained and integrated into the algorithm, no retraining is necessary, enabling rapid
processing of large datasets from various samples and allowing for accurate characterization of material prop-
erties. Unlike AURORA, which requires careful initialization for each application, the proposed algorithm
offers a more streamlined, automated solution for efficiently processing real signals.

It demonstrates high accuracy in estimating correlation time distributions and quadrupolar parameters,
reinforcing its potential for use in fast-paced industrial environments [167]. For instance, it can be applied
to monitor ageing and ripening processes in cheeses and other fermented foods, analyze moisture content
in dairy products, meats, and processed foods, and potentially predict shelf life or detect early signs of
deterioration in fresh and packaged foods.

Despite its promising capabilities, the current approach has some limitations. First, the need for specialized
and costly FFC-NMR equipment, which is not commonly available in standard food testing laboratories,
may restrict its widespread use. Additionally, the accuracy of the neural network heavily relies on the
quality and quantity of the training data. While the method was validated on specific cheese types using
synthetic signals, applying it to other food products would require generating suitable training data, limiting
its immediate applicability to a broader range of food matrices. However, the highly automated nature of
the proposed method offers a significant advantage, as it reduces the need for manual intervention and expert
knowledge, making it easier to adapt and scale once the appropriate data is available, potentially overcoming
these limitations in the long term.

In conclusion, this thesis represents an advancement in the field of NMRD profile analysis. The al-
gorithms and methodologies developed herein address critical challenges in robustness, adaptability, and
computational efficiency. By bridging the gap between traditional numerical methods and modern machine
learning techniques, this work contributes to the growing demand for accurate, efficient, and automated
tools for molecular dynamics studies. The outcomes of this research not only advance the state-of-the-
art but also lay the groundwork for future innovations, ensuring broad applicability across scientific and

industrial domains.
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Appendix A

Dispersion Analysis Applied to
NMRD Profiles

The dispersion analysis presented in sections[5.3.3] and[6.3.3|has been carried out to investigate the robustness
of the proposed methods and to extract the confidence interval of the computed parameters.

In this work, the analysis consisted of applying the algorithm of interest to a set of s artificial profiles ob-
tained by adding to the curve uniformly distributed noise within the experimental error intervals. Generally,
all the tests were performed setting s = 500.

In this appendix, some results obtained by this analysis are shown both on samples presenting the QRE
effect and not. The most important consequences required from this analysis were already discussed in the

previous chapters, hence here the figures are shown for the sake of completeness.

Manganese Sample

Referring to the manganese sample of Chapter |5} i.e., a case where the experimental profile does not present
local maxima because the QRE effect does not occur, Figure [A.T shows the correlation time distributions
(a) and the NMRD profiles (b) obtained by applying the MF-L1 Algorithm of Chapter [5|to a set of 500
synthetic signals obtained starting from the real acquired one. Specifically, all the results for the 500 data are
in light grey, the reference computed on the real data set is in red, and the mean values obtained averaging
over the 500 set in blue. In Figure 77 the scatter plot representing the 500 computed R parameters is shown,
with the horizontal red line representing the mean value, i.e., Ry = 1.19 - 10! 57! (reported in Table of
Chapter [5)).

Parmigiano-Reggiano Sample

Here, the Parmigiano-Reggiano (PR) sample from Chapter @ which presents the QRE effect, is analyzed.
Figure [E displays the correlation time distributions (a) and NMRD profiles (b) obtained by applying
AURORA to 500 synthetic signals derived from the real acquired data. The results for all 500 datasets are
shown in light gray, with the reference computed on the real data in red and the mean values averaged over
the set in blue. Figure @ presents the scatter plots for the Ry (a), CV (b), and 7¢ (c) parameters, where
the horizontal red line indicates the mean value. Similarly, Figures [A.5 and [A.6 show scatter plots for ©, @,

v_, and v. For reference, the mean values and confidence intervals are summarized in Table [A.1, recalling

Table [6.8]
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Figure A.1: Manganese Sample. Computation of correlation time distributions and fitting profiles by MF-L1
to 500 data set. In (b) the real experimental data and the error bars are black.
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Figure A.2: Manganese Sample. Scatter plot reporting the 500 Ry computed values by MF-L1.

Table A.1: Comparison of the Confidence Intervals, Mean, and Median for PR sample.

Confidence Interval Mean Median
Ro [s71] [2.316, 4.013] 3.308:10°  3.252-10°
CHN [pns/s?] [5.285, 6.351] 5.736-10°  5.733-10°
O[rad] [1.058, 1.253] 1.214-10°  1.253-10°
®[rad] [0.828, 0.891] 0.860-10°  0.859-10°
7o (18] [0.937, 1.106] 1.020-10°  1.020-10°
v_ [MHz] [2.080, 2.111] 2.096-10°  2.095-10°
v, [MHz] [2.808, 2.821] 2.815-10°  2.814-10°
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Figure A.3: PR sample. Computation of correlation time distributions and fitting profiles by AURORA to
500 data set. In (b) the real experimental data and the error bars are black.
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