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Abstract

This thesis covers various questions in supergeometry, noncommutative geometry and
invariant theory. A brief summary of each of these topics is given below.

♦ The fundamental theorems of invariant theory characterize the ring of invariants
C[Mr×p]

SLr(C), under a canonical action of special linear group SLr(C) on the algebra
of polynomials C[Mr×p]. In this case, the generators correspond to the r × r minors
and satisfy well-known Plücker relations. We present here a super version of this
question. Following a necessary modification, we prove the first fundamental the-
orem for the case of special linear supergroup SL(r|s). By employing an approach
taken from the classical case based on the well-known Jacobi’s complementary minor
theorem, we establish certain relations, what we refer to as super Plücker relations.
For the case of SL(1|1), we are able to prove that the super Plücker relations given
here completely characterize the ring of invariants. For the general case, we con-
jecture that the super Plücker relations proposed here fully characterize the ring of
invariants.

♦ In a recent work by R. O. Buachalla and P. Somberg, Lusztig’s positive root vectors,
with respect to a distinguished choice of reduced decomposition of the longest element
of the Weyl group, were shown to give a quantum tangent space for every A-series
full quantum flag manifold Oq(Fn). Moreover, the associated differential calculus

Ω
(0,•)
q (Fn) was shown to have classical dimension, giving a direct q-deformation of the

classical anti-holomorphic Dolbeault complex of Fn. Here we examine in detail the
rank two case, namely the full quantum flag manifold of Oq(SU3). In particular, we

examine the ∗-differential calculus associated to Ω
(0,•)
q (F3) and its non-commutative

complex geometry. We find that the number of almost-complex structures reduces
from 8 to 4. Moreover, we show that each of these almost-complex structures is
integrable, which is to say, each of them is a complex structure.
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♦ A quantization of the complex Minkowski space described as the big cell inside
grassmannian Gr(2, 4), due to R. Fioresi and others, is well-known. We extend this
approach to the case of N = 2 Minkowski superspace. We give the superalgebra
of N = 2 antichiral quantum superfields realized as a subalgebra of the quantum
supergroup Cq[SL(4|2)]. The multiplication law in the quantum supergroup induces a
coaction on the set of antichiral superfields. We also realize the quantum deformation
of the Minkowski superspace as a quantum principal bundle.
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Chapter 1

Introduction

“Quantum mechanics requires the introduction into physical theory of a
vast new domain of pure mathematics - the whole domain connected with
non-commutative multiplication. This, coming on top of the introduction of
new geometries by the theory of relativity, indicates a trend which we may
expect to continue. We may expect that in the future further big domains
of pure mathematics will have to be brought in to deal with the advances in
fundamental physics.” [26]

- Paul Dirac, 1939

Quantum physics is regarded as one of the greatest accomplishments of humankind
in the 20th century. It certainly enabled us to comprehend nature better, but it also
gave rise to several extremely fascinating subjects in pure mathematics. The title of
this dissertation contains the names of two of these topics, i.e. supergeometry and
non-commutative geometry, as well as one very classical area of mathematics, namely,
invariant theory. In this chapter, we briefly summarise the themes of each of these
subjects, followed by an introduction to the results accomplished in this thesis.

1.1 Supergeometry

Elementary particles are classified into two classes based on their spin quantum number.
Particles having an integer spin (e.g. photons, gluons etc.) are referred to as bosons,
whereas those having a half-integer spin (e.g. electron, protons, etc.) are known as
fermions. The Pauli exclusion principle and spin-statistics Theorem states that when
two identical particles are exchanged in a quantum system, the total wavefunction is
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symmetric for bosons and anti-symmetric for fermions [75]. The principle of supersym-
metry (SUSY) [31], which postulates a symmetry between bosons and fermions, is the
foundation of supergeometry.

Supergeometry is a generalization of the classical geometry which allows a space to
have both type of coordinates, i.e. the coordinates that commute and the coordinates
that anti-commute, called even and odd coordinates respectively. Chapter 3 provides
a brief summary of several supergeometric concepts employed in this thesis. For more
details see [19, 39, 75].

1.2 Noncommutative geometry

In the Hamiltonian formulation of classical mechanics, the phase space of a system is
parameterized by a symplectic manifold M whereas the observables are given by the
families {ft} ⊂ C∞(M ×R) of smooth functions on M , [72, Chap. 2]. The dynamics is
controlled via a Hamiltonian H ∈ C∞(M) and the equation of motion for an observable
ft is given as:

d

dt
ft = {ft, H}.

On the other hand, in quantum mechanics, the states of a system are defined by rays
in a Hilbert space H, the observables are defined via self-adjoint operators on H, [72,
Chap. 4]. The dynamics is controlled via a Hamiltonian H and the equation of motion
for an observable Ft is given as:

d

dt
Ft =

ι

ℏ
[H,Ft].

Quantum physics highlights a striking difference; the non-commutativity of physical
observables. In [25], Dirac proposed the famous canonical commutation relations:

[Â, B̂] = ιℏ[̂A,B]

where ℏ is the reduced Plancks constant, that is the founding observation in noncom-
mutative geometry as we are going to see in this thesis. The transition of results from
classical to quantum descriptions is often regarded as quantization. The purpose is to
provide a unified framework to study both classical and quantum worlds. Mathemati-
cally, one can formalize canonical quantization as a correspondence:

Q : f 7→ Q(f)
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where f ∈ C∞(M) and Q(f) ∈ H satisfying:

[Q(f), Q(g)] = ιℏQ({f, g}).

However, this approach presents difficulties. The Groenewold No-go Theorem [43], tells
that there does not exist such a nice correspondence in general. One of the ways to
move forward is known as deformation quantization, see [78] for details. The rough idea
is to associate to a Poisson manifold M a family {Aℏ} of non-commutative algebras
parameterized by specific admissible values of Planck’s constant ℏ such that at ℏ = 0
we recover the algebra A0 = C∞(M) of smooth functions on M .

In pure mathematics, this concept motivated the discipline of noncommutative ge-
ometry. The idea is to replace the commutative algebra of functions on a space with
a noncommutative associative algebra, which is considered the algebra of functions on
a noncommutative space. See [17, Chap. 1] for more details on the motivation of this
brilliant idea.

In chapter 2, we provide a brief summary of several concepts from noncommutative
geometry that are employed in this thesis. For more details see [14, 57, 58, 63].

1.3 Invariant theory

Invariant theory is a very classical area of mathematics which dates back to the 19th

century that provided important results, whose applications involve both, mathematics
and physics, see [10] for an historical review of the theory. Many renowned mathemati-
cians including P. Gordan, J. J. Sylvester, D. Hilbert, E. Noether made fundamental
contributions to this subject. For details, see [67].

Let G ⊂ GL(n,C) be a linear group, and,

ρ : C[x1, · · · , xm]×G −→ C[x1, · · · , xm]

be an action of G on the polynomial algebra C[x1, · · · , xm]. A fundamental question
of invariant theory is to characterize in terms of generators and relations, the ring of
invariants C[x1, · · · , xm]G with respect to ρ.

In chapter 4, we study this question for the case of special linear supergroup SL(r|s).
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1.4 Outline of the main results in this thesis

In this thesis, we discuss some works that lies at the intersections of above described
subjects. Most of the material is borrowed from the following:

− R. Fioresi, M. A. Lledo, J. Razzaq, N=2 quantum chiral superfields and quantum
superbundles, J. Phys. A. : Math. Theor. 55, 384012, (2022).

− R. Fioresi, M. A. Lledo, J. Razzaq, Quantum Chiral Superfields, J. Phy.: Conf. Ser.
2531 012015, (2023).

− R. Fioresi, J. Razzaq, Quantum N=2 Minkowski Superspace, Proceedings of Science,
(2023).

− Two more projects that are not published yet.

A brief summary of each of these topics is described below.

1.5 Fundamental theorems of super invariant the-

ory

Consider the polynomial functions on the set of r × p (r ≤ p) complex matrices Mr×p,
that are invariant under the action of the complex special linear group SLr(C):

C[Mr×p]× SLr(C) −−−→ C[Mr×p]

(f, g) −−−→ f.g,

where (f.g)(M) := f(gM) and C[Mr×p] denotes the algebra of polynomials functions
on the entries of Mr×p. In this case, the First and Second fundamental theorems of
invariant theory characterize the ring of invariants. (See section 4.1 for precise state-
ments.)

We want to provide a generalization of this result to supergeometry. The gener-
alization of some questions of invariant theory to the super setting appeared early in
the literature: for example, the Young super tableaux and techniques regarding their
manipulation, appeared first in [27] and at the same time in [2], to address questions
of representation theory of Lie superalgebras and the double commutant theorem, a
fundamental result, originally proven, in the ordinary setting by Schur [71]. In partic-
ular, in [2], the authors prove also a version of the straightening algorithm for Young
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super tableaux, of uttermost importance in representation theory and directly linked
to the Plücker relations [33]. Later on, in [44], appeared such algorithm in the super
setting. Their idea, involving the so called virtual variables method, provides an elegant
approach which encompasses both, the ordinary and the super setting at once. More re-
cently in [79, 29] appeared generalizations to other supergroups as the orthosymplectic
one and in [23] a categorical approach to super invariant theory allowed to go beyond
the characteristic zero setting (see also [24]).

In the present work, however, we are interested in a related, and yet different topic.
It has its significance rooted into the geometric meaning of these combinatorial ques-
tions. In the ordinary setting, fundamental theorems of invariant theory provides with a
presentation of the ring of invariants via the Plücker relations, which give an embedding
of the grassmannian manifold into a suitable projective space. In supergeometry, su-
per grassmannians do not admit, in general, projective embeddings (see [61, Chap. 4]).
However, in [73], the authors define a new graded version of super projective space,
with negative grading, which allows for such an embedding. Indeed, the Berezinians of
sub-supermatrices replace truly the notion of minors, which give the projective coor-
dinates for the classical Plücker embedding. Then, they allow to proceed and give the
correct supergeometric counterpart of the Plücker embedding [73]. However, due to the
very nature of berezinians, which are defined only when the supermatrix is invertible,
one is forced to restrict the analysis to an open set.

Once this geometric constraint is set in place, we are able to prove the super version
of the first fundamental theorem (FFT). By employing an approach from the classical
case based on the well-known Jacobi’s complementary minor theorem, we establish
certain relations, what we refer to as super Plücker relations, which are in agreement
with the relations appeared in [73]. Furthermore, we are able to prove that the super
Plücker relations given here completely characterize the ring of invariants for the case of
SL(1|1). However, for the general case, we conjecture that the super Plücker relations
proposed here are all the relations.

1.6 Complex structures on the full quantum flag of

Oq(SU3)

Constructing a theory of noncommutative geometry for quantum homogeneous spaces is
an extremely important, but a very challenging question. Despite numerous significant
contributions over the past three decades, this field remains largely under development.
Throughout the literature, the essential example has been the celebrated Podleś sphere
Oq(S2), which serves as a fundamental test for evaluating new ideas, see [8, 28, 65].
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The Podleś sphere is the simplest example of a quantum flag manifold, see [11]. For
the last two decades, the noncommutative geometry community has tried to extend
its understanding of the Podleś sphere to this general class of examples. In particular,
attention has focused on those quantum flag manifolds of irreducible type, a special,
more tractable, subfamily of the general quantum flag manifolds. Many results ap-
peared in the literature, most notable the proof, in [54], that the irreducible quantum
flag manifolds admit an essentially unique q-deformed de Rham complex, directly gen-
eralising Podleś’ construction and classification of differential calculi for Oq(S2). Also,
the noncommutative complex and Kähler geometry of the Podleś sphere extends to the
irreducible quantum flag setting, see [65, 66].

While many interesting and challenging problems remain in the irreducible setting,
the time has now come to start examining the non-irreducible situation. Recently,
in [15], Somberg and Buachalla constructed an anti-holomorhic Dolbeault complex

Ω
(0,•)
q (Fn) for the A-series full quantum flag manifolds using Lusztig’s root vectors and

extended the Borel–Weil theorem to this setting.

In this thesis, we restrict to the simplest example of a full quantum flag manifold
after the Podleś sphere, namely Oq(F3) the full quantum flag manifold of Oq(SU3).
This offers an accessible and tractable example, making it an excellent starting point
for future research in the non-irreducible setting. Just as Podleś’ work advanced our
understanding of the irreducible setting, Oq(F3) has the potential to do the same for
the non-irreducible case.

We examine the maximal prolongation of the associated differential ∗-calculus, show-
ing that it has classical dimension. Notably, unlike for the special anti-holomorphic sub-
calculus, σ is not of classical type. We next classify the left Oq(SU3)-covariant almost-
complex structures on Ω•

q(F3). We find that the number of almost-complex structures

reduces from 2|∆
+| (where ∆+ is a choice of positive roots for sl3) to 2|Π| (where Π is

the set of associated simple roots). This is because certain almost-complex classical
decompositions fail to be bimodule decompositions in the quantum setting, due to the
involved bimodule structure of the differential calculus. An almost-complex structure
admits a q-deformation only if it is integrable. When it does, integrability carries over
to the quantum setting, meaning that we do not have any non-integrable noncommu-
tative almost-complex structures. We contrast this with the irreducible quantum flag
manifolds that have a unique complex structure, up to identification of opposite com-
plex structures. We conjecture that this fact generalizes to all A-series full quantum
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flag manifolds.

1.7 N = 2 Minkowski superspace and its quantiza-

tion

According to the Penrose’s twistor space approach [68], the complex Minkowski space
can be realized as the big cell inside grassmannian Gr(2, 4) which serves as the conformal
space, see [39, Chap. 2], [61, Chap. 1, §3] for more details. A quantization of this
Minkowski space description appeared in [34, 35, 39]. In [42], we extend this approach
to the case of N = 2 (anti-chiral) Minkowski superspace.

It is well known that the N = 1 superconformal superspace, in its complexified ver-
sion [61, 75], is the superflag Fl(2|0, 2|1, 4|1), on which the conformal supergroup SL(4|1)
acts naturally. The space C4|1, underlying the defining representation of SL(4|1), is the
space of supertwistors [68, 30].

Dealing with the complexified version has the advantage of seeing this structure,
while the conditions for the real form can be imposed later on [75]. For the super grass-
mannians, only the extreme cases Gr(p|0,m|n) or Gr(p|n,m|n) are superprojective and
are both embedded into the projective superspace PM |N for suitableM and N , see [39].
This is different from the classical setting where all grassmannians are projective vari-
eties. These super grassmannians Gr(p|0,m|n) and Gr(p|n,m|n) are dual to each other
and corresponds to the antichiral and chiral superspaces respectively, in the physics
literature. (See [39]).

The superflag Fl(2|0, 2|1, 4|1) can be embedded in the product,

Fl(2|0, 2|1, 4|1) ⊂ Gr(2|0, 4|1)×Gr(2|1, 4|1) ,

and using the super Segre embedding [40] the superflag is embedded into the projective
superspace P80|64, see [18, 39]. For N = 2 we can reproduce the same situation with,

Fl(2|0, 2|2, 4|2) ⊂ Gr(2|0, 4|2)×Gr(2|2, 4|2) ,

but this superflag is too big. The scalar superfields associated to it have too many field
components to be useful in the formulation of supersymmetric field theories. Still, the
antichiral Gr(2|0, 4|2) and chiral Gr(2|2, 4|2) superspaces do have physical applications
so it is useful to study them. They are both embedded in P8|8.

Here we will consider only the (anti-)chiral superspace. Our aim is to quantize it
by substituting the supergroup SL(4|2) by the quantum group SLq(4|2) (in the sense
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of Manin [59]) and trying to define appropriately the quantum super grassmannian as
an homogeneous superspace. This appeared for N = 1 in [18, 39]. As we will see, the
N = 2 case has its own peculiarities.

The Minkowski N = 2 superspace M emerges naturally in this context as the big
cell in the super grassmannian Gr(2|0, 4|2), see [39, Chap. 4] for N = 1 case. However,
as remarked above, the N = 2 SUSY has its own peculiarities, which make the theory
richer. We view the big cell in Gr(2|0, 4|2) as the subsupermanifold containing certain
2|0 subspaces and we realize it as the set S of pairs of vectors in C4|2 modulo the natu-
ral right GL(2)-action, which accounts for basis change. Hence, we construct M as the
quotient of S modulo the ordinary general linear group GL(2). The quantization of M
is obtained, as expected, as the subring of a localization of SLq(4|2), generated by the
quantum coinvariants with respect to the coaction of quantum GLq(2). The presen-
tation of this quantum superring via generators and relations, makes an essential use
of the commutation relations among the quantum determinants appearing in the defi-
nition of the quantum Gr(2|0, 4|2) and the Plücker relations. Moreover, the quantum
Minkowski space, Mq, is isomorphic to the quantum Manin superalgebra, that is, the
quantum super bialgebra of matrices, as described in [59]. This fact is highly non obvi-
ous, it depends on the quite involved commutation relations of quantum determinants
and it shows how this framework is natural and suitable for more exploration.

The antichiral Minkowski N = 2 superspace, being a quotient, appears then natu-
rally also as a principal bundle for the action of GL(2). There is an extensive litera-
ture regarding the quantization of principal bundles (see [3, 11, 50, 55] and references
therein). In particular the notion of Hopf-Galois extension [60] appears to be the right
one to formulate, in the affine setting, the theory of principal bundles to obtain their
quantum deformations.

We hence proceed to define Hopf-Galois extensions in the SUSY framework and
prove that the chiral Minkowski N = 2 superspace M is the base for a principal bundle
S for the supergroup GL(2), by realizing it as a trivial Hopf-Galois extension. Next,
we construct a quantum deformation Mq of M, by taking advantage of our previous
realization and show that Mq is the quantum space, base for the quantum principal
bundle Sq, for GLq(2).

1.8 The organization of the thesis

The thesis is organized as follows.
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In Chapter 2, we introduce briefly some basic and well-known material from noncom-
mutative geometry including the notion of Hopf algebra and some interesting examples,
quantum groups, quantum homogeneous spaces, Takeuchi’s equivalence, differential cal-
culus, and the notion of almost complex structures, from a noncommutative point of
view.

In Chapter 3, we introduce very briefly some basic notions of supergeometry includ-
ing the notion of super vector spaces, superalgebras, supermatrices, super Cramer’s
rule, supermanifolds, and supergroups.

In Chapter 4, firstly, we introduce the (classical) fundamental theorems of invariant
theory. Then, we state the problem in supergeometry and prove the first fundamental
theorem for special linear supergroup. Furthermore, we establish a super-version of
a well-known determinant identity called Jacobi’s complementary minor theorem that
helps us to construct what we refer to as super Plücker relations. Finally, we show that
the proposed super Plücker relations are all the relations for the case of SL(1|1), and
we conjecture this statement for the general case.

In Chapter 5, we discuss the Lusztig differential calculus on full quantum flag man-
ifold Oq(F3) and then we extend it to a ∗-calculus and study the almost complex and
complex structures on Oq(F3) in this description.

In Chapter 6, we recall the notion of quantum Minkowski space and then extend
it to the N = 2 quantum Minkowski superspace following a description of Minkowski
superspace being the big cell inside super grassmannian Gr(2|0, 4|2).
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Chapter 2

Noncommutative geometry

This chapter is devoted to introducing some of the notions and concepts from noncom-
mutative geometry. The description given here is very brief, for details see the standard
references [14, 57, 58, 63].

The chapter is organized as follows. In Section 2.1, we recall the notion of an algebra
and a coalgebra. In Section 2.2, we introduce the notion of Hopf algebra and state some
of their properties. In Section 2.3, we introduce an important class of Hopf algebras
known as Drinfeld–Jimbo quantized enveloping algebras. In Section 2.5, we discuss
the notion of quantum homogeneous spaces. In Section 2.6, we discuss a categorical
equivalence called Takeuchi’s equivalence which is fundamental to a classification of
differential calculi on quantum homogeneous spaces. In Section 2.7, the notion of first-
order differential calculus (FODC for short) in noncommutative setting is introduced.
In Section 2.8, we introduce the notion of covariant first-order differential calculus
and some characterization results are presented. In Section 2.9, the notion of almost
complex structure and complex structure in noncommutative setting is discussed.

In this thesis, by a quantum group we mean certain Hopf algebras which are defor-
mations of the enveloping Hopf algebras of semisimple Lie algebras or of the algebras
of regular functions on algebraic groups.

2.1 Algebras and coalgebras

Symmetry is one of the greatest ideas in mathematics. In noncommutative geometry,
it is captured by Hopf algebras. One may think of them as generalizations of ordinary
groups, see [57, §1.1]. A Hopf algebra is an algebra together with some additional
structures. In this thesis, by an algebra we always mean an associative unital algebra.

21



Definition 2.1.1. An algebra is a pair (A, .) where A is a vector space over K and
. : A×A −→ A is the product map such that:

(i) a.(b.c) = (a.b).c

(ii) a.(b+ c) = a.b+ a.c

(iii) (a+ b).c = a.c+ b.c

(iv) k(a.b) = ka.b = a.kb

(v) there exists an element 1A ∈ A satisfying 1A.a = a.

for all a, b, c ∈ A and k ∈ K. Alternatively, using the universal property of tensor
products one can define an algebra as a triplet (A,m, η) where m : A ⊗ A −→ A
and η : K −→ A are linear maps, called the multiplication map and unit respectively,
obeying:

m ◦ (id⊗m) = m ◦ (m⊗ id), (2.1)

m ◦ (id⊗ η) = id = m ◦ (η ⊗ id). (2.2)

The properties (ii), (iii) and (iv) in the first definition above are captured by the tensor
product while (i) (associativity of multiplication) and (v) are equivalent to Equations
(2.1) and (2.2) respectively. Equivalently, one may write the Equations (2.1) and (2.2)
by requiring the following diagrams to commute:

A⊗A⊗A A⊗A

A⊗A A,

m⊗id

id⊗m m

m

(2.3)

K⊗A A⊗A A⊗K

K⊗A A A⊗K.

η⊗id

id m

id⊗η
id

∼=
∼=

(2.4)

Now, we introduce another object, namely the coalgebra, by reversing the arrows
in the diagrams (2.3) and (2.4).
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Definition 2.1.2. A coalgebra is a triple (C,∆, ε) where C is a vector space over K,
∆ : C −→ C ⊗ C and ε : C −→ K are linear maps called comultiplication and counit
respectively, such that the following diagrams commutes:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C,

∆

∆ id⊗∆

∆⊗id

(2.5)

K⊗ C C ⊗ C C ⊗K

K⊗ C C C ⊗K.

ε⊗id

id⊗ε

id

∼=

∆

∼=

id (2.6)

The commutativity of diagrams in (2.5) and (2.6) are referred to as coassociativity of
comultiplication ∆ and counit condition for ε respectively.

Let C and C̃ b two coalgebras. A coalgebra morphism is a linear map φ : C −→ C̃
such that the following diagrams commute:

C C ⊗ C

C̃ C̃ ⊗ C̃,

φ

∆C

φ⊗φ

∆C̃

C C̃

K.

εC

φ

εC̃
(2.7)

A coalgebra (C,∆, ε) is cocommutative if τ ◦∆ = ∆, where τ : C ⊗ C −→ C ⊗ C is the
usual flip morphism sending a⊗ b to b⊗ a.

The category of coalgebras also admits a monoidal structure. For any two coalgebras
C and C̃, their tensor product C⊗C̃ is also a coalgebra together with the comultiplication
and counit defined below:

∆C⊗C̃ := (id⊗ τ ⊗ id) ◦ (∆C ⊗∆C̃),

εC⊗C̃ := εC ⊗ εC̃.

Most of the concepts related to algebras can be dualized to coalgebras in a similar
fashion (i.e. reversing the arrows in their diagrammatic formulations). We discuss some
of these below.
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Definition 2.1.3.

• A subcoalgebra B of a coalgebra A is a linear subspace of A such that:

∆(B) ⊂ B ⊗ B.

• A coideal I of a coalgebra A is a linear subspace of A such that:

∆(I) ⊂ A⊗ I + I ⊗ A, and ε(I) = {0}.

• A (left) C-comodule over a coalgebra C is a pair (N,∆N) where N is a vector
space and ∆N : N −→ C ⊗ N is a linear map, called the coaction, such that the
following diagrams commute:

N C ⊗N

C ⊗N C ⊗ C ⊗N,

∆N

∆N id⊗∆N

∆⊗id

(2.8)

N C ⊗N

K⊗N.

∼=

∆N

εC⊗id (2.9)

Let N and N ′ be two C-comodules. A C-comodule morphism f : N −→ N ′ is a
linear map such that the following diagram commute:

N C ⊗N

N ′ C ⊗N ′.

∆N

f id⊗f
∆N′

(2.10)

Similarly, the notion of a right-comodule can be defined.

Notation 2.1.4. Using Sweedler’s notation greatly simplifies working with a coalgbera.
For an element x ∈ C, we can write ∆(x) ∈ C ⊗ C as follows:

∆(x) =
∑
i

xi(1) ⊗ xi(2).
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In Sweedler’s notation, one omit the summation sign and indices and set:

∆(x) = x(1) ⊗ x(2). (2.11)

Furthermore, utilizing the coassociativity of the coproduct, one denotes:

x(1) ⊗ x(2) ⊗ x(3) := ((id⊗∆) ◦∆)(x) = ((∆⊗ id) ◦∆)(x). (2.12)

Similarly, one sets the higher order coproducts. For more details see [58, §3.1].

2.2 Hopf algebras

A vector space having both algebra and coalgebra structure coexisting in a compatible
way is called a bialgebra.

Definition 2.2.1. A bialgebra is a vector space A together with both algebra and
coalgebra structures such that the comultiplication ∆ : A −→ A ⊗ A and counit
ε : A −→ K are algebra morphisms. A bialgebra morphism is a linear map which is
both algebra and coalgebra morphism.

Example 2.2.2. Let q ∈ C× be non-zero complex number and set ν := q − q−1. The
algebra of quantum matrices Cq[Mn] is defined as the quotient algebra:

Cq[Mn] := C⟨uij| i, j = 1, · · · , n⟩/I,

where I is the ideal generated by following relations (often called Manin relations):

uikujk − qujkuik, ukiukj − qukjuki, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n,

uilujk − ujkuil, uikujl − ujluik − νuilujk, 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n.

Cq[Mn] turns into a bialgebra together with the coproduct and counit defined as follows:

∆(uij) :=
n∑
k=1

uik ⊗ ukj ε(uij) := δij.

Now, we are ready to define the fundamental notion of this section.

Definition 2.2.3. A Hopf algebra is a bialgebra A together with a linear map S :
A −→ A, called antipode, such that the following diagram commute:

A⊗A A A⊗A

A⊗A A A⊗A.

id⊗S η◦ε
∆

∆

S⊗id

m
m

(2.13)
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In terms of the Sweedler’s notation, the commutativity of above diagram 2.13 reads;∑
a(1)S(a(2)) = ε(a).1A =

∑
S(a(1))a(2), ∀ a ∈ A.

Definition 2.2.4. Recall that a ∗-vector space over C is a vector space V together with
a map v 7→ v∗, called involution, such that:

(av1 + bv2)
∗ = av∗1 + bv∗2, (v∗)∗ = v, ∀ a, b ∈ C, v1, v2 ∈ V.

A ∗-algebra A is an algebra such that the underlying vector space is a ∗-vector space
and

(v1v2)
∗ = v∗2v

∗
1, ∀ v1, v2 ∈ A.

Similarly, A ∗-coalgebra C is a coalgebra such that the underlying vector space is a
∗-vector space and

∆(c∗) = c∗(1) ⊗ c∗(2), ∀ c ∈ C.

A Hopf ∗-algebra is a Hopf algebra such that the underlying bialgebra is both a ∗-algebra
and a ∗-coalgebra.

There are many consequences of these definitions. We list some of the important
ones below.

Proposition 2.2.5.

(i) For a bialgebra A, the multiplication m : A⊗A −→ A and unit η : K −→ A are
coalgebra morphisms.

(ii) For a bialgebra A, if an antipode exists, then it is unique.

(iii) The antipode of a Hopf algebra is an algebra anti-morphism, i.e.

S(ab) = S(b)S(a), ∀ a, b ∈ A, and S(1) = 1.

(iv) The antipode of a Hopf algebra is a coalgebra anti-morphism, i.e.

∆ ◦ S = τ ◦ (S ⊗ S) ◦∆, ε ◦ S = ε.

In terms of Sweedler’s notation, the first identity means:∑
S(a)(1) ⊗ S(a)(2) =

∑
S(a(2))⊗ S(a(1)).
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(v) If a Hopf algebra is commutative or cocommutative, then S2 = id.

Proof. See [57, Chap. 1, Prop. 5] and [58, Th. 3.4].

Below we define another key notion associated with the theory of Hopf algebras.

Definition 2.2.6. Let G and H be two Hopf algebras. A dual pairing is a bilinear map

⟨−,−⟩ : G⊗H −→ C

such that:

⟨g, hh′⟩ = ⟨g(1), h⟩⟨g(2), h′⟩, ⟨gg′, h⟩ = ⟨g, h(1)⟩⟨g′, h(2)⟩, (2.14)

⟨g, 1H⟩ = ε(g), ⟨1G, h⟩ = ε(h), ⟨S(g), h⟩ = ⟨g, S(h)⟩, (2.15)

for all g, g′ ∈ G and h, h′ ∈ H.

In case, G and H be two Hopf ∗-algebras (as defined in Definition 2.2.4), a dual
∗-pairing is a pairing,

⟨−,−⟩ : G⊗H −→ C

satisfying the following identities:

⟨g∗, h⟩ = ⟨g, S(h)∗⟩, ⟨g, h∗⟩ = ⟨S(g)∗, h⟩ (2.16)

for all g ∈ G and h ∈ H, in addition to the identities in (2.14) and (2.15).

An important consequence of the above definition is described in the following propo-
sition.

Proposition 2.2.7. Let G and H be two dually paired Hopf algebras with the dual
pairing:

⟨−,−⟩ : G⊗H −→ C

Then G acts on H by:

g ▷ h :=
∑

h(1)⟨g, h(2)⟩. (2.17)

Proof. See [64, Prop. 2.8].

We now examine a few key examples of Hopf algebras that are of interest in this
thesis.
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Example 2.2.8. Let G be a finite group. By O(G) we denote the algebra of all
complex-valued functions on G with pointwise algebraic operations. Then, O(G) is a
commutative Hopf algebra togther with the coproduct, counit and antipode defined as
follows:

∆(f)(g, g′) := f(gg′), ε(f) := f(e), S(f)(g) := f(g−1),

for all g, g′ ∈ G and f ∈ O(G), and e denotes the identity element of G.

In the above example we notice that starting from a finite group one can construct
a commutative Hopf algebra. In fact, this construction provides an (anti-)equivalence
between the category of affine algebraic groups and commutative Hopf algebras (see
[49]). The idea of Drinfeld was to quantize a Hopf algebra O(G) by deforming it to
a non-commutative Hopf algebra Oq(G). Such a deformed Hopf algebra is known as
a quantum group. Some quantum groups corresponding to matrix Hopf algebras are
discussed below.

Example 2.2.9. Let Cq[Mn] be the quantum matrix bialgebra as introduced in Exam-
ple 2.2.2. Define the quantum determinant to be:

detq :=
∑
σ∈Sn

(−q)l(σ)u1σ(1) · · ·unσ(n), (2.18)

where l(σ) denotes the length of σ. It turns out that, detq is central and group-like (i.e.
∆(detq) = detq ⊗ detq), see [57, Chap. 9, Prop. 7, Prop. 9].

The quantum general linear group Cq[GLn] is defined as the quotient algebra:

Cq[GLn] := Cq[Mn][T ]/⟨Tdetq − 1⟩

where Cq[Mn][T ] denotes the algebra of polynomials in T over Cq[Mn]. The coproduct
and counit are extended by defining:

∆(T ) := T ⊗ T, ε(T ) := 1. (2.19)

As it is clear from the definition, it is a standard practice to denote T by det−1
q .

In fact, the bialgebra Cq[GLn] can be endowed with a Hopf algebra structure by
defining the antipode S as follows:

S(uij) := ũijdet
−1
q S(det−1

q ) := detq (2.20)
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where ũij is the ij-th entry of the matrix ũ (called the cofactor matrix of u = [uij])
such that the following matrix equation holds:

uũ = ũu = detqIn.

Explicitly,

S(uij) = (−q)i−j
∑

σ∈Sn−1

(−q)l(σ)uk1σ(l1) · · ·ukn−1σ(ln−1)det
−1
q , (2.21)

where {k1, · · · , kn−1} := {1, · · · , n} − {j} and {l1, · · · , ln−1} := {1, · · · , n} − {i} as
ordered sets.

The quantum special linear group Cq[SLn] is defined as the Hopf algebra quotient:

Cq[SLn] := Cq[GLn]/⟨detq − 1⟩. (2.22)

Furthermore, the Hopf algebras Cq[GLn] and Cq[SLn] also admits a ∗-structure (see
Definition 2.2.4) given by:

(det−1
q )∗ := detq, (uij)

∗ := S(uji). (2.23)

The Hopf algebras Cq[GLn] and Cq[SLn] togther with this ∗-structure are called quantum
unitary group Cq[Un] and quantum special unitary group Cq[SUn] respectively.

2.3 Drinfeld–Jimbo quantized enveloping algebras

In this section, we will introduce an important class of noncommutative Hopf algebras
known as Drinfeld–Jimbo quantized enveloping algebras.

Firstly, we recall some basic notions from the theory of Lie algebras (we will always
mean complex Lie algebras). The purpose here is just to set the notation, for details
see [48, 32].

Definition 2.3.1. A Lie algebra is called simple if it is non-abelian and contains no
non-zero proper ideals. A Lie algebra is called semi-simple if it is isomorphic to a direct
sum of simple Lie algebras.

To each complex semi-simple Lie algebra L, on associate a set ∆ of vectors in an
Euclidean space E satisfying certain geometric axioms, called the root system of L (see
[48, Chap. 9]). These root systems completely characterize semi-simple Lie algebras up
to isomorphism (see [48, §14.2]).
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Definition 2.3.2. The Weyl group W of a root system ∆ ⊂ E is the subgroup of
GL(E) generated by reflections through hyperplanes associated to the roots in ∆.

Definition 2.3.3. A subset S ⊂ ∆ of root system is called a base if,

(i) S is a basis of E,

(ii) each root β can be written as β =
∑

α kαα, α ∈ S, with integral coefficients kα
are all non-positive or all non-negative.

If all kα are non-negative, we call β a positive root and if all kα are non-positive, we
call β a negative root, relative to a fixed base S. Moreover, the vectors in S are called
simple roots.

Definition 2.3.4. Given a root system∆ in an Euclidean space E and a base {α1, · · ·αl}
of ∆, one define a square matrix C = (aij)1≤i,j≤l called the Cartan matrix whose entries
are given by:

aij = ⟨αi, αj⟩ :=
2(αj, αi)

(αj, αj)
.

The following important result, called Serre’s Theorem, captures the significance of
the notion of Cartan matrix.

Theorem 2.3.5 (Serre’s Theorem). Given a root system ∆ in an l-dimensional Eu-
clidean space E, and C = (aij)1≤i,j≤l its Cartan matrix, define the Lie algebra L gen-
erated by 3l generators {ei, fi, hi : 1 ≤ i ≤ l} and the following Serre’s relations:

[hi, hj] = 0, [ei, fi] = hi, [ei, fj] = 0, i ̸= j,

[hi, ej] = aijej, [hi, fj] = −aijfj,

ad(ei)
−aij+1(ej) = 0, ad(ei)

−aij+1(ej) = 0, i ̸= j.

Then, L is a finite dimensional Lie algebra with the Cartan subalgebra generated by
{hi : 1 ≤ i ≤ l} and having the root system ∆.

Proof. See [48, §18.1].
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Proposition 2.3.6. Let U(g) be the universal enveloping algebra of a Lie algebra g.
Then, together with the following data:

∆(X) := X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X, ∀ X ∈ U(g). (2.24)

U(g) turns into a Hopf algebra.

Proof. See [57, §1.2.6].

Now, we are ready to define an important class of Hopf algebras which is a non-
commutative version of complex semi-simple Lie algebras as characterized in the theo-
rem 2.3.5.

Definition 2.3.7. Let g be a finite dimensional, complex, semi-simple Lie algebra of
rank l, and (aij) denotes its Cartan matrix, and we fix qi := q(αi,αi)/2.

The Drinfeld–Jimbo quantized enveloping algebra Uq(g) is the algebra generated by
the elements Ei, Fi, Ki and K

−1
i subject to the following relations:

KiEj = q
aij
i EjKi, KiFj = q

−aij
i FjKi, KiKj = KjKi, (2.25)

KiK
−1
i = 1 = K−1

i Ki, EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

, (2.26)

where i, j ∈ {1, · · · , l}, and the quantum Serre relations :

1−aij∑
r=0

(−1)r
[(

1− aij
r

)]
qi

E
1−aij−r
i EjE

r
i = 0, i ̸= j, (2.27)

1−aij∑
r=0

(−1)r
[(

1− aij
r

)]
qi

F
1−aij−r
i FjF

r
i = 0, i ̸= j, (2.28)

where:

[n]q :=
qn − q−n

q − q−1
,

[(n
r

)]
q
:=

[n]q!

[r]q![n− r]q!
, ∀ n, r ∈ N, r ≤ n, (2.29)

[n]q! := [1]q[2]q · · · [n]q [0]q! := 1 (2.30)

The expressions [n]q are called q-numbers.
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The following theorem deforms the Hopf algebra structure described in proposi-
tion 2.3.6.

Theorem 2.3.8. Uq(g) admits a unique Hopf algebra structure with comultiplication
∆, counit ε and antipode S defined as:

∆(Ei) := Ei ⊗Ki + 1⊗ Ei, ∆(Fi) := K−1
i ⊗ Fi + Fi ⊗ 1, (2.31)

∆(Ki) := Ki ⊗Ki, ∆(K−1
i ) := K−1

i ⊗K−1
i , (2.32)

ε(Ki) := 1, ε(Ei) := ε(Fi) = 0, (2.33)

S(Ei) := −EiK−1
i , S(Fi) := −KiFi, S(Ki) := K−1

i . (2.34)

Proof. See [57, Chap. 6, Prop. 5].

The algebraic properties of Uq(g) are very similar to that of U(g), therefore, it is
considered to be a fundamental object to study in noncommutative geometry. We
mention one of the key results below.

Theorem 2.3.9. Any finite-dimensional irreducible representation of a Drinfeld–Jimbo
algebra is a weight representation and a representation with highest weight. Such a
representation is uniquely determined by its highest weight.

Proof. See [57, Chap. 7].

The example given below describes a dual pairing between Oq(SUn) and Uq(sln).
Some of the other fundamental examples can be found in [57, §9.4].

Example 2.3.10. A dual pairing of Hopf algebras between Oq(SLn) and Uq(sln) is
given by:

⟨ui+1,i, Ei⟩ = 1, ⟨ui,i+1, Fi⟩ = 1, (2.35)

⟨uii, Kj⟩ = qδj+1,i−δij , ⟨uii, K−1
j ⟩ = qδij−δj+1,i , (2.36)

and requiring all other pairings to be zero, where uij denotes the generators of Oq(SLn)
and Ei, Fi, Ki are the generators of Uq(sln).

Furthermore, this pairing respects the ∗-structure as in (2.16). Therefore, it is also
a ∗-pairing between Oq(SUn) and Uq(sln).
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2.4 Lusztig’s root vectors

In this section, we introduce the notion of Lusztig’s root vectors, that is of primary
importance to us in Chapter 5. We follow here the description given in [57, §6.2].

Let g be a complex semi-simple Lie algebra of rank l and (aij) denotes its Cartan
matrix. The product aijaji may take the values in {0, 1, 2, 3}. Set mij to be 2, 3, 4 or 6
when the product aijaji is 0, 1, 2 or 3 respectively.

Definition 2.4.1. Let the notation be as above. The braid group Bg is the group
generated by s1, · · · , sl subject to the following relations:

sisjsisj · · · = sjsisjsi · · · , i ̸= j, (2.37)

where there are mij number of s on each side.

The following theorem captures the significance of the braid group defined above.

Theorem 2.4.2. To every generator si ∈ Bg, there corresponds an algebra automor-
phism Ti of Uq(g) which acts on the generators as follows:

Ti(Kj) = KjK
−aij
i , Ti(Ei) = −FiKi, Ti(Fi) = −K−1

i Ei, (2.38)

Ti(Ej) =

−aij∑
r=0

(−1)r−aijq−ri (Ei)
(−aij−r)Ej(Ei)

(r), i ̸= j, (2.39)

Ti(Fj) =

−aij∑
r=0

(−1)r−aijqri (Fi)(r)Fj(Fi)(−aij−r), i ̸= j, (2.40)

where,

(Ei)
(n) :=

En
i

[n]qi !
, (Fi)

(n) :=
F n
i

[n]qi !
. (2.41)

Moreover, the map,

si 7→ Ti

determines a homomorphism of the braid group Bg into the group of algebra automor-
phisms of Uq(g).

Proof. See [57, §6.2, Th. 22].
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Let ∆ be a root system and W be its Weyl group with simple roots S = {α1, · · ·αl}
and the corresponding set WS = {w1, · · ·wl} ⊂ W of simple reflections.

Definition 2.4.3. Let the notation be as above. For any element w of the Weyl group
W , an expression w = wi1 · · ·win with each wik ∈ WS and n being the minimum such
number, is called a reduced decomposition of w.

Moreover, we define the length of w to be n where w = wi1 · · ·win is a reduced
decomposition of w.

It turn out that, there exist a unique element w0 ∈ W with highest length. We call
such an element w0 the longest element of the Weyl group W . Let w0 = wi1 · · ·win be
a fixed reduced decomposition of w0. Then, the list:

β1 := αi1 , βk := wi1 · · ·wik−1(αik), (2.42)

exhausts all the positive roots of g. (See [57, Chap. 4, Prop. 4], also [48, §10.3]).

Definition 2.4.4. The elements,

Eβr := Ti1 · · ·Tir−1(Er) and Fβr := Ti1 · · ·Tir−1(Fr) (2.43)

are called the Lusztig’s root vectors corresponding to βr and β−r respectively.

Lusztig’s root vectors play a very important role in the representation theory of
Uq(g) as they helps us to prove PBW theorem for Uq(g). However, we will not go into
further details here, see [57, §6.2]. Below, we present the example of g = sl3 that is of
our interest in Chapter 5.

Example 2.4.5. Let g = sl3. The longest element w0 = (13) of the Weyl groupW ∼= S3

admits exactly two reduced decompositions:

w1w2w1 and w2w1w2,

where we denote by w1 = (12) and w2 = (23). The corresponding list of root vectors
are:

E1, T1(E2) = [E1, E2]q−1 , T1T2(E1) = E2,

E2, T2(E1) = [E2, E1]q−1 , T2T1(E2) = E1.
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2.5 Quantum homogeneous spaces

In this section, we will briefly describe the notion of homogeneous spaces in this non-
commutative setting. We follow the description given in [13].

Let (A,m,∆, η, ε) and (H,mH,∆H, ηH, εH) be Hopf algebras, and π : A −→ H be
a surjective Hopf algebra morphism. We view A as a right H-comodule (see defini-
tion 2.1.3) algebra via coaction ∆A := (id⊗π)◦∆ : A −→ A⊗H. With all this datum,
the space of coinvariants:

B := Aco(H) = {a ∈ A : ∆A(a) = a⊗ 1}

is a right coideal (i.e. ∆(B) ⊂ B ⊗A) subalgebra of A, see [74, Prop. 1].

Definition 2.5.1. We call B := Aco(H) a quantum homogeneous space if A is faithfully
flat as a right B-module, which is to say that the functor,

A⊗B − : BM−→ CM

from the category of left B-modules to the category of complex vector spaces maps a
sequence to an exact sequence if and only if the original sequence is exact.

Example 2.5.2. A Hopf algebra A s itself a trivial example of a quantum homogeneous
space where one consider π = ε : A −→ K.

As a non-trivial example, we introduce the notion of quantum projective space.
Later, in Chapter 5, we will discuss more general examples of quantum flag manifolds.

Example 2.5.3. Let π : Cq[SUn] −→ Cq[Un−1] be the Hopf algebra surjection defined
as:

π(u11) := det−1
q , π(u1i) = π(ui1) = 0, π(uij) := ui−1,j−1 (2.44)

for i, j = 2, · · · , n. The quantum projective space Cq[CPn−1] is defined as the quantum
homogeneous space Cq[SUn]

co(Cq [Un−1]). For further details see [62, 11]

2.6 Takeuchi’s equivalence

In this section, we briefly describe a categorical equivalence [74], that helps to classify
some nice differential structures on quantum homogeneous spaces as we will see in the
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next section. Here, we employ Sweedler’s notation as in Notation 2.1.4. We are follow-
ing the description given in [11, §2.2].

Let B := Aco(H) be a quantum homogeneous space. We denote by A
BMB the category

of B-bimodules M with a left A-coaction ∆L satisfying:

∆L(bmb
′) = b(1)m(−1)b

′
(1) ⊗ b(2)m(0)b

′
(2), ∀ m ∈M, b, b′ ∈ B, (2.45)

andMH
B the category of right B-modules N (we denote the right action by ◁) with a

right H-coaction ∆R satisfying:

∆R(n ◁ b) = n0 ◁ b(2) ⊗ S(π(b(1)))n(1), ∀ n ∈ N, b ∈ B. (2.46)

Furthermore, we define a pair (Φ,Ψ) of functors. The functor,

Φ : A
BMB −→MH

B (2.47)

is defined on objects as:

M 7→M :=M/B+M,

while on morphism is defined as follows:

(ϕ :M −→M ′) 7→ (ϕ :M −→M ′), ϕ([m]) := [ϕ(m)].

Notice that, one can consider any objectM ∈ A
BMB as an object inMH

B by neglect-
ing the left B-action and by projecting the left A-coaction M∆, explicitly:

∆R(m) := m0 ⊗ S(π(m(−1))). (2.48)

Also, it is easy to verify using our assumption (of being a quantum homogeneous space)

that B+M is a subobject of M in MH
B . Moreover, the right H-colinearity and right

B-linearity of ϕ follows from the corresponding properties of ϕ. Hence, the map Φ as a
functor is well-defined.

The second functor,

Ψ :MH
B −→ A

BMB (2.49)
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is defined on objects as:

N 7→ A□HN := {
∑

ai ⊗ ni :
∑

ai(1) ⊗ π(ai(2))⊗ ni =
∑

ai ⊗ ni(−1) ⊗ ni(0)},

while on morphisms is defined as follows:

(ψ : N −→ N ′) 7→ (id⊗ ψ : A□HN −→ A□HN
′).

The left B-action and left A-coaction on A□HN are given by:

b(
∑

ai ⊗ ni) :=
∑

bai ⊗ ni, (2.50)

∑
ai ⊗ ni 7→

∑
ai(1) ⊗ ai(2) ⊗ ni, (2.51)

respectively. While, the right B-action is given by:

(
∑

ai ⊗ ni)b :=
∑

aib(1) ⊗ (ni ◁ b(2)). (2.52)

The objects A□HN is referred to as the cotensor product of A and N over H.
Moreover, it is easy to verify the details for Ψ to be well-defined.

Having all this setup, one has the following important theorem.

Theorem 2.6.1 (Takeuchi, [74]). For a quantum homogeneous space B = Aco(H), the
pair of functors (Φ,Ψ) establish an equivalence of categories. The natural transforma-
tions are given by:

C : (Φ ◦Ψ)(N) −→ N∑
ai ⊗ ni 7→

∑
ε(ai)ni (2.53)

and

U :M −→ (Ψ ◦ Φ)(M)

m 7→ m(−1) ⊗m(0) (2.54)

For more details of this description of Takeuchi equivalence, see [11].
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Corollary 2.6.2. For any Hopf algebra A, fix π := ε : A −→ K. Then, A is a trivial
homogeneous space over itself. In this case, the above equivalence reads:

Φ : A
AMA −→MA, Ψ :MA −→ A

AMA

M 7→M :=M/A+M N 7→ A⊗N

and

M
∼=−→ Ψ(Φ(M)) = A⊗M, Φ(Ψ(N)) = A⊗N

∼=−→ N,

m 7→ m(−1) ⊗ [m(0)], [a⊗ n] 7→ ε(a)n.

This special case is often known as fundamental theorem of Hopf modules. (See [14,
Lemma 2.17].)

2.7 First-order differential calculus

In this section, we see how non-commutative geometry generalizes the idea of exterior
derivative. For a detailed discussion, we refer to [14, Chap. 1].

Definition 2.7.1. A first-order differential calculus (abbreviated as FODC) over an
algebra B is a tuple (Ω1, d), where, Ω1 is a B-bimodule, and,

d : B −→ Ω1,

(called the exterior derivative) is a linear map obeying:

(i) d(ab) = da.b+ a.db ∀ a, b ∈ B, (Leibniz Rule)

(ii) Ω1 = span{adb : a, b ∈ B},

(iii) ker d = K.1. (Connected)

A ∗-FODC over a ∗-algebra B means a differential calculus Ω1 and an anti-linear map
∗ : Ω1 −→ Ω1 that commutes with d and respects the bimodule structure in the sense
that:

(a.ω)∗ = ω∗.a∗ for all a ∈ B, ω ∈ Ω1. (2.55)
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A morphism from a FODC (Ω1, d) on B to a FODC (Ω̃1, d̃) on B̃ is a pair (Φ, φ)
where Φ is a bimodule morphism Ω1 −→ Ω̃1, φ is an algebra map B −→ B̃ such that
the following diagram commute:

B B̃

Ω1 Ω̃1.

d

φ

d̃

Φ

The category DC1 of all FODCs also admits a monoidal structure. Explicitly,
given any objects (B,Ω1, d) and (B̃, Ω̃1, d̃) their tensor product is defined as (B ⊗
B̃,Ω1

B⊗B̃, dB⊗B̃) where:

Ω1
B⊗B̃ := Ω1 ⊗ B̃ ⊕ B ⊗ Ω̃1,

and,

dB⊗B̃ := d⊗ idB̃ ⊕ idB ⊗ d̃.

Example 2.7.2 (Universal first-order differential calculus). Given any algebra B, de-
fine:

Ω1
u := ker(m) = {

∑
a⊗ b ∈ B ⊗ B :

∑
ab = 0},

and:

du(a) := 1⊗ a− a⊗ 1, ∀ a ∈ B.

Then, it is easy to verify that the pair (Ω1
u, du) is a first-order differential calculus, see

[14, Prop. 1.5]. We call it the universal first-order differential calculus.

As the name suggests, the universal differential calculus is more than just an exam-
ple. Its significance can be read through following proposition.

Proposition 2.7.3. Any differential calculus (Ω1, d) on B is isomorphic to some quo-
tient calulus (Ω1

u/N, dN) where N is a sub-bimodule and dN := π ◦ du.

Proof. See [77, Th. 1.1].

Similarly, the notion of higher-order forms is defined in this general setting.
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Definition 2.7.4. A differential calulus (abbreviated as DC) on an algebra A is a
triplet (Ω,∧, d), where Ω = ⊕nΩn is a graded-algebra,

∧ : Ω⊗ Ω −→ Ω and d : Ω −→ Ω

are linear maps called wedge product and exterior derivative respectively, such that:

(i) Ωk ∧ Ωl ⊂ Ωk+l, d(Ωk) ⊂ Ωk+1, ∀ k, l ∈ N0,

(ii) The wedge product ∧ is unital and associative,

(iii) d2 = 0, and d(ω ∧ η) = dω ∧ η + (−1)deg(ω)ω ∧ dη, for all η, ω ∈ Ω, ω being
homogeneous,

(iv) Ω0 = A, Ωn = span{a0da1 ∧ · · · ∧ dan : a0, · · · an ∈ A}.

If we drop condition (iv), the triplet (Ω,∧, d) is often called a differential graded
algebra DGA.

Given any first-order differential calculus (Ω1, d) on A, one can obtain a differential
calculus on A called the maximal prolongation of (Ω1, d). The construction works as
follows. Let (Ω1

u/N, d) be a FODC, where Ω1
u denotes the universal FODC as introduced

in example 2.7.2. Define,

Ω•(A) := ⊕∞
k=0(Ω

1(A))⊗Ak/⟨d(N)⟩,

where ⟨d(N)⟩ denotes the subalgebra of the tensor algebra generated by d(N). It is
easy to verify that d extends to a unique map Ω•(A) −→ Ω•(A) and gives us a total
differential calculus on A. For more details, see [11, §2.5, §5.1].

2.8 Covariant first-order differential calculus

If a given algebra has some additional structures, we get interested in those FODCi
that are compatible with the additional structure. In this section, we will see a charac-
terization of these nice FODCi.

Definition 2.8.1. A first-order differential calculus (Ω1, d) on a left A-comodule alge-
bra B together with a left A-coaction is called left A-covariant if Ω1 also admit a left
A-coaction ΦL such that:

ΦL(aσb) = ∆L(a)ΦL(σ)∆L(b) for all a, b ∈ B, σ ∈ Ω1,
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and the following diagram commute,

B A⊗ B

Ω1 A⊗ Ω1.

d

∆L

id⊗d

ΦL

In case, B = A and the left coaction is exactly the coproduct ∆, a left A-covaraint
FODC is simply called a left-covariant first order differential calculus.

Similarly, the notion of right A-covariant or A-bicovariant differential calculus can
be defined, see [14, 57, 77].

In [77], Woronowicz proved that every left-covariant first order differential calculus
on a Hopf algebra A can be obtained via a right ideal of A contained in ker ε. More
precisely, the result states the following.

Theorem 2.8.2 (Woronowicz). Let A be a Hopf algebra, R be a right ideal contained
in ker ε and N = r−1(A⊗R) where r : A⊗A −→ A⊗A defined as:

r(a⊗ b) = (a⊗ 1)∆(b).

Then, N is a sub-bimodule of Ω1
u and (Ω1

u/N, dN) is a left-covariant first-order differ-
ential calculus. Moreover, every left-covariant first-order differential calculus can be
obtained (up to isomorphism) in this way.

Proof. See [77, Th. 1.5].

There are also similar results for right-covariant and bicovariant first order differen-
tial calculi on a Hopf algebra A, see [14, 77].

The Theorem 2.8.2 is special to a very particular situation of the Definition 2.8.1,
namely, B = A and the coaction is exactly the coproduct. However, thanks to the
Takeuchi equivalence, one can generalize this result to the case of quantum homogeneous
spaces. We report it below.

Theorem 2.8.3 (Hermisson, [51]). Let B = AcoH be a quantum homogeneous space.
Then there is a bijective correspondence,{

left A-covariant first order
differential calculus on B

}
←→

{
sub-objects I(1) ⊂ B+

inMH
B

}
.

Explicitly:
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(i) The sub-object corresponding to the calculus Ω1(B) is:

I(1) :=
{∑

i

ε(ai)b
+
i |
∑
i

aidbi = 0
}
, (2.56)

where b+i := bi − ε(bi).1

(ii) Denoting V 1 := B+/I(1), we have an isomorphism,

σ : Φ(Ω1(B)) −→ V 1

adb 7→ ε(a)b+. (2.57)

(iii) Conversely, for I(1) ⊂ B+ in MH
B , define Ω1 := A□HB+/I(1) with B-bimodule

structure and left A-coaction as:

b(ai ⊗ [ci])b′ := baib′(1) ⊗ [ci ◁ b′(2)], Ω1∆ := ∆⊗ id, (2.58)

and, d : B −→ Ω1 defined as:

d(b) := b(1) ⊗ πI((b(2))+). (2.59)

Proof. See [13, Th. 2.10].

Definition 2.8.4. Let the notation be as in Theorem 2.8.3. We call V 1 := B+/I(1) the
cotangent space of the calculus Ω1(B).

A further classification is given through the notion of quantum tangent spaces.

Let A be a Hopf algebra, and W ⊆ A◦ a Hopf subalgebra of A◦ (the restricted dual
Hopf algebra of A, see [57, §1.2.8]), such that the space of invariants:

B := WA =
{
b ∈ A | ε(w)b = b(1)⟨w, b(2)⟩, ∀ w ∈ W

}
under the natural left action of W is a quantum homogeneous A-space, and denote by
B◦ its dual coalgebra.
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Definition 2.8.5. A quantum tangent space for B is a subspace T ⊆ B◦ such that
T ⊕ C1 is a right coideal of B◦ and WT ⊆ T .

For any quantum tangent space T , a right B-ideal of B+ is given by

I(1) :=
{
x ∈ B+ |X(x) = 0, for all X ∈ T

}
,

meaning that the quotient V 1 := B+/I(1) is naturally an object in the categoryMπB
B .

We call V 1 the cotangent space of T .

Theorem 2.8.6. Consider the object,

Ω1(B) := A□πBV
1.

If {Xi}ni=1 is a basis for T , and {ei}ni=1 is the dual basis of V 1, then the map

d : B → Ω1(B), a 7→
n∑
i=1

(X+
i ▷ a)⊗ ei

is a derivation, and the pair (Ω1(B), d) is a left A-covariant FODC over B. This gives
a bijective correspondence between isomorphism classes of finite-dimensional tangent
spaces and finitely-generated left A-covariant FODC.
Proof. See [52, Prop. 4].

Now, we describe how the relations for the maximal prolongation (as described in
2.7) of a left covariant FODC can be constructed in this setting.

Definition 2.8.7. Let I(1) ⊂ B+ be the ideal classifying the FODC Ω1(B), and V 1 :=
B+/I(1) be the cotangent space of Ω1(B). Consider the subspace:

I(2) :=
{
ω(x) := [x+(1)]⊗ [x+(2)] | x ∈ I

(1)
}
⊂ V 1 ⊗ V 1. (2.60)

From the tensor algebra T (V 1), construct the Z≥0-graded algebra,

V • :=
⊕
Z≥0

V k := T (V 1)/⟨I(2)⟩ (2.61)

We call V • the quantum exterior algebra of Ω1(B).
It follows from Takeuchi’s equivalence, that the k-th homogeneous component of

maximal prolongation Φ(Ωk(B)) is isomorphic to V k, where Φ is the first Takeuchi’s
functor as in (2.47). Explicitly, an isomorphism is given by:

Φ(Ωk(B)) −→ V k

b0db1 ⊗ · · · ⊗ dbk 7→ ϵ(b0)b
+
1 ∧ · · · ∧ b+k (2.62)

where ∧ denotes multiplication in V •. For more details see [13, Lemma 5.1].
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2.9 Noncommutative complex structures

We end this chapter by introducing the notion of complex structure in this noncommu-
tative setting. We followed closely the description given in [12, 13]. As usual in the
theory of differential calculi, we find it convenient to initially work at the level of FODC
and then discuss the extension to higher forms. This motivates the following general
definition.

Definition 2.9.1. A first-order almost complex structure (sometimes abbreviated as
FOACS) for a ∗-FODC Ω1(B) over an algebra B is a direct sum decomposition of
B-bimodules,

Ω1(B) ≃ Ω(1,0) ⊕ Ω(0,1) (2.63)

such that (Ω(1,0))∗ = Ω(0,1) or equivalently (Ω(0,1))∗ = Ω(1,0).

Definition 2.9.2. An almost complex structure for a differential ∗-calculus Ω•(A) is
an N2

0-algebra grading Ω•(A) = ⊕(p,q)Ω
(p,q) such that:

(i) Ωk(A) = ⊕p+q=kΩ(p,q),

(ii) (Ω(p,q))∗ = Ω(q,p).

The elements of Ω(p,q) are called (p, q)-forms.

Define the projections of differential operator d as follows:

∂ := projΩ(p+1,q) ◦ d, ∂ := projΩ(p,q+1) ◦ d, (2.64)

where the maps projΩ(p+1,q) and projΩ(p,q+1) are projections from Ωp+q+1 to Ω(p+1,q) and
Ω(p,q+1) respectively.

Definition 2.9.3. An almost complex structure is said to be integrable if d = ∂ + ∂.
Moreover, an integrable almost complex structure is called a complex structure.

We report below two important results followed by these definitions.

The following result gives some equivalent criterion to check whether an almost
complex structure is integrable or not.
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Proposition 2.9.4. For an almost complex structure, the following are equivalent:

(i) d = ∂ + ∂,

(ii) ∂2 = 0,

(iii) ∂
2
= 0,

(iv) d(Ω(1,0)) ⊂ Ω(2,0) ⊕ Ω(1,1),

(v) d(Ω(0,1)) ⊂ Ω(1,1) ⊕ Ω(0,2).

Proof. See [12, Lemma 3.2].

Proposition 2.9.5. Given a complex structure Ω•(A) = ⊕(p,q)Ω
(p,q), we have:

(i) ∂(a∗) = (∂(a))∗ and ∂(a∗) = (∂(a))∗, for all a ∈ A,

(ii) ∂ and ∂ satisfies graded Leibniz rule.

Proof. See [12, Prop. 3.8].
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Chapter 3

Supergeometry

This chapter is devoted to introduce some preliminary topics in supergeometry that are
used in the subsequent parts of the thesis. All of the content in this chapter is widely
known, thus many technical/computational details have been omitted, for details see
[19, 39, 61, 75].

In Section 3.1, we introduce some of the fundamental supergeometric objects includ-
ing super vector spaces, superalgebras, supermodules and supermatrices. In Section 3.2,
we introduce the notion of berezinian of a supermatrix which is the super-version of
determinant. The Section 3.3 is devoted to stating and proving super Cramer’s rule.
In Section 3.4, the notions of supermanifolds and superschemes are presented briefly.
In Section 3.5, we introduce the concept of supergroup and present the example of the
special linear supergroup SL(r|s) which is of our primary interest in Chapter 4.

3.1 Super linear algebra

In this section, we introduce some fundamental notions from super linear algebra. We
mainly follow the description given in [19, Chap. 1].

Linear algebra is the cornerstone of classical geometry. Thus, one must first modify
linear algebra in transition from classical geometry to the supergeometry.

Definition 3.1.1. A super vector space V is a Z2-graded vector space:

V = V0 ⊕ V1.
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The elements of V0 and V1 are called the even and odd elements of V respectively. The
dimension of V is denoted by p|q where p and q represents the dimensions of V0 and
V1 respectively. The parity of a homogeneous vector v ∈ V is defined as,

|v| :=

{
0 if v ∈ V0,
1 if v ∈ V1.

. (3.1)

A morphism φ : V −→ W from a super vector space V to another super vector
space W is a parity-preserving linear transformation.

The category of super vector spaces also admits a monoidal structure.

Definition 3.1.2. For two super vector spaces V and W , their tensor product V ⊗W
is a super vector space, with even and odd part being:

(V ⊗W )0 := (V0 ⊗W0)⊕ (V1 ⊗W1) (3.2)

(V ⊗W )1 := (V0 ⊗W1)⊕ (V1 ⊗W0). (3.3)

This tensor product is well-behaved and the details are very similar to the classical
setting. (See [19, §1.1].)

Definition 3.1.3. A superalgebra is a super vector space A together with a multipli-
cation morphism:

m : A⊗A −→ A
a⊗ b 7→ ab

following the usual properties (as already given in Definition 2.1.1). A superalgebra A
is (super) commutative if for all homogeneous a, b ∈ A:

ab = (−1)|a||b|ba

where |c| denotes the parity of a homogeneous element c ∈ A as defined in (3.1).

The tensor product of two superalgebras A and Ã is a superalgebra with the mul-
tiplication defined as:

(a⊗ b)(c⊗ d) := (−1)|b||c|(ac⊗ bd).

We discuss below a simple but very important example. It replaces the notion of
polynomial algebra in the super setting.

48



Example 3.1.4. Consider,

A = K[x1, · · · , xp, α1, · · · , αq] := K⟨x1, · · · , xp, α1, · · · , αq⟩
/
I

where I is the ideal generated by:

xixj − xjxi, xiαk − αkxi, αkαl + αlαk, (3.4)

where, 1 ≤ i, j ≤ p, 1 ≤ k, l ≤ q. In other words, latin and greek generators denote
even and odd generators respectively. This is a commutative superalgebra with even
part being:

A0 = {f0 +
∑

|I| even

fIαI : I = (i1 < · · · < ir)},

where |I| := r, αI := αi1 · · ·αir , f0, fI ∈ K[x1, · · · , xp] and, odd part being:

A1 = {
∑

|J | odd

fJαJ : J = (j1 < · · · < js)}.

See [19, Example 1.1.9] for more details.

Having these algebraic structures it is natural to also define the notion of modules
over superalgebras.

Definition 3.1.5. Let A be a superalgebra. A left-module over A is a super vector
space M together with a morphism:

A⊗M −→M

a⊗m 7→ am,

obeying the following usual properties, ∀ a, b ∈ A, m,n ∈M :

1. a(m+ n) = am+ an, 2. (a+ b)m = am+ bm,

3. (ab)m = a(bm), 4. 1m = m.

The notion of a right-module can be defined in a similar way. Let M and N be two
A-modules. A module morphism φ : M −→ N is a morphism of super vector spaces
respecting the module structure, i.e. obeying:

φ(am) = aφ(m), ∀ a ∈ A, m ∈M.
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Example 3.1.6. For a superalgebra A over a field K, define the left A-module Ap|q as,

Ap|q := A⊗Kp|q,

where Kp|q := (K⊕ · · · ⊕K
p−times

)⊕ (K⊕ · · · ⊕K
q−times

). The module structure is given simply by:

ã⊗ (a⊗ k) 7→ ãa⊗ k, ∀ ã ∈ A, (a⊗ k) ∈ Ap|q.

Definition 3.1.7. A module M over a superalgebra A is said to be free if for some p
and q:

M ∼= Ap|q.

Alternatively, from Definition 3.1.2 it follows that, an A-moduleM is free if there exists
even elements {e1, ..., ep}, and odd elements {ϵ1, ..., ϵq} ⊂M such that:

M0 = spanA0
{e1, ..., ep} ⊕ spanA1

{ϵ1, ..., ϵq}, (3.5)

M1 = spanA1
{e1, ..., ep} ⊕ spanA0

{ϵ1, ..., ϵq}. (3.6)

As it turns out that when a basis is fixed, studying classical linear algebra amounts
to manipulating matrices. Hence, in super linear algebra matrices play a very important
role. Moreover, matrices in the super setting admits a special 2× 2 block structure.

Definition 3.1.8. Let T : Ap|q −→ Ar|s be a morphism of free A-modules. Fixing a
basis of both Ap|q and Ar|s as above gives a 2× 2 block (as it is evident from equations
(3.5) and (3.6)) matrix T of size (r + s)× (p+ q),

T =

[
T1 T2
T3 T4

]
, (3.7)

where T1 is of size r × p, T2 is of size r × q, T3 is of size s × p and T4 is of size s × q.
Moreover, the entries of T1 and T4 are even while the entries of T2 and T3 are odd.
Matrices as in (3.7) are known as even supermatrices of order r|s× p|q. The set of all
even supermatrices over A of order r|s× p|q is denoted by Mr|s×p|q(A). Moreover, the
set of all invertible even supermatrices over A of order p|q×p|q is denoted by GLp|q(A).

For our purpose there is also a need to introduce two non-standard types of matrices.
These are called ‘wrong supermatrices’ in [9], we prefer the terminology ‘fake’.
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Definition 3.1.9. A fake supermatrix of type-I is a matrix obtained by inserting an
odd vector at an even vector’s position of an even supermatrix. A fake supermatrix of
type-II is a matrix obtained by inserting an even vector at an odd vector’s position of
an even supermatrix.

As usual, for any even supermatrix or fake supermatrix, we define its parity reversed
matrix, denoted by BΠ by swapping B1 with B4 and B2 with B3, i.e.(

B1 B2

B3 B4

)Π

:=

(
B4 B3

B2 B1

)
.

Notice that if B is a fake supermatrix of type I, then BΠ is a fake supermatrix of type
II and viceversa.

3.2 Berezinian

In the classical setting, one of the most important concepts associated to a matrix
is its determinant. In supergeometry, there is a generalization, known as berezinian,
named after F. Berezin [6]. The motivation behind it lies in the theory of integration
over supermanifolds, see [75, §3.6]. When looking at the concept of berezinian we see
an important difference, because berezinian is not defined for all supermatrices. In
literature, mostly, berezinian is defined only for invertible supermatrices. However,
we will define it here on a larger class, though it is not possible to define it for all
supermatrices.

Definition 3.2.1. Let B be an even supermatrix or a fake supermatrix of type-I:

B =

(
B1 B2

B3 B4

)
. (3.8)

Assume that B4 is invertible. Then, the berezinian of B is defined as:

Ber(B) := detB−1
4 det(B1 −B2B

−1
4 B3).

It turns out that, a supermatrix B is invertible if and only if both B1 and B4

are invertible, see [19, Prop. 1.5.1]. In this case, another equivalent definition of the
berezinian is:

Ber(B) = detB1 det(B4 −B3B
−1
1 B2)

−1.
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Definition 3.2.2. Let C be an even supermatrix or a fake supermatrix of type-II:

C =

(
C1 C2

C3 C4

)
(3.9)

Assume C1 is invertible, define the inverted berezinian of B:

Ber∗B := BerBΠ.

It is clear that for an invertible supermatrix B:

Ber∗B = BerB−1. (3.10)

One of the key properties that berezinian shares with the classical determinant is
its multiplicative property.

Theorem 3.2.3. For any supermatrix B′ ∈ GLp|q(A) and any even supermatrix (or
fake supermatric of type-I) B with B4 invertible, we have:

Ber(B′B) = Ber(B′)Ber(B). (3.11)

Proof. See [19, Prop 1.5.4].

Remark 3.2.4. In [19], the multiplicative property is discussed for the case when both
B and B′ are invertible, as berezinian is defined only for invertible supermatrices in
[19]. However, the same proof works for the statement in Theorem 3.2.3.

Notation 3.2.5. For an even supermatrix B, we denote with i the even indices and
with ı̂ the odd ones, as we exemplify below:

B =



b11 ... b1p b11̂ ... b1q̂
. ... . . ... .
. ... . . ... .
br1 ... brp br1̂ ... brq̂
b1̂1 ... b1̂p b1̂1̂ ... b1̂q̂
. ... . . ... .
. ... . . ... .
bŝ1 ... bŝr bŝ1̂ ... bŝq̂


.
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3.3 Super Cramer’s rule

Recall that, in linear algebra, Cramer’s rule is a fundamental technique for solving an
appropriate system of linear equations, which gives us the solution in terms of quotients
of some determinants. A generalization of it in the super setting is presented below. It
also reflects how beautifully the notion of berezinian is replacing determinant.

We give now super Cramer’s rule. This is a known result, see [9]. However, for com-
pleteness, we present an original proof, obtained with different, elementary methods.

Theorem 3.3.1 (Super Cramer’s rule). Let M ∈ GLr|s(A) be an invertible even su-
permatrix and let b ∈ Ar|s be an even vector of size r|s. Then, the solution to the
equation,

Mx = b,

is given by:

xi =
BerMi(b)

BerM
, for i = 1, ..., r,

xȷ̂ =
Ber∗Mȷ̂(b)

Ber∗M
, for ȷ̂ = 1̂ · · · ŝ,

where Mi(b) is the supermatrix obtained by replacing i-th even column of M with b

and Mȷ̂(b) is the fake supermatrix of type-II obtained by replacing ȷ̂-th odd column of
M with b.

Proof. We need first some notation: for any even vector b of size r|s, we denote by b(e)

and b(o) the column vectors consisting of even and odd coefficients of b, respectively:

b =



b1
·
·
·
br
b1̂
·
·
·
bŝ


, b(e) =


b1
·
·
·
br

 b(o) =


b1̂
·
·
·
bŝ

 .
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We have to show that the above statement holds for all M ∈ GLr|s(A). We will do it

in three steps.

1. One can decompose any supermatrix M ∈ GL(r|s) as a product M =M+M0M−,
see [19, Prop. 1.5.4], where M+,M0 and M− are supermatrices of the following
types respectively:(

I X
O I

)
,

(
V O
O W

)
and

(
I O
Z I

)
,

where I denotes the identity matrix and O denotes the null matrix. For M =(
M1 M2

M3 M4

)
, one gets:

X =M2M
−1
4 ,

V =M1 −M2M
−1
4 M3,

W =M4,

Z =M−1
4 M3.

2. The statement of the theorem holds for supermatrices of the form C = AB, where
A and B are of the form M0 and M− respectively.

Let,

A =

(
V O
O W

)
and B =

(
I O
Z I

)
,

Therefore,

C =

(
V O
WZ W

)
, and

C−1 =

(
V −1 O
−ZV −1 W−1

)
=



[
detVi(ej)

detV

]
O

[
−
∑r

i=1 zk̂i detVi(ej)

detV

] [
detWk(el)

detW

]

 ,
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where ej denotes the column vector having 1 at j-th place and 0 at all other
places. Therefore,

C−1b =



∑r
j=1 detV1(ej)bj

detV
.
.
.∑r

j=1 detVr(ej)bj

detV

−
∑r

i,j=1 z1̂i detVi(ej)bj

detV
+

∑ŝ
l=1̂ detW1(el)bl

detW
.
.
.

−
∑r

i,j=1 zŝi detVi(ej)bj

detV
+

∑ŝ
l=1̂ detWs(el)bl

detW



. (3.12)

On the other hand, using the linearity of determinant, we have:

BerCi(b)

BerC
=
detW−1 detVi(b

(e))

detW−1 detV
=

detVi(b
(e))

detV
=∑r

j=1 detVi(ej)bj

detV
. (3.13)

and

Ber∗Ck̂(b)

Ber∗C
=

detV −1 det
(
Wk(b

(o))−WZV −1Ok(b
(e))
)

detV −1 detW
=

detWk(b
(o))− detWk(WZV −1b(e))

detW
=

∑ŝ
l=1̂ detWk(el)bl

detW
−
∑r

i,j=1 zk̂i detVi(ej)bj

detV
. (3.14)

The last two equalities follow from the multi-linearity property of determinant
and ordinary Cramer’s rule respectively. Hence, comparing Equations (3.12),
(3.13) and (3.14) one realizes that the theorem holds for supermatrices of type C.
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3. The theorem holds for supermatrices of type D = EF where F =

(
U Y
V W

)
is an even supermatrix which already satisfies the theorem and E =

(
I X
O I

)
with X having only one non-zero entry. Without loss of generality, we suppose
that the top-left entry x11̂ ̸= 0.

Therefore,

D =



u11 + x11̂v1̂1 · · · u1r + x11̂v1̂r
u21 · · · u2r
· · · · ·
· · · · ·
ur1 · · · urr

y11̂ + x11̂w1̂1̂ · · · y1ŝ + x11̂w1̂ŝ

y21̂ · · · y2ŝ
· · · · ·
· · · · ·
yr1̂ · · · yrŝ

V W


Note that,

x = D−1b = F−1(E−1b). (3.15)

Fix,

c = E−1b =



b1 − x11̂b1̂
·
·
br

b1̂
·
·
bŝ


.

Since F satisfies the theorem, equation (3.15) implies:

xi =
BerFi(c)

BerF
=

det
(
Ui(c

(e))− YW−1Vi(b
(o))
)

det(U − YW−1V )
, (3.16)

56



and

xȷ̂ =
Ber∗Fȷ̂(c)

Ber∗F
=

det
(
Wȷ̂(c

(o))− V U−1Yȷ̂(c
(e))
)

det(W − V U−1Y )
. (3.17)

On the other hand,

BerDi(b)

BerD
=

det
(
(U +XV )i(b

(e))− (Y +XW )W−1Vi(b
(o))
)

det(U − YW−1V )
=

det
(
(U +XV )i(b

(e))−XVi(b(o))− YW−1Vi(b
(o))
)

det(U − YW−1V )
=

det
(
Ui(c

(e))− YW−1Vi(b
(o))
)

det(U − YW−1V )
, (3.18)

and

Ber∗Dȷ̂(b)

Ber∗D
=

det
(
Wȷ̂(b

(o))− V (U +XV )−1(Y +XW )ȷ̂(b
(e))
)

det (W − V (U +XV )−1(Y +XW ))
=

det
(
Wȷ̂(b

(o))− V (U−1 − U−1XV U−1)
(
Yȷ̂(c

(e)) +XWȷ̂(b
(o))
))

det (W − V (U−1 − U−1XV U−1)(Y +XW ))
=

det(Wȷ̂(b
(o))− V U−1Yĵ(c

(e))− V U−1XWȷ̂(b
(o))− V U−1XV U−1Yȷ̂(c

(e)))

det(W − V U−1Y − V U−1XW + V U−1XV U−1Y )
=

det(I − V U−1X) det
(
Wȷ̂(c

(o))− V U−1Yȷ̂(c
(e))
)

det(I − V U−1X) det(W − V U−1Y )
=

det
(
Wȷ̂(c

(o))− V U−1Yȷ̂(c
(e))
)

det(W − V U−1Y )
. (3.19)

The second and third equality follows since X contains only one non-zero entry
(i.e. x11̂) which is odd, therefore,

(U +XV )−1 = U−1 − U−1XV U−1,

c(e) = b(e) −Xb(o).
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and,

V U−1XV U−1X = 0.

By comparing Equations (3.16), (3.17), (3.18) and (3.19), one concludes that the
matrices of type F satisfy the theorem.

Now, one can easily observe that every even supermatrixM ∈ GL(r|s) is of type F and
this completes the proof.

Remark 3.3.2. It is important to note that, in the above proof, we never use the fact
that b is even. The same expressions work for the equation Mx = b if b is an odd
vector of size r|s.

3.4 Supermanifolds and superschemes

In this section, we introduce the notions of superspaces and supermanifolds. One of
the main ideas to properly define these super geometric objects is to modify the sheaf-
theoretic definitions of their classical counterparts. However, in this picture one loses
somehow the ‘geometric’ intuition. To restore some of the intuition, we employ the
notion of functor of points. For details, see [19, Chap. 3]

Definition 3.4.1. A super ringed space S is a tuple (|S|,OS), where |S| is a topological
space and OS is a sheaf of super commutative rings, called the structure sheaf of S. A
superspace is a super ringed space S such that the stalk at each point x ∈ |S| is a local
ring, i.e. it has a unique maximal ideal.

Let S and S̃ be two superspaces. A morphism φ : S −→ S̃ is a continuous map |φ| :
|S| −→ |S̃| together with a sheaf morphism φ∗ : OS̃ −→ φ∗OS such that φ∗

x(mS̃,|φ|(x)) is
contained in mS,x, where mS,x is the maximal ideal in OS,x while mS̃,|φ|(x) is the maximal
ideal in OS̃,|φ|(x) and φ∗

x is the stalk map.

One may consider ordinary manifolds (or more generally, algebraic schemes) as ex-
amples of superspaces where the sheaves of functions are sheaves of super commutative
rings having trivial odd part. We discussed a non-trivial example below, which, in fact
captures the idea of a supermanifold.
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Example 3.4.2. Let M be a real differentiable manifold, |M | denotes the underlying
topological space and C∞

M be the sructure sheaf ofM . Define the sheaf of (commutative)
superalgebras as follows:

for each open V ⊂M, V 7→ OM(V ) := C∞
M (V )[θ1, · · · , θq]

where C∞
M (V )[θ1, · · · , θq] = C∞

M (V ) ⊗ ∧(θ1, · · · , θq). Then, (|M |,OM) is a superspace.
In the case, when M = Rp we define (abusing notation a bit):

Rp|q := (Rp, C∞
Rp [θ1, · · · , θq]). (3.20)

Definition 3.4.3. A supermanifold M = (|M |,OM) of dimension p|q is a superspace
which is locally isomorphic to Rp|q (as defined in Equation 3.20). It means, given any
point x ∈M , ∃ a neighbourhood V of x with q odd indeterminates such that,

V ∼= Ṽ open in Rp, and OM |V ∼= C∞
Rp(Ṽ )[θ1, · · · , θq].

A morphism φ :M −→ M̃ of supermanifolds is a morphism of underlying superspaces.
We denote the category of all supermanifolds by (smflds).

Definition 3.4.4. A superscheme S is a superspace (|S|,OS) such that (|S|,OS,0)
is an ordinary scheme and OS,1 is a quasi-coherent sheaf of OS,0-modules. Similarly,
morphisms of superschemes are morphisms of underlying superspaces. For details see
[19, Chap. 2].

Let us discuss an example that is of fundamental interest to us.

Example 3.4.5. Consider the vector space Mp|q of all even supermatrices of size p|q×
p|q. Mp|q can be viewed as a superscheme where the underlying topological space is
Mp × Mq together with the Zariski topology. The superalgebra of global sections of
Mp|q is K[tij, θkl], 1 ≤ i, j ≤ p or 1 ≤ i, j ≤ q and 1 ≤ k ≤ p, p + 1 ≤ l ≤ p + q or
p+ 1 ≤ k ≤ p+ q, 1 ≤ l ≤ p. Let U be the open subset of Mp ×Mq consisting of those
points A × B ∈ Mp ×Mq such that both A and B are invertible (ordinary) matrices.
Then, GLp|q := (U,OMp|q |U) is a superscheme called general linear superscheme.

Now, we present the notion of functor of points of a superscheme.

Definition 3.4.6. Let S and T be two superschemes. A T -point of S is a morphism
S −→ T . We denote by S(T ) the set of all T -points of S, i.e. S(T ) = Hom(S, T ). The
functor of points of the superscheme S is the functor:

S : (sschemes)op −→ (sets), T 7→ S(T ), S(φ)f = f ◦ φ.
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3.5 Supergroups

In this section we define the notion of a supergroup. For simplicity, by a supergroup,
we will always mean what in literature is called affine algebraic supergroup. For details
see [19, Chap. 10].

Similar to the ordinary algebraic geometry, a supergroup is a group-valued functor.
Moreover, as it turns out that the functor of points of a superscheme is completely
determined by its restriction to affine superschemes (see [19, Prop. 10.1.3]), whose
category is equivalent to the category of (commutative) superalgebras (see [19, Prop.
10.1.9]), therefore, one can define a supergroup as below.

Definition 3.5.1. A supergroup G is an (affine) superscheme whose functor of points
G : (salg) −→ (sets) is group-valued. This is equivalent to say that G is an affine
superscheme such that, G(A) is a group for any superalgebra A, and for any morphism
φ, G(φ) is a group homomorphism.

The notion of a Hopf superalgebra is defined similar to the notion of a Hopf alge-
bra (as defined in Section 2.2) by replacing algebras with superalgebras and algebra
morphisms with superalgebra morphisms. This gives us the following important result
(already pointed out in Example 2.2.8 for the classical case).

Theorem 3.5.2. Let G be an affine superscheme. Then, G = OG(|G|) is a supergroup
if and only if O(G) is a Hopf superalgebra. Moreover, we identify the category of affine
supergroups with the category of commutative Hopf superalgebras.

Proof. See [19, Prop. 11.1.2].

Finally, we are ready to introduce the fundamental examples we are interested in.

Example 3.5.3. Define a functor,

GLm|n : (salg) −→ (sets)

A 7→ GLm|n(A),

where GLm|n(A) denoted the set of all automorphisms of A-supermodule Am|n. We
call GLm|n the general linear supergroup.

Similarly, the functor,

SLm|n : (salg) −→ (sets)

A 7→ SLm|n(A),
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where SLm|n(A) denote the group of all automorphisms in GLm|n(A) of A-supermodule
Am|n whose Berezinian is equal to 1. We call SLm|n the special linear supergroup.

The functors GLm|n and SLm|n are represented by the Hopf superalgebra structures
on the superalgebras:

O(GLm|n) = K[zij, ξkl][d
−1
1 , d−1

2 ],

and,

O(SLm|n) = K[zij, ξkl][d
−1
1 , d−1

2 ]/(Ber− 1),

respectively, where, K[zij, ξkl] denotes the polynomial superalgebra (as described in
example 3.1.4) generated by the even variables,

zij, for 1 ≤ i, j ≤ m, or m+ 1 ≤ i, j ≤ m+ n,

and by the odd variables,

ξkl, for 1 ≤ k ≤ m, m+ 1 ≤ l ≤ m+ n,

or m+ 1 ≤ k ≤ m+ n, 1 ≤ l ≤ m,

and,

d1 :=
∑
s∈Sm

(−1)l(s)z1,s(1) · · · zm,s(m),

d2 :=
∑
t∈Sn

(−1)l(t)zm+1,m+t(1) · · · zm+n,m+t(n).

The Hopf superalgebra structure on these superalgebras is a (super-) modification of
the Hopf algebra structure on general linear group and special linear group respectively,
as presented in example 2.2.9. For explicit details, see [19, Example 11.1.3].

Below we present a quantum version of the special linear supergroup that will be of
interest to us in Chapter 6. This is due to Manin [59], see also [39].
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Definition 3.5.4. The quantum matrix superalgebra Mq(m|n) is defined as:

Mq(m|n) =def Cq⟨zij, ξkl⟩/IM ,

where Cq⟨zij, ξkl⟩ denotes the free superalgebra over Cq = C[q, q−1] generated by the
even variables,

zij, for 1 ≤ i, j ≤ m, or m+ 1 ≤ i, j ≤ m+ n,

and by the odd variables,

ξkl for 1 ≤ k ≤ m, m+ 1 ≤ l ≤ m+ n,

or m+ 1 ≤ k ≤ m+ n, 1 ≤ l ≤ m,

satisfying the relations ξ2kl = 0, and IM is an ideal that we describe below. We can
visualize the generators as a matrix:(

zm×m ξm×n
ξn×m zn×n

)
. (3.21)

It is convenient sometimes to have a common notation for even and odd variables.

aij =


zij 1 ≤ i, j ≤ m, or m+ 1 ≤ i, j ≤ m+ n,

ξij 1 ≤ i ≤ m, m+ 1 ≤ j ≤ m+ n, or

m+ 1 ≤ i ≤ m+ n, 1 ≤ j ≤ m.

We assign a parity to the indices: p(i) = 0 if 1 ≤ i ≤ m and p(i) = 1 if m+1 ≤ i ≤
m+n. The parity of aij is π(aij) = p(i) + p(j) mod 2. Then, the ideal IM is generated
by the relations [59]:

aijail = (−1)π(aij)π(ail)q(−1)p(i)+1

ailaij, for j < l

aijakj = (−1)π(aij)π(akj)q(−1)p(j)+1

akjaij, for i < k

aijakl = (−1)π(aij)π(akl)aklaij, for i < k, j > l

or i > k, j < l

aijakl − (−1)π(aij)π(akl)aklaij = (−1)π(aij)π(akl)(q−1 − q)akjail,
for i < k, j < l

(3.22)
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There is also a comultiplication,

Mq(m|n)
∆−−−→ Mq(m|n)⊗Mq(m|n)

∆(aij) :=
∑
k

aik ⊗ akj,

and a counit,
ε(aij) = δij.

One can define SLq(m|n) as the quotient

SLq(m|n) := Mq(m|n)/⟨Berq − 1⟩

where Berq denotes the quantum Berezinian (for the definition, see [39, Def. 5.4.6]).
SLq(m|n) is a Hopf superalgebra, for an explicit description of the antipode see [59] or
[39, Appendix E].
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Chapter 4

Fundamental theorems of super
invariant theory

In this chapter, we discuss the invariant theory of special linear supergroup. In Sec-
tion 4.1, we recall the classical results for special linear group very briefly. In Section 4.2,
we state and prove first fundamental theorem of super invariant theory. In Section 4.3,
we recall a classical determinant identity, known as Jacobi’s identity, and show how
(classical) Plücker relations can be reconstructed from this identity. In Section 4.4,
we obtain a super Jacobi identity, a generalization of the Jacobi identity, to the super
setting. In Section 4.5, we use a similar strategy as in Section 4.3 to construct super
Plücker relations and to prove second fundamental theorem of super invariant theory for
SL(1|1). In Section 4.6, we construct what we call super Plücker relations for SL(r|s)
using the same technique, however, we conjecture that they are all the relations.

4.1 Fundamental theorems of invariant theory

Consider the polynomial functions on the set of r × p (r ≤ p) complex matrices Mr×p,
and the following action of the complex special linear group SLr(C):

C[Mr×p]× SLr(C) −−−→ C[Mr×p]

(f, g) −−−→ f.g,
(4.1)

where (f.g)(M) := f(gM) and C[Mr×p] denotes the algebra of polynomials functions
on the entries of Mr×p.

Let Xi1...ir denote the r × r minor formed with the columns (i1, . . . , ir) of a matrix
in Mr×p. The First and Second fundamental Theorems of invariant theory for SLr(C)
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state the following (see [45, 32, 33] for a full account).

Theorem 4.1.1. Let the notation be as above.

1. First Fundamental Theorem (FFT) of invariant theory. The ring of in-
variants C[Mr×p]

SLr(C) is generated by the minors Xi1...ir of the r× r submatrices
in Mr×p.

2. Second Fundamental Theorem (SFT) of invariant theory. We have a
presentation of the ring of invariants via the ideal I of the Plücker relations:

C[Mr×p]
SLr(C) ∼= C[Xi1...ir ]

/
I, with

I :=

(
r+1∑
k=1

(−1)kXi1...ir−1jkXj1...ȷ̃k...jr+1

)
, (4.2)

where,

1 ≤ i1 < · · · < ir−1 ≤ p,

1 ≤ j1 < · · · < ȷ̃k < · · · < jr+1 ≤ p,

and ȷ̃k means that the index is removed.

Proof. See [33, §9.2, Prop. 2].

4.2 First fundamental theorem for SL(r|s)
As we just observed that the First Fundamental Theorem of ordinary invariant theory
realizes the ring of invariants with respect to this action, as the subring of C[Mr×p]
generated by the determinants of the r × r minors in Mr×p(C).

We now extend the action (4.1) to the super setting and compute the superalgebra
of invariants. Let Mr|s×p|q be the super vector space of supermatrices and let O be
the superalgebra of ‘functions’ on Mr|s×p|q. For notational purposes, let us organize the
generators of O (or ‘coordinates’) in a supermatrix, as follows:
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A =



x11 ... x1p α11̂ ... α1q̂

. ... . . ... .

. ... . . ... .
xr1 ... xrp αr1̂ ... αrq̂
β1̂1 ... β1̂p y1̂1̂ ... y1̂q̂
. ... . . ... .
. ... . . ... .
βŝ1 ... βŝp yŝ1̂ ... yŝq̂


, (4.3)

where the hat denotes the odd indices. Then,

O = k[xij, yk̂l̂, αik̂, βl̂j],

where xij and yk̂l̂ are even variables while αik̂ and βl̂j are odd variables.

Let A be a commutative superalgebra. For every supermatrix in the set of A-points
of Mr|s×p|q, M ∈ Mr|s×p|q(A) and f ∈ O one can compute an element of A. This is
denoted, in the terminology of the A-points, as f(M) instead of the, perhaps more
appropriate, M(f).

Let SL(r|s) be the special linear supergroup (as introduced in Example 3.5.3). ItsA-
points are the matrices in GL(r|s)(A) with Berezinian equal to 1. In terms of A-points,
one can write a left action of the special linear supergroup on the supermatrices:

SL(r|s)(A)×Mr|s×p|q(A) −−−→ Mr|s×p|q(A)

(g,M) −−−→ gM.

One can also define a right action of SL(r|s) on O, exactly as in the ordinary case (4.1).
For g ∈ SL(r|s)(A) and f ∈ O one has,

(f.g)(M) := f(gM), M ∈ Mr|s×p|q(A).

We want to be able to define the Berezinians of all r|s × r|s minors appearing in
the matrix (4.3). We then have to localize O at the determinants:

Di1,..,ir := det


x1i1 ... x1ir
. ... .
. ... .
xri1 ... xrir

 , Dȷ̂1···ȷ̂s := det


y1̂ȷ̂1 · · · y1̂ȷ̂s
· · · · ·
· · · · ·
yŝȷ̂1 · · · yŝȷ̂s

 ,
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in the diagonal blocks, in the expression (4.3). We can now look at the action of the
supergroup SL(r|s) on the localization:

Õ := O[D−1
i1···ir , D

−1
ȷ̂1···ȷ̂s ]. (4.4)

where 1 ≤ i1 ≤ · · · ≤ ir ≤ p and 1 ≤ j1 ≤ · · · ≤ js ≤ q. This corresponds to take the
subset M̃r|s×p|q(A) ⊂ Mr|s×p|q(A) where all the corresponding minors are invertible.

Remark 4.2.1. In general, localization of noncommutative rings is not always possi-
ble. One needs the extra Ore condition. However, in our case, the set [D−1

i1···ir , D
−1
ȷ̂1···ȷ̂s ]

contains even elements which are regular and central. Therefore, the Ore condition is
trivially satisfied.

In this way we can formulate the super version of the First Fundamental Theorem
of invariant theory.

Theorem 4.2.2. Let Ai1···ir|ȷ̂1···ȷ̂s be the supermatrix formed with the columns

(i1, . . . , ir|ȷ̂1, . . . , ȷ̂s) of the supermatrix A in (4.3). Then, the ring of invariants ÕSL(r|s)

is generated by the superminors:

Xi1···ir|ȷ̂1···ȷ̂s := BerAi1···ir|ȷ̂1···ȷ̂s (4.5)

X∗
i1···ir|ȷ̂1···ȷ̂s := Ber∗Ai1···ir|ȷ̂1···ȷ̂s (4.6)

and the ‘fake’ superminors,

Xi1···ik−1 ȷ̂kik+1···ir|ȷ̂1···ȷ̂s := BerAi1···ik−1 ȷ̂kik+1···ir|ȷ̂1···ȷ̂s (4.7)

X∗
i1···ir|ȷ̂1···ȷ̂l−1il ȷ̂l+1···ȷ̂s := Ber∗Ai1···ir|ȷ̂1···ȷ̂l−1il ȷ̂l+1···ȷ̂s (4.8)

where 1 ≤ i1 ≤ · · · ≤ ir ≤ p and 1 ≤ ȷ̂1 ≤ · · · ≤ ȷ̂s ≤ q.

Proof. It is clear from the multiplicative property of Berezinian (see Theorem 3.2.3),
that superminors and fake superminors are invariants.

To show that they generate the ring ÕSL(r|s), we decompose the matrix of coordinate
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functions (4.3) as A = Ã1···r|1̂···ŝB, where

Ã1···r|1̂···ŝ =



x11
X1···r|1̂···ŝ

· · · x1r α11̂ · · · α1ŝ

· · · · · · · · · ·
· · · · · · · · · ·
xr1

X1···r|1̂···ŝ
· · · xrr αr1̂ · · · αrŝ

β1̂1
X1···r|1̂···ŝ

· · · β1̂r y1̂1̂ · · · y1̂ŝ

· · · · · · · · · ·
· · · · · · · · · ·
βŝ1

X1···r|1̂···ŝ
· · · βŝr yŝ1̂ · · · yŝŝ



,

so we have
B = Ã−1

1···r|1̂···ŝA.

Using super Cramer’s rule we can find the entries of B =

(
U V
W Z

)
:

Uij =

{
Xj···r|1̂···ŝ for i = 1, 1 ≤ j ≤ p,

X∗
1···r|1̂···ŝX1···(i−1)j(i+1)···r|1̂···ŝ for 1 < i ≤ r, 1 ≤ j ≤ p

(4.9)

Wk̂j = X1···r|1̂···ŝX
∗
1···r|1̂···(k̂−1̂)j(k̂+1̂)···ŝ for 1 ≤ k ≤ s, 1 ≤ j ≤ p. (4.10)

Vil̂ =

{
Xl̂···r|1̂···ŝ for i = 1, 1 ≤ l ≤ q,

X∗
1···r|1̂···ŝX1···(i−1)l̂(i+1)···r|1̂···ŝ for 1 < i ≤ r, 1 ≤ l ≤ q.

(4.11)

Zk̂l̂ = X1···r|1̂···ŝX
∗
1···r|1̂···(k̂−1̂)l̂(k̂+1̂)···ŝ for 1 ≤ k ≤ s, 1 ≤ l ≤ q. (4.12)

Let A be any superalgebra and consider an arbitrary element T ∈ M̃r|s×p|q(A). We can
write T as a product,

T = T̃1···r|1̂···ŝR (4.13)

where, T̃1···r|1̂···ŝ is an element of SL(r|s)(A) and R ∈ M̃r|s×p|q(A) computed in terms
of superminors and fake superminors. Explicitly, each entry of R can be computed by
evaluating the corresponding superminor or fake superminor as in B above.
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Let f ∈ ÕSL(r|s) be an invariant. Then, by definition, we have:

f.g(R) = f(gR) = f(R), for all R ∈ M̃r|s×p|q(A) and g ∈ SL(r|s)(A).

But then, for any T ∈ M̃r|s×p|q(A),

f(T ) = f(T̃1···r|1̂···ŝR) = f(R),

where R is as in (4.13). Therefore, f is a function of superminors and fake superminors,
as we wanted to prove.

4.3 Classical Plücker relations revisited

In this section, we revisit the classical Plücker relations. We start by recalling a de-
terminant identity due to Jacobi, the Jacobi complementary minor theorem [56] or the
Jacobi identity for short.

Theorem 4.3.1. (The Jacobi complementary minor theorem) Let A be an invertible
n× n matrix. Fix the two sets of indices:

u = (n− r + 1, ..., n) and v = (1, ..., r)

Let ũ and ṽ denote the complements of u and v respectively in (1, . . . , n). Then:

detA det(A−1)ṽũ = (−1)r(n+1) detAuv (4.14)

where Auv denotes the matrix obtained from A by deleting its rows and columns whose
indices are contained in u and v, respectively.

Proof. We denote A =
[
aij
]
n×n and, A−1 =

[
bkl
]
n×n . Therefore,

(A−1)ṽũ =


b1(n−r+1) · · · b1n
· · · · ·
· · · · ·.

br(n−r+1) · · · brn

 .
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Notice that,

det(A−1)ṽũ =det


b1(n−r+1) · · · b1n
· · · · ·
· · · · ·

br(n−r+1) · · · brn

 =

det



b1(n−r+1) · · · b1n 0 · · · 0
· · · · · · · · · ·
· · · · · · · · · ·

br(n−r+1) · · · brn 0 · · · 0
b(r+1)(n−r+1) · · · b(r+1)n 1 · · · 0

· · · · · · · · · ·
· · · · · · · · · ·

bn(n−r+1) · · · bnn 0 · · · 1


n×n

(4.15)

Let us denote the n × n matrix appeared in Equation (4.15) by T . Hence, using the
multiplicative property of the determinant we get:

detA det(A−1)ṽũ =detA detT = det(AT ) =

det



0 · · · 0 a1,r+1 · · · a1n
· · · · · · · · · ·
· · · · · · · · · ·
0 · · · 0 a(n−)(r+1) · · · a(n−r)n
1 · · · 0 an−r+1,r+1 · · · a(n−r+1)n

· · · · · · · · · ·
· · · · · · · · · ·
0 · · · 1 an(r+1) · · · ann


=

(−1)r(n+1) det


a1,r+1 · · · a1n
· · · · ·
· · · · ·

an−r,r+1 · · · a(n−r)n

 =

(−1)r(n+1) det(Auv).

as desired.

There are several and more general versions of the Jacobi identity, (see [46, §6] and
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references therein). However, we show now that the Jacobi identity, as in Theorem 4.3.1,
is enough to recover the ordinary Plücker relations as in Equation (4.2) of Theorem 4.1.1.

Proposition 4.3.2. Let Xi1···ir denote the minor of M ∈ Mr×p (r ≤ p) corresponding
to the submatrix formed by the columns (i1, . . . , ir) of M .

r+1∑
k=1

(−1)kXi1···ir−1jkXj1···ȷ̃k...jr+1 = 0

come directly from the Jacobi identity (4.14).

Proof. Fix an r × p matrix:

C =


a11 a12 · · · a1p
· · · · · ·
· · · · · ·
· · · · · ·
ar1 ar2 · · · arp

 .

Moreover, fix any two sets {i1, ..., ir} and {j1, ..., jr} of ordered indices from {1, ..., p}
and define the following 2r × 2r matrix:

A =



a1i1 · · · a1ir a1j1 · · · a1jr
· · · · · · · · · ·
· · · · · · · · · ·
ari1 · · · arir arj1 · · · arjr
0 · · · 0 1 · · · 0
· · · · · · · · · ·
· · · · · · · · · ·
0 · · · 0 0 · · · 1


.

Clearly, det(A) = Xi1···ir . Suppose that Xi1···ir is invertible, and fix,

u = (r + 1, . . . , 2r), and v = (1, . . . , r),

which implies,

ũ = (1, . . . , r), and ṽ = (r + 1, . . . , 2r).
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Therefore,

Auv =


a1j1 · · · a1jr
· · · · ·
· · · · ·
arj1 · · · arjr

 ,

which implies, det(Auv) = Xj1···jr . Putting this in Equation (4.14) one gets:

Xj1···jr = (−1)rXi1···ir det(A
−1)ṽũ. (4.16)

Moreover,

(A−1)ṽũ =
[
(A−1)kl

]
k=1,...,r

l=r+1,...,2r
.

By Cramer’s rule, we know that:

(A−1)kl =
detAk(el)

det(A)
.

Therefore, one can easily compute,

(A−1)ṽũ =


−Xj1i2···irX

−1
i1···ir −Xj2i2···irX

−1
i1···ir · · · −Xjri2···irX

−1
i1···ir

−Xi1j1i3···irX
−1
i1···ir −Xi1j2i3···irX

−1
i1···ir · · · −Xi1jri3···XrX

−1
i1···Xr

· · · · · ·
· · · · · ·

−Xi1i2···j1irX
−1
i1···ir −Xi1i2···j2irX

−1
i1···ir · · · −Xi1i2···jrirX

−1
i1···ir

−Xi1i2···ir−1j1X
−1
i1···ir −Xi1i2···ir−1j2X

−1
i1···ir · · · −Xi1i2···ir−1jrX

−1
i1···ir

 .

The Laplace expansion of the determinant, using the first row, gives us:

det(A−1)ṽũ = (Xi1···ir)
−1

r∑
t=1

−Xjti2···irc1,t, (4.17)

where c1,t is the cofactor of the entry
(
(A−1)ṽũ

)
1t
. Therefore, substituting these in

Equation (4.16) we get:

Xj1···jr = (−1)r+1

r∑
t=1

Xjti2···irc1,t. (4.18)
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To calculate c1,1, consider the same calculations with a matrix A′ where we fix
j1 = i1. This gives us:

(A′−1)ṽũ =


−1 −Xj2i2···irX

−1
i1···ir · · · −Xjri2..irX

−1
i1···ir

0 −Xi1j2i3..irX
−1
i1···ir · · · −Xi1jri3..irX

−1
i1···ir

. . · · · .

. . · · · .
0 −Xi1i2···j2irX

−1
i1···ir · · · −Xi1···jrirX

−1
i1···ir

0 −Xi1i2···ir−1j2X
−1
i1···ir · · · −Xi1i2···ir−1jrX

−1
i1···ir

 ,

and from Equation (4.14) it follows that:

Xi1j2···jr = (−1)rXi1···ir det(A
′−1)ṽũ

= (−1)r+1Xi1···ir c1,1.

Hence, we get:

c1,1 = (−1)r+1Xi1j2···jr(Xi1···ir)
−1.

Similarly, one can get:

c1,t = (−1)r+1Xj1···jt−1i1jt+1···jr(Xi1···ir)
−1.

By putting this in equation (4.18) we get:

Xi1···irXj1···jr =
r∑
t=1

Xjti2···irXj1···jt−1i1jt+1···jr , (4.19)

which are exactly the Plücker relations in (4.2), up to renaming some indices.

We explain this result below with an easy example.

Example 4.3.3. Fix a matrix C of size 2× 4,

C =

(
a11 a12 a13 a14
a21 a22 a23 a24

)
,

and set Xij := det

(
a1i a1j
a2i a2j

)
. Suppose that X12 is invertible. Now, consider the

following matrix:

A =


a11 a12 a13 a14
a21 a22 a23 a24
0 0 1 0
0 0 0 1

 , which satisfies det(A) = X12.
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Setting u = (3, 4) and v = (1, 2), gives us:

detAuv = det

(
a13 a14
a23 a24

)
= X34.

Moreover, using Cramer’s rule, one can easily compute:

(A−1)ṽũ =

(
(A−1)13 (A−1)14
(A−1)23 (A−1)24

)
=

(
X23X

−1
12 X24X

−1
12

−X13X
−1
12 −X14X

−1
12

)
.

Hence, substituting these values in Jacobi’s identity, we get:

det(Auv) = det(A) det(A−1)ṽũ,

⇒ X34 = X12 det

(
X23X

−1
12 X24X

−1
12

−X13X
−1
12 −X14X

−1
12

)
,

⇒ X12X34 −X13X24 +X14X23 = 0,

which is exactly the Plücker relation in this case.

4.4 The super Jacobi identity

In this section we want to obtain a super Jacobi identity, a generalization of the Jacobi
identity, Theorem 4.3.1, to the super setting. We first introduce some notation.

Notation. Let A be an invertible supermatrix of size p|q × p|q. Let u = (p − r +
1, . . . , p|q̂ − ŝ+ 1̂, . . . , q̂) and v = (1, . . . , r|1̂, . . . , ŝ) be two sets of indices, r < p, ŝ < q̂.
Let Auv denote the matrix obtained from A by deleting its rows and columns contained
in u and v, respectively, i.e. by deleting the last r even rows, the last ŝ odd rows, first
r even columns and first ŝ odd columns. Also, set ũ = (1, . . . , p − r|1̂, . . . , q̂ − ŝ) and
ṽ = (r + 1, . . . , p|ŝ+ 1̂, . . . , q̂) as the complements of u and v, respectively.

Theorem 4.4.1. (The super Jacobi Identity) Let the notation be as above. If Auv and
(A−1)ṽũ are invertible, then

BerABer(A−1)ṽũ = (−1)tBerAuv , (4.20)

where t = r(p+ 1) + s(q + 1).

We call (4.20) the super Jacobi identity.
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Proof. A similar strategy to what we used in the proof of Theorem 4.3.1 will work here.
Let

A =

(
[aij] [aik̂]
[al̂j] [al̂k̂]

)
and A−1 =

(
[bij] [bik̂]
[bl̂j] [bl̂k̂]

)
.

According to our notation,

(A−1)ṽũ =



b1(p−r+1) · · · b1p b1(q̂−ŝ+1̂) · · · b1q̂
· · · · · · · · · ·
· · · · · · · · · ·

br(p−r+1) · · · brp br(q̂−ŝ+1̂) · · · brq̂
b1̂(p−r+1) · · · b1̂p b1̂(q̂−ŝ+1̂) · · · b1̂q̂
· · · · · · · · · ·
· · · · · · · · · ·

bŝ(p−r+1) · · · bŝp bŝ(q̂−ŝ+1̂) · · · bŝq̂


.

One can see that:

Ber(A−1)ṽũ = Ber T, (4.21)

where T is the super matrix of size p|q × p|q described as follows:

Tj =

{
(A−1)p−r+j for 1 ≤ j ≤ r,

ej for r + 1 ≤ j ≤ p,

where Tj denotes the j-th even column of T , (A−1)k is the k-th even column of A−1

and ej denotes an even vector of size p|q, whose entries are all 0 except at the j-th even
position, where the entry is 1.

On the other hand,

Tl̂ =

{
(A−1)q̂−ŝ+l̂ for 1̂ ≤ l̂ ≤ ŝ,

el̂ for ŝ+ 1̂ ≤ l̂ ≤ q̂,

where Tl̂ denotes the l̂-th odd column of T , (A−1)k̂ is the k̂-th-odd column of A−1 and el̂
denotes an odd vector of size p|q whose entries are all 0 except at the l̂-th odd position,
where the entry is 1.

In other words, T is a supermatrix whose first r even columns coincide with the last
r even columns of A−1, the first ŝ odd columns coincide with the last ŝ odd columns of
A−1 and the remaining even and odd columns are ej and el̂, respectively.
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Therefore, using Equation (4.21) and the multiplicative property of berezinian, we
have:

Ber ABer(A−1)ṽũ = Ber ABer T = Ber(AT ). (4.22)

Let us denote C = AT , then, using above notation:

Cj =

{
ep−r+j for 1 ≤ j ≤ r,

Aj for r + 1 ≤ j ≤ p,

and

Cl̂ =

{
eq̂−ŝ+l̂ for 1̂ ≤ l̂ ≤ ŝ,

Al̂ for ŝ+ 1̂ ≤ l̂ ≤ q̂.

Then, one can compute:

Ber A = Ber C = (−1)r(p+1)+s(q+1)BerAuv , (4.23)

and by putting this into Equation (4.22) the desired identity is obtained.

4.5 Second fundamental theorem for SL(1|1)
In this section we present the second fundamental theorem for SL(1|1). We want to use
the super Jacobi identity as in (4.4.1) to derive the relations among the Berezinians in
the superalgebra Õ defined in (4.4). We illustrate in detail in this section the case of
r = s = 1, the general case will be discussed shortly, in the next section, following the
same strategy. Then, we proved that this gives us all the relations among the generators
for the case of SL(1|1).
Theorem 4.5.1. (The super Plücker relations for SL(1|1)) Let the notation be as in
(4.6), (4.7) and (4.8) for r = s = 1. Then:

Xi|µ̂X
∗
i|µ̂ = 1, (4.24)

Xi|µ̂Xj|ν̂ = Ber

(
Xj|µ̂ Xν̂|µ̂
X∗
i|j X∗

i|ν̂

)
, (4.25)

Xi|µ̂Xλ̂|ν̂ = Ber

(
Xλ̂|µ̂ Xν̂|µ̂

X∗
i|λ̂ X∗

i|ν̂

)
, (4.26)

X∗
i|µ̂X

∗
j|k = Ber∗

(
Xj|µ̂ Xk|µ̂
X∗
i|j X∗

i|k

)
, (4.27)
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where the Latin (even) indices run from 1 to p and the Greek (odd) indices run from 1
to q.

We call these the super Plücker relations for SL(1|1).

Proof. The relations (4.24) follow from the Equation (3.10). Now, for any indices (i|µ̂)
and (j|ν̂), fix the following matrix:

B =


x1i x1j x1µ̂ x1ν̂
0 1 0 0
x1̂i x1̂j x1̂µ̂ x1̂ν̂
0 0 0 1

 .

Clearly,

Ber B = Xi|µ̂. (4.28)

By setting u = (2, 2̂) and v = (1, 1̂), we get:

Ber Bu
v = Ber

(
x1j x1ν̂
x1̂j x1̂ν̂

)
= Xj|ν̂ . (4.29)

Moreover, since ũ = (1|1̂) and ṽ = (2|2̂), using the super Cramer’s rule one can compute:

(B−1)ṽũ =

(
(B−1)12 (B−1)12̂
(B−1)1̂2 (B−1)1̂2̂

)
=

(−Xj|µ̂X
∗
i|µ̂ −Xν̂|µ̂X

∗
i|µ̂

−X∗
i|jXi|µ̂ −X∗

i|ν̂Xi|µ̂

)
.

Hence,

Ber(B−1)ṽũ = (X∗
i|µ̂)

2Ber

(
Xj|µ̂ Xν̂|µ̂
X∗
i|j X∗

i|ν̂

)
. (4.30)

Substituting Equations (4.5.5), (4.29) and (4.30) in the super Jacobi identity, one arrives
to the relations (4.25).

For the other relations, we would need to generalize the spirit of the proof for the
super Jacobi identity to include some fake supermatrices. Consider the matrix,

B =


x1i 0 x1µ̂ x1ν̂
0 1 0 0
x1̂i 0 x1̂µ̂ x1̂ν̂
0 0 0 1

 , (4.31)
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with Ber B = Xi|µ̂. We construct a fake supermatrix T in the following way: the first
even column is the second even column of B−1, the first odd column is the second odd
column of B−1; at the second even column position we have B−1t where

t :=


x1λ̂
0
x1̂λ̂
0

 .

and at the second odd column position we have e2̂. Then, clearly:

Ber(BT ) = Ber


0 x1λ̂ 0 x1ν̂
1 0 0 0
0 x1̂λ̂ 0 x1̂ν̂
0 0 1 1

 = Xλ̂|ν̂ . (4.32)

On the other hand, one can explicitly compute, using super Cramer’s rule:

T =


0 Xλ̂|µ̂X

∗
i|µ̂ −Xν̂|µ̂X

∗
i|µ̂ 0

1 0 0 0
0 X∗

i|λ̂Xi|µ̂ −X∗
i|ν̂Xi|µ̂ 0

0 0 1 1

 . (4.33)

Therefore,

Ber T = (X∗
i|µ̂)

2Ber

(
Xλ̂|µ̂ Xν̂|µ̂

X∗
i|λ̂ X∗

i|ν̂

)
. (4.34)

Using the multiplicative property of the Berezinian and equation (4.32) one arrives at
the relations (4.26). Similarly, the relations (4.27) follows.

Now, we want to prove that the relations appeared in Equations (4.24), (4.25),
(4.26), and (4.27) completely characterize the ring of invariants ÕSL(1|1). Let us recall
the following basic fact from linear algebra.

Lemma 4.5.2. Let {v1, v2, · · · } be an ordered (countable) basis of a vector space V .
For any non-zero vector v =

∑
i aivi, define the leading term of v as Lt(v) := ei0, where

ai0 ̸= 0, and ai = 0 for all vi < vi0. Then, any collection of vectors in V with distinct
leading terms is linearly independent.

79



The superalgebra ÕSL(1|1) is generated by Xi|µ̂, Xµ̂|ν̂ , X
∗
j|ν̂ , and X

∗
i|j. Each element

of ÕSL(1|1) is a linear combination of expressions of the following form:

Π
i|µ̂,j|λ̂,η̂|ν̂,k|l

X
di|µ̂
i|µ̂ X

dη̂|ν̂
η̂|ν̂ X

∗dj|λ̂
j|λ̂ X

∗dk|l
k|l , (4.35)

where di|µ̂, dj|λ̂ ∈ {0, 1, 2, ...} and dη̂|ν̂ , dk|l ∈ {0, 1}. However, super Plücker relations
implies:

Xi|µ̂ = X∗
1|1̂X1|µ̂Xi|1̂ −X∗

1|1̂Xµ̂|1̂X
2
1|µ̂X

∗
1|i, (4.36)

X∗
j|λ̂ = X1|1̂X

∗
j|1̂X

∗
1|λ̂ −X1|1̂X

∗
1|jX

∗2
j|1̂Xλ̂|1̂, (4.37)

Xη̂|ν̂ = X∗
1|1̂X1|ν̂Xη̂|1̂ −X∗

1|1̂Xν̂|1̂X
2
1|ν̂X

∗
1|η̂, (4.38)

X∗
k|l = X1|1̂X

∗
k|1̂X

∗
1|l −X1|1̂X

∗
1|kX

∗2
k|1̂Xl|1̂. (4.39)

Therefore, every expression in (4.35) can be written and arranged as a linear com-
bination of the expression of the following form:

P = P1|µ̂Pi|1̂Pη̂|1̂P
∗
1|λ̂P

∗
j|1̂P

∗
1|l, (4.40)

where:

P1|µ̂ := X
dµ̂1
1|µ̂1 · · ·X

dµ̂α
1|µ̂α , Pi|1̂ := X

di1
i1|1̂
· · ·Xdia

ia|1̂
, Pη̂|1̂ := Xη̂1|1̂ · · ·Xη̂β |1̂,

P ∗
1|λ̂ := X

∗dλ̂1
1|λ̂1
· · ·X

∗dλ̂γ
1|λ̂γ

, P ∗
j|1̂ := X

∗dj1
j1|1̂
· · ·X∗djb

jb|1̂
, P ∗

1|l := X∗
1|l1 · · ·X

∗
1|lc ,

and,
1 ≤ µ1 < · · · < µα ≤ q, 1 < i1 < · · · < ia ≤ p,

1 < η1 < · · · < ηβ ≤ q, 1 ≤ λ1 < · · · < λγ ≤ q,

1 < j1 < · · · < jb ≤ p, 1 < l1 < · · · < lc ≤ p,

such that:

• µϵ ̸= λδ for any ϵ, δ ∈ {1, · · · , q},

• im ̸= jn for any m,n ∈ {2, · · · , p}.
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Definition 4.5.3. We call the generators in the set

{X1|µ̂, Xi|1̂, X
∗
1|µ̂, X

∗
i|1̂, Xλ̂|1̂, X

∗
1|j|1 ≤ i, j ≤ p, 2 ≤ µ, λ ≤ q}

as standard algebra generators for and the expressions P in (4.40) as standard products.

Lemma 4.5.4. The standard products are linearly independent and hence forms a vec-
tor space basis of ÕSL(1|1).

Proof. Let B be the monomial basis of Õ, i.e. it contains the expressions of the following
form:

Π(i,j)x
aij
ij (x

−1
ij )

bijΠ(k,l)x
ckl
kl ,

where:

• xij and xkl denotes even and odd generators respectively,

• aij, bij ∈ {0, 1, 2, · · · }, ckl ∈ {0, 1},

• for a fixed (i, j) at least one of aij or bij is zero.

Now, consider the following ordering of tuples,

(1, 1) < · · · < (1, p) < (1̂, 1̂) < · · · < (1̂, q̂)

< (1, 1)−1 < · · · < (1, p)−1 < (1̂, 1̂)−1 < · · · < (1̂, q̂)−1

< (1, 1̂) < · · · < (1, q̂) < (1̂, 1) < · · · < (1̂, p),

where (i, j)−1 is just a notation for denoting the generators x−1
ij . This gives us a total

ordering on the basis B of Õ as follows:

Π(i,j)x
aij
ij (x

−1
ij )

bijΠ(k,l)x
ckl
kl < Π(i,j)x

a′ij
ij (x

−1
ij )

b′ijΠ(k,l)x
c′kl
kl

if one of the following holds:

(i) ∃ an (i, j) for which aij ̸= a′ij and (i, j) is smallest such tuple, then aij > a′ij.

(ii) aij = a′ij for all (i, j), and ∃ and (i, j) for which bij ̸= b′ij and (i, j) is smallest
such tuple then, bij < b′ij.
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(iii) aij = a′ij and bij = b′ij for all (i, j), and (k, l) is smallest tuple for which ckl ̸= c′kl,
then ckl > c′kl.

With this ordering the leading terms of P1|µ̂, Pi|1̂, Pη̂|1̂, P
∗
1|λ̂, P

∗
j|1̂, P

∗
1|l turns out to

be:

Lt(P1|µ̂) = x
dµ
11 (x

−1

1̂µ̂1
)dµ̂1 ...(x−1

1̂µ̂α
)dµ̂α , Lt(Pi|1̂) = x

di1
1i1
...x

dia
1ia

(x−1

1̂,1̂
)di ,

Lt(Pη̂|1̂) = (x−1

1̂1̂
)βx1η̂1 ...x1η̂β , Lt(P ∗

1|λ̂) = x
dλ̂1
1̂λ̂1
...x

dλ̂γ

1̂λ̂γ
(x−1

11 )
dλ̂ ,

Lt(P ∗
j|1̂) = x

dj

1̂1̂
(x−1

1j1
)dj1 ...(x−1

1j1
)djb , Lt(P ∗

1|l) = (x−1
11 )

cx1̂l1 ...x1̂lc ,

and the leading term Lt(P ) of the standard generator P = P1|µ̂Pi|1̂Pη̂|1̂P
∗
1|λ̂P

∗
j|1̂P

∗
1|l is the

product of these leading terms. Therefore, distinct standard generators have distinct
leading terms, and, by Lemma 4.5.2, they are linearly independent.

The lemma 4.5.4 implies that the super Plücker relations are all the algebraic rela-
tions among the generators. We state it precisely in the theorem below.

Theorem 4.5.5. (Second fundamental theorem for SL(1|1)) The super Plücker rela-
tions given in equations (4.24), (4.25), (4.26) and (4.27) completely characterize the ring
of invariants ÕSL(1|1).

Proof. Let R be another relation, say:∑
aISI = 0. (4.41)

where aI ∈ C are scalars, and SI denotes some products of the generators Xi|µ̂, Xµ̂|ν̂ ,
X∗
j|ν̂ , and X

∗
i|j and I is some muti-index encoding the generators in the product SI .

Now, according to the super Plücker relations, as explicitly written in Equations
(4.36), (4.37), (4.38), and (4.39), we can turn R into an expression in the standard
algebra generators (see Definition 4.5.3). But, then all the expressions in standard
algebra generators can be reordered as standard products (see Definition 4.5.3), which
are linearly independent (as proved in Lemma 4.5.4), therefore, all the scalars aI are
zero, which completes the proof.
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4.6 Super Plücker relations for SL(r|s)
In this section, we construct super Plücker relations for SL(r|s) using the same approach
as we did in the previous section for the case when r = s = 1.

Theorem 4.6.1. Let the notation be as above. The ring of invariants ÕSL(r|s) is char-
acterized by the following relations:

Xi|µ̂X
∗
i|µ̂ = 1 (4.42)

(Xi|µ̂)
r+s−1Xj|ν̂ = Ber

(
Xia(jt)|µ̂ Xia(νβ)|µ̂

X∗
i|µ̂

α
(jt)

X∗
i|µ̂

α
(νβ)

)
a,t=1,...,r
α,β=1,...,s

(4.43)

(Xi|µ̂)
r+s−1Xj1...jr−1λ̂|ν̂ = Ber

(
Xia(jt)|µ̂ Xia(λ̂)|µ̂

Xia(νβ)|µ̂

X∗
i|µ̂

α
(jt)

X∗
i|µ̂

α
(λ̂)

X∗
i|µ̂

α
(νβ)

)
a=1,...,r
t=1,...,r−1
α,β=1,...,s

(4.44)

(X∗
i|µ̂)

−r−s+1X∗
j|ν1...νs−1y

= Ber∗

(
Xia(jt)|µ̂ Xia(νβ)|µ̂ Xia(y)|µ̂

X∗
i|µ̂

α
(jt)

X∗
i|µ̂

α
(νβ)

X∗
i|µ̂

α
(y)

)
a,t=1,...,r
α=1,...,s
β=1,...,s−1

(4.45)

where ia(jt)|µ denotes replacing the a-th index of i = i1, ..., ir with jt and similarly
others. We call these the super Plücker relations for SL(r|s).

Proof. For any ordered indices i|µ̂ = (i1, ..., ir|µ̂1, ..., µ̂s) and j|ν̂ = (j1, ..., jr|ν̂1, ..., ν̂s)
taken from (1, . . . , p|1̂, . . . , q̂), fix the following matrix of size 2r|2s× 2r|2s:

A =


A1 A2 A3 A4

O Ir O O
A5 A6 A7 A8

O O O Is

 .

where O and I denotes the null and identity matrices respectively and

A1 =
[
xkil
]
, A2 =

[
xkjl
]
, A3 =

[
xkµ̂n

]
, A4 =

[
xkν̂n

]
,

A5 =
[
xm̂il

]
, A6 =

[
xm̂jl

]
, A7 =

[
xm̂µ̂n

]
, A8 =

[
xm̂ν̂n

]
,
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where k, l = 1, ..., r and m,n = 1, ..., s. Then, clearly,

Ber(A) = Xi|µ̂. (4.46)

Moreover, setting,

u = (r + 1, . . . , 2r| ˆs+ 1, . . . , 2̂s), and v = (1, . . . , r|1̂, . . . ŝ),

gives us:

Ber(Auv) = Ber

(
A2 A4

A6 A8

)
= Xj|ν̂ . (4.47)

On the other hand:

(A−1)ṽũ =

(
(A−1)ab (A−1)ad̂
(A−1)ĉb (A−1)ĉd̂

)
,

where a = 1, ..., r, b = r + 1, ..., 2r, c = 1, ..., s and d = s+ 1, ..., 2s.

These entries of A−1 can be computed using super Cramer’s rule. For instance,

(A−1)ab =
Ber(Aa(eb))

Ber(A)
= −Xia(jt)|µ̂X

∗
i|µ̂,

where t = b− r. Similarly, the other entries are obtained and we get:

(A−1)ṽũ =

(
−Xia(jt)|µ̂X

∗
i|µ̂ −Xia(νβ)|µ̂X

∗
i|µ̂

−X∗
i|µ̂

α
(jt)
Xi|µ̂ −X∗

i|µ̂
α
(νβ)

Xi|µ̂

)
a,t=1,...,r
α,β=1,...,s

. (4.48)

Substituting Eqs. (4.46), (4.47) and (4.48) into the super Jacobi identity, we get
relations in Eq. (4.43). Similarly, the other super Plücker relations in Eqs. (4.44) and
(4.45) are obtained by modifying the strategy used in the proof of super Jacobi identity,
as we explicitly presented in the previous section for the case of SL(1|1).

We end this chapter by stating an open problem that remained unsolved in this
thesis, that we plan to settle in future.

Conjecture 4.6.2. ÕSL(r|s) is isomorphic to the superalgebra generated by Yi|µ̂, Yia(ν̂)|µ̂,
Y ∗
i|µ̂

α
(j) and Y

∗
i|µ̂ subject to the super Plücker relations given in Equations (4.42), (4.43),

(4.44) and (4.45).
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Chapter 5

Complex structures on the full
quantum flag manifold Oq(F3)

A theory of noncommutative geometry for quantum homogeneous spaces is an impor-
tant, but a challenging question. In this chapter, we study an important example of
quantum full flag manifold: Oq(F3), a quantization of the full flag F3 in C3.

The chapter is organized as follows. Section 5.1 is devoted to introduce the notion
of quantum full flag manifold Oq(F3). In Section 5.2, we introduce a quantum tangent
space to construct a DC on Oq(F3). In Section 5.3, we calculate the second order
exterior relations to explicitly present the quantum exterior algebra for the maximal
prolongation of FODC on Oq(F3). In section Section 5.4, we examine covariant almost
complex structures on Oq(F3) in this setting.

5.1 The full quantum flag manifold Oq(F3)

In this section, we give a quick introduction to the notion of quantum flag manifolds,
for more details, see [22, 20, 15, 21, 66].

Let sln+1C denote the special linear Lie algebra, i.e. the Lie algebra of traceless
matrices. We can define its Drinfeld-Jimbo quantized enveloping algebra Uq(sln+1) as
the algebra generated by the elements Ei, Fi, Ki and K

−1
i where 1 ≤ i ≤ n, subject to

the relations presented in Definition 2.3.7. Also, recall the notion of quantum special
unitary group Oq(SUn+1) as presented in Example 2.2.9.
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Moreover, as described in Example 2.3.10, there is a dual pairing of Hopf algebras
between Uq(sln+1) and Oq(SUn+1). Therefore, according to the Proposition 2.2.7, this
dual pairing gives a natural Uq(sln+1)-module structure on Oq(SUn+1):

f ▷ b :=
∑

b(1)⟨f, b(2)⟩ for f ∈ Uq(sln+1), b ∈ Oq(SUn+1). (5.1)

Now, let S ⊂ Π be a proper subset of simple roots Π in the root system ∆ of sln+1C
(recall the Definition 2.3.3), and consider the Hopf subalgebra Uq(lS) of Uq(sln+1) given
by:

Uq(lS) := ⟨K±
i , Ej, Fj|i = 1, · · · , n ; j ∈ S⟩. (5.2)

Having set all these notations, we define the notion of quantum flag manifolds, as given
in [66, 21, 22], in the next definition.

Definition 5.1.1. Let the notation be as above. We define the quantum flag manifold
Oq(SUn+1/LS), as the subalgebra of Uq(lS)-invariants:

Oq(SUn+1/LS) := Uq(lS)Oq(SUn+1),

=
{
b ∈ Oq(SUn+1) | w ▷ b = ε(w)b, ∀ w ∈ Uq(lS)

}
with respect to the natural left Uq(sln+1)-module structure on Oq(SUn+1) (as in Equa-
tion (5.1)).

In a similar way, the notion of quantum flag manifolds can be defined for other series
in the list of Dynkin diagrams. However, from now on, by a quantum flag manifold we
will always mean an A-series one, as defined in Definition 5.1.1.

Definition 5.1.2. In case the complement Sc of S in the set of simple roots Π is
a singleton set {αr}, the corresponding quantum flag manifold is called the r-plane
quantum grassmannian and is denoted by Oq(Grr,n+1). In case S = ∅, i.e. Uq(lS) =
Uq(h) := {K±

i |i = 1, ..., n}, the corresponding quantum flag manifold is called the full
quantum flag manifold and is denoted by Oq(Fn+1). (See [15]).

These are examples of quantum homogeneous spaces, as described in Definition 2.5.1,
see [22, §2.5] and [20, §5.3-5.4], and they provide an interesting deformation of their
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classical counterparts.

The main object of study in this chapter is the full quantum flag manifold Oq(F3),
i.e. the space of invariants in Oq(SU3) with respect to the restriction of the action of
Uq(sl3) to Uq(h) := {K±

i |i = 1, 2},

Oq(F3) :=
Uq(h)Oq(SU3).

The proposition given below gives us a set of generators for Oq(F3) as a subalgebra of
Oq(SU3).

Proposition 5.1.3. Oq(F3) as a subalgebra of Oq(SU3) is generated by the following
elements:

zα1
ij := ui1u

∗
j1 = ui1S(u1j), zα2

ij := ui3u
∗
j3 = ui3S(u3j), for i, j = 1, 2, 3. (5.3)

where ukl are the generators of Oq(SU3) as in Example 2.2.9.

Proof. See [53, Prop. 3.2] for a general proof.

The subalgebra generated by the elements zα1
ij is the quantum projective plane as

introduced in Example 2.5.3. Similarly, an isomorphic copy of the quantum projective
plane is generated by the elements zα2

ij , and together they generate Oq(F3) as an algebra.

5.2 A quantum tangent space for Oq(F3)

In this section, we construct a quantum tangent space for Oq(F3), by generalizing a
celebrated construction due to Heckenberger and Kolb for the case of quantum grass-
mannians Oq(Grr,n+1) in [54].

The quantum grassmannian Oq(Grr,n+1) (as in Definition 5.1.2) admits a unique
covariant differential calculus Ωq(Grr,n+1) that provides a q-deformation of the classical
de Rham complex of grassmannian manifolds, such that the dimension of each homoge-
neous component coincides with the classical one. (See [54]). Moreover, this differential
calculus exhibits a Kähler structure. (See [66]). In fact, a more general class known
as the irreducible quantum flag manifolds is covered by the results published in [54].
Nevertheless, these are precisely the quantum grassmannians for the A-series, which is
the sole series we are discussing about in this thesis.

We refer to the calculus Ωq(Grr,n+1) appeared in [54] as the Heckenberger–Kolb
calculus (abbreviated as HK calculus) on quantum grassmannian Oq(Grr,n+1). The
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first-order homogeneous component Ω1
q(Grr,n+1) of the HK calculus Ωq(Grr,n+1) can be

written as:

Ω1
q(Gr(n+1,r)) = Ω(1,0)

q (Grr,n+1)⊕ Ω(0,1)
q (Grr,n+1).

We call Ω
(1,0)
q (Grr,n+1) and Ω

(0,1)
q (Grr,n+1) the holomorphic and anti-holomorphic Heckenberger–

Kolb FODCi respectively, as they classically correspond to the holomorphic and anti-
holomorphic calculi on the complex grassmannain manifold Grr,n+1, [66].

According to the Theorem 2.8.6, in this setting, there is a 1 : 1 correspondence
between finite-dimensional first-order differential calculi and quantum tangent spaces.
The quantum tangent spaces corresponding to Ω

(1,0)
q (Grr,n+1) and Ω

(0,1)
q (Grr,n+1) are

defined by:

T (1,0) := Uq(lS)Fr, T (0,1) := Uq(lS)Er. (5.4)

We call T (1,0) and T (0,1) as the holomorphic and anti-holomorphic HK quantum tangent
spaces for Oq(Grr,n+1) respectively. (See [15, §4.4]).

Proposition 5.2.1. Let the notation be as above. Then, we can express the holo-
morphic and anti-holomorphic quantum tangent spaces for the quantum grassmannian
Oq(Gr(n+1,r)) as:

T (1,0) = spanC{Fβ | β ∈ ∆+
S }, (5.5)

T (0,1) = spanC{Eβ | β ∈ ∆+
S }, (5.6)

where Eβ and Fβ are as defined in [15].

Proof. See [54, Prop. 3.3].

Now, to define a FODC on Oq(F3), we define below a quantum tangent space T
generalizing this construction of Heckenberger and Kolb. The idea is to make use of
Lusztig’s root vectors (see Section 2.4). In fact, this is a general theory given in [15],
that for a particular choice of reduced decomposition of the longest element of the Weyl
group, the space spanned by the Lusztig’s root vectors is a quantum tangent space for
Oq(SUn+1), whose restriction to the case of Oq(Grr,n+1) gives the anti-holomorphic HK
quantum tangent space. See [15] for further details.

Recall, from the Example 2.4.5, for the case of sl3C, and the choice w0 = w2w1w2

(this is the choice fixed in [15]) of reduced decomposition of the longest element w0 of
the Weyl group W ∼= S3, the list of root vectors is given by:

Eα1 := E1, Eα2 := E2, and Eα1+α2 := [E2, E1]q−1 . (5.7)
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where E1 and E2 are as in the definition of Drinfeld-Jimbo quantized enveloping algebra
Uq(sl3).

Proposition 5.2.2. Let the notation be as above. Then,

T (0,1) := spanC

{
Eα1 , Eα2 , Eα1+α2

}
(5.8)

is a quantum tangent space.

Proof. See [15, Corollary 3.4].

To study the complex geometry of Oq(F3), we need to generalize the notion of HK
holomorphic quantum tangent space as appeared in Proposition 5.2.1. For this purpose,
we define:

T (1,0) := (T (0,1))∗, (5.9)

where ∗ is the ∗-structure on Uq(sl3) (see [57]). We see it is spanned by the elements:

Fα1 := E∗
α1

= K1F1, Fα2 := E∗
α2

= K2F2, Fα1+α2 := E∗
α1+α2

= q−1K1K2[F1, F2]q−1 .

Moreover, by a direct calculation, we can conclude the following coproduct formula,

∆(Fα1+α2) = Fα1+α2 ⊗K1K2 + νFα1 ⊗ Fα2K1 + 1⊗ Fα1+α2 . (5.10)

Definition 5.2.3. We define the ∗-extension T of T (0,1) as:

T := T (1,0) ⊕ T (0,1). (5.11)

where T (1,0) and T (0,1) are as defined in Equations (5.9) and (5.8) respectively. It is
clear from Equation (5.10) and Proposition 5.2.2 that T is a quantum tangent space.

Notation 5.2.4. It follows now from the Theorem 2.8.6, there is a FODC on Oq(SU3)
and on Oq(F3) associated to T (as defined in Definition 5.2.3), we denote those by
Ω1
q(SU3) and Ω1

q(F3) respectively, and their cotangent spaces by Λ1 and V 1 respectively
(see Section 2.8), and the basis of Λ1 dual to the defining basis of T by,

basis of Λ1 =
{
eγ, fγ | γ ∈ ∆+

}
, (5.12)

where ∆+ = {α1, α2, α1 + α2} is the set of positive roots.
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The following lemma gives explicit representatives for the cosets of the dual basis.
These representatives will be used in the calculations in Section 5.3.

Remember the notation from Section 2.8, Λ1 := Oq(SU3)
+/I(1) where I(1) is the

ideal classifying the FODC corresponding to T .

Lemma 5.2.5. Let the notation be as in (5.12). It holds that:

eα1 = [u21], eα2 = [u32], eα1+α2 = [u31],

fα1 = [qu12], fα2 = [qu23], fα1+α2 = [q2u13].

where uij denotes the generators of Oq(SU3) as in Example 2.2.9.

Proof. These are direct calculations. For example, the calculation:

⟨Fα1 , u12⟩ = ⟨K1F1, u12⟩ = ⟨K1, u11⟩⟨F1, u12⟩ = q−1,

implies that qu12 is a representative for the coset fα1 . Here, ⟨−,−⟩ denotes the dual
pairing between Oq(SU3) and Uq(sl3) as described in Example 2.3.10.

Notation 5.2.6. Let uij denotes the the generators of Oq(SU3) as in Example 2.2.9
and recall that ν := q− q−1. Let (−,−) denotes the standard inner product on R2 (the
space spanned by the root vectors for the case of sl3(C)). Moreover, let us fix the set
of simple roots:

α1 := α12 := ε1 − ε2 and α2 := α23 := ε2 − ε3,

where εk denotes the standard basis of R2. Also, the positive non-simple root is α1+α2 =
ε1 − ε3.

The following proposition determines the right Oq(SU3)-module structure of Λ1 (the
cotangent space of Oq(SU3) as in Notation 5.2.4).

Proposition 5.2.7. Let us adopt the notation presented in 5.2.6. The right Oq(SU3)-
module structure of Λ1 is determined by:

eγukk = q−(γ,εk)eγ, fγukk = q−(γ,εk)fγ,

eα1u32 = νeα1+α2 , fα1u23 = q−1νfα1+α2 ,

with all other actions by the generators uij being zero.
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Proof. The proof is a direct check. For example, for computing eα1uij = [u21uij], we
need to find the dual pairing (as introduced in Example 2.3.10) of u21uij with all the
basis elements in T given in Definition 5.2.3.

⟨u21uij, Eα1⟩ = ⟨u21, Eα1⟩⟨uij, K1⟩+ ⟨u21, 1⟩⟨uij, Eα1⟩ ∵ ⟨gg′, h⟩ = ⟨g, h(1)⟩⟨g′, h(2)⟩
= ⟨uij, K1⟩ ∵ ⟨u21, Eα1⟩ = 1 and ⟨u21, 1⟩ = 0

=


q−1 for i = j = 1,

q for i = j = 2,

1 for i = j = 3,

0 otherwise.

Similarly, one can compute:

⟨u21uij, Eα2⟩ = 0 = ⟨u21uij, Fα1⟩ = ⟨u21uij, Fα2⟩ = ⟨u21uij, Fα3⟩

and,

⟨u21uij, Eα3⟩ =

{
ν for (i, j) = (3, 2),

0 otherwise.

These calculations establish the action of uij on eα1 . Similarly, the action on other
elements is computed and we finally arrive at the relations given in the statement of
the proposition.

Proposition 5.2.8. Let us adopt the notation presented in 5.2.4. Then, we have an
isomorphism in the category of Uq(h)-modules given by:

V 1 → Λ1, [b] 7→ [b].

Remark 5.2.9. We slightly abuse notation here denoting the cosets in both spaces
with the same symbol.

Proof. The fact that this is an injective module map follows from [65, Theorem 2.1].
(See also the discussion in [15, §4.2].) Surjectivity follows from the fact that each basis
element of the tangent space T pairs non-trivially with an element of Oq(F3). Explicitly,
the pairings

⟨Eα1 , z
α1
21 ⟩, ⟨Eα2 , z

α2
32 ⟩, ⟨Eα1+α2 , z

α1
31 ⟩, ⟨Eα1+α2 , z

α2
31 ⟩,

⟨Fα1 , z
α1
12 ⟩, ⟨Fα2 , z

α2
23 ⟩, ⟨Fα1+α2 , z

α1
13 ⟩, ⟨Fα1+α2 , z

α2
13 ⟩.

are all non-zero scalars, where zij denotes the generators of Oq(F3) as appeared in
Proposition 5.1.3.
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5.3 The higher forms

We observed in Section 2.7, we can prolong each FODC to a differential calculus called
the maximal prolongation of FODC. In this section, we use the results of [13, §5] to
calculate the degree two relations for the maximal prolongation of Ω1

q(F3) the FODC
on Oq(F3) corresponding to the quantum tangent space T introduced in the Defini-
tion 5.2.3.

Theorem 5.3.1. Let us fix Notation 5.2.4 and Notation 5.2.6. Let V • denote the quan-
tum exterior algebra (as defined in Definition 2.8.7) for the maximal prolongation of
Ω1(F3). Then, a full set of relations for V • is given by following three sets of identities:

1)

eγ ∧ eβ = −q(β,γ)eβ ∧ eγ, fγ ∧ fβ = −q−(β,γ)fβ ∧ fγ, for all β ≤ γ ∈ ∆+,

2)

eγ ∧ fβ = −q(β,γ)fβ ∧ eγ, for all β ̸= γ ∈ ∆+, or for β = γ = α1 + α2,

3)

eα1 ∧ fα1 = −q2fα1 ∧ eα1 − νfα1+α2 ∧ eα1+α2 ,

eα2 ∧ fα2 = −q2fα2 ∧ eα2 + νfα1+α2 ∧ eα1+α2 ,

where an order ≤ on the set of positive roots ∆+ = {α1, α2, α1+α2} is fixed as follows:

α2 ≤ α1 + α2 ≤ α1.

Proof. Using the description of the rightOq(SU3)-module structure of Λ1 (the cotangent
space of Oq(SU3) as in Notation 5.2.4) given above in Proposition 5.2.7, one can observe
the following set of identities, analogous to those in Lemma 5.2.5:

[S(u21)] = −qeα1 , [S(u32)] = −qeα2 , [S(u31)] = −qeα1+α2 ,

[S(u12)] = −q−2fα1 , [S(u23)] = −q−2fα2 , [S(u13)] = −q−5fα1+α2 .

Moreover, we have the second set of identities, analogous to those in Proposition 5.2.7:

eγS(ukk) = q(γ,εk)eγ, fγS(ukk) = q(γ,εk)fγ, (5.13)

eα1S(u32) = −νeα1+α2 , fα1S(u23) = −q−3νfα1+α2 , (5.14)

92



with all other actions by the antipoded generators S(uij) being zero.

From these identities, we can now see that the following set is the dual basis of V 1

(the cotangent space of Oq(F3) as in Notation 5.2.4):

eα1 = q−1[zα1
21 ], eα2 = −q−1[zα2

32 ], eα1+α2 = q−1[zα1
31 ] = −q−1[zα2

31 ]

fα1 = −q2[zα1
12 ], fα2 = q2[zα2

23 ], fα1+α2 = −q5[zα1
13 ] = q3[zα2

13 ],

where zij denotes the generators of Oq(F3) as appeared in Proposition 5.1.3.

We next introduce a set of generators for the ideal I of the tangent space (recall
from section 2.8 that V 1 = Oq(F3)

+/I(1)) from the description of the right Oq(SU3)-
module structure of Λ1 given above. We divide the set of generators according to their
polynomial degree. To do so we find it convenient to introduce the subset of Z3

>0,

B :=
{
(1, 2, 1), (1, 1, 2), (1, 3, 1), (1, 1, 3), (2, 3, 2), (2, 2, 3), (2, 3, 1), (2, 1, 3)

}
.

Consider now the degree one polynomials,

G1 :=
{
zαi
ab | (i, a, b) /∈ B

}
∪
{
zα1
31 + zα2

31 , q
2zα1

13 + zα2
13

}
.

Next consider the quadratic polynomials,

G2 :=
{
zαi
kl (z

αp

ab )
+ | (i, k, l) ∈ B\{(1, 2, 1), (2, 3, 2)}, p = 1, 2, a, b = 1, 2, 3

}
,

G3 :=
{
zαi
kl (z

αp

ab )
+ | (i, k, l) ∈ B, (p, a, b) ̸= (2, 3, 2), (2, 2, 3)

}
,

G4 :=
{
zα1
21 z

α2
32 − νzα2

31 , z
α1
12 z

α2
23 − νzα1

13

}
.

Collecting these elements together gives us our proposed set of generators

G := G1 ∪G2 ∪G3 ∪G4.

Indeed, since it is clear that

dim
(
Oq(F3)

+/⟨G⟩
)
≤ 6,

where ⟨G⟩ is the right ideal of Oq(F3)
+ generated by the elements of G, we see that G

gives a full set of generators.
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Calculating the action of the map ω, see [13, §5], on these generators is now some
tedious calculations. (See [11, Proposition 5.8] for the case of quantum projective
space.) As an example, here we take the generator zα1

22 , and note that,

ω(zα1
22 ) =

∑
a,b

[u2aS(ub2)]⊗ [zα1
ab ]

= [u22S(u12)]⊗ [zα1
21 ] + [u23S(u12)]⊗ [zα1

31 ] +

[u21S(u22)]⊗ [zα1
12 ] + [u21S(u32)]⊗ [zα1

13 ]. (5.15)

Using identities in (5.13) and (5.14), we computed:

[u22S(u12)] = −q−2fα1 , [u23S(u12)] = 0,

[u21S(u22)] = q−1eα1 , [u21S(u32)] = −νeα1+α2 .

Substituting these values in Equation (5.15) we get:

w(zα1
22 ) = −q−1fα1 ⊗ eα1 − q−3eα1 ⊗ fα1 + q−5νeα1+α2 ⊗ fα1+α2 .

Therefore, the relation w(zα1
22 ) = 0 gives us:

eα1 ∧ fα1 = −q2fα1 ∧ eα1 + q−2νeα1+α2 ∧ fα1+α2 .

Continuing as such gives us the claimed set of relations. Finally, we observe the de-
scription of the right Oq(SU3)-module structure of Λ1 given in Proposition 5.2.7 implies
that the relations form a right Oq(F3)-submodule of V 1 ⊗ V 1. Thus, they give a full
set of relations.

Corollary 5.3.2. For k = 1, . . . , 6 = |∆|, a basis for V k (the homogeneous component
of degree k of V •) is given by:{

eγ1 ∧ · · · ∧ eγa ∧ fγ1 ∧ · · · ∧ fγb | γ1 < · · · < γk ∈ ∆+
}
.

In particular, it holds that

dim
(
V k
)
=

(
|∆|
k

)
, and dim

(
V •
)
= 2|∆|.

Proof. It is clear from the set of relations given in Theorem 5.3.1 that the proposed
basis is a spanning set. To prove that its elements are linearly independent, let ⟨V 1⟩
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be the free monoid generated by elements of V 1 and let S∆+ := (W∆+ , f∆+) be the
reduction system in the free algebra C⟨V 1⟩ corresponding to the set of relations 5.3,
namely,

(eγ ⊗ eβ, −q(β,γ)eβ ⊗ eγ), (fγ ⊗ fβ,−q−(β,γ)fβ ⊗ fγ), for all β ≤ γ ∈ ∆+,

(eγ ⊗ fβ, −q(β,γ)fβ ⊗ eγ) for all β ̸= γ ∈ ∆+, or for β = γ = α1 + α2,

(eα1 ⊗ fα1 , −q2fα1 ⊗ eα1 − νfα1+α2 ⊗ eα1+α2 , )

(eα2 ⊗ fα2 , −q2fα2 ⊗ eα2 + νfα1+α2 ⊗ eα1+α2).

Let ≪ denote the total ordering such that for every β, γ ∈ ∆+,

fβ ≪ eγ

and,

β ≤ γ ∈ ∆+ ⇒ eβ ≪ eγ, fγ ≪ fβ.

Then S∆+ is a reduction system compatible with the ordering≪ and it is easy to verify
that it has no ambiguities, hence from Bergmann’s diamond lemma, see [5], the set
of algebra relations 5.3 is linearly independent and the spanning set given above is a
basis.

5.4 Almost-complex structures on Oq(F3)

In this section we examine covariant complex and almost complex structures for the
differential calculus: Ω•

q(F3), the maximal prolongation of the Ω1
q(F3) established in the

previous section. We follow closely the description given in [13, 12]. We observe that
the number of almost-complex structures decreases from 8 (the classical case, which is
2 to the number of positive roots of sl3C) to 4 (which is 2 to the number of simple roots
of sl3). Furthermore, we demonstrate that all of these almost-complex structures are
integrable, which is to say, they are complex structures.

Firstly, we briefly recall the covariant almost complex structures for the classical
flag manifold F3. We do so to highlight the novel non-classical behaviour occurring for
the quantum case.

By [1], a choice of complex structure on the full flag manifold F3 corresponds to
a choice of a base for ∆ the root system of sl3C. The Weyl group S3 of sl3C acts
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transitively on the set of bases for ∆, and hence on the set of covariant almost-complex
structures.

Now we classify the covariant complex structures on the differential calculus Ω•
q(F3).

We find that two of the classical almost structures fail to extend to the quantum setting.
In particular, one of the bases of the root system of sl3C fails to have a corresponding
FODCi in the quantum setting.

As usual in the theory of differential calculi, we initially work at the level of FODC
and then discuss the extension to higher forms. (See Section 2.9).

Theorem 5.4.1. The first-order differential calulus Ω1
q(F3) admits, up to identification

of opposite structures, two covariant first-order almost complex structures. Explicitly,
one decomposition of V 1 is given by:

V (1,0) = spanC

{
eα1 , eα2 , eα1+α2

}
, V (0,1) := spanC

{
fα1 , fα2 , fα1+α2

}
,

and the other is given by:

V (1,0) = spanC

{
fα1 , eα2 , eα1+α2

}
, V (0,1) := spanC

{
eα1 , fα2 , fα1+α2

}
,

Proof. Consider a general left Oq(SU3)-covariant first-order almost complex structure
on Ω1

q(F3), and denote by

V 1 := V (1,0) ⊕ V (0,1),

the corresponding decomposition of the cotangent space V 1 into two left O(h)-comodule
right Oq(F3)-modules. Since the basis elements all have mutually distinct weights, we
see that each basis element is contained in either V (1,0) or V (0,1). The right Oq(F3)-
module requirement, together with Lemma 5.2.5, implies that if eα1 is contained in
V (1,0), then eα1+α2 is also contained in V (1,0), and analogously, if fα1 is contained in
V (0,1), then fα+α2 is contained in V (0,1). In other words, any complex structure is
determined by knowing whether the basis elements eα, fα, for α ∈ {α1, α2} (the set of
simple roots), are contained in V (1,0) or V (0,1).

We now note that any such Oq(F3)-decomposition of V 1 will necessarily be a decom-
position of right Oq(F3)-modules. Considering V 1 as a subspace of Λ1, the cotangent
space of the FODC Ω1

q(SU3), and recalling that e∗γ = fγ, for all γ ∈ ∆+, we now see that
the only possible decompositions are those two decompositions given in the statement
of the theorem.

Given a first-order almost complex structure on a FODC, there is at most one
extension to an almost complex structure on its maximal prolongation, or indeed any
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quotient thereof (see [13, Prop. 6.1] for details). The following proposition tells that
both our FOCASs extend.

Corollary 5.4.2. Both FOACSs on Ω1
q(F3) extend to a factorisable almost complex

structure on Ω•
q(F3).

Proof. The fact that both first-order structures extend to covariant almost-complex
structures, follows directly from the explicit form of the relations given in section 5.3
and [13, Theorem 6.4]. Moreover, factorisability follows from the explicit form of the
relations in [13, Corollarly 6.8].

5.5 Integrable almost-complex structures

In this section we observe that both the covariant almost-complex structures on Ω•
q(F3)

(as shown in Theorem 5.4.1) are integrable. In other words, both the covariant almost-
complex structures on Ω•

q(F3) are complex structures.

An almost-complex structure Ω(•,•) on a differential calculus Ω• is integrable if and
only if the maximal prolongation of the FODC Ω(0,1) is isomorphic to the subalgebra
Ω(0,•). (See [13, Lemma 7.2]). Using this reformulation of integrability, we now prove
the following final result.

Proposition 5.5.1. Both covariant almost-complex structures of the differential calcu-
lus Ω•

q(F3) are integrable.

Proof. We will treat the case of the almost-complex structure:

V (0,1) =
{
eα1 , eα2 , eα1+α2

}
,

the other case being entirely analogous. We need to calculate the dimension of the
maximal prolongation of the associated FODC Ω(0,1). We note that, Ω

(0,1)
q (SU3) is a

framing calculus for Ω
(0,1)
q (F3), see [15, Lemma 5.4], allowing us to calculate the degree

two relations of the maximal prolongation of Ω
(0,1)
q (F3).

We see that the ideal I ′ ⊆ Oq(F3)
+ corresponding to the Ω

(0,1)
q (F3) contains the

elements:
I ∪ {zα1

12 , z
α2
23 , z

α1
13 }.

where I is the ideal appeared in Theorem 5.3.1. Moreover, since the quotient of Oq(F3)
+

by I ′ is three dimensional, we see that this is in fact the whole ideal.
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Operating on the elements of I by ω (as defined in Definition 2.8.7) we clearly
reproduce the degree-(0, 2) elements from those given in Theorem 5.3.1. For the element
zα2
23 , we see that,

ω(zα2
23 ) = ω(u23S(u33)) =

3∑
a=1

[(u23S(ub3)]⊗ [S(u3b)
+] +

3∑
a=1

[S(ub3)
+]⊗ [(u+23S(u3b)]

+
3∑

a=1

[(u+2aS(ub3)]⊗ [u+a3S(u3b)].

Since each of the elements:
u23, u13, u

+
22, u23

pair trivially with each element of T (0,1), we now see that ω(zα2
23 ) = 0. Analogous

calculations establish that:
ω(zα2

23 ) = ω(zα1
13 ) = 0.

Thus, we see that the maximal prolongation of Ω
(0,1)
q (F3) is isomorphic to the subalgebra

Ω
(0,•)
q (F3), and so, the almost-complex structure is integrable.
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Chapter 6

N=2 Minkowski superspace and its
quantization

In this final chapter, we discuss some work that is relevant from a physics perspective.
According to the current understanding of quantum physics, the space-time manifold
in low-energy depiction collapses at extremely small scales. On the other hand, since
the geometry of space-time is fundamental to the Einstein theory of general relativity,
it is reasonable to assume that, in order to fully comprehend both small and cosmolog-
ical scales, some quantum notion must be introduced. Noncommutative geometry is a
suitable framework to better comprehend this issue.

As a mathematical model, here we give the superalgebra of N = 2 antichiral quan-
tum superfields realized as a subalgebra of the quantum supergroup Cq[SL(4|2)]. The
multiplication law in the quantum supergroup induces a coaction on the set of antichiral
superfields. We also realize the quantum deformation of the Minkowski superspace as
a quantum principal bundle. Most of the work in this chapter is taken from [42], [39],
[38] and [41].

The chapter is organized as follows. In Section 6.1, we briefly recall the notion of
complex Minkowski space realized as the big-cell inside Gr(2, 4), which plays the role
of the conformal space. In Section 6.2, a quantization of complex Minkowski space is
introduced via Manin relations as the big cell for the quantum grassmannian Grq(2, 4),
together with a coaction of quantum Lorentz group. In Section 6.3, we introduce a
Lorentz-covariant FODC on quantum Minkowski space. In Section 6.4, we present
the super Plücker embedding for super grassmannian Gr(2|0, 4|2). In Section 6.5, a
quantum version of Gr(2|0, 4|2) is obtained via super Manin relations. In Section 6.6,
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we discuss the notion of N = 2 Minkowski superspace. In Section 6.7, the notion of
N = 2 quantum Minkowski superspace is presented and we also realize it as a trivial
quantum principal superbundle.

6.1 Complex Minkowski space

The special theory of relativity suggests that spacetime is a 4-dimensional manifold
whose symmetries are encoded by Poincaré group. On the other hand, Maxwell’s equa-
tions of electromagnetism possess some more general symmetries called the conformal
transformations, whose collection is the conformal group SO(2, 4). Thus, we expect
that the fundamental framework would be conformal, subject to conformal invariance.
This is Penrose’s perspective on Minkowski space in his twistor space approach [68].
In this section, we will briefly recall it. For more details see [39, Chap. 2], [61, Chap. 1].

Recall that, the complex grassmannian Gr(2, 4) is the space of 2-dimensional planes
in C4. It admits a natural transitive action of SL(4,C) given by:

SL(4,C)×Gr(2, 4) −→ SL(4,C)
g. span{a, b} 7→ span{ga, gb}.

On the other hand, SL(4,C) is the complexification of the spin group of the connected
component of the identity SU(2, 2) for the conformal group SO(2, 4). The idea is to
realize complex Minkowski space as a dense open subset of Gr(2, 4). The grassmannian
Gr(2, 4) is embedded into P(

∧2C4) via Plücker embedding,

Gr(2, 4) −→ P(
2∧
C4) ∼= P5,

span{a, b} 7→ [y12, y13, y14, y23, y24, y34], (6.1)

where yij := aibj − ajbi. Moreover, it can be realized as a projective variety being the
zero set of the following Plücker relation:

y12y34 − y13y24 + y14y23 = 0. (6.2)

Therefore, the algebra of functions on C[Gr(2, 4)] is:

C[Gr(2, 4)] ∼= C[y12, y13, y14, y23, y24, y34]/I , (6.3)

where I is the ideal generated by y12y34 − y13y24 + y14y23.

100



Define the big cell U to be the following Zariski open set:

U = {P ∈ Gr(2, 4) : y12 ̸= 0} ⊂ Gr(2, 4)

It is easy to see that U ∼= C4.

Theorem 6.1.1. The subgroup of SL(4,C) that leaves big cell invariant is:

F c
0 :=

{[
L O
NL R

]
| with L and R being invertible 2× 2 matrices.

}
.

Moreover, the induced action on U is given by:

A 7→ N +RAL−1. (6.4)

Proof. See [39], Prop. 2.7.1.

The subgroup F c
0 is called the complex Poincaré group times dilations. Moreover,

the structure of F c
0 is

F c
0
∼= (SL2(C)× SL2(C)× C×)⋉M2(C), (6.5)

that remind us the (real) Poincaré group. Define the complex Poincaré group to be,

P c
0 :=

{[
L O
NL R

]
| with det(L). det(R) = 1.

}
.

Definition 6.1.2. The subset U ⊂ Gr(2, 4), together with this action of complex
Poincare group P c

0 is called the complex Minkowski space M.

So, with this definition we are able to embed complex Minkowski space M into
its compactification Gr(2, 4) such that the action of the complex Poincarè group times
dilations is coming as the action of the subgroup F c

0 of SL(4,C) leaving big cell invariant.
See [39, 75] for further details.

6.2 Quantum Minkowski space

In this section, we will briefly introduce a quantization of complex Minkowski space
using the quantum group approach. This work is well-known and details can be found
in [39, Chap. 4], [41], [34] and [35].

101



Note that, we can realize C[Gr(2, 4)] (as introduced in (6.3)) as a subalgebra of
C[SL(4,C)],

C[Gr(2, 4)] −→ C[SL(4,C)]
yij 7→ dij = xi1xj2 − xj1xi2. (6.6)

Therefore, we can simply quantize this notion of complex conformal space by introduc-
ing the Manin relations. To be consistent with the references [39, 42], in this chapter,
we replace q with q−1 and vice versa in the definition of quantum matrix bialgebra and
quantum genral linear group, furthermore, we take q as a parameter, see [39, Chap. 5].

Definition 6.2.1. Define the quantum conformal space Cq[Gr(2, 4)] as the subalgebra
of Cq[SL(4,C)] generated by:

Dij := xi1xj2 − q−1xj1xi2, 1 ≤ i < j ≤ 4. (6.7)

The following theorem completely characterize Cq[Gr(2, 4)] in terms of generators
and relations.

Theorem 6.2.2. We have the following identification:

Cq[Gr(2, 4)] ∼= Cq⟨λij⟩/I, (6.8)

where I is the ideal generated by the following relations. Let < be the lexicographic
order,

λijλkl = q−1λklλij, (i, j) < (k, l) i, j, k, l not all distinct, (6.9)

λ12λ34 = q−2λ34λ12, λ14λ23 = λ23λ14, (6.10)

λ13λ24 = q−2λ24λ13 − (q−1 − q)λ12λ34, (6.11)

λ12λ34 − q−1λ13λ24 + q−2λ14λ23 = 0. (quantum Plücker relation) (6.12)

Proof. See [39, Prop. 5.2.4].

We notice in Section 6.1 that Gr(2, 4) admits a natural action of SL(4,C). Simi-
larly, in this dual quantum picture, Cq[Gr(2, 4)] admits a coaction of Cq[SL(4,C)] by
restricting the product.
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Theorem 6.2.3. Cq[Gr(2, 4)] is a Cq[SL(4,C)]-comodule, where the coaction is induced
simply by restricting the coproduct.

Proof. See [39], Prop. 5.2.5.

Definition 6.2.4. Define the quantum Minkowski space Cq[M] as the projective local-
ization of Cq[Gr(2, 4)] at D12. In other words, it is generated by:

m11 := D23D
−1
12 , m12 := D13D

−1
12 , m21 := D24D

−1
12 and m22 := D14D

−1
12 .

It is important to note that, D−1
12 q-commutes (i.e. up to multiplication by a power of

q) with the generators of Cq[Gr(2, 4)], therefore, this localization is well-defined.

Theorem 6.2.5. The quantum Minkowski space Cq[M] as a bialgebra is isomorhic to
the bialgebra Cq[M2] of quantum 2× 2 matrices. The isomorphism is given by:

Cq[M] −→ Cq[M2]

m11 7→ u12

m12 7→ u11

m21 7→ u22

m22 7→ u21.

Proof. See [39, Prop. 5.2.13].

Moreover, the quantum complex Lorentz group is defined as Cq[SL2]⊕Cq[SL2], and
the quantum Minkowski space Cq[M] admits a coaction of this as follows:

ϕ : Cq[M] −→ (Cq[SL2]⊕ Cq[SL2])⊗ Cq[M]

mij 7→
∑
s,r

yisS(xrj)⊗msr (6.13)

where yis and xrj denotes the generators of first and second copy of Cq[SL2] in quantum
Lorentz group respectively. See [39, Chap. 5] and [41] for further details.
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6.3 A Lorentz-covariant differential structure on Cq[M]

In this section, we explicitly described a Lorentz-covariant first-order differential calcu-
lus on quantum Minkowski space Cq[M] as presented in the previous section.

Let us identify:

M =

[
m11 m12

m21 m22

]
=

[
a b
c d

]
. (6.14)

In [63], given an R-matrix deformation of a commutative algebra, there is a recipe
to construct a quantum first-order differential calculus. Namely we write, in short:

M1dM2 = R21dM2M1R. (6.15)

For notational details, see [63, Chap. 10].

This leads to a differential calculus Ω(M) on Cq[M] whose bimodule structure is
described as:

a.da = q2da.a

b.da = qda.b

c.da = qda.c+ (q − q−1)a.dc

d.da = da.d+ (q − q−1)dc.b

a.db = qdb.a+ (q − q−1)b.da

b.db = q2db.b

c.db = db.c+ (q − q−1)(dd.a+ d.da)

d.db = qdb.d+ (q − q−1)b.dd

a.dc = qdc.a

b.dc = dc.b

c.dc = q2dc.c

d.dc = qdc.d

104



a.dd = dd.a+ (q − q−1)dc.b

b.dd = qdd.b

c.dd = qdd.c+ (q − q−1)d.dc

d.dd = q2dd.d (6.16)

Theorem 6.3.1. The first-order differential calculus Ω(M) defined on Cq[M] is left-
covariant under the quantum Lorentz coaction ϕ as in (6.13).

Proof. Define:

Φ : Ω(M) −→ (Cq[SL2]⊕ Cq[SL2])⊗ Ω(M)

(dmij) 7→ (id⊗ d)ϕ(mij) (6.17)

and,

Φ(xρy) = ϕ(x)Φ(ρ)ϕ(y) x, y ∈ Cq[M], ρ ∈ Ω(M). (6.18)

Clearly, by definition:

(id⊗ d) ◦ ϕ = d ◦ Φ.

To prove that Ω(M) is left-covariant with respect to ϕ, we only need to verify if the map
Φ is well-defined (i.e. it respects the bimodule structure), and it comprises of various
calculation checks. For example,

Φ(a.da) = ϕ(a)(id⊗ d)ϕ(a)

= (y11x22 ⊗ a− q−1y11x21 ⊗ b+ y12x22 ⊗ c− q−1y12x21 ⊗ d)
(y11x22 ⊗ da− q−1y11x21 ⊗ db+ y12x22 ⊗ dc− q−1y12x21 ⊗ dd)

= A2 ⊗ a.da+ AB ⊗ a.db+ AC ⊗ a.dc+ AD ⊗ a.dd
+BA⊗ b.da+B2 ⊗ b.db+BC ⊗ b.dc+BD ⊗ b.dd
+CA⊗ c.da+ CB ⊗ c.db+ C2 ⊗ c.dc+ CD ⊗ c.dd
+DA⊗ d.da+DB ⊗ d.db+DC ⊗ d.dc+D2 ⊗ d.dd (6.19)

where we fix:

A := y11x22 B := −q−1y11x21 C := y12x22 D := −q−1y12x21.
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Now, using the relations in (6.16) we can write:

Φ(a.da) = q2A2da.a+ AB ⊗ (qdb.a+ (q2 − 1)da.b) + qAC ⊗ dc.a

+AD ⊗ (dd.a+ (q − q−1)dc.b) + qBA⊗ da.b+ q2B2 ⊗ db.b

BC ⊗ dc.b+ qBD ⊗ dd.b+ CA⊗ (qda.c+ (q2 − 1)dc.a)

CB ⊗ (db.c+ (q − q−1)dd.a+ (q − q−1)da.d+ (q − q−1)2dc.b)

q2C2 ⊗ dc.c+ CD ⊗ (qdd.c+ (q2 − 1)dc.d) +DA⊗ (da.d+ (q − q−1)dc.b)

+DB ⊗ (qdb.d+ (q2 − 1)dd.b) + qDC ⊗ dc.d+ q2 ⊗ dd.d.

Rearranging the R.H.S of above equation gives us:

Φ(a.da) = q2Φ(da.a).

Therefore, Φ respects the first relation in (6.16). Similarly, the other checks are made
and it completes the proof.

6.4 Super Plücker embedding of Gr(2|0, 4|2)
Now, our aim is to generalize the construction of quantum Minkowski space as pre-
sented above to N = 2 Minkowski superspace.

In this section, we are going to give an embedding of Gr(2|0, 4|2) in the projective
superspace P8|8, generalizing the classical Plücker embedding, see [33, Chap. 9]. Let
E =

∧2C4|2 and {e1, . . . , e4, ϵ5, ϵ6} be a homogeneous basis for C4|2 (for notational
details, see [39, §1.4, §4.8]), we then have a basis for E as:

ei ∧ ej, 1 ≤ i < j ≤ 4, ϵ5 ∧ ϵ5, ϵ6 ∧ ϵ6, ϵ5 ∧ ϵ6, (even),

ek ∧ ϵ5, ek ∧ ϵ6 1 ≤ k ≤ 4, (odd) .

So E ≃ C9|8 and P(E) ≃ P8|8. An element of E is given as:

Q = q + λ5 ∧ ϵ5 + λ6 ∧ ϵ6 + a55ϵ5 ∧ ϵ5 + a66ϵ6 ∧ ϵ6 + a56ϵ5 ∧ ϵ6 ,

with,

q = qijei ∧ ej, λm = λimei, i, j = 1, . . . , 4, m = 5, 6 .
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Let us denote Gr = Gr(2|0, 4|2) and consider the super Plücker map,

P : Gr −−−→ P8|8

span{a, b} −−−→ [a ∧ b] ,
(6.20)

Any element Q ∈ E is decomposable (and hence belongs to the image of P) if:

Q = a ∧ b, for some, a = r + ξ5ϵ5 + ξ6ϵ6, b = s+ η5ϵ5 + η6ϵ6 ∈ C4|2

with r = riei, s = siei. Therefore, one obtains the following equalities:

q = r ∧ s,
λ5 = ξ5s− η5r, λ6 = ξ6s− η6r,
a55 = ξ5η5, a66 = ξ6η6, a56 = ξ5η6 + ξ6η5. (6.21)

Now taking all the (possible) wedge products and products among the expressions in
(6.21) gives us,

q ∧ q = 0,

q ∧ λ5 = 0, q ∧ λ6 = 0,

λ5 ∧ λ5 = −2a55q, λ6 ∧ λ6 = −2a66q, λ5 ∧ λ6 = −a56q,
λ5a55 = 0, λ6a66 = 0,

λ5a66 = −λ6a56, λ6a55 = −λ5a56,
a255 = 0, a266 = 0, a56a56 = −2a55a66,
a55a56 = 0, a66a56 = 0 . (6.22)

Relations (6.22) are called the super Plücker relations. We can write them in coor-
dinates in the following way (always 1 ≤ i < j < k ≤ 4 and 5 ≤ n ≤ 6):

q12q34 − q13q24 + q14q23 = 0, (Plücker relation)

qijλkn − qikλjn + qjkλin = 0,

λi5λj6 + λi6λj5 = a56qij, λinλjn = annqij,

λinann = 0, λi5a66 = −λi6a56, λi6a55 = −λi5a56,
a2nn = 0, a55a56 = 0, a66a56 = 0,

a56a56 = −2a55a66 . (6.23)
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We will denote as IP the ideal generated by them in the affine superspace A9|8

(with generators qij, anm, λkn). They are homogeneous quadratic equations, so they are
defined in the projective space P8|8.

Now, we realize C[Gr] as a subalgebra of C[SL(4|2)]. Let us display the generators
of this algebra in matrix form:

g11 g12 g13 g14 γ15 γ16
g21 g22 g23 g24 γ25 γ26
g31 g32 g33 g34 γ35 γ36
g41 g42 g43 g44 γ45 γ46
γ51 γ52 γ53 γ54 g55 g56
γ61 γ62 γ63 γ64 g65 g66

 , (6.24)

then,
C[SL(4|2)] = C[gij, gmn, γim, γnj]/(Ber− 1) ,

where Ber is the Berezinian of the matrix and 1 ≤ i, j ≤ 4 and 5 ≤ m,n ≤ 6.

Proposition 6.4.1. The superring C[Gr] is generated as a subring of C[SL(4|2)] by the
elements:

yij = gi1gj2 − gi2gj1, ηkn = gk1γn2 − gk2γn1,
x55 = γ51γ52, x66 = γ61γ62, x56 = γ51γ62 + γ61γ52,

with the homomorphism,

C[Gr] −−−→ C[SL(4|2)]

qij, λkn −−−→ yij, ηkn,

a55, a66, a56 −−−→ x55, x66, x56.

Proof. The proof uses an argument similar to the one used to obtain (6.21). Instead of
taking the vectors a and b we have to take the first two columns of the matrix (6.24).

Now, we have the following.

Proposition 6.4.2. The superring associated to the image of Gr under the super
Plücker embedding is

C[Gr] ∼= C[qij, anm, λkn]/IP ,

that is, the relations in IP are all the relations satisfied by the generators qij, anm, λkn.
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Proof. We give here a brief sketch of the argument, which is essentially a modification
of straightening algorithm in the classical case, see [70, 33].

A generic monomial in C[Gr] is of the form:

(Π(i,j)q
cij
ij )λ

ck15
k15
· · ·λcku5

ku5
λ
cl16
l16
· · ·λclv6lv6

ac5555 a
c56
56 a

c66
66 (6.25)

where (i, j) are ordered lexicographically, k1 < · · · < ku and l1 < · · · < lv, cij ∈ N,
ckc5, cld6, c55, c66 ∈ {0, 1}, and c56 ∈ {0, 1, 2}.

Using the relation λinλjn = annqij in (6.23), we can convert a monomial as in (6.25)
to the form:

(Π(i,j)q
cij
ij )λ

ck5
k5 λ

cl6
l6 a

c55
55 a

c56
56 a

c66
66 . (6.26)

Similarly, using the last seven relations in (6.23), we can assume following for each
monomial in (6.26):

(i) either ck5 or c55 is zero.

(ii) either cl6 or c66 is zero.

(iii) either cl6 or c56 is zero.

(iv) either cl6 or c55 is zero.

(v) either c55 or c56 is zero.

(vi) either c66 or c56 is zero.

(vii) c56 ∈ {0, 1}

Furthermore, similar to the classical case of Gr(2, n), using the first three relations in
(6.23), we can write each such monomial (6.26) as a linear combination of monomials of
the form as in (6.26) satisfying (i)-(vii), such that the Young’s tableaux corresponding
to the (Π(i,j)q

cij
ij )λ

ck5
k5 λ

cl6
l6 is standard, i.e. it is strictly increasing along each row and

weakly increasing down each column (see [70] for details). We call such monomials as
standard.

Now, if we consider C[Gr] as a subalgebra of C[SL(4|2)] (as in Proposition 6.4.1), and
consider the lexicographic ordering on the generators, due to straightening algorithm on
(Π(i,j)q

cij
ij )λ

ck5
k5 λ

cl6
l6 and (i)-(vii), it turns out that the leading terms of distinct standard

monomials are distinct, and according to the Lemma 4.5.2 they form a basis of C[Gr].
Therefore, similar to the argument in Theorem 4.5.5, it proves that the relations in
(6.23) are all the relations.
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6.5 The quantum grassmannian Grq

We can now define the quantum Grassmannian Grq mimicking Proposition 6.4.1.

Definition 6.5.1. The quantum super Grassmannian Grq := Grq(2|0, 4|2) is the sub-
algebra of Cq[SL(4|2)] (as defined in Definition 3.5.4) generated by the elements:

Dij := ai1aj2 − q−1ai2aj1, Din := ai1an2 − q−1ai2an1,

D55 := a51a52, D66 := a61a62,

D56 = a51a62 − q−1a52a61,

with 1 ≤ i < j ≤ 4 and n = 5, 6.

We want to give a presentation in terms of generators and relations, as in Proposition
6.4.2 for the classical case. Note that, first of all, we have to compute the commutation
rules among the D’s.

Let 1 ≤ i < j < l ≤ 4, then:

DijDil = (ai1aj2 − q−1ai2aj1)(ai1al2 − q−1ai2al1)

= ai1aj2ai1al2 − q−1ai1aj2ai2al1 − q−1ai2aj1ai1al2 + q−2ai2aj1ai2al1

= ai1(ai1aj2 − (q−1 − q)ai2aj1)al2 − q−1ai2ai1aj2al1

−qai1ai2aj1al2 + q−3ai2al1ai2aj1

= q−1ai1al2ai1aj2 + (q−2 − 1)ai1ai2al1aj2 − (q−1 − q)ai1ai2aj1al2
−q−2ai2al1ai1aj2 − qai1ai2(al2aj1 + (q−1 − q)aj2al1) + q−3ai2al1ai2aj1

= q−1ai1al2ai1aj2 − q−2ai2al1ai1aj2 + q−3ai2al1ai2aj1

+(q−2 − 1)ai1ai2al1aj2 − (q−1 − q)ai1ai2aj1al2 − ai1al2ai2aj1 − (1− q2)ai1ai2aj2al1
= q−1ai1al2ai1aj2 − q−2ai2al1ai1aj2 + q−3ai2al1ai2aj1

+(q−1 − q)2ai1ai2al1aj2 − (q−1 − q)ai1ai2aj1al2 − ai1al2ai2aj1
= q−1ai1al2ai1aj2 − q−2ai2al1ai1aj2 + q−3ai2al1ai2aj1

+(q−1 − q)2ai1ai2al1aj2 − (q−1 − q)ai1ai2{al2aj1 + (q−1 − q)aj2al1} − ai1al2ai2aj1
= q−1ai1al2ai1aj2 − q−2ai2al1ai1aj2 + q−3ai2al1ai2aj1

−q−2ai1al2ai2aj1

= q−1DilDij.

Similarly, after case by case calculations, we arrive at:
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• Let 1 ≤ i, j, k, l ≤ 6 be not all distinct, and Dij, Dkl not both odd. Then

DijDkl = q−1DklDij, (i, j) < (k, l), i < j, k < l , (6.27)

where the ordering ‘<’ of pairs is the lexicographical ordering.

• Let 1 ≤ i, j, k, l ≤ 6 be all distinct, and Dij, Dkl not both odd and Dij, Dkl ̸= D56.
Then

DijDkl = q−2DklDij, 1 ≤ i < j < k < l ≤ 6,

DijDkl = q−2DklDij − (q−1 − q)DikDjl, 1 ≤ i < k < j < l ≤ 6,

DijDkl = DklDij. 1 ≤ i < k < l < j ≤ 6, (6.28)

• Let 1 ≤ i < j ≤ 4, 5 ≤ n ≤ m ≤ 6. Then

DinDjn = −q−1DjnDin − (q−1 − q)DijDnn = −qDjnDin,

DijDnm = q−2DnmDij,

Di5Dj6 = −q−2Dj6Di5 − (q−1 − q)DijD56,

Di6Dj5 = −Dj5Di6,

Di5Di6 = −q−1Di6Di5,

Di5Di6 = −q−1Di6Di5,

D55D66 = q−2D66D55 ,

D55D56 = 0 . (6.29)

The Plücker relations are modified. One has for 1 ≤ i < j < k ≤ 4 and n = 5, 6:

D12D34 − q−1D13D24 + q−2D14D23 = 0,

DijDkn − q−1DikDjn + q−2DjkDin = 0,

Di5Dj6 + q−1Di6Dj5 = qDijD56,

DinDjn = qDijDnn,

DinDnn = 0,

Di5D66 = −q−1Di6D56,

Di6D55 = −q2Di5D56

D2
nn = 0,

D55D56 = 0,

D66D56 = 0

D56D56 = (q−1 − 3q)D55D66 . (6.30)
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The first relation in (6.29) has been simplified with the use of the fourth relation in
(6.30). For the case of Gr(2|0, 4|1), these relations are given in [39, Chap. 5].

To finish the interpretation of the quantum super grassmannian as SLq(4|2)-comodule,
we have to see how the coaction restricts to Grq. Let us denote with ∆ both, the comul-
tiplication and its restriction to Grq in order not to burden the notation. The meaning
should be clear from the context.

Proposition 6.5.2. The restriction of the comultiplication in SLq(4|2),

SLq(4|2)
∆−−−→ SLq(4|2)⊗ SLq(4|2)

aij −−−→ ∆(aij) =
∑6

k=1 aik ⊗ akj,
to the subalgebra Grq is of the form,

Grq
∆−−−→ SLq(4|2)⊗Grq .

Proof. The coaction property is guaranteed by the associativity of the coproduct, so
we only have to check that,

∆(Dij),∆(Dim),∆(Dmn) ∈ SLq(4|2)⊗Grq .

Let us denote as Dkl
ij = aikajl − q−1ailajk, so in the previous notation Dij = D12

ij .
After some calculations one can prove

1. Let us call P the condition 1 ≤ k, l ≤ 6 and at least one of the two indices is less
that 5. For 1 ≤ i < j ≤ 4:

∆(Dij) =
∑

P∩(k<l)

Dkl
ij ⊗D12

kl − (ai5aj6 + q−1ai6aj5)⊗D56

− (1 + q−2)
∑

5≤k≤6

aikajk ⊗Dkk .

2. For 1 ≤ i ≤ 4 and 5 ≤ m ≤ 6:

∆(Dim) =
∑
k<5
k<l

aikaml ⊗Dkl − q−1
∑
k<5
l<k

aikaml ⊗Dlk

+ (ai5am6 + q−1ai6am5)⊗D56

+ (1 + q−2)
∑

5≤k≤6

aikamk ⊗Dkk + q−1
∑
k≥5
l<5

aikaml ⊗Dlk .
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3. For 5 ≤ m,n ≤ 6:

∆(D56) =
∑
k<5
k<l

a5ka6l ⊗Dkl − q−1
∑
k<5
l<k

a5ka6l ⊗Dlk

+ (a55a66 + q−1a56a65)⊗D56

+ (1 + q−2)
∑

5≤k≤6

a5ka6k ⊗Dkk + q−1
∑
k≥5
l<5

a5ka6l ⊗Dlk ,

and

∆(Dnn) =
∑

1≤k<l≤6

ankanl ⊗Dkl +
∑

5≤k≤6

a2nk ⊗Dkk .

This proves our statement.

6.6 N = 2 Minkowski superspace

In this section we introduce the notion of N = 2 Minkowski superspace realizing it
as the big cell inside Gr(2|0, 4|2). Consider the set of 4 × 2 | 2 × 2 supermatrices with
complex entries, 

a11 a12
a21 a22
a31 a32
a41 a41
α51 α52

α61 α62

 . (6.31)

This can be seen as the affine superspace A8|4 described by the coordinate superal-
gebra C[aij, αkl] with i = 1, . . . , 4, j, l = 1, 2, k = 5, 6. As in the ordinary setting, we
can view elements in A8|4 as 2|0 subspaces of C4|2:

W = span{a1, a2} ⊂ C4|2.

In this way, W may also be viewed as an element in Gr(2|0, 4|2).
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In the superspace A8|4 consider the open subset S consisting of matrices such that
the minor formed with aij, i, j = 1, 2 is invertible. This open subset S is described by
its coordinate superalgebra:

C[S] = C[aij, αkl][T ]/((a11a22 − a12a21)T − 1).

We have a right action of GL2(C) on S corresponding to the change of basis of such
subspaces:

span{a1, a2}, g 7→ span{a1 · g, a2 · g}, g ∈ GL2(C) .

Definition 6.6.1. Define the N = 2 Minkowski superspace M as the quotient of S by
the right GL2(C)-action.

Proposition 6.6.2. Let the notation be as above. Then, M (the N = 2 Minkowski
superspace) is an affine superspace of dimension 4|4.

Proof. We can write:

M =

{
(a1, a2), a1, a2 ∈ C4|2 | det

(
a11 a12
a21 a22

)
̸= 0

}/
GL2(C). (6.32)

In the quotient M we can choose a (unique) representative (u, v) for (a1, a2) of the form:


1
0
u1
u2
ν3
ν4

 ,


0
1
v1
v2
η3
η4




, (6.33)

so M is C4|4.

We notice thatM is naturally identified with the dense open set of the Grassmannian
Gr in the Plücker embedding, determined by the invertibility of the coordinate q12 in
P8|8.

We now would like to retrieve a set of global coordinates for M starting from
the global coordinates aij for S. Let C[GL2] = C[gij][T ]/((g11g22 − g12g21)T − 1)
be the coordinate algebra for the algebraic group GL2(C). Let us write heuristically
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the equation relating the generators of C[S], C[GL2] and the polynomial superalgebra
C[M] := C[uij, νkl], 

a11 a12
a21 a22
a31 a32
a41 a42
α51 α52

α61 α62

 =


1 0
0 1
u31 u32
u41 u42
ν51 ν52
ν61 ν62


(
g11 g12
g21 g22

)
. (6.34)

We obtain immediately: (
g11 g12
g21 g22

)
=

(
a11 a12
a21 a22

)
.

and then with a short calculation,

ui1 = −d2id−1
12 , ui2 = d1id

−1
12 ,

νk1 = −d2kd−1
12 , νk2 = d1kd

−1
12 ,

for i = 3, 4 and k = 5, 6, where:

drs := ar1as2 − ar2as1, r < s .

Proposition 6.6.3. Let the notation be as above.

1. The complex supermanifold S is diffeomorphic to the supermanifold C4|4×GL2(C):

S
ψ−−−→ C4|4 ×GL2(C) ,

with

ψ∗(gij) = aij,

ψ∗(ui1) = −d2id−1
12 , ψ∗(ui2) = d1id

−1
12 ,

ψ∗(νk1) = −d2kd−1
12 , ψ∗(νk2) = d1kd

−1
12 .

2. The diffeomorphism ψ is GL2(C)-equivariant with respect to the right GL2(C)
action, hence S/GL2(C) ∼= C4|4.

Proof. We notice that ψ is invertible, ψ−1 is given by:

(ψ−1)∗(aij) = gij,

and the rest follows from equation (6.34). The right equivariance of ψ is a simple
calculation, taking into account that the determinants dij transform as dij det g

′, were
g′ ∈ GL2(C).
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6.7 Quantum N = 2 Minkowski superspace

In this section we introduce the notion of quantum N = 2 Minkowski superspace.
We also want to reinterpret our construction in the framework of quantum principal
bundles, as in [3, 4] and references therein. We recall here briefly, the key definitions in
order to put in the correct framework.

Definition 6.7.1. Let (H,∆, ϵ, S) be a Hopf superalgebra and A be an H-comodule
superalgebra with coaction δ : A −→ A⊗H. Let

B := Acoinv(H) := {a ∈ A | δ(a) = a⊗ 1} . (6.35)

The extension A of the superalgebra B is called H-Hopf-Galois (or simply Hopf-Galois)
if the map:

χ : A⊗B A −→ A⊗H, χ = (mA ⊗ id)(id⊗B δ)
called the canonical map, is bijective (mA denotes the multiplication in A).

The extension B = Acoinv(H) ⊂ A is called H-principal comodule superalgebra if it
is Hopf-Galois and A is H-equivariantly projective as a left B-supermodule, i.e., there
exists a left B-supermodule and right H-comodule morphism s : A→ B ⊗ A that is a
section of the (restricted) product m : B ⊗ A→ A.

We now follow [3, §2], in giving the definition of quantum principal bundle, though
it differs slightly from the one given in the literature, which also requires the existence
of a differential structure (see e.g. [14, Chap. 5]).

Definition 6.7.2. We define quantum principal bundle a pair (A,B), where A is an
H-Hopf Galois extension and A is H-equivariantly projective as a left B-supermodule,
that is, A is an H-principal comodule superalgebra.

There is a special case of Hopf-Galois extensions, corresponding to a globally trivial
principal bundle. In this case the technical conditions of Definition 6.7.2 are automat-
ically satisfied. We shall focus on this case leaving aside the general one.

Definition 6.7.3. Let H be a Hopf superalgebra and A an H-comodule superalgebra.
The algebra extension Acoinv(H) ⊂ A is called a cleft extension if there is a right H-
comodule map j : H → A, called cleaving map, that is convolution invertible, i.e. there
exists a map h : H → A such that the convolution product j ⋆ h satisfies,

j ⋆ h := mA ◦ (j ⊗ h) ◦∆(f) = ϵ(f) · 1
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or, in Sweedler’s notation, ∑
j(f(1))h(f(2)) = ϵ(f) · 1

for all f ∈ H. The map h is the convolution inverse of j.

An extension Acoinv(H) ⊂ A is called a trivial extension if there exists such map.
Notice that when j is an algebra map, its convolution inverse is just h = j ◦ S−1.

We now examine the example of N = 2 Minkowski superspace.

Lemma 6.7.4. The coordinate superalgebra C[M] := C[uij, νkl] is isomorphic to the
subalgebra of coinvariants:

C[S]coinvC[GL2] := {g ∈ C[S] | δ(g) = g ⊗ 1},

in C[S] with respect to the C[GL2] right coaction δ:

C[S] δ−−−→ C[S]⊗ C[GL2]
a11 a12
a21 a22
a31 a32
a41 a42
α51 α52

α61 α62

 −−−→

a11 a12
a21 a22
a31 a32
a41 a42
α51 α52

α61 α62

⊗
(
g11 g12
g21 g22

)
.

Proof. In our calculations we computed expressions (given above in Proposition 6.6.3)
for the coordinates on M. We claim that these are coinvariants, so we need to show
δ(c) = c⊗ 1 for any c ∈ {uij, νkl}. A little calculation gives us:

δ(drs) = drs ⊗ (g11g22 − g12g21) ⇒ δ(drsd
−1
12 ) = drsd

−1
12 ⊗ 1

which proves our claim.

On the other hand, the space of functions on S that are invariant under the right
translation of the group can be identified with the space of functions on the quotient
S/GL2(C). Since we have global coordinates inM, any other invariant will be a function
of these coordinates. In the Hopf algebra language, this means that {uij, νkl} are the
only independent coinvariants.

Proposition 6.7.5. Let the notation be as above. The natural projection p : S −→
S/GL2(C) is a trivial principal bundle on M.
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Proof. We will show that C[S] is a trivial C[GL2]-Hopf Galois extension of C[M]. In
Lemma 6.7.4, we proved that C[M] ∼= C[S]coinvC[GL2], so if we give an algebra cleaving
map we are done.

We define:
C[GL2]

j−−−→ C[S]

gij −−−→ aij .

It is easy to check (below in Theorem 6.7.8, for the quantum case, the explicit details
are given) that j is convolution invertible with convolution inverse:

h = j ◦ S .

Moreover, the calculation below shows that j is a C[GL2(C)]-comodule map,

(δ ◦ j)(gij) = δ(aij) =
∑

aik ⊗ gkj.

((j ⊗ id) ◦∆)(gij) = (j ⊗ id)(
∑

gik ⊗ gkj) =
∑

aik ⊗ gkj.

⇒ δ ◦ j = (j ⊗ id) ◦∆.
This proves the result.

We now go to the quantum setting, where we lose the geometric interpretation and
we retain only the algebraic point of view. Hence a quantum principal super bundle
over an affine base is just understood as a Hopf-Galois extension with the properties
mentioned in Definition 6.7.2.

We want to study the quantization of the example studied above. Let Cq[S] be the
quantization of the superalgebra C[S] obtained by taking the super Manin relations
among the entries still denoted as aij and αkl, with i, j = 1, . . . , 4 and k, l = 5, 6.

Definition 6.7.6. The N = 2 quantum chiral Mikowski superspace Cq[M] is defined
as the subalgebra of Cq[S][D

−1
12 ] generated by the elements:

ũi1 = −q−1D2iD
−1
12 , ũi2 = D1iD

−1
12 ,

ν̃k1 = −q−1D2kD
−1
12 , ν̃k2 = D1kD

−1
12 ,

for i = 3, 4, and k = 5, 6, in Cq[Gr], where:

Drs := ar1as2 − q−1ar2as1, r < s.

Notice that, D12 q-commutes (commutes up to multiplication by a power of q) with the
generators of Cq[S], therefore, the localization Cq[S][D

−1
12 ] is well-defined.
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Similar to Theorem 6.2.5, we have the following.

Proposition 6.7.7. The quantum chiral Minkowski superspace Cq[M ] is isomorphic to
the quantum superalgebra of matrices Mq(2|2).

Proof. We define the map β : Cq[M ] −→ Mq(2|2) by giving it on the generators as
follows:

β(ũij) := zrs, where r = i− 2, and s =

{
1 if j = 2,

2 if j = 1,

β(ν̃kl) := ξmn, where m = k − 2, and n =

{
1 if l = 2,

2 if l = 1 .

It is clearly bijective. Using our previous computations for commutation relations
among Drs’s we get the commutation relations among ũij’s and ν̃kl’s and comparing
with the commutation relations for Mq(2|2) we observe that it is an isomorphism.

We now present the final result for this section.

Theorem 6.7.8. The quantum superalgebra Cq[S] is a trivial quantum principal super
bundle on the quantum chiral Minkowski superspace.

Proof. We need to show that Cq[S] is a trivial Hopf-Galois extension of Cq[M ]. We
will proceed similarly to the classical case. It is easy to see that the quantum version
of Lemma 6.7.4 also holds. It is enough to check that:

δq(Drs) = Drs ⊗ (g11g22 − q−1g12g21) .

Therefore, we need to give an algebra cleaving map jq : Cq[GL2(C)] −→ Cq[S].

Define:
jq(gij) := aij, hq = jq ◦ Sq.

Therefore,
hq : Cq[GL2(C)] −→ Cq[S]

hq(g11) := D−1a22, hq(g12) := −qD−1a12,

hq(g21) := −q−1D−1a21, hq(g22) := D−1a11,
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where D := a11a22 − q−1a12a21. One can observe that:

jq ⋆ hq = ε.1 = hq ⋆ jq,

where ⋆ denotes the convolution product, i.e jq is convolution invertible. Moreover, a
similar calculation to the one given in Proposition 6.7.5 shows that jq is a Cq[GL2]-
comodule map, i.e. δq ◦ jq = (jq ⊗ id) ◦∆. Therefore, jq is an algebra cleaving map and
Cq[M ] ⊂ Cq[S] is a trivial extension. Hence, the theorem is proven.
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