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Abstract 

Global warming affects atmospheric and oceanic energy budgets, modifying the Earth’s water 

cycle. Groundwater is the primary component of fresh water within the planet's hydrosphere, and 

it represents a vital and accessible resource, serving ecological, environmental, and societal needs. 
In countries where springs are a predominant water source, such as Italy, their protection, along 

with the assessment of their resilience to climate-induced changes in recharge, is crucial for 

ensuring water supply and preserving ecosystems. The Mediterranean region is a climate change 
hotspot, already experiencing a decline in recharge and an increase in the frequency and severity 

of droughts. Along the Apennine chain (Italy), situated at the heart of the Mediterranean region, 

significant climate impacts have been observed over the past few decades. It thus becomes 
important to estimate discharge scenarios to support water companies by providing sufficient 

time to plan and implement mitigation measures to address forthcoming water crises. 

This PhD project presents a century-long analysis of discharge patterns from key springs located 
along the Apennines, aiming to quantify the long-term effects of climate change and forecast 

future scenarios. The study employed multiple approaches, tailored to the nature of the data, and 

focused on a select number of springs chosen based on the availability of long-term hydrological 
discharge records extending back at least 60 years. 

The first approach involved a combination of experimental and historical analyses to evaluate the 
long-term effects of climate change on the flow rate of Nadìa Spring (Northern Apennines), which 

discharges from a fractured calcarenitic aquifer, as well as its resilience to such changes. The 

spring demonstrated an exceptional capacity to sustain base flow even during prolonged drought 
periods. Such resilience was attributed to a combination of factors, including a large groundwater 

reservoir, a network of faults and fractures, and karst dissolution processes. The second approach 

employed a multiregression analysis to investigate the relationship between recharge-related 

parameters and the discharge of Sanità Spring (Southern Apennines, karst aquifer) and Ermicciolo 

Spring (Amiata Mountain, volcanic aquifer), aiming to forecast long-term spring flow for the period 
2040-2070. Projected meteorological scenarios from a Regional Circulation Model were used 

alongside the regression coefficients to estimate discharge trends. Finally, the third approach 

applied a machine learning method, Long Short-Term Memory, to the same springs, Sanità and 
Ermicciolo, to predict discharge over both short- and long-term futures. In addition to these three 

springs, which were the primary focus of the analyses, four other springs were also investigated, 

with particular attention given to the effects of climate change on their flow rates over multi-
decadal timescales. 

The methodological approaches adopted in this PhD thesis, together with the results, provide a 

quantitative rather than merely descriptive understanding of the relationship between climate 

drivers and spring flow rate. Furthermore, they enable the projection of discharge scenarios and 
the subsequent evaluation of future groundwater availability along the Apennines. 
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Chapter 1: 

Introduction 

 

1.1. Preface 

This PhD thesis derives from an interdisciplinary collaboration between hydrogeology and 
atmospheric physics, supported scientifically by Professor Antonio Navarra, President of the 

Euro-Mediterranean Center on Climate Change (CMCC). This collaboration has been essential in 

linking the study of spring discharge dynamics with past and future climate trends. Furthermore, 

the PhD project is part of the PON programme, which emphasises technology transfer to benefit 

stakeholders. In this context, the research is primarily supported by Acquedotto Pugliese S.p.A., 

the main stakeholder of the project and the largest water utility company in Italy, where the 
candidate also undertook a period of internship. 

The present chapter introduces the primary topics addressed throughout this PhD project. Firstly, 

an overview of the globally changing climate, particularly in the Mediterranean area, will be 
presented in Section 1.2, with emphasis on its impact on the groundwater component of the 

hydrosphere (Section 1.2.1). This discussion will delve into specific issues, focusing in detail on 

droughts and spring discharge along the Apennines (Section 1.2.2). 

Next, Section 1.3 will provide insights into the springs analysed during this PhD research, focusing 

on their geological and hydrogeological settings (Section 1.3.1), as well as the rationale behind 
their selection compared to other springs initially considered for analysis (Section 1.3.2). 
Subsequently, the broader implications of negative projections and their societal impacts for the 

investigated areas along the Apennines are discussed in Section 1.3.3. 
Lastly, Section 1.4 outlines the fundamental scientific questions underpinning this PhD project, 
followed by a comprehensive overview of the thesis structure, serving as a brief guide to the 

subsequent chapters. 
 

 

 
 

 

 
 

 

 



 2 

1.2. Global warming 

UnRl the early 1800s, humanity was unaware of the role the atmosphere played in making the 

planet habitable. The first to formulate hypotheses on this maVer was the French natural 

philosopher Joseph Fourier in the 1820s. Fourier (1824) wondered why the Earth, which should 
have been much colder given its distance from the Sun, had temperatures capable of supporRng 

life. He proposed several hypotheses, including the idea that the Earth's atmosphere might trap 

a porRon of solar radiaRon, for unknown reasons, thereby increasing the planet's temperature. 
In a reprint of his 1824 work, Fourier (1827) compared the effect of the Earth's atmosphere to 

that of 'a pane of glass covering a bowl', making this the first hypothesis of what we now call the 

greenhouse effect. 

The fundamental relaRonship between carbon dioxide and climate was first understood and 

explained several decades later by a Swedish chemist, Svante Arrhenius (1896), who 

demonstrated that global temperature changes as a funcRon of increasing CO2 levels. At that 
Rme, there were no instruments capable of measuring the amount of carbon dioxide in Earth's 
atmosphere, but Arrhenius esRmated that if CO2 level had increased to double that present at 

the Rme, the Earth's temperature would have risen drasRcally. 

Nowadays, it is widely acknowledged that global warming is having an increasing impact on our 

planet. One of the main scienRfic prioriRes today is to predict global and regional climate changes 

associated with global warming (Navarra and Philander, 2016), which is driven by the rapid, 
human-induced rise in emissions of carbon dioxide, other greenhouse gases (GHGs), and 

aerosols, along with changes in land use. The governments of the world, in 1988, have thus 
established the Intergovernmental Panel on Climate Change (IPCC) to evaluate periodically the 

available scienRfic and technical data, and to coordinate the research efforts of scienRfic teams 

working on this issue. In other words, it was determined that the United NaRons body would be 

responsible for assessing the effects of climate change. In its Sixth Assessment Report (AR6), the 

IPCC (2023) concluded that human acRviRes, primarily through GHG emissions, have 

unequivocally caused global warming, with global surface temperatures rising to 1.1 °C above 

1850-1900 levels during the period 2011-2020. Since then, global GHG emissions have conRnued 

to rise steadily, significantly impacRng the atmospheric water and energy budgets, and they are 

projected to conRnue doing so in the future. The rising frequency, intensity, and/or duraRon of 

droughts and heat stress linked to climate change (Allen et al., 2010) might profoundly reshape 

the biosphere and hydrosphere in numerous regions. 

Heatwaves, extreme precipitation, droughts, and floods are among the most common extreme 
events posing risks and causing damage to society. The majority of these events are linked to two 

parameters: air temperature and precipitation (Scoccimarro and Navarra, 2022). Alexander et al. 
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(2006) conducted a study on global changes in daily extremes of temperature and precipitation, 

which revealed over 70% of the globally surveyed land area has shown a significant decrease in 

the annual occurrence of cold days and nights (defined as when temperatures fall below the long-
term 10th percentile), alongside a significant increase in warm ones (when temperatures exceed 

the long-term 90th percentile; Fig. 1.1). 

 

Fig. 1.1. Trends (in days per decade, shown as maps) and annual time series anomalies relative to 1961-

1990 mean values (shown as plots) for annual series of percentile temperature for 1951-2003 for (a) cold 

nights, (b) warm nights, (c) cold days, and (d) warm days. Trends were calculated only for the grid boxes 
with sufficient data (at least 40 yr of data and the last year is no earlier than 1999) (Alexander et al., 2006). 
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Mediterranean-type climates (Csa and Csb, Fig. 1.2) according to the Köppen-Geiger classification 

(Kottek et al., 2006) are among the areas of the planet most exposed to droughts. These climates, 

classified as warm temperate, are characterised by dry summers and mild, rainy winters. In the 
Mediterranean region, the sea plays a crucial role in shaping the climate, since it absorbs heat 

during the summer and gradually releases it throughout the winter months. 

 

Fig. 1.2. World Map of Köppen-Geiger climate classification updated with mean monthly temperature and 
precipitation data for 1951-2000 on a regular 0.5-degree latitude/longitude grid (Kottek et al., 2006). 

In addition to the classic Mediterranean region, which extends between Southern Europe 

(including Anatolia and the Near East) and the northwestern coast of Africa, the Csa and Csb type 

climate can also be found along the western coast of the United States (Scanlon et al., 2012), in 
central Chile (Garreaud et al., 2017), at the southern tip of South Africa (Blake et al., 2010), and 

along the southwestern coast of Australia (Alilou et al., 2022) (Fig. 1.2). These climatic zones are 

located slightly north or south of the Tropics. This geographical location is the reason why 
Mediterranean-type climates are often recognized as subtropical (Troll and Paffen, 1963). 
Mediterranean climate zones are ranked among the regions of the globe most affected by global 

warming (Van Loon et al., 2014). 

In particular, the Mediterranean region is considered a highly critical zone for climate change due 

to a significant decrease in recharge and an increase in the frequency and severity of droughts 

over the last two to three decades. The Regional Climate Change Index (RCCI), developed by 
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Giorgi (2006), indicates that the Mediterranean and Northeastern European regions emerge as 

the primary Hot-Spots (Fig. 1.3), followed by high latitude northern hemisphere regions and by 

Central America. 

 

Fig. 1.3. Regional Climate Change Index over 26 land regions of the World calculated from 20 coupled 
Atmosphere/Ocean General Circulation Models (AOGCMs) and 3 IPCC emission scenarios (Giorgi, 2006). 

Future climate projections for the Mediterranean region (Giorgi and Lionello, 2008) indicate a 

significant reduction in precipitation, particularly during the summer season, except for northern 
Mediterranean areas (e.g., the Alps) during winter, and a marked warming, peaking always in the 
summer months. Inter-annual variability is expected to increase, especially in summer, which, 

combined with the overall warming, would result in a higher frequency of extreme heat events. 

The strength and consistency of the climate change signals produced also by more recent climate 
models (Essa et al., 2023; Mirgol et al., 2024) confirm that the Mediterranean region may be 

particularly vulnerable to global change. 

 

1.2.1. Climate change effects on groundwater 

Approximately 70% of the Earth's surface is covered by water, with 97.5% being saltwater and 
only 2.5% classified as freshwater (Oksana and Dmytro, 2021). Thinking about freshwater often 
suggests images of flowing rivers and clear lakes, but nearly all the world's liquid freshwater (97-

99%; Stone et al., 2019), which is not frozen and locked away in ice caps and glaciers, exists as 

groundwater. Groundwater is indeed an almost universally available source of high-quality 

freshwater. On a global scale, groundwater accounts for about one third of all freshwater 
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extractions, providing an estimated 42%, 36%, and 27% of the water utilized for agricultural, 

domestic, and industrial purposes, respectively (Döll et al., 2012). In numerous ecosystems, 

natural groundwater discharges support baseflow to rivers, lakes, and wetlands during periods 
of low or no precipitation. Despite the crucial role groundwater plays in supporting human 

wellbeing and aquatic ecosystems, the limited number of studies examining the link between 

climate and groundwater has significantly hindered the capacity of the IPCC to evaluate the 
interactions between groundwater and climate change (Taylor et al., 2013). 

Recent scientific data indicate that many of the world’s major groundwater reservoirs are being 

depleted (Wada, 2016), resulting in reduced streamflow, the drying up of springs and wetlands, 

loss of vegetation, water-level declines in wells, and land subsidence. Another significant threat 
to groundwater, particularly for karst aquifers (Kalhor et al., 2019), is pollution caused by human 

activities, leading to the infiltration of chemicals and different types of waste into the subsurface. 

This contamination, exacerbated by climate change through altered recharge patterns and 
extreme events, deteriorates groundwater quality and poses risks to both human and ecological 
health (Balaram et al., 2023). Coastal aquifers, which form the interface between oceanic and 

terrestrial hydrological systems, are critically important as they provide a water source for over 
one billion people (Small and Nicholls, 2003) living in coastal regions. The extent of seawater 
intrusion into these aquifers is another major issue affecting groundwater, and it depends on 

various factors such as coastal topography, reduced recharge rates, groundwater abstraction 
from coastal areas, and sea level rise (Ferguson and Gleeson, 2012). 

Global warming affects the energy balance of atmosphere and oceans, leading to alterations in 

the Earth's water cycle with consequent changes to precipitation typologies and regimes, with 

extreme regional variability of the effects (Caloiero et al., 2018). Patterns of precipitation change 
are indeed more spatially and temporally variable than temperature change (Kundzewicz and 

Döll, 2009). The more steady but significantly high rise in air temperatures leads to a substantial 

increase in evapotranspiration, thereby reducing the effectiveness of precipitation in recharging 
aquifers (Cardell et al., 2020). The continuous modification of land use and land cover for regional 

development in the context of a changing climate has also resulted in an alarming decrease in 

groundwater levels. First, the expansion of irrigated agriculture leads to excessive groundwater 
pumping, depleting aquifers. Second, land surfaces are often sealed with impervious materials, 

reducing aquifer recharge (Halder et al., 2024). Climate variability and change further impact 

groundwater systems directly by altering recharge patterns and indirectly through changes in 
land use and global processes (Taylor et al., 2013). 

The Mediterranean region is expected to undergo significant changes that will impact the 

sustainability, quantity, quality, and management of freshwater (García-Ruiz et al., 2011). Future 

scenarios for water resources in this climate zone suggest: 
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1. A progressive decline in groundwater storage (GWS) (Fig. 1.4), leading to a significant 

decrease in average spring discharge and streamflow. 

2. Changes in key river regime characteristics, including an earlier reduction in high flows 
from faster snowmelt in the spring season, and more severe low flows in summer. 

3. Alterations in surface reservoir inputs and management, with reduced discharges 

released from dams and a resulting increase in pumping from wells to satisfy the water 
demands for irrigation and urban areas. 

4. Hydrological and population shifts in coastal areas, especially in delta zones, affected by 

water depletion, groundwater reduction, and saline water intrusion. 

 

Fig. 1.4. Mean annual trend of GRACE-derived GWS in the Euro-Mediterranean region for the 2003-2020 

period, based on the detection of gravity anomalies. A negative trend over the period is equivalent to a 
decrease in groundwater resources, while positive trends indicate an increase (Xanke and Liesch, 2022). 

Significant impacts on groundwater availability have been observed along the Apennine chain in 

Italy, a major European mountain range, as well as in the rest of the Mediterranean basin, 
primarily due to the increased frequency and duration of droughts in recent decades. These 

impacts on freshwater resources are especially critical given that groundwater across the Italian 

peninsula constitutes the primary source of drinking water for many regions. Major urban 
centres, including Rome and Naples, depend on springs for public aqueduct supply (ISPRA, 2020). 
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Therefore, a significant and prolonged reduction in groundwater availability, extending over 

several years and manifested through decreased springs discharge and lower piezometric levels 

in aqueduct wells, could have profound societal consequences in the future. 

 

1.2.2. Impacts on spring discharge along the Apennines 

Spring discharge is an important water supply source, critical for communities and ecological 
systems dependent on groundwater resources. In Italy, the vast majority of freshwater used for 

public water supply is drawn from groundwater, which alone accounts for roughly 84.7% (of 

which 48.5% is from wells and 36.2% from springs) of all water extracted (Gandelli, 2022). Among 

the countries currently part of the European Union (EU), Italy ranks as the nation withdrawing 
the highest annual per capita volume of groundwater (Fig. 1.5), with over 130 m3 per person per 

year (56 from springs). This water is used to meet the daily needs of the population as well as 

those of small businesses, hotels, services, commercial activities, production, agriculture, and 
industry directly connected to the urban network, in addition to public demands (such as schools, 
government offices, hospitals, public fountains, etc.) (Istat, 2022). 

 
Fig. 1.5. Freshwater withdrawals for drinking purposes in the 27 EU countries in 2022. Groundwater 

withdrawals (from wells and springs) are indicated in blue, while surface water withdrawals (from artificial 

reservoirs, surface watercourses, and natural lakes) are shown in orange (lstat, 2022, modified). 

The crucial role of springs in public water supply across Italy is illustrated in Fig. 1.5, and proves 
to be particularly indispensable along the Alps, the Apennines, and in mountainous areas more 

generally, where aqueduct wells are less prevalent. Mountain springs typically provide high-
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quality water, in contrast to wells predominantly located in urbanised or industrialised lowland 

and coastal areas (Nicholson et al., 2018; Simsek et al., 2008). Therefore, shortages in 

groundwater recharge, altering spring outflows, can significantly impact society, especially during 
prolonged drought periods, which are becoming increasingly frequent (Alilou et al., 2022). 

Affected by both regional and local climate fluctuations, the seasonal and annual variability of 

spring discharge reflects a climate memory signal that is notably influenced when drought 
patterns arise within evolving climate conditions (Diodato et al., 2022), a phenomenon currently 

impacting the Mediterranean climate. Indeed, the effects of climate change on groundwater 

resources along the Apennine chain have been particularly severe in recent decades. 

In the Southern Apennines, the duration and intensity of droughts have increased, particularly 
since the late 1980s  (Fiorillo and Guadagno, 2012; Fiorillo et al., 2015), with groundwater storage 

decreasing accordingly, impacting numerous springs located on the Matese Massif and the 

Picentini Mountains (Fiorillo et al., 2021), the Lauria Mountains (Canora et al., 2019), the Pollino 
Massif (Grimaldi et al., 2008), and, more broadly, along the entire Southern Apennine area 
(Allocca et al., 2014). The continuous decline in spring discharge across such a wide region reflects 

the groundwater system’s response to climate change over the past decades. The regulatory 
groundwater reserves of karst aquifers — which are the predominant aquifer type in the 
Southern Apennines — play a crucial role in sustaining significant karst spring outflows even after 

prolonged multi-year droughts, thereby defining the productivity and resilience of these 
hydrogeological systems (Diodato et al., 2022). 

In Central Italy, population growth, tourism, and climate change have led to the frequent over-

exploitation of alluvial lowland aquifers. Consequently, water managers are increasingly focusing 

on mountain regions, especially in the Central Apennines, featuring extensive karst aquifers (e.g., 
the Majella Massif), to identify groundwater resources for drinking purposes (Tazioli et al., 2020). 

Indeed, water from local aquifers and scattered spring discharge could help mitigate water 

scarcity and the overexploitation of larger water distribution networks, exacerbated by drought 
periods linked to climate change (Di Curzio et al., 2021). However, negative effects related to 

climate change have been observed on both the quantity (Di Nunno et al., 2021; Magi et al., 

2019; Sappa et al., 2019) and quality (Barbieri et al., 2021; Sappa et al., 2019) of spring discharge 
in the Central Apennines. Two primary reasons for the reduction in spring discharge in this area 

are the shorter duration of snow on the ground (accelerated snowmelt) and the significant 

reduction in total snowfall (Gentilucci and Pambianchi, 2022; Petitta et al., 2022), factors 
primarily linked to the steady and continuous increase in air temperature. 

In the Northern Apennines, water for drinking and industrial purposes is provided from hundreds 

of low-yield springs with short groundwater flow paths, developed primarily within fractured 

sedimentary rock units, which are abundant in this part of the Apennines (Filippini et al., 2024). 
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This type of hydrogeological setting does not provide the high discharge rates (greater than 1 

m3/s) typical of carbonate aquifers; rather, it produces spring water that closely follows meteoric 

recharge patterns (Cervi et al., 2018), resulting in low-flow periods concentrated in summer and 
early autumn (without multi-annual time lags sometimes observed in the large karst massifs of 

the Central and Southern Apennines). Consequently, spring outflow can be highly sensitive to 

reductions in recharge, especially during prolonged drought periods, which can cause serious 
water management issues. Negative trends in spring discharge have also been observed in the 

Northern Apennines, particularly in the Monte Fumaiolo area, located in the southeastern Emilia-

Romagna Region near the border with Tuscany (Di Matteo et al., 2016), as well as in the Tuscan-

Emilian Apennines on the Adriatic side (Filippini et al., 2024; Petronici et al., 2019). 

 

1.3. Investigated springs along the Apennines 

1.3.1. Geological and hydrogeological setting 

The Apennines are an extensive mountain range with a NW-SE orientation, which can be divided 
into the Northern, Central, and Southern sectors (Fig. 1.6). The complex tectonic history of the 

Apenninic chain can be summarized in three main phases: an initial extensional phase, followed 
by a compressional phase, and finally, a renewed phase of extension (Boccaletti et al., 1971; 

Carmignani and Kligfield, 1990). 

In the Early Jurassic, the break-up of the Pangea supercontinent occurred, leading to the 
fracturing of the Tethys carbonate platform. These extensional movements also facilitated the 

opening of the Liguria-Piedmont (LP) Ocean, which resulted in the separation of the European 
plate and the Sardinian-Corsican block from the African plate and Adria, a 'microplate' also 

referred to as the 'Promontory of Africa' (Channell and Horváth, 1976). The second major tectonic 

phase began during the transition from the Lower to Upper Cretaceous, when the expansion of 

the LP Ocean ended, and the African plate, reversing its direction, started moving north-

westward, leading to the closure of the ocean (Boccaletti et al., 1982). In the Late Eocene to 

Miocene, as the last portion of the LP Ocean's oceanic crust was subducted, the collision between 

the European continental margin (including the Sardinian-Corsican block) and the Adriatic margin 

began; this collision marks the onset of the Apennine orogeny (Molli, 2008). The third and final 

phase of the Apennines' tectonic history is characterised by extension, which began in the Late 

Oligocene-Miocene in the Tyrrhenian area, while compression was still ongoing in the chain, and 

continues to the present day (Carmignani et al., 1994). The extensional tectonics have resulted 

in a progressive thinning and subsequent fracturing of the crust along the Tyrrhenian margin of 
the Apennines. The succession of these tectonic phases has led to the formation of several 

lithological units, marked by diverse features across the Apennines sectors (Fig. 1.6). 
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Fig. 1.6. Map of Italy showing 19 lithological classes. The extended name and percentage distribution of 

each class is indicated in the bar chart located in the top-right corner (Bucci et al., 2022, modified). 

In the Northern Apennines, turbiditic sequences are predominant, resulting from deep-sea 

sedimentation during the first extensional phase, while the Central Apennines are dominated by 
widespread carbonate platforms, which were uplifted during the collision phase (Cosentino et 

al., 2010; Marroni et al., 1992). The Southern Apennines, on the other hand, exhibit a more 

complex interplay of various geological formations, with significant nappes resulting from the 
thrusting processes (Patacca and Scandone, 2007). Moreover, the post-orogenic extensional 

phase that has affected, and continues to affect, the Tyrrhenian margin of Central and Southern 

Italy has been characterised by Plio-Quaternary back-arc volcanism, which has given rise to 

multiple volcanic edifices and eruptive fissures (Acocella and Funiciello, 2006). 
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The numerous tectonic, magmatic, and sedimentary environments that existed during the 

evolution of the Apennine orogen account for the wide range of lithological formations found 

across the Apennines. This diversity is also reflected in the various hydrogeological settings along 
the mountain range, which include different types of aquifers such as sedimentary carbonate, 

sedimentary siliciclastic, crystalline metamorphic, volcanic, and fluvio-lacustrine intramontane. 

However, most of the groundwater in the Apennine chain is stored in carbonate karst aquifers 
(De Vita et al., 2012; Petitta and Tallini, 2002). Nevertheless, aquifers with significant yield can 

also be found in volcanic and arenitic settings (Doveri et al., 2012; Filippini et al., 2024). 

As previously mentioned, this PhD project presents a century-long analysis of discharge patterns 

along the Apennines. To identify springs with extensive discharge datasets, the research initially 
focused on the monographs “Le Sorgenti Italiane” (Italian Springs), compiled by the Hydrographic 

Service between the 1920s and 1960s, covering the central-southern Italian regions of Abruzzo, 

Basilicata, Calabria, Campania, Lazio, Molise, Puglia, Sardinia, and Sicily. For this PhD thesis, given 
the focus on the Apennine chain, Puglia Region and the two island regions, Sardinia and Sicily, 
were excluded, as shown in Fig. 1.7. 

 
Fig. 1.7. Summary statistics of the number of springs in the Italian regions of Abruzzo, Basilicata, Calabria, 
Campania, Lazio, and Molise, categorised by Meinzer class II (1000-9999.99 L/s), III (100-999.99 L/s), IV 

(10-99.99 L/s), and V (1-9.99 L/s). No springs in Meinzer class I (≥ 10000 L/s) are present in any of these 

six regions. On the left, a summary table displays the number of springs per class for each region; on the 

right, a pie chart illustrates the corresponding percentages of springs per class for each region. 
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Additionally, since the aim was to identify significant springs monitored over long periods, the 

focus was placed on springs of Meinzer class V or higher, given the greater likelihood of long-

term monitoring. Following an in-depth review of these monographs during the initial months of 
research, the selection was further narrowed to Meinzer class II springs, owing to their already 

considerable number (49 across the six regions, Fig. 1.7). After an extensive bibliographic and 

online review to identify springs of similar significance in the Central and Northern Apennines, 
few springs with potentially long discharge records were identified. Subsequently, the relevant 

local authorities responsible for managing all the selected springs were contacted. Following a 

well-thought-out selection process, primarily based on the availability of extensive historical 

datasets, only seven springs were identified as potentially suitable for study in this PhD project. 

These springs are listed below, arranged from north to south (Fig. 1.8): 

- Nadìa Spring (Northern Apennines). 

- Cannucceto Spring (Northern Apennines). 

- Ermicciolo Spring (Amiata Volcano - Central Italy). 

- Verde Spring (Central Apennines). 

- Serino Spring group (Southern Apennines). 
- Cassano Irpino Spring group (Southern Apennines). 

- Sanità Spring (Southern Apennines). 

Nadìa Spring is situated in the Emilia-Romagna Region, specifically in the municipality of Montese 
(Modena), at an elevation of 555 m above sea level (asl) (44°19'09'' N; 10°58'14'' E), nearby the 

main divide of the Northern Apennines belt between the valleys of the Reno and Panaro Rivers. 
The spring, managed by the public water supply company Gruppo Hera S.p.A., is uptaken by a 75 
m long draining tunnel built between 1917 and 1920 (Vecchi, 1920), and it represents one of the 

most productive springs in the Northern Apennines. The aquifer is a fractured sedimentary 

arenite, composed of medium- to fine-grained calcareous sands (Amorosi, 1997), with karst-like 
corrosion phenomena. Regarding the discharge data, monthly values are available for the period 

between January 1915 and October 1918, during which accurate total flow rate monitoring was 

carried out as a preliminary step to the excavation of the drainage tunnel. More recent measures 
of the withdrawn fraction of the spring flow (excluding overflow) have been continuously 

collected by the water company since 2017. However, contemporary total discharge data are 

only available for the period between December 2020 and March 2023, as reported by Filippini 
et al. (2024), thanks to monitoring conducted by the Hydrogeology Group of the BiGeA 

Department at the University of Bologna, which also involved this PhD project. Considering all 

available monitoring periods, Nadìa Spring exhibited a minimum mean monthly total discharge 
of 42 L/s and a maximum of 140 L/s, placing it within the fourth (IV) class of Meinzer's 

quantitative spring discharge classification (1923). 
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Fig. 1.8. Topographic and bathymetric map of Italy showing the location of the analysed springs along the 
Apennines (base map derived from Gaba, 2009 [licensed under GFDL/CC-BY-SA]; modified). 

Cannucceto Spring is located in the Tuscany Region, near the border with the Emilia-Romagna 

Region, in the municipality of Scarperia, at an elevation of 915 m asl (44°04'44" N; 11°18'15" E). 

The spring is situated on the southern slope of Monte Gazzaro (Northern Apennines), situated 

along the main divide between the Arno River basin (to the south) and the Reno River basin (to 

the north). Cannucceto Spring is exploited by the mineral water bottling company Acqua Panna 

(Nestlé Waters group) and stands as the most important spring among those within the mining 

concession. The spring is tapped by a small intake structure built in the groundwater emergence 

area. The aquifer is sedimentary arenitic, consisting of siliciclastic turbidites with a relatively high 
Arenite/Pelite ratio, and sandstone layers composed of coarse- to medium-sized sand grains 

(Bettelli et al., 2005). The permeability is primarily controlled by faults and fractures, or by 
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discontinuities caused by layering, which facilitate the interconnection of the various arenitic 

layers. Concerning the discharge data, daily values have been available since January 1979, and 

since the early 2000s, data with a temporal resolution of five seconds have also been recorded. 
Cannucceto Spring has historically been characterised by a minimum discharge of 0.55 L/s during 

the low-flow period and a maximum of approximately 21 L/s, placing it within the sixth (VI) class 

of Meinzer's classification (1923). 

Ermicciolo Spring is also situated in the Tuscany Region, in the municipality of Castiglione d'Orcia, 

at an elevation of 1020 m asl (42°55'26" N; 11°38'29" E). The spring is located on Mount Amiata, 

an extinct volcano whose evolution is associated with the magmatism linked to the most recent 

Apenninic post-orogenic extensional phase (Frondini et al., 2009). For this reason, although 
Mount Amiata is approximately 100 km to the south-west of the main Northern Apennine divide, 

it can be associated with the internal extensional sector of the Apennine chain. Ermicciolo Spring 

is managed by the water company Acquedotto del Fiora (ACEA S.p.A. group) and is exploited it 
through an 80-meter-long drainage tunnel constructed between 1908 and 1914 on the northern 
slope of the volcanic aquifer complex, which is primarily composed of ignimbrites and trachytes 

(Doveri et al., 2012). Regarding spring discharge, total flow rate data of at least monthly 
frequency are available from 1939 to the present day, with a six-year gap in acquisition from 
1990 to 1995. Originally, discharge monitoring was performed manually using a thin-wall weir, 

whereas since the 1990s, a pressure transducer hydrometer has been installed for automatic 
measurements. The average discharge of Ermicciolo Spring fluctuates between roughly 90 L/s 
and 210 L/s. It is noticeable that since the mid-1970s, the Meinzer class of the spring has dropped 

from the third (III) to the fourth (IV) class, as the spring has started recording flow rates below 
100 L/s during the low-flow period. 

Verde Spring is located in the Abruzzo Region, within the municipality of Fara San Martino, at an 

elevation of 415 m asl (42°05'30" N; 14°12'08" E). The spring discharges on the eastern side of 

the Majella Massif (Central Apennines), one of the main carbonate reliefs in Central Italy, 
covering an outcrop area of 273 km² (Chiaudani et al., 2019). Verde Spring is managed by the 

water company Società Abruzzese per il Servizio Idrico S.p.A. (SASI), which uptakes the water 

through two drainage tunnels with a combined length of approximately 4 km, constructed 
between the late 1920s and early 1930s. From a geological perspective, the aquifer consists of a 

thick (~2 km) sequence of carbonate karstified formations (Nanni and Rusi, 2003). Concerning 

the discharge data, we have daily values available from January 1938 to December 2005; 
however, spring flow rate monitoring is still being carried out today by automated water level 

stations with calibrated flow sections. Verde Spring is characterised by a minimum discharge 

during the low-flow period of about 900 L/s and a historical maximum of 6170 L/s, placing it 

within the third (III) class of Meinzer's quantitative classification. 
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Cassano Irpino Spring group is located in the Campania Region, within the municipality of the 

same name, at an elevation of 476 m asl (40°52'12" N; 15°01'54" E). The springs emerge on the 

eastern side of the Terminio-Tuoro Massif, which is part of the Picentini Mountains karst system 
(Southern Apennines). Cassano Irpino Spring group, consisting of Bagno della Regina, Peschiera, 

Pollentina, and Prete Springs (Fiorillo and Guadagno, 2012), is managed by the water company 

Acquedotto Pugliese S.p.A. (AQP), which taps the spring group through intake structures and 
drainage mats constructed between the 1950s and the 1960s. From a geological perspective, the 

aquifer is primarily composed of limestone and calcareous-dolomitic rocks marked by karst 

phenomena (Corniello et al., 2010). In the discharge border area, groundwater flows out by a 

superimposed permeability threshold, under pressure through a lower permeability fractured 
arenitic cover (Coppola et al., 1989). Regarding the discharge data, mean monthly values are 

available for the period 1965 to 1979, while from 1980 onward, data have been recorded on a 

daily basis. Cassano Irpino Spring group exhibits a minimum discharge during the low-flow period 
of about 1400 L/s and a historical maximum of 5510 L/s, classifying it within the second (II) class 
of Meinzer's quantitative classification. 

Serino Spring group is also located in the Campania Region, within the municipality of the same 
name, at an elevation of approximately 352 m asl (40°52'49" N; 14°51'40" E). Managed by the 
water company Acqua Bene Comune, it serves as the main source of aqueduct water supply for 

the city of Naples, along with the Gari Spring, located in the Simbruini Mountains in southern 
Lazio. Serino Spring group is situated on the western slope of the Terminio-Tuoro Massif 
(Southern Apennines) and consists of Urcioli Spring and Acquaro-Pelosi Spring, which are tapped 

through drainage channels and mats built at the end of the 19th century. In this case as well, the 
discharge area is characterised by upward-directed groundwater flow (Fiorillo et al., 2018), and 
the geological setting is also the same. The Terminio-Tuoro Massif appears to be fragmented by 

a hydrogeological divide, as resulted by a tracer test conducted in 1979 by Celico and Russo 

(1981), involving the injection of Uranine into the “Bocca del Dragone”, a karst sinkhole located 
within the main endorheic basin – a polje – of the massif, known as “Piana del Dragone”. The 

tracer revealed a connection between the sinkhole and Cassano Irpino Spring group (where the 

fluorescent tracer arrived after a few days), but not with those of Serino group, where the tracer 
was not detected. Concerning the whole spring discharge of the group, monthly flow rate data 

are available from 1962, with only two small gaps in the historical dataset in 1976 and 1999. The 

total average discharge of Serino Spring group fluctuates between 1100 L/s and 3500 L/s, also 
placing it within the second (II) class of Meinzer's classification. 

Sanità Spring is also located in the Campania Region, specifically in the municipality of Caposele, 

at an elevation of roughly 420 m asl (40°48'58" N; 15°13'13" E). The spring is situated on the 

eastern side of the Cervialto Massif, which, along with the Terminio-Tuoro Massif, is the other 
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major carbonate relief of the Picentini Mountains karst system (Southern Apennines). Sanità 

Spring is managed by the water company Acquedotto Pugliese S.p.A., which uptakes the spring 

through a surface drainage system located at the base of the massif's slope. This system is 
characterised by several niches excavated along the discharge front at the beginning of the 

twentieth century. The karst aquifer consists of a series of limestone and limestone-dolomite 

formations (Leone et al., 2021), with a thickness reaching up to 3000 m. Regarding discharge data 
collection, this spring has a unique century-long historical dataset, with at least monthly data 

available from 1920. Originally, the flow rate was quantified using a hydrometric reel along the 

main channel, with a monitoring frequency of twice a month. In 1927, Venturi tubes were 

installed to make the monitoring system more efficient (Fiorillo et al., 2021), which was further 
improved in 1980 when data acquisition became daily. Throughout the entire monitoring period, 

Sanità Spring exhibits a discharge ranging from approximately 3300 L/s to 5400 L/s, classifying it 

within the second (II) class of Meinzer's spring discharge classification (1923). 

 

1.3.2. Selected and excluded springs 

During the data collection phase, historical discharge data for all seven of the springs were 
acquired, thanks to scientific collaboration agreements with the water managing authorities. 
However, in the analysis phase, it was decided to restrict the research to only a few of these 

springs: Nadìa, Ermicciolo and Sanità. The main criterion for the exclusion of the other springs is 
related to the limited length of the historical dataset or the absence of accurate historical 
discharge data dating back to the early 20th century (century-long data), even if collected 

occasionally or only in certain years (as in the case of Nadìa Spring). Firstly, it must be considered 

that at least 30 years of data are required to detect and appreciate a climate trend (Livezey et 
al., 2007), and consequently at least 60 years of data are necessary to determine whether flow 

rate or meteorological trends are changing due to climatic forcing. Secondly, to appreciate the 

long-term discharge relationship with recharge-related data, it is indispensable to base the 
analysis on secular historical records (Chen et al., 2004; Leone et al., 2021), which can then be 

projected into the long-term future to forecast spring discharge. 

The importance of considering very long historical datasets can be highlighted by the following 
observation. Figs. 1.9 and 1.10 compare the hydrographs of Cannucceto Spring (excluded from 

the analysis) and Ermicciolo Spring. For Cannucceto, where flow rate data are only available from 

January 1979 onwards, the discharge appears to have gradually increased, as indicated by the 
linear trend line showing a gentle positive slope (or, at most, no trend). 
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Fig. 1.9. Mean monthly discharge of Cannucceto Spring. The labels on the x-axis indicate January of each 

respective year. The positive slope of the linear trend line (shown in green) indicates a subtle increase in 

discharge over the entire historical record of the spring. 

However, when looking at the same period for Ermicciolo (Fig. 1.10), which is geographically the 
closest, among those studied, to Cannucceto Spring with a near-century-long historical record 

available, the trend from January 1979 to the present also shows an increase in discharge. 

However, when the full dataset, starting in January 1939, is considered, it becomes evident that 
the spring's discharge has significantly decreased relative to historical levels. Therefore, it cannot 

be definitively determined whether, or to what extent, Cannucceto Spring has been impacted by 

long-term climate change. Focusing solely on recent discharge datasets (spanning no more than 
30 to 50 years) may lead to misleading and unrepresentative conclusions regarding trends and 

impacts associated with global warming. 

 

Fig. 1.10. Mean monthly discharge of Ermicciolo Spring. The labels on the x-axis indicate January of each 
respective year. The red linear trend line refers to the complete historical record, while the green one 

refers only to the period from 1979 to the present. The respective slopes indicate a positive trend in 

discharge over the past 45 years but a significantly negative trend when considering the full time series. 



 19 

Verde Spring was excluded from the analysis for two reasons: firstly, discharge data are available 

only up until 2005; secondly, there is a four wells field located in the discharge area, which affects 

the spring flow. Given the inability to precisely quantify the effects of the well field on the spring, 
due to the variable pumping rates of the wells, it was not possible to determine whether, or to 

what extent, the spring has been impacted by global warming. 

Cassano Irpino and Serino Spring groups, both discharging from the Terminio-Tuoro Massif, were 
excluded from the analysis because the Dragone Plain, the polje representing the main endorheic 

basin of the massif (Pagnozzi et al., 2019), is highly anthropized, with cultivated farmland, 

livestock grazing activities, and various commercial undertakings. Consequently, in this plain, 

located in the municipality of Volturara Irpina, there are unquantifiable withdrawals from 
pumping wells. Therefore, as in the case of Verde Spring, it was not possible to accurately 

determine the extent to which the spring discharge of Cassano Irpino and Serino Spring groups 

has been influenced by climate change. 

Despite their exclusion from the subsequent in-depth analyses, the discharge datasets for Verde 
Spring and Cassano Irpino and Serino spring groups have still proven useful. Using a multi-decadal 

approach, they allowed for the evaluation of discharge decline, even though based on a shorter 
time span (approximately 60 years, still a significant and rare attribute). The results of these 
multi-decadal flow rate analyses will be presented at the end of Chapter 3. 

 

1.3.3. Societal implications of ongoing and future negative spring discharge 

In all study areas, and more generally along the entire Apennine range (as highlighted in Section 

1.2.2), springs are experiencing reductions in discharge. This, as previously explained, is primarily 

due to the more frequent and severe occurrence of droughts, which have a wide range of 
consequences on water supply systems. As spring discharge declines, aqueducts increasingly 

struggle to meet the water demands of local populations, especially during summer months 

when tourism peaks, further straining groundwater resources. 

Several towns located in the Bologna and Modena Apennines (Northern Apennines), which rely 

on spring water and small wells for their public water supply, experienced severe droughts in 

recent years. In response to critical shortages, emergency measures such as water trucks were 
promptly deployed. For instance, during the severally dry summer of 2021, approximately 650 

water truck deliveries were required in some municipalities supplied by the Gruppo Hera water 

company, including Montese, where Nadìa Spring is located. In the following summer (2022), 
during a similar drought event, around 570 water truck deliveries were needed. On average, 

nearly 10,000 m³ of water were supplied in this manner per season (UniBo and RER for Gruppo 

Hera, 2023). Considering the projected increasing trends in air temperature across the entire 
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Mediterranean area (IPCC, 2023), these findings underscore the potential for concerning and 

prolonged water shortages in that part of the Northern Apennines in the future. 

In the Central Apennines, the recent situation is even more critical. In the summer of 2024, the 
Abruzzo Region faced a severe water crisis; to maintain adequate flow and pressure in the public 

water supply network managed by the SASI water company, it became necessary, starting in July, 

to implement nightly aqueduct outages across several municipalities (Il Manifesto, 2024). The 
main springs of the Gran Sasso and Majella Massifs, including Verde Spring, also experienced 

substantial reductions in flow that summer, primarily due to the lack of winter and spring rainfall 

and snowfall. In the Molise Region, meanwhile, the primary water sources saw their flows nearly 

halved. The main spring of the “Riofreddo” drainage tunnel, in the municipality of Bojano, which 
had provided approximately 3,500 L/s in 2023, was reduced to an average of only 1,700 L/s by 

July 2024, while Sant’Onofrio Spring, an important spring draining the Montagnola di Frosolone 

(Tozzi et al., 1999), significantly declined from 120 L/s to 70 L/s. Other minor springs in Molise 
also displayed unsatisfactory levels. Additionally, the hydraulic head of the region’s main well 
fields dropped of approximately 8 m (Il Messaggero, 2024). In certain areas of the Central 

Apennines, water companies were indeed forced to implement emergency measures, primarily 
through severe water rationing. 

Recent studies in the Southern Apennines have highlighted the need for accurate estimates of 

future aqueduct spring discharge to improve decision support systems for the exploitation of 
groundwater resources (Diodato et al., 2017). Indeed, the significant and prolonged water 
scarcity period occurred in the Southern Apennines in recent years has had very negative 

consequences on spring discharge (Diodato et al., 2022). Sanità Spring and Cassano Irpino Spring 

group, which drain the Cervialto and Terminio-Tuoro Massifs respectively, are essential water 
sources for much of Southern Italy. Since the 1930s, water from these two springs has been 

conveyed through a 450 km-long gravity-driven network of tunnels and bridges from the 

Campania Region to the southernmost part of Puglia (Fiorillo, 2009), as well as to part of the 
Basilicata Region. The AQP water company, responsible for supplying water from these springs, 

was compelled to initiate pressure reductions across the network in October 2024 as an 

adaptation measure to the ongoing drought, leading to outages in vast areas of Southern Italy 
(Acquedotto Pugliese S.p.A., 2024). AQP sources approximately 55% of its water from five surface 

reservoirs (Sinni, Pertusillo, Conza, Occhito, and Locone), which also supply water for irrigation; 

33% from the Sanità and Cassano Irpino Springs; and the remaining 12% from around 180 wells, 
primarily located in southern Puglia and used exclusively for drinking purposes. This mix of 

sources is distributed in several interconnected water supply aqueduct schemes across four 

regions (Campania, Basilicata, Puglia, and part of Molise), allowing AQP to offset shortages in one 
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scheme with resources from another (Acquedotto Pugliese S.p.A., 2024). However, the recent 

widespread water crisis of 2024 has affected all supply areas, leading to a significant drawdown 

in wells, severe dewatering in reservoirs, and a marked decrease in the discharge of Sanità and 
Cassano Irpino Springs. 

 

The recurring drought crises present a significant challenge to water companies and authorities, 
necessitating various measures as part of adaptation strategies to address water scarcity across 

the Apennines, such as:  

(i) The construction of new surface water reservoirs, strongly advocated by politicians and water 

managers, which, however, presents critical issues regarding environmental sustainability, 
including extensive land consumption, hydrogeological risks, reservoir siltation, and water loss 

through evaporation exacerbated by global warming. 

(ii) The installation of new well fields in groundwater reserve areas or deeper sections of major 
aquifers, which could help mitigate seasonal declines in shallower or coastal aquifers. 

(iii) Enhancing adaptation through the establishment of robust interconnections between 

different sources and watersheds, as exemplified by AQP, which allows for the seasonal transfer 
of substantial quantities of water from surplus regions, including on an interregional scale, to 
those facing water shortages. 

(iv) Reducing pipe leakage rates, estimated in Italy at an average loss of 42.4% of distributed 
aqueduct water (Fig. 1.11; Istat, 2022), with local losses exceeding 60% of withdrawn resources 
in some areas. This is largely due to the aged infrastructure, as roughly 60% of the network was 

installed over 30 years ago, and 25% now exceeds 50 years in age (Gandelli, 2022). 

(v) Educating the public on water conservation in daily activities is crucial, such as turning off taps 
while brushing teeth, which can save around 15 L per person per day. Additionally, adopting 

dietary habits that involve less water-intensive foods, such as reducing meat and certain fruit 

consumption, and paying closer attention to sustainable lifestyle choices can make a significant 
impact. Italy’s per capita daily water consumption is 220 L, compared to the European average 

of 165 L (Corriere della Sera, 2023), primarily attributed to avoidable waste. 
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Fig. 1.11. Water supply network losses in Italy by region (Gandelli, 2022, modified). 

Independent of the adaptation measures to address droughts, estimating future spring discharge 

patterns is a fundamental asset for water companies and authorities, enabling them to plan the 

necessary actions to mitigate water scarcity. 

 

1.4. Research questions and outline 

In the previous sections, the impacts of climate change on spring discharge have been discussed 
as a complex and significant challenge for modern society. Despite broad knowledge about 

hydrogeological processes associated with aquifer recharge, the relationship between spring 

discharge and meteorological variables, and the effects of global warming on groundwater 

quality and availability, a notable gap remains in the literature regarding both the quantitative 
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impacts on spring flow and future projections of these discharge reductions, particularly for long-

term scenarios. Such long-term perspectives may be essential for planning and implementing 

large-scale infrastructure projects to address incumbent water crises. Moreover, understanding 
the impacts of climate changes on the historical flow of springs also enables identification of 

those that are more resilient to these changes. 

The primary challenges in this research involve collecting century-long historical discharge 
datasets and understanding long-term relationships between recharge-related parameters and 

spring flow rate to enable projections and assessments of future spring discharge. These 

challenges encompass some of the central issues and essential research questions addressed in 

this PhD project, which will be briefly introduced in this section and explored in detail in 
subsequent chapters, considering the ongoing decline in spring discharge observed nearly 

everywhere along the Apennine Mountain range in Italy. 

The springs located along the Apennines have experienced notable and consistent reductions in 
discharge throughout recent decades, primarily attributed to the continuous rise in air 
temperature, which has led to increased evapotranspiration and accelerated snowmelt in 

mountainous areas, thereby resulting in reduced aquifer recharge. A marked acceleration in the 
downward trend of spring discharge was recorded between the 1980s and 1990s, when most 
hydrographs of the main Apennine springs showed a severe period of low flow, with subsequent 

high-flow phases featuring peak discharges significantly lower than historical values. Until 
recently, water companies managed to address drought issues through various temporary 
mitigation measures, such as increasing withdrawals from surface water systems (which are 

more prone to stress during droughts) or drilling new aqueduct wells. However, since the severe 

drought of 2017, water scarcity problems have further intensified along the entire Apennine 
chain, mainly due to the decrease in spring discharge, prompting water authorities to also 

implement water rationing measures. 

For this reason, the main objectives of this PhD project have focused, first and foremost, on 
understanding the impacts of climate changes on the historical discharge of springs, also aiming 

to assess their degree of resilience. Secondly, through various types of analyses, efforts were 

made to estimate the long-term future discharge of some main springs in order to support water 
companies in planning the necessary mitigation measures to address recurring droughts. 

Question 1 - What is the impact of global warming on spring discharge along the Apennines, and 
to what extent is it feasible to assess the resilience of springs to climate change? 

Question 2 - Is it possible to estimate the long-term future discharge of springs based on long-

term recharge-discharge relationships? 



 24 

The first research question will be thoroughly addressed in Chapter 2, which focuses on the 

hydrogeological assessment of Nadìa Spring, located in the Northern Apennines. The spring was 

the subject of a research paper published in Science of the Total Environment, co-authored with 
other researchers and supported by contributions from this PhD project. The study focused on 

the analysis of century-long historical discharge patterns in comparison with contemporary data, 

as well as the characterization of the spring’s resilience to climate change. Additional, issues 
related to this research question, particularly concerning the impacts of climate change on 

historical discharge, will be examined in Chapter 3. 

The second research question will be explored in detail in Chapters 3 and 4, which focus on 

Ermicciolo Spring (Amiata Mountain, Central Italy) and Sanità Spring (Cervialto Massif, Southern 
Apennines). Two distinct methodological approaches were applied to historical discharge time 

series to examine the relationship between meteorological variables and spring discharge: 

Multiregression Statistical Analysis (MSA) and Long Short-Term Memory (LSTM) machine 
learning. These relationships were then combined with future climate projections to estimate 
the long-term discharge of the investigated springs. 

Finally, Chapter 5 will summarise the findings of this research, highlighting their significance, and 
will briefly outline potential directions for future studies and perspectives in the field. 
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Chapter 2: 

Hydrogeological assessment of a major spring discharging from a 

calcarenitic aquifer with implications on resilience to climate change 

 

2.1. Preface 

The first research question of this PhD project, which primarily aims to quantify the long-term 
effects of climate change on spring discharge, also involves estimating the resilience of Nadìa 

Spring to climate change.  Among the investigated springs, Nadìa Spring is particularly notable. 

Comparing the average discharge from 100 years ago to the present day, there has been a 
significant decline (on average roughly 40%), yet the spring remains the primary contributor to 

discharge in the Bologna and Modena Apennines. It continues to play a critical role in the public 

water supply managed by Gruppo Hera S.p.A., still providing approximately 50 L/s during the low-
flow season, a remarkable quantity compared to many smaller neighbouring springs. Why is it so 
resilient to climate change? What factors contribute to a spring's resilience to climatic variations? 

As a complementary task to this PhD project and closely aligned with the analysis of the climate 
change effects on spring discharge, I participated in research focused on the resilience of Nadìa 

Spring, coordinated by my co-supervisor, Maria Filippini. 

This chapter summarises and presents the multidisciplinary approach employed to study Nadìa 
Spring. In the final section of the chapter, following the article references, a detailed discussion 

on the frequency and severity of droughts in the Emilia-Romagna Apennines will be included, 
highlighting the substantial reduction in spring discharge to which they have contributed over 

the past century. The chapter consists primarily of a paper edited in the journal Science of the 

Total Environment: Filippini, M.1, Segadelli, S.2, Dinelli, E.1, Failoni, M.1, Stumpp, C.3, Vignaroli, 

G.1, Casati, T.1, Tiboni, B.1, Gargini, A.1, 2024. Hydrogeological assessment of a major spring 

discharging from a calcarenitic aquifer with implications on resilience to climate change, STOTEN, 

913, 169770, ISSN 00489697, https://doi.org/10.1016/j.scitotenv.2023.169770. 
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2.2. Highlights, Graphical abstract, and Keywords 

• Spring yield is due to geometrical and structural reasons, instabilities, dissolution. 

• Dual porosity (quick-flow conduits and diffuse fractures) impacts the spring behavior. 

• Resilient to climate change, Nadìa maintains stable discharge and water composition. 
• Historical hydrographs reveal evolving behavior and increased interdecadal resilience. 

• The study serves as a valuable assessment-model for similar water discharge points. 

 

Spring discharge, Recharge decrease, Resilience, Fractured aquifer, Northern Apennines 

 

2.3. Abstract 

Groundwater is a vital source of freshwater, serving ecological, environmental, and societal 

needs. In regions with springs as a predominant source, such as the Northern Apennines (Italy), 

resilience of these springs to climate-induced recharge changes is crucial for water supply and 
ecosystem preservation. In this study, Nadìa Spring in the Northern Apennines is examined 

through an unprecedented array of multidisciplinary analyses to understand its resilience and 

unique characteristics. The Nadìa Spring's exceptional response, characterized by a sustained 
base flow even in the face of drought, is attributed to a combination of factors including a 

substantial groundwater reservoir, a complex network of faults/fractures, slope instabilities, and 

karst dissolution. The investigation reveals a dual porosity system in the aquifer, consisting of 
fast-flow conduits and a diffuse fracture network. While fast-flow conduits contribute to rapid 

responses during high-flow conditions, the diffuse system becomes predominant during low-flow 

periods. This dual porosity structure helps the spring maintain a consistent base flow in the face 
of climate-induced recharge fluctuations. The study shows that Nadìa Spring exhibits remarkable 

resilience to year-to-year variations in recharge, as evidenced by stable minimum discharge 
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values. While the spring has undergone a decline in discharge over the past century due to long-

term climate change, it is becoming more resilient over interdecadal timescales due to transition 

to a diffuse drainage system that mitigates the impact of reduced recharge. The availability of a 
century-long spring discharge monitoring was a crucial piece of information for understanding 

the spring's discharge response and drawing conclusions about its long-term resilience to 

recharge fluctuations. Continuing long-term monitoring and research in the future will be 
essential to validate and expand upon these findings in the context of changing climatic 

conditions. This research serves as a model for assessing strategic groundwater discharge points 

in geological settings similar to the Northern Apennines. 

 

2.4. Introduction 

Groundwater is a primary source of freshwater and provides essential ecosystem services by 

supporting ecological and environmental flows, as well as sustaining Groundwater Dependent 
Ecosystems (GDEs; Cantonati et al., 2020; Stevens et al., 2022). Moreover, it plays a pivotal part 
in meeting societal needs, serving as a fundamental supply for drinking, agricultural and industrial 

purposes (Abderrahman, 2005; Tsur, 1990). Groundwater is progressively gaining significance as 
a strategic asset during periods of drought, as it boasts substantial reserves within suitable 

geological settings (Grönwall and Oduro-Kwarteng, 2018; Kruse and Eslamian, 2017) and appears 

to withstand the impacts of climate change better than surface water (Liesch and Wunsch, 2019; 
Taylor et al., 2013). 

Groundwater exploitation predominantly occurs through well extraction or through the uptake 
of natural springs discharge. The latter approach is prevalent in mountainous regions, where 

springs generally offer high-quality, gravity-fed water due to minimal anthropogenic impacts on 

the groundwater system compared to urbanized/industrialized lowland or coastal areas 

(Nicholson et al., 2018; Simsek et al., 2008). However, the anticipated decrease of discharge, 

stemming from reduced recharge due to global warming and alterations in seasonal patterns of 

solid and liquid precipitation (Amanambu et al., 2020; Atawneh et al., 2021; Caloiero et al., 2018; 

Dore, 2005; Kundzewicz and Doli, 2009; Riedel and Weber, 2020; Tambe et al., 2012; Weissinger 

et al., 2016), can yield supply-related challenges in these regions. As such, it becomes essential 

to identify springs resilient to recharge decrease. 

Resilience is defined in recent hydrogeological literature as “the ability of the system to maintain 

groundwater reserves in spite of major disturbances” (Sharma and Sharma, 2006), or as “the 

adaptive capacity of a system to a change generated by external pressures while maintaining 
certain vital functions” (Herrera-Franco et al., 2020). The discharge resilience to drought-induced 

recharge decrease is the capacity of a spring system to sustain its flow during periods of low 
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recharge by releasing groundwater stored during intermittent periods of higher recharge, while 

avoiding irreversible depletion of the spring reservoir. 

The resilience of a hydrogeological system can be studied by examining both how the 
groundwater responds to specific stresses and the characteristics of the geological medium that 

affect resilience (Cuthbert et al., 2019; De la Hera-Portillo et al., 2020). Most previous studies on 

groundwater resilience have focused on trend analyses of aquifer recharge, groundwater 
storage, hydraulic heads, and discharge, while relatively few studies have considered different 

aquifer characteristics such as lithology and permeability, saturated thickness and transmissivity, 

or geometrical properties of the fracture network (Zeydalinejad, 2023). 

When examining groundwater resilience to climate-related stresses, both long-term (decadal) 
climate change trends, and short-term (less than one year) stresses must be taken into account 

(MacDonald et al., 2011). Some authors have focused on analyzing the millennium-scale 

resilience of discharge, e.g. the fossil aquifers recharged during the last glaciation that now 
represent vast groundwater reservoirs no longer being replenished or with a direct recharge 
lower than 5 mm/yr (Ram et al., 2020; Sultan et al., 2019). However, the acceleration of water 

crises in the first glimpse of this millenium demands an analysis on shorter timescales, spanning 
centuries or decades, tied to resource management challenges. Yet, monitoring data are often 
unavailable for such time-spans, as already highlighted by Liesch and Wunsch (2019) regarding 

hydraulic heads. Research that investigates the effects of recharge changes on spring discharge 
using extensive historical datasets is rare and often restricted to large karst aquifers (e.g., Fiorillo 
et al., 2021). Indeed, these aquifers have long been of interest due to their socio-economic 

relevance related to high water yields (Ford and Williams, 2007; Kresic and Stevanovic, 2010) 

unfortunately associated to a high vulnerability to climate changes and pollution (Butscher and 
Huggenberger, 2009; Campanale et al., 2022; Kačaroğlu, 1999; Mimi and Assi, 2009). 

Other types of aquifers, such as those in fractured sedimentary or hard-rock strata, are less 

studied compared to karst, having a lower permeability and a limited storage capacity 
(Lachassagne, 2008; Lachassagne et al., 2011; Mézquita González et al., 2021). In mountainous 

regions dominated by these aquifers, springs are generally highly vulnerable to discharge 

decrease during drought periods due to a limited extension of the associated groundwater flow 
systems with constrained underground pathways and rapid loading and unloading. An example 

is the Northern Apennines belt (Italy), where the supply of drinking water derives from numerous 

low-yield springs fed by sedimentary fractured aquifers that renew stored groundwater almost 
completely every hydrological year (Cervi et al., 2018; Gargini et al., 2008; Petronici et al., 2019; 

Segadelli et al., 2021). In this setting, identifying strategic resources with peculiar resilience to 

recharge decreases becomes crucial to manage recurring water shortage crises. Indeed, these 

crises often lead to conflicts between the demand for drinking water, which may necessitate 
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supplementary supply measures such as water tankers, and the preservation of GDEs (e.g., 

Cantonati et al., 2016). 

Here, we investigated Nadìa Spring (Emilia Romagna Region, Northern Apennines), which stands 
out as a peculiarly substantial resource compared to other springs within the same context. 

Through a comprehensive array of analyses—including geological, hydrogeological, geochemical, 

isotopic, and tracer tests—tour study pursues several objectives: (1) unraveling the connection 
between recharge dynamics and discharge patterns across various time scales; (2) assessing the 

resilience of the spring discharge in response to past and anticipated recharge fluctuations; and 

(3) demonstrating the potential of integrated multidisciplinary analyses to identify recharge-

discharge dynamics associated with spring resilience. To our knowledge, such an extensive set of 
analyses has not been previously employed in investigating strategic spring resources. Therefore, 

this study serves as a paradigm, offering insights into the definition of key evaluation tools and 

indicators for assessing spring resilience amid declining recharge in analogous geological settings. 

 

2.5. Geological and hydrogeological setting 

Nadìa Spring is situated in the Emilia Romagna Region (Italy) at an elevation of 555 m above sea 
level (asl) (44°19ʹ09” N; 10°58ʹ14ʺ E), nearby the morphologic divide of the Northern Apennines 

belt between the valleys of the Reno and Panaro Rivers (Fig. 2.1a). The Northern Apennines are 

a Neogene fold-thrust belt that formed from the continental collision between Adria micro-plate 
(part of African plate) and the Eurasia plate beginning ~35 Ma (Boccaletti et al., 2011; Carminati 

and Doglioni, 2012; Vai and Martini, 2001). The sector of the chain between the Reno and Panaro 
Rivers is affected by km-long fault systems with both Apennine (NW-SE) and anti-Apennine (SW-

NE) trends (Balocchi, 2014; Stendardi et al., 2023). 

The main feature of the area is a complex NE-SW-trending fault zone, approximately 25-30 km 

long, named the Val Lavino Structural System (VLSS) (Fig. 2.1a). The faults of the VLSS are mainly 

oriented N30°-40° (Capitani, 1997), and they display left-lateral strike-slip kinematics with 

evidence of a transpressive component. These faults involve and deform all the structural-

stratigraphic array of units of the Northern Apennines, including the Epiligurian Domain (ED), a 

wedge-top basin formed atop an accretionary wedge progressively evolving into a fold-and-

thrust belt (Conti et al., 2020). The ED consists mainly of large sandstone-dominated slabs or 

plates averaging between 5 and 30 km2 and deposited on top of allochtonous Ligurian and 

Subligurian nappe units made of clay-rich lithotypes (Cibin et al., 2001). 
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Fig. 2.1. Map of the research area: (a) geological setting of the Northern Apennines sector between the 

Panaro and the Reno rivers, with indication of the meteorological station of Riola di Labante; (b) geological 

setting of the N slab. The tracer injection point and the rain sampler for water isotopes are marked on the 
map. Black lines represent the traces of AA and BB geological cross sections, while the location of Fig. 2 

(Fig. 2.2) is indicated by a dashed black line; (c) AA and BB geological cross sections of the N slab. 
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Nadìa Spring discharges at the western edge of an ED slab, referred to as “N slab”, which covers 

an area of 25.6 km2 (Fig. 2.1b) with topographic elevation between 576 and 916 m asl (average 

elevation of 768 m asl). The N slab is tabular and gently monoclinalic (Fig. 2.1c), with bedding 
dipping between 10° and 40° to the east. Both anti-Apennine and Apennine strike faults affected 

the slab, showing strike-slip (left- and right-lateral, respectively) and subordinate normal 

kinematics. Balocchi (2014) interprets these faults as resulting from a “simple left shear” 
mechanism that induced an anticlockwise rotation of the structures. Subsequently, during a post-

orogenic extensional event, these structures would have been reactivated as normal faults, 

forming structural highs and depressions resulting in a blocky pattern of the N slab. 

The main aquifer of the N slab is the Pantano Formation (PAT), primarily composed of medium- 
to fine-grained calcareous sands deposited in a shallow marine environment between the upper 

Burdigalian and lower Langhian (Lower to Middle Miocene; Amorosi, 1997; Amorosi and 

Spadafora, 1995). PAT outcrops extensively over a 300 km2 area in the Apennine reliefs 
southwest of Bologna and Reggio Emilia, representing one of the most productive groundwater 
reservoirs in the Northern Apennines and hosts several major springs in the region (Petronici et 

al., 2019). Unpublished borehole hydraulic filed tests performed by the authors in the PAT aquifer 
lithology few km far from the N-slab, indicate an aquifer transmissivity in the range of 0.001 and 
0.004 m2/s and a specific yield of 3.4%. The average groundwater saturated thickness of PAT in 

the N slab is approximately 190 m. Within the slab, various groundwater flow systems transfer 
direct recharge from precipitation to several discharge outlets, some of which are totally or 
partially up-taken by the local water supply company. Nadìa Spring stands as the largest 

discharge point in the slab, with an average discharge not lower than 40 L/s in the low-flow 
season, corresponding to IV class following Meinzer (1923). Meinzer classes ranging from V to VII 
characterize the other springs of the slab, corresponding to the most common classes in the 

Northern Apennines belt (Gargini et al., 2008). 

The typical pattern of springs discharge in the sub-mediterranean area of the Northern 
Apennines is characterized by a peak during the spring season, following a rainy and snowy 

period from November to April (recharge season). An absolute discharge low is usually registered 

at the end of the hot and dry summer period of July-September (recession season) (Cervi et al., 
2015; Gargini et al., 2008; Segadelli et al., 2021; Segadelli et al., 2017). However, increasingly 

frequent and intense droughts have occurred in the study area since the start of the XXI century, 

with a cycle of approximately five years (Peña-Angulo et al., 2022; Rakovec et al., 2022; Riedel 
and Weber, 2020). The most recent droughts were in years 2017 and 2022 when a significant 

decrease in precipitation was registered during the recharge season in association to a 

substantial increase of average annual temperature (ARPAE, 2018; ARPAE, 2023). These droughts  
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caused significant reduction of aquifer recharge that reflected in turn on a discharge decrease in 

many Northern Apennines springs, especially during the summer recession season, when the 

drinking water reaches a peak due to seasonal tourism. 

 

2.6. Methods 

2.6.1. Structural and geomorphological investigations 

A geomorphological and structural field survey, integrated with publicly available aerial 
photographs (https://geoportale.regione.emilia-romagna.it/approfondimenti/database-

topografico-regionale), was carried out in the N slab to identify and analyse those geological 

elements that may control the stratigraphic-structural setting of the N-slab and, consequently, 
the hydrogeological response of Nadìa Spring. The survey focused on structures affecting the ED 

domain, which more effectively register brittle deformation. The observed structural elements 

were divided in stratigraphic bedding, faults, and fractures/veins. The fault data were statistically 
analysed to obtain their main orientations. Moreover, continuous cores were drilled 
approximately 7 km south from Nadìa Spring within the same aquifer lithology as the N slab, as 

part of a separate research endeavour. Using acoustic and optical televiewer logs conducted 
along the uncased boreholes, it was possible to observe the distribution and size of open 

fractures. Details on coring and televiewer logging are in the Supplementary Material (SM). 

 

2.6.2. Spring discharge 

2.6.2.1. Discharge monitoring 

Nadìa Spring is tapped through a slanting drainage tunnel 75 m long built between 1917 and 1920 

(Vecchi, 1920). The tunnel has a concrete lining with openings on the walls allowing direct 

drainage of groundwater from the fracture's network of the aquifer. Part of the spring discharge 

is withdrawn by the local aqueduct company through a pumping system, which lifts water to 

main distribution tanks located at higher altitudes. The remaining discharge overflows in an open 

ditch outside the tunnel entrance that conveys water to a nearby stream. The flow rate 

withdrawn by the aqueduct is continuously monitored since 2017 through an electromagnetic 

flowmeter installed on the discharge pipe of the pumping system. The pumping flow rate varies 

every few hours, typically ranging from 20 to 50 L/s depending on the water demand from the 

aqueduct network. When the pumping rate is decreased, any excess discharge is released into 

the overflow ditch. The overflow discharge was monitored between December 2020 and March 

2023. In detail, a pressure transducer (Hobo Onset water level data logger, U20L-04 model) was 
installed in the ditch to measure the water stage every 15 min. The relatively short 15-min 
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monitoring frequency was chosen since possible short-term responses of spring discharge to 

recharge events were unknown prior to this study and needed verification. An additional 

transducer placed outside of the water was used for atmospheric pressure compensation. Due 
to malfunctioning of the transducers, two significant registration gaps occurred from March 26th 

to April 3rd, 2021, and from May 29th to June 19th, 2022. To establish a rating curve for the 

channel, eight flow rate measurements were performed in various discharge conditions using an 
Acoustic Doppler Velocimeter (Flowtracker, SonTek/YSI Inc). 

Due to random asynchronies between the two datasets, the sum of the withdrawn and overflow 

discharges was eventually calculated on daily averages and the resulting daily sums were further 

smoothed using a 5-day moving average in order to avoid false peaks. 

 

2.6.2.2. Historical discharge data 

Monthly monitoring of spring discharge was performed between January 1915 and October 
1918, before the excavation of the tapping tunnel, through a thin plate contracted weir installed 
in a natural streambed originating at the spring outlet (Vecchi, 1920). The monthly amount of 

rainfall was monitored during the same time span at a meteorological station named “Montese” 
(920 m asl). This was the active station closest to the study area during the time-span covered by 
the historical monitoring. The historical data are shown in the SM. 

This historical dataset of spring discharge, exceptionally rare in the global literature due to its 
century-long time span, allowed a unique comparison between the contemporary (2020−2022) 
and historical (1914-1918) spring hydrographs. The comparison focused on the spring's 

hydrodynamic response throughout each hydrologic year and on the evolution of discharge 

variability from past to present. 

 

2.6.2.3. Recession analysis 

The hydrologic recession of a spring refers to the final stage of the depletion limb of the 
hydrograph where discharge is solely contributed by groundwater from the aquifer with no 

perturbation induced by active direct recharge or fast-flow from the surface. This stage provides 

valuable information about a combination of intrinsic aquifer features, encompassing 
transmissive capacity (i.e. hydraulic conductivity) and storage capacity (i.e. storativity and size of 

the reservoir) (e.g. Azeez et al., 2015; Tague and Grant, 2004). The recession curves of the 

monitored hydrologic years 2020-21, 2021-22 and of the historic ones 1914-15, 1915-16, 1916-
17, 1917-18 were analysed using the Maillet model (Maillet, 1905) which represents a linear 

approximation of the nonlinear quadratic spring reservoir depletion model proposed by 
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Boussinesq (1904). According to Maillet, the relationship between groundwater discharge and 

time follows the exponential decay of Eq. (2.1) in the absence of external influences, such as 

active recharge from precipitation, groundwater abstraction, or evapotranspiration affecting the 
saturated zone:  

Qt = Q0 e−αt      [2.1] 

where Qt and Q0 are the flow rates (L3/T) at time t (T) and at the beginning of the base-flow 
recession, respectively, and α is a constant (T−1) representing storage lag-time. α is known as the 

“Maillet recession coefficient” and it is related to the time required to halve the recession 

discharge (t0.5) as shown in Eq. 2.2:  

α = − [(ln0.5)/t0.5]     [2.2] 

From a mathematical perspective, Eq. (2.1) has been described as the most convenient model 

for analysing spring recession in different geological settings, including karst (Cerino Abdin et al., 

2021; Dewandel et al., 2003; Medici et al., 2023). Despite its simplicity, Eq. (2.1) has previously 
been shown to accurately represent the recession response of most Northern Apennines springs 
(Gargini et al., 2008; Segadelli et al., 2021).  

For the six hydrographs analysed in this study, the recession curve was selected as the final linear 
segment of the depletion limb on a semi-log plot (i.e. Log Q VS time), resulting in varying starting 
times and durations among different years. 

 

2.6.3. Hydrochemistry and water isotopes 

High-frequency automatic groundwater sampling was performed between January 2022 and 

February 2023 using a programmable ISCO series 3700 sampler. A total of 384 samples were 

collected every 12 or 24 h in 500 mL polypropylene bottles. The collection was interrupted for a 
total of 57 days distributed along the sampling period due to temporary malfunctioning of the 

sampler. Specific electrical conductivity (EC, compensated at 20 °C) and pH were measured in 

each sample with a HACH-HQ30D probe. 38 samples were selected within the period from 
January 19th, 2022, to November 23rd, 2022, for the analysis of major cations (Na+, K+, Ca2+, 

Mg2+). The samples were selected following a regular time step of approximately 7 days. Cations 

were analyzed by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectroscopy) using an 
Agilent series 5800. The analysis was performed on filtered (0.45 μm) and acidified aliquots at 

the laboratory of the “Centro Ricerche Energia, Ambiente, Mare” located in Marina di Ravenna. 

Seven additional groundwater samplings were performed at Nadìa Spring in June and November 
2011, May and September 2014, May and August 2017, May and October 2021, for the analysis 
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of major cations and anions. The first six samples were collected and analysed in the   

Laboratories of Regional Environmental Protection Agency (ARPAE) following standardized 

procedures. The last two samples were collected for this study by filling a 250 mL bottle stored 
at 4 °C until analysis. The analysis was conducted in Laboratory of the GruppoHERA water 

company following the standard methods EPA 300.11997 and APAT-CNR-IRSA 29/2003 (sections 

2010, 2090, 3010, 3020). 

Four samplings were performed in February, June, September 2021, and January 2022 for stable 

water isotope analysis (δ18O and δ2H). Samples were taken in 250 mL PET bottles from Nadìa 

Spring and from a rain sampler installed in the recharge area of the spring at an elevation of 752 

m asl, for cumulated monthly rainfall collection (Fig. 2.1b). The analysis was performed using a 
laser-based isotope analyser (Picarro L2140-i) at the University of Natural Resources and Life 

Sciences, Vienna, Austria. Each sample was measured up to nine times and referenced using 

internal standards. These standards (deionized Baltic Sea water (−6.31 ‰ for δ18O and − 45.8 ‰ 
for δ2H) and tap water (−11.16‰ for δ18O and − 75.6‰ for δ2H)) are twice a year calibrated 
against international standards. The isotope ratios were given in the δ notation in ‰ relative to 

the Vienna-Standard Mean Ocean Water (V-SMOW). 

 

2.6.4. Analysis of the recharge-discharge time lag 

A number of discharge indicators, namely spring discharge (Q), EC, pH, total concentration of 
major cations (TCC), were exploited to investigate the time lag between the main recharge inputs 
(represented by the main precipitation events) and the consequent discharge output at the 

spring. The values of the indicators were derived from the monitoring described in 2.6.2.1 

Discharge monitoring, 2.6.3 Hydrochemistry and water isotopes. TCC represents the sum of 
cation concentrations (meq/L) and is considered a proxy of groundwater salinity. As such, it is 

expected to be inversely correlated to the degree of dilution induced by the arrival of newly 

infiltrated water from precipitation. Daily precipitation data were acquired from a meteorological 
station managed by the Regional Agency for Prevention, Environment and Energy (ARPAE), 

namely “Riola di Labante” (Fig. 2.1a). The station was selected as the most representative of the 

Nadìa Spring recharge basin based on its location and altitude (623 m asl). 

The analysis was conducted separately on two monitoring periods characterized by different 

hydrological regimes (as suggested by the results of Section 2.7.2): (1) the hydrologic year 2020-

21 (data available from December 2020 to October 2021), characterized by higher spring 
discharges; (2) the hydrologic years 2021-2022 and 2022-2023 (data from November 2021 to 

March 2023), characterized by lower discharges. The two periods will be identified hereafter  as 
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“high-flow period” and “low-flow period”, respectively. The monitoring of Q covers both the 

high-flow and low-flow periods whereas EC, pH and TCC are only available for the low-flow 

period. The cumulative precipitation over 5 days was tentatively correlated, by means of bi-
variate analysis, with the average values of Q, EC and pH in the same 5 days. Cumulative 

precipitations lower than 25 mm were eliminated from the dataset since it was proven, through 

an iterative trial and error series of correlation with different threshold values, that these would 
not have significant effects on spring discharge. Due to a low number of snowfall events during 

the 2020-23 monitoring period, it was not possible to perform a separate analysis on the effect 

of liquid versus solid precipitation (see further details in the SM). The discharge indicators were 

progressively shifted forward in time from 0 to 90 days, using a five-day increment. The five-day 
increment was chosen in order to smooth the roughness and intrinsic measuring uncertainties 

associated to the daily acquisition. For each time lag increment, the degree of linear correlation 

between recharge and discharge indicators was quantified by the coefficient of determination R2 
(see the correlation graphs in the SM). Two R2 thresholds will be used to describe the time-lag 
analysis, corresponding to 0.6 and 0.3. These thresholds serve a primarily qualitative purpose, 

supporting the categorization of correlations into three groups: strong correlations (R2 > 0.6), 
weaker correlations (0.6 < R2 < 0.3), and the absence of correlation (R2 < 0.3). When analysing 
the correlation between precipitation and Q, a R2 > 0.6 suggests a clear association between 

these variables, likely reflecting the occurrence of preferential flow paths, such as open fractures 
or conduits, connecting the recharge area to the discharge point. As the correlation weakens, it 
might indicate a shift towards a more diffuse drainage network, resulting in a less defined signal 

of spring discharge in response to recharge events. Conversely, when examining EC or pH, a 
strong or weak inverse correlation with precipitation would indicate the arrival of newly 
infiltrated water. An absence of correlation, on the other hand, suggests that a discharge increase 

at the spring is driven by pressure transfer from the recharge area to the discharge point, i.e., 

increase of the hydraulic head in the recharge area with a subsequent increase of the hydraulic 
gradient in the aquifer. 

During the timespan covered by TCC analysis, a comparison was performed between dilution 

events, i.e., variations of the parameter compared to its averaged value along the monitoring 
interval and five-day cumulative precipitation > 25 mm, in order to search for identifiable 

recharge-dilution time lags. 

 

2.6.5. Artificial tracer test 

On January 10th, 2023, a tracer test was performed involving the injection of 50 g of Uranine into 

a hole corresponding to an enlarged vertical fracture oriented NW-SE, aligned to the principal 
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system of extensional fractures affecting the PAT Formation (Stendardi et al., 2023). The hole 

had previously been identified as a karst morphology by local speleological associations (Lucci 

and Rossi, 2011). It is located at an altitude of 721 m asl, 166 m higher than the spring, at a planar 
linear distance of 313 m (Fig. 2.1b). Uranine was injected by pouring in 1.5 L at a solution of 33 

g/L. In order to ensure the effective migration of the tracer through the unsaturated portion of 

the aquifer, estimated to be thicker than 120 m at the injection point, the solution was 
simultaneously introduced with 8000 L of water from a tanker truck. The truck was positioned 

470 m from the injection point at an altitude 42 m higher. A series of connected hoses facilitated 

the gravity-driven transport of water to the injection site through a wooded area hardly 

accessible by vehicles. Precipitation amounted to 13.6 mm on the day before the injection, and 
to 1.8 mm on the day of the injection. 

The arrival of the tracer was monitored at Nadìa Spring for 41 days after injection through the 

automatic groundwater sampling described in Section 2.6.3. From each of the 500 mL ISCO 
samples collected during the tracer monitoring period, a 100 mL nontransparent HDPE bottle 
was filled to determine Uranine concentration. Bottles were kept in darkness and stored at −2 to 

−8 °C until analysis. Additionally, charcoal bags were installed at the spring to detect Uranine 
arrival. Three bags remained in place for 71 days after injection, while another six were replaced 
at intervals ranging from 15 to 36 days, allowing for an 8 to 21-day overlap between consecutive 

bags. Following retrieval, the bags were air-dried in darkness and subsequently packed in 
individual plastic bags to avoid cross-contamination. The analysis of Uranine in water samples 
and charcoal bags was conducted in the laboratories of the Institute of Applied Geosciences at 

KIT (Karlsruher Institut für Technologie, Germany). Water samples were measured at an alkaline 
pH to increase the fluorescence yield. The analysis was performed using a fluorescence 
spectrometer LS55 by Perkin Elmer with the synchronous scan method. The desired wavelength 

range is traversed synchronously with a constant wavelength difference between excitation 

wavelength and emission wavelength. The advantage of this method is the formation of clearly 
identifiable peaks for each fluorescent dye. The device allows to measure at two different 

voltages (650 V and 900 V) in order to set an optimum measurement range, with a limit of 

detection of 0.005 μg/L. At first, all samples were measured with a voltage of 900 V. When the 
tracer concentration was too high (out of range for this voltage), the voltage was set to 650 V. 

For sample preparation of the charcoal bags, 0.5 g ± 0.1 g of charcoal were weighted and filled in 

a centrifuge tube. Subsequently 5 mL of eluent (50% NaOH and 50% 2-propanol (> 99.8% purity, 
Carl Roth GmbH, Germany)) were added and mixed for 4 h at 60 rpm under dark conditions. The 

supernatant was then measured as described above for water samples. Charcoal samples were 

categorized as either “positive” or “negative” based on Uranine detection, while those showing 

uncertain (very weak) fluorescence peaks were labelled as “likely positive”. 
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2.7. Results 

2.7.1. Geomorphological and structural analysis 

The geomorphological survey confirmed that the entire western sector of the study area is 

affected by a deep-seated gravitational deformation (DSGD) located on the steep slope above 
Nadìa Spring (Fig. 2.2). This specific landform likely results from the lateral spreading of the 

cohesive and tectonically fractured units with strong mechanical contrast, such as ED units, over 

the underlying ductile terrains of the Ligurian Domain (Mariani and Zerboni, 2020; Pasuto and 
Soldati, 2013; Pasuto et al., 2022). At the margin of the N slab, failure surfaces are produced 

evolving into complex landslide movements with toppled and slipped masses of PAT Formation 

(M. Asinello area in Fig. 2.2). The field analysis in the area of the DSGD has revealed the presence 
of two main gravitational morpho-structure types that fall within two major groups: 1) 

topographic anomalies, such as scarps and counter-slope scarps, and 2) trenches. In particular, 

the gravitational trenches are up to 500 m long and 110 m wide and usually oriented parallel to 
the slope strike. These structures are preferentially developed along inherited discontinuities of 
the PAT Formation oriented NNW-SSE. The trenches fill deposit consists of silts, clayey silts and 

fine sands of few meters thickness. 

 

Fig. 2.2. Main geomorphological elements characterizing the N slab in the vicinity of Nadìa Spring. See Fig. 

2.1 for the map location and the complete geological legend. 
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The field structural survey allowed the collection of over 600 observations of bedding, faults, and 

fractures/veins. The data show that bedding dips moderately to slightly eastward, northward, or 

southward, whereas faults and fractures/veins exhibit more variable orientations (Fig. 2.3a). The 
statistical analysis performed on the 160 fault data shows a dominant strike approximately 

oriented ENE-WSW (Gaussian curve n°1 in Fig. 2.3b), with a central value that deviates by 

approximately 12°. Orientation represented by the Gaussian curve n°5 can also be included in 
this set. These structures have an anti-Apennine orientation, parallel to the VLSS system. 

Based on field observations, the ENE-WSW-striking faults are characterized by mature damage 

zones, in which interconnected shears creates an articulated fracturing network along the fault 

strike. Some of these faults show significant offsets juxtaposing the PAT Formation with other 
less permeable formations (see sections in Fig. 2.1c). A second main strike is oriented WNW-ESE 

(Gaussian curves n°2 in Fig. 2.3b), with a central value that deviates by about 10° from the 

preferred direction. A third main strike is oriented NNW-SSE (Gaussian curve n°3 in Fig. 2.3b), 
with a central value that deviates only 5° from the preferred direction. Structures pertaining to 
curves n°2 and 3 align with the Apennine orientation. These faults and fractures generally show 

single open surface and limited (or absent) damage zone. Finally, two subordinate strikes can be 
extracted from the statistical analysis, both oriented approximately NNE-SSW (Gaussians n°4 and 
n°6 in Fig. 2.3b). 

 

Fig. 2.3. Structural data: (a) stereographic projections (Schmidt net, lower hemisphere) of the main 

structural elements observed in the N slab during field surveys; (b) Rose diagrams (Daisy 3 version 5.40; 
Salvini et al., 1999) reporting the strike values of faults mapped in the study area. The red field (named 1) 

represents the dominant trend, while the purple field (named 6) is the least representative. 

The optic and acoustic televiewer borehole logs performed nearby the N slab revealed fractures 

with decimetric apertures as deep as 61 to 71 m below ground surface (bgs), featuring irregular 

surfaces (see SM) most likely resulting from the chemical dissolution of the calcareous matrix of 
the Pantano arenites. The orientations of the open fractures align with the Apennine WNW-ESE 

and NNW-SSE directions identified for deformation structures in the N slab at the filed scale (i.e. 

Gaussians n° 2 and 3 in Fig. 2.3b). 
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2.7.2. Spring hydrographs 

The spring hydrograph of the hydrologic year 2020-21 shows a rising limb since December 2020 

(start of monitoring) reaching a discharge peak of 64 L/s at the beginning of March 2021 (Fig. 
2.4). This is followed by a depletion limb down to a minimum of 42 L/s at the end of October 

2021. The average yearly discharge is 54 L/s. The typical rising limb of the winter-spring recharge 

season is almost missing in the following year 2021-22. As a result, discharge variability along the 
year is limited compared to the preceding year, with maximum, minimum and average values of 

48, 39, and 42 L/s, respectively. The available dataset for the year 2022-23 is limited to the first 

four months, from November 2022 to March 2023. Within this limited timespan, the average, 

minimum and maximum values are of 40, 38 and 43 L/s, respectively. It is worth noting that for 
the second consecutive year no evidence of a clear rising limb was registered during the recharge 

season. 

 

Fig. 2.4. Hydrograph of the total discharge of Nadìa Spring (including uptake and overflow) from December 
2020 to March 2023. The hydrological years are indicated by red dashed lines. Daily precipitation from 

the Riola di Labante meteo-station is included for comparison. The typical Northern Apennines recharge 

season is shaded in grey. 

Noticeable differences between the two complete yearly time series of 2020-21 and 2021-22 are 

observed in the maximum discharge values and yearly averages, showing a decrease of 16 and 
12 L/s from 2020 to 21 to 2021-22, respectively. The difference is less pronounced (3 L/s) for 

minimum discharge values. The distinct discharge patterns observed in 2020-21 (higher flow) and 

2021-22 (lower flow) are in line with the precipitation and air temperature trend of those two 
years (see SM), which suggest reduced aquifer recharge in 2021-22. The later year is also known 

to have been affected by a severe drought in the investigated region (ARPAE, 2023). The 
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hydrographs of the four hydrologic years from 1914 to 1918 show overall higher discharge values 

compared to the two more recent hydrographs of 2020-22 (Fig. 2.5a). The average discharge of 

the period 1914-18 is 92 L/s, which is almost twice the average value of 2020-22 (48 L/s). 
Moreover, the hydrographs from the past century show higher variability throughout the year, 

with peak discharge reaching up to 140 L/s and minimum values going down to 63 L/s. The 

differential between minimum and maximum discharge within a hydrologic year averaged 81 L/s 
at the beginning of the last century but reduced to 16 L/s in the more recent years. In the years 

1915-16 and 1917-18, the winter-spring rising limb is less evident on the hydrograph compared 

to 1914-15 and 1916-17. This is in line with the precipitation trend monitored through those 

years, which appears to work as an effective recharge indicator during the time-span covered by 
the historical discharge monitoring (see SM). 

 
Fig. 2.5. Yearly hydrograph analysis: (a) historical (1914-18) and recent (2020-22) yearly hydrographs of 

Nadìa Spring. The x-axis represents months since the start of the hydrological years, with the first month 
varying between September and November based on the year. Historical hydrographs are based on 

monthly measurements, and since the precise monitoring date is unknown, discharge values were plotted 

on the 15th of each month. The exponential Maillet models used to fit the recession limb of the six 

hydrographs are represented with dashed lines; (b) linear relationship between the recession coefficient 
α and the spring discharge at the beginning of the recession season. 
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On all available hydrographs, a recession curve was identified starting in the 8th or 9th month of 

the hydrologic year (Fig. 2.5a). Despite a good fit between the recession curves and the 

exponential model of Maillet, with an R2 always higher than 95%, the recession coefficient (α) 
shows slight albeit systematic differences among the years. The past century recorded higher 

values ranging between 3.2e-3 and 2.2e-3 day−1, while recent years showed lower values ranging 

between 1.6e-3 and 1.3e-3 day−1. A direct linear relationship was found between α and the spring 
discharge at the beginning of the recession curve (Fig. 2.5b). 

 

2.7.3. Major ions and water stable isotopes 

The major ion composition of spring water is similar through the different sampling years and 
seasons, showing a dominant Ca-Mg-HCO3 hydrochemical facies (Fig. 2.6a), that is common to 

other springs in the Northern Apennines area, as reported by Hájek et al. (2021). 

 

Fig. 2.6. Groundwater chemistry: (a) Schoeller diagram illustrating the major ion composition of spring 

water on a seasonal scale from 2011 to 2021; (b) seasonal water stable isotope composition of spring and 

precipitation samples collected between 2021 and 2022. The Northern-Italy Local Meteoric Water Line 

(NMWL) is represented by a dashed grey line. 
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The stable isotope composition of the four spring water samples shows a narrow range between 

−10.1 and − 9.8‰ for δ18O, and between −65.6 and − 63.6‰ for δ2H (Fig. 2.6b). In contrast, 

rainwater collected in the spring recharge area exhibits much higher variability with values 
ranging from −12.4 to −3.5‰ for δ18O, and from −84.4 to −19.8‰ for δ2H. The most depleted 

rain samples were collected during the winter months (February 2021 and January 2022) 

whereas the more enriched samples correspond to June and September 2021. All the samples 
align along the Northern-Italy Local Meteoric Water Line (Giustini et al., 2016) with spring water 

being closer to the winter rain end-member. Together with the low variability in spring water 

isotopes for the period February 2021 to January 2022, this suggests a well-mixed water reservoir 

with higher contributions of recharge from winter precipitation. 

 

2.7.4. Recharge-discharge time lag 

The analysed time lags between recharge events and discharge indicators, ranging from 0 to 90 
days, were divided into three main intervals considering the predefined R2 thresholds of 0.3 and 
0.6 (Fig. 2.7a): (I) strong correlation with Q (R2 > 0.6) within the first 0 to 15 days of time lag, 

observed only during the high-flow period of 2020-21, indicating the arrival of newly infiltrated 
water through preferential flow paths; (II) weak correlations (0.6 > R2 > 0.3) with Q and EC 
between 15 and 65 days of time lag, suggesting the arrival of newly infiltrated water through 

diffuse flow paths of varying lengths. Notably, a strong correlation with pH emerges at a 35-day 
time lag, exhibiting a 20-day delay compared to EC. 

This observation implies that some acidification reactions may take place as direct recharge from 

precipitation moves through the extensive unsaturated zone. Indeed, previous literature has 

noted that a significant portion of the CO2 found in groundwater originates from biological 
processes in the soil (Hartmann et al., 2014). It may then require several weeks for these 

reactions to cause a noticeable decrease in pH in spring water; (III) weak correlation with Q and 

an absence of correlation with EC and pH (R2 < 0.3) from 55 to 90 days of time lag, indicating that 
the most delayed increases in discharge are likely induced by pressure transfer within the 

reservoir. It is important to note that the variability of EC and pH during the monitoring period 

was limited. EC ranges from 408 to 640 μS/cm with an average of 572 μS/cm and a standard 
deviation of 37 μS/cm, while pH varies between 7.7 and 8.4 with an average of 7.9 and a standard 

deviation of 0.2. This overall stability is consistent with the observations on the chemical and 

isotopic composition of spring water (see Section 2.7.3). In this context, even slight variations of 
the parameters may be useful to discriminate among different processes affecting the 

groundwater flow system. 
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Fig. 2.7. Time lag analyses: (a) linear correlations between recharge and discharge indicators at increasing 

time lags. Dashed black lines indicate the different correlation thresholds. Grey bars denote partial 

overlaps between the three intervals identified by the analysis; (b) identification of time lags between 
precipitation events and decreases in TCC below the average of the monitoring period (5.8 meq/L). The 

dashed black line indicates a deviation of 0 from the average. Progressive numbers identify the main 

precipitation events and the associated dilution effect on spring water. The time lags for each event are 
summarized in the lower right corner. 

Six precipitation events occurred during the TCC monitoring (Fig. 2.7b). Each of them induced an 

appreciable dilution on spring water, with variable time lags in the range of 16 to 34 days from 
the recharge event to the start of the dilution signal. 
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2.7.5. Artificial tracer test 

The water samples occasionally exhibit peaks in Uranine concentration during the 41 days of 

sampling, ranging from 0.01 to 1.12 μg/L (Fig. 2.8). The earliest detections occurred 1 to 4 days 
following injection, with a peak value of 0.28 μg/L. Tracer arrival in this early interval was likely 

influenced by the relevant volume of water introduced during the tracer injection. Nevertheless, 

the result demonstrates the existence of rapid flowpaths between the injection point and the 
spring, with a maximum velocity of Uranine transfer in the range of 78 to 313 m/d (considering 

a planar distance of 313 m from injection to detection). 

 

Fig. 2.8. Main results from the artificial tracer test. The concentration of Uranine measured in water 

samples are represented along with the information provided by charcoal bags. Concentrations below the 
Limit of Detection (LOD = 0.005) are represented as 0 for graphical purposes. The graph covers the tracer 

monitoring period from January 10th (day of injection) to March 22nd (collection of the last charcoal bag). 

Daily precipitation data from the Riola di Labante meteo-station are included for comparison. 

The two highest concentration peaks were observed between February 21st and 23rd (42 to 44 
days post-injection), with values of 0.5 and 1.1 μg/L, respectively. The primary recharge event 

preceding these peaks took place between January 21st and 25th, with a total amount of 

precipitation of 41 mm (i.e. > 25 mm in 5 days). The time lag between the recharge event and 
the two peaks is 27 to 33 days. The tracer transfer velocity associated with these peaks is 

between 12 and 9 m/d. 

Throughout the tracer monitoring period, the spring discharge remained relatively stable, 

ranging from a minimum of 37.9 L/s to a maximum of 43.1 L/s, with an average of 39.8 L/s (see 
Fig. 2.4). Based on daily flow rates and detected tracer concentrations, it was estimated that 
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about 4.5 g of tracer were recovered, accounting for approximately 9 % of the total injected mass 

of 50 g. Of the 4.5 g recovered, 2.8 g reached the spring outlet in correspondence of the two 

main peaks of February 21st and 23rd. The small mass of tracer recovered in the first 41 days 
after injection can likely be explained assuming that some tracers have remained in the 

unsaturated zone and has been flushed out by subsequent meteoric events after the monitoring 

period ended. The evidence provided by charcoal bags largely align with water samples, 
confirming the arrival of Uranine between January 25th and February 14th, and suggesting a 

probable occurrence between February 2nd and March 7th, which coincides with the period of 

observation of the major peaks in water samples. 

However, the negative result between February 14th and March 22nd appears inconsistent with 
the tracer detection in water samples. This discrepancy could be attributed to possible tracer 

desorption or biological degradation, which were previously hypothesized as reasons for 

decreased tracer concentration in charcoal that remains in water for an extended amount of time 
(Aley, 2019). The bag's total residence time was 36 days, extending up to 24 days after the arrival 
of the last recorded Uranine peaks. Eventually, the three bags left in place throughout the entire 

monitoring period (not shown in Fig. 2.8) were affected by significant background noise, which 
hindered the possible detection of Uranine trace on the charcoal. 

 

2.8. Discussion 

2.8.1. Factors enhancing the Nadìa Spring yield 

The hydrological response of Nadìa Spring resembles that of many springs in the Northern 
Apennines that exhibit a rising discharge during winter and spring, followed by a declining 

discharge in summer and fall. The magnitude of the Nadìa Spring rising limb in each hydrological 

year depends on the amount of recharge during that year, with higher discharge peaks in years 

of greater recharge. This discharge response is typical of Northern Apennines springs due to their 

short groundwater flow paths, which make them responsive to local recharge patterns (Gargini 

et al., 2014). However, Nadìa Spring stands out with a unique base flow contribution of 

approximately 40 L/s at the end of the decreasing limb when most other Northern Apennine 

springs approach zero flow, leading to drinking water supply issues (Cervi et al., 2018). 

A crucial factor that explains the increased yield of Nadìa Spring is the presence of a significant 

groundwater reservoir that supplies the spring. This is supported by the notably low Maillet 

recession coefficient α, averaging 2.4e-3 d−1 over the monitored years. In contrast, the dominant 

α values in the Northern Apennines region are typically one order of magnitude higher         
(Gargini et al., 2008), indicating smaller reservoirs (Tallaksen, 1995). Nadìa Spring is situated at 
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the lowest topographic elevation along the edge of the N slab, corresponding to the bottom 

elevation of the PAT Formation (see Fig. 2.1c). As a result, it serves as the most natural discharge 

point of the slab. Moreover, unlike the typical Northern Apennine setting where a large number 
of diffuse outlets are associated with one groundwater reservoir (Gargini et al., 2008), in this 

case, several factors have led to the concentration of drainage from the N slab into one primary 

discharge point which is Nadìa Spring. These factors are discussed in more detail in subsections 
2.8.1.1 to 2.8.1.3 and include structural pattern of faults and fractures, the presence of slope 

instabilities, and karst dissolution. 

 

2.8.1.1. Structural pattern 

The anti-Apennine striking faults, aligned with the VLSS, are the most recurrent features in the 

area based on field data analysis. The primary and most continuous lineaments in the N slab 

follow this direction (Fig. 2.1b). These main structures likely constrain groundwater flow, as 
supported by the following observations: (1) some of the NE-SW structures create significant 
offsets, restricting the lateral continuity of the PAT aquifer (Fig. 2.1c); (2) Balocchi (2014) reported 

the presence of cataclasites on the major Anti-Apennine lineaments of the N slab (Fig. 2.1b), 
assigning them the role of flow barrier (Caine et al., 1996). 

Apennine-oriented structures come second in terms of prevalence in the area. These are 

generally cut and displaced by the anti-Apennine-oriented faults (as visible in Fig. 2.3b and 
previously noted by Balocchi (2014). These structures, with their two primary strikes NNW-SSE 
and WNW-ESE, effectively “unlock” the rock mass within NE-SW “channels” delimited by anti-

Apennine structures. Presumably, the Apennine striking structures serve as planes of weakness 

that enhance the rock mass's permeability, based on the following lines of evidence (discussed 
more in detail in the subsequent sections): (1) the development of a DSGS along Apennine-

oriented planes of weakness (see Section 2.8.1.2); (2) the observation of karst dissolution along 

deep-seated Apennine-oriented structures in the borehole near the N slab (see Section 2.8.1.3). 
Additionally, the wide fracture chosen as injection points for the tracer experiment (see       

Section 2.7.5) also exhibit an Apennine strike (NNW-SSE), further confirming the presence of 

enlarged structures in that orientation. Finally, during the excavation of the drainage tunnel for 
spring uptake, which is oriented along the anti-Apennine direction, Vecchi (1920) reported 

groundwater inrush from fractures perpendicular to the tunnel's alignment, indicating an 

Apennine orientation. 

As a result, the Apennine-oriented structures plausibly form the primary network for 

groundwater flow, facilitating the circulation of groundwater throughout the saturated part of 

the N slab. This circulation predominantly aligns with the anti-Apennine-oriented structures, 
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which mostly act as no-flow boundaries. Groundwater is consequently conveyed from the 

northeastern sector of the N slab towards Nadìa Spring. 

 

2.8.1.2. Slope instabilities 

The relaxation of stresses caused by the DSGS (classified as lateral spreading) along the edge of 

the N slab results in the formation of features like trenches and scarps/counter-scarps. These 
features can locally enhance the permeability of the unsaturated zone, allowing for concentrated 

recharge in the vicinity of the spring. Furthermore, it is highly probable that a localized drop in 

groundwater levels is associated with the observed increase in permeability in the DSGS area. 

This may lead to additional drainage from the surrounding regions towards the spring area. It is 
important to note that the morpho-structures related to lateral spreading align with Apennine-

oriented faults and fractures (Fig. 2.2), which likely played a significant role in initiating and 

shaping the instability processes. 

 

2.8.1.3. Rock dissolution 

The chemical composition of groundwater suggests a significant interaction with a carbonate 
matrix, pointing to the likelihood of karst dissolution (Wijayanti and Dalmadi, 2021). This 
dissolution process could primarily impact either the calcitic cement/matrix of the calcarenite 

rock mass of PAT, or the limestone/dolostone clasts within the skeleton (the occurrence of non-
negligible Mg content in the groundwater suggests the presence of dolomite in these clasts). 
Furthermore, there have been previous observations of travertine deposits at various spring 

outlets within the same aquifer lithology, as documented by Cantonati et al. (2016). This supports 

the hypothesis of an enrichment of CaCO3 in the water during underground flow. Additionally, 
the discovery of wide discontinuities with apertures of up to 20 cm, identified at depths of 61 

and 71 m bgs through televiewer borehole logging, provides further evidence of karst dissolution 

within the studied lithology. The borehole observations suggest that dissolution is primarily 
occurring along preexisting Apennine-oriented fractures. Karst dissolution is likely to increase the 

overall permeability of the aquifer and promote the development of preferential groundwater 

flow paths within the rock mass, as discussed further in Section 2.8.2. 

 

2.8.2. Evidence of dual porosity in the N slab 

The inferred occurrence of karst dissolution within the N slab is expected to trigger the 
development of a hierarchical groundwater flow system over time, which eventually results in a 
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more focused drainage of groundwater towards a limited number of larger discharge points 

(Hartmann et al., 2014; Worthington and Ford, 2009). 

The findings from the analysis of recharge-discharge time lags suggest the existence of a dual 
porosity system connecting the recharge area to Nadìa Spring. This system consists of both fast-

flow conduits and a diffuse fracture network. An additional contribution from matrix porosity, 

often observed in relatively young carbonate systems (Kresic and Stevanovic, 2010), cannot be 
definitively ruled out. However, information on matrix porosity in the investigated calcarenitic 

lithology of PAT is currently unavailable and should be the focus of further investigation efforts. 

In the fast-flow system, which comprises enlarged fractures, newly infiltrated water is rapidly 

drained towards the spring (within 15 days after major recharge events, i.e. > 25 mm in 5 days). 
However, it is worth noting that these preferential flow contributions are likely minor (<10%), as 

indicated by results from the artificial tracer test. The fast-flow system appears to be active 

primarily during periods of high-flow hydrological conditions (monitoring year 2020-21), 
suggesting that the conduits become active when hydraulic head stands higher. Gradually, a 
signal from a more diffuse system becomes predominant during lower-flow conditions, resulting 

in variable time lags (between 15 and 65 days) for newly infiltrated water to reach the discharge 
outlet in response to major precipitation events. Over longer timescales (starting from 55 days 
of time lag), this same diffuse system appears to convey water stored in the reservoir through 

pressure transfer. Cationic composition data (TCC) during low-flow conditions support the 
estimated response times for newly infiltrated water through the diffuse drainage system 
following major precipitation events, with time lags ranging between 16 and 34 days. 

Artificial tracing results also aligns with these response times, showing initial tracer arrival within 

a few days after injection, most likely due to activation of fast-flow circuits because of the large 
volume of water injected during the experiment. The later, more concentrated tracer arrival is 

consistent with the previously inferred transfer times of newly infiltrated water through the 

diffuse drainage system (between 27 and 33 days of time lag). Notably, the tracer transfer 
velocity associated with the diffuse drainage system (ranging from 12 to 9 m/d) falls within the 

range of values obtained experimentally by Vincenzi et al. (2014) for turbiditic sandstone aquifers 

characterized by diffuse groundwater flow networks (2 to 20 m/d). Conversely, the higher 
transfer velocity linked with fast-flow circuits (ranging from 313 to 78 m/d) more closely 

resembles the values observed by the same authors in a marly calcareous turbiditic aquifer 

affected by karst dissolution (94 m/d). These observations corroborate the hypothesis of a dual 
porosity system comprised of fast flowpaths associated with a diffuse fracture network. 

The analysis of recent and historical hydrographs emphasizes once again the occurrence of a dual 

porosity system. The spring's recessive response observed over the past century (from 1914 to 
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2022) indicates progressively slower flow of recharge water as the discharge at the start of the 

recession limb decreases. In particular, the historical hydrographs are characterized by higher 

recession coefficients indicating faster flows between the recharge area and the spring, with 
larger flow variability observed throughout the hydrological year between the recharge and the 

recession seasons. This response is plausibly related with the existence of fast flow-paths 

connecting the recharge area to the spring, facilitating the transfer of newly infiltrated water as 
well as rapid responses to pressure changes. In more recent years (2020-2022 hydrographs), 

lower recession coefficients were observed in conjunction with reduced flow variability 

throughout the year. This is most likely attributable to groundwater flow occurring through 

slower circuits with a diffuse character. 

 

2.8.3. Resilience to climate change 

From various angles, Nadìa Spring exhibits remarkable stability and an inertia towards the year-
to-year fluctuations in recharge factors. From a hydrological perspective, the minimum spring 
discharge values remain consistently stable throughout the recent years being apparently 

unaffected by annual variations in recharge. For instance, when comparing the hydrographs of 
2020-21 and 2021-22, the latter shows only a minor decrease in the minimum annual discharge, 
even in the face of an exceptional drought during the recharge season. This implies that 

reductions in recharge primarily affect the peak phases of the yearly hydrograph but leave the 
minimum discharge almost unimpacted. This suggests significant resilience of the spring to 
individual dry years, ensuring it continues to provide an ecosystem service with a sufficient flow 

rate even in critical summer seasons. 

From a geochemical perspective, the groundwater composition (i.e. major ions and stable 
isotopes) remains highly stable across seasons or even years, indicating a well-mixed aquifer 

reservoir supplying the spring. This is in contrast to heterogeneous media like real karst aquifers, 

which exhibit a strong hydrochemical variability over time (Sánchez et al., 2015). Thus, the 
observed chemical consistency further supports the hypothesis of a substantial contribution from 

a diffuse drainage system in recent years, as previously discussed in Section 2.8.2. Water isotopes 

additionally suggest that most recharge occurs during the winter-spring period when the 
combination of higher precipitation and lower temperature maximize the water's capacity to 

penetrate the unsaturated thickness of the system (Thornthwaite and Mather, 1957). 

The rare opportunity to examine century-old hydrographs of the spring has allowed for notable 
observations regarding its interdecadal resilience in the face of discharge reductions caused by 

century-scale climate change. The significant decline in Nadìa Spring's discharge since the early 

21st century, a trend also observed in other Mediterranean regions and attributed to 
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documented reductions in recharge season precipitation and snow-related parameters (e.g., 

Dragoni and Sukhija, 2008; Fiorillo et al., 2021), suggests a limited resilience of the spring to long-

term recharge variations. However, the observed relationship between the initial discharge 
during the recession and the recession coefficient (Fig. 2.5b) indicates an increasing laminar 

capacity of the aquifer over time (i.e. decrease of discharge variability along one single year and 

increased stability of the minimum discharge values over different years). 
This change should be linked to the previously inferred transition in recent years towards a more 

diffuse drainage system. This diffuse system is most likely located at lower altitude in the 

reservoir, so that the more dynamic fast-flowpaths are activated only when the hydraulic head 

in the aquifer is higher. As a result, future decreases in spring discharge due to reduced recharge 
may be less severe compared to the past, potentially enhancing the interdecadal spring's 

resilience to climate change. 

 

2.9. Conclusions 

A strategic spring resource in the Northern Apennines was explored due to its unique 

characteristics regarding discharge magnitude and consistency. This study employed an 
unprecedented combination of traditional geological and hydrogeological field investigations, 

continuous monitoring of recharge- and discharge-related indicators, an artificial tracer 

experiment, and an analysis of spring hydrographs dating back a century. These methods enabled 
us to unravel the factors contributing to the spring's distinctive features. The investigative 

approach presented here can serve as a valuable model for similar hydrogeological settings when 
studying and assessing local strategic groundwater discharge points. 

In the case of Nadìa Spring, several factors influence the spring's response to recharge 

fluctuations. These include an extended groundwater reservoir supplying the spring, a complex 

network of fractures that constrain groundwater flow towards highly transmissive channels, a 

slab structure that triggers slope instability along its margins, and a high carbonate content in the 

rock mass favouring karst dissolution. This, in turn, facilitates active aquifer recharge in the 

occurrence of abundant precipitations during the winter-spring season and hierarchizes 

groundwater flow towards one main outlet. All these conditions favour an increased yield for the 

spring, as well as resilience to variations in recharge on an inter-annual scale. On the other hand, 

over several decades or centuries, the spring's discharge appears significantly affected by 

reduced recharge due to climate change. These long-term effects are particularly evident in 

terms of decreased peak discharge. Nevertheless, the capacity of the aquifer reservoir to store 
recharge water acts as a buffer mitigating the risk of an excessive decrease in spring discharge 

during future drought conditions. 
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The hydrodynamics of the spring indicate the presence of a dual porosity, characteristic of 

variably karstified systems, whereas karst dissolution is not commonly observed in arenitic 

aquifers. However, as hydraulic head and spring discharge decrease over time due to climate 
change-related discharge reductions, a significant portion of the fast-flow preferential system 

seems to deactivate gradually, possibly because of its higher elevation within the aquifer, which 

is gradually depleting. The primary spring discharge contribution today appears to originate from 
a diffuse drainage system, which likely constitutes the deeper portion of the aquifer. The dual 

porosity structure would then explain the different response observed in the spring one century 

ago compared to today. 

A critical element that has allowed us to understand the spring's discharge response and draw 
conclusions about its resilience is the combination of a long-term monitoring of hydrological 

(including uptake and overflow) and hydrochemical parameters. Century-long spring discharge 

monitoring is a rare find in the existing literature and, in cases where it is available, as in the 
instance of Nadìa Spring, it allows unveiling the significant impacts of climate change on 
discharge. Another crucial aspect has been the continuous monitoring of spring discharge and 

chemistry during an exceptionally dry period spanning from 2021 to 2023. Such monitoring has 
emphasized the resilience of discharge in severely dry years, attributed to the drainage capacity 
of the diffuse fracture system. This effect might have gone unnoticed during less dry              

periods. Continuing the spring monitoring in the future will be essential to identify flow patterns 
under more variable atmospheric conditions, including variable discharge patterns over the 
hydrologic year. 

In the future, it would be also beneficial to monitor additional strands of evidence, such as eco-

hydrogeological indicators like endemic invertebrates or plant species, and the 
dendrochronology of trees situated at increasing distances from the spring. These could offer 

valuable insights into the long-term persistence of spring discharge and enhance our 

understanding of the spring's ecological significance. Relatively large springs like Nadìa often hold 
substantial ecosystem value. Understanding how discharge responds to climatic variations is a 

crucial step for managing and leveraging the ecosystem services provided by the spring, both in 

natural and economic terms. 

While showing the importance of continuous spring discharge monitoring over time, this study 

also sheds light on a more general issue: while hydrologic monitoring networks for precipitation 

and surface water fluxes are well structured and operating in many areas of the world, a strong 
enhancement of such network is needed for springs in order to cope with the challenges of 

climate change, both in terms of water resources management and ecological 

preservation/valorisation of the spring environment. 
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2.10. Supplementary Material 

2.10.1. Coring and televiewer logging 

Two boreholes were drilled between November and December 2021 in a loca�on 7 km south of 

the Nadìa spring, in the same PAT aquifer Forma�on, where logis�c condi�ons and land property 

rights were favourable for the drilling ac�vi�es (Fig. 2.9).  

 

Fig. 2.9. An excerpt from Fig. 2.1a in the main text, displaying the chosen drilling locaeon, as well as the 

Riola di Labante and Montese meteorological staeons. 

The loca�ons of the two boreholes, namely ARP1 and ARP2, are at a ground al�tude of 790 m asl 

and spaced apart of 10 m. The drilling of ARP1 was performed down to a depth of 80 m bgs using 

a wireline con�nuous coring system with single tube core barrel of 101 mm diameter that 

provided consistent, high core recovery of 90 to 100% in the hard rock intervals. For the purposes 

of this study, the cores were visually assessed in terms of aspect of fracture surfaces in order to 

detect evidences of rock dissolu�on. Borehole ARP2 was drilled down to a depth of 35 m bgs 
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using a core destruc�on probe with a 101 mm diameter. Acous�c and op�cal televiewer logs were 

performed along the uncased boreholes (50 to 80 m bgs in ARP1; 2 to 35 m bgs in ARP2) to 

observe the orienta�on and aperture of fractures. The primary structures of interest iden�fied 

during the drilling inves�ga�on are fractures of decametric aperture at depths of 60-62 m bgs 

and 70-72 m bgs, with orienta�ons of WNW-ESE and NNW-SSE. The surfaces of these structures 

exhibit significant irregulari�es at core inspec�on (Fig. 2.10). 

 
Fig. 2.10. Disconenuiees of main interest idenefied through televiewer logging and core inspeceon. 

 

2.10.2. Droughts in the Emilia Romagna Apennines 

In Fig. 2.11, we present precipitation data from the past two decades obtained from two 

meteorological stations located in close proximity to the study area, namely Riola di Labante and 
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Montese (Fig. 2.9). The datasets include both the total annual precipitation and the precipitation 

during the recharge season, which spans from the beginning of the hydrological year to April. 

 

Fig. 2.11. Annual precipitaeon and mean annual air temperature in the area of the Nadìa spring. “R” and 
“M” indicate the Riola di Labante and Montese meteo-staeons, respecevely. “TOT” indicates the 

cumulated precipitaeon over the hydrologic year whereas “recharge season” indicates the cumulated 

precipitaeon from the beginning of the hydrologic year to April. Drought years are highlighted in red. 

Riola di Labante station, as previously mentioned in the main text, serves as the most 

representative station for the N slab area due to its proximity and elevation (623 m asl). On the 
other hand, Montese station is positioned at a higher elevation compared to the study area's 

average (920 m asl). Notably, Montese provides additional data on air temperature for the period 
of interest (see the average annual air temperature in Fig. 2.11), which is not available from the 

Riola di Labante station. 

Despite the differences in altitude, the total annual precipitation and recharge season 

precipitation have shown a similar pattern in both stations over the past two decades. 

Approximately every five years, we observe a convergence of low precipitation levels and 

unusually high air temperatures. The latter has the dual effect of increasing evapotranspiration 

and reducing snow-fall and -permanence on the ground. Such periods align with those previously 

identified at the regional level as drought periods (e.g. ARPAE, 2018, 2023). It's worth noting that 

the years 21-22 and 22-23 represent an extended period of drought, continuing at least until the 

spring of 23 when the monitoring for this study was concluded. The relatively high total annual 

rainfall reported in the graph for 22-23 is attributed to several events occurring during the late 

spring and summer, a season typically marked by dry conditions in the Norther Apennines 
(though outside the scope of this study's monitoring period). 
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2.10.3. Historical discharge and precipitation data 

The historical monitoring data of spring discharge and precipitation collected by Vecchi (1920) 

are shown in Fig. 2.12. The discharge data represent discrete monthly measurements (the precise 
monitoring date is unknown). Precipitations represent the cumulated monthly amounts 

registered at the Montese meteorological station (Fig. 2.9), which was the only active station in 

the vicinity of the N slab during the time-span covered by the historical monitoring. 

 

Fig. 2.12. Monthly discharge and monthly precipitation data from January 1915 to October 1918. 

 

2.10.4. Correlation between annual precipitation and discharge over time 

In Fig. 2.13, we illustrate the correlation between precipitation during the hydrological year or 

precipitation during the recharge season and the average discharge of the spring over the 

hydrological year (Q). This comparison was conducted using both historical and current 

monitoring data. Regarding historical data, only the three years from 1915 to 1918 are presented 

because we lack information to determine a consistent averaged discharge for the year 1914-15. 
As for recent data, the year 2022-23 is not represented for the same reason. 

An estimation of the aquifer recharge variation for the historical monitoring period was not 

feasible due to the absence of temperature data for the beginning of the century. Nonetheless, 

a strong correlation between precipitation and spring discharge in the past is evident, suggesting 

that precipitation serves as an effective indicator (in relative terms) of recharge within a specific 
climatic context (in this case, that of the early century). However, in the present, precipitation 

values are higher than what would be expected if following the historical correlation. 
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Fig. 2.13. Linear relationship between annual spring discharge and precipitation in the period 1915-18 

and 2020-22. The circles represent the total precipitation over a hydrologic year whereas the triangles 

represent the precipitation of the recharge season. 

Notable global changes, such as rising temperatures (resulting in increased evapotranspiration 

and decreased precipitation and snow cover) and shifts in precipitation patterns (with more 

frequent extreme events causing less effective for groundwater infiltration), have occurred since 

the past. This has created a different current climatic context compared to the past. Specifically, 

all the factors mentioned above, plausibly contribute to reduced recharge in the present 

compared to the past, resulting in lower discharge at the spring despite similar levels of 

precipitation. Therefore, relying solely on precipitation as a century-scale recharge indicator is 

not advisable, but it can be meaningful within a "homogeneous" climatic context.  

It's worth noting that although the elevation of the past rain gauge (Montese station) and the 
present one (Riola di Labante station) differs (623 vs. 920 m asl), the analysis of the past two 

decades in Fig. 2.11 suggests that the recorded precipitation at both stations is similar. Hence, 
the observed difference between past and present conditions should not be attributed to 

variations in station elevation. 

 

2.10.5. Liquid and solid precipitation 

During the recent monitoring period of 2020-23, although there was no specific monitoring setup 

for solid precipitation near the study area, the research team diligently observed weather 
conditions between December 2020 and March 2023. Only two significant snowfall events were 

recorded during this timeframe - one at the end of December 2020 and another at the end of 
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January 2023. The limited occurrence of snowfall events led to the conclusion that they were 

insufficient for evaluating distinct spring discharge responses to solid versus liquid precipitation. 

To provide a more objective evaluation of solid precipitation during the monitoring period, major 
recharge events (i.e. precipitation > 25 mm in 5 days) were identified where the daily average air 

temperature was ≤ 0°C (considering the minimum air temperature among the 5 reference days 

for each event). Six such events were identified (Tab. 2.1), with two occurring during the 
hydrological year 20-21 (high flow period) and four during the hydrological years 21-22 and         

22-23 (low flow period). 

 

Tab. 2.1. List of the major recharge events registered during the monitoring period (precipitation > 25 mm 

in 5 days). The six events associated with an average daily air temperature < 0°C (minimum value of the 

5-days interval) are highlighted in red and labeled with a progressive ID from 1 to 6. 

These major recharge events were potentially associated with solid precipitation. Each of the six 

events underwent further analysis to determine if most of the precipitation occurred on days 
with a low average air temperature (≤ 2 °C): when at least 10 mm of precipitation occurred in a 

day with average air temperature < 2 °C, a “high probability” of snowfall was assigned to the 5-
day recharge event. In the remaining cases, the events were labelled with a “low probability” of 

snowfall. This analysis led to the identification of three major recharge events with a "low 
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probability" of snowfall and three events with a "high probability" of snowfall (Tab. 2.2). The 

latter three events include the two already noted during the monitoring period (end of December 

2020 and end of January 2023), plus an additional event at the end of December 2022. 
Importantly, the air temperature data used for the analysis originate from the Montese station, 

situated at a high elevation compared to Nadìa spring recharge area (see Section 2.10.2). 

 

Tab. 2.2. Detailed analysis of the six recharge events identified in Table 2.1. For each 5-day event, daily 

precipitations > 10 mm are highlighted in red, whereas daily averaged temperatures < 2 °C are highlighted 
in blue. When two such condition coexisted in the same day, values are further highlighted in bold. 

This might have resulted in an underestimation of air temperatures compared to Nadìa recharge 
area. The three events identified with a high probability of snowfall align with the correlation 

analysis described in the main text, suggesting consistency with other precipitation events (see 
the correlation graphs in Section 2.10.6, where snowfall events are highlighted). This confirms 

the previously suggested impossibility of distinguishing between the effects of solid and liquid 

precipitation during the 20-23 monitoring period, where solid precipitation was notably scarce. 

Regarding the experimental data from historical monitoring (1914-18), we lack the necessary 

information to hypothetically differentiate between solid and liquid precipitation. Indeed, during 

this historical period, there was an absence of air temperature monitoring near the study area or 

any monitoring stations with geographical and topographical comparability to the studied zone.  

Nonetheless, it is acknowledged that snowfall underwent variations between the two monitoring 
periods compared in this study. These variations, although imprecisely determinable for the 

investigated area, were previously observed in the study region (e.g., Diodato et al., 2019; 

Diodato et al., 2022). In particular, a decrease of snowfall and snow cover duration was registered 

during the XX century, contributing significantly to a general alteration of the climatic regime, as 
previously discussed in Section 2.10.4. 
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2.10.6. Linear correlations between recharge events and discharge indicators (Q, EC, pH) 

Below are the linear correlation graphs used to derive the R2 values for Fig. 2.7a in the main text. 

The methodology for correlation is described in Section 2.6.4 of the main text. Figs. 2.14 to 2.17 
correspond to the indicator Q; Figs. 2.18 and 2.19 correspond to the indicator EC; Figs. 2.20 and 

2.21 correspond to the indicator pH. 

 

Fig. 2.14. Correlation graphs between precipitation (main recharge events) and Q, with increasing time 

lags from 1 to 15 days. Graphs on the right column represent the high flow period (hydrologic year 2020-
21) while the graphs on the right refer to the low flow period (hydrologic years 2021-22 and 2022-23). 

The events associated to high snowfall probability are highlighted in orange. 
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Fig. 2.15. Correlation graphs between precipitation (main recharge events) and Q, with increasing time 

lags from 20 to 40 days. Graphs on the right column represent the high flow period (hydrologic year 2020-

21) while the graphs on the right refer to the low flow period (hydrologic years 2021-22 and 2022-23). 
The events associated to high snowfall probability are highlighted in orange. 
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Fig. 2.16. Correlation graphs between precipitation (main recharge events) and Q, with increasing time 

lags from 45 to 65 days. Graphs on the right column represent the high flow period (hydrologic year 2020-

21) while the graphs on the right refer to the low flow period (hydrologic years 2021-22 and 2022-23). 
The events associated to high snowfall probability are highlighted in orange. 
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Fig. 2.17. Correlation graphs between precipitation (main recharge events) and Q, with increasing time 

lags from 50 to 90 days. Graphs on the right column represent the high flow period (hydrologic year 2020-

21) while the graphs on the right refer to the low flow period (hydrologic years 2021-22 and 2022-23). 
The events associated to high snowfall probability are highlighted in orange. 
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Fig. 2.18. Correlation graphs between precipitation (main recharge events) and EC, with increasing time 
lags from 1 to 45 days. All the graphs refer to the low flow period (hydrologic years 2021-22 and 2022-

23). The events associated to high snowfall probability are highlighted in orange. 
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Fig. 2.19. Correlation graphs between precipitation (main recharge events) and EC, with increasing time 
lags from 50 to 90 days. All graphs refer to the low flow period (hydrologic years 2021-22 and 2022-23). 

The correlation dataset does not contain precipitation event associated with high probability of snowfall. 
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Fig. 2.20. Correlation graphs between precipitation (main recharge events) and pH, with increasing time 
lags from 1 to 45 days. All graphs refer to the low flow period (hydrologic years 2021-22 and 2022-23). 

The correlation dataset does not contain precipitation event associated with high probability of snowfall. 
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Fig. 2.21. Correlation graphs between precipitation (main recharge events) and pH, with increasing time 
lags from 50 to 90 days. All graphs refer to the low flow period (hydrologic years 2021-22 and 2022-23). 

The correlation dataset does not contain precipitation event associated with high probability of snowfall. 
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2.12. Additional observations 

As outlined in the preface to this second chapter, this post-article section presents detailed data 

concerning the frequency and severity of droughts in the Emilia-Romagna Apennines, with a 

particular focus on the catchment area of Nadìa Spring. It also examines the substantial reduction 
in Nadìa Spring’s discharge observed today compared to 100 years ago, to which these droughts 

have significantly contributed. 

 

2.12.1. Insights from the Montese rain gauge 

The Montese rain gauge, which is highly representative of the precipitation over the Nadìa Spring 

catchment, provides a continuous historical dataset spanning nearly a century, from 1930 to the 
present. Additionally, data on rainfall for the period 1915-1919 were collected by Vecchi (1920), 

as previously mentioned. The graph in Fig. 2.22 focuses not on monthly cumulative precipitation 

but rather on the cumulative precipitation during the typical recharge period for aquifers, which 
spans from 1 November of one year to 31 May of the following year (Gargini et al., 2008; Segadelli 
et al., 2021). This period is identified as the key recharge period for groundwater due to the 

following reasons: (i) rainfall intensity is greater, especially during November-December and 
early spring season; (ii) temperatures are sufficiently low to minimise evapotranspiration; (iii) the 

soil remains moist, making it more effective in transferring direct recharge downward; and (iv) 

snowmelt during the early spring season is a key factor due to the high infiltration rate. 

 
Fig. 2.22. Cumulative rainfall recorded by the Montese rain gauge over the recharge period (November-

May). The orange line refers to the period 1915-1919, with the corresponding years displayed on the 
secondary horizontal axis at the top of the graph. 
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The 17 circular markers in Fig. 2.22 represent drought periods characterised by significantly low 

precipitation between November and May. Markers to the left of 1981-1982 are coloured purple, 

while those to the right are coloured red. For the drought specifically corresponding to 1981-
1982, both markers are displayed. 

The reason for adopting two different colours becomes apparent in Fig. 2.23, which highlights 

the interval of time between successive droughts. 

 
Fig. 2.23. Time intervals between successive drought events recorded by the Montese rain gauge. The 

horizontal bars share the same colours as the circular markers shown in Fig. 2.22, which enclose the 

corresponding periods. The polynomial trend was constructed using a degree 5 basis. 

For instance, the gap between the droughts of 1931 and 1938 is 7 years, followed by another 7 

years between 1938 and 1945. However, the interval between 1945 and 1949 is only 4 years, as 

indicated by the corresponding purple bar at 4 on the y-axis. Between 1931 and 1982, droughts 

occurred approximately every 7 to 8 years. In contrast, between 1982 and 2017, they became 

more frequent, occurring on average every 4 to 5 years. 

Between the early 1980s and the first half of the 2010s, the frequency of water scarcity events 

in the Northern Apennines appeared to have stabilised at around five years. However, the 

Montese rain gauge recorded three drought events in just five years between 2017 and 2022, 
two of which (those of 2020-2021 and 2021-2022) occurred consecutively. 

The graph shown in Fig. 2.24 is closely linked to the preceding one in Fig. 2.23. In this case, it 
displays the cumulative precipitation from 1 November of one year to 31 May of the following 

year, but only for the years corresponding to the droughts highlighted earlier. What stands out 
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in this figure, particularly with the support of the two trend lines, is that recharge period rainfall 

has been decreasing during drought years: from an average of approximately 420 mm between 

1931 and 1982 to about 340 mm between 1987 and 2022, reflecting a 20% reduction. 

 
Fig. 2.24. Cumulative rainfall during the recharge period recorded by the Montese rain gauge, limited to 

droughts events. The two elliptical markers highlight a clear division in recharge period rainfall amounts 

during droughts occurring before and after the mid-1980s. The polynomial trend uses a degree 5 basis. 

This graph further illustrates that droughts are not only occurring more frequently (Fig. 2.23) but 

are also becoming increasingly severe and critical, as precipitation during the recharge period 

continues to decline (Fig. 2.24). This deficit in liquid precipitation is further exacerbated by the 

decline in solid precipitation. In fact, in recent years, snowfall values have exhibited negative 

trends in both quantity (and consequently snow cover thickness) and permanence to the ground 

in the Northern Apennines (Diodato et al., 2022). 

 

2.12.2. Nadìa Spring discharge reduction 

As highlighted in Section 2.8.3, the reductions in recharge observed between 2020 and 2022 in 

the Nadìa Spring catchment primarily affected the peak phases of the yearly hydrograph, while 

leaving the minimum discharge largely unaffected (Fig. 2.5). This indicates significant resilience 

of the spring to individual dry years, maintaining a sufficient flow rate even during critical summer 

seasons. However, the notable decline in spring discharge since the early 21st century suggests 
limited resilience of Nadìa Spring to long-term recharge variations.  
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Figure 2.25 clearly illustrates this significant drop in the average discharge of Nadìa Spring over 

the past century. The comparison of mean monthly discharge between the periods 1915-1919 

and 2020-2023 reveals a reduction in flow rate of approximately 40%, clearly reflecting the long-
term increasing frequency and severity of droughts in the Northern Apennines, as highlighted in 

the preceding three figures (Figs. 2.22, 2.23, and 2.24). 

 
Fig. 2.25. Comparison between the 1915-1919 and 2020-2023 average monthly discharge of Nadìa Spring. 

The table on the left presents the values displayed in the graph on the right. 

At the beginning of the 20th century, during 1915-1919, the spring exhibited an annual average 
discharge of roughly 91-92 L/s, while the average discharge between December 2020 and March 

2023 has dropped to just 54 L/s. This change must be natural, as there have been no human-

made alterations to both the aquifer conditions (e.g., pumping wells) and land use in the 
restricted catchment area of Nadìa Spring over the past 100 years. 

Nevertheless, Fig. 2.5b reveals an increasing laminar capacity of the calcarenitic aquifer over 

time, characterised by a decrease in discharge variability within a single year and enhanced 
stability of minimum discharge values across different years. This evidence suggests that, despite 

the significant natural decline in Nadìa Spring’s discharge over the past century, the spring 

demonstrates resilience to climate change, maintaining a consistent base flow and continuing to 
provide an ecosystem service with an adequate flow rate. 
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Chapter 3: 

Assessing the long-term trend of spring discharge in a climate change 

hotspot area 

 

3.1. Preface 

The analyses summarised in the preceding chapter addressed the first scientific question of this 
PhD project, concentrating on quantifying the historical impact of climate change on spring 

discharge across the Apennines over the past century and evaluating the climatic resilience of a 

spring through a multidisciplinary approach. The next critical step involves a comprehensive 
investigation into the intricate relationship between recharge-related parameters and spring 

discharge, based on extensive historical time-series data, with the aim of projecting flow rates 

into the long-term future. 

To support this endeavour, an extensive research phase was dedicated to identifying hydrological 
time series of spring discharge in the Apennines that met the following criteria: continuous 

monitoring spanning a century or nearly a century; spring catchments with no significant 
groundwater withdrawals, either deliberate or unintentional (e.g., due to tunnelling or mining), 

that could affect the discharge process; and relatively stable land use conditions within the 

catchment area, with no disturbances to the soil water or energy budget and the associated 
recharge processes. These criteria were vital for isolating the effects of global warming from 

other anthropogenic factors. Following this, an in-depth literature review was undertaken. 
Discharge data for two selected springs were provided by the water companies Acquedotto 

Pugliese and Acquedotto del Fiora, while analysis was conducted in collaboration with Alessandro 

Gargini and Maria Filippini. Antonio Navarra contributed to the assessment of future discharge 

using climate projections from regional atmospheric circulation models. 

This chapter presents the multivariate statistical approach employed to assess the long-term 

trends in the discharge of Sanità and Ermicciolo Springs. The chapter consists of a paper 

published in the journal Science of the Total Environment: Casati, T.1, Navarra, A1, 2, Filippini, M.1, 

Gargini, A.1, 2024. Assessing the long-term trend of spring discharge in a climate change hotspot 

area, STOTEN, 957, 177498, ISSN 00489697, https://doi.org/10.1016/j.scitotenv.2024.177498. 

[1] Department of Biological, Geological, and Environmental Sciences - BiGeA, Alma Mater 

Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy 

[2] Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (Euro-Mediterranean 
Center on Climate Change), via Marco Biagi 5, 73100, Lecce, Italy 

https://doi.org/10.1016/j.scitotenv.2024.177498
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3.2. Highlights, Graphical abstract, and Keywords 

• Long-term effects of climate change on spring discharge under a Mediterranean climate. 

• Statistical correlation analyses between spring discharge and recharge-related data. 

• Application of correlation factors to RCPs 4.5 and 8.5 future weather scenarios. 
• Estimation of long-term spring discharge scenarios for the 2040-2070 period. 

• A projected 9-11% decrease in flow rate is expected to affect the studied springs. 

 

Spring discharge, Mediterranean region, Climate change, Multivariate statistics, Regional 

circulation model, Long-term discharge projections 

 

3.3. Abstract 

Global warming affects atmospheric and oceanic energy budgets, modifying the Earth’s water 

cycle. The Mediterranean region is a critical zone for climate change due to a decrease in recharge 

and an increase in the frequency and severity of droughts over recent decades. While the impacts 

of possible emissions scenarios on surface water have been extensively studied, the effects on 

groundwater discharge remain uncertain at both global and local scales. The primary objective 

of this study is to predict the long-term effects of climate change on the discharge of two springs 

with extensive discharge records, located in distinctly different hydrogeological settings within 

the Mediterranean climate zone. Through multivariate statistical analyses on secular time-series, 

correlation factors were identified between the springs' historical discharge and recharge-related 

parameters representative of their catchment. Future climate projections from a Regional 

Circulation Model were used to estimate long-term discharge trends of the springs for the 2040-

2070 period. The results indicate that the discharge of both springs, on a multi-decadal trend 
scale, could decrease by 9% to 11% by 2040-2070 compared to that of the past few decades. The 
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consistent negative trends observed across the two different hydrogeological settings suggest 

that the multi-decadal decline in spring discharge is more influenced by climatic factors than by 

specific hydrogeological features. This leads to the speculation that similar trends could be 
expected in other springs within Mediterranean-type climates worldwide. Future water 

shortages will significantly impact the hydrogeological contexts within these climates. Therefore, 

the long-term outcomes of this study are crucial for assisting water utility agencies in the 
sustainable management of groundwater resources, providing them with adequate time to plan 

and implement large-scale infrastructure projects over the coming decades. 

 

3.4. Introduction 

Global climate change is expected to have a significant impact on the water cycle. Extensive 

studies have been performed on the impact on atmospheric and surface branches of the cycle 

(Pekel et al., 2016; Trenberth et al., 2003), but comparatively less attention has been provided 
on the groundwater component. Comprehensive assessments of climate change effects on 
groundwater resources, particularly in regions encountering increasing qualitative and 

quantitative impacts on surface water (Secci et al., 2023), are needed given the crucial role of 
groundwater in providing key ecosystemic services. Climate change affects the recharge of 

groundwater and in turn the long-term average renewable groundwater resource. This impact 

arises from rising mean air temperature, shifts in mean precipitation, and modifications in 
precipitation typology and regime, with extreme regional variability of the effects (Caloiero et al., 

2018; Kundzewicz and Döll, 2009). Mediterranean-type climates according to the Köppen-Geiger 
classification (Kottek et al., 2006) are among the areas of the planet most exposed to droughts, 

as demonstrated by various researchers (Alilou et al., 2022; Blake et al., 2010; Fiorillo and 

Guadagno, 2012; Garreaud et al., 2017; Scanlon et al., 2012; Van Loon et al., 2014). In particular, 

the Mediterranean region stands out as one of the hotspots for climate change, experiencing a 

rate of global warming that overcomes the global mean trend (Giorgi, 2006; Sivelle et al., 2021; 

Todaro et al., 2022). These critical factors are expected to have a major impact on groundwater 

recharge and its future availability. 

Among other impacts, the declining discharge of springs has becoming more pronounced in 

recent decades, as a consequence of recurring droughts (Jeelani, 2008) and the associated 

shortage of recharge. This alarming trend emphasizes the vulnerability of groundwater to 

climate-induced alterations of the hydrologic cycle (Hao et al., 2006; Portoghese et al., 2013). In 

addition to the quantitative aspect, another significant threat to springs, particularly in karst 
settings (Kalhor et al., 2019), is aquifer pollution resulting from human activities associated with 

societal development and expansion in the context of a changing climate (García-Ruiz et al., 
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2011). The infiltration of chemicals and various types of waste into the subsurface degrades 

groundwater quality and poses risks to both human and ecological health (Balaram et al., 2023). 

The exploitation of groundwater through the uptake of natural springs discharge is widely 
common (Simsek et al., 2008) as springs typically provide high-quality water (Nicholson et al., 

2018). In the Mediterranean region, especially along the Apennine chain in Italy, spring water 

frequently serves as the primary source of potable water. Prominent urban centers, such as Rome 
and Naples, rely on springs to meet the demands of public aqueducts (Kresic and Stevanovic, 

2009). Across the Italian peninsula, the effects of climate change on both the quantity and quality 

of spring discharge have been extensively studied in the southern (Allocca et al., 2014; Fiorillo et 

al., 2015b; Fiorillo and Guadagno, 2012; Leone et al., 2021; Polemio and Casarano, 2008) and 
central Apennines (Barbieri et al., 2023; Petitta et al., 2022; Sappa et al., 2018; Sappa et al., 2019). 

In recent years, these impacts have also been documented in the northern part of the mountain 

range (Filippini et al., 2024; Rotiroti et al., 2023; Secci et al., 2021). 

The connection between recharge and spring discharge in the Mediterranean region, in relation 
to climate drivers, has been studied through various quantitative approaches, primarily to 

understand the impacts of climate change on spring flow and, in some cases, to estimate future 
discharge scenarios as well. These methods include the application of various types of models, 
such as rainfall-runoff hydrologic models (Cervi et al., 2018; Joigneaux et al., 2011), karst 

reservoir models (Cinkus et al., 2023; Fan et al., 2023), and multiple hydrogeological numerical 
models (Doummar et al., 2018; Gattinoni and Francani, 2010; Kovačič et al., 2020; Kovács and 
Stevanović, 2023). Other estimates of the recharge-discharge connection have been achieved 

with long-term time series statistical and correlation analyses on data extending back decades or 
centuries, such as the extensive discharge time series of Sanità Spring (Southern Italy) starting in 
1883 (Diodato et al., 2017), the flow monitoring dataset of Fontaine de Vaucluse Spring (South-

Eastern France) monitored since 1878 (Bonacci, 2007), or the discharge time series of Serino 

Spring group (Southern Italy) dating back to 1887 (Fiorillo et al., 2007). Alternative statistical 
methods were employed by Zhu et al. (2020), who studied the relationship between climatic 

variables and groundwater discharge using regression coefficients derived from multivariate 

regression analyses; and by Fiorillo et al. (2015b), who used the Rescaled Adjusted Partial Sums 
(RAPS) technique to examine the influence of a cyclic atmospheric circulation pattern, the North 

Atlantic Oscillation (NAO), on spring discharge. Furthermore, Artificial Intelligence (AI) 

techniques, such as those based on Artificial Neural Networks (ANN) (Smiatek et al., 2013; 
Wunsch et al., 2022), have been employed to investigate trends and fluctuations in recharge-

discharge datasets, also in relation to climate change effects (Secci et al., 2023). Additional ANN 

studies (Di Nunno et al., 2021; Lambrakis et al., 2000) and studies based on multiple machine 

learning models (Granata et al., 2018) have focused on the potential for short and medium-term 
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forecasting of spring discharge. Lastly, other researchers have combined multiple methods to 

simulate spring discharge, such as ANN models with multilinear regression analyses (Gholami and 

Khaleghi, 2019), or random forest techniques with hydrogeological numerical models (Bouhafa 
et al., 2024). Although these studies are based on various types of analyses and different initial 

datasets – most of which do not extend further back than the 1990s – they share a common 

objective: analyzing the relationship between spring discharge and meteorological variables 
and/or recurring climate phenomena. Some studies pursue this aim solely to quantify the effects 

of climate change on the qualitative and quantitative status of groundwater, while others also 

seek to estimate short-term future discharge trends, sometimes using meteorological scenarios 

derived from General Circulation Models (GCMs). 

To the best of our knowledge, none of the previous studies focus on long-term future discharge 

estimation, which is essential for allowing water utility agencies sufficient time to plan and 

implement large-scale infrastructure projects. By establishing long-term discharge relationships 
with recharge-related meteorological parameters based on extensive historical records (> 80 yr; 
Chen et al., 2004; Leone et al., 2021), there is a potential to project these relationships into the 

future, leveraging climate scenario data (i.e., General Circulation Models; Klaas et al., 2019; 
Shepherd et al., 2010) over similar multi-decadal spans. Moreover, all the previous studies 
considered the dynamics of single springs, missing a broader eye on the global effects of recharge 

reductions induced by climate change. The discharge dynamics of each spring are undeniably 
shaped by the features of its basin (Tóth et al., 2022). This complexity poses a challenge in 
gauging the impact of climate change beyond the boundaries of individual spring watersheds, 

e.g., extending to broader climatic zones. However, long-term spring discharge dynamics, 
spanning decades, are typically less tethered to the unique attributes of specific basins and more 
reflective of climate shifts within a given area (Hartmann et al., 2014; Zhong et al., 2016). Thus, 

assuming a broader applicability of future multi-decadal discharge trends, these could also aid in 

managing springs throughout a climatic zone lacking sufficiently extensive hydrogeological data 
for detailed analysis. 

The present research focuses on the application of multivariate statistical analysis to extensive 

historical discharge records of two springs of the Apennine Mountain chain in Italy. ANN and 
hydrogeological modeling methods have had various successes in simulating/predicting 

discharge on relatively short time scales, but it is unclear if they represent a clear advantage for 

long-term projections based on climate scenarios spanning several decades. Therefore, in this 
first exploratory paper, we focus on well-tested multivariate regression techniques to assess the 

potential predictability of spring discharge. The Apennine Mountains are a highly representative 

example of a Mediterranean setting rich in groundwater discharge through springs, particularly 

in its southern and central sectors. Most groundwater in this region is stored in karst aquifers (De 
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Vita et al., 2012; Petitta and Tallini, 2002; Sappa et al., 2019). Nonetheless, aquifers with a 

significant yield are also found in other geological settings, related to volcanic and arenitic 

formations (Doveri et al., 2012; Filippini et al., 2024). The two investigated springs, namely Sanità 
(Cervialto Massif, Southern Apennines) and Ermicciolo (Amiata Volcano, Northern Apennines), 

are associated to watersheds that are affected by similar climatic variability typical of the 

Mediterranean-type climates, however situated in two very different hydrogeological settings, 
i.e., a carbonatic karstified massif and a fractured volcanic structure, respectively. For both 

springs, continuous discharge monitoring is available with at least monthly measurements, from 

the beginning of the 20th century and extending to the present day. The aim of the study is to 

identify the historical connection between spring discharge and recharge-related meteorological 
parameters from a multi-decadal perspective, to utilize this relationship in conjunction with 

future meteorological variables projected by GCMs to assess the multi-decadal discharge 

availability for the period 2040-2070. 

 

3.5. Geological and hydrogeological settings 

The Apennine Mountain chain is the backbone of the Italian peninsula and extends for about 
1200 km in a NW-SE alignment, between Ligurian-Tyrrhenian Seas to the West, and Adriatic-

Ionian Seas to the East. The chain is subdivided into Northern, Central and Southern Apennines 

(Fig. 3.1a). From a geological standpoint, Apennines are a Neogene accretionary fold-thrust belt 
that formed from the subduction between the African Plate below Eurasia within the Alpine 

System (Patacca et al., 1993). The structure of the chain presents a series of tectonic units 
thrusted over each other, subjected after the compressional phase to an extensional one with 

volcanic activity in the Tyrrhenian side (Carminati et al., 2010; Carminati et al., 2012). 

The first of the two investigated springs, Sanità Spring, is situated nearby the village of Caposele 

in Campania Region (Southern Apennines) at an elevation of 417 m above sea level (asl) (40° 48ʹ 

58.8ʺ N, 15° 13ʹ 13.9ʺ E) (Fig. 3.1b). Sanità Spring, with a mean annual discharge of 4.0 m3/s, is 

considered the most significant spring draining the Cervialto Massif (peak elevation of 1809 m 

asl), one of the main Meso-Cenozoic carbonate platforms of the Central-Southern Apennines, 

acting as key groundwater reservoir (Allocca et al., 2014; Fiorillo et al., 2015b). The Cervialto 

Massif is composed of a series of limestone and limestone-dolomite (Late Triassic-Miocene) with 

a thickness ranging between 2500 and 3000 m (Fiorillo et al., 2021). Karst processes have 

transformed the morphology of the massif creating endorheic areas known as ‘polje’, surrounded 

by steep slopes of 35°-45° controlled by fault scarps, where recharge is concentrated, 
constituting almost the entire contribution area of Sanità Spring (Fiorillo et al., 2015a). 
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Fig. 3.1. Location of the two study areas in the Apennines Mountain chain: (a) 100 m resolution Digital 
Elevation Model (DEM) of Italy realized by the National Institute of Geophysics and Volcanology (INGV) 

(Tarquini et al., 2023), with indication of the Apennines subdivision into Northern, Central and Southern 

sectors; (b) 1. Geological formations; 1a. Karst aquifer; 1b. Aquitard units; 2. Sanità Spring; 3. Sanità Spring 
catchment; 4. Cervialto Massif peak; 5. “Senerchia” rain gauge; 6. “Materdomini” temperature gauge; 7. 

“Rifugio Laceno” snow gauge; 8. CMCC-CLM TLP chosen grid point; 9. CMCC-CLM 2 m °C chosen grid point; 

10. ERA5 (HSR) snowfall chosen grid point; (c) 1. Geological formations; 1a. Volcanic aquifer; 1b. Aquitard 

units; 2. Ermicciolo Spring; 3. Ermicciolo Spring catchment; 4. Mount Amiata peak; 5. “Vivo d'Orcia” rain 
gauge; 6. “Abbadia San Salvatore” temperature gauge; 7. “Monte Amiata” snow gauge; 8. CMCC-CLM TLP 

chosen grid point; 9. CMCC-CLM 2 m °C chosen grid point; 10. ERA5 (HSR) snowfall chosen grid point. 

The spring is of strategic significance to Southern Italy, particularly for the Puglia Region, which 

represents one of the areas with the lowest precipitation in the central Mediterranean region, 

receiving approximately 600 mm of annual precipitation. The water from Sanità Spring is 

conveyed through a 450 km long gravity-driven series of tunnels and bridges from the Campania 

Region to the southernmost part of Puglia since the 1930s (Fiorillo, 2009). The climate in Sanità 

Spring catchment area is Mediterranean and falls within the “Csa” category according to the 

Köppen-Geiger classification (Kottek et al., 2006). The average annual precipitation and 
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temperature at the mean elevation of the spring catchment are approximately 1500 mm and 

12.1 °C (www.centrofunzionale.regione.campania.it). 

The second spring of interest, Ermicciolo Spring, is situated along the northern slope of Mount 
Amiata, in the southern part of the Tuscany Region at an elevation of 1020 m asl (42° 55ʹ 25.8ʺ 

N; 11° 38ʹ 29.5ʺ E), approximately 100 km to the south-west of the Northern Apennines main 

divide (Fig. 3.1c). Ermicciolo Spring is one of the major springs in the Tuscany region, with a mean 
annual discharge of about 0.15 m3/s and a maximum recorded flow rate of nearly 0.4 m3/s. 

Mount Amiata (peak elevation of 1738 m asl), an extinct volcano, represents the youngest 

Quaternary volcanic edifice of the Tuscan Roman Magmatic Province (Frondini et al., 2009) and 

covers an outcropping surface of about 80 km2. The evolution of the volcano is associated to the 
most recent Apenninic post-orogenic extensional phase that occurred between 300 ky and 190 

ky, when several dacitic, rhyodacitic and olivine-latitic eruptions gave rise to the volcanic edifice 

(Bortolotti and Passerini, 1970). From a hydrogeological perspective, the volcanic structure is a 
fractured aquifer that can be broadly divided into two distinct groundwater flow systems 
separated by a dynamic groundwater divide located near the peak of the mountain (Fig. 3.1c; 

Doveri et al., 2012), with Ermicciolo Spring being fed by the northernmost system. Amiata aquifer 
stands as one of the crucial groundwater reservoirs for Southern Tuscany as it feeds major springs 
utilized by the local water company, providing drinkable water to the surrounding lowlands and 

coastal areas, which are characterized by lower precipitation, aquifer overdrafting, and 
groundwater salinization issues. The climate in the spring catchment is Mediterranean and 
categorized as “Csb” (Beck et al., 2023), with average annual precipitation and temperature of 

about 1200 mm and 10.6 °C (www.sir.toscana.it). 

 

3.6. Materials and methods 

3.6.1. Discharge monitoring 

Measurements of the total discharge at Sanità Spring started in January 1920 (Fig. 3.2) when the 

Italian National Hydrographic Institute established a systematic monitoring. The spring is uptaken 

by the water company Acquedotto Pugliese S.p.A. (AQP) since the beginning of twentieth century 

(Fiorillo and Guadagno, 2012) with an artificial draining tunnel, characterized by several niches, 

along the discharge front at the base of the mountain slope. A portion of the spring discharge is 

released as overflow, providing ecological services to a local river. Originally, the discharge was 

quantified through a hydrometric reel along the main channel, with a monitoring frequency of 

two times per month (on the 2nd and 16th day of each month). Since their introduction in 1927, 
Venturi tubes have allowed for more frequent discharge measurements (Fiorillo et al., 2021). The 

monitoring system was further improved in 1980, when data acquisition became daily. 

http://www.centrofunzionale.regione.campania.it/
http://www.sir.toscana.it/
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Fig. 3.2. Mean monthly discharge of Sanità (top) and Ermicciolo (bottom) Springs. The labels on the x-axis 

indicate January of each respective year. 

Ermicciolo Spring is uptaken through a draining tunnel constructed between 1908 and 1914 

(Parco Vivo, 2019 - https://www.parcovivo.it/sorgenti-del-monte-amiata/) on the north side of 

Mount Amiata aquifer complex. The tunnel is lined with concrete and connects three niches in 
the walls, enabling direct gravity drainage of groundwater from the aquifer's primary 

transmissive fractures. A portion of the spring discharge is withdrawn by the local water utility, 

Acquedotto del Fiora S.p.A. (AdF) (Doveri et al., 2012), while the excess overflows from the tunnel 
into a nearby stream. Total flow rate data are available from 1939 to nowadays, with a gap of 

acquisition from 1990 to 1995 inclusive (Fig. 3.2). Initially, flow rate monitoring was performed 

manually using stage measurements with a thin-wall weir, at a variable frequency of 2-3 times 
per month. Since the 1990s, an automatic contactless hydrometer has been installed, with a 

measurement frequency of four and a half hours (approximately 5 measurements per day). 

The hydrographs in Fig. 3.2 represent monthly values, each averaged from all available single-
shot measurements corresponding to that month. 

 

https://www.parcovivo.it/sorgenti-del-monte-amiata/
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3.6.2. Thermo-pluviometric and snowfall data 

Monthly average air temperature and monthly cumulative precipitation data for the catchment 

area of the two investigated springs were obtained from local meteorological stations managed 
by regional authorities (Fig. 3.1), within the same time intervals covered by spring discharge 

monitoring. The stations used for Sanità Spring watershed are the “Senerchia” station for 

precipitation (approximately 600 m asl), and the “Materdomini” station for air temperature (550 
m asl) (www.centrofunzionale.regione.campania.it). For Ermicciolo Spring catchment the “Vivo 

d'Orcia” station was considered for precipitation (about 842 m asl), while air temperature was 

acquired from the “Abbadia San Salvatore” station (855 m asl) (www.sir.toscana.it). 

Precipitation time series at the selected stations were collected through non-heating rain gauges. 
Thus, their capacity to record snowfall precipitation is poor. Snowfall is a fundamental parameter 

for groundwater recharge in mountainous regions in terms either of snow depth or of 

permanence of snow to the ground (Halloran et al., 2023), as also put in evidence in the 
investigated sites (Doveri et al., 2012; Petitta et al., 2022). To avoid the risk of underestimating 
total precipitation in the springs' catchment area, it was decided to add the snowfall 

precipitation, as measured by local specific snow gauges, to the liquid precipitation recorded by 
conventional rain gauges. This approach has been recently adopted by other authors for 
hydrogeological budgeting of an Alpine area in Northern Italy (Stevenazzi et al., 2023). However, 

time series of direct measurements of snowfall in the investigated areas are available only for 
the most recent 30-40 yr, and can be found on the MeteoMont website 
(meteomont.carabinieri.it), a service for avalanche prevention and forecasting. Specifically, the 

available data include the number of days with snow-covered ground and the total snowfall 

within 24 h; for our study, only the daily snowfall data were collected and then aggregated into 
monthly cumulative totals. The snowfall stations “Rifugio Laceno” (1460 m asl) and “Monte 

Amiata” (1700 m asl) were selected as representative of Sanità and Ermicciolo Springs catchment, 

respectively (Fig. 3.1). In the former case, data are available from 1996 to the present, while in 
the latter from 1982. 

Snowfall data from earlier decades were estimated by reconstructing them using the fifth version 

of ECMWF ReAnalysis (ERA5) data. Reanalyses combine historical observations with models to 
generate consistent time series of various atmospheric and ground variables at numerous grid 

points, with precise coordinates, centered and pertaining to a specific area (Tarek et al., 2020). 

Developed by the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5 
provides hourly data, spanning from 1940 to 2023, for atmospheric, land-surface, and sea-state 

parameters, with a ≃31 km horizontal resolution (Hersbach et al., 2020). For both case studies, 

monthly cumulative snowfall data were selected from the nearest ERA5 node to the local 

MeteoMont snow gauge. To achieve even better spatial resolution, the new dataset created by 
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Raffa et al. (2021) was also utilized, albeit covering only the period 1981-2023. This dataset is 

based on a dynamically downscaling over Italy of the ERA5 reanalysis, improving the horizontal 

resolution to approximately 2.2 km. Monthly cumulative snowfall data were picked from two 
nodes of the ERA5 dataset with High Spatial Resolution (HSR) (Fig. 3.1), chosen based on their 

distance to the two snow gauges pertaining to MeteoMont. 

 

3.6.2.1. Past snowfall data reconstruction 

In the time frame where ERA5 and ERA5 HSR datasets overlap (1981-2023), a linear regression 

analysis was performed to determine the coefficients linking the datasets. Through these 

coefficients, the ERA5 HSR time series was extended back to 1940. The same procedure was then 
applied between the extended ERA5 HSR and the local snow gauge time series to similarly 

reconstruct the MeteoMont snowfall data back to 1940. These steps were undertaken for both 

Sanità and Ermicciolo Springs catchment to obtain snowfall data with the highest possible spatial 
resolution and the longest possible temporal coverage. Once the snowfall data was 

reconstructed (Fig. 3.3) it was converted into Snow Water Equivalent (SWE). 

 

Fig. 3.3. MeteoMont monthly cumulative snowfall (1940-2023), partially reconstructed (1940-1996 for 
Sanità Spring and 1940-1982 for Ermicciolo Spring) using ERA reanalyses, pertaining to the contribution 

area of Sanità (left) and Ermicciolo (right) Springs. 

Given that the initial data of the three datasets are provided on an hourly or, at most, daily basis, 

it can be assumed that the recorded snowfall data represent recently fallen and uncompacted 
snow. Consequently, a density of 100 kg/m3 was used in converting snowfall precipitation to SWE 

(Mekis and Brown, 2010). Assuming a density of rainwater of 1000 kg/m3, the data conversion 

was performed by a simple division by 10. The resulting data were added to the rainfall data. This 
process yielded a combined precipitation measure, referred to as the Total Liquid Precipitation 
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(TLP), which represents the aggregate contribution of both liquid and solid forms of precipitation, 

with the latter contributing to a lesser extent. 

 

3.6.3. Combined statistical analysis of spring discharge and meteorological variables 

To unravel the relationship between meteorological parameters and spring discharge, univariate 

and multivariate linear regression analyses (Gholami and Khaleghi, 2019; Zhou and Zhang, 2023) 
were conducted on historical meteorological data (cumulative TLP and average monthly air 

temperature) as independent variables, and on monthly discharge data as the dependent 

variable. Prior to regression analyses, all datasets underwent normalization using monthly mean 

and standard deviation values calculated from the whole dataset (1940-2023), a process 
commonly referred to as anomaly normalization (Brockwell and Davis, 2016). Specifically, each 

value in the dataset was transformed by subtracting the mean of the corresponding month and 

then dividing by the standard deviation calculated across the entire data population for that same 
month. Data normalization plays a crucial role in the analysis of time series with disparate units 
of measurement and numerical scales, ensuring fair comparisons among parameters 

(Montgomery et al., 2008). 

As a first step, separate linear regressions were performed between the dependent variable 
(discharge) and each independent variable, TLP or air temperature (AirT), to analyse the 

individual relationships between these parameters and to identify possible variable-specific time 
lags to be considered in the subsequent multivariate analyses. Once the correlations among the 
individual variables were established, twelve different monthly lags, ranging from 1 to 12 

months, were implemented in the linear regression. The time lag that yielded the highest R-value, 

indicating a stronger relationship between the parameters, was selected (Fig. 3.4). 

The multivariate statistical analysis was performed using the Ordinary Least Squares (OLS) model 

from the Python statsmodels library (Seabold and Perktold, 2010). The OLS model is a commonly 

utilized linear regression technique that evaluates, through the estimation of Correlation Factors 
(CF), the relationship between a dependent variable and one or more independent variables by 

minimizing the sum of the squares of the differences between the observed and predicted values 

(Farahani et al., 2010; Hayes and Matthes, 2009). Additionally, the OLS model determines the 
uncertainty associated with the regression coefficients by estimating confidence intervals for 

these factors. The p-value, used to assess the significance of the relationship between variables, 

and the R-squared, which represents the proportion of variance in the dependent variable 
explained by the independent variables (Kutner et al., 2005; James et al., 2013), were also 

evaluated. 
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Fig. 3.4. Scatter plots resulting from the univariate linear regressions performed between the dependent 

variable (spring discharge) and the independent variables (TLP and AirT). For both case studies, the lag 

time that yields the best correlation (i.e., the highest R-value) with spring discharge is 7 months for both 

meteorological variables. The relatively modest R-values are due to noise in the data. 

 

3.6.4. Estimation of future spring discharge 

3.6.4.1. RCPs 4.5 and 8.5 climate projections 

The Representative Concentration Pathways (RCPs), provided by the Intergovernmental Panel on 

Climate Change (IPCC, 2014), are climate scenarios, expressed in terms of greenhouse gas 

concentrations (Van Vuuren et al., 2011), that estimate emissions of greenhouse gasses (GHG) 
and air pollutants levels of 8.5, 6.0, 4.5 and 2.6 W/m2, by the end of the century. These RCPs were 

estimated depending on both socio-economic development scenarios and the associated climate 
policies that will be implemented to reduce the production of GHG. For example, the RCP 4.5 
scenario anticipates that emissions will be halved by 2080, while the RCP 8.5 scenario represents 

an estimate of emissions that will be reached by the end of the century if no additional efforts 

are made to constrain the generation of greenhouse gasses. 
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General Circulation Models (GCMs) using multiple emission scenarios (Klaas et al., 2019; 

Shepherd et al., 2010) represent the most advanced instruments for simulating the response of 

the global ocean-atmosphere system to climate changes (Shahgedanova et al., 2020). The RCPs 
are indeed employed in GCMs to estimate future meteorological variables. General Circulation 

Models require a downscaling process to represent the hydrogeological watershed-scale 

dynamics, which involves obtaining more detailed and localized information (Gudmundsson et 
al., 2012; Haylock et al., 2006). Ban et al. (2021) enhanced the downscaling capabilities of GCMs 

by providing climate data with a spatial resolution ranging from 1 to 3 km and an hourly temporal 

resolution. These improvements reduce associated errors and add value to the estimation of 

atmospheric variables at the local scale. 

Each of the RCPs covers the 1850-2100 period and is reported at a 0.5 × 0.5° spatial resolution 

(approximately 40-55 km) (Van Vuuren et al., 2011). To achieve a better spatial resolution of the 

future climate scenarios, projections derived from the Euro-Mediterranean Center on Climate 
Change Foundation — Climate Model (CMCC-CM), elaborated with the RCPs 4.5 and 8.5, were 
utilized (Raffa et al., 2023). These estimates, which are available from January 2006 up to 

December 2070, were generated at approximately 2.2 km resolution through a dynamical 
downscaling process using the regional climate model “COSMO-CLM” (Consortium for Small-
scale Modeling - Climate Limited-area Model) over Italy, allowing for the generation of highly 

detailed and comprehensive datasets of projected climatological data (Raffa et al., 2023). Just as 
for the ERA5 reanalyses data, these future projections over Italy were computed at numerous 
grid points, pertaining to a specific area. For this study, monthly data were selected for the 

variables “Total precipitation” and “2 m temperature”, covering each of the Sanità and Ermicciolo 
Springs catchments. 

The variables were acquired from grid nodes based on their proximity to meteorological stations 

(Fig. 3.1), ensuring relevance to the collected historical thermo-pluviometric data. Furthermore, 

data were acquired for both RCPs 4.5 and 8.5, providing insights into both moderate and more 
extreme climate futures. Before using these meteorological projections, quality control was 

performed on the data. Considering the period spanning from January 2006 to December 2023, 

during which both the climate projections and the historical data from weather stations are 
available, a comparison was made to detect and correct any constant deviations of the scenarios 

from the actual historical data. The historical and forecasted meteorological time series were 

compared by means of simple subtractions. This process facilitated the verification of the 
presence of any deltas between each meteorological parameter. 
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3.6.4.2. Application of CF to weather scenarios 

The regression equations and corresponding correlation factors obtained from the OLS models 

were applied to the two selected meteorological data outputs of the 4.5 and 8.5 future 
projections (2040-2070), previously normalized using the same approach described in Section 

3.6.3 for past time series. The normalized future discharge dataset for Sanità and Ermicciolo 

Springs were then determined between January 2040 and December 2070, for both RCP 4.5 and 
RCP 8.5 scenarios. Subsequently, the projected discharges were denormalized by applying the 

reverse process described for normalization, using the same monthly means and standard 

deviations, in order to obtain the estimated spring discharge values for the period 2040-2070. 

 

3.6.5. Multi-decadal hydrographs 

With the aim of analysing the long-term trend of spring discharge, a multi-decadal cycle approach 

was used. Considering that at least 30 yr of data are required to appreciate climate trend (Livezey 
et al., 2007), the historical flow rate dataset of Sanità Spring was divided into three 35-yr subsets: 
1920 to 1954, 1955 to 1989, and 1990 to 2024. As for Ermicciolo Spring, the historical discharge 

data were divided into three multi-decadal groups, with the oldest one spanning only 16 yr: 1939 
to 1954, 1955 to 1989, and 1990 to 2024. The two most recent periods are consistent with that 
of Sanità Spring, thereby enabling a comparison between the multi-decadal discharge values of 

the two springs. In both cases, the historical discharge subsets were plotted along with standard 
deviation uncertainty bands around the mean, defined by adding/subtracting the standard 
deviation of the monthly spring discharge values for each multi-decadal group to the mean of 

those values. The projected discharge data of Sanità and Ermicciolo Springs were graphed 

alongside the historical data by creating two 30-yr groups for each spring, spanning from 2040 to 
2070, respectively in relation to RCPs 4.5 and 8.5 scenarios. For the future discharge estimates, 

the uncertainty bands around the mean were derived from the flow rate values obtained through 

the lower and upper bounds of the coefficients' confidence intervals determined by the 
multivariate OLS models. 

 

3.7. Results 

3.7.1. Discharge time series 

Sanità and Ermicciolo Springs have century-long continuous discharge monitoring dating back to 

January 1920 and 1939, respectively, and extending to the present. In Fig. 3.2, the last data point 

represented is that of January 2024 and the data are presented as monthly averages in 
accordance with the temporal scale used in the statistical analyses of the present study. 
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Sanità Spring hydrograph since 1920 (Fig. 3.2) exhibits an annual cyclic variation in relation to 

recharge, with the yearly peak discharge occurring between May and July, and the low flow 

period between November and December (Fig. 3.5). The average hydrological year for this spring, 
throughout the entire monitoring period, exhibits a discharge ranging from approximately 3.3 

m3/s to 5.4 m3/s (Fig. 3.2), placing it within the second (II) class of Meinzer's (1923) spring 

discharge classification. Ermicciolo Spring hydrograph since 1939 (Fig. 3.2) shows a peak 
discharge during the same months as Sanità, while the low flow occurs slightly later, between 

January and February of the following year (Fig. 3.5). The average spring discharge of Ermicciolo 

fluctuates from roughly 90 L/s to 210 L/s (Fig. 3.2), placing it between the III and IV classes of 

Meinzer's classification. Notably, a decreasing trend in Ermicciolo Spring Meinzer's class is 
apparent when comparing the periods before and after the mid-1970s. 

 

Fig. 3.5. Monthly mean rainfall of Sanità and Ermicciolo Springs reference rain gauges (on the left); 

monthly mean discharge of Sanità and Ermicciolo Springs (on the right). For each monthly mean value, 

the error bar represents the 95% confidence interval. 

The secular discharge data of Sanità and Ermicciolo Springs have the potential to provide valuable 

insights into changes in water resource availability due to climate change effects, given (i) the 

length of the series, (ii) the systematic quality of the records and (iii) the absence of human-made 

alteration of the natural conditions of the aquifers, for the almost absence of pumping wells or 



 
 

105 

groundwater draining facilities (Doveri and Menichini, 2017; Leone et al., 2021). The only 

significant effect not attributed to natural recharge variations is linked to the major earthquake 

of November 23rd, 1980 (Surface wave Magnitude – Ms – 6.9, the Irpinia earthquake). With its 
epicentre located approximately 10 km southeast of Sanità Spring, the earthquake impacted the 

spring's discharge, leading to an extraordinary anomalous value of 7.32 m3/s recorded on January 

19th, 1981 (Fiorillo and Guadagno, 2012) (Fig. 3.2). 

 

3.7.2. Regression analysis 

Before conducting the linear regression analyses, we applied multiple tests to explore potential 

non-linear or threshold relationships between the variables. The results did not provide any 
significant evidence of these patterns (high p-value) in each of the four univariate cases, 

suggesting that the linear form of the model is appropriate for our datasets. The univariate linear 

regressions (Fig. 3.4) showed that, for Sanità and Ermicciolo Springs, discharge has the strongest 
negative correlation with the average AirT (R-value: −0.351 and −0.191, respectively) and the 
strongest positive correlation with cumulative TLP (R-value: 0.166 and 0.286, respectively) with 

a time lag of 7 months (Fig. 3.4), which is consistent from a physical standpoint as peak liquid 
precipitation (representing the majority of TLP) occurs in November, while peak discharge is 
observed in summer (Fig. 3.5). It is also logical that air temperature is more strongly correlated 

with spring discharge at the same lag time as TLP, since higher air temperatures increase 
evapotranspiration, thereby reducing the effectiveness of precipitation in recharging aquifers 
(Cardell et al., 2020). Thus, a time lag of 7 months was used in the subsequent multivariate 

analysis for AirT and TLP. The two variables registered 7 months in advance compared to 

discharge will be called “AirTLag7” and “TLPLag7” hereafter. 

For both Sanità and Ermicciolo Springs, the multivariate analysis confirms a positive correlation 

between TLPLag7 and discharge (Q), and a negative correlation between AirTLag7 and discharge. 

Specifically, for the Sanità Spring, the OLS model produced the following equation (Eq. 3.1): 

QSan = +0.143 +0.183*TLPLag7 -0.544*AirTLag7 + ε   [3.1] 

where “QSan” represents the dependent variable, which in this case is the predicted flow rate of 

Sanità Spring, the error term “ε” represents the difference between the observed value of the 
dependent variable and the value predicted by the linear regression model, and “TLPLag7” and 

“AirTLag7” are the independent variables. 

The confidence intervals provided for the coefficients are calculated at the 95% confidence level. 
Specifically, for the TLPLag7 variable, the confidence interval bounds of the relative Correlation 

Factor (CF) are [+0.253, +0.113], resulting in an uncertainty margin of ±0.07; for AirTLag7, the CF 
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confidence interval bounds are [−0.414, −0.674], indicating a margin of error of ±0.13; for the 

intercept term the confidence interval bounds are [+0.213, +0.073], resulting in an uncertainty 

margin of ±0.07. 

Similarly, for Ermicciolo Spring, the regression equation (Eq. 3.2) is as follows: 

QErm = -0.032 +0.278*TLPLag7 -0.289*AirTLag7 + ε   [3.2] 

where “QErm” represents the predicted discharge of Ermicciolo Spring, “ϵ” is the error term, and 
“TLPLag7” and “AirTLag7” are the recharge-related independent variables. 

The confidence intervals for the coefficients calculated at the 95 % confidence level are the 

following: for TLPLag7, the confidence interval bounds of its regression coefficient with the 

discharge are [+0.338, +0.218], resulting in an uncertainty margin of ±0.06; for the AirTLag7 
variable, the CF confidence interval bounds are [−0.089, −0.489], indicating a margin of error of 

±0.20; for the intercept term, finally, the confidence interval bounds are [+0.038, −0.102], 

resulting in an uncertainty margin of ±0.07. 

Both models exhibit statistically significant results, as evidenced by the consistently low p-value, 
remaining below 1 × 10−4 in both case studies, indicating a high level of confidence in the 

observed relationships. 

 

3.7.3. Future recharge-related meteorological parameters 

Thanks to the comparison of climate projections with historical meteorological data for the 2006-
2023 period, it was found that in both case studies, the historical precipitation aligns closely with 
both projections of the RCPs 4.5 and 8.5 scenarios, with a maximum monthly deviation of 15%. 

However, a systematic bias was found for the 2 m temperature leading to a deviation from 

historical data of 2 °C in the case of Sanità Spring catchment and 3 °C in the case of the 
Ermicciolo's one. These constant deviations were then used to adjust the entire historical series 

of future temperature projections. 

Considering the adjusted RCPs 4.5 and 8.5 future data (2024-2070) and the historical values 
(1940-2023), it is evident that air temperature will experience a significant increase in the future, 

whereas total precipitation, which has shown a relatively increasing trend from the 1990s to the 

present, is projected to undergo a considerable decrease (Fig. 3.6). 
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Fig. 3.6. Plots of annual cumulative TLP and mean annual AirT for the contribution area of Sanità (top) and 

Ermicciolo (bottom) Springs. Both historical data (1940-2023) and future projections of the RCPs 4.5 and 

8.5 scenarios (2024-2070) are plotted on all graphs. 
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3.7.4. Multi-decadal spring discharge analysis 

The multi-decadal analysis of Sanità Spring discharge data displays an average flow rate ranging 

from approximately 3580 to 4430 L/s during the oldest 1920-1954 historical band (Fig. 3.7), with 
a standard deviation uncertainty band that varies from 70 to 180 L/s both below and above the 

average value. The intermediate historical band (1955-1989) is characterized by the highest 

discharge and partially overlaps with the first band. It covers a range between 3820 and 4630 L/s, 
with an uncertainty band oscillating from 80 to 150 L/s indicating lower variability compared to 

the preceding period. The most recent historical band (1990-2024) shows an average discharge 

ranging from 3360 to 3920 L/s, with a standard deviation uncertainty band that fluctuates around 

the mean of 70-130 L/s, suggesting less variability in the data.  

 

Fig. 3.7. Hydrographs of Sanità Spring based on the mean multi-decadal approach with uncertainty bands. 
Three bands are constructed using historical data, while the remaining two are built using the future 

discharge projections resulting from the multivariate statistical analysis performed on the Sanità dataset. 

The uncertainty bands for the two future discharge scenarios (2040-2070) exhibit even lower 

variability, ranging from 60 to 120 L/s on both sides of the average value, giving them a narrower 

appearance. In the RCP 4.5 scenario an average discharge from 3220 to 3830 L/s is observed, 

with the band slightly intersecting that of the most recent 35-yr historical period. In the more 
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severe RCP 8.5 scenario, the average discharge varies from 2970 to 3630 L/s, showing a partial 

overlap with the values of the other future scenario. 

Concerning Ermicciolo Spring, the three historical bands show a progressively lower average 
discharge moving from the two older periods to the most recent, with the following discharge 

ranges: 172-201 L/s (1939-1954), 135-157 L/s (1955-1989), and 131-147 L/s (1990-2024) (Fig. 

3.8). The standard deviation uncertainty bands vary from 5 to 11 L/s in the first two cases and 
from 8 to 11 L/s in the third, suggesting an overall lower variability in the data population 

compared to Sanità Spring. Regarding the bands of the two future discharge scenarios (2040-

2070), the average discharge ranges from 131 to 146 L/s in the RCP 4.5 scenario and from 116 to 

131 L/s in the 8.5 scenario. In both cases, the data variability is very low, with bands oscillating 
of only 2-5 L/s around the mean. Additionally, a partial overlap exists among the two most recent 

historical bands and the future one related to the RCP 4.5 scenario. 

 

Fig. 3.8. Hydrographs of Ermicciolo Spring based on the mean multi-decadal approach with uncertainty 
bands. The division of discharge bands is the same as in Fig. 3.7. 
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3.8. Discussion 

The hydrographs of the investigated springs (Fig. 3.2) provide insights into both the specific 

features of the hydrogeological setting, and the broader effects of climate change over the 

Apennines Mountain chain. 

The flow rate of Sanità Spring indeed shows greater variability compared to that of Ermicciolo 

Spring. This difference is linked to the typical dynamics of a karst environment. Ermicciolo Spring, 

on the other hand, reflects the dynamics of a less heterogeneous fractured context (i.e. a volcanic 
aquifer) than the former, resulting in less discharge variability. However, univariate regression at 

both springs reveals a robust, inverse statistical correlation between AirT and monthly discharge, 

with a lag of 7 months. In contrast, the cumulative monthly TLP exhibits a statistically significant 
positive correlation with the discharge over the same time lag (Fig. 3.4). Surprisingly, the same 

time lag between the historical independent variables and historical spring discharge was found 

to characterize two rather different hydrogeological watersheds. Sanità Spring is fed by a karst 
system that is expected to show quicker discharge responses to precipitation compared to the 
lower permeability fractured volcanic aquifer feeding Ermicciolo Spring. Nonetheless, it appears 

that the extensive catchment associated to Sanità Spring can considerably delay the effects of 
direct recharge. The contribution area of the spring is 110 km2 (Fiorillo and Doglioni, 2010), 

whereas Ermicciolo Spring catchment is one tenth the area, at around 13 km2 (Doveri and Raco, 

2021). For this reason, the similar TLP lag identified for the two watersheds is considered 
reasonable. 

Regarding the effects of global warming on spring discharge along the Apennines, Fig. 3.2 
indicates that climate change in the Mediterranean region has negatively affected the discharge 

availability of Sanità and Ermicciolo Springs over the past 3-4 decades. At the multi-decadal scale, 

negative consistent historical trends are indeed observed between the two springs, with the last 

35-yr period exhibiting a decrease in discharge and reduced data variability in both case studies 

compared to the previous period (Fig. 3.7, 3.8). At Sanità Spring, the percentage discharge 

decreases between the most recent period, 1990-2024, and the intermediate period,                

1955-1989, was a significant 12.5. In contrast, at Ermicciolo Spring, the reduction over the same 

periods was only 3.7%. The greater reduction in discharge at Sanità compared to Ermicciolo can 

likely be attributed to the Irpinia earthquake, which temporarily caused a substantial increase in 

discharge that partially depleted the aquifer in the following 3-4 yr. Moreover, previous research 

(Fiorillo and Guadagno, 2012) shows a discharge drop after 1986 in many springs in Southern 

Italy, plausibly related to climate change, which is consistent with the trend observed in Sanità 

Spring. 
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The expected rise in air temperatures in the Mediterranean region will result in increased 

evapotranspiration and consequent reduction of liquid precipitation recharging the aquifers 

(Cardell et al., 2020; Rosenberg et al., 1999; Yusoff et al., 2002). Moreover, there will be adverse 
effects on solid precipitation, as already observed in Italy in recent decades (Diodato et al., 2019; 

Diodato et al., 2022), with a shorter duration of snow permanence to the ground and a significant 

reduction in total snowfall (also confirmed in the two study areas, Fig. 3.3), further amplifying 
the groundwater recharge reduction. Additional critical factors that impair recharge must be 

considered, including the projected decrease in total precipitation associated with the RCPs 4.5 

and 8.5 scenarios (Fig. 3.6), as well as the increased frequency of extreme precipitation events, 

which is expected to reduce the infiltration rate relative to the surface runoff rate. 

Given the concerning future outlook for groundwater in the Mediterranean region, a multivariate 

OLS model was employed in both case studies to estimate future spring discharge. With this 

model, we sought to identify the regression coefficients linking recharge-related variables to 
spring discharge using nearly century-long historical datasets (1940-2023). Although climatic 
conditions are changing with increasing rates and variability in recent decades (Caloiero et al., 

2018), the assumption underlying our study is that the processes by which meteorological factors 
affect spring discharge remain consistent when looking at a long-term trend. For this reason, 
using only the past decade or the past two to three decades (during which climate change has 

accelerated) for the multivariate analyses was not considered ideal for identifying the best long-
term recharge-discharge relationships. As evidence of this, during the validation process of both 
the multiregression models, we tested the use of only these recent decades; however, the results 

showed lower statistical significance and much weaker correlations between the variables 
compared to those of the 1940-2023 data models, potentially leading to unreliable predictions. 

Thanks to the correlation factors derived from the OLS 1940-2023 data models (Eq. 3.1, Eq. 3.2), 

it was possible to estimate the future discharge scenarios of Sanità and Ermicciolo Springs within 

the 2040-2070 period. The reconstructed discharge clearly exhibits a further decreasing trend 
compared to the historical dataset of both springs, with some differences in relation to the 

chosen RCP scenario. Under the RCP 4.5 scenario, the future discharge projections appear to 

show no excessive impairment in flow rate output compared to the most recent historical period 
(Fig. 3.7, Fig. 3.8). Indeed, the estimated decrease in discharge is only 3.0% for Sanità Spring and 

0.1% for Ermicciolo Spring. Conversely, under the more severe RCP 8.5 scenario, characterized 

by higher greenhouse gas emissions, a further decrease in spring discharge is evident in the 2040-
2070 time frame, with a percentage decrease of 8.6% relative to the 1990-2024 interval (19.9% 

when compared to the 1955-1989 period, characterized by the highest groundwater yield), at 

Sanità Spring, and a similar percentage decrease of 10.8% relative to the most recent 35-yr period 

(or even 33.3% when compared to the 1939-1954 time frame) at Ermicciolo Spring. 
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The results in terms of percentage associated with the RCP 8.5 scenario indicate that Sanità 

Spring could lose, over the 2040-2070 period, an average of 9.8 million m3 of water/yr, when 

compared to the annual average discharge of the last 35 yr. Regarding Ermicciolo Spring, the 
future estimated discharge loss respect to the 1990-2024 interval amounts to almost 0.5 million 

m3/yr, considering the same scenario. Analysing these losses in spring discharge and considering 

a daily water consumption per person of 220 L (Eurispes, 2023 - https://eurispes.eu/en/news/a-
system-that-treads-water-the-condition-of-water-in-italy/), the average annual decrease in 

discharge at Sanità equates to the annual demand of a city with 122,000 inhabitants. Applying 

the same calculation to the results obtained for Ermicciolo Spring, the decrease in discharge 

would be sufficient to meet the water needs of a town of over 6000 inhabitants. 

Given that long-term spring discharge dynamics, which span decades, tend to be less influenced 

by the specific characteristics of individual basins and more indicative of broader climate shifts 

within a region (Hartmann et al., 2014; Zhong et al., 2016), the similar multi-decadal downtrend 
in spring discharge forecasted through future climate factors for both Sanità and Ermicciolo 
Springs for the 2040-2070 period is likely extendable to other settings within Mediterranean-type 

climates. 

The approach presented here offers new insights into the ability to estimate future trends in 
groundwater discharge. Recent studies in the literature have employed machine learning 

methods, particularly Artificial Neural Networks, as well as hydrogeological numerical models, to 
achieve the same objective of estimating future spring discharge. These studies have 
demonstrated the capability to accurately forecast spring discharge from weeks up to three 

months ahead (Granata et al., 2018) or even up to 12 months (Di Nunno et al., 2021). Some 

researchers have also managed to estimate annual peak and minimum spring discharge values 
up to the end of the current century using these methods (e.g., Doummar et al., 2018; Fan et al., 

2023). However, both approaches present certain limitations. As highlighted by Cinkus et al. 

(2023) and Di Nunno et al. (2021), these methods require high temporal resolution data, ideally 
daily or at least bi-weekly measurements. Moreover, they struggle to reproduce long-term 

discharge values and extreme events, and are often time-consuming to run. The multivariate 

statistical analysis approach, although it may provide less accurate short-term forecasts 
compared to ANN-based systems (Gholami and Khaleghi, 2019), offers the advantage of making 

long-term discharge projections using only monthly resolution data, provided the analysis is 

applied to century-long datasets, as in the present research. This method allows for the 
estimation of expected long-term annual peak and minimum discharges for springs, as well as 

the generation of springs' hydrographs over a multi-decadal time span, depicting monthly 

discharge fluctuations in the mid-to-late 21st century (2040-2070). 
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3.9. Conclusion 

Two strategic aqueduct springs, Sanità and Ermicciolo, located along the Apennines Mountain 

chain (Italy) in two distinct hydrogeological settings but under a similar Mediterranean-type 

climate, have been the focus of this work due to their rare, century-long historical record of 
discharge data. The study approach was based on the multivariate statistical correlation between 

spring discharge and recharge-related data (air temperature and total precipitation), 

representative of the springs' catchment area. The regression coefficients derived from the 
statistical analyses were then applied to projected meteorological data from the RCPs 4.5 and 

8.5 future climate scenarios to estimate the long-term discharge trend for both Sanità and 

Ermicciolo Springs. Under the most severe emission scenario, a significant decrease in discharge 
is observed for both springs during the 2040-2070 period compared to the most recent historical 

one (1990-2024). The estimated percentage decrease in flow rate between these two periods is 

8.6% at Sanità Spring and 10.8% at Ermicciolo Spring, corresponding to a reduction in discharge 
of 310 L/s and 15 L/s, respectively. It is important to note that these decreases will affect two 
springs that, due to climate change, are already experiencing a decline in discharge compared to 

previous decades. Past and future multi-decadal discharge reductions are consistent across two 
different hydrogeological settings, suggesting a greater influence from climatic drivers (common 

to both sites) as opposed to the specific hydrogeological features of the individual catchments. 

This allows us to speculate that the observed negative trends may also be valid in other springs 
within similar climatic contexts. There is a strong and widespread perception that water scarcity 

in the future will profoundly impact the Apennines, already facing water crises (Fiorillo et al., 
2015b; Fiorillo and Guadagno, 2012). This has been confirmed in the northern part of the chain 
as well (Filippini et al., 2024), and most likely these negative effects will be extended to many 

major springs within similar Mediterranean-type climates. Therefore, for local public water 

supply companies, the results obtained in this work hold significant importance as they allow for 

proactive measures in addressing forthcoming water crises within their respective management 

areas, and possibly beyond. The methods applied in this study hold potential for application in 

other hydrogeological settings, contingent upon the availability of continuous secular datasets 

for both spring discharge and meteorological parameters. 
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3.11. Additional historical multi-decadal analyses 

As introduced in Section 1.3.2 of this thesis, the discharge datasets for Verde Spring and Cassano 

Irpino and Serino Spring groups have proven useful, even though these springs were excluded 

from the more in-depth analyses performed using the multiregression method (Chapter 3) and 
the LSTM method (Chapter 4). In the following paragraphs, the complete discharge datasets for 

these springs will be presented, along with the results of the multi-decadal analysis conducted 

on their historical discharge to assess the pattern of flow rate. 

 

3.11.1. Verde Spring (time span 1938-2005) 

Verde Spring is characterised by a historical discharge dataset spanning 68 yr from January 1938 
to December 2005 (Fig. 3.9). Despite several gaps in the dataset, the overall historical hydrograph 

exhibits a clear decreasing trend in discharge, with a more pronounced decline during the 1980s. 

 
Fig. 3.9. Mean monthly discharge of Verde Spring. The x-axis labels indicate January of the respective year. 

Given the availability of 68 yr of discharge data, the multi-decadal analysis in this case involved 

dividing the dataset into two parts, each 34 yr long: the first spanning from 1938 to 1971, and 
the second from 1972 to 2005 (Fig. 3.10). 

Fig. 3.10 clearly shows that the older band is characterised by a significantly higher discharge 

compared to the more recent one. During the 1938-1971 period, Verde Spring exhibited an 
average discharge of approximately 2890 L/s, while in the 1972-2005 period, it recorded an 

average discharge of 1830 L/s, reflecting a decline of about 37%. 
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Fig. 3.10. Hydrographs of Verde Spring based on the multi-decadal approach with standard deviation 

uncertainty bands around the mean. 

 

3.11.2. Cassano Irpino Spring group (time span 1965-2021) 

Cassano Irpino Spring group has a historical discharge dataset spanning from January 1965 to 
December 2021 (Fig. 3.11), covering 56 yr. The dataset also shows a decline in discharge during 

the 1980s, which, however, reversed its trend from the early 2000s. 

 
Fig. 3.11. Mean monthly discharge of Cassano Irpino Spring group. 

Considering the availability of only 57 yr of data, the multi-decadal analysis was carried out by 

dividing the dataset into two periods of 29 yr each, both including the year 1993: the first from 
1965 to 1993, and the second from 1993 to 2021 (Fig. 3.12). 

Fig. 3.12 highlights that, in this case as well, the older period is characterised by a higher discharge 

compared to the more recent one. During the 1965-1993 period, Cassano Irpino Spring group 
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exhibited an average flow rate of roughly 3190 L/s, while in the 1993-2021 period, it recorded an 

average discharge of 2490 L/s, reflecting a decline of nearly 22%. 

 
Fig. 3.12. Hydrographs of Cassano Irpino Spring group based on the multi-decadal approach with standard 
deviation uncertainty bands around the mean. 

 

3.11.3. Serino Spring group (time span 1962-2019) 

Serino Spring group is characterised by a historical discharge dataset spanning 58 yr from January 
1962 to December 2019 (Fig. 3.13). 

 
Fig. 3.13. Mean monthly discharge of Serino Irpino Spring group. 

In this third case study as well, a significant decline in discharge also occurred during the 1980s. 

However, this trend reversed in the early 1990s. With 58 years of available data, the multi-

decadal analysis was conducted by dividing the dataset into two periods of 29 yr each: the first 

covering the years 1962 to 1990, and the second spanning 1991 to 2019 (Fig. 3.14). 
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Fig. 3.14. Hydrographs of Serino Spring group based on the multi-decadal approach with standard 

deviation uncertainty bands around the mean. 

Fig. 3.14 shows that the older period is characterised by a higher discharge compared to the more 

recent one, although less pronounced than in the previous two cases, partly due to the partial 

overlap of the two bands. During the 1962-1990 period, Serino Spring group exhibited an average 
discharge of approximately 2420 L/s, while in the 1991-2019 period, it recorded an average flow 
rate of roughly 2040 L/s, reflecting a decline of 16%. 

A notable observation from the multi-decadal analysis of Serino Spring group is the shift in the 
peak discharge. In the older period, the yearly peak flow rate is observed between March and 
May, whereas in the more recent period, this peak occurs between April and June. 

 

3.11.4. Historical discharge analysis conclusions 

The findings from the multi-decadal analysis of historical discharge for Verde Spring and Cassano 

Irpino and Serino Spring groups confirm that water scarcity along the Apennines is profoundly 

impacting groundwater resources. All five springs analysed in this chapter, along with Nadìa 
Spring from the previous chapter, show flow rate declines. For obvious reasons related to the 

differing lengths and start and end years of the historical datasets, it was not possible to compare 

the same multi-decadal periods. Nonetheless, all the five springs exhibit a reduction in discharge 
in the more recent multi-decadal periods compared to the older ones. Notably, a significant 

decline for the springs occurred in the 1980s (Figs. 3.2, 3.9, 3.11, 3.13), after which they stabilised 

at lower average discharge rates. Regarding Cannucceto Spring, with flow rate data spanning only 
from 1979 to 2022 (44 yr), its dataset is too limited for reliable assessments of climate change 

effects. Nevertheless, it is the only studied spring showing a slight increase in discharge based on 

the linear trend (Fig. 1.9). To collectively present the historical hydrographs of all seven springs 

analysed in this thesis, Fig. 3.15 was created. 
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Fig. 3.15. Mean monthly spring discharge of: Cassano Irpino, Sanità, Serino, and Verde Springs at the top 
(Meinzer class II); Ermicciolo and Nadìa Springs in the middle (M. class IV); and Cannucceto Spring at the 

bottom (M. class V). The chart consists of three subgroups sharing the same axes but with different y-axis 

scales (0-10 L/s, 10-500 L/s, and 500-7500 L/s, labelled at 2, 70, and 1000 L/s intervals, respectively). 

Figure 3.15 highlights the discharge decline experienced during the 1980s by all seven springs 

analysed along the Apennines (excluding Nadìa Spring, where this cannot be determined). This 
decline is evident from the first half of the 1980s for Sanità, Ermicciolo, Verde, Cassano Irpino, 

and Serino Springs, although it is difficult to rule out anthropogenic influences on the decrease 

for the latter three due to the reasons outlined in Section 1.3.2. In contrast, for Cannucceto 
Spring, the decline occurred in the second half, between 1987 and 1990, and is less pronounced 

compared to the other cases. The similar negative historical trends observed across the studied 
springs, all located along the Apennines within the same Mediterranean climate, coupled with 
the significant influence of climatic drivers on discharge, suggest that the future trends identified 

through multiregression analysis for Sanità and Ermicciolo Springs may also apply to many other 

springs within similar Mediterranean-type climates. 
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Chapter 4: 

Long Short-Term Memory (LSTM) machine learning method for future 

spring discharge forecasting 

 

4.1. Preface 

The analyses detailed in the previous chapters have provided an overview of the effects of 
climate change on groundwater discharge processes along the Apennines, both in terms of the 

resilience of springs to climate modifications and the evaluation of future discharge trends, 

expressed as multi-decadal projections over the long term. 
In detail, in Chapter 3, a linear regression statistical method was employed to identify long-term 

historical relationships between variables to be used in spring discharge forecasting. This method 

proved highly effective in capturing multi-decadal trends based on linear relationships, which 
predominantly govern the connection between discharge and recharge-related parameters. In 
contrast, this Chapter 4 focuses on a machine learning-based method, capable of capturing even 

non-linear relationships, for analysing the recharge-discharge connection thus enabling more 
accurate temporal predictions on a monthly basis. 

Section 4.2 introduces the fundamental concepts of Machine Learning (ML), including key 

definitions, learning approaches, and algorithm structures, with a particular focus on the ML 
methodology adopted in this study: Long Short-Term Memory (LSTM). Following this 

introduction, the chapter explores the application of LSTM for assessing future projections of 
spring discharge, treated as the dependent variable. In this analysis, the independent variables 

comprise not only precipitation and atmospheric temperature but also the spring discharge from 

preceding months. Compared to the paper discussed in the previous chapter, extending the LSTM 

relationships into future projections required an iterative approach to predict discharge over 

time, month by month, by sequentially updating the dataset in the future. 

The analyses summarised and presented here form the foundation for a forthcoming paper, to 

be submitted by the end of 2025, which will integrate and conclude the investigations conducted 

throughout this PhD project. 
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4.2. Machine Learning: a comprehensive introduc;on 

4.2.1. Defining machine learning 

Machine learning has revolutionised computer science, transforming how we solve problems and 

make decisions based on data analysis. Initially defined by Arthur Samuel (1959) as “the field of 

study that gives computers the ability to learn without being explicitly programmed”, ML has 

evolved into a powerful tool. It enables systems to learn from extensive datasets and improve 

their performance over time without relying on hard-coded instructions. This shift, particularly 

with the advent of neural networks, has expanded our ability to address intricate challenges. 

Neural networks have unlocked new ways for machines to process and learn from data, allowing 

them to enhance their performance through experience (Jordan and Bishop, 2006). 

The adaptability of machine learning is particularly valuable in scenarios where traditional rule-

based programming proves inadequate. Indeed, ML models continuously refine their strategies 

by learning from new data, leading to more effective outcomes (Bhowmick and Hazarika, 2018). 

This adaptability has shown significant benefits in domains that rely on large datasets, such as 

medicine and astrophysics, where machine learning is able to identify patterns that would 
otherwise go unnoticed (Ball and Brunner, 2010).  These advancements highlight ML’s strength 

in handling high-dimensional data and extracting meaningful insights, making it indispensable 
across diverse scientific and commercial domains (Dal Seno, 2024). 

Despite its widespread adoption in sectors such as finance, e-commerce, and healthcare, 

machine learning has seen slower integration into areas like civil protection, disaster response, 
territorial management, and the forecasting of natural parameters. This slower uptake clearly 

reflects the complexity of applying ML to real-world scenarios. The effectiveness of machine 

learning in these applications is often constrained by challenges such as incomplete or biased 

datasets, which can significantly hinder model performance. To ensure informed and equitable 
decision-making, it is essential to use datasets that are diverse, representative, and regularly 

updated (Gebru et al., 2018). 

The private sector has been swift in embracing ML, leveraging it to enhance efficiency, foster 
innovation, and improve customer experiences. Industries such as finance and technology 

depend on ML to analyse vast datasets and inform strategic decisions, giving them a competitive 

advantage (Brynjolfsson and McAfee, 2017). However, the public sector faces unique hurdles, 
such as budgetary constraints, regulatory requirements, and the need to ensure equitable service 

delivery and ethical use of ML (Sun et al., 2019; Mikhaylov et al., 2018). 

Nevertheless, in the field of applied geology, machine learning holds significant potential for 

landslide hazard assessment and, more broadly, for forecasting the response of natural systems 
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to complex combinations of pressures arising from climatic or anthropogenic origins. In 

summary, ML represents a transformative shift from traditional programming to flexible, data-

driven learning. Its capacity to process complex datasets and extract meaningful insights has 
already reshaped many companies worldwide. However, its potential in the management of 

natural hazards remains underexplored. With appropriate frameworks and a strong emphasis on 

data quality and ethical application, ML could become a vital tool for improving preparedness, 
response, and resilience in the face of natural risks. 

 

4.2.2. Machine Learning categories and algorithms 

ML comprises four main approaches (Fig. 4.1), from which various algorithms emerge, enabling 

computers to extract knowledge from data and make data-driven decisions. These algorithms 

are grouped into a few key categories: supervised learning, unsupervised learning, reinforcement 

learning (Fig. 4.1), and semi-supervised learning, which represents a hybrid category. 

 
Fig. 4.1. Conceptual scheme of the four main ML approaches and their algorithms, organised into the 

three categories: Supervised, Unsupervised, and Reinforcement (Dal Seno, 2024). 
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Each category possesses distinct characteristics, advantages, and specific use cases, which 

depend on the type of data and the problem being addressed. Supervised learning relies on 

labelled data to train models, unsupervised learning identifies patterns in unlabelled data, and 
reinforcement learning trains models to optimise decisions by maximising cumulative rewards 

through interaction with an environment. 

A common framework in ML comprises three key phases: training, validation, and testing. During 
training, the model learns patterns and adjusts its parameters to minimise errors. Validation fine-

tunes the model and prevents overfitting by evaluating it on unseen data. Finally, testing 

measures the model's accuracy and generalisability using a separate dataset, ensuring its 

robustness for real-world applications. Additionally, before training, ML methods require the 
setting of hyperparameters, which are external configuration settings that control the learning 

process. Gaining an understanding of the main learning algorithms within the various categories 

is crucial for selecting the most suitable algorithm for a specific task and for building effective ML 
models capable of addressing a wide range of real-world problems (Dal Seno, 2024). Given the 
broader and more extensive practical application of traditional learning and deep learning in 

hydrogeology, this study chose to focus on these two approaches, leaving aside reinforcement 
and ensemble learning (Fig. 4.1). 

 

4.2.2.1. Traditional learning algorithms 

The following paragraphs will introduce the most widely used traditional learning algorithms in 
hydrogeology, focusing on regression for continuous predictions, classification for accurate data 
categorisation, and clustering for grouping similar data without predefined labels. 

Linear regression is among the earliest and most easily interpretable algorithms in the field of 
ML. It establishes a relationship between input variables (features) and a continuous output 

variable by fitting a straight-line equation to the observed dataset (Seber and Lee, 2012). The 

basic form of linear regression (Eq. 4.1) can be expressed as:  

 y	=	β₀	+	β₁x₁	+	β₂x₂	+	...	+	βₙxₙ	+	ε     [4.1] 

where y is the target variable, x₁, x₂, ..., xₙ are the input features, β₀ is the intercept, β₁, β₂, ..., βₙ 
are the coefficients, and ε is the error term (Draper and Smith, 1998). The algorithm aims to find 
the values of β that minimize the sum of squared residuals, which represent the differences 
between observed and predicted values. This is typically done using methods like Ordinary Least 

Squares or gradient descent (Murphy, 2012). Linear regression's strengths lie in its simplicity, 

interpretability, and computational efficiency. It is widely used across scientific fields for trend 

analysis (as in our case) and to understand relationships between variables (Kutner et al., 2004).  
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However, it assumes a linear relationship between variables and is sensitive to outliers. It may 

underperform on complex, non-linear relationships in data (Hastie et al., 2009). 

Logistic regression is primarily designed for binary classification tasks. It estimates the probability 
that an instance belongs to a specific class by applying the logistic function to a linear 

combination of input features (Hosmer et al., 2013). The function σ (Eq. 4.2) is expressed as: 

 𝜎(𝑧) 	= 	
1

(1	 + 𝑒("#))
     [4.2] 

where z is the linear combination of features: z = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ and e denotes the 

base of the natural logarithm. Logistic regression seeks to determine the optimal values of β 

by maximising the likelihood of the observed data, typically achieved using techniques such as 
maximum likelihood estimation or gradient descent (Murphy, 2012). The model's capacity to 

generate probabilistic outputs makes it particularly valuable for forecasting in fields such as 

hydrology (Yu et al., 2019), hydrogeology (Sahour et al., 2022), risk analysis, and medical 
diagnostics (Menard, 2002). However, one limitation of logistic regression is its reliance on the 

assumption of linearity in the log-odds space (the logarithm of the odds of an event occurring), 

which may not model more complex relationships in the data (Bishop, 2006). 

Decision trees are versatile machine learning algorithms commonly used for both classification 

and regression tasks, including hydrogeological applications, also for forecasting purposes 

(Mewes et al., 2020; Niraula et al., 2021). They create a predictive model by learning simple 
decision rules from data features (Quinlan, 1986). The structure of a decision tree resembles a 

flowchart (Fig. 4.2), branching from a root node based on feature-specific questions. 

 
Fig. 4.2. Decision tree visualising whether to accept a job offer (GoPenAI, 2023, modified). 
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This process continues until reaching leaf nodes that provide final predictions. For example, a 

decision tree predicting whether it is advantageous to accept a new job offer might first consider 

the annual salary, then the commuting time, and so on. Tree construction follows a top-down 
approach, selecting the best feature to split the data by maximizing information gain or 

minimizing impurity (Breiman et al., 1984). This continues until a stopping criterion is met (e.g., 

max tree depth). Decision trees offer several advantages: they are interpretable, handle both 
numerical and categorical data, and perform automatic feature selection. They capture non-

linear relationships and feature interactions (Loh, 2011). However, they can overfit if grown too 

deep, which can be mitigated by ensemble learning methods (Breiman, 2001). 

Support Vector Machines (SVM) are powerful algorithms primarily employed for classification 
and regression problems. Renowned for their robust performance and solid theoretical 

underpinnings (Cortes and Vapnik, 1995), SVMs operate by identifying the optimal hyperplane 

that best separates classes within a high-dimensional space. For datasets that are linearly 
separable, SVM determines the hyperplane that maximises the margin between the classes. 
When the data is not linearly separable, SVM employs the "kernel trick" to project the data into 

a higher-dimensional space, enabling linear separation. Popular kernel functions include linear, 
polynomial, and radial basis functions (Schölkopf and Smola, 2002). The decision function (Eq. 
4.3) for SVM classification is expressed as: 

 𝑓(𝑥) 	= 	𝑠𝑖𝑔𝑛(𝛴ᵢ	𝛼ᵢ𝑦ᵢ𝐾(𝑥, 𝑥ᵢ) 	+ 	𝑏)	     [4.3] 

where αᵢ are the Lagrange multipliers, yᵢ are the class labels, K is the kernel function, xᵢ are the 

support vectors, and b is the bias term. SVMs are effective in high-dimensional feature spaces, 

especially when the number of features exceeds the number of samples. They provide a clear 
margin of separation, often resulting in better generalisation to unseen data. These algorithms 

are applied in areas such as text image analysis, spring discharge forecasting (Cheng et al., 2021; 

Zhou and Zhang, 2023), and bioinformatics (Ben-Hur et al., 2008). However, SVMs have notable 
limitations, including their inability to directly estimate probabilities and their sensitivity to the 

choice of kernel and hyperparameters. Furthermore, training SVMs on very large datasets can be 
computationally demanding. 

K-means clustering is a core algorithm in unsupervised learning, widely utilised for tasks such as 

data partitioning and pattern recognition. It divides 𝑛 observations into 𝑘 clusters, assigning each 
observation to the cluster whose mean, or centroid, is closest (MacQueen, 1967). The algorithm 

operates in an iterative manner: it begins by randomly selecting 𝑘 initial centroids, assigns each 
data point to the nearest centroid, recalculates the centroids based on the newly assigned points, 

and continues this process until convergence or until a predefined maximum number of 
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iterations is attained. This iterative approach minimises the Within-Cluster Sum of Squares 

(WCSS) (Eq. 4.4), which is mathematically defined as (Hartigan and Wong, 1979): 

 WCSS	=	Σᵢ	Σₓ	||x	–	µᵢ||²     [4.4] 

where x is a data point and μᵢ is the centroid of cluster i. K-means is widely used across multiple 

fields due to its simplicity and scalability. In addition to hydrogeology (Kayhomayoon et al., 2022; 

Soleimani Motlagh et al., 2017), it has been applied to customer segmentation, image 
compression, and anomaly detection (Jain, 2010). Its ability to handle large datasets efficiently 

makes it particularly relevant in the era of big data. However, K-means also has its limitations: it 

requires the number of clusters (𝑘) to be specified in advance, which can be challenging when 

the data structure is not well understood. Additionally, the algorithm is sensitive to the initial 
placement of centroids and assumes clusters are spherical, meaning they are evenly distributed 

around a central point, which may not accurately reflect the underlying data distribution (Arthur 

and Vassilvitskii, 2007). 

 

4.2.2.2. Deep learning algorithms 

Deep learning algorithms (Fig. 4.1) have transformed the field of machine learning, significantly 
advancing areas such as natural sciences, computer vision, and natural language processing. This 

shift in approach is defined using the key architecture of multi-layered Neural Networks (NNs), 
which can extract hierarchical features from data (LeCun et al., 2015). NNs takes inspiration from 

the neural architecture of the human brain. These systems are composed of interconnected 

layers of nodes, referred to as neurons, which process and transmit information (Rosenblatt, 

1958). The most basic type of neural network is the feedforward network, where data flows in a 
single direction, from input to output, through one or more hidden layers. Each neuron applies a 

non-linear activation function to its inputs. Training a neural network involves optimising the 

weights of the connections between neurons to minimise the difference between predicted and 
actual outputs (LeCun et al., 1998). This is typically accomplished through backpropagation, a 

technique that calculates gradients in neural networks by propagating errors backward from the 
output to the input layers (Rumelhart et al., 1986). Moreover, the development of boosting 
algorithms, particularly AdaBoost (Freund and Schapire, 1997), which iteratively combines weak 

learners to form a strong predictor, further enhanced the field of ML and complemented neural 
network methods. The strength of neural networks lies in their capacity to approximate highly 

complex functions, making them powerful tools for addressing a wide range of machine learning 
challenges (Cybenko, 1989; Hornik, 1991). 
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The remarkable success of deep learning can be attributed to three primary factors: the 

availability of large datasets, enhanced computational resources, and innovative algorithmic 

advancements. Together, these developments have enabled the training of highly complex 
models that often surpass human performance in specific tasks (Goodfellow et al., 2016). In the 

field of applied geology, deep learning algorithms are increasingly utilised (Dal Seno, 2024); in 

hydrogeology, in particular, Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs) are among the most employed (El Ansari et al., 2023; Piotrowska and 

Dąbrowska, 2024). For this reason, the following paragraphs will focus on these algorithms, with 

particular emphasis on Long Short-Term Memory (LSTM) networks, a specialised type of RNN 

widely used in trend analysis and forecasting tasks. 

Convolutional Neural Networks (CNNs) are a class of neural networks designed to process grid-

structured data, such as images. Drawing inspiration from the structure of the animal visual 

cortex, CNNs have revolutionised computer vision by learning hierarchical features directly from 
raw image data (LeCun et al., 1998). The training of a CNN typically involves two primary stages: 
feedforward and backpropagation. During the feedforward phase, input data is passed through 

several layers, including convolutional layers that apply trainable filters (kernels) to identify local 
patterns such as edges and textures. In the backpropagation phase, the model’s predictions are 
compared to the actual targets, and a loss function (which represents error in terms of accuracy 

or predictive capability of the model) is used to compute the discrepancy. The calculated loss is 
then used to adjust the weights in the network, improving its predictive accuracy over successive 
iterations. Beyond the branch of applied geology, CNNs have achieved remarkable results in 

various computer vision tasks, often surpassing traditional approaches. Notably, CNNs have been 
widely applied in object detection and image classification, which are essential in the field of 
remote sensing. These applications extend to domains such as autonomous vehicles, medical 

image analysis, and satellite imagery interpretation. As CNN research advances, efforts are 

focused on improving their efficiency, enhancing interpretability, and addressing challenges such 
as generalisation to out-of-distribution samples (Dal Seno, 2024). 

Recurrent Neural Networks (RNNs) are a type of neural network designed to handle sequential 

data, making them effective for applications such as hydrogeological and meteorological time 
series analysis, and natural language processing (Elman, 1990). What distinguishes RNNs is their 

ability to maintain a hidden state that stores information from previous time steps, allowing them 

to capture temporal dependencies within the data. In an RNN, the hidden state is updated at 
each time step using the current input and the hidden state from the previous step. This recurrent 

structure enables the network to retain a form of memory, making it useful for problems where 

the sequence of data points carries critical information (Mikolov et al., 2010). However, standard 

RNNs encounter difficulties when dealing with long-term dependencies due to the vanishing and 
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exploding gradient problems, which complicate the training of long sequences (Bengio et al., 

1994). To address these challenges, more advanced RNN architectures were introduced, the 

most notable being Long Short-Term Memory (LSTM) networks. 

Long Short-Term Memory (LSTM) networks are a specialised form of Recurrent Neural Networks 

developed to address the difficulties traditional RNNs face in handling long-term dependencies. 

Introduced in 1997, LSTMs have become a cornerstone for sequence modelling tasks that require 
the retention of information over extended timeframes. The primary innovation of LSTMs is the 

memory cell, which preserves its state across time steps. This memory is controlled by three 

gates (Fig. 4.3): the input gate determines which new information to store, the forget gate 

decides what to discard, and the output gate selects the information for the output (Hochreiter 
and Schmidhuber, 1997). This gating mechanism allows LSTMs to selectively store or forget 

information, enabling them to effectively capture long-term dependencies in sequential data. 

LSTMs have been successfully applied across a wide range of domains. In natural language 
processing, they have driven advancements in machine translation, text generation, and 
sentiment analysis (Sutskever et al., 2014). In time series analysis, they excel in tasks such as 

predicting stock prices and forecasting weather patterns (Graves, 2012). Despite their strengths, 
LSTMs are not without limitations. They can be computationally intensive to train, especially 
when working with long sequences, and often require substantial amounts of data to achieve 

optimal performance. To address some of these challenges, alternative architectures have been 
introduced to offer a more efficient approach for certain tasks (Cho et al., 2014). 

 

Fig. 4.3. Example of a general LSTM unit, illustrating the input, forget, and output gates along with the 

corresponding functions that govern their behaviour (Dobilas, 2022). 
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Delving deeper into the gating mechanism of an LSTM unit (Fig. 4.3): (i) The input gate determines 

which values from the input should be used to update the memory. A sigmoid function (σ) 

decides which values to allow through, outputting either 0 or 1, while a tanh function (hyperbolic 
tangent function) assigns weight to the values that pass through, determining their level of 

importance within a range of -1 to 1. (ii) The forget gate identifies which information should be 

discarded from the memory cell. This is governed by a sigmoid function (σ) that considers the 
previous state (ht-1) and the current input (Xt), producing a value between 0 (to discard) and 1 (to 

retain) for each element in the previous cell state (Ct-1). (iii) The output gate determines the 

information to be output, based on the input and the memory of the block. A sigmoid function 

(σ) decides which values to pass through, outputting either 0 or 1, while a hyperbolic tangent 
function assigns weight to the passed values, determining their importance on a scale from -1 to 

1. The output of the tanh function is then multiplied by the result of the sigmoid function (σ) to 

produce the final output (Dobilas, 2022). 

 

4.2.2.2.1. LSTM application in hydrogeology 

LSTM neural networks has become a transformative approach in applied geology, particularly in 
the geotechnical field of predicting rainfall-induced landslides (Dal Seno, 2024). Moreover, in 
recent years, LSTM has also emerged as a significant research method in hydrogeology, offering 

advanced tools to tackle the complexity of groundwater systems (Opoku et al., 2024; Zhang et 
al., 2024; Zhou et al., 2024). Traditional methods, such as statistical analysis and numerical 
models, have been instrumental in studying recharge-discharge dynamics and forecasting trends, 

but they struggle with non-linear relationships and high-dimensional datasets. ML techniques, 

particularly ANNs, excel in capturing these complexities, enabling more accurate predictions and 
deeper insights into groundwater behaviour. Indeed, as explained in the Chapter 3 of this thesis, 

ML has recently been utilised to address diverse hydrogeological challenges. Among these, some 

ML algorithms have demonstrated significant potential in forecasting short- and medium-term 
trends in spring discharge (Di Nunno et al., 2021; Gholami and Khaleghi, 2019; Granata et al., 

2018), as well as uncovering long-term patterns in flow rate time series data (Secci et al., 2023). 

With increasing data availability, however, LSTM has emerged as the most prominent among ML 
algorithms in hydrogeological research, particularly for trend analysis and long-term spring 

discharge forecasting based on historical flow rate data (Zhang et al., 2024). 

In the context of climate change, where the field of spring discharge prediction is becoming a 
central focus, Long Short-Term Memory (LSTM) neural networks, are increasingly emerging as 

powerful tools for modelling the complex relationships that govern spring dynamics. 
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Several studies have demonstrated the effectiveness of LSTM models in capturing the intricate 

temporal dependencies and partially non-linear behaviours of spring discharge: 

Zhang et al. (2024) proposed a hybrid framework that incorporates variable screening, error 

suppression, hyperparameter optimisation, and decomposition-combination, relying on spring 

discharge data as input for the LSTM model. The authors' study focused on three karst springs 
located in Shanxi Province, in northeastern China. Their findings emphasised that hybrid models 

built solely around the dependent variable (flow rate) can outperform traditional methods based 

on meteorological data in short-term forecasting of spring discharge. 

Similarly, Zhou and Zhang (2023) examined ensemble deep learning models integrating both 

linear and non-linear components to forecast daily discharge. The authors focused on Barton 

Spring group, located in Central Texas, USA, which discharge from a karstified carbonate aquifer. 
Their approach, which combined predictions from LSTM, Gated Recurrent Units (GRU), and One-

Dimensional Convolutional Neural Networks (1D-CNN), demonstrated improved predictive 

accuracy and robust performance in short-term forecasting.  

An et al. (2020) expanded the application of LSTM by incorporating time-frequency analysis to 
simulate spring discharge. The authors employed Singular Spectrum Analysis (SSA) and ensemble 

Empirical Mode Decomposition (EMD) to extract frequency and trend features. Their study, 

focused on Niangziguan Spring group, situated in eastern Shanxi Province (China), emphasised 
the advantages of integrating data pre-processing techniques with LSTM models to capture 

multi-scale temporal variations, thereby enhancing spring discharge predictions in karst systems 

characterised by high-frequency flow rate variability. 

Song et al. (2022) examined spring discharge mechanism to attempt to predict spatial-temporal 
behaviours of karst springs, highlighting LSTM’s capability to model multi-hydrogeological 

processes, including precipitation, surface water runoff, infiltration, and groundwater flow. This 

study, also conducted on Niangziguan Spring group, which has been heavily impacted over the 

past 60 years, emphasised the importance of considering future scenarios of anthropogenic 

impacts when predicting short-term spring discharge. 

Zhou et al. (2024) proposed a hybrid self-adaptive deep learning architecture for karst spring 

forecasting, focusing on Barton Spring group in Central Texas, USA. Their model combined 

Discrete Wavelet Transform (DWT), WaveNet, and LSTM to capture complex nonlinear patterns 
in karst systems, incorporating attention mechanisms and residual connections to improve 

prediction accuracy for short-term forecasts of up to 30 days. 

Similarly, Pölz et al. (2024) compared the performance of Transformer and LSTM models in 

forecasting karst spring discharge using hourly data. The authors focused on three Austrian alpine 
springs discharging from a highly karstified limestone aquifer. Their results demonstrated that 
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Transformer models outperform LSTMs for springs with longer response times (ranging from 

weeks to months), whereas LSTMs are better suited for springs with shorter response times (from 

hours to days). An insightful contribution from these authors was the incorporation of past 
discharge itself as an independent variable. 

Opoku et al. (2024) demonstrated the effectiveness of LSTM combined with Bayesian 

hyperparameter optimisation and a laboratory-based physical model simulating the spring 

discharge process. The study focused on Jinan Spring groups, located in midwestern Shandong 
Province, Northern China. The authors' findings revealed that integrating multiple techniques, 

including ML tools such as Bayesian optimisation and physically based approaches, significantly 

improved the short-term predictive accuracy of LSTM models. 

Zhou and Zhang (2022) investigated the influence of deep learning model architecture on karst 

spring discharge prediction, comparing various machine learning models to determine the most 

effective for capturing spring dynamics. Focusing on Barton Spring group in Central Texas, USA, 
the authors evaluated the predictive performance of LSTM, GRU, and simple recurrent neural 
networks (RNNs). Increasing the input lag time interval for meteorological variables consistently 

improved discharge prediction accuracy during the test phase. 

Meanwhile, Cheng et al. (2021) employed LSTM, Multi-Layer Perceptron (a widely used deep 

learning algorithm), and Support Vector Machine models to predict fluctuations in karst spring 

discharge. The authors focused on Longzici Spring, a karst spring located in Shanxi Province, 
North China. To compare the three ML methods, performance metrics such as mean squared 

error (MSE), mean absolute error (MAE), and root mean square error (RMSE) were utilised, as is 

standard practice in the field. The results demonstrated that LSTM proved to be the most 

effective ML method for accurately simulating and predicting karst spring discharge in the short-
term future (ranging from days to weeks). 

Together, these studies highlight the transformative potential of LSTM neural networks in 

capturing the complexity of aquifer system responses to climatic variables, enhancing the 
understanding of spring discharge processes, and forecasting them in the short term (hours to 

days) and medium term (weeks to a maximum of three months). By learning intricate temporal 

patterns and incorporating additional analytical techniques, LSTM models have made significant 
progress in tackling the challenges of spring flow rate forecasting. However, while LSTM excels 

at capturing long-term dependencies between variables, none of these studies has addressed 

long-term forecasting (years to decades), which is essential for water supply authorities to plan 
large-scale infrastructure and support aqueduct interconnections. The only study employing 

LSTM to predict a hydrogeological variable in the long-term future (up to 2095), while also 

incorporating future climatic data derived from RCP scenarios, is that of Secci et al. (2023). 
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However, this study focuses on hydraulic heads rather than spring discharge. Specifically, the 

authors investigated an area in the northern Tuscany Region (Italy), encompassing four river 

basins: Magra, Coastal Basins, Serchio, and part of the Arno. 

The following sections of this chapter present a novel application of the LSTM machine learning 

method for predicting monthly spring discharge in the long-term future. 

 

4.3. Materials and methods 

Since the springs analysed in this chapter are the same as those examined in the previous one, 

their respective geological and hydrogeological settings will not be addressed here. 

4.3.1. Sanità and Ermicciolo LSTM models 

The data utilised in this chapter are the same as those employed for the multiregression 

statistical analysis presented in Chapter 3. These include spring discharge, thermo-pluviometric 

variables, and snowfall data for the catchment of Sanità Spring and Ermicciolo Spring. The 
methodologies for data collection and normalisation, the reconstruction of snowfall data back to 
January 1940, and the combination of rainfall and snowfall into Total Liquid Precipitation (TLP) 

are thoroughly explained in the previous chapter. The focus of this chapter is the application of 
a deep machine learning approach, specifically the LSTM neural network algorithm, to analyse 

the relationship between the independent variables and the dependent variable (spring 

discharge) and explore its significant predictive potential. For the predictions, the analysis will 
also rely on RCP 4.5 and RCP 8.5 climate projections, incorporating corrections for systematic 

bias, as used in the previous chapter. 

For both case studies, a Python script implementing an LSTM neural network model was 

developed. The model was trained on one portion of the historical dataset, validated on another, 

and tested on the remaining portion to evaluate the relationships identified between the 

variables. Following the conventional percentage split for the three ML phases, 60-70% for 

training, 25-20% for validation, and 15-10% for testing, the division of the spring flow rate 

datasets for both springs is as follows: 

Sanità Spring. The training phase included data up to December 1990, the validation phase 

covered data up to December 2010, and the testing phase extended to the end of the historical 
dataset (January 2024) (Fig. 4.4). For the training phase, the six-month period between December 

1980 and May 1981 was excluded due the presence of the anomalous peak discharge induced by 
the Irpinia earthquake. Sanità Spring typically exhibits its seasonal high flow during summer 

(June-July, Fig. 3.5); however, in 1980 and 1981, this was observed in winter and spring instead. 

This anomaly affected the LSTM model's performance, making its exclusion necessary. 
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Fig. 4.4. Division of the Sanità Spring standardised discharge data into training, validation, and test phases. 
The six-month period excluded from the analysis is highlighted by a grey band. 

Ermicciolo Spring. The training phase included data up to December 1999, the validation phase 

extended to June 2013, and the testing phase covered the remaining dataset (Fig. 4.5). 

 
Fig. 4.5. Division of the Ermicciolo Spring standardised discharge data into training, validation, and test 

phases. The acquisition gap period is highlighted by a grey band. 

The training phase excluded the gap in the discharge dataset from January 1990 to December 

1995. Initially, the Ermicciolo model was trained using the same time frame as Sanità, excluding 
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1990 due to the gap. However, improved test performance was observed when the training 

phase included some post-gap data. This improvement was attributed to the cyclic drought 

patterns, spanning three to five years, which became more evident after January 1996. Extending 
the training phase enabled the model to better recognise and learn these cycles. 

 

4.3.1.1. Determination of hyperparameters and lag time 

After each iteration of both LSTM models, performance metrics such as MSE, MAE, and R² were 

thoroughly assessed by comparing predicted and observed values during the test phase. Key 

hyperparameters, including the number of epochs, batch size, LSTM units in the recurrent layer, 

and dense layer configuration, were also adjusted. Additionally, loss curves for the training and 
validation phases were monitored to evaluate performance. A brief description of these 

parameters is provided below for clearer understanding: 

- An epoch represents one complete pass through the entire training dataset. Increasing the 
number of epochs can improve the LSTM model learning but may lead to overfitting if excessive. 
Overfitting occurs when a machine learning model learns the noise or random fluctuations in the 

training data instead of the underlying patterns, resulting in excellent performance on the 
training set but poor generalisation to unseen data (Goodfellow et al., 2016). 

- The batch size defines the number of training examples processed at once. Smaller batch sizes 

often result in smoother convergence but may increase computational time (Bengio, 2012). 

- The LSTM units are the number of memory cells in the LSTM layer. Higher numbers allow the 
model to capture more complex patterns but can increase the risk of overfitting and 

computational cost (Hochreiter and Schmidhuber, 1997). 

- The dense layers are fully connected layers that aggregate learned features from preceding 
layers. The configuration of dense layers influences the model's ability to generalise its 

predictions (Hastie et al., 2009). 

- The loss curve is a graphical representation of how the model's loss (error in terms of accuracy 
or predictive capability of the model) evolves during the training and validation phases. It 

provides insights into the model's learning process by showing whether the loss is decreasing, 

plateauing, or diverging. A steadily decreasing training loss with a stable or decreasing validation 
loss typically indicates effective learning. Conversely, a widening gap between training and 

validation loss may signal overfitting (Goodfellow et al., 2016). 

The selection of the hyperparameters is crucial for assessing and improving model performance. 
As in the present work, this is typically achieved through trial and error, accompanied by the 

monitoring of metrics such as loss curves and MSE. 
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For both studies, the analysis began by examining the relationship between the meteorological 

independent variables and discharge. Monthly lags were applied exclusively to AirT and TLP 

variables to assess how their values in preceding months influence the current month's spring 
discharge. Various lag lengths were tested to determine the optimal value for the LSTM models. 

Unlike multivariate analysis, which considers only a single preceding month (corresponding to 

the lag) with the highest correlation among variables, the LSTM approach enables the analysis of 
temporal dependencies across all preceding months up to the maximum lag value. 

The initial trials, implemented with diverse combinations of ML parameters and lags, produced 

unrealistic outputs, failing to capture the seasonal cycles characteristic of discharge patterns. This 

issue was further confirmed by loss curves that consistently displayed significant divergence 
between the training and validation phases (Fig. 4.6). 

 
Fig. 4.6. Loss curves for two test cases conducted with the Sanità LSTM model (on the left) and the 

Ermicciolo LSTM model (on the right), where 100 and 90 epochs were used, respectively. 

The specific test cases shown in Fig. 4.6 demonstrate poor generalisation capabilities by the 

models during training and validation. Indeed, in both graphs, while the training loss consistently 

decreases, stabilising at a low value, the validation loss plateaus or even increases in the case of 

the Ermicciolo model, also exhibiting significant oscillations. This indicates that the LSTM models 

continue to improve on the training data but fail to generalise to the validation set. 

To address this issue, spring discharge from previous months was introduced as an additional 

independent variable, using the same lag as the two meteorological variables. This strategy, 

already employed by some authors (e.g., Pölz et al., 2024; Zhang et al., 2024), led to significant 

improvements: the loss curves showed better convergence (Fig. 4.7), and the predicted discharge 

during the test phase aligned closely with observed values (Fig. 4.8). Concerning the predicted 

spring discharge, it can be observed that in both cases, the respective standardised series starts 

with a certain delay from the vertical line marking the end of the validation. This is due to the lag 

time set in the models. During the test phase, the LSTM model requires the discharge values from 
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previous months (the number of which depends on the lag) to predict the discharge. For this 

reason, discharge predictions are not available for the initial months of the test phase, as the 

model cannot generate values until it has access to the specified number of preceding months 
determined by the lag. For instance, if the lag is 12, the LSTM model will begin predicting 

discharge from the thirteenth month of the test dataset. 

 
Fig. 4.7. Loss curves from the two best-performing LSTM models, with spring discharge included as an 
independent variable. Results for Sanità Spring are on the left, and for Ermicciolo Spring on the right. 

 
Fig. 4.8. Observed and predicted standardised spring discharge during the test phase from the two best-
performing LSTM models, with discharge included as an independent variable. The results for Sanità 

Spring are shown on the left, while those for Ermicciolo Spring are displayed on the right. 

The lag values that provided the best results were 18 months for Sanità Spring and 12 months 

for Ermicciolo Spring. By including discharge as an additional independent input variable, the 
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model was able to capture extended temporal dependencies, recognising that seasonal peaks 

and lows in spring discharge occur almost consistently every 11 to 13 months in both case studies; 

for Sanità Spring, given the larger extent of its catchment and aquifer, these patterns occasionally 
extend to as much as 18 months. 

The best-performing models, identified after extensive experimentation with various parameter 

combinations, achieved an R² greater than 90% between predicted and observed values during 
the test phase, along with very low MSE and MAE values, indicating the robustness of the models. 

The hyperparameters that produced the optimised models are as follows: 

For the Sanità Spring LSTM model: 100 epochs, although learning effectively concluded after 

approximately 70 epochs, as evident from the divergence between the validation loss and the 
training loss (Fig. 4.7); batch size of 32; 96 LSTM units in total (64 in the first LSTM layer and 32 

in the second LSTM layer); and two dense layers (with 32 nodes in the first and 1 node in the 

second, used for the output data).  
For the Ermicciolo Spring LSTM model: 100 epochs, although the learning process concluded after 
roughly 80 epochs, as observed from the divergence between the two loss curves (Fig. 4.7); batch 

size of 64; 96 LSTM units in total (64 in the first LSTM layer and 32 in the second LSTM layer), 
identical to the Sanità model; and two dense layers (with 32 nodes in the first and 1 node, for the 
output data, in the second), again mirroring the configuration of the Sanità model. 

The selection of 100 epochs reflects an effort to provide sufficient training time for the models 
to converge without risking overfitting. Fig. 4.7 suggests that, while the two models were trained 
for 100 epochs, an early stopping mechanism could be introduced to truncate the training at the 

optimal point, further validating the suitability of the chosen epoch count. However, given the 

model's fast runtime (never exceeding 5 minutes), this was not deemed necessary. 
The difference in batch size between the two LSTM models can be attributed to the varying 

characteristics of the datasets and the computational requirements associated with their 

respective patterns. Smaller batch sizes, such as 32, often facilitate more detailed updates to the 
model weights, which is beneficial for datasets with higher variability or more complex temporal 

dynamics, as is the case for a karst spring like Sanità. Conversely, the larger batch size of 64 for 

the Ermicciolo model enables more stable gradient updates, which can be advantageous for 
datasets with smoother temporal patterns or less variability. 

The use of 96 LSTM units in total, distributed across two layers, aligns well with the complexity 

of the temporal dependencies inherent in spring discharging dynamics. The larger number of 
units in the first layer (64) allows the models to capture the broad temporal patterns and long-

term dependencies, while the reduced number of units in the second layer (32) aids in refining 

and consolidating these representations for the test phase prediction task. This configuration 
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strikes a balance between model complexity and computational efficiency, avoiding overfitting 

while maintaining the capacity to learn nuanced patterns in the data. 

The inclusion of two dense layers in both models represents a standard yet effective architecture 
for time series future assessment tasks. This configuration ensures that the model can extract 

meaningful features from the temporal patterns before producing the final test phase prediction, 

while maintaining a level of simplicity that avoids unnecessary computational overhead. 

Overall, the selected hyperparameters were found to align well with the features of the analysed 

datasets and the aims of the study. The observed differences between the two LSTM models, 

particularly in batch size, underscore the importance of tailoring hyperparameter choices to the 

specific dynamics of each case study, reinforcing the robustness and adaptability of the LSTM 
neural network architecture. 

 

4.3.1.2. Iterative forecasting of future monthly discharge 

Indeed, with regard to discharge forecasting, the test phase represents only one part of the work 
commonly undertaken with ML methods, serving as a necessary step to verify the model's ability 

to capture temporal relationships and dependencies between variables. The objective of this 
study in terms of prediction, however, extends much further, aiming to estimate monthly 
discharge values in the long-term future by leveraging the seasonal and multi-year temporal 

relationships identified across the various datasets using the LSTM models. 

After developing the two best-performing LSTM models, long-term flow rate forecasting was 
carried out using future TLP and AirT variables derived from the RCP 4.5 and RCP 8.5 climate 

projections as meteorological inputs. For discharge as an input variable, an iterative approach 

was employed, given that future spring discharge (the target variable) was obviously unavailable 
in the datasets. Leveraging the relationships learned by the LSTM models, future discharge was 

calculated step-by-step (starting from the most recent historical discharge data), with each 

predicted value being added iteratively to the projected dataset. 

This approach allowed the model to incorporate relationships derived from historical data during 

the training and validation phases and apply them to future meteorological scenarios and 

iteratively predicted discharge, thereby producing monthly future discharge values. Naturally, 
once a temporal interval equivalent to the lag time set in the two LSTM models had elapsed, each 

model began predicting future discharge using previously predicted discharge values, which, 

while also future, had already been generated in earlier iterations. 
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4.4. Results 

The two best-performing LSTM models generated future discharge outputs up to 2070 (Fig. 4.9 

and Fig. 4.10) that accurately reflected overall trend and seasonal cycles consistent with historical 

data. Unlike Figs. 4.4 and 4.5, which display data from January 1940 to January 2024, Figs. 4.9 
and 4.10 present the complete historical discharge datasets (beginning in 1920 for Sanità Spring 

and 1939 for Ermicciolo Spring) alongside future projections for both scenarios. The starting year 

of 1940 aligns with the availability of reconstructed snowfall data, as detailed in Chapter 3, and 
indeed also matches the starting date of the multivariate statistical analysis. Another key 

difference between Figs. 4.4 - 4.5 and Figs. 4.9 - 4.10 is that the former present standardised 

discharge data, whereas the latter display denormalised data, obtained using the same monthly 
means and standard deviations applied during the normalisation process. 

 

Fig. 4.9. Historical mean monthly discharge of Sanità Spring, followed by predicted mean monthly 

discharge under the RCP 4.5 scenario (top) and the RCP 8.5 scenario (bottom). 
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The results obtained for Sanità Spring under the RCP 4.5 scenario show a mean monthly discharge 

ranging from approximately 4980 to 2670 L/s, whereas under the more severe RCP 8.5 scenario, 

the mean monthly discharge ranges from about 4650 to 2230 L/s, which is considerably lower. A 
closer examination of Fig. 4.9 also reveals less variability in the predicted data, with both future 

series appearing slightly more "flattened" compared to the historical data, although the natural 

seasonality of peaks and troughs is preserved. Another relevant observation from the predicted 
historical series is that, under the RCP 4.5 scenario, prolonged intervals of low spring discharge, 

characteristic of extended recession periods, are absent. Notably, from 2060 onwards, an upward 

trend in the spring's discharge is also observed. In contrast, the more severe RCP 8.5 scenario 

reveals a prolonged low-flow period between 2032 and 2043, closely resembling the historical 
one observed between 1987 and 1997. 

 

Fig. 4.10. Historical mean monthly discharge of Ermicciolo Spring, followed by predicted mean monthly 
discharge under the RCP 4.5 scenario (top) and the RCP 8.5 scenario (bottom). 
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The results for Ermicciolo Spring under the RCP 4.5 scenario indicate a mean monthly discharge 

ranging from roughly 210 to 51 L/s. In the more severe RCP 8.5 scenario, the mean monthly 

discharge ranges from about 189 to 33 L/s, which, as in the previous case, is considerably lower. 
Fig. 4.10 also shows that the model successfully captured triennial to quinquennial drought 

cycles, particularly evident in the historical data from 1996 onwards. A concerning observation 

regarding the long-term future is that, in both scenarios, from approximately 2050 onwards, 
these droughts begin to intensify both temporally (occurring more frequently) and in absolute 

terms (with increasingly lower discharge levels). Compared to the previous case, both scenarios 

exhibit a further declining trend in spring flow rate, especially under the RCP 8.5 scenario, where 

the predicted spring discharge frequently falls below 50 L/s. 

To enable a comparison between the multi-decadal discharge derived from the Multivariate 

Statistical Analysis (MSA) presented in the previous chapter, two graphs were created: one for 

Sanità Spring (Fig. 4.11) and the other for Ermicciolo Spring (Fig. 4.12). These graphs plot, in 
addition to the historical data, the projected values obtained from both the MSA and LSTM 
methods. To avoid visual confusion, the spring discharge was plotted as a mean multi-decadal 

hydrograph without uncertainty bands, as their inclusion would cause numerous overlaps, 
making the graphs difficult to interpret. The multi-decadal hydrographs for the LSTM model 
results were constructed using only the 2040-2070 period, excluding the earlier portion of the 

predicted series (February 2024 to December 2039). 

 
Fig. 4.11. Sanità Spring multi-decadal hydrographs, plotted without uncertainty bands. Three hydrographs 

depict historical data, while the remaining four illustrate future spring discharge projections derived from 

both the MSA and LSTM models. 
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Since the values in Fig. 4.11 are plotted without uncertainty bands, the maximum and minimum 

spring discharge values for the various multi-decadal periods (Tab. 4.1) are slightly different from 

those previously described in Section 3.7.4. The oldest historical hydrograph (1920-1954) shows 
an average flow rate ranging from approximately 4,430 to 3,580 L/s, the intermediate historical 

hydrograph (1955-1989) spans a range of 4,500 to 3,720 L/s, while the most recent historical 

hydrograph (1990-2024) exhibits an average spring discharge ranging from 3,920 to 3,350 L/s. 
Under the RCP 4.5 scenario of the MSA model, an average discharge ranging from 3,770 to 3,230 

L/s is observed, whereas in the more severe RCP 8.5 scenario, the average spring discharge varies 

from 3,630 to 2,940 L/s. For the Sanità LSTM model, the RCP 4.5 scenario produces a flow rate 

ranging from roughly 3,770 to 3,250 L/s, while the RCP 8.5 scenario yields an average spring 
discharge covering a range of 3,470 to 2,920 L/s. 

 
Fig. 4.12. Ermicciolo Spring multi-decadal hydrographs, plotted without uncertainty bands. Three 

hydrographs depict historical data, while the remaining four illustrate future spring discharge projections 

derived from both the MSA and LSTM models. 

Under the RCP 4.5 scenario, the two methods produce very similar results (with a percentage 
deviation of less than 5%), with notable differences observed only during the summer months of 

July and August. In these months, the MSA method shows a slight drop in discharge, followed by 

a recovery in September, whereas the LSTM method does not exhibit this drop, as the discharge 
tends to decrease steadily until December, the month representing the seasonal low flow. 

Under the RCP 8.5 scenario, although the discharge values predicted by the LSTM method in 

January and December are similar to those predicted by the MSA method, the generated 
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hydrographs display notable differences. In particular, the discharge predicted by the LSTM 

method is visibly lower than that obtained with the MSA method. 

Similarly, the maximum and minimum spring discharge values for the multi-decadal hydrographs 
shown in Fig. 4.12 are reported below (and in Tab. 4.1). The oldest historical hydrograph (1939-

1954) spans a range of 201 to 172 L/s, the intermediate historical hydrograph (1955-1989) shows 

an average flow rate ranging from approximately 157 to 137 L/s, and the most recent historical 
hydrograph (1990-2024) exhibits an average spring discharge ranging from 149 to 133 L/s. Under 

the RCP 4.5 scenario of the MSA model, an average discharge ranging from 144 to 129 L/s is 

observed, whereas in the more severe RCP 8.5 scenario, the average spring discharge varies from 

128 to 111 L/s. For the Ermicciolo LSTM model, the RCP 4.5 scenario produces a flow rate ranging 
from approximately 127 to 114 L/s, while the RCP 8.5 scenario yields an average spring discharge 

covering a range of 111 to 96 L/s. 

Under the RCP 4.5 scenario, the results produced by the two methods differ significantly. A 
noteworthy observation is that the hydrograph generated by the LSTM method under this 
scenario closely resembles that of the MSA method under the RCP 8.5 scenario, with a deviation 

of less than 3%. Under the RCP 8.5 scenario, the hydrographs produced by the two methods are 
also significantly different, with the discharge predicted by the LSTM method being considerably 
more severe than that predicted by the MSA method. As with Sanità Spring, the results of the 

LSTM under the most severe scenario show a greater reduction in discharge compared to those 
of the other method. However, in this case, the difference is even more pronounced, with a 
consistent discharge gap of approximately 13% between the two hydrographs. 

 

4.5. Discussion and conclusive remarks 

The analysis conducted, which aimed to understand the relationships between recharge-related 

variables and the discharge of two major springs using a machine learning method employed in 

Python, and to subsequently assess these relationships into the long-term future in order to 

predict their discharge, has confirmed for the two study areas the critical groundwater resource 

projections presented in the paper discussed in the previous chapter. 

The ML method employed in this chapter was the Long Short-Term Memory (LSTM) neural 

network, which has recently been gaining prominence for modelling the complex relationships 

governing hydrogeological processes. During an initial exploratory phase, it became evident that 

incorporating discharge itself as an input variable was the optimal approach for developing two 

well-performing LSTM models. This approach is justified by the fact that the state of the aquifer 
reservoir, which directly influences the spring discharge in each month, is logically dependent on 
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its state in the preceding months. For instance, during a drought period, when the reservoir has 

significantly depleted, its replenishment does not solely depend on the amount of rainfall. This is 

because a deeper water table and a thicker unsaturated zone hinder efficient recharge, altering 
the dynamics of the system. The reservoir's state in each month indeed exerts a substantial 

influence on the discharge in the following months. The two optimised models, developed after 

testing various combinations of ML hyperparameters and lag times in the input dataset, achieved 
highly positive performance metrics. The lag times that provided the best results were 18 months 

for Sanità Spring and 12 months for Ermicciolo Spring, which is consistent with the seasonal, 

annual, and multi-annual cycles observed in the input parameters (particularly discharge itself) 

and their relationship with the dependent variable. Each lag, in fact, enables the model to analyse 
the seasonal and multi-year temporal dependencies between the dependent variable and all 

input variables across the preceding months, up to the maximum lag value. 

Using the two best-performing LSTM models, it was possible to obtain long-term future discharge 
values by applying the identified relationships and temporal dependencies to the meteorological 
scenarios already adopted in Chapter 3, as well as to the discharge itself, which was iteratively 

predicted as part of a time-dependent autocorrelation process. This ML method not only allows 
for the estimation of spring hydrographs over a multi-decadal time span, depicting monthly 
discharge fluctuations at 2040-2070, as was already achieved with multiregression analysis, but 

also enables the estimation of monthly discharge expressed in absolute terms, rather than solely 
multi-decadal trends. Obviously, as the future discharge is calculated iteratively and used as an 
input variable for subsequent predictions, significant errors in the early stages of prediction could 

propagate over time, resulting in not fully reliable monthly absolute values. For this reason, 
accurate training, validation, and testing phases, conducted on extended datasets, are essential 
for constructing consistent LSTM models for long-term predictions. 

Referring specifically to the results obtained with the LSTM method (Tab. 4.1): under the RCP 4.5 

scenario, a decrease in discharge is observed for both springs during the 2040-2070 period 
compared to the most recent historical one (1990-2024). The estimated percentage decrease in 

flow rate between these two periods is 3.3% at Sanità Spring (3.5% with the MSA method) and 

15.0% at Ermicciolo Spring (3.7% with MSA), corresponding to a reduction in discharge of 121 L/s 
(129 L/s with MSA) and 21 L/s (5 L/s with MSA), respectively. Under the more severe RCP 8.5 

scenario, an even more pronounced and significant decrease is observed between the same 

multi-decadal periods. The estimated percentage decrease in flow rate between the 1990-2024 
period and the 2040-2070 one is 12.1% at Sanità Spring (9.1% with the MSA method) and 26.3% 

at Ermicciolo Spring (15.2% with MSA), corresponding to a reduction in discharge of 442 L/s (329 

L/s with MSA) and 37 L/s (22 L/s with MSA), respectively. 
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Tab. 4.1. Maximum, minimum, and mean values for each multi-decadal hydrograph of Sanità Spring (Fig. 

4.11) and Ermicciolo Spring (Fig. 4.12), including percentage declines in the multi-decadal mean discharge 

obtained using the two analytical methods (MSA and LSTM) under both future scenarios (RCPs 4.5 and 
8.5) compared to all three historical multi-decadal periods. 

The results obtained with the LSTM approach for Sanità Spring are consistent with those derived 

from the multivariate statistical approach. For Ermicciolo Spring, however, the LSTM method 

predicts a considerably greater reduction in spring discharge compared to the MSA method, 

approximately 2.5 times more severe. This may be attributed to the more pronounced and 

marked cyclicity in the historical discharge variations of Ermicciolo Spring compared to Sanità 
Spring, which are more challenging to capture using multivariate linear regression than with a 

machine learning method. Additionally, the six-year gap in Ermicciolo Spring's discharge dataset 

likely influences the MSA analysis but is less impactful on the LSTM method, which can mitigate 
this issue by capturing relationships between variables with longer and simultaneous lags over 

multiple months. For these reasons, concerning the discrepancy between MSA and LSTM results 

for Ermicciolo Spring, the findings obtained using the LSTM method are considered more reliable. 

In any case, there are clear indications to suggest that future groundwater shortages will pose 

significant challenges to water supply systems. For this reason, obtaining long-term discharge 

projections is crucial to alert water utility agencies and enable them to prepare in advance to 

implement proper adaptation measures. 
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Chapter 5: 

General conclusions 

 

This PhD research primarily focused on the impacts of climate change on the discharge of springs 

located along the Apennine Mountain range and on the long-term projections of their flow rates. 
The reduction in spring discharge across the Italian peninsula, predominantly characterised by a 

Mediterranean climate, has become increasingly pronounced since the early 1980s, posing 

significant challenges for numerous water companies responsible for ensuring water supply to 
citizens. This decline is attributed to various factors, both directly and indirectly linked to the 

substantial rise in atmospheric temperatures: a significant increase in evapotranspiration, which 

reduces the effectiveness of precipitation in recharging aquifers; a shift in precipitation patterns, 
characterised by a higher frequency of intense events over shorter durations, leading to a greater 

proportion of surface runoff at the expense of direct or lateral recharge, alternating with 

prolonged droughts; and a reduction in snowfall, both in terms of total accumulation and the 
persistence of snow cover on the ground, which presents an even more critical scenario for 
groundwater resources. When these factors act in combination, the challenges to groundwater 

availability in the study region become starkly apparent. 

The analyses conducted during this PhD project sought to provide insights into two primary 

research questions. 

Question 1 - What is the impact of global warming on spring discharge along the Apennines, and 
to what extent is it feasible to assess the resilience of springs to climate change? 

To address this question and establish a robust foundation for subsequent analyses of the 
quantitative impacts of global warming on spring discharge, with implications for resilience to 
climate change, a comprehensive approach was developed and implemented. This encompassed 

geological, hydrogeological, geochemical, isotopic, and tracer test analyses, along with discharge 
assessments based on recent data and data from a century ago, as detailed in Chapter 2, and 
long-term discharge analyses from a multi-decadal perspective, as outlined in Chapter 3. 

In Chapter 2, the availability of a five-year spring discharge record dating back more than a 
century for Nadìa Spring, a major spring in the Northern Apennines situated in a largely natural 

watershed with minimal land use modifications, proved to be a critical asset for understanding 

the spring’s response to climate variations and, as a secondary objective, for drawing conclusions 
about its long-term resilience to recharge reductions. The study of the historical precipitation 

over the spring catchment has revealed that, since the 1980s, drought events have become 
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increasingly frequent and severe. These reductions in precipitation, both solid and liquid, are 

directly reflected in spring discharge. In fact, a comparison of the average monthly discharge of 

Nadìa Spring between the periods 1915-1919 and 2020-2023 indicates a decrease in flow rate of 
approximately 40%. Despite this significant reduction, the spring exhibits a strong resilience on 

interdecadal timescales, maintaining a consistent base flow and ensuring the provision of an 

adequate discharge to support both public water supply and ecosystem services. The study 
presented in Chapter 2 has indeed also revealed that the comprehensive multidisciplinary 

investigation adopted can provide a detailed understanding of spring discharge dynamics, 

offering valuable insights into its long-term resilience to changes in recharge. The availability of 

data spanning several decades proves crucial not only for assessing the quantitative impacts of 
climate change on springs, but also for confirming the hypothesis of the presence of a dual-

porosity system within the spring aquifer, characterised by fast-flow conduits and a diffuse 

fracture network. The fast-flow conduits are responsible for the aquifer's rapid responses during 
active recharge periods, whereas the diffuse network becomes dominant during hydrologic 
recession. This dual-porosity structure enables the spring to sustain a steady base flow despite 

fluctuations in recharge driven by increasing climate variability. 

Regarding Chapter 3, the historical flow rate datasets of two major springs, Sanità (Cervialto 
Massif, Southern Apennines) and Ermicciolo (Amiata Mountain, Central Italy), dating back to 

January 1920 and 1939 respectively, have represented a valuable resource for assessing century-
long discharge trends. The two datasets were ideally suited for this purpose not only due to the 
length of the discharge time series but also because of the systematic quality of the records and 

the absence of human-induced alterations to the natural conditions of the aquifers. Considering 
that at least 30 years of data are typically required to accurately assess climate trends, the 
historical flow rate datasets of Sanità and Ermicciolo Springs were divided into three multi-

decadal subsets. The multi-decadal analysis of Sanità Spring discharge data reveals a mean 

hydrograph for the earliest historical subset (1920-1954) with an average flow rate ranging from 
approximately 3580 to 4430 L/s. The intermediate historical hydrograph (1955-1989) covers a 

range between 3820 and 4630 L/s and partially overlaps with that of the first subset, whereas 

the most recent historical hydrograph (1990-2024) indicates an average spring discharge ranging 
from 3360 to 3920 L/s, highlighting a notable flow rate decrease. For Ermicciolo Spring, the mean 

hydrographs for the three historical periods display a progressively declining average discharge, 

transitioning from the earliest two periods to the most recent. The corresponding discharge 
ranges are as follows: 172-201 L/s for 1939-1954, 135-157 L/s for 1955-1989, and 131-147 L/s for 

1990-2024. Hence, at Sanità Spring, the discharge decreased by a significant 12.5% between the 

intermediate period, characterised by the highest discharge, and the most recent subset, which 

recorded the lowest spring discharge. Ermicciolo Spring exhibited a much greater reduction of 
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25.2% between the oldest period, which had the highest discharge, and the most recent period, 

which similarly represented the lowest discharge. 

For an accurate quantification and assessment of spring discharge decline induced by climate 
change, it is essential to focus on springs with a very long historical discharge dataset, ideally 

exceeding 80 years. Relying on shorter historical records may lead to erroneous conclusions, as 

discussed in Chapter 1, Section 1.3.2. Long-term spring discharge dynamics, spanning decades, 
are generally less influenced by the specific characteristics of individual basins and more 

indicative of broader climate shifts within a region. Other springs analysed in Chapter 3, 

specifically the Verde Spring and the Cassano Irpino and Serino Spring groups, with relatively long 

historical discharge datasets (approximately 60 years), and situated in different settings but 
within the same Mediterranean climate, exhibit a multi-decadal historical discharge pattern 

similar to that of the Sanità and Ermicciolo Springs. Therefore, part of the study presented in 

Chapter 3 confirms and extends the findings already observed for Nadìa Spring in Chapter 2: 
spring discharge, compared to 100 years ago, has decreased across the entire Apennine range 
due to natural processes driven by global warming. 

Question 2 - Is it possible to estimate the long-term future discharge of springs based on long-
term recharge-discharge relationships? 

To address this question and achieve a comprehensive understanding of the techniques most 

frequently used in hydrogeology to analyse the relationship between meteorological variables 
and spring flow rate, and to exploit this relationship to estimate future spring discharge, two 
conceptually similar yet methodologically distinct approaches were employed. These approaches 

included a Multiregression Statistical Analysis, as presented in Chapter 3, and a Long-Short Term 

Memory neural network analysis, as detailed in Chapter 4. Once the correlations between the 
variables involved were identified, in both cases these relationships were applied to the same 

projected meteorological variables (2024-2070) derived from the CMCC-CM regional circulation 

model, downscaled over Italy for the RCPs 4.5 and 8.5 scenarios. This process enabled the 
estimation of spring discharge projections in the long-term future. 

Beginning with Chapter 3, the century-long discharge time series for Sanità and Ermicciolo 

Springs were analysed in conjunction with two meteorological variables: Total Liquid 
Precipitation (TLP), which encompasses both rainfall and snowfall contributions, and Air 

Temperature (AirT). The multivariate regression analysis demonstrated that, for both springs, 

discharge exhibits the strongest negative correlation with average AirT and the strongest positive 
correlation with cumulative TLP, with a time lag of seven months. This result aligns with physical 

expectations, as peak liquid precipitation (the predominant component of TLP) occurs in 
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November, whereas peak discharge is typically observed during the summer months. For the 

forecasting phase, we focused exclusively on the period 2040-2070, also to enable consistent 

multi-decadal comparisons with the trentennial periods defined for the historical spring 
discharge. For Sanità Spring, after applying the correlation factors derived from the MSA method 

to the future projections of TLP and AirT, a mean hydrograph with an average flow rate ranging 

from 3220 to 3830 L/s was produced under the RCP 4.5 scenario. In the more severe RCP 8.5 
scenario, the hydrograph indicates a discharge range between 2970 and 3630 L/s. For Ermicciolo 

Spring, the mean hydrographs show an average discharge ranging from 131 to 146 L/s under the 

RCP 4.5 scenario and from 116 to 131 L/s under the RCP 8.5 scenario. Based on these results, it 

can be concluded that for both springs, with the MSA method, under the RCP 4.5 scenario, future 
discharge projections do not indicate significant impairment in flow rate output when compared 

to the most recent historical period. The estimated reduction in discharge is minimal, amounting 

to only 3.0% for Sanità Spring and 0.1% for Ermicciolo Spring. By contrast, under the more severe 
RCP 8.5 scenario, characterised by elevated greenhouse gas emissions, a more pronounced 
decline in spring discharge is observed during the 2040-2070 period. At Sanità Spring, the 

discharge is projected to decrease by 8.6% relative to the 1990-2024 period, while Ermicciolo 
Spring exhibits a comparable decline of 10.8% over the same interval. As previously discussed, 
long-term discharge is highly dependent on regional climate shifts. This is further evidenced by 

the similar percentage rates of flow rate decline observed in two hydrologically distinct springs. 
Consequently, the future multi-decadal downtrend identified for Sanità and Ermicciolo Springs is 
likely attainable for other springs within Mediterranean climate. 

Regarding Chapter 4, the use of the LSTM machine learning method introduced a significant 
difference compared to the MSA method: the inclusion of spring discharge from previous months 
as an additional independent variable. This modification was implemented after initial testing 

with numerous combinations of ML hyperparameters revealed that adding spring discharge 

significantly improved the loss function outcomes and yielded highly positive performance 
metrics. Another notable improvement is that, by setting a lag time for an independent variable, 

the LSTM model analyses temporal dependencies with the dependent variable and all preceding 

months up to the maximum lag value. This contrasts with multiregression statistical analysis, 
which only accounts for relationships with the single preceding month corresponding to the 

specified lag. Once the best-performing models were identified, the optimal lag values were 

determined to be 18 months for Sanità Spring and 12 months for Ermicciolo Spring. These results 
align with the seasonal, annual, and multi-annual patterns observed in spring discharge. Indeed, 

by incorporating discharge as an independent variable, the models captured extended temporal 

dependencies, identifying that seasonal peaks and lows in spring discharge occur with near-

consistent intervals of 11 to 13 months in both case studies. For Sanità Spring, due to the larger 
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size of its catchment and aquifer, these patterns sometimes extend up to 18 months. Despite the 

MSA method demonstrating significant relationships between meteorological variables and 

discharge up to a maximum lag of seven months, it was decided to use the same lag for the 
meteorological variables as for spring flow rate, as this configuration was not computationally 

demanding. The two optimal LSTM models were applied to the same future meteorological 

scenarios used in Chapter 3, generating future monthly discharge through an iterative approach. 
Specifically, for discharge as an input variable, since future spring discharge (the target variable) 

was not available in the datasets, it had to be calculated step-by-step, starting from the most 

recent historical data. Each predicted value was then sequentially incorporated into the 

projected dataset to enable subsequent predictions. To facilitate a comparison with the results 
of the MSA method, the discharge obtained through the LSTM method was also represented 

using mean hydrographs for the 2040-2070 period. The LSTM model projections for Sanità Spring 

produce mean hydrographs with an average discharge ranging from approximately 3,770 to 
3,250 L/s under the RCP 4.5 scenario and from 3,470 to 2,920 L/s under the RCP 8.5 scenario. For 
Ermicciolo Spring, the LSTM model predicts a mean discharge of 127 to 114 L/s in the RCP 4.5 

scenario and 111 to 96 L/s in the RCP 8.5 scenario. 

While the results for Sanità Spring align closely with those obtained through the MSA method, 
the LSTM model projects a significantly sharper decline in discharge for Ermicciolo Spring, roughly 

2.5 times greater than the MSA predictions. Beyond the differences in the results, all the findings 
from Chapters 3 and 4 underscore the importance of long-term spring discharge projections in 
addressing potential groundwater shortages, which are expected to pose significant challenges 

for water supply systems in the future. Unlike the vast majority of papers in the literature on this 
topic, which primarily focus on short-term predictions, this thesis emphasises the long-term 
future. Such long-term projections are crucial for providing water management agencies with the 

tools necessary to anticipate and mitigate future water scarcity through drought risk mitigation 

measures such as the construction of surface water reservoirs, the development of well fields in 
deeper aquifers, the implementation of aqueduct interconnections, and the repair and renewal 

of Italy's primary water supply networks. 

The methodologies employed in this thesis enabled the quantification of the effects of climate 
change on spring discharge along the Apennines, the evaluation of their resilience to such 

changes, and the estimation of their long-term future flow rates, based on the previously 

identified recharge-discharge relationship. 
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