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Abstract

Global warming affects atmospheric and oceanic energy budgets, modifying the Earth’s water
cycle. Groundwater is the primary component of fresh water within the planet's hydrosphere, and
it represents a vital and accessible resource, serving ecological, environmental, and societal needs.
In countries where springs are a predominant water source, such as Italy, their protection, along
with the assessment of their resilience to climate-induced changes in recharge, is crucial for
ensuring water supply and preserving ecosystems. The Mediterranean region is a climate change
hotspot, already experiencing a decline in recharge and an increase in the frequency and severity
of droughts. Along the Apennine chain (Italy), situated at the heart of the Mediterranean region,
significant climate impacts have been observed over the past few decades. It thus becomes
important to estimate discharge scenarios to support water companies by providing sufficient
time to plan and implement mitigation measures to address forthcoming water crises.

This PhD project presents a century-long analysis of discharge patterns from key springs located
along the Apennines, aiming to quantify the long-term effects of climate change and forecast
future scenarios. The study employed multiple approaches, tailored to the nature of the data, and
focused on a select number of springs chosen based on the availability of long-term hydrological
discharge records extending back at least 60 years.

The first approach involved a combination of experimental and historical analyses to evaluate the
long-term effects of climate change on the flow rate of Nadia Spring (Northern Apennines), which
discharges from a fractured calcarenitic aquifer, as well as its resilience to such changes. The
spring demonstrated an exceptional capacity to sustain base flow even during prolonged drought
periods. Such resilience was attributed to a combination of factors, including a large groundwater
reservoir, a network of faults and fractures, and karst dissolution processes. The second approach
employed a multiregression analysis to investigate the relationship between recharge-related
parameters and the discharge of Sanita Spring (Southern Apennines, karst aquifer) and Ermicciolo
Spring (Amiata Mountain, volcanic aquifer), aiming to forecast long-term spring flow for the period
2040-2070. Projected meteorological scenarios from a Regional Circulation Model were used
alongside the regression coefficients to estimate discharge trends. Finally, the third approach
applied a machine learning method, Long Short-Term Memory, to the same springs, Sanita and
Ermicciolo, to predict discharge over both short- and long-term futures. In addition to these three
springs, which were the primary focus of the analyses, four other springs were also investigated,
with particular attention given to the effects of climate change on their flow rates over multi-
decadal timescales.

The methodological approaches adopted in this PhD thesis, together with the results, provide a
guantitative rather than merely descriptive understanding of the relationship between climate
drivers and spring flow rate. Furthermore, they enable the projection of discharge scenarios and

the subsequent evaluation of future groundwater availability along the Apennines.
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Chapter 1:

Introduction

1.1. Preface

This PhD thesis derives from an interdisciplinary collaboration between hydrogeology and
atmospheric physics, supported scientifically by Professor Antonio Navarra, President of the
Euro-Mediterranean Center on Climate Change (CMCC). This collaboration has been essential in
linking the study of spring discharge dynamics with past and future climate trends. Furthermore,
the PhD project is part of the PON programme, which emphasises technology transfer to benefit
stakeholders. In this context, the research is primarily supported by Acquedotto Pugliese S.p.A.,
the main stakeholder of the project and the largest water utility company in Italy, where the

candidate also undertook a period of internship.

The present chapter introduces the primary topics addressed throughout this PhD project. Firstly,
an overview of the globally changing climate, particularly in the Mediterranean area, will be
presented in Section 1.2, with emphasis on its impact on the groundwater component of the
hydrosphere (Section 1.2.1). This discussion will delve into specific issues, focusing in detail on
droughts and spring discharge along the Apennines (Section 1.2.2).

Next, Section 1.3 will provide insights into the springs analysed during this PhD research, focusing
on their geological and hydrogeological settings (Section 1.3.1), as well as the rationale behind
their selection compared to other springs initially considered for analysis (Section 1.3.2).
Subsequently, the broader implications of negative projections and their societal impacts for the
investigated areas along the Apennines are discussed in Section 1.3.3.

Lastly, Section 1.4 outlines the fundamental scientific questions underpinning this PhD project,
followed by a comprehensive overview of the thesis structure, serving as a brief guide to the

subsequent chapters.



1.2. Global warming

Until the early 1800s, humanity was unaware of the role the atmosphere played in making the
planet habitable. The first to formulate hypotheses on this matter was the French natural
philosopher Joseph Fourier in the 1820s. Fourier (1824) wondered why the Earth, which should
have been much colder given its distance from the Sun, had temperatures capable of supporting
life. He proposed several hypotheses, including the idea that the Earth's atmosphere might trap
a portion of solar radiation, for unknown reasons, thereby increasing the planet's temperature.
In a reprint of his 1824 work, Fourier (1827) compared the effect of the Earth's atmosphere to
that of 'a pane of glass covering a bow!', making this the first hypothesis of what we now call the

greenhouse effect.

The fundamental relationship between carbon dioxide and climate was first understood and
explained several decades later by a Swedish chemist, Svante Arrhenius (1896), who
demonstrated that global temperature changes as a function of increasing CO> levels. At that
time, there were no instruments capable of measuring the amount of carbon dioxide in Earth's
atmosphere, but Arrhenius estimated that if CO; level had increased to double that present at

the time, the Earth's temperature would have risen drastically.

Nowadays, it is widely acknowledged that global warming is having an increasing impact on our
planet. One of the main scientific priorities today is to predict global and regional climate changes
associated with global warming (Navarra and Philander, 2016), which is driven by the rapid,
human-induced rise in emissions of carbon dioxide, other greenhouse gases (GHGs), and
aerosols, along with changes in land use. The governments of the world, in 1988, have thus
established the Intergovernmental Panel on Climate Change (IPCC) to evaluate periodically the
available scientific and technical data, and to coordinate the research efforts of scientific teams
working on this issue. In other words, it was determined that the United Nations body would be
responsible for assessing the effects of climate change. In its Sixth Assessment Report (AR6), the
IPCC (2023) concluded that human activities, primarily through GHG emissions, have
unequivocally caused global warming, with global surface temperatures rising to 1.1 °C above
1850-1900 levels during the period 2011-2020. Since then, global GHG emissions have continued
to rise steadily, significantly impacting the atmospheric water and energy budgets, and they are
projected to continue doing so in the future. The rising frequency, intensity, and/or duration of
droughts and heat stress linked to climate change (Allen et al., 2010) might profoundly reshape

the biosphere and hydrosphere in numerous regions.

Heatwaves, extreme precipitation, droughts, and floods are among the most common extreme
events posing risks and causing damage to society. The majority of these events are linked to two

parameters: air temperature and precipitation (Scoccimarro and Navarra, 2022). Alexander et al.



(2006) conducted a study on global changes in daily extremes of temperature and precipitation,
which revealed over 70% of the globally surveyed land area has shown a significant decrease in
the annual occurrence of cold days and nights (defined as when temperatures fall below the long-

term 10th percentile), alongside a significant increase in warm ones (when temperatures exceed

the long-term 90th percentile; Fig. 1.1).
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Fig. 1.1. Trends (in days per decade, shown as maps) and annual time series anomalies relative to 1961-

1990 mean values (shown as plots) for annual series of percentile temperature for 1951-2003 for (a) cold

nights, (b) warm nights, (c) cold days, and (d) warm days. Trends were calculated only for the grid boxes

with sufficient data (at least 40 yr of data and the last year is no earlier than 1999) (Alexander et al., 2006).
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Mediterranean-type climates (Csa and Csb, Fig. 1.2) according to the Koppen-Geiger classification
(Kottek et al., 2006) are among the areas of the planet most exposed to droughts. These climates,
classified as warm temperate, are characterised by dry summers and mild, rainy winters. In the
Mediterranean region, the sea plays a crucial role in shaping the climate, since it absorbs heat

during the summer and gradually releases it throughout the winter months.
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Fig. 1.2. World Map of Képpen-Geiger climate classification updated with mean monthly temperature and
precipitation data for 1951-2000 on a regular 0.5-degree latitude/longitude grid (Kottek et al., 2006).

In addition to the classic Mediterranean region, which extends between Southern Europe
(including Anatolia and the Near East) and the northwestern coast of Africa, the Csa and Csb type
climate can also be found along the western coast of the United States (Scanlon et al., 2012), in
central Chile (Garreaud et al., 2017), at the southern tip of South Africa (Blake et al., 2010), and
along the southwestern coast of Australia (Alilou et al., 2022) (Fig. 1.2). These climatic zones are
located slightly north or south of the Tropics. This geographical location is the reason why
Mediterranean-type climates are often recognized as subtropical (Troll and Paffen, 1963).
Mediterranean climate zones are ranked among the regions of the globe most affected by global

warming (Van Loon et al., 2014).

In particular, the Mediterranean region is considered a highly critical zone for climate change due
to a significant decrease in recharge and an increase in the frequency and severity of droughts

over the last two to three decades. The Regional Climate Change Index (RCCI), developed by
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Giorgi (2006), indicates that the Mediterranean and Northeastern European regions emerge as

the primary Hot-Spots (Fig. 1.3), followed by high latitude northern hemisphere regions and by
Central America.
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Fig. 1.3. Regional Climate Change Index over 26 land regions of the World calculated from 20 coupled

Atmosphere/Ocean General Circulation Models (AOGCMs) and 3 IPCC emission scenarios (Giorgi, 2006).

Future climate projections for the Mediterranean region (Giorgi and Lionello, 2008) indicate a
significant reduction in precipitation, particularly during the summer season, except for northern
Mediterranean areas (e.g., the Alps) during winter, and a marked warming, peaking always in the
summer months. Inter-annual variability is expected to increase, especially in summer, which,
combined with the overall warming, would result in a higher frequency of extreme heat events.
The strength and consistency of the climate change signals produced also by more recent climate
models (Essa et al., 2023; Mirgol et al., 2024) confirm that the Mediterranean region may be

particularly vulnerable to global change.

1.2.1. Climate change effects on groundwater

Approximately 70% of the Earth's surface is covered by water, with 97.5% being saltwater and
only 2.5% classified as freshwater (Oksana and Dmytro, 2021). Thinking about freshwater often
suggests images of flowing rivers and clear lakes, but nearly all the world's liquid freshwater (97-
99%,; Stone et al., 2019), which is not frozen and locked away in ice caps and glaciers, exists as
groundwater. Groundwater is indeed an almost universally available source of high-quality

freshwater. On a global scale, groundwater accounts for about one third of all freshwater
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extractions, providing an estimated 42%, 36%, and 27% of the water utilized for agricultural,
domestic, and industrial purposes, respectively (Doll et al., 2012). In numerous ecosystems,
natural groundwater discharges support baseflow to rivers, lakes, and wetlands during periods
of low or no precipitation. Despite the crucial role groundwater plays in supporting human
wellbeing and aquatic ecosystems, the limited number of studies examining the link between
climate and groundwater has significantly hindered the capacity of the IPCC to evaluate the

interactions between groundwater and climate change (Taylor et al., 2013).

Recent scientific data indicate that many of the world’s major groundwater reservoirs are being
depleted (Wada, 2016), resulting in reduced streamflow, the drying up of springs and wetlands,
loss of vegetation, water-level declines in wells, and land subsidence. Another significant threat
to groundwater, particularly for karst aquifers (Kalhor et al., 2019), is pollution caused by human
activities, leading to the infiltration of chemicals and different types of waste into the subsurface.
This contamination, exacerbated by climate change through altered recharge patterns and
extreme events, deteriorates groundwater quality and poses risks to both human and ecological
health (Balaram et al., 2023). Coastal aquifers, which form the interface between oceanic and
terrestrial hydrological systems, are critically important as they provide a water source for over
one billion people (Small and Nicholls, 2003) living in coastal regions. The extent of seawater
intrusion into these aquifers is another major issue affecting groundwater, and it depends on
various factors such as coastal topography, reduced recharge rates, groundwater abstraction

from coastal areas, and sea level rise (Ferguson and Gleeson, 2012).

Global warming affects the energy balance of atmosphere and oceans, leading to alterations in
the Earth's water cycle with consequent changes to precipitation typologies and regimes, with
extreme regional variability of the effects (Caloiero et al., 2018). Patterns of precipitation change
are indeed more spatially and temporally variable than temperature change (Kundzewicz and
D6ll, 2009). The more steady but significantly high rise in air temperatures leads to a substantial
increase in evapotranspiration, thereby reducing the effectiveness of precipitation in recharging
aquifers (Cardell et al., 2020). The continuous modification of land use and land cover for regional
development in the context of a changing climate has also resulted in an alarming decrease in
groundwater levels. First, the expansion of irrigated agriculture leads to excessive groundwater
pumping, depleting aquifers. Second, land surfaces are often sealed with impervious materials,
reducing aquifer recharge (Halder et al., 2024). Climate variability and change further impact
groundwater systems directly by altering recharge patterns and indirectly through changes in

land use and global processes (Taylor et al., 2013).

The Mediterranean region is expected to undergo significant changes that will impact the
sustainability, quantity, quality, and management of freshwater (Garcia-Ruiz et al., 2011). Future

scenarios for water resources in this climate zone suggest:



1. A progressive decline in groundwater storage (GWS) (Fig. 1.4), leading to a significant
decrease in average spring discharge and streamflow.

2. Changes in key river regime characteristics, including an earlier reduction in high flows
from faster snowmelt in the spring season, and more severe low flows in summer.

3. Alterations in surface reservoir inputs and management, with reduced discharges
released from dams and a resulting increase in pumping from wells to satisfy the water
demands for irrigation and urban areas.

4. Hydrological and population shifts in coastal areas, especially in delta zones, affected by

water depletion, groundwater reduction, and saline water intrusion.
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Fig. 1.4. Mean annual trend of GRACE-derived GWS in the Euro-Mediterranean region for the 2003-2020
period, based on the detection of gravity anomalies. A negative trend over the period is equivalent to a

decrease in groundwater resources, while positive trends indicate an increase (Xanke and Liesch, 2022).

Significant impacts on groundwater availability have been observed along the Apennine chain in
Italy, a major European mountain range, as well as in the rest of the Mediterranean basin,
primarily due to the increased frequency and duration of droughts in recent decades. These
impacts on freshwater resources are especially critical given that groundwater across the Italian
peninsula constitutes the primary source of drinking water for many regions. Major urban

centres, including Rome and Naples, depend on springs for public aqueduct supply (ISPRA, 2020).
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Therefore, a significant and prolonged reduction in groundwater availability, extending over
several years and manifested through decreased springs discharge and lower piezometric levels

in agueduct wells, could have profound societal consequences in the future.

1.2.2. Impacts on spring discharge along the Apennines

Spring discharge is an important water supply source, critical for communities and ecological
systems dependent on groundwater resources. In Italy, the vast majority of freshwater used for
public water supply is drawn from groundwater, which alone accounts for roughly 84.7% (of
which 48.5% is from wells and 36.2% from springs) of all water extracted (Gandelli, 2022). Among
the countries currently part of the European Union (EU), Italy ranks as the nation withdrawing
the highest annual per capita volume of groundwater (Fig. 1.5), with over 130 m? per person per
year (56 from springs). This water is used to meet the daily needs of the population as well as
those of small businesses, hotels, services, commercial activities, production, agriculture, and
industry directly connected to the urban network, in addition to public demands (such as schools,

government offices, hospitals, public fountains, etc.) (Istat, 2022).
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Fig. 1.5. Freshwater withdrawals for drinking purposes in the 27 EU countries in 2022. Groundwater
withdrawals (from wells and springs) are indicated in blue, while surface water withdrawals (from artificial

reservoirs, surface watercourses, and natural lakes) are shown in orange (Istat, 2022, modified).

The crucial role of springs in public water supply across Italy is illustrated in Fig. 1.5, and proves
to be particularly indispensable along the Alps, the Apennines, and in mountainous areas more

generally, where aqueduct wells are less prevalent. Mountain springs typically provide high-



quality water, in contrast to wells predominantly located in urbanised or industrialised lowland
and coastal areas (Nicholson et al.,, 2018; Simsek et al., 2008). Therefore, shortages in
groundwater recharge, altering spring outflows, can significantly impact society, especially during
prolonged drought periods, which are becoming increasingly frequent (Alilou et al., 2022).
Affected by both regional and local climate fluctuations, the seasonal and annual variability of
spring discharge reflects a climate memory signal that is notably influenced when drought
patterns arise within evolving climate conditions (Diodato et al., 2022), a phenomenon currently
impacting the Mediterranean climate. Indeed, the effects of climate change on groundwater

resources along the Apennine chain have been particularly severe in recent decades.

In the Southern Apennines, the duration and intensity of droughts have increased, particularly
since the late 1980s (Fiorillo and Guadagno, 2012; Fiorillo et al., 2015), with groundwater storage
decreasing accordingly, impacting numerous springs located on the Matese Massif and the
Picentini Mountains (Fiorillo et al., 2021), the Lauria Mountains (Canora et al., 2019), the Pollino
Massif (Grimaldi et al., 2008), and, more broadly, along the entire Southern Apennine area
(Allocca et al., 2014). The continuous decline in spring discharge across such a wide region reflects
the groundwater system’s response to climate change over the past decades. The regulatory
groundwater reserves of karst aquifers — which are the predominant aquifer type in the
Southern Apennines — play a crucial role in sustaining significant karst spring outflows even after
prolonged multi-year droughts, thereby defining the productivity and resilience of these

hydrogeological systems (Diodato et al., 2022).

In Central Italy, population growth, tourism, and climate change have led to the frequent over-
exploitation of alluvial lowland aquifers. Consequently, water managers are increasingly focusing
on mountain regions, especially in the Central Apennines, featuring extensive karst aquifers (e.g.,
the Majella Massif), to identify groundwater resources for drinking purposes (Tazioli et al., 2020).
Indeed, water from local aquifers and scattered spring discharge could help mitigate water
scarcity and the overexploitation of larger water distribution networks, exacerbated by drought
periods linked to climate change (Di Curzio et al., 2021). However, negative effects related to
climate change have been observed on both the quantity (Di Nunno et al., 2021; Magi et al.,
2019; Sappa et al., 2019) and quality (Barbieri et al., 2021; Sappa et al., 2019) of spring discharge
in the Central Apennines. Two primary reasons for the reduction in spring discharge in this area
are the shorter duration of snow on the ground (accelerated snowmelt) and the significant
reduction in total snowfall (Gentilucci and Pambianchi, 2022; Petitta et al., 2022), factors

primarily linked to the steady and continuous increase in air temperature.

In the Northern Apennines, water for drinking and industrial purposes is provided from hundreds
of low-yield springs with short groundwater flow paths, developed primarily within fractured

sedimentary rock units, which are abundant in this part of the Apennines (Filippini et al., 2024).
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This type of hydrogeological setting does not provide the high discharge rates (greater than 1
m3/s) typical of carbonate aquifers; rather, it produces spring water that closely follows meteoric
recharge patterns (Cervi et al., 2018), resulting in low-flow periods concentrated in summer and
early autumn (without multi-annual time lags sometimes observed in the large karst massifs of
the Central and Southern Apennines). Consequently, spring outflow can be highly sensitive to
reductions in recharge, especially during prolonged drought periods, which can cause serious
water management issues. Negative trends in spring discharge have also been observed in the
Northern Apennines, particularly in the Monte Fumaiolo area, located in the southeastern Emilia-
Romagna Region near the border with Tuscany (Di Matteo et al., 2016), as well as in the Tuscan-

Emilian Apennines on the Adriatic side (Filippini et al., 2024; Petronici et al., 2019).

1.3. Investigated springs along the Apennines
1.3.1. Geological and hydrogeological setting

The Apennines are an extensive mountain range with a NW-SE orientation, which can be divided
into the Northern, Central, and Southern sectors (Fig. 1.6). The complex tectonic history of the
Apenninic chain can be summarized in three main phases: an initial extensional phase, followed
by a compressional phase, and finally, a renewed phase of extension (Boccaletti et al., 1971;
Carmignani and Kligfield, 1990).

In the Early Jurassic, the break-up of the Pangea supercontinent occurred, leading to the
fracturing of the Tethys carbonate platform. These extensional movements also facilitated the
opening of the Liguria-Piedmont (LP) Ocean, which resulted in the separation of the European
plate and the Sardinian-Corsican block from the African plate and Adria, a 'microplate’ also
referred to as the 'Promontory of Africa' (Channell and Horvath, 1976). The second major tectonic
phase began during the transition from the Lower to Upper Cretaceous, when the expansion of
the LP Ocean ended, and the African plate, reversing its direction, started moving north-
westward, leading to the closure of the ocean (Boccaletti et al., 1982). In the Late Eocene to
Miocene, as the last portion of the LP Ocean's oceanic crust was subducted, the collision between
the European continental margin (including the Sardinian-Corsican block) and the Adriatic margin
began; this collision marks the onset of the Apennine orogeny (Molli, 2008). The third and final
phase of the Apennines' tectonic history is characterised by extension, which began in the Late
Oligocene-Miocene in the Tyrrhenian area, while compression was still ongoing in the chain, and
continues to the present day (Carmignani et al., 1994). The extensional tectonics have resulted
in a progressive thinning and subsequent fracturing of the crust along the Tyrrhenian margin of
the Apennines. The succession of these tectonic phases has led to the formation of several

lithological units, marked by diverse features across the Apennines sectors (Fig. 1.6).
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Fig. 1.6. Map of Italy showing 19 lithological classes. The extended name and percentage distribution of

each class is indicated in the bar chart located in the top-right corner (Bucci et al., 2022, modified).

In the Northern Apennines, turbiditic sequences are predominant, resulting from deep-sea
sedimentation during the first extensional phase, while the Central Apennines are dominated by
widespread carbonate platforms, which were uplifted during the collision phase (Cosentino et
al.,, 2010; Marroni et al., 1992). The Southern Apennines, on the other hand, exhibit a more
complex interplay of various geological formations, with significant nappes resulting from the
thrusting processes (Patacca and Scandone, 2007). Moreover, the post-orogenic extensional
phase that has affected, and continues to affect, the Tyrrhenian margin of Central and Southern
Italy has been characterised by Plio-Quaternary back-arc volcanism, which has given rise to

multiple volcanic edifices and eruptive fissures (Acocella and Funiciello, 2006).
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The numerous tectonic, magmatic, and sedimentary environments that existed during the
evolution of the Apennine orogen account for the wide range of lithological formations found
across the Apennines. This diversity is also reflected in the various hydrogeological settings along
the mountain range, which include different types of aquifers such as sedimentary carbonate,
sedimentary siliciclastic, crystalline metamorphic, volcanic, and fluvio-lacustrine intramontane.
However, most of the groundwater in the Apennine chain is stored in carbonate karst aquifers
(De Vita et al., 2012; Petitta and Tallini, 2002). Nevertheless, aquifers with significant yield can

also be found in volcanic and arenitic settings (Doveri et al., 2012; Filippini et al., 2024).

As previously mentioned, this PhD project presents a century-long analysis of discharge patterns
along the Apennines. To identify springs with extensive discharge datasets, the research initially
focused on the monographs “Le Sorgenti Italiane” (Italian Springs), compiled by the Hydrographic
Service between the 1920s and 1960s, covering the central-southern Italian regions of Abruzzo,
Basilicata, Calabria, Campania, Lazio, Molise, Puglia, Sardinia, and Sicily. For this PhD thesis, given
the focus on the Apennine chain, Puglia Region and the two island regions, Sardinia and Sicily,

were excluded, as shown in Fig. 1.7.
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Lazio 13 | 24 | 84 | 111

Molise 6 16 | 57 | 210

Fig. 1.7. Summary statistics of the number of springs in the Italian regions of Abruzzo, Basilicata, Calabria,
Campania, Lazio, and Molise, categorised by Meinzer class Il (1000-9999.99 L/s), Il (100-999.99 L/s), IV
(10-99.99 L/s), and V (1-9.99 L/s). No springs in Meinzer class | (> 10000 L/s) are present in any of these
six regions. On the left, a summary table displays the number of springs per class for each region; on the

right, a pie chart illustrates the corresponding percentages of springs per class for each region.
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Additionally, since the aim was to identify significant springs monitored over long periods, the
focus was placed on springs of Meinzer class V or higher, given the greater likelihood of long-
term monitoring. Following an in-depth review of these monographs during the initial months of
research, the selection was further narrowed to Meinzer class Il springs, owing to their already
considerable number (49 across the six regions, Fig. 1.7). After an extensive bibliographic and
online review to identify springs of similar significance in the Central and Northern Apennines,
few springs with potentially long discharge records were identified. Subsequently, the relevant
local authorities responsible for managing all the selected springs were contacted. Following a
well-thought-out selection process, primarily based on the availability of extensive historical
datasets, only seven springs were identified as potentially suitable for study in this PhD project.

These springs are listed below, arranged from north to south (Fig. 1.8):

- Nadia Spring (Northern Apennines).

- Cannucceto Spring (Northern Apennines).

- Ermicciolo Spring (Amiata Volcano - Central Italy).
- Verde Spring (Central Apennines).

- Serino Spring group (Southern Apennines).

- Cassano Irpino Spring group (Southern Apennines).

- Sanita Spring (Southern Apennines).

Nadia Spring is situated in the Emilia-Romagna Region, specifically in the municipality of Montese
(Modena), at an elevation of 555 m above sea level (asl) (44°19'09" N; 10°58'14" E), nearby the
main divide of the Northern Apennines belt between the valleys of the Reno and Panaro Rivers.
The spring, managed by the public water supply company Gruppo Hera S.p.A., is uptaken by a 75
m long draining tunnel built between 1917 and 1920 (Vecchi, 1920), and it represents one of the

most productive springs in the Northern Apennines. The aquifer is a fractured sedimentary

arenite, composed of medium- to fine-grained calcareous sands (Amorosi, 1997), with karst-like
corrosion phenomena. Regarding the discharge data, monthly values are available for the period
between January 1915 and October 1918, during which accurate total flow rate monitoring was
carried out as a preliminary step to the excavation of the drainage tunnel. More recent measures
of the withdrawn fraction of the spring flow (excluding overflow) have been continuously
collected by the water company since 2017. However, contemporary total discharge data are
only available for the period between December 2020 and March 2023, as reported by Filippini
et al. (2024), thanks to monitoring conducted by the Hydrogeology Group of the BiGeA
Department at the University of Bologna, which also involved this PhD project. Considering all
available monitoring periods, Nadia Spring exhibited a minimum mean monthly total discharge
of 42 L/s and a maximum of 140 L/s, placing it within the fourth (IV) class of Meinzer's
guantitative spring discharge classification (1923).
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Fig. 1.8. Topographic and bathymetric map of Italy showing the location of the analysed springs along the
Apennines (base map derived from Gaba, 2009 [licensed under GFDL/CC-BY-SA]; modified).

Cannucceto Spring is located in the Tuscany Region, near the border with the Emilia-Romagna
Region, in the municipality of Scarperia, at an elevation of 915 m asl (44°04'44" N; 11°18'15" E).

The spring is situated on the southern slope of Monte Gazzaro (Northern Apennines), situated

along the main divide between the Arno River basin (to the south) and the Reno River basin (to
the north). Cannucceto Spring is exploited by the mineral water bottling company Acqua Panna
(Nestlé Waters group) and stands as the most important spring among those within the mining
concession. The spring is tapped by a small intake structure built in the groundwater emergence
area. The aquifer is sedimentary arenitic, consisting of siliciclastic turbidites with a relatively high
Arenite/Pelite ratio, and sandstone layers composed of coarse- to medium-sized sand grains
(Bettelli et al., 2005). The permeability is primarily controlled by faults and fractures, or by
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discontinuities caused by layering, which facilitate the interconnection of the various arenitic
layers. Concerning the discharge data, daily values have been available since January 1979, and
since the early 2000s, data with a temporal resolution of five seconds have also been recorded.
Cannucceto Spring has historically been characterised by a minimum discharge of 0.55 L/s during
the low-flow period and a maximum of approximately 21 L/s, placing it within the sixth (VI) class

of Meinzer's classification (1923).

Ermicciolo Spring is also situated in the Tuscany Region, in the municipality of Castiglione d'Orcia,
at an elevation of 1020 m asl (42°55'26" N; 11°38'29" E). The spring is located on Mount Amiata,
an extinct volcano whose evolution is associated with the magmatism linked to the most recent
Apenninic post-orogenic extensional phase (Frondini et al., 2009). For this reason, although
Mount Amiata is approximately 100 km to the south-west of the main Northern Apennine divide,

it can be associated with the internal extensional sector of the Apennine chain. Ermicciolo Spring

is managed by the water company Acquedotto del Fiora (ACEA S.p.A. group) and is exploited it
through an 80-meter-long drainage tunnel constructed between 1908 and 1914 on the northern
slope of the volcanic aquifer complex, which is primarily composed of ignimbrites and trachytes
(Doveri et al., 2012). Regarding spring discharge, total flow rate data of at least monthly
frequency are available from 1939 to the present day, with a six-year gap in acquisition from
1990 to 1995. Originally, discharge monitoring was performed manually using a thin-wall weir,
whereas since the 1990s, a pressure transducer hydrometer has been installed for automatic
measurements. The average discharge of Ermicciolo Spring fluctuates between roughly 90 L/s
and 210 L/s. It is noticeable that since the mid-1970s, the Meinzer class of the spring has dropped
from the third (lll) to the fourth (1V) class, as the spring has started recording flow rates below

100 L/s during the low-flow period.

Verde Spring is located in the Abruzzo Region, within the municipality of Fara San Martino, at an
elevation of 415 m asl (42°05'30" N; 14°12'08" E). The spring discharges on the eastern side of

the Majella Massif (Central Apennines), one of the main carbonate reliefs in Central Italy,

covering an outcrop area of 273 km? (Chiaudani et al., 2019). Verde Spring is managed by the
water company Societa Abruzzese per il Servizio Idrico S.p.A. (SASI), which uptakes the water
through two drainage tunnels with a combined length of approximately 4 km, constructed
between the late 1920s and early 1930s. From a geological perspective, the aquifer consists of a
thick (~2 km) sequence of carbonate karstified formations (Nanni and Rusi, 2003). Concerning
the discharge data, we have daily values available from January 1938 to December 2005;
however, spring flow rate monitoring is still being carried out today by automated water level
stations with calibrated flow sections. Verde Spring is characterised by a minimum discharge
during the low-flow period of about 900 L/s and a historical maximum of 6170 L/s, placing it

within the third (lll) class of Meinzer's quantitative classification.
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Cassano Irpino Spring group is located in the Campania Region, within the municipality of the
same name, at an elevation of 476 m asl (40°52'12" N; 15°01'54" E). The springs emerge on the
eastern side of the Terminio-Tuoro Massif, which is part of the Picentini Mountains karst system

(Southern Apennines). Cassano Irpino Spring group, consisting of Bagno della Regina, Peschiera,

Pollentina, and Prete Springs (Fiorillo and Guadagno, 2012), is managed by the water company
Acquedotto Pugliese S.p.A. (AQP), which taps the spring group through intake structures and
drainage mats constructed between the 1950s and the 1960s. From a geological perspective, the
aquifer is primarily composed of limestone and calcareous-dolomitic rocks marked by karst
phenomena (Corniello et al., 2010). In the discharge border area, groundwater flows out by a
superimposed permeability threshold, under pressure through a lower permeability fractured
arenitic cover (Coppola et al., 1989). Regarding the discharge data, mean monthly values are
available for the period 1965 to 1979, while from 1980 onward, data have been recorded on a
daily basis. Cassano Irpino Spring group exhibits a minimum discharge during the low-flow period
of about 1400 L/s and a historical maximum of 5510 L/s, classifying it within the second (ll) class

of Meinzer's quantitative classification.

Serino Spring group is also located in the Campania Region, within the municipality of the same
name, at an elevation of approximately 352 m asl (40°52'49" N; 14°51'40" E). Managed by the
water company Acqua Bene Comune, it serves as the main source of aqueduct water supply for
the city of Naples, along with the Gari Spring, located in the Simbruini Mountains in southern
Lazio. Serino Spring group is situated on the western slope of the Terminio-Tuoro Massif

(Southern Apennines) and consists of Urcioli Spring and Acquaro-Pelosi Spring, which are tapped

through drainage channels and mats built at the end of the 19th century. In this case as well, the
discharge area is characterised by upward-directed groundwater flow (Fiorillo et al., 2018), and
the geological setting is also the same. The Terminio-Tuoro Massif appears to be fragmented by
a hydrogeological divide, as resulted by a tracer test conducted in 1979 by Celico and Russo
(1981), involving the injection of Uranine into the “Bocca del Dragone”, a karst sinkhole located
within the main endorheic basin — a polje — of the massif, known as “Piana del Dragone”. The
tracer revealed a connection between the sinkhole and Cassano Irpino Spring group (where the
fluorescent tracer arrived after a few days), but not with those of Serino group, where the tracer
was not detected. Concerning the whole spring discharge of the group, monthly flow rate data
are available from 1962, with only two small gaps in the historical dataset in 1976 and 1999. The
total average discharge of Serino Spring group fluctuates between 1100 L/s and 3500 L/s, also

placing it within the second (ll) class of Meinzer's classification.

Sanita Spring is also located in the Campania Region, specifically in the municipality of Caposele,
at an elevation of roughly 420 m asl (40°48'58" N; 15°13'13" E). The spring is situated on the

eastern side of the Cervialto Massif, which, along with the Terminio-Tuoro Massif, is the other
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major carbonate relief of the Picentini Mountains karst system (Southern Apennines). Sanita

Spring is managed by the water company Acquedotto Pugliese S.p.A., which uptakes the spring
through a surface drainage system located at the base of the massif's slope. This system is
characterised by several niches excavated along the discharge front at the beginning of the
twentieth century. The karst aquifer consists of a series of limestone and limestone-dolomite
formations (Leone et al., 2021), with a thickness reaching up to 3000 m. Regarding discharge data
collection, this spring has a unique century-long historical dataset, with at least monthly data
available from 1920. Originally, the flow rate was quantified using a hydrometric reel along the
main channel, with a monitoring frequency of twice a month. In 1927, Venturi tubes were
installed to make the monitoring system more efficient (Fiorillo et al., 2021), which was further
improved in 1980 when data acquisition became daily. Throughout the entire monitoring period,
Sanita Spring exhibits a discharge ranging from approximately 3300 L/s to 5400 L/s, classifying it

within the second (ll) class of Meinzer's spring discharge classification (1923).

1.3.2. Selected and excluded springs

During the data collection phase, historical discharge data for all seven of the springs were
acquired, thanks to scientific collaboration agreements with the water managing authorities.
However, in the analysis phase, it was decided to restrict the research to only a few of these
springs: Nadia, Ermicciolo and Sanita. The main criterion for the exclusion of the other springs is
related to the limited length of the historical dataset or the absence of accurate historical
discharge data dating back to the early 20th century (century-long data), even if collected
occasionally or only in certain years (as in the case of Nadia Spring). Firstly, it must be considered
that at least 30 years of data are required to detect and appreciate a climate trend (Livezey et
al., 2007), and consequently at least 60 years of data are necessary to determine whether flow
rate or meteorological trends are changing due to climatic forcing. Secondly, to appreciate the
long-term discharge relationship with recharge-related data, it is indispensable to base the
analysis on secular historical records (Chen et al., 2004; Leone et al., 2021), which can then be

projected into the long-term future to forecast spring discharge.

The importance of considering very long historical datasets can be highlighted by the following
observation. Figs. 1.9 and 1.10 compare the hydrographs of Cannucceto Spring (excluded from
the analysis) and Ermicciolo Spring. For Cannucceto, where flow rate data are only available from
January 1979 onwards, the discharge appears to have gradually increased, as indicated by the

linear trend line showing a gentle positive slope (or, at most, no trend).
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Fig. 1.9. Mean monthly discharge of Cannucceto Spring. The labels on the x-axis indicate January of each
respective year. The positive slope of the linear trend line (shown in green) indicates a subtle increase in
discharge over the entire historical record of the spring.

However, when looking at the same period for Ermicciolo (Fig. 1.10), which is geographically the
closest, among those studied, to Cannucceto Spring with a near-century-long historical record
available, the trend from January 1979 to the present also shows an increase in discharge.
However, when the full dataset, starting in January 1939, is considered, it becomes evident that
the spring's discharge has significantly decreased relative to historical levels. Therefore, it cannot
be definitively determined whether, or to what extent, Cannucceto Spring has been impacted by
long-term climate change. Focusing solely on recent discharge datasets (spanning no more than
30 to 50 years) may lead to misleading and unrepresentative conclusions regarding trends and
impacts associated with global warming.

420

380

340

y =-0,002x + 209,94

300
260

y =0,0031x + 13,466

220

Discharge (L/s)

180

140

100

60

>
©,
®

% % % % % <%
% % % % % Y
b © 1 v o 4

oS

< % % % % 2 2 2 2 2
) 9, "9, "9, (] Q. Q. O, O, O,
R % % % k) % 2 % © %

Time

Fig. 1.10. Mean monthly discharge of Ermicciolo Spring. The labels on the x-axis indicate January of each
respective year. The red linear trend line refers to the complete historical record, while the green one
refers only to the period from 1979 to the present. The respective slopes indicate a positive trend in

discharge over the past 45 years but a significantly negative trend when considering the full time series.
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Verde Spring was excluded from the analysis for two reasons: firstly, discharge data are available
only up until 2005; secondly, there is a four wells field located in the discharge area, which affects
the spring flow. Given the inability to precisely quantify the effects of the well field on the spring,
due to the variable pumping rates of the wells, it was not possible to determine whether, or to

what extent, the spring has been impacted by global warming.

Cassano Irpino and Serino Spring groups, both discharging from the Terminio-Tuoro Massif, were
excluded from the analysis because the Dragone Plain, the polje representing the main endorheic
basin of the massif (Pagnozzi et al.,, 2019), is highly anthropized, with cultivated farmland,
livestock grazing activities, and various commercial undertakings. Consequently, in this plain,
located in the municipality of Volturara Irpina, there are unquantifiable withdrawals from
pumping wells. Therefore, as in the case of Verde Spring, it was not possible to accurately
determine the extent to which the spring discharge of Cassano Irpino and Serino Spring groups

has been influenced by climate change.

Despite their exclusion from the subsequent in-depth analyses, the discharge datasets for Verde
Spring and Cassano Irpino and Serino spring groups have still proven useful. Using a multi-decadal
approach, they allowed for the evaluation of discharge decline, even though based on a shorter
time span (approximately 60 years, still a significant and rare attribute). The results of these

multi-decadal flow rate analyses will be presented at the end of Chapter 3.

1.3.3. Societal implications of ongoing and future negative spring discharge

In all study areas, and more generally along the entire Apennine range (as highlighted in Section
1.2.2), springs are experiencing reductions in discharge. This, as previously explained, is primarily
due to the more frequent and severe occurrence of droughts, which have a wide range of
consequences on water supply systems. As spring discharge declines, aqueducts increasingly
struggle to meet the water demands of local populations, especially during summer months

when tourism peaks, further straining groundwater resources.

Several towns located in the Bologna and Modena Apennines (Northern Apennines), which rely

on spring water and small wells for their public water supply, experienced severe droughts in
recent years. In response to critical shortages, emergency measures such as water trucks were
promptly deployed. For instance, during the severally dry summer of 2021, approximately 650
water truck deliveries were required in some municipalities supplied by the Gruppo Hera water
company, including Montese, where Nadia Spring is located. In the following summer (2022),
during a similar drought event, around 570 water truck deliveries were needed. On average,
nearly 10,000 m? of water were supplied in this manner per season (UniBo and RER for Gruppo

Hera, 2023). Considering the projected increasing trends in air temperature across the entire
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Mediterranean area (IPCC, 2023), these findings underscore the potential for concerning and

prolonged water shortages in that part of the Northern Apennines in the future.

In the Central Apennines, the recent situation is even more critical. In the summer of 2024, the

Abruzzo Region faced a severe water crisis; to maintain adequate flow and pressure in the public
water supply network managed by the SASI water company, it became necessary, starting in July,
to implement nightly aqueduct outages across several municipalities (Il Manifesto, 2024). The
main springs of the Gran Sasso and Majella Massifs, including Verde Spring, also experienced
substantial reductions in flow that summer, primarily due to the lack of winter and spring rainfall
and snowfall. In the Molise Region, meanwhile, the primary water sources saw their flows nearly
halved. The main spring of the “Riofreddo” drainage tunnel, in the municipality of Bojano, which
had provided approximately 3,500 L/s in 2023, was reduced to an average of only 1,700 L/s by
July 2024, while Sant’Onofrio Spring, an important spring draining the Montagnola di Frosolone
(Tozzi et al., 1999), significantly declined from 120 L/s to 70 L/s. Other minor springs in Molise
also displayed unsatisfactory levels. Additionally, the hydraulic head of the region’s main well
fields dropped of approximately 8 m (Il Messaggero, 2024). In certain areas of the Central
Apennines, water companies were indeed forced to implement emergency measures, primarily

through severe water rationing.

Recent studies in the Southern Apennines have highlighted the need for accurate estimates of

future aqueduct spring discharge to improve decision support systems for the exploitation of
groundwater resources (Diodato et al., 2017). Indeed, the significant and prolonged water
scarcity period occurred in the Southern Apennines in recent years has had very negative
consequences on spring discharge (Diodato et al., 2022). Sanita Spring and Cassano Irpino Spring
group, which drain the Cervialto and Terminio-Tuoro Massifs respectively, are essential water
sources for much of Southern Italy. Since the 1930s, water from these two springs has been
conveyed through a 450 km-long gravity-driven network of tunnels and bridges from the
Campania Region to the southernmost part of Puglia (Fiorillo, 2009), as well as to part of the
Basilicata Region. The AQP water company, responsible for supplying water from these springs,
was compelled to initiate pressure reductions across the network in October 2024 as an
adaptation measure to the ongoing drought, leading to outages in vast areas of Southern Italy
(Acquedotto Pugliese S.p.A., 2024). AQP sources approximately 55% of its water from five surface
reservoirs (Sinni, Pertusillo, Conza, Occhito, and Locone), which also supply water for irrigation;
33% from the Sanita and Cassano Irpino Springs; and the remaining 12% from around 180 wells,
primarily located in southern Puglia and used exclusively for drinking purposes. This mix of
sources is distributed in several interconnected water supply aqueduct schemes across four

regions (Campania, Basilicata, Puglia, and part of Molise), allowing AQP to offset shortages in one
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scheme with resources from another (Acquedotto Pugliese S.p.A., 2024). However, the recent
widespread water crisis of 2024 has affected all supply areas, leading to a significant drawdown
in wells, severe dewatering in reservoirs, and a marked decrease in the discharge of Sanita and

Cassano Irpino Springs.

The recurring drought crises present a significant challenge to water companies and authorities,
necessitating various measures as part of adaptation strategies to address water scarcity across

the Apennines, such as:

(i) The construction of new surface water reservoirs, strongly advocated by politicians and water
managers, which, however, presents critical issues regarding environmental sustainability,
including extensive land consumption, hydrogeological risks, reservoir siltation, and water loss

through evaporation exacerbated by global warming.

(ii) The installation of new well fields in groundwater reserve areas or deeper sections of major

aquifers, which could help mitigate seasonal declines in shallower or coastal aquifers.

(iii) Enhancing adaptation through the establishment of robust interconnections between
different sources and watersheds, as exemplified by AQP, which allows for the seasonal transfer
of substantial quantities of water from surplus regions, including on an interregional scale, to

those facing water shortages.

(iv) Reducing pipe leakage rates, estimated in Italy at an average loss of 42.4% of distributed
aqueduct water (Fig. 1.11; Istat, 2022), with local losses exceeding 60% of withdrawn resources
in some areas. This is largely due to the aged infrastructure, as roughly 60% of the network was

installed over 30 years ago, and 25% now exceeds 50 years in age (Gandelli, 2022).

(v) Educating the public on water conservation in daily activities is crucial, such as turning off taps
while brushing teeth, which can save around 15 L per person per day. Additionally, adopting
dietary habits that involve less water-intensive foods, such as reducing meat and certain fruit
consumption, and paying closer attention to sustainable lifestyle choices can make a significant
impact. Italy’s per capita daily water consumption is 220 L, compared to the European average

of 165 L (Corriere della Sera, 2023), primarily attributed to avoidable waste.
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Fig. 1.11. Water supply network losses in Italy by region (Gandelli, 2022, modified).

Independent of the adaptation measures to address droughts, estimating future spring discharge
patterns is a fundamental asset for water companies and authorities, enabling them to plan the

necessary actions to mitigate water scarcity.

1.4. Research questions and outline

In the previous sections, the impacts of climate change on spring discharge have been discussed
as a complex and significant challenge for modern society. Despite broad knowledge about
hydrogeological processes associated with aquifer recharge, the relationship between spring
discharge and meteorological variables, and the effects of global warming on groundwater

quality and availability, a notable gap remains in the literature regarding both the quantitative
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impacts on spring flow and future projections of these discharge reductions, particularly for long-
term scenarios. Such long-term perspectives may be essential for planning and implementing
large-scale infrastructure projects to address incumbent water crises. Moreover, understanding
the impacts of climate changes on the historical flow of springs also enables identification of

those that are more resilient to these changes.

The primary challenges in this research involve collecting century-long historical discharge
datasets and understanding long-term relationships between recharge-related parameters and
spring flow rate to enable projections and assessments of future spring discharge. These
challenges encompass some of the central issues and essential research questions addressed in
this PhD project, which will be briefly introduced in this section and explored in detail in
subsequent chapters, considering the ongoing decline in spring discharge observed nearly

everywhere along the Apennine Mountain range in Italy.

The springs located along the Apennines have experienced notable and consistent reductions in
discharge throughout recent decades, primarily attributed to the continuous rise in air
temperature, which has led to increased evapotranspiration and accelerated snowmelt in
mountainous areas, thereby resulting in reduced aquifer recharge. A marked acceleration in the
downward trend of spring discharge was recorded between the 1980s and 1990s, when most
hydrographs of the main Apennine springs showed a severe period of low flow, with subsequent
high-flow phases featuring peak discharges significantly lower than historical values. Until
recently, water companies managed to address drought issues through various temporary
mitigation measures, such as increasing withdrawals from surface water systems (which are
more prone to stress during droughts) or drilling new aqueduct wells. However, since the severe
drought of 2017, water scarcity problems have further intensified along the entire Apennine
chain, mainly due to the decrease in spring discharge, prompting water authorities to also

implement water rationing measures.

For this reason, the main objectives of this PhD project have focused, first and foremost, on
understanding the impacts of climate changes on the historical discharge of springs, also aiming
to assess their degree of resilience. Secondly, through various types of analyses, efforts were
made to estimate the long-term future discharge of some main springs in order to support water

companies in planning the necessary mitigation measures to address recurring droughts.

Question 1 - What is the impact of global warming on spring discharge along the Apennines, and

to what extent is it feasible to assess the resilience of springs to climate change?

Question 2 - /s it possible to estimate the long-term future discharge of springs based on long-

term recharge-discharge relationships?
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The first research question will be thoroughly addressed in Chapter 2, which focuses on the
hydrogeological assessment of Nadia Spring, located in the Northern Apennines. The spring was
the subject of a research paper published in Science of the Total Environment, co-authored with
other researchers and supported by contributions from this PhD project. The study focused on
the analysis of century-long historical discharge patterns in comparison with contemporary data,
as well as the characterization of the spring’s resilience to climate change. Additional, issues
related to this research question, particularly concerning the impacts of climate change on

historical discharge, will be examined in Chapter 3.

The second research question will be explored in detail in Chapters 3 and 4, which focus on
Ermicciolo Spring (Amiata Mountain, Central Italy) and Sanita Spring (Cervialto Massif, Southern
Apennines). Two distinct methodological approaches were applied to historical discharge time
series to examine the relationship between meteorological variables and spring discharge:
Multiregression Statistical Analysis (MSA) and Long Short-Term Memory (LSTM) machine
learning. These relationships were then combined with future climate projections to estimate

the long-term discharge of the investigated springs.

Finally, Chapter 5 will summarise the findings of this research, highlighting their significance, and

will briefly outline potential directions for future studies and perspectives in the field.
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Chapter 2:

Hydrogeological assessment of a major spring discharging from a

calcarenitic aquifer with implications on resilience to climate change

2.1. Preface

The first research question of this PhD project, which primarily aims to quantify the long-term
effects of climate change on spring discharge, also involves estimating the resilience of Nadia
Spring to climate change. Among the investigated springs, Nadia Spring is particularly notable.
Comparing the average discharge from 100 years ago to the present day, there has been a
significant decline (on average roughly 40%), yet the spring remains the primary contributor to
discharge in the Bologna and Modena Apennines. It continues to play a critical role in the public
water supply managed by Gruppo Hera S.p.A., still providing approximately 50 L/s during the low-
flow season, a remarkable quantity compared to many smaller neighbouring springs. Why is it so
resilient to climate change? What factors contribute to a spring's resilience to climatic variations?
As a complementary task to this PhD project and closely aligned with the analysis of the climate
change effects on spring discharge, | participated in research focused on the resilience of Nadia

Spring, coordinated by my co-supervisor, Maria Filippini.

This chapter summarises and presents the multidisciplinary approach employed to study Nadia
Spring. In the final section of the chapter, following the article references, a detailed discussion
on the frequency and severity of droughts in the Emilia-Romagna Apennines will be included,
highlighting the substantial reduction in spring discharge to which they have contributed over
the past century. The chapter consists primarily of a paper edited in the journal Science of the
Total Environment: Filippini, M.%, Segadelli, S.2, Dinelli, E.%, Failoni, M., Stumpp, C.3, Vignaroli,
G.l, Casati, T.}, Tiboni, B.}, Gargini, A.}, 2024. Hydrogeological assessment of a major spring
discharging from a calcarenitic aquifer with implications on resilience to climate change, STOTEN,
913, 169770, ISSN 00489697, https://doi.org/10.1016/].scitotenv.2023.169770.
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2.2. Highlights, Graphical abstract, and Keywords

e Spring yield is due to geometrical and structural reasons, instabilities, dissolution.

e Dual porosity (quick-flow conduits and diffuse fractures) impacts the spring behavior.
e Resilient to climate change, Nadia maintains stable discharge and water composition.
e Historical hydrographs reveal evolving behavior and increased interdecadal resilience.

* The study serves as a valuable assessment-model for similar water discharge points.
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Spring discharge, Recharge decrease, Resilience, Fractured aquifer, Northern Apennines

2.3. Abstract

Groundwater is a vital source of freshwater, serving ecological, environmental, and societal
needs. In regions with springs as a predominant source, such as the Northern Apennines (Italy),
resilience of these springs to climate-induced recharge changes is crucial for water supply and
ecosystem preservation. In this study, Nadia Spring in the Northern Apennines is examined
through an unprecedented array of multidisciplinary analyses to understand its resilience and
unique characteristics. The Nadia Spring's exceptional response, characterized by a sustained
base flow even in the face of drought, is attributed to a combination of factors including a
substantial groundwater reservoir, a complex network of faults/fractures, slope instabilities, and
karst dissolution. The investigation reveals a dual porosity system in the aquifer, consisting of
fast-flow conduits and a diffuse fracture network. While fast-flow conduits contribute to rapid
responses during high-flow conditions, the diffuse system becomes predominant during low-flow
periods. This dual porosity structure helps the spring maintain a consistent base flow in the face
of climate-induced recharge fluctuations. The study shows that Nadia Spring exhibits remarkable

resilience to year-to-year variations in recharge, as evidenced by stable minimum discharge
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values. While the spring has undergone a decline in discharge over the past century due to long-
term climate change, it is becoming more resilient over interdecadal timescales due to transition
to a diffuse drainage system that mitigates the impact of reduced recharge. The availability of a
century-long spring discharge monitoring was a crucial piece of information for understanding
the spring's discharge response and drawing conclusions about its long-term resilience to
recharge fluctuations. Continuing long-term monitoring and research in the future will be
essential to validate and expand upon these findings in the context of changing climatic
conditions. This research serves as a model for assessing strategic groundwater discharge points

in geological settings similar to the Northern Apennines.

2.4. Introduction

Groundwater is a primary source of freshwater and provides essential ecosystem services by
supporting ecological and environmental flows, as well as sustaining Groundwater Dependent
Ecosystems (GDEs; Cantonati et al., 2020; Stevens et al., 2022). Moreover, it plays a pivotal part
in meeting societal needs, serving as a fundamental supply for drinking, agricultural and industrial
purposes (Abderrahman, 2005; Tsur, 1990). Groundwater is progressively gaining significance as
a strategic asset during periods of drought, as it boasts substantial reserves within suitable
geological settings (Gronwall and Oduro-Kwarteng, 2018; Kruse and Eslamian, 2017) and appears
to withstand the impacts of climate change better than surface water (Liesch and Wunsch, 2019;
Taylor et al., 2013).

Groundwater exploitation predominantly occurs through well extraction or through the uptake
of natural springs discharge. The latter approach is prevalent in mountainous regions, where
springs generally offer high-quality, gravity-fed water due to minimal anthropogenic impacts on
the groundwater system compared to urbanized/industrialized lowland or coastal areas
(Nicholson et al., 2018; Simsek et al., 2008). However, the anticipated decrease of discharge,
stemming from reduced recharge due to global warming and alterations in seasonal patterns of
solid and liquid precipitation (Amanambu et al., 2020; Atawneh et al., 2021; Caloiero et al., 2018;
Dore, 2005; Kundzewicz and Doli, 2009; Riedel and Weber, 2020; Tambe et al., 2012; Weissinger
et al., 2016), can yield supply-related challenges in these regions. As such, it becomes essential

to identify springs resilient to recharge decrease.

Resilience is defined in recent hydrogeological literature as “the ability of the system to maintain
groundwater reserves in spite of major disturbances” (Sharma and Sharma, 2006), or as “the
adaptive capacity of a system to a change generated by external pressures while maintaining
certain vital functions” (Herrera-Franco et al., 2020). The discharge resilience to drought-induced

recharge decrease is the capacity of a spring system to sustain its flow during periods of low
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recharge by releasing groundwater stored during intermittent periods of higher recharge, while

avoiding irreversible depletion of the spring reservoir.

The resilience of a hydrogeological system can be studied by examining both how the
groundwater responds to specific stresses and the characteristics of the geological medium that
affect resilience (Cuthbert et al., 2019; De la Hera-Portillo et al., 2020). Most previous studies on
groundwater resilience have focused on trend analyses of aquifer recharge, groundwater
storage, hydraulic heads, and discharge, while relatively few studies have considered different
aquifer characteristics such as lithology and permeability, saturated thickness and transmissivity,

or geometrical properties of the fracture network (Zeydalinejad, 2023).

When examining groundwater resilience to climate-related stresses, both long-term (decadal)
climate change trends, and short-term (less than one year) stresses must be taken into account
(MacDonald et al., 2011). Some authors have focused on analyzing the millennium-scale
resilience of discharge, e.g. the fossil aquifers recharged during the last glaciation that now
represent vast groundwater reservoirs no longer being replenished or with a direct recharge
lower than 5 mm/yr (Ram et al., 2020; Sultan et al., 2019). However, the acceleration of water
crises in the first glimpse of this millenium demands an analysis on shorter timescales, spanning
centuries or decades, tied to resource management challenges. Yet, monitoring data are often
unavailable for such time-spans, as already highlighted by Liesch and Wunsch (2019) regarding
hydraulic heads. Research that investigates the effects of recharge changes on spring discharge
using extensive historical datasets is rare and often restricted to large karst aquifers (e.g., Fiorillo
et al., 2021). Indeed, these aquifers have long been of interest due to their socio-economic
relevance related to high water yields (Ford and Williams, 2007; Kresic and Stevanovic, 2010)
unfortunately associated to a high vulnerability to climate changes and pollution (Butscher and
Huggenberger, 2009; Campanale et al., 2022; Kacaroglu, 1999; Mimi and Assi, 2009).

Other types of aquifers, such as those in fractured sedimentary or hard-rock strata, are less
studied compared to karst, having a lower permeability and a limited storage capacity
(Lachassagne, 2008; Lachassagne et al., 2011; Mézquita Gonzdlez et al., 2021). In mountainous
regions dominated by these aquifers, springs are generally highly vulnerable to discharge
decrease during drought periods due to a limited extension of the associated groundwater flow
systems with constrained underground pathways and rapid loading and unloading. An example
is the Northern Apennines belt (Italy), where the supply of drinking water derives from numerous
low-yield springs fed by sedimentary fractured aquifers that renew stored groundwater almost
completely every hydrological year (Cervi et al., 2018; Gargini et al., 2008; Petronici et al., 2019;
Segadelli et al., 2021). In this setting, identifying strategic resources with peculiar resilience to
recharge decreases becomes crucial to manage recurring water shortage crises. Indeed, these

crises often lead to conflicts between the demand for drinking water, which may necessitate
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supplementary supply measures such as water tankers, and the preservation of GDEs (e.g.,
Cantonati et al., 2016).

Here, we investigated Nadia Spring (Emilia Romagna Region, Northern Apennines), which stands
out as a peculiarly substantial resource compared to other springs within the same context.
Through a comprehensive array of analyses—including geological, hydrogeological, geochemical,
isotopic, and tracer tests—tour study pursues several objectives: (1) unraveling the connection
between recharge dynamics and discharge patterns across various time scales; (2) assessing the
resilience of the spring discharge in response to past and anticipated recharge fluctuations; and
(3) demonstrating the potential of integrated multidisciplinary analyses to identify recharge-
discharge dynamics associated with spring resilience. To our knowledge, such an extensive set of
analyses has not been previously employed in investigating strategic spring resources. Therefore,
this study serves as a paradigm, offering insights into the definition of key evaluation tools and

indicators for assessing spring resilience amid declining recharge in analogous geological settings.

2.5. Geological and hydrogeological setting

Nadia Spring is situated in the Emilia Romagna Region (Italy) at an elevation of 555 m above sea
level (asl) (44°19°09” N; 10°58'14" E), nearby the morphologic divide of the Northern Apennines
belt between the valleys of the Reno and Panaro Rivers (Fig. 2.1a). The Northern Apennines are
a Neogene fold-thrust belt that formed from the continental collision between Adria micro-plate
(part of African plate) and the Eurasia plate beginning ~35 Ma (Boccaletti et al., 2011; Carminati
and Doglioni, 2012; Vai and Martini, 2001). The sector of the chain between the Reno and Panaro
Rivers is affected by km-long fault systems with both Apennine (NW-SE) and anti-Apennine (SW-
NE) trends (Balocchi, 2014; Stendardi et al., 2023).

The main feature of the area is a complex NE-SW-trending fault zone, approximately 25-30 km
long, named the Val Lavino Structural System (VLSS) (Fig. 2.1a). The faults of the VLSS are mainly
oriented N30°-40° (Capitani, 1997), and they display left-lateral strike-slip kinematics with
evidence of a transpressive component. These faults involve and deform all the structural-
stratigraphic array of units of the Northern Apennines, including the Epiligurian Domain (ED), a
wedge-top basin formed atop an accretionary wedge progressively evolving into a fold-and-
thrust belt (Conti et al., 2020). The ED consists mainly of large sandstone-dominated slabs or
plates averaging between 5 and 30 km? and deposited on top of allochtonous Ligurian and

Subligurian nappe units made of clay-rich lithotypes (Cibin et al., 2001).
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Fig. 2.1. Map of the research area: (a) geological setting of the Northern Apennines sector between the

Panaro and the Reno rivers, with indication of the meteorological station of Riola di Labante; (b) geological
setting of the N slab. The tracer injection point and the rain sampler for water isotopes are marked on the
map. Black lines represent the traces of AA and BB geological cross sections, while the location of Fig. 2

(Fig. 2.2) is indicated by a dashed black line; (c) AA and BB geological cross sections of the N slab.
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Nadia Spring discharges at the western edge of an ED slab, referred to as “N slab”, which covers
an area of 25.6 km? (Fig. 2.1b) with topographic elevation between 576 and 916 m asl (average
elevation of 768 m asl). The N slab is tabular and gently monoclinalic (Fig. 2.1c), with bedding
dipping between 10° and 40° to the east. Both anti-Apennine and Apennine strike faults affected
the slab, showing strike-slip (left- and right-lateral, respectively) and subordinate normal
kinematics. Balocchi (2014) interprets these faults as resulting from a “simple left shear”
mechanism that induced an anticlockwise rotation of the structures. Subsequently, during a post-
orogenic extensional event, these structures would have been reactivated as normal faults,

forming structural highs and depressions resulting in a blocky pattern of the N slab.

The main aquifer of the N slab is the Pantano Formation (PAT), primarily composed of medium-
to fine-grained calcareous sands deposited in a shallow marine environment between the upper
Burdigalian and lower Langhian (Lower to Middle Miocene; Amorosi, 1997; Amorosi and
Spadafora, 1995). PAT outcrops extensively over a 300 km? area in the Apennine reliefs
southwest of Bologna and Reggio Emilia, representing one of the most productive groundwater
reservoirs in the Northern Apennines and hosts several major springs in the region (Petronici et
al., 2019). Unpublished borehole hydraulic filed tests performed by the authors in the PAT aquifer
lithology few km far from the N-slab, indicate an aquifer transmissivity in the range of 0.001 and
0.004 m?/s and a specific yield of 3.4%. The average groundwater saturated thickness of PAT in
the N slab is approximately 190 m. Within the slab, various groundwater flow systems transfer
direct recharge from precipitation to several discharge outlets, some of which are totally or
partially up-taken by the local water supply company. Nadia Spring stands as the largest
discharge point in the slab, with an average discharge not lower than 40 L/s in the low-flow
season, corresponding to IV class following Meinzer (1923). Meinzer classes ranging from V to VII
characterize the other springs of the slab, corresponding to the most common classes in the

Northern Apennines belt (Gargini et al., 2008).

The typical pattern of springs discharge in the sub-mediterranean area of the Northern
Apennines is characterized by a peak during the spring season, following a rainy and snowy
period from November to April (recharge season). An absolute discharge low is usually registered
at the end of the hot and dry summer period of July-September (recession season) (Cervi et al.,
2015; Gargini et al., 2008; Segadelli et al., 2021; Segadelli et al., 2017). However, increasingly
frequent and intense droughts have occurred in the study area since the start of the XXI century,
with a cycle of approximately five years (Pefia-Angulo et al., 2022; Rakovec et al., 2022; Riedel
and Weber, 2020). The most recent droughts were in years 2017 and 2022 when a significant
decrease in precipitation was registered during the recharge season in association to a

substantial increase of average annual temperature (ARPAE, 2018; ARPAE, 2023). These droughts
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caused significant reduction of aquifer recharge that reflected in turn on a discharge decrease in
many Northern Apennines springs, especially during the summer recession season, when the

drinking water reaches a peak due to seasonal tourism.

2.6. Methods

2.6.1. Structural and geomorphological investigations

A geomorphological and structural field survey, integrated with publicly available aerial
photographs (https://geoportale.regione.emilia-romagna.it/approfondimenti/database-
topografico-regionale), was carried out in the N slab to identify and analyse those geological
elements that may control the stratigraphic-structural setting of the N-slab and, consequently,
the hydrogeological response of Nadia Spring. The survey focused on structures affecting the ED
domain, which more effectively register brittle deformation. The observed structural elements
were divided in stratigraphic bedding, faults, and fractures/veins. The fault data were statistically
analysed to obtain their main orientations. Moreover, continuous cores were drilled
approximately 7 km south from Nadia Spring within the same aquifer lithology as the N slab, as
part of a separate research endeavour. Using acoustic and optical televiewer logs conducted
along the uncased boreholes, it was possible to observe the distribution and size of open

fractures. Details on coring and televiewer logging are in the Supplementary Material (SM).

2.6.2. Spring discharge
2.6.2.1. Discharge monitoring

Nadia Spring is tapped through a slanting drainage tunnel 75 m long built between 1917 and 1920
(Vecchi, 1920). The tunnel has a concrete lining with openings on the walls allowing direct
drainage of groundwater from the fracture's network of the aquifer. Part of the spring discharge
is withdrawn by the local aqueduct company through a pumping system, which lifts water to
main distribution tanks located at higher altitudes. The remaining discharge overflows in an open
ditch outside the tunnel entrance that conveys water to a nearby stream. The flow rate
withdrawn by the aqueduct is continuously monitored since 2017 through an electromagnetic
flowmeter installed on the discharge pipe of the pumping system. The pumping flow rate varies
every few hours, typically ranging from 20 to 50 L/s depending on the water demand from the
aqueduct network. When the pumping rate is decreased, any excess discharge is released into
the overflow ditch. The overflow discharge was monitored between December 2020 and March
2023. In detail, a pressure transducer (Hobo Onset water level data logger, U20L-04 model) was

installed in the ditch to measure the water stage every 15 min. The relatively short 15-min
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monitoring frequency was chosen since possible short-term responses of spring discharge to
recharge events were unknown prior to this study and needed verification. An additional
transducer placed outside of the water was used for atmospheric pressure compensation. Due
to malfunctioning of the transducers, two significant registration gaps occurred from March 26th
to April 3rd, 2021, and from May 29th to June 19th, 2022. To establish a rating curve for the
channel, eight flow rate measurements were performed in various discharge conditions using an

Acoustic Doppler Velocimeter (Flowtracker, SonTek/YSI Inc).

Due to random asynchronies between the two datasets, the sum of the withdrawn and overflow
discharges was eventually calculated on daily averages and the resulting daily sums were further

smoothed using a 5-day moving average in order to avoid false peaks.

2.6.2.2. Historical discharge data

Monthly monitoring of spring discharge was performed between January 1915 and October
1918, before the excavation of the tapping tunnel, through a thin plate contracted weir installed
in a natural streambed originating at the spring outlet (Vecchi, 1920). The monthly amount of
rainfall was monitored during the same time span at a meteorological station named “Montese”
(920 m asl). This was the active station closest to the study area during the time-span covered by

the historical monitoring. The historical data are shown in the SM.

This historical dataset of spring discharge, exceptionally rare in the global literature due to its
century-long time span, allowed a unique comparison between the contemporary (2020-2022)
and historical (1914-1918) spring hydrographs. The comparison focused on the spring's
hydrodynamic response throughout each hydrologic year and on the evolution of discharge

variability from past to present.

2.6.2.3. Recession analysis

The hydrologic recession of a spring refers to the final stage of the depletion limb of the
hydrograph where discharge is solely contributed by groundwater from the aquifer with no
perturbation induced by active direct recharge or fast-flow from the surface. This stage provides
valuable information about a combination of intrinsic aquifer features, encompassing
transmissive capacity (i.e. hydraulic conductivity) and storage capacity (i.e. storativity and size of
the reservoir) (e.g. Azeez et al., 2015; Tague and Grant, 2004). The recession curves of the
monitored hydrologic years 2020-21, 2021-22 and of the historic ones 1914-15, 1915-16, 1916-
17, 1917-18 were analysed using the Maillet model (Maillet, 1905) which represents a linear

approximation of the nonlinear quadratic spring reservoir depletion model proposed by
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Boussinesq (1904). According to Maillet, the relationship between groundwater discharge and
time follows the exponential decay of Eq. (2.1) in the absence of external influences, such as
active recharge from precipitation, groundwater abstraction, or evapotranspiration affecting the

saturated zone:

t=Qoe™ [2.1]

where Q: and Qo are the flow rates (L3/T) at time t (T) and at the beginning of the base-flow
recession, respectively, and a is a constant (T™2) representing storage lag-time. a is known as the
“Maillet recession coefficient” and it is related to the time required to halve the recession

discharge (to.s) as shown in Eq. 2.2:

a = - [(In0.5)/tos] [2.2]

From a mathematical perspective, Eqg. (2.1) has been described as the most convenient model
for analysing spring recession in different geological settings, including karst (Cerino Abdin et al.,
2021; Dewandel et al., 2003; Medici et al., 2023). Despite its simplicity, Eq. (2.1) has previously
been shown to accurately represent the recession response of most Northern Apennines springs
(Gargini et al., 2008; Segadelli et al., 2021).

For the six hydrographs analysed in this study, the recession curve was selected as the final linear
segment of the depletion limb on a semi-log plot (i.e. Log Q VS time), resulting in varying starting

times and durations among different years.

2.6.3. Hydrochemistry and water isotopes

High-frequency automatic groundwater sampling was performed between January 2022 and
February 2023 using a programmable ISCO series 3700 sampler. A total of 384 samples were
collected every 12 or 24 h in 500 mL polypropylene bottles. The collection was interrupted for a
total of 57 days distributed along the sampling period due to temporary malfunctioning of the
sampler. Specific electrical conductivity (EC, compensated at 20 °C) and pH were measured in
each sample with a HACH-HQ30D probe. 38 samples were selected within the period from
January 19th, 2022, to November 23rd, 2022, for the analysis of major cations (Na*, K*, Ca?*,
Mg?*). The samples were selected following a regular time step of approximately 7 days. Cations
were analyzed by ICP-OES (Inductively Coupled Plasma — Optical Emission Spectroscopy) using an
Agilent series 5800. The analysis was performed on filtered (0.45 um) and acidified aliquots at

the laboratory of the “Centro Ricerche Energia, Ambiente, Mare” located in Marina di Ravenna.

Seven additional groundwater samplings were performed at Nadia Spring in June and November
2011, May and September 2014, May and August 2017, May and October 2021, for the analysis
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of major cations and anions. The first six samples were collected and analysed in the
Laboratories of Regional Environmental Protection Agency (ARPAE) following standardized
procedures. The last two samples were collected for this study by filling a 250 mL bottle stored
at 4 °C until analysis. The analysis was conducted in Laboratory of the GruppoHERA water
company following the standard methods EPA 300.11997 and APAT-CNR-IRSA 29/2003 (sections
2010, 2090, 3010, 3020).

Four samplings were performed in February, June, September 2021, and January 2022 for stable
water isotope analysis (6'80 and 62H). Samples were taken in 250 mL PET bottles from Nadia
Spring and from a rain sampler installed in the recharge area of the spring at an elevation of 752
m asl, for cumulated monthly rainfall collection (Fig. 2.1b). The analysis was performed using a
laser-based isotope analyser (Picarro L2140-i) at the University of Natural Resources and Life
Sciences, Vienna, Austria. Each sample was measured up to nine times and referenced using
internal standards. These standards (deionized Baltic Sea water (-6.31 %o for 680 and - 45.8 %o
for 82H) and tap water (-11.16%o for 680 and - 75.6%o for 62H)) are twice a year calibrated
against international standards. The isotope ratios were given in the & notation in %o relative to
the Vienna-Standard Mean Ocean Water (V-SMOW).

2.6.4. Analysis of the recharge-discharge time lag

A number of discharge indicators, namely spring discharge (Q), EC, pH, total concentration of
major cations (TCC), were exploited to investigate the time lag between the main recharge inputs
(represented by the main precipitation events) and the consequent discharge output at the
spring. The values of the indicators were derived from the monitoring described in 2.6.2.1
Discharge monitoring, 2.6.3 Hydrochemistry and water isotopes. TCC represents the sum of
cation concentrations (meq/L) and is considered a proxy of groundwater salinity. As such, it is
expected to be inversely correlated to the degree of dilution induced by the arrival of newly
infiltrated water from precipitation. Daily precipitation data were acquired from a meteorological
station managed by the Regional Agency for Prevention, Environment and Energy (ARPAE),
namely “Riola di Labante” (Fig. 2.1a). The station was selected as the most representative of the

Nadia Spring recharge basin based on its location and altitude (623 m asl).

The analysis was conducted separately on two monitoring periods characterized by different
hydrological regimes (as suggested by the results of Section 2.7.2): (1) the hydrologic year 2020-
21 (data available from December 2020 to October 2021), characterized by higher spring
discharges; (2) the hydrologic years 2021-2022 and 2022-2023 (data from November 2021 to

March 2023), characterized by lower discharges. The two periods will be identified hereafter as
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“high-flow period” and “low-flow period”, respectively. The monitoring of Q covers both the
high-flow and low-flow periods whereas EC, pH and TCC are only available for the low-flow
period. The cumulative precipitation over 5 days was tentatively correlated, by means of bi-
variate analysis, with the average values of Q, EC and pH in the same 5 days. Cumulative
precipitations lower than 25 mm were eliminated from the dataset since it was proven, through
an iterative trial and error series of correlation with different threshold values, that these would
not have significant effects on spring discharge. Due to a low number of snowfall events during
the 2020-23 monitoring period, it was not possible to perform a separate analysis on the effect
of liquid versus solid precipitation (see further details in the SM). The discharge indicators were
progressively shifted forward in time from 0 to 90 days, using a five-day increment. The five-day
increment was chosen in order to smooth the roughness and intrinsic measuring uncertainties
associated to the daily acquisition. For each time lag increment, the degree of linear correlation
between recharge and discharge indicators was quantified by the coefficient of determination R?
(see the correlation graphs in the SM). Two R? thresholds will be used to describe the time-lag
analysis, corresponding to 0.6 and 0.3. These thresholds serve a primarily qualitative purpose,
supporting the categorization of correlations into three groups: strong correlations (R? > 0.6),
weaker correlations (0.6 < R? < 0.3), and the absence of correlation (R? < 0.3). When analysing
the correlation between precipitation and Q, a R? > 0.6 suggests a clear association between
these variables, likely reflecting the occurrence of preferential flow paths, such as open fractures
or conduits, connecting the recharge area to the discharge point. As the correlation weakens, it
might indicate a shift towards a more diffuse drainage network, resulting in a less defined signal
of spring discharge in response to recharge events. Conversely, when examining EC or pH, a
strong or weak inverse correlation with precipitation would indicate the arrival of newly
infiltrated water. An absence of correlation, on the other hand, suggests that a discharge increase
at the spring is driven by pressure transfer from the recharge area to the discharge point, i.e.,
increase of the hydraulic head in the recharge area with a subsequent increase of the hydraulic

gradient in the aquifer.

During the timespan covered by TCC analysis, a comparison was performed between dilution
events, i.e., variations of the parameter compared to its averaged value along the monitoring
interval and five-day cumulative precipitation > 25 mm, in order to search for identifiable

recharge-dilution time lags.

2.6.5. Artificial tracer test

OnJanuary 10th, 2023, a tracer test was performed involving the injection of 50 g of Uranine into

a hole corresponding to an enlarged vertical fracture oriented NW-SE, aligned to the principal

45



system of extensional fractures affecting the PAT Formation (Stendardi et al., 2023). The hole
had previously been identified as a karst morphology by local speleological associations (Lucci
and Rossi, 2011). It is located at an altitude of 721 m asl, 166 m higher than the spring, at a planar
linear distance of 313 m (Fig. 2.1b). Uranine was injected by pouring in 1.5 L at a solution of 33
g/L. In order to ensure the effective migration of the tracer through the unsaturated portion of
the aquifer, estimated to be thicker than 120 m at the injection point, the solution was
simultaneously introduced with 8000 L of water from a tanker truck. The truck was positioned
470 m from the injection point at an altitude 42 m higher. A series of connected hoses facilitated
the gravity-driven transport of water to the injection site through a wooded area hardly
accessible by vehicles. Precipitation amounted to 13.6 mm on the day before the injection, and

to 1.8 mm on the day of the injection.

The arrival of the tracer was monitored at Nadia Spring for 41 days after injection through the
automatic groundwater sampling described in Section 2.6.3. From each of the 500 mL ISCO
samples collected during the tracer monitoring period, a 100 mL nontransparent HDPE bottle
was filled to determine Uranine concentration. Bottles were kept in darkness and stored at -2 to
-8 °C until analysis. Additionally, charcoal bags were installed at the spring to detect Uranine
arrival. Three bags remained in place for 71 days after injection, while another six were replaced
at intervals ranging from 15 to 36 days, allowing for an 8 to 21-day overlap between consecutive
bags. Following retrieval, the bags were air-dried in darkness and subsequently packed in
individual plastic bags to avoid cross-contamination. The analysis of Uranine in water samples
and charcoal bags was conducted in the laboratories of the Institute of Applied Geosciences at
KIT (Karlsruher Institut fiir Technologie, Germany). Water samples were measured at an alkaline
pH to increase the fluorescence yield. The analysis was performed using a fluorescence
spectrometer LS55 by Perkin ElImer with the synchronous scan method. The desired wavelength
range is traversed synchronously with a constant wavelength difference between excitation
wavelength and emission wavelength. The advantage of this method is the formation of clearly
identifiable peaks for each fluorescent dye. The device allows to measure at two different
voltages (650 V and 900 V) in order to set an optimum measurement range, with a limit of
detection of 0.005 pg/L. At first, all samples were measured with a voltage of 900 V. When the
tracer concentration was too high (out of range for this voltage), the voltage was set to 650 V.
For sample preparation of the charcoal bags, 0.5 g £ 0.1 g of charcoal were weighted and filled in
a centrifuge tube. Subsequently 5 mL of eluent (50% NaOH and 50% 2-propanol (> 99.8% purity,
Carl Roth GmbH, Germany)) were added and mixed for 4 h at 60 rpm under dark conditions. The
supernatant was then measured as described above for water samples. Charcoal samples were
categorized as either “positive” or “negative” based on Uranine detection, while those showing

uncertain (very weak) fluorescence peaks were labelled as “likely positive”.
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2.7. Results

2.7.1. Geomorphological and structural analysis

The geomorphological survey confirmed that the entire western sector of the study area is
affected by a deep-seated gravitational deformation (DSGD) located on the steep slope above
Nadia Spring (Fig. 2.2). This specific landform likely results from the lateral spreading of the
cohesive and tectonically fractured units with strong mechanical contrast, such as ED units, over
the underlying ductile terrains of the Ligurian Domain (Mariani and Zerboni, 2020; Pasuto and
Soldati, 2013; Pasuto et al., 2022). At the margin of the N slab, failure surfaces are produced
evolving into complex landslide movements with toppled and slipped masses of PAT Formation
(M. Asinello area in Fig. 2.2). The field analysis in the area of the DSGD has revealed the presence
of two main gravitational morpho-structure types that fall within two major groups: 1)
topographic anomalies, such as scarps and counter-slope scarps, and 2) trenches. In particular,
the gravitational trenches are up to 500 m long and 110 m wide and usually oriented parallel to
the slope strike. These structures are preferentially developed along inherited discontinuities of
the PAT Formation oriented NNW-SSE. The trenches fill deposit consists of silts, clayey silts and

fine sands of few meters thickness.
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Fig. 2.2. Main geomorphological elements characterizing the N slab in the vicinity of Nadia Spring. See Fig.

2.1 for the map location and the complete geological legend.
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The field structural survey allowed the collection of over 600 observations of bedding, faults, and
fractures/veins. The data show that bedding dips moderately to slightly eastward, northward, or
southward, whereas faults and fractures/veins exhibit more variable orientations (Fig. 2.3a). The
statistical analysis performed on the 160 fault data shows a dominant strike approximately
oriented ENE-WSW (Gaussian curve n°1 in Fig. 2.3b), with a central value that deviates by
approximately 12°. Orientation represented by the Gaussian curve n°5 can also be included in

this set. These structures have an anti-Apennine orientation, parallel to the VLSS system.

Based on field observations, the ENE-WSW-striking faults are characterized by mature damage
zones, in which interconnected shears creates an articulated fracturing network along the fault
strike. Some of these faults show significant offsets juxtaposing the PAT Formation with other
less permeable formations (see sections in Fig. 2.1c). A second main strike is oriented WNW-ESE
(Gaussian curves n°2 in Fig. 2.3b), with a central value that deviates by about 10° from the
preferred direction. A third main strike is oriented NNW-SSE (Gaussian curve n°3 in Fig. 2.3b),
with a central value that deviates only 5° from the preferred direction. Structures pertaining to
curves n°2 and 3 align with the Apennine orientation. These faults and fractures generally show
single open surface and limited (or absent) damage zone. Finally, two subordinate strikes can be
extracted from the statistical analysis, both oriented approximately NNE-SSW (Gaussians n°4 and
n°6 in Fig. 2.3b).

b total data: 160 .

faults fractures/veins
n°=160 o

90°W:

Smooth. Data
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Fig. 2.3. Structural data: (a) stereographic projections (Schmidt net, lower hemisphere) of the main
structural elements observed in the N slab during field surveys; (b) Rose diagrams (Daisy 3 version 5.40;
Salvini et al., 1999) reporting the strike values of faults mapped in the study area. The red field (named 1)

represents the dominant trend, while the purple field (named 6) is the least representative.

The optic and acoustic televiewer borehole logs performed nearby the N slab revealed fractures
with decimetric apertures as deep as 61 to 71 m below ground surface (bgs), featuring irregular
surfaces (see SM) most likely resulting from the chemical dissolution of the calcareous matrix of
the Pantano arenites. The orientations of the open fractures align with the Apennine WNW-ESE
and NNW-SSE directions identified for deformation structures in the N slab at the filed scale (i.e.
Gaussians n° 2 and 3 in Fig. 2.3b).
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2.7.2. Spring hydrographs

The spring hydrograph of the hydrologic year 2020-21 shows a rising limb since December 2020
(start of monitoring) reaching a discharge peak of 64 L/s at the beginning of March 2021 (Fig.
2.4). This is followed by a depletion limb down to a minimum of 42 L/s at the end of October
2021. The average yearly discharge is 54 L/s. The typical rising limb of the winter-spring recharge
season is almost missing in the following year 2021-22. As a result, discharge variability along the
year is limited compared to the preceding year, with maximum, minimum and average values of
48, 39, and 42 L/s, respectively. The available dataset for the year 2022-23 is limited to the first
four months, from November 2022 to March 2023. Within this limited timespan, the average,
minimum and maximum values are of 40, 38 and 43 L/s, respectively. It is worth noting that for

the second consecutive year no evidence of a clear rising limb was registered during the recharge
season.
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Fig. 2.4. Hydrograph of the total discharge of Nadia Spring (including uptake and overflow) from December
2020 to March 2023. The hydrological years are indicated by red dashed lines. Daily precipitation from

the Riola di Labante meteo-station is included for comparison. The typical Northern Apennines recharge
season is shaded in grey.

Noticeable differences between the two complete yearly time series of 2020-21 and 2021-22 are
observed in the maximum discharge values and yearly averages, showing a decrease of 16 and
12 L/s from 2020 to 21 to 2021-22, respectively. The difference is less pronounced (3 L/s) for
minimum discharge values. The distinct discharge patterns observed in 2020-21 (higher flow) and
2021-22 (lower flow) are in line with the precipitation and air temperature trend of those two
years (see SM), which suggest reduced aquifer recharge in 2021-22. The later year is also known

to have been affected by a severe drought in the investigated region (ARPAE, 2023). The
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hydrographs of the four hydrologic years from 1914 to 1918 show overall higher discharge values
compared to the two more recent hydrographs of 2020-22 (Fig. 2.5a). The average discharge of
the period 1914-18 is 92 L/s, which is almost twice the average value of 2020-22 (48 L/s).
Moreover, the hydrographs from the past century show higher variability throughout the year,
with peak discharge reaching up to 140 L/s and minimum values going down to 63 L/s. The
differential between minimum and maximum discharge within a hydrologic year averaged 81 L/s
at the beginning of the last century but reduced to 16 L/s in the more recent years. In the years
1915-16 and 1917-18, the winter-spring rising limb is less evident on the hydrograph compared
to 1914-15 and 1916-17. This is in line with the precipitation trend monitored through those
years, which appears to work as an effective recharge indicator during the time-span covered by

the historical discharge monitoring (see SM).
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Fig. 2.5. Yearly hydrograph analysis: (a) historical (1914-18) and recent (2020-22) yearly hydrographs of
Nadia Spring. The x-axis represents months since the start of the hydrological years, with the first month
varying between September and November based on the year. Historical hydrographs are based on
monthly measurements, and since the precise monitoring date is unknown, discharge values were plotted
on the 15th of each month. The exponential Maillet models used to fit the recession limb of the six
hydrographs are represented with dashed lines; (b) linear relationship between the recession coefficient

a and the spring discharge at the beginning of the recession season.
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On all available hydrographs, a recession curve was identified starting in the 8th or 9th month of
the hydrologic year (Fig. 2.5a). Despite a good fit between the recession curves and the
exponential model of Maillet, with an R? always higher than 95%, the recession coefficient (a)
shows slight albeit systematic differences among the years. The past century recorded higher
values ranging between 3.2e-3 and 2.2e-3 day ™, while recent years showed lower values ranging
between 1.6e-3 and 1.3e-3 day™L. A direct linear relationship was found between a and the spring

discharge at the beginning of the recession curve (Fig. 2.5b).

2.7.3. Major ions and water stable isotopes

The major ion composition of spring water is similar through the different sampling years and
seasons, showing a dominant Ca-Mg-HCO3 hydrochemical facies (Fig. 2.6a), that is common to

other springs in the Northern Apennines area, as reported by Hajek et al. (2021).
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Fig. 2.6. Groundwater chemistry: (a) Schoeller diagram illustrating the major ion composition of spring
water on a seasonal scale from 2011 to 2021; (b) seasonal water stable isotope composition of spring and
precipitation samples collected between 2021 and 2022. The Northern-Italy Local Meteoric Water Line

(NMWL) is represented by a dashed grey line.
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The stable isotope composition of the four spring water samples shows a narrow range between
-10.1 and - 9.8%o for 680, and between -65.6 and - 63.6%o for 6%H (Fig. 2.6b). In contrast,
rainwater collected in the spring recharge area exhibits much higher variability with values
ranging from -12.4 to -3.5%o for 620, and from -84.4 to -19.8%. for §2H. The most depleted
rain samples were collected during the winter months (February 2021 and January 2022)
whereas the more enriched samples correspond to June and September 2021. All the samples
align along the Northern-Italy Local Meteoric Water Line (Giustini et al., 2016) with spring water
being closer to the winter rain end-member. Together with the low variability in spring water
isotopes for the period February 2021 to January 2022, this suggests a well-mixed water reservoir

with higher contributions of recharge from winter precipitation.

2.7.4. Recharge-discharge time lag

The analysed time lags between recharge events and discharge indicators, ranging from 0 to 90
days, were divided into three main intervals considering the predefined R? thresholds of 0.3 and
0.6 (Fig. 2.7a): (1) strong correlation with Q (R? > 0.6) within the first 0 to 15 days of time lag,
observed only during the high-flow period of 2020-21, indicating the arrival of newly infiltrated
water through preferential flow paths; (ll) weak correlations (0.6 > R? > 0.3) with Q and EC
between 15 and 65 days of time lag, suggesting the arrival of newly infiltrated water through
diffuse flow paths of varying lengths. Notably, a strong correlation with pH emerges at a 35-day

time lag, exhibiting a 20-day delay compared to EC.

This observation implies that some acidification reactions may take place as direct recharge from
precipitation moves through the extensive unsaturated zone. Indeed, previous literature has
noted that a significant portion of the CO; found in groundwater originates from biological
processes in the soil (Hartmann et al., 2014). It may then require several weeks for these
reactions to cause a noticeable decrease in pH in spring water; (lll) weak correlation with Q and
an absence of correlation with EC and pH (R? < 0.3) from 55 to 90 days of time lag, indicating that
the most delayed increases in discharge are likely induced by pressure transfer within the
reservoir. It is important to note that the variability of EC and pH during the monitoring period
was limited. EC ranges from 408 to 640 uS/cm with an average of 572 uS/cm and a standard
deviation of 37 uS/cm, while pH varies between 7.7 and 8.4 with an average of 7.9 and a standard
deviation of 0.2. This overall stability is consistent with the observations on the chemical and
isotopic composition of spring water (see Section 2.7.3). In this context, even slight variations of
the parameters may be useful to discriminate among different processes affecting the

groundwater flow system.
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Fig. 2.7. Time lag analyses: (a) linear correlations between recharge and discharge indicators at increasing
time lags. Dashed black lines indicate the different correlation thresholds. Grey bars denote partial
overlaps between the three intervals identified by the analysis; (b) identification of time lags between
precipitation events and decreases in TCC below the average of the monitoring period (5.8 meg/L). The
dashed black line indicates a deviation of 0 from the average. Progressive numbers identify the main
precipitation events and the associated dilution effect on spring water. The time lags for each event are

summarized in the lower right corner.

Six precipitation events occurred during the TCC monitoring (Fig. 2.7b). Each of them induced an
appreciable dilution on spring water, with variable time lags in the range of 16 to 34 days from

the recharge event to the start of the dilution signal.

53



2.7.5. Artificial tracer test

The water samples occasionally exhibit peaks in Uranine concentration during the 41 days of
sampling, ranging from 0.01 to 1.12 pg/L (Fig. 2.8). The earliest detections occurred 1 to 4 days
following injection, with a peak value of 0.28 ug/L. Tracer arrival in this early interval was likely
influenced by the relevant volume of water introduced during the tracer injection. Nevertheless,
the result demonstrates the existence of rapid flowpaths between the injection point and the
spring, with a maximum velocity of Uranine transfer in the range of 78 to 313 m/d (considering

a planar distance of 313 m from injection to detection).

| B precipitation —o— Uranine @ Uranine < LOD
1.2 - i B - - w 0
[ T |
1 5
0.8 10
®
= ©
» 06 15 ~
= £
= : £
0.4 20
°
0.2 25
o
S ¢ f ° o e
0 - eoemines 5'a o0 Ty 000 02 o g o0 0¢’ 09 30
charcoal bags:
( positive likely positive negative|
o o o o o o o o o o o o o o o
o o o o o o o o o o o o o
Sy, b T T ~ N Ny b, S~ by S S S, ~ b
< = s < < g Q Q (] g < < Q < Q
o [%p) o w o < (=)} < [=)) < (2] {¥=) i o -
- - o~ [V} o [ L] o~ - L] o~

Fig. 2.8. Main results from the artificial tracer test. The concentration of Uranine measured in water
samples are represented along with the information provided by charcoal bags. Concentrations below the
Limit of Detection (LOD = 0.005) are represented as 0 for graphical purposes. The graph covers the tracer
monitoring period from January 10th (day of injection) to March 22nd (collection of the last charcoal bag).

Daily precipitation data from the Riola di Labante meteo-station are included for comparison.

The two highest concentration peaks were observed between February 21st and 23rd (42 to 44
days post-injection), with values of 0.5 and 1.1 pg/L, respectively. The primary recharge event
preceding these peaks took place between January 21st and 25th, with a total amount of
precipitation of 41 mm (i.e. > 25 mm in 5 days). The time lag between the recharge event and
the two peaks is 27 to 33 days. The tracer transfer velocity associated with these peaks is
between 12 and 9 m/d.

Throughout the tracer monitoring period, the spring discharge remained relatively stable,
ranging from a minimum of 37.9 L/s to a maximum of 43.1 L/s, with an average of 39.8 L/s (see

Fig. 2.4). Based on daily flow rates and detected tracer concentrations, it was estimated that
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about 4.5 g of tracer were recovered, accounting for approximately 9 % of the total injected mass
of 50 g. Of the 4.5 g recovered, 2.8 g reached the spring outlet in correspondence of the two
main peaks of February 21st and 23rd. The small mass of tracer recovered in the first 41 days
after injection can likely be explained assuming that some tracers have remained in the
unsaturated zone and has been flushed out by subsequent meteoric events after the monitoring
period ended. The evidence provided by charcoal bags largely align with water samples,
confirming the arrival of Uranine between January 25th and February 14th, and suggesting a
probable occurrence between February 2nd and March 7th, which coincides with the period of

observation of the major peaks in water samples.

However, the negative result between February 14th and March 22nd appears inconsistent with
the tracer detection in water samples. This discrepancy could be attributed to possible tracer
desorption or biological degradation, which were previously hypothesized as reasons for
decreased tracer concentration in charcoal that remains in water for an extended amount of time
(Aley, 2019). The bag's total residence time was 36 days, extending up to 24 days after the arrival
of the last recorded Uranine peaks. Eventually, the three bags left in place throughout the entire
monitoring period (not shown in Fig. 2.8) were affected by significant background noise, which

hindered the possible detection of Uranine trace on the charcoal.

2.8. Discussion
2.8.1. Factors enhancing the Nadia Spring yield

The hydrological response of Nadia Spring resembles that of many springs in the Northern
Apennines that exhibit a rising discharge during winter and spring, followed by a declining
discharge in summer and fall. The magnitude of the Nadia Spring rising limb in each hydrological
year depends on the amount of recharge during that year, with higher discharge peaks in years
of greater recharge. This discharge response is typical of Northern Apennines springs due to their
short groundwater flow paths, which make them responsive to local recharge patterns (Gargini
et al., 2014). However, Nadia Spring stands out with a unique base flow contribution of
approximately 40 L/s at the end of the decreasing limb when most other Northern Apennine

springs approach zero flow, leading to drinking water supply issues (Cervi et al., 2018).

A crucial factor that explains the increased yield of Nadia Spring is the presence of a significant
groundwater reservoir that supplies the spring. This is supported by the notably low Maillet
recession coefficient a, averaging 2.4e-3 d~! over the monitored years. In contrast, the dominant
a values in the Northern Apennines region are typically one order of magnitude higher

(Gargini et al., 2008), indicating smaller reservoirs (Tallaksen, 1995). Nadia Spring is situated at
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the lowest topographic elevation along the edge of the N slab, corresponding to the bottom
elevation of the PAT Formation (see Fig. 2.1c). As a result, it serves as the most natural discharge
point of the slab. Moreover, unlike the typical Northern Apennine setting where a large number
of diffuse outlets are associated with one groundwater reservoir (Gargini et al., 2008), in this
case, several factors have led to the concentration of drainage from the N slab into one primary
discharge point which is Nadia Spring. These factors are discussed in more detail in subsections
2.8.1.1 to 2.8.1.3 and include structural pattern of faults and fractures, the presence of slope

instabilities, and karst dissolution.

2.8.1.1. Structural pattern

The anti-Apennine striking faults, aligned with the VLSS, are the most recurrent features in the
area based on field data analysis. The primary and most continuous lineaments in the N slab
follow this direction (Fig. 2.1b). These main structures likely constrain groundwater flow, as
supported by the following observations: (1) some of the NE-SW structures create significant
offsets, restricting the lateral continuity of the PAT aquifer (Fig. 2.1c); (2) Balocchi (2014) reported
the presence of cataclasites on the major Anti-Apennine lineaments of the N slab (Fig. 2.1b),

assigning them the role of flow barrier (Caine et al., 1996).

Apennine-oriented structures come second in terms of prevalence in the area. These are
generally cut and displaced by the anti-Apennine-oriented faults (as visible in Fig. 2.3b and
previously noted by Balocchi (2014). These structures, with their two primary strikes NNW-SSE
and WNW-ESE, effectively “unlock” the rock mass within NE-SW “channels” delimited by anti-
Apennine structures. Presumably, the Apennine striking structures serve as planes of weakness
that enhance the rock mass's permeability, based on the following lines of evidence (discussed
more in detail in the subsequent sections): (1) the development of a DSGS along Apennine-
oriented planes of weakness (see Section 2.8.1.2); (2) the observation of karst dissolution along
deep-seated Apennine-oriented structures in the borehole near the N slab (see Section 2.8.1.3).
Additionally, the wide fracture chosen as injection points for the tracer experiment (see
Section 2.7.5) also exhibit an Apennine strike (NNW-SSE), further confirming the presence of
enlarged structures in that orientation. Finally, during the excavation of the drainage tunnel for
spring uptake, which is oriented along the anti-Apennine direction, Vecchi (1920) reported
groundwater inrush from fractures perpendicular to the tunnel's alignment, indicating an

Apennine orientation.

As a result, the Apennine-oriented structures plausibly form the primary network for
groundwater flow, facilitating the circulation of groundwater throughout the saturated part of

the N slab. This circulation predominantly aligns with the anti-Apennine-oriented structures,
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which mostly act as no-flow boundaries. Groundwater is consequently conveyed from the

northeastern sector of the N slab towards Nadia Spring.

2.8.1.2. Slope instabilities

The relaxation of stresses caused by the DSGS (classified as lateral spreading) along the edge of
the N slab results in the formation of features like trenches and scarps/counter-scarps. These
features can locally enhance the permeability of the unsaturated zone, allowing for concentrated
recharge in the vicinity of the spring. Furthermore, it is highly probable that a localized drop in
groundwater levels is associated with the observed increase in permeability in the DSGS area.
This may lead to additional drainage from the surrounding regions towards the spring area. It is
important to note that the morpho-structures related to lateral spreading align with Apennine-
oriented faults and fractures (Fig. 2.2), which likely played a significant role in initiating and

shaping the instability processes.

2.8.1.3. Rock dissolution

The chemical composition of groundwater suggests a significant interaction with a carbonate
matrix, pointing to the likelihood of karst dissolution (Wijayanti and Dalmadi, 2021). This
dissolution process could primarily impact either the calcitic cement/matrix of the calcarenite
rock mass of PAT, or the limestone/dolostone clasts within the skeleton (the occurrence of non-
negligible Mg content in the groundwater suggests the presence of dolomite in these clasts).
Furthermore, there have been previous observations of travertine deposits at various spring
outlets within the same aquifer lithology, as documented by Cantonati et al. (2016). This supports
the hypothesis of an enrichment of CaCOs in the water during underground flow. Additionally,
the discovery of wide discontinuities with apertures of up to 20 cm, identified at depths of 61
and 71 m bgs through televiewer borehole logging, provides further evidence of karst dissolution
within the studied lithology. The borehole observations suggest that dissolution is primarily
occurring along preexisting Apennine-oriented fractures. Karst dissolution is likely to increase the
overall permeability of the aquifer and promote the development of preferential groundwater

flow paths within the rock mass, as discussed further in Section 2.8.2.

2.8.2. Evidence of dual porosity in the N slab

The inferred occurrence of karst dissolution within the N slab is expected to trigger the

development of a hierarchical groundwater flow system over time, which eventually results in a
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more focused drainage of groundwater towards a limited number of larger discharge points
(Hartmann et al., 2014; Worthington and Ford, 2009).

The findings from the analysis of recharge-discharge time lags suggest the existence of a dual
porosity system connecting the recharge area to Nadia Spring. This system consists of both fast-
flow conduits and a diffuse fracture network. An additional contribution from matrix porosity,
often observed in relatively young carbonate systems (Kresic and Stevanovic, 2010), cannot be
definitively ruled out. However, information on matrix porosity in the investigated calcarenitic

lithology of PAT is currently unavailable and should be the focus of further investigation efforts.

In the fast-flow system, which comprises enlarged fractures, newly infiltrated water is rapidly
drained towards the spring (within 15 days after major recharge events, i.e. > 25 mm in 5 days).
However, it is worth noting that these preferential flow contributions are likely minor (<10%), as
indicated by results from the artificial tracer test. The fast-flow system appears to be active
primarily during periods of high-flow hydrological conditions (monitoring year 2020-21),
suggesting that the conduits become active when hydraulic head stands higher. Gradually, a
signal from a more diffuse system becomes predominant during lower-flow conditions, resulting
in variable time lags (between 15 and 65 days) for newly infiltrated water to reach the discharge
outlet in response to major precipitation events. Over longer timescales (starting from 55 days
of time lag), this same diffuse system appears to convey water stored in the reservoir through
pressure transfer. Cationic composition data (TCC) during low-flow conditions support the
estimated response times for newly infiltrated water through the diffuse drainage system

following major precipitation events, with time lags ranging between 16 and 34 days.

Artificial tracing results also aligns with these response times, showing initial tracer arrival within
a few days after injection, most likely due to activation of fast-flow circuits because of the large
volume of water injected during the experiment. The later, more concentrated tracer arrival is
consistent with the previously inferred transfer times of newly infiltrated water through the
diffuse drainage system (between 27 and 33 days of time lag). Notably, the tracer transfer
velocity associated with the diffuse drainage system (ranging from 12 to 9 m/d) falls within the
range of values obtained experimentally by Vincenzi et al. (2014) for turbiditic sandstone aquifers
characterized by diffuse groundwater flow networks (2 to 20 m/d). Conversely, the higher
transfer velocity linked with fast-flow circuits (ranging from 313 to 78 m/d) more closely
resembles the values observed by the same authors in a marly calcareous turbiditic aquifer
affected by karst dissolution (94 m/d). These observations corroborate the hypothesis of a dual

porosity system comprised of fast flowpaths associated with a diffuse fracture network.

The analysis of recent and historical hydrographs emphasizes once again the occurrence of a dual

porosity system. The spring's recessive response observed over the past century (from 1914 to
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2022) indicates progressively slower flow of recharge water as the discharge at the start of the
recession limb decreases. In particular, the historical hydrographs are characterized by higher
recession coefficients indicating faster flows between the recharge area and the spring, with
larger flow variability observed throughout the hydrological year between the recharge and the
recession seasons. This response is plausibly related with the existence of fast flow-paths
connecting the recharge area to the spring, facilitating the transfer of newly infiltrated water as
well as rapid responses to pressure changes. In more recent years (2020-2022 hydrographs),
lower recession coefficients were observed in conjunction with reduced flow variability
throughout the year. This is most likely attributable to groundwater flow occurring through

slower circuits with a diffuse character.

2.8.3. Resilience to climate change

From various angles, Nadia Spring exhibits remarkable stability and an inertia towards the year-
to-year fluctuations in recharge factors. From a hydrological perspective, the minimum spring
discharge values remain consistently stable throughout the recent years being apparently
unaffected by annual variations in recharge. For instance, when comparing the hydrographs of
2020-21 and 2021-22, the latter shows only a minor decrease in the minimum annual discharge,
even in the face of an exceptional drought during the recharge season. This implies that
reductions in recharge primarily affect the peak phases of the yearly hydrograph but leave the
minimum discharge almost unimpacted. This suggests significant resilience of the spring to
individual dry years, ensuring it continues to provide an ecosystem service with a sufficient flow

rate even in critical summer seasons.

From a geochemical perspective, the groundwater composition (i.e. major ions and stable
isotopes) remains highly stable across seasons or even years, indicating a well-mixed aquifer
reservoir supplying the spring. This is in contrast to heterogeneous media like real karst aquifers,
which exhibit a strong hydrochemical variability over time (Sanchez et al., 2015). Thus, the
observed chemical consistency further supports the hypothesis of a substantial contribution from
a diffuse drainage system in recent years, as previously discussed in Section 2.8.2. Water isotopes
additionally suggest that most recharge occurs during the winter-spring period when the
combination of higher precipitation and lower temperature maximize the water's capacity to

penetrate the unsaturated thickness of the system (Thornthwaite and Mather, 1957).

The rare opportunity to examine century-old hydrographs of the spring has allowed for notable
observations regarding its interdecadal resilience in the face of discharge reductions caused by
century-scale climate change. The significant decline in Nadia Spring's discharge since the early

21st century, a trend also observed in other Mediterranean regions and attributed to
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documented reductions in recharge season precipitation and snow-related parameters (e.g.,
Dragoni and Sukhija, 2008; Fiorillo et al., 2021), suggests a limited resilience of the spring to long-
term recharge variations. However, the observed relationship between the initial discharge
during the recession and the recession coefficient (Fig. 2.5b) indicates an increasing laminar
capacity of the aquifer over time (i.e. decrease of discharge variability along one single year and
increased stability of the minimum discharge values over different years).

This change should be linked to the previously inferred transition in recent years towards a more
diffuse drainage system. This diffuse system is most likely located at lower altitude in the
reservoir, so that the more dynamic fast-flowpaths are activated only when the hydraulic head
in the aquifer is higher. As a result, future decreases in spring discharge due to reduced recharge
may be less severe compared to the past, potentially enhancing the interdecadal spring's

resilience to climate change.

2.9. Conclusions

A strategic spring resource in the Northern Apennines was explored due to its unique
characteristics regarding discharge magnitude and consistency. This study employed an
unprecedented combination of traditional geological and hydrogeological field investigations,
continuous monitoring of recharge- and discharge-related indicators, an artificial tracer
experiment, and an analysis of spring hydrographs dating back a century. These methods enabled
us to unravel the factors contributing to the spring's distinctive features. The investigative
approach presented here can serve as a valuable model for similar hydrogeological settings when

studying and assessing local strategic groundwater discharge points.

In the case of Nadia Spring, several factors influence the spring's response to recharge
fluctuations. These include an extended groundwater reservoir supplying the spring, a complex
network of fractures that constrain groundwater flow towards highly transmissive channels, a
slab structure that triggers slope instability along its margins, and a high carbonate content in the
rock mass favouring karst dissolution. This, in turn, facilitates active aquifer recharge in the
occurrence of abundant precipitations during the winter-spring season and hierarchizes
groundwater flow towards one main outlet. All these conditions favour an increased yield for the
spring, as well as resilience to variations in recharge on an inter-annual scale. On the other hand,
over several decades or centuries, the spring's discharge appears significantly affected by
reduced recharge due to climate change. These long-term effects are particularly evident in
terms of decreased peak discharge. Nevertheless, the capacity of the aquifer reservoir to store
recharge water acts as a buffer mitigating the risk of an excessive decrease in spring discharge

during future drought conditions.
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The hydrodynamics of the spring indicate the presence of a dual porosity, characteristic of
variably karstified systems, whereas karst dissolution is not commonly observed in arenitic
aquifers. However, as hydraulic head and spring discharge decrease over time due to climate
change-related discharge reductions, a significant portion of the fast-flow preferential system
seems to deactivate gradually, possibly because of its higher elevation within the aquifer, which
is gradually depleting. The primary spring discharge contribution today appears to originate from
a diffuse drainage system, which likely constitutes the deeper portion of the aquifer. The dual
porosity structure would then explain the different response observed in the spring one century

ago compared to today.

A critical element that has allowed us to understand the spring's discharge response and draw
conclusions about its resilience is the combination of a long-term monitoring of hydrological
(including uptake and overflow) and hydrochemical parameters. Century-long spring discharge
monitoring is a rare find in the existing literature and, in cases where it is available, as in the
instance of Nadia Spring, it allows unveiling the significant impacts of climate change on
discharge. Another crucial aspect has been the continuous monitoring of spring discharge and
chemistry during an exceptionally dry period spanning from 2021 to 2023. Such monitoring has
emphasized the resilience of discharge in severely dry years, attributed to the drainage capacity
of the diffuse fracture system. This effect might have gone unnoticed during less dry
periods. Continuing the spring monitoring in the future will be essential to identify flow patterns
under more variable atmospheric conditions, including variable discharge patterns over the

hydrologic year.

In the future, it would be also beneficial to monitor additional strands of evidence, such as eco-
hydrogeological indicators like endemic invertebrates or plant species, and the
dendrochronology of trees situated at increasing distances from the spring. These could offer
valuable insights into the long-term persistence of spring discharge and enhance our
understanding of the spring's ecological significance. Relatively large springs like Nadia often hold
substantial ecosystem value. Understanding how discharge responds to climatic variations is a
crucial step for managing and leveraging the ecosystem services provided by the spring, both in

natural and economic terms.

While showing the importance of continuous spring discharge monitoring over time, this study
also sheds light on a more general issue: while hydrologic monitoring networks for precipitation
and surface water fluxes are well structured and operating in many areas of the world, a strong
enhancement of such network is needed for springs in order to cope with the challenges of
climate change, both in terms of water resources management and ecological

preservation/valorisation of the spring environment.
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2.10. Supplementary Material
2.10.1. Coring and televiewer logging

Two boreholes were drilled between November and December 2021 in a location 7 km south of
the Nadia spring, in the same PAT aquifer Formation, where logistic conditions and land property

rights were favourable for the drilling activities (Fig. 2.9).

Legend
L Study area

| 0 ED Units
[T Ligurian Units
I subligurian Units
~ Principal rivers

—— Principal tectonic lineaments
! o

Fig. 2.9. An excerpt from Fig. 2.1a in the main text, displaying the chosen drilling location, as well as the

Riola di Labante and Montese meteorological stations.

The locations of the two boreholes, namely ARP1 and ARP2, are at a ground altitude of 790 m asl
and spaced apart of 10 m. The drilling of ARP1 was performed down to a depth of 80 m bgs using
a wireline continuous coring system with single tube core barrel of 101 mm diameter that
provided consistent, high core recovery of 90 to 100% in the hard rock intervals. For the purposes
of this study, the cores were visually assessed in terms of aspect of fracture surfaces in order to

detect evidences of rock dissolution. Borehole ARP2 was drilled down to a depth of 35 m bgs
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using a core destruction probe with a 101 mm diameter. Acoustic and optical televiewer logs were
performed along the uncased boreholes (50 to 80 m bgs in ARP1; 2 to 35 m bgs in ARP2) to
observe the orientation and aperture of fractures. The primary structures of interest identified
during the drilling investigation are fractures of decametric aperture at depths of 60-62 m bgs
and 70-72 m bgs, with orientations of WNW-ESE and NNW-SSE. The surfaces of these structures

exhibit significant irregularities at core inspection (Fig. 2.10).

Optical log Acoustic log

Fig. 2.10. Discontinuities of main interest identified through televiewer logging and core inspection.

2.10.2. Droughts in the Emilia Romagna Apennines

In Fig. 2.11, we present precipitation data from the past two decades obtained from two

meteorological stations located in close proximity to the study area, namely Riola di Labante and
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Montese (Fig. 2.9). The datasets include both the total annual precipitation and the precipitation

during the recharge season, which spans from the beginning of the hydrological year to April.
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Fig. 2.11. Annual precipitation and mean annual air temperature in the area of the Nadia spring. “R” and
“M” indicate the Riola di Labante and Montese meteo-stations, respectively. “TOT” indicates the
cumulated precipitation over the hydrologic year whereas “recharge season” indicates the cumulated

precipitation from the beginning of the hydrologic year to April. Drought years are highlighted in red.

Riola di Labante station, as previously mentioned in the main text, serves as the most
representative station for the N slab area due to its proximity and elevation (623 m asl). On the
other hand, Montese station is positioned at a higher elevation compared to the study area's
average (920 m asl). Notably, Montese provides additional data on air temperature for the period
of interest (see the average annual air temperature in Fig. 2.11), which is not available from the

Riola di Labante station.

Despite the differences in altitude, the total annual precipitation and recharge season
precipitation have shown a similar pattern in both stations over the past two decades.
Approximately every five years, we observe a convergence of low precipitation levels and
unusually high air temperatures. The latter has the dual effect of increasing evapotranspiration
and reducing snow-fall and -permanence on the ground. Such periods align with those previously
identified at the regional level as drought periods (e.g. ARPAE, 2018, 2023). It's worth noting that
the years 21-22 and 22-23 represent an extended period of drought, continuing at least until the
spring of 23 when the monitoring for this study was concluded. The relatively high total annual
rainfall reported in the graph for 22-23 is attributed to several events occurring during the late
spring and summer, a season typically marked by dry conditions in the Norther Apennines

(though outside the scope of this study's monitoring period).
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2.10.3. Historical discharge and precipitation data

The historical monitoring data of spring discharge and precipitation collected by Vecchi (1920)
are shown in Fig. 2.12. The discharge data represent discrete monthly measurements (the precise
monitoring date is unknown). Precipitations represent the cumulated monthly amounts
registered at the Montese meteorological station (Fig. 2.9), which was the only active station in

the vicinity of the N slab during the time-span covered by the historical monitoring.
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Fig. 2.12. Monthly discharge and monthly precipitation data from January 1915 to October 1918.

2.10.4. Correlation between annual precipitation and discharge over time

In Fig. 2.13, we illustrate the correlation between precipitation during the hydrological year or
precipitation during the recharge season and the average discharge of the spring over the
hydrological year (Q). This comparison was conducted using both historical and current
monitoring data. Regarding historical data, only the three years from 1915 to 1918 are presented
because we lack information to determine a consistent averaged discharge for the year 1914-15.

As for recent data, the year 2022-23 is not represented for the same reason.

An estimation of the aquifer recharge variation for the historical monitoring period was not
feasible due to the absence of temperature data for the beginning of the century. Nonetheless,
a strong correlation between precipitation and spring discharge in the past is evident, suggesting
that precipitation serves as an effective indicator (in relative terms) of recharge within a specific
climatic context (in this case, that of the early century). However, in the present, precipitation

values are higher than what would be expected if following the historical correlation.
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Fig. 2.13. Linear relationship between annual spring discharge and precipitation in the period 1915-18
and 2020-22. The circles represent the total precipitation over a hydrologic year whereas the triangles

represent the precipitation of the recharge season.

Notable global changes, such as rising temperatures (resulting in increased evapotranspiration
and decreased precipitation and snow cover) and shifts in precipitation patterns (with more
frequent extreme events causing less effective for groundwater infiltration), have occurred since
the past. This has created a different current climatic context compared to the past. Specifically,
all the factors mentioned above, plausibly contribute to reduced recharge in the present
compared to the past, resulting in lower discharge at the spring despite similar levels of
precipitation. Therefore, relying solely on precipitation as a century-scale recharge indicator is

not advisable, but it can be meaningful within a "homogeneous" climatic context.

It's worth noting that although the elevation of the past rain gauge (Montese station) and the
present one (Riola di Labante station) differs (623 vs. 920 m asl), the analysis of the past two
decades in Fig. 2.11 suggests that the recorded precipitation at both stations is similar. Hence,
the observed difference between past and present conditions should not be attributed to

variations in station elevation.

2.10.5. Liquid and solid precipitation

During the recent monitoring period of 2020-23, although there was no specific monitoring setup
for solid precipitation near the study area, the research team diligently observed weather
conditions between December 2020 and March 2023. Only two significant snowfall events were

recorded during this timeframe - one at the end of December 2020 and another at the end of
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January 2023. The limited occurrence of snowfall events led to the conclusion that they were
insufficient for evaluating distinct spring discharge responses to solid versus liquid precipitation.
To provide a more objective evaluation of solid precipitation during the monitoring period, major
recharge events (i.e. precipitation > 25 mm in 5 days) were identified where the daily average air
temperature was < 0°C (considering the minimum air temperature among the 5 reference days
for each event). Six such events were identified (Tab. 2.1), with two occurring during the
hydrological year 20-21 (high flow period) and four during the hydrological years 21-22 and
22-23 (low flow period).

major recharge event P (sum of | averagedaily T D
first day last day 5 days) (min of 5 days)
01/12/2020 05/12/2020 122.6 24| 1
06/12/2020 10/12/2020 70.6 0.36
26/12/2020 30/12/2020 52.6 -2.7) 2
% 31/12/2020 04/01/2021 42.2 0.86
i 20/01/2021 24/01/2021 60.2 1.12
'_téo 10/04/2021 14/04/2021 57.2 1.4
12/09/2021 16/09/2021 41.8 17.53
22/09/2021 26/09/2021 29.2 13.59
02/10/2021 06/10/2021 27.8 10.79
01/11/2021 05/11/2021 29.2 5.14
11/11/2021 15/11/2021 59.8 7.21
05/01/2022 09/01/2022 40.2 -1.49| 3
31/03/2022 04/04/2022 48.2 1.44
20/04/2022 24/04/2022 63.4 5.47
> 05/05/2022 09/05/2022 59 8.4
2 | 18/08/2022 22/08/2022 34 15.76
g 28/08/2022 01/09/2022 35.2 16.13
~ | 21/11/2022 25/11/2022 59.4 2.31
01/12/2022 05/12/2022 30.4 0.61
06/12/2022 10/12/2022 314 2.33
11/12/2022 15/12/2022 30.4 -2.84( 4
20/01/2023 24/01/2023 29.8 -3.5| 5
01/03/2023 05/03/2023 45 -1.74| 6

Tab. 2.1. List of the major recharge events registered during the monitoring period (precipitation > 25 mm
in 5 days). The six events associated with an average daily air temperature < 0°C (minimum value of the

5-days interval) are highlighted in red and labeled with a progressive ID from 1 to 6.

These major recharge events were potentially associated with solid precipitation. Each of the six
events underwent further analysis to determine if most of the precipitation occurred on days
with a low average air temperature (< 2 °C): when at least 10 mm of precipitation occurred in a
day with average air temperature < 2 °C, a “high probability” of snowfall was assigned to the 5-
day recharge event. In the remaining cases, the events were labelled with a “low probability” of

snowfall. This analysis led to the identification of three major recharge events with a "low
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probability" of snowfall and three events with a "high probability" of snowfall (Tab. 2.2). The
latter three events include the two already noted during the monitoring period (end of December
2020 and end of January 2023), plus an additional event at the end of December 2022.
Importantly, the air temperature data used for the analysis originate from the Montese station,

situated at a high elevation compared to Nadia spring recharge area (see Section 2.10.2).

ID days: / 1l 1 v 4 probability of snowfall
5|1 p 2.4 2.8 7 45.4 65 Low
2 T 3.1 6.22
= 16 20.4 12 4.2
21, P High

T 2.03 2.78 0.63
3 p 26.8 6 5.2 0.2 2 Low
T 5.23
2 2 27
2 |4 P 3 0 Low
S T 3.78
2 2 2.4 . 18.4
35 P 0 3 >-8 8 High
T
2.6 18.4 24
6 P High
T 2.91 4.17 6.58

Tab. 2.2. Detailed analysis of the six recharge events identified in Table 2.1. For each 5-day event, daily
precipitations > 10 mm are highlighted in red, whereas daily averaged temperatures < 2 °C are highlighted

in blue. When two such condition coexisted in the same day, values are further highlighted in bold.

This might have resulted in an underestimation of air temperatures compared to Nadia recharge
area. The three events identified with a high probability of snowfall align with the correlation
analysis described in the main text, suggesting consistency with other precipitation events (see
the correlation graphs in Section 2.10.6, where snowfall events are highlighted). This confirms
the previously suggested impossibility of distinguishing between the effects of solid and liquid
precipitation during the 20-23 monitoring period, where solid precipitation was notably scarce.
Regarding the experimental data from historical monitoring (1914-18), we lack the necessary
information to hypothetically differentiate between solid and liquid precipitation. Indeed, during
this historical period, there was an absence of air temperature monitoring near the study area or

any monitoring stations with geographical and topographical comparability to the studied zone.

Nonetheless, it is acknowledged that snowfall underwent variations between the two monitoring
periods compared in this study. These variations, although imprecisely determinable for the
investigated area, were previously observed in the study region (e.g., Diodato et al., 2019;
Diodato et al., 2022). In particular, a decrease of snowfall and snow cover duration was registered
during the XX century, contributing significantly to a general alteration of the climatic regime, as

previously discussed in Section 2.10.4.
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2.10.6. Linear correlations between recharge events and discharge indicators (Q, EC, pH)

Below are the linear correlation graphs used to derive the R? values for Fig. 2.7a in the main text.

The methodology for correlation is described in Section 2.6.4 of the main text. Figs. 2.14 to 2.17
correspond to the indicator Q; Figs. 2.18 and 2.19 correspond to the indicator EC; Figs. 2.20 and

2.21 correspond to the indicator pH.
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Fig. 2.14. Correlation graphs between precipitation (main recharge events) and Q, with increasing time

lags from 1 to 15 days. Graphs on the right column represent the high flow period (hydrologic year 2020-
21) while the graphs on the right refer to the low flow period (hydrologic years 2021-22 and 2022-23).

The events associated to high snowfall probability are highlighted in orange.
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Fig. 2.15. Correlation graphs between precipitation (main recharge events) and Q, with increasing time
lags from 20 to 40 days. Graphs on the right column represent the high flow period (hydrologic year 2020-
21) while the graphs on the right refer to the low flow period (hydrologic years 2021-22 and 2022-23).
The events associated to high snowfall probability are highlighted in orange.
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Fig. 2.16. Correlation graphs between precipitation (main recharge events) and Q, with increasing time
lags from 45 to 65 days. Graphs on the right column represent the high flow period (hydrologic year 2020-
21) while the graphs on the right refer to the low flow period (hydrologic years 2021-22 and 2022-23).
The events associated to high snowfall probability are highlighted in orange.
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Fig. 2.17. Correlation graphs between precipitation (main recharge events) and Q, with increasing time
lags from 50 to 90 days. Graphs on the right column represent the high flow period (hydrologic year 2020-
21) while the graphs on the right refer to the low flow period (hydrologic years 2021-22 and 2022-23).
The events associated to high snowfall probability are highlighted in orange.
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Fig. 2.18. Correlation graphs between precipitation (main recharge events) and EC, with increasing time

lags from 1 to 45 days. All the graphs refer to the low flow period (hydrologic years 2021-22 and 2022-

23). The events associated to high snowfall probability are highlighted in orange.
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Fig. 2.19. Correlation graphs between precipitation (main recharge events) and EC, with increasing time

lags from 50 to 90 days. All graphs refer to the low flow period (hydrologic years 2021-22 and 2022-23).

The correlation dataset does not contain precipitation event associated with high probability of snowfall.
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Fig. 2.20. Correlation graphs between precipitation (main recharge events) and pH, with increasing time

lags from 1 to 45 days. All graphs refer to the low flow period (hydrologic years 2021-22 and 2022-23).

The correlation dataset does not contain precipitation event associated with high probability of snowfall.
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Fig. 2.21. Correlation graphs between precipitation (main recharge events) and pH, with increasing time

lags from 50 to 90 days. All graphs refer to the low flow period (hydrologic years 2021-22 and 2022-23).

The correlation dataset does not contain precipitation event associated with high probability of snowfall.
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2.12. Additional observations

As outlined in the preface to this second chapter, this post-article section presents detailed data
concerning the frequency and severity of droughts in the Emilia-Romagna Apennines, with a
particular focus on the catchment area of Nadia Spring. It also examines the substantial reduction
in Nadia Spring’s discharge observed today compared to 100 years ago, to which these droughts

have significantly contributed.

2.12.1. Insights from the Montese rain gauge

The Montese rain gauge, which is highly representative of the precipitation over the Nadia Spring
catchment, provides a continuous historical dataset spanning nearly a century, from 1930 to the
present. Additionally, data on rainfall for the period 1915-1919 were collected by Vecchi (1920),
as previously mentioned. The graph in Fig. 2.22 focuses not on monthly cumulative precipitation
but rather on the cumulative precipitation during the typical recharge period for aquifers, which
spans from 1 November of one year to 31 May of the following year (Gargini et al., 2008; Segadelli
et al., 2021). This period is identified as the key recharge period for groundwater due to the
following reasons: (i) rainfall intensity is greater, especially during November-December and
early spring season; (ii) temperatures are sufficiently low to minimise evapotranspiration; (iii) the
soil remains moist, making it more effective in transferring direct recharge downward; and (iv)

snowmelt during the early spring season is a key factor due to the high infiltration rate.
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Fig. 2.22. Cumulative rainfall recorded by the Montese rain gauge over the recharge period (November-
May). The orange line refers to the period 1915-1919, with the corresponding years displayed on the

secondary horizontal axis at the top of the graph.
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The 17 circular markers in Fig. 2.22 represent drought periods characterised by significantly low
precipitation between November and May. Markers to the left of 1981-1982 are coloured purple,
while those to the right are coloured red. For the drought specifically corresponding to 1981-

1982, both markers are displayed.

The reason for adopting two different colours becomes apparent in Fig. 2.23, which highlights

the interval of time between successive droughts.
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Fig. 2.23. Time intervals between successive drought events recorded by the Montese rain gauge. The
horizontal bars share the same colours as the circular markers shown in Fig. 2.22, which enclose the

corresponding periods. The polynomial trend was constructed using a degree 5 basis.

For instance, the gap between the droughts of 1931 and 1938 is 7 years, followed by another 7
years between 1938 and 1945. However, the interval between 1945 and 1949 is only 4 years, as
indicated by the corresponding purple bar at 4 on the y-axis. Between 1931 and 1982, droughts
occurred approximately every 7 to 8 years. In contrast, between 1982 and 2017, they became

more frequent, occurring on average every 4 to 5 years.

Between the early 1980s and the first half of the 2010s, the frequency of water scarcity events
in the Northern Apennines appeared to have stabilised at around five years. However, the
Montese rain gauge recorded three drought events in just five years between 2017 and 2022,
two of which (those of 2020-2021 and 2021-2022) occurred consecutively.

The graph shown in Fig. 2.24 is closely linked to the preceding one in Fig. 2.23. In this case, it
displays the cumulative precipitation from 1 November of one year to 31 May of the following

year, but only for the years corresponding to the droughts highlighted earlier. What stands out
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in this figure, particularly with the support of the two trend lines, is that recharge period rainfall
has been decreasing during drought years: from an average of approximately 420 mm between
1931 and 1982 to about 340 mm between 1987 and 2022, reflecting a 20% reduction.
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Fig. 2.24. Cumulative rainfall during the recharge period recorded by the Montese rain gauge, limited to
droughts events. The two elliptical markers highlight a clear division in recharge period rainfall amounts

during droughts occurring before and after the mid-1980s. The polynomial trend uses a degree 5 basis.

This graph further illustrates that droughts are not only occurring more frequently (Fig. 2.23) but
are also becoming increasingly severe and critical, as precipitation during the recharge period
continues to decline (Fig. 2.24). This deficit in liquid precipitation is further exacerbated by the
decline in solid precipitation. In fact, in recent years, snowfall values have exhibited negative
trends in both quantity (and consequently snow cover thickness) and permanence to the ground
in the Northern Apennines (Diodato et al., 2022).

2.12.2. Nadia Spring discharge reduction

As highlighted in Section 2.8.3, the reductions in recharge observed between 2020 and 2022 in
the Nadia Spring catchment primarily affected the peak phases of the yearly hydrograph, while
leaving the minimum discharge largely unaffected (Fig. 2.5). This indicates significant resilience
of the spring to individual dry years, maintaining a sufficient flow rate even during critical summer
seasons. However, the notable decline in spring discharge since the early 21st century suggests

limited resilience of Nadia Spring to long-term recharge variations.
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Figure 2.25 clearly illustrates this significant drop in the average discharge of Nadia Spring over
the past century. The comparison of mean monthly discharge between the periods 1915-1919
and 2020-2023 reveals a reduction in flow rate of approximately 40%, clearly reflecting the long-
term increasing frequency and severity of droughts in the Northern Apennines, as highlighted in
the preceding three figures (Figs. 2.22, 2.23, and 2.24).
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Fig. 2.25. Comparison between the 1915-1919 and 2020-2023 average monthly discharge of Nadia Spring.
The table on the left presents the values displayed in the graph on the right.

At the beginning of the 20th century, during 1915-1919, the spring exhibited an annual average
discharge of roughly 91-92 L/s, while the average discharge between December 2020 and March
2023 has dropped to just 54 L/s. This change must be natural, as there have been no human-
made alterations to both the aquifer conditions (e.g., pumping wells) and land use in the

restricted catchment area of Nadia Spring over the past 100 years.

Nevertheless, Fig. 2.5b reveals an increasing laminar capacity of the calcarenitic aquifer over
time, characterised by a decrease in discharge variability within a single year and enhanced
stability of minimum discharge values across different years. This evidence suggests that, despite
the significant natural decline in Nadia Spring’s discharge over the past century, the spring
demonstrates resilience to climate change, maintaining a consistent base flow and continuing to

provide an ecosystem service with an adequate flow rate.
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Chapter 3:

Assessing the long-term trend of spring discharge in a climate change

hotspot area

3.1. Preface

The analyses summarised in the preceding chapter addressed the first scientific question of this
PhD project, concentrating on quantifying the historical impact of climate change on spring
discharge across the Apennines over the past century and evaluating the climatic resilience of a
spring through a multidisciplinary approach. The next critical step involves a comprehensive
investigation into the intricate relationship between recharge-related parameters and spring
discharge, based on extensive historical time-series data, with the aim of projecting flow rates

into the long-term future.

To support this endeavour, an extensive research phase was dedicated to identifying hydrological
time series of spring discharge in the Apennines that met the following criteria: continuous
monitoring spanning a century or nearly a century; spring catchments with no significant
groundwater withdrawals, either deliberate or unintentional (e.g., due to tunnelling or mining),
that could affect the discharge process; and relatively stable land use conditions within the
catchment area, with no disturbances to the soil water or energy budget and the associated
recharge processes. These criteria were vital for isolating the effects of global warming from
other anthropogenic factors. Following this, an in-depth literature review was undertaken.
Discharge data for two selected springs were provided by the water companies Acquedotto
Pugliese and Acquedotto del Fiora, while analysis was conducted in collaboration with Alessandro
Gargini and Maria Filippini. Antonio Navarra contributed to the assessment of future discharge

using climate projections from regional atmospheric circulation models.

This chapter presents the multivariate statistical approach employed to assess the long-term
trends in the discharge of Sanita and Ermicciolo Springs. The chapter consists of a paper
published in the journal Science of the Total Environment: Casati, T.1, Navarra, A% 2, Filippini, M.},
Gargini, A.1, 2024. Assessing the long-term trend of spring discharge in a climate change hotspot
area, STOTEN, 957, 177498, ISSN 00489697, https://doi.org/10.1016/j.scitotenv.2024.177498.

[1] Department of Biological, Geological, and Environmental Sciences - BiGeA, Alma Mater
Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
[2] Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (Euro-Mediterranean

Center on Climate Change), via Marco Biagi 5, 73100, Lecce, Italy
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3.2. Highlights, Graphical abstract, and Keywords

* Long-term effects of climate change on spring discharge under a Mediterranean climate.
e Statistical correlation analyses between spring discharge and recharge-related data.

e Application of correlation factors to RCPs 4.5 and 8.5 future weather scenarios.

e Estimation of long-term spring discharge scenarios for the 2040-2070 period.

* A projected 9-11% decrease in flow rate is expected to affect the studied springs.
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3.3. Abstract

Global warming affects atmospheric and oceanic energy budgets, modifying the Earth’s water
cycle. The Mediterranean region is a critical zone for climate change due to a decrease in recharge
and an increase in the frequency and severity of droughts over recent decades. While the impacts
of possible emissions scenarios on surface water have been extensively studied, the effects on
groundwater discharge remain uncertain at both global and local scales. The primary objective
of this study is to predict the long-term effects of climate change on the discharge of two springs
with extensive discharge records, located in distinctly different hydrogeological settings within
the Mediterranean climate zone. Through multivariate statistical analyses on secular time-series,
correlation factors were identified between the springs' historical discharge and recharge-related
parameters representative of their catchment. Future climate projections from a Regional
Circulation Model were used to estimate long-term discharge trends of the springs for the 2040-
2070 period. The results indicate that the discharge of both springs, on a multi-decadal trend
scale, could decrease by 9% to 11% by 2040-2070 compared to that of the past few decades. The
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consistent negative trends observed across the two different hydrogeological settings suggest
that the multi-decadal decline in spring discharge is more influenced by climatic factors than by
specific hydrogeological features. This leads to the speculation that similar trends could be
expected in other springs within Mediterranean-type climates worldwide. Future water
shortages will significantly impact the hydrogeological contexts within these climates. Therefore,
the long-term outcomes of this study are crucial for assisting water utility agencies in the
sustainable management of groundwater resources, providing them with adequate time to plan

and implement large-scale infrastructure projects over the coming decades.

3.4. Introduction

Global climate change is expected to have a significant impact on the water cycle. Extensive
studies have been performed on the impact on atmospheric and surface branches of the cycle
(Pekel et al., 2016; Trenberth et al., 2003), but comparatively less attention has been provided
on the groundwater component. Comprehensive assessments of climate change effects on
groundwater resources, particularly in regions encountering increasing qualitative and
guantitative impacts on surface water (Secci et al., 2023), are needed given the crucial role of
groundwater in providing key ecosystemic services. Climate change affects the recharge of
groundwater and in turn the long-term average renewable groundwater resource. This impact
arises from rising mean air temperature, shifts in mean precipitation, and modifications in
precipitation typology and regime, with extreme regional variability of the effects (Caloiero et al.,
2018; Kundzewicz and Déll, 2009). Mediterranean-type climates according to the Kdppen-Geiger
classification (Kottek et al., 2006) are among the areas of the planet most exposed to droughts,
as demonstrated by various researchers (Alilou et al., 2022; Blake et al., 2010; Fiorillo and
Guadagno, 2012; Garreaud et al., 2017; Scanlon et al., 2012; Van Loon et al., 2014). In particular,
the Mediterranean region stands out as one of the hotspots for climate change, experiencing a
rate of global warming that overcomes the global mean trend (Giorgi, 2006; Sivelle et al., 2021;
Todaro et al., 2022). These critical factors are expected to have a major impact on groundwater

recharge and its future availability.

Among other impacts, the declining discharge of springs has becoming more pronounced in
recent decades, as a consequence of recurring droughts (Jeelani, 2008) and the associated
shortage of recharge. This alarming trend emphasizes the vulnerability of groundwater to
climate-induced alterations of the hydrologic cycle (Hao et al., 2006; Portoghese et al., 2013). In
addition to the quantitative aspect, another significant threat to springs, particularly in karst
settings (Kalhor et al., 2019), is aquifer pollution resulting from human activities associated with

societal development and expansion in the context of a changing climate (Garcia-Ruiz et al.,
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2011). The infiltration of chemicals and various types of waste into the subsurface degrades
groundwater quality and poses risks to both human and ecological health (Balaram et al., 2023).
The exploitation of groundwater through the uptake of natural springs discharge is widely
common (Simsek et al., 2008) as springs typically provide high-quality water (Nicholson et al.,
2018). In the Mediterranean region, especially along the Apennine chain in Italy, spring water
frequently serves as the primary source of potable water. Prominent urban centers, such as Rome
and Naples, rely on springs to meet the demands of public aqueducts (Kresic and Stevanovic,
2009). Across the Italian peninsula, the effects of climate change on both the quantity and quality
of spring discharge have been extensively studied in the southern (Allocca et al., 2014; Fiorillo et
al., 2015b; Fiorillo and Guadagno, 2012; Leone et al., 2021; Polemio and Casarano, 2008) and
central Apennines (Barbieri et al., 2023; Petitta et al., 2022; Sappa et al., 2018; Sappa et al., 2019).
In recent years, these impacts have also been documented in the northern part of the mountain
range (Filippini et al., 2024; Rotiroti et al., 2023; Secci et al., 2021).

The connection between recharge and spring discharge in the Mediterranean region, in relation
to climate drivers, has been studied through various quantitative approaches, primarily to
understand the impacts of climate change on spring flow and, in some cases, to estimate future
discharge scenarios as well. These methods include the application of various types of models,
such as rainfall-runoff hydrologic models (Cervi et al., 2018; Joigneaux et al., 2011), karst
reservoir models (Cinkus et al., 2023; Fan et al., 2023), and multiple hydrogeological numerical
models (Doummar et al., 2018; Gattinoni and Francani, 2010; Kovacic et al., 2020; Kovacs and
Stevanovi¢, 2023). Other estimates of the recharge-discharge connection have been achieved
with long-term time series statistical and correlation analyses on data extending back decades or
centuries, such as the extensive discharge time series of Sanita Spring (Southern Italy) starting in
1883 (Diodato et al., 2017), the flow monitoring dataset of Fontaine de Vaucluse Spring (South-
Eastern France) monitored since 1878 (Bonacci, 2007), or the discharge time series of Serino
Spring group (Southern Italy) dating back to 1887 (Fiorillo et al., 2007). Alternative statistical
methods were employed by Zhu et al. (2020), who studied the relationship between climatic
variables and groundwater discharge using regression coefficients derived from multivariate
regression analyses; and by Fiorillo et al. (2015b), who used the Rescaled Adjusted Partial Sums
(RAPS) technique to examine the influence of a cyclic atmospheric circulation pattern, the North
Atlantic Oscillation (NAO), on spring discharge. Furthermore, Artificial Intelligence (Al)
techniques, such as those based on Artificial Neural Networks (ANN) (Smiatek et al., 2013;
Wunsch et al., 2022), have been employed to investigate trends and fluctuations in recharge-
discharge datasets, also in relation to climate change effects (Secci et al., 2023). Additional ANN
studies (Di Nunno et al., 2021; Lambrakis et al., 2000) and studies based on multiple machine

learning models (Granata et al., 2018) have focused on the potential for short and medium-term
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forecasting of spring discharge. Lastly, other researchers have combined multiple methods to
simulate spring discharge, such as ANN models with multilinear regression analyses (Gholami and
Khaleghi, 2019), or random forest techniques with hydrogeological numerical models (Bouhafa
et al., 2024). Although these studies are based on various types of analyses and different initial
datasets — most of which do not extend further back than the 1990s — they share a common
objective: analyzing the relationship between spring discharge and meteorological variables
and/or recurring climate phenomena. Some studies pursue this aim solely to quantify the effects
of climate change on the qualitative and quantitative status of groundwater, while others also
seek to estimate short-term future discharge trends, sometimes using meteorological scenarios

derived from General Circulation Models (GCMs).

To the best of our knowledge, none of the previous studies focus on long-term future discharge
estimation, which is essential for allowing water utility agencies sufficient time to plan and
implement large-scale infrastructure projects. By establishing long-term discharge relationships
with recharge-related meteorological parameters based on extensive historical records (> 80 yr;
Chen et al., 2004; Leone et al., 2021), there is a potential to project these relationships into the
future, leveraging climate scenario data (i.e., General Circulation Models; Klaas et al., 2019;
Shepherd et al., 2010) over similar multi-decadal spans. Moreover, all the previous studies
considered the dynamics of single springs, missing a broader eye on the global effects of recharge
reductions induced by climate change. The discharge dynamics of each spring are undeniably
shaped by the features of its basin (Téth et al., 2022). This complexity poses a challenge in
gauging the impact of climate change beyond the boundaries of individual spring watersheds,
e.g., extending to broader climatic zones. However, long-term spring discharge dynamics,
spanning decades, are typically less tethered to the unique attributes of specific basins and more
reflective of climate shifts within a given area (Hartmann et al., 2014; Zhong et al., 2016). Thus,
assuming a broader applicability of future multi-decadal discharge trends, these could also aid in
managing springs throughout a climatic zone lacking sufficiently extensive hydrogeological data

for detailed analysis.

The present research focuses on the application of multivariate statistical analysis to extensive
historical discharge records of two springs of the Apennine Mountain chain in Italy. ANN and
hydrogeological modeling methods have had various successes in simulating/predicting
discharge on relatively short time scales, but it is unclear if they represent a clear advantage for
long-term projections based on climate scenarios spanning several decades. Therefore, in this
first exploratory paper, we focus on well-tested multivariate regression techniques to assess the
potential predictability of spring discharge. The Apennine Mountains are a highly representative
example of a Mediterranean setting rich in groundwater discharge through springs, particularly

in its southern and central sectors. Most groundwater in this region is stored in karst aquifers (De
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Vita et al., 2012; Petitta and Tallini, 2002; Sappa et al., 2019). Nonetheless, aquifers with a
significant yield are also found in other geological settings, related to volcanic and arenitic
formations (Doveri et al., 2012; Filippini et al., 2024). The two investigated springs, namely Sanita
(Cervialto Massif, Southern Apennines) and Ermicciolo (Amiata Volcano, Northern Apennines),
are associated to watersheds that are affected by similar climatic variability typical of the
Mediterranean-type climates, however situated in two very different hydrogeological settings,
i.e., a carbonatic karstified massif and a fractured volcanic structure, respectively. For both
springs, continuous discharge monitoring is available with at least monthly measurements, from
the beginning of the 20th century and extending to the present day. The aim of the study is to
identify the historical connection between spring discharge and recharge-related meteorological
parameters from a multi-decadal perspective, to utilize this relationship in conjunction with
future meteorological variables projected by GCMs to assess the multi-decadal discharge
availability for the period 2040-2070.

3.5. Geological and hydrogeological settings

The Apennine Mountain chain is the backbone of the Italian peninsula and extends for about
1200 km in a NW-SE alignment, between Ligurian-Tyrrhenian Seas to the West, and Adriatic-
lonian Seas to the East. The chain is subdivided into Northern, Central and Southern Apennines
(Fig. 3.1a). From a geological standpoint, Apennines are a Neogene accretionary fold-thrust belt
that formed from the subduction between the African Plate below Eurasia within the Alpine
System (Patacca et al., 1993). The structure of the chain presents a series of tectonic units
thrusted over each other, subjected after the compressional phase to an extensional one with

volcanic activity in the Tyrrhenian side (Carminati et al., 2010; Carminati et al., 2012).

The first of the two investigated springs, Sanita Spring, is situated nearby the village of Caposele
in Campania Region (Southern Apennines) at an elevation of 417 m above sea level (asl) (40° 48’
58.8"” N, 15° 13’ 13.9” E) (Fig. 3.1b). Sanita Spring, with a mean annual discharge of 4.0 m3/s, is
considered the most significant spring draining the Cervialto Massif (peak elevation of 1809 m
asl), one of the main Meso-Cenozoic carbonate platforms of the Central-Southern Apennines,
acting as key groundwater reservoir (Allocca et al., 2014; Fiorillo et al., 2015b). The Cervialto
Massif is composed of a series of limestone and limestone-dolomite (Late Triassic-Miocene) with
a thickness ranging between 2500 and 3000 m (Fiorillo et al., 2021). Karst processes have
transformed the morphology of the massif creating endorheic areas known as ‘polje’, surrounded
by steep slopes of 35°-45° controlled by fault scarps, where recharge is concentrated,

constituting almost the entire contribution area of Sanita Spring (Fiorillo et al., 2015a).
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Fig. 3.1. Location of the two study areas in the Apennines Mountain chain: (a) 100 m resolution Digital
Elevation Model (DEM) of Italy realized by the National Institute of Geophysics and Volcanology (INGV)
(Tarquini et al., 2023), with indication of the Apennines subdivision into Northern, Central and Southern
sectors; (b) 1. Geological formations; 1a. Karst aquifer; 1b. Aquitard units; 2. Sanita Spring; 3. Sanita Spring
catchment; 4. Cervialto Massif peak; 5. “Senerchia” rain gauge; 6. “Materdomini” temperature gauge; 7.
“Rifugio Laceno” snow gauge; 8. CMCC-CLM TLP chosen grid point; 9. CMCC-CLM 2 m °C chosen grid point;
10. ERAS (HSR) snowfall chosen grid point; (c) 1. Geological formations; 1a. Volcanic aquifer; 1b. Aquitard
units; 2. Ermicciolo Spring; 3. Ermicciolo Spring catchment; 4. Mount Amiata peak; 5. “Vivo d'Orcia” rain
gauge; 6. “Abbadia San Salvatore” temperature gauge; 7. “Monte Amiata” snow gauge; 8. CMCC-CLM TLP
chosen grid point; 9. CMCC-CLM 2 m °C chosen grid point; 10. ERA5 (HSR) snowfall chosen grid point.

The spring is of strategic significance to Southern Italy, particularly for the Puglia Region, which
represents one of the areas with the lowest precipitation in the central Mediterranean region,
receiving approximately 600 mm of annual precipitation. The water from Sanita Spring is
conveyed through a 450 km long gravity-driven series of tunnels and bridges from the Campania
Region to the southernmost part of Puglia since the 1930s (Fiorillo, 2009). The climate in Sanita
Spring catchment area is Mediterranean and falls within the “Csa” category according to the

Koppen-Geiger classification (Kottek et al., 2006). The average annual precipitation and
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temperature at the mean elevation of the spring catchment are approximately 1500 mm and

12.1 °C (www.centrofunzionale.regione.campania.it).

The second spring of interest, Ermicciolo Spring, is situated along the northern slope of Mount
Amiata, in the southern part of the Tuscany Region at an elevation of 1020 m asl (42° 55’ 25.8"
N; 11° 38’ 29.5"” E), approximately 100 km to the south-west of the Northern Apennines main
divide (Fig. 3.1c). Ermicciolo Spring is one of the major springs in the Tuscany region, with a mean
annual discharge of about 0.15 m3/s and a maximum recorded flow rate of nearly 0.4 m3/s.
Mount Amiata (peak elevation of 1738 m asl), an extinct volcano, represents the youngest
Quaternary volcanic edifice of the Tuscan Roman Magmatic Province (Frondini et al., 2009) and
covers an outcropping surface of about 80 km?. The evolution of the volcano is associated to the
most recent Apenninic post-orogenic extensional phase that occurred between 300 ky and 190
ky, when several dacitic, rhyodacitic and olivine-latitic eruptions gave rise to the volcanic edifice
(Bortolotti and Passerini, 1970). From a hydrogeological perspective, the volcanic structure is a
fractured aquifer that can be broadly divided into two distinct groundwater flow systems
separated by a dynamic groundwater divide located near the peak of the mountain (Fig. 3.1c;
Doveri et al., 2012), with Ermicciolo Spring being fed by the northernmost system. Amiata aquifer
stands as one of the crucial groundwater reservoirs for Southern Tuscany as it feeds major springs
utilized by the local water company, providing drinkable water to the surrounding lowlands and
coastal areas, which are characterized by lower precipitation, aquifer overdrafting, and
groundwater salinization issues. The climate in the spring catchment is Mediterranean and
categorized as “Csb” (Beck et al., 2023), with average annual precipitation and temperature of

about 1200 mm and 10.6 °C (www.sir.toscana.it).

3.6. Materials and methods
3.6.1. Discharge monitoring

Measurements of the total discharge at Sanita Spring started in January 1920 (Fig. 3.2) when the
Italian National Hydrographic Institute established a systematic monitoring. The spring is uptaken
by the water company Acquedotto Pugliese S.p.A. (AQP) since the beginning of twentieth century
(Fiorillo and Guadagno, 2012) with an artificial draining tunnel, characterized by several niches,
along the discharge front at the base of the mountain slope. A portion of the spring discharge is
released as overflow, providing ecological services to a local river. Originally, the discharge was
quantified through a hydrometric reel along the main channel, with a monitoring frequency of
two times per month (on the 2nd and 16th day of each month). Since their introduction in 1927,
Venturi tubes have allowed for more frequent discharge measurements (Fiorillo et al., 2021). The

monitoring system was further improved in 1980, when data acquisition became daily.
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Fig. 3.2. Mean monthly discharge of Sanita (top) and Ermicciolo (bottom) Springs. The labels on the x-axis

indicate January of each respective year.

Ermicciolo Spring is uptaken through a draining tunnel constructed between 1908 and 1914

(Parco Vivo, 2019 - https://www.parcovivo.it/sorgenti-del-monte-amiata/) on the north side of

Mount Amiata aquifer complex. The tunnel is lined with concrete and connects three niches in
the walls, enabling direct gravity drainage of groundwater from the aquifer's primary
transmissive fractures. A portion of the spring discharge is withdrawn by the local water utility,
Acquedotto del Fiora S.p.A. (AdF) (Doveri et al., 2012), while the excess overflows from the tunnel
into a nearby stream. Total flow rate data are available from 1939 to nowadays, with a gap of
acquisition from 1990 to 1995 inclusive (Fig. 3.2). Initially, flow rate monitoring was performed
manually using stage measurements with a thin-wall weir, at a variable frequency of 2-3 times
per month. Since the 1990s, an automatic contactless hydrometer has been installed, with a

measurement frequency of four and a half hours (approximately 5 measurements per day).

The hydrographs in Fig. 3.2 represent monthly values, each averaged from all available single-

shot measurements corresponding to that month.
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3.6.2. Thermo-pluviometric and snowfall data

Monthly average air temperature and monthly cumulative precipitation data for the catchment
area of the two investigated springs were obtained from local meteorological stations managed
by regional authorities (Fig. 3.1), within the same time intervals covered by spring discharge
monitoring. The stations used for Sanita Spring watershed are the “Senerchia” station for
precipitation (approximately 600 m asl), and the “Materdomini” station for air temperature (550
m asl) (www.centrofunzionale.regione.campania.it). For Ermicciolo Spring catchment the “Vivo
d'Orcia” station was considered for precipitation (about 842 m asl), while air temperature was

acquired from the “Abbadia San Salvatore” station (855 m asl) (www.sir.toscana.it).

Precipitation time series at the selected stations were collected through non-heating rain gauges.
Thus, their capacity to record snowfall precipitation is poor. Snowfall is a fundamental parameter
for groundwater recharge in mountainous regions in terms either of snow depth or of
permanence of snow to the ground (Halloran et al., 2023), as also put in evidence in the
investigated sites (Doveri et al., 2012; Petitta et al., 2022). To avoid the risk of underestimating
total precipitation in the springs' catchment area, it was decided to add the snowfall
precipitation, as measured by local specific snow gauges, to the liquid precipitation recorded by
conventional rain gauges. This approach has been recently adopted by other authors for
hydrogeological budgeting of an Alpine area in Northern Italy (Stevenazzi et al., 2023). However,
time series of direct measurements of snowfall in the investigated areas are available only for
the most recent 30-40 yr, and can be found on the MeteoMont website
(meteomont.carabinieri.it), a service for avalanche prevention and forecasting. Specifically, the
available data include the number of days with snow-covered ground and the total snowfall
within 24 h; for our study, only the daily snowfall data were collected and then aggregated into
monthly cumulative totals. The snowfall stations “Rifugio Laceno” (1460 m asl) and “Monte
Amiata” (1700 m asl) were selected as representative of Sanita and Ermicciolo Springs catchment,
respectively (Fig. 3.1). In the former case, data are available from 1996 to the present, while in
the latter from 1982.

Snowfall data from earlier decades were estimated by reconstructing them using the fifth version
of ECMWF ReAnalysis (ERA5) data. Reanalyses combine historical observations with models to
generate consistent time series of various atmospheric and ground variables at numerous grid
points, with precise coordinates, centered and pertaining to a specific area (Tarek et al., 2020).
Developed by the European Centre for Medium-Range Weather Forecasts (ECMWEF), ERAS
provides hourly data, spanning from 1940 to 2023, for atmospheric, land-surface, and sea-state
parameters, with a =31 km horizontal resolution (Hersbach et al., 2020). For both case studies,
monthly cumulative snowfall data were selected from the nearest ERA5 node to the local
MeteoMont snow gauge. To achieve even better spatial resolution, the new dataset created by
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Raffa et al. (2021) was also utilized, albeit covering only the period 1981-2023. This dataset is
based on a dynamically downscaling over Italy of the ERA5 reanalysis, improving the horizontal
resolution to approximately 2.2 km. Monthly cumulative snowfall data were picked from two
nodes of the ERA5 dataset with High Spatial Resolution (HSR) (Fig. 3.1), chosen based on their

distance to the two snow gauges pertaining to MeteoMont.

3.6.2.1. Past snowfall data reconstruction

In the time frame where ERA5 and ERA5 HSR datasets overlap (1981-2023), a linear regression
analysis was performed to determine the coefficients linking the datasets. Through these
coefficients, the ERAS5 HSR time series was extended back to 1940. The same procedure was then
applied between the extended ERA5 HSR and the local snow gauge time series to similarly
reconstruct the MeteoMont snowfall data back to 1940. These steps were undertaken for both
Sanita and Ermicciolo Springs catchment to obtain snowfall data with the highest possible spatial
resolution and the longest possible temporal coverage. Once the snowfall data was

reconstructed (Fig. 3.3) it was converted into Snow Water Equivalent (SWE).
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Fig. 3.3. MeteoMont monthly cumulative snowfall (1940-2023), partially reconstructed (1940-1996 for
Sanita Spring and 1940-1982 for Ermicciolo Spring) using ERA reanalyses, pertaining to the contribution

area of Sanita (left) and Ermicciolo (right) Springs.

Given that the initial data of the three datasets are provided on an hourly or, at most, daily basis,
it can be assumed that the recorded snowfall data represent recently fallen and uncompacted
snow. Consequently, a density of 100 kg/m?3 was used in converting snowfall precipitation to SWE
(Mekis and Brown, 2010). Assuming a density of rainwater of 1000 kg/m?3, the data conversion
was performed by a simple division by 10. The resulting data were added to the rainfall data. This

process yielded a combined precipitation measure, referred to as the Total Liquid Precipitation
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(TLP), which represents the aggregate contribution of both liquid and solid forms of precipitation,

with the latter contributing to a lesser extent.

3.6.3. Combined statistical analysis of spring discharge and meteorological variables

To unravel the relationship between meteorological parameters and spring discharge, univariate
and multivariate linear regression analyses (Gholami and Khaleghi, 2019; Zhou and Zhang, 2023)
were conducted on historical meteorological data (cumulative TLP and average monthly air
temperature) as independent variables, and on monthly discharge data as the dependent
variable. Prior to regression analyses, all datasets underwent normalization using monthly mean
and standard deviation values calculated from the whole dataset (1940-2023), a process
commonly referred to as anomaly normalization (Brockwell and Davis, 2016). Specifically, each
value in the dataset was transformed by subtracting the mean of the corresponding month and
then dividing by the standard deviation calculated across the entire data population for that same
month. Data normalization plays a crucial role in the analysis of time series with disparate units
of measurement and numerical scales, ensuring fair comparisons among parameters

(Montgomery et al., 2008).

As a first step, separate linear regressions were performed between the dependent variable
(discharge) and each independent variable, TLP or air temperature (AirT), to analyse the
individual relationships between these parameters and to identify possible variable-specific time
lags to be considered in the subsequent multivariate analyses. Once the correlations among the
individual variables were established, twelve different monthly lags, ranging from 1 to 12
months, were implemented in the linear regression. The time lag that yielded the highest R-value,

indicating a stronger relationship between the parameters, was selected (Fig. 3.4).

The multivariate statistical analysis was performed using the Ordinary Least Squares (OLS) model
from the Python statsmodels library (Seabold and Perktold, 2010). The OLS model is a commonly
utilized linear regression technique that evaluates, through the estimation of Correlation Factors
(CF), the relationship between a dependent variable and one or more independent variables by
minimizing the sum of the squares of the differences between the observed and predicted values
(Farahani et al., 2010; Hayes and Matthes, 2009). Additionally, the OLS model determines the
uncertainty associated with the regression coefficients by estimating confidence intervals for
these factors. The p-value, used to assess the significance of the relationship between variables,
and the R-squared, which represents the proportion of variance in the dependent variable
explained by the independent variables (Kutner et al.,, 2005; James et al., 2013), were also

evaluated.
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Fig. 3.4. Scatter plots resulting from the univariate linear regressions performed between the dependent
variable (spring discharge) and the independent variables (TLP and AirT). For both case studies, the lag
time that yields the best correlation (i.e., the highest R-value) with spring discharge is 7 months for both

meteorological variables. The relatively modest R-values are due to noise in the data.

3.6.4. Estimation of future spring discharge
3.6.4.1. RCPs 4.5 and 8.5 climate projections

The Representative Concentration Pathways (RCPs), provided by the Intergovernmental Panel on
Climate Change (IPCC, 2014), are climate scenarios, expressed in terms of greenhouse gas
concentrations (Van Vuuren et al., 2011), that estimate emissions of greenhouse gasses (GHG)
and air pollutants levels of 8.5, 6.0, 4.5 and 2.6 W/m?, by the end of the century. These RCPs were
estimated depending on both socio-economic development scenarios and the associated climate
policies that will be implemented to reduce the production of GHG. For example, the RCP 4.5
scenario anticipates that emissions will be halved by 2080, while the RCP 8.5 scenario represents
an estimate of emissions that will be reached by the end of the century if no additional efforts

are made to constrain the generation of greenhouse gasses.
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General Circulation Models (GCMs) using multiple emission scenarios (Klaas et al., 2019;
Shepherd et al., 2010) represent the most advanced instruments for simulating the response of
the global ocean-atmosphere system to climate changes (Shahgedanova et al., 2020). The RCPs
are indeed employed in GCMs to estimate future meteorological variables. General Circulation
Models require a downscaling process to represent the hydrogeological watershed-scale
dynamics, which involves obtaining more detailed and localized information (Gudmundsson et
al., 2012; Haylock et al., 2006). Ban et al. (2021) enhanced the downscaling capabilities of GCMs
by providing climate data with a spatial resolution ranging from 1 to 3 km and an hourly temporal
resolution. These improvements reduce associated errors and add value to the estimation of

atmospheric variables at the local scale.

Each of the RCPs covers the 1850-2100 period and is reported at a 0.5 x 0.5° spatial resolution
(approximately 40-55 km) (Van Vuuren et al., 2011). To achieve a better spatial resolution of the
future climate scenarios, projections derived from the Euro-Mediterranean Center on Climate
Change Foundation — Climate Model (CMCC-CM), elaborated with the RCPs 4.5 and 8.5, were
utilized (Raffa et al.,, 2023). These estimates, which are available from January 2006 up to
December 2070, were generated at approximately 2.2 km resolution through a dynamical
downscaling process using the regional climate model “COSMO-CLM” (Consortium for Small-
scale Modeling - Climate Limited-area Model) over Italy, allowing for the generation of highly
detailed and comprehensive datasets of projected climatological data (Raffa et al., 2023). Just as
for the ERAS reanalyses data, these future projections over Italy were computed at numerous
grid points, pertaining to a specific area. For this study, monthly data were selected for the
variables “Total precipitation” and “2 m temperature”, covering each of the Sanita and Ermicciolo

Springs catchments.

The variables were acquired from grid nodes based on their proximity to meteorological stations
(Fig. 3.1), ensuring relevance to the collected historical thermo-pluviometric data. Furthermore,
data were acquired for both RCPs 4.5 and 8.5, providing insights into both moderate and more
extreme climate futures. Before using these meteorological projections, quality control was
performed on the data. Considering the period spanning from January 2006 to December 2023,
during which both the climate projections and the historical data from weather stations are
available, a comparison was made to detect and correct any constant deviations of the scenarios
from the actual historical data. The historical and forecasted meteorological time series were
compared by means of simple subtractions. This process facilitated the verification of the

presence of any deltas between each meteorological parameter.
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3.6.4.2. Application of CF to weather scenarios

The regression equations and corresponding correlation factors obtained from the OLS models
were applied to the two selected meteorological data outputs of the 4.5 and 8.5 future
projections (2040-2070), previously normalized using the same approach described in Section
3.6.3 for past time series. The normalized future discharge dataset for Sanita and Ermicciolo
Springs were then determined between January 2040 and December 2070, for both RCP 4.5 and
RCP 8.5 scenarios. Subsequently, the projected discharges were denormalized by applying the
reverse process described for normalization, using the same monthly means and standard

deviations, in order to obtain the estimated spring discharge values for the period 2040-2070.

3.6.5. Multi-decadal hydrographs

With the aim of analysing the long-term trend of spring discharge, a multi-decadal cycle approach
was used. Considering that at least 30 yr of data are required to appreciate climate trend (Livezey
et al., 2007), the historical flow rate dataset of Sanita Spring was divided into three 35-yr subsets:
1920 to 1954, 1955 to 1989, and 1990 to 2024. As for Ermicciolo Spring, the historical discharge
data were divided into three multi-decadal groups, with the oldest one spanning only 16 yr: 1939
to 1954, 1955 to 1989, and 1990 to 2024. The two most recent periods are consistent with that
of Sanita Spring, thereby enabling a comparison between the multi-decadal discharge values of
the two springs. In both cases, the historical discharge subsets were plotted along with standard
deviation uncertainty bands around the mean, defined by adding/subtracting the standard
deviation of the monthly spring discharge values for each multi-decadal group to the mean of
those values. The projected discharge data of Sanita and Ermicciolo Springs were graphed
alongside the historical data by creating two 30-yr groups for each spring, spanning from 2040 to
2070, respectively in relation to RCPs 4.5 and 8.5 scenarios. For the future discharge estimates,
the uncertainty bands around the mean were derived from the flow rate values obtained through
the lower and upper bounds of the coefficients' confidence intervals determined by the

multivariate OLS models.

3.7. Results

3.7.1. Discharge time series

Sanita and Ermicciolo Springs have century-long continuous discharge monitoring dating back to
January 1920 and 1939, respectively, and extending to the present. In Fig. 3.2, the last data point
represented is that of January 2024 and the data are presented as monthly averages in

accordance with the temporal scale used in the statistical analyses of the present study.
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Sanita Spring hydrograph since 1920 (Fig. 3.2) exhibits an annual cyclic variation in relation to
recharge, with the yearly peak discharge occurring between May and July, and the low flow
period between November and December (Fig. 3.5). The average hydrological year for this spring,
throughout the entire monitoring period, exhibits a discharge ranging from approximately 3.3
m3/s to 5.4 m3/s (Fig. 3.2), placing it within the second (1) class of Meinzer's (1923) spring
discharge classification. Ermicciolo Spring hydrograph since 1939 (Fig. 3.2) shows a peak
discharge during the same months as Sanita, while the low flow occurs slightly later, between
January and February of the following year (Fig. 3.5). The average spring discharge of Ermicciolo
fluctuates from roughly 90 L/s to 210 L/s (Fig. 3.2), placing it between the Ill and IV classes of
Meinzer's classification. Notably, a decreasing trend in Ermicciolo Spring Meinzer's class is

apparent when comparing the periods before and after the mid-1970s.
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Fig. 3.5. Monthly mean rainfall of Sanita and Ermicciolo Springs reference rain gauges (on the left);
monthly mean discharge of Sanita and Ermicciolo Springs (on the right). For each monthly mean value,

the error bar represents the 95% confidence interval.

The secular discharge data of Sanita and Ermicciolo Springs have the potential to provide valuable
insights into changes in water resource availability due to climate change effects, given (i) the
length of the series, (ii) the systematic quality of the records and (iii) the absence of human-made

alteration of the natural conditions of the aquifers, for the almost absence of pumping wells or
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groundwater draining facilities (Doveri and Menichini, 2017; Leone et al., 2021). The only
significant effect not attributed to natural recharge variations is linked to the major earthquake
of November 23rd, 1980 (Surface wave Magnitude — Ms — 6.9, the Irpinia earthquake). With its
epicentre located approximately 10 km southeast of Sanita Spring, the earthquake impacted the
spring's discharge, leading to an extraordinary anomalous value of 7.32 m3/s recorded on January
19th, 1981 (Fiorillo and Guadagno, 2012) (Fig. 3.2).

3.7.2. Regression analysis

Before conducting the linear regression analyses, we applied multiple tests to explore potential
non-linear or threshold relationships between the variables. The results did not provide any
significant evidence of these patterns (high p-value) in each of the four univariate cases,
suggesting that the linear form of the model is appropriate for our datasets. The univariate linear
regressions (Fig. 3.4) showed that, for Sanita and Ermicciolo Springs, discharge has the strongest
negative correlation with the average AirT (R-value: -0.351 and -0.191, respectively) and the
strongest positive correlation with cumulative TLP (R-value: 0.166 and 0.286, respectively) with
a time lag of 7 months (Fig. 3.4), which is consistent from a physical standpoint as peak liquid
precipitation (representing the majority of TLP) occurs in November, while peak discharge is
observed in summer (Fig. 3.5). It is also logical that air temperature is more strongly correlated
with spring discharge at the same lag time as TLP, since higher air temperatures increase
evapotranspiration, thereby reducing the effectiveness of precipitation in recharging aquifers
(Cardell et al., 2020). Thus, a time lag of 7 months was used in the subsequent multivariate
analysis for AirT and TLP. The two variables registered 7 months in advance compared to
discharge will be called “AirTLag7” and “TLPLag7” hereafter.

For both Sanita and Ermicciolo Springs, the multivariate analysis confirms a positive correlation
between TLPLag7 and discharge (Q), and a negative correlation between AirTLag7 and discharge.

Specifically, for the Sanita Spring, the OLS model produced the following equation (Eq. 3.1):

Qsan = +0.143 +0.183*TLPag7 -0.544*AirTiag7 + € [3.1]

where “QSan” represents the dependent variable, which in this case is the predicted flow rate of
Sanita Spring, the error term “€” represents the difference between the observed value of the
dependent variable and the value predicted by the linear regression model, and “TLPLag7” and

“AirTLag?7” are the independent variables.

The confidence intervals provided for the coefficients are calculated at the 95% confidence level.
Specifically, for the TLPLag7 variable, the confidence interval bounds of the relative Correlation
Factor (CF) are [+0.253, +0.113], resulting in an uncertainty margin of £0.07; for AirTLag7, the CF
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confidence interval bounds are [-0.414, -0.674], indicating a margin of error of £0.13; for the
intercept term the confidence interval bounds are [+0.213, +0.073], resulting in an uncertainty

margin of £0.07.
Similarly, for Ermicciolo Spring, the regression equation (Eq. 3.2) is as follows:

Qerm = -0.032 +0.278*TLPLag7 -0.289* AirTiagr + € [3.2]

where “QErm” represents the predicted discharge of Ermicciolo Spring, “€” is the error term, and

“TLPLag7” and “AirTLag7” are the recharge-related independent variables.

The confidence intervals for the coefficients calculated at the 95 % confidence level are the
following: for TLPLag7, the confidence interval bounds of its regression coefficient with the
discharge are [+0.338, +0.218], resulting in an uncertainty margin of +0.06; for the AirTLag7
variable, the CF confidence interval bounds are [-0.089, -0.489], indicating a margin of error of
10.20; for the intercept term, finally, the confidence interval bounds are [+0.038, -0.102],

resulting in an uncertainty margin of £0.07.

Both models exhibit statistically significant results, as evidenced by the consistently low p-value,
remaining below 1 x 107 in both case studies, indicating a high level of confidence in the

observed relationships.

3.7.3. Future recharge-related meteorological parameters

Thanks to the comparison of climate projections with historical meteorological data for the 2006-
2023 period, it was found that in both case studies, the historical precipitation aligns closely with
both projections of the RCPs 4.5 and 8.5 scenarios, with a maximum monthly deviation of 15%.
However, a systematic bias was found for the 2 m temperature leading to a deviation from
historical data of 2 °C in the case of Sanita Spring catchment and 3 °C in the case of the
Ermicciolo's one. These constant deviations were then used to adjust the entire historical series

of future temperature projections.

Considering the adjusted RCPs 4.5 and 8.5 future data (2024-2070) and the historical values
(1940-2023), it is evident that air temperature will experience a significant increase in the future,
whereas total precipitation, which has shown a relatively increasing trend from the 1990s to the

present, is projected to undergo a considerable decrease (Fig. 3.6).
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Fig. 3.6. Plots of annual cumulative TLP and mean annual AirT for the contribution area of Sanita (top) and

Ermicciolo (bottom) Springs. Both historical data (1940-2023) and future projections of the RCPs 4.5 and
8.5 scenarios (2024-2070) are plotted on all graphs.
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3.7.4. Multi-decadal spring discharge analysis

The multi-decadal analysis of Sanita Spring discharge data displays an average flow rate ranging
from approximately 3580 to 4430 L/s during the oldest 1920-1954 historical band (Fig. 3.7), with
a standard deviation uncertainty band that varies from 70 to 180 L/s both below and above the
average value. The intermediate historical band (1955-1989) is characterized by the highest
discharge and partially overlaps with the first band. It covers a range between 3820 and 4630 L/s,
with an uncertainty band oscillating from 80 to 150 L/s indicating lower variability compared to
the preceding period. The most recent historical band (1990-2024) shows an average discharge
ranging from 3360 to 3920 L/s, with a standard deviation uncertainty band that fluctuates around

the mean of 70-130 L/s, suggesting less variability in the data.
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Fig. 3.7. Hydrographs of Sanita Spring based on the mean multi-decadal approach with uncertainty bands.
Three bands are constructed using historical data, while the remaining two are built using the future

discharge projections resulting from the multivariate statistical analysis performed on the Sanita dataset.

The uncertainty bands for the two future discharge scenarios (2040-2070) exhibit even lower
variability, ranging from 60 to 120 L/s on both sides of the average value, giving them a narrower
appearance. In the RCP 4.5 scenario an average discharge from 3220 to 3830 L/s is observed,

with the band slightly intersecting that of the most recent 35-yr historical period. In the more
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severe RCP 8.5 scenario, the average discharge varies from 2970 to 3630 L/s, showing a partial

overlap with the values of the other future scenario.

Concerning Ermicciolo Spring, the three historical bands show a progressively lower average
discharge moving from the two older periods to the most recent, with the following discharge
ranges: 172-201 L/s (1939-1954), 135-157 L/s (1955-1989), and 131-147 L/s (1990-2024) (Fig.
3.8). The standard deviation uncertainty bands vary from 5 to 11 L/s in the first two cases and
from 8 to 11 L/s in the third, suggesting an overall lower variability in the data population
compared to Sanita Spring. Regarding the bands of the two future discharge scenarios (2040-
2070), the average discharge ranges from 131 to 146 L/s in the RCP 4.5 scenario and from 116 to
131 L/s in the 8.5 scenario. In both cases, the data variability is very low, with bands oscillating
of only 2-5 L/s around the mean. Additionally, a partial overlap exists among the two most recent

historical bands and the future one related to the RCP 4.5 scenario.
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Fig. 3.8. Hydrographs of Ermicciolo Spring based on the mean multi-decadal approach with uncertainty
bands. The division of discharge bands is the same as in Fig. 3.7.
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3.8. Discussion

The hydrographs of the investigated springs (Fig. 3.2) provide insights into both the specific
features of the hydrogeological setting, and the broader effects of climate change over the

Apennines Mountain chain.

The flow rate of Sanita Spring indeed shows greater variability compared to that of Ermicciolo
Spring. This difference is linked to the typical dynamics of a karst environment. Ermicciolo Spring,
on the other hand, reflects the dynamics of a less heterogeneous fractured context (i.e. a volcanic
aquifer) than the former, resulting in less discharge variability. However, univariate regression at
both springs reveals a robust, inverse statistical correlation between AirT and monthly discharge,
with a lag of 7 months. In contrast, the cumulative monthly TLP exhibits a statistically significant
positive correlation with the discharge over the same time lag (Fig. 3.4). Surprisingly, the same
time lag between the historical independent variables and historical spring discharge was found
to characterize two rather different hydrogeological watersheds. Sanita Spring is fed by a karst
system that is expected to show quicker discharge responses to precipitation compared to the
lower permeability fractured volcanic aquifer feeding Ermicciolo Spring. Nonetheless, it appears
that the extensive catchment associated to Sanita Spring can considerably delay the effects of
direct recharge. The contribution area of the spring is 110 km? (Fiorillo and Doglioni, 2010),
whereas Ermicciolo Spring catchment is one tenth the area, at around 13 km? (Doveri and Raco,
2021). For this reason, the similar TLP lag identified for the two watersheds is considered

reasonable.

Regarding the effects of global warming on spring discharge along the Apennines, Fig. 3.2
indicates that climate change in the Mediterranean region has negatively affected the discharge
availability of Sanita and Ermicciolo Springs over the past 3-4 decades. At the multi-decadal scale,
negative consistent historical trends are indeed observed between the two springs, with the last
35-yr period exhibiting a decrease in discharge and reduced data variability in both case studies
compared to the previous period (Fig. 3.7, 3.8). At Sanita Spring, the percentage discharge
decreases between the most recent period, 1990-2024, and the intermediate period,
1955-1989, was a significant 12.5. In contrast, at Ermicciolo Spring, the reduction over the same
periods was only 3.7%. The greater reduction in discharge at Sanita compared to Ermicciolo can
likely be attributed to the Irpinia earthquake, which temporarily caused a substantial increase in
discharge that partially depleted the aquifer in the following 3-4 yr. Moreover, previous research
(Fiorillo and Guadagno, 2012) shows a discharge drop after 1986 in many springs in Southern
Italy, plausibly related to climate change, which is consistent with the trend observed in Sanita

Spring.
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The expected rise in air temperatures in the Mediterranean region will result in increased
evapotranspiration and consequent reduction of liquid precipitation recharging the aquifers
(Cardell et al., 2020; Rosenberg et al., 1999; Yusoff et al., 2002). Moreover, there will be adverse
effects on solid precipitation, as already observed in Italy in recent decades (Diodato et al., 2019;
Diodato et al., 2022), with a shorter duration of snow permanence to the ground and a significant
reduction in total snowfall (also confirmed in the two study areas, Fig. 3.3), further amplifying
the groundwater recharge reduction. Additional critical factors that impair recharge must be
considered, including the projected decrease in total precipitation associated with the RCPs 4.5
and 8.5 scenarios (Fig. 3.6), as well as the increased frequency of extreme precipitation events,

which is expected to reduce the infiltration rate relative to the surface runoff rate.

Given the concerning future outlook for groundwater in the Mediterranean region, a multivariate
OLS model was employed in both case studies to estimate future spring discharge. With this
model, we sought to identify the regression coefficients linking recharge-related variables to
spring discharge using nearly century-long historical datasets (1940-2023). Although climatic
conditions are changing with increasing rates and variability in recent decades (Caloiero et al.,
2018), the assumption underlying our study is that the processes by which meteorological factors
affect spring discharge remain consistent when looking at a long-term trend. For this reason,
using only the past decade or the past two to three decades (during which climate change has
accelerated) for the multivariate analyses was not considered ideal for identifying the best long-
term recharge-discharge relationships. As evidence of this, during the validation process of both
the multiregression models, we tested the use of only these recent decades; however, the results
showed lower statistical significance and much weaker correlations between the variables

compared to those of the 1940-2023 data models, potentially leading to unreliable predictions.

Thanks to the correlation factors derived from the OLS 1940-2023 data models (Eq. 3.1, Eq. 3.2),
it was possible to estimate the future discharge scenarios of Sanita and Ermicciolo Springs within
the 2040-2070 period. The reconstructed discharge clearly exhibits a further decreasing trend
compared to the historical dataset of both springs, with some differences in relation to the
chosen RCP scenario. Under the RCP 4.5 scenario, the future discharge projections appear to
show no excessive impairment in flow rate output compared to the most recent historical period
(Fig. 3.7, Fig. 3.8). Indeed, the estimated decrease in discharge is only 3.0% for Sanita Spring and
0.1% for Ermicciolo Spring. Conversely, under the more severe RCP 8.5 scenario, characterized
by higher greenhouse gas emissions, a further decrease in spring discharge is evident in the 2040-
2070 time frame, with a percentage decrease of 8.6% relative to the 1990-2024 interval (19.9%
when compared to the 1955-1989 period, characterized by the highest groundwater yield), at
Sanita Spring, and a similar percentage decrease of 10.8% relative to the most recent 35-yr period

(or even 33.3% when compared to the 1939-1954 time frame) at Ermicciolo Spring.
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The results in terms of percentage associated with the RCP 8.5 scenario indicate that Sanita
Spring could lose, over the 2040-2070 period, an average of 9.8 million m3 of water/yr, when
compared to the annual average discharge of the last 35 yr. Regarding Ermicciolo Spring, the
future estimated discharge loss respect to the 1990-2024 interval amounts to almost 0.5 million
m3/yr, considering the same scenario. Analysing these losses in spring discharge and considering
a daily water consumption per person of 220 L (Eurispes, 2023 - https://eurispes.eu/en/news/a-
system-that-treads-water-the-condition-of-water-in-italy/), the average annual decrease in
discharge at Sanita equates to the annual demand of a city with 122,000 inhabitants. Applying
the same calculation to the results obtained for Ermicciolo Spring, the decrease in discharge

would be sufficient to meet the water needs of a town of over 6000 inhabitants.

Given that long-term spring discharge dynamics, which span decades, tend to be less influenced
by the specific characteristics of individual basins and more indicative of broader climate shifts
within a region (Hartmann et al., 2014; Zhong et al., 2016), the similar multi-decadal downtrend
in spring discharge forecasted through future climate factors for both Sanita and Ermicciolo
Springs for the 2040-2070 period is likely extendable to other settings within Mediterranean-type

climates.

The approach presented here offers new insights into the ability to estimate future trends in
groundwater discharge. Recent studies in the literature have employed machine learning
methods, particularly Artificial Neural Networks, as well as hydrogeological numerical models, to
achieve the same objective of estimating future spring discharge. These studies have
demonstrated the capability to accurately forecast spring discharge from weeks up to three
months ahead (Granata et al., 2018) or even up to 12 months (Di Nunno et al., 2021). Some
researchers have also managed to estimate annual peak and minimum spring discharge values
up to the end of the current century using these methods (e.g., Doummar et al., 2018; Fan et al.,
2023). However, both approaches present certain limitations. As highlighted by Cinkus et al.
(2023) and Di Nunno et al. (2021), these methods require high temporal resolution data, ideally
daily or at least bi-weekly measurements. Moreover, they struggle to reproduce long-term
discharge values and extreme events, and are often time-consuming to run. The multivariate
statistical analysis approach, although it may provide less accurate short-term forecasts
compared to ANN-based systems (Gholami and Khaleghi, 2019), offers the advantage of making
long-term discharge projections using only monthly resolution data, provided the analysis is
applied to century-long datasets, as in the present research. This method allows for the
estimation of expected long-term annual peak and minimum discharges for springs, as well as
the generation of springs' hydrographs over a multi-decadal time span, depicting monthly
discharge fluctuations in the mid-to-late 21st century (2040-2070).
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3.9. Conclusion

Two strategic aqueduct springs, Sanita and Ermicciolo, located along the Apennines Mountain
chain (Italy) in two distinct hydrogeological settings but under a similar Mediterranean-type
climate, have been the focus of this work due to their rare, century-long historical record of
discharge data. The study approach was based on the multivariate statistical correlation between
spring discharge and recharge-related data (air temperature and total precipitation),
representative of the springs' catchment area. The regression coefficients derived from the
statistical analyses were then applied to projected meteorological data from the RCPs 4.5 and
8.5 future climate scenarios to estimate the long-term discharge trend for both Sanita and
Ermicciolo Springs. Under the most severe emission scenario, a significant decrease in discharge
is observed for both springs during the 2040-2070 period compared to the most recent historical
one (1990-2024). The estimated percentage decrease in flow rate between these two periods is
8.6% at Sanita Spring and 10.8% at Ermicciolo Spring, corresponding to a reduction in discharge
of 310 L/s and 15 L/s, respectively. It is important to note that these decreases will affect two
springs that, due to climate change, are already experiencing a decline in discharge compared to
previous decades. Past and future multi-decadal discharge reductions are consistent across two
different hydrogeological settings, suggesting a greater influence from climatic drivers (common
to both sites) as opposed to the specific hydrogeological features of the individual catchments.
This allows us to speculate that the observed negative trends may also be valid in other springs
within similar climatic contexts. There is a strong and widespread perception that water scarcity
in the future will profoundly impact the Apennines, already facing water crises (Fiorillo et al.,
2015b; Fiorillo and Guadagno, 2012). This has been confirmed in the northern part of the chain
as well (Filippini et al., 2024), and most likely these negative effects will be extended to many
major springs within similar Mediterranean-type climates. Therefore, for local public water
supply companies, the results obtained in this work hold significant importance as they allow for
proactive measures in addressing forthcoming water crises within their respective management
areas, and possibly beyond. The methods applied in this study hold potential for application in
other hydrogeological settings, contingent upon the availability of continuous secular datasets

for both spring discharge and meteorological parameters.
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3.11. Additional historical multi-decadal analyses

As introduced in Section 1.3.2 of this thesis, the discharge datasets for Verde Spring and Cassano
Irpino and Serino Spring groups have proven useful, even though these springs were excluded
from the more in-depth analyses performed using the multiregression method (Chapter 3) and
the LSTM method (Chapter 4). In the following paragraphs, the complete discharge datasets for
these springs will be presented, along with the results of the multi-decadal analysis conducted

on their historical discharge to assess the pattern of flow rate.

3.11.1. Verde Spring (time span 1938-2005)

Verde Spring is characterised by a historical discharge dataset spanning 68 yr from January 1938
to December 2005 (Fig. 3.9). Despite several gaps in the dataset, the overall historical hydrograph

exhibits a clear decreasing trend in discharge, with a more pronounced decline during the 1980s.
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Fig. 3.9. Mean monthly discharge of Verde Spring. The x-axis labels indicate January of the respective year.

Given the availability of 68 yr of discharge data, the multi-decadal analysis in this case involved
dividing the dataset into two parts, each 34 yr long: the first spanning from 1938 to 1971, and
the second from 1972 to 2005 (Fig. 3.10).

Fig. 3.10 clearly shows that the older band is characterised by a significantly higher discharge
compared to the more recent one. During the 1938-1971 period, Verde Spring exhibited an
average discharge of approximately 2890 L/s, while in the 1972-2005 period, it recorded an
average discharge of 1830 L/s, reflecting a decline of about 37%.
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Fig. 3.10. Hydrographs of Verde Spring based on the multi-decadal approach with standard deviation
uncertainty bands around the mean.

3.11.2. Cassano Irpino Spring group (time span 1965-2021)

Cassano Irpino Spring group has a historical discharge dataset spanning from January 1965 to
December 2021 (Fig. 3.11), covering 56 yr. The dataset also shows a decline in discharge during
the 1980s, which, however, reversed its trend from the early 2000s.
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Fig. 3.11. Mean monthly discharge of Cassano Irpino Spring group.

Considering the availability of only 57 yr of data, the multi-decadal analysis was carried out by
dividing the dataset into two periods of 29 yr each, both including the year 1993: the first from
1965 to 1993, and the second from 1993 to 2021 (Fig. 3.12).

Fig. 3.12 highlights that, in this case as well, the older period is characterised by a higher discharge

compared to the more recent one. During the 1965-1993 period, Cassano Irpino Spring group
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exhibited an average flow rate of roughly 3190 L/s, while in the 1993-2021 period, it recorded an

average discharge of 2490 L/s, reflecting a decline of nearly 22%.
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Fig. 3.12. Hydrographs of Cassano Irpino Spring group based on the multi-decadal approach with standard

deviation uncertainty bands around the mean.

3.11.3. Serino Spring group (time span 1962-2019)

Serino Spring group is characterised by a historical discharge dataset spanning 58 yr from January

1962 to December 2019 (Fig. 3.13).
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Fig. 3.13. Mean monthly discharge of Serino Irpino Spring group.

In this third case study as well, a significant decline in discharge also occurred during the 1980s.

However, this trend reversed in the early 1990s. With 58 years of available data, the multi-

decadal analysis was conducted by dividing the dataset into two periods of 29 yr each: the first

covering the years 1962 to 1990, and the second spanning 1991 to 2019 (Fig. 3.14).
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Fig. 3.14. Hydrographs of Serino Spring group based on the multi-decadal approach with standard

deviation uncertainty bands around the mean.

Fig. 3.14 shows that the older period is characterised by a higher discharge compared to the more
recent one, although less pronounced than in the previous two cases, partly due to the partial
overlap of the two bands. During the 1962-1990 period, Serino Spring group exhibited an average
discharge of approximately 2420 L/s, while in the 1991-2019 period, it recorded an average flow
rate of roughly 2040 L/s, reflecting a decline of 16%.

A notable observation from the multi-decadal analysis of Serino Spring group is the shift in the
peak discharge. In the older period, the yearly peak flow rate is observed between March and

May, whereas in the more recent period, this peak occurs between April and June.

3.11.4. Historical discharge analysis conclusions

The findings from the multi-decadal analysis of historical discharge for Verde Spring and Cassano
Irpino and Serino Spring groups confirm that water scarcity along the Apennines is profoundly
impacting groundwater resources. All five springs analysed in this chapter, along with Nadia
Spring from the previous chapter, show flow rate declines. For obvious reasons related to the
differing lengths and start and end years of the historical datasets, it was not possible to compare
the same multi-decadal periods. Nonetheless, all the five springs exhibit a reduction in discharge
in the more recent multi-decadal periods compared to the older ones. Notably, a significant
decline for the springs occurred in the 1980s (Figs. 3.2, 3.9, 3.11, 3.13), after which they stabilised
at lower average discharge rates. Regarding Cannucceto Spring, with flow rate data spanning only
from 1979 to 2022 (44 yr), its dataset is too limited for reliable assessments of climate change
effects. Nevertheless, it is the only studied spring showing a slight increase in discharge based on
the linear trend (Fig. 1.9). To collectively present the historical hydrographs of all seven springs

analysed in this thesis, Fig. 3.15 was created.
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Fig. 3.15. Mean monthly spring discharge of: Cassano Irpino, Sanita, Serino, and Verde Springs at the top
(Meinzer class Il); Ermicciolo and Nadia Springs in the middle (M. class IV); and Cannucceto Spring at the
bottom (M. class V). The chart consists of three subgroups sharing the same axes but with different y-axis
scales (0-10 L/s, 10-500 L/s, and 500-7500 L/s, labelled at 2, 70, and 1000 L/s intervals, respectively).

Figure 3.15 highlights the discharge decline experienced during the 1980s by all seven springs
analysed along the Apennines (excluding Nadia Spring, where this cannot be determined). This
decline is evident from the first half of the 1980s for Sanita, Ermicciolo, Verde, Cassano Irpino,
and Serino Springs, although it is difficult to rule out anthropogenic influences on the decrease
for the latter three due to the reasons outlined in Section 1.3.2. In contrast, for Cannucceto
Spring, the decline occurred in the second half, between 1987 and 1990, and is less pronounced
compared to the other cases. The similar negative historical trends observed across the studied
springs, all located along the Apennines within the same Mediterranean climate, coupled with
the significant influence of climatic drivers on discharge, suggest that the future trends identified
through multiregression analysis for Sanita and Ermicciolo Springs may also apply to many other

springs within similar Mediterranean-type climates.
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Chapter 4:

Long Short-Term Memory (LSTM) machine learning method for future

spring discharge forecasting

4.1. Preface

The analyses detailed in the previous chapters have provided an overview of the effects of
climate change on groundwater discharge processes along the Apennines, both in terms of the
resilience of springs to climate modifications and the evaluation of future discharge trends,
expressed as multi-decadal projections over the long term.

In detail, in Chapter 3, a linear regression statistical method was employed to identify long-term
historical relationships between variables to be used in spring discharge forecasting. This method

proved highly effective in capturing multi-decadal trends based on linear relationships, which

predominantly govern the connection between discharge and recharge-related parameters. In
contrast, this Chapter 4 focuses on a machine learning-based method, capable of capturing even
non-linear relationships, for analysing the recharge-discharge connection thus enabling more

accurate temporal predictions on a monthly basis.

Section 4.2 introduces the fundamental concepts of Machine Learning (ML), including key
definitions, learning approaches, and algorithm structures, with a particular focus on the ML
methodology adopted in this study: Long Short-Term Memory (LSTM). Following this
introduction, the chapter explores the application of LSTM for assessing future projections of
spring discharge, treated as the dependent variable. In this analysis, the independent variables
comprise not only precipitation and atmospheric temperature but also the spring discharge from
preceding months. Compared to the paper discussed in the previous chapter, extending the LSTM
relationships into future projections required an iterative approach to predict discharge over
time, month by month, by sequentially updating the dataset in the future.

The analyses summarised and presented here form the foundation for a forthcoming paper, to
be submitted by the end of 2025, which will integrate and conclude the investigations conducted

throughout this PhD project.
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4.2. Machine Learning: a comprehensive introduction

4.2.1. Defining machine learning

Machine learning has revolutionised computer science, transforming how we solve problems and
make decisions based on data analysis. Initially defined by Arthur Samuel (1959) as “the field of
study that gives computers the ability to learn without being explicitly programmed”, ML has
evolved into a powerful tool. It enables systems to learn from extensive datasets and improve
their performance over time without relying on hard-coded instructions. This shift, particularly
with the advent of neural networks, has expanded our ability to address intricate challenges.
Neural networks have unlocked new ways for machines to process and learn from data, allowing

them to enhance their performance through experience (Jordan and Bishop, 2006).

The adaptability of machine learning is particularly valuable in scenarios where traditional rule-
based programming proves inadequate. Indeed, ML models continuously refine their strategies
by learning from new data, leading to more effective outcomes (Bhowmick and Hazarika, 2018).
This adaptability has shown significant benefits in domains that rely on large datasets, such as
medicine and astrophysics, where machine learning is able to identify patterns that would
otherwise go unnoticed (Ball and Brunner, 2010). These advancements highlight ML’s strength
in handling high-dimensional data and extracting meaningful insights, making it indispensable

across diverse scientific and commercial domains (Dal Seno, 2024).

Despite its widespread adoption in sectors such as finance, e-commerce, and healthcare,
machine learning has seen slower integration into areas like civil protection, disaster response,
territorial management, and the forecasting of natural parameters. This slower uptake clearly
reflects the complexity of applying ML to real-world scenarios. The effectiveness of machine
learning in these applications is often constrained by challenges such as incomplete or biased
datasets, which can significantly hinder model performance. To ensure informed and equitable
decision-making, it is essential to use datasets that are diverse, representative, and regularly
updated (Gebru et al., 2018).

The private sector has been swift in embracing ML, leveraging it to enhance efficiency, foster
innovation, and improve customer experiences. Industries such as finance and technology
depend on ML to analyse vast datasets and inform strategic decisions, giving them a competitive
advantage (Brynjolfsson and McAfee, 2017). However, the public sector faces unique hurdles,
such as budgetary constraints, regulatory requirements, and the need to ensure equitable service
delivery and ethical use of ML (Sun et al., 2019; Mikhaylov et al., 2018).

Nevertheless, in the field of applied geology, machine learning holds significant potential for

landslide hazard assessment and, more broadly, for forecasting the response of natural systems
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to complex combinations of pressures arising from climatic or anthropogenic origins. In
summary, ML represents a transformative shift from traditional programming to flexible, data-
driven learning. Its capacity to process complex datasets and extract meaningful insights has
already reshaped many companies worldwide. However, its potential in the management of
natural hazards remains underexplored. With appropriate frameworks and a strong emphasis on
data quality and ethical application, ML could become a vital tool for improving preparedness,
response, and resilience in the face of natural risks.

4.2.2. Machine Learning categories and algorithms

ML comprises four main approaches (Fig. 4.1), from which various algorithms emerge, enabling
computers to extract knowledge from data and make data-driven decisions. These algorithms
are grouped into a few key categories: supervised learning, unsupervised learning, reinforcement

learning (Fig. 4.1), and semi-supervised learning, which represents a hybrid category.
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Fig. 4.1. Conceptual scheme of the four main ML approaches and their algorithms, organised into the

three categories: Supervised, Unsupervised, and Reinforcement (Dal Seno, 2024).
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Each category possesses distinct characteristics, advantages, and specific use cases, which
depend on the type of data and the problem being addressed. Supervised learning relies on
labelled data to train models, unsupervised learning identifies patterns in unlabelled data, and
reinforcement learning trains models to optimise decisions by maximising cumulative rewards

through interaction with an environment.

A common framework in ML comprises three key phases: training, validation, and testing. During

training, the model learns patterns and adjusts its parameters to minimise errors. Validation fine-
tunes the model and prevents overfitting by evaluating it on unseen data. Finally, testing
measures the model's accuracy and generalisability using a separate dataset, ensuring its
robustness for real-world applications. Additionally, before training, ML methods require the
setting of hyperparameters, which are external configuration settings that control the learning
process. Gaining an understanding of the main learning algorithms within the various categories
is crucial for selecting the most suitable algorithm for a specific task and for building effective ML
models capable of addressing a wide range of real-world problems (Dal Seno, 2024). Given the

broader and more extensive practical application of traditional learning and deep learning in

hydrogeology, this study chose to focus on these two approaches, leaving aside reinforcement

and ensemble learning (Fig. 4.1).

4.2.2.1. Traditional learning algorithms

The following paragraphs will introduce the most widely used traditional learning algorithms in
hydrogeology, focusing on regression for continuous predictions, classification for accurate data

categorisation, and clustering for grouping similar data without predefined labels.

Linear regression is among the earliest and most easily interpretable algorithms in the field of

ML. It establishes a relationship between input variables (features) and a continuous output
variable by fitting a straight-line equation to the observed dataset (Seber and Lee, 2012). The

basic form of linear regression (Eq. 4.1) can be expressed as:

y:ﬂg +ﬂ1X1 +ﬂ2X2 +... +ﬂ,7Xn + & [41]

where y is the target variable, xi, X, ..., X, are the input features, Bo is the intercept, Bs, B2, ..., Bn
are the coefficients, and € is the error term (Draper and Smith, 1998). The algorithm aims to find
the values of B that minimize the sum of squared residuals, which represent the differences
between observed and predicted values. This is typically done using methods like Ordinary Least
Squares or gradient descent (Murphy, 2012). Linear regression's strengths lie in its simplicity,
interpretability, and computational efficiency. It is widely used across scientific fields for trend

analysis (as in our case) and to understand relationships between variables (Kutner et al., 2004).
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However, it assumes a linear relationship between variables and is sensitive to outliers. It may

underperform on complex, non-linear relationships in data (Hastie et al., 2009).

Logistic regression is primarily designed for binary classification tasks. It estimates the probability

that an instance belongs to a specific class by applying the logistic function to a linear
combination of input features (Hosmer et al., 2013). The function o (Eq. 4.2) is expressed as:

1

d 1 e 4-2]

o(z) =

where z is the linear combination of features: z = Bo + BiX: + B2X2 + ... + BuX, and e denotes the

base of the natural logarithm. Logistic regression seeks to determine the optimal values of B
by maximising the likelihood of the observed data, typically achieved using techniques such as
maximum likelihood estimation or gradient descent (Murphy, 2012). The model's capacity to
generate probabilistic outputs makes it particularly valuable for forecasting in fields such as
hydrology (Yu et al., 2019), hydrogeology (Sahour et al., 2022), risk analysis, and medical
diagnostics (Menard, 2002). However, one limitation of logistic regression is its reliance on the
assumption of linearity in the log-odds space (the logarithm of the odds of an event occurring),

which may not model more complex relationships in the data (Bishop, 2006).

Decision trees are versatile machine learning algorithms commonly used for both classification
and regression tasks, including hydrogeological applications, also for forecasting purposes
(Mewes et al., 2020; Niraula et al., 2021). They create a predictive model by learning simple
decision rules from data features (Quinlan, 1986). The structure of a decision tree resembles a

flowchart (Fig. 4.2), branching from a root node based on feature-specific questions.
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This process continues until reaching leaf nodes that provide final predictions. For example, a
decision tree predicting whether it is advantageous to accept a new job offer might first consider
the annual salary, then the commuting time, and so on. Tree construction follows a top-down
approach, selecting the best feature to split the data by maximizing information gain or
minimizing impurity (Breiman et al., 1984). This continues until a stopping criterion is met (e.g.,
max tree depth). Decision trees offer several advantages: they are interpretable, handle both
numerical and categorical data, and perform automatic feature selection. They capture non-
linear relationships and feature interactions (Loh, 2011). However, they can overfit if grown too

deep, which can be mitigated by ensemble learning methods (Breiman, 2001).

Support Vector Machines (SVM) are powerful algorithms primarily employed for classification

and regression problems. Renowned for their robust performance and solid theoretical
underpinnings (Cortes and Vapnik, 1995), SVMs operate by identifying the optimal hyperplane
that best separates classes within a high-dimensional space. For datasets that are linearly
separable, SVM determines the hyperplane that maximises the margin between the classes.
When the data is not linearly separable, SVM employs the "kernel trick" to project the data into
a higher-dimensional space, enabling linear separation. Popular kernel functions include linear,
polynomial, and radial basis functions (Schdélkopf and Smola, 2002). The decision function (Eqg.

4.3) for SVM classification is expressed as:

f(x) = sign(Z; aiyiK(x,x;) + b) [4.3]

where a; are the Lagrange multipliers, y; are the class labels, K is the kernel function, x; are the
support vectors, and b is the bias term. SVMs are effective in high-dimensional feature spaces,
especially when the number of features exceeds the number of samples. They provide a clear
margin of separation, often resulting in better generalisation to unseen data. These algorithms
are applied in areas such as text image analysis, spring discharge forecasting (Cheng et al., 2021;
Zhou and Zhang, 2023), and bioinformatics (Ben-Hur et al., 2008). However, SVMs have notable
limitations, including their inability to directly estimate probabilities and their sensitivity to the
choice of kernel and hyperparameters. Furthermore, training SVMs on very large datasets can be

computationally demanding.

K-means clustering is a core algorithm in unsupervised learning, widely utilised for tasks such as

data partitioning and pattern recognition. It divides n observations into k clusters, assigning each
observation to the cluster whose mean, or centroid, is closest (MacQueen, 1967). The algorithm
operates in an iterative manner: it begins by randomly selecting k initial centroids, assigns each
data point to the nearest centroid, recalculates the centroids based on the newly assigned points,

and continues this process until convergence or until a predefined maximum number of
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iterations is attained. This iterative approach minimises the Within-Cluster Sum of Squares
(WCSS) (Eq. 4.4), which is mathematically defined as (Hartigan and Wong, 1979):

WCSS = %; 5 [[x - p1//? [4.4]

where x is a data point and W is the centroid of cluster i. K-means is widely used across multiple
fields due to its simplicity and scalability. In addition to hydrogeology (Kayhomayoon et al., 2022;
Soleimani Motlagh et al., 2017), it has been applied to customer segmentation, image
compression, and anomaly detection (Jain, 2010). Its ability to handle large datasets efficiently
makes it particularly relevant in the era of big data. However, K-means also has its limitations: it
requires the number of clusters (k) to be specified in advance, which can be challenging when
the data structure is not well understood. Additionally, the algorithm is sensitive to the initial
placement of centroids and assumes clusters are spherical, meaning they are evenly distributed
around a central point, which may not accurately reflect the underlying data distribution (Arthur
and Vassilvitskii, 2007).

4.2.2.2. Deep learning algorithms

Deep learning algorithms (Fig. 4.1) have transformed the field of machine learning, significantly
advancing areas such as natural sciences, computer vision, and natural language processing. This
shift in approach is defined using the key architecture of multi-layered Neural Networks (NNs),
which can extract hierarchical features from data (LeCun et al., 2015). NNs takes inspiration from
the neural architecture of the human brain. These systems are composed of interconnected
layers of nodes, referred to as neurons, which process and transmit information (Rosenblatt,
1958). The most basic type of neural network is the feedforward network, where data flows in a
single direction, from input to output, through one or more hidden layers. Each neuron applies a
non-linear activation function to its inputs. Training a neural network involves optimising the
weights of the connections between neurons to minimise the difference between predicted and
actual outputs (LeCun et al., 1998). This is typically accomplished through backpropagation, a
technique that calculates gradients in neural networks by propagating errors backward from the
output to the input layers (Rumelhart et al., 1986). Moreover, the development of boosting
algorithms, particularly AdaBoost (Freund and Schapire, 1997), which iteratively combines weak
learners to form a strong predictor, further enhanced the field of ML and complemented neural
network methods. The strength of neural networks lies in their capacity to approximate highly
complex functions, making them powerful tools for addressing a wide range of machine learning
challenges (Cybenko, 1989; Hornik, 1991).
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The remarkable success of deep learning can be attributed to three primary factors: the
availability of large datasets, enhanced computational resources, and innovative algorithmic
advancements. Together, these developments have enabled the training of highly complex
models that often surpass human performance in specific tasks (Goodfellow et al., 2016). In the
field of applied geology, deep learning algorithms are increasingly utilised (Dal Seno, 2024); in
hydrogeology, in particular, Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are among the most employed (El Ansari et al., 2023; Piotrowska and
Dabrowska, 2024). For this reason, the following paragraphs will focus on these algorithms, with
particular emphasis on Long Short-Term Memory (LSTM) networks, a specialised type of RNN

widely used in trend analysis and forecasting tasks.

Convolutional Neural Networks (CNNs) are a class of neural networks designed to process grid-

structured data, such as images. Drawing inspiration from the structure of the animal visual
cortex, CNNs have revolutionised computer vision by learning hierarchical features directly from
raw image data (LeCun et al., 1998). The training of a CNN typically involves two primary stages:
feedforward and backpropagation. During the feedforward phase, input data is passed through
several layers, including convolutional layers that apply trainable filters (kernels) to identify local
patterns such as edges and textures. In the backpropagation phase, the model’s predictions are
compared to the actual targets, and a loss function (which represents error in terms of accuracy
or predictive capability of the model) is used to compute the discrepancy. The calculated loss is
then used to adjust the weights in the network, improving its predictive accuracy over successive
iterations. Beyond the branch of applied geology, CNNs have achieved remarkable results in
various computer vision tasks, often surpassing traditional approaches. Notably, CNNs have been
widely applied in object detection and image classification, which are essential in the field of
remote sensing. These applications extend to domains such as autonomous vehicles, medical
image analysis, and satellite imagery interpretation. As CNN research advances, efforts are
focused on improving their efficiency, enhancing interpretability, and addressing challenges such

as generalisation to out-of-distribution samples (Dal Seno, 2024).

Recurrent Neural Networks (RNNs) are a type of neural network designed to handle sequential

data, making them effective for applications such as hydrogeological and meteorological time
series analysis, and natural language processing (Elman, 1990). What distinguishes RNNs is their
ability to maintain a hidden state that stores information from previous time steps, allowing them
to capture temporal dependencies within the data. In an RNN, the hidden state is updated at
each time step using the current input and the hidden state from the previous step. This recurrent
structure enables the network to retain a form of memory, making it useful for problems where
the sequence of data points carries critical information (Mikolov et al., 2010). However, standard

RNNs encounter difficulties when dealing with long-term dependencies due to the vanishing and
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exploding gradient problems, which complicate the training of long sequences (Bengio et al.,
1994). To address these challenges, more advanced RNN architectures were introduced, the

most notable being Long Short-Term Memory (LSTM) networks.

Long Short-Term Memory (LSTM) networks are a specialised form of Recurrent Neural Networks
developed to address the difficulties traditional RNNs face in handling long-term dependencies.
Introduced in 1997, LSTMs have become a cornerstone for sequence modelling tasks that require
the retention of information over extended timeframes. The primary innovation of LSTMs is the
memory cell, which preserves its state across time steps. This memory is controlled by three
gates (Fig. 4.3): the input gate determines which new information to store, the forget gate
decides what to discard, and the output gate selects the information for the output (Hochreiter
and Schmidhuber, 1997). This gating mechanism allows LSTMs to selectively store or forget
information, enabling them to effectively capture long-term dependencies in sequential data.
LSTMs have been successfully applied across a wide range of domains. In natural language
processing, they have driven advancements in machine translation, text generation, and
sentiment analysis (Sutskever et al., 2014). In time series analysis, they excel in tasks such as
predicting stock prices and forecasting weather patterns (Graves, 2012). Despite their strengths,
LSTMs are not without limitations. They can be computationally intensive to train, especially
when working with long sequences, and often require substantial amounts of data to achieve
optimal performance. To address some of these challenges, alternative architectures have been

introduced to offer a more efficient approach for certain tasks (Cho et al., 2014).
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Fig. 4.3. Example of a general LSTM unit, illustrating the input, forget, and output gates along with the

corresponding functions that govern their behaviour (Dobilas, 2022).
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Delving deeper into the gating mechanism of an LSTM unit (Fig. 4.3): (i) The input gate determines
which values from the input should be used to update the memory. A sigmoid function (o)
decides which values to allow through, outputting either 0 or 1, while a tanh function (hyperbolic
tangent function) assigns weight to the values that pass through, determining their level of
importance within a range of -1 to 1. (ii) The forget gate identifies which information should be
discarded from the memory cell. This is governed by a sigmoid function (o) that considers the
previous state (h:.1) and the current input (X:), producing a value between 0 (to discard) and 1 (to
retain) for each element in the previous cell state (Ct.1). (iii) The output gate determines the
information to be output, based on the input and the memory of the block. A sigmoid function
(o) decides which values to pass through, outputting either 0 or 1, while a hyperbolic tangent
function assigns weight to the passed values, determining their importance on a scale from -1 to
1. The output of the tanh function is then multiplied by the result of the sigmoid function (o) to
produce the final output (Dobilas, 2022).

4.2.2.2.1. LSTM application in hydrogeology

LSTM neural networks has become a transformative approach in applied geology, particularly in
the geotechnical field of predicting rainfall-induced landslides (Dal Seno, 2024). Moreover, in
recent years, LSTM has also emerged as a significant research method in hydrogeology, offering
advanced tools to tackle the complexity of groundwater systems (Opoku et al., 2024; Zhang et
al.,, 2024; Zhou et al., 2024). Traditional methods, such as statistical analysis and numerical
models, have been instrumental in studying recharge-discharge dynamics and forecasting trends,
but they struggle with non-linear relationships and high-dimensional datasets. ML techniques,
particularly ANNs, excel in capturing these complexities, enabling more accurate predictions and
deeper insights into groundwater behaviour. Indeed, as explained in the Chapter 3 of this thesis,
ML has recently been utilised to address diverse hydrogeological challenges. Among these, some
ML algorithms have demonstrated significant potential in forecasting short- and medium-term
trends in spring discharge (Di Nunno et al., 2021; Gholami and Khaleghi, 2019; Granata et al.,
2018), as well as uncovering long-term patterns in flow rate time series data (Secci et al., 2023).
With increasing data availability, however, LSTM has emerged as the most prominent among ML
algorithms in hydrogeological research, particularly for trend analysis and long-term spring

discharge forecasting based on historical flow rate data (Zhang et al., 2024).

In the context of climate change, where the field of spring discharge prediction is becoming a
central focus, Long Short-Term Memory (LSTM) neural networks, are increasingly emerging as

powerful tools for modelling the complex relationships that govern spring dynamics.
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Several studies have demonstrated the effectiveness of LSTM models in capturing the intricate

temporal dependencies and partially non-linear behaviours of spring discharge:

Zhang et al. (2024) proposed a hybrid framework that incorporates variable screening, error
suppression, hyperparameter optimisation, and decomposition-combination, relying on spring
discharge data as input for the LSTM model. The authors' study focused on three karst springs
located in Shanxi Province, in northeastern China. Their findings emphasised that hybrid models
built solely around the dependent variable (flow rate) can outperform traditional methods based

on meteorological data in short-term forecasting of spring discharge.

Similarly, Zhou and Zhang (2023) examined ensemble deep learning models integrating both
linear and non-linear components to forecast daily discharge. The authors focused on Barton
Spring group, located in Central Texas, USA, which discharge from a karstified carbonate aquifer.
Their approach, which combined predictions from LSTM, Gated Recurrent Units (GRU), and One-
Dimensional Convolutional Neural Networks (1D-CNN), demonstrated improved predictive

accuracy and robust performance in short-term forecasting.

An et al. (2020) expanded the application of LSTM by incorporating time-frequency analysis to
simulate spring discharge. The authors employed Singular Spectrum Analysis (SSA) and ensemble
Empirical Mode Decomposition (EMD) to extract frequency and trend features. Their study,
focused on Niangziguan Spring group, situated in eastern Shanxi Province (China), emphasised
the advantages of integrating data pre-processing techniques with LSTM models to capture
multi-scale temporal variations, thereby enhancing spring discharge predictions in karst systems

characterised by high-frequency flow rate variability.

Song et al. (2022) examined spring discharge mechanism to attempt to predict spatial-temporal
behaviours of karst springs, highlighting LSTM’s capability to model multi-hydrogeological
processes, including precipitation, surface water runoff, infiltration, and groundwater flow. This
study, also conducted on Niangziguan Spring group, which has been heavily impacted over the
past 60 years, emphasised the importance of considering future scenarios of anthropogenic

impacts when predicting short-term spring discharge.

Zhou et al. (2024) proposed a hybrid self-adaptive deep learning architecture for karst spring
forecasting, focusing on Barton Spring group in Central Texas, USA. Their model combined
Discrete Wavelet Transform (DWT), WaveNet, and LSTM to capture complex nonlinear patterns
in karst systems, incorporating attention mechanisms and residual connections to improve

prediction accuracy for short-term forecasts of up to 30 days.

Similarly, Polz et al. (2024) compared the performance of Transformer and LSTM models in
forecasting karst spring discharge using hourly data. The authors focused on three Austrian alpine

springs discharging from a highly karstified limestone aquifer. Their results demonstrated that
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Transformer models outperform LSTMs for springs with longer response times (ranging from
weeks to months), whereas LSTMs are better suited for springs with shorter response times (from
hours to days). An insightful contribution from these authors was the incorporation of past

discharge itself as an independent variable.

Opoku et al. (2024) demonstrated the effectiveness of LSTM combined with Bayesian
hyperparameter optimisation and a laboratory-based physical model simulating the spring
discharge process. The study focused on Jinan Spring groups, located in midwestern Shandong
Province, Northern China. The authors' findings revealed that integrating multiple techniques,
including ML tools such as Bayesian optimisation and physically based approaches, significantly

improved the short-term predictive accuracy of LSTM models.

Zhou and Zhang (2022) investigated the influence of deep learning model architecture on karst
spring discharge prediction, comparing various machine learning models to determine the most
effective for capturing spring dynamics. Focusing on Barton Spring group in Central Texas, USA,
the authors evaluated the predictive performance of LSTM, GRU, and simple recurrent neural
networks (RNNs). Increasing the input lag time interval for meteorological variables consistently

improved discharge prediction accuracy during the test phase.

Meanwhile, Cheng et al. (2021) employed LSTM, Multi-Layer Perceptron (a widely used deep
learning algorithm), and Support Vector Machine models to predict fluctuations in karst spring
discharge. The authors focused on Longzici Spring, a karst spring located in Shanxi Province,
North China. To compare the three ML methods, performance metrics such as mean squared
error (MSE), mean absolute error (MAE), and root mean square error (RMSE) were utilised, as is
standard practice in the field. The results demonstrated that LSTM proved to be the most
effective ML method for accurately simulating and predicting karst spring discharge in the short-

term future (ranging from days to weeks).

Together, these studies highlight the transformative potential of LSTM neural networks in
capturing the complexity of aquifer system responses to climatic variables, enhancing the
understanding of spring discharge processes, and forecasting them in the short term (hours to
days) and medium term (weeks to a maximum of three months). By learning intricate temporal
patterns and incorporating additional analytical techniques, LSTM models have made significant
progress in tackling the challenges of spring flow rate forecasting. However, while LSTM excels
at capturing long-term dependencies between variables, none of these studies has addressed
long-term forecasting (years to decades), which is essential for water supply authorities to plan
large-scale infrastructure and support aqueduct interconnections. The only study employing
LSTM to predict a hydrogeological variable in the long-term future (up to 2095), while also

incorporating future climatic data derived from RCP scenarios, is that of Secci et al. (2023).
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However, this study focuses on hydraulic heads rather than spring discharge. Specifically, the
authors investigated an area in the northern Tuscany Region (ltaly), encompassing four river

basins: Magra, Coastal Basins, Serchio, and part of the Arno.

The following sections of this chapter present a novel application of the LSTM machine learning

method for predicting monthly spring discharge in the long-term future.

4.3. Materials and methods

Since the springs analysed in this chapter are the same as those examined in the previous one,

their respective geological and hydrogeological settings will not be addressed here.

4.3.1. Sanita and Ermicciolo LSTM models

The data utilised in this chapter are the same as those employed for the multiregression
statistical analysis presented in Chapter 3. These include spring discharge, thermo-pluviometric
variables, and snowfall data for the catchment of Sanita Spring and Ermicciolo Spring. The
methodologies for data collection and normalisation, the reconstruction of snowfall data back to
January 1940, and the combination of rainfall and snowfall into Total Liquid Precipitation (TLP)
are thoroughly explained in the previous chapter. The focus of this chapter is the application of
a deep machine learning approach, specifically the LSTM neural network algorithm, to analyse
the relationship between the independent variables and the dependent variable (spring
discharge) and explore its significant predictive potential. For the predictions, the analysis will
also rely on RCP 4.5 and RCP 8.5 climate projections, incorporating corrections for systematic

bias, as used in the previous chapter.

For both case studies, a Python script implementing an LSTM neural network model was
developed. The model was trained on one portion of the historical dataset, validated on another,
and tested on the remaining portion to evaluate the relationships identified between the
variables. Following the conventional percentage split for the three ML phases, 60-70% for
training, 25-20% for validation, and 15-10% for testing, the division of the spring flow rate

datasets for both springs is as follows:

Sanita Spring. The training phase included data up to December 1990, the validation phase

covered data up to December 2010, and the testing phase extended to the end of the historical
dataset (January 2024) (Fig. 4.4). For the training phase, the six-month period between December
1980 and May 1981 was excluded due the presence of the anomalous peak discharge induced by
the Irpinia earthquake. Sanita Spring typically exhibits its seasonal high flow during summer
(June-July, Fig. 3.5); however, in 1980 and 1981, this was observed in winter and spring instead.

This anomaly affected the LSTM model's performance, making its exclusion necessary.
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Fig. 4.4. Division of the Sanita Spring standardised discharge data into training, validation, and test phases.

The six-month period excluded from the analysis is highlighted by a grey band.

Ermicciolo Spring. The training phase included data up to December 1999, the validation phase

extended to June 2013, and the testing phase covered the remaining dataset (Fig. 4.5).
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Fig. 4.5. Division of the Ermicciolo Spring standardised discharge data into training, validation, and test

phases. The acquisition gap period is highlighted by a grey band.

The training phase excluded the gap in the discharge dataset from January 1990 to December

1995. Initially, the Ermicciolo model was trained using the same time frame as Sanita, excluding
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1990 due to the gap. However, improved test performance was observed when the training
phase included some post-gap data. This improvement was attributed to the cyclic drought
patterns, spanning three to five years, which became more evident after January 1996. Extending

the training phase enabled the model to better recognise and learn these cycles.

4.3.1.1. Determination of hyperparameters and lag time

After each iteration of both LSTM models, performance metrics such as MSE, MAE, and R? were
thoroughly assessed by comparing predicted and observed values during the test phase. Key
hyperparameters, including the number of epochs, batch size, LSTM units in the recurrent layer,
and dense layer configuration, were also adjusted. Additionally, loss curves for the training and
validation phases were monitored to evaluate performance. A brief description of these

parameters is provided below for clearer understanding:

- An epoch represents one complete pass through the entire training dataset. Increasing the
number of epochs can improve the LSTM model learning but may lead to overfitting if excessive.
Overfitting occurs when a machine learning model learns the noise or random fluctuations in the
training data instead of the underlying patterns, resulting in excellent performance on the

training set but poor generalisation to unseen data (Goodfellow et al., 2016).

- The batch size defines the number of training examples processed at once. Smaller batch sizes

often result in smoother convergence but may increase computational time (Bengio, 2012).

- The_ LSTM units are the number of memory cells in the LSTM layer. Higher numbers allow the
model to capture more complex patterns but can increase the risk of overfitting and

computational cost (Hochreiter and Schmidhuber, 1997).

- The dense layers are fully connected layers that aggregate learned features from preceding
layers. The configuration of dense layers influences the model's ability to generalise its
predictions (Hastie et al., 2009).

- The loss curve is a graphical representation of how the model's loss (error in terms of accuracy
or predictive capability of the model) evolves during the training and validation phases. It
provides insights into the model's learning process by showing whether the loss is decreasing,
plateauing, or diverging. A steadily decreasing training loss with a stable or decreasing validation
loss typically indicates effective learning. Conversely, a widening gap between training and

validation loss may signal overfitting (Goodfellow et al., 2016).

The selection of the hyperparameters is crucial for assessing and improving model performance.
As in the present work, this is typically achieved through trial and error, accompanied by the

monitoring of metrics such as loss curves and MSE.
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For both studies, the analysis began by examining the relationship between the meteorological
independent variables and discharge. Monthly lags were applied exclusively to AirT and TLP
variables to assess how their values in preceding months influence the current month's spring
discharge. Various lag lengths were tested to determine the optimal value for the LSTM models.
Unlike multivariate analysis, which considers only a single preceding month (corresponding to
the lag) with the highest correlation among variables, the LSTM approach enables the analysis of

temporal dependencies across all preceding months up to the maximum lag value.

The initial trials, implemented with diverse combinations of ML parameters and lags, produced
unrealistic outputs, failing to capture the seasonal cycles characteristic of discharge patterns. This
issue was further confirmed by loss curves that consistently displayed significant divergence

between the training and validation phases (Fig. 4.6).
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Fig. 4.6. Loss curves for two test cases conducted with the Sanita LSTM model (on the left) and the

Ermicciolo LSTM model (on the right), where 100 and 90 epochs were used, respectively.

The specific test cases shown in Fig. 4.6 demonstrate poor generalisation capabilities by the
models during training and validation. Indeed, in both graphs, while the training loss consistently
decreases, stabilising at a low value, the validation loss plateaus or even increases in the case of
the Ermicciolo model, also exhibiting significant oscillations. This indicates that the LSTM models

continue to improve on the training data but fail to generalise to the validation set.

To address this issue, spring discharge from previous months was introduced as an additional
independent variable, using the same lag as the two meteorological variables. This strategy,
already employed by some authors (e.g., Polz et al., 2024; Zhang et al., 2024), led to significant
improvements: the loss curves showed better convergence (Fig. 4.7), and the predicted discharge
during the test phase aligned closely with observed values (Fig. 4.8). Concerning the predicted
spring discharge, it can be observed that in both cases, the respective standardised series starts
with a certain delay from the vertical line marking the end of the validation. This is due to the lag

time set in the models. During the test phase, the LSTM model requires the discharge values from
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previous months (the number of which depends on the lag) to predict the discharge. For this
reason, discharge predictions are not available for the initial months of the test phase, as the
model cannot generate values until it has access to the specified number of preceding months
determined by the lag. For instance, if the lag is 12, the LSTM model will begin predicting

discharge from the thirteenth month of the test dataset.
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Fig. 4.7. Loss curves from the two best-performing LSTM models, with spring discharge included as an

independent variable. Results for Sanita Spring are on the left, and for Ermicciolo Spring on the right.
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Fig. 4.8. Observed and predicted standardised spring discharge during the test phase from the two best-
performing LSTM models, with discharge included as an independent variable. The results for Sanita

Spring are shown on the left, while those for Ermicciolo Spring are displayed on the right.

The lag values that provided the best results were 18 months for Sanita Spring and 12 months

for Ermicciolo Spring. By including discharge as an additional independent input variable, the
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model was able to capture extended temporal dependencies, recognising that seasonal peaks
and lows in spring discharge occur almost consistently every 11 to 13 months in both case studies;
for Sanita Spring, given the larger extent of its catchment and aquifer, these patterns occasionally

extend to as much as 18 months.

The best-performing models, identified after extensive experimentation with various parameter
combinations, achieved an R? greater than 90% between predicted and observed values during
the test phase, along with very low MSE and MAE values, indicating the robustness of the models.
The hyperparameters that produced the optimised models are as follows:

For the Sanita Spring LSTM model: 100 epochs, although learning effectively concluded after

approximately 70 epochs, as evident from the divergence between the validation loss and the
training loss (Fig. 4.7); batch size of 32; 96 LSTM units in total (64 in the first LSTM layer and 32
in the second LSTM layer); and two dense layers (with 32 nodes in the first and 1 node in the
second, used for the output data).

For the Ermicciolo Spring LSTM model: 100 epochs, although the learning process concluded after

roughly 80 epochs, as observed from the divergence between the two loss curves (Fig. 4.7); batch
size of 64; 96 LSTM units in total (64 in the first LSTM layer and 32 in the second LSTM layer),
identical to the Sanita model; and two dense layers (with 32 nodes in the first and 1 node, for the

output data, in the second), again mirroring the configuration of the Sanita model.

The selection of 100 epochs reflects an effort to provide sufficient training time for the models
to converge without risking overfitting. Fig. 4.7 suggests that, while the two models were trained
for 100 epochs, an early stopping mechanism could be introduced to truncate the training at the
optimal point, further validating the suitability of the chosen epoch count. However, given the
model's fast runtime (never exceeding 5 minutes), this was not deemed necessary.

The difference in batch size between the two LSTM models can be attributed to the varying
characteristics of the datasets and the computational requirements associated with their
respective patterns. Smaller batch sizes, such as 32, often facilitate more detailed updates to the
model weights, which is beneficial for datasets with higher variability or more complex temporal
dynamics, as is the case for a karst spring like Sanita. Conversely, the larger batch size of 64 for
the Ermicciolo model enables more stable gradient updates, which can be advantageous for
datasets with smoother temporal patterns or less variability.

The use of 96 LSTM units in total, distributed across two layers, aligns well with the complexity
of the temporal dependencies inherent in spring discharging dynamics. The larger number of
units in the first layer (64) allows the models to capture the broad temporal patterns and long-
term dependencies, while the reduced number of units in the second layer (32) aids in refining

and consolidating these representations for the test phase prediction task. This configuration
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strikes a balance between model complexity and computational efficiency, avoiding overfitting
while maintaining the capacity to learn nuanced patterns in the data.

The inclusion of two dense layers in both models represents a standard yet effective architecture
for time series future assessment tasks. This configuration ensures that the model can extract
meaningful features from the temporal patterns before producing the final test phase prediction,

while maintaining a level of simplicity that avoids unnecessary computational overhead.

Overall, the selected hyperparameters were found to align well with the features of the analysed
datasets and the aims of the study. The observed differences between the two LSTM models,
particularly in batch size, underscore the importance of tailoring hyperparameter choices to the
specific dynamics of each case study, reinforcing the robustness and adaptability of the LSTM

neural network architecture.

4.3.1.2. Iterative forecasting of future monthly discharge

Indeed, with regard to discharge forecasting, the test phase represents only one part of the work
commonly undertaken with ML methods, serving as a necessary step to verify the model's ability
to capture temporal relationships and dependencies between variables. The objective of this
study in terms of prediction, however, extends much further, aiming to estimate monthly
discharge values in the long-term future by leveraging the seasonal and multi-year temporal

relationships identified across the various datasets using the LSTM models.

After developing the two best-performing LSTM models, long-term flow rate forecasting was
carried out using future TLP and AirT variables derived from the RCP 4.5 and RCP 8.5 climate
projections as meteorological inputs. For discharge as an input variable, an iterative approach
was employed, given that future spring discharge (the target variable) was obviously unavailable
in the datasets. Leveraging the relationships learned by the LSTM models, future discharge was
calculated step-by-step (starting from the most recent historical discharge data), with each

predicted value being added iteratively to the projected dataset.

This approach allowed the model to incorporate relationships derived from historical data during
the training and validation phases and apply them to future meteorological scenarios and
iteratively predicted discharge, thereby producing monthly future discharge values. Naturally,
once a temporal interval equivalent to the lag time set in the two LSTM models had elapsed, each
model began predicting future discharge using previously predicted discharge values, which,

while also future, had already been generated in earlier iterations.
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4.4.

Results

The two best-performing LSTM models generated future discharge outputs up to 2070 (Fig. 4.9

and Fig. 4.10) that accurately reflected overall trend and seasonal cycles consistent with historical

data. Unlike Figs. 4.4 and 4.5, which display data from January 1940 to January 2024, Figs. 4.9

and 4.10 present the complete historical discharge datasets (beginning in 1920 for Sanita Spring

and 1939 for Ermicciolo Spring) alongside future projections for both scenarios. The starting year

of 1940 aligns with the availability of reconstructed snowfall data, as detailed in Chapter 3, and

indeed also matches the starting date of the multivariate statistical analysis. Another key
difference between Figs. 4.4 - 4.5 and Figs. 4.9 - 4.10 is that the former present standardised

discharge data, whereas the latter display denormalised data, obtained using the same monthly

means and standard deviations applied during the normalisation process.
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Fig. 4.9. Historical mean monthly discharge of Sanita

discharge under the RCP 4.5 scenario (top) and the RCP 8.5 scenario (bottom).

Spring, followed by predicted mean monthly
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The results obtained for Sanita Spring under the RCP 4.5 scenario show a mean monthly discharge
ranging from approximately 4980 to 2670 L/s, whereas under the more severe RCP 8.5 scenario,
the mean monthly discharge ranges from about 4650 to 2230 L/s, which is considerably lower. A
closer examination of Fig. 4.9 also reveals less variability in the predicted data, with both future
series appearing slightly more "flattened" compared to the historical data, although the natural
seasonality of peaks and troughs is preserved. Another relevant observation from the predicted
historical series is that, under the RCP 4.5 scenario, prolonged intervals of low spring discharge,
characteristic of extended recession periods, are absent. Notably, from 2060 onwards, an upward
trend in the spring's discharge is also observed. In contrast, the more severe RCP 8.5 scenario
reveals a prolonged low-flow period between 2032 and 2043, closely resembling the historical

one observed between 1987 and 1997.
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Fig. 4.10. Historical mean monthly discharge of Ermicciolo Spring, followed by predicted mean monthly

discharge under the RCP 4.5 scenario (top) and the RCP 8.5 scenario (bottom).
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The results for Ermicciolo Spring under the RCP 4.5 scenario indicate a mean monthly discharge
ranging from roughly 210 to 51 L/s. In the more severe RCP 8.5 scenario, the mean monthly
discharge ranges from about 189 to 33 L/s, which, as in the previous case, is considerably lower.
Fig. 4.10 also shows that the model successfully captured triennial to quinquennial drought
cycles, particularly evident in the historical data from 1996 onwards. A concerning observation
regarding the long-term future is that, in both scenarios, from approximately 2050 onwards,
these droughts begin to intensify both temporally (occurring more frequently) and in absolute
terms (with increasingly lower discharge levels). Compared to the previous case, both scenarios
exhibit a further declining trend in spring flow rate, especially under the RCP 8.5 scenario, where

the predicted spring discharge frequently falls below 50 L/s.

To enable a comparison between the multi-decadal discharge derived from the Multivariate
Statistical Analysis (MSA) presented in the previous chapter, two graphs were created: one for
Sanita Spring (Fig. 4.11) and the other for Ermicciolo Spring (Fig. 4.12). These graphs plot, in
addition to the historical data, the projected values obtained from both the MSA and LSTM
methods. To avoid visual confusion, the spring discharge was plotted as a mean multi-decadal
hydrograph without uncertainty bands, as their inclusion would cause numerous overlaps,
making the graphs difficult to interpret. The multi-decadal hydrographs for the LSTM model
results were constructed using only the 2040-2070 period, excluding the earlier portion of the
predicted series (February 2024 to December 2039).

5000

0O 1920-1954 2040-2070 MSARCP 4.5 [32040-2070 LSTM RCP 4.5
4770 1955-1989 0 2040-2070 MSA RCP 8.5 [32040-2070 LSTM RCP 8.5
0O 1990-2024
4540
4310
» 4080
3
(]
R0 3850
@
N -
o
wv)
A 3620
3390
3160
2930
2700 r - - - - - - - - -
1 2 3 4 5 6 7 8 9 10 11 12
Months

Fig. 4.11. Sanita Spring multi-decadal hydrographs, plotted without uncertainty bands. Three hydrographs
depict historical data, while the remaining four illustrate future spring discharge projections derived from
both the MSA and LSTM models.
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Since the values in Fig. 4.11 are plotted without uncertainty bands, the maximum and minimum
spring discharge values for the various multi-decadal periods (Tab. 4.1) are slightly different from
those previously described in Section 3.7.4. The oldest historical hydrograph (1920-1954) shows
an average flow rate ranging from approximately 4,430 to 3,580 L/s, the intermediate historical
hydrograph (1955-1989) spans a range of 4,500 to 3,720 L/s, while the most recent historical
hydrograph (1990-2024) exhibits an average spring discharge ranging from 3,920 to 3,350 L/s.
Under the RCP 4.5 scenario of the MSA model, an average discharge ranging from 3,770 to 3,230
L/s is observed, whereas in the more severe RCP 8.5 scenario, the average spring discharge varies
from 3,630 to 2,940 L/s. For the Sanita LSTM model, the RCP 4.5 scenario produces a flow rate

ranging from roughly 3,770 to 3,250 L/s, while the RCP 8.5 scenario yields an average spring
discharge covering a range of 3,470 to 2,920 L/s.
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Fig. 4.12. Ermicciolo Spring multi-decadal hydrographs, plotted without uncertainty bands. Three

hydrographs depict historical data, while the remaining four illustrate future spring discharge projections

derived from both the MSA and LSTM models.

Under the RCP 4.5 scenario, the two methods produce very similar results (with a percentage
deviation of less than 5%), with notable differences observed only during the summer months of
July and August. In these months, the MSA method shows a slight drop in discharge, followed by
arecovery in September, whereas the LSTM method does not exhibit this drop, as the discharge

tends to decrease steadily until December, the month representing the seasonal low flow.

Under the RCP 8.5 scenario, although the discharge values predicted by the LSTM method in

January and December are similar to those predicted by the MSA method, the generated
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hydrographs display notable differences. In particular, the discharge predicted by the LSTM
method is visibly lower than that obtained with the MSA method.

Similarly, the maximum and minimum spring discharge values for the multi-decadal hydrographs
shown in Fig. 4.12 are reported below (and in Tab. 4.1). The oldest historical hydrograph (1939-
1954) spans a range of 201 to 172 L/s, the intermediate historical hydrograph (1955-1989) shows
an average flow rate ranging from approximately 157 to 137 L/s, and the most recent historical
hydrograph (1990-2024) exhibits an average spring discharge ranging from 149 to 133 L/s. Under
the RCP 4.5 scenario of the MSA model, an average discharge ranging from 144 to 129 L/s is
observed, whereas in the more severe RCP 8.5 scenario, the average spring discharge varies from

128 to 111 L/s. For the Ermicciolo LSTM model, the RCP 4.5 scenario produces a flow rate ranging

from approximately 127 to 114 L/s, while the RCP 8.5 scenario yields an average spring discharge

covering a range of 111 to 96 L/s.

Under the RCP 4.5 scenario, the results produced by the two methods differ significantly. A
noteworthy observation is that the hydrograph generated by the LSTM method under this
scenario closely resembles that of the MSA method under the RCP 8.5 scenario, with a deviation
of less than 3%. Under the RCP 8.5 scenario, the hydrographs produced by the two methods are
also significantly different, with the discharge predicted by the LSTM method being considerably
more severe than that predicted by the MSA method. As with Sanita Spring, the results of the
LSTM under the most severe scenario show a greater reduction in discharge compared to those
of the other method. However, in this case, the difference is even more pronounced, with a

consistent discharge gap of approximately 13% between the two hydrographs.

4.5. Discussion and conclusive remarks

The analysis conducted, which aimed to understand the relationships between recharge-related
variables and the discharge of two major springs using a machine learning method employed in
Python, and to subsequently assess these relationships into the long-term future in order to
predict their discharge, has confirmed for the two study areas the critical groundwater resource

projections presented in the paper discussed in the previous chapter.

The ML method employed in this chapter was the Long Short-Term Memory (LSTM) neural
network, which has recently been gaining prominence for modelling the complex relationships
governing hydrogeological processes. During an initial exploratory phase, it became evident that
incorporating discharge itself as an input variable was the optimal approach for developing two
well-performing LSTM models. This approach is justified by the fact that the state of the aquifer

reservoir, which directly influences the spring discharge in each month, is logically dependent on
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its state in the preceding months. For instance, during a drought period, when the reservoir has
significantly depleted, its replenishment does not solely depend on the amount of rainfall. This is
because a deeper water table and a thicker unsaturated zone hinder efficient recharge, altering
the dynamics of the system. The reservoir's state in each month indeed exerts a substantial
influence on the discharge in the following months. The two optimised models, developed after
testing various combinations of ML hyperparameters and lag times in the input dataset, achieved
highly positive performance metrics. The lag times that provided the best results were 18 months
for Sanita Spring and 12 months for Ermicciolo Spring, which is consistent with the seasonal,
annual, and multi-annual cycles observed in the input parameters (particularly discharge itself)
and their relationship with the dependent variable. Each lag, in fact, enables the model to analyse
the seasonal and multi-year temporal dependencies between the dependent variable and all

input variables across the preceding months, up to the maximum lag value.

Using the two best-performing LSTM models, it was possible to obtain long-term future discharge
values by applying the identified relationships and temporal dependencies to the meteorological
scenarios already adopted in Chapter 3, as well as to the discharge itself, which was iteratively
predicted as part of a time-dependent autocorrelation process. This ML method not only allows
for the estimation of spring hydrographs over a multi-decadal time span, depicting monthly
discharge fluctuations at 2040-2070, as was already achieved with multiregression analysis, but
also enables the estimation of monthly discharge expressed in absolute terms, rather than solely
multi-decadal trends. Obviously, as the future discharge is calculated iteratively and used as an
input variable for subsequent predictions, significant errors in the early stages of prediction could
propagate over time, resulting in not fully reliable monthly absolute values. For this reason,
accurate training, validation, and testing phases, conducted on extended datasets, are essential

for constructing consistent LSTM models for long-term predictions.

Referring specifically to the results obtained with the LSTM method (Tab. 4.1): under the RCP 4.5
scenario, a decrease in discharge is observed for both springs during the 2040-2070 period
compared to the most recent historical one (1990-2024). The estimated percentage decrease in
flow rate between these two periods is 3.3% at Sanita Spring (3.5% with the MSA method) and
15.0% at Ermicciolo Spring (3.7% with MSA), corresponding to a reduction in discharge of 121 L/s
(129 L/s with MSA) and 21 L/s (5 L/s with MSA), respectively. Under the more severe RCP 8.5
scenario, an even more pronounced and significant decrease is observed between the same
multi-decadal periods. The estimated percentage decrease in flow rate between the 1990-2024
period and the 2040-2070 one is 12.1% at Sanita Spring (9.1% with the MSA method) and 26.3%
at Ermicciolo Spring (15.2% with MSA), corresponding to a reduction in discharge of 442 L/s (329
L/s with MSA) and 37 L/s (22 L/s with MSA), respectively.

154



Percentage declines in multi-decadal mean discharge (%)
Period (P) | MaxL/s (P) | MinL/s (P) |[Means L/s (P)| Rel.to 1st historical P | Rel. to 2nd historical P | Rel. to 3rd historical P

1920-1954 4428,0 3577,9 4022,0 = - -

1955-1989 4497,8 3719,5 41421 -3,0 - -

- 1990-2024 3915,6 3349,0 3638,4 9,5 12,2 -
r,'b(&.@% 3768,8 3233,0 3509,5 12,7 15,3 35 g
"’Q‘ MSA RCP 8.5 3631,2 2943,2 3309,1 17,7 20,1 9,1 4
LSTM RCP 4.5 3768,7 3252,6 3517,9 12,5 15,1 3,3 ‘-)
LSTM RCP 8.5 3471,1 2924,7 3196,8 20,5 22,8 12,1 ;

1939-1954 200,8 172,2 187,1 - - -

1955-1989 157,2 137,0 146,0 22,0 - -

. \o\o 1990-2024 149,0 133,3 142,0 24,1 2,7 -
Q}({\‘": <& 143,7 128,8 136,7 26,9 6,3 3,7 ;
K MSA RCP 8.5 127,7 111,3 120,3 35,7 17,6 15,2 4
LSTM RCP 4.5 126,6 113,6 120,7 35,5 17,3 15,0 (-’
LSTM RCP 8.5 110,5 96,1 104,7 44,1 28,3 26,3 ;

Tab. 4.1. Maximum, minimum, and mean values for each multi-decadal hydrograph of Sanita Spring (Fig.
4.11) and Ermicciolo Spring (Fig. 4.12), including percentage declines in the multi-decadal mean discharge
obtained using the two analytical methods (MSA and LSTM) under both future scenarios (RCPs 4.5 and

8.5) compared to all three historical multi-decadal periods.

The results obtained with the LSTM approach for Sanita Spring are consistent with those derived
from the multivariate statistical approach. For Ermicciolo Spring, however, the LSTM method
predicts a considerably greater reduction in spring discharge compared to the MSA method,
approximately 2.5 times more severe. This may be attributed to the more pronounced and
marked cyclicity in the historical discharge variations of Ermicciolo Spring compared to Sanita
Spring, which are more challenging to capture using multivariate linear regression than with a
machine learning method. Additionally, the six-year gap in Ermicciolo Spring's discharge dataset
likely influences the MSA analysis but is less impactful on the LSTM method, which can mitigate
this issue by capturing relationships between variables with longer and simultaneous lags over
multiple months. For these reasons, concerning the discrepancy between MSA and LSTM results
for Ermicciolo Spring, the findings obtained using the LSTM method are considered more reliable.
In any case, there are clear indications to suggest that future groundwater shortages will pose
significant challenges to water supply systems. For this reason, obtaining long-term discharge
projections is crucial to alert water utility agencies and enable them to prepare in advance to

implement proper adaptation measures.

155



4.6. References

An, L., Hao, Y., Yeh, T.-C.J,, Liu, Y., Liu, W., Zhang, B., 2020. Simulation of karst spring discharge
using a combination of time—frequency analysis methods and long short-term memory neural

networks Journal of Hydrology, 589, 125320.

Arthur, D., Vassilvitskii, S., 2007. k-means++: The advantages of careful seeding. Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027-1035.

Ball, N.M., Brunner, R.J., 2010. Data mining and machine learning in astronomy. International
Journal of Modern Physics D, 19(07), 1049-1106.

Ben-Hur, A., Ong, C.S., Sonnenburg, S., Scholkopf, B., Ratsch, G., 2008. Support vector machines
and kernels for computational biology. PLoS Computational Biology, 4(10), e1000173.

Bengio, Y., Simard, P., Frasconi, P., 1994. Learning Long-Term Dependencies with Gradient
Descent is Difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.

Bengio, Y., 2012. Practical recommendations for gradient-based training of deep architectures.
In: Montavon, G., Orr, G.B., Miller, K.R. (Eds.), Neural Networks: Tricks of the Trade, 437-478.

Springer, Berlin, Germany.

Bhowmick, A., Hazarika, S.M., 2018. Machine Learning for E-mail Spam Filtering: Review,

Techniques and Trends.
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer.
Breiman, L., 2001. Random forests. Machine Learning, 45(1), 5-32.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and regression trees. CRC

press.

Brynjolfsson, E., Mcafee, A., 2017. The Business of Artificial Intelligence. Harvard Business
Review, 7, 3-11.

Cheng, S., Qiao, X., Shi, Y., Wang, D., 2021. Machine learning for predicting discharge fluctuation
of a karst spring in North China. Acta Geophysica, 69(1), 257-270.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.,
2014. Learning phrase representations using RNN encoder-decoder for statistical machine
translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning, 20(3), 273-297.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4), 303-314.

156



Dal Seno, N., 2024. Application of machine learning methods for landslide risk mitigation. PhD

thesis, 37" PhD cycle, Alma Mater Studiorum - University of Bologna.

Di Nunno, F., Granata, F., Gargano, R., de Marinis, G., 2021. Prediction of spring flows using
nonlinear autoregressive exogenous (NARX) neural network models. Environmental Monitoring
and Assessment, 193(6), 350.

Dobilas, S., 2022. LSTM Recurrent Neural Networks - How to Teach a Network to Remember the
Past. Published by the user in "Towards Data Science". https://towardsdatascience.com/Istm-
recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e.
Medium, Human, stories & ideas. URL (accessed 11.26.24).

Draper, N.R., Smith, H., 1998. Applied Regression Analysis (3rd ed.). John Wiley & Sons.

El Ansari, R., El Bouhadioui, M., Aboutafail, M.O., Mejjad, N., Jamil, H., Jamal, E., Rissouni, Y.,
Zouiten, M., Boutracheh, H., Moumen, A., 2023. A review of Machine learning models and

parameters for groundwater issues. ACM International Conference Proceeding Series, 54.
Elman, J.L., 1990. Finding structure in time. Cognitive Science, 14(2), 179-211.

Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J.W., Wallach, H., Daumé Ill, H., Crawford, K.,
2018. Datasheets for datasets.

Gholami, V., Khaleghi, M.R., 2019. A comparative study of the performance of artificial neural
network and multivariate regression in simulating springs discharge in the Caspian Southern

Watersheds, Iran. Applied Water Science, 9(1), 9.
Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.

GoPenAl, 2023. Decision Tree Algorithm - What are Decision Trees. Written by the user:
"Abdul4code".  https://blog.gopenai.com/decision-tree-algorithm-484ec33387f9. Medium,
Human, stories & ideas. URL (accessed 11.24.24).

Granata, F., Saroli, M., De Marinis, G., Gargano, R., 2018. Machine learning models for spring
discharge forecasting. Geofluids, 2018, 8328167.

Graves, A., 2012. Supervised Sequence Labelling with Recurrent Neural Networks. Springer.

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A K-Means Clustering Algorithm. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer.

157



Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9(8),
1735-1780.

Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2), 251-257.

Hosmer, D.W., Lemeshow, S., Sturdivant, R.X., 2013. Applied Logistic Regression (3rd ed.). Wiley.

Jain, A.K., 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8),
651-666.

Jordan, M.1., Bishop, C.M., 1996. Neural networks. In A. Tucker (Ed.), CRC Handbook of Computer

Science CRC Press.

Kayhomayoon, Z., Ghordoyee-Milan, S., Jaafari, A., Arya-Azar, N., Melesse, A.M., Kardan
Moghaddam, H., 2022. How does a combination of numerical modeling, clustering, artificial
intelligence, and evolutionary algorithms perform to predict regional groundwater levels?

Computers and Electronics in Agriculture, 203, 107482.

Kutner, M.H., Nachtsheim, C.J., Neter, J., 2004. Applied Linear Regression Models. McGraw-Hill

Irwin.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.

LeCun, Y., Bengio, Y., Hinton, G.E., 2015. Deep learning. Nature, 521(7553), 436-444.

Loh, W.Y., 2011. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 1(1), 14-23.

MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations.
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14),
281-297.

Menard, S., 2002. Applied Logistic Regression Analysis (2nd ed.). Sage.

Mewes, B., Oppel, H., Marx, V., Hartmann, A., 2020. Information-Based Machine Learning for
Tracer Signature Prediction in Karstic Environments. Water Resources Research, 56(2),
e2018WR024558.

Mikhaylov, S.J., Esteve, M., Campion, A., 2018. Artificial intelligence for the public sector:
opportunities and challenges of cross-sector collaboration. Philosophical Transactions of the
Royal Society. A, 376:20170357.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., Khudanpur, S., 2010. Recurrent neural network-

based language model. Interspeech, 2, 1045-1048.

158



Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. MIT Press.

Niraula, R.R., Sharma, S., Pokharel, B.K., Paudel, U., 2021. Spatial prediction of spring locations in
data poor region of Central Himalayas. Hydrology Research, 52(2), 492-505.

Opoku, P.A., Shu, L., Ansah-Narh, T., Kwaw, A.K,, Niu, S., 2024. Prediction of karst spring discharge
using LSTM with Bayesian optimisation hyperparameter tuning: A laboratory physical model
approach. Modelling Earth Systems and Environment, 10(1), 1457-1482.

Piotrowska, J., Dgbrowska, D., 2024. Artificial intelligence methods in water systems research —

a literature review. Geological Quarterly, 68(2), 68-19.

Polz, A., Blaschke, A.P., Komma, J., Farnleitner, A.H., Derx, J., 2024. Transformer Versus LSTM: A
Comparison of Deep Learning Models for Karst Spring Discharge Forecasting. Water Resources
Research, 60(4), e2022WR032602.

Quinlan, J.R., 1986. Induction of decision trees. Machine Learning, 1(1), 81-106.

Rosenblatt, F., 1958. The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain. Psychological Review, 65(6), 386-408.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-propagating
errors. Nature, 323(6088), 533-536.

Sahour, H., Sultan, M., Abdellatif, B., Emil, M., Abotalib, Z., Abdelmohsen, K., Vazifedan, M.,
Mohammad, A.T., Hassan, S.M., Metwalli, M.R., El Bastawesy, M., 2022. |dentification of shallow
groundwater in arid lands using multi-sensor remote sensing data and machine learning

algorithms. Journal of Hydrology, 614, 1285009.

Samuel, A.L., 1959. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal
of Research and Development, 3(3), 210-229.

Scholkopf, B., Smola, A.J., 2002. Learning with kernels: Support vector machines, regularization,

optimization, and beyond. MIT press.
Seber, G.A.F., Lee, A.J,, 2012. Linear Regression Analysis. John Wiley & Sons.

Secci, D., Tanda, M.G., D'Oria, M., Todaro, V., 2023. Artificial intelligence models to evaluate the
impact of climate change on groundwater resources. Journal of Hydrology, 627, 130359, ISSN
0022-1694.

Soleimani Motlagh, M., Ghasemieh, H., Talebi, A., Abdollahi, K., 2017. Identification and Analysis
of Drought Propagation of Groundwater During Past and Future Periods. Water Resources
Management, 31(1), 109-125.

159



Song, X., Hao, H., Liu, W., Wang, Q., An, L., Jim Yeh, T.-C., Hao, Y., 2022. Spatial-temporal behavior
of precipitation driven karst spring discharge in a mountain terrain. Journal of Hydrology, 612,
128116.

Sun, T.Q., Medaglia, R., 2019. Mapping the challenges of Artificial Intelligence in the public sector:

Evidence from public healthcare. Government Information Quarterly, 36(2), 368-383.

Sutskever, |, Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks.

Advances in Neural Information Processing Systems, 27, 3104-3112.

Yu, K.-X., Qin, Y., Zhang, X., Hu, J., Sun, Q., 2019. Peak break-up water level and discharge forecast
in the Inner Mongolia Reach of the Yellow River based on a binary logistic regression model.

Taiwan Water Conservancy, 66(4), 9-17.

Zhang, W., Duan, L., Liu, T., Shi, Z., Shi, X., Chang, Y., Qu, S., Wang, G., 2024. A hybrid framework
based on LSTM for predicting karst spring discharge using historical data. Journal of Hydrology,
633, 130946.

Zhou, R., Zhang, Y., 2022. On the role of the architecture for spring discharge prediction with
deep learning approaches. Hydrological Processes, 36(10), e14737.

Zhou, R., Zhang, Y., 2023. Linear and nonlinear ensemble deep learning models for karst spring

discharge forecasting. Journal of Hydrology, 627, 130394.

Zhou, R., Zhang, Y., Wang, Q., Jin, A,, Shi, W., 2024. A hybrid self-adaptive DWT-WaveNet-LSTM
deep learning architecture for karst spring forecasting. Journal of Hydrology, 634, 131128.

160



Chapter 5:

General conclusions

This PhD research primarily focused on the impacts of climate change on the discharge of springs
located along the Apennine Mountain range and on the long-term projections of their flow rates.
The reduction in spring discharge across the Italian peninsula, predominantly characterised by a
Mediterranean climate, has become increasingly pronounced since the early 1980s, posing
significant challenges for numerous water companies responsible for ensuring water supply to
citizens. This decline is attributed to various factors, both directly and indirectly linked to the
substantial rise in atmospheric temperatures: a significant increase in evapotranspiration, which
reduces the effectiveness of precipitation in recharging aquifers; a shift in precipitation patterns,
characterised by a higher frequency of intense events over shorter durations, leading to a greater
proportion of surface runoff at the expense of direct or lateral recharge, alternating with
prolonged droughts; and a reduction in snowfall, both in terms of total accumulation and the
persistence of snow cover on the ground, which presents an even more critical scenario for
groundwater resources. When these factors act in combination, the challenges to groundwater

availability in the study region become starkly apparent.

The analyses conducted during this PhD project sought to provide insights into two primary

research questions.

Question 1 - What is the impact of global warming on spring discharge along the Apennines, and

to what extent is it feasible to assess the resilience of springs to climate change?

To address this question and establish a robust foundation for subsequent analyses of the
guantitative impacts of global warming on spring discharge, with implications for resilience to
climate change, a comprehensive approach was developed and implemented. This encompassed
geological, hydrogeological, geochemical, isotopic, and tracer test analyses, along with discharge
assessments based on recent data and data from a century ago, as detailed in Chapter 2, and

long-term discharge analyses from a multi-decadal perspective, as outlined in Chapter 3.

In Chapter 2, the availability of a five-year spring discharge record dating back more than a
century for Nadia Spring, a major spring in the Northern Apennines situated in a largely natural
watershed with minimal land use modifications, proved to be a critical asset for understanding
the spring’s response to climate variations and, as a secondary objective, for drawing conclusions
about its long-term resilience to recharge reductions. The study of the historical precipitation

over the spring catchment has revealed that, since the 1980s, drought events have become
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increasingly frequent and severe. These reductions in precipitation, both solid and liquid, are
directly reflected in spring discharge. In fact, a comparison of the average monthly discharge of
Nadia Spring between the periods 1915-1919 and 2020-2023 indicates a decrease in flow rate of
approximately 40%. Despite this significant reduction, the spring exhibits a strong resilience on
interdecadal timescales, maintaining a consistent base flow and ensuring the provision of an
adequate discharge to support both public water supply and ecosystem services. The study
presented in Chapter 2 has indeed also revealed that the comprehensive multidisciplinary
investigation adopted can provide a detailed understanding of spring discharge dynamics,
offering valuable insights into its long-term resilience to changes in recharge. The availability of
data spanning several decades proves crucial not only for assessing the quantitative impacts of
climate change on springs, but also for confirming the hypothesis of the presence of a dual-
porosity system within the spring aquifer, characterised by fast-flow conduits and a diffuse
fracture network. The fast-flow conduits are responsible for the aquifer's rapid responses during
active recharge periods, whereas the diffuse network becomes dominant during hydrologic
recession. This dual-porosity structure enables the spring to sustain a steady base flow despite

fluctuations in recharge driven by increasing climate variability.

Regarding Chapter 3, the historical flow rate datasets of two major springs, Sanita (Cervialto
Massif, Southern Apennines) and Ermicciolo (Amiata Mountain, Central ltaly), dating back to
January 1920 and 1939 respectively, have represented a valuable resource for assessing century-
long discharge trends. The two datasets were ideally suited for this purpose not only due to the
length of the discharge time series but also because of the systematic quality of the records and
the absence of human-induced alterations to the natural conditions of the aquifers. Considering
that at least 30 years of data are typically required to accurately assess climate trends, the
historical flow rate datasets of Sanita and Ermicciolo Springs were divided into three multi-
decadal subsets. The multi-decadal analysis of Sanita Spring discharge data reveals a mean
hydrograph for the earliest historical subset (1920-1954) with an average flow rate ranging from
approximately 3580 to 4430 L/s. The intermediate historical hydrograph (1955-1989) covers a
range between 3820 and 4630 L/s and partially overlaps with that of the first subset, whereas
the most recent historical hydrograph (1990-2024) indicates an average spring discharge ranging
from 3360 to 3920 L/s, highlighting a notable flow rate decrease. For Ermicciolo Spring, the mean
hydrographs for the three historical periods display a progressively declining average discharge,
transitioning from the earliest two periods to the most recent. The corresponding discharge
ranges are as follows: 172-201 L/s for 1939-1954, 135-157 L/s for 1955-1989, and 131-147 L/s for
1990-2024. Hence, at Sanita Spring, the discharge decreased by a significant 12.5% between the
intermediate period, characterised by the highest discharge, and the most recent subset, which

recorded the lowest spring discharge. Ermicciolo Spring exhibited a much greater reduction of
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25.2% between the oldest period, which had the highest discharge, and the most recent period,

which similarly represented the lowest discharge.

For an accurate quantification and assessment of spring discharge decline induced by climate
change, it is essential to focus on springs with a very long historical discharge dataset, ideally
exceeding 80 years. Relying on shorter historical records may lead to erroneous conclusions, as
discussed in Chapter 1, Section 1.3.2. Long-term spring discharge dynamics, spanning decades,
are generally less influenced by the specific characteristics of individual basins and more
indicative of broader climate shifts within a region. Other springs analysed in Chapter 3,
specifically the Verde Spring and the Cassano Irpino and Serino Spring groups, with relatively long
historical discharge datasets (approximately 60 years), and situated in different settings but
within the same Mediterranean climate, exhibit a multi-decadal historical discharge pattern
similar to that of the Sanita and Ermicciolo Springs. Therefore, part of the study presented in
Chapter 3 confirms and extends the findings already observed for Nadia Spring in Chapter 2:
spring discharge, compared to 100 years ago, has decreased across the entire Apennine range

due to natural processes driven by global warming.

Question 2 - /s it possible to estimate the long-term future discharge of springs based on long-

term recharge-discharge relationships?

To address this question and achieve a comprehensive understanding of the techniques most
frequently used in hydrogeology to analyse the relationship between meteorological variables
and spring flow rate, and to exploit this relationship to estimate future spring discharge, two
conceptually similar yet methodologically distinct approaches were employed. These approaches
included a Multiregression Statistical Analysis, as presented in Chapter 3, and a Long-Short Term
Memory neural network analysis, as detailed in Chapter 4. Once the correlations between the
variables involved were identified, in both cases these relationships were applied to the same
projected meteorological variables (2024-2070) derived from the CMCC-CM regional circulation
model, downscaled over Italy for the RCPs 4.5 and 8.5 scenarios. This process enabled the

estimation of spring discharge projections in the long-term future.

Beginning with Chapter 3, the century-long discharge time series for Sanita and Ermicciolo
Springs were analysed in conjunction with two meteorological variables: Total Liquid
Precipitation (TLP), which encompasses both rainfall and snowfall contributions, and Air
Temperature (AirT). The multivariate regression analysis demonstrated that, for both springs,
discharge exhibits the strongest negative correlation with average AirT and the strongest positive
correlation with cumulative TLP, with a time lag of seven months. This result aligns with physical

expectations, as peak liquid precipitation (the predominant component of TLP) occurs in
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November, whereas peak discharge is typically observed during the summer months. For the
forecasting phase, we focused exclusively on the period 2040-2070, also to enable consistent
multi-decadal comparisons with the trentennial periods defined for the historical spring
discharge. For Sanita Spring, after applying the correlation factors derived from the MSA method
to the future projections of TLP and AirT, a mean hydrograph with an average flow rate ranging
from 3220 to 3830 L/s was produced under the RCP 4.5 scenario. In the more severe RCP 8.5
scenario, the hydrograph indicates a discharge range between 2970 and 3630 L/s. For Ermicciolo
Spring, the mean hydrographs show an average discharge ranging from 131 to 146 L/s under the
RCP 4.5 scenario and from 116 to 131 L/s under the RCP 8.5 scenario. Based on these results, it
can be concluded that for both springs, with the MSA method, under the RCP 4.5 scenario, future
discharge projections do not indicate significant impairment in flow rate output when compared
to the most recent historical period. The estimated reduction in discharge is minimal, amounting
to only 3.0% for Sanita Spring and 0.1% for Ermicciolo Spring. By contrast, under the more severe
RCP 8.5 scenario, characterised by elevated greenhouse gas emissions, a more pronounced
decline in spring discharge is observed during the 2040-2070 period. At Sanita Spring, the
discharge is projected to decrease by 8.6% relative to the 1990-2024 period, while Ermicciolo
Spring exhibits a comparable decline of 10.8% over the same interval. As previously discussed,
long-term discharge is highly dependent on regional climate shifts. This is further evidenced by
the similar percentage rates of flow rate decline observed in two hydrologically distinct springs.
Consequently, the future multi-decadal downtrend identified for Sanita and Ermicciolo Springs is

likely attainable for other springs within Mediterranean climate.

Regarding Chapter 4, the use of the LSTM machine learning method introduced a significant
difference compared to the MSA method: the inclusion of spring discharge from previous months
as an additional independent variable. This modification was implemented after initial testing
with numerous combinations of ML hyperparameters revealed that adding spring discharge
significantly improved the loss function outcomes and yielded highly positive performance
metrics. Another notable improvement is that, by setting a lag time for an independent variable,
the LSTM model analyses temporal dependencies with the dependent variable and all preceding
months up to the maximum lag value. This contrasts with multiregression statistical analysis,
which only accounts for relationships with the single preceding month corresponding to the
specified lag. Once the best-performing models were identified, the optimal lag values were
determined to be 18 months for Sanita Spring and 12 months for Ermicciolo Spring. These results
align with the seasonal, annual, and multi-annual patterns observed in spring discharge. Indeed,
by incorporating discharge as an independent variable, the models captured extended temporal
dependencies, identifying that seasonal peaks and lows in spring discharge occur with near-

consistent intervals of 11 to 13 months in both case studies. For Sanita Spring, due to the larger
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size of its catchment and aquifer, these patterns sometimes extend up to 18 months. Despite the
MSA method demonstrating significant relationships between meteorological variables and
discharge up to a maximum lag of seven months, it was decided to use the same lag for the
meteorological variables as for spring flow rate, as this configuration was not computationally
demanding. The two optimal LSTM models were applied to the same future meteorological
scenarios used in Chapter 3, generating future monthly discharge through an iterative approach.
Specifically, for discharge as an input variable, since future spring discharge (the target variable)
was not available in the datasets, it had to be calculated step-by-step, starting from the most
recent historical data. Each predicted value was then sequentially incorporated into the
projected dataset to enable subsequent predictions. To facilitate a comparison with the results
of the MSA method, the discharge obtained through the LSTM method was also represented
using mean hydrographs for the 2040-2070 period. The LSTM model projections for Sanita Spring
produce mean hydrographs with an average discharge ranging from approximately 3,770 to
3,250 L/s under the RCP 4.5 scenario and from 3,470 to 2,920 L/s under the RCP 8.5 scenario. For
Ermicciolo Spring, the LSTM model predicts a mean discharge of 127 to 114 L/s in the RCP 4.5
scenario and 111 to 96 L/s in the RCP 8.5 scenario.

While the results for Sanita Spring align closely with those obtained through the MSA method,
the LSTM model projects a significantly sharper decline in discharge for Ermicciolo Spring, roughly
2.5 times greater than the MSA predictions. Beyond the differences in the results, all the findings
from Chapters 3 and 4 underscore the importance of long-term spring discharge projections in
addressing potential groundwater shortages, which are expected to pose significant challenges
for water supply systems in the future. Unlike the vast majority of papers in the literature on this
topic, which primarily focus on short-term predictions, this thesis emphasises the long-term
future. Such long-term projections are crucial for providing water management agencies with the
tools necessary to anticipate and mitigate future water scarcity through drought risk mitigation
measures such as the construction of surface water reservoirs, the development of well fields in
deeper aquifers, the implementation of aqueduct interconnections, and the repair and renewal

of Italy's primary water supply networks.

The methodologies employed in this thesis enabled the quantification of the effects of climate
change on spring discharge along the Apennines, the evaluation of their resilience to such
changes, and the estimation of their long-term future flow rates, based on the previously

identified recharge-discharge relationship.
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