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Abstract

With the advent of largely available computational power and datasets, a broad number of new algo-
rithms for learning and control of dynamical systems has been proposed; however, the complexity of the
considered frameworks has outpaced the theoretical analysis of these new techniques. To reduce this gap,
this thesis focuses on the development of both theoretical tools and control algorithms for the learning
and optimal control of uncertain systems. The main challenges which arise in these frameworks regard
the problems of i) guaranteeing informative systems trajectories, ii) extracting the information from
measurable quantities and iii) designing robustly stabilizing and optimal control laws from gathered
data. We start by addressing the problem of giving Persistency of Excitation (PE) guarantees in the
context of Linear Time-Invariant (LTI) systems, finding necessary and sufficient conditions to obtain
this property via an input signal. Our results are developed within a notation which underlines the
perfect analogies between the continuous- and discrete-time frameworks. Next, we study data-driven
approaches for the stabilization of LTI systems. For the continuous-time framework, we start by ad-
dressing the design of model-free observers that extract full-state information from output data, and
then we proceed with the design of stabilizing controllers via LMIs when state measurements and
derivatives are unavailable. Next, we consider the Linear Quadratic Regulator (LQR) problem, and we
propose a nonlinear on-policy controller which globally converges to the optimal feedback preserving
the stability of the interconnection during the transient. Finally, leaving the linear framework, we design
a model-free optimal control algorithm which, differently from other techniques, takes into account
the problem of safety whilst performing the necessary exploration. A distinctive feature of this thesis is
its retrospective look at classical techniques and concepts from the adaptive and linear multivariable
control field, which we repropose in combination with more recent approaches and which we believe
hold the answers to many current questions.
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forcement Learning, Optimal Control, Linear Quadratic Regulator, Numerical Optimal Control.
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Introduction

Motivation and challenges

F
rom the first half theXX century, control theory has dealt with the problem of understanding
intelligence and the flow of information, aiming to solve the problem of automating certain
tasks [181, 194, 208, 220, 221, 225]. These topics have somehow diverged and specialized during

the second half of the last century, giving birth to different literature branches: the first, using more
heuristic approaches (expert systems, fuzzy logic, neural networks, etc.) and taking inspiration from
natural intelligence to deal with mathematically untractable systems [81, 115]; the second, considering
idealized dynamical systems and analyzing them in a more systematic and mathematical manner [99,
228].
Today, with the advent of a largely available computational power and datasets, artificial intelligence is
becoming more and more pervasive into our lives. Whilst these new instruments - which have proved
their potential in several applications such as economics and finance [51], racing [199], games [148, 196]
and biology [167] - are undoubtly promising, they often preceed formal understanding and mathematical
rigour, and they still have to demonstrate their thrustworthiness in real-world applications. In recent
years, several attempts have been made to merge the capabilities of the machine learning to deal with
complex and unknown dynamics with the robust guarantees and understanding which are proper
of control theory. In this thesis, we take another step in this direction by considering the challenge
of combining learning and optimal control - fundamentals both in machine learning and in control
theory - in uncertain systems. By following the flow of the information needed to control a system, we
give guarantees on i) the presence of this information into the system trajectories, ii) the possibility of
extracting it entirely from the measurable outputs iii) how to use it to robustly stabilize a system and to
achieve closed-loop optimality.
Through the years, several estimation techniques relying on data have been developed depending
on the purpose of the estimation, and the major field developing these kind of techniques is system
identification [15, 121, 123, 197, 211]. In general, the idea underlying these algorithms is to find a (tipically
algebraic) relation between known quantities, and then to reconstruct this relation using a parametrized
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function estimator and the collected data. A key aspect which determines the success of these algorithm
is the quality of the collected data, which must carry the information about the quantities we are
interested in. The problem of achieving successful estimation has been addressed in several seminal
works resulting in the definition of the PE concept [33, 72, 132, 154, 155, 188, 206]; however, to the author’s
knowledge, there is no unified theory regarding how to impose PE on systems trajectories through the
input signal (though several sufficient results are available for specific frameworks [42, 142, 226]). The
specific framework proposed in this thesis investigates sufficient richness in LTI systems. However,
embedding enough information into the collected data is essential in all data-driven frameworks (see,
e.g., [84, 159, 200] for similar desirable properties in the context of neural network training).
In general, not all signals in which we are interested (for learning or control purposes) can be directly
measured. The devices which reconstruct the internal state of a system are called observers [26, 103, 140],
and a typical problem of their design is their reliance on the dynamics knowledge. This problem is
addressed by adaptive observers [98, 112, 209], which reconstruct, together with the state information, a
parametrization of the plant dynamics (however, introducing sometimes stability issues even in presence
of PE trajectories).
Another challenge is understanding how to robustly stabilize an equilibrium or a trajectory in presence
of uncertainties in the system model. Addressing this issue is fundamental in particular for safety-critical
systems such as collaborative robotics [217] or aircraft control [201]. Several control techniques approach
this problem in different ways. In this field, we find robust controllers [85, 234], which tipically rely on
the knowledge of an upper bound for system noise or uncertainties (however, which do not exploit the
gathered data to improve their performances), adaptive controllers [98, 157, 162, 191], whose founding
idea is to adapt (leveraging on the collected data) a parametrized control law to achieve a zero error in
the interested outputs, and other more recent data-driven algorithms, which use numerical techniques
to estimate control laws directly from the data [64].
At last, we consider the problem of optimality, namely, the minimization of a given performance index
in presence of uncertainties. This objective is meaningful since the definition of a performance index
is a very intuitive (and broadly used) way to encode control objectives which go beyond the simple
stabilization of a system [27, 46]. Several techniques have been developed to solve optimal control
problems when the controlled system is unknown, such as black-box optimization, derivative-free
optimization, extremum seeking, and others [3, 4, 53, 178, 203]. Though the specific approaches may be
different, the underlying idea is to probe the cost function to find a descent direction. Reinforcement
learning [177, 202] somehow preserves this idea, but shifting the optimization variable from system
trajectories to control policies.
We believe that the clear understanding of all the fundamental mechanisms involved in learning, control
and optimization is a necessary step for a clever and meaningful design of complex algorithms, and it
is natural to study these mechanisms in a mathematically tractable context before applying them to
real-world scenarios.

vi
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Summary of the main contributions

From an high-level perspective, the techniques developed in this thesis contribute to the scientific
community in the following three aspects.
First, we approach the problem of guaranteeing data informativity (in terms of a persistence of excitation
notion) in linear systems via the design of a proper input signal. Whilst the existing literature already
contains several results, we address this problem from a more systematic way both for continuous-
and discrete-time systems, providing new necessary conditions and highlighting how the multivariable
structure of multi-input systems influences the ability to impose PE on system trajectories. Furthermore,
we show how to exploit the spectral properties of the input signal together with the linear systems
structure to obtain tighter sufficient conditions. We believe that a fundamental analysis of linear systems
is the corner stone for nonlinear extensions of these results (as it is for other very important system
theoretical properties such as controllability [92, 120]). A full paper with the presented result has been
submitted for publication, and it is available on Arxiv [35].
Second, we tackle the problem of extracting the necessary information from the output data. The issue
of full state unavailability was approached years ago by the adaptive control literature, and we draw
inspiration from continuous-time techniques [77, 185, 209, 210, 231] which emphasize the importance of
signal pre-processing in the implementation of identification and adaptation laws. Inspired by classical
adaptive observers [162, Ch. 4], [5], we propose a framework for the development of a new type of
observer - the gazer - able to obtain a representation of the unavailable state of a linear system without
relying on adaptive laws or prior model knowledge. The underlying idea is to trade this necessity with
the nonminimality of the resulting representation. We then investigate the feasibility of this approach,
studying how the observability of the plant and the controllability of the gazer interact to ensure the
existence of solutions. We stress that some of these results are still preliminary results, and further
investigations are needed.
Third, we consider the problem of using the extracted information to achieve robust stabilization with
optimality guarantees. In an initial study, we consider a simple offline scenario, where optimality is not
required and where the data have been previously collected. In this case, the problem is the design of
a state-feedback gain. Recent literature often assumes access to state derivatives; however, this is not
always possible, and trying to estimate them may introduce additional, unwanted noise. For solving this
problem, we leverage the above presented gazer. A conference article containing the results of this work
has been submitted for publication and is currently available on Arxiv [38]. Next, we consider an online,
on-policy LQR setting which takes into account all the problems of learning, robust stabilization and,
optimality above mentioned altogether. In this context, we propose a common framework for the design
of online, on-policy regulators aimed at achieving optimality; furthermore, we provide a new algorithm
inspired to the model-reference adaptive controllers [205], able to perform learning, stabilization, and
optimization altogether. To the authors’ knowledge, this is one of the first works possessing all these
properties, and a preliminary version of it has been presented in a conference paper CDC 2023 [36]. A
full version of this work is currently under peer review and it is available on Arxiv [37].
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At last, we extend our investigation to the nonlinear framework. In this case, we consider a finite-horizon
optimal control problem where the system is unknown, and we design an optimization algorithm
which, differently from reinforcement learning techniques, takes into account the problem of avoiding
numerical instabilities whilst the dynamics and the cost function are being probed. In particular, we
achieve this desirable feature by drawing inspiration to PRONTO, a solver for nonlinear optimal control
which leverages on a projection operator, namely, a stabilizing controller to be designed separately,
which ensures robustness to the algorithms evolution and to the dynamics exploration. An article with
the presented result is currently under preparation, to be soon submitted.

Organization and chapter contribution

Chapter I

In Chapter I, we formally present the uncertain frameworks central to this thesis. We start with
the uncertain LQR problem, and we introduce the reader to the problems of signal reconstruction,
uncertainties estimation, system stabilization and optimization of a performance index which are faced
in Chapters II, III, IV. Then, we consider the problems of finite-horizon nonlinear optimization and
its challenges, which are explored in Chapter V.

Chapter II

This chapter addresses the problem of guaranteeing PE of systems trajectories in the context of LTI
systems, and contributes in three ways to the scientific community. First, we find necessary and sufficient
conditions on the input for obtaining persistently excited state (state-input) signals.

i) Necessary conditions for sufficient richness are completely new results for the case of multi-input
systems, and -to the author’s knowledge- the only necessary result existing in the literature is given
for a finite-time notion of PE (“Willems’ PE", see Section II.1) and only for discrete-time single-
input systems in [143, Thm. 3]. In order to find these conditions, we leverage on the concept of
Partial Persistence of Excitation -namely, signals which persistently span only subspaces of the
whole space they live in-, which firstly appeared in [161, Def. 3] but, to the author’s knowledge,
was never used up to now. We also remark that the arguments used in the proofs can be used
for the design of input sequences that optimize certain “exploration" performance indices (see
Remark II.10).

ii) Sufficient conditions to obtain PE in LTI systems are not completely new results (see, e.g.,
[17, 86, 152]). However, the cited works only provide sufficient conditions for discrete-time
systems. For the continuous-time framework, there exists different results, which differ from
our result in the following way. In [98, Thm. 5.2.3], a sufficient condition is found on the
spectral measure of each scalar input channel only for stationary signals. In [176, Prop. 1], the
result is similar to ours; however, the notion of PE used in the article is different from Definition
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II.14 since it is a finite-time notion (“Willems’ PE", see Section II.1) which does not require the
existence of a uniform lower bound in time for the energy of the span in each direction. Next,
in [142, Thm. 4.2] the author finds a characterization for sufficient richness which, however,
does not consider pure signal derivatives, but some filtered version of them.

iii) At last, we combine the obtained necessary and sufficient results to derive and discuss the shape
of the sets of Sufficiently Rich signals for stable, reachable, LTI systems. It turns out that, for the
case of single input, SR signals are an open cone in the space of input signals (independent on
the particular system and in accordance with [161, Thm. 1]). In the case of multi-input systems,
this set is not anymore independent on the considered system. We corroborate the theoretical
results by providing two numerical examples which show the tightness of the new results.

The second contribution of this chapter is the proposal of clear, separate concepts of persistence of
excitation and sufficient richness, and the development of all the above results within a notation unifying
discrete-time and continuous-time framework. This contribution is concrete for the following reasons:

i) Separating the concepts of PE and SR, we clarify how we could use them in a non-overlapping
way, and we avoid the need to talk about “PE of order" or “SR of order". The distinction between
these concepts reduces the proliferation of equivalent (but apparently different) definitions and
terminology that permeates the field. Furthermore, all specific results (which lead to specific
definitions) are all seen as particular characterizations of the same property.

ii) By unifying the results and the notation for the discrete-time and the continuous-time framework,
we better highlight the structural properties which are intrinsic of linear systems; more specifically,
in their ability of obtaining PE signals. We believe this is a fundamental step for proceeding with
this research and extending these results to nonlinear systems.

At last, we show how to exploit the geometric structure of linear systems together with their ability
of preserving the spectral content of an input signal to obtain tighter sufficient conditions for PE in
multi-input systems.

i) By leveraging on an insightful decomposition for linear systems [228] and on PE characterizations
in the frequency domain [41], we improve the sufficient results given first in [232, Thm. 3, Thm.
4] and then in [98, Thm. 5.2.3]. Specifically, with respect to the first work we give a more
generic result involving the spectral content of the input signal, halving the required number of
sinusoids and not necessarily asking for almost periodic input signals. Furthermore, our result is
not “almost certain" (see [232, Thm. 3]). With respect to the second work, we better highlight
the structure of linear systems showing how to reduce the required number of spectral lines in
the input signal.

Chapter III

This chapter contribution is twofold. At first, we introduce a new type of observer, the “gazer", which,
differently from classical observers, is designed for model-free signal reconstruction and is not focused

ix
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in obtaining the true state of the linear system.

i) Inspired by adaptive observer design [162, Ch. 4], [5], we propose a framework for the de-
velopment of filters able to obtain a representation of the unavailable state of a linear system.
Requirements and sufficient conditions for their fullfillment are thus given for this type of
observer.

ii) Structural properties (such as observability of the plant and controllability of the gazer) are
studied in their role of guaranteeing the existence of a solution to the gazing problem via certain
matrix equations, whose solution are analyzed. Leveraging all of these results, we show how
classical filters can be seen as gazers in filter form, and we derive a new gazer for MIMO systems.

Second, we develop a data-driven stabilization technique for continuous-time systems that eliminates
the need for signal derivatives. The approach is first demonstrated for state-feedback stabilization and
then extended with minor modifications to the single-input single-output (SISO) output-feedback
scenario.

i) Instead of using derivative approximations or methods based on integrals and temporal dif-
ferences, we leverage the above presented gazers to define a non-minimal realization of the
plant.Specifically, we process the input and state/output signals with a low-pass filter that is
shown to converge exponentially to an augmented system representation. Since both the state
and the derivative of the filter are accessible, we employ LMIs similar to those in [62] to compute
the gains of a dynamic, filter-based, stabilizing controller. Feasibility of the LMIs is ensured
under suitable excitation conditions, and closed-loop stability is guaranteed regardless of the
initial filter transient.

Chapter IV

This chapter’s contribution is twofold. At first, we introduce a novel formulation of the on-policy
data-driven LQR problem where centrality is given to the stability of the whole closed-loop learning
and control system.

i) Concerning our first contribution, we formulate the on-policy data-driven LQR problem in
terms of convergence of the controller, the plant, and an exosystem (modeling the dither signal) to
an asymptotically stable set . The fundamental property defining this set is that the learned policy
is optimal. Additionally, the set becomes smaller as the dither amplitude is reduced. Thanks
to this formulation, we ensure that asymptotic stability in the nominal scenario is preserved,
practically and semiglobally, also for a broad class of perturbations, see [79, Ch. 7]. With the
generality of the proposed framework, we aim to provide a solid foundation for future work in
the field.

The second contribution of this chapter to the scientific community is a specific solution to the above
presented problem, namely the Model Reference Adaptive Reinforcement Learning (MR-ARL), a
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control algorithm integrating concepts from system identification, adaptive control, and reinforcement
learning paradigms. The architecture is structured as a modular actor-critic system with a time-varying
reference model bridging the two modules. The actor, inspired to an Model Reference Adaptive
Controller (MRAC) architecture, guides the plant to a desired behavior set by the reference model,
even in the presence of parametric uncertainties. The reference model is updated online by the critic,
which leverages system identification techniques to estimate the dynamics.

i) To impose the desired learning properties, the reference model is driven by a dither signal for which
we require suitable richness properties. By relying on analysis tools related to adaptive control,
differential inclusions, and singular perturbations, we prove formally that our architecture
achieves the following properties for the whole closed-loop system: (i) convergence of the policy
to the optimal one; (ii) asymptotic estimation of the true system parameters; (iii) uniform
asymptotic stability of an attractor (tunable with the dither amplitude); (iv) robustness in the
sense of semiglobal practical asymptotic stability with respect to unmodeled nonlinearities and
disturbances. To the best of authors’ knowledge, in the context of on-policy data-driven LQR,
this algorithm is the first one possessing all these properties.

ii) Differently from other works, we require no assumptions about the initial policy. Further,
persistency of excitation, needed to ensure convergence, is not assumed a priori, but rather
guaranteed by design by resorting to concepts from nonlinear adaptive systems [171].

iii) Given the inherent robustness of the proposed design framework, we ensure that the algorithm is
effective in the presence of slowly varying parameters [79, Cor. 7.27] automatically adapting to
changes and recovering optimality without having to stop the system. To validate this property,
our numerical simulations cover both the constant parameters case and the one with drifts.

iv) As a byproduct of our approach, we study for the first time in MRAC literature (to the author’s
knowledge) the stability of an MRAC where the reference model is not fixed but its state and
input matrices are time varying.

Chapter V

The main contribution given in this chapter is DATA-DRIVEN PRONTO, an algorithm for nonlinear
optimal control extending the applicability of PRONTO [90] to the model-free scenario. In particular,
DATA-DRIVEN PRONTO leverages the possibility to probe the system dynamics in a safe way via the
application of an independently-designed control law (which is required in [90] under the name of
“projection operator"). At each algorithm iteration, we perform 𝐿 experiments (simulations) in which
we use the given controller plus an exploration dither to gather data in the neighbourhood of the current
trajectory. This data is then used to identify the dynamics linearizations about the current trajectory,
substituting the need of a model in the optimization process. The proposed algorithm achieves the
following desirable features:
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i) Avoid parametrization errors: DATA-DRIVEN PRONTO uses data only to identify lineariza-
tions of the dynamics, avoiding any error that would occur when identifying or estimating
a parametrization of the nonlinear dynamics or optimal policy.

ii) Fully data-driven: DATA-DRIVEN PRONTO itself does not require any knowledge of the system;
however, the importance of partial system knowledge is needed to improve the numerical stability
of the algorithm via the independent design of a good control law.

iii) Data-efficient: thanks to the efficient algorithm structure, the number of required experiments
(simulations) needed is significantly smaller than the one needed by RL algorithms, since at each
iteration it is comparable with the system dimension.

We provide theoretical guarantees on the algorithm convergence properties, together with insight on
how to choose hyperparameters. The proposed algorithm is proved to be Locally Uniformly Ultimately
Bounded to a ball about the optimal solution whose radius is related to the quality of the collected
data (which can be augmented by enlarging the number of collected explorations and by reducing the
amplitude of the injected exploration dither).

Appendix

We leave in the Appendix most of the proofs of the several lemmas, propositions and theorems. The
general criteria is that when a proof does not interrupt the discussion (being it very brief or informative),
it is kept in the main body of the thesis; otherwise, it is left in the Appendix. Throughout this thesis, we
present some known results for readability reasons. However, all the proofs contained in this thesis
(main body or Appendix) refer to new results.

xii
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Abbreviation Meaning
P End of lemma
R End of proposition
Q End of theorem

K End of definition
ARE Algebraic Riccati Equation
CT Continuous-Time
DRE Differential Riccati Equation
DT Discrete-Time
LMI Linear Matrix Inequality
LTI Linear Time-Invariant
LTV Linear Time-Varying
MI Multi-Input
MIMO Multi-Input Multi-Output
PE Persistency of Excitation / Persistently Excited
RL Reinforcement Learning
RMS Root-Mean-Squared
SI Single-Input
SISO Single-Input Single-Output
SR Sufficient Richness / Sufficiently Rich
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Symbol Meaning
N Natural numbers
N1 Natural numbers
R Real numbers
R≥0 Positive real numbers
S Unit circle
C𝑛 Functions 𝑛−times continuously differentiable
x,u,w When used with the Roman font, indicates the infinite-

dimensional continuous- or discrete-time signal 𝑥(𝑡) or 𝑥𝑡
C∞
𝑏
(R𝑑) Linear space of all infinitely differentiable functions 𝑓 :

R≥0 → R𝑑 with bounded derivatives equipped with norm
∥ · ∥∞

ℓ∞(R𝑑) Linear space of all bounded functions 𝑓 : N → R𝑑 equipped
with norm ∥ · ∥∞

B𝑟 Open ball in R𝑛 space (of appropriate dimension), centered in
zero and of radius 𝑟 > 0

B𝑟 (𝑥) Open ball in R𝑛 centered in 𝑥 ∈ R𝑛 and of radius 𝑟 > 0

𝑜𝑥 (𝑦) Function of 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑚 such that
lim𝑥→0 |𝑜𝑥 (𝑦) | |𝑦 |−1 = 0.

Class K function Function 𝛼 : R≥0 → R≥0 such that it is strictly increasing
and 𝛼(0) = 0

Class KL function Function 𝜙 : [0, 𝑎) ×R≥0 → R≥0 such that 𝜙(𝑟, 𝑠) is a class
K function for all fixed 𝑠 ∈ R≥0, and 𝜙(𝑟, 𝑠), for all fixed 𝑟 , is
decreasing and such that 𝜙(𝑟, 𝑠) → 0 for 𝑠 → ∞

∇1 𝑓 (𝑥, 𝑢) Given 𝑓 (𝑥, 𝑢) differentiable in the first argument at 𝑥, 𝑢,
∇1 𝑓 (𝑥, 𝑢) := 𝜕 𝑓 (𝑥,𝑢)

𝜕𝑥

��⊤
𝑥̄,𝑢̄

S𝑛0 ,S
𝑛
+ Cone of 𝑛 × 𝑛 symmetric, positive semidefinite (resp. positive

definite) real matrices
¤𝜉 = 𝑓 (𝑡, 𝜉), 𝜉 ∈ 𝐶 ⊂ R𝑟 Differential equation with flow set and initial state constrained

to𝐶 [79]
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Symbol Meaning
| · | Euclidian norm for vectors and spectral norm for matrices
| · |𝐹 Frobenius norm
∥ · ∥∞ L∞ norm
x = (𝑥1, 𝑥2, . . .) Column vector stacking a finite number of elements 𝑥1 ∈

R𝑛1 , 𝑥2 ∈ R𝑛2 , . . .

diag(𝐴1, 𝐴2, . . .) Block-diagonal matrix obtained stacking diagonally the matri-
ces (vectors) 𝐴1 ∈ R𝑛1×𝑚1 , 𝐴2 ∈ R𝑛2×𝑚2 , . . . and zero in all
other elements

⊗ Kronecker product
𝜅(𝑀) Condition number of the matrix 𝑀 ∈ R𝑛×𝑚

𝑀† Moore-Penrose pseudoinverse of matrix 𝑀
U(𝑎, 𝑏) Uniform distribution between 𝑎, 𝑏 ∈ R

𝜎(𝑀) Spectrum of the square matrix 𝑀
𝑀⊤ Transpose of the real matrix 𝑀
𝑀∗ Complex conjugate of the complex matrix 𝑀
𝐼𝑛 Identity operator on R𝑛
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Chapter I

Optimal control of uncertain systems

I
n this chapter, we motivate and introduce mathematically the frameworks and the challenges
which are explored in the subsequent chapters of this thesis. Similarly to the way the thesis
is structured, we start by considering a linear framework and, more specifically, we begin by

introducing the LQR problem and its challenges in the context of uncertain systems. Next, motivated
by the need of taking into account more complex dynamical systems, we move to a the nonlinear optimal
control framework.

I.1 Linear quadratic regulation in presence of uncertainties

Consider a multi-input, multi-output linear system

¤𝑥 = 𝐴(𝜇)𝑥 + 𝐵(𝜇)𝑢

𝑦 = 𝐶 (𝜇)𝑥
(I.1)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the input, and 𝑦 ∈ R𝑝 is the measurable output. We represent the
uncertainties in the system via the unknown parameter 𝜇 ∈ K𝜇 ⊆ R𝑞 and the maps

𝐴 : K𝜇 → R𝑛×𝑛 𝐵 : K𝜇 → R𝑛×𝑚 𝐶 : K𝜇 → R𝑝×𝑛. (I.2)

Depending on the specific framework, the uncertainties may be both in 𝜇 and in the maps 𝐴, 𝐵, 𝐶;
furthermore, one may have to deal both with constant or time-varying uncertainties 𝜇(𝑡), 𝐴(𝜇, 𝑡),
𝐵(𝜇, 𝑡),𝐶 (𝜇, 𝑡) see, e.g., Section IV.3.3 for an example of such systems. While in this thesis the focus is
on constant uncertainties, we deal implicitly with slowly time-varying uncertainties and other types of
perturbations (process and output noise) leveraging on robustness results.
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Example I.1. A Doubly Fed Induction Motor (DFIM) can be modeled [117] with a linear system in the
form of (I.1) with state and input

𝑥 = (𝑖1𝑢, 𝑖1𝑣 , 𝑖2𝑢, 𝑖2𝑣) ∈ R4, 𝑢 = (𝑢1𝑢, 𝑢1𝑣 , 𝑢2𝑢, 𝑢2𝑣) ∈ R4, (I.3)

where 𝑖1𝑢, 𝑖1𝑣 , 𝑖2𝑢, 𝑖2𝑣 are the stator and rotor currents, and 𝑢1𝑢, 𝑢1𝑣 , 𝑢2𝑢, 𝑢2𝑣 , are the stator and rotor
voltages. System matrices are defined as

𝐴 =
1
𝐿̄


−𝐿2𝑅1 −𝛼 + 𝛽 𝐿𝑚𝑅2 𝛽2

𝛼 − 𝛽 −𝐿2𝑅1 −𝛽2 −𝐿𝑚𝑅2
𝐿𝑚𝑅1 −𝛽1 −𝐿1𝑅2 −𝛼 − 𝛽12
𝛽1 𝐿𝑚𝑅1 𝛼 + 𝛽12 −𝐿1𝑅2


, 𝐵 =

1
𝐿̄


𝐿2 0 −𝐿𝑚 0

0 𝐿2 0 −𝐿𝑚
−𝐿𝑚 0 𝐿1 0

0 −𝐿𝑚 0 𝐿1


, (I.4)

with

𝐿̄ := 𝐿1𝐿2 − 𝐿2𝑚, 𝛼 := 𝐿̄𝜔0, 𝛽 := 𝐿2𝑚𝜔𝑟 ,

𝛽12 := 𝐿1𝐿2𝜔𝑟 , 𝛽1 := 𝐿1𝐿𝑚𝜔𝑟 , 𝛽2 := 𝐿2𝐿𝑚𝜔𝑟 .
(I.5)

Parameters𝑅1, 𝑅2 are the stator and rotor resistances, 𝐿1, 𝐿2, 𝐿𝑚 are the stator and rotor auto-inductances
and the mutual inductance, and𝜔0, 𝜔𝑟 are the electrical angular speeds of the rotor and the rotating
reference frame. In this case, we may define the vector of uncertainties 𝜇 as

𝜇 := (𝑅1, 𝑅2, 𝐿1, 𝐿2, 𝐿𝑚, 𝜔𝑟 , 𝜔0), (I.6)

and the maps (I.2) can be found by expressions (I.4), (I.5). ⋄

We associate to system (I.1) a known quadratic performance index

𝐽 (𝑦(·), 𝑢(·)) :=
∫ ∞

0

(
𝑦(𝜏)⊤𝑄𝑦(𝜏) + 𝑢(𝜏)⊤𝑅𝑢(𝜏)

)
d𝜏, (I.7)

and our goal is to solve the LQR problem

min
𝑦 ( ·) ,𝑥 ( ·) ,𝑢( ·)

∫ ∞

0

(
𝑦(𝜏)⊤𝑄𝑦(𝜏) + 𝑢(𝜏)⊤𝑅𝑢(𝜏)

)
d𝜏

subj. to: ¤𝑥(𝑡) = 𝐴(𝜇)𝑥(𝑡) + 𝐵(𝜇)𝑢(𝑡)

𝑦(𝑡) = 𝐶 (𝜇)𝑥(𝑡).

(I.8)

It is known that, under certain assumptions on the matrices 𝐴, 𝐵, 𝐶, 𝑄, 𝑅, the solution to (I.8) has a
closed form, and the input 𝑢(·) has to be chosen according to the feedback law

𝑢(𝜇, 𝑡) = −𝑅−1𝐵⊤(𝜇)𝑃(𝜇)𝑥(𝑡), (I.9)

2
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where 𝑃(𝜇) is the solution to the algebraic Riccati equation

𝐴(𝜇)⊤𝑃 + 𝑃𝐴(𝜇) − 𝑃𝐵(𝜇)𝑅−1𝐵(𝜇)⊤𝑃 + 𝐶 (𝜇)⊤𝑄𝐶 (𝜇) = 0. (I.10)

In our framework, however, three major problems arise in the implementation of control law (I.9). First,
the knowledge of 𝑥(𝑡) is required, and the full state measurement is, in general, not always possible.
Next, solving (I.10) requires the knowledge of the unknowns 𝐴(𝜇), 𝐵(𝜇), 𝐶 (𝜇), which must be learned
from the collected data. This means that the gathered data must be informative. Third, in online, on-
policy frameworks one needs to consider also the problem of guaranteeing some form of stability of the
closed-loop system. In the following, we discuss more in details these challenges.

Guaranteeing informativity of system trajectories

For several reasons - state reconstruction, system stabilization, optimal control or simply identification -
one may be interested in finding the unknown matrices 𝐴(𝜇), 𝐵(𝜇), 𝐶 (𝜇) (or directly the parameter
𝜇). Supposing that we are interested in finding 𝜇, and that we have the availability of the output 𝑦, the
input 𝑢 and some generic, additional signal 𝜁 , we define the estimate 𝜇̂ and look for update laws of the
form

¤̂𝜇 = ℎ( 𝜇̂, 𝑦, 𝑢, 𝜁) (I.11)

such that 𝜇̂ → 𝜇. The shape of ℎ is typically found by leveraging on a known algebraic relation between
the available quantities 𝜁, 𝑦, 𝑢 and 𝜇.

Example I.2. As an example, suppose that the uncertainties are only in matrix𝐶 (𝜇) := 𝜇 in (I.1) and
that 𝑥 is available. Since it holds 𝑦 = 𝜇𝑥, we introduce the estimate 𝜇̂(𝑡) and define the instantaneous
cost function

𝐽 ( 𝜇̂(𝑡)) := |𝑦(𝑡) − 𝜇̂(𝑡)𝑥(𝑡) |2 (I.12)

whose gradient in 𝜇̂ is given by ∇𝐽 ( 𝜇̂) = 2(𝑦 − 𝜇̂𝑥)𝑥⊤. We then choose a simple gradient rule to define
the update

¤̂𝜇 = 2(𝑦 − 𝜇̂𝑥)𝑥⊤. (I.13)

⋄

Notice however that, without assuming any additional property of the regressor 𝑥(𝑡),

lim
𝑡→∞

|𝑦(𝑡) − 𝜇̂(𝑡)𝑥(𝑡) |2 = 0 =⇒ lim
𝑡→∞

| (𝜇− 𝜇̂(𝑡))𝑥(𝑡) |2 = 0 ⇏ lim
𝑡→∞

|𝜇− 𝜇̂(𝑡) |2 = 0.

(I.14)
More in general, finding a “good" update law (I.11) to fit some known algebraic relation is not enough
to reach the goal 𝜇̂ → 𝜇. In order to guarantee this objective, some regularity condition on 𝑥(𝑡) has
to be fulfilled. The problem of the estimation convergence has been deeply analyzed by the adaptive
control literature, and it has been found that it is solved if a persistency of excitation condition on the
regressor is met.

3
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Thesis contribution I.1. In Chapter II, we find necessary and sufficient conditions on the input 𝑢(𝑡)
to achieve persistency of excitation of the signals 𝑥(𝑡) and (𝑥(𝑡), 𝑢(𝑡)) in LTI systems. Furthermore,
the presented results do not require the model knowledge. ★

Extracting the state information from available signals

A key challege in solving almost any control problem is having the access to the full state 𝑥(𝑡) of the
controlled system. In fact, reconstructing the state allows for i) the estimation of the unknown state
matrix, ii) the design of state-feedback controllers, and iii) the implementation of the optimal policy
(I.9). More in general, in the continuous-time framework we are interested not only in reconstructing
𝑥(𝑡), but also in substituting the knowledge of its derivative ¤𝑥(𝑡). Since the parameter 𝜇 is unknown,
model-based observers are not enough for these purposes. In the adaptive literature, this problem is
typically addressed via adaptive observers. Introducing the state estimate 𝜁 ∈ R𝑛, adaptive observers
may be in general written as dynamical systems in the form

¤̂𝜁 = 𝑓 (𝜗̂, 𝜁 , 𝑦, 𝑢),
¤̂
𝜗 = 𝑔(𝜗̂, 𝜁 , 𝑦, 𝑢)

(I.15)

where 𝜗̂ ∈ Θ is an estimate of a certain function of the plant parameters 𝜗(𝜇) (e.g., the characteristic
polynomial of 𝐴(𝜇)). Notice that this technique introduces in the control law an auxiliary dynamics ¤̂𝜁
and it requires some estimate of the true system parameters (and thus, its convergence properties need
to be studied together with the update laws for 𝜗̂). On the other hand, another way to asymptotically
reconstruct the state is to build a nonminimal realization of the plant introducing only an auxiliary
variable 𝜁 ∈ R𝑧 , with 𝑧 > 𝑛, governed by dynamics

¤̂𝜁 = 𝑚(𝜁, 𝑦, 𝑢) (I.16)

without requiring an estimate of the parameters 𝜗(𝜇). In this case, the subsequent design of the
controller should consider the stabilization of the nonminimal plant.

Example I.3. Consider a simple scalar dynamics ¤𝑥 = 𝑎𝑥 + 𝑏𝑢 with output map 𝑦 = 𝑥, with non-
measurable ¤𝑥 and with 𝑎, 𝑏 unknown. By implementing, for some 𝜆 > 0, the filter

¤̂𝜁 = −𝜆𝜁 +
[
𝑥

𝑢

]
, (I.17)

defining 𝜖 := 𝑥 − Π𝜁 , Π = [𝑎 + 𝜆 𝑏] and calculating ¤𝜖 , we can rewrite (I.17) as the cascade system

¤𝜖 = −𝜆𝜖

¤̂𝜁 =

[
𝑎 𝑏

0 −𝜆

]
𝜁 +

[
0

1

]
𝑢 +

[
1

0

]
𝜖,

(I.18)

4
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which converges asymptotically to

¤̂𝜁 =

[
𝑎 𝑏

0 −𝜆

]
𝜁 +

[
0

1

]
𝑢. (I.19)

By taking the output 𝜉 = Π𝜁 , it can be checked that we have found a nonminimal realization of the
system ¤𝑥 = 𝑎𝑥 + 𝑏𝑢, whose derivatives ¤̂𝜁 are available from (I.17) and do not require knowledge of 𝑎, 𝑏
to be implemented. ⋄

Thesis contribution I.2. In Chapter III, we reframe classical filtering techniques developed for
continuous-time system identification and adaptive control. Next, we apply them for the robustification
of more recent numerical techniques (LMIs) dealing with data batches for the design of stabilizing
control laws. ★

Stabilization and convergence to the optimal policy

Provided that the problems of reconstructing unknown signals and estimating unknown parameters
are solved, we still need to solve the optimization problem (I.8), reaching the optimal control law (I.9)
keeping into account the closed-loop stability of the controlled system. The estimation of the solution
of the ARE (I.10), or directly estimating the optimal feedback 𝐾 (𝜇) := −𝑅−1𝐵(𝜇)𝑃(𝜇) in presence
of uncertainties may be approached in two ways.
First, one may implement techniques from the reinforcement learning field such as policy iteration or
value iteration to use the collected data 𝜁, 𝑢 to directly find an estimate 𝑃̂ or 𝐾̂ . These techniques read
as (seen as continuous-time updates)

¤̂𝑃 = 𝜑(𝑃̂, 𝜁 , 𝑢). (I.20)

In an on-policy, online framework where one needs to reach optimality, this estimate 𝑃̂ needs to enter
directly in the control law, and thus the stability properties of this update need to be studied together
with the rest of the control law.
A second approach, which however requires an available estimate 𝜇̂ of 𝜇, is to apply the certainty
equivalence principe and to find the solution 𝑃̂ of

𝐴( 𝜇̂)⊤𝑃̂ + 𝑃̂𝐴( 𝜇̂) − 𝑃̂𝐵( 𝜇̂)𝑅−1𝐵⊤( 𝜇̂)𝑃̂ + 𝐶 ( 𝜇̂)⊤𝑄𝐶 ( 𝜇̂) = 0. (I.21)

In this case, provided that 𝜇̂ → 𝜇, we obtain 𝑃̂ → 𝑃(𝜇).

Example I.4. In an online context, solving (I.21) at each time instant may not be practical. However,
this problem can be circumvented with different approaches, e.g. i) calculating the solution only via
discrete-time jumps or ii) implementing the differential Riccati equation

¤̂𝑃 = 𝐴( 𝜇̂)⊤𝑃̂ + 𝑃̂𝐴( 𝜇̂) − 𝑃̂𝐵( 𝜇̂)𝑅−1𝐵⊤( 𝜇̂)𝑃̂ + 𝐶 ( 𝜇̂)⊤𝑄𝐶 ( 𝜇̂) 𝑃̂(0) ≥ 0. (I.22)

5
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⋄

Thesis contribution I.3. In Chapter IV, to formalize the concepts presented in this introductory
sections, and to provide a solution to online uncertain LQR problem developing a derivative-free
algorithm which guarantees convergence 𝜇̂ → 𝜇, 𝑃̂ → 𝑃 while stabilizing the closed-loop system. ★

I.2 Nonlinear optimal control in presence of uncertainties

In the last part of the thesis, we consider an uncertain nonlinear system with dynamics given by

¤𝑥 = 𝑓𝑐 (𝑥, 𝑢, 𝜇) (I.23)

where 𝑥 ∈ M ⊆ R𝑛 is the (measurable) state, 𝑢 ∈ R𝑚 is the input and 𝑥init is the initial condition. We
represent the uncertainties in the system via the constant unknown parameter 𝜇 ∈ K𝜇 ⊆ R𝑞 and the
unknown static map

𝑓𝑐 : M × R𝑚 × K𝜇 → R𝑛. (I.24)

Example I.5. The pendubot [195] is a robot consising of two links and one actuator on the first joint.
Its dynamics reads as

m2g

ℓ2

d2 q2

q1 m1g

ℓ1

d1
I1zz

I2,zz

x

y

u

Figure I.1: The pendubot.

[
𝑎1 + 𝑎2 + 2𝑎3 cos(𝑞2) 𝑎2 + 𝑎3 cos(𝑞2)
𝑎2 + 𝑎3 cos(𝑞2) 𝑎2

][
¥𝑞1
¥𝑞2

]
+
[
𝑎4 cos(𝑞1) + 𝑎5 cos(𝑞1 + 𝑞2)

𝑎5 cos(𝑞1 + 𝑞2)

]
+

+
[
−𝑎3 sin(𝑞2) ¤𝑞2 + 𝑓1 −𝑎3 sin(𝑞2) ( ¤𝑞1 + ¤𝑞2)
𝑎3 sin(𝑞2) ¤𝑞1 𝑓2

][
¤𝑞1
¤𝑞2

]
=

[
𝑢

0

]
,

(I.25)

where 𝑞 = (𝑞1, 𝑞2) ∈ [0, 2𝜋]2 stacks the two joint angles 𝑞1, 𝑞2 ∈ R, 𝑢 ∈ R is the input torque on

6
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the first joint, and the coefficients 𝑎1, . . . , 𝑎5 are given by

𝑎1 = 𝐼1,𝑧𝑧 + 𝑚1𝑑
2
1 + 𝑚2ℓ

2
1 , 𝑎2 = 𝐼2,𝑧𝑧 + 𝑚2𝑑

2
2, 𝑎3 = 𝑚2ℓ1𝑑2,

𝑎4 = 𝑔(𝑚1𝑑1 + 𝑚2ℓ1), 𝑎5 = 𝑔𝑚2𝑑2.
(I.26)

In this case, we may define the vector of uncertainties 𝜇 as the vector stacking the unknown masses,
moments of inertia, length of links and positions of their centers of mass

𝜇 := (𝑚1, 𝑚2, 𝑑1, 𝑑2, ℓ1, ℓ2, 𝐼1,𝑧𝑧 , 𝐼2,𝑧𝑧), (I.27)

and the map (I.24) can be found by expressions (I.25), (I.26). ⋄

We associate to the dynamics (I.23) the finite-horizon nonlinear optimal control problem

min
𝑥 ( ·) ,𝑢( ·)

∫ 𝑇

0
ℓ(𝑥(𝜏), 𝑢(𝜏))d𝜏

subj. to ¤𝑥(𝑡) = 𝑓𝑐 (𝑥(𝑡), 𝑢(𝑡), 𝜇)

𝑥(0) = 𝑥init,

(I.28)

where 𝑥init is assumed to be known. With respect to the previous setup, we consider a finite-horizon
framework which is better suited for certain applications such as the offline computation of, e.g.,
industrial robot movement, or minimum-time trajectories for vehicles or aircrafts. Furthermore, since
we are interested in solving numerical instances of problem (I.28), we discretize the dynamics, obtaining
the problem

min
x,u

𝑇∑︁
𝜏=0

ℓ(𝑥𝜏 , 𝑢𝜏)

subj. to 𝑥𝑡+1 = 𝑓𝑑 (𝑥𝑡 , 𝑢𝑡 , 𝜇)

𝑥0 = 𝑥init.

(I.29)

Notice that, whilst we have added some assumptions with respect to the previous linear framework,
these are more than compensated by the complexity of the nonlinearity (and possible nonconvexity of
the problem (I.29)). Furthermore, the uncertainties in 𝜇 and 𝑓𝑑 (𝑥, 𝑢, 𝜇) make the solution of problem
(I.29) hard to be found. In the following, we sum up the two challenges that we face in Chapter V.

Optimality guarantees

Being the problem (I.29) uncertain, several approaches may be considered. First, one may suppose to
know the set K𝜇 in which the uncertainties are confined, and add as additional constraints the system
dynamics for all possible parameters 𝜇 ∈ K𝜇. In this way, at the price of suboptimality (and provided
feasibility is preserved), we may still obtain the best solution with the available information. A problem
of this approach is that the elements of K𝜇 are typically infinite, and so a semi-infinite program has to

7
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be solved.
A second way to deal with this problem (the reinforcement learning approach) is having the possibility
of repeating experiments multiple times. In particular, one may parametrize a feedback control law in
𝜃, say 𝜋(𝜃, 𝑥), and then, at the end or the 𝑘-th experiment, update 𝜃𝑘+1 according to some gradient
information (instead of directly updating the resulting trajectory x𝑘 ,u𝑘):

𝜃𝑘+1 = 𝑔(𝜃𝑘 ,x𝑘 ,u𝑘). (I.30)

Data efficiency and safety of the dynamics explorations

A problem of the above mentioned approach is that one needs to probe the dynamics function with
additional dither to guarantee a successful learning -exactly as for linear systems -. In other words, it is
necessary to repeat experiments of the type

𝑢𝑘𝑡 = 𝜋(𝜃𝑘 , 𝑥𝑘𝑡 ) + 𝑑𝑘𝑡
𝑥𝑘𝑡+1 = 𝑓 (𝑥𝑘𝑡 , 𝑢𝑘𝑡 , 𝜇),

(I.31)

where 𝑘 denotes the experiment, in order to obtain improvements in the experiment cost
∑𝑇
𝜏=0 ℓ(𝑥𝑘𝜏 , 𝑢𝑘𝜏).

The number of required explorations, in order to find good approximations of the solution, depends
strongly on the dimension of the parameter 𝜃, which should be large enough to find good approxima-
tions of the optimal solution. Furthermore, both the update of 𝜃𝑘 and the addition of the dither 𝑑𝑘𝑡
introduce the risk of possible system instabilities, even when starting from safe initializations.

Thesis contribution I.4. In Chapter V, we tackle these problems by studying how to leverage on a
known, well-behaved, fixed control policy 𝜋(𝑥) which does not necessarily enter in the optimization
process, and we exploit its tracking properties to reduce the effects of the possible instabilities of the
necessary exploration. Furthermore, we avoid the problem of performing a high number of experiments
avoiding policy parametrizations and keeping (x,u) as the only optimization variable. ★
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Chapter II

Persistent excitation and sufficient
richness

W
hilst the notion of “Persistence of Excitation" arose from the beginning of my P.h.D. (in
particular, with the celebrated Willems Lemma [226]), I started investigating it only in the
last year. By far, I think this concept one of the most interesting I have encountered, since

it appears (for the first time in [16]) as an omnipresent condition that guarantees parameter convergence
in data-driven techniques, and it is strictly related to the idea of information carried by a signal. Before
going into formal details, it is useful to present the key ideas behind the concept of persistency of
excitation that will be used in this thesis.

i) Goal: a PE signal guarantees exponential convergence of adaptive, identification and learning
algorithms.

ii) Movement: a PE signal spans in time all the directions 𝑦 of the space it lives in.

iii) Energy: the movement in each direction is done with a guaranteed minimum energy 𝛼.

iv) Finite time: both movement and energy are guaranteed to be completed in a time span of fixed
length𝑇 .

v) Persistency: movement, energy, finite time hold uniformly in time, i.e., for all time intervals [𝑡, 𝑡 +
𝑇].

To recap, there exists a window of maximum length𝑇 after which, starting from any time instant 𝑡, the
signal has spanned all space directions 𝑦with a minimum energy

√
𝛼 (in an RMS sense). We propose also

a preliminary notion for “Sufficient Richness", inspired by the reasonings in [41, 98, 162]. In real setups,



CHAPTER II. PERSISTENT EXCITATION AND SUFFICIENT RICHNESS

it is often not possible to directly impose PE on the signals in which we are interested. In other words,
we can arbitrarily design only input signals. This motivates the following informal characterization of
sufficient richness.

i) Goal: given a certain dynamical system, a SR input signal u guarantees PE of a specific output
signal y.

ii) Sufficiency: we look for sufficient properties that may depend on the particular dynamical system
and initial condition. We are not looking for equivalent formulations of PE.

iii) Richness: the “finite time", “energic" “movements" features required by a PE signal should be
embedded into the input signal in some form.

Whilst it can be said there is agreement on the definition of PE (but for some minor details), SR seems a
confused notion in the literature: whilst the underlying idea seems the one proposed here, it has never
been formalized, and all the proposed definitions for SR are very specific to particular setups.
This Chapter is organized as follows. In Section II.1 we perform a historical review of the concepts
of persistence of excitation and sufficient richness, providing also references for the existing results.
Next, in Section II.2, we present the problem we want to solve and the considered framework. In
Section II.3, we present the mathematical results which have been found, corroborating them with a
numerical example showing their tightness and confuting a recently proposed conjecture. At last, in
Section II.4, we consider a more restricted framework and show how to exploit the geometry of linear
systems together with the properties of sinusoids to obtain tighter sufficient conditions for PE in linear
systems. The proofs of the simplest results are given contextually, while the others can be found in
Appendix V.4. An article containing the results of this chapter has been submitted as a full paper, [35].

10
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II.1 An introduction to PE and SR

II.1.1 A historical review of the concept of PE

The first notion of PE

From the first work introducing persistency of excitation [16], definitions for “persistency of excitation",
“persistence of excitation", “persistent excitation", “PE of order", “sufficient richness", “SR of order",
“sufficient excitation" proliferated, being used somehow interchangeably in a first moment (between
’70s and ’80s) and then specializing for the continuous-time adaptive literature (PE, SR, SR of order)
or discrete-time behavioral literature (PE, PE of order). A variety of definitions for both concepts
have been proposed, moving away the involved concepts and the related literatures. Scope of this
section is (i) to try, starting from the first introduction of these concepts, to provide the reader with a
(philological) review of the main definitions that arose until today, (ii) to motivate the ideas behind
the “Persistent Excitation" and "Sufficient Richness" definitions that are used in this thesis and (iii) to
highlight the importance of the words in making the usage of mathematical concepts more or less clear
and understandable. We start from the first definition (1965) for “persistency of excitation of order",
given in [16] and reported here for the reader’s convenience.

Definition II.1. [PE of order, [16]] A bounded scalar signal u : N1 → R is said to be persistently
exciting of order𝑚 if the limits

𝑢 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑡=1

𝑢𝑡 𝑟𝑢 (𝑇) = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑡=1

𝑢𝑡𝑢𝑡+𝑇 (II.1)

exist and the following matrix is positive definite

𝑅𝑢 :=


𝑟𝑢 (0) 𝑟𝑢 (−1) . . . 𝑟𝑢 (−𝑚)
𝑟𝑢 (1) 𝑟𝑢 (0) . . . . . .

. . . . . .
. . . . . .

𝑟𝑢 (𝑚) . . . . . . 𝑟𝑢 (0)


. (II.2)

K

Notice that 𝑟𝑢 (𝑇) is an even function, namely, considering 𝑢𝑡 = 0 for all 𝑡 < 1, we get

𝑟𝑢 (−𝑇) = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑡=1

𝑢𝑡𝑢𝑡−𝑇 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑡=1−𝑇

𝑢𝑡+𝑇𝑢𝑡 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑡=1

𝑢𝑡+𝑇𝑢𝑡 = 𝑟𝑢 (𝑇), (II.3)

so the matrix 𝑅𝑢 is symmetric. Later, we will see how 𝑟𝑢 (𝑇) is closely related to the power spectrum of
the signal u.
The first thing we need to specify is the framework considered in this article: in [16] the authors study
an unknown SISO discrete-time linear system, with input signal u and output signal y, on which they

11
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design a maximum likelihood method for estimation of the input-output relation. The “persistency of
excitation of order" is required on the input signal, and its goal is the identification of the input-output
relation parameters. Notice furthermore that the authors quantify the “amount of excitation" that
it is required by the algorithm. This first idea of persistency of excitation embeds somehow both the
two concepts of PE and SR that have been introduced at the beginning of this chapter: the goal is
the convergence of some identification algorithm (as the goal of our PE); however, the requirement is
imposed on the input signal, which is available for the design, and it is not imposed on some internal
signal (as it is for our PE).

Remark II.1. Considering the five informal “components of PE" that were given at the beginning of
this chapter (goal, movement, energy, finite time, persistency), we see that this original definition includes
all of them, though some are hidden. In fact, as made clearer later, energy, finite time, persistency are all
implied by condition (II.2), and also the goal is the same of our definition. Being this notion for scalar
signals, however, movement is the hardest to be seen. ♦

PE for UGAS of certain nonautonomous differential equations

We continue our review by passing to the year 1977, where in the two seminal articles [154, 155], the
authors studied the uniform asymptotic stability of nonautonomous differential equations of the type

¤𝑥 = −𝑃(𝑡)𝑥,
[
¤𝑥
¤𝑦

]
=

[
𝐴(𝑡) −𝐵(𝑡)⊤

𝐵(𝑡) 0

] [
𝑥

𝑦

]
, (II.4)

where in the first equation it holds𝑃(𝑡) = 𝑢(𝑡)𝑢(𝑡)⊤ ≥ 0 and in the second equation 𝐴(𝑡)+𝐴(𝑡)⊤ < 0,
for all 𝑡 ≥ 0. These results are fundamental since nonautonomous differential equations of the type
(II.4) arise in a huge number of adaptive control and recursive identification schemes such as adaptive
observers [97, 98, 111], model reference adaptive controllers [6, 41, 42], gradient-based algorithms [32, 114],
reinforcement learning [37, 173, 192, 193] and several others [9, 15, 16, 73, 83, 124, 190, 198, 223] (both discrete
and continuous-time). From [154, 155] we now recall - for the reader convenience - the main results (in a
shortened version).

Theorem II.1. [ [155], Thm. 1] Let u : R≥0 → R𝑛×𝑘 be a piecewise continuous and bounded function.
Then, the following are equivalent

i) ¤𝑥 = −𝑢(𝑡)𝑢(𝑡)⊤𝑥 is uniformly asymptotically stable
ii) there are real numbers 𝑎 > 0, 𝑏 such that, if 𝑦 ∈ R𝑛 is a fixed unit vector, then∫ 𝑡

𝑡0

𝑦⊤𝑢(𝜏)𝑢(𝜏)⊤𝑦d𝜏 ≥ 𝑎(𝑡 − 𝑡0) + 𝑏, ∀𝑡 ≥ 𝑡0 ≥ 0, (II.5)

Q

Theorem II.2. [ [154], Thm. 1] Let 𝐴 : R≥0 → R𝑛×𝑛 be a piecewise continuous and bounded function
such that 𝐴(𝑡) + 𝐴(𝑡)⊤ is negative definite. Let 𝐵 : R≥0 → R𝑛×𝑚 be a piecewise continuous and bounded

12
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function. Then, the system [
¤𝑥
¤𝑦

]
=

[
𝐴(𝑡) −𝐵(𝑡)⊤

𝐵(𝑡) 0

] [
𝑥

𝑦

]
(II.6)

is uniformly asymptotically stable if and only if there are positive numbers 𝑇, 𝜖 and 𝛿 such that, given
𝑡 ≥ 0 and a unit vector 𝑤 ∈ R𝑛, there is a 𝑡′ ∈ [𝑡, 𝑡 + 𝑇] such that�����∫ 𝑡 ′+𝛿

𝑡 ′
𝐵(𝜏)⊤𝑤d𝜏

����� ≥ 𝜖 . (II.7)

Q

We refer the reader to the above mentioned articles and to [161, 162] for more insight into the slight
differences between these PE expressions (which can be collapsed into the same condition under
sufficient smoothness of the involved signals). These theorems - together with other important results
from those years which aligned the discrete-time framework and found other important adaptive control
or recursive identification schemes which resulted in systems in the form (II.4) - lead to a new notion of
PE, which we could state as (being more restrictive to include many proposed definitions, see e.g. the
books [8, 98, 162, 191])

Definition II.2. The piecewise differentiable bounded signal w : R≥0 → R𝑑 is persistently exciting if
there exist𝑇, 𝛼 > 0 such that, for all 𝑡 ∈ R≥0, it holds∫ 𝑡+𝑇

𝑡

𝑤(𝜏)𝑤(𝜏)⊤d𝜏 ≥ 𝛼𝐼. (II.8)

K

For the discrete-time, the same type of analysis on the stability of equations of the form 𝑥𝑡+1 = 𝐹𝑡𝑥𝑡

arose, treated e.g. in [33], and from [32] we can infer a definition equivalent to Def. II.2 for the discrete-
time domain

Definition II.3. The bounded signal w : N → R𝑑 is persistently exciting if there exist 𝑇, 𝛼 > 0 such
that, for all 𝑡 ∈ N, it holds

𝑡+𝑇∑︁
𝑡

𝑤𝜏𝑤
⊤
𝜏 ≥ 𝛼𝐼. (II.9)

K

A few important observations are in order. First, with this definition there is no more a quantification
of “how much" a signal is persistently exciting, namely a signal is PE and it is not “PE of order". Second,
whilst the final goal of this new definition is still to guarantee the convergence of adaptive control
(recursive identification) schemes, we notice that the PE condition has passed from the input signal u to
a generic signal (from now on called “regressor") which plays the role of 𝑢(𝑡) or 𝐵(𝑡) in equations (II.4).

13
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The shape of the regressor depends strongly on the considered closed-loop scheme, and to achieve this
PE property via the design of an appropriate input signal becomes a completely different problem. Of
course, one could also study when solutions of autonomous systems are PE depending on the initial
conditions and the properties of the system, and this was done very recently in [168].
In 2001, the stability of nonautonomous differential equations more complex than those in (II.4) was
considered. In fact, stability of equations in (II.4) is not only uniformly asymptotic, but it is also global
and exponential thanks to the linearity of the equation. However, other frequently arising differential
equations such as

¤𝑥 =
[

𝐴 𝐵𝜙(𝑡, 𝑥)⊤

−𝜙(𝑡, 𝑥)𝐶⊤ 0

]
𝑥 (II.10)

or even more generic equations of the type

¤𝑥 = 𝐹 (𝑥, 𝑡) (II.11)

need more careful analysis. We refer the reader to the following works for other variations of this
definition in more complicated frameworks [13, 14, 101, 130–134, 165, 171, 188].

Remark II.2. The definitions for PE presented here have the same goal, movement, energy, finite-time,
persistency connotations presented at the beginning of this chapter. ♦

Remark II.3. [Excited or exciting?] In this thesis we prefer to say that a signal is “persistently excited"
instead of the “persistently exciting" used in the literature. In its original definition, an input signal was
exciting when it moved the measurements strongly enough to guarantees a successful identification.
With Definition II.2, the property of PE has now been moved to a generic regressor to guarantee
stability of certain equations. It is hard to say that the regressor is “exciting" for systems (II.4), since if it
is exciting, the origin of these systems is UAS and the state 𝑥(𝑡) goes to zero. We prefer then to say that
the regressor is just excited since it possesses the movement, energy, persistence characteristics introduced
at the beginning of the chapter. ♦

Before addressing this problem, we make a short digression on frequency-oriented characterizations for
PE that arose from the first years after 1965.

PE in the frequency domain

In 1971, we find in [122] an interesting characterization for PE in the frequency domain. Notice that
the considered framework was the same of [16] (namely, a single-input single-output system), and also
the goal of this “persistency excitation of order" was the same as in [16]: an input signal has to achieve
convergence of recursive identification schemes. In fact, the authors consider a discrete-time scalar
signal u : N → R which should satisfy, similarly to II.1, the existence of the limits

𝑢 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑡=1

𝑢𝑡 𝑟𝑢 (𝑇) = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑡=1

(𝑢𝑡 − 𝑢) (𝑢𝑡+𝑇 − 𝑢). (II.12)
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Then, the authors implicitely define the function 𝑠𝑢 : [−𝜋, 𝜋] → R such that

𝑟𝑢 (𝑡) =
∫ 𝜋

−𝜋
𝑒𝑖𝑡𝜔d𝑠𝑢 (𝜔) ∀𝑡 ∈ N, (II.13)

which is unique, symmetric and enjoys some smoothness properties (see [122] and references therein).
We are now ready to present the characterization for “PE of order 𝑛" in the frequency domain.

Theorem II.3. [ [122], Thm. 1] A necessary and sufficient condition for u to be persistently exciting of
order 𝑛 (as per Def. II.1) is that supp(𝑠𝑢) contains at least 𝑛 points. Q

The most important takeaway from this theorem is that there is a one to one correspondence between the
number of points𝜔 ∈ [−𝜋, 𝜋] in which 𝑠𝑢 (𝜔) is not zero and the level of excitation of u. We will later
see that 𝑠𝑢 is closely related to the spectrum ofu, so this means that frequency-domain characterizations
may be very helpful in design purposes. Still, we are in a scalar framework, and we expect things to
become more complicated as soon as the quantities 𝑟𝑢 (𝑡) and 𝑠𝑢 (𝑡) become matrix-valued.
As soon as new, multi-valued definitions for PE arose and lost their “order of excitation" quantification,
new proposals for a frequency domain characterizations were made. In 1986, in the work [42] the
authors considered a definition of PE similar to the one given in Definition II.2, and found an equiva-
lent frequency-domain characterization. Before addressing it, we better formalize and complete the
theoretical digression on the relation between the quantities 𝑟𝑢 (𝑡) and 𝑠𝑢 (𝑡) seen before. Consider a
multi-valued continuous-time signal w : R≥0 → R𝑑 . We define the quantity 𝑅𝑤 : R≥0 → R𝑑×𝑑

𝑅𝑤 (𝑡) :=
1
𝑇

lim
𝑇→∞

∫ 𝑇

0
𝑤(𝜏)𝑤(𝑡 + 𝜏)⊤d𝜏 (II.14)

as the “autocovariance" of w. Signals for which 𝑅𝑤 exists are also called Wide-Sense-Stationary (WSS)
[71, p. 388]. Notice that the autocovariance evaluated in zero, namely,

𝑅𝑤 (0) =
1
𝑇

lim
𝑇→∞

∫ 𝑇

0
𝑤(𝜏)𝑤(𝜏)⊤d𝜏 (II.15)

closely recalls the PE expression in Definition II.2. The main difference is that the condition in II.2
is explicitely required to hold uniformly in time along moving time windows, while in (II.15) all the
knowledge of the signal is somehow collapsed into one point of the autocovariance. Notice furthermore
that the division by 1

𝑇
in (II.15) prevents vanishing signals to satisfy 𝑅𝑤 (0) > 0. We are now ready to

state the important result in [42, 191], which holds for a definition of PE similar (less smoothness is
required) to II.2.

Lemma II.1. [ [42], Lemma 3.2] Suppose w : R≥0 → R𝑑 has autocovariance 𝑅𝑤 (𝑡). Then w is PE iff
𝑅𝑤 (0) > 0. P

It was proved in the Wiener-Khinkin theorem [224, Ch. 2] that for WSS signals whose Fourier transform
exists (which, in general, are not all WSS signals), their autocovariance 𝑅𝑤 and their Power Spectral
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Density (PSD) 𝑆𝑤 form a Fourier-transform pair, namely,

𝑅𝑤 (𝑡) =
1
2𝜋

∫ ∞

−∞
𝑆𝑤 (𝜔)𝑒 𝑗𝑡𝜔d𝜔, (II.16)

from which
𝑅𝑤 (0) =

1
2𝜋

∫ ∞

−∞
𝑆𝑤 (𝜔)d𝜔. (II.17)

For having PE signals, equation (II.17) together with the above Lemma II.1 clearly requires, as noted
in [42], that 𝑆𝑤 (𝜔) must be non-zero at least in 𝑑 different points, namely, supp(𝑆𝑤) should contain
at least 𝑑 points. Notice that for WSS scalar signals whose Fourier transform exists, the quantity 𝑠𝑢
defined in (II.13) is exactly the PSD of the input signal.
In other words, we have now seen that quantity of points in the support of the PSD of a generic signal
w has been used for different purposes, namely i) quantifying excitation levels of a scalar signal [122]
and (ii) guaranteeing the “simple" PE of a multi-valued signal [42]. Notice furthermore that, by Lemma
(II.1), it is not enough to contain enough points in the PSD to guarantee PE of the involved signal, since
we need to require

𝑅𝑤 (0) =
1
2𝜋

∫ ∞

−∞
𝑆𝑤 (𝜔)d𝜔 > 0. (II.18)

In other words, if 𝑆𝑤 (𝜔) is not scalar, we have to guarantee also some form of independence between
the points 𝑆𝑤 (𝜔1), 𝑆𝑤 (𝜔2), . . ., to guarantee that the integral is positive definite. An interesting work
in which this is addressed is [41]; however, we refer the reader to Section II.4 for an overview of the
results regarding spectral lines, since these will be used later.
We refer the reader to [71, 147, 224] for a more detailed discussion on autocovariance, power spectrum
and WSS signals, and to [41, 42, 191] for their relation to with PE.

Willem’s PE

In 2005, 40 years after the first notion of PE was introduced, a new notion making use of the so called
“Hankel matrix" was proposed for discrete-time systems [226]. Given a discrete-time signal 𝑤𝑡 ∈ R𝑑 in
the interval 𝑡 = 1, . . . , 𝑇 , we may build the associated Hankel matrix of depth 𝐿 as

𝐻𝑤𝐿 :=


𝑤1 𝑤2 . . . 𝑤𝑇−𝐿+1

𝑤2 𝑤3 . . . 𝑤𝑇−𝐿+2

. . . . . . . . . . . .

𝑤𝐿 𝑤𝐿+1 . . . 𝑤𝑇


∈ R𝑑𝐿×(𝑇−𝐿+1) . (II.19)

Definition II.4. [ [226], Pag. 3] The sequence 𝑤1, . . . , 𝑤𝑇 , with 𝑤𝑡 ∈ R𝑑 is said to be persistently
exciting of order 𝐿 if rank(𝐻𝑤

𝐿
) = 𝑑𝐿. K

The condition rank(𝐻𝑤
𝐿
) = 𝑑𝐿 can be shown to be equivalent to the positive definiteness of following
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quantity:

𝑇−𝐿+1∑︁
𝑡=1


𝑤𝑡

. . .

𝑤𝑡+𝐿−1



𝑤𝑡

. . .

𝑤𝑡+𝐿−1


⊤

> 0. (II.20)

A few important observations are in order. First, we notice that the proposed definition takes into
account the notion of excitation level in the signal: this is different from more recent continous-time or
discrete-time characterizations and it is closer to the original notion given in [16]. The order of excitation
is embedded in the number of time-shifts of the signals which one considers in building the matrix
(II.20), and in [226][Cor. 1] this notion is used to derive how to obtain excited state-input trajectories
from a sufficiently excited input (however, we deal with this in the next section). Second, notice that in
this case the PE property is not a property which holds uniformly in time, since it is a property which
a finite amount of data satisifies or not. An interesting question is then the following: why should
we call this persistency if uniformity in time does not enter the definition? Third, by choosing 𝐿 = 1,
considering a signal on the whole time axis w : N → R𝑑 and asking for condition (II.20) to hold for
each time window 𝜏 = 𝑡, . . . , 𝑡 + 𝑇 for all 𝑡 ∈ N, we obtain the condition

𝑇−𝐿+1∑︁
𝜏=𝑡

𝑤𝜏𝑤
⊤
𝜏 > 0 ∀𝑡 ∈ N, (II.21)

which is not equivalent to discrete-time definitions of PE II.3 for two reasons: (i) no uniform lower
bound is implied by the full rankness of the Hankel matrix, and (ii) also the boundedness of the signal
is not implied by this definition.
These features make this definition not well-suited for the analysis of recursive or asymptotic algorithms;
however, this notion of persistency of excitation is more adapt to the cases where the number of data is
finite (batch methods). Furthermore, the interpretation given by the authors in [226] of this kind of
PE condition is also very different from the original one, since it is seen as the ability of gathered data
to represent all system trajectories (of a LTI system). Still, also this notion of PE has been proved to
be fundamental for the effectiveness an enormous amount of data-based techniques for learning and
control (see [23, 62, 64, 127, 213] to cite a few), and very recently (2022 − 2023) “robustified" versions
of this notion have been proposed [22, 55].
The Hankel matrix notation used for this definition prevented for long time the proposal of equivalent
definitions for the continuous-time framework. Only recently some attempts have been made in the
direction of fixing this problem. Among the others, in [128] (2022) the authors proposed to solve
the problem introducing an Hankel matrix constructed from sampling the continuous-time signal. A
different attempt was instead done in [176], where the following definition was proposed

Definition II.5. [ [176], Def. 1] Let I = (𝑡0, 𝑡1) ⊆ R. w : I → R𝑑 is persistently exciting of order 𝑘 if
(a) w is (𝑘 − 1)-times continuously differentiable in I,
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(b) for every 𝑣 ∈ R𝑘𝑑 , it holds that

𝑣⊤


𝑤(𝑡)
...

¤𝑤 (𝑘−1) (𝑡)

 = 0 ∀𝑡 ∈ I =⇒ 𝑣 = 0. (II.22)

K

Similarly to Definition II.4, this notion of PE is not a “persistent" property, and thus it is less suited
for recursive or asymptotic algorithms; however, it introduces a nice analogy between time shifts
and derivatives. In particular, in this definition time derivatives are presented as the continuous-time
counterpart of time shifts in quantifying the order of excitation of the signal.

Remark II.4. To recap, the biggest difference between these definitions and the one seen before
stands in the concepts of energy (no minimum amount of energy is guaranteed in each direction) and
persistence, since this property holds only on a finite time window and not persistently. Furthermore,
the goal of these definitions is different, (and justifies the lack of persistency, term which should be more
carefully used), since it regards the ability of a seguence of measurements of 𝑥𝑡 , 𝑢𝑡 to represent systems
trajectories. ♦

Remark II.5. Since in this thesis we deal with both the two notions, we will use the term “persistence of
excitation" for the Definitions II.14, II.13 presented at the beginning of this chapter, and we will use only
the term “excitation" for the finite-time Definition II.4 and similar continuous-time counterparts. ♦

II.1.2 A historical review of the concept of SR

To the author’s knowledge, one of the first works (1977) mentioning “sufficient richness" for some
signal is [154]. In that work, the authors consider the stability of the differential equation (II.6), and
require “sufficient richness" on the matrix signal 𝐵(𝑡). Although “sufficient richness" is not formally
defined, it is interesting to notice that the required condition, namely the one given in Theorem II.2 is
the same that will evolve (under sufficient smoothness of signals) into the “persistence of excitation" as
per Definition II.2.
In the same year, we can find “sufficient richness" mentioned in [6, Pag. 5]. In the paper, the author is
in the context of multivariable adaptive identification, in which the problem is the identification of
rational transfer functions. The term “sufficiently rich" is required, generically, on the input signal 𝑣𝑝 (𝑡)
in order to achieve convergence of the identification scheme to the true transfer function parameters.
An interesting comment on the “richness" property was made in [232]:

The intuition behind the concept of persistent excitation is that the input should be (recurrently) “rich"
enough to excite all the “modes" of the system which is being probed. Thus, from the system theoretic point

of view, we can say that the input 𝑢(·) is persistently exciting for the system (1) if the combined vector
function [𝑥′(·), 𝑢′(·)] is persistently spanning.
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A few comments are in order. First, the authors use “rich" for an input signal that should impose
excitation on some output signal (𝑥(𝑡), 𝑢(𝑡)). Second, the authors recognize the need of saying for
which system a certain input is persistently exciting. An interesting takeaway is thus the following: it
makes sense to separate the spanning condition (in other works, called “mixing" [198, 223], which we
called movement), from the means to achieve it. Furthermore, the spanning condition may be required
on regressors which depend on the particular application: this means that a certain input may be “rich"
for a system but not for another. We conclude from this that either we should quantify “how much" a
signal is persistently exciting or we should use a different term (“sufficient richness") for what concerns
input signals. Five years later, in [9] we read

We shall show that when the output of the unknown plant is required to follow a sufficiently rich reference
trajectory, in the sense that conditions like the output-only conditions of Section 2– see especially Theorem

2.4 are satisfied by the reference trajectory, then the estimate of the plant parameters will converge
exponentially fast to the true value, as will the plant output to the reference trajectory.

In this case, we are in the context of discrete-time systems and the authors are investigating the stability
of identification and adaptive control algorithms. In particolar, in Section 2 the authors show how to
impose PE (as per Def. II.2) on the regressor 𝑥𝑡 = (𝑦𝑡 , . . . , 𝑦𝑡−𝑛+1, 𝑢𝑡 , . . . , 𝑢𝑡−𝑚+1), with 𝑦𝑡 and 𝑢𝑡
input and output of a SISO system. The condition to which this quote refer is asked on the output
trajectory 𝑢𝑡 (or 𝑦𝑡 ) is the existence of some 𝑁 ∈ N, 𝜌1, 𝜌2 > 0 such that

𝜌1𝐼 ≥
𝑡+𝑁∑︁
𝜏=𝑡


𝑢𝜏+𝑛

. . .

𝑢𝜏−𝑚+1



𝑢𝜏+𝑛

. . .

𝑢𝜏−𝑚+1


⊤

≥ 𝜌2𝐼 ∀𝑡 ∈ N. (II.23)

An important observation is the following: this condition is very close to the original “persistency of
exitation of order" (Def. II.1) and to Willems’ one (Def. II.4). However, in this case, its role is to directly
impose PE on 𝑥𝑡 , and it is only indirectly looking for the convergence of the control/identification
scheme. Furthermore, we can notice how the “order of excitation" required depends on the dimension
of the considered system. Moving on, whilst in [41, Pag. 3] the term “sufficient richness" is used with
the same meaning as PE (as per Def. II.2), three years later in 1986 the same authors [42] propose a
different idea

The terms sufficiently rich (SR) and persistently exciting (PE) have been used somewhat interchangeably
in the literature. It is proposed that PE refers to property (2.7) for a vector of signals, and that sufficient

richness be a property of the reference signal (scalar valued). A vector of signals is thus PE or not, but
whether or not a reference signal is SR depends on the MRAC being studied. More specifically it depends
only on the number of unknown parameters in the system, so it is proposed that a reference signal which

results in a PE in an 𝑁 -parameter MRAC be referred to as sufficiently rich of order 𝑁 .

With this notion of SR in mind, we are close to the definition proposed in this thesis. Whilst in this
article the authors are focused on the MRAC field, they clearly distinguish between the idea of PE and
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the idea of guaranteeeing the PE via an input signal, and they recognize that different conditions may
be required depending on the number of parameters to be identified. Another inportant step in this
direction was made in [152]

Since the plant states 𝑥𝑘 cannot be manipulated directly, but only via the plant inputs 𝑢𝑘 ,it is important to
translate “persistency of excitation" conditions on the states of the plant, to“persistence of excitations" or

“sufficiently rich" conditions on the plant inputs and noise.

where the idea of imposing PE via suitable properties is very clear. The condition found in [152] for
achieving PE in a DT-LTI system leverages, once again, on a PE-like condition on the time-shifts of the
input signals. In 1985 [17], this notion is formalized and a first proposal for a mathematical definition
of this concept is given for discrete-time framework:

Definition II.6. [ [17] Def. 2] A sequence 𝑥𝑡 ∈ R𝑛 is said to be sufficiently rich (SR) of order𝑚 (in 𝑁
steps), if there exists 𝑁 ∈ N, 𝛼 > 0 such that

𝑡+𝑁∑︁
𝜏=𝑡+1


𝑥𝜏+1

. . .

𝑥𝜏+𝑚



𝑥𝜏+1

. . .

𝑥𝜏+𝑚


⊤

≥ 𝛼𝐼 ∀𝑡 ∈ N. (II.24)

K

This definition was also characterized in the frequency domain, at first for scalar signals

Lemma II.2. [ [17] Lemma 2, [98] Def. 5.2.3] If a scalar sequence 𝑢𝑡 has an autocovariance, then 𝑢𝑡 is
SR of order 𝑛 if and only if the spectral measure of 𝑢𝑡 is not concentrated on 𝑘 < 𝑛 points. P

and later for multivariable ones [165].
Notice however, that whilst a frequency domain characterization for SR is available for both the
continuous-time and discrete-time frameworks, an equivalent of Definition II.6 for the continuous
time is still missing. An interesting attempt in this direction was done by [142] (1988).

Definition II.7. [ [142], Def4.1] A signalu : R → R𝑚 is called sufficiently rich of order (𝑛1, . . . , 𝑛𝑚/𝑛)
where 𝑛 ≥ max(𝑛𝑖) if, for any 𝛾 > 0, there exist constants 𝑡1, 𝛼 > 0, and𝑇 > 0 such that

1
𝑇

∫ 𝑡+𝑇

𝑡

𝜓(𝜏)𝜓(𝜏)⊤d𝜏 ≥ 𝛼𝐼 ∀𝑡 ≥ 𝑡1, (II.25)
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with

𝜓(𝑡) := 1
(𝑠 + 𝛾)𝑛−1



1 0 . . . 0

𝑠 . . . . . . . . .

. . . . . . . . . . . .

𝑠𝑛1−1 0 . . . . . .

0 1 . . . . . .

. . . 𝑠 . . . 0

. . . . . . . . . . . .

. . . 𝑠𝑛2−1 . . . 0

− − − − − − − − − − − −
. . . . . . . . . 1

. . . . . . . . . 𝑠

. . . . . . . . . . . .

0 . . . . . . 𝑠𝑛𝑚−1



𝑢(𝑡). (II.26)

K

Notice that the proposed definition involves again a PE-like condition on a certain function of the
input signal; in this case however the authors do not take pure derivatives of the considered signal, but
a filtered version of them. This was not the case in [97], where, studying the convergence guarantees
of an adaptive observer with observability indices 𝑛𝑖 (see [140]), the authors proposed the following
definition for sufficient richness.

Definition II.8. [ [97], Pag. 5] Let 𝑛0 denote 𝑛0 = max𝑖 𝑛𝑖 , and p denote differential operator p = d/d𝑡.
Input 𝑢(𝑡)is said to be sufficiently rich if, for any 𝑡, 𝑟 ((𝑛 + 𝑛0 − 1)) functions

𝑢1, p𝑢1, . . . , p𝑛+𝑛0−1, 𝑢2, . . . , p𝑛+𝑛0−1𝑢𝑟 (II.27)

are linearly independent on the interval [𝑡0,∞), that is, for any 𝑛 + 𝑛0 − 1-th order polynomials

𝑧𝑖 (p) = 𝑧𝑖,0 + . . . , 𝑧𝑖,𝑛+𝑛0−1p𝑛+𝑛0−1, 𝑖 = 1, . . . , 𝑟, (II.28)

𝑟∑︁
𝑖=1

𝑧𝑖 (p)𝑢𝑖 (𝑡) = 0 (II.29)

does not hold. K

Although this article does not seem to be well-recognized, we anticipate that a very similar condition on
the input derivatives will be found out in the next section to provide sufficient conditions for imposing
PE on systems trajectories.
We conclude here our historical digression on the evolution of the concepts of PE and SR, which was
made i) for motivating our choices for the Defs. II.14, II.13, II.15 and ii) as a contribution itself to the
community working in this field. We refer the reader to, e.g., [19, 22, 78, 129, 160, 171, 176] for other more
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recent works in which the term “richness" of a signal is somehow involved; however, we stress the fact
that these concepts were more used for online schemes, and terms such as “sufficient richness" are not
in auge anymore.

II.2 Problem setup

II.2.1 Preliminaries: infinite-dimensional notation and operators

Since, as previously mentioned, we are dealing with properties which should hold uniformly in time for
signals, it is useful to introduce some notation to lighten infinite-dimensional operators and results.
We start by defining what a dynamical system is, for both the discrete-time and the continuous-time
frameworks.

Definition II.9. [BIBO Dynamical system - DT] A Bounded Input Bounded State Output discrete-time
dynamical system is a map

𝜎 : ℓ∞(R𝑚) × R𝑛 → ℓ∞(R𝑝)

u, 𝑥0 ↦−→ y
(II.30)

that can be written in the form

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ), 𝑥0 ∈ R𝑛,

𝑦𝑡 = ℎ(𝑥𝑡 , 𝑢𝑡 ),
(II.31)

where 𝑢𝑡 ∈ R𝑚, 𝑥𝑡 ∈ R𝑛, 𝑦𝑡 ∈ R𝑝 are the input, the state and the output at time 𝑡 and 𝑓 , ℎ are the
dynamics and the output map. K

Definition II.10. [BIBO Dynamical system - CT] A Bounded Input Bounded Output continuous-time
dynamical system is a map

𝜎 : C∞
𝑏 (R𝑚) × R𝑛 → C∞

𝑏 (R𝑝)

u, 𝑥(0) ↦−→ y
(II.32)

that can be written in the form

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), 𝑥(0) ∈ R𝑛,

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡)),
(II.33)

where 𝑢(𝑡) ∈ R𝑚, 𝑥(𝑡) ∈ R𝑛, 𝑦(𝑡) ∈ R𝑝 are the input, the state and the output at time 𝑡 and 𝑓 , ℎ are
the dynamics and the output map. K

Clearly, we could have defined dynamical system in a more general way, e.g. including unbounded
signals, discontinuities, ecc.; we require instead smoothness and boundedness of the involved signals
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just for simplifying the exposition of the subsequently given result. Next, we introduce a list of useful
operators to operate with discrete-time signals (shift operators) and continuous-time signals (derivative
operators).

Definition II.11. [Shift Operators] Given 𝑘, 𝑑 ∈ N and the space ℓ∞(R𝑑), we define the shift operator as

q𝑘 : ℓ∞(R𝑑) → ℓ∞(R𝑑)

w𝑡 ↦−→

w𝑡−𝑘 𝑡 ≥ 𝑘

0 𝑡 < 𝑘.

(II.34)

Furthermore, we introduce the following multi-shift operator:

Q𝑘 : ℓ∞(R𝑑) → ℓ∞(R𝑑𝑘)

w ↦−→ (q𝑘−1w, . . . , q0w).
(II.35)

K

Definition II.12. [Derivative Operators] Given 𝑘, 𝑑 ∈ N and the spaceC∞
𝑏
(R𝑑), we define the derivative

operator as

d𝑘 : C∞
𝑏 (R𝑑) → C∞

𝑏 (R𝑑)

w(𝑡) ↦−→ 𝑑𝑘w
𝑑𝑡𝑘

(𝑡).
(II.36)

Furthermore, we introduce the following multi-derivative operator:

D𝑘 : C∞
𝑏 (R𝑑) → C∞

𝑏 (R𝑑𝑘)

w ↦−→ (d𝑘−1w, . . . ,d0w).
(II.37)

K

II.2.2 Persistent excitation and sufficient richness

We are now ready to state the definitions for Persistence of Excitation which will be used throughout
the thesis.

Definition II.13. [Discrete-Time PE] A signal w ∈ ℓ∞(R𝑑) is Persistently Excited (PE) if there exist
positive scalars 𝛼, and𝑇 such that, for all 𝑡 ∈ N,

𝑡+𝑇∑︁
𝜏=𝑡

𝑤𝜏𝑤
⊤
𝜏 ≥ 𝛼𝐼. (II.38)

K
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Definition II.14. [Continuous-Time PE [7]] A signal w ∈ C∞
𝑏
(R𝑑) is Persistently Excited (PE) if there

exist positive scalars 𝛼 and𝑇 such that, for all 𝑡 ∈ R≥0∫ 𝑡+𝑇

𝑡

𝑤(𝜏)𝑤(𝜏)⊤d𝜏 ≥ 𝛼𝐼. (II.39)

K

As done before for the considered systems, the given definitions for PE are more conservative than
other present in the literature, since in general only boundedness and some degree of smoothness are
required, and this is done for simplicity reasons. See however Section II.1 for a more comprehensive list
of possible definitions. Similarly as done in [161, Def. 2], we define the subsets

ΩD
𝑑
:= {w ∈ ℓ∞(R𝑑) : w satistisfies (II.38)}

ΩC
𝑑
:= {w ∈ C∞

𝑏 (R𝑑) : w satistisfies (II.39)},
(II.40)

which are the set of all the PE signals in the discrete and continuous-time setting. The following lemma
characterizes these sets.

Lemma II.3. ΩD
𝑑

(resp., ΩC
𝑑

) is an open cone in ℓ∞(R𝑑) (resp., C∞
𝑏
(R𝑑)). P

The proof of Lemma II.3 is in Appendix V.4.1.

Remark II.6. Notice that the property of being open sets is a reformulation of the robustness (in L∞

sense) of the PE property given in [191, Lemma 6.1.2]. In other words, being ΩC
𝑑

an open cone, for any
given signal w ∈ ΩC

𝑑
we can always find a sufficiently close signal w′ such that w′ ∈ ΩC

𝑑
. However, this

robustness is not the same for every PE signal. ♦

Before addressing the main questions we want to solve, we formally define how the notion of “Sufficient
Richness" is intended in this work. Consistently with the adaptive literature, we say an input signal
sufficiently rich if, injected into a dynamical system, it guarantees persistence of excitation of the output
signal we are interested in. Notice that imposing the PE to some output signal y via inputu is a problem
which is not in general guaranteed to be solvable. Furthermore, an input u may be sufficiently rich
for a specific system but not for a different one. Specifically, the following two aspects determine the
solvability (and the solution) of the problem:

i) the structural properties of the dynamical system 𝜎 we are considering (dynamics and output
map)

ii) the set of initial conditions 𝑥(0) of the systems in which we are interested.

These reasonings motivate the following definition for SR.

Definition II.15. [Sufficient Richness] Given a discrete (resp. continuous)-time dynamical system 𝜎 and
initial condition 𝑥0 (resp. 𝑥(0)) we say that the input signal u ∈ ℓ∞(R𝑚) (resp. C∞

𝑏
(R𝑚)) is SR for the
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tuple (𝜎, 𝑥0) if
𝜎(u, 𝑥0) ∈ ΩD

𝑝 (resp. ΩC
𝑝) (II.41)

K

We can define the set of all SR input signal for system 𝜎 and initial condition 𝑥0 ∈ R𝑛 as

DSR(𝜎, 𝑥0) := {u∈ ℓ∞(R𝑚) : 𝜎(u, 𝑥0) ∈ ΩD
𝑝}

CSR(𝜎, 𝑥(0)) := {u∈C∞
𝑏 (R𝑚) : 𝜎(u, 𝑥(0)) ∈ ΩC

𝑝}.
(II.42)

Notice that any characterization of the sets CSR(·),DSR(·) for the SR property as per Definition II.15
requires explicitely the considered system (dynamics and output map) and initial conditions for which
the characterization of SR is valid.

II.2.3 Problem statement: sufficient richness in LTI systems

Consider a discrete or continuous-time linear time invariant system in the form

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 , ¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),

𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
(II.43)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the control input, 𝑦 ∈ R𝑝 is the output, while 𝐴 ∈ R𝑛×𝑛 and
𝐵 ∈ R𝑛×𝑚 are the system matrices. The aim of this chapter is twofold, namely

i) given meaningful classes of systems in form (II.43) and initial conditions, find an explicit charac-
terization of the sets of SR inputs CSR(·),DSR(·)

ii) obtain a characterization of CSR(·),DSR(·) which underlines the analogies between the discrete-
time and the continuous-time framework.

Notice that while the specific framework proposed in this thesis investigates these properties only for
linear systems, the proposed questions and concept of persistent excitation and sufficient richness are
exportable also to nonlinear frameworks. An example of an apparently different setup is the training of
neural networks: it was demostrated [84] that richness of the training data ensures well posedness of
the estimation problem. Very recently [159, 200], it has been shown that richness conditions on both
the input data and the loss functions can be found so that the resulting trained neural network is more
robust to adversarial attacks [50, 96].
Concerning the first objective, since we are not interested in solving a control problem (and having
defined PE only for bounded signals), we consider only asymptotically stable systems, i.e., systems in
which 𝐴 is Schur (resp., Hurwitz). Intuitively, this means that the answer we are looking for will not
depend on the chosen initial condition. Next, given a stable system it is known [161, Lemma 5], [98]
that a necessary condition for having PE state trajectories is that (𝐴, 𝐵) must be reachable. We formalize
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these classes of systems with the following notation

LD := {𝜎 in form (II.43) : 𝐴 Shur, (𝐴, 𝐵) reachable,dim(𝑥) = 𝑛,dim(𝑢) = 𝑚}

LC := {𝜎 in form (II.43) : 𝐴Hurwitz, (𝐴, 𝐵) reachable,dim(𝑥) = 𝑛,dim(𝑢) = 𝑚}.
(II.44)

Next, since one may be interested in considering different output maps depending on the uncertainties
in the matrices 𝐴, 𝐵, we define system classes

LD
x := {𝜎 ∈ LD : 𝐶 = 𝐼𝑛, 𝐷 = 0𝑚}, LC

x := {𝜎 ∈ LC : 𝐶 = 𝐼𝑛, 𝐷 = 0𝑚},

LD
xu :=

{
𝜎 ∈ LD : 𝐶 =

[
𝐼𝑛

0𝑚×𝑛

]
, 𝐷 =

[
0𝑛×𝑚
𝐼𝑚

]}
, LC

xu :=

{
𝜎 ∈LC : 𝐶 =

[
𝐼𝑛

0𝑚×𝑛

]
, 𝐷 =

[
0𝑛×𝑚
𝐼𝑚

]}
.

(II.45)

At last, we are interested in separating the results for single-input and multi-input systems, for which
we introduce the notation

LD
x, 1 := {𝜎 ∈ LD

x : 𝑚 = 1}, LC
x, 1 := {𝜎 ∈ LC

x : 𝑚 = 1},

LD
x,>1 := {𝜎 ∈ LD

x : 𝑚 > 1}, LC
x,>1 := {𝜎 ∈ LC

x : 𝑚 > 1}.
(II.46)

Concerning the second objective, namely the problem of unifying the continuous and discrete-time,
our major concern is to avoid incompatible descriptions. An example of incompatible description is the
Hankel matrix notation, since it is not well-suited for the continuous-time framework. The idea is to
rely on the correspondence between time shifts in discrete-time and derivatives in continuous-time,
exploiting the infinite-dimensional operators defined in II.11, II.12.

II.3 Necessary and sufficient conditions for SR in LTI systems

II.3.1 Necessary conditions

Discrete-time

We start by consider the problem of giving necessary results for sufficient richness in the case of discrete-
time systems. As previously mentioned, these results are new, since to the author’s knowledge necessary
conditions have been recently found only for single-input systems [143] in the framework of finite-time
excitation. Before presenting the theorem, we introduce a notion to characterize signals that persistently
span only subspaces of the space they live in.

Definition II.16. [Discrete-Time Partial PE] A signal w ∈ ℓ∞(R𝑑) is Partially Persistently Exciting
(PPE) of degree 𝑑′ < 𝑑 (and write w ∈ ΩD

𝑑,𝑑′ ) if there exists a canonical projection 𝑃 : R𝑑 → R𝑑
′ such

that 𝑃w ∈ ΩD
𝑑′ . K

Remark II.7. An almost equivalent notion of PPE was introduced for the continuous-time in [161, Def.
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3], [162, Def. 6.3], from which we also adopt the simplified notation ΩD
𝑑,𝑑′ . ♦

Introducing this notion is important since, in the following, we will prove that the only necessary
condition for achieving PE trajectories in multi-input systems is a PPE condition on Q𝑛 (u).
It turns out that if the degree of PPE of signals in the form Q𝑛 (u) (namely, stacks of time-shifts of the
same signal u) is sufficiently small, then it never increases when increasing the number of considered
time shifts. The intuition behind this property is that shifts a certain time window of the same signal are
not completely independent. Consider e.g., the sequence of scalars {𝑤0, 𝑤1, . . . , 𝑤𝑛} and its time shift
{𝑤1, 𝑤2, . . . , 𝑤𝑛+1}. Notice that the two sequencies share 𝑛 − 1 elements, and the same holds true
also considering the successive window {𝑤2, 𝑤3, . . . , 𝑤𝑛+2}. This constraint can be shown to bind the
number of directions possibly spanned by the moving window {𝑤𝑡 , 𝑤𝑡+1, . . . , 𝑤𝑡+𝑛−1} depending
on the number of directions persistently spanned by the original signal w. This is formalized in the
following lemma.

Lemma II.4. Let w ∈ ℓ∞(R𝑑). Let 𝑑′ ∈ N be the biggest natural for which Q𝑛 (w) ∈ ΩD
𝑛𝑑,𝑑′ . If

𝑑′ ≤ 𝑑 (𝑛 − 1), then for all 𝑘 ≥ 𝑛, the biggest natural for which Q𝑘 (w) ∈ ΩD
𝑘𝑑,𝑑′′ holds is such that

𝑑′′ ≤ 𝑑′. P

The proof of Lemma II.4 is provided in Appendix V.4.2.
We are now ready to state a necessary condition to obtain PE in discrete-time LTI multivariable systems.

Theorem II.4. [Necessary condition for DT systems] Letu ∈ ℓ∞(R𝑚). For all initial conditions𝑥0 ∈ R𝑛,

i) If 𝜎 ∈ LD
x and 𝜎(u, 𝑥0) ∈ ΩD

𝑛, then Q𝑛 (u) ∈ ΩD
𝑛𝑚,𝑛.

ii) If 𝜎 ∈ LD
xu and 𝜎(u, 𝑥0) ∈ ΩD

𝑛+𝑚, then Q𝑛+1(u) ∈ ΩD
(𝑛+1)𝑚,𝑛+𝑚.

Q

The proof of Theorem II.4 is provided in Appendix V.4.7.

Remark II.8. Notice that, in the case of single-input systems, this result collapses into a “full" persis-
tency of excitation requirement on Q𝑛 (u) and Q𝑛+1(u), namely, for all 𝑥0 ∈ R𝑛

𝜎 ∈ LD
x , 𝜎(u, 𝑥0) ∈ ΩD

𝑛 =⇒ Q𝑛 (u) ∈ ΩD
𝑛,

𝜎 ∈ LD
xu, 𝜎(u, 𝑥0) ∈ ΩD

𝑛+1 =⇒ Q𝑛+1(u) ∈ ΩD
𝑛+1.

(II.47)

♦

We sketch here the proof of Theorem II.4, since it provides arguments which are perfectly repeatable
in the continuous-time framework and gives insight on why PPE of Q𝑛 (u) is a necessary condition.
This result is proven by contraposition, namely, we want show that if the input signal u is not PPE of a
sufficiently high degree then the resulting x is not PE. We follow these steps

1. In asymptotically stable systems, x can be approximated arbitrarily well by a linear combination
of a large enough number 𝑘 ∈ N of time-shifts of the input, Q𝑘 (u), namely, x ≈ 𝐾Q𝑘 (u).
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2. If Q𝑛 (u) is PPE of degree at most 𝑛−1, then for any 𝑘 ≥ 𝑛, the PPE of Q𝑘 (u) does not increase
(using Lemma II.4) by picking any 𝑘 > 𝑛.

3. If Q𝑘 (u) is PPE of degree at most 𝑛 − 1, then x cannot be PE, since it is a linear combination of
a signal persistently spanning at most 𝑛 − 1 directions.

Remark II.9. For this necessary condition, we considered 𝐴 Schur. Notice that in this case this
assumption is required not only to guarantee boundedness of the state, but also to approximate the
state as a linear combination only of a finite number of inputs. ♦

Remark II.10. The arguments used for these proofs give insight into how one may specifically design
inputs to achieve PE trajectories (provided that the matrices 𝐴, 𝐵 were known). In particular, one
may leverage the approximation x ≈ 𝐾Q𝑘 (u) (for sufficiently high 𝑘) and the knowledge of 𝐾 (given
in (V.108)) to guarantee the energy of the input is used in the “best way" possible, according to some
performance index. As an example, one may desire to maximize 𝛼 (from Definition II.13) for a fixed
input energy. Notice furthermore that, in general, solving this task requires a good “planning" of the
inputs, namely, one should solve the problem for a sufficiently high 𝑘 and thus finding the input for
several time instants. ♦

Continuous-time

Before presenting the results for the continuous-time framework, we need to consider some problems
which arise when applying Definition II.14 (that are not present in the discrete-time framework). With
the following lemma, we leverage the smoothness properties of the considered signals to guarantee that
a non-PE signal is arbitrarily small for arbitrarily long periods along certain directions.

Lemma II.5. Let w ∈ C∞
𝑏
(R𝑑). If w ∉ ΩC

𝑑
, then for any𝑇, 𝜖 > 0 there exist 𝑡 > 0, 𝑧 ∈ R𝑑 such that,

for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇], it holds that
|𝑧⊤𝑤(𝜏) | ≤ 𝜖 . (II.48)

P

The proof of Lemma II.5 is provided in Appendix V.4.3.
Notice that whilst the above result is immediate in the discrete-time framework, in the continuous time
it is not necessarily true - without assuming some degree of smoothness of the signal.
Next, in order to state necessary results for PE in continuous-time systems, we introduce the notion of
PPE also for this framework.

Definition II.17. [Continuous-Time Partial PE] A signal w ∈ 𝐶𝑑 is Partially Persistently Exciting
(PPE) of degree 𝑑′ ≤ 𝑑 (and write w ∈ ΩC

𝑑,𝑑′ ) if there exists a canonical projection 𝑃 : R𝑑 → R𝑑
′ such

that 𝑃w ∈ ΩC
𝑑′ . K

To get the necessary conditions of PE in the continuous-time framework by following the same steps of
the discrete-time one, we need an analogous of Lemma II.4.
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Lemma II.6. Let w ∈ C∞
𝑏
(R𝑑). Let 𝑑′ ∈ N be the biggest natural for which W := D𝑛 (w) ∈ ΩC

𝑛𝑑,𝑑′ .
If 𝑑′ ≤ 𝑑 (𝑛 − 1), then for any 0 < 𝑇 ≤ 𝑇 , 𝜖 > 0 there exist 𝑡 > 0, 𝑁̄ ∈ N, 𝑑′′ ≤ 𝑑′, and
𝐺 ∈ R𝑛𝑑 (𝑁+1)×𝑑′′ such that, for all 𝑁 ≥ 𝑁̄ ,


𝑊 (𝜏)

𝑊

(
𝜏 − 𝑇̄

𝑁

)
. . .

𝑊 (𝜏 − 𝑇)


= 𝐺𝜆(𝜏) + 𝑊̃ (𝜏), ∀𝜏 ∈ [𝑡, 𝑡 + 𝑇] (II.49)

for some 𝜆(𝜏) ∈ R𝑑
′′ and 𝑊̃ (𝜏) ∈ R𝑛𝑑 (𝑁+1) such that |𝑊̃ (𝜏) | ≤ 𝜖 . P

The proof of Lemma II.6 is provided in Appendix V.4.4.
Unfortunately, the above lemma is not as elegant as its discrete-time counterpart (Lemma II.4). However,
the intuition is the same: under a certain threshold of PPE, and sampling with a sufficiently small sample
time, the number of directions spanned persistently by a certain stack of time shifts of D𝑛 (w) does
not increase if the time shifts are increased. Given Lemma II.6, and following the same steps of the
discrete-time case, we obtain the following necessary conditions (the proof is in the Appendix).

Theorem II.5. [Necessary condition for CT systems] Let u ∈ C∞
𝑏
(R𝑚). For all 𝑥(0) ∈ R𝑛,

i) If 𝜎 ∈ LC
x and 𝜎(u, 𝑥(0)) ∈ ΩC

𝑛, then D𝑛 (u) ∈ ΩC
𝑛𝑚,𝑛.

ii) If 𝜎 ∈ LC
xu and 𝜎(u, 𝑥(0)) ∈ ΩC

𝑛+𝑚, then D𝑛+1(u) ∈ ΩC
(𝑛+1)𝑚,𝑛+𝑚.

Q

The proof of Theorem II.5 is provided in Appendix V.4.9.

Remark II.11. As in the case of discrete-time systems, notice that when𝑚 = 1 this result collapses into
a “full" persistency of excitation requirement on D𝑛 (u) and D𝑛+1(u), namely, for all 𝑥(0) ∈ R𝑛, it
holds that

𝜎 ∈ LC
x , 𝜎(u, 𝑥(0)) ∈ ΩC

𝑛 =⇒ Q𝑛 (u) ∈ ΩC
𝑛,

𝜎 ∈ LC
xu, 𝜎(u, 𝑥(0)) ∈ ΩC

𝑛+1 =⇒ Q𝑛+1(u) ∈ ΩC
𝑛+1.

(II.50)

♦

II.3.2 Sufficient conditions

Discrete-time

We proceed by finding sufficient conditions for the case of discrete-time systems. Whilst the following
result is known in the literature [17, 86, 152], it is worth noting that the proof given here is new, provides
insight on the obtained result, and its principles are completely repeatable in the continuous-time
framework.
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Theorem II.6. [Sufficient condition for DT systems] Let u ∈ ℓ∞(R𝑚). For all 𝑥0 ∈ R𝑛,

i) If 𝜎 ∈ LD
x and Q𝑛 (u) ∈ ΩD

𝑛𝑚, then 𝜎(u, 𝑥0) ∈ ΩD
𝑛.

ii) If 𝜎 ∈ LD
xu and Q𝑛+1(u) ∈ ΩD

(𝑛+1)𝑚, then 𝜎(u, 𝑥0) ∈ ΩD
𝑛+𝑚.

Q

The proof of Theorem II.6 is provided in Appendix V.4.6.
Though the proof is given in the Appendix directly for the multi-input case, in order to have an easier
understanding of the underlying arguments, consider the single-input case. We prove the above result
by contraposition following these three arguments:

1. Any solution x = 𝜎(u, 𝑥(0)) ∈ ℓ∞(R𝑛) of system 𝜎 which is not PE constrains the (scalar)
system input to be arbitrarily close to a feedback gain for arbitrarily long intervals, namely,
𝑢𝑡 ≈ 𝐾𝑥𝑡 .

2. Such an input renders the system an autonomous system for arbitrarily long intervals. This
means that time shifts 𝑥𝑡 , 𝑥𝑡−1, . . . , 𝑥𝑡−𝑛+1 of the state can be written as a linear function of the
state 𝑥𝑡−𝑛+1.

3. Time shifts of inputs are given by state feedbacks of time shifts of the state ((𝑢𝑡 , . . . , 𝑢𝑡−𝑛+1) ≈
(𝐾𝑥𝑡 , . . . , 𝐾𝑥𝑡−𝑛+1)), which are a linear function of the state 𝑥𝑡−𝑛+1. This means that if x is not
PE, Q𝑛 (u) is not PE.

The principles behind the proof for multi-input systems are the same as those for single-input systems,
with the differences explained in the following steps.

1. Any solution x = 𝜎(u, 𝑥(0)) ∈ ℓ∞(R𝑛) of system 𝜎 which is not PE does not fully constrain
the input signal to be arbitrarily close to a feedback gain of the state. In particular, we obtain an
input which can be written as 𝑢𝑡 ≈ 𝐾𝑥𝑡 + 𝑣𝑡 .

2. 𝑣𝑡 is constrained, however, to span in a space which is at most𝑚 − 1 dimensional.

3. It can be checked that in the end this meansQ𝑛 (u) is not PE, since it is a function of x andQ𝑛 (v)
which, altogether, span persistently a subspace of R𝑛𝑚 which is at most 𝑛𝑚 − 1 dimensional.

Remark II.12. For this sufficient condition we considered 𝐴 Schur. However, we stress that we require
it only to fulfill an upper bound on the state evolution. In order to guarantee only a spanning condition
with a lower bound (see, e.g., [82, Def. 3]), it is not required 𝐴 to be Schur. Another application of this
result in absence of a stable system is when the gathered data is finite (Willems’ PE): in those cases, it is
possible to recover the same results as those in [226]. ♦
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Continuous-time

In order to repeat the proof given for the sufficient results in the discrete-time domain, we need now to
find a relation between the PE of a signal and the PE of its time derivative.

Lemma II.7. Let w ∈ C∞
𝑏
(R𝑑). If w ∉ ΩC

𝑑
, then for any𝑇, 𝜖 > 0 there exist 𝑡 > 0, 𝑧 ∈ R𝑑 such that

|𝑧⊤𝑤(𝜏) | ≤ 𝜖, |𝑧⊤ ¤𝑤(𝜏) | ≤ 𝜖, (II.51)

for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇]. P

The proof of Lemma II.7 is provided in Appendix V.4.5.
Once Lemmas II.5 and II.7 are established, we can repeat the proof of Theorem II.6 as it is to derive an
equivalent result for continuous-time systems (the proof is in the Appendix).

Theorem II.7. [Sufficient condition for CT systems] Let u ∈ C∞
𝑏
(R𝑚). For all 𝑥(0) ∈ R𝑛,

i) If 𝜎 ∈ LC
x and D𝑛 (u) ∈ ΩC

𝑛𝑚, then 𝜎(𝑢, 𝑥(0)) ∈ ΩC
𝑛.

ii) If 𝜎 ∈ LC
xu and D𝑛+1(u) ∈ΩC

(𝑛+1)𝑚, then 𝜎(𝑢, 𝑥(0)) ∈ ΩC
𝑛+𝑚.

Q

The proof of Theorem II.7 is provided in Appendix V.4.8.

II.3.3 The cone of SR signals

Having collected all these necessary and sufficient conditions in the above theorems, we are now inter-
ested in understanding the shape of the set of the signals which are SR for all stable systems sharing
certain structural properties, namely, the input and state dimension (since, in general, we are interested
in PE when the system matrices 𝐴, 𝐵 are not completely known). At first, consider the case of single
input systems of fixed dimension LD

x, 1,L
C
x, 1 defined in (II.46). We are interested in the sets

DSR(LD
x, 1) :=

⋂
𝑥0∈R𝑛
𝜎∈LD

x, 1

DSR(𝜎, 𝑥0), CSR(LC
x, 1) :=

⋂
𝑥 (0) ∈R𝑛
𝜎∈LC

x, 1

CSR(𝜎, 𝑥0), (II.52)

where DSR(𝜎, 𝑥0), CSR(𝜎, 𝑥0) are defined in (II.42).

Lemma II.8. Given system classes LD
x, 1,L

C
x, 1 in (II.46), the sets of sufficiently rich inputs (II.52) are given

by

DSR(LD
x, 1) = {u ∈ ℓ∞(R) : Q𝑛 (u) ∈ ΩD

𝑛},

CSR(LC
x, 1) = {u ∈ C∞

𝑏 (R) : D𝑛 (u) ∈ ΩC
𝑛}.

(II.53)

P
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Proof. It is sufficient to apply Theorems II.6, II.4, II.7, II.5 to notice that for all 𝜎 ∈ LD
x, 1 and 𝑥0 ∈ R𝑛,

it holds

Q𝑛 (u) ∈ ΩD
𝑛 ⇐⇒ 𝜎(u, 𝑥0) ∈ ΩD

𝑛. (II.54)

∥∥

Remark II.13. Notice sets DSR(LD
x, 1), CSR(LC

x, 1) are open cones in ℓ∞(R), C∞
𝑏
(R) (the proof is the

same as the one for Lemma II.3). As per per Remark II.6, this means that sufficiently small perturbations
of SR signals are still SR signals. ♦

Notice that this characterization is complete, namely, we have found all the input signals which are SR
for systems in LD

x ,L
C
x . Indeed, the single-input case is simplified by the fact that, as stated in [161, Thm.

1], any signal which is SR for a certain 𝜎1 ∈ LD
x must be SR also for 𝜎2 ∈ LD

x (which means that in
(II.52) we intersect always the same set). The same is not true for multi-input systems, and in this case
a complete characterization of the inputs which are SR for all the stable systems sharing input and
state dimension seems not easy to obtain. Considering the classes LD

x,>1,L
C
x,>1 defined in (II.46), we

are interested in the sets

DSR(LD
x,>1) :=

⋂
𝑥0∈R𝑛
𝜎∈LD

x,>1

DSR(𝜎, 𝑥0), CSR(LC
x,>1) :=

⋂
𝑥 (0) ∈R𝑛
𝜎∈LC

x,>1

CSR(𝜎, 𝑥0), (II.55)

where DSR(𝜎, 𝑥0), CSR(𝜎, 𝑥0) are given in (II.42).

Lemma II.9. Given system classes LD
x,>1,L

C
x,>1 in (II.46), the sets of sufficiently rich input (II.55) satisfy

{u : Q𝑛 (u) ∈ ΩD
𝑛𝑚} ⊂ DSR(LD

x,>1) ⊂ {u :Q𝑛 (u) ∈ ΩD
𝑛𝑚,𝑛}

{u :D𝑛 (u) ∈ ΩC
𝑛𝑚} ⊂ CSR(LC

x,>1) ⊂ {u : D𝑛 (u) ∈ ΩC
𝑛𝑚,𝑛}.

(II.56)

P

Proof. It is sufficient to apply Theorems II.6, II.4, II.7, II.5 to notice that for all𝜎 ∈ LD
x,>1 and 𝑥0 ∈ R𝑛,

it holds

Q𝑛 (u) ∈ ΩD
𝑛𝑚 =⇒ 𝜎(u, 𝑥0) ∈ ΩD

𝑛

Q𝑛 (u) ∈ ΩD
𝑛𝑚,𝑛 ⇐= 𝜎(u, 𝑥0) ∈ ΩD

𝑛.
(II.57)

∥∥

The difficulties of obtaining a complete characterization of the sets DSR(LD
x,>1), CSR(LC

x,>1) are intro-
duced by the fact that in (II.55) we are intersecting different sets (in other words, there exists inputs
which are SR for a certain 𝜎1 ∈ LD

x,>1 but not for 𝜎2 ∈ LD
x,>1). The reason of this needs not to be

searched into the initial condition, but into the system matrices 𝐴, 𝐵 and how each input enters into
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the system. To corroborate this statement notice that, by [228, Lemma 2.2], if (𝐴, 𝐵) is reachable, then
it is possible to build a feedback gain 𝐹 such that (𝐴 + 𝐵𝐹, 𝑏) is reachable, with 𝑏 ∈ im(𝐵). With such
a reshape of the system, the conditions for single input systems hold, which are independent on 𝐴, 𝑏, 𝐹
and 𝑥0 (so, it is only the structure of the system that influences the ability to obtain PE trajectories).

II.3.4 Tightness of the sufficient and necessary condition

We show the tightness of the presented result by providing examples which show that the obtained
results are tight and cannot be improved without considering more specific classes of systems. Notice
that in Definition II.13, PE is an infinite-dimensional notion, and cannot be properly checked via a
numerical example. To deal with this problem, in both the following examples we inject periodic
inputs and gather sufficiently large data batches to obtain a representative behavior for the whole
infinite-dimensional time window.

Sufficient condition

We pick here a condition about u weaker than the one claimed to be sufficient by Theorem II.6, and we
show it is not enough to guarantee PE of (x,u). We consider a discrete-time LTI system in form (II.43),
with 𝑛 = 7, 𝑚 = 3 and matrices

𝐴 :=



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0.024 −0.26 0.9 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0.21 −1.07 1.8 0

0 0 0 0 0 0 0.8


,

𝐵 :=


0 2 1 0 0 0 1

2 1 0.4 7 4 0 0

5 2 0.9 4 6 2 1


⊤

.

(II.58)

It can be verified that the pair (𝐴, 𝐵) is reachable and 𝐴 is Schur. We want to show that Q𝑛 (u) ∈ ΩD
𝑛𝑚

(instead ofQ𝑛+1(u) ∈ ΩD
(𝑛+1)𝑚) does not ensure (x,u) ∈ ΩC

𝑛+𝑚. By choosing initial condition 𝑥0 = 0,
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and input described by the dynamics 𝑢𝑡+1 = 𝐾𝑥𝑥𝑡 + 𝐾𝑢𝑢𝑡 + 𝑣1𝑡 + 𝑣2𝑡 , with 𝑢0 = 0 and

𝑣1𝑡 =


−0.4082
0.9082

0.0918

 (sin(𝑡) + sin(2𝑡) + sin(3𝑡) + sin(4𝑡)),

𝑣2𝑡 =


0.4082

0.0918

0.9082

 (sin(5𝑡) + sin(6𝑡) + sin(7𝑡) + sin(8𝑡)),

𝐾𝑥 = 10−3

−8 8.67 −300 −70 356.7 −600 −266.7
−4 4.33 −150 −350 178.3 −300 −133.3
4 −4.33 150 350 −178.3 300 133.3

 ,
𝐾𝑢 =


−0.6667 −0.1333 −1.3
−0.3333 −0.0667 −0.65
0.3333 0.0667 0.65

 ,
simulating for 𝑡 = 1, . . . , 1000, it can be checked that the input verifies Q𝑛 (u) ∈ ΩD

𝑛𝑚. However the
resulting state-input trajectory (x,u) is not PE, so we have shown that

Q𝑛 (u) ∈ ΩD
𝑛𝑚 ≠⇒ (x,u) ∈ ΩD

𝑛+𝑚. (II.59)

In Figure II.1, we plot the functions

𝑟1(x,u, 𝑇) := rank

(
𝑇∑︁
𝑡=0

(𝑥𝑡 , 𝑢𝑡 ) (𝑥𝑡 , 𝑢𝑡 )⊤
)

𝑟𝑛 (u, 𝑇) := rank

(
𝑇∑︁
𝑡=0

Q𝑛 (u)𝑡Q𝑛 (u)⊤𝑡

) (II.60)

as the time window𝑇 of considered samples increases.

Remark II.14. This example is a counterexample also for the sufficiency conjecture in [143, Pag. 4],
which we may state (with some abuse of notation) as

Q𝜈+1(u) ∈ ΩD
(𝜈+1)𝑚 =⇒ (x,u) ∈ ΩD

𝑛+𝑚, (II.61)

where 𝜈 is the controllability index [228, Pag. 121] of the pair (𝐴, 𝐵). In this case, the controllability
index of the pair (II.58) is 𝜈 = 3, and 𝜈 + 1 < 𝑛, so we may write Q𝜈+1(u) = 𝑃Q𝑛 (u) for some
full row rank matrix 𝑃, and Q𝑛 (u) ∈ ΩD

𝑛𝑚 ensures that our input verifies also Q𝜈+1(u) ∈ ΩD
(𝜈+1)𝑚

[98, Lemma 4.8.3]. However, we have shown that (x,u) ∈ ΩD
𝑛+𝑚 is not achieved by this input, thus

this counterexample demonstrates also that

Q𝜈+1(u) ∈ ΩD
(𝜈+1)𝑚 ≠⇒ (x,u) ∈ ΩD

𝑛+𝑚. (II.62)
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Figure II.1: Directions spanned in time by the signals (x,u) and Q𝑛 (u).

♦

Necessary condition

We pick here a condition about u stronger than the one claimed to be necessary by Theorem II.4, and
we show it is not guaranteed by PE of (x,u). We consider a discrete-time LTI system in form (II.43),
with 𝑛 = 7, 𝑚 = 3, matrix 𝐵 given in (II.58) and

𝐴 :=



0 1 0 0 0 0 0

0 0 1 0 0 0 0

−0.3 0.2 0.1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 −0.3 0.2 0.1 0

0 0 0 0 0 0 −0.7324


.

It can be verified that the pair (𝐴, 𝐵) is reachable and 𝐴 is Schur. We want to show that (x,u) ∈ ΩD
𝑛+𝑚

does not ensure Q𝑛+1(u) ∈ ΩD
(𝑛+1)𝑚,𝑛+𝑚+1. By choosing initial condition 𝑥0 = 0, and input

𝑢𝑡 =


sin(𝑡) + sin(2𝑡)
sin(3𝑡) + sin(4𝑡)

sin(5𝑡)

 , (II.63)

simulating for 𝑡 = 1, . . . , 1000, it can be verified that (x,u) ∈ ΩD
𝑛+𝑚. However, it can be verified also

that Q𝑛+1(u) ∉ ΩD
(𝑛+1)𝑚,𝑛+𝑚+1. With this example, we have shown that

(x,u) ∈ ΩD
𝑛+𝑚 ≠⇒ Q𝑛+1(u) ∈ ΩD

(𝑛+1)𝑚,𝑛+𝑚+1. (II.64)
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In Figure II.1, we plot the functions 𝑟1(𝑥, 𝑢, 𝑇) as defined in (II.60) and

𝑟𝑛+1(u, 𝑇) := rank

(
𝑇∑︁
𝑡=0

Q𝑛+1(u)𝑡Q𝑛+1(u)⊤𝑡

)
(II.65)

as the time window 𝑇 of considered samples increases. Notice these plots show that the necessary
condition given in Theorem II.4 holds.
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Figure II.2: Directions spanned in time by the signals (x,u) and Q𝑛+1 (u).

Remark II.15. This example is a counterexample also for the necessary conjecture in [143, Pag. 4],
which we may state (with some abuse of notation) as

(x,u) ∈ ΩD
𝑛+𝑚 =⇒ Q𝜈+1(u) ∈ ΩD

(𝜈+1)𝑚, (II.66)

where 𝜈 is the controllability [228, Pag. 121] of the pair (𝐴, 𝐵). In this case, the controllability index of
the pair (II.58) is 𝜈 = 3, and 𝜈 + 1 < 𝑛, so we may write Q𝜈+1(u) = 𝑃Q𝑛 (u) for some full row rank
matrix 𝑃. However, since we have shown that Q𝑛 (u) spans only 𝑛 + 𝑚 = 10 directions, Q𝜈+1(u) can
span at most 10 directions. Being Q𝜈+1(u) (𝜈 + 1)𝑚 = 12-dimensional, this means it is not PE, and
thus this counterexample demonstrates also that

(x,u) ∈ ΩD
𝑛+𝑚 ≠⇒ Q𝜈+1(u) ∈ ΩD

(𝜈+1)𝑚. (II.67)

♦

II.3.5 Future work

In this section, we have addressed the problem of guaranteeing persistence of excitation of state and input
signals in the context of LTI systems via the application of a sufficiently rich input. Throughout the
derivation of the results, we assumed an infinite-dimensional perspective allowing to make robustness
considerations on both the persistence of excitation and sufficient richness properties. Exploiting the
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analogies between time shifts for discrete-time and derivatives for continuous-time, we are able to
develop a unifying notation to state necessary and sufficient conditions to obtain PE of commonly
used regressors for both the frameworks. Leveraging on these conditions, we analyzed the shape of
the set of sufficiently rich signals for stable controllable LTI systems. Future work will be be done in
exploring the following direction: given the class of multivariable linear systems sharing output and
system dimensions, we have provided necessary and sufficient conditions to achieve PE which do not
coincide. However, it has not been proven that, given a single linear system, it is not possible to find a
unique necessary and sufficient condition characterizing all the sufficiently rich inputs for that system.
Future work will thus be in this direction.

II.4 Sufficient richness in the special case of sinusoids

In this section, we find some tighter sufficient conditions for PE which shed light on why sufficient
conditions on multi-input systems do not coincide with the necessary one.

II.4.1 Preliminaries: the geometric structure of linear systems

Before approaching the sufficient richness given in case of sinusoids, we give some preliminary notions
on a powerful decomposition for linear systems.

Definition II.18. [Rational canonical structure [228], Thm. 0.1] Let 𝐴 ∈ R𝑛×𝑛. There exists a full
rank𝑇 : R𝑛×𝑛 and a unique 𝑘 ∈ N such that

𝑇𝐴𝑇−1 = diag(𝐴1, . . . , 𝐴𝑘), (II.68)

where each 𝐴𝑖 ∈ R𝑛𝑖×𝑛𝑖 is in the companion form

𝐴𝑖 =


0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

𝑎𝑖,1 𝑎2,𝑖 . . . . . . 𝑎𝑛𝑖


. (II.69)

K

Definition II.19. [Cyclic index [228], pag. 17] The cyclic index of 𝐴, hereby denoted as cyc(𝐴), is the
(unique) number of companion matrix blocks in its rational canonical form. K

Notice that if the number of inputs𝑚 is smaller than the cyclic number of a matrix 𝐴, then it is not
possible to have controllability. For simplicity reasons, we restrict the following results for the case of
𝑚 = cyc(𝐴). We stress however that this restriction could be easily avoided, and we refer the reader
to [156, 228, 229] for more insight into these decompositions.
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Theorem II.8. [Thm. 1.2, [228]] Every controllable pair (𝐴, 𝐵) such that𝑚 = cyc(𝐴) admits a matrix
representation

𝐴 = diag(𝐴1, . . . , 𝐴𝑚), 𝐵 =


𝑏11 . . . 𝑏1𝑚

0
. . .

...

0 0 𝑏𝑚𝑚

 , (II.70)

where 𝐴 is in rational canonical form and each pair (𝐴𝑖 , 𝑏𝑖𝑖) is controllable. Q

Definition II.20. [Controllability indices [228], pag. 121, [156] Prop. 2.1] Let (𝐴, 𝐵) controllable and
𝑚 = cyc(𝐴). The controllability indices 𝑛1, . . . , 𝑛𝑚 of 𝐴 are the (unique) dimensions of the blocks 𝐴𝑖 on
the diagonal of its rational canonical form. The controllability index of 𝐴 is defined as

𝑛̄ = max{𝑛1, . . . , 𝑛𝑚}. (II.71)

Alternatively, the controllability index of (𝐴, 𝐵) is the smallest natural 𝑛̄ for which the matrix

𝑅(𝑛̄) = [𝐴𝑛̄−1𝐵, . . . , 𝐵] (II.72)

is full rank. K

II.4.2 Preliminaries: spectral lines and PE

One of the main concepts behind the definitions and results given in this section is the notion of spectral
line [41, Def. 3.2], which we provide here for signals defined over R≥0.

Definition II.21. [Spectral line [41] ] A signal 𝑤 : R≥0 → R𝑑 is said to have a spectral line at
frequency𝜔 ∈ [−∞,∞] of amplitude 𝑤̂(𝜔) ∈ C𝑑 ≠ 0 if and only if

𝑤̂(𝜔) := lim
𝑇→∞

1
𝑇

∫ 𝑠+𝑇

𝑠

𝑤(𝜏)𝑒− 𝑗𝜔𝜏d𝜏 (II.73)

exists uniformly in 𝑠 ∈ R≥0. K

Example II.1. A very easy way to introduce spectral lines in a signal is through sinusoids. Consider,
e.g., the real signal

𝑢(𝑡) = 𝑈 cos(𝜔𝑡 + 𝜑) = 𝑈
2

(
𝑒𝑖 (𝜔𝑡+𝜑) + 𝑒−𝑖 (𝜔𝑡+𝜑)

)
. (II.74)

It can be checked that this signal contains two spectral lines at frequencies𝜔 and −𝜔, and their ampli-
tudes are given by

𝑢̂(𝜔) = 𝑈
2
𝑒𝑖𝜑 , 𝑢̂(−𝜔) = 𝑈

2
𝑒−𝑖𝜑 . (II.75)
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Consider now the signal 𝑢(𝑡) = 𝑈 (sin(𝜔𝑡), cos(𝜔𝑡)). Containing only a single frequency, the new
signal has again two spectral lines, and applying (II.74), we can find them to be linearly independent in
C2; furthermore, their expression is given by:

𝑢̂(𝜔) = 𝑈
2

[
−𝑖
1

]
𝑢̂(−𝜔) = 𝑈

2

[
𝑖

1

]
. (II.76)

⋄

More generally, a real-valued signal containing a spectral line at𝜔0 with amplitude 𝑤̂(𝜔0) has always
another spectral line at −𝜔0, for which it holds that 𝑤̂(𝜔0) = 𝑤̂(−𝜔0)∗. This type of description is
particularly well-suited for periodic and almost-periodic signals. In fact, it is shown in [34, V] that
an almost-periodic signal 𝑤(𝑡) has spectral lines only in the so-called set of characteristic exponents
{𝜔𝑖}𝑖∈N, which is a countable and unique set for any almost periodic signal. Moreover [34, XV], any
almost-periodic signal 𝑤(𝑡) can be arbitrarily approximated by a trigonometric polynomial consisting
of its spectral lines 𝑤̂(𝜔𝑖) at its characteristic exponents (the so called almost-periodic Fourier series).
Similar approximation capabilities hold trivially also for periodic signals [207, Pag. 79].
In the following lemma, we report the result of [41, Lemma3.4] that establishes the connection between
the spectral lines of a signal and persistency of excitation by showing the condition is not only sufficient
but also necessary.

Lemma II.10. [ [41], Lemma 3.4] Let 𝑤 ∈ C∞
𝑏
(R𝑑) have at least 𝑑 spectral lines whose amplitudes

𝑤̂(𝜔1), . . . , 𝑤̂(𝜔𝑑) are linearly independent in C𝑑 . Then, 𝑤(𝑡) ∈ ΩC
𝑑

P

For completeness, we report also [41, Prop. 5.1] since it is the key result to understand why the above
presented decompositions are fundamental.

Proposition II.1. [ [41], Prop. 5.1] Let 𝜎 ∈ LC
x, 1, and let the scalar input u to the system have 𝑛 spectral

line. Then, u ∈ CSR(LC
x, 1). R

Whilst the above result holds only for single-input system, we show in the next section how to leverage
on the above presented decomposition for finding tighter conditions for sufficiently rich signals.

II.4.3 Sufficiently rich sinusoids

We start our analysis by considering multivariable linear systems in rational canonical structure as per
Definition II.18.

Theorem II.9. Let 𝜎 ∈ LC
x be in form (II.70), and let the input u ∈ C∞

𝑏
(R𝑚) be such that each 𝑖−th

input component, 𝑖 = 1, . . . , 𝑚, contains at least 𝑛𝑖 spectral lines at frequencies 𝜔𝑖 𝑗 , 𝑗 = 1, . . . , 𝑛𝑖 ,
where all𝜔𝑖 𝑗 ∈ R are distinct and 𝑛𝑖 are the controllability indices of (𝐴, 𝐵). Then, for all 𝑥(0) ∈ R𝑛,
u ∈ CSR(𝜎, 𝑥(0)). Q

Whilst we leave the proof in Appendix V.4.10 for readability reasons, we give an high-level overview on
the involved mechanism.
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i) Decomposition (II.70) allows us to obtain cyc(𝐴) linear systems which are coupled only in the
input signal. Notice however that the𝑚−th system is a single-input system. It is thus sufficient to
inject 𝑛𝑚 spectral lines into the𝑚-th component of the input to obtain PE in the last components
of 𝑥(𝑡), applying [41, Prop. 5.1].

ii) Passing to the (𝑚 − 1)-th subsystem, we inject 𝑛𝑚−1 spectral lines via the (𝑚 − 1)-th input
component. However, notice that this time we do not have a single input system, since 𝐵 is
in (block) upper triangular form. However, it is possible to show that the previously injected
spectral lines “do not interfere" with those in the (𝑚 − 1)-th component, and that they are all
linearly independent.

iii) By repeating the same reasoning for all the subsystems, we obtain the given result.

Notice that, whilst the above result is similar to [232, Prop. 4], in our theorem it is not necessary to inject
𝑛 sinusoid at different frequencies to achieve sufficient richness; it is enough to inject (overall) only 𝑛
spectral lines, which can be obtained from (see Example II.1) 𝑛/2 different frequencies. Furthermore,
we are not restricting the input signal to be periodic or almost periodic.

Remark II.16. Notice that an input signal respecting the conditions of Theorem II.9 is not necessarily
sufficiently rich for all systems LC

x,>1 of fixed dimension. In fact, the controllability indices of two
matrices 𝐴1, 𝐴2 ∈ R𝑛×𝑛 may be different, and thus the number of required spectral lines may vary. ♦

The above presented theorem is insightful from a theoretical point of view; however, its application
for design purposes is not adapt to uncertain systems since it requires the knowledge of the similarity
transformation bringing (𝐴, 𝐵) in rational canonical form (II.70). In the following lemma, we establish
the importance of the knowledge of the controllability index of a matrix 𝐴, since it allows the application
of the above theorem without requiring the knowledge of the full decomposition.

Lemma II.11. Let 𝜎 ∈ LC
x and 𝑚 = cyc(𝐴). Let the input u ∈ C∞

𝑏
(R𝑚) be such that each 𝑖−th

input component, 𝑖 = 1, . . . , 𝑚, contains at least 𝑛̄ spectral lines at frequencies 𝜔𝑖 𝑗 , 𝑗 = 1, . . . , 𝑛̄,
where all 𝜔𝑖 𝑗 ∈ R are distinct and 𝑛̄ is the controllability index of (𝐴, 𝐵). Then, for all 𝑥(0) ∈ R𝑛,
u ∈ CSR(𝜎, 𝑥(0)). P

Proof. The proof is straightforward realizing that 𝑖) there exists a similarity transformation that brings
𝐴, 𝐵 into form (II.70), and 𝑖𝑖) that under this similarity transformation, since 𝑛̄ ≥ 𝑛𝑖 for all 𝑖 =

1, . . . , 𝑚, by injecting 𝑛̄ spectral lines on each component we ensure that all the hypotheses of Theorem
II.9 are verified. ∥∥

Notice that, even if 𝑛̄ was not known, it always holds 𝑛 ≥ 𝑛̄, so one could inject 𝑛 spectral lines into
each component (and thus recover [98, Thm. 5.2.3]). To conclude, we state the above lemma in a
more generic version, inspired by [232, Thm. 3]

Theorem II.10. Let the input u ∈ C∞
𝑏
(R𝑚) contain at least 𝑚 sets of 𝑛̄ spectral lines at different

frequencies 𝑢̂(𝜔𝑖1), . . . , 𝑢̂(𝜔
𝑖
𝑛̄), 𝑖 = 1, . . . , 𝑚 such that

40



CHAPTER II. PERSISTENT EXCITATION AND SUFFICIENT RICHNESS

i) for all 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛̄

𝑢̂(𝜔𝑖𝑗) = 𝑘𝑖 𝑗 𝑢̂𝑖 (II.77)

for some 𝑢̂𝑖 ∈ C𝑚 and 𝑘𝑖 𝑗 ∈ C

ii) 𝑢̂1, . . . , 𝑢̂𝑚 are linearly independent in C𝑚. Then, for all 𝑥(0) ∈ R𝑛, u ∈ CSR(𝜎, 𝑥(0)).

Q

Proof. Denote as 𝑈̂ ∈ C𝑚×𝑚 the full rank matrix

𝑈̂ :=
[
𝑢̂1 . . . 𝑢̂𝑚

]
. (II.78)

Notice that any spectral line in 𝑢(𝑡) can be written as

𝑢̂(𝜔𝑖𝑗) = 𝑈̂e𝑖𝑘𝑖 𝑗 , (II.79)

where e𝑖 ∈ C𝑚 is a zero vector with a 1 in the 𝑖-th entry. Define 𝑣(𝑡) := 𝑈̂−1𝑢(𝑡). In the new
coordinates, the dynamic reads

¤𝑥 = 𝐴𝑥 + 𝐵𝑈̂𝑣. (II.80)

Notice that the spectral lines of 𝑢 are related to the spectral lines of 𝑣 by the relation

𝑣̂(𝜔𝑖𝑗) = 𝑈̂−1𝑢̂(𝜔𝑖𝑗) = 𝑈̂−1𝑈̂e𝑖𝑘𝑖 𝑗

= e𝑖𝑘𝑖 𝑗 ,
(II.81)

namely, in the new coordinates we obtain an input 𝑣(𝑡) which has 𝑛̄ spectral lines on each components
at distinct frequencies. Since the change of coordinate in the input space does not lose controllability of
the new pair (𝐴, 𝐵𝑈̂), we can then apply Theorem II.11 to conclude the proof. ∥∥
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Chapter III

Data-driven stabilization via filtering for
continuous-time linear systems

K
nowledge of the system state and its derivatives is fundamental in both the estimation of
unknown parameters and in the direct data-driven control. In this chapter, we prepare at
first the theoretical framework for a new type of observer, which we call “gazer". Differently

from other approaches, we are not interested in knowing the true system state: we are interested only in
“representing" the plant dynamics, according to some requirements, here informally listed:

i) Model-free: only rough knowledge about the plant dimensions should be necessary for the gazer
implementation.

ii) Representation: we seek for the existence of a surjective, time-invariant map Π between the state
of the gazer 𝜁 and the state of the plant 𝑥, mapping gazer trajectories into plant trajectories. Its
knowledge is not required.

iii) Attractivity: we require that, for any initialization of the gazer and plant state 𝜁 (0), 𝑥(0), it holds
asymptotically that Π𝜁 (𝑡) → 𝑥(𝑡).

iv) Stability: the gazer should not introduce instabilities.

The idea of directly looking for surjective maps from the gazer state to the plant state somehow shortcuts
the established design procedure of finding at first an injective map𝑇 from the plant state to the gazer
state, and then inverting it [26, 45, 106, 140], with advantages and disadvantages which are still not
entirely clear (to me).
After having explored gazers for SISO and MIMO systems, we show how to use them for solving
control problems by developing a data-driven stabilization method for CT-LTI systems with theoretical
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guarantees and no reliance on signal derivatives. The framework is based on linear matrix inequalities
(LMIs) and is illustrated in the state-feedback and single-input single-output output-feedback scenarios.
To avoid the need for differentiation, we exploit filters that, rather than approximating the derivatives,
reconstruct a non-minimal realization of the plant where the state and its derivative are accessible. Using
batches of input and filtered data, LMIs are then employed to compute a dynamic stabilizer of the plant.
The effectiveness of the framework is validated through numerical examples.
This chapter is organized as follows. In Section III.1 we give an overview of the scientific literature
pertaining adaptive observers and data-driven LMI-based data-driven control, highlighting the typical
assumptions and requirements in the continuous-time framework. In Section III.2, we state the
design requirement for gazers. In Section III.3, we give sufficient criterias for the gazer design, and we
propose some possible solutions leveraging some new matrix results. In Section III.4, we provide a
stabilization numerical algorithm for the state-feedback and the SISO scenarios, describing its properties
and validating the approach with numerical results. The main proofs are given contextually; the others
can be found in the Appendix V.5. Part of the results of this chapter have been submitted as a conference
paper, [38].
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III.1 Literature review

Over the past decades, the paradigm of data-driven learning has gained increasing attention in control
theory. A key factor to control a system, both in the model-based and in the data-driven context, is
the availability of measurements of the system state, which enables the application of state-feedback
techniques. This is particularly important when the controlled system has an uncertain dynamics,
since the information needed to achieve control has to be retrieved mainly from the collected data, and
not from the system knowledge. The extraction of the state information from output measurements
becomes thus a very important aspect in every data-driven control technique. From the earliest works
by Kalman [103–105] and by Luenberger [137–140], it was clear that certain dynamical systems allow for
the extraction of this information from the measured output. Since then, a great number of observers,
namely, dynamical systems able to asymptotically reconstruct the state from measurements, have been
developed (see [26] for a comprehensive review). Implementing an observer when the dynamics of
the system is uncertain increases significantly the challenges in its design. In the so-called adaptive
observers, the proposed solution is to leverage canonical forms in which a limited number of dynamics
parameters are updated by a suitable update law, at first considering SISO plants [48, 111, 135, 136] and
then passing to the MIMO framework [5, 97, 163, 230]. Among these works, [5] is particularly interesting
since it presents an adaptive observer which satisfy the previously mentioned criteria design, namely,
neither model knowledge or an update law are necessary for achieving convergence to a nonminimal
representation of the state.
Once clarified how to extract full-state information from the collected data, several fields such as system
identification [123], adaptive control [98] and, more recently, reinforcement learning [202] proposed
algorithm to use it in different ways. Recently, inspired by the results in [40], the dominant paradigm in
data-driven control has become to compute controllers directly from data using linear matrix inequalities
(LMIs) or other optimization problems, without even requiring an intermediate identification step [62].
In this work, we focus on LMI-based methods for the stabilization of continuous-time linear time-
invariant (LTI) systems.
Fundamental contributions to data-driven control of discrete-time systems include [62] and [212],
which introduced two distinct data-based LMI formulations for state-feedback stabilization. These
methodologies have since been used to address the stabilization of bilinear systems [31], linear time-
varying systems [166], and the linear quadratic regulator problem [62], also accounting for the effects of
noise [63, 68]. The integration of partial model knowledge into these approaches was explored in [24],
and in [215, 216] the authors study how to give probabilistic guarantees on exploration and robust
stabilization. Moreover, necessary and sufficient conditions for data informativity have been thoroughly
investigated [214].
In the continuous-time scenario, the discrete-time state-feedback stabilization paradigm can be recovered
via suitable sampling techniques. However, this comes at the cost of requiring samples of the state
derivatives [62], causing robustness issues in the presence of noise. In [25], LMIs inspired by [212]
were derived for the design of a stabilizing gain with non-periodic sampling and noisy state-derivative
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estimates. Similarly, derivative estimates were employed in [146], which proposed quadratic matrix
inequalities for stabilizing linear parameter-varying systems in both discrete and continuous time.
Recent contributions include the study of the impact of sampling on data informativity [72] and the
stabilization of continuous-time switched and constrained systems [30].
To avoid differentiation in the state-feedback scenario, [61] proposed to construct datasets based on
integrals and temporal differences of the available signals. To the best of the authors’ knowledge, no
other algorithm in the continuous-time literature completely removes the need for state derivatives.
Furthermore, no output-feedback approach has been developed thus far, where the sensitivity to noise
is even more pronounced due to the need for multiple differentiations.

III.2 Problem setup

III.2.1 Preliminaries: some geometric properties of linear systems

The solutions of ΠΛ = 𝐴Π

Consider the square matrices 𝐴 ∈ R𝑛×𝑛,Λ ∈ R𝑚×𝑚 Given any similarity transformations 𝑈 ∈
R𝑛×𝑛, 𝑉 ∈ R𝑚×𝑚 which bring 𝐴,Λ into their Jordan forms 𝐴̃ and Λ̃, namely

𝐴 = 𝑈𝐴̃𝑈−1

Λ = 𝑉Λ̃𝑉−1,
(III.1)

all solutions Π ∈ R𝑛×𝑚 to the equation ΠΛ = 𝐴Π are given by [76, Pag. 219]

Π = 𝑈Π̃𝑉−1, (III.2)

where Π̃ can be divided in blocks

Π̃ =


Π̃11 . . . Π̃1𝑣

. . . . . . . . .

Π̃𝑢1 . . . Π̃𝑢𝑣

 (III.3)

with 𝑢, 𝑣 ∈ N the number of Jordan blocks in 𝐴,Λ. By choosing the same ordering for the eigenvalues
of 𝐴 and Λ given by the chosen Jordan forms 𝐴̃, Λ̃, we denote the 𝑖−th eigenvalue of 𝐴 as 𝜆𝐴

𝑖
(and the

same for Λ). Each block Π̃𝑖 𝑗 in (III.3) is zero if 𝜆𝐴
𝑖
≠ 𝜆Λ

𝑗
. In case 𝜆𝐴

𝑖
= 𝜆Λ

𝑗
, Π̃𝑖 𝑗 is given by

Π̃𝑖 𝑗 =


𝑎 𝑏 𝑐 𝑑

0 𝑎 𝑏 𝑐

0 0 𝑎 𝑏

0 0 0 𝑎


∈ R𝑛𝑖×𝑛 𝑗 , (III.4)

where𝑛𝑖 , 𝑛 𝑗 are the algebraic multiplicity of eigenvalues𝜆𝐴
𝑖
= 𝜆Λ

𝑗
in that Jordan block, and𝑎, 𝑏, 𝑐, 𝑑, . . . ∈

R are free parameters whose number is determined by min(𝑛𝑖 , 𝑛 𝑗). In case 𝑛𝑖 ≠ 𝑛 𝑗 , the blocks may
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have the rectangular forms

Π̃𝑖 𝑗 =


𝑎 𝑏 𝑐

0 𝑎 𝑏

0 0 𝑎

0 0 0


, Π̃𝑖 𝑗 =


0 𝑎 𝑏 𝑐

0 0 𝑎 𝑏

0 0 0 𝑎

 . (III.5)

A Jordan controllability decomposition for (Λ, ℓ)

Given (Λ, ℓ) controllable, there exists a similarity transform𝑉 [95, Example 3.4] such that

Λ = 𝑉Λ̃𝑉−1, ℓ = 𝑉


𝑒𝑛Λ1
. . .

𝑒𝑛Λ𝑣

 , (III.6)

where Λ̃ is in Jordan form and where each 𝑒𝑛Λ
𝑖
∈ R𝑛𝑖 is a vector of zeros but for a 1 in the last entry,

with 𝑛𝑖 the algebraic multiplicity of 𝜆𝑖 . Notice that there is a row correspondence between each 𝑖−th
Jordan block of Λ̃ and the 𝑖−th vector 𝑒𝑛𝐴

𝑖
, namely, for all 𝑖 = 1, . . . , 𝑢



𝜆Λ
𝑖

1 . . . 0

0
. . .

. . . . . .

. . . . . .
. . . 1

0 . . . 0 𝜆Λ
𝑖


⇐⇒


0

. . .

. . .

1


, (III.7)

where 𝑢 is the number of distinct eigenvalues in Λ (and also the number of Jordan blocks, since Λ is
cyclic [228, Pag. 15] being (Λ, ℓ) controllable).

How is controllability modified by output injection?

Since, in the subsequent discussion, we will often deal with output injections and feedback gains, it
is interesting to study how the controllability properties of a pair (𝐴, 𝑏) are influenced by an output
injection 𝜓𝑐⊤. More specifically, consider 𝐴 ∈ R𝑛×𝑛, 𝑏, 𝑐 ∈ R𝑛 such that (𝑐⊤, 𝐴) is observable. We
have the following result.

Lemma III.1. Let (𝑐⊤, 𝐴) observable with 𝐴 ∈ R𝑛×𝑛, 𝑐 ∈ R𝑛. Choose any symmetric set of 𝑛 complex
numbers 𝜎★. Choose 𝜓 ∈ R𝑛 such that 𝜎(𝐴 − 𝜓𝑐⊤) = 𝜎★. Then,

i) for all 𝜆 ∈ 𝜎★ ∩ 𝜎(𝐴), rank
[
𝐴 − 𝜓𝑐⊤ − 𝜆𝐼 𝑏

]
= rank

[
𝐴 − 𝜆𝐼 𝑏

]
ii) for all 𝜆 ∈ 𝜎★ \ 𝜎(𝐴), rank

[
𝐴 − 𝜓𝑐⊤ − 𝜆𝐼 𝜓

]
= 𝑛.

P
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The proof of Lemma III.1 is provided in Appendix V.5.1.
Trivially, Lemma III.1 says that if 𝜎★ ∩ 𝜎(𝐴) = ∅ then (𝐴 − 𝜓𝑐⊤, 𝜓) is controllable. If this is not the
case, if (𝐴, 𝑏) is stabilizable (controllable), then (𝐴 − 𝜓𝑐⊤, [𝑏 𝜓]) is stabilizable (controllable).

III.2.2 Problem statement: gazing the state of a linear system

Consider a continuous-time linear time-invariant system in the form

¤𝑥 = 𝐴𝑥 + 𝐵𝑦

𝑦 = 𝐶𝑥
(III.8)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the control input, 𝑦 ∈ R𝑝 is the output, 𝐴 ∈ R𝑛×𝑛 is the state
matrix, 𝐵 ∈ R𝑛×𝑚 is the input matrix, while𝐶 ∈ R𝑝×𝑛 is the output matrix.
Given the dynamical system (III.8), consider an auxiliary system in the form

¤𝜁 = 𝒜𝜁 +ℒ𝑦 +ℬ𝑢, (III.9)

with state 𝜁 ∈ R𝑧 and system matrices 𝒜 ∈ R𝑧×𝑧 , ℬ ∈ R𝑧×𝑚, ℒ ∈ R𝑧×𝑝 , driven by the same input
and output of system (III.8).

Definition III.1. We say system (III.9) is a gazer of system (III.8) if it satisfies the following requirements.

i) Submersion: There exists a linear surjective map Π : R𝑧 → R𝑛 such that, for all 𝑥(0) ∈ R𝑛,
there exists 𝜁 (0) ∈ R𝑧 for which

𝑥(𝑡) = Π𝜁 (𝑡) (III.10)

for all 𝑡 ≥ 0 and for any input signal u ∈ C∞
𝑏
(R𝑚) entering dynamics (III.8) and (III.9). Notice

that pre-multiplication of both sides of equation (III.10) by𝐶 defines a map 𝒞 : R𝑧 → R𝑝 which
satisfies

𝒞 = 𝐶Π (III.11)

for which, if 𝑥(𝑡) = Π𝜁 (𝑡), then 𝑦(𝑡) = 𝒞𝜁 (𝑡). In other words, any trajectory of the plant (III.8)
is represented by a trajectory of the gazer.

ii) Attractivity: For any 𝑥(0) ∈ R𝑛, 𝜁 (0) ∈ R𝑧 and u ∈ C∞
𝑏
(R𝑚), it holds

lim
𝑡→∞

|Π𝜁 (𝑡) − 𝑥(𝑡) | = 0. (III.12)

In other words, any trajectory of the gazer converges in time to a trajectory representation of the
current plant trajectory.
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iii) Stabilizability: The map 𝒞 in (III.11) defines the closed-loop system

¤𝜁 = (𝒜 +ℒ𝒞)𝜁 +ℬ𝑢

𝑦 = 𝒞𝜁 .
(III.13)

We want that, under stabilizability or controllability of the true pair (𝐴, 𝐵), at least stabilizability
is preserved for the pair (𝒜 +ℒ𝒞,ℬ).

K

When we say that a gazer is “in filter form", we refer to the dynamical system (III.9) driven by the plant
output 𝑦. When we say that a gazer is “in feedback form", we refer to the dynamical system (III.13). Since
in the framework in which we are interested we have little or no knowledge of the true system matrices
𝐴, 𝐵, 𝐶, a property that we seek for the design of 𝒜,ℬ,ℒ is their independence on the knowledge of
𝐴, 𝐵, 𝐶. Namely, we want to implement the update law (III.9) by requiring only the measurements of
𝑦 and 𝑢 and designing 𝒜,ℬ,ℒ a priori, leveraging the existence of the unknown -but unnecessary-
map 𝒞 (which is conditioned by the existence of the map Π) to match the two dynamical systems.
Furthermore, another desirable feature is the possibility of choosing 𝑧 without the exact knowledge of
𝑛. A few observations are in order.

Remark III.1. Full row rankess of Π and 𝑧 ≥ 𝑛 are necessary conditions to fulfill the first requirement.
Given the linearity of the framework, the map Π defines a submersion between the trajectories of the
gazer (III.9) and the trajectories of system (III.8). ♦

Remark III.2. The stabilizability requirement ensures that the internal dynamics of the filter system
are stable (if not controllable). In other words, attractivity ensures that the information in 𝑥(𝑡) is
contained also in 𝜁 (𝑡) for any initialization; in addition to this we require that, if the plant possesses
good controllability properties, then the filter (III.9) must not blow up. ♦

Remark III.3. Differently from an observer, we are not interested in finding the true plant trajectory
𝑥(𝑡), we are just interested in reaching a representation 𝜁 (𝑡) of that trajectory. Differently from adaptive
observer, a gazer does not require any additional adaptation law nor persistent excitation of 𝜁 (𝑡) to
reach this representation. Adaptive laws may be implemented to obtain an estimate of the output map
𝒞; however, we will show in Section III.4 that this is not a necessary step for control purposes. ♦

III.3 Gazer design for LTI systems

III.3.1 Sufficient criterias for the design of a gazer

The submersion problem

Consider the matrix representation of Π defined in (III.10). Pre-multiplying by Π the equation (III.9),
and using (III.10) - (III.11), we have that any Π satisfying the submersion requirement satisfies the
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following system of matrix equations


Π(𝒜 +ℒ𝒞) = 𝐴Π

𝒞 = 𝐶Π

Πℬ = 𝐵.

(III.14)

Indeed, notice how these equations are similar - but not the same - as those arising in classical observer
design [140, Eqns. (4), (16)]. The theoretical difference consists in directly looking for a surjective
map Π : 𝜁 ↦→ 𝑥 instead of looking for an injective𝑇 : 𝑥 ↦→ 𝜁 and then left-inverting it. Having a clear
understanding of the practical differences between the two approaches will be the subject of future
work; however, equations of the type (III.14) seems to pose less constraints on the design of the input
matrix ℬ. In the next lemma, we characterize a necessary condition for solving (III.14) for a full rank Π
which already gives insight on some properties of the pair (𝒜,ℒ).

Lemma III.2. Any full rank solution to (III.14) is such that 𝜎(𝐴) ⊆ 𝜎(𝒜 +ℒ𝒞). P

Proof. The proof (by contraposition) is straightforward by recalling from Section III.2.1 that, if𝒜+ℒ𝒞

and 𝐴 are in Jordan form, if there exists an eigenvalue 𝜆 ∈ 𝜎(𝐴), 𝜆 ∉ 𝜎(𝒜 +ℒ𝒞) then there is at
least one row of zeros in Π. ∥∥

Lemma III.2 requires the output map 𝒞 to be able to place at least 𝑛 eigenvalues in the correct place
from 𝒜 to 𝒜 +ℒ𝒞. This, in turn, can be achieved only levaraging the controllability properties of
the pair (𝒜,ℒ). In other words, the existence of solutions to equations (III.14) will depend on the
capability of 𝒞 i) to match the eigenvalues 𝐴 - if seen, via ℒ𝒞, as an output injection term-, and ii) to
match the output map (III.11). We conclude this section with the following proposition, which sums
up the discussion (we omit the proof since it is straightforward).

Proposition III.1. Any full rank matrix Π ∈ R𝑛×𝑧 satisfying equations (III.14) solves the submersion
problem, namely, for all 𝑥(0) ∈ R𝑛, there exists 𝜁 (0) ∈ R𝑧 for which 𝑥(𝑡) = Π𝜁 (𝑡) for all 𝑡 ≥ 0 and
for any input signal u ∈ C∞

𝑏
(R𝑚) entering dynamics (III.8) and (III.9). R

Remark III.4. Notice that the existence of a full rank matrix Π ∈ R𝑛×𝑧 satisfying (III.14) can be used
to define a coordinate change

𝜁 ↦−→
[
𝜉

𝜂

]
:=

[
Π

Ψ

]
𝜁, (III.15)

(where the rows in Ψ ∈ R(𝑧−𝑛)×𝑧 are free but linearly independent from those of Π) such that the
gazer is in Kalman observability form:[

¤𝜉
¤𝜂

]
=

[
𝐴 0

𝐴21 𝐴22

] [
𝜉

𝜂

]
+

[
𝐵

𝐵2

]
𝑢

𝑦 = 𝐶𝜉,

(III.16)
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proving that the observable part of the gazer and the original system coincide. This change of coordinates
underlines the presence of an internal model of the plant into the gazer. ♦

The attractivity problem

Next, we consider the attractivity problem. Supposing that a full rank Π satisfying (III.14) exists, we
define the observation error

𝜖 := 𝑥 − Π𝜁, (III.17)

and we obtain that its dynamics, induced by systems (III.8) and (III.9), is given by

¤𝜖 = ¤𝑥 − Π ¤𝜁

= 𝐴𝑥 + 𝐵𝑢 − Π(𝒜𝜁 +ℒ𝐶𝑥 +ℬ𝑢)

= (𝐴 − Πℒ𝐶)𝜖 + (𝐴Π − Π(𝒜 +ℒ𝐶Π))𝜁 + (𝐵 − Πℬ𝑢)

= (𝐴 − 𝐿𝐶)𝜖,

(III.18)

where we have defined 𝐿 := Πℒ. By construction, if Π satisfies the system (III.14), then it solves also
(by substituting the second equation into the first)

Π𝒜 = (𝐴 − 𝐿𝐶)Π

Πℬ = 𝐵.
(III.19)

Since Π is a full row rank solution of (III.19), it holds necessarily that

𝜎(𝐴 − 𝐿𝐶) ⊆ 𝜎(𝒜). (III.20)

From this consideration, we derive the following result (we omit the proof since it follows trivially from
the above discussion).

Proposition III.2. Let a full rank solution Π of (III.14) exist. If 𝒜 is Hurwitz, then the attractivity
problem is solved, namely, for any 𝑥(0) ∈ R𝑛, 𝜁 (0) ∈ R𝑧 and u ∈ C∞

𝑏
(R𝑚), it holds lim𝑡→∞ |Π𝜁 (𝑡) −

𝑥(𝑡) | = 0. R

The stabilizability problem

We start with a brief discussion on why we require only the stabilizability of the pair (𝒜 +ℒ𝒞,ℬ)
(and not its controllability). In fact, one may be interested the estimation of the matrix 𝒞 leveraging
the algebraic relation 𝑦 = 𝒞𝜁 . For this estimation to be successful, persistency of excitation of 𝜁 is in
general required, and it is known that this property can be enforced through an input signal only if the
pair (𝒜 +ℒ𝒞,ℬ) is controllable [161, Lemma 5] (at least, in stable systems).
Nevertheless, we now leverage Remark III.4 to show that the matrix𝒞 can be entirely estimated through
an appropriate initialization of the filters also in absence of controllability (since PE on the full state
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𝜁 is not needed). Consider, for example, an estimate 𝒞̂ ∈ R𝑝×𝑧 which is updated via a gradient
algorithm [98, §4.3.5], namely,

¤̂
𝒞 = (𝑦 − 𝒞̂𝜁)𝜁⊤. (III.21)

Defining the error coordinate 𝒞̃ := 𝒞̂ −𝒞, its dynamics is given by

¤̃
𝒞 = (𝑦 − 𝒞̂𝜁)𝜁⊤

= (𝒞𝜁 − 𝒞̂𝜁)𝜁⊤

= −𝒞̃𝜁 𝜁⊤.

(III.22)

From the decomposition in III.16, notice that if (𝐴, 𝐵) is controllable then any uncontrollable subspace
must lie in ker(Π), and thus also in ker(𝒞), since 𝒞 = 𝐶Π. This means we can always find a full rank
change of coordinates𝑇 ∈ R𝑧×𝑧 such that

𝑇𝜁 =

[
𝜁c

𝜁nc

]
𝒞𝑇−1 =

[
𝒞c 0

]
, (III.23)

where 𝜁c spans the controllable subspace and 𝜁nc the uncontrollable one. Since these subspaces are
orthogonal, we pick𝑇 orthogonal, namely,𝑇−1 = 𝑇⊤, and by post-multiplying (III.22) by𝑇−1, it holds
that

¤̃
𝒞𝑇−1 = −𝒞̃𝜁 𝜁⊤𝑇−1[

¤̃
𝒞c

¤̃
𝒞nc

]
= −𝒞̃𝑇−1𝑇𝜁𝜁⊤𝑇⊤𝑇−⊤𝑇−1

= −
[
𝒞̃c 𝒞̃nc

] [
𝜁c

𝜁nc

] [
𝜁c

𝜁nc

]⊤
𝑇−⊤𝑇−1

= −
[
𝒞̃c 𝒞̃nc

] [
𝜁c

𝜁nc

] [
𝜁c

𝜁nc

]⊤
.

(III.24)

By choosing 𝜁 (0) = 0, it holds 𝜁nc = 0 for all 𝑡 ≥ 0, and thus the gradient update (III.24) becomes

[
¤̃
𝒞c

¤̃
𝒞nc

]
= −

[
𝒞̃c 𝒞̃nc

] [
𝜁c𝜁

⊤
c 0

0 0

]⊤
= −

[
𝒞̃𝑐𝜁c𝜁

⊤
c 0

]
,

(III.25)

which, if 𝒞̂(0) = 0 requires only PE of the controllable 𝜁c(𝑡) to converge to zero. In other words, if
the plant output matrix𝐶 is identifiable, then also 𝒞 must be identifiable.

Remark III.5. Notice furthermore that if the gazer matrices 𝒜,ℒ,ℬ are known by design, and if
𝒞 is successfully estimated, then it is possible to bring the system in Kalman observability form, thus
reconstructing the true state 𝑥 = Π𝜁 (or, at least, a full rank coordinate change of 𝑥). ♦
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We conclude this section with the following sufficient condition to achieve the stabilizability require-
ment.

Proposition III.3. Let a full rank solutionΠ of (III.14) exist. If (𝒜,ℬ) is stabilizable, the stabilizability
problem is solved, namely, if (𝐴, 𝐵) is stabilizable then (𝒜 +ℒ𝒞,ℬ) is stabilizable. R

The proof of Proposition III.3 is given in Appendix V.5.2.
Collecting Propositions III.1, III.2 and III.3, and using them as guidelines for the design of a system
gazer, the main issue that still needs to be solved is an in-depth study of the solvability of the system
of equations (III.14). In the following, we propose two “prototype equations" which will be used to
guarantee the feasibility of the subsequent design of gazers.

III.3.2 Special matrix equations and their solution

The system ΠΛ = 𝐴Π, 𝜃⊤ = 𝑐⊤Π

We consider now a simplified framework, which may be interpreted as (III.14) when the plant is au-
tonomous with a single output. In fact, it is useful to drop (for the moment) the presence of the input
to better understand the importance of the observability properties of (𝑐⊤, 𝐴).
Letting 𝐴,Λ ∈ R𝑛×𝑛 and 𝑐, 𝜃 ∈ R𝑛, we are interested in solving in Π the system of equations

ΠΛ = 𝐴Π

𝜃⊤ = 𝑐⊤Π.
(III.26)

At first, we study under which conditions a solution to the equations (III.26) exists.

Lemma III.3. Let pair (𝑐⊤, 𝐴) be observable, with 𝐴,Λ ∈ R𝑛×𝑛 cyclic and 𝑐, 𝜃 ∈ R𝑛. Then, equations
(III.26) have a solution for any 𝜃 in the unknown Π ∈ R𝑛×𝑛 if and only if 𝐴,Λ are similar. P

The proof of Lemma III.3 is given for its dual Lemma III.5, in Appendix V.5.3.
Notice that, by substituting Λ with 𝒜 +ℒ𝒞, the above lemma underlines the importance of the plant
observability. In fact, since we require 𝜎(𝐴) ⊂ 𝜎(𝒜 +ℒ𝒞) to obtain a full row rank Π (see Lemma
III.2), the map 𝒞 has to be chosen to place the eigenvalues of 𝒜 +ℒ𝒞. Observability of the true plant
ensures that this choice for the output map does not compromise the solvability of the problem - at
least, in the simplified system (III.26).
Next, we prove uniqueness of the solution, and we give an explicit expression for it.

Lemma III.4. If a solution to (III.26) exists, it is unique and it is given by

Π = 𝑂−1
𝑐⊤,𝐴𝑂 𝜃⊤,Λ, (III.27)

where𝑂𝑐⊤,𝐴, 𝑂 𝜃⊤,Λ are the observability matrices of pairs (𝑐⊤, 𝐴) and (𝜃⊤,Λ). P

The proof of Lemma III.4 is given for its dual Lemma III.6, in Appendix V.5.4.
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The system ΠΛ = 𝐴Π, Πℓ = 𝑏

Now, we pass to the dual simplified framework, namely, we drop the requirement to match the output
map and we focus on single-input systems. This analysis is useful to characterize the importance of the
controllability properties of the gazer matrices (𝒜 +ℒ𝒞,ℬ). Letting 𝐴,Λ ∈ R𝑛×𝑛 and 𝑏, ℓ ∈ R𝑛,
we are interested in solving in Π the system of equations

ΠΛ = 𝐴Π

Πℓ = 𝑏.
(III.28)

At first, we study under which conditions a solution to the equations (III.28) exists.

Lemma III.5. Let pair (Λ, ℓ) be controllable, with 𝐴,Λ ∈ R𝑛×𝑛 cyclic and 𝑏, ℓ ∈ R𝑛. Then, equations
(III.28) have a solution for any 𝑏 in the unknown Π ∈ R𝑛×𝑛 if and only if 𝐴,Λ are similar. P

The proof of Lemma III.5 is in Appendix V.5.3.
Notice that, by substitutingΛwith𝒜+ℒ𝒞 and ℓwithℬ, the above lemma underlines the importance
of the controllability properties of the pair (𝒜 + ℒ𝒞,ℬ). In fact, this controllability ensures the
possibility of representing any input entering the plant.
We remark that, whilst similarity of 𝐴,Λ guarantees the existence of a solution to system (III.28) for
any 𝑏, this condition is not necessary for the existence of a solution for some specific 𝑏, and we present
here a counterexample.

Example III.1. Choose the matrices

Λ =

[
2 0

0 0

]
, 𝐴 =

[
1 0

1 2

]
, (III.29)

with 𝑏 = (0, 1) and ℓ = (1, 1). It can be checked that the two spectra are given by 𝜎(𝐴) = {1, 2},
𝜎(Λ) = {0, 2} and

Π =

[
0 0

1 0

]
(III.30)

is a solution to (III.28). ⋄

Next, we prove uniqueness of the solution, and we give an explicit expression for it.

Lemma III.6. If a solution to (III.28) exists, it is unique and it is given by

Π = 𝑅𝐴,𝑏𝑅
−1
Λ,ℓ , (III.31)

where 𝑅𝐴,𝑏, 𝑅Λ,ℓ are the reachability matrices of pairs (𝐴, 𝑏) and (Λ, ℓ). P

The proof of Lemma III.6 is in Appendix V.5.4.
At last, we characterize an interesting set of pairs (𝐴, 𝑏) which require the similarity of two matrices
Λ, 𝐴 for which similarity is necessary.
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Lemma III.7. Let the pair (𝐴, 𝑏) in Lemma III.5 be controllable. The system (III.28) has a solution if
and only if 𝐴,Λ are similar. Furthermore, the unique solution is full rank. P

The proof of Lemma III.7 is in Appendix V.5.5.

Remark III.6. In case Λ ∈ R𝑟×𝑟 , ℓ ∈ R𝑟 with 𝑟 > 𝑛, in order to guarantee the existence of a solution
to (III.28) it is sufficient to ask for 𝜎(𝐴) ⊂ 𝜎(Λ). The expression of the solution is then modified into

Π =

[
𝑏 𝐴𝑏 . . . 𝐴𝑟−1𝑏

]
𝑅Λ,ℓ . (III.32)

♦

In the following, we will show how to combine these result to propose design gazers at first for the SISO
case, and then for the MIMO case.

III.3.3 A gazer for SISO systems

We begin the discussion by showing how filters which have classically been seen as adaptive observers
(see, e.g., [162, Eq. (4.29)] or [5, Eq. (6)] for a more specific design) do actually implement gazers in
filter form. Consider the SISO system

¤𝑥 = 𝐴𝑥 + 𝑏𝑢

𝑦 = 𝑐⊤𝑥,
(III.33)

with 𝑥 ∈ R𝑛 and scalar input 𝑢 and output 𝑦. Pick any Λ ∈ R𝑟×𝑟 , ℓ ∈ R𝑟 with 𝑟 ≥ 𝑛 and such that
the pair (Λ, ℓ) is controllable. Consider the gazer in filter form with state 𝜁 = (𝜁𝑦 , 𝜁𝑢) ∈ R2𝑟 and
dynamics given by

¤𝜁𝑦 = Λ𝜁𝑦 + ℓ𝑦
¤𝜁𝑢 = Λ𝜁𝑢 + ℓ𝑢.

(III.34)

In other words, the matrices 𝒜,ℬ,ℒ of the gazer (III.9) are

𝒜 =

[
Λ 0

0 Λ

]
∈ R2𝑟×2𝑟 , ℬ =

[
0

ℓ

]
∈ R2𝑟 , ℒ =

[
ℓ

0

]
∈ R2𝑟

𝒞 =

[
𝜃⊤𝑦 𝜃⊤𝑢

]
∈ R2𝑟 , (III.35)

where 𝒜,ℬ,ℒ are known and 𝒞 is unknown. We are now interested in finding a full row rank matrix
Π ∈ R𝑛×2𝑟 satisfying equations (III.14).

Theorem III.1. Let pairs (Λ, ℓ) be controllable and (𝑐⊤, 𝐴) observable, with 𝐴 ∈ R𝑛×𝑛, 𝑏, 𝑐 ∈ R𝑛 and
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Λ ∈ R𝑟×𝑟 , ℓ ∈ R𝑟 , 𝑟 ≥ 𝑛. Consider 𝒜,ℬ,ℒ given in (III.35), and the equations (III.14), namely,

Π

[
Λ + ℓ𝜃⊤𝑦 ℓ𝜃⊤𝑢

0 Λ

]
= 𝐴Π, Π

[
0

ℓ

]
= 𝑏[

𝜃⊤𝑦 𝜃⊤𝑢

]
= 𝑐⊤Π,

(III.36)

in the unknowns Π = [Π𝑦 Π𝑢] ∈ R𝑛×2𝑟 . Let 𝑙 ∈ R𝑛 be a vector for which 𝜎(𝐴 − 𝑙𝑐⊤) ⊆ 𝜎(Λ); then,

Π𝑦 =

[
𝑙 (𝐴 − 𝑙𝑐⊤)𝑙 . . . (𝐴 − 𝑙𝑐⊤)𝑟−1𝑙

]
𝑅−1
Λ,ℓ

Π𝑢 =

[
𝑏 (𝐴 − 𝑙𝑐⊤)𝑏 . . . (𝐴 − 𝑙𝑐⊤)𝑟−1𝑏

]
𝑅−1
Λ,ℓ

(III.37)

is a solution of equation (III.36). Furthermore, if (𝐴, 𝑏) is controllable, or if 𝜎(Λ) ∩ 𝜎(𝐴) = ∅, Π is of
full row rank. Q

The proof of Theorem III.1 is in Appendix V.5.6.
Notice that Λ, ℓ are known a priori and no system knowledge is required for their design (but for an
upper bound on the dimension 𝑛 of the system). Given Propositions III.2 and III.3, if Λ is also Hurwitz
then 𝒜,ℬ,ℒ in (III.35) implement a gazer of (III.33) as per Definition III.1.
Algorithm 1 recaps the design procedure described so far.

III.3.4 A gazer for MIMO systems

To the authors’ knowledge, the following design for MIMO system is new. An example of a similar, but
less generic, design, can be found in [5, Eqns. (8) − (9)]. Consider the MIMO system

¤𝑥 = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥,
(III.40)

with 𝑥 ∈ R𝑛, input 𝑢 ∈ R𝑚 and output 𝑦 ∈ R𝑝 . Pick any Λ ∈ R𝑟×𝑟 , ℓ ∈ R𝑟 with 𝑟 ≥
𝑛 and such that the pair (Λ, ℓ) is controllable. Consider the gazer in filter form with state 𝜁 =

(𝜁1𝑦 , . . . , 𝜁
𝑝
𝑦 , 𝜁

1
𝑢 , . . . , 𝜁

𝑚
𝑢 ) ∈ R(𝑝+𝑚)𝑟 and dynamics given by

¤𝜁 𝑖𝑦 = Λ𝜁 𝑖𝑦 + ℓ𝑦𝑖 , 𝑖 = 1, . . . , 𝑝

¤𝜁 𝑗𝑢 = Λ𝜁
𝑗
𝑢 + ℓ𝑢 𝑗 , 𝑗 = 1, . . . , 𝑚.

(III.41)
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Algorithm 1 Gazer design for SISO systems
Plant

Dynamics:

¤𝑥 = 𝐴𝑥 + 𝑏𝑢
𝑦 = 𝑐⊤𝑥.

(III.38)

System matrices:

- 𝐴 ∈ R𝑛×𝑛, 𝑏, 𝑐 ∈ R𝑛,

- (𝑐⊤, 𝐴) observable.

Gazer construction
Filters dimension: 𝑟 ≥ 𝑛
Filters matrices:

- Λ ∈ R𝑟×𝑟 , ℓ ∈ R𝑟 ,

- Λ Hurwitz,

- (Λ, ℓ) controllable.

Gazer implementation:
Filters state: 𝜁 = (𝜁𝑦 , 𝜁𝑢) ∈ R2𝑟

Initialization: 𝜁 (0) ∈ R2𝑟

Dynamics:

¤𝜁𝑦 = Λ𝜁𝑦 + ℓ𝑦
¤𝜁𝑢 = Λ𝜁𝑢 + ℓ𝑢.

(III.39)

In other words, the matrices 𝒜,ℬ,ℒ of (III.9) are given by

𝒜 := diag(Λ, . . . ,Λ) ∈ R(𝑝+𝑚)𝑟×(𝑝+𝑚)𝑟

ℬ :=

[
0𝑛𝑝×𝑚

diag(ℓ, . . . , ℓ)

]
∈ R(𝑝+𝑚)𝑟×𝑚

ℒ :=

[
diag(ℓ, . . . , ℓ)

0𝑛𝑚×𝑝

]
∈ R(𝑝+𝑚)𝑟×𝑝

𝒞 :=


𝜃
11,⊤
𝑦 . . . 𝜃

1𝑝,⊤
𝑦 𝜃

11,⊤
𝑢 . . . 𝜃

1𝑚,⊤
𝑢

... . . .
...

... . . .
...

𝜃
𝑝1,⊤
𝑦 . . . 𝜃

𝑝𝑝,⊤
𝑦 𝜃

𝑝1,⊤
𝑢 . . . 𝜃

𝑝𝑚,⊤
𝑢

 ∈ R𝑝×(𝑝+𝑚)𝑟 .

(III.42)

We are now interested in finding a full row rank matrix Π ∈ R𝑛×(𝑝+𝑚)𝑟 satisfying equations (III.14).

Theorem III.2. Let pairs (Λ, ℓ) be controllable and (𝐶, 𝐴) observable, with 𝐴 ∈ R𝑛×𝑛, 𝐵 = [𝑏1, . . . , 𝑏𝑚] ∈
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R𝑛×𝑚, 𝐶 ∈ R𝑝×𝑛 and Λ ∈ R𝑟×𝑟 , ℓ ∈ R𝑟 , 𝑟 ≥ 𝑛. Consider 𝒜,ℬ,ℒ, given in (III.42), and the equa-
tions (III.14) in the unknowns

Π =

[
Π1
𝑦 . . . Π

𝑝
𝑦 Π1

𝑢 . . . Π𝑚𝑢

]
∈ R𝑛×(𝑝+𝑚)𝑟 , (III.43)

Π𝑖𝑦 ∈ R𝑛×𝑟 ,Π 𝑗
𝑢 ∈ R𝑛×𝑟 for 𝑖 = 1, . . . , 𝑝 and 𝑗 = 1, . . . , 𝑚. Let 𝐿 = [𝑙1, . . . , 𝑙𝑝] ∈ R𝑛×𝑝 be a vector

for which 𝐴 − 𝐿𝐶 is cyclic and 𝜎(𝐴 − 𝐿𝐶) ⊆ 𝜎(Λ); then

Π𝑖𝑦 =

[
𝑙𝑖 (𝐴 − 𝐿𝐶)𝑙𝑖 . . . (𝐴 − 𝐿𝐶)𝑟−1𝑙𝑖

]
𝑅−1
Λ,ℓ , 𝑖 = 1, . . . , 𝑝,

Π
𝑗
𝑢 =

[
𝑏 𝑗 (𝐴 − 𝐿𝐶)𝑏 𝑗 . . . (𝐴 − 𝐿𝐶)𝑟−1𝑏 𝑗

]
𝑅−1
Λ,ℓ , 𝑗 = 1, . . . , 𝑚,

(III.44)

is a solution of equation (III.14). Furthermore, if (𝐴, 𝐵) is controllable, or if 𝜎(Λ) ∩ 𝜎(𝐴) = ∅, Π is of
full row rank. Q

The proof of Theorem III.2 is in Appendix V.5.7.
Also in this case, Λ, ℓ are known a priori and no system knowledge is required for their design (but
for an upper bound on the dimension 𝑛 of the system). Given Propositions III.2 and III.3, if Λ is also
Hurwitz then 𝒜,ℬ,ℒ in (III.42) implement a gazer of (III.40) as per Definition III.1.
We conclude with a recap of the design procedure described so far in Algorithm 2.

III.4 Robust filtering for data-driven LMIs

We now show how to leverage the previously studied gazers to solve control problems in a purely data-
driven way. Although the next sections will deal with both state and output feedback, for convenience,
we illustrate the problem for the state-feedback scenario. Consider a linear time-invariant system of the
form

¤𝑥 = 𝐴𝑥 + 𝐵𝑢, (III.47)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the control input, and 𝐴 and 𝐵 are unknown matrices of
appropriate dimensions. For a given initial condition 𝑥(0) and some input 𝑢(𝑡), suppose that the
resulting input-state trajectory of (III.47) has been collected over an interval [0, 𝑇], with𝑇 > 0. More
specifically, suppose that the continuous-time dataset

(𝑢(𝑡), 𝑥(𝑡)), ∀𝑡 ∈ [0, 𝑇], (III.48)

is available. We are interested in finding an algorithm that uses (III.48) to compute a stabilizing controller
for (III.47), without any prior knowledge of 𝐴 and 𝐵. We present some preliminary notions related to
the existing approaches in the literature. To recover the results of data-driven stabilization of discrete-
time systems, algorithms developed in a continuous-time setting are based on collecting a finite batch
of data of 𝑢, 𝑥, and ¤𝑥 with a suitable sampling mechanism [25, 62, 146]. Given a fixed sampling time
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Algorithm 2 Gazer for MIMO systems
Plant

Dynamics:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥.

(III.45)

System matrices:

- 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑝×𝑚,

- (𝐶, 𝐴) observable.

Gazer construction
Filters dimension: 𝑟 ≥ 𝑛
Filters matrices:

- Λ ∈ R𝑟×𝑟 , ℓ ∈ R𝑟 ,

- Λ Hurwitz,

- (Λ, ℓ) controllable.

Gazer implementation:
Filters state: 𝜁 = (𝜁1𝑦 , . . . , 𝜁

𝑝
𝑦 , 𝜁

1
𝑢 , . . . , 𝜁

𝑚
𝑢 ) ∈ R(𝑝+𝑚)𝑟

Initialization: 𝜁 (0) ∈ R(𝑝+𝑚)𝑟

Dynamics:

¤𝜁 𝑖𝑦 = Λ𝜁 𝑖𝑦 + ℓ𝑦𝑖 , 𝑖 = 1, . . . , 𝑝

¤𝜁 𝑗𝑢 = Λ𝜁
𝑗
𝑢 + ℓ𝑢 𝑗 , 𝑗 = 1, . . . , 𝑚.

(III.46)

𝑇s := 𝑇/𝑁 , with 𝑁 ∈ N, the following batch is obtained:

𝑈 :=
[
𝑢(0) 𝑢(𝑇s) · · · 𝑢((𝑁 − 1)𝑇s)

]
∈ R𝑚×𝑁

𝑋 :=
[
𝑥(0) 𝑥(𝑇s) · · · 𝑥((𝑁 − 1)𝑇s)

]
∈ R𝑛×𝑁

¤𝑋 :=
[
¤𝑥(0) ¤𝑥(𝑇s) · · · ¤𝑥((𝑁 − 1)𝑇s)

]
∈ R𝑛×𝑁 .

(III.49)

We introduce a key definition used in this chapter.

Definition III.2. A data batch of the form (III.49) is excited if

rank

[
𝑋

𝑈

]
= 𝑛 + 𝑚. (III.50)

K
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Provided that the gathered data (III.49) are excited, they can be used to construct a stabilizing feedback
law of the form 𝑢 = 𝐾𝑥 for system (III.47). In particular, it is possible to make the closed-loop system
matrix 𝐴 + 𝐵𝐾 is Hurwitz by choosing

𝐾 = 𝑈𝑄(𝑋𝑄)−1, (III.51)

where𝑄 ∈ R𝑁×𝑛 is any solution of the following LMI:
¤𝑋𝑄 +𝑄⊤ ¤𝑋⊤ < 0

𝑋𝑄 = 𝑄⊤𝑋⊤ > 0.
(III.52)

This result follows mutatis mutandis from the discrete-time case; see [62, Thms. 2 and 3], [214, Thm.
17]. We remark that, in the discrete-time scenario, only the data 𝑋 and𝑈 are needed to compute𝐾 [62].
Instead, the continuous-time framework requires ¤𝑋 , which cannot be reliably inferred from (III.48) if
the data are corrupted by noise. Also, even in a noise-free scenario, approximation via finite differences
leads to persistent errors in the dataset.
The direct data-driven control framework introduced in this chapter addresses the above issue. In
particular, we define a new methodology that does not require the measurement of ¤𝑥. The results are
presented both in the state-feedback scenario of system (III.47) and the case of output feedback for
SISO systems.

III.4.1 Filters and LMIs for state-feedback

In this section, we are interested in designing a stabilizing controller for system (III.47) under the
following assumption.

Assumption III.1. The pair (𝐴, 𝐵) is controllable.

To avoid the central challenge of having to measure ¤𝑥, we propose a strategy that involves the design of a
filter of 𝑥 and 𝑢. This filter is not used to approximate ¤𝑥 but to reconstruct a non-minimal realization
of the plant (III.47) whose state and state derivative are accessible. Thus, our approach avoids the
robustness issues originating from the computation of derivatives from noisy data.

Non-Minimal Realization of the Dynamics

Consider the following dynamical system, having input 𝑢 and output 𝜉 ∈ R𝑛:

¤𝜁 =

[
𝐴 𝐵

0 −𝜆𝐼𝑚

]
𝜁 +

[
0

𝛾𝐼𝑚

]
𝑢

𝜉 =
1
𝛾

[
𝐴 + 𝜆𝐼𝑛 𝐵

]
𝜁,

(III.53)
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where 𝜁 ∈ R𝑛+𝑚 is the state and 𝜆 and 𝛾, with 𝛾 ≠ 0, are constant scalar tuning gains. System (III.53)
will be proved to be a gazer in feedback form obtained by compactly rewriting the filter form

¤𝜁 = −𝜆𝜁 + 𝛾
[
𝜉

𝑢

]
(III.54)

together with the output map

𝜉 =
1
𝛾

[
𝐴 + 𝜆𝐼𝑛 𝐵

]
𝜁 . (III.55)

This filter, for 𝜆 > 0, acts as a low-pass filter of 𝜉 and 𝑢. The relationship between systems (III.47) and
(III.53) is provided in the next lemma.

Lemma III.8. Under Assumption III.1, for all 𝜆 and all 𝛾 ≠ 0, the matrix Π = 𝛾−1 [𝐴 + 𝜆𝐼 𝐵] is a
full rank solution of the gazer equations (III.14) between the plant (III.47) and the system (III.53). P

The proof of Lemma III.8 is provided in Appendix V.5.8.
In other words, Lemma III.8 states that all input-state trajectories of (III.47) are input-output trajecto-
ries of (III.53). It is useful to recognize the structural controllability properties of system (III.53), which
are stronger than simple stabilizability.

Lemma III.9. Under Assumption III.1, for all 𝜆 and all 𝛾 ≠ 0, the pair([
𝐴 𝐵

0 −𝜆𝐼𝑚

]
,

[
0

𝛾𝐼𝑚

])
(III.56)

is controllable. P

The proof of Lemma III.9 is provided in Appendix V.5.9.

Controller Design

The proposed procedure, described in Algorithm 3, is based on the following key ideas:

i) Consider an input-state trajectory of system (III.47) of the form (III.57) (in the following page).
Choose gains 𝜆 and 𝛾 such that, in addition to 𝛾 ≠ 0 as before, also 𝜆 > 0. By Lemma III.8,
data (III.57) can be seen as an input-output trajectory of system (III.53), with 𝜉 (𝑡) = 𝑥(𝑡).

ii) Since (III.53) is equivalent to (III.54), its behavior is simulated with (III.58), which is a low-pass
filter of the data due to 𝜆 > 0 and can be interpreted as a gazer of (III.53) (see Definition III.1).

iii) The estimated non-minimal state 𝜁 and its derivative ¤̂𝜁 can be used for a data-driven control
strategy that exploits the realization (III.53) to stabilize the original plant (III.47).
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Algorithm 3 Control Design from Input-State Data
Initialization:

Dataset:
(𝑢(𝑡), 𝑥(𝑡)), ∀𝑡 ∈ [0, 𝑇] . (III.57)

Gains for tuning: 𝜆 > 0, 𝛾 ≠ 0,𝑇s > 0.
Data Batches Construction:

Filter of the data:
¤̂𝜁 (𝑡) = −𝜆𝜁 (𝑡) + 𝛾

[
𝑥(𝑡)
𝑢(𝑡)

]
, ∀𝑡 ∈ [0, 𝑇] . (III.58)

Initialization: 𝜁 (0) = 0.
Sampled data batches:

𝑈 :=
[
𝑢(0) 𝑢(𝑇s) · · · 𝑢((𝑁 − 1)𝑇s)

]
∈R𝑚×𝑁

𝑍 :=
[
𝜁 (0) 𝜁 (𝑇s) · · · 𝜁 ((𝑁 − 1)𝑇s)

]
∈R(𝑛+𝑚)×𝑁

¤𝑍 :=
[
¤̂𝜁 (0) ¤̂𝜁 (𝑇s) · · · ¤̂𝜁 ((𝑁 − 1)𝑇s)

]
∈R(𝑛+𝑚)×𝑁

𝐸 :=
[
𝑥(0) 𝑒−𝜆𝑇s𝑥(0) · · · 𝑒−𝜆(𝑁−1)𝑇s𝑥(0)

]
∈R𝑛×𝑁 .

(III.59)

Controller design:
LMI: find𝑄 ∈ R𝑁×(𝑛+𝑚) such that:

(
¤𝑍 −

[
𝛾𝐼𝑛
0

]
𝐸

)
𝑄 +𝑄⊤

(
¤𝑍 −

[
𝛾𝐼𝑛
0

]
𝐸

)⊤
< 0

𝑍𝑄 = 𝑄⊤𝑍⊤ > 0.
(III.60)

Gain computation:
𝐾 = 𝑈𝑄(𝑍𝑄)−1. (III.61)

Control law (arbitrary initial conditions):

¤̂𝜁c = −𝜆𝜁c + 𝛾
[
𝑥

𝑢

]
, 𝑢 = 𝐾𝜁c. (III.62)

Notice that, since 𝐴 and𝐵 are unknown, 𝜁 (0) cannot be chosen such that𝑥(0) = 𝛾−1
[
𝐴 + 𝜆𝐼𝑛 𝐵

]
𝜁 (0).

In other words, as it will be formalized later, for a generic initialization of 𝜁 , it will hold that

𝑥(𝑡) ≠ 𝛾−1
[
𝐴 + 𝜆𝐼𝑛 𝐵

]
𝜁 (𝑡) ∀𝑡 ∈ [0, 𝑇] . (III.63)

Therefore, the algorithm needs to account for the fact that the filtrations 𝜁 (𝑡) converge only asymptoti-
cally to trajectories 𝜁 (𝑡) representation of the true state trajectories 𝑥(𝑡), and that𝑇 may not be a degree
of freedom to reduce the error between 𝜁 (𝑡) and 𝜁 (𝑡). This type of problem is not new to the field of
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signal processing, and we deal with it introducing a “denoising" term in the LMIs (III.60). We now
make the above arguments precise. Consider the interconnection of plant (III.47) and filter (III.58),
having states (𝑥, 𝜁). To characterize the filter transient, define the mismatch error

𝜖 := 𝑥 − 1
𝛾

[
𝐴 + 𝜆𝐼𝑛 𝐵

]
𝜁, (III.64)

whose evolution can be computed from (III.47), (III.58) as follows:

¤𝜖 = 𝐴𝑥 + 𝐵𝑢 − 1
𝛾

[
𝐴 + 𝐼𝑛 𝐵

] (
−𝜆𝜁 + 𝛾

[
𝑥

𝑢

])
= −𝜆𝑥 + 𝜆

𝛾

[
𝐴 + 𝐼𝑛 𝐵

]
𝜁 = −𝜆𝜖 .

(III.65)

Using the change of coordinates (III.64), the interconnection can be represented with states (𝜖, 𝜁) as:

¤𝜖 = −𝜆𝜖

¤̂𝜁 =

[
𝐴 𝐵

0 −𝜆𝐼𝑚

]
︸        ︷︷        ︸

=:𝐹

𝜁 +
[
0

𝛾𝐼𝑚

]
︸ ︷︷ ︸
=:𝐺

𝑢 +
[
𝛾𝐼𝑛

0

]
︸︷︷︸
=:𝐷

𝜖, (III.66)

where the 𝜁 -subsystem is a system with the same structure of (III.53) and subject the perturbation 𝐷𝜖 ,
which converges to 0 exponentially.
From (III.64) and choosing 𝜁 (0) = 0 for simplicity, it holds that 𝜖 (0) = 𝑥(0). Thus, 𝜖 (𝑡) = 𝑒−𝜆𝑡𝑥(0)
can be computed for every 𝑡 ∈ [0, 𝑇]. The proposed procedure involves collecting 𝑁 samples of
𝑢, 𝜁 , ¤̂𝜁 , and 𝜖 as shown in (III.59), then solving LMI (III.60) and computing a control gain 𝐾 from
(III.61). The resulting controller (III.62) is a dynamic feedback law that incorporates the filter dynamics.
Furthermore, when (III.62) is used online, its state 𝜁c can be initialized arbitrarily. We are ready to
present the main result for Algorithm 3.

Theorem III.3. Consider Algorithm 3 and let Assumption III.1 hold. Then:

1. LMI (III.60) is feasible if the batch (III.59) is excited, i.e.:

rank

[
𝑍

𝑈

]
= 𝑛 + 2𝑚. (III.67)

2. For any solution𝑄 of (III.60), the gain 𝐾 computed from (III.61) is such that 𝐹 + 𝐺𝐾 is Hurwitz.
As a consequence, the origin (𝑥, 𝜁c) = 0 of the closed-loop interconnection of plant (III.47) and
controller (III.62) is globally exponentially stable.

Q
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Proof. 1): Under Assumption III.1, (𝐹, 𝐺) is controllable by Lemma III.9. Therefore, there exist
matrices 𝑃, 𝐾 satisfying: 

(𝐹 + 𝐺𝐾)𝑃 + 𝑃⊤(𝐹 + 𝐺𝐾)⊤ ≺ 0

𝑃 = 𝑃⊤ ≻ 0.
(III.68)

Given any 𝑃, 𝐾 satisfying (III.68), condition (III.67) implies that there exists a matrix 𝑀𝐾 such that
[62, Thm. 2]: [

𝐼𝑛+𝑚

𝐾

]
=

[
𝑍

𝑈

]
𝑀𝐾 . (III.69)

Notice that ¤𝑍 = 𝐹𝑍 + 𝐺𝑈 + 𝐷𝐸 from (III.66). Then, using (III.69), it holds that:

𝐹 + 𝐺𝐾 =

[
𝐹 𝐺

] [
𝐼𝑛

𝐾

]
=

[
𝐹 𝐺

] [
𝑍

𝑈

]
𝑀𝐾

= ( ¤𝑍 − 𝐷𝐸)𝑀𝐾 .
(III.70)

Combining (III.68) and (III.70), we obtain:
( ¤𝑍 − 𝐷𝐸)𝑀𝐾𝑃 + 𝑃⊤𝑀⊤

𝐾
( ¤𝑍 − 𝐷𝐸)⊤ ≺ 0

𝑃 = 𝑃⊤ ≻ 0.
(III.71)

Let𝑄 = 𝑀𝐾𝑃 and notice that (III.69) implies that 𝑃 = 𝑍𝑀𝐾𝑃 = 𝑍𝑄. Replacing these identities in
(III.71), we obtain (III.60).

2): Suppose that there exists𝑄 that satisfies (III.60). Since 𝑍𝑄 is symmetric and positive definite, 𝑍
has full row rank. Also, 𝑍† := 𝑄(𝑍𝑄)−1 is a right inverse of 𝑍 . Using ¤𝑍 = 𝐹𝑍 + 𝐺𝑈 + 𝐷𝐸 and the
above properties, we have that

𝐹 = ( ¤𝑍 − 𝐷𝐸 − 𝐺𝑈)𝑍†. (III.72)

Using (III.61) and (III.72), we obtain:

𝐹 + 𝐺𝐾 = ( ¤𝑍 − 𝐷𝐸 − 𝐺𝑈)𝑍† + 𝐺𝑈𝑍† = ( ¤𝑍 − 𝐷𝐸)𝑍†. (III.73)

Let 𝑃 = 𝑍𝑄. Then, the first inequality of (III.60) reads as:

( ¤𝑍 − 𝐷𝐸)𝑄(𝑍𝑄)−1𝑃 + 𝑃(𝑍𝑄)−1𝑄⊤( ¤𝑍 − 𝐷𝐸)⊤ ≺ 0, (III.74)

implying that ( ¤𝑍 − 𝐷𝐸)𝑄(𝑍𝑄)−1 = ( ¤𝑍 − 𝐷𝐸)𝑍† = 𝐹 + 𝐺𝐾 is Hurwitz.
To conclude the proof, we pass to the online implementation of the designed controller, namely, we
study the interconnection of (III.47) and (III.62). Using the change of coordinates[

𝑥

𝜁c

]
↦−→

[
𝜖

𝜁c

]
:=

[
𝐼𝑛 − 1

𝛾

[
(𝐴 + 𝜆𝐼𝑛) 𝐵

]
0 𝐼𝑛+𝑚

] [
𝑥

𝜁c

]
(III.75)
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as done in (III.64) and (III.66), and applying 𝑢 = 𝐾𝜁c, this interconnection can be represented as

¤𝜖 = −𝜆𝜖
¤̂𝜁c = (𝐹 + 𝐺𝐾)𝜁c + 𝐷𝜖.

(III.76)

Since 𝐹 + 𝐺𝐾 is Hurwitz and 𝜆 > 0, global exponential stability of (III.76) follows from standard
results for cascaded linear systems. ∥∥

Remark III.7. The formal study on how to guarantee the excitation condition (III.67) is left for future
studies. However, we provide some informal design guidelines:

i) System (III.53) is controllable by Lemma III.9, so if the input 𝑢(𝑡) can be chosen sufficiently
rich as per Chapter II, to obtain a persistently exciting (𝑢(𝑡), 𝜁 (𝑡)) (having a stable system
is not necessary for the guaranteeing only a spanning conditions, see Remark II.12). Since
𝜁 (𝑡) − 𝜁 (𝑡) → 0 exponentially, for a dataset length𝑇 > 0 sufficiently high, there exists 𝜇 > 0

such that: ∫ 𝑇

0

[
𝑢(𝜏)
𝜁 (𝜏)

] [
𝑢(𝜏)
𝜁 (𝜏)

]⊤
d𝜏 ≥ 𝜇𝐼𝑛+2𝑚. (III.77)

ii) Under sufficient smoothness of the involved signals and sufficiently small sampling time𝑇s > 0

(see, e.g., [72, Lemma IV.3]), (III.77) implies (III.67).

♦

III.4.2 Filters and LMIs for output-feedback

To highlight the parallelism with the state-feedback scenario, we slightly abuse the notation of Section
III.4.1 by adopting similar symbols. Consider a single-input single-output system of the form

¤𝑥 = 𝐴𝑥 + 𝑏𝑢

𝑦 = 𝑐⊤𝑥
(III.78)

where 𝑥 ∈ R𝑛 is the unmeasured state, 𝑢 ∈ R is the control input, 𝑦 ∈ R is the measured output, and
𝐴, 𝑏, and 𝑐 are matrices of appropriate dimensions whose values are unknown but satisfy the following
assumption.

Assumption III.2. The pair (𝐴, 𝑏) is controllable and the pair (𝑐⊤, 𝐴) is observable. Furthermore, we
assume 𝑛 to be known.

Remark III.8. We require the knowledge of 𝑛 only for simplicity of presentation, and this is not a
restrictive assumption for the following reasons. First, several techniques are available to estimate it
from data [211]. Second, the knowledge of an upper bound 𝑛̄ ≥ 𝑛 would be enough for the subsequent
design of the filters, see Remark III.6. ♦
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Compared to Section III.4.1, the additional challenge of this scenario is that only the output 𝑦 is available
instead of the state 𝑥. However, once again, it is possible to introduce a filter of the data that reconstructs
a non-minimal realization of the plant, thus enabling the application of data-driven control without
measuring derivatives.

Non-Minimal Realization of the Dynamics

Consider the SISO gazer designed in Algorithm 1 in feedback form, having input 𝑢 and output 𝜉 ∈ R:

¤𝜁 =

[
Λ + ℓ𝜃⊤1 ℓ𝜃⊤2

0 Λ

]
𝜁 +

[
0

ℓ

]
𝑢

𝜉 =

[
𝜃⊤1 𝜃⊤2

]
𝜁,

(III.79)

where 𝜁 ∈ R2𝑛 is the state , Λ ∈ R𝑛×𝑛 and ℓ ∈ R𝑛 are constant tuning gains, and 𝜃1, 𝜃2 ∈ R𝑛 are
constant vectors (depending on 𝐴, 𝑏, 𝑐,Λ, and ℓ) whose values will be chosen to match the input-output
behavior of systems (III.78) and (III.79). In filter form, system (III.79), also used in the literature of
adaptive observers [162, Ch. 4], reads

¤𝜁1 = Λ𝜁1 + ℓ𝜉
¤𝜁2 = Λ𝜁2 + ℓ𝑢

(III.80)

with output map
𝜉 = 𝜃⊤1 𝜁1 + 𝜃

⊤
2 𝜁2. (III.81)

Recalling Theorem III.1 from the previous section, under Assumption III.2 it is possible to show that
the gazer equations (III.14), namely, equations (III.36) for the above chosen matrices, have a full rank
solution Π given in (III.37) (in the Arxiv version of this work [38], due to space limitations, we presented
a more restrictive proof requiring distinct eigenvalues in Λ).
The next result is the equivalent of III.9 for the case of SISO plant.

Lemma III.10. Under Assumption III.2, and given [𝜃⊤1 , 𝜃
⊤
2 ] = 𝑐

⊤Π, where Π is the solution of equations
(III.36), the pair ([

Λ + ℓ𝜃⊤1 ℓ𝜃⊤2
0 Λ

]
,

[
0

ℓ

])
(III.82)

is controllable. P

The proof of Lemma III.10 is provided in Appendix V.5.10.

Controller design

The procedure presented in Algorithm 4 follows similar ideas to those presented for the state-feedback
scenario. Define a system of the form (III.84) replicating dynamics (III.80). Our main concern is,
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Algorithm 4 Control Design from Input-Output Data
Initialization:

Dataset:
(𝑢(𝑡), 𝑦(𝑡)), ∀𝑡 ∈ [0, 𝑇] . (III.83)

Tuning: Λ = diag(−𝜆1, . . . ,−𝜆𝑛), with 0 < 𝜆1 < . . . < 𝜆𝑛, ℓ = (𝛾1, . . . , 𝛾𝑛), with
𝛾1, . . . , 𝛾𝑛 ≠ 0,𝑇s > 0.

Data Batches Construction:
Filters of the data:

¤̂𝜁 (𝑡) =
[
Λ 0
0 Λ

]
𝜁 (𝑡) +

[
ℓ 0
0 ℓ

] [
𝑦(𝑡)
𝑢(𝑡)

]
, ∀𝑡 ∈ [0, 𝑇] . (III.84)

Initialization: 𝜁 (0) = 0.
Auxiliary dynamics:

¤𝜒(𝑡) = Λ𝜒(𝑡), ∀𝑡 ∈ [0, 𝑇] . (III.85)

Initialization: 𝜒(0) = [1 · · · 1]⊤.
Sampled data batches:

𝑈 :=
[
𝑢(0) 𝑢(𝑇s) · · · 𝑢((𝑁−1)𝑇s)

]
∈R1×𝑁

𝑍a :=
[ [
𝜒(0)
𝜁 (0)

]
· · ·

[
𝜒((𝑁 − 1)𝑇s)
𝜁 ((𝑁 − 1)𝑇s)

] ]
∈ R3𝑛×𝑁

¤𝑍a :=
[ [ ¤𝜒(0)

¤̂𝜁 (0)

]
· · ·

[ ¤𝜒((𝑁 − 1)𝑇s)
¤̂𝜁 ((𝑁 − 1)𝑇s)

] ]
∈ R3𝑛×𝑁 .

(III.86)

Controller design:
LMI: find𝑄 ∈ R𝑁×3𝑛 such that: {

¤𝑍a𝑄 +𝑄⊤ ¤𝑍⊤
a < 0

𝑍a𝑄 = 𝑄⊤𝑍⊤
a > 0.

(III.87)

Gain computation:

𝐾 = 𝑈𝑄(𝑍a𝑄)−1
[
0
𝐼2𝑛

]
. (III.88)

Control law (arbitrary initial conditions):

¤̂𝜁c =

[
Λ 0
0 Λ

]
𝜁c +

[
ℓ 0
0 ℓ

][
𝑦

𝑢

]
, 𝑢 = 𝐾𝜁c. (III.89)
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similarly to the state-feedback case, to find a way to compensate for the transient in which 𝜁 (𝑡), obtained
from a “generic" initialization, converges to 𝜁 (𝑡) such that Π𝜁 (𝑡) = 𝑥(𝑡). For doing this, we choose Λ
diagonal with negative, different entries and ℓ such that the pair (Λ, ℓ) is controllable. As a consequence,
Λ is Hurwitz and thus (III.84) is a low-pass filter of the input-output data (III.83). The proposed
denoising procedure can be derived for more general choices of Λ and ℓ, although at the expense of
increased notational burden. Consider Π, 𝜃1, 𝜃2 from Theorem III.1, then define:

𝜖 := 𝑥 − Π𝜁, (III.90)

and note that 𝜖 (0) = 𝑥(0) since we choose 𝜁 (0) = 0. The dynamics of 𝜖 are computed from (III.78),
(III.36), and (III.84) as follows:

¤𝜖 = 𝐴𝑥 + 𝑏𝑢 − Π

[
Λ 0

0 Λ

]
𝜁 + Π

[
ℓ 0

0 ℓ

] [
𝑐⊤𝑥

𝑢

]
= (𝐴 − Π1ℓ𝑐

⊤)𝜖 +
(
𝐴Π − Π

[
Λ + ℓ𝜃⊤1 ℓ𝜃⊤2

0 Λ

])
𝜁

= 𝐻Λ𝐻−1𝜖,

(III.91)

where 𝐻 is a non-singular matrix that exists due to Λ and 𝐴 − Π1ℓ𝑐
⊤ being similar by construction

(see the proof of Theorem III.1 in Appendix V.5.6). We can write the interconnection of plant (III.78)
and filters (III.84) using the change of coordinates (III.90), leading to

¤𝜖 = 𝐻Λ𝐻−1𝜖

¤̂𝜁 =

[
Λ + ℓ𝜃⊤1 ℓ𝜃⊤2

0 Λ

]
︸               ︷︷               ︸

=:𝐹

𝜁 +
[
0

ℓ

]
︸︷︷︸
=:𝑔

𝑢 +
[
ℓ𝑐⊤

0

]
︸︷︷︸
=:𝐷

𝜖, (III.92)

which shares the same structure of (III.66).
Contrary to Section III.4.1, 𝐷𝜖 is not available in the output-feedback scenario. Since 𝜖 → 0 expo-
nentially, a simple approach would be to sample 𝑢, 𝜁 , and ¤̂𝜁 after a sufficiently long time to make the
perturbation 𝐷𝜖 small enough. Instead, we propose an approach that compensates 𝐷𝜖 exactly without
any need for a waiting time.
From (III.92) and 𝜖 (0) = 𝑥(0), 𝜖 (𝑡) can be computed as

𝜖 (𝑡) = 𝑒𝐻Λ𝐻−1𝑡𝜖 (0) = 𝐻𝑒Λ𝑡𝐻−1𝑥(0) = 𝐿𝜒(𝑡), (III.93)

where 𝐿 := ((𝐻−1𝑥(0))⊤⊗𝐻) diag(e1, . . . , e𝑛) ∈ R𝑛×𝑛 is an unknown matrix depending on𝐻 and
𝑥(0) (where (e1, . . . , e𝑛) is the standard orthonormal basis ofR𝑛) , while 𝜒(𝑡) := [𝑒−𝜆1𝑡 · · · 𝑒−𝜆𝑛𝑡 ]⊤ ∈
R𝑛. Instead, note that 𝜒(𝑡) obeys dynamics ¤𝜒 = Λ𝜒(𝑡), with 𝜒(0) = [1 · · · 1]⊤, which is entirely
known and implementable (since both 𝜒(0) and Λ are known). The sequence (𝑢(𝑡), 𝜁 (𝑡)) obtained
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from (III.83), (III.84) satisfies for all 𝑡 ∈ [0, 𝑇] the following differential equation:[
¤𝜒
¤̂𝜁

]
=

[
Λ 0

𝐷𝐿 𝐹

] [
𝜒

𝜁

]
+

[
0

𝑔

]
𝑢, (III.94)

with initial conditions 𝜒(0) = [1 · · · 1]⊤, 𝜁 (0) = 0.
Note that the state and the state derivative of (III.94) are available. As a consequence, by implementing
(III.84) and (III.85), we can sample 𝑢, (𝜒, 𝜁), and ( ¤𝜒, ¤̂𝜁), to obtain the batches (III.86). Then, LMI
(III.87) can be used to compute a feedback law for plant (III.78). Suppose that there exists a matrix𝑄
that solves LMI (III.87), then we can use the same arguments of Theorem III.3 to show that [𝐾𝜒 𝐾] =
𝑈𝑄(𝑍a𝑄)−1 is such that [

Λ 0

𝐷𝐿 + 𝑔𝐾𝜒 𝐹 + 𝑔𝐾

]
(III.95)

is Hurwitz. Thus, 𝐾 computed from (III.88) is such that 𝐹 + 𝑔𝐾 is Hurwitz. The resulting controller
is given in (III.89).
We are ready to state the result corresponding to Theorem III.3. As the proof is identical, we omit it for
brevity.

Theorem III.4. Consider Algorithm 4 and let Assumption III.2 hold. Then:

1. LMI (III.87) is feasible if the batch (III.86) is excited, i.e.:

rank

[
𝑍a

𝑈

]
= 3𝑛 + 1. (III.96)

2. For any solution𝑄 of (III.87), the gain 𝐾 computed from (III.88) is such that 𝐹 + 𝑔𝐾 is Hurwitz.
As a consequence, the origin (𝑥, 𝜁c) = 0 of the closed-loop interconnection of plant (III.78) and
controller (III.89) is globally exponentially stable.

Q

Remark III.9. 𝑉 := [𝜒(0) · · · 𝜒((𝑁−1)𝑇s)] is a Vandermonde matrix with roots 𝑒−𝜆1𝑇s , . . . , 𝑒−𝜆𝑛𝑇s ,
so it has full row rank when 𝑁 ≥ 𝑛. Define 𝑍 := [𝜁 (0) · · · 𝜁 ((𝑁 − 1)𝑇s)]. Then, (III.96) holds if
[𝑍⊤𝑈⊤]⊤ has full row rank and is linearly independent from𝑉 . For the full rankness of [𝑍⊤𝑈⊤]⊤,
we refer to Remark III.7. To give an intuition on the second requirement, let 𝜁 (𝑡) and 𝑢(𝑡) be the sum
of 𝑝 distinct sinusoids. From sin(𝜔𝑡) = (𝑒i𝜔𝑡 − 𝑒−i𝜔𝑡 )/(2i), cos(𝜔𝑡) = (𝑒i𝜔𝑡 + 𝑒−i𝜔𝑡 )/2:

[
𝑍

𝑈

]
= Ψ𝑊 =Ψ



1 𝑒i𝜔1𝑇s · · · 𝑒i𝜔1 (𝑁−1)𝑇s

1 𝑒−i𝜔1𝑇s · · · 𝑒−i𝜔1 (𝑁−1)𝑇s

...
...

...

1 𝑒i𝜔𝑝𝑇s · · · 𝑒i𝜔𝑝 (𝑁−1)𝑇s

1 𝑒−i𝜔𝑝𝑇s · · · 𝑒−i𝜔𝑝 (𝑁−1)𝑇s


(III.97)
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where Ψ ∈ C(2𝑛+1)×2𝑝 and𝑊 is a Vandermonde matrix. Since𝑊 is linearly independent from𝑉 if
𝑁 ≥ 𝑛 + 2𝑝, each non-zero row of Ψ𝑊 is linearly independent from𝑉 . ♦

Remark III.10. In order to pass to MIMO systems, one may substitute the SISO filters in (III.84) with
MIMO ones (see Section III.3). However, in the MIMO case, the resulting nonminimal representation
of the dynamics (the analogous of (III.79)) may be stabilizable but not controllable. So, further studies
are necessary in order to guarantee the existence of solutions to the corresponding LMIs (given that
certain states cannot be excited by the input but only through the initial condition). ♦

III.4.3 Numerical simulations

Algorithms 3 and 4 have been implemented in MATLAB using YALMIP [125] and MOSEK [12] to
solve the LMIs. The developed code is available at the linked repository1.

Design with Input-State Data

We consider the continuous-time linearized model of an unstable batch reactor given in [219], also used
in [62] after time discretization. The system matrices are

𝐴 =


1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104


,

𝐵 =


0 0

5.679 0

1.136 −3.146
1.136 0


,

(III.98)

where (𝐴, 𝐵) is controllable and the eigenvalues of 𝐴 are {−8.67,−5.06, 0.0635, 1.99}. We consider
an exploration interval of length 𝑇 = 1.5 s, where we apply a sum of 4 sinusoids to both entries of
𝑢 and select 8 distinct frequencies to ensure informative data. We choose filter gains 𝜆 = 𝛾 = 1 and
collect the data with sampling time𝑇s = 0.1 s.
Algorithm 3 has been extensively tested for random initial conditions 𝑥(0), with each entry extracted
from the uniform distribution U(−1, 1), returning a stabilizing controller each time. As an example,
for the case 𝑥(0) = [0.311 −0.6576 0.4121 −0.9363]⊤, we obtain the gain

𝐾=

[
−1.507 −18.69 0.155 −0.681 2.925 0.79

17.45 0.224 44.06 −36.37 1.09 −3.518

]
(III.99)

which places the eigenvalues of the closed-loop matrix𝐹+𝐺𝐾 in {−5.107±10.729i,−1.238,−1.024±
9.654i,−0.759}.

1https://github.com/IMPACT4Mech/continuous-time_data-driven_control
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Design with Input-Output Data

We consider a non-minimum phase SISO system having input-output behavior specified by the transfer
function

𝑐⊤(𝑠𝐼 − 𝐴)−1𝑏 =
𝑠 − 1

𝑠(𝑠2 + 2)
, (III.100)

for which we choose a minimal realization in controllability canonical form. We perform exploration
of 𝑇 = 2 s with an input 𝑢 given by the sum of 4 sinusoids at distinct frequencies. We choose filter
parameters Λ = diag(−1,−2,−3), ℓ = (1, 2, 3) and sampling time𝑇s = 0.1 s.
Similar to the previous case, Algorithm 4 has been extensively tested with random initial conditions
so that each entry of 𝑥(0) is extracted from the uniform distribution U(−5, 5). In each test, the
procedure returned a stabilizing controller. For the case 𝑥(0) = [−3.9223 4.0631 3.7965]⊤, we
obtain

𝐾 =

[
−0.508 3.208 −2.392 0.001 −0.577 1.055

]
(III.101)

which places the eigenvalues of 𝐹 + 𝑔𝐾 in {−2.028,−0.723 ± 0.647i,−0.22,−0.147 ± 2.09i}.

III.4.4 Future work

In this chapter, we have addressed the problem of obtaining a representation of the unavailable state of
a linear system in a model-free fashion. First, we have proposed a kind of device, the “gazer", which,
differently from classical observers, is not focused in obtaining the true state of the linear system, but it
is only interested in representing the true state trajectory via a constant surjective map from the gazer and
the plant trajetories. Sufficient conditions on gazer hyperparameters have been given to guarantee by
design the satisfaction of the proposed requirements. Next, structural properties such as observability
of the plant and controllability of the gazer have been studied in their role of guaranteeing the existence
of a solution to the gazing problem. Leveraging all of these results, we have shown how classical filters
can be seen as gazers in filter form, and we have derived a new design for MIMO systems. Future research
will be focused on extending the proposed framework to nonlinear systems and to better understand
the tight differences with the existing procedures for observer design.
Next, we addressed the problem of data-driven stabilization for continuous-time unknown linear
systems by proposing a framework that combines signal filtering with LMIs. By filtering the input and
state/output data, we obtained a non-minimal realization of the plant where the derivatives become
accessible. Using LMIs inspired by those in [62], we computed stabilizing gains for dynamic filter-based
controllers. This approach circumvents the need for state/output derivatives without resorting to
noise-sensitive numerical techniques like finite differences. Future research will focus on extending the
method to multi-input multi-output and nonlinear systems, to study the LMI feasibility conditions
when the system is only stabilizable and to investigate the conditions that ensure exciting data.
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Chapter IV

Robustly stable on-policy data-driven
linear quadratic regulation

T
he problem of guaranteeing stability of an unknown system whilst controlling it has been
historically addressed by the field of adaptive control [98, 112, 162, 191]. In particular, in
the field of Model Reference Adaptive Control, adaptive control laws were designed for

tracking desired reference models, namely, exosystems representing an ideal behavior. Whilst these
approaches have nowadays somehow lost part of their relevance (in favour of a major interest in optimal
control, reinforcement learning and other topics), their robustness has so far not been matched by new
techniques, which are more concerned about reaching some form of optimality and often require large
amounts of data. In this chapter, we try to combine the robustness guarantees of MRAC techniques
with the optimality guarantees given by RL techniques. In particular, we address this problem for
the most relevant benchmark in optimal control, namely, the Linear Quadratic Regulator, and we
summarize in Table IV the generic problem.
This chapter is organized as follows. In Section IV.1 we give an overview of the scientific literature per-
taining data-driven LQR techniques, highlighting the typical assumptions and requirements. Next, in
Section IV.2, we give mathematical preliminaries on the ARE and DRE stability properties, we formalize
the problem we want to solve (namely, the on-policy data-driven LQR) and a generic framework for the
design of controller that solve the problem in a robust way. We also state the chapter contribution to
the scientific community. In Section IV.3, we present MR-ARL, the architecture proposed for solving
the robustly stable on-policy data-driven LQ problem in the case of structured uncertainties. We give
a controller in the form of an algorithm; then we analyze its stabilization properties and we provide
numerical simulations on a doubly-fed induction motor. All the proofs of the intermediate results can
be found in Appendix V.6, whilst the proofs of the main proposition and theorems are given within the
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chapter. A preliminary conference paper [36] containing the results of this chapter has been presented
to the Conference on Decision and Control (CDC) 2023, and a more comprehensive work [37] is
currently available on Arxiv.

TABLE I Robustly stable on-policy data-driven LQR

Plant:
¤𝑥 = 𝐴𝑥 + 𝐵𝑢, (IV.1)

with state 𝑥 ∈ R𝑛, input 𝑢 ∈ R𝑚, and matrices 𝐴 and 𝐵.
Infinite-horizon LQR: find an optimal control policy 𝜋★ : R𝑛 → R𝑚 such that 𝑢(𝑡) = 𝜋★(𝑥(𝑡))
minimizes, for all initial conditions 𝑥0 ∈ R𝑛, the following cost functional along the solutions of
the plant:

𝐽 (𝑥0, 𝑢(·)) :=
∫ ∞

0
𝑥(𝜏)⊤𝑄𝑥(𝜏) + 𝑢(𝜏)⊤𝑅𝑢(𝜏)d𝜏, (IV.2)

with tuning matrices𝑄 = 𝑄⊤ ≥ 0, 𝑅 = 𝑅⊤ > 0.
Problem: with 𝐴 and 𝐵 partially or totally unknown, find a dynamic controller of the form

¤𝑧 = 𝜑(𝑥, 𝑧, 𝑑) learning dynamics

𝑢 = 𝜋(𝑥, 𝑧, 𝑑) applied control policy
(IV.3)

with 𝑧 ∈ Z ⊂ Rℓ are additional states and 𝑑 ∈ R𝑞 is a dither signal, such that the following
properties are achieved.

1. Exploration: 𝑑 probes the uncertainties of 𝐴 and 𝐵.

2. Exploitation: map 𝑥 ↦→ 𝜋(𝑥, 𝑧, 0) converges to the optimal policy 𝑥 ↦→ 𝜋★(𝑥).

3. Robust stability: learning is enforced through robust asymptotic stability of the closed-loop
system.
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IV.1 Literature review

Reinforcement Learning is a machine learning field that emerged to perform optimization and decision-
making by interacting with an environment without or with limited knowledge of its mathematical
model [109, 177]. Over the past years, this field has been successfully applied to multiple domains,
including computer games, biology, and economics and finance. RL has garnered the attention of the
control engineering community, where it has been used to address optimal control in uncertain or
model-free scenarios. Learning from system data aligns RL with principles found in adaptive control
literature [10], which seeks to design dynamic controllers for regulation and tracking in the presence of
model uncertainties. This work systematically investigates the connection between the fields of optimal
and adaptive control, paving the way for a new RL paradigm that provides formal certificates of robust
closed-loop learning and control, thereby leading to effective performance in real-world applications.
In particular, we focus on solving the infinite-horizon linear quadratic regulator (LQR) problem
by developing an on-policy data-driven algorithm where data collection and optimization are done
simultaneously by applying the learned policy to the actual system. The requirements of our framework
are schematically presented above in Table I and later formalized in Section IV.2. A key distinctive
feature of our proposed framework is the requirement of robust asymptotic stability for the whole
closed-loop system including both the learning and control dynamics. This requirement, as elucidated
in the subsequent sections, encapsulates the notion that the proven learning features in nominal cases
must persist in perturbed scenarios, encompassing disturbances, measurement noise, slowly varying
parameters, and sample-and-hold implementations. With a priori guarantees of effective closed-loop
controller implementation, our framework is particularly tailored for safety-critical applications, such
as collaborative robotics and aircraft control.
Motivated by the above discussion, we provide an overview of the literature pertaining to data-driven
LQR, distinguishing between both so-called off-policy and on-policy approaches. Then, we recall
model reference adaptive control, one of the main inspirations of the approach of this article.

Off-Policy and Offline Data-Driven LQR

Off-policy approaches involve finding the optimal policy whilst using a different policy for controlling
the system. In this context, we find iterative methods, often inspired by the Kleinman algorithm,
involving either parameter identification or direct estimate of the policy [102, 110, 127, 150, 169, 170, 222].
Typically, in these methods, the stabilization of the controlled system during the evolution of the
learning algorithm is circumvented by assuming an initial stabilizing policy. However, as discussed
in [235], there are situations where this assumption may be unrealistic due to plant uncertainties. The
algorithm [29] does not need this assumption. On the other hand, offline approaches involve identifying
the optimal policy from data batches [49, 57, 62, 63, 67, 182] or via system-level synthesis [65]. All these
approaches differ from our setup, since they clearly separate the phase of data-collection and learning,
where stability issues are simplified or not addressed, from the phase where the estimated policy is
applied online.
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On-Policy Data-Driven LQR

In case of several types of perturbations, offline, off-policy and model based-approaches either require
to repeat in time multiple experiments to keep the controller updated, suppose the stabilization is
already solved by some known policy or are intrinsecally suboptimal due to uncertainties and modeling
difficulties. As compared to off-policy approaches, the on-policy paradigm solves these problems by
adding the significant challenge of ensuring stability of the interconnection between the plant and the
control/learning algorithm. Early attempts to address this setup are [43, 74, 102, 108, 149, 179, 180, 218],
where the stabilizing feedback gain is updated at discrete iterations. However, the stability of the whole
closed-loop system is not analyzed and an initial stabilizing policy is required, similar to off-policy
approaches. More recently, in [88] the knowledge of an initial stabilizing policy is not needed; however,
closed-loop stability and persistency of excitation are assumed. In [116], even though the need of an
initial stabilizing policy remains, the authors carefully analyze in three different algorithms how to
ensure closed-loop stability of input-affine systems during the learning phase. A data-driven approach
to compute the initial gain is presented in [172]. To the best of our knowledge, [173] is the only work in
the literature that provides stability guarantees without a stabilizing initialization, although the focus is
on the learning dynamics and not the overall closed-loop system.

Model Reference Adaptive Control

We finally review the literature dealing with model reference adaptive control. The principle of this
technique is to match the unknown system dynamics to a reference model with desired properties
[98, 162, 205]. To ensure design feasibility, this stabilization technique requires the plant to satisfy
constraints named matching conditions. A recent work combining MRAC and RL is [87], where
RL techniques are used to find the optimal controller for a reference model based on nominal plant
parameters. Then, MRAC is applied to assign the reference model to the real system. However,
convergence to the desired policy is not proved and can only be ensured to a policy that is optimal for
the reference model and not the true system.

IV.2 Problem setup

IV.2.1 Preliminaries: linear quadratic regulation

We start by introducing the basic concepts of LQR for system (IV.1) and the cost functional (IV.2). The
infinite-horizon LQR problem involves finding a control policy 𝜋★ : R𝑛 → R𝑚 such that applying
𝑢(𝑡) = 𝜋★(𝑥(𝑡)) for all 𝑡 ∈ R≥0 solves, for all initial conditions 𝑥0 ∈ R𝑛, the following optimal control
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problem:

min
𝑢( ·)

𝐽 (𝑥0, 𝑢(·)) :=
∫ ∞

0
𝑥(𝜏)⊤𝑄𝑥(𝜏) + 𝑢(𝜏)⊤𝑅𝑢(𝜏)d𝜏

subject to: ¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), ∀𝑡 ∈ R≥0,

𝑥(0) = 𝑥0.

(IV.4)

Under the assumption that pair (𝐴, 𝐵) be stabilizable and (
√
𝑄, 𝐴) be detectable, the LQR problem

(IV.4) is solved by the linear stabilizing policy:

𝜋★(𝑥) := 𝐾★𝑥, 𝐾★ := −𝑅−1𝐵⊤𝑃★, (IV.5)

where 𝑃★ ∈ S𝑛0 is the unique solution in S𝑛0 of the algebraic Riccati equation (ARE) [113, Thm. 13]:

𝐴⊤𝑃★ + 𝑃★𝐴 − 𝑃★𝐵𝑅−1𝐵⊤𝑃★ +𝑄 = 0. (IV.6)

Additionally, 𝑃★ ∈ S𝑛+ if pair (
√
𝑄, 𝐴) is observable [227, Thm. 4.1]. We also recall that 𝑃★ specifies

the value function, which is defined, for a given initial condition 𝑥, as the minimum of 𝐽 (𝑥, 𝑢(·)):

𝑉★(𝑥) := min
𝑢( ·)

𝐽 (𝑥, 𝑢(·)) := 𝑥⊤𝑃★𝑥. (IV.7)

Consider the differential Riccati equation (DRE) with initial condition in the symmetric positive
semidefinite cone:

¤𝑃 = 𝐴⊤𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵⊤𝑃 +𝑄, 𝑃 ∈ S𝑛0 . (IV.8)

As shown in [47, Thm. 1], under observability of (
√
𝑄, 𝐴), the cone S𝑛0 is forward invariant under the

motion induced by (IV.8). Namely, 𝑃(0) ∈ S𝑛0 =⇒ 𝑃(𝑡) ∈ S𝑛0 , for all 𝑡 ∈ R≥0. Next, if (𝐴, 𝐵) is
stabilizable and (

√
𝑄, 𝐴) is detectable, the equilibrium point 𝑃★ is uniformly globally asymptotically

stable (UGAS) for the differential equation (IV.8) [113, Thm. 15]. Furthermore, if (𝐴, 𝐵) is controllable
and

√
𝑄 > 0, 𝑃★ is uniformly locally exponentially stable (ULES) [47, Thm. 4]. Formal results

describing the stability properties of DRE (IV.8) are provided in [47, 113].

IV.2.2 Problem statement: robustly stable on-policy data-driven LQR

Following the discussion in the introduction, we now provide a rigorous formulation of the on-policy
data-driven linear quadratic regulation (LQR) problem addressed in the chapter. Solving the LQR
problem (IV.4) involves computing the solution 𝑃★ of ARE (IV.5), which depends on the matrices 𝐴
and 𝐵 of plant (IV.1). Therefore, if 𝐴 and 𝐵 are unknown or only partially known, it is necessary to
resort to data-driven approaches based on acquiring the data of the state-input sequences (𝑥(𝑡), 𝑢(𝑡))
(continuously or via batches).
In this work, we are interested in finding an on-policy data-driven algorithm, where data collection and
learning are performed simultaneously by applying the learned policy. We now provide a novel rigorous
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framework to formalize this problem so that its solution guarantees, by design, desirable learning and
robust stability properties.
As anticipated in the introduction, the class of controllers that we seek are described by continuous-time
dynamical systems of the form

¤𝑧 = 𝜑(𝑥, 𝑧, 𝑑)

𝑢 = 𝜋(𝑥, 𝑧, 𝑑)
𝑧 ∈ Z, (IV.9)

where 𝑧 is the controller state, Z ⊂ Rℓ is a closed set, 𝑑 ∈ R𝑞 is a uniformly bounded signal, named
hereafter dither, while 𝜑 and 𝜋 are maps that are locally Lipschitz in their arguments. To the algorithm
(IV.9), we associate the learning set L, defined as:

L := {𝑧 ∈ Z : 𝜋(𝑥, 𝑧, 0) = 𝐾★𝑥, ∀𝑥 ∈ R𝑛}, (IV.10)

which denotes the set of all controller states such that the control policy 𝜋 coincides with the optimal
policy 𝜋★ in (IV.5) whenever the dither 𝑑 is turned off.
It is known that persistency of excitation of certain internal signals is necessary and sufficient for
convergence of learning schemes [191]. Therefore, we take into account this problem by introducing the
exogenous signal 𝑑 in the control scheme (IV.9) with the specific role of guaranteeing PE of the signals
of interest. To this regard, in the Arxiv version of this work [37], we use [98, Def. 5.2.1] to guarantee
this property. However, in this thesis (since new results are available) we prefer to use the more generic
results presented in Chapter II. Notice however that 𝑑 may be used also to represent references for
tracking or external disturbances. To ensure well-posedness of the problem formulation, from now
on we consider a general class of signals 𝑑 that can be generated by an autonomous dynamical system
(exosystem) of the form

¤𝑤 = 𝑠(𝑤)

𝑑 = ℎ(𝑤)
𝑤 ∈ W, (IV.11)

where 𝑤 is the exosystem state, W ⊂ R𝑝 is the set of admissible initial conditions 𝑤(0), while 𝑠 and ℎ
are locally Lipschitz maps. Since 𝑑 is a bounded signal defined for all 𝑡 ∈ R≥0, we suppose that the set
W be compact and strongly forward invariant under the flow of (IV.11).

Remark IV.1. Exosystem (IV.11) is not implemented in the control solution but is used to represent
the class of admissible signals 𝑑. Moreover, the results of the section hold if (IV.11) is replaced by a
well-posed hybrid dynamical system [79] to include discontinuous dither signals, since the analysis in
Section IV.3.2 does not require continuity of the dither 𝑑 (𝑡). Here, we use a continuous-time exosystem
to avoid an additional notational burden. ♦

The closed-loop system resulting from the interconnection of exosystem (IV.11), plant (IV.1), and

78



CHAPTER IV. ROBUSTLY STABLE ON-POLICY DATA-DRIVEN LINEAR QUADRATIC
REGULATION

controller (IV.9) is given by

¤𝑤 = 𝑠(𝑤)

¤𝑥 = 𝐴𝑥 + 𝐵𝜋(𝑥, 𝑧, ℎ(𝑤))

¤𝑧 = 𝜑(𝑥, 𝑧, ℎ(𝑤))

(𝑤, 𝑥, 𝑧) ∈ W × R𝑛 ×Z. (IV.12)

We are ready to precisely state the requirements for controller (IV.9), which include a precise stability
characterization for the closed-loop system (IV.12).

Definition IV.1. We say that controller (IV.9) solves the robustly stable on-policy data-driven LQR
problem if the learning set L in (IV.10) is non-empty and, for a chosen class of dither signals 𝑑 generated
by exosystem (IV.11), there exists a compact attractor A, satisfying

A ⊂ W × R𝑛 × L, (IV.13)

that is asymptotically stable for the closed-loop system (IV.12). K

We show that any algorithm satisfying Definition IV.1 covers all of the design requirements stated in the
introduction.

• Exploration: choosing the dither 𝑑 determines the shape and the attractivity properties of A,
thus it ensures the necessary probing to estimate the optimal policy.

• Exploitation: since the projection of A in the 𝑧 direction is a subset of the learning set L,
uniform attractivity of A (encoded in asymptotic stability) ensures 𝑧 → L and, thus, correct
estimation of the optimal policy.

• Robust stability: under the regularity properties required for the controller and assumed for the
exosystem, asymptotic stability of the attractorA is preserved (practically and semiglobally) under
a broad range of non-vanishing perturbations [79, Ch. 7.2] such as disturbances, measurement
noise, unmodeled dynamics, sample-and-hold implementations of the controller [186], and
actuator dynamics [187].

Remark IV.2. In Definition IV.1, we do not specify the restrictions on the knowledge of 𝐴 and 𝐵 to
cover a broad range of applications and solutions. However, the prior knowledge on the parametric
uncertainties determines the design of 𝜑, 𝜋, and Z. Note that, if controller (IV.9) is not appropriately
chosen, the learning set may be empty. ♦

Remark IV.3. The convergence of 𝑧 to the learning set L in Definition IV.1 implies that the controlled
plant becomes asymptotically:

¤𝑥 = (𝐴 + 𝐵𝐾★)𝑥 + Δ(𝑥, 𝑧, 𝑑), (IV.14)
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where Δ(𝑥, 𝑧, 𝑑) := 𝐵(𝜋(𝑥, 𝑧, 𝑑) − 𝐾★𝑥) vanishes in 𝑑 = 0. Moreover, since Δ(𝑥, 𝑧, 𝑑) is locally
Lipschitz, it is bounded for all (𝑥, 𝑧, 𝑤) in the compact attractor A. As a consequence, the input-to-
state stability of (IV.14) implies that

lim sup
𝑡→∞

|𝑥(𝑡) | ≤ 𝛼(lim sup
𝑡→∞

|𝑑 (𝑡) |), (IV.15)

where 𝛼 is a class K function depending on the system, the cost matrices𝑄 and 𝑅, and the attractor A.
In other words, the ultimate bound of 𝑥 directly depends on the amplitude of the injected dither 𝑑. ♦

IV.3 MR-ARL: Model Reference Adaptive Reinforcement Learning

IV.3.1 The algorithm

We now present a new control and learning approach, named Model Reference Adaptive Reinforcement
Learning (MR-ARL), which satisfies Definition IV.1 in a scenario where𝑄 > 0, 𝐵 is known and 𝐴 is
subject to structured uncertainties characterized by the following assumptions.

Assumption IV.1. There exists a closed convex set C ⊂ R𝑛×𝑛 that is known for control design and is such
that:

1. C has a non-empty interior and 𝐴 ∈ Int(C);

2. ( 𝐴̂, 𝐵) is controllable for all 𝐴̂ ∈ C.

Remark IV.4. From [145, 173], it is known that if there exists 𝐴0 such that (𝐴0, 𝐵) is controllable and
(
√
𝑄, 𝐴0) is observable, then there exists a scalar 𝜌 > 0 such that (𝐴, 𝐵) is controllable and (

√
𝑄, 𝐴)

is observable for all 𝐴 such that |𝐴 − 𝐴0 | ≤ 𝜌. Therefore, during implementation, a possible choice
for the set C is a ball centered in a nominal value 𝐴0 of 𝐴 with radius 𝜌 chosen to include all possible
uncertainties, provided however that controllability is preserved in the set. ♦

Assumption IV.2. Consider the linear map B : 𝐾 ∈ R𝑚×𝑛 ↦−→ 𝐵𝐾 ∈ R𝑛×𝑛, where 𝐵 is the input
matrix in (IV.1). For some known 𝐴0 ∈ C, it holds that

𝐴0 − 𝐴 ∈ Im(B), (IV.16)

where 𝐴 is the state matrix in (IV.1).

Assumption IV.2 is an alternative formulation of the matching conditions used in the MRAC literature
[205]. In other words, this assumption requires the possibility of matching uncertainties in the systems
via a feedback gain.
Notice indeed that that for any 𝐴̂ such that 𝐴̂ − 𝐴0 ∈ Im(B), Assumption IV.2 implies that there
exists 𝐾a ∈ R𝑚×𝑛 such that

𝐴̂ − 𝐴 = 𝐵𝐾a. (IV.17)
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Given the two sets C and 𝐴0 + Im(B), we are interested in all matrices 𝐴̂ ∈ Θ, where

Θ := C ∩ (𝐴0 + Im(B)) (IV.18)

since they can be used to build reference models. Notice that if 𝐵 is full row rank, this assumption holds
for any 𝐴0 ∈ R𝑛.

Remark IV.5. In our framework, we suppose 𝐵 is known; whilst this assumption can be relaxed by
requiring only the knowledge of a certain structure in 𝐵 [204, Pag. 375], [54] (and without introducing
any differences in the Assumptions IV.1 and IV.2), to the authors’ knowledge no MRAC technique
has so far solved in a purely data-driven way the stabilization problem. Since the subsequent analysis
of this algorithm is already quite complicated, we leave for future work possible relaxation of this
assumption. ♦

Remark IV.6. This assumption can be checked in a purely data-driven way. Assume, for simplicity, to
be able to measure the derivative ¤𝑥 (if this is not the case, the same reasoning may applied to appropriate
filters of 𝑥). Build the signal

𝜀 := ¤𝑥 − (𝐴0𝑥 + 𝐵𝑢) = (𝐴 − 𝐴0)𝑥. (IV.19)

Under a sufficiently rich input and if the system is controllable, 𝑥(𝑡) spans in time all directions, and
collecting 𝑁 ≥ 𝑛 samples of 𝜀(𝑡), 𝑥(𝑡), we get[

𝜀(𝑡1) . . . 𝜀(𝑡𝑁 )
]

︸                     ︷︷                     ︸
=:𝐸

= (𝐴 − 𝐴0)
[
𝑥(𝑡1) . . . 𝑥(𝑡𝑁 )

]
︸                    ︷︷                    ︸

𝑋

, (IV.20)

from which Assumption IV.2 holds if 𝐸𝑋† ∈ Im(B), given the full row rankness of 𝑋 . ♦

Our controller is conceived as an actor-critic modular architecture where a reference model bridges the
two parts of the design. The resulting structure is an MRAC where the reference model is continuously
updated with value iteration, thus we aptly name it Model Reference Adaptive Reinforcement Learning.
We introduce the building blocks of the design.
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Model Reference Adaptive Reinforcement Learning

ACTOR CRITIC

Plant
𝑥

Reference model
𝑥m

Adaptive stabilizer

𝐾̂a

Valuefunctionidentifier

𝜉, 𝜁 , 𝐴̂, 𝑃̂

𝑥

𝑥m, 𝑑 𝐴̂, 𝑃̂

𝑢

Exosystem
𝑤

𝑑

Figure IV.1: Block scheme of the Model Reference Adaptive Reinforcement Learning.

• Critic: this block performs data-driven value function identification to build an optimal and
asymptotically stable reference model. In particular, a gradient identifier computes an estimate
𝐴̂ ∈ Θ of 𝐴 that is used to obtain an estimate 𝑃̂ of the solution 𝑃★ of ARE (IV.6). In this respect,
Assumption IV.1 guarantees that for any estimate 𝐴̂ the computation of 𝑃̂ is feasible. Then, 𝐴̂
and the optimal gain estimate −𝑅−1𝐵⊤𝑃̂ are used to build a reference model having state matrix
𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂. As input to the reference model, we consider a dither 𝑑 with sufficient richness
properties to ensure convergence to the true system parameters and to the optimal policy.

• Actor: this block assigns the input to the plant to adaptively track the reference model. During
the transient, the feedback gain −𝑅−1𝐵⊤𝑃̂ may be not stabilizing for the real system. For this
reason, the actor introduces in the control law an additional adaptive feedback gain 𝐾̂a to cancel
the mismatch between the estimated matrix 𝐴̂ and the real 𝐴. Canceling such a mismatch is
possible due to Assumption IV.2.

See Fig. IV.1 for a block scheme of Model Reference Adaptive Reinforcement Learning. The full
description of the design is presented in Algorithm 5 and discussed in detail in the next subsections.
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Algorithm 5 MR-ARL
Initialization:
𝜉 (0), 𝜁 (0) ∈R𝑛 filter initial conditions
𝑃̂(0) ∈ S𝑛0 , 𝐴̂(0) ∈ Θ, with Θ from Eq. IV.18
𝜆, 𝛾, 𝜈, 𝑔, 𝜇 > 0 design gains
𝑑 (𝑡) ∈ CSR(LC

x,>1), e.g. as per Lemma II.9
Repeat:

Swapping filters:

¤𝜉 = −𝜆𝜉 + 𝑥, ¤𝜁 = −𝜆(𝑥 + 𝜁) − 𝐵𝑢 (IV.21)

Identifier dynamics:

¤̂
𝐴 = P𝐴̂∈C

{
−𝛾𝐵𝐵† 𝜖𝜉⊤

1 + 𝜈 |𝜉 | |𝜖 |

}
, 𝜖 := 𝐴̂𝜉 − (𝑥 + 𝜁) (IV.22)

Value iteration:
¤̂𝑃 = 𝑔

(
𝐴̂⊤𝑃̂ + 𝑃̂ 𝐴̂ − 𝑃̂𝐵𝑅−1𝐵⊤𝑃̂ +𝑄

)
(IV.23)

Reference model:
¤𝑥m = ( 𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂)𝑥m + 𝐵𝑑 (IV.24)

Adaptive gain dynamics:
¤̂𝐾a = −𝜇𝐵⊤𝑃̂(𝑥 − 𝑥m)𝑥⊤ + 𝐵† ¤̂𝐴 (IV.25)

System input:
𝑢 = −𝑅−1𝐵⊤𝑃̂𝑥 + 𝐾̂a𝑥 + 𝑑 (IV.26)

Critic: Value Function Identifier

In this subsection, we build a continuous-time identifier of 𝑃★ based on the estimation of matrix 𝐴.
Given the structure of system (IV.1), we compute an estimate 𝐴̂ ∈ Θ of 𝐴 by designing a swapping
filter [112, Ch. 6] of the form (IV.21), with 𝜆 > 0 a scalar gain for tuning the filter time constant. The
role of this filter is to substitute the knowledge of systems derivatives by constructing, with available
quantities and asymptotically, an algebraic relation that can be used to estimate 𝐴. Using the filter states,
define the prediction error

𝜖 := 𝐴̂𝜉 − (𝑥 + 𝜁), (IV.27)
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which we can rewrite as 𝜖 = ( 𝐴̂ − 𝐴)𝜉 + 𝜖 , where

𝜖 := 𝐴𝜉 − (𝑥 + 𝜁) (IV.28)

is an error signal that is shown in Section IV.3.2 to converge exponentially to zero. Notice that if 𝜖 = 0,
we obtain the algebraic relation 𝑥 + 𝜁 = 𝐴𝜉, which can be used to identify 𝐴. For doing so, we use
the normalized projected gradient descent algorithm (IV.22) to update the estimate 𝐴̂ according to
the prediction error ( 𝐴̂ − 𝐴)𝜉 + 𝜖 . In (IV.22), parameters 𝛾 > 0 and 𝜈 > 0 are scalar gains, while
the multiplicative term 𝐵𝐵† is a projection onto Im(B) [80, Sec. 5.5.4]. This projection is needed to
ensure, given any initialization 𝐴̂(0) ∈ 𝐴0+ Im(B), that the estimate 𝐴̂(𝑡) never leaves this hyperplane.
Finally, P𝐴̂∈C{·} is a Lipschitz continuous parameter projection operator, whose expression is provided,
e.g., in [112, Appendix E] and depends on the shape of the set C. For convenience, we report in the
Appendix V.6.7 an expression for P𝐴̂∈C{·} in case C is a closed ball about a nominal parameter.
Given the estimate 𝐴̂, we are interested in computing the matrix 𝑃̂ ∈ S𝑛+ that solves the ARE

R(𝑃, 𝐴̂) := 𝐴̂⊤𝑃 + 𝑃𝐴̂ − 𝑃𝐵𝑅−1𝐵⊤𝑃 +𝑄 = 0. (IV.29)

From [36], such a matrix could be obtained by computing the map P( 𝐴̂) that solves (IV.29) for each 𝐴̂,
i.e., such that:

R(P( 𝐴̂), 𝐴̂) = 0, for all 𝐴̂ ∈ Θ. (IV.30)

For simplicity in the implementation and inspired by [173], in Algorithm 5, we compute 𝑃̂ via the
dynamical system (IV.23), which is a DRE rescaled by the tuning gain 𝑔 > 0. Notice that, if 𝐴̂ is
constant, then the solution 𝑃̂ of (IV.23) converges to P( 𝐴̂).

Remark IV.7. Assumption IV.1 guarantees that, for each 𝐴̂ ∈ Θ, P( 𝐴̂) exists, is unique, and positive
definite for any 𝐴̂ ∈ Θ (see Section IV.2.1). Although stabilizability of ( 𝐴̂, 𝐵) would be sufficient in
Assumption IV.1 for the solvability of R(𝑃, 𝐴̂) = 0, controllability is essential to guarantee convergence
of the identifier under sufficient richness of the dither 𝑑 (𝑡) [161, Lemma 5]. Moreover,𝑄 > 0 ensures
that P( 𝐴̂) has exponential stability properties for DRE dynamics (IV.23) (see Section IV.2.1). ♦

Remark IV.8. From Assumption IV.1 and the parameter projection in (IV.22), matrix 𝐴̂−𝐵𝑅−1𝐵⊤P( 𝐴̂)
is Hurwitz by design, being the optimal closed-loop. Therefore, if 𝐴̂ converges to a constant matrix,
(IV.23) ensures that 𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂ converges to a Hurwitz matrix. ♦

Reference Model

Given the estimate 𝑃̂ of 𝑃★, we design a reference model for system (IV.1). The reference model has
to embed all the properties required for the plant, i.e., robust stability, optimality and persistency of
excitation. To these aims, consider system (IV.24), where 𝑥m ∈ R𝑛 is the reference model state. We
embed the stability and optimality properties through 𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂, which is designed to converge
to a Hurwitz matrix. Different from classic MRAC, the state matrix 𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂ of the reference
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model (IV.24) is not constant but time-varying as it depends on the estimates 𝐴̂ and 𝑃̂. This property
leads to an adaptive design where the known-plant stabilizing gains are time-varying.
Finally, we embed the persistency of excitation properties through dither 𝑑 ∈ R𝑚, which is chosen
through any characterization of sufficient richness, e.g., D𝑛 (d) ∈ ΩC

𝑛𝑚 (as per Theorem II.7) or via
sinusoids (as per Theorem II.10).

Remark IV.9. We model 𝑑 (𝑡) as the output of an exosystem of the form (IV.11). It is not necessary to
actually implement the exosystem as part of the algorithm, as we show in the numerical example. ♦

Actor: Model Reference Adaptive Controller

Given the reference model (IV.24), we design an adaptive controller for system (IV.1). Define the tracking
error 𝑒 := 𝑥 − 𝑥m and compute its time derivative from (IV.1), (IV.24) as

¤𝑒 = 𝐴𝑥 + 𝐵𝑢 − ( 𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂) (𝑥 − 𝑒) − 𝐵𝑑

= ( 𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂)𝑒

+ (𝐴 − 𝐴̂)𝑥 + 𝐵(𝑢 + 𝑅−1𝐵⊤𝑃̂𝑥 − 𝑑).

(IV.31)

To ensure that the plant (IV.1) asymptotically copies the behavior of the reference model (IV.24), i.e.,
𝑒(𝑡) → 0, we exploit the fact that 𝐴̂ ∈ Θ, which is guaranteed by Assumption IV.2 and by the projection
𝐵𝐵† in the update law. In particular, from (IV.17), for each 𝐴̂ ∈ Θ there exists 𝐾a( 𝐴̂) ∈ R𝑚×𝑛 such
that

𝐴̂ − 𝐴 = 𝐵𝐾a( 𝐴̂). (IV.32)

More specifically, we can ensure that map 𝐾a( 𝐴̂) is smooth in 𝐴̂ by choosing:

𝐾a( 𝐴̂) := 𝐵†( 𝐴̂ − 𝐴). (IV.33)

This way, (IV.31) becomes

¤𝑒 = ( 𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂)𝑒 + 𝐵(𝑢 + 𝑅−1𝐵⊤𝑃̂𝑥 − 𝐾a( 𝐴̂)𝑥 − 𝑑), (IV.34)

suggesting a control law of the form

𝑢 := −𝑅−1𝐵⊤𝑃̂𝑥 + 𝐾a( 𝐴̂)𝑥 + 𝑑 (IV.35)

if the plant dynamics were known. However, 𝐾a( 𝐴̂) is unavailable for design as it depends also on 𝐴,
as highlighted in (IV.32), thus we consider the certainty-equivalence-based adaptive controller given
in (IV.26), where 𝐾a( 𝐴̂) is replaced by the adaptive gain 𝐾̂a, driven by the adaptive law (IV.25) where
𝜇 > 0 is a scalar gain. The first term in the adaptive law (IV.25) is a standard update to ensure the error
𝑒 goes asymptotically to zero in a framework where the model mismatch is constant. However, since 𝐴̂
is continuously updated by identifier (IV.22), the second term in the update law takes into account the
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time-varying mismatch.

Main Result

We now provide the main results of this work, where we show that Model Reference Adaptive Rein-
forcement Learning solves the robustly stable on-policy data-driven LQR problem as per Definition
IV.1. To simplify the algorithm analysis, we follow a singular perturbation approach [206], namely,
we give a first result supposing to have a DRE dynamics in (IV.23) infinitely faster than the rest of the
system (reduced-order system), i.e., supposing 𝑃̂(𝑡) = P(𝐴(𝑡)) as in (IV.30) at each 𝑡. For this reason,
we mark the results for the reduced-order system with a subscript 𝑠 to highlight its slow dynamics. We
then leverage on this intermediate result to prove that Algorithm 5 solves the robustly stable on-policy
data-driven LQR problem.
Consider the Model Reference Adaptive Reinforcement Learning with ARE implementation of 𝑃̂ as
in (IV.30). Following the notation of Section IV.2.1, the controller obtained by combining the value
function identifier (IV.21), (IV.22), (IV.30), reference model (IV.24), and the adaptive stabilizer (IV.25),
(IV.26) is in the form (IV.9), with state

𝑧s := (𝜉, 𝜁 , 𝐴̂, 𝑥m, 𝐾̂a) ∈ Zs := R2𝑛 × Θ × R𝑛 × R𝑛×𝑛, (IV.36)

and output policy
𝜋(𝑥, 𝑧s, 𝑑) := (𝐾̂a − 𝐵𝑅−1𝐵⊤P( 𝐴̂))𝑥 + 𝑑, (IV.37)

from which it follows that the learning set L in (IV.10) is non-empty and given by

Ls := {𝑧s ∈ Zs : 𝐾̂a − 𝐵𝑅−1𝐵⊤P( 𝐴̂) = −𝐵𝑅−1𝐵⊤𝑃★}. (IV.38)

In particular, we recall that our algorithm aims at reaching the learning set by ensuring 𝐴̂ → 𝐴 (hence
𝑃̂ ≡ P( 𝐴̂) → 𝑃★ by continuity of the map P( 𝐴̂)) and 𝐾̂a → 0. The following result shows that,
with 𝛾 > 0 sufficiently small, the Model Reference Adaptive Reinforcement Learning with ARE
implementation of 𝑃̂ solves the robustly stable on-policy data-driven LQR problem.

Theorem IV.1. Consider the closed-loop system given by the interconnection of plant (IV.1) and the
controller of Algorithm 5, with 𝑃̂(𝑡) = P( 𝐴̂(𝑡)) for all 𝑡 and P( 𝐴̂) satisfying (IV.30). Let the stationary
dither 𝑑 be generated by an exosystem of the form (IV.11) and let its entries be sufficiently rich of order
𝑛 + 1 and uncorrelated. Then, there exists 𝛾★ > 0 such that, for all 𝛾 ∈ (0, 𝛾★], there exists a compact set
As satisfying

As ⊂ {(𝑤, 𝑥, 𝑧s) ∈ W × R𝑛 × Ls : 𝐴̂ = 𝐴, 𝐾̂a = 0, 𝑥 = 𝑥m, 𝜖 = 0} (IV.39)

that is uniformly globally asymptotically stable. Q

The proof of Theorem IV.1 is provided in Appendix V.6.8.
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Consider now the Model Reference Adaptive Reinforcement Learning (MR-ARL) algorithm with
DRE implementation of 𝑃̂ as in (IV.23) (Algorithm 5). Following the notation of Section IV.2.1, the
controller obtained by combining the value function identifier (IV.21), (IV.22), (IV.23), reference model
(IV.24), and the adaptive stabilizer (IV.25), (IV.26) is in the form (IV.9), with state

𝑧 := (𝑧s, 𝑃̂) ∈ Z := Zs × S𝑛0 , (IV.40)

where 𝑧s and Zs are given in (IV.36). The output policy then becomes

𝜋(𝑥, 𝑧, 𝑑) := (𝐾̂a − 𝐵𝑅−1𝐵⊤𝑃̂)𝑥 + 𝑑, (IV.41)

and the learning set L is given by

L := {𝑧 ∈ Z : 𝐾̂a − 𝐵𝑅−1𝐵⊤𝑃̂ = −𝐵𝑅−1𝐵⊤𝑃★}. (IV.42)

In this case, the learning set is reached via 𝐴̂ → 𝐴 (hence 𝑃̂ → 𝑃★ by asymptotic stability of the
DRE (IV.8), see Section IV.2.1) and 𝐾̂a → 0. The next result, which is the main result of this work,
shows that with 𝛾 > 0 sufficiently small and 𝑔 > 0 sufficiently large, the Model Reference Adaptive
Reinforcement Learning in Algorithm 5 solves the robustly stable on-policy data-driven LQR problem.

Theorem IV.2. Consider the closed-loop system given by the interconnection of plant (IV.1) and the
controller of Algorithm 5. Pick 𝑑 and 𝛾 as in Theorem IV.1. Then, the compact set

A :=As × 𝑃★⊂ {(𝑤, 𝑥, 𝑧) ∈ W × R𝑛 × L :

𝐴̂ = 𝐴, 𝐾̂a = 0, 𝑥 = 𝑥m, 𝜖 = 0, 𝑃 = 𝑃★}
(IV.43)

is semiglobally uniformly asymptotically stable in the tuning parameter 𝑔 > 0, where As is given in
(IV.39) and 𝑔 is the one in (IV.23). Namely, for any compact set K ⊂ W × R𝑛 ×Z of initial conditions
for the closed-loop system, there exists 𝑔 > 0 such that A is uniformly asymptotically stable with domain
of attraction containing K . Q

The proof of Theorem IV.2 is provided in Appendix V.6.9.
Notice that solving the robustly stable on-policy data-driven LQR problem as per Definition IV.1 allows
to characterize the evolution of 𝑥(𝑡) as done in Remark IV.3, and thus to achieve arbitrarily small |𝑥(𝑡) |
by injecting a sufficiently small dither |𝑑 (𝑡) |.

IV.3.2 Algorithm analysis

In the following, we will only study the properties of the reduced-order version of the algorithm, i.e.,
with 𝑃̂(𝑡) = P(𝐴(𝑡)) for all 𝑡 and P( 𝐴̂) satisfying (IV.30). The second result, i.e., the stability of
Algorithm 5 (implementing the DRE), is obtained by invoking singular perturbations techniques. We
now show boundedness and forward completeness of the solutions of the closed-loop system obtained
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from the interconnection of the identifier dynamics (IV.46), (IV.47), the reference model (IV.48), and
the adaptive error system (IV.49), (IV.51). The overall analysis entails proving uniform bounds on
the solutions of the main involved subsystems, then combining the results using arguments similar
to [112, Thm. 6.3] (see the proof of Proposition IV.1). We begin by showing uniform boundedness of 𝐴̂
and ¤̂

𝐴.

Identifier Dynamics

Consider the error coordinate 𝜖 in (IV.28), which can be written as

𝜖 := 𝐴𝜉 − (𝑥 + 𝜁). (IV.44)

Then, from (IV.1), (IV.21), it holds that

¤̃𝜖 = 𝐴(−𝜆𝜉 + 𝑥) − (𝐴𝑥 + 𝐵𝑢 − 𝜆(𝑥 + 𝜁) − 𝐵𝑢)

= −𝜆(𝐴𝜉 − (𝑥 + 𝜁)) = −𝜆𝜖,
(IV.45)

which ensures that the prediction error 𝜖 := 𝐴̂𝜉 − (𝑥 + 𝜁) = ( 𝐴̂ − 𝐴)𝜉 + 𝜖 converges to ( 𝐴̂ − 𝐴)𝜉
exponentially. Define 𝐴̃ := 𝐴̂ − 𝐴. Then, from (IV.28), (IV.45), we can rewrite the identifier dynamics
(IV.21), (IV.22), (IV.27) in error coordinates as the following cascaded system

¤̃𝜖 = −𝜆𝜖

¤̃𝐴 =P𝐴̂∈C
{
−𝛾𝐵𝐵† 𝐴̃𝜉𝜉

⊤ + 𝜖𝜉⊤
1 + 𝜈 |𝜉 | |𝜖 |

}
,

(IV.46)

driven by 𝜉 (𝑡), solution of the filter
¤𝜉 = −𝜆𝜉 + 𝑥. (IV.47)

In the following lemma, we establish the boundedness properties of the identifier subsystem.

Lemma IV.1. Let the maximal interval of solutions of (IV.46), (IV.47), (IV.48), (IV.49), (IV.51) be
[0, 𝑡 𝑓 ). Then, it holds that

i) 𝜖 (·), 𝐴̃(·) are uniformly bounded in the interval [0, 𝑡 𝑓 )

ii) 𝐴̂(𝑡) ∈ Θ for all 𝑡 ∈ [0, 𝑡 𝑓 )

iii) | ¤̂𝐴(𝑡) | ≤ 𝛾 for all 𝑡 ∈ [0, 𝑡 𝑓 ).

Furthermore, if 𝑡 𝑓 = ∞, the origin (𝜖, 𝐴̃) = 0 of system (IV.46), driven by input 𝜉 (𝑡), is uniformly
globally stable (UGS). P

The proof of Lemma IV.1 is provided in Appendix V.6.1.
The above results hold even if the input 𝜉 (𝑡), obtained from (IV.21), of the identifier (IV.22) escapes to
infinity as 𝑡 → 𝑡 𝑓 . We analyze only arbitrarily small intervals [0, 𝑡 𝑓 ) since, being the closed-loop system
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locally Lipschitz, all the solutions are guaranteed to exists in [0, 𝑡 𝑓 ) for some 𝑡 𝑓 > 0 [107, Thm. 3.1].
Although the overall boundedness analysis entails also the study of 𝜉 (𝑡), system (IV.47) ISS with respect
to input 𝑥(𝑡), thus its behavior will be analyzed directly in Proposition IV.1. To ensure 𝐴̂(𝑡) → 𝐴,
it is known from the adaptive control literature that vector 𝜉 (𝑡) must be a persistently exciting (PE)
signal [98]. However, notice that 𝜉 (𝑡) is a filtered version of 𝑥(𝑡), which is generated in closed-loop
by interconnecting the plant and the controller. For this reason, special care will be dedicated to its
analysis.

Reference Model Dynamics

From (IV.30), when 𝑃̂ = P( 𝐴̂), system (IV.24) can be written highlighting the dependence on the
estimate 𝐴̂ of the identifier:

¤𝑥m = ( 𝐴̂ − 𝐵𝑅−1𝐵⊤P( 𝐴̂))𝑥m + 𝐵𝑑, (IV.48)

where from (IV.22), (IV.30), the pointwise-in-time value of P( 𝐴̂) is provided implicitly as the solution
of a parameter-varying ARE. By [175, Thm. 4.1], P( 𝐴̂) is an analytic function of 𝐴̂, being all matrices of
ARE R(𝑃, 𝐴̂) = 0 in (IV.29) analytic functions of 𝐴̂ ∈ Θ. From this fact, matrix 𝐴̂ − 𝐵𝑅−1𝐵⊤P( 𝐴̂)
is an analytic function of 𝐴̂ and it is Hurwitz at any time 𝑡. (see Remark IV.8).
We show now that the reference model (IV.48) is bounded as long as | ¤̂𝐴(𝑡) | is sufficiently small.

Lemma IV.2. Let the maximal interval of solutions of (IV.46), (IV.47), (IV.48), (IV.49), (IV.51) be
[0, 𝑡 𝑓 ). There exists 𝛾★

𝑏
> 0 such that, if | ¤̂𝐴(𝑡) | ≤ 𝛾★

𝑏
for all 𝑡 ∈ [0, 𝑡 𝑓 ), then 𝑥m(·) is uniformly

bounded over the interval [0, 𝑡 𝑓 ). Furthermore, if 𝑡 𝑓 = ∞, then the reference model (IV.48) with input
𝑑 (𝑡) is input-to-state stable. P

The proof of Lemma IV.2 is provided in Appendix V.6.2.

Adaptive Tracking Dynamics

We conclude this overview by studying the interconnection of the error dynamics (IV.34) and the
adaptive controller (IV.25), (IV.26). We define 𝐾̃a := 𝐾̂a − 𝐾a( 𝐴̂). By choosing (IV.26) as input
for (IV.31), we obtain:

¤𝑒 = ( 𝐴̂ − 𝐵𝑅−1𝐵⊤P( 𝐴̂))𝑒 + 𝐵(𝐾̂a𝑥 − 𝐾 ( 𝐴̂)𝑥) (IV.49)

By choosing expression (IV.33) for𝐾a( 𝐴̂), we can explicitly calculate the variation in time of𝐾a( 𝐴̂) due
to the movement of 𝐴̂. This is out of the standard framework of model reference adaptive control, and
thus particular attention is required. We can calculate the time derivative of 𝐾a( 𝐴̂) by deriving (IV.33):

¤𝐾a = 𝐵
† ¤̂𝐴. (IV.50)
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Since both 𝐵 and ¤̂
𝐴 are known, we can use their knowledge to implement adaptive law (IV.25), which

takes into account this drift. Given equations (IV.25) and (IV.50), the induced dynamics for 𝐾̃a is:

¤̃𝐾a =
¤̂𝐾a − ¤𝐾a

= −𝜇𝐵⊤P( 𝐴̂) (𝑥 − 𝑥m)𝑥⊤ + 𝐵† ¤̂𝐴 − 𝐵† ¤̂𝐴

= −𝜇𝐵⊤P( 𝐴̂)𝑒𝑥⊤.

(IV.51)

Next, we provide a statement for system (IV.49), (IV.51).

Lemma IV.3. Let the maximal interval of solutions of (IV.46), (IV.47), (IV.48), (IV.49), (IV.51) be [0, 𝑡 𝑓 ).
Pick 𝛾★

𝑏
> 0 from Lemma IV.2 and let | ¤̂𝐴(𝑡) | ≤ 𝛾★

𝑏
for all 𝑡 ∈ [0, 𝑡 𝑓 ). Then, signals 𝑒(·), 𝐾̃a(·) are

uniformly bounded in the interval [0, 𝑡 𝑓 ). Furthermore, if 𝑡 𝑓 = ∞, the origin (𝑒, 𝐾̃a) = 0 of system
(IV.49), (IV.51), with input 𝐴̂(𝑡), is UGS. P

The proof of Lemma IV.3 is provided in Appendix V.6.3.
Finally, we combine the previous results to obtain that solutions are globally bounded and forward
complete.

Proposition IV.1. Consider the closed-loop system obtained from the interconnection of the identifier
dynamics (IV.46), (IV.47), the reference model (IV.48), and the adaptive error system (IV.49), (IV.51).
Pick 𝛾★

𝑏
from Lemma IV.1. If 𝛾 ∈ (0, 𝛾★

𝑏
], then the closed-loop solutions are bounded and forward

complete. R

Proof. Suppose that the maximal interval of existence of the solution of (IV.46), (IV.47), (IV.48),
(IV.49), and (IV.51) is [0, 𝑡 𝑓 ). Then, from Lemma IV.1, 𝐴̃(·) and 𝜖 (·) are uniformly bounded. From
Lemma IV.1, | ¤̂𝐴(·) | is uniformly bounded by 𝛾. Consider any 𝛾 ∈ (0, 𝛾★

𝑏
], then Lemmas IV.2 and IV.3

ensure that 𝑥m(·), 𝑒(·), and 𝐾̃a(·) are uniformly bounded, thus also 𝜉 (·) is uniformly bounded from
(IV.47) and standard ISS results.
We have thus shown that all signals of the closed-loop system are bounded, with bounds that do not
depend on 𝑡 𝑓 . By contradiction, we conclude that 𝑡 𝑓 = ∞, thus the solutions are forward complete.
Namely, if 𝑡 𝑓 were finite, the solutions would leave any compact set as 𝑡 → 𝑡 𝑓 , contradicting the
independence of the bounds on 𝑡 𝑓 [112, Thm. 6.3]. ∥∥

Exponential Convergence to the Optimal Policy

We now focus on the uniform asymptotic stability properties of the closed-loop system (IV.46), (IV.47),
(IV.48), (IV.49), (IV.51). First, we show that 𝑥m(𝑡) is persistently exciting as long as | ¤̂𝐴| is sufficiently
small.

Lemma IV.4. Let 𝑑 (𝑡) ∈ CSR(LC
x,>1) as per (II.55). There exists 𝛾★

𝑃𝐸
∈ (0, 𝛾★

𝑏
], with 𝛾★

𝑏
from

Proposition IV.1, such that, for all 𝛾 ∈ (0, 𝛾★
𝑃𝐸

], the solutions 𝑥m(𝑡) of the reference model (IV.48) are
persistently exciting (PE). P
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The proof of Lemma IV.4 is provided in Appendix V.6.4.
Next, we provide a direct consequence of Lemma IV.4 for the adaptive error dynamics (IV.49), (IV.51).

Lemma IV.5. Let the hypotheses of Lemma IV.4 hold and let 𝛾 ∈ (0, 𝛾★
𝑃𝐸

], where 𝛾★
𝑃𝐸

is given in
Lemma IV.4. Then, the origin (𝑒, 𝐾̃a) = 0 of system (IV.49), (IV.51) is uniformly globally asymptotically
stable (UGAS) and uniformly locally exponentially stable (ULES). P

The proof of Lemma IV.5 is provided in Appendix V.6.5.
Now that we have established that every solution 𝑒(𝑡) converges exponentially to zero, uniformly from
compact sets of initial conditions, we can conclude the convergence analysis by studying the identifier
dynamics (IV.46).

Lemma IV.6. Let the hypotheses of Lemma IV.4 hold and let 𝛾 ∈ (0, 𝛾★
𝑃𝐸

], where 𝛾★
𝑃𝐸

is given in
Lemma IV.4. Then, the origin (𝜖, 𝐴̃) = 0 of system (IV.46), with input 𝜉 (𝑡), is uniformly globally
exponentially stable (UGES). P

The proof of Lemma IV.6 is provided in Appendix V.6.6.

IV.3.3 Numerical simulations

In this section, we propose two numerical examples to show the effectiveness of Model Reference
Adaptive Reinforcement Learning. In the first example, we consider the model of a doubly fed induction
motor (DFIM) at constant speed with unknown rotor and stator resistances. In the second example,
we test the robustness of the proposed algorithm by considering a DFIM with slowly time-varying
unknown resistances, due to the motor heating up, and rotor acceleration. In order to highlight the
claimed stability properties of the algorithm, we provide examples where we show the complete transient
from the initial condition to the steady state. Notice, however, that MR-ARL is not meant to achieve a
fast identification, but to follow (in an online fashion) slowly time-varying changes in the dynamics
while preserving stability of the closed loop.

Example 1: Constant Parameters

A DFIM at constant speed can be modeled [117] with a linear system in the form of (IV.1) with state

𝑥 = (𝑖1𝑢, 𝑖1𝑣 , 𝑖2𝑢, 𝑖2𝑣) ∈ R4, (IV.52)

where 𝑖1𝑢, 𝑖1𝑣 are the stator currents and 𝑖2𝑢, 𝑖2𝑣 are the rotor currents. The input is

𝑢 = (𝑢1𝑢, 𝑢1𝑣 , 𝑢2𝑢, 𝑢2𝑣) ∈ R4, (IV.53)
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where 𝑢1𝑢, 𝑢1𝑣 are the stator voltages and 𝑢2𝑢, 𝑢2𝑣 , the rotor voltages. System matrices are defined as

𝐴 =
1
𝐿̄


−𝐿2𝑅1 −𝛼 + 𝛽 𝐿𝑚𝑅2 𝛽2

𝛼 − 𝛽 −𝐿2𝑅1 −𝛽2 −𝐿𝑚𝑅2
𝐿𝑚𝑅1 −𝛽1 −𝐿1𝑅2 −𝛼 − 𝛽12
𝛽1 𝐿𝑚𝑅1 𝛼 + 𝛽12 −𝐿1𝑅2


𝐵 =

1
𝐿̄


𝐿2 0 −𝐿𝑚 0

0 𝐿2 0 −𝐿𝑚
−𝐿𝑚 0 𝐿1 0

0 −𝐿𝑚 0 𝐿1


,

(IV.54)

where

𝐿̄ := 𝐿1𝐿2 − 𝐿2𝑚
𝛼 := 𝐿̄𝜔0, 𝛽 := 𝐿2𝑚𝜔𝑟

𝛽12 := 𝐿1𝐿2𝜔𝑟 , 𝛽1 := 𝐿1𝐿𝑚𝜔𝑟 , 𝛽2 := 𝐿2𝐿𝑚𝜔𝑟 .

(IV.55)

Parameters 𝑅1, 𝑅2 are the stator and rotor resistances, while 𝐿1, 𝐿2, 𝐿𝑚 are the stator and rotor auto-
inductances and the mutual inductance, respectively. Finally,𝜔𝑟 and𝜔0 are the electrical angular speeds
of the rotor and the rotating reference frame, which we suppose constant.

Remark IV.10. We suppose to have uncertainties on the parameters 𝑅1 and 𝑅2. This makes the matrix
𝐴 uncertain in half of its entries. In this example 𝐵 is such that Im(B) = R𝑛×𝑛, so Assumption IV.2 is
fulfilled for any 𝐴0 ∈ R𝑛×𝑛. ♦

Denote the true resistances as 𝑅1, 𝑅2. We model our uncertainties specifying nominal values 𝑅̄1, 𝑅̄2
and radiuses 𝑟1, 𝑟2 > 0 such that

𝑅1 ∈ [𝑅̄1 − 𝑟1, 𝑅̄1 + 𝑟1]

𝑅2 ∈ [𝑅̄2 − 𝑟2, 𝑅̄2 + 𝑟2] .
(IV.56)

Next, we define C as a ball about the nominal 𝐴̄ (i.e., having the structure (IV.54) with resistances 𝑅̄1
and 𝑅̄2) containing all possible parameter variation, i.e.,

C := { 𝐴̂ ∈ R𝑛×𝑛 : | 𝐴̂ − 𝐴̄|𝐹 ≤ 𝜌} (IV.57)

with 𝜌 > 0 big enough. We report in Table V.1 the physical parameters of the motor. In Table IV.3, we
specify the values used for the uncertainties and the desired performances.
The dither 𝑑 (𝑡) is designed, on each entry 𝑑𝑖 (𝑡), according to

𝑑𝑖 (𝑡) = 10
4∑︁
𝑗=1

sawtooth(2𝜔𝑠𝑖 𝑗 𝑡), 𝑖 ∈ {1, 2, 3, 4} (IV.58)
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Table IV.2: Physical parameters of the motor.

Parameter Value Parameter Value
𝐿1 [H] 0.02645 𝑅1 [Ω] 0.036
𝐿2 [H] 0.0264 𝑅2 [Ω] 0.038
𝐿𝑚 [H] 0.0257 𝜔0 [rad/s] 2𝜋70.8
𝑝 3 𝜔𝑟 [rad/s] 2𝜋62

Table IV.3: Uncertainty parameters for example 1.

Parameter Value Parameter Value
𝑅̄1 [Ω] 0.03 𝑟1 [Ω] 0.01
𝑅̄2 [Ω] 0.03 𝑟2 [Ω] 0.01
𝜌 20
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Figure IV.2: Convergence to true 𝐴 and to optimal gain 𝐾★.

where sawtooth(·) is a triangular wave of unitary amplitude and𝜔𝑠 = 0.2 rad/s.
The excitation levels in the closed-loop system strongly depend on the excitation levels of the dither
signals. Thus, by injecting stronger dither signals, it is possible to achieve faster parameter convergence
[7].
In Fig. IV.2-(a), we show the difference between the estimate 𝐴̂(𝑡) and the true matrix 𝐴. Next, in Fig.
IV.2-(b), we show how the error between the optimal feedback gain 𝐾★ and the overall applied feedback
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Figure IV.3: Tracking error between plant and reference model.
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Figure IV.4: Difference between the optimal trajectory and the trajectory generated by MR-ARL.
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Table IV.4: Uncertainty parameters for example 2.

Parameter Value Parameter Value
𝑅̄1 [Ω] 0.2 𝑟1 [Ω] 0.18
𝑅̄2 [Ω] 0.2 𝑟2 [Ω] 0.18
𝜔̄𝑟 [rad/s] 2𝜋70 𝑟𝜔 [rad/s] 2𝜋15

𝜌 4830

gain −𝑅−1𝐵⊤𝑃̂ + 𝐾̂a approaches zero, thus controlling in an optimal way the system. In Fig. IV.3, we
show for completeness the error between the reference model and the real system, which reaches, despite
a slower parameter convergence, a small amplitude in a few seconds.
Finally, in Fig. IV.4 we show the difference between the trajectory 𝑥(𝑡) generated by MR-ARL and the
trajectory obtained by choosing 𝑢★(𝑡) = 𝐾★𝑥★(𝑡) + 𝑑 (𝑡), namely, the optimal policy plus the dither
signal.

Example 2: Drifting Parameters and Variable Speed

In this example, we apply perturbations to the DFIM with model given in (IV.54) to test the robustness
of MR-ARL. We consider two perturbations to the nominal model occurring together: the first one is
a time-varying resistance due to motor heating up, while the second one is a time-varying rotor speed
due to load changes. We model both disturbances with sigmoid functions and we report them in the
plots. The temperature disturbance lasts for about 600 s and brings the temperature from 20 ◦C to
100 ◦C, i.e., Δ𝑇 = 80 ◦C. The speed disturbance is a total increase of speed of 2𝜋20 rad/s occurring in
about 60 s. We model the dependence of resistances on temperature with

𝑅𝑖 (Δ𝑇) = 𝑅𝑖 + 𝛼Δ𝑇, 𝑖 ∈ {1, 2}, (IV.59)

where 𝛼CU = 4.041 × 10−3 Ω/◦C is the temperature coefficient of resistance of the copper. We set
new nominal 𝑅̄1, 𝑅̄2, 𝜔̄𝑟 with associated range 𝑟1, 𝑟2, 𝑟𝜔 (reported in Table IV.4) to consider these
uncertainties. We recalculate C as in the previous example. Besides these time-varying perturbations in
the matrix 𝐴, we introduce also noise in the measurements of the currents 𝑥(𝑡). The measured 𝑥(𝑡) is
given by

𝑥(𝑡) = (1 + 𝐼 (𝑡) + 𝐼)𝑥(𝑡) (IV.60)

where 𝐼 (𝑡) is extracted at each 𝑡 from a uniform distribution in the interval [−0.5, 0.5]%, and 𝐼 = 1%.
Finally, we leave the dither as in (IV.58).

Remark IV.11. Due to the parameter variations, the plant becomes a slowly time-varying system. Con-
sistently with the theoretical result, due to the “small” variations, the stability properties of Theorem IV.2
are practically preserved and recovered when the variations vanish. ♦

In Fig. IV.5-(a), we show the difference between the estimate 𝐴̂(𝑡) and the true time-varying matrix
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Figure IV.5: Convergence to true 𝐴(𝑡) and to optimal gain 𝐾★(𝑡).

𝐴(𝑡). Notice that as soon as the speed disturbance ends, the gradient estimator is able to adapt and
recover convergence of the estimation to a small ball about the true parameters. Next, in Fig. IV.5-(b),
we show how the data-driven feedback gain approaches the optimal one. Since in this simulation we
have a LTV plant, we calculate at each time instant the optimal gain 𝐾★(𝑡) by solving an LQR problem
with constant 𝐴(𝑡). The importance of the adaptive controller action is particularly clear in presence of
the speed disturbance, where the estimated matrix is far from the true one and thus the optimal action
is likely to be destabilizing. Finally, we show in Fig. IV.6 how the error between the reference model and
the real plant is kept bounded also in the presence of these disturbances.
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Figure IV.6: Tracking error between plant and reference model. Different colors stand for different components
of 𝑒.

IV.3.4 Future work

In this chapter, we have addressed the problem of data-driven optimal control of partially unknown
linear systems. First, we have proposed a framework that formalizes a robustly stable on-policy data-
driven LQR problem in which optimality of the learned strategy is obtained while guaranteeing robust
stability of the whole learning and control closed-loop system. Next, we have proposed a new solution
to this problem consisting in the combination of model reference adaptive control and reinforcement
learning. As main result, we showed that our design has a semiglobally uniformly asymptotically stable
attractor where the plant follows the optimal reference model. To demonstrate the effectiveness of the
solution, we tested it in the control of a doubly fed induction motor. The results show that our solution
is also able to manage non-vanishing perturbations typical of real-world applications. Future work will
be dedicated to consider the output-feedback framework and to relax the assumption of the knowledge
of the input matrix 𝐵, as well as to extending the framework to the output-feedback scenario.
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Chapter V

DATA-DRIVEN PRONTO: a model-free
algorithm for numerical optimal control

I
conclude this thesis with my first and one of the last works. The idea behind DATA-DRIVEN
PRONTO is to design a data-driven solver for nonlinear optimal control building upon
PRONTO [90], an iterative solver. Although the algorithm will be explained more in de-

tails in the next sections, we start by providing here some key concepts which are fundamental in
understanding both PRONTO and DATA-DRIVEN PRONTO.

i) PRojection Operator-based: whilst “pure" SQP methods [66] satisfy the dynamic constraint only
asymptotically, several algorithms [69, 118, 144] developed specifically for optimal control perform
an additional “forward sweep" (on the whole time horizon) of the dynamics in order to satisfy at
each algorithm iteration the dynamic constraints. Both PRONTO and DATA-DRIVEN PRONTO

improve the numerical stability properties of this forward sweep by leveraging on an additional
control law to be designed separately. This step is called “Projection" step, since it projects an
infeasible curve to a trajectory of the system.

ii) Newton method for Trajectory Optimization: by including the projection operator in the cost
function, PRONTO builds an unconstrained problem which can be solved through standard
Newton method.

Whilst all the mentioned algorithms exploit nicely the structure of the optimal control problem, a
major drawback is that they all require the knowledge of the dynamics and its derivatives. The main
idea behind DATA-DRIVEN PRONTO is to leverage on the control law introduced by PRONTO (which
“robustifies" the projection operator) to collect the data necessary to the estimation of derivatives.



CHAPTER V. DATA-DRIVEN PRONTO: A MODEL-FREE ALGORITHM FOR NUMERICAL
OPTIMAL CONTROL

This Chapter is organized as follows. In Section V.1, we give an overview of the scientific literature
pertaining data-driven optimization and optimal control. Next, in Section V.2, we introduce the
considered nonlinear optimal control problem with the necessary preliminaries on PRONTO, and we
state the main contribution to the scientific community. Finally, in Section V.3 we present DATA-
DRIVEN PRONTO. Theoretical guarantees on its convergence are given, and its hyper-parameters are
discussed. The algorithm is analyzed via intermediate results, and a numerical example is given to show
the effectiveness of the proposed algorithm. All the proofs of the intermediate results can be found in
Appendix V.7. An article containing the results of this chapter is currently under preparation (to be
submitted soon).
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V.1 Literature review

Nonlinear optimal control problems are prevalent in various applications within the fields of Automa-
tion and Robotics, where the goal is to develop a control strategy that, when applied to a dynamical
system, minimizes a specified performance index [28, 46, 66, 164, 189]. In general, the solution of Non-
Linear Optimal Control Problems (NL-OCPs) strongly relies on a valid model of the system under
control which, if inaccurate, can lead to the design of suboptimal trajectories for the true system. In
this chapter, we propose a combination of identification techniques together with data-driven control
which can solve NL-OCP in a model-free setting.
In particular, we focus on solving a finite-horizon NL-OCP where the dynamics is unknown but there is
the possibility of performing multiple deterministic experiments (or simulations) from the same initial
condition. Retrieving an optimal trajectory for this kind of setups is important, for example, in many
industrial systems, where optimized execution of a repeated task results in significant savings. Pioneers
in this field were the so called Repetitive Control (RC) and Iterative Learning Control (ILC) [2, 44, 94,
126, 153], which successfully approached the generic problem of tracking a given reference exploiting the
possibility of learning a specific task by means of multiple repetition of that specific task. Besides RC
and ILC, and taking more explicitly into account the problem of optimality, we provide an overview
of two fields that deal with the problem of data-driven optimal control, distinguishing between the
“Reinforcement Learning" (RL) and “Data-driven optimization" approaches (where, since the two fields
have lots in common, we stress the fact that this distinction is done somehow arbitrarily, and several
works may be placed in both categories).

Reinforcement Learning

Having its foundations in the idea of Dynamic Programming [20, 21], RL field considers the more
generic problem of learning a control policy which minimizes (maximizes) a received reward through
interaction with the environment [177, 202]. The learning happens during a so-called training phase,
in which - while the agent explores the environment - good actions are rewarded and bad actions are
penalized. At the end of the training, the result is in general a policy and not a sequence of open-
loop inputs. In some cases, this feature makes RL more robust than optimal control with respect to
unmodeled dynamics [199]. However, two problems arise in general with this approach: i) the number
of required episodes is usually so huge that this learning is achievable only via simulations (and not in
real setups); ii) (for continuous or highly-dimensional problems) a parametrization of the policy or the
value function, e.g., a Neural Network (NN), has to be introduced, constraining the resulting solution
to a particular form and introducing other complexity. In this field, [58, 59] propose to solve the optimal
control problem by imposing a linear parametrization of the value function, and finding its parameters
via a linear program constrained by collected data samples. In [1], it is proposed to use an approximate
model to obtain local improvements in the parametrized policy, which is evaluated via real experiments.
In [151], a NN is used to parametrize both policy and value function, and policy iteration is applied to
solve the infinite-horizon NL-OCP. In [93], the authors consider a finite horizon NL-OCP, and they
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use a NN to approximate the costate and finding the optimal input. In [39], the authors consider a
continuous-time NL-OCP and train a NN that parametrizes the input with gradient descent. In [141],
the authors show by means of a practical application how the combination of a classic technique such
as ILC with RL can reduce significantly the amount of required data for the training. Finally, in [70],
the authors explore the idea of using RL to find open-loop optimal input instead of optimal policy,
thus overcoming the parametrization problem.

Data-driven optimization

Parallel to the RL paradigm, optimization techniques capable of handling problems with parametric
uncertainties where developed throught the years. Black-box optimization, derivative-free optimization
and simulation optimization [3, 4, 53, 178] enclose all the techniques which are developed when the
explicit cost function, its derivatives, or the constraints are not available to the optimization process
(or they are too complicated). In general, in these cases the idea is to substitute the missing knowledge
by cleverly probing the cost function, exploiting the knowledge of some known property (for example,
in [75, 183, 184] the authors leverage on Lipschitz continuity). Given the particular structure of NL-
OCPs, several iterative and efficient ways to solve them [60, 69, 90, 100, 118, 119, 158] have been proposed
in the years. The structure of the NL-OCP for a data-driven resolution is exploited in [52], where the
authors propose an algorithm to iteratively solve a NL-OCP with partial knowledge of the dynamics.
We refer the reader to [64, 174, 177] for other ways of solving in a data-driven way NL-OCPs.

V.2 Problem setup

V.2.1 Problem statement: data-driven nonlinear optimal control

In this first section, we introduce the problem setup together with some preliminaries on model-based
optimal control of nonlinear systems. In this chapter, we consider nonlinear systems described by the
discrete-time dynamics

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ), 𝑥0 = 𝑥init (V.1)

where 𝑓 : R𝑛×R𝑚 → R𝑛 is the dynamics and 𝑥𝑡 ∈ R𝑛, 𝑢𝑡 ∈ R𝑚 are, respectively, the state of the system
and the control input at time 𝑡 ∈ N. The initial condition is fixed to be 𝑥init ∈ R𝑛. Importantly, we
assume dynamics (V.1) to be unknown, i.e., we do not have access to an explicit form of 𝑓 . Nevertheless,
we assume to be able to actuate the system with given input sequence 𝑢0, . . . , 𝑢𝑇−1 and to measure the
noiseless states 𝑥0, . . . , 𝑥𝑇 : consider, e.g., the possibility to retrieve these data from a realistic simulator,
or from an experiment. To simplify the notation, we denote finite-dimensional stacks of vectors with
bold letters, namely, we can denote the stacks of state and input sequence as

u := (𝑢0, . . . , 𝑢𝑇−1) ∈ R𝑛𝑇

x := (𝑥0, 𝑥1, . . . , 𝑥𝑇 ) ∈ R𝑛(𝑇+1) .
(V.2)
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More formally, we assume we can measure trajectories of system (V.1), i.e., state-input sequences satisfy-
ing the following definition.

Definition V.1. [System trajectory] The pair (x,u) ∈ 𝑅𝑠 is a trajectory of system (V.1) if it satisfies

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ) (V.3)

for all 𝑡 = 0, . . . , 𝑇 − 1 with 𝑥0 = 𝑥init. K

Compactly, we denote a trajectory as𝜂 := (x,u) ∈ R𝑠 , where 𝑠 = 𝑠𝑥+𝑠𝑢 and 𝑠𝑥 := 𝑛(𝑇+1), 𝑠𝑢 := 𝑚𝑇 .

Definition V.2. [Trajectory manifold] We denote as T ⊂ R𝑠 the manifold of all the trajectories of (V.1)
as per Def. V.1 of fixed initial condition 𝑥init. Notice that, by defining

ℎ(x,u) =


𝑥0 − 𝑥init

. . .

𝑥𝑇 − 𝑓 (𝑥𝑇−1, 𝑢𝑇−1)

 , (V.4)

we may characterize systems trajectories as

(x,u) ∈ T ⇐⇒ ℎ(x,u) = 0. (V.5)

K

Notice T is a manifold since the Jacobian of ℎ(x,u) has constant rank independently on 𝑓 (provided
that 𝑓 is differentiable). Conversely, a generic element of R𝑠 not necessarily satisfying Definition V.1 is
said to be a curve and we denoted it as 𝜉 := (α,µ) ∈ R𝑠 , with

α := (𝜇0, . . . , 𝜇𝑇−1) ∈ R𝑠𝑥 ,

µ := (𝛼0, 𝛼1, . . . , 𝛼𝑇 ) ∈ R𝑠𝑢 .
(V.6)

Our objective is to design input sequences u for the unknown system (V.1) such that the resulting
trajectory (x,u) minimizes a nonlinear performance index

ℓ(x,u) :=
𝑇−1∑︁
𝑡=0

ℓ𝑡 (𝑥𝑡 , 𝑢𝑡 ) + ℓ𝑇 (𝑥𝑇 ), (V.7)

where ℓ𝑡 : R𝑛 × R𝑚 → R≥0 is the so-called stage cost and ℓ𝑇 : R𝑛 → R≥0 is the terminal cost.
Compactly, we aim at solving the following optimal control problem

min
x,u

𝑇−1∑︁
𝑡=0

ℓ𝑡 (𝑥𝑡 , 𝑢𝑡 ) + ℓ𝑇 (𝑥𝑇 )

subj. to 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ), 𝑡 = 0, . . . , 𝑇 − 1,

𝑥0 = 𝑥init.

(V.8)
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Remark V.1. The finite-time nature of the considered problem make its solution interesting especially
for the generation of an optimal reference to be followed in repeated tasks. ♦

We introduce the following hypothesis on the smoothness of the dynamics and the cost function.

Assumption V.1 (Regularity). The dynamics 𝑓 in (V.1) and the cost function ℓ in (V.7) are twice contin-
uously differentiable in their arguments, i.e., 𝑓 , ℓ are𝐶2.

As it will be clearer further in this chapter, we also introduce the following assumptions regarding the
second-order derivatives of the cost function (V.7).

Assumption V.2. For all state and input sequences (x,u) ∈ R𝑠 , it holds ∇2ℓ(x,u) > 0.

Assumption V.2 guarantees the possibility of finding a valid descent direction; however, it can be
relaxed via regularizations (see Remark V.2). Furthermore, if the cost ℓ is user-defined, it is possible to
readily satisfy Assumption V.2. We highlight that the key challenge of solving problem (V.8) is that an
expression for the dynamics (V.1) or its derivatives is not accessible in explicit form, i.e., it is not available
to the solver.

V.2.2 Preliminaries: an introduction to PRONTO

In this preliminary section we present a discrete-time version of the optimal control algorithm PRONTO

(on which we build DATA-DRIVEN PRONTO), which has been proposed in [90] for the continuous-
time framework. The underlying idea is to leverage on a feedback policy to map generic elements (α,µ)
of the space R𝑠 , the so-called curves, into the set of trajectories feasible for the dynamics (V.1). This
projection is assumed to be implemented via the nonlinear tracking system

𝑢𝑡 = 𝜋(𝛼𝑡 , 𝜇𝑡 , 𝑥𝑡 , 𝑡) (V.9)

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ), 𝑥0 = 𝑥init,

where 𝜋 : R𝑛 × R𝑚 × R𝑛 × R → R𝑚 is a generic tracking controller whose properties will be later
clarified. The interconnection (V.9) between the control law 𝜋 and the dynamics 𝑓 can be seen as a
projection operator which projects generic curves (α,µ) onto the trajectory manifold of system (V.1), i.e.,
it implements a map (α,µ) ↦→ (x,u) (we refer to [90] for a detailed discussion). More in detail, for all
iterations indexed by 𝑘 , the methodology proposed in [90] seeks for an update direction (𝚫x𝑘 ,𝚫u𝑘)
onto the tangent space of the trajectory manifold T at the current solution trajectory (x𝑘 ,u𝑘) (step
1 of Algorithm 6). The descent direction is obtained by solving LQR problem (V.13), where 𝐴𝑘𝑡 , 𝐵𝑘𝑡 ,
𝑞𝑘𝑡 , 𝑟

𝑘
𝑡 are defined as

𝐴𝑘𝑡 := ∇1 𝑓 (𝑥𝑘𝑡 , 𝑢𝑘𝑡 )⊤, 𝐵𝑘𝑡 := ∇2 𝑓 (𝑥𝑘𝑡 , 𝑢𝑘𝑡 )⊤,

𝑞𝑘𝑡 := ∇1ℓ𝑡 (𝑥𝑘𝑡 , 𝑢𝑘𝑡 )⊤, 𝑟𝑘𝑡 := ∇2ℓ𝑡 (𝑥𝑘𝑡 , 𝑢𝑘𝑡 )⊤,
(V.10)
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and𝑄𝑘𝑡 , 𝑄𝑘𝑇 ∈ R𝑛×𝑛, 𝑆𝑘𝑡 ∈ R𝑛×𝑚 and 𝑅𝑘𝑡 ∈ R𝑚×𝑚 are defined as

𝑄𝑘𝑡 := ∇2
11ℓ𝑡 (𝑥

𝑘
𝑡 , 𝑢

𝑘
𝑡 ), 𝑆𝑘𝑡 := ∇2

12ℓ𝑡 (𝑥
𝑘
𝑡 , 𝑢

𝑘
𝑡 ),

𝑅𝑘𝑡 := ∇2
22ℓ𝑡 (𝑥

𝑘
𝑡 , 𝑢

𝑘
𝑡 ), 𝑄𝑘𝑇 := ∇2

11ℓ𝑡 (𝑥
𝑘
𝑇 ).

(V.11)

After computing the descent direction, PRONTO updates the estimate of the solution (α𝑘 ,µ𝑘) accord-
ing to [

α𝑘

µ𝑘

]
=

[
x𝑘

µ𝑘

]
+ 𝛾𝑘

[
𝚫x𝑘

𝚫u𝑘

]
, (V.12)

where 𝛾𝑘 ∈ (0, 1] is an appropriate stepsize (step 2 of Algorithm 6). Since the updated solution
(α𝑘 ,µ𝑘) does not satisfy, in general, the dynamics constraint, the updated trajectory (x𝑘+1,u𝑘+1) is
then obtained from (α𝑘+1,µ𝑘+1) via (V.9) (step 3 of Algorithm 6).

Remark V.2. [Approximations of descent step] In (V.11), we simplified the cost matrices by neglecting
a term involving the Hessian of the dynamics. In order not to lose the convergence properties of the
algorithm, it is sufficient to guarantee that the matrix in the quadratic part of the cost in (V.13) is positive
definite for all 𝑡 (e.g., using the identity matrix, regularizing the cost or using Assumption V.2) [66, Cor.
4.3]. ♦

Algorithm 6 recaps the procedure described so far.
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Algorithm 6 PRONTO

Require: Initial trajectory (x0,u0), controller 𝜋, dynamics 𝑓 .
for 𝑘 = 0, 1, 2 . . . do

Step 1: find descent direction (𝚫x𝑘 ,𝚫u𝑘) by solving

min
𝚫x,𝚫u

𝑇−1∑︁
𝑡=0

1
2

[
Δ𝑥𝑡

Δ𝑢𝑡

]⊤ [
𝑄𝑘𝑡 𝑆𝑘𝑡

𝑆
⊤,𝑘
𝑡 𝑅𝑘𝑡

] [
Δ𝑥𝑡

Δ𝑢𝑡

]
+

[
𝑞𝑘𝑡

𝑟𝑘𝑡

]⊤ [
Δ𝑥𝑡

Δ𝑢𝑡

]
+ Δ𝑥⊤𝑇𝑄

𝑘
𝑇Δ𝑥𝑇 + 𝑞𝑘⊤𝑇 Δ𝑥𝑇

subj. to Δ𝑥𝑡+1 = 𝐴𝑘𝑡 Δ𝑥𝑡 + 𝐵𝑘𝑡 Δ𝑢𝑡 ,

Δ𝑥0 = 0, 𝑡 = 0, . . . , 𝑇 − 1.

Step 2: update curve (α𝑘+1,µ𝑘+1):

𝛼𝑘+1𝑡 = 𝑥𝑘𝑡 + 𝛾𝑘Δ𝑥𝑘𝑡
𝜇𝑘+1𝑡 = 𝑢𝑘𝑡 + 𝛾𝑘Δ𝑢𝑘𝑡 ,

(V.13)

with 𝑡 = 0, . . . , 𝑇 − 1.
Step 3: find new trajectory (x𝑘+1,u𝑘+1):

𝑢𝑘+1𝑡 = 𝜋(𝛼𝑘+1𝑡 , 𝜇𝑘+1𝑡 , 𝑥𝑘+1𝑡 , 𝑡)

𝑥𝑘+1𝑡+1 = 𝑓 (𝑥𝑘+1𝑡 , 𝑢𝑘+1𝑡 ), 𝑥𝑘+10 = 𝑥init,
(V.14)

with 𝑡 = 0, . . . , 𝑇 − 1.
end for

To summarize, the steps 1 − 2 of Algorithm 6 are the same of an SQP method. The main difference
between PRONTO and other algorithms stands in the projection step (V.9), which is intended to numer-
ically robustify its performance with repect to both SQP (where (x𝑘+1,u𝑘+1) do not in general satisfy
the dynamic constraint, and this constraint violation needs to be taken into account) and shooting
approaches, which are in general less stable (since only u𝑘+1 is updated and x𝑘+1 is found in open loop
given dynamics (V.1)).

V.3 DATA-DRIVEN PRONTO

V.3.1 The algorithm

We are now ready to present DATA-DRIVEN PRONTO, our data-driven algorithm for optimal control.
Moving from the foundings ideas of PRONTO, our approach extends the algorithm to the model-free
framework. Indeed, notice that in order to implement Step 1 of Algorithm 6, perfect knowledge of the
dynamics (V.1) is required. In the following, we introduce how DATA-DRIVEN PRONTO is capable of
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Algorithm 7 DATA-DRIVEN PRONTO

Require: Initial trajectory (x0,u0) ∈ T , controller 𝜋, exploration bounds 𝛿𝑥 , 𝛿𝑢 > 0, stepsize
𝛾 > 0.
for 𝑘 = 0, 1, 2 . . . do
Learning
Step L1: gather 𝑖 = 1, . . . , 𝐿 trajectories perturbation (x̂𝑖,𝑘 , û𝑖,𝑘) of (x𝑘 ,u𝑘) via closed-loop
experiment as in (V.21):

𝑢̂
𝑖,𝑘
𝑡 = 𝜋(𝑥𝑘𝑡 , 𝑢𝑘𝑡 , 𝑥𝑖,𝑘𝑡 , 𝑡) + 𝑑𝑖,𝑘𝑢,𝑡
𝑥
𝑖,𝑘

𝑡+1 = 𝑓 (𝑥𝑖,𝑘𝑡 , 𝑢̂
𝑖,𝑘
𝑡 ), 𝑥

𝑖,𝑘

0 = 𝑥init + 𝑑𝑖,𝑘𝑥 .
(V.15)

Step L2: build Δ𝑋 𝑘𝑡 ,Δ𝑈
𝑘
𝑡 ,Δ𝑋

+,𝑘
𝑡 for 𝑡 = 0, . . . 𝑇 − 1 as in (V.24):

Δ𝑋 𝑘𝑡 = [𝑥1,𝑘𝑡 − 𝑥𝑘𝑡 , . . . , 𝑥𝐿,𝑘𝑡 − 𝑥𝑘𝑡 ]
Δ𝑈𝑘𝑡 = [𝑢̂1,𝑘𝑡 − 𝑢𝑘𝑡 , . . . , 𝑢̂𝐿,𝑘𝑡 − 𝑢𝑘𝑡 ]

Δ𝑋
+,𝑘
𝑡 = [𝑥1,𝑘

𝑡+1 − 𝑥
𝑘
𝑡+1, . . . , 𝑥

𝐿,𝑘

𝑡+1 − 𝑥𝑘𝑡+1] .
(V.16)

Step L3: for all 𝑡 = 0, . . . , 𝑇 − 1, estimate the linearizations of the dynamics:

[
𝐴̂𝑘𝑡 𝐵̂𝑘𝑡

]
= Δ𝑋

+,𝑘
𝑡

[
Δ𝑋 𝑘𝑡
Δ𝑈𝑘𝑡

]†
. (V.17)

Optimization
Step O1: solve the approximate problem

min
𝚫x̂,𝚫û

𝑇−1∑︁
𝑡=0

1
2

[
Δ𝑥𝑡
Δ𝑢̂𝑡

]⊤ [
𝑄𝑘𝑡 𝑆𝑘𝑡
𝑆
⊤,𝑘
𝑡 𝑅𝑘𝑡

] [
Δ𝑥𝑡
Δ𝑢̂𝑡

]
+

[
𝑞𝑘𝑡
𝑟𝑘𝑡

]⊤ [
Δ𝑥𝑡
Δ𝑢̂𝑡

]
+ Δ𝑥⊤𝑇𝑄

𝑘
𝑇Δ𝑥𝑇 + 𝑞𝑘⊤𝑇 Δ𝑥𝑇

subj. to Δ𝑥𝑡+1 = 𝐴̂𝑘𝑡 Δ𝑥𝑡 + 𝐵̂𝑘𝑡 Δ𝑢̂𝑡 ,
Δ𝑥0 = 0, 𝑡 = 0, . . . 𝑇 − 1.

(V.18)

Step O2: update curve (α𝑘+1,µ𝑘+1)

𝛼𝑘+1𝑡 = 𝑥𝑘𝑡 + 𝛾Δ𝑥𝑘𝑡
𝜇𝑘+1𝑡 = 𝑢𝑘𝑡 + 𝛾Δ𝑢̂𝑘𝑡 ,

(V.19)

with 𝑡 = 0, . . . , 𝑇 − 1.
Step O3: obtain new trajectory (x𝑘+1,u𝑘+1)

𝑢𝑘+1𝑡 = 𝜋(𝛼𝑘+1𝑡 , 𝜇𝑘+1𝑡 , 𝑥𝑘+1𝑡 , 𝑡)
𝑥𝑘+1𝑡+1 = 𝑓 (𝑥𝑘+1𝑡 , 𝑢𝑘+1𝑡 ), 𝑥𝑘+10 = 𝑥init,

(V.20)

with 𝑡 = 0, . . . , 𝑇 − 1.
end for
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generating a solution to problem (V.8) leveraging on successive learning and optimization steps, which
are denoted in Algorithm 7 by prefixes L and O, respectively.

StepL1: Closed-loop data collection At each iteration 𝑘 , a set of state-input data are collected in the
neighbourhood of the current trajectory (x𝑘 ,u𝑘) by successive experimental sessions (or simulations)
with additional exploration noise. The collected data are then used to estimate the Jacobians of the
unknown dynamics (V.1). More in detail, the 𝑖𝑡ℎ perturbation of the nominal trajectory (x𝑘 ,u𝑘),
denoted as (x̂𝑖,𝑘 , û𝑖,𝑘), is obtained from the real system by integrating the closed-loop dynamics

𝑢̂
𝑖,𝑘
𝑡 = 𝜋(𝑥𝑘𝑡 , 𝑢𝑘𝑡 , 𝑥𝑖,𝑘𝑡 , 𝑡) + 𝑑𝑖,𝑘𝑢,𝑡
𝑥
𝑖,𝑘

𝑡+1 = 𝑓 (𝑥𝑖,𝑘𝑡 , 𝑢̂
𝑖,𝑘
𝑡 ), 𝑥

𝑖,𝑘

0 = 𝑥init + 𝑑𝑖,𝑘𝑥 ,
(V.21)

where 𝑑𝑖,𝑘𝑥 ∈ R𝑛, 𝑑𝑖,𝑘𝑢,𝑡 ∈ R𝑚 are appropriate exploration dithers injected to guarantee a successful
identification. Notice the exploration dither may be added by the experimenter (especially in the case of
simulation) or it may be spontaneous disturbances. In this article, for simplicity reasons, we suppose it is
a degree of freedom introduced by the experimenter. We introduce now two hypotheses to characterize
the control law 𝜋 and the closed-loop experiments (V.21).

Assumption V.3 (Properties of 𝜋). The state-feedback control law 𝜋(𝛼, 𝜇, 𝑥, 𝑡) is twice continuously
differentiable in its arguments, i.e., 𝜋 is 𝐶2 an designed such that 𝜋(𝛼, 𝜇, 𝛼, 𝑡) = 𝜇 holds for all 𝛼 ∈
R𝑛, 𝜇 ∈ R𝑛, 𝑡 ∈ N.

This assumption implies that when the reference curve (α,µ) is a trajectory of the dynamics (V.1) as
per Definition V.1, i.e., (α,µ) ∈ T , it holds that the resulting trajectory (x,u) of the closed-loop
system (V.9) is such that (x,u) = (α,µ). In fact, under Assumption V.3 and if 𝑥𝑡 = 𝛼𝑡 , the input
chosen by the closed-loop dynamics (V.9) is given by

𝑢𝑡 = 𝜋(𝛼𝑡 , 𝜇𝑡 , 𝑥𝑡 , 𝑡) = 𝜋(𝛼𝑡 , 𝜇𝑡 , 𝛼𝑡 , 𝑡) = 𝜇𝑡 , (V.22)

resulting in 𝑓 (𝑥𝑡 , 𝑢𝑡 ) = 𝑓 (𝛼𝑡 , 𝜇𝑡 ) = 𝛼𝑡+1 if (α,µ) ∈ T . As an example, a control law 𝜋(𝛼, 𝜇, 𝑥, 𝑡) =
𝜇 + 𝐾𝑡 (𝛼 − 𝑥) respects this hypothesis.

Remark V.3. Due to the genericity of the framework, we do not provide here a “standard" way to
build the policy 𝜋, which should be designed for the specific application and leveraging the specific
knowledge of the system (as an example, in robotics application one may use standard robust, adaptive,
or sliding mode control techniques). ♦

Assumption V.4 (Dither boundedness). The exploration dithers 𝑑𝑖,𝑘𝑢,𝑡 , 𝑑
𝑖,𝑘
𝑥 in (V.21) are known and

uniformly bounded, i.e.,
|𝑑𝑖,𝑘𝑥 | ≤ 𝛿𝑥 |𝑑𝑖,𝑘𝑢,𝑡 | ≤ 𝛿𝑢 (V.23)

for all 𝑖 = 1, . . . , 𝐿, 𝑘 ∈ N, 𝑡 = 0, . . . , 𝑇 − 1.
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While the presence of exploration noise is necessary for performing a good identification, its integration
in time may let nonlinearities show up, thus leaving the neighbourhood of the current trajectory
(x𝑘 ,u𝑘) and ruining the estimated linearization of the dynamics.

Remark V.4. In practical implementations, the experimenter may not be able to inject an arbitrarily
small dither signal. The tracking capabilities of the closed-loop control law 𝜋 become thus fundamen-
tal to allow the injection of stronger dithers without leaving the neighbourhood of (x𝑘 ,u𝑘), thus,
influencing the convergence properties of DATA-DRIVEN PRONTO. This aspect will be shown in the
numerical example. ♦

Step L2 −L3: LTV dynamics identification For all 𝑖 = 1, . . . , 𝐿, the perturbations (x̂𝑖,𝑘 , û𝑖,𝑘)
obtained via (V.21) are used to build matrices Δ𝑋 𝑘𝑡 ,Δ𝑈𝑘𝑡 ,Δ𝑋

+,𝑘
𝑡 , which are data batches stacking the

differences between all the perturbations and the nominal trajectory, namely

Δ𝑋 𝑘𝑡 = [𝑥1,𝑘𝑡 − 𝑥𝑘𝑡 , . . . , 𝑥𝐿,𝑘𝑡 − 𝑥𝑘𝑡 ] ∈ R𝑛×𝐿

Δ𝑈𝑘𝑡 = [𝑢̂1,𝑘𝑡 − 𝑢𝑘𝑡 , . . . , 𝑢̂𝐿,𝑘𝑡 − 𝑢𝑘𝑡 ] ∈ R𝑚×𝐿

Δ𝑋
+,𝑘
𝑡 = [𝑥1,𝑘

𝑡+1 − 𝑥
𝑘
𝑡+1, . . . , 𝑥

𝐿,𝑘

𝑡+1 − 𝑥𝑘𝑡+1] ∈ R𝑛×𝐿 .

(V.24)

Data Δ𝑋 𝑘𝑡 ,Δ𝑈𝑘𝑡 ,Δ𝑋
+,𝑘
𝑡 are used to perform a least-squares identification (V.17) of the matrices 𝐴𝑘𝑡 , 𝐵𝑘𝑡

for all 𝑡. The following assumption ensures the identification step to be well posed.

Assumption V.5 (Well-posed identification). For all 𝑘 ∈ N and for all 𝑡 = 0, . . . , 𝑇 − 1, there exists
𝑀 > 0 for which [

Δ𝑋 𝑘𝑡

Δ𝑈𝑘𝑡

]
∈ F𝑀 , (V.25)

where
F𝑀 :=

{
𝐹 ∈ R(𝑛+𝑚)×𝐿 : 𝜅

(
𝐹𝐹⊤)

≤ 𝑀
}
. (V.26)

Although it is challenging to establish sufficient conditions on the exploration noise to guarantee
Assumption V.5 for generic nonlinear dynamics, the proposed strategy allows for the collection of an
arbitrary number of trajectory perturbations and the verification of whether the conditions are met
using the gathered data. Notice that DATA-DRIVEN PRONTO does not identify a specific model of
the dynamics, but identifies linearizations of the dynamics about specific trajectories. This avoids the
introduction of possible parametrization errors when performing the identification.

Step O1: Data-driven descent calculation Finally, in Algorithm 7 the descent direction is obtained
by solving the data-based problem (V.18) where the linearized linear time-varying dynamics is replaced
by its estimation based on data (V.24). The remaining steps remain identical to those in PRONTO.
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Main result

In the following we present the main result of this chapter. For the sake of readability, for all iteration 𝑘
we denote the solution estimate provided by Algorithm 7 as 𝜂𝑘 = (x𝑘 ,u𝑘) while each isolated local
minimum solution of (V.8) is denoted as 𝜂★ = (x★,u★).

Theorem V.1. Consider Algorithm 7 with unitary stepsize 𝛾 = 1. Let Assumptions V.1, V.2, V.3, V.4
and V.5 hold. Then, there exist dither bounds 𝛿𝑥 , 𝛿𝑢 > 0, an iteration 𝐾 ∈ N, and a radius 𝜌 > 0 such
that, if 𝛿𝑥 ∈ (0, 𝛿𝑥), 𝛿𝑢 ∈ (0, 𝛿𝑢), and 𝜂0 ∈ B𝜌 (𝜂★) ∩ T then

|𝜂𝑘 − 𝜂★| ≤ 𝜙( |𝜂0 − 𝜂★|, 𝑘) ∀𝑘 < 𝐾

|𝜂𝑘 − 𝜂★| ≤ 𝑏(𝛿𝑥 , 𝛿𝑢) ∀𝑘 ≥ 𝐾,
(V.27)

where 𝜙 is a class KL function and 𝑏(𝛿𝑥 , 𝛿𝑢) is class K function of 𝛿𝑥 , 𝛿𝑢. Q

The proof of Theorem V.1 is given in Appendix V.7.6.

Remark V.5. The proof is given for unitary stepsize 𝛾; however, there is a tradeoff between the basin of
attraction of the algorithm and the amplitude of the chosen stepsize. It is also possible to choose 𝛾 with
techniques such as Armijo’s rule (depending on the type availability of simulation setup / experiments
that one is able to implement / perform). ♦

V.3.2 Algorithm analysis

We approach the proof of the main theorem in two steps. First, by realizing that the solution update
strategy implemented by Algorithm 7 can be viewed as a perturbed version of Algorithm 6 (where the
perturbation is introduced by the Jacobian estimation), we prove that under the assumption that the
difference between the descent direction obtained by solving problems (V.13) and (V.18) is sufficiently
small, we can ensure convergence to a neighborhood of the solution 𝜂★. Second, we show how to
pick the algorithm parameters 𝛿𝑥 and 𝛿𝑢 to ensure that the difference between the descent direction
obtained by solving problems (V.13) and (V.18) is arbitrarily small. For the sake of clarity, we denote
the current (unperturbed) trajectory at each iteration as 𝜂𝑘 = (x𝑘 ,u𝑘) ∈ R𝑠 . To denote solutions of
problems (V.13) and (V.18), i.e., the descent direction, we introduce the symbols 𝜁 𝑘 = (𝚫x𝑘 ,𝚫u𝑘) ∈ R𝑠

and 𝜁 𝑘 = (𝚫x̂𝑘 ,𝚫û𝑘) ∈ R𝑠 , respectively.

Practical stability of DD-PRONTO

We now study the convergence properties of PRONTO in case of errors in the descent direction calculation.
At first, we briefly introduce a state-space reformulation of the exact version of PRONTO. Next, we show
how to modify PRONTO to obtain Algorithm 6 (i.e., we introduce the cost regularization) and how
its convergence properties are affected by the cost approximation. At last, we study Algorithm 7 as a
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perturbed version of Algorithm 6. We start by rewriting problem (V.8) as

min
𝜂

ℓ(𝜂)

subj. to 𝜂 ∈ T ,
(V.28)

where ℓ(·) and T are given in (V.7) and Def. V.2, respectively. We denote the projection operator given
by the closed-loop system (V.9) as P : R𝑠 → T . The idea is to project any curve 𝜉 into a trajectory
𝜂 by leveraging the tracking controller 𝜋 and integrating the dynamics. Notice that Assumption V.3
ensures that i) P(𝜂) = 𝜂 if 𝜂 ∈ T and ii) P(𝜉) ∈ T if 𝜉 ∉ T , which are properties required to call
P a projection. Further details on the projection operator, its derivatives and their properties can be
found in [91]. We then embed the projection in the cost by defining 𝑔(𝜉) := ℓ(P(𝜉)) to obtain the
unconstrained problem formulation

min
𝜂

𝑔(𝜂), (V.29)

which is shown to have the same isolated minima of problem (V.28) [90]. Problem (V.29) is then solved
via a quasi Newton’s method, which can be rewritten as the autonomous dynamical system

𝜁 𝑘 = argmin
𝜁 ∈𝑇

𝜂𝑘
T

(
1
2
𝜁⊤∇2𝑔(𝜂𝑘)𝜁 + ∇𝑔(𝜂𝑘)⊤𝜁

)
𝜂𝑘+1 = P(𝜂𝑘 + 𝜁 𝑘),

(V.30)

where𝑇𝜂𝑘T is the space tangent to the trajectory manifold T at 𝜂𝑘 . Notice this is not a “pure" Newton
method since it searches for updates in the tangent space 𝑇𝜂𝑘T and since it projects the updated
curve onto the trajectory manifold. This allows to satisfy the dynamic constraints at each algorithm
iteration, instead of satisfying it only asymptotically. BeingPRONTO a projected SQP algorithm [18, Thm.
3], it is shown that the autonomous system (V.30), under Assumptions V.2, V.1 and V.3, has locally
exponentially stable equilibria in isolated solutions of the optimal control problem 𝜂★ (or, more in
general, in points which solve KKT conditions) [18, Thm. 2]. In the next lemma, we study Algorithm
6 which implements a regularized version of PRONTO (namely, Alg. 6) where the Hessians of the cost
function 𝑔 are approximated considering only the derivatives of the cost function ℓ (instead of their
composition with P). More in detail, Alg. 6 implements the iterative update

𝜁 𝑘 = argmin
𝜁 ∈𝑇

𝜂𝑘
T

(
1
2
𝜁⊤∇2ℓ(𝜂𝑘)𝜁 + ∇ℓ⊤(𝜂𝑘)𝜁

)
𝜂𝑘+1 = P(𝜂𝑘 + 𝜁 𝑘).

(V.31)

Notice that, in (V.31), only the second order derivatives of the cost function ℓ are considered, instead
of the composition 𝑔 (cf. dynamics (V.30)). The following lemma provides stability guarantees of the
optimal solution for Algorithm 6.
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Lemma V.1. [Exponential stability of optimal solution] Consider the discrete-time autonomous dynamical
system (V.31). Let Assumptions V.2, V.1 and V.3 hold. Then, the equilibrium 𝜂★ is Locally Exponentially
Stable. P

The proof is provided in Appendix V.7.1.
Given the stability properties of 𝜂★ for system (V.31), we are now able to provide a theoretical guarantee
for a perturbed version of the algorithm.

Lemma V.2. [Practical stability of optimal solution] Consider the non-autonomous dynamical system
given by

𝜁 𝑘 = argmin
𝜁 ∈𝑇

𝜂𝑘
T

(
1
2
𝜁⊤∇2ℓ(𝜂𝑘)𝜁 + ∇ℓ⊤(𝜂𝑘)𝜁

)
𝜂𝑘+1 = P

(
𝜂𝑘 + 𝜁 𝑘 + Δ𝜁 𝑘

)
,

(V.32)

where Δ𝜁 𝑘 is a perturbation. Let Assumptions V.1, V.2 and V.3 hold. Let ∥Δ𝜁 𝑘 ∥ ≤ 𝛿𝜁 for all 𝑘 ∈ N

and for some 𝛿𝜁 > 0. Then, there exists 𝛿𝜁 > 0 such that, if 𝛿𝜁 ≤ 𝛿𝜁 , the equilibrium 𝜂★ is Locally
Uniformly Ultimately Bounded, i.e., there exists𝐾 ∈ N, 𝑝 > 0, classKL function 𝜙 and classK function
𝑏(𝛿𝜁 ) such that, if 𝜂0 ∈ B𝑝 (𝜂★), then it holds

|𝜂𝑘 − 𝜂★| ≤ 𝜙( |𝜂0 − 𝜂★|, 𝑘) ∀𝑘 < 𝐾

|𝜂𝑘 − 𝜂★| ≤ 𝑏(𝛿𝜁 ) ∀𝑘 ≥ 𝐾.
(V.33)

P

The proof is provided in Appendix V.7.2.

Data-driven descent error

In the following, we present formal error bounds about the calculation of the descent direction based
solely on input dithers. Since the results in this section are independent on the specific iteration 𝑘 of
the algorithm, we omit the superscript 𝑘 for clarity. Additionally, to compact the notation, we define
d𝑥 and d𝑢 as the stack of exploration dithers across all time steps and perturbations, i.e.,

d𝑥 := (𝑑1𝑥 , . . . , 𝑑𝐿𝑥 ) ∈ R𝑛𝐿

d𝑢 := (𝑑1𝑢,0, . . . , 𝑑
1
𝑢,𝑇−1, . . . , 𝑑

𝐿
𝑢,0, . . . , 𝑑

𝐿
𝑢,𝑇−1) ∈ R𝑠𝑢𝐿 .

(V.34)

The core idea is to show that the error between the data-driven descent direction 𝜁 = (𝚫x̂,𝚫û) solution
of (V.18) and the exact descent direction 𝜁 = (𝚫x,𝚫u) solution of (V.13) is a smooth function of the
exploration dithers d𝑥 ,d𝑢. Let us denote the stack of data matrices (V.24) obtained by collecting 𝐿
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perturbed trajectories from (V.21) as

𝚫X := (Δ𝑋0, . . . ,Δ𝑋𝑇−1) ∈ R𝑛𝑇𝐿

𝚫U := (Δ𝑈0, . . . ,Δ𝑈𝑇−1) ∈ R𝑚𝑇𝐿
(V.35)

First, we show that, for a given trajectory 𝜂, the data matrices (𝚫X ,𝚫U ) in (V.35) are a smooth function
of the exploration dithers d𝑥 ,d𝑢, namely we show the function

Δ𝑋𝑈 :R𝑠 × R𝑛𝐿 × R𝑠𝑢𝐿 → R𝑛𝑇𝐿 × R𝑚𝑇𝐿

𝜂,d𝑥 ,d𝑢 ↦−→ (𝚫X ,𝚫U ).
(V.36)

is smooth in its arguments. Notice, Δ𝑋𝑈 (𝜂,d𝑥 ,d𝑢) depends both on the exploration dithers of all
𝑖 = 1, . . . , 𝐿 collected perturbations and on the current trajectory 𝜂, where the dependence on 𝜂
accounts for the closed-loop dynamics (V.21). The next lemma formally proves the claimed property.

Lemma V.3. Let Assumption V.1 and V.3 hold. Then, Δ𝑋𝑈 in (V.36) is a 𝐶1 function of the current
trajectory 𝜂 and of all the exploration dithers d𝑥 ,d𝑢. Furthermore,

Δ𝑋𝑈 (𝜂, 0, 0) = 0 (V.37)

for all system trajectories 𝜂 ∈ T . P

The proof is provided in Appendix V.7.3.
Notice that a continuously differentiable function is also Lipschitz continuous in bounded sets; fur-
thermore, being zero in zero, it is possible to obtain a bound for its norm which is linear and which is
zero in zero. Denote now the error between the matrices estimated using data via (V.17) and the exact
Jacobians of 𝑓 about the current trajectory 𝜂 at time instant 𝑡 as

Δ𝐴𝑡 := 𝐴̂𝑡 − 𝐴𝑡 , Δ𝐵𝑡 := 𝐵̂𝑡 − 𝐵𝑡 . (V.38)

and define their stack, for all 𝑡, as

𝚫A := (Δ𝐴0, . . . ,Δ𝐴𝑇−1) ∈ R𝑛
2𝑇

𝚫B := (Δ𝐵0, . . . ,Δ𝐵𝑇−1) ∈ R𝑛𝑚𝑇 .
(V.39)

The stack of estimation errors in (V.39) can be written as a function of both the current trajectory
𝜂 and the data matrices 𝚫X ,𝚫U , which define the exact Jacobians and their data-based estimation,
respectively. We denote this function as

Δ𝐴𝐵 :R𝑠 × F 𝑇
𝑀 → R𝑛

2𝑇 × R𝑛𝑚𝑇

𝜂,𝚫X ,𝚫U ↦−→ (𝚫A,𝚫B),
(V.40)

where F 𝑇
𝑀

:= F𝑀 ×F𝑀 × . . . and F𝑀 ⊂ R(𝑛+𝑚)×𝐿 is given in (V.26). The next lemma provides formal
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guarantees for this relation.

Lemma V.4. Let Assumption V.1 hold. Then,Δ𝐴𝐵 in (V.40) is a𝐶1 function of 𝜂 and𝚫X ,𝚫U . Further-
more, for each 𝜂 ∈ T and bounded K ⊂ F 𝑇𝐿

𝑀
, there exists 𝑔(𝜂,K) > 0 such that, if (𝚫X ,𝚫U ) ∈ K ,

then

|Δ𝐴𝐵 (𝜂,𝚫X ,𝚫U ) | ≤ 𝑔(𝜂,K)(|𝚫X | + |𝚫U |). (V.41)

P

The proof is provided in Appendix V.7.4.

Remark V.6. It is not possible to entirely eliminate the estimation error given by Δ𝐴𝐵, as this would
necessitate all trajectory perturbations 𝜂𝑖 to coincide exactly with the current trajectory 𝜂, leading to
singular matrices (Δ𝑋𝑡 ,Δ𝑈𝑡 ) ∉ F𝑀 for any 𝑀 > 0. Nevertheless, it is possible for the matrices Δ𝑋𝑡
and Δ𝑈𝑡 to diminish in the directions that ensure a bounded condition number. ♦

We now consider the approximated problem (V.18) and the full knowledge problem (V.13). Notice
that, for a given trajectory 𝜂, these two problems differ only in the constraint represented by the LTV
dynamics. The descent direction error Δ𝜁 := 𝜁 − 𝜁 can be expressed as function of both the current
trajectory 𝜂 and the estimation errors (V.39), so we define

Δ𝜁 :R𝑠 × R𝑛
2𝑇 × R𝑛𝑚𝑇 → R𝑠

𝜂,𝚫A,𝚫B ↦−→ 𝜁 − 𝜁,
(V.42)

where, for a given trajectory 𝜂, 𝜁 = (𝚫x̂,𝚫û) and 𝜁 = (𝚫x,𝚫u) are the solutions of (V.18) and (V.13),
respectively. The dependence of Δ𝜁 on 𝜂 accounts for the cost matrices being Hessian and Jacobian of
the cost function ℓ evaluated in the current trajectory 𝜂. The next lemma provides formal guarantees
for this relation.

Lemma V.5. Let Assumption V.1 and V.2 hold. For all system trajectories 𝜂 ∈ T , there exists a continuous
function 𝛿𝐴𝐵 : T → R>0, such that, if | (𝚫A,𝚫B) | ≤ 𝛿𝐴𝐵 (𝜂), then Δ𝜁 in (V.42) is a𝐶1 function of
𝜂,𝚫A,𝚫B such that

Δ𝜁 (𝜂, 0, 0) = 0. (V.43)

P

The proof is provided in Appendix V.7.5.
In other words, Lemma V.5 provides us with a bound 𝛿𝐴𝐵 (𝜂) on the identification error which, if
respected, ensures that the error function Δ𝜁 (𝜂,𝚫A,𝚫B) is smooth in its arguments.

V.3.3 Numerical simulations

In this section, we demostrate the capabilities of DATA-DRIVEN PRONTO by solving an optimal control
problem for a nonlinear underactuated robot with unknown dynamics. First, we present the setup and
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the nonlinear optimal control problem, then we show the performances of DATA-DRIVEN PRONTO

under two different controllers 𝜋, the first more accurate and the second less reliable. The robot,
cf. [195, 233], consists of two links and one actuator on the first joint (see Figure V.1).

m2g

ℓ2

d2 q2

q1 m1g

ℓ1

d1
I1zz

I2,zz

x

y

u

Figure V.1: The pendubot.

Its dynamics read as

𝑀 (𝑞)
[
¥𝑞1
¥𝑞2

]
+ (𝐶 (𝑞, ¤𝑞) + 𝐹)

[
¤𝑞1
¤𝑞2

]
+ 𝑔(𝑞) =

[
𝑢

0

]
, (V.44)

where 𝑞 = (𝑞1, 𝑞2) ∈ [0, 2𝜋]2 stacks the two joint angles 𝑞1, 𝑞2 ∈ R, 𝑢 ∈ R is the input torque
on the first joint, 𝑀 (𝑞) ∈ R2×2 is the inertia matrix, 𝐹 ∈ R2×2 accounts for friction,𝐶 (𝑞, ¤𝑞) ∈ R2

includes the Coriolis and centrifugal forces and 𝑔(𝑞) ∈ R2 is the gravitational term. The matrices
in (V.44) are defined as

𝑀 (𝑞) :=
[
𝑎1 + 𝑎2 + 2𝑎3 cos(𝑞2) 𝑎2 + 𝑎3 cos(𝑞2)
𝑎2 + 𝑎3 cos(𝑞2) 𝑎2

]
𝐶 (𝑞, ¤𝑞) :=

[
−𝑎3 sin(𝑞2) ¤𝑞2 −𝑎3 sin(𝑞2) ( ¤𝑞1 + ¤𝑞2)
𝑎3 sin(𝑞2) ¤𝑞1 0

]
𝑔(𝑞) :=

[
𝑎4 cos(𝑞1) + 𝑎5 cos(𝑞1 + 𝑞2)

𝑎5 cos(𝑞1 + 𝑞2)

]
𝐹 := diag( 𝑓1, 𝑓2)

(V.45)
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Table V.1: Physical parameters of the pendubot

Parameter Value Parameter Value
𝑚1[Kg] 1.2 𝑚2[Kg] 1.2
ℓ1[m] 1 ℓ2[m] 1
𝑑1[m] 0.6 𝑑2[m] 0.6

𝐼1,𝑧𝑧[Kg𝑚2] 0.1 𝐼2,𝑧𝑧[Kg𝑚2] 0.1
𝑓1[Ns/rad] 1 𝑓2[Ns/rad] 1

where

𝑎1 := 𝐼1,𝑧𝑧 + 𝑚1𝑑
2
1 + 𝑚2ℓ

2
1

𝑎2 := 𝐼2,𝑧𝑧 + 𝑚2𝑑
2
2, 𝑎3 := 𝑚2ℓ1𝑑2

𝑎4 := 𝑔(𝑚1𝑑1 + 𝑚2ℓ1), 𝑎5 := 𝑔𝑚2𝑑2.

(V.46)

The physical parameters used to simulate the system are summarized in Table V.1. From (V.44), we
obtain a state space model with state variable 𝑥 = (𝑞1, 𝑞2, ¤𝑞1, ¤𝑞2). The dynamics is then discretized via
forward Euler integration of step 𝑑𝑡 = 0.01s over a simulation time of𝑇 = 10s. The cost function is a
quadratic cost function designed to follow a step reference (𝑥∗, 𝑢∗):

ℓ(𝑥, 𝑢) =
𝑇−1∑︁
𝑡=0

(𝑥𝑡 − 𝑥∗𝑡 )⊤𝑄(𝑥𝑡 − 𝑥∗𝑡 )+

(𝑢𝑡 − 𝑢∗𝑡 )⊤𝑅(𝑢𝑡 − 𝑢∗𝑡 ) + (𝑥𝑇 − 𝑥∗𝑇 )⊤𝑄𝑇 (𝑥𝑇 − 𝑥∗𝑇 ),

with 𝑄 = diag(102, 102, 10, 10), 𝑄𝑇 = 𝑄 and 𝑅 = 5 · 103. The reference state curve is a step
from an initial (unstable) equilibrium condition 𝑥0 = ( 𝜋8 ,

3
8𝜋, 0, 0) to the final (unstable) equilibrium

𝑥𝑇 = ( 𝜋4 ,
𝜋
4 , 0, 0). The reference input curve compensates for the gravity term at the two equilibrium

position. The initial trajectory 𝜂0 for the algorithm is chosen as the standstill robot in the starting
position.

Exact-parameters projection operator

In this first example, the controller 𝜋 in (V.9) and (V.21) is designed at each iteration 𝑘 by solving a
finite-horizon LQR problem over the linearized dynamics about the current nominal trajectory 𝜂𝑘 .
In order to collect the perturbations of the current trajectory at each iteration, we add the exploration
dither as in (V.21), with 𝑑𝑢, · ∼ U(0, 𝛿𝑢)Nm and 𝑑𝑥 ∼ U(−𝛿𝑥 , 𝛿𝑥)rad, with 𝛿𝑢 = 0.001, 𝛿𝑥 = 0.01.
At each iteration, we collect 𝐿 = 6 perturbed trajectories.
In Figure V.2, we plot the iterations of the DATA-DRIVEN PRONTO for all the states and the input.
We use the Armijo rule to choose the stepsize, and we stop the algorithm when the update 𝜁 𝑘 is not a
descent direction, namely, when we have reached the ball about the optimal solution 𝜂★ in which the
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cost does not improve significantly. In Figure V.3, we plot the norm of the descent direction 𝜁 𝑘 .

Figure V.2: In blue the reference curves for the states and the input. In red, the result of DATA-DRIVEN PRONTO.

Figure V.3: Norm of descent direction.
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In order to better see the convergence properties of DATA-DRIVEN PRONTO depending on the hy-
perparameters 𝛿𝑥 , 𝛿𝑢, we test 15 times the algorithm convergence, solving the same optimal control
problem. To do this, we halve at each instance the bound on the exploration noise, namely, 𝛿𝑖+1𝑥 = 𝛿𝑖𝑥/2
and 𝛿𝑖+1𝑢 = 𝛿𝑖𝑢/2. We choose at the first algorithm run 𝛿0𝑥 = 0.001 and 𝛿0𝑢 = 0.01, and we pick
𝑑𝑥 ∼ U(−𝛿𝑖𝑥 , 𝛿𝑖𝑥)rad and 𝑑𝑢,𝑡 ∼ U(0, 𝛿𝑖𝑢)Nm, for all 𝑡. The results obtained, showed in Figure V.4,
demonstrate the strictly increasing bound (in this case, exponential) between the amplitude of the
dithers and the suboptimality of DD-PRONTO.

Figure V.4: Distance from the optimum depending on the dither amplitude.

Estimated-parameters projection operator

In this second example, the controller 𝜋 in (V.9) and (V.21) is designed at each iteration 𝑘 by solving a
finite-horizon LQR problem over an inexact linearization of the current nominal trajectory 𝜂𝑘 , relying
on the estimated matrices 𝐴𝑡 , 𝐵𝑡 (which are used both to find the descent direction and to obtain an
estimated controller).
In order to collect the perturbations of the current trajectory at each iteration, we add the exploration
dither as in (V.21), with 𝑑𝑢, · ∼ U(0, 𝛿𝑢)Nm and 𝑑𝑥 ∼ U(−𝛿𝑥 , 𝛿𝑥)rad, with 𝛿𝑢 = 0.001, 𝛿𝑥 =

0.0001. At each iteration, we collect 𝐿 = 6 perturbed trajectories. Notice that in this case, since the
controller 𝜋 is “less precise", dithers with the same amplitudes as in the previous example would lead to
numerical instabilities, so we are forced to choose smaller amplitude dithers (which is not often possible
in the practice). This strongly motivates the need of a good closed-loop policy 𝜋.
Figures V.5 and V.6 highlight how the importance of relying on a good control law 𝜋 affects the quality
of the obtained result.
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Figure V.5: In blue the reference curves for the states and the input. In red, the result of DATA-DRIVEN PRONTO.

Figure V.6: Norm of descent direction.
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V.3.4 Future work

In this chapter, we proposed a novel data-driven optimal control algorithm called DATA-DRIVEN

PRONTO. This algorithm extends the applicability of PRONTO by removing the knowledge of the system
model, relying on the ability to explore system trajectories. The main advantage of this algorithm is the
possibility to overcome the suboptimality of model-based solution by estimating the linearizations about
a trajectory instead of computing them from the model. Theoretical guarantees on the convergence
of the algorithm have been given, together with insight on how to tune the design parameters of the
algorithm. Future work will be directed to the real-world implementation of this algorithm.
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Conclusions

Throghout this work, we showed how system theoretical tools can be used to solve modern problems
regarding optimization, stabilization and learning guarantees in the context of uncertain systems.
Motivated by the importance of enforcing the informativity of systems trajectories, we deeply studied
the concepts of persistence of excitation and sufficient richness, retracing the origin of the definitions
used today and proposing a clear separation between the two notions. Then, we developed new necessary
and sufficient characterizations of sufficient richness for linear systems, presented in a notation unifying
discrete- and continuous-time systems. The role of the system geometry in this context has been studied
leveraging on the properties of sinusoidal inputs. We then faced the problem of information extraction
from measured data. A new (to the authors’ knowledge) type of observer, the “gazer", has been proposed
and motivated for the model-free context in which this thesis is framed, and several possible designs
(state feedback, single input single output, multi input multi output) have been given. We then showed
a possible offline application of the gazer by studying how to design stabilizing gains from input-output
data without the need of measuring the full state and its derivatives. Future work will be done in
the direction of extending the obtained results to the nonlinear framework, as well as in obtaining
a deeper understanding of the obtained equations. In the context of linear quadratic regulation, we
developed an on-policy, online algorithm which deals with both the problems of optimization and
system stabilization at the same time. Differently from other algorithms, to achieve both objectives we
rely on a combination of model reference adaptive control and reinforcement learning, avoiding the
requirement of an initial stabilizing policy. Furthermore, the obtained stability results are semi-global in
the algorithms hyperparameters. Future work will be done in the direction of extending this approach
to the output-feedback case. At last, we considered the case of model-free nonlinear optimal control,
and we developed DATA-DRIVEN PRONTO, a numerical solver inspired to PRONTO. The underlying
idea is to keep the data-efficient structure of solvers for optimal control problems whilst substituting the
model knowledge with experiments on a simulator or a real setup. The presence of a stabilizing control
law is included in the algorithm analysis, motivated by the need of guaranteeing a safe exploration of
systems trajectories.
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Appendix

V.4 Proofs for Chapter II

V.4.1 Proof of Lemma II.3

Since the arguments for discrete-time are analogous but more straightforward, we prove only the
continuous-time part. Notice that for any w ∈ ΩC

𝑑
and 𝜆 > 0, 𝜆w ∈ ΩC

𝑑
, so ΩC

𝑑
is a cone in C∞

𝑏
(R𝑑).

Next, we show it is open. Let w ∈ ΩC
𝑑

. There exist𝑇, 𝛼 > 0 such that∫ 𝑡+𝑇

𝑡

𝑤(𝜏)𝑤(𝜏)⊤𝑑𝜏 ≥ 𝛼𝐼, ∀𝑡 ≥ 0. (V.47)

Choose any 𝛼′ ∈ (0, 𝛼) and any 𝜖 ∈ (0, 𝛼′

2𝑇𝑀 ) , where 𝑀 := ∥w∥∞. Choose any w′ such that
∥w′ −w∥∞ = ∥Δw∥∞ ≤ 𝜖 . We have∫ 𝑡+𝑇

𝑡

𝑤(𝜏)′𝑤(𝜏)′⊤d𝜏 =

=

∫ 𝑡+𝑇

𝑡

(𝑤(𝜏) + Δ𝑤(𝜏)) (𝑤(𝜏) + Δ𝑤(𝜏))⊤d𝜏

≥𝛼𝐼 +
∫ 𝑡+𝑇

𝑡

(
𝑤(𝜏)Δ𝑤(𝜏)⊤ + Δ𝑤(𝜏)𝑤(𝜏)⊤ + Δ𝑤(𝜏)Δ𝑤(𝜏)⊤

)
d𝜏

≥𝛼𝐼 +
∫ 𝑡+𝑇

𝑡

(
𝑤(𝜏)Δ𝑤(𝜏)⊤ + Δ𝑤(𝜏)𝑤(𝜏)⊤

)
d𝜏

≥𝐼
(
𝛼 −

∫ 𝑡+𝑇

𝑡

2𝑀𝜖d𝜏
)

≥𝐼 (𝛼 − 2𝑇𝑀𝜖) ≥ (𝛼 − 𝛼′)𝐼 > 0,

(V.48)

so, w′ is PE. Therefore, for each point w ∈ ΩC
𝑑

, it is always possible to find an open ball about w which
is still in ΩC

𝑑
.

∥∥

123



CHAPTER V. DATA-DRIVEN PRONTO: A MODEL-FREE ALGORITHM FOR NUMERICAL
OPTIMAL CONTROL

V.4.2 Proof of Lemma II.4

We divide the proof in three steps.

I) A useful characterization for PPE signals. Since W(w) := Q𝑛 (w) is PPE of degree at most
𝑑′ ≤ 𝑑 (𝑛 − 1), there exist 𝑖 = 1, . . . , 𝑛𝑑 − 𝑑′ orthonormal directions 𝑧𝑖 ∈ R𝑛𝑑 such that for each
𝑇 ∈ N, 𝜖 > 0 we can find 𝑡 ∈ N such that

𝑡+𝑇∑︁
𝜏=𝑡

|𝑊⊤
𝜏 𝑧𝑖 | ≤ 𝜖, (V.49)

which means |𝑊⊤
𝜏 𝑧𝑖 | ≤ 𝜖 , for all 𝜏 = 𝑡, . . . , 𝑡+𝑇 . Consider an orthonormal basis forR𝑛𝑑 , {𝑧1, . . . , 𝑧𝑛𝑑}.

Since𝑊𝜏 =
∑𝑛𝑑
𝑖=1 𝑧𝑖𝑊

⊤
𝜏 𝑧𝑖 , there exists 𝜆𝜏 ∈ R𝑑

′ such that

𝑊𝜏 = 𝐸𝜆𝜏 + 𝑊̃𝜏 (V.50)

for all 𝜏 = 𝑡, . . . , 𝑡 + 𝑇 , where 𝐸 = [𝑧𝑛𝑑−𝑑′+1, . . . , 𝑧𝑛𝑑] ∈ R𝑛𝑑×𝑑
′ stacks the directions in which w is

PPE, the j-th component of 𝜆𝜏 is given by 𝜆 𝑗𝜏 = 𝑊⊤
𝜏 𝑧 𝑗 , and |𝑊̃𝜏 | ≤ (𝑛𝑑 − 𝑑′)𝜖 by (V.49).

II) Signal sequences are constrained by PPE. Pick any 𝑘 ∈ N : 𝑛 ≤ 𝑘 ≤ 𝑇 and 𝜖 > 0. Consider
the signal Q𝑘 (w) in the interval 𝜏 = 𝑡, . . . , 𝑡 +𝑇 − 𝑘 + 1, namely, (𝑤𝜏 , . . . , 𝑤𝜏+𝑘−1) ∈ R𝑘𝑑 . For each
subsequence of 𝑘 instants in the window 𝜏 = 𝑡, . . . , 𝑇 − 𝑘 +1, we can write (𝑘 −𝑛+1) 𝑛𝑑-dimensional
equations of the type (V.50). Compactly, they read

𝑀


𝑤𝜏
...

𝑤𝜏+𝑘−1

︸     ︷︷     ︸
:=𝑤̂𝜏

= 𝐸


𝜆𝜏
...

𝜆𝜏+𝑘−𝑛+1

︸        ︷︷        ︸
:=𝜆̂𝜏

+


𝑊̃𝜏

...

𝑊̃𝜏+𝑘−𝑛+1

︸        ︷︷        ︸
:=𝑤̃𝜏

, (V.51)
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with 𝑤̂𝜏 ∈ R𝑘𝑑 , 𝜆̂𝜏 ∈ R𝑑
′ (𝑘−𝑛+1) , 𝑤̃𝜏 ∈ R𝑛𝑑 (𝑘−𝑛+1) , and

𝑀 :=



𝐼𝑑 0 0 0 0 . . .

0
. . . 0 0 0 . . .

0 0
. . . 0 0 . . .

0 0 0 𝐼𝑑 0 . . .

0 𝐼𝑑 0 0 0 . . .

0 0
. . . 0 0 . . .

0 0 0
. . . 0 . . .

0 0 0 0 𝐼𝑑 . . .

. . . . . . . . . . . . . . . . . .



∈ R𝑛𝑑 (𝑘−𝑛+1)×𝑘𝑑

𝐸 := 𝐼𝑘−𝑛+1 ⊗ 𝐸 ∈ R𝑛𝑑 (𝑘−𝑛+1)×𝑑
′ (𝑘−𝑛+1) .

(V.52)

We are interested in characterizing the solutions (𝑤̂𝜏 , 𝜆̂𝜏) of (V.51), namely, the possible signals which
fulfill the constraints which are imposed by PPE. In other words, we want to solve

[
𝑀 −𝐸

] [
𝑤̂𝜏

𝜆̂𝜏

]
= 𝑤̃𝜏 . (V.53)

III) A small enough degree of PPE overconstrains the signal sequence. Given the right pseudo-

inverse
[
𝑀 −𝐸

]†
of

[
𝑀 −𝐸

]
, any solution (𝑤̂𝜏 , 𝜆̂𝜏) can be written as[
𝑤̂𝜏

𝜆̂𝜏

]
=

[
𝑀 −𝐸

]†
𝑤̃𝜏 + 𝑣𝜏 , (V.54)

where 𝑣𝜏 ∈ ker
( [
𝑀 −𝐸

] )
. Notice that, since

[
𝑀 −𝐸

]
has full row rank, by the rank-nullity

theorem it holds that

𝑑′′ := dim
(
ker

( [
𝑀 −𝐸

] ))
= dim

(
dom

( [
𝑀 −𝐸

] ))
− dim

(
im

( [
𝑀 −𝐸

] ))
= 𝑘𝑑 + 𝑑′(𝑘 − 𝑛 + 1) − 𝑛𝑑 (𝑘 − 𝑛 + 1)

= (𝑘 − 𝑛) (𝑑 + 𝑑′ − 𝑛𝑑) + 𝑑′,

(V.55)

from which it is clear that, if 𝑑′ ≤ 𝑑 (𝑛 − 1), then 𝑑′′ ≤ 𝑑′. Furthermore, notice that |𝑤̃𝜏 | ≤√︁
𝑛𝑑 (𝑘 − 𝑛 + 1)𝜖 for all 𝜏 = 𝑡, . . . , 𝑡 + 𝑇 − 𝑘 + 1. This means that for all 𝜏 = 𝑡, . . . , 𝑡 + 𝑇 − 𝑘 + 1 we

can write
𝑤̂𝜏 =

[
𝐼𝑘 0

]
𝐺𝜈𝜏 +

[
𝐼𝑘 0

] [
𝑀 −𝐸

]†
𝑤̃𝜏 , (V.56)
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with𝐺 any surjective map
𝐺 : R𝑑

′′ → ker
( [
𝑀 −𝐸

] )
, (V.57)

and 𝜈𝜏 ∈ R𝑑
′′ such that 𝑣𝜏 = 𝐺𝜈𝜏 . Since 𝜈𝜏 ∈ R𝑑

′′ , it can span in time at most 𝑑′′ directions,
and the same holds for

[
𝐼𝑘 0

]
𝐺𝜈𝜏 . Being 𝑤̃𝜏 arbitrarily small in the arbitrarily long interval 𝜏 =

𝑡, . . . , 𝑡 +𝑇 − 𝑘 +1, we conclude that Q𝑘 (w) = (𝑞𝑘−1w, . . . , 𝑞0w) is PPE of degree at most 𝑑′′ ≤ 𝑑′.

V.4.3 Proof of Lemma II.5

Pick any time interval [𝑡, 𝑡 + 𝑇] of arbitrary length 𝑇 ≥ 0 and an unitary direction 𝑧 ∈ R𝑑 . Being w
bounded, the quantity

𝑤̄(𝑡, 𝑇, 𝑧) :=
∫ 𝑡+𝑇

𝑡

|𝑧⊤𝑤(𝜏) |d𝜏, (V.58)

is finite for all 𝑡, 𝑇 > 0 and 𝑧 ∈ R𝑑 . Choose an arbitrarily small 𝛼 > 0, and define the sets

𝑇>𝛼 (𝑡, 𝑇, 𝑧) := {𝜏 ∈ [𝑡, 𝑡 + 𝑇] : |𝑧⊤𝑤(𝜏) | > 𝛼}

𝑇≤𝛼 (𝑡, 𝑇, 𝑧) := {𝜏 ∈ [𝑡, 𝑡 + 𝑇] : |𝑧⊤𝑤(𝜏) | ≤ 𝛼}.
(V.59)

Notice that, by continuity of w,𝑇>𝛼 (𝑡, 𝑇, 𝑧) is a union of open sets for any 𝑡, 𝑇, 𝑧. Since ∥w∥∞ ≤ 𝑀

for some 𝑀 > 0, then we can find an upper bound for the measure 𝜇(𝑇≥𝛼 (𝑡, 𝑇, 𝑧)):∫ 𝑡+𝑇

𝑡

|𝑧⊤𝑤(𝜏) |d𝜏 = 𝑤̄(𝑡, 𝑇, 𝑧)∫
𝑇>𝛼

|𝑧⊤𝑤(𝜏) |d𝜏 +
∫
𝑇≤𝛼

|𝑧⊤𝑤(𝜏) |d𝜏 = 𝑤̄(𝑡, 𝑇, 𝑧)∫
𝑇>𝛼

|𝑧⊤𝑤(𝜏) |d𝜏 ≤ 𝑤̄(𝑡, 𝑇, 𝑧)∫
𝑇>𝛼

𝛼d𝜏 ≤ 𝑤̄(𝑡, 𝑇, 𝑧)

𝛼𝜇(𝑇≥𝛼) ≤ 𝑤̄(𝑡, 𝑇, 𝑧)

𝜇(𝑇>𝛼) ≤ 𝛼−1𝑤̄(𝑡, 𝑇, 𝑧)

(V.60)

Overall, we obtained that for every 𝑡, 𝑇, 𝛼 > 0, 𝑧 ∈ R𝑑 may partition the interval [𝑡, 𝑡 + 𝑇] such that

|𝑤(𝜏)⊤𝑧 | ≤ 𝛼, ∀𝜏 ∈ 𝑇≤𝛼 (𝑡, 𝑇, 𝑧),

|𝑤(𝜏)⊤𝑧 | > 𝛼, ∀𝜏 ∈ 𝑇>𝛼 (𝑡, 𝑇, 𝑧),
(V.61)

with 𝜇(𝑇>𝛼 (𝑡, 𝑇, 𝑧)) ≤ 𝛼−1𝑤̄(𝑡, 𝑇, 𝑧). We want now to find an upper bound on |𝑤(𝜏)⊤𝑧 | in the
region𝑇>𝛼 (𝑡, 𝑇, 𝑧).
Since 𝑇>𝛼 (𝑡, 𝑇, 𝑧) is a union of open sets of measure 𝜇(𝑇>𝛼) ≤ 𝛼−1𝑤̄(𝑡, 𝑇, 𝑧), we consider the
case in which it is a unique interval (namely, the case in which |𝑤(𝜏) | can grow more). Denote as
𝑡 ∈ [𝑡, 𝑡 + 𝑇] the last time instant for which |𝑤(𝑡)⊤𝑧 | ≤ 𝛼, and 𝑀 := ∥d(w)∥∞. Then, we express
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any 𝜏 ∈ 𝑇>𝛼 (𝑡, 𝑇, 𝑧) as 𝜏 = 𝑡 + 𝛿, with 𝛿 ≤ 𝛼−1𝑤̄(𝑡, 𝑇, 𝑧) (since we have shown that 𝜇(𝑇>𝛼) ≤
𝛼−1𝑤̄(𝑡, 𝑇, 𝑧)). It holds that

��𝑤(𝑡 + 𝛿)⊤𝑧�� = ����𝑤(𝑡)⊤𝑧 + ∫ 𝑡+𝛿

𝑡

¤𝑤(𝜏)⊤𝑧d𝜏
����

|𝑤(𝑡 + 𝛿)⊤𝑧 | ≤ 𝛼 + 𝑀𝛿

|𝑤(𝑡 + 𝛿)⊤𝑧 | ≤ 𝛼 + 𝑀𝛼−1𝑤̄(𝑡, 𝑇, 𝑧).

(V.62)

Choose any 𝛼 > 0. Pick 𝜖 (𝛼) := 𝛼2

𝑀
. Then, for all 𝑇 > 0, since w ∉ ΩC

𝑑
, there exists 𝑡 > 0, 𝑧 ∈ R𝑑

such that

𝑤̄(𝑡, 𝑇, 𝑧) =
∫ 𝑡+𝑇

𝑡

|𝑧⊤𝑤(𝜏) |d𝜏 ≤ 𝜖 . (V.63)

Substituting in (V.62), we have

|𝑤(𝜏)⊤𝑧 | ≤ 𝛼 + 𝑀𝛼−1𝜖

≤ 𝛼 + 𝛼,
(V.64)

for all 𝜏 ∈ 𝑇>𝛼 (𝑡, 𝑇, 𝑧), and thus for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇].
To recap, we have proved that for any 𝛼,𝑇 > 0, there exists 𝜖 > 0, 𝑧 ∈ R𝑑 and thus 𝑡 > 0 for which
|𝑤(𝜏)⊤𝑧 | ≤ 2𝛼 for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇], and this concludes the proof.

∥∥

V.4.4 Proof of Lemma II.6

We prove the theorem in three steps.

I) A useful characterization for PPE signals. Since W(w) := D𝑛 (w) is PPE of degree at most
𝑑′ ≤ 𝑑 (𝑛 − 1), by Lemma II.5, and following the same steps as in Lemma II.4 I), for all𝑇, 𝜖 > 0 we
can find 𝑡 > 0 such that

𝑊 (𝜏) = 𝐸𝜆(𝜏) + 𝑊̃ (𝜏), (V.65)

where 𝐸 ∈ R𝑛𝑑×𝑑
′ stacks the directions in which D𝑛 (w) is PPE, 𝜆(𝜏) ∈ R𝑑

′ stacks the projections of
D𝑛 (w) along these directions, and |𝑊̃ (𝜏) | ≤ 𝜖 for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇].

II) Sampled signal sequencies are constrained by PPE. Pick an arbitrary𝑇 ≤ 𝑇 and 𝑁 ∈ N. We
define 𝛿 := 𝑇/𝑁 . Notice that, being d(W) Lipschitz continuous, it holds that

𝑊 (𝜏 + 𝛿) = 𝑊 (𝜏) + 𝛿 ¤𝑊 (𝜏) + 𝑟 (𝛿), (V.66)

where |𝑟 (𝛿) | ≤ 𝑐 𝛿22 , 𝑐 := ∥d2(W)∥∞.
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By recalling that𝑊 (𝜏) = (𝑤(𝜏), ¤𝑤(𝜏), . . . , ¤𝑤 (𝑛−1) (𝜏)), we can rewrite (V.66) as

𝑊 (𝜏 + 𝛿) = (𝐼 + 𝛿𝑆)𝑊 (𝜏) + 𝛿𝑒𝑑 ¤𝑤 (𝑛) (𝜏) + 𝑟 (𝛿), (V.67)

where 𝑆 ∈ R𝑛𝑑×𝑛𝑑 , 𝑒𝑑 ∈ R𝑛𝑑×𝑑 are given by

𝑆=

[
0(𝑛−1)𝑑×𝑑 𝐼 (𝑛−1)𝑑

0𝑑×𝑑 0𝑑×(𝑛−1)𝑑

]
, 𝑒𝑑 =

[
0𝑑×𝑑 0𝑑×𝑑 . . . 𝐼𝑑

]⊤
. (V.68)

By substituting (V.65) into (V.67), we obtain that in the interval 𝜏 ∈ [𝑡, 𝑡 + 𝑇 − 𝛿] we can write

𝐸𝜆(𝜏 + 𝛿) + 𝑊̃ (𝜏 + 𝛿) =

= (𝐼𝑛𝑑 + 𝛿𝑆) (𝐸𝜆(𝜏) + 𝑊̃ (𝜏)) + 𝛿𝑒𝑑 ¤𝑤 (𝑛) (𝜏) + 𝑟 (𝛿).
(V.69)

Considering 𝑁 consecutive instants 𝜏, 𝜏 + 𝛿, . . . , 𝜏+𝑇−𝛿, similarly to (V.51) we obtain

𝑀𝑤̂(𝜏) = 𝐸𝜆̂(𝜏) + 𝑤̃(𝜏), (V.70)

where 𝑤̂(𝜏) ∈ R𝑁𝑑 , 𝜆̂(𝜏) ∈ R𝑑
′ (𝑁+1) , 𝑤̃(𝜏) ∈ R𝑛𝑑𝑁 are given by

𝑤̂(𝜏) :=


¤𝑤 (𝑛) (𝜏)

¤𝑤 (𝑛) (𝜏 + 𝛿)
...

¤𝑤 (𝑛) (𝜏+𝑇−𝛿)


, 𝜆̂(𝜏) :=


𝜆(𝜏)

𝜆(𝜏 + 𝛿)
...

𝜆(𝜏 + 𝑇)


,

𝑤̃(𝜏) :=


−(𝐼𝑛𝑑 + 𝛿𝑆)𝑊̃ (𝜏) + 𝑊̃ (𝜏+𝛿) + 𝑟 (𝛿)

−(𝐼𝑛𝑑 + 𝛿𝑆)𝑊̃ (𝜏 + 𝛿) + 𝑊̃ (𝜏+2𝛿) + 𝑟 (𝛿)
...

−(𝐼𝑛𝑑 + 𝛿𝑆)𝑊̃ (𝜏+𝑇− 𝛿)+𝑊̃ (𝜏+𝑇)+𝑟 (𝛿)


,

(V.71)

and

𝑀 := 𝛿𝐼𝑁 ⊗ 𝑒𝑑 ∈ R𝑛𝑑𝑁×𝑁𝑑

𝐸 :=


[−(𝐼𝑛𝑑 + 𝛿𝑆)𝐸 𝐸] 0 . . . 0
0 [−(𝐼𝑛𝑑 + 𝛿𝑆)𝐸 𝐸] 0 . . .

...

0 . . . 0 [−(𝐼𝑛𝑑 + 𝛿𝑆)𝐸 𝐸]


∈ R𝑛𝑑𝑁×𝑑′ (𝑁+1) .

(V.72)

We are interested in characterizing the solutions (𝑤̂(𝜏), 𝜆̂(𝜏)) of system (V.70), namely, the possible
signals which fulfill the constraints which are imposed by PPE. In other words, we want to solve

[
𝑀 −𝐸

] [
𝑤̂(𝜏)
𝜆̂(𝜏)

]
= 𝑤̃(𝜏) (V.73)

in the interval [𝑡, 𝑡 + 𝑇].
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III) A small enough degree of PPE overconstrains the sampled signal sequence. Given the

right pseudo-inverse
[
𝑀 −𝐸

]†
of

[
𝑀 −𝐸

]
, any solution (𝑤̂(𝜏), 𝜆̂(𝜏)) can be written as[

𝑤̂(𝜏)
𝜆̂(𝜏)

]
=

[
𝑀 −𝐸

]†
𝑤̃(𝜏) + 𝑣(𝜏), (V.74)

where 𝑣(𝜏) ∈ ker
( [
𝑀 −𝐸

] )
. Consider the term 𝑤̃(𝜏): we show at first it can be made arbitrarily

small. By recalling the bounds on 𝑟 (𝛿) (see (V.66)) and 𝑊̃ (𝜏) (see (V.65)), it holds that

|𝑤̃(𝜏) | ≤

����������


(𝐼𝑛𝑑 + 𝛿𝑆)𝑊̃ (𝜏)
(𝐼𝑛𝑑 + 𝛿𝑆)𝑊̃ (𝜏 + 𝛿)

...

(𝐼𝑛𝑑+𝛿𝑆)𝑊̃ (𝜏+𝑇− 𝛿)



����������+
����������

𝑊̃ (𝜏+𝛿)
𝑊̃ (𝜏+2𝛿)

...

𝑊̃ (𝜏+𝑇)



����������+
����������

𝑟 (𝛿)
𝑟 (𝛿)
...

𝑟 (𝛿)



����������
≤ (1 + 𝛿)

√
𝑁𝜖 +

√
𝑁𝜖 +

√
𝑁𝑐

𝛿2

2

≤
(
2
√
𝑁 + 𝑇

√
𝑁

)
𝜖 +

√
𝑁𝑐

𝑇2

2𝑁2 .

(V.75)

We now show we can always find an arbitrarily long interval in which 𝑤̃(𝜏) is arbitrarily small. Notice
that, given any 𝜖 ′ > 0, by choosing

𝑁 ≥ 𝑁̄ :=
3

√︄
𝑇4𝑐2

𝜖 ′2
=⇒

√
𝑁𝑐

𝑇2

2𝑁2 ≤ 𝜖 ′

2
. (V.76)

Exploting this, and choosing 𝜖 = 𝜖 ′

2(2
√
𝑁+𝑇̄/

√
𝑁 ) , we have from (V.75) that for any 𝜖 ′ > 0, 𝑇 > 0, 𝑇 > 𝑇

there exists 𝑁̄ ∈ N, 𝑡 > 0 such that, for all 𝑁 ≥ 𝑁̄ ,

|𝑤̃(𝜏) | ≤ 𝜖 ′ ∀𝜏 ∈ [𝑡, 𝑡 + 𝑇] . (V.77)

We move now to the term 𝑣(𝜏) ∈ ker
( [
𝑀 −𝐸

] )
. Notice that, since

[
𝑀 −𝐸

]
has full row rank,

by the rank-nullity theorem it holds

𝑑′′ := dim
(
ker

( [
𝑀 −𝐸

] ))
= dim

(
dom

( [
𝑀 −𝐸

] ))
− dim

(
im

( [
𝑀 −𝐸

] ))
= 𝑁𝑑 + 𝑑′(𝑁 + 1) − 𝑛𝑑𝑁

= 𝑁 (𝑑 + 𝑑′ − 𝑛𝑑) + 𝑑′,

(V.78)

from which it is clear that if 𝑑′ ≤ 𝑑 (𝑛 − 1) then 𝑑′′ ≤ 𝑑′. This means that we can write the solution
𝜆̂(𝜏) of (V.74) as

𝜆̂(𝜏) =
[
0 𝐼𝑁

]
𝐺𝜈(𝜏) +

[
0 𝐼𝑁

] [
𝑀 −𝐸

]†
𝑤̃(𝜏), (V.79)
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with𝐺 any surjective map
𝐺 : R𝑑

′′ → ker
( [
𝑀 −𝐸

] )
, (V.80)

and 𝜈(𝜏) ∈ R𝑑
′′ such that 𝑣(𝜏) = 𝐺𝜈(𝜏). Using (V.65) and (V.79), and recalling the definition of 𝜆̂(𝜏)

in (V.71), we can reconstruct the vector in which we are interested in:


𝑊 (𝜏)

𝑊 (𝜏 + 𝑇̄
𝑁
)

...

𝑊 (𝜏 + 𝑇)


=𝐺′𝜈(𝜏) + 𝐹𝑤̃(𝜏) +


𝑊̃ (𝜏)

𝑊̃ (𝜏 + 𝑇̄
𝑁
)

...

𝑊̃ (𝜏 + 𝑇)


, (V.81)

where

𝐺′ = (𝐼𝑁 ⊗ 𝐸)
[
0 𝐼𝑁

]
𝐺

𝐹 = (𝐼𝑁 ⊗ 𝐸)
[
0 𝐼𝑁

] [
𝑀 −𝐸

]†
.

(V.82)

The proof is complete by recalling that the choices of 𝑁, 𝜖 are such that |𝑤̃(𝜏) | ≤ 𝜖 ′ (in (V.77))
and | (𝑊̃ (𝜏), . . . , 𝑊̃ (𝜏 + 𝑇)) | ≤ 𝜖 ′/2 for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇].

∥∥

V.4.5 Proof of Lemma II.7

By Lemma II.5, if w ∉ ΩC
𝑑

then for all𝑇, 𝜖 > 0 we can find 𝑡 > 0, 𝑧 ∈ R𝑑 such that

|𝑤(𝜏)⊤𝑧 | ≤ 𝜖, ∀𝜏 ∈ [𝑡, 𝑡 + 𝑇] . (V.83)

Picking any 𝜏, 𝛿 > 0 such that 𝜏, 𝜏 + 𝛿 ∈ [𝑡, 𝑡 + 𝑇], we have that

| (𝑤(𝜏 + 𝛿) − 𝑤(𝜏))⊤𝑧 | ≤ |𝑤(𝜏 + 𝛿)⊤𝑧 | + |𝑤(𝜏)⊤𝑧 | ≤ 2𝜖 (V.84)

Expanding 𝑤(𝜏 + 𝛿) in Taylor series, we obtain that

𝑤(𝜏 + 𝛿) − 𝑤(𝜏) = ¤𝑤(𝜏)𝛿 + 𝑜(𝛿), (V.85)

where |𝑜(𝛿) | ≤ 𝑀 𝛿2

2 , with 𝑀 := ∥d2(w)∥∞. Using (V.85) in (V.84), we obtain

| (𝑤(𝜏 + 𝛿) − 𝑤(𝜏))⊤𝑧 | ≤ 2𝜖

| ( ¤𝑤(𝜏)𝛿 + 𝑜(𝛿))⊤𝑧 | ≤ 2𝜖 .
(V.86)
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Since, by the triangle inequality, | ( ¤𝑤(𝜏)𝛿 + 𝑜(𝛿))⊤𝑧 | ≥ | ¤𝑤(𝜏)⊤𝑧𝛿 | − |𝑜(𝛿)⊤𝑧 |, we have that

|𝛿 ¤𝑤(𝜏)⊤𝑧 | − |𝑜(𝛿)⊤𝑧 | ≤ 2𝜖

|𝛿 ¤𝑤(𝜏)⊤𝑧 | ≤ 2𝜖 + |𝑜(𝛿) |

| ¤𝑤(𝜏)⊤𝑧 | ≤ 2
𝜖

𝛿
+ 𝑀 𝛿

2
.

(V.87)

Choosing a sufficiently small 𝜖 > 0 and 𝛿(𝜖) :=
√
𝜖 , for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇 − 𝛿(𝜖)] we have

| ¤𝑤(𝜏)⊤𝑧 | ≤
(
2 + 𝑀

2

) √
𝜖 . (V.88)

By defining 𝛾(𝜖) := max(
√
𝜖, (2 + 𝑀

2 )
√
𝜖), we obtain

|𝑤(𝜏)⊤𝑧 | ≤ 𝛾(𝜖) | ¤𝑤(𝜏)⊤𝑧 | ≤ 𝛾(𝜖) (V.89)

for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇 − 𝛿(𝜖)].
Since 𝛾(𝜖) is a strictly increasing function of 𝜖 such that 𝛾(0) = 0, we may pick an arbitrarily small 𝜖 ′

and find 𝜖 : 𝜖 ′ = 𝛾(𝜖); consequently, since 𝑡 exists for any choice of 𝜖, 𝑇 > 0, for any choice of 𝜖 ′ there
exists an interval for which (V.89) holds.

∥∥

V.4.6 Proof of Theorem II.6

We prove that Q𝑛 (u) ∈ ΩD
𝑛𝑚 =⇒ 𝜎(u, 𝑥0) ∈ ΩD

𝑛 for 𝜎 ∈ LD
x and for all 𝑥0 ∈ R𝑛 by contraposition,

i.e., we show that for all 𝑥0 ∈ R𝑛, 𝜎(u, 𝑥0) ∉ ΩD
𝑛 =⇒ Q𝑛 (u) ∉ ΩD

𝑛𝑚. We prove this in four points.

I) The lack of PE of x constrains the system input. If x := 𝜎(u, 𝑥0) ∉ ΩD
𝑛, applying Definition

II.13 we have that for all𝑇, 𝜖 > 0 we can find a direction 𝑧 ∈ R𝑛 and 𝑡 ∈ N such that

|𝑧⊤𝑥𝜏 | ≤ 𝜖 (V.90)

for all 𝜏 = 𝑡, . . . , 𝑡 + 𝑇 . Along direction 𝑧, system dynamics read

𝑧⊤𝑥𝜏+1 = 𝑧⊤𝐴𝑥𝜏 + 𝑧⊤𝐵𝑢𝜏 . (V.91)

If 𝑧⊤𝐵 ≠ 0, we can find the input 𝑢𝜏 as

𝑢𝜏 = −(𝑧⊤𝐵)†𝑧⊤𝐴︸          ︷︷          ︸
:=𝐾

𝑥𝜏 + (𝑧⊤𝐵)†𝑧⊤𝑥𝜏+1︸           ︷︷           ︸
:=𝑢̃𝜏

+𝑣𝜏 , (V.92)

where |𝑢𝜏 | ≤ |(𝑧⊤𝐵)† |𝜖 , and 𝑣𝜏 ∈ ker(𝑧⊤𝐵).
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II) The closed-loop dynamics depend only on 𝑥𝜏 , 𝑣𝜏 . The dynamics become

𝑢𝜏 = 𝐾𝑥𝜏 + 𝑢𝜏 + 𝑣𝜏 ,

𝑥𝜏+1 = (𝐴 − 𝐵𝐾)︸      ︷︷      ︸
:=𝐴̃

𝑥𝜏 + 𝐵𝑢𝜏 + 𝐵𝑣𝜏 (V.93)

where, for all 𝜏 = 𝑡, . . . , 𝑡 + 𝑇 − 1, it holds that |𝐵𝑢𝜏 | ≤ 𝜖 and 𝑣𝜏 ∈ ker(𝑧⊤𝐵). Consider the signal
U(u) := Q𝑛 (u). Given (V.92), we obtain

𝑈𝜏 = (𝐼𝑛 ⊗ 𝐾)


𝑥𝜏−𝑛+1
...

𝑥𝜏

 +

𝑢𝜏−𝑛+1
...

𝑢𝜏

︸     ︷︷     ︸
:=𝑈̃𝜏

+


𝑣𝜏−𝑛+1
...

𝑣𝜏

︸    ︷︷    ︸
:=𝑉𝜏

. (V.94)

Using (V.93), it holds that 
𝑥𝜏−𝑛+1
...

𝑥𝜏

 =𝐹𝑥𝜏−𝑛+1 + 𝐺
(
𝑈̃𝜏 +𝑉𝜏

)
, (V.95)

where

𝐹 =


𝐼

...

𝐴̃𝑛−1

 , 𝐺 =


0 . . . . . . 0
𝐵 0 . . . 0
...

...
...

...

𝐴𝑛−2𝐵 . . . 𝐵 0


, (V.96)

and substituting (V.95) in (V.94), we obtain

𝑈𝜏 = (𝐼𝑛 ⊗ 𝐾)𝐹︸      ︷︷      ︸
:=𝐹′

𝑥𝜏−𝑛+1 + ((𝐼𝑛 ⊗ 𝐾)𝐺 + 𝐼)︸               ︷︷               ︸
𝐺′

(
𝑈̃𝜏+𝑉𝜏

)
,

=

[
𝐹′ 𝐺′

] [
𝑥𝜏−𝑛+1

𝑉𝜏

]
+ 𝐺′𝑈̃𝜏 .

(V.97)

III) Lack of PE in x implies Q𝑛 (u) is not PE. Notice that in the period 𝜏 = 𝑡 + 𝑛 − 1, . . . , 𝑡 + 𝑇 ,
it holds that

i) 𝑣𝜏 ∈ ker(𝑧⊤𝐵), with dim(ker(𝑧⊤𝐵)) ≤ 𝑚 − 1, by construction of 𝑣𝜏 .

ii) |𝑧⊤𝑥𝜏 | ≤ 𝜖 by lack of PE of x.

iii) |𝑈̃𝜏 | ≤
√
𝑛| (𝑧⊤𝐵)† |𝜖 from (V.92).

Holding i) and ii), the space persistently spanned by (𝑥𝜏 , 𝑉𝜏) is at most (𝑛 − 1) + 𝑛(𝑚 − 1) = 𝑛𝑚 − 1

dimensional. In other words, by following the same procedure as in Lemma II.4, we can write for all
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𝜏 = 𝑡 + 𝑛 − 1, 𝑡 + 𝑇 [
𝑥𝜏−𝑛+1

𝑉𝜏

]
= 𝐸𝜆𝜏 + 𝜆𝜏 , (V.98)

where 𝐸 ∈ R(𝑛𝑚)×(𝑛𝑚−1) stacks the directions which are persistently spanned by (𝑥𝜏 , 𝑉𝜏), 𝜆𝜏 ∈
R𝑛𝑚−1 stacks the projections of (𝑥𝜏 , 𝑉𝜏) along these directions, and 𝜆𝜏 ∈ R𝑛𝑚, |𝜆𝜏 | ≤ 𝜖 is an
arbitrarily small perturbation. Finally, we have

𝑈𝜏 =

[
𝐹′ 𝐺′

]
𝐸︸        ︷︷        ︸

:=𝐻

𝜆𝜏 +
[
𝐹′ 𝐺′

]
𝜆𝜏 + 𝐺′𝑈̃𝜏 , (V.99)

and since
[
𝐹′ 𝐺′

]
𝐸 ∈ R𝑛𝑚×(𝑛𝑚−1) , there exists 𝑧 ∈ R𝑛𝑚 such that 𝑧⊤

[
𝐹′ 𝐺′

]
𝐸 = 0, which

implies
𝑧⊤𝑈𝜏 = 𝑧

⊤
[
𝐹′ 𝐺′

]
𝜆𝜏 + 𝑧⊤𝐺′𝑈̃𝜏 . (V.100)

Being both 𝑈̃𝜏 and 𝜆 arbitrarily small in the arbitrarily long interval 𝜏 = 𝑡 + 𝑛 − 1, . . . , 𝑡 + 𝑇 , we
conclude Q𝑛 (u) ∉ ΩD

𝑛𝑚.

IV) The case of 𝑦⊤𝐵 = 0. Consider the case where 𝑧⊤𝐵 = 0, namely, the columns 𝑏1, . . . , 𝑏𝑚 of 𝐵
satisfy 𝑏1, . . . , 𝑏𝑚 ∈ ker(𝑧⊤). In that case, along direction 𝑧, the system dynamics read as

𝑧⊤𝑥𝜏+1 = 𝑧⊤𝐴𝑥𝜏 + 𝑧⊤𝐵𝑢𝜏
= 𝑧⊤𝐴𝑥𝜏 .

(V.101)

We can distinguish two cases: either ker(𝑧⊤) = ker(𝑧⊤𝐴) or ker(𝑧⊤) ≠ ker(𝑧⊤𝐴). If ker(𝑧⊤) =
ker(𝑧⊤𝐴), then ker(𝑧⊤) must be an invariant subspace of 𝐴 of dimension 𝑛 − 1. Since ker(𝑧⊤) is
𝐴-invariant, and since 𝑏1, . . . , 𝑏𝑚 ∈ ker(𝑧⊤), there are at most 𝑛 − 1 linearly independent vectors
between the columns of 𝐵, . . . , 𝐴𝑛−1𝐵. This is a contradiction, since we assumed (𝐴, 𝐵) controllable,
thus, it cannot hold ker(𝑧⊤) = ker(𝑧⊤𝐴).
At last, consider the case ker(𝑧⊤) ≠ ker(𝑧⊤𝐴). Since (V.101) holds for all 𝜏 = 𝑡 + 1, . . . , 𝑡 + 𝑇 − 1, we
can write

𝑧⊤𝑥𝜏 ≤ 𝜖

𝑧⊤𝑥𝜏+1 = 𝑧⊤𝐴𝑥𝜏 ≤ 𝜖,
(V.102)

from which we deduce that we can write 𝑥𝜏 = 𝑥𝜏 + 𝑥𝜏 , with 𝑥𝜏 ∈ ker(𝑧⊤) ∩ ker(𝑧⊤𝐴) and
|𝑥𝜏 | ≤ 𝜖 . Since ker(𝑧⊤) ≠ ker(𝑧⊤𝐴) and since the dimension of each kernel is at most 𝑛 − 1,
then dim(ker(𝑧⊤) ∩ ker(𝑧⊤𝐴)) ≤ 𝑛 − 2.
This means that 𝑥𝜏 spans persistently at most 𝑛 − 2 directions, namely, there exists an unitary 𝑧2 ∈
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R𝑛, 𝑧2 ⊥ 𝑧 ⊥ (ker(𝑧⊤) ∩ ker(𝑧⊤𝐴)), such that

|𝑦⊤2 𝑥𝜏 | = |𝑦⊤2 𝑥𝜏 + 𝑦
⊤
2 𝑥𝜏 | = |𝑦⊤2 𝑥𝜏 | ≤ 𝜖 . (V.103)

We can thus repeat the same procedure as before, checking if 𝑧⊤2 𝐵 ≠ 0. If 𝑧⊤2 𝐵 ≠ 0, we can repeat the
reasoning in points I), II), III); otherwise, we can repeat the above reasoning to find another direction
𝑧3 such that 𝑧⊤3 𝑥𝜏 ≤ 𝜖 (and repeat the process until we find some 𝑧⊤

𝑖
𝐵 ≠ 0, which must exist since

𝐵 ≠ 0. In each of these cases, Q𝑛 (u) ∉ ΩD
𝑛𝑚, which concludes the proof for the first statement of the

theorem.
We move to the second statement of the theorem. Since it has an analogous proof, we sketch only
the main differences with respect to the proof given before. We want to prove by contraposition that
Q𝑛 (u) ∈ ΩD

(𝑛+1)𝑚 =⇒ 𝜎(u, 𝑥0) ∈ ΩD
𝑛+𝑚 for 𝜎 ∈ LD

xu and for all 𝑥0 ∈ R𝑛 by showing that for all
𝑥0 ∈ R𝑛, 𝜎(u, 𝑥0) ∉ ΩD

𝑛+𝑚 =⇒ Q𝑛+1(u) ∉ ΩD
(𝑛+1)𝑚.

I) The lack of PE of (x,u) constrains the system input. If (x,u) ∉ ΩD
𝑛+𝑚 we have that for all

𝑇, 𝜖 > 0 we can find 𝑧 = (𝑧𝑥 , 𝑧𝑢) ∈ R𝑛+𝑚, 𝑡 ∈ N such that

𝑧⊤𝑥 𝑥𝜏 = −𝑧⊤𝑢𝑢𝜏 + 𝜒𝜏 , (V.104)

where 𝜒𝜏 ∈ R, |𝜒𝜏 | ≤ 𝜖 for all 𝜏 = 𝑡, . . . , 𝑡 + 𝑇 . By pre-multiplying by 𝑧⊤𝑥 the systems dynamics, we
obtain the update

𝑢𝜏+1 = −(𝑧⊤𝑢 )†𝑧⊤𝑥 (𝐴𝑥𝜏 + 𝐵𝑢𝜏) + (𝑧⊤𝑢 )†𝜒𝜏+1 + 𝑣𝜏+1, (V.105)

where 𝑣𝜏+1 ∈ ker(𝑧⊤𝑢 ).

II) The closed-loop dynamics depends only on 𝑥𝜏 , 𝑣𝜏 , 𝑢𝜏 . Since we can write 𝑥𝜏+1 = 𝐴𝑥𝜏 + 𝐵𝑢𝜏 ,
in the interval 𝜏 = 𝑡, . . . , 𝑡+𝑇 we can use (V.105) to express each 𝑢𝜏 , 𝑢𝜏+1, . . . , 𝑢𝜏+𝑛 as a linear function
of 𝑥𝜏 , 𝑢𝜏 , 𝑣𝜏+1, . . . , 𝑣𝜏+𝑛 (similarly as done in (V.94)) plus an arbitrarily small quantity 𝑈̃𝜏 . In other
words, we have


𝑢𝜏
...

𝑢𝜏+𝑛

 = 𝐾



𝑢𝜏

𝑥𝜏

𝑣𝜏+1
...

𝑣𝜏+𝑛


+ 𝑈̃𝜏 . (V.106)

III) A lack of PE in (x,u) implies Q𝑛+1(u) is not PE. Since (x,u) is not PE, it spans at most
𝑛+𝑚−1directions. Since 𝑣𝜏 ∈ ker(𝑧⊤𝑢 ), the vector (𝑣𝜏+1, . . . , 𝑣𝜏+𝑛) spans at most (𝑚−1)𝑛 directions.
Overall, we have that the right-hand side of (V.106) spans persistently only 𝑛 + 𝑚 − 1 + (𝑚 − 1)𝑛 =

(𝑛 + 1)𝑚 − 1 directions, which means that the signal (𝑢𝜏 , . . . , 𝑢𝜏+𝑛) ∈ R(𝑛+1)𝑚 on the left-hand side
of (V.106) spans persistently only (𝑛 + 1)𝑚 − 1 directions, namely, Q𝑛+1(u) ∉ ΩD

(𝑛+1)𝑚.
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∥∥

V.4.7 Proof of Theorem II.4

We prove this result by contraposition, i.e., we show that given𝜎 ∈ LD
x , if Q𝑛 (u) ∈ ℓ∞(R𝑛𝑚) is PPE of

degree at most 𝑛′ ≤ 𝑛 − 1, then for all 𝑥0 ∈ R𝑛, x = 𝜎(u, 𝑥0) ∉ ΩD
𝑛 regardless of the initial condition.

I) 𝑥𝑡 can be approximated arbitrarily well by a linear function of older inputs. Let 𝑥0 = 0.
We can write system dynamics as

𝑥𝜏+1 = 𝐴𝑛𝑥𝜏−𝑛+1 + 𝑅𝑈𝜏 , (V.107)

where 𝑅 is the reachability matrix and𝑈𝜏 = (𝑢𝜏 , . . . , 𝑢𝜏−𝑛+1) ∈ R𝑛𝑚. By writing 𝑥𝜏−𝑛+1 as a function
of the previous inputs, and repeating this recursion for arbitrary 𝐾 steps, we obtain

𝑥𝜏+1 =𝐴𝐾𝑛𝑥𝜏−𝐾𝑛+1

+
[
𝐼 𝐴𝑛 . . . 𝐴𝐾𝑛

]
︸                    ︷︷                    ︸

=:𝐴̄

(𝐼𝐾 ⊗ 𝑅)︸    ︷︷    ︸
=:𝑅̄


𝑈𝜏

𝑈𝜏−𝑛
...

𝑈𝜏−(𝐾−1)𝑛


.

(V.108)

Notice that for any 𝜖 > 0, we can choose 𝐾 > 0 such that |𝐴𝐾𝑛𝑥𝜏−𝐾𝑛+1 | ≤ 𝜖 for all 𝜏 ∈ N, being
the signal x bounded. Notice the vector (𝑈𝜏 , . . . ,𝑈𝜏−(𝐾−1)𝑛) is given by the signal Q(𝐾−1)𝑛 (u)
evaluated at time 𝜏.

II) The degree of PPE of Q(𝐾−1)𝑛 (u) is limited by the degree of PPE of Q𝑛 (u). If Q𝑛 (u) is
PPE of degree at most 𝑛′ ≤ 𝑛 − 1, then 𝑛′ ≤ 𝑚(𝑛 − 1) and we can apply Lemma II.4 to ensure that
for any 𝐾 ≥ 1, Q(𝐾−1)𝑛 (u) is PPE of degree at most 𝑛′ ≤ 𝑛 − 1.

III) If the spanned directions are 𝑛 − 1, x ∉ ΩC
𝑛 Leveraging the lack of PPE demonstrated in the

above point, for all𝑇, 𝐾, 𝜖 > 0 there exists 𝑡 > 0 for which we can rewrite (V.108) as (see the derivation
in Lemma II.4)

𝑥𝜏 = 𝐴
𝐾𝑛𝑥𝜏−𝐾𝑛 + 𝐴̄𝑅̄𝐸𝜆𝑡 + 𝐴̄𝑅̄𝜆𝑡 , (V.109)

for all 𝜏 = 𝑡, . . . , 𝑡 + 𝑇 , for some 𝐸 ∈ R(𝐾−1)𝑛𝑚×(𝑛−1) stacking the directions in which there is PPE,
𝜆𝑡 ∈ R𝑛−1 stacking the projections of (𝑈𝑡 , . . . ,𝑈𝑡−(𝐾−1)𝑛) along these directions, 𝜆𝑡 ∈ R(𝐾−1)𝑛𝑚

such that |𝜆𝑡𝜖 ,𝐾 | ≤ 𝜖 .
Since 𝐴̄𝑅̄𝐸 ∈ R𝑛×(𝑛−1) , there exists 𝑧 ∈ R𝑛 such that 𝑧⊤ 𝐴̄𝑅̄𝐸 = 0, which implies that

𝑧⊤𝑥𝜏 = 𝑧
⊤𝐴𝐾𝑛𝑥𝜏−𝐾𝑛 + 𝑧⊤ 𝐴̄𝑅̄𝜆𝑡 . (V.110)
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Being both |𝐴𝐾𝑛𝑥𝜏−𝐾𝑛 | and 𝜆 arbitrarily small in the arbitrarily long interval 𝜏 = 𝑡 + 𝑛 − 1, 𝑡 + 𝑇 , we
conclude x = 𝜎(u, 0) ∉ ΩD

𝑛 and thus u ∉ CSR(𝜎, 0). To conclude the proof, since 𝜎 is a stable linear
system, we have that all solutions x = 𝜎(u, 𝑥0) converge exponentially to those initialized in 𝑥0 = 0.
Since a vanishing term cannot guarantee PE of a signal, we can conclude that for all 𝑥0 ∈ R𝑛, if Q𝑛 (u)
is PPE of degree at most 𝑛′ ≤ 𝑛 − 1, then x = 𝜎(u, 𝑥0) ∉ ΩD

𝑛.
We pass now to the second statement of the theorem. Since it has an analogous proof, we sketch

only the main differences with respect to the proof given before. We want to prove that, given 𝜎 ∈ LD
xu,

if Q𝑛+1(u) ∈ ℓ∞(R𝑛𝑚) is PPE of degree 𝑛′ ≤ 𝑛 + 𝑚 − 1, then for all 𝑥0 ∈ R𝑛, x = 𝜎(u, 𝑥0) ∉ ΩD
𝑛

regardless of the intitial condition.

I)(𝑥𝑡 , 𝑢𝑡 ) can be approximated arbitrarily well by a linear function of the previous inputs.
Similarly as done in (V.108), we obtain

[
𝑢𝜏+1

𝑥𝜏+1

]
=

[
0

𝐴𝐾𝑛𝑥𝜏−𝐾𝑛+1

]
+

[
𝐼𝑚 0

0 𝐴̄𝑅̄

] 
𝑢𝜏+1

𝑈𝜏
...

𝑈𝜏−(𝐾−1)𝑛


, (V.111)

where 𝐴̄, 𝑅̄ are the same as in (V.111), and by choosing an appropriate 𝐾 ∈ N, for any 𝜖 > 0 we achieve
|𝐴𝐾𝑛𝑥𝜏−𝐾𝑛+1 | ≤ 𝜖 , since 𝐴 is Shur andx is bounded. Notice that the vector (𝑢𝜏+1,𝑈𝜏 , . . . ,𝑈𝜏−(𝐾−1)𝑛)
is given by the signal Q(𝐾−1)𝑛+1(u) evaluated at time 𝜏 + 1.

II) The degree of PPE of Q(𝐾−1)𝑛+1(u) is limited by the degree of PPE of Q𝑛+1(u). Applying
Lemma II.4, ifQ𝑛+1(u) is PPE of degree at most 𝑛′ ≤ 𝑛+𝑚−1, then, since 𝑛+𝑚−1 ≤ 𝑚(𝑛+1−1) =
𝑛𝑚 for all 𝑛, 𝑚 ∈ N, Q(𝐾−1)𝑛+1(u) is PPE of degree at most 𝑛′.

III) If the spanned directions are 𝑛+𝑚−1, then (x,u) ∉ ΩD
𝑛+𝑚 This point proceeds exactly as for

the previous case, so we omit it.
∥∥

V.4.8 Proof of Theorem II.7

We prove that D𝑛 (u) ∈ ΩC
𝑛𝑚 =⇒ 𝜎(u, 𝑥(0)) ∈ ΩC

𝑛 for 𝜎 ∈ LC
x and for all 𝑥(0) ∈ R𝑛 by

contraposition, i.e., we show that for all 𝑥(0) ∈ R𝑛, 𝜎(u, 𝑥(0)) ∉ ΩC
𝑛 =⇒ D𝑛 (u) ∉ ΩC

𝑛𝑚. We prove
this in four points.

I) The lack of PE of x constrains the system input. If x := 𝜎(u, 𝑥(0)) ∉ ΩC
𝑛, by applying

Lemma II.7 we have that for all𝑇, 𝜖 > 0 we can find a unitary direction 𝑧 ∈ R𝑛 and 𝑡 > 0 such that

|𝑧⊤ ¤𝑥(𝜏) | ≤ 𝜖 |𝑧⊤𝑥(𝜏) | ≤ 𝜖 (V.112)
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for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇]. Along direction 𝑧, the system dynamics read

𝑧⊤ ¤𝑥(𝜏) = 𝑧⊤𝐴𝑥(𝜏) + 𝑧⊤𝐵𝑢(𝜏). (V.113)

If 𝑧⊤𝐵 ≠ 0, we can find the input 𝑢(𝜏) as

𝑢(𝜏) = −(𝑧⊤𝐵)†𝑧⊤𝐴︸          ︷︷          ︸
:=𝐾

𝑥(𝜏) + (𝑧⊤𝐵)†𝑧⊤ ¤𝑥(𝜏)︸           ︷︷           ︸
:=𝑢̃(𝜏 )

+𝑣(𝜏), (V.114)

where |𝑢(𝜏) | ≤ |(𝑧⊤𝐵)† |𝜖 , and 𝑣(𝜏) ∈ ker(𝑧⊤𝐵).

II) The closed-loop dynamics depends only on 𝑥(𝜏), 𝑣(𝜏). The dynamics become

𝑢(𝜏) = 𝐾𝑥(𝜏) + 𝑢(𝜏) + 𝑣(𝜏),

¤𝑥(𝜏) = (𝐴 − 𝐵𝐾)︸      ︷︷      ︸
:=𝐴̃

𝑥(𝜏) + 𝐵𝑢(𝜏) + 𝐵𝑣(𝜏) (V.115)

where, for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇], it holds |𝐵𝑢(𝜏) | ≤ 𝜖 and 𝑣(𝜏) ∈ ker(𝑧⊤𝐵). Consider the signal
U(u) := D𝑛 (u). Given (V.114), we obtain

𝑈 (𝜏) = (𝐼𝑛 ⊗ 𝐾)


¤𝑥 (𝑛−1) (𝜏)

...

𝑥(𝜏)

 +

¤̃𝑢 (𝑛−1) (𝜏)

...

𝑢(𝜏)

︸        ︷︷        ︸
:=𝑈̃ (𝜏 )

+


¤𝑣 (𝑛−1) (𝜏)

...

𝑣(𝜏)

︸        ︷︷        ︸
:=𝑉 (𝜏 )

. (V.116)

Using (V.115), it holds


¤𝑥 (𝑛−1) (𝜏)

...

𝑥(𝜏)

 =𝐹 ¤𝑥 (𝑛−1) (𝜏) + 𝐺
(
𝑈̃ (𝜏) +𝑉 (𝜏)

)
, (V.117)

where

𝐹 =


𝐼

...

𝐴̃𝑛−1

 , 𝐺 =


0 . . . . . . 0
𝐵 0 . . . 0
...

...
...

...

𝐴𝑛−2𝐵 . . . 𝐵 0


, (V.118)
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and substituting in (V.116), we obtain

𝑈 (𝜏)= (𝐼𝑛⊗𝐾)𝐹︸     ︷︷     ︸
:=𝐹′

¤𝑥 (𝑛−1) (𝜏)+((𝐼𝑛⊗𝐾)𝐺+𝐼)︸            ︷︷            ︸
𝐺′

(
𝑈̃ (𝜏)+𝑉 (𝜏)

)
,

=

[
𝐹′ 𝐺′

] [
¤𝑥 (𝑛−1) (𝜏)
𝑉 (𝜏)

]
+ 𝐺′𝑈̃ (𝜏).

(V.119)

III) A lack of PE in x implies D𝑛 (u) is not PE. Notice that in the period 𝜏 ∈ [𝑡, 𝑡 + 𝑇], it holds

i) 𝑣(𝜏) ∈ ker(𝑧⊤𝐵), with dim(ker(𝑧⊤𝐵)) ≤ 𝑚 − 1, as per (V.114).

ii) |𝑧⊤𝑥(𝜏) | ≤ 𝜖 by assumption.

iii) |𝑈̃ (𝜏) | ≤
√
𝑛| (𝑧⊤𝐵)† |𝜖 , from (V.114).

Holding i) and ii), the space persistently spanned by (𝑥(𝜏), 𝑉 (𝜏)) is at most (𝑛−1)+𝑛(𝑚−1) = 𝑛𝑚−1
dimensional. In other words, by following the same procedure as in Lemma II.6, we can write for all
𝜏 ∈ [𝑡, 𝑡 + 𝑇] [

¤𝑥 (𝑛−1) (𝜏)
𝑉 (𝜏)

]
= 𝐸𝜆(𝜏) + 𝜆(𝜏), (V.120)

where𝐸 ∈ R(𝑛𝑚)×(𝑛𝑚−1) stacks the directions which are persistently spanned by (𝑥(𝜏), 𝑉 (𝜏)),𝜆(𝜏) ∈
R𝑛𝑚−1 stacks the projections of (𝑥(𝜏), 𝑉 (𝜏)) along these directions, and 𝜆(𝜏) ∈ R𝑛𝑚, |𝜆(𝜏) | ≤ 𝜖 is
an arbitrarily small perturbation. We have

𝑈 (𝜏) =
[
𝐹′ 𝐺′

]
𝐸︸        ︷︷        ︸

:=𝐻

𝜆(𝜏) +
[
𝐹′ 𝐺′

]
𝜆(𝜏) + 𝐺′𝑈̃ (𝜏), (V.121)

and since
[
𝐹′ 𝐺′

]
𝐸 ∈ R𝑛𝑚×(𝑛𝑚−1) , there exists 𝑧 ∈ R𝑛𝑚 such that 𝑧⊤

[
𝐹′ 𝐺′

]
𝐸 = 0, which

reads
𝑧⊤𝑈 (𝜏) = 𝑧⊤

[
𝐹′ 𝐺′

]
𝜆(𝜏) + 𝑧⊤𝐺′𝑈̃ (𝜏). (V.122)

Being both 𝑈̃ (𝜏) and 𝜆 arbitrarily small in the arbitrarily long interval 𝜏 ∈ [𝑡, 𝑡 + 𝑇], we conclude
D𝑛 (u) ∉ ΩC

𝑛𝑚.

IV) The case of 𝑦⊤𝐵 = 0. Consider the case in which 𝑧⊤𝐵 = 0, namely, the columns 𝑏1, . . . , 𝑏𝑚 of
𝐵 satisfy 𝑏1, . . . , 𝑏𝑚 ∈ ker(𝑧⊤). In that case, along direction 𝑧, the system dynamics reads as

𝑧⊤ ¤𝑥(𝜏) = 𝑧⊤𝐴𝑥(𝜏) + 𝑧⊤𝐵𝑢(𝜏)

= 𝑧⊤𝐴𝑥(𝜏),
(V.123)

We can distinguish two cases: either ker(𝑧⊤) = ker(𝑧⊤𝐴) or ker(𝑧⊤) ≠ ker(𝑧⊤𝐴). If ker(𝑧⊤) =
ker(𝑧⊤𝐴), then ker(𝑧⊤) must be an invariant subspace of 𝐴 of dimension 𝑛 − 1. Since ker(𝑦⊤) is
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𝐴-invariant, and since 𝑏1, . . . , 𝑏𝑚 ∈ ker(𝑦⊤), there are at most 𝑛 − 1 linearly independent vectors
between the columns of 𝐵, . . . , 𝐴𝑛−1𝐵. This is a contradiction, since we assumed (𝐴, 𝐵) controllable,
thus, it cannot hold ker(𝑧⊤) = ker(𝑧⊤𝐴).
At last, consider the case ker(𝑧⊤) ≠ ker(𝑧⊤𝐴). Since (V.101) holds for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇], we can write

𝑧⊤𝑥(𝜏) ≤ 𝜖

𝑧⊤ ¤𝑥(𝜏) = 𝑧⊤𝐴𝑥(𝜏) ≤ 𝜖,
(V.124)

from which we deduce that we can write 𝑥(𝜏) = 𝑥(𝜏) + 𝑥(𝜏), with 𝑥(𝜏) ∈ ker(𝑧⊤) ∩ ker(𝑦⊤𝐴) and
|𝑥(𝜏) | ≤ 𝜖 . Since ker(𝑧⊤) ≠ ker(𝑧⊤𝐴) and since the dimension of each kernel is at most 𝑛 − 1, then
dim(ker(𝑧⊤) ∩ ker(𝑧⊤𝐴)) ≤ 𝑛 − 2.
This means that 𝑥(𝜏) spans persistently at most 𝑛 − 2 directions, namely, there exists 𝑧2 ∈ R𝑛, 𝑧2 ⊥
𝑧 ⊥ (ker(𝑧⊤) ∩ ker(𝑧⊤𝐴)), such that

|𝑧⊤2 𝑥(𝜏) | = |𝑧⊤2 𝑥(𝜏) + 𝑧
⊤
2 𝑥(𝜏) | = |𝑧⊤2 𝑥(𝜏) | ≤ 𝜖 . (V.125)

We can thus repeat the same procedure as before, checking if 𝑧⊤2 𝐵 ≠ 0. If 𝑧⊤2 𝐵 ≠ 0, we can repeat the
reasoning in points I), II), III); otherwise, we can repeat the above reasoning to find another direction
𝑧3 such that 𝑧⊤3 𝑥𝜏 ≤ 𝜖 (and repeat the process until we find some 𝑧⊤

𝑖
𝐵 ≠ 0, which must exist since

𝐵 ≠ 0. In each of these cases, D𝑛 (u) ∉ ΩC
𝑛𝑚, which concludes the proof for the first statement of the

theorem.
We move now to the second statement of the theorem. Since it has an analogous proof, we sketch

only the main differences with respect to the proof given before. We want to prove by contraposition
that D𝑛+1(u) ∈ ΩC

(𝑛+1)𝑚 =⇒ 𝜎(u, 𝑥(0) ∈ ΩC
𝑛+𝑚 for 𝜎 ∈ LC

xu and for all 𝑥(0) ∈ R𝑛 by showing
that for all 𝑥(0) ∈ R𝑛, 𝜎(u, 𝑥(0)) ∉ ΩC

𝑛+𝑚 =⇒ D𝑛+1(u) ∉ ΩC
(𝑛+1)𝑚.

I) The lack of PE of (x,u) constrains the system input. If (x,u) ∉ ΩC
𝑛+𝑚 we have that for all

𝑇, 𝜖 > 0 we can find 𝑧 = (𝑧𝑥 , 𝑧𝑢) ∈ R𝑛+𝑚, 𝑡 > 0 such that

𝑧⊤𝑥 𝑥(𝜏) = −𝑧⊤𝑢𝑢(𝜏) + 𝜒(𝜏), (V.126)

where 𝜒(𝜏) ∈ R, |𝜒(𝜏) | ≤ 𝜖 for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇]. By isolating 𝑢(𝜏) and deriving it, we obtain

¤𝑢(𝜏) = −(𝑧⊤𝑢 )†𝑧⊤𝑥 (𝐴𝑥(𝜏) + 𝐵𝑢(𝜏)) + (𝑧⊤𝑢 )† ¤𝜒(𝜏) + ¤𝑣(𝜏), (V.127)

where ¤𝑣(𝜏) ∈ ker(𝑧⊤𝑢 ).

II) The closed-loop dynamics depends only on 𝑥(𝜏), 𝑣(𝜏), 𝑢(𝜏). Since we can write ¤𝑥(𝜏) =

𝐴𝑥(𝜏)+𝐵𝑢(𝜏), in the interval 𝜏 ∈ [𝑡, 𝑡+𝑇] we can use (V.127) to express each 𝑢(𝜏), ¤𝑢(𝜏), . . . , ¤𝑢 (𝑛) (𝜏)
as a linear function of 𝑥(𝜏), 𝑢(𝜏), ¤𝑣(𝜏), . . . , ¤𝑣 (𝑛) (𝜏) (similarly to (V.116)) plus an arbitrarily small
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quantity 𝑈̃ (𝜏). In other words, we have


𝑢(𝜏)
...

¤𝑢 (𝑛) (𝜏)

 = 𝐾



𝑢(𝜏)
𝑥(𝜏)
¤𝑣(𝜏)
...

¤𝑣 (𝑛) (𝜏)


+ 𝑈̃ (𝜏) (V.128)

III) A lack of PE in (x,u) implies D𝑛+1(u) is not PE. Since (x,u) is not PE, it spans at most
𝑛 + 𝑚 − 1 directions. Since 𝑣(𝜏) ∈ ker(𝑧⊤𝑢 ), the vector ( ¤𝑣(𝜏), . . . , ¤𝑣 (𝑛) (𝜏)) spans at most (𝑚 − 1)𝑛
directions. Overall, we have that the right-hand side of (V.128) spans persistently only 𝑛 +𝑚 − 1+ (𝑚 −
1)𝑛 = (𝑛 + 1)𝑚 − 1 directions, which means that the signal (𝑢(𝜏), . . . , ¤𝑢 (𝑛) (𝜏)) ∈ R(𝑛+1)𝑚 on the
left-hand side of (V.128) spans persistently only (𝑛 + 1)𝑚 − 1 directions, namely, D𝑛+1(u) ∉ ΩC

(𝑛+1)𝑚.
∥∥

V.4.9 Proof of Theorem II.5

Since the proof is analogous to the one for discrete-time systems, we only highlight where they differ.
We show that given 𝜎 ∈ LC

x , if D𝑛 (u) ∈ C∞
𝑏
(R𝑛𝑚) is PPE of degree at most 𝑛′ ≤ 𝑛 − 1, then for all

𝑥(0) ∈ R𝑛, x = 𝜎(u, 𝑥0) ∉ ΩC
𝑛 regardless of the initial condition.

I) 𝑥(𝑡) as a linear function of older inputs. Consider 𝑥0 = 0. For all 𝑡, we can write

𝑥(𝑡 + 𝛿) = 𝑒𝐴𝛿𝑥(𝑡) +
∫ 𝑡+𝛿

𝑡

𝑒𝐴(𝑡+𝛿−𝜏 )𝐵𝑢(𝜏)d𝜏. (V.129)

By writing the Taylor expansion for 𝑥(𝑡 + 𝛿), it holds also

𝑥(𝑡 + 𝛿) =𝑥(𝑡) + ¤𝑥(𝑡)𝛿 + ¥𝑥
2!
(𝑡)𝛿2 + . . .

=𝑒𝐴𝛿𝑥(𝑡) + 𝑅𝑈 (𝑡) + 𝑟 (𝑡),
(V.130)

where

𝑅 :=
[
𝐵𝛿 𝐴𝐵

2 𝛿
2 . . . 𝐴𝑛−1𝐵

𝑛! 𝛿𝑛
]
,

𝑈 (𝑡) := (𝑢(𝑡), . . . , ¤𝑢 (𝑛−1) (𝑡)), 𝑟 (𝑡) :=
∞∑︁
𝑖=𝑛

𝑜(𝛿𝑖) ¤𝑢 (𝑖) (𝑡).
(V.131)
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Notice that, given 𝑀 := ∥d𝑛 (x)∥∞, the remainder 𝑟 (𝑡) can be bounded by |𝑟 (𝑡) | ≤ 𝑀𝛿𝑛/(𝑛!).
Confronting (V.129) and (V.130), we obtain∫ 𝑡+𝛿

𝑡

𝑒𝐴(𝑡+𝛿−𝜏 )𝐵𝑢(𝜏)d𝜏 = 𝑅𝑈 (𝑡) + 𝑟 (𝑡) (V.132)

Given any𝑇 > 0 (to be chosen later), we can write 𝑥(𝑡 + 𝑇) as

𝑥(𝑡 + 𝑇) = 𝑒𝐴𝑇̄𝑥(𝑡) +
∫ 𝑡+𝑇̄

𝑡

𝑒𝐴(𝑡+𝑇̄−𝜏 )𝐵𝑢(𝜏)d𝜏. (V.133)

Now, let 𝑁 ∈ N (to be chosen later) and 𝛿 = 𝑇/𝑁 . Recalling (V.132) to approximate the integral in
(V.133), we obtain

𝑥(𝑡 + 𝑁𝛿) = 𝑒𝐴𝑁 𝛿𝑥(𝑡) +
∫ 𝑡+𝑁 𝛿

𝑡

𝑒𝐴(𝑡+𝑁 𝛿−𝜏 )𝐵𝑢(𝜏)d𝜏

=𝑒𝐴𝑁 𝛿𝑥(𝑡) +
𝑁−1∑︁
𝑖=0

∫ 𝑡+(𝑖+1) 𝛿

𝑡+𝑖 𝛿
𝑒𝐴(𝑡+𝑁 𝛿−𝜏 )𝐵𝑢(𝜏)d𝜏

=𝑒𝐴𝑁 𝛿𝑥(𝑡) +
𝑁−1∑︁
𝑖=0

𝑟 (𝑡 + 𝑖𝛿)+

[
𝑒0 𝑒𝐴𝛿 . . . 𝑒𝐴(𝑁−1) 𝛿

]
︸                              ︷︷                              ︸

:=𝐴̄

(𝐼𝑁 ⊗ 𝑅)︸     ︷︷     ︸
:=𝑅̄


𝑈 (𝑡 + (𝑁 − 1)𝛿)
𝑈 (𝑡 + (𝑁 − 2)𝛿)

...

𝑈 (𝑡)


.

(V.134)

II) 𝑥(𝑡) can be approximated arbitrarily well by a linear function of the previous inputs. We
show now the terms 𝑒𝐴𝑁 𝛿𝑥(𝑡) and

∑𝑁−1
𝑖=0 𝑟 (𝑡 + 𝑖𝛿) can be made arbitrarily small. Pick any 𝜖 > 0. Since

𝑒𝐴 is Schur and x is bounded, there exists a sufficiently large𝑇 = 𝑁𝛿 > 0 such that |𝑒𝐴𝑇̄𝑥(𝑡) | ≤ 𝜖 for
all 𝑡 ∈ R≥0. Next, we choose 𝑁 . It holds�����𝑁−1∑︁

𝑖=0

𝑟 (𝑡 + 𝑖𝛿)
����� ≤ 𝑁

𝑀𝛿𝑛

𝑛!
=

𝑀𝑇𝑛

𝑛!𝑁𝑛−1
, (V.135)

so, given any 𝜖 and picking

𝑁 ≥ 𝑛−1

√︂
𝑀𝑇𝑛

𝑛!𝜖
, (V.136)

we obtain |∑𝑁−1
𝑖=0 𝑟 (𝑡 + 𝑖𝛿) | ≤ 𝜖 .

III) If the remaining term is not PPE of degree 𝑛, x ∉ ΩC
𝑛. At last, applying Lemma II.6,

if D𝑛 (u) ∉ ΩC
𝑛𝑚,𝑛, we have that for any 𝑇,𝑇, 𝜖 > 0 there exists 𝑁̄, 𝑡 > 0 such that, if 𝑁 ≥
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max(𝑁̄, 𝑛−1
√︃
𝑀𝑇̄𝑛

𝑛!𝜖 ), we can rewrite (V.134) as

𝑥(𝜏 + 𝑁𝛿) =𝑒𝐴𝑁 𝛿𝑥(𝑡) +
𝑁−1∑︁
𝑖=0

𝑟 (𝑡 + 𝑖𝛿)

+ 𝐴̄𝑅̄𝐺𝜆(𝜏) + 𝐴̄𝑅̄𝑋̃ (𝜏),
(V.137)

where 𝜆(𝜏) ∈ R𝑛−1, | 𝑋̃ (𝜏) | ≤ 𝜖 for all 𝜏 ∈ [𝑡, 𝑡 + 𝑇]. We can thus conclude that x = 𝜎(u, 0) ∉ ΩC
𝑛

similarly as done in Theorem II.4 (since x is a sum of a signal spanning only 𝑛 − 1 directions plus
arbitrarily small perturbations). To conclude the proof, since 𝜎 is a stable linear system, we have that all
solutions x = 𝜎(u, 𝑥(0)) converge exponentially to those initialized in 𝑥(0) = 0. Since a vanishing
term cannot guarantee PE of a signal, we can conclude that for all 𝑥(0) ∈ R𝑛, if D𝑛 (u) ∉ ΩC

𝑛𝑚,𝑛, then
x = 𝜎(u, 𝑥(0)) ∉ ΩC

𝑛. We omit the second statement since it combines arguments from previous
proofs.

∥∥

V.4.10 Proof of Theorem II.9

Looking at decomposition (II.70), the dynamics of the last subsystem can be written as a single-input
system in the form

¤𝑥𝑚 = 𝐴𝑚𝑥𝑚 + 𝑏𝑚𝑚𝑢𝑚, (V.138)

with 𝑥𝑚 ∈ R𝑛𝑚 , 𝑢𝑚 ∈ R and 𝐴𝑚, 𝑏𝑚 of appropriate dimensions. Since 𝑢𝑚(𝑡) contains at least
𝑛𝑚 spectral lines, by [41, Lemma 3.3] also 𝑥𝑚(𝑡) contains the same number of spectral lines at the
same frequencies. Furthermore, by [41, Prop. 5.1], 𝑥𝑚(𝑡) is PE, since these spectral lines are linearly
independent. We denote these spectral lines as 𝑥𝑚(𝜔𝑚1 ), . . . , 𝑥𝑚(𝜔

𝑚
𝑛𝑚

) ∈ C𝑛𝑚 .
Consider the (𝑚 − 1)-th subsystem. Its dynamics is given by

¤𝑥𝑚−1 = 𝐴𝑚−1𝑥𝑚−1 + 𝑏 (𝑚−1) (𝑚−1)𝑢𝑚−1 + 𝑏 (𝑚−1)𝑚𝑢𝑚, (V.139)

with 𝑥𝑚−1 ∈ R𝑛𝑚−1 , 𝑢𝑚−1 ∈ R and the other matrices of appropriate dimensions. Being the system
linear, we can apply the superposition principle and write the solution 𝑥𝑚−1(𝑡) as

𝑥𝑚−1(𝑡) = 𝑥𝑚−1(𝑡) + 𝑥𝑚−1(𝑡) (V.140)

where 𝑥𝑚−1(𝑡) is the system response to input 𝑢𝑚−1(𝑡) and 𝑥(𝑡)𝑚−1 is the system response to input
𝑢𝑚(𝑡). Repeating the above reasoning, we know 𝑥𝑚−1(𝑡) contains at least 𝑛𝑚−1 linearly independent
spectral lines 𝑥𝑚−1(𝜔𝑚−1

1 ), . . . , 𝑥𝑚−1(𝜔𝑚−1
𝑛𝑚−1) ∈ C𝑛𝑚−1 , and so does 𝑥𝑚−1(𝑡), since 𝑥𝑚−1(𝑡) and

𝑥𝑚−1(𝑡) have different spectral content by assumption.
Notice that the signal (𝑥𝑚−1(𝑡), 𝑥𝑚(𝑡)) contains at least 𝑛𝑚−1 + 𝑛𝑚 spectral lines which are linearly
independent, since
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i) 𝑛𝑚−1 of those in 𝑥𝑚−1(𝑡) that are not present in 𝑥𝑚(𝑡) are linearly independent eachother

ii) 𝑛𝑚 of those in 𝑥𝑚(𝑡) are linearly independent eachother,

iii) the spectral lines in these two sets are linearly independent, since they are in the forms[
𝑥𝑚−1(𝜔𝑚−1

1 )
0

]
, . . . ,

[
𝑥𝑚−1(𝜔𝑚−1

𝑛𝑚−1)
0

]
,

[
𝑥𝑚−1(𝜔𝑚1 )
𝑥𝑚(𝜔𝑚1 )

]
, . . . ,

[
𝑥𝑚−1(𝜔𝑚𝑛𝑚)
𝑥𝑚(𝜔𝑚𝑛𝑚)

]
∈ C𝑛𝑚−1+𝑛𝑚 .

(V.141)

so the signal (𝑥𝑚−1(𝑡), 𝑥𝑚(𝑡)) is PE by [41, Lemma 3.4]. This reasoning can be done for all subsystems,
and since the overall system solution is given by

𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑚(𝑡)), (V.142)

then 𝑥(𝑡) contains
∑𝑚
𝑖=1 𝑛𝑖 = 𝑛 linearly independent spectral lines and thus it is PE by [41, Lemma

3.4].
∥∥

V.5 Proofs for Chapter III

V.5.1 Proof of Lemma III.1

Without loss of generality, we consider (𝑐⊤, 𝐴) in observability canonical form. We prove now the first
statement. Notice that, for a generic 𝑀 ∈ R𝑛×𝑛+1, it holds

rank(𝑀) = 𝑛 − dim (leftker(𝑀)) . (V.143)

For this reason, we want to show that, for all 𝜆 ∈ 𝜎(𝐴 − 𝜓𝑐⊤) ∩ 𝜎(𝐴),

dim
(
leftker

[
𝐴 − 𝜓𝑐⊤ − 𝜆𝐼 𝑏

] )
= dim

(
leftker

[
𝐴 − 𝜆𝐼 𝑏

] )
. (V.144)

Being 𝐴 and 𝐴−𝜓𝑐⊤ cyclic (𝐴−𝜓𝑐⊤ must be cyclic since (𝑐⊤, 𝐴−𝜓𝑐⊤) is observable), the geometric
multiplicity of each eigenvalue is one. This means that the matrices 𝐴 − 𝜆𝐼 and 𝐴 − 𝜓𝑐⊤ − 𝜆𝐼 will
have a left kernel of dimension 1 for each shared eigenvalue. We want, however, to prove that the
associated left eigenvectors are the the same for both matrices (in order to conclude the proof for the
matrices [𝐴 − 𝜆𝐼 𝑏] and [𝐴 − 𝜓𝑐⊤ − 𝜆𝐼 𝑏]). For all 𝜆 ∈ 𝜎(𝐴 − 𝜓𝑐⊤) ∩ 𝜎(𝐴), the associated left
eigenvector 𝑤𝜆 ∈ R𝑛 is such that 𝑤⊤

𝜆
(𝐴 − 𝜓𝑐⊤ − 𝜆𝐼) = 0. Given the observability canonical form of
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(𝑐⊤, 𝐴 − 𝜓𝑐⊤), it holds that

𝑤⊤
𝜆 (𝐴 − 𝜆𝐼) =

[
0 . . . 𝑤⊤𝜓

]

𝑤⊤
𝜆



−𝜆 0 . . . 0 𝑎1

1 −𝜆 0 . . . 𝑎2

0 1 . . . . . . . . .

. . . . . . . . . . . . . . .

0 . . . . . . 1 𝑎𝑛 − 𝜆


=

[
0 . . . 𝑤⊤

𝜆
𝜓

]
, (V.145)

where 𝑎1, . . . , 𝑎𝑛 are the opposite of the coefficients of the characteristic polynomial of 𝐴. From the
first 𝑛 − 1 equation, we obtain that 𝑤𝜆 = (𝑤1, . . . , 𝑤𝑛) must be of the form

𝑤⊤
𝜆 = 𝑤1

[
1 𝜆 . . . 𝜆𝑛−1

]
. (V.146)

However, it can be checked that this vector is also the unique left eigenvector of 𝐴 associated to the
eigenvalue 𝜆, and so 𝑤⊤

𝜆
(𝐴 − 𝜆𝐼) = 0. To conclude the proof, notice that any 𝑤𝜆 ∈ leftker(𝐴 −

𝜓𝑐⊤ − 𝜆𝐼) is in the left kernel of [𝐴 − 𝜓𝑐⊤ 𝑏] only if 𝑤⊤
𝜆
𝑏 = 0, and the same holds for the matrix

[𝐴 − 𝜆𝐼 𝑏] We have thus shown that the two matrices [𝐴 − 𝜓𝑐⊤ 𝑏] and [𝐴 − 𝜆𝐼 𝑏] have the same left
eigenvectors, which implies they have the same rank.
We prove now the second statement. We show the result by contraposition, namely, we suppose that
the second statement does not hold and then we derive that 𝜆 ∈ 𝜎(𝐴). If

rank
[
𝐴 − 𝜓𝑐⊤ − 𝜆𝐼 𝜓

]
< 𝑛 (V.147)

for some𝜆 ∈ 𝜎(𝐴−𝜓𝑐⊤), then there exists𝑤 ∈ R𝑛 such that i)𝑤⊤𝜓 = 0 and ii)𝑤⊤(𝐴−𝜓𝑐⊤−𝜆𝐼) = 0.
Condition ii) becomes

𝑤⊤(𝐴 − 𝜆𝐼) = 𝑤⊤𝜓𝑐, (V.148)

and using condition i), we have 𝑤⊤(𝐴 − 𝜆𝐼) = 0, namely, 𝜆 ∈ 𝜎(𝐴). This proves, by contraposition,
that

𝜆 ∈ 𝜎(𝐴) =⇒ rank
[
𝐴 − 𝜓𝑐⊤ − 𝜆𝐼 𝜓

]
≥ 𝑛 (V.149)

and concludes the proof.
∥∥
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V.5.2 Proof of Proposition III.3

Recall that (following Remark III.4), the existence of a full rank matrix Π ∈ R𝑛×𝑧 satisfying (III.14)
defines a coordinate change 𝜁 ↦→ (𝜉, 𝜂) such that the gazer is in Kalman observability form:[

¤𝜉
¤𝜂

]
=

[
𝐴 0

𝐴21 𝐴22

] [
𝜉

𝜂

]
+

[
𝐵

𝐵2

]
𝑢

𝑦 = 𝐶𝜉.

(V.150)

Notice that any uncontrollable subspace 𝒵 ⊂ R𝑧 must be such that 𝒵 ⊂ ker(Π). In fact, given the
change of coordinates in (V.150), 𝜉 = Π𝜁 follows a dynamics which is stabilizable by assumption and
that does not depend on 𝜂 (so, any uncontrollable subspace must lie in ker(Π)). Consider the gazer in
filter form, whose dynamics read

¤𝜁 = 𝒜𝜁 +ℒ𝑦 +ℬ𝑢. (V.151)

Notice that, for any 𝜁 ∈ ker(Π), ℒ𝑦 = ℒ𝒞𝜁 = ℒ𝐶Π𝜁 = 0. So, for all 𝜁 ∈ kerΠ, it holds that
¤𝜁 = 𝒜𝜁 +ℬ𝑢. Since (𝒜,ℬ) is stabilizable by assumption, the system must be at least stabilizable.

∥∥

V.5.3 Proof of Lemma III.5

Without loss of generality, consider Λ, 𝐴 in Jordan form with the same ordering of eigenvalues. In
particular, since the pair (Λ, ℓ) is controllable by assumption, we use the transform [95, Example 3.4],
which brings the pair (Λ, ℓ) in the form described in Section III.2.1.
We start by proving that if the two matrix are similar, a solution to (III.28) can always be found. Since
𝐴,Λ are in Jordan form, we consider solutions Π to the first equation (ΠΛ = 𝐴Π) of (III.28) of the
form explained in Subsection (III.2.1). Expliciting the matrix Π and the vector ℓ using (III.3) and (III.6),
we find

Πℓ = 𝑏
Π11 . . . Π1𝑢

. . . . . . . . .

Π𝑢1 . . . Π𝑢𝑢



𝑒𝑛Λ1
. . .

𝑒𝑛Λ𝑢

 = 𝑏,
(V.152)

where 𝑢 is the number of Jordan blocks in 𝐴 and Λ. Being the matrices 𝐴 and Λ similar and cyclic, for
each corresponding eigenvalue 𝜆𝑖 , we have that Π𝑖𝑖 ∈ R𝑛𝑖×𝑛𝑖 satisfying the first equation in (III.28) is
square and upper triangular (of the form (III.4)), 𝑛𝑖 being the algebraic multiplicity of 𝜆𝑖 (which is the
same in both matrices). All the other Π𝑖 𝑗 are zero. For this reason, equation (V.152) reads as 𝑢 equations
of the type

Π𝑖𝑖𝑒𝑛Λ
𝑖
= 𝑏𝑖 . (V.153)
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To make an example, if 𝑛𝑖 = 3, we have

Π𝑖𝑖𝑒𝑛Λ
𝑖
= 𝑏𝑖 ,

𝑎𝑖 𝑏𝑖 𝑐𝑖

0 𝑎𝑖 𝑏𝑖

0 0 𝑎𝑖



0

0

1

 =


𝑏1
𝑖

𝑏2
𝑖

𝑏3
𝑖

 .
(V.154)

Notice that, for all 𝑖 = 1, . . . , 𝑢 these systems have a solution for any 𝑏𝑖 in the unknowns describing
Π𝑖𝑖 , which can be easily found as (for the case of the example (V.154))

Π𝑖𝑖 =


𝑏3
𝑖

𝑏2
𝑖

𝑏1
𝑖

0 𝑏3
𝑖

𝑏2
𝑖

0 0 𝑏3
𝑖

 . (V.155)

We prove now the second part, namely, that if 𝐴 and Λ are not similar, system (III.28) may not be
solvable for certain 𝑏. If 𝐴,Λ are not similar, being the matrices of the same dimension, either there
exists an eigenvalue 𝜆𝑖 ∈ 𝜎(𝐴), 𝜆𝑖 ∉ 𝜎(Λ) or there exists an eigenvalue 𝜆𝑖 in 𝐴 whose algebraic
multiplicity in 𝐴 is greater than its algebraic multiplicity in Λ. In the first case, Π has a row of zeros,
thus it is not full rank and for all 𝑏 ∈ im(Π)⊥, 𝑏 ≠ Πℓ. In the second case, Π𝑖𝑖 is rectangular, tall, and
system (V.152) is of the form

Π𝑖𝑖𝑒𝑛Λ
𝑖
= 𝑏𝑖

𝑎𝑖 𝑏𝑖 𝑐𝑖

0 𝑎𝑖 𝑏𝑖

0 0 𝑎𝑖

0 0 0



0

0

1

 =


𝑏1
𝑖

𝑏2
𝑖

𝑏3
𝑖

𝑏4
𝑖


.

(V.156)

Notice however that if 𝑏𝑖 = (0, 0, 0, 1), there are no solutions to (V.156) in the unknowns 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 .
∥∥

V.5.4 Proof of Lemma III.6

Assuming a solution to equations (III.28) exists, being the system linear its solutions are in the form

Π = Π𝑃 + Π𝐻 , (V.157)

where Π𝑃 is the particular solution and Π𝐻 are the homogeneus solutions, namely any Π𝐻 which
solves

Π𝐻Λ = 𝐴Π𝐻

Π𝐻ℓ = 0.
(V.158)
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We start by finding the particular solution. Premultiplying the second equation in (III.28) by 𝐴, and
using the first equation we obtain

Π𝑃Λℓ = 𝐴𝑏. (V.159)

By repeating this procedure, the particular solution Π𝑃 must satisfy

Π𝑃ℓ = 𝑏

Π𝑃Λℓ = 𝐴𝑏

. . . = . . .

Π𝑃Λ
𝑛−1ℓ = 𝐴𝑛−1𝑏,

(V.160)

which means that it holds
Π𝑃𝑅Λ,ℓ = 𝑅𝐴,𝑏 (V.161)

from which, being (Λ, ℓ) controllable, 𝑅Λ,ℓ is invertible, and we obtain

Π𝑃 = 𝑅𝐴,𝑏𝑅
−1
Λ,ℓ . (V.162)

By repeating the same procedure, it is easy to see that the homogeneous solution is such that

Π𝐻𝑅Λ,ℓ = 0, (V.163)

from which we derive that Π𝐻 = 0 is unique (being 𝑅Λ,ℓ full rank by controllability of (Λ, ℓ)), and
thus the complete solution is unique and it is given by

Π = Π𝑃 + Π𝐻 = 𝑅𝐴,𝑏𝑅
−1
Λ,ℓ + 0. (V.164)

∥∥

V.5.5 Proof of Lemma III.7

In order to prove this result, it is sufficient to repeat the same proof of Lemma III.5 by applying the
Jordan controllability decomposition [95, Example 3.4] to both pairs (𝐴, 𝑏) and (Λ, ℓ). So, without
loss of generality, consider 𝐴,Λ in Jordan form with the same ordering of the eigenvalues. Under the
same arguments as per Lemma III.5, if 𝐴,Λ are similar we obtain that the second equation in (III.28)
reads as

Π𝑖𝑖𝑒𝑛𝑖 = 𝑒𝑛𝑖 , (V.165)

for all 𝑖 = 1, . . . , 𝑢, 𝑢 being the number of Jordan blocks in 𝐴,Λ. Given the square form of each Π𝑖𝑖

under the similarity assumption (see (III.4)), the unique solution of this system is Π𝑖𝑖 = 𝐼𝑛𝑖 , where 𝑛𝑖
is the algebraic multiplicity of the i-th eigenvalue in 𝐴 and Λ.
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We can prove that similarity of 𝐴,Λ is also necessary by following the same arguments of Lemma III.5
but considering both pairs (𝐴, 𝑏) and (Λ, ℓ) in Jordan controllability form. Full rankness of Π is then
derived since the expression of the solution is given by (Lemma III.6)

Π = 𝑅𝐴,𝑏𝑅
−1
Λ,ℓ . (V.166)

∥∥

V.5.6 Proof of Theorem III.1

We prove this theorem by considering 𝑟 = 𝑛. Leveraging Remark III.6, it is easy to obtain the final
statement of Theorem III.1. Define Π := [Π𝑦 Π𝑢], with Π𝑦 , Π𝑢 ∈ R𝑛×𝑛. Then, (III.36) can be written
as 

Π𝑦Λ = (𝐴 − Π𝑦ℓ𝑐
⊤)Π𝑦

𝜃⊤𝑦 = 𝑐⊤Π𝑦
(V.167)

and 
Π𝑢Λ = (𝐴 − Π𝑦ℓ𝑐

⊤)Π𝑢
Π𝑢ℓ = 𝑏

𝜃⊤𝑢 = 𝑐⊤Π𝑢,

(V.168)

where we notice that 𝐴 − Π𝑦ℓ𝑐
⊤ appears in both equations. Consider the second system (V.168),

which is in the same form as (III.28) (notice that, since 𝜃𝑢 is a degree of freedom, it does not introduce
constraints).
Due to the observability of (𝑐⊤, 𝐴), we can choose 𝑙 ∈ R𝑛 as the unique vector such that𝜎(𝐴− 𝐿𝐶) =
𝜎(Λ) (furthermore, being 𝐴 − 𝑙𝑐⊤,Λ cyclic, the geometric multiplicity of all the eigenvalues is 1 and
thus Λ and 𝐴 − 𝑙𝑐⊤ are also similar). We thus impose the new equation 𝑙 = Π𝑦ℓ, and by denoting
𝐴′ := 𝐴 − 𝑙𝑐⊤, we obtain from (V.167), (V.168) the following systems:

Π𝑦Λ = 𝐴′Π𝑦

Π𝑦ℓ = 𝜓,


Π𝑢Λ = 𝐴′Π𝑢

Π𝑢ℓ = 𝑏,
(V.169)

where we have dropped the equations 𝜃⊤𝑦 = 𝑐⊤Π𝑦 and 𝜃⊤𝑢 = 𝑐⊤Π𝑢 since, being 𝜃𝑦 , 𝜃𝑢 degrees of
freedom, they do not impose constraints on Π𝑦 ,Π𝑢. We then apply Proposition III.5, and we know
that, since the pair (Λ, ℓ) is controllable and since Λ, 𝐴′ are similar by construction, both systems can
be solved and their solutions Π𝑦 ,Π𝑢 are given (Lemma III.6) by

Π =

[
Π𝑦 Π𝑢

]
=

[
𝑅𝐴′ ,𝑙𝑅

−1
Λ,ℓ

𝑅𝐴′ ,𝑏𝑅
−1
Λ,ℓ

]
(V.170)

To conclude full rankness of Π, it is sufficient to apply Lemma III.1 and notice that, either if (𝐴, 𝑏) is
controllable or𝜎(𝐴)∩𝜎(Λ) = ∅, then the pair (𝐴−𝑙𝑐⊤, [𝑏 𝑙]) is controllable, and thus [𝑅𝐴′ ,𝑙 𝑅𝐴′ ,𝑏]
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is of full row rank.
∥∥

V.5.7 Proof of Theorem III.2

This proof follows the same steps as the one of Theorem III.1 and considering 𝑟 = 𝑛. Leveraging Remark
III.6, it is easy to obtain the final statement of Theorem III.2 for 𝑟 > 𝑛.
Defining Π = [Π1

𝑦 , . . . ,Π
𝑝
𝑦 ,Π

1
𝑢, . . . ,Π

𝑚
𝑢 ] and considering the block structure in (III.42), system

(III.14) can be rewritten as

Π𝑖𝑦 (Λ + ℓ𝜃𝑖𝑖𝑦 ) +
∑︁
𝑗≠𝑖

Π
𝑗
𝑦ℓ𝜃

𝑗𝑖
𝑦 = 𝐴Π𝑖𝑦 , 𝑖 = 1, . . . , 𝑝, (V.171)

together with

𝑝∑︁
𝑖=1

Π𝑖𝑦ℓ𝜃
𝑖 𝑗
𝑢 + Π

𝑗
𝑢Λ = 𝐴Π

𝑗
𝑢, 𝑗 = 1, . . . , 𝑚. (V.172)

Imposing 𝒞 = 𝐶Π,

𝜃
𝑖 𝑗
𝑦 = 𝑐𝑖Π

𝑗
𝑦 , 𝜃

𝑖 𝑗
𝑢 = 𝑐𝑖Π

𝑗
𝑢, (V.173)

where 𝑐𝑖 , 𝑖 = 1, . . . , 𝑝 are the rows of𝐶. Substituting (V.173) in (V.171), we obtain

Π𝑖𝑦Λ = 𝐴Π𝑖𝑦 −
𝑝∑︁
𝑗=1

Π
𝑗
𝑦ℓ𝜃

𝑗𝑖
𝑦 , 𝑖 = 1, . . . , 𝑝,

Π𝑖𝑦Λ = 𝐴Π𝑖𝑦 −
𝑝∑︁
𝑗=1

Π
𝑗
𝑦ℓ𝑐 𝑗Π

𝑖
𝑦 , 𝑖 = 1, . . . , 𝑝,

Π𝑖𝑦Λ = (𝐴 −
𝑝∑︁
𝑗=1

Π
𝑗
𝑦ℓ𝑐 𝑗)Π𝑖𝑦 , 𝑖 = 1, . . . , 𝑝,

(V.174)

and substituting (V.173) in (V.172),

Π
𝑗
𝑢Λ = 𝐴Π

𝑗
𝑢 −

𝑝∑︁
𝑖=1

Π𝑖𝑦ℓ𝜃
𝑖 𝑗
𝑢 , 𝑗 = 1, . . . , 𝑚,

Π
𝑗
𝑢Λ = 𝐴Π

𝑗
𝑢 −

𝑝∑︁
𝑖=1

Π𝑖𝑦ℓ𝑐𝑖Π
𝑗
𝑢, 𝑗 = 1, . . . , 𝑚,

Π
𝑗
𝑢Λ = (𝐴 −

𝑝∑︁
𝑖=1

Π𝑖𝑦ℓ𝑐𝑖)Π
𝑗
𝑢, 𝑗 = 1, . . . , 𝑚.

(V.175)
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Notice that we may rewrite 𝐴 − ∑𝑝

𝑖=1 Π
𝑖
𝑦ℓ𝑐𝑖 as

𝐴 −
𝑝∑︁
𝑖=1

Π𝑖𝑦ℓ𝑐𝑖 = 𝐴 −
[
Π1
𝑦ℓ . . . Π

𝑝
𝑦 ℓ

]
𝐶. (V.176)

By observability of (𝐶, 𝐴), there exists 𝐿 ∈ R𝑛×𝑝 such that 𝐴 − 𝐿𝐶 is cyclic and 𝜎(𝐴 − 𝐿𝐶) = 𝜎(Λ)
[228, Lemma 2.2, Thm. 2.1]. We thus impose the new equation[

Π1
𝑦ℓ . . . Π

𝑝
𝑦 ℓ

]
= 𝐿, (V.177)

which, writing 𝐿 = [𝑙1, . . . , 𝑙𝑝], results in 𝑝 equations of the type

Π𝑖𝑦ℓ = 𝑙𝑖 , 𝑖 = 1, . . . , 𝑝. (V.178)

Denoting 𝐴′ := 𝐴 − 𝐿𝐶, we obtain that equations (V.174) are equivalent to

Π𝑖𝑦Λ = 𝐴′Π𝑖𝑦 ,

Π𝑖𝑦ℓ = 𝑙𝑖 , 𝑖 = 1, . . . , 𝑝.
(V.179)

Next, considering also the equation Πℬ = 𝐵, and denoting 𝐵 = [𝑏1, . . . , 𝑏𝑚], we obtain that
equations (V.175) are equivalent to

Π
𝑗
𝑢Λ = 𝐴′Π 𝑗

𝑢,

Π
𝑗
𝑢ℓ = 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑚.

(V.180)

By applying Lemma III.6, all of these 𝑝 + 𝑚 systems of equations have a solution Π𝑖𝑦 ,Π
𝑗
𝑢 which can be

found with Lemma III.6. Full rankness of Π follows as per Theorem III.1.
∥∥

V.5.8 Proof of Lemma III.8

It can be checked by simple calculations that Π := 𝛾−1 [𝐴 + 𝜆𝐼𝑛 𝐵] solves the equations

Π

[
𝐴 𝐵

0 −𝜆𝐼𝑚

]
= 𝐴Π, Π

[
0

𝛾𝐼𝑚

]
= 𝐵, Π𝐼 = Π (V.181)

arising by substituting the matrix 𝒜,ℬ,𝒞 in (III.14) with the matrices in (III.53). The fact that Π is
full rank follows directly from the controllability Assumption III.1 on (𝐴, 𝐵), which ensures that

rank
[
𝐴 + 𝜆𝐼 𝐵

]
= 𝑛 (V.182)

for all 𝜆 ∈ 𝜎(𝐴).
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∥∥

V.5.9 Proof of Lemma III.9

We use the PBH test, which requires that

rank

[
𝑠𝐼𝑛 − 𝐴 −𝐵 0

0 (𝑠 + 𝜆)𝐼𝑚 𝛾𝐼𝑚

]
= 𝑛 + 𝑚 (V.183)

for all 𝑠 ∈ 𝜎(𝐴) ∪ {−𝜆}. From Assumption III.1, the first 𝑛 rows are linearly independent for all
𝑠 ∈ 𝜎(𝐴) ∪ {−𝜆}. Therefore, the result follows by noticing that the remaining 𝑚 rows are linearly
independent from the previous ones. ∥∥

V.5.10 Proof of Lemma III.10

Recall the notation 𝐹 and 𝑔 from (III.92). By [11, Thm. 2.17], (𝐹, 𝑔) is controllable if and only if the
2𝑛 rows of

H(𝑠) := (𝑠𝐼 − 𝐹)−1𝑔 (V.184)

are linearly independent over the field of complex numbers, i.e., if and only if there exists no 𝑤 ∈ C2𝑛,
𝑤 ≠ 0, such that

𝑤⊤H(𝑠) = 0, ∀𝑠 ∈ C. (V.185)

Notice that H(𝑠) can be equivalently seen as the transfer function of the cascade between plant (III.78)
and the filters (III.80):

H(𝑠) =
[
(𝑠𝐼 − Λ)−1ℓ𝑐⊤(𝑠𝐼 − 𝐴)−1𝑏

(𝑠𝐼 − Λ)−1ℓ.

]
(V.186)

We follow similar steps to [191, Thm. 2.7.3]. Suppose that there exists 𝑤 ≠ 0 such that 𝑤⊤H(𝑠) = 0

for all 𝑠. Split 𝑤 = col(𝑤1, 𝑤2), with 𝑤1, 𝑤2 ∈ R𝑛. Then, it holds that

N1(𝑠)
DΛ(𝑠)

N (𝑠)
D(𝑠) +

N2(𝑠)
DΛ(𝑠)

= 0, ∀𝑠 ∈ C, (V.187)

where N(𝑠), D(𝑠), N1(𝑠), N2(𝑠), and DΛ(𝑠) are polynomials of 𝑠 such that N(𝑠)
D (𝑠) = 𝑐

⊤(𝑠𝐼 − 𝐴)−1𝑏,
N1 (𝑠)
DΛ (𝑠) = 𝑤⊤

1 (𝑠𝐼 − Λ)−1ℓ, and N2 (𝑠)
DΛ (𝑠) = 𝑤⊤

2 (𝑠𝐼 − Λ)−1ℓ. For the above expression to be identically
zero, it must hold that

N2(𝑠) = −N1(𝑠)
N (𝑠)
D(𝑠) , ∀𝑠 ∈ C. (V.188)

To ensure that the left- and the right-hand sides are equal, since N2(𝑠) has no poles, there must be
𝑛 pole-zero cancellations in N1(𝑠) N(𝑠)

D (𝑠) . Notice that N1(𝑠) and N2(𝑠) are at most of degree 𝑛 − 1.
Therefore, there must be at least one pole-zero cancellation in N(𝑠)

D (𝑠) . However, N(𝑠) and D(𝑠) are
coprime by Assumption III.2, hence we have a contradiction. ∥∥
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V.6 Proofs for Chapter IV

V.6.1 Proof of Lemma IV.1

At first, to simplify the expressions for the Lyapunov function, we introduce the following vectorized
coordinates:

𝜃A := vec( 𝐴̂) ∈ R𝑛
2
, 𝜃A := vec( 𝐴̃) ∈ R𝑛

2
. (V.189)

It can be verified the following relation holds:

vec(𝐵𝐵†𝜖𝜉⊤) = 𝐵̄(𝜉 ⊗ 𝐼𝑛)𝜖, 𝐵̄ := (𝐼𝑛 ⊗ 𝐵𝐵†), (V.190)

where 𝐵̄ defines a projection onto Im(𝐼𝑛 ⊗ 𝐵) ⊂ R𝑛
2 . Notice that, for any 𝜃A ∈ Im(𝐼𝑛 ⊗ 𝐵) and

𝜏 ∈ R𝑛
2 , then 𝜃A ∈ Im(𝐼𝑛 ⊗ 𝐵) and, since the scalar product of orthogonal vectors is zero and by

idempotence of the projection,

𝜃⊤A𝜏 = 𝜃
⊤
A (𝜏∥ + 𝜏⊥) = 𝜃

⊤
A𝜏∥ + 0

= 𝜃⊤A 𝐵̄𝜏∥ = 𝜃
⊤
A 𝐵̄(𝜏∥ + 𝜏⊥) = 𝜃

⊤
A 𝐵̄𝜏,

(V.191)

where 𝜏∥ ∈ Im(𝐼𝑛 ⊗ 𝐵) and 𝜏⊥ ∈ (𝐼𝑛 ⊗ 𝐵)⊥. We rewrite (IV.22) by using the vectorized coordinates
defined above:

¤̂𝜃A = Pvec−1 𝜃A∈C

{
−𝛾𝐵̄ (𝜉 ⊗ 𝐼𝑛)𝜖

1 + 𝜈 |𝜉 | |𝜖 |

}
. (V.192)

The computations from here are similar to [112, Lemma 6.1] but we report them for the reader’s
convenience. Define

𝑉𝐴(𝜖, 𝜃A) :=
1
𝜆
|𝜖 |2 + 1

2𝛾
|𝜃A |2, (V.193)

which is positive definite with respect to (0, 0) and radially unbounded. Note that 𝜖 = (𝜉 ⊗ 𝐼𝑛)⊤𝜃A+𝜖 .
Then, using (V.191) and [112, Lemma E.1] to treat the projection operator P𝐴̂∈C{·}, the derivative of
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𝑉𝐴 along the solutions of (IV.46) is

¤𝑉𝐴 = −2|𝜖 |2 + 𝜃⊤APvec−1 𝜃A∈C

{
−𝐵̄ (𝜉 ⊗ 𝐼𝑛)𝜖

1 + 𝜈 |𝜉 | |𝜖 |

}
≤ −2|𝜖 |2 −

𝜃⊤A 𝐵̄(𝜉 ⊗ 𝐼𝑛)𝜖
1 + 𝜈 |𝜉 | |𝜖 | = −2|𝜖 |2 −

𝜃⊤A (𝜉 ⊗ 𝐼𝑛)𝜖
1 + 𝜈 |𝜉 | |𝜖 |

≤ −2|𝜖 |2 − |𝜖 |2 − 𝜖⊤𝜖
1 + 𝜈 |𝜉 |2

≤ −2|𝜖 |2 − 1
4

|𝜖 |2
(1 + 𝜈 |𝜉 |2)2

+ 𝜖⊤𝜖

1 + 𝜈 |𝜉 |2
− 3
4

|𝜖 |2
1 + 𝜈 |𝜉 |2

= −|𝜖 |2 −
(
1
2

|𝜖 |
1 + 𝜈 |𝜉 |2

− 𝜖
)2

− 3
4

|𝜖 |2
1 + 𝜈 |𝜉 |2

≤ 0

(V.194)

implying that (𝜖 (𝑡), 𝜃𝐴(𝑡)) is contained for all 𝑡 ∈ [0, 𝑡 𝑓 ) in a compact sublevel set of𝑉𝐴. We conclude
the proof by recalling [112, Lemma E.1] to ensure 𝐴̂(𝑡) ∈ Θ, for all its domain of existence.
We prove now the last point. Using [112, Lemma E.1] to treat the projection operator P𝐴̂∈C{·} and the
fact that |𝐵̄| = 1 due to (V.190), we can bound | ¤̂𝐴| as follows:

| ¤̂𝐴| ≤ | ¤̂𝐴|𝐹 = | ¤̂𝜃A | ≤𝛾 |𝐵̄|
| (𝜉 ⊗ 𝐼𝑛) | |𝜖 |
1 + 𝜈 |𝜉 | |𝜖 | ≤ 𝛾 |𝜉 | |𝜖 |

1 + 𝜈 |𝜉 | |𝜖 | ≤𝛾. (V.195)

∥∥

V.6.2 Proof of Lemma IV.2

Function P( 𝐴̂) being continuous and Θ a compact set, there exist scalars 𝑝min, 𝑝max > 0 such that

𝑝min𝐼𝑛 ≤ P( 𝐴̂) ≤ 𝑝max𝐼𝑛, ∀𝐴̂ ∈ Θ. (V.196)

Then, define the Lyapunov function

𝑉m(𝑥m, 𝑡) := 𝑥m
⊤P( 𝐴̂)𝑥m (V.197)

which is positive definite and radially unbounded, and whose derivative along the solutions of (IV.24)
is given by:

¤𝑉m = 𝑥m
⊤

(
P( 𝐴̂)𝐴cl( 𝐴̂) +𝐴cl( 𝐴̂)

⊤P( 𝐴̂)
)
𝑥m

+ 𝑥m
⊤

(
𝜕P( 𝐴̂)
𝜕 𝐴̂

⊙ ¤̂
𝐴

)
𝑥m + 2𝑥m

⊤P( 𝐴̂)𝐵𝑑,
(V.198)

where
𝐴cl( 𝐴̂) := 𝐴̂ − 𝐵𝑅−1𝐵⊤P( 𝐴̂) (V.199)
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and the product ⊙ is defined as

𝜕P( 𝐴̂)
𝜕 𝐴̂

⊙ ¤̂
𝐴 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜕P( 𝐴̂)
𝜕 [ 𝐴̂]𝑖 𝑗

[ ¤̂𝐴]𝑖 𝑗 , (V.200)

with [ 𝐴̂]𝑖 𝑗 the 𝑖-th row and 𝑗 -th column entry of matrix 𝐴̂. Since 𝑃̂ = P( 𝐴̂) solves at each time instant
ARE (IV.29), it holds that:

𝐴cl( 𝐴̂)
⊤P( 𝐴̂)+P( 𝐴̂)𝐴cl( 𝐴̂) =−𝑄−𝐾 ( 𝐴̂)⊤𝑅𝐾 ( 𝐴̂)︸                  ︷︷                  ︸

=:−𝑄̄ ( 𝐴̂)

,
(V.201)

where from Assumption IV.1, 𝑄 > 0 and Θ being compact, 𝑄̄( 𝐴̂) ≥ 𝑞 > 0 for all 𝐴̂ ∈ Θ, with 𝑞
defined as

𝑞 := min
𝐴̂∈Θ

𝜆min

(
−𝑄 − P( 𝐴̂)𝐵𝑅𝐵⊤P( 𝐴̂)

)
, (V.202)

where𝜆min(·) denotes the smallest eigenvalue of a matrix. Define 𝑐 := max𝑖, 𝑗∈{1,...,𝑛}
{
max𝐴̂∈Θ

���𝜕P( 𝐴̂)
𝜕[ 𝐴̂]𝑖 𝑗

���},
then we obtain ����𝜕P( 𝐴̂)

𝜕 𝐴̂
⊙ ¤̂
𝐴

���� =
������ 𝑛∑︁𝑖=1

𝑛∑︁
𝑗=1

𝜕P( 𝐴̂)
𝜕 [ 𝐴̂]𝑖 𝑗

[ ¤̂𝐴]𝑖 𝑗

������
≤ 𝑐

𝑛∑︁
𝑖=1

©­«
𝑛∑︁
𝑗=1

| [ ¤̂𝐴]𝑖 𝑗 |
ª®¬ ≤ 𝑐𝑛 max

1≤𝑖≤𝑛

𝑛∑︁
𝑗=1

| [ ¤̂𝐴]𝑖 𝑗 | ≤ 𝑐𝑛
3
2 | ¤̂𝐴|.

(V.203)

By letting | ¤̂𝐴| ≤ 𝛾★
𝑏
:= 𝑞/(2𝑐𝑛 3

2 ), (V.198) becomes

¤𝑉m = − 𝑥m
⊤

(
𝑄̄( 𝐴̂) − 𝜕P( 𝐴̂)

𝜕 𝐴̂
⊙ ¤̂
𝐴

)
𝑥m + 2𝑥m

⊤P( 𝐴̂)𝐵𝑑

≤ − (𝑞 − 𝑐𝜌 | ¤̂𝐴|) |𝑥m |2 + 2𝑝max |𝐵| |𝑥m | |𝑑 |

≤ − 𝑞

2
|𝑥m |

(
|𝑥m | −

4𝑝max |𝐵| |𝑑 |
𝑞

)
.

(V.204)

Therefore,
|𝑥m | ≥

8𝑝max |𝐵| |𝑑 |
𝑞

=⇒ ¤𝑉m ≤ −𝑞
4
|𝑥m |2, (V.205)

which concludes the statement. ∥∥

V.6.3 Proof of Lemma IV.3

At first, to simplify the expressions for the Lyapunov function, we introduce the following vectorized
coordinates:

𝜃a := vec(𝐾̂a) ∈ R𝑚𝑛, 𝜃a := vec(𝐾̃a) ∈ R𝑚𝑛. (V.206)
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We rewrite dynamics (IV.49) and (IV.51) by using the vectorized coordinates above defined:

¤𝑒 = 𝐴cl( 𝐴̂)𝑒 + 𝐵𝐾̂a𝑥 − 𝐵𝐾a( 𝐴̂)𝑥

= 𝐴cl( 𝐴̂)𝑒 + 𝐵(𝑥 ⊗ 𝐼𝑚)⊤𝜃a,

¤̃𝜃a = −𝜇(𝑥 ⊗ 𝐼𝑚)𝐵⊤P( 𝐴̂)𝑒.

(V.207)

Consider the Lyapunov function

𝑉𝑒 (𝑒, 𝜃a, 𝑡) := 𝑒⊤P( 𝐴̂)𝑒 + 1
𝜇
|𝜃a |2, (V.208)

which is positive definite and radially unbounded. The time derivative of 𝑉𝑒 along the trajectories
of (V.207) is given by

¤𝑉𝑒 = 𝑒⊤
(
P( 𝐴̂)𝐴cl( 𝐴̂) + 𝐴cl( 𝐴̂)

⊤P( 𝐴̂) + 𝜕P( 𝐴̂)
𝜕 𝐴̂

⊙ ¤̂
𝐴

)
𝑒

+ 2𝑒⊤P( 𝐴̂)𝐵(𝑥 ⊗ 𝐼𝑚)⊤𝜃a −
2
𝜇
𝜃⊤a (𝜇(𝑥 ⊗ 𝐼𝑚)𝐵⊤P( 𝐴̂)𝑒)

= − 𝑒⊤
(
𝑄̄( 𝐴̂) − 𝜕P( 𝐴̂)

𝜕 𝐴̂
⊙ ¤̂
𝐴

)
𝑒 ≤ −𝑞

2
|𝑒 |2 ≤ 0,

(V.209)

where 𝐴cl( 𝐴̂) is defined in (V.199), 𝑄̄( 𝐴̂) is given in (V.201), and 𝑞 is found in (V.202). We have ensured
that (𝑒(𝑡), 𝜃a(𝑡)) is contained for all 𝑡 ∈ [0, 𝑡 𝑓 ) in a compact sublevel set of𝑉𝑒, thus concluding the
proof. ∥∥

V.6.4 Proof of Lemma IV.4

For all 𝐴̂ ∈ Θ, pair (𝐴cl( 𝐴̂), 𝐵) in (IV.48), with 𝐴cl( 𝐴̂) given in (V.199), is controllable because ( 𝐴̂, 𝐵)
is controllable from Assumption (IV.1). Additionally, the origin of system ¤𝑥m = 𝐴cl( 𝐴̂)𝑥m is UGES
from Lemma IV.2. If 𝑑 (𝑡) ∈ CSR(LC

x,>1), then by definition (II.55) of CSR(LC
x,>1), if ¤̂

𝐴 = 0 then 𝑥m(𝑡)
is PE, i.e, there exist𝑇 > 0, 𝛼 > 0 such that∫ 𝑡+𝑇

𝑡

𝑥m(𝑠)𝑥m(𝑠)⊤d𝑠 ≥ 𝛼𝐼𝑛, ∀𝑡 ≥ 0. (V.210)

By [142, Thm. 6.1], there exist a constant scalar 𝜂 > 0, such that, if

|𝐴cl( 𝐴̂(𝑠)) − 𝐴cl( 𝐴̂(𝜏)) | ≤ 𝜂, ∀𝑠, 𝜏 ∈ [𝑡, 𝑡 + 𝑇], (V.211)

for all 𝑡 ≥ 0, then 𝑥m(𝑡) is PE also when ¤̂
𝐴 ≠ 0. Recall that 𝐴cl( 𝐴̂) := 𝐴̂ − 𝐵𝑅−1𝐵⊤P( 𝐴̂) is an

analytic function of 𝐴̂ [175, Thm. 4.1]. Thus, from the mean-value theorem and similar computations
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to (V.203), we obtain:

|𝐴cl( 𝐴̂(𝑠)) − 𝐴cl( 𝐴̂(𝜏)) | =
����(𝑠 − 𝜏) 𝜕𝐴cl( 𝐴̂)

𝜕 𝐴̂
⊙ ¤̂
𝐴(𝜍)

����
≤ |𝑠 − 𝜏 |𝑐𝑛 3

2 | ¤̂𝐴(𝜍) |,
(V.212)

where 𝜍 ∈ [𝑠, 𝜏], 𝑐 := max𝑖, 𝑗∈{1,...,𝑛}
{
max𝐴̂∈Θ

���𝜕𝐴cl ( 𝐴̂)
𝜕[ 𝐴̂]𝑖 𝑗

���}. From the fact that | ¤̂𝐴(·) | ≤ 𝛾, we

conclude that for 𝛾★
𝑃𝐸

:= 𝜂/(𝑇𝑐𝑛 3
2 ), if 𝛾 ∈ (0, 𝛾★

𝑃𝐸
], then bound 𝜂 in (V.211) is enforced and thus

𝑥m(𝑡) is PE. ∥∥

V.6.5 Proof of Lemma IV.5

From Lemma IV.3 and the solutions being forward complete, it holds that the origin (𝑒, 𝜃a) = 0 of
system (V.207) is UGS. Note that the regressor in (IV.51) is given by 𝑥(𝑡). Therefore, if 𝑥(𝑡) is uniformly
PE (u-PE) as in [171, Def. 5], then UGAS and ULES of (𝑒, 𝜃a) = 0 follows from [171, Thm. 1 and 2]. To
prove u-PE of 𝑥(𝑡), note that 𝑥(𝑡) = 𝑥m(𝑡) + 𝑒(𝑡), where 𝑥m(𝑡) is PE from Lemma IV.4. Therefore,
we conclude u-PE of 𝑥(𝑡) from [171, Prop. 2]. ∥∥

V.6.6 Proof of Lemma IV.6

From Lemma IV.1 and UGES of the 𝜖 subsystem, we only need to prove UGES of system (IV.46) with
𝜖 = 0, which we write here in vectorized coordinates:

¤̃𝜃𝐴 =Pvec−1 𝜃A∈C

{
−𝛾𝐵̄ (𝜉 ⊗ 𝐼𝑛) (𝜉 ⊗ 𝐼𝑛)

⊤𝜃𝐴

1 + 𝜈 |𝜉 | | 𝐴̃𝜉 |

}
. (V.213)

Since the directions where learning happens are unchanged by the projection operator and by 𝐵̄, we
are interested in studying regressor 𝜉 (𝑡) := 𝜉 (𝑡 )⊗𝐼𝑛√

1+𝜈 | 𝜉 (𝑡 ) | | 𝐴̃(𝑡 ) 𝜉 (𝑡 ) |
in order to prove our result. Given a

small enough gain 𝛾, it holds from Lemma IV.4 that 𝑥𝑚(𝑡) is PE, while 𝑒(𝑡) → 0 exponentially fast
from Lemma IV.5. From (IV.47), 𝜉 (𝑡) is a filtered version of the PE signal 𝑥m(𝑡) + 𝑒(𝑡), thus 𝜉 (𝑡) is
PE [98, Lemma. 4.8.3]. Since all signals are bounded and (𝜉 ⊗ 𝐼𝑛) (𝜉 ⊗ 𝐼𝑛)⊤ = (𝜉𝜉⊤) ⊗ 𝐼𝑛, PE of 𝜉 (𝑡)
implies that ∫ 𝑡+𝑇

𝑡

𝜉 (𝑠)𝜉 (𝑠)⊤d𝑠 ≥
∫ 𝑡+𝑇

𝑡

(𝜉 (𝑠)𝜉 (𝑠)⊤) ⊗ 𝐼𝑛
1 + 𝜉2

𝑀
𝐴̃𝑀

d𝑠 ≥ 𝛼𝐼𝑛2 , (V.214)

for some𝑇 , 𝛼 > 0 and all 𝑡 ∈ R≥0, with 𝜉𝑀 := sup𝑡∈R |𝜉 (𝑡) |, 𝐴̃𝑀 := sup𝑡∈R | 𝐴̃(𝑡) |, thus 𝜉 (𝑡) is PE.
From [98, Thm. 8.5.6], we conclude that 𝐴̃ = 0 is UGES. ∥∥

V.6.7 An expression for the projection operator

For the reader’s convenience, we report the expression of the projector P𝐴̂∈C{𝜏} as presented in
[112, Appendix E] for the case where the set C is a closed ball having center in the nominal parameter 𝐴̄
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and radius 𝜌 > 0. In this scenario, C is given by

C := { 𝐴̂ ∈ R𝑛×𝑛 : | 𝐴̂ − 𝐴̄|𝐹 ≤ 𝜌}, (V.215)

where | · |𝐹 is the Frobenius norm. Denoting 𝜃A = vec( 𝐴̂ − 𝐴) and following the same procedure as
in [112, Pag. 512], we introduce an arbitrarily small parameter𝜎 > 0which is used to define a boundary
region around the given ball C. The expression for P𝐴̂∈C{𝜏} is then given by

P𝐴̂∈C{𝜏} =

𝜏 (A)

vec−1
((
𝐼 − 𝑐(𝜃A)Γ

𝜃A 𝜃
⊤
A

| 𝜃A |2

)
vec(𝜏)

)
(B)

(V.216)

where Γ ∈ S𝑛
2

+ is a tuning gain, 𝑐(𝜃A) = min(1, | 𝜃A |2−𝜌2
𝜎

), and the conditions (A), (B) are:

(A) |𝜃A | < 𝜌 or 𝜃⊤A𝜏 ≤ 0.

(B) |𝜃A | ∈ [𝜌, 𝜌 + 𝜎] and 𝜃⊤A𝜏 > 0.

∥∥

V.6.8 Proof of Theorem IV.1

Pick 𝛾★ := min{𝛾★
𝑏
, 𝛾★
𝑃𝐸

} = 𝛾★
𝑃𝐸

, where 𝛾★
𝑏

is from Proposition IV.1 and 𝛾★
𝑃𝐸

is the one of Lemma
IV.4. Then, if 𝛾 ≤ 𝛾★, the closed-loop solutions are bounded and forward complete. Moreover, 𝑥m is
PE. The remainder of the proof involves showing the existence of a UGAS attractor using the concept
of 𝜔-limit set of a set, see [79, Def. 6.23]. By Lemmas IV.5 and IV.6, from any compact set of initial
conditions, it holds that 𝐴̂→ 𝐴, 𝜖 → 0, 𝑒 → 0, 𝐾̃a → 0 exponentially. Moreover, by Lemma IV.2,
the model reference subsystem (IV.48) is ISS with uniformly bounded input 𝑑 (𝑡), in particular we have
that:

|𝑥m | ≥ 𝑋m =⇒ ¤𝑉m ≤ −𝑞
4
|𝑥m |2, (V.217)

where 𝑋m can be found in (V.205) and depends on ∥𝑑 (·)∥∞, and 𝑉m in (V.197) is an ISS Lyapunov
function for the reference model. Consider the 𝜉 subsystem in (IV.21). It holds that

|𝜉 | ≥ 2|𝑥 |
𝜆

=⇒ d
d𝑡

(
1
2
|𝜉 |2

)
≤ −𝜆

2
|𝜉 |2. (V.218)

Denote Ξ := 2
𝜆
𝑋m and define the compact set

K★
s := {(𝑤, 𝑥, 𝑧s) ∈ W × R𝑛 ×Zs : 𝐴̂ = 𝐴, 𝜖 = 0,

𝑒 = 0, |𝑥m | ≤ 𝑋m, |𝜉 | ≤ Ξ} ⊂ W × R𝑛 × Ls,
(V.219)

where Ls is the learning set given in (IV.38). Consider a set of initial conditions K𝑠 := K★
𝑠 + 𝑐B, with

𝑐 > 0 arbitrary, and note that the solutions are empty if they start outside W × R𝑛 × Zs. We now
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prove that K★
𝑠 is uniformly attractive from K𝑠 . By the above-mentioned properties for the subsystems

𝐴̃, 𝜖 , 𝑒, 𝐾̃a, 𝑥m, there exists𝑇 ′ > 0 such that, for any 𝜀 > 0, it holds that

| 𝐴̃(𝑡) | ≤ 𝜀, |𝜖 (𝑡) | ≤ 𝜀, |𝑒(𝑡) | ≤ min
(
𝜀,
𝜆

2
𝜀

3

)
|𝑥m(𝑡) | ≤ 𝑋m +min

(
𝜀,
𝜆

2
𝜀

3

)
.

(V.220)

for all 𝑡 ≥ 𝑇 ′, from which it holds also that

2|𝑥(𝑡) |
𝜆

≤ 2
𝜆
( |𝑥m(𝑡) | + |𝑒(𝑡) |)

≤ Ξ + 𝜀
3
+ 𝜀
3
≤ Ξ + 2

3
𝜀.

(V.221)

Thus, from (V.218), there exists 𝑇 ≥ 𝑇 ′ such that |𝜉 (𝑡) | ≤ Ξ + 𝜀 for all 𝑡 ≥ 𝑇 . For compactness of
notation, denote xs := (𝑤, 𝑥, 𝑧s). The arguments above have proved that K★

𝑠 is uniformly attractive
from K𝑠 . Namely, for any 𝜌 > 0, there exists 𝑇𝜌 ≥ 0 such that |𝜙(𝑡,xs) |K★s ≤ 𝜌, for all 𝑡 ≥ 𝑇𝜌 and
xs ∈ Ks, where 𝜙(𝑡,xs) is the solution at time 𝑡 of the closed-loop system having initial condition
xs. Denote with A𝑠 := Ω(Ks) the 𝜔-limit set of Ks. We want to prove that A𝑠 ⊂ K★

s . We do it by
contradiction, i.e., we suppose that A𝑠 ⊂ K★

s is false. Under this hypothesis, there exists x̄s ∈ A𝑠

and 𝜌 > 0 such that |x̄s |K★s ≥ 3𝜌. By definition [79, Def. 6.23], the 𝜔-limit set of Ks is the set
of all points xs such that there exist sequences xs,𝑛 ∈ Ks, 𝑡𝑛 ≥ 0 such that lim𝑛→∞ 𝑡𝑛 = ∞ and
lim𝑛→∞ 𝜙(𝑡𝑛,xs,𝑛) = xs. Therefore, by definition of limit, there exists 𝑛̄ ∈ N such that

|𝜙(𝑡𝑛,xs,𝑛) − x̄s | ≤ 𝜌, ∀𝑛 ≥ 𝑛̄. (V.222)

Pick any subsequence xs,𝑛𝑖 , 𝑡𝑛𝑖 such that, for 𝑛𝑖 ≥ 𝑛̄, then 𝑡𝑛𝑖 ≥ 𝑇𝜌, where𝑇𝜌 derives from the uniform
attractivity of K★

s (see above). We have thus proved that, for 𝑛𝑖 ≥ 𝑛̄, |𝜙(𝑡𝑛𝑖 ,xs,𝑛𝑖 ) − x̄s | ≤ 𝜌, thus
|𝜙(𝑡𝑛𝑖 ,xs,𝑛𝑖 ) |K★s ≥ 2𝜌, and at the same time |𝜙(𝑡𝑛𝑖 ,xs,𝑛𝑖 ) |K★s ≤ 𝜌 by uniform attractivity of K★

s .
This is a contradiction, hence necessarily A𝑠 ⊂ K★

s . To summarize the previous results, we have thus
proved that the solutions are globally bounded and forward complete and

A𝑠 := Ω(Ks) ⊂ K★
s ⊂ Int(Ks) ⊂ Ks. (V.223)

By [79, Corollary 7.7], A𝑠 = Ω(Ks) is asymptotically stable, with domain of attraction containing Ks.
Since Ks can be chosen arbitrarily large due to Proposition IV.1, we conclude UGAS of A𝑠 . ∥∥
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V.6.9 Proof of Theorem IV.2

Consider the reduced-order system with state xs := (𝑤, 𝑥, 𝑧s) and the boundary layer system with state
𝑃̂. Define the indicator functions

𝜔𝑠 (xs) :=

|xs |A𝑠 xs ∈ W × R𝑛 ×Zs

∞ elsewhere

𝜔 𝑓 (xs, 𝑃̂) :=

|𝑃̂ − P( 𝐴̂) | (xs, 𝑃̂) ∈ W × R𝑛 ×Z

∞ elsewhere.

(V.224)

By Theorem IV.1, the reduced-order system satisfies

𝜔𝑠 (xs(𝑡)) ≤ 𝛽𝑠 (𝜔𝑠 (xs(0)), 𝑡), (V.225)

where 𝛽𝑠 is a class KL function. Moreover, by the DRE properties [47, Thm. 4], the boundary-layer
system 𝑑𝑃̂/𝑑𝜏(𝜏) = R(𝑃̂(𝜏), 𝐴̂), with 𝐴̂ ∈ Θ constant and 𝜏 := 𝑔𝑡, satisfies

𝜔 𝑓 (xs, 𝑃̂(𝜏)) ≤ 𝛽 𝑓 (𝜔 𝑓 (xs, 𝑃̂(0)), 𝜏), (V.226)

where 𝛽 𝑓 is a class KL function. From [206, Thm. 1] (Assumptions 1, 3, 4, 7, 8 can be verified), from
any compact set of initial conditions K ⊂ W × R𝑛 ×Z and for any 𝛿 > 0, there exists 𝑔★ > 0 such
that, for all 𝑔 ≥ 𝑔★, the solutions are forward complete and satisfy:

𝜔𝑠 (xs(𝑡)) ≤ 𝛽𝑠 (𝜔𝑠 (xs(0)), 𝑡) + 𝛿

𝜔 𝑓 (xs(𝑡), 𝑃̂(𝑡)) ≤ 𝛽 𝑓 (𝜔 𝑓 (xs(0), 𝑃̂(0)), 𝑔𝑡) + 𝛿.
(V.227)

In particular, choose K := A𝑠 × 𝑃★ + 𝑐B, with 𝑐 > 0 arbitrary. Reference model dynamics (IV.24)
can be rewritten as:

¤𝑥m =( 𝐴̂ − 𝐵𝑅−1𝐵⊤𝑃̂)𝑥m + 𝐵𝑑

=(𝐴 − 𝐵𝑅−1𝐵⊤𝑃★)𝑥m + 𝐵𝑑+

( 𝐴̃ − 𝐵𝑅−1𝐵⊤(𝑃̂ − 𝑃★))𝑥m

=(𝐴 − 𝐵𝑅−1𝐵⊤𝑃★)𝑥m + 𝐵𝑑+

( 𝐴̃ − 𝐵𝑅−1𝐵⊤(𝑃̂ − P( 𝐴̂) + P( 𝐴̂) − P(𝐴)))𝑥m.

(V.228)

Notice that 𝑥m is PE if 𝑃̂ = P( 𝐴̂) and 𝐴̃ = 0. Furthermore, since P( 𝐴̂) is an analytic function of
𝐴̂, 𝑥m is PE by [191, Lemma 6.1.2] if |𝑃̂ − P( 𝐴̂) | and | 𝐴̃| are sufficiently small, because the solutions
of (V.228) are sufficiently close to those with 𝑃̂ = P( 𝐴̂) and 𝐴̃ = 0. Moreover, also 𝑥 and 𝜉 are PE
if 𝑥m is PE and |𝑒 | is sufficiently small. Choose 𝛿 > 0 such that the conditions 𝜔𝑠 (xs) ≤ 2𝛿 and
𝜔 𝑓 (xs, 𝑃̂) ≤ 2𝛿 imply that 𝑥m, 𝑥, and 𝜉 are PE. Then, pick 𝑔 ≥ 𝑔★, where 𝑔★ is obtained from the
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considered K and 𝛿. From (V.227), the closed-loop solutions converge in finite time𝑇 to a compact set
satisfying𝜔𝑠 (xs) ≤ 2𝛿 and𝜔 𝑓 (xs, 𝑃̂) ≤ 2𝛿. Then, for 𝑡 ≥ 𝑇 , 𝜖 → 0, 𝐴̂ → 𝐴 exponentially from
Lemma IV.6 since 𝜉 is PE. From the local exponential stability of the DRE [47, Thm. 4], it follows
that 𝑃̂ → 𝑃★ exponentially. By Lemma IV.5 and 𝑃̂ → P( 𝐴̂), we conclude that 𝑒 → 0, 𝐾̂a → 0

exponentially. As a consequence, the same arguments of Theorem IV.1 (omitted here to avoid repetition)
can be used to show that the compact set

K★ := {(xs, 𝑃̂) ∈ W × R𝑛 ×Z : 𝐴̂ = 𝐴, 𝜖 = 0,

𝑒 = 0, |𝑥m | ≤ 𝑋m, |𝜉 | ≤ Ξ, 𝑃̂ = 𝑃★}

= K★
𝑠 × 𝑃★,

(V.229)

is uniformly attractive from K , with K★
𝑠 given in (V.219) . The same steps as in Theorem IV.1 allow to

prove thatA := Ω(K) ⊂ K★ ⊂ Int(K) ⊂ K , thusA is uniformly asymptotically stable with domain
of attraction containing K , and since K can be chosen arbitrarily large we can conclude semiglobal
uniform asymptotic stability of A. Finally, we want to prove that A = A𝑠 × 𝑃★, where A𝑠 = Ω(K★

𝑠 ).
In A, it holds that 𝑃̂ = 𝑃★, 𝐴̂ = 𝐴 and 𝜖 = 0, from which it holds that 𝑃̂ = P( 𝐴̂) = P(𝐴) = 𝑃★ for
all points in this set. For this reason, in A, the vector field of Algorithm 5 coincides with the vector field
of the reduced-order system with 𝐴̂ = 𝐴 and 𝜖 = 0. Since the vector fields coincide, we have that in this
set solutions x(𝑡) of Algorithm 5 can be written as x(𝑡) = xs(𝑡) × 𝑃★, where x𝑠 (𝑡) is the solution of
the reduced-order system having the same initial conditions. From (V.229) and A ⊂ K★, it follows
that A = Ω(K) = Ω(K★) = Ω(K★

𝑠 × 𝑃★) = A′ × 𝑃★. Since for the slow states of Algorithm 1 the
solutions coincide with those of the reduced-order system, it follows that A′ = A𝑠 . As a consequence,
A = A𝑠 × 𝑃★. ∥∥

V.7 Proofs for Chapter V

V.7.1 Proof of Lemma V.1

Consider problem (V.28). The (approximate) Newton method for constrained optimization applied
on (V.28) updates the tentative solution 𝜉𝑘 by applying, for all iterations 𝑘 , the iterative rule, cf. [66,
Algorithm 4.1], [

𝜉𝑘+1

𝜆𝑘+1

]
=

[
𝜉𝑘

0

]
−

[
∇2ℓ(𝜉𝑘) ∇ℎ(𝜉𝑘)
∇ℎ(𝜉𝑘)⊤ 0

]−1
︸                        ︷︷                        ︸

𝑍 ( 𝜉 𝑘 )

[
∇ℓ(𝜉𝑘)
ℎ(𝜉𝑘),

]
(V.230)
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where 𝜆𝑘 ∈ R𝑠𝑥 are the lagrangian multipliers associated to the equality constraint. This means the
update law for 𝜉𝑘 is given by

𝜁 𝑘 = 𝑍11(𝜉𝑘)∇ℓ(𝜂𝑘)︸             ︷︷             ︸
:=𝜁 𝑘1

+ 𝑍12(𝜉𝑘)ℎ(𝜉𝑘)︸           ︷︷           ︸
:=𝜁 𝑘2

𝜉𝑘+1 = 𝜉𝑘 − 𝜁 𝑘 .

(V.231)

where 𝑍𝑖 𝑗 denotes the 𝑖 𝑗 -th block of matrix 𝑍 in (V.230). It can be proved [66, Thm. 4.2] that, under
Assumptions, V.2 and V.1, a local solution 𝜂★ to (V.28) is LES for dynamics (V.231). Notice that in
general the tentative solution 𝜉𝑘 is not a trajectory of the system. It can be shown that the term 𝜁 𝑘1

in (V.231) is the result of the following optimization problem

𝜁 𝑘1 = argmin
𝜁

𝜁⊤∇2ℓ(𝜉𝑘)𝜁 + ∇ℓ(𝜉𝑘)𝜁

s.t. ∇ℎ(𝜉𝑘)⊤𝜁 = 0,
(V.232)

namely, it satisfies by construction 𝜁 𝑘1 ∈ 𝑇𝜂𝑘T at all iterations. The second term, 𝜁 𝑘2 , takes into account
the constraint violation, and it is zero when 𝜉𝑘 ∈ T .
We show now that, introducing a projection, the update law (V.231) does not lose the convergence
properties of the algorithm. Consider the update law

𝜁 𝑘 = 𝑍11(𝜉𝑘)∇ℓ(𝜉𝑘) + 𝑍12(𝜉𝑘)ℎ(𝜉𝑘)

𝜉𝑘+1 = P(𝜉𝑘 − 𝜁 𝑘).
(V.233)

Thanks to the projection P in the update, we know it holds 𝜉𝑘 ∈ T for all 𝑘 ∈ N. For this reason, we
re-write (V.233) as

𝜁 𝑘 = 𝑍11(𝜂𝑘)∇ℓ(𝜂𝑘) + 𝑍12(𝜂𝑘)ℎ(𝜂𝑘)

𝜂𝑘+1 = P(𝜂𝑘 − 𝜁 𝑘),
(V.234)

where we only highlithted by using 𝜂𝑘 the fact that iteration (V.234), unlike (V.231), produces only
system trajectories. Under Assuption V.3, we can expand the update in Taylor series and we obtain

𝜁 𝑘 = 𝑍11(𝜂𝑘)∇ℓ(𝜂𝑘) + 𝑍12(𝜂𝑘)ℎ(𝜂𝑘)

𝜂𝑘+1 = P(𝜂𝑘) − ∇P(𝜂𝑘)⊤𝜁 𝑘 + 𝑜(𝜁 𝑘)

= 𝜂𝑘 − ∇P(𝜂𝑘)⊤𝜁 𝑘 + 𝑜(𝜁 𝑘),

= 𝜂𝑘 − ∇P(𝜂𝑘)⊤(𝜁 𝑘1 + 𝜁 𝑘2 ) + 𝑜(𝜁
𝑘),

(V.235)

where we exploited the fact that P(𝜂) = 𝜂 for all 𝜂 ∈ T . It can be shown (see [90] for more insight)
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that, if 𝜂 ∈ T and 𝜁 ∈ 𝑇𝜂T , it holds
∇P(𝜂)⊤𝜁 = 𝜁, (V.236)

namely, ∇P⊤ : R𝑠 → 𝑇𝜂T is itself a projection into the space tangent to the trajectory manifold at 𝜂.
Since 𝜁 𝑘1 ∈ 𝑇𝜂𝑘T by construction (being the solution of (V.232)), and since 𝜁 𝑘2 = 𝑍12(𝜂𝑘)ℎ(𝜂𝑘) = 0

(since 𝜂 ∈ T =⇒ ℎ(𝜂) = 0), we re-write (V.235) as

𝜁 𝑘 = 𝑍11(𝜂𝑘)∇ℓ(𝜂𝑘) + 𝑍12(𝜂𝑘)ℎ(𝜂𝑘)

𝜂𝑘+1 = 𝜂𝑘 − 𝜁 𝑘 + 𝑜(𝜁 𝑘),
(V.237)

Notice that dynamics (V.231) and (V.237) differ only in the little-o term. By definition of 𝑜(𝜁), for all
𝜖 > 0 we can find 𝛿𝜖 > 0 such that

|𝜁 | ≤ 𝛿𝜖 =⇒ |𝑜(𝜁) | ≤ 𝜖 |𝜁 |. (V.238)

Furthermore, holding SOSC for 𝜂★ and being 𝑓 , ℓ smooth, it can be shown that for any ball B𝑟 (𝜂★),
there exists 𝑘 (𝑟) > 0 such that |𝜁 | ≤ 𝑘 (𝑟) |𝜂 − 𝜂★| for all 𝜂 ∈ B𝑟 (𝜂★). Overall, we have that for any
𝜖 > 0 there exists 𝛿𝜖 > 0 such that

|𝜂 − 𝜂★| ≤ 𝛿𝜖 =⇒ |𝑜(𝜁 (𝜂)) | ≤ 𝜖 |𝜂 − 𝜂★|. (V.239)

In [66, Thm. 4.2], it is shown that by choosing the Lyapunov function𝑉 (𝜉) = |𝜉 − 𝜂★|, the optimal
solution 𝜂★ is Locally Exponentially Stable for dynamics (V.231), and for some 𝑠 < 1, 𝑟 > 0 it holds

|𝜉𝑘+1 − 𝜂★| ≤ 𝑠 |𝜉𝑘 − 𝜂★| (V.240)

for all 𝜉 ∈ B𝑟 (𝜂★). By using the same Lyapunov function for dynamics (V.237), we obtain

|𝜂𝑘+1 − 𝜂★| =|𝜂𝑘 − 𝜁 𝑘 + 𝑜(𝜁) − 𝜂★|

≤𝑠 |𝜂𝑘 − 𝜂★| + |𝑜(𝜁) |.
(V.241)

Recalling (V.239), picking 𝜖 : 𝑠 + 𝜖 < 1, we have that there exists 𝛿𝜖 > 0 such that

|𝜂𝑘+1 − 𝜂★| =|𝜉𝑘+1 + 𝑜(𝜁) − 𝜂★|

≤(𝑠 + 𝜖) |𝜂𝑘 − 𝜂★|
(V.242)

for all 𝜂𝑘 ∈ B𝛿𝜖 (𝜂★) ∩ B𝑟 (𝜂★), which proves LES of 𝜂★ under dynamics (V.237). At last, notice that
since 𝜂𝑘 ∈ T for all 𝑘 , we have ℎ(𝜂𝑘) = 0 and thus the update (V.237) can be rewritten as

𝜁 𝑘 = 𝑍11(𝜂𝑘)∇ℓ(𝜂𝑘)

𝜂𝑘+1 = P(𝜂𝑘 − 𝜁 𝑘),
(V.243)
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which is exactly dynamics (V.31). We can thus conclude Local Exponential Stability of 𝜂★ under
dynamics (V.31) [89, Thm. 13.11]. The proof follows. ∥∥

V.7.2 Proof of Lemma V.2

The proof is obtained by applying [56, Theorem 2.7]. First, notice that by taking the squares of (V.242),
it is possible to use𝑉 (𝜂) := |𝜂 − 𝜂★|2 as𝐶1 Lyapunov function for the unperturbed dynamics (V.31).
This means that Assumption B1 of [56, Theorem 2.7] is satisfied since the equilibrium 𝜂★ of unperturbed
system is locally asymptotically stable with𝐶1 Lyapunov function𝑉 (𝜂) = |𝜂 − 𝜂★|2. Next, we rewrite
the perturbed system (V.32) as

𝜂𝑘+1 = P(𝜂𝑘 + 𝜁 𝑘 + Δ𝜁 𝑘)

= P(𝜂𝑘 + 𝜁 𝑘)︸        ︷︷        ︸
unperturbed

+∇P⊤
𝜂𝑘+𝜁 𝑘Δ𝜁

𝑘 + 𝑜
(
(Δ𝜁 𝑘)2

)
︸                             ︷︷                             ︸

perturbation 𝑑 (𝜂𝑘 ,Δ𝜁 𝑘 )

, (V.244)

for Δ𝜁 → 0, to explicit the disturbance as an additive term. Finally, to satisfy assumption B2 of
[56, Theorem 2.7], we need a bound for the perturbation term. Being 𝑑 (𝜂,Δ𝜁) differentiable in its
arguments and such that 𝑑 (𝜂, 0) = 0 for all 𝜂 ∈ R𝑠 , for every ball B𝑟 ⊂ R𝑠×𝑠 there exists 𝑑 (𝑟) > 0

such that
|𝑑 (𝜂𝑘 ,Δ𝜁 𝑘) | ≤ 𝑑 (𝑟) |Δ𝜁 𝑘 | ∀Δ𝜁 𝑘 ∈ B𝑟 , 𝜂𝑘 ∈ R𝑠 . (V.245)

Denote now as 𝐵 ⊂ R𝑠 the basin of attraction of the unperturbed dynamics (V.31). Then, by [56,
Theorem 2.7], if |Δ𝜁 𝑘 | ≤ 𝛿𝜁 for all 𝑘 ∈ N, there exists 𝛿𝜁 > 0 such that, if 𝜂0 ∈ 𝐵 and |Δ𝜁 𝑘 | ≤ 𝛿𝜁 <
𝛿𝜁 for all 𝑘 , then there exists 𝐾 > 0, class KL function 𝜙 and class K function 𝑏 such that

|Δ𝜂𝑘 | ≤ 𝜙( |𝑥0 |, 𝑘) ∀𝑘 < 𝐾

|Δ𝜂𝑘 | ≤ 𝑏(𝛿𝜁 ) ∀𝑘 ≥ 𝐾.
(V.246)

The proof follows. ∥∥

V.7.3 Proof of Lemma V.3

Notice that each perturbation 𝜂𝑖 = (x̂𝑖 , û𝑖) is obtained via the closed-loop (V.21), which can be seen as
a repeated composition of the functions 𝜋 (controller), 𝑓 (dynamics) and the dither injection. We thus
write 𝜂𝑖 = 𝜂𝑖 (𝜂,d𝑥 ,d𝑢), where the dependence on 𝜂 = (x,u) takes into account the fact that 𝜋 is
tracking the current trajectory 𝜂. By composition of𝐶1 functions, under Assumptions V.1, V.3, we have
then that for all iterations 𝑖 = 1, . . . , 𝐿, 𝜂𝑖 (𝜂,d𝑥 ,d𝑢) is a𝐶1 function of 𝜂,d𝑥 ,d𝑢. Next, notice that
the data batches built as in (V.24) are stacks of differences between components of 𝜂𝑖 and components
of 𝜂, so the function Δ𝑋𝑈 can be seen as a smooth composition between functions 𝜂𝑖 (𝜂,d𝑥 ,d𝑢), with
𝑖 = 1, . . . , 𝐿, and 𝜂, which means Δ𝑋𝑈 (𝜂,d𝑥 ,d𝑢) is𝐶1. To conclude the proof, if all dithers d𝑢,d𝑥
are zero, then by Assumption V.3 we have that all perturbed trajectories 𝜂𝑖 coincide with the current one
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𝜂, namely, 𝜂𝑖 (𝜂, 0, 0) = 𝜂 for all 𝑖 = 1, . . . , 𝐿. In turn, this means that the difference 𝜂𝑖 (𝜂, 0, 0) − 𝜂
used to build Δ𝑋𝑈 is zero, and so Δ𝑋𝑈 (𝜂, 0, 0) = 0. The proof follows. ∥∥

V.7.4 Proof of Lemma V.4

The proof goes through three main steps. First, we find a closed-form expression for the errors (V.38) on
the Jacobians at each 𝑡. Second, we show that this expression is a differentiable function of the entries
of Δ𝑋𝑡 ,Δ𝑈𝑡 . Finally, we define a local linear bound on the norm of Δ𝐴𝐵.

I) Closed-form expression for Δ𝐴𝑡 and Δ𝐵𝑡 . Define

Δ𝑥𝑖𝑡 = 𝑥
𝑖
𝑡 − 𝑥𝑡 , Δ𝑢𝑖𝑡 = 𝑢̂

𝑖
𝑡 − 𝑢𝑡 ,

Δ𝑥
+,𝑖
𝑡 = 𝑓 (𝑥𝑖𝑡 , 𝑢̂𝑖𝑡 ) − 𝑓 (𝑥𝑡 , 𝑢𝑡 )

(V.247)

where the apex 𝑖 denotes the 𝑖-th perturbation of the current trajectory 𝜂 = (x,u). By expanding in
Taylor series the dynamics 𝑓 about 𝑥𝑡 , 𝑢𝑡 , we obtain:

Δ𝑥
+,𝑖
𝑡 = 𝐴𝑡Δ𝑥

𝑖
𝑡 + 𝐵𝑡Δ𝑢𝑖𝑡 + 𝑜𝜂 (Δ𝑥𝑖𝑡 ,Δ𝑢𝑖𝑡 ), (V.248)

for Δ𝑥𝑖𝑡 → 0,Δ𝑢𝑖𝑡 → 0. The pedex 𝜂 in 𝑜𝜂 (·) highlights the fact that the little-o term depends on the
trajectory 𝜂. We then build Δ𝑋𝑡 ,Δ𝑈𝑡 ,Δ𝑋

+
𝑡 as in (V.24). It holds:

Δ𝑋+
𝑡 =

[
𝐴𝑡 𝐵𝑡

] [
Δ𝑋𝑡

Δ𝑈𝑡

]
+ 𝑜𝜂

([
Δ𝑋𝑡

Δ𝑈𝑡

])
, (V.249)

for Δ𝑥𝑖𝑡 → 0,Δ𝑢𝑖𝑡 → 0 for all 𝑖 = 1, . . . , 𝐿, from which, under Assumption V.5, we obtain:

[
𝐴𝑡 𝐵𝑡

]
=

(
Δ𝑋+

𝑡 − 𝑜𝜂

([
Δ𝑋𝑡

Δ𝑈𝑡

])) [
Δ𝑋𝑡

Δ𝑈𝑡

]†
. (V.250)

Recall that we estimate the Jacobians with

[
𝐴̂𝑡 𝐵̂𝑡

]
= 𝑋+

𝑡

[
Δ𝑋𝑡

Δ𝑈𝑡

]†
. (V.251)

We can then subtract (V.250) from (V.251) to obtain

[
Δ𝐴𝑡 Δ𝐵𝑡

]
= 𝑜𝜂

([
Δ𝑋𝑡

Δ𝑈𝑡

]) [
Δ𝑋𝑡

Δ𝑈𝑡

]†
, (V.252)

for all 𝑡 = 0, . . . , 𝑇 − 1.
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II) Continuous differentiability of [Δ𝐴𝑡 ,Δ𝐵𝑡 ] in (V.252) Notice that 𝑜𝜂 (·) in (V.252) must be a
continuously differentiable function of Δ𝑋𝑡 ,Δ𝑈𝑡 by Assumption V.1 (since it is a stack of the 𝑜𝜂 (·) in
(V.248), which in turn must be𝐶1 in their argument being the remainder of a first-order approximation
of a𝐶2 function). Furthermore, also the pseudoinverse in (V.252) is a𝐶1 function of the the entries of
Δ𝑋𝑡 ,Δ𝑈𝑡 , since, for (Δ𝑋𝑡 ,Δ𝑈𝑡 ) ∈ F𝑀 , it can be calculated as[

Δ𝑋𝑡

Δ𝑈𝑡

]†
=

[
Δ𝑋𝑡

Δ𝑈𝑡

]⊤ ([
Δ𝑋𝑡

Δ𝑈𝑡

] [
Δ𝑋𝑡

Δ𝑈𝑡

]⊤)−1
, (V.253)

and this is a product of𝐶1 functions of the entries of Δ𝑋𝑡 ,Δ𝑈𝑡 in the considered domain. This proves
that, given (Δ𝑋𝑡 ,Δ𝑈𝑡 ) ∈ F𝑀 , for all 𝑡 = 1, . . . , 𝑇 − 1 the error matrix [Δ𝐴𝑡 ,Δ𝐵𝑡 ] in (V.252) is a𝐶1

function of Δ𝑋𝑡 ,Δ𝑈𝑡 . In turn, this implies that the function Δ𝐴𝐵 (𝜂,𝚫X ,𝚫U ) is a𝐶1 function of
𝚫X ,𝚫U , since it is the stack of all [Δ𝐴𝑡 ,Δ𝐵𝑡 ]. Furthermore, it is also𝐶1 in 𝜂 since the little-o term
𝑜𝜂 (·) is𝐶1 with respect to 𝜂 by Assumption V.1.

III) Local linear bound on |Δ𝐴𝐵 | Denote, for simplicity,

Δ𝑡 :=

[
Δ𝑋𝑡

Δ𝑈𝑡

]
. (V.254)

By substituting (V.253) in (V.252), we obtain[
Δ𝐴𝑡 Δ𝐵𝑡

]
= 𝑜𝜂 (Δ𝑡 )Δ⊤

𝑡 (Δ𝑡Δ⊤
𝑡 )−1

= 𝑜𝜂 (Δ𝑡Δ⊤
𝑡 ) (Δ𝑡Δ⊤

𝑡 )−1,
(V.255)

and by taking the norms,��� [Δ𝐴𝑡 Δ𝐵𝑡

] ��� ≤ |𝑜𝜂 (Δ𝑡Δ⊤
𝑡 ) | | (Δ𝑡Δ⊤

𝑡 )−1 |

≤ |𝑜𝜂 (Δ𝑡Δ⊤
𝑡 ) | | (Δ𝑡Δ⊤

𝑡 ) |−1𝜅(Δ𝑡Δ⊤
𝑡 )

≤ |𝑜𝜂 (Δ𝑡Δ⊤
𝑡 ) | | (Δ𝑡Δ⊤

𝑡 ) |−1𝑀

(V.256)

Notice that by definition, 𝑜𝜂 (·) goes to zero faster than its argument, i.e., for any 𝜖 > 0 we can find
𝛿 > 0 such that, for all 𝑡 = 0, . . . , 𝑇 − 1, it holds

|Δ𝑡Δ⊤
𝑡 | ≤ 𝛿 =⇒ |𝑜(Δ𝑡Δ⊤

𝑡 ) | |Δ𝑡Δ⊤
𝑡 |−1 ≤ 𝜖 . (V.257)

Being [Δ𝐴𝑡 Δ𝐵𝑡 ] continuously differentiable in Δ𝑋𝑡 ,Δ𝑈𝑡 in the considered domain, we know that
for any 𝜂 ∈ T and any bounded set K ⊂ F𝑀 , for all Δ𝑡 := (Δ𝑋𝑡 ,Δ𝑈𝑡 ), Δ′

𝑡 := (Δ𝑋 ′
𝑡 ,Δ𝑈

′
𝑡 ) ∈ K there
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exist 𝑘 (𝜂,K) > 0 such that��� [Δ𝐴𝑡 Δ𝐵𝑡

]
−

[
Δ𝐴′

𝑡 Δ𝐵′
𝑡

] ��� ≤ 𝑘 (𝜂,K)
��Δ𝑡 − Δ′

𝑡

����� [Δ𝐴𝑡 Δ𝐵𝑡

] ��� ≤ ��� [Δ𝐴′
𝑡 Δ𝐵′

𝑡

] ��� + 𝑘 (𝜂,K)(|Δ𝑡 | + |Δ′
𝑡 |)

(V.258)

Using (V.257), given any 𝜖 > 0, there exists 𝛿 > 0 for which, by picking |Δ′ | ≤ 𝛿, we can to ensure
| [Δ𝐴′

𝑡 Δ𝐵
′
𝑡 ] | ≤ 𝜖 , from which��� [Δ𝐴𝑡 Δ𝐵𝑡

] ��� ≤𝑘 (𝜂,K)|Δ𝑡 | + 𝑘 (𝜂,K)𝛿 + 𝜖 . (V.259)

Since 𝜖 can be picked arbitrarily small, we obtain it must hold��� [Δ𝐴𝑡 Δ𝐵𝑡

] ��� ≤𝑘 (𝜂,K)|Δ𝑡 |, (V.260)

and since this holds for all 𝑡 = 0, . . . , 𝑇 − 1, we have

|Δ𝐴𝐵 (𝜂,𝚫X ,𝚫U ) | ≤𝑘 (𝜂,K)𝑇 ( |𝚫X | + |𝚫U |). (V.261)

The proof follows. ∥∥

V.7.5 Proof of Lemma V.5

Consider the exact problem (V.13). We reformulate it as

min
𝜁 ∈R𝑠

𝜁⊤∇2ℓ(𝜂)𝜁 + ∇ℓ(𝜂)⊤𝜁 (V.262)

s.t. 𝐻 (𝜂)𝜁 = 0,

with 𝜁 = (𝚫x,𝚫u) and

𝐻 (𝜂) :=
[
𝐻𝑥 (𝜂) 𝐻𝑢 (𝜂)

]
,

𝐻𝑥 (𝜂) :=


𝐼 0 0 0

−𝐴0 𝐼 0 0

0 . . . . . . 0

0 0 −𝐴𝑇−1 𝐼


∈ R𝑠𝑥×𝑠𝑥

𝐻𝑢 (𝜂) :=


0 0 0

−𝐵0 0 0

0 . . . 0

0 0 −𝐵𝑇−1


∈ R𝑠𝑥×𝑠𝑢 .

(V.263)
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The estimated problem (V.18) differs from this only in the constraints, i.e., it can be written as

min
𝜁 ∈R𝑠

𝜁⊤∇2ℓ(𝜂)𝜁 + ∇ℓ(𝜂)⊤𝜁 (V.264)

s.t. 𝐻̂ (𝜂,𝚫A,𝚫B)𝜁 = 0,

where 𝐻̂ (𝜂,𝚫A,𝚫B) = 𝐻 (𝜂) + 𝐻̃ (𝚫A,𝚫B) given by

𝐻̃ (𝚫A,𝚫B) :=
[
𝐻̃𝑥 (𝚫A,𝚫B) 𝐻̃𝑢 (𝚫A,𝚫B)

]
,

𝐻̃𝑥 (𝚫A,𝚫B) :=


0 0 0 0

−Δ𝐴0 0 0 0

0 . . . . . . 0

0 0 −Δ𝐴𝑇−1 0


∈ R𝑠𝑥×𝑠𝑥

𝐻̃𝑢 (𝚫A,𝚫B) :=


0 0 0

−Δ𝐵0 0 0

0 . . . 0

0 0 −Δ𝐵𝑇−1


∈ R𝑠𝑥×𝑠𝑢 .

(V.265)

By Assumption (V.2), (V.262) is a strictly convex program and has a unique minimizer 𝜁★(𝜂). Fur-
thermore, given the structure of 𝐻 (𝜂) LICQ hold for any 𝜂 ∈ R𝑠 . This means that KKT conditions
hold for the solution 𝜁★(𝜂) of problem (V.262) [66, Thm. 3.14]. By [66, Thm. 3.18], having only
equality constraints, also SOSC holds for 𝜁★(𝜂). We can apply [66, Thm. 3.19] and obtain that
there exists a 𝛿𝐴𝐵 (𝜂) > 0 such that, for all |𝐻̃ (𝚫A,𝚫B) | ≤ 𝛿𝐴𝐵 (𝜂), there exists a unique solution
𝜁★(𝜂,𝚫A,𝚫B) to (V.264) and it depends differentiably on 𝐻̃ (𝜂,𝚫A,𝚫B). Furthermore, 𝛿𝐴𝐵 (𝜂)
must depend continuously on 𝜂, since ∇2ℓ(𝜂),∇ℓ(𝜂), 𝐻 (𝜂) describing the QP (V.262) are all contin-
uous in 𝜂 by Assumption V.1.
Next, as 𝐻 (𝚫A,𝚫B) is linear in 𝜂,𝚫A,𝚫B, 𝜁★(𝜂,𝚫A,𝚫B) is differentiable also in 𝜂,𝚫A,𝚫B.
This means that 𝜁★(𝜂) − 𝜁★(𝜂,𝚫A,𝚫B) is smooth in its arguments.
To conclude the statement, notice that if 𝚫A,𝚫B = 0 then 𝐻̃ (𝚫A,𝚫B) = 0, and thus, since
problems (V.262) and (V.264) become identical, 𝜁★(𝜂) − 𝜁★(𝜂, 0, 0) = 0. The proof follows. ∥∥

V.7.6 Proof of Theorem V.1

We are now ready to prove the main result of this chapter. The proof goes through three main steps.
First, we show that for sufficiently small exploration dithers problems (V.18) are well-posed and admit a
solution, hence Δ𝜁 smoothly depends on d𝑥 ,d𝑢. Second, we leverage on the smoothness properties
of functions Δ𝑋𝑈 ,Δ𝐴𝐵,Δ𝜁 to obtain a linear bound on the maximum error on the descent direction.
Third, we show how to use this bound to guarantee convergence of Algorithm 7.
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I) Δ𝜁 as smooth function of d𝑥 ,d𝑢 Consider an isolated local minima 𝜂★ of (V.8) and 𝛿𝐴𝐵 (𝜂★) >
0, where 𝛿𝐴𝐵 (·) is given in Lemma V.5. By continuity and positivity of 𝛿𝐴𝐵 (·), we have that for any
𝜎 > 0 there exists

𝛿𝐴𝐵 := inf
𝜂∈B𝜎 (𝜂★)∩T

𝛿𝐴𝐵 (𝜂) > 0. (V.266)

So, by Lemma V.5 it holds that for all 𝜂 ∈ B𝜎 (𝜂★) ∩ T , if | (𝚫A,𝚫B) | ≤ 𝛿𝐴𝐵, then Δ𝜁 (𝜂,𝚫A,𝚫B)
is a𝐶1 function of its arguments.
In the following passages, we restrict our analysis only to those 𝜂,d𝑥 ,d𝑢 such that

(𝜂,d𝑥 ,d𝑢) ∈ Δ−1
𝑋𝑈 (R

𝑠 × F 𝑇
𝑀 ) (V.267)

to guarantee that the composition of the functions Δ𝑋𝑈 and Δ𝐴𝐵 is well posed (this will be later
guaranteed by Assumption V.5).
By applying Lemmas V.3 and V.4, it follows that there exists 𝛿𝑥 , 𝛿𝑢 > 0 such that, if 𝛿𝑥 ∈ (0, 𝛿𝑥) and
𝛿𝑢 ∈ (0, 𝛿𝑢) then | (𝚫A,𝚫B) | ≤ 𝛿𝐴𝐵, where 𝛿𝑥 and 𝛿𝑢 are user-defined parameters of Algorithm 7,
cf. Assumption V.4.

II) Linear bound for the maximum error on the descent direction Composing Lemmas V.3, V.4
and V.5, we have that (by continuous differentiability in a bounded set) if 𝛿𝑥 ∈ (0, 𝛿𝑥) and 𝛿𝑢 ∈ (0, 𝛿𝑢),
then there exists 𝑔 = 𝑔(𝜎, 𝜂★) > 0 such that

|Δ𝜁 (𝜂,Δ𝐴𝐵 (𝜂,Δ𝑋𝑈 (𝜂,d𝑥 ,d𝑢)) | ≤ 𝑔( |d𝑥 | + |d𝑢 |) (V.268)

for all 𝜂 ∈ B𝜎 (𝜂★) ∩ T , from which we can define

𝛿𝜁 (𝛿𝑥 , 𝛿𝑢) := sup
𝜂∈B𝜎 (𝜂★)
𝜂∈T

d𝑥 ∈B𝛿𝑥
d𝑢∈B𝛿𝑢

|Δ𝜁 (𝜂,Δ𝐴𝐵 (𝜂,Δ𝑋𝑈 (𝜂,d𝑥 ,d𝑢)) |

≤ 𝑔(𝛿𝑥 + 𝛿𝑢). (V.269)

Notice that the bound in (V.269) is structural, i.e., it depends only on the algorithm parameters 𝛿𝑥 , 𝛿𝑢
and on 𝜂★, not on the algorithm iteration.

III) Convergence guarantees for Algorithm 7 By writing Alg. 7 (DATA-DRIVEN PRONTO) as a
perturbed version of Alg. 6 (PRONTO), hence as the dynamical system (V.32) where the perturbations
are introduced by the estimation of the dynamics Jacobians, we apply Lemma V.2 from which we define
the quantities 𝛿𝜁 > 0, 𝜙(·, ·), 𝑏(·). If |Δ𝜁 𝑘 | ≤ 𝛿𝜁 is satisfied at each iteration, then the algorithm
evolution is constrained to the ball of radius 𝜙( |𝜂0 − 𝜂★|, 0). Let 𝜂0 ∈ B𝜎 (𝜂★) ∩ T , and define

𝑝(𝜎) := sup{𝑝′ > 0 : 𝜙(𝑝′, 0) < 𝜎}. (V.270)
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We have by construction that for any 𝜂0 ∈ B𝑝 (𝜎) (𝜂★) ∩ T , if ∥Δ𝜁 𝑘 ∥ ≤ 𝛿𝜁 is satisfied at each
iteration, then the algorithm evolution is constrained to the ball B𝜎 (𝜂★), namely, 𝜂𝑘 ∈ B𝜎 (𝜂★) for all
𝑘 . Furthermore, thanks to the projection step in (V.32), it holds 𝜂𝑘 ∈ B𝜎 (𝜂★) ∩ T for all 𝑘 . In this
region, and thanks to Assumption V.5 which ensures condition (V.267) is satisfied for all 𝑘 , we can use
the bound in (V.269) to ensure that |Δ𝜁 𝑘 | < 𝛿𝜁 . Specifically, by picking 𝛿′𝑥 =

𝛿𝜁

4𝑐𝑥 (𝜂★) , 𝛿′𝑢 =
𝛿𝜁

4𝑐𝑢 (𝜂★) ,
and choosing 𝛿𝑥 ∈ (0,min(𝛿𝑥 , 𝛿′𝑥)), 𝛿𝑢 ∈ (0,min(𝛿𝑢, 𝛿′𝑢)) it holds, from (V.269), that

|Δ𝜁 𝑘 | ≤ 𝛿𝜁 (𝛿𝑥 , 𝛿𝑢) ≤
𝛿𝜁

2
(V.271)

for all 𝑘 . The bound in (V.271) then ensures that Algorithm 7 is Locally Uniformly Ultimately Bounded
by Lemma V.2. Finally, we prove also that the bound in (V.33) is a strictly increasing function of
𝛿𝑥 , 𝛿𝑢. Being 𝛿𝑥 , 𝛿𝑢 independent on the algorithm iteration 𝑘 , it holds, from (V.269), that 𝛿𝜁 (𝛿𝑥 , 𝛿𝑢)
is bounded by a strictly increasing function of 𝛿𝑥 and 𝛿𝑢. Hence, since 𝑏(𝛿𝜁 ) is a class K function of
its argument, we conclude using (V.269) that

𝑏(𝛿𝜁 (𝛿𝑥 , 𝛿𝑢)) ≤ 𝑏(𝑔(𝛿𝑥 + 𝛿𝑢)) := 𝑏′(𝛿𝑥 , 𝛿𝑢), (V.272)

from which the result follows with the function 𝑏′(𝛿𝑥 , 𝛿𝑢).
∥∥
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