

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, TELECOMUNICAZIONI E TECNOLOGIE
DELL'INFORMAZIONE

Ciclo 37

Settore Concorsuale: 09/F2 - TELECOMUNICAZIONI

Settore Scientifico Disciplinare: ING-INF/03 - TELECOMUNICAZIONI

DEEP LEARNING FOR INTELLIGENT AND AUTONOMOUS WIRELESS
NETWORKS

Presentata da: Lorenzo Mario Amorosa

Supervisore

Roberto Verdone

Esame finale anno 2025

Coordinatore Dottorato

Davide Dardari

Co-supervisore

Francesco Mete

Abstract

In recent years, distributed and ubiquitous intelligence has become a central force driving
groundbreaking advances in wireless networks. Enabled by emerging autonomy, next-generation
wireless networks are set to undergo substantial evolution. The main objective for the future
consists in designing and creating cohesive communication and learning frameworks to achieve
intelligent and autonomous wireless networks, pursuing the ambitious goal of achieving human-
out-of-the-loop artificial intelligence (AI). Meeting this challenge signifies a critical transforma-
tion toward AI-native wireless networks that can dynamically self-adapt to complex scenarios.
Addressing these future challenges requires a comprehensive integration of extensive knowl-
edge in fields such as wireless communication and deep learning, creating opportunities for
data-driven wireless network design, management, and optimization.
This thesis investigates promising areas in wireless communications where AI paves the way for
the achievement of intelligent and autonomous wireless networks. The first chapter introduces
adaptive optimization in wireless communication networks and addresses the goal of learning
effective and robust radio resource management strategies in complex scenarios. The second
chapter explores the impact of generative AI in next-generation wireless networks, focusing
on reliable and uncertainty-aware data generation processes enabled by approximate Bayesian
learning. It illustrates how generative AI can represent an effective means of aiding data-driven
algorithms in generalization and reducing the need for costly data collection. The third chapter
then delves into distributed learning over wireless networks for radio resource management,
which has the potential to meet the scalability demands of modern data-driven applications.
This chapter emphasizes the importance of incorporating graph structures as an efficient way
to introduce a relational inductive bias into the learning process, thus enhancing system per-
formance across various metrics. Finally, the last chapter presents a holistic performance anal-
ysis of AI-native applications in 5G industrial internet-of-things networks, particularly within
safety-critical scenarios, highlighting practical considerations on AI-native wireless network
architectures.

3

Contents

1 Introduction 1
1.1 Toward AI-Native Communication Systems 2
1.2 Intelligent and Autonomous Wireless Networks 2
1.3 Research Objectives . 3
1.4 Thesis organization . 4

2 Deep Learning Background 7
2.1 Reinforcement Learning . 7
2.2 Bayesian Learning . 10
2.3 Machine Learning on Graphs . 12

3 Deep Reinforcement Learning for Radio Resource Management 15
3.1 Literature overview . 17
3.2 System Model . 17
3.3 Simulated Network Environment . 19
3.4 Markov Decision Process Formulation . 22
3.5 Sample-efficient Deep Reinforcement Learning 25
3.6 Experimental Results . 30

4 Bayesian Learning for Data Generation in Wireless Networks 33
4.1 Motivations and Challenges . 33
4.2 Literature Overview . 34
4.3 Reliable Mobile Data Generation . 35
4.4 System Model . 37
4.5 Algorithms and performance metrics . 41
4.6 Numerical Results . 48

5 Distributed Learning for Radio Resource Management 55
5.1 Leveraging Graph Structures for Distributed Learning 56
5.2 Multi-Agent Systems . 57

5

Contents

5.3 Multi-Agent Network Optimization . 58
5.4 Literature Overview . 59
5.5 System Model . 60
5.6 Partially observable Markov decision process (PO-MDP) Formulation 63
5.7 Graph Multi-Agent Reinforcement Learning 65
5.8 Simulation and Numerical Results . 66

6 Deep Learning and 5G Architectures for Industrial IoT 71
6.1 Literature Overview . 73
6.2 Data-Driven RUL Prediction Pipeline . 75
6.3 System Model . 76
6.4 5G-NR Simulation Setup . 79
6.5 Performance Metrics . 85
6.6 Numerical Results . 87

7 Conclusions 97

A Appendices 101
A.1 Uncertainty analysis and Gaussian assumption for RSRP estimation 101

List of Publications 103

Bibliography 105

6 Contents

Contents

List of Acronyms

1D-CNN 1D convolutional neural network

3GPP 3rd generation partnership project

5CN 5G core network

5G NR 5G New Radio

5G-ACIA 5G Alliance for Connected Industries and Automation

5G 5th generation

ACK acknowledgment

AE autoencoder

AGV automated guided vehicle

AI artificial intelligence

AL active learning

ANN artificial neural network

APN access point name

AP access point

AQoSA agile QoS adaptation

AoI age of information

B5G beyond 5G

BDL Bayesian deep learning

BER bit error rate

BLER block error rate

BL Bayesian learning

BNN Bayesian neural network

BN Bayesian network

Contents i

Contents

BS base station

BiLSTM bi-directional long short term memory

CCO capacity and coverage optimization

CDR call data record

CE calibration error

CIR channel impulse response

CNN convolutional neural network

CN core network

CQI channel quality indicator

CRS channel reference signal

CSI channel state information

CTCE centralized training-centralized execution

CTDE centralized training-decentralized execution

CTF channel transfer function

DCI downlink control information

DDPG deep deterministic policy gradient

DL downlink

DNN deep neural network

DQN deep Q-network

DRL deep reinforcement learning

DTDE decentralized training-decentralized execution

E2E end-to-end

EDF earliest deadline first

ELBO evidence lower bound

ii Contents

Contents

ERM empirical risk minimization

FC-NN fully-connected neural network

FF fairness first

FIFO first in first out

FL federated learning

FR1 frequency range 1

FR2 frequency range 2

G-KDE Gaussian kernel density estimation

GAI generative artificial intelligence

GAN generative adversarial network

GBR guaranteed bit-rate

GCN graph convolutional network

GML machine learning on graphs

GNN graph neural network

GPS global positioning system

GRL graph reinforcement learning

GRU gated recurrent unit

HARQ hybrid automatic repeat request

HetNet heterogeneous network

IDS intrusion detection systems

IDs identifier

IIoT industrial internet-of-things

IPW inverse probability weighting

InF indoor factory

Contents iii

Contents

IoT internet-of-things

KDE kernel density estimation

KPIs key performance indicators

KPI key performance indicator

LAT latitude

LLM large language model

LNA low noise amplifier

LON longitude

LR logistic regression

LSTM long-short term memory

LTE long-term evolution

LoS line-of-sight

MAC medium access control

MAE mean absolute error

MAP maximum a posteriori

MARL multi-agent reinforcement learning

MCS modulation and coding scheme

MDP Markov decision process

MDT minimization of drive test

MEC multi-access edge computing

MIMO multiple-input multiple-output

MISE mean integrated squared error

MLB mobility load balancing

MLE maximum likelihood estimation

iv Contents

Contents

MLP multi layer perceptron

ML machine learning

MMSE minimum mean squared error

mmWave millimeter wave

MNO mobile network operator

MSE mean square error

NG-RAN Next Generation radio access network (RAN)

NLP natural language processing

NLoS non line-of-sight

NN neural network

NOMA non-orthogonal multiple access

NPN on-net non public network on-net

NPN on-premise non public network on-premise

NPN non public network

NR new radio

OFDMA orthogonal frequency division multiple access

OFDM orthogonal frequency division multiplexing

PA power amplifier

PBNN probabilistic bayesian neural network

PCELL primary cell

PCI physical cell ID

PCP Poisson cluster process

PDCCH physical downlink control channel

PDCP packet data convergence protocol

Contents v

Contents

PDL probabilistic deep learning

PDSCH physical downlink shared channel

PDU protocol data unit

PHY physical

PLC programmable logic controller

PL path loss

PNN probabilistic neural network

PN public network

PO-MDP partially observable Markov decision process

PPO proximal policy optimization

PPP Poisson point process

PQoS predictive quality of service

PRBS pseudorandom binary sequence

PRB physical resource block

PS parameter server

PUCCH physical uplink control channel

PUSCH physical uplink shared channel

QCI QoS class identifier

QoS quality of service

RACH random access channel

RAN radio access network

RAN radio access network

RB resource block

RE resource element

vi Contents

Contents

RF random forest

RL reinforcement learning

RMSE root mean squared error

RNN recurrent neural network

RRC radio resource control

RRM radio resource management

RSRP reference signal received power

RSRQ reference signal received quality

RSSI received signal strength indication

RTT round-trip time

RUL remaining useful life

RX receiver

SA service and system aspects

SCS subcarrier spacing

SDF service data flow

SDU service data unit

SGD stochastic gradient descent

SINR signal-to-interference-plus-noise ratio

SIW substrate-integrated waveguide

SNR signal-to-noise-ratio

SON self-organizing network

SPS semi-persistent scheduling

SU scheduling unit

SVI stochastic variational inference

Contents vii

Contents

TCP transport control protocol

TR technical report

TSG technical specification group

TTI time transmission interval

TX transmitter

UE user equipment

UGRL unsupervised graph representation learning

UL uplink

UPF user plane function

URLLC ultra-reliable low latency communication

V2I vehicle-to-infrastructure

V2V vehicle-to-vehicle

V2X vehicle-to-everything

VAE-GAN variational autoencoder-generative adversarial network

VAE variational autoencoder

VI variational inference

VPN virtual private network

VT vanilla transformer

WFL wireless federated learning

WLAN wireless local area network

ZSM zero-touch network & service management

ZTN zero-touch network

cGAN conditional generative adversarial network

eNB e-NodeB

viii Contents

Contents

gNB gNodeB

Local k-GNN local k-dimensional GNN

pdf probability density function

Contents ix

List of Figures

2.1 Reinforcement Learning as a block scheme: the agent aims to learn optimal
behavior by interacting with the environment to obtain rewards. 7

3.1 Network deployment - North Bologna Area. 18

3.2 System Model - A DRL agent interacts with a simulated network environment,
receiving as input network KPIs, MDT data, and electromagnetic simulations. . 19

3.3 Simulated environment - block system view 20

3.4 MDP formulation as a decision tree . 23

3.5 Depth-wise ϵ scheduling . 28

3.6 Deep Q-Network architecture . 30

3.7 Training curves: Depth-wise ϵη-greedy DQN vs. ϵ-greedy DQN. 31

3.8 Step reward comparison: Depth-wise ϵη-greedy DQN vs. ϵ-greedy DQN vs. BFS. 32

3.9 Average episode reward distribution across 50 runs. 32

4.1 Reference scenario - Map of geolocated reference datasets. 37

4.2 System model - Training architecture. 39

4.3 System model - Inference architecture. 39

4.4 Illustrative results of MDT sample generation and user association. 43

4.5 Bayesian neural-probabilistic model architecture 45

4.6 Visual comparison of ground-truth values and RSRP predictions from a Bayesian
neural-probabilistic model trained on downsampled training sets. 48

4.7 Calibration plot for BPNNs under increasing downsampling, showing Gaussian
distribution assumptions are confirmed. 49

4.8 Distribution of epistemic uncertainty in extrapolation vs non-extrapolation re-
gions. 50

4.9 Conditional probabilistic regression of RSRQ based on different configurations
of ρ. 51

4.10 Mean absolute error (MAE) on RSRQ for the non-extrapolation regime. 51

xi

List of Figures

4.11 Reference scenario for fingerprinting-based localization experiments. MDT
data with RSRP samples from the three cells shown, collected in the city center
of Bologna, Italy. 52

4.12 From left to right: Original test set, predicted positions based on original MDT
fingerprints (RMSE = 72.56 m), predicted positions based on synthetic MDT
fingerprints (RMSE = 77.54 m). 53

4.13 Fingerprinting results: RF regressor trained on original vs synthetic fingerprints
as a function of σS and β. 54

5.1 CTCE vs DTDE vs CTDE training schemes in MARL. 58

5.2 Base stations perform power control optimization in a decentralized manner by
relying on a communication graph that enables the exchange of information
exclusively among connected nodes. 60

5.3 Training performance as a function of the number of training epochs. 67

5.4 Inference test – network of increasing size. 68

5.5 Inference test – varying user distribution. 69

6.1 Representation of the four considered architectures. 77

6.2 Reference industrial scenario with 2 gNodeBs (gNBs). 78

6.3 Depiction of control plane resource allocation process described in Alg. 5 show-
ing the different approaches depending on the number of TCPP needed. n indi-
cates the number of automated guided vehicles (AGVs) while nRB indicates the
number of resource blocks (RBs). 83

6.4 AGV’s reference system (x, y, z) for Ax, Ay, and Gz. 88

6.5 TNR as a function of N , NG and ξ, considering frequency range 1 (FR1) and
B = 25 MHz. 92

6.6 TNR as a function of N , NG and PUL, considering FR1 and B = 25 MHz. . . . 92

6.7 TNR as a function of N , NG and PUL, considering frequency range 2 (FR2) and
B = 50 MHz.

92

6.8 TNR as a function of N , PUL and considered frequency range (FR1, FR2). B =

25 MHz in FR1 and B = 50 MHz in FR2. 92

6.9 TNR as a function of N , NG and B, considering FR2 and PUL = 500 byte.

93

6.10 TNR as a function of N , NG and B, considering FR2, PUL = 500 byte, B ∈
{40, 50, 60, 70, 80, 90, 100}MHz, and TNR ∈ [2.5, 5.5] ms. 93

xii List of Figures

List of Figures

6.11 Round-trip time (RTT) R as a function of N and network architectures. The
advances of the best performing remaining useful life (RUL)-based pipelines
are represented with horizontal dashed lines. We assume to have 8 CPUs per-
forming inference. 96

List of Figures xiii

List of Tables

3.1 Depth-wise η scheduling . 29

4.1 Numerical comparison of ground-truth values and RSRP predictions under in-
creasing downsampling. 49

6.1 Association between application areas (rows) and industrial use cases (columns)
[124], [125]. 72

6.2 Cost and average advance function of seven downlink (DL) models and a base-
line threshold-based approach for three different margins. 90

6.3 Simulation parameters . 91

xv

List of Algorithms

1 Depth-wise ϵ− η Greedy Policy . 27
2 G-KDE Sample Generation . 42
3 gNBs placing algorithm . 78
4 Clustering algorithm . 81
5 Control Plane static resource allocation . 84

xvii

Chapter 1

Introduction

As we approach the era of fifth-generation (5G) networks and beyond, we are witnessing an
ongoing evolution toward the concept of “mobile networks for intelligence.” Within the realm
of 6G, a visionary landscape emerges, where networks autonomously, seamlessly, and ubiqui-
tously exchange data, knowledge, and decision-making capabilities. This vision underscores
the need for mobile networks to dynamically adapt to the diverse performance requirements of
various applications. To fully harness the potential of wireless communication and address its
inherent challenges, 5G is the first standard to integrate artificial intelligence (AI) into the de-
sign and management of network procedures. Accordingly, there has been a surge in research
[1–9] and standardization efforts [10, 11] aimed at embedding AI into wireless systems for
next-generation networks.

However, simply applying “AI for Wireless,” which generally involves using narrow AI mod-
els on top of existing wireless procedures [12], is often seen as insufficient for realizing fully
autonomous systems in next-generation networks [13]. A paradigm shift is required—one that
transcends traditional engineering boundaries and embraces the symbiotic relationship between
wireless communication and AI. The term “AI-native communications” [13–19] refers to the
integration of AI technologies directly within communication networks. In this paradigm, AI
is not just an add-on but an intrinsic part of the communication infrastructure, shaping how
information is transmitted, processed, and managed across the entire communication system.

This Ph.D. thesis, titled “Deep Learning for Intelligent and Autonomous Wireless Networks,”
explores the critical intersection of wireless communication and AI, laying the foundation for
the development of next-generation autonomous, AI-native communication systems. Through
a holistic approach, this thesis provides a comprehensive view of the interplay between wireless
communications and AI, ultimately contributing to the creation of intelligent, autonomous, and
adaptive mobile radio networks.

1

1.1. Toward AI-Native Communication Systems

1.1 Toward AI-Native Communication Systems

In this dissertation, I adopt a holistic perspective to analyze the evolving relationship between
communication protocols and learning mechanisms. This contrasts with previous approaches
where the integration of AI in communication infrastructure lacked the depth and interconnect-
edness I advocate here. Autonomous 6G networks will rely heavily on distributed intelligence
at the network edge, where the seamless integration of communication and intelligence is es-
sential. This thesis aims to highlight the mutual benefits of combining AI and communication
systems, targeting the development of truly autonomous 6G and beyond networks, while ad-
dressing key research challenges.

The shift toward AI-native communications is driven by the heterogeneous requirements of fu-
ture 6G networks, which are expected to support new services and revisit the semantic and effec-
tive communications problems introduced by Shannon’s work [20]. For example, transmitting
AI-related traffic for distributed training of edge devices, also known as federated learning (FL),
exemplifies goal-oriented communication [21]. Traditional radio resource management (RRM)
methods are generally insufficient for such applications. Thus, medium access control (MAC)
procedures must evolve to allow base stations (BSs) and user equipments (UEs) to automatically
learn new protocols tailored to diverse services [22]. This has led to growing research interest in
fields like learning to communicate [23] and protocol learning [22, 24, 25], especially in multi-
agent settings. In these interconnected systems, the goal is to learn a shared communication
protocol while achieving a collaborative objective [20]. One key challenge for AI research is to
extend the success of centralized algorithms to distributed systems, where entities must interact
over shared wireless channels to achieve common learning objectives.
This interdependence between communication and AI opens new horizons and potential re-
search directions, which are explored in this thesis. Section 1.3 introduces the specific research
objectives addressed in this work. Another critical aspect is the seamless integration of AI into
next-generation mobile networks. The following section traces the historical development of
autonomous mobile radio networks, providing a conceptual foundation for this integration.

1.2 Intelligent and Autonomous Wireless Networks

This section presents a historical overview of autonomous mobile radio networks, starting from
the early attempts to automate mobile networks with self-organizing networks (SONs), to the
more recent emergence of the zero-touch network & service management (ZSM) group and the
3GPP’s efforts to integrate AI and machine learning (ML) into RAN and service and system
aspects (SA) working groups. The overarching goal of this evolution is to eliminate human
intervention in network operations, leading to fully autonomous management functions.

2 Chapter 1. Introduction

1.3. Research Objectives

The introduction of SON dates back to Release 8 [26, 27], with continuous improvements up
to Release 17 [28]. SON focuses on automating RAN management by implementing self-
configuration, self-optimization, and self-healing. From an architectural perspective, SON has
traditionally been considered an overlay to the RAN, automating network parameter configura-
tion without altering core procedures. This represents the first step toward “AI for Wireless.”
The push for fully autonomous networks gained momentum in 2017 with the launch of ZSM
[29]. The concept of zero-touch networks (ZTNs) introduced zero-human involvement, aim-
ing for complete automation across all facets of network management. Unlike SON, which
automates specific tasks such as configuration and optimization, ZTNs target end-to-end au-
tomation, covering everything from provisioning to maintenance. The ultimate goal is to create
self-sustaining, fully autonomous networks.
Since Release 18, SON concepts have evolved into the integration of AI/ML within 3GPP RAN
and SA working groups [10, 11]. AI-based automation is now considered an essential compo-
nent of network design, moving beyond the role of an external oversight entity. New concepts
like orchestration and intent-driven management [30–32] have emerged, enabling systems to
learn and optimize network behavior in response to end-user demands. While initially applied
to specific use cases, these developments reflect the growing importance of ubiquitous AI in
wireless networks, aligning with the vision of standardization bodies.

1.3 Research Objectives

Achieving a fully autonomous network without human involvement is an ambitious challenge.
It requires carefully identifying the key characteristics that AI must possess to meet this ob-
jective. Legitimate concerns about the AI-native design of communication techniques, ranging
from the physical layer to the network layer, arise due to inherent limitations of data-driven
methods. These concerns shape the research goals outlined in this thesis.
Explainability: One of the primary concerns is the opaque nature of most ML models, leading
to a lack of explainability. This is particularly critical in mission-critical networks and for
online optimization algorithms. Developing interpretable models with meaningful explanations
is crucial.
Reliability and Trustworthiness: Deploying AI in wireless networks demands high reliability
and trustworthiness to ensure stable and error-free operation. These are essential attributes for
both predictive and generative models.
Robustness: Ensuring robustness, especially in the presence of outliers or rare conditions,
is critical for ultra-reliable, low-latency communications. Developing calibrated probabilistic
models is an active area of research [33].
Proactivity: Proactive models that can anticipate and adapt to changes in network conditions

Chapter 1. Introduction 3

1.4. Thesis organization

are vital for maintaining service continuity and agile adaptation, as opposed to reactive strate-
gies.
Adaptability: Wireless networks are dynamic and constantly evolving. AI-native systems must
be capable of adapting to varying network conditions and distribution shifts. This challenge
is heightened in multi-agent systems where non-stationarity and partial observability [34, 35]
further complicate adaptation.
Scalability: Network optimization becomes increasingly complex as the number of elements
and parameters grows. Distributed optimization in multi-agent systems can help mitigate this,
but it introduces challenges like non-stationarity and partial observability.
Communication Efficiency: Efficient communication is crucial in distributed learning over
wireless networks to minimize bandwidth usage and latency. Limited wireless resources de-
mand communication-efficient protocols for effective model updates.

1.4 Thesis organization

After establishing the theoretical background necessary for the discussions that follow in this
dissertation, this thesis is structured to progressively build foundational and applied insights
into deep learning methods for achieving intelligent and autonomous wireless networks.
The first chapter addresses adaptive optimization within wireless networks, utilizing measure-
ments from mobile network operators (MNOs). Within this context, model-free deep reinforce-
ment learning (DRL) is introduced, owing to its capability to learn directly from interactions
with the wireless enviroment and adjust to dynamic network conditions. To mitigate the primary
limitations of model-free DRL—particularly sample inefficiency—an optimization problem is
formulated, supported by a set of tailored techniques. These techniques include the develop-
ment of a novel probabilistic exploration policy that enhances the agent’s exploration process
during training while ensuring adherence to predefined optimization constraints.
The second chapter explores the integration of generative AI in wireless networks, with the
purpose of eliminating human intervention and automating complex network tasks. Incorporat-
ing generative capabilities into network systems poses unique challenges, particularly in terms
of explainability, trustworthiness, reliability, and privacy. This chapter proposes an uncertainty-
aware generative framework grounded in Bayesian learning to address these issues. Specifically,
the framework enables the generation of synthetic mobile data from crowd-sourced data, using
a conditional Bayesian-based generative model to produce mobile measurement data with high
accuracy. The framework’s effectiveness is evaluated through calibration analysis, interpolation
capability assessment, and performance comparisons on downstream tasks using both original
and synthetic datasets.
The third chapter examines distributed learning strategies in wireless networks, emphasizing

4 Chapter 1. Introduction

1.4. Thesis organization

the use of graph structures to facilitate scalable, efficient distributed learning. Central to this
chapter is the application of multi-agent reinforcement learning (MARL) alongside graph neu-
ral networks (GNNs) for parameterizing policies, which enable scalable optimization across
networked systems. The findings highlight the advantages of employing graph-based structures
as communication-inducing mechanisms within MARL, significantly improving scalability and
optimization potential in wireless environments.
Finally, the fourth chapter provides insights into the design and implementation of AI-native
wireless networks through a 5G industrial IoT use case. Focusing on a safety-critical sce-
nario that leverages real sensor data, this chapter analyzes network architectures designed to
estimate the remaining useful life of an AGV through deep learning. This use case illustrates
how communication infrastructure affects data-driven applications in industrial IoT, underscor-
ing the benefits, challenges, and interdependence between AI and wireless communications in
next-generation networks. Overall, this thesis aims to highlight the transformative role of AI-
driven techniques for autonomous wireless network management, forming a strong foundation
for further advancements in intelligent and autonomous wireless networks.

Chapter 1. Introduction 5

Chapter 2

Deep Learning Background

This chapter provides a foundational introduction to deep learning concepts that are essential for
understanding the frameworks employed throughout the thesis. Each topic is addressed to set
the groundwork for the application and significance of these methods in subsequent chapters.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a subfield of AI that focuses on teaching agents to map situa-
tions to actions in a way that maximizes cumulative rewards over time [36]. In RL, an agent
interacts with its environment by observing its state, taking actions, and receiving feedback in
the form of rewards. The agent’s objective is to learn a policy that maximizes the expected
cumulative reward. The two key characteristics of RL are trial-and-error search and delayed
rewards [36].

Figure 2.1: Reinforcement Learning as a block scheme: the agent aims to learn optimal behavior
by interacting with the environment to obtain rewards.

7

2.1. Reinforcement Learning

Markov Decision Processes

The most common formalization of an RL problem is through a Markov decision process
(MDP). An MDP provides a mathematical framework for sequential decision-making prob-
lems where outcomes are partly random and partly influenced by the agent’s actions. Formally,
an MDP is defined as a tuple ⟨S,A, Pa, Ra, γ⟩, where:

– S: the set of all possible states.

– A: the set of all possible actions the agent can take.

– Pa(s
′|s, a): the transition probability function, which gives the probability of moving

from state s to state s′ given action a.

– R(s, a, s′): the reward function, providing the immediate reward for transitioning from
state s to state s′ by taking action a.

– γ: the discount factor, which weighs the importance of future rewards compared to im-
mediate rewards. It takes values in the range (0, 1].

An MDP assumes the Markovian property, which means that the probability of transitioning
to the next state depends only on the current state and action, not on past states or actions:
P (st+1|st, at, . . . , s0, a0) = P (st+1|st, at).

The agent’s objective is to learn a policy π, a mapping from states to actions, such that the
expected cumulative reward, or return, is maximized. This objective can be mathematically
expressed as:

π∗ = argmax
π

E

[
∞∑
t=0

γtR(st, at, st+1)

]
(2.1)

The return can be recursively defined as the sum of the immediate reward and the discounted
future reward, facilitating estimation via bootstrapping:

Rt = R(st, at, st+1) +
∞∑

i=t+1

γi−t+1R(si, ai, si+1). (2.2)

To learn an optimal policy, the agent must balance exploring new states and actions with max-
imizing the reward, leading to the well-known “exploration vs. exploitation tradeoff.” Various
strategies have been proposed to handle this tradeoff. Section 3.5 discusses a novel approach in
the context of decision-tree structured MDPs. A common collection policy for this purpose is
the ε-greedy policy:

8 Chapter 2. Deep Learning Background

2.1. Reinforcement Learning

π(s) =

π∗(s) with probability 1− ϵ

πrandom(s) with probability ϵ.
(2.3)

During training, the “behavior policy” often follows this ε-greedy approach, whereas, during
testing, the “target policy” usually adopts a purely greedy strategy, selecting actions based solely
on the learned experience.

Value-based and Policy-based Methods

In RL, two prominent approaches are value-based and policy-based methods for optimizing the
agent’s decision-making process.

Value-based methods focus on estimating a value function that predicts the expected return
of being in a particular state or taking a specific action. One of the most widely used algorithms
is Q-learning, which seeks to learn the action-value function Q(s, a), representing the expected
cumulative reward for taking action a in state s and following an optimal policy thereafter. The
Q-values are updated iteratively using the Bellman equation:

Q(s, a)← R(s, a, s′) + γ ·max
a′

Q(s′, a′). (2.4)

For large state-action spaces, tabular Q-learning becomes computationally infeasible. Deep
reinforcement learning (DRL) addresses this by using deep neural networks (DNNs) to approx-
imate the Q-function. The deep Q-network (DQN) minimizes the temporal difference error:

L(θ) = E
[(

Q(s, a; θ(v))−
(
R(s, a, s′) + γmax

a′
Q(s′, a′; θ(t))

))2]
, (2.5)

where θ(v) and θ(t) are the parameters of the value and target Q-networks, respectively.

Policy-based methods involve directly learning a policy π(a | s, θ), parameterized by θ,
which selects actions without needing a value function. The goal is to optimize a performance
measure J(θ) by adjusting the policy parameters via gradient ascent:

θt+1 = θt + α∇̂J(θt). (2.6)

Estimating the gradient ∇̂J(θt) involves the Policy Gradient Theorem, which simplifies the
computation of performance gradients by avoiding direct dependence on the unknown state
distribution:

Chapter 2. Deep Learning Background 9

2.2. Bayesian Learning

∇J(θ) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇π(a | s,θ), (2.7)

where µ(s) is the on-policy state distribution under π, and Qπ(s, a) is the expected return of
state-action pairs. Algorithms such as REINFORCE [37, 38], used in multi-agent RL problems
(as discussed in Sec. 5.3), rely on Monte Carlo methods to approximate the expected reward
and gradient.

2.2 Bayesian Learning

Frequentist vs. Bayesian Learning

Conventional frequentist learning focuses on identifying an optimal point estimate θ̂ for the
parameters of a statistical model. This estimate is determined under the assumption of empirical
risk minimization (ERM), where the loss function L(θ), computed on the available training set,
is presumed to approximate the true population loss. Optimization techniques such as minimum
mean squared error (MMSE), maximum likelihood estimation (MLE), or, with regularization,
the maximum a posteriori (MAP) criterion are used to estimate θ̂, often by employing stochastic
gradient descent (SGD).
However, a fundamental issue arises from the fact that the difference between the population
loss and the training loss depends on the size of the data set, which introduces uncertainty
regarding the optimal parameterization. This uncertainty, termed epistemic uncertainty εep, is
defined as:

εep = |L(θ⋆)− L(θ̂)| , (2.8)

where L(θ⋆) is the loss corresponding to the true optimal parameterization θ⋆, and L(θ̂) is the
loss under the ERM assumption.
Epistemic uncertainty is generally reducible by increasing the size of the training set. In con-
trast, aleatoric uncertainty εal, inherent in the data itself, cannot be reduced by acquiring more
data. By choosing a single model, frequentist learning often overlooks epistemic uncertainty,
discarding valuable information about alternative models that fit the data almost as well as the
ERM solution [33]. This can lead to overfitting, poor calibration, over-confident predictions in
extrapolation settings, and limited explainability.
On the other hand, Bayesian learning addresses this issue by considering a distribution θ ∼ P (θ)

over the model parameters. In Bayesian neural networks (BNNs), this is achieved by placing
a probability distribution on the weights of the neural network instead of using fixed scalar
values [39]. Each weight is assigned a posterior distribution P (θ | D), where D = {xi, yi}mi=1

represents the training set.

10 Chapter 2. Deep Learning Background

2.2. Bayesian Learning

Approximate Bayesian Methods

In Bayesian models, the predictive posterior distribution P (y | x,D), which represents the dis-
tribution of predictions given the data, is obtained by marginalizing over the model parameters
θ:

P (y | x,D) =
∫
θ

P (y | x, θ) · P (θ | D) dθ , (2.9)

where P (y|x, θ) is the likelihood under a given parameterization θ.

Since deriving this posterior in closed form is typically intractable, Eq. (2.9) is often approxi-
mated at inference time using Monte Carlo sampling:

P (y | x,D) ≈ 1

T

T∑
i=1

P (y | x, θi) , (2.10)

where T is the number of samples and θi is the i-th sampled weight vector. This approach
eliminates the need for explicit weighting in the marginalization, as less probable parameteri-
zations are inherently sampled less frequently. By sampling from the posterior, BNNs generate
multiple plausible models, each yielding slightly different predictions.

Training BNNs therefore involves approximating the posterior P (θ | D). However, comput-
ing this posterior exactly is often infeasible. To address this, approximate methods such as
Monte Carlo dropout [40] and variational inference [39] have been proposed to approximate
the posterior distribution.

Variational inference, for instance, involves approximating P (θ | D) with a variational distribu-
tion Qλ(θ), parameterized by λ. The goal is to minimize the Kullback-Leibler (KL) divergence
KL[Qλ(θ) ∥P (θ | D)] between the variational and true posterior distributions. This leads to the
following variational free energy cost function [41]:

argmin
λ

KL[Qλ(θ)||P (θ)] + Eθ∼Qλ
[L(D|x, θ)] , (2.11)

which balances minimizing the loss function L(θ), typically negative log-likelihood, with min-
imizing the complexity of the model in relation to the prior distribution P (θ).

Blundell et al. [39] approximate this cost function by applying Monte Carlo sampling during
training, yielding the following tractable objective:

argmin
λ

KL[Qλ(θ) ∥P (θ)] + Eθ∼Qλ(θ)[L(θ)] =
∫
θ

Qλ(θ) log
Qλ(θ)

P (θ)
dθ +

∫
θ

Qλ(θ)L(θ) dθ

≈
T∑
i=1

logQλ(θi)− logP (θi) + L(θi) .

(2.12)

Chapter 2. Deep Learning Background 11

2.3. Machine Learning on Graphs

This optimization framework enables the effective estimation of the evidence lower bound
(ELBO), an objective that balances minimizing expected training loss with reducing the diver-
gence between the variational and prior distributions. By minimizing the objective in Eq. (2.12),
the optimization process effectively balances two competing goals: reducing the expected train-
ing lossL(θ), which measures how well the model fits the data under the variational distribution,
and minimizing the divergence between the variational distribution Qλ(θ) and the prior distri-
bution P (θ). The latter acts as a regularization term, preventing the model from overfitting by
penalizing overly complex parameterizations. This trade-off ensures that the model not only fits
the data but also generalizes well by incorporating prior knowledge. This principled approach
provides a robust method to quantify and incorporate epistemic uncertainty into the predictions,
thereby improving reliability in generating predictions for unseen data.

2.3 Machine Learning on Graphs

Machine learning on graphs (GML) is a subfield of machine learning focused on techniques
for analyzing and modeling non-Euclidean data, typically represented as graphs or networks.
Graphs are versatile structures that capture complex relationships in diverse domains such as
social networks, recommendation systems, biology, and, notably, wireless networks, where
the topology is naturally modeled as a graph. Traditional machine learning models, such as
DNNs and convolutional neural networks (CNNs), are designed to work with data in tabular
formats or regular grids, making them ill-suited for the irregular structures of graph data. The
central challenge in GML lies in integrating graph structure into standard machine learning
frameworks. For example, in a node classification task, it is essential to incorporate information
about both the node’s global position in the graph and the structure of its local neighborhood
[42].

A graph, denoted as G = (V , E), consists of a set of vertices V and a set of edges E . Each
edge (u, v) connects two vertices u, v ∈ V and may carry additional attributes or weights.
The challenge from a machine learning perspective is to encode this high-dimensional, non-
Euclidean information into a format that can be used as input for learning algorithms. Recently,
many approaches have emerged to learn representations that capture structural information from
graphs. These methods aim to map nodes or entire (sub)graphs into a low-dimensional vector
space Rd, where geometric relationships in the embedding space reflect the structure of the
original graph. Once this embedding space is optimized, the learned representations can serve
as feature inputs for downstream ML tasks.
One of the core challenges in GML is ensuring that graph representations remain invariant to
permutations. That is, the representation of the entire graph should not change if the nodes are
relabeled or their ordering is altered. This is captured by the notion of permutation invariance.

12 Chapter 2. Deep Learning Background

2.3. Machine Learning on Graphs

Mathematically, a graph function f : R|V|×|V| × R|V|×m → Rd is permutation invariant if for
any permutation P ∈ {0, 1}|V|×|V| of the node indices, i.e., P1 = 1 and PT1 = 1, it holds that

f(A,X) = f(PAPT ,PX), (2.13)

where A ∈ {0, 1}|V|×|V| is the adjacency matrix of the graph and X ∈ R|V|×m is the matrix
of node features. In addition to permutation invariance, node-level tasks on graphs require
permutation equivariance. In this case, the output node representations should shift according
to the permutation of the input, without altering the fundamental structure. A function f :

R|V|×|V| × R|V|×m → R|V|×d is permutation equivariant if for any permutation P:

Pf(A,X) = f(PAPT ,PX), (2.14)

meaning that the node representations adapt to the node reordering, preserving the relational
structure while maintaining the relative positions of nodes in the graph. These properties are
crucial for generalizing across graphs of varying sizes and topologies in tasks such as node clas-
sification, link prediction, and graph classification. For an in-depth survey of recent methods
for learning graph representations, readers are referred to [42]. For brevity, this section high-
lights a particularly successful approach for graph representation learning: deep convolutional
encoders, or GNNs, which extend the convolution operation to graph structures, leveraging the
powerful representation capabilities of deep learning. GNNs play a central role in this thesis,
with significant applications in Sec. 5.3.

Graph Neural Networks (GNNs)

GNNs are advanced deep learning models that generate embeddings for nodes, edges, or entire
(sub)graphs. The key idea behind GNNs is to learn node embeddings through the exchange of
information between nodes and their local graph neighborhoods, a process known as message
passing. Unlike CNNs, which use a rectangular filter for convolutions, GNNs use the graph
structure as a filter, allowing them to capture both node features and the connections between
nodes. This mechanism enables GNNs to approximate functions at each node while incorpo-
rating the underlying graph structure. The message-passing framework of GNNs involves two
main operations: message transformation and message aggregation, which are captured by the
general form of a GNN layer:

h(l+1)
v = σ

(
AGG

(
{W(l)h(l)

u , u ∈ N (v)}
))

, (2.15)

where:

– h
(l+1)
v is the updated embedding of node v in layer l + 1.

Chapter 2. Deep Learning Background 13

2.3. Machine Learning on Graphs

– σ denotes the activation function.

– N (v) represents the neighborhood of node v.

– W(l) is the message transformation matrix, consisting of shared weights across the graph.
This weight-sharing property is fundamental to the “inductive capability” of GNNs, en-
abling models trained on small graphs to generalize to graphs of varying sizes.

– AGG refers to the aggregation operation, which combines messages from neighboring
nodes. The aggregation must be permutation invariant/equivariant, ensuring that rear-
ranging node inputs does not affect the output. This is critical for enabling GNNs to
generalize across different nodes and various graph structures, including those in wire-
less networks.

Several GNN architectures have been developed, each varying in how they handle message
transformation and aggregation. Two prominent examples are graph convolutional network
(GCN) and GraphSAGE, described in (2.16) [43] and (2.17) [44], respectively.

h(l+1)
v = σ

 1

|N (v)|
∑

u∈N (v)

W(l)h(l)
u

 . (2.16)

In GCN, the layer aggregates information by computing a weighted average of the neighboring
node features, normalized by the degree of each node.

h(l+1)
v = σ

(
W(l) · CONCAT

(
h(l)
v ,AGG

({
h(l)
u ,∀u ∈ N (v)

})))
. (2.17)

GraphSAGE enhances GCN by allowing flexibility in the aggregation function, as long as it sat-
isfies permutation equivariance. It also introduces feature concatenation, combining the node’s
current features with the aggregated neighborhood features before applying transformations,
boosting the model’s expressiveness.

14 Chapter 2. Deep Learning Background

Chapter 3

Deep Reinforcement Learning for Radio
Resource Management

This chapter explores the application of deep reinforcement learning (DRL) in the adaptive op-
timization of wireless communication networks, with a focus on real-world, data-driven scenar-
ios. The increasing complexity of next-generation networks has spurred interest in automated
solutions that incorporate intelligence and autonomous adaptivity into network operations [45,
46]. Reinforcement learning, particularly the model-free approach of DRL, has emerged as a
promising framework for such tasks, leveraging real-time network data to dynamically adjust
key parameters and optimize performance.
Adaptive optimization refers to the network’s ability to proactively adjust its configuration based
on current and predicted quality-of-service (QoS) levels. The ultimate goal of this approach is
to enhance the performance of cellular networks by making them capable of learning from the
environment, possibly predicting future network states, and responding to changing conditions
in real-time. In this context, DRL offers a powerful tool for continuously refining network
configurations, such as power levels, antenna parameters, and user association schemes, to meet
performance objectives under dynamic and often unpredictable conditions.
In modern cellular networks, mobile network operators (MNOs) have access to large volumes
of data from various sources, including key performance indicators (KPIs), drive tests, and min-
imization of drive tests (MDT) data [47, 48]. These data sources provide valuable information
about network states and user behavior, enabling the implementation of data-driven optimiza-
tion algorithms. MDT, introduced in 3GPP Release 10 [47], allows operators to collect radio
measurements and location information directly from user equipment (UE). This capability re-
duces the need for costly manual drive tests and facilitates the aggregation of realistic network
state data, which can be used to optimize network performance through data-driven approaches
[49–51].
Network automation has a long history of development, beginning with the introduction of

15

Self-Organizing Networks (SON) by 3GPP for Long-Term Evolution (LTE) [52, 53]. SON
was designed to reduce manual intervention in the planning, configuration, management, and
optimization of mobile networks. With the advent of more complex network architectures and
growing demands for higher performance and lower operational costs, the evolution towards a
zero-touch paradigm has begun, where artificial intelligence (AI) plays a central role in min-
imizing human involvement in network operations. DRL, in particular, is well-suited for this
role, as it can autonomously learn optimal control policies for radio resource management tasks
by interacting with the environment and continuously improving based on feedback.

The shift from model-driven to data-driven approaches in AI has been facilitated by the grow-
ing availability of data and computational resources [54]. Data-driven methods, such as those
powered by DRL, are particularly advantageous in the context of radio resource management,
as they can exploit large datasets to optimize network performance more effectively than tradi-
tional, model-based methods. For example, DRL-based algorithms have been applied to capac-
ity and coverage optimization (CCO), where network parameters are adjusted to maximize both
signal coverage and user throughput [55].

In this chapter, we explore adaptive optimization using DRL, where the network continuously
learns from network-level data and user behavior to adjust its operational parameters. As an
illustrative example, we focus on the challenge of optimizing both capacity and coverage in mo-
bile radio networks. CCO is a widely studied Pareto optimization problem under the framework
of SON [46, 56–59], with particular relevance to delivering predictive quality of service (PQoS)
in mobile networks. One common method for performing CCO is through dynamic adjustments
of coverage areas by fine-tuning power levels or antenna parameters. This method has a three-
fold effect: (i) mitigating interference, (ii) balancing mobility load, and (iii) adjusting coverage
conditions, particularly at the network edge.

Achieving adaptability in the context of CCO is a formidable challenge, as it requires modeling
and understanding the complex dynamics of mobile radio networks. In this regard, model-free
DRL has gained increasing attention due to its ability to operate without prior knowledge of the
environment’s transition dynamics or reward structures. This feature makes model-free DRL
especially valuable in scenarios where accurately modeling the environment is either difficult
or computationally expensive, as it learns through a process of trial and error.

To address the need for adaptability, we propose leveraging a continuous data collection frame-
work, combined with DRL techniques, as a powerful tool. Specifically, this chapter introduces a
framework that integrates diverse network key performance indicators (KPIs), minimization of
drive test (MDT) data, and electromagnetic planning tools with model-free DRL. This approach
is essential for achieving the adaptability required for CCO. We further demonstrate how DRL
can address key challenges in radio resource management, such as antenna down-tilt tuning for
CCO, and we emphasize the potential of MDT-driven DRL solutions for real-world cellular

16 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

3.1. Literature overview

networks [49]. In addition, we review the literature on data-driven algorithms for network au-
tomation, evaluating their effectiveness in meeting the increasing complexity of next-generation
networks.

3.1 Literature overview

CCO is a challenging optimization problem in cellular networks that has been extensively stud-
ied, particularly within the broader scope of SON [46, 56, 57]. One common approach to
address CCO is to adjust the coverage area by modifying the tilt of antenna elements. Earlier
contributions from the past decade predominantly employed classical operations research meth-
ods [56, 57] to fine-tune antenna parameters. However, in recent years, driven by the success of
deep learning and RL, DRL algorithms have gained traction as effective tools for solving CCO
[58–61]. RL is particularly well-suited for CCO because of its ability to learn and adapt to envi-
ronmental dynamics [58]. For instance, in [58], a two-step algorithm that combines multi-agent
mean-field RL with single-agent RL is proposed as a scalable solution for online antenna tuning
in multi-tier networks. In [59], the authors address the CCO problem by using deep determin-
istic policy gradient (DDPG) and Bayesian optimization to balance under- and over-coverage.
Additionally, [61] tackles the issue of unstable hyper-parameter convergence when optimizing
antenna parameters in heterogeneous network (HetNet) environments. Finally, [60] introduces
a safe RL-based policy for antenna tilt updates, designed to prevent performance degradation by
avoiding harmful actions, thus improving system reliability. These studies represent significant
advancements, offering solutions to enhance scalability [58, 61], sample efficiency [59], and re-
liability [60]. However, none of them utilize real-world data, such as MDT measurements, for
network state representation and model training. The closest approach is found in [59], where
electromagnetic simulations are used to generate reference signal received power (RSRP) maps.
In this chapter, we propose a DRL agent trained through direct interaction with a simulated
network environment, leveraging MDT data, network KPIs, and electromagnetic simulations
provided by a network operator.

3.2 System Model

The system model considers a cellular network deployment within a designated area of interest,
comprising both “target” and “boundary” base stations. The target base stations represent those
actively optimized by the DRL agent, while the boundary base stations, although not directly
optimized, are included to account for the effects at the network’s edges that may arise from
the agent’s actions. The reference scenario focuses on the deployment of an MNO’s network
within an approximately 26 [km2] area located in the northern region of Bologna, Italy (see Fig.

Chapter 3. Deep Reinforcement Learning for Radio Resource Management 17

3.2. System Model

3.1). This deployment includes a total of 18 base stations, with 9 classified as “target nodes”
(depicted by pink markers in Fig. 3.1), and the remaining ones, shown in grey, categorized as
“boundary” cells.
The selected area presents a particularly challenging network configuration due to its hetero-
geneous propagation characteristics, which encompass highways, urban areas, and agricultural
fields.

Figure 3.1: Network deployment - North Bologna Area.

Within this designated area, an offline approach is adopted for network parameter optimization.
Specifically, data collected from this region is used to develop a network simulator, which serves
as the training environment for the DRL agent. In Fig. 3.2, the system is illustrated as a block
diagram: the simulated network environment receives input in the form of MDT data, traffic
KPIs, and electromagnetic simulations. The environment is designed to accurately represent the
impact of parameter reconfigurations (e.g., antenna tilt adjustments), which correspond to the
actions taken by the agent, on overall network performance. A set of data processing methods
is employed within the environment to ensure realistic simulations, as detailed in the following
sections.

18 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

3.3. Simulated Network Environment

Figure 3.2: System Model - A DRL agent interacts with a simulated network environment,
receiving as input network KPIs, MDT data, and electromagnetic simulations.

3.3 Simulated Network Environment

The simulated network environment is made up of four logical blocks performing different
tasks, as shown in Fig. 3.3.

Pre-processing

The MDT data is divided into time slots characterized by quasi-static traffic behavior. This be-
havior can be analyzed using the intensity measure ν(A), which represents the expected number
of samples in the Poisson point process (PPP) of MDT samples over a region A. The intensity
measure is given by:

ν(A) =

∫
A⊂Rn

β(s) ds , (3.1)

where β(s) is the intensity function that varies with spatial coordinates.
The MDT data are then aggregated into pixels of fixed size to reduce the variance of individual
measurements and ensure consistent input dimensions for the DQN. The pixel size is determined
based on β(s) to balance the trade-off between quantization error and the scarcity of reports per
pixel. Each pixel is characterized by several key quantities, which are evaluated as follows:

1. RSRP: This represents the linear average of individual MDT RSRP measurements.

2. WEIGHT: At the start of each training episode, each pixel is assigned a weight sampled

Chapter 3. Deep Reinforcement Learning for Radio Resource Management 19

3.3. Simulated Network Environment

Figure 3.3: Simulated environment - block system view

from a Poisson distribution (see the weights sampling block in Fig. 3.3). The rate param-
eter λ of the distribution is set to the number of RRC connection establishments within
the pixel. Since the timing of each RRC connection may vary, the number of reports
generated by each UE can differ significantly depending on the duration of their connec-
tion. By assigning weights based on the number of RRC connections relative to the total
number of MDT samples, this method ensures a fair representation of users and prevents
overfitting to the training data.

3. SINR: The signal-to-noise-and-interference ratio (SINR), denoted as γ, is computed from
individual reference signal received quality (RSRQ) measurements using the following
equation:

γ =
12 · RSRQ

1− ρ · RSRQ · 12
, (3.2)

where RSRQ is defined as [62]:

RSRQ =
NPRB · RSRP

RSSI
, (3.3)

with NPRB representing the number of resource blocks in the E-UTRA carrier’s reference
signal strength indicator (RSSI) measurement bandwidth.

In (3.2), ρ denotes the percentage of occupied physical resource blocks (PRBs) in the
serving cell, and 12 refers to the number of OFDM sub-carriers in a PRB. The numerator,
which represents the aggregated RSRQ on a pixel basis, reflects the serving cell’s co-
channel contribution, as RSRP measures the power of the demodulated channel reference
signal (CRS) symbols. The denominator, representing RSSI, is a wideband measure of
co-channel serving and non-serving cells, adjacent channel interference, and noise. As
a result, (3.2) offers a more accurate description of the signal-to-noise-and-interference
ratio when performance is limited by interference and load variations in cells, compared

20 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

3.3. Simulated Network Environment

to the conventional power ratio formulation.

Electromagnetic Simulator

Electromagnetic simulations are performed using proprietary software provided by a MNO.
These simulations are stored for every cell and each selectable antenna parameter, resulting in
a total of P × C simulations, where P is the number of parameter configurations and C is the
number of cells in the cluster. Each simulation computes the electric field intensity (measured
in [dBuV/m]) on a pixel basis, considering each cell as the emitting source individually. The
electric field intensity is then converted to the RSRP (measured in [dBmW]) by assuming a
reference receiver bandwidth of one resource element (RE) (15 [kHz]). Each pixel is assigned
to a primary serving cell based on a best-server criterion. From the RSRP received from var-
ious emitting sources, the SINR, denoted as γ, can be computed for each pixel as the ratio of
useful power to interfering power. In this context, each pixel is concurrently associated with
both MDT-based RSRP and γ values as well as their simulated counterparts. This allows for
the computation of two metrics, ∆R and ∆γ , which represent the differences (in dB) between
the simulated RSRP and γ values and the corresponding MDT-derived measurements for each
pixel. These metrics are computed by the “∆ calculator” module shown in Fig. 3.3 and reflect
the estimation error of the electromagnetic simulation tool compared to the measurement re-
ports from individual UEs. This estimation error is assumed to be independent of the antenna
configuration.

“Step” Method

The step method simulates the impact of an agent’s action on network performance, given a
state observation. It returns the immediate reward, Rt+1, and the next state, St+1, as output.
Formally, the method executes the transition probability matrix of the MDP associated with the
environment, expressed as:

Π = P (St+1 = s′, Rt+1 = r | St = s, π(St) = a), for a ∈ A . (3.4)

In (3.4), π(S) represents the policy followed by the DRL agent, which varies based on the
algorithm used (e.g., value-based vs. policy-based, Sec. 2.1). Since modeling Π directly is
typically infeasible due to the high dimensionality of the action-state space, the method defines
a series of sequential operations to return the tuple {Rt+1, St+1}, based on the current state and
action {St, At = π(St)}. This process draws from the building blocks shown in Fig. 3.3 to
modify the current network state and calculate the reward associated with the agent’s action.
The method performs the following procedures in each iteration:

Chapter 3. Deep Reinforcement Learning for Radio Resource Management 21

3.4. Markov Decision Process Formulation

1. Weight initialization: Weights are sampled from a Poisson distribution, as described in
Sec. 3.3.

2. User distribution: The number of UEs in the RRC connected state, referred to as “act UEs,”
is gathered for each cell during a specific time slot from the input network KPIs. This to-
tal count is then redistributed among pixels based on their weights, associating each pixel
with a percentage of the total UEs described by the KPI.

3. Simulated KPIs: Based on the action selected by the agent’s policy π(St), the simulated
RSRP and γ values are computed for each pixel.

4. Cell reselection: Each pixel’s simulated RSRP is evaluated according to the best-server
criterion:

max [RSRP1,RSRP2, . . . ,RSRPC] .

The serving cell is reassigned accordingly.

5. ∆ Correction: A ∆ correction is applied to the simulated RSRP and γ values using:

RSRP′i = RSRPi +∆R ,

γ′i = γi +∆γ .
(3.5)

This correction accounts for estimation errors in the electromagnetic simulations, pre-
serving the valuable information in the MDT data, including γ computed as a function of
RSRQ and network load ρ.

6. Recompute user distribution: Based on the new pixel assignments (step 4), the number
of “act UEs” in each cell is recomputed according to the proportion of active UEs within
each pixel.

7. Reward calculation: The immediate reward Rt+1 is computed based on the new state
St+1.

3.4 Markov Decision Process Formulation

The predominant approach for formalizing an RL problem is to represent it as a Markov decision
process (MDP). This section introduces the action space, state space, and reward function, and
outlines the corresponding optimization problem.

22 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

3.4. Markov Decision Process Formulation

Figure 3.4: MDP formulation as a decision tree

Action Space

The centralized agent operates within an exponentially growing action set, determined by a
discrete set of optimization parameters denoted as P , with cardinality |P| = P , across a set of
C cells (|C| = C). The complexity of this formulation grows exponentially, O(PC), making it
intractable for medium to large clusters. To overcome this challenge, the optimization problem
is more effectively framed as a sequential learning task, where the MDP is structured as a
decision tree.

At each step of the episode, the agent selects both a target cell from the available set and an
appropriate configuration of its parameters. This approach reduces the action space to P × C

at each step (Fig. 3.4). However, this simplification may yield suboptimal solutions, requir-
ing techniques for efficient exploration and pruning of the decision tree, discussed in the next
section.

Although the total number of nodes in the decision tree grows as (P × C)C+1 − 1, this MDP
formulation enables sequential pruning based on estimated Q-values during training. This ap-
proach introduces the classic tradeoff between exploitation and exploration. Exploiting known
state-space knowledge (i.e., Q-value estimates) facilitates faster pruning by discarding non-
promising branches. Conversely, prolonged exploration enables a more thorough search of the
state space, reducing the risk of suboptimal, locally optimal solutions.

Thus, the action space A is defined as:

A = PP×C =


p1,1 p1,2 · · · p1,C

p2,1 p2,2 · · · p2,C
...

...
pP,1 pP,2 · · · pP,C

 , (3.6)

with pi,j ∈ {0, 1} and
P∑
i=1

C∑
j=1

pi,j = 1 ,

where P (|P| = P) represents the set of antenna parameter configurations (5 in this case), and

Chapter 3. Deep Reinforcement Learning for Radio Resource Management 23

3.4. Markov Decision Process Formulation

C (|C| = C) represents the set of target base stations (9 in this instance), with pi,j denoting a
specific antenna configuration for each base station.

State Space

At each time step, the DQN agent receives a network state observation, S, described by the
following quantities:

S =


Rm×n with ri,j ∈ [−140,−40]

Wm×n with wi,j ∈ R+

γm×n with γi,j ∈ R

h with hi ∈ {0, 1}, |h| = P × C ,

(3.7)

where Rm×n, Wm×n, and γm×n are matrices of dimensions m × n. Each element ri,j , wi,j ,
and γi,j represents the RSRP, weight, and γ values for a pixel with coordinates (i, j). These
quantities are essential for addressing the multi-objective nature of CCO problems:

– ri,j helps manage mobility and evaluate network coverage.

– γi,j determines link spectral efficiency and user capacity.

– wi,j distinguishes between more and less relevant pixels in terms of traffic load.

Additionally, a vector h, representing the episode’s history of actions using one-hot encoding, is
included in the state space to account for the agent’s memory of past actions during an episode.

Optimization Problem

The reward function for a CCO problem should reflect its multi-objective nature, balancing
maximization of average end-user capacity with coverage conditions. The optimization problem
is thus formulated as follows:

Maximize u(P) (3.8)

Subject to k(P) ≥ Γ (3.8a)
P∑
i=1

pi,j = 1, for j ∈ {1, . . . , C} . (3.8b)

In (3.8), the objective function u(P) represents the average end-user throughput as a function
of the antenna configuration parameters P and is defined by:

24 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

3.5. Sample-efficient Deep Reinforcement Learning

u(P) =
C∑

j=1

Nj

N

 Bj∑Lj

i=1 wi,j

Lj∑
i=1

wi,j ηi,j(P)

 , (3.9)

where Nj is the number of active UEs in the j-th cell (step 6, Sec. 3.3), Lj is the number
of pixels, and Bj represents the bandwidth per user. Here, wi,j and ηi,j represent the weight
and link spectral efficiency, respectively, for the i-th pixel in the j-th cell. The link spectral
efficiency ηi,j is computed using channel state information and modeled as a function of the
signal-to-interference-plus-noise ratio (SINR), thereby capturing both frequency-selective fad-
ing and interference effects. In practice, ηi,j is obtained by averaging the spectral efficiency
over the frequency slots allocated to each user, accounting for variations in attenuation and
interference across different frequencies.

The optimization problem in (3.8) is subject to two constraints: (3.8a), which ensures that
the coverage function k(P) exceeds a threshold Γ pixels, and (3.8b), which ensures that the
sum of the action elements in each column of P equals 1, implying that only one parameter
configuration is chosen for each target cell in C.

The coverage constraint k(P) is defined as:

k(P) = |{(i, j) | ri,j(P) ≥ r∗, i ∈ {1, . . . , Lj}, j ∈ C}| , (3.10)

which counts the number of pixels (i, j) where the RSRP value ri,j exceeds the threshold r∗.

To solve the optimization problem with DRL, the dual Lagrangian approach is employed, in-
corporating unitary multipliers to relax constraints (3.8a) and (3.8b). To explicitly model the
dependency on Γ, we redefine (3.10) as:

k(P,Γ) ∝

eΓ−k(P), if k(P) ≤ Γ

0, otherwise
(3.11)

By incorporating a Heaviside step function h(P), which introduces a constant penalty depend-
ing on whether constraint (3.8b) is satisfied, the objective function (3.8) can be rewritten as:

argmin
P
−u(P) + k(P,Γ) + h(P) . (3.12)

3.5 Sample-efficient Deep Reinforcement Learning

One of the primary challenges of model-free DRL is its sample inefficiency. To enable fast
adaptation to dynamic scenarios, it is crucial to develop a training paradigm that improves sam-
ple efficiency. This section presents a detailed summary of the optimization strategies designed

Chapter 3. Deep Reinforcement Learning for Radio Resource Management 25

3.5. Sample-efficient Deep Reinforcement Learning

to address this issue. Specifically, a novel exploration policy, the “depth-wise ϵ − η-greedy
policy,” is introduced to enhance sample efficiency significantly.

1. Decision Tree
The first enhancement involves reformulating the MDP as a decision tree, which al-
lows the agent to prune unpromising branches and achieve faster convergence. This
formulation, however, introduces the challenge of efficiently balancing the exploration-
exploitation tradeoff.

2. Episode History
Integrating episode history directly into the state observation enables the agent to leverage
memory of its past actions throughout the episode. This approach facilitates learning an
action set that satisfies constraint (3.8b).

3. Lagrangian Relaxation
By relaxing constraints, the agent can explore the state-action space more effectively,
accelerating convergence.

4. Depth-wise ϵ− η Greedy Policy
This custom exploration policy, combined with Lagrangian relaxation, extends the tradi-
tional ϵ-greedy policy for environments requiring complex action patterns and events that
occur with sparse probabilities. The depth-wise ϵ − η-greedy policy introduces a prob-
abilistic approach that guides the agent’s exploration phase by enforcing soft constraints
during training. It introduces an additional parameter, η, which controls the likelihood
of performing a “constrained random action,” i.e., a random action sampled from a set
of constraint-compliant actions. The pseudo-code of the proposed method is provided in
Algorithm 1.

For the given optimization problem, the goal is to optimize a different cell at each step of the
episode. The policy in Algorithm 1 helps enforce constraint (3.8b) with a probability controlled
by the parameter η (Eq. (3.16)) at every episode step. This is important because the probability
of randomly completing a constraint-compliant episode decreases exponentially with the num-
ber of steps. Denoting X(i) as a random variable representing the probability of completing
the i-th episode step in a constraint-compliant manner, the probability P (X) of completing a
constraint-compliant episode is given by:

P (X) = P (X(C), X(C−1), . . . , X(1)) =︸︷︷︸
(a)

C−1∏
i=0

(
1− i

C

)
=

(C − 1)!

CC−1 , (3.13)

where (a) follows from the chain rule of probability, and the number of episode steps equals the
number of cells C in the cluster. Since (C − 1)! < CC−1, the inverse of the probability grows

26 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

3.5. Sample-efficient Deep Reinforcement Learning

Algorithm 1 Depth-wise ϵ− η Greedy Policy
i← random(0, 1)
j ← random(0, 1)
ϵ← ϵ scheduling
η ← η scheduling
if i ≥ ϵ then:

perform greedy action
else

if j ≥ η then:
perform constrained random action

else
perform random action

end if
end if

rapidly as the problem size increases. Hence, a purely random exploration strategy (ϵ-greedy)
becomes inefficient, as only one episode out of (C−1)!

CC−1 will, on average, complete without penal-
ties. By controlling the η parameter for selecting actions from a constraint-compliant set, we
can balance positive rewards and penalties, thereby mitigating the issue of sparse rewards. Im-
portantly, this policy does not entirely prevent the agent from choosing an action that violates a
constraint (unless η = 1), as required by the Lagrangian optimization.
The practical benefits of introducing the η parameter, confirmed by numerical experiments, are
twofold:

1. The exploration phase duration is significantly reduced.

2. The training process becomes more stable.

Scheduling of the Exploration Parameters

The decision-tree MDP formulation enables pruning based on estimated Q-values, allowing the
agent to focus on promising branches while discarding large portions of the state-action space.
As Q-value estimates improve over successive training episodes, the ϵ parameter is typically
scheduled to decrease monotonically, with exploration gradually giving way to exploitation as
the agent gains knowledge from interacting with the environment.
Given that the number of nodes in the tree increases exponentially with depth, the first-level
nodes are encountered much more frequently than the leaf nodes. Therefore, using a single
scheduling function for the ϵ parameter across all levels may not yield optimal results. A better
approach involves assigning a distinct scheduling function to each level, where the ϵ decay rate
is faster at earlier levels to allow for sequential pruning of the tree. This depth-wise scheduling
strategy for ϵ is illustrated in Fig. 3.5.

Chapter 3. Deep Reinforcement Learning for Radio Resource Management 27

3.5. Sample-efficient Deep Reinforcement Learning

Figure 3.5: Depth-wise ϵ scheduling

Similarly, scheduling the η parameter based on the tree depth is beneficial. Since the probability
of complying with constraint (3.8b) varies with depth, it makes sense to use higher η values for
deeper steps. The goal is to distribute positive and negative experiences evenly across all levels
of the tree. This can be represented in terms of probabilities as:

P (X(i)) = P (X(i)| η̄)(1− η) + P (X(i) |η)︸ ︷︷ ︸
=1

η = P (X(i)| η̄)(1− η) + η, (3.14)

P (X) = P (X(C)|X(C−1), . . . , X(1)) =
C∏
i=1

P (X(i)), (3.15)

where P (η̄) = (1 − η) is the probability of taking a random action, and P (η) = η is the
probability of selecting a constraint-compliant action. From Eqs. (3.14) and (3.15), we can
derive:

η =
P (X)1/(C−1) − P (X(i)| η̄)

1− P (X(i)| η̄)
. (3.16)

Table 3.1 presents the η values for each depth level when P (X) = 0.5.

DQN Architecture

The optimization techniques described above are implemented using a deep Q-network (DQN)
algorithm [63]. The DQN architecture employed in training is depicted in Fig. 3.6. Input data
consists of MDT pixels from the pre-processing block (Sec. 3.3) and episode history. Two
separate branches of the DQN process these streams before concatenating and feeding them

28 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

3.5. Sample-efficient Deep Reinforcement Learning

Decision Tree Depth P (X(i)| η̄) η
1 1 0
2 8/9 0.253
3 7/9 0.627
4 6/9 0.751
5 5/9 0.813
6 4/9 0.851
7 3/9 0.876
8 2/9 0.893
9 1/9 0.907

Table 3.1: Depth-wise η scheduling

into a shared fully connected layer. The first branch, processing MDT pixels, comprises one
5x5 2D convolutional layer followed by three fully connected layers, without pooling layers to
preserve spatial information. The second branch, handling episode history, directly feeds into
the concatenate block. A fixed Q-targets variant of the DQN algorithm is used, with separate
target and action networks updated every 1500 training steps.

Chapter 3. Deep Reinforcement Learning for Radio Resource Management 29

3.6. Experimental Results

Figure 3.6: Deep Q-Network architecture

3.6 Experimental Results

Numerical results were obtained by comparing the proposed enhanced DQN formulation against
several baseline algorithms, as described below:

– Best First Search (BFS): A tree exploration algorithm that exhaustively explores each
branch of the decision tree up to a depth of one level. At each step in an episode, BFS
explores every branch using a brute-force approach and selects the best branch as the
source node for the next iteration. By prioritizing the most promising branches, BFS
helps in finding solutions more efficiently.

– Vanilla DQN: A standard DQN implementation that uses an ϵ-greedy exploration policy.

The results demonstrate significant improvements in three key metrics: (i) episode reward, (ii)
sample efficiency, and (iii) training stability compared to the baseline methods.
Fig. 3.7 presents the training curves of the proposed depth-wise ϵη-greedy DQN in comparison
to the vanilla ϵ-greedy DQN. The training curves were generated by evaluating the greedy poli-
cies of both algorithms using 10 random seeds at every 1000 episode steps during training. As
shown in the figure, the proposed method shows a marked improvement in performance com-
pared to the baseline. Specifically, the depth-wise ϵη-greedy DQN exhibits greater stability,

30 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

3.6. Experimental Results

Figure 3.7: Training curves: Depth-wise ϵη-greedy DQN vs. ϵ-greedy DQN.

slightly improved performance, and significantly enhanced sample efficiency, reaching a stable
plateau 70% faster (Fig. 3.7a).

Fig. 3.8 illustrates the reward obtained at each episode step by the three algorithms. The results
were derived from a Monte Carlo experiment and are shown with 99% confidence intervals.
Both the ϵ-greedy DQN and depth-wise ϵη-greedy DQN efficiently learn to forgo immediate
rewards in favor of better cumulative episode rewards. Notably, the depth-wise policy of the
ϵη-greedy DQN demonstrates an interesting behavior: its policy is more compact compared
to the ϵ-greedy DQN, as reflected by the narrower confidence intervals. This leads to fewer
reconfigurations of network parameters, with more environment states being mapped to the
same antenna configurations.
In RL, it is common to observe significant variability between different runs, where small
changes, such as different random seeds, can result in distinct statistical distributions [64].
This variability highlights the importance of sensitivity to minor fluctuations in the environ-
ment when assessing the performance of an RL algorithm. Fig. 3.9 illustrates this phenomenon
using boxplots that display the distribution of episode rewards for the three algorithms across
50 runs, each using a different random seed. The depth-wise ϵη-greedy DQN not only outper-
forms the baseline algorithms in terms of average episode reward, but it also shows a variance
level similar to that of BFS. It is worth noting that BFS, as an informed search algorithm, is less
affected by the inherent variability of RL.

Chapter 3. Deep Reinforcement Learning for Radio Resource Management 31

3.6. Experimental Results

Figure 3.8: Step reward comparison: Depth-wise ϵη-greedy DQN vs. ϵ-greedy DQN vs. BFS.

Figure 3.9: Average episode reward distribution across 50 runs.

32 Chapter 3. Deep Reinforcement Learning for Radio Resource Management

Chapter 4

Bayesian Learning for Data Generation in
Wireless Networks

4.1 Motivations and Challenges

Generative artificial intelligence (GAI) is a sub-field of AI that focuses on creating models capa-
ble of generating new data, such as images, text, or audio [65]. It has emerged as a transforma-
tive technology, driving revolutionary advances across various domains, including healthcare,
arts, computer vision, natural language processing, industry applications, and notably, wireless
communications and networking.
The application of GAI in enabling autonomous and intelligent wireless systems is an area of
active and rapidly evolving research. By leveraging its ability to model complex distributions
and simulate network behaviors, GAI can be used to construct generative models and digi-
tal twins (DTs) that learn from real-world data and produce synthetic samples resembling the
original data [66]. This is particularly valuable when access to real data is limited or when
data collection is challenging [65, 67, 68]. Furthermore, this generative ability enhances the
development of systems that can generalize and adapt beyond local observations.
However, integrating generative capabilities into wireless systems to minimize human interven-
tion brings several significant challenges. These include concerns about explainability, trust-
worthiness, reliability, and privacy. The opacity of many GAI models often limits our under-
standing of their decision-making processes, which is critical in wireless networks, particularly
for mission-critical applications where the reasoning behind decisions must be clear. Build-
ing trust in these models requires thorough validation, verification, and testing to avoid risks
from biased or incorrect decisions. A promising solution to these challenges lies in the use of
uncertainty-aware generative processes, which can be developed with the theoretical assurances
provided by Bayesian Learning, as discussed further in Sec. 4.3.
In this section, we explore how GAI can be employed for the synthetic generation of mobile

33

4.2. Literature Overview

data. Within this framework, GAI can be seamlessly integrated into the PQoS model to develop
DTs, thereby enhancing predictive capabilities and enabling more efficient and rapid adaptation
of network resources.

4.2 Literature Overview

Although GAI has seen its most significant success in fields such as computer vision [69] and
natural language processing [70], its application to communications and networking [68, 71] is
an emerging and active area of research. This field has found numerous practical applications,
ranging from physical layer modeling to network management. Many works in this domain
focus on the use of generative adversarial networks (GANs) [72–74] for generating synthetic
datasets.

For example, GANs have been employed to learn probabilistic channel distributions [75–77],
which enables accurate channel modeling for various downstream tasks, such as multiple-input
multiple-output (MIMO) precoder design. The application of GANs has also been widely ex-
plored for generating mobile traffic data and radio maps. Notably, in [78], GANs are used to
augment datasets consisting of call data records (CDRs), which are tabular records detailing the
average start time and duration of phone calls in mobile networks. The augmented dataset en-
hances the predictive accuracy of an autoregressive task by leveraging the additional synthetic
data generated by the GAN framework.

The use of CDRs data is further expanded in [79], where Di Paolo et al. introduce a comprehen-
sive framework for assembling an extensive dataset aimed at network planning. This framework
models distributions from diverse data sources, including CDRs, demographic information, and
network deployment details obtained from MNOs. In [80], Sun et al. present a deep generative
framework capable of producing synthetic time-series data for unseen trajectories during train-
ing. The framework generalizes by abstracting information from network and environmental
contexts, such as cell site locations, estimated transmit power, cell orientation, and environmen-
tal factors like terrain, obstacles, and clutter. Similarly, [81] proposes a method for predicting
signal quality metrics in long-term evolution (LTE) networks at unobserved locations, using
raw GPS measurements, network context (e.g., distance to transmitters), and satellite images.
To improve radio map estimates, [82] introduces an innovative approach that combines radio
propagation models with a conditional generative adversarial network (cGAN) architecture.

Moreover, trained GANs can reconstruct high-dimensional data from low-dimensional inputs
with fewer generator function constraints than other models. This makes them particularly
effective for physical layer communication tasks such as channel estimation [83], channel state
information (CSI) compression [84], and physical layer security [85].

Lastly, GAI plays a key role in the internet-of-things (IoT) domain, particularly in generating

34 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.3. Reliable Mobile Data Generation

data for privacy-sensitive [86] or sparsely populated datasets [87, 88]. Additionally, GANs
have been employed as discriminative tools for intrusion detection systems (intrusion detec-
tion systems (IDS)) [89, 90], showcasing their versatility in improving security within network
systems.

4.3 Reliable Mobile Data Generation

ML-based methods offer flexibility in adapting to dynamic and evolving environments by con-
tinuously learning from new data and updating their models accordingly. However, these meth-
ods heavily depend on the quality and availability of data. When data is insufficient or inaccu-
rate, it can lead to biased or unreliable results. Acquiring high-quality and representative data
presents significant challenges, particularly in domains where data is scarce, expensive, time-
consuming to collect, or subject to privacy and security concerns. In such scenarios, generating
synthetic data becomes a promising solution to overcome these limitations. Deep generative
models have emerged as one of the most exciting sub-fields of deep learning due to their ability
to synthesize data by learning the underlying distribution, thus enabling the generation of novel
samples [72].
In mobile and IoT networks, data is often generated at the edge, making crowdsourcing a natu-
ral and convenient method for data collection. This approach takes advantage of the widespread
connectivity and sensing capabilities of devices, creating a collaborative data collection frame-
work. However, crowdsourcing is affected by challenges related to privacy, statistical signif-
icance, sampling bias, and the time-consuming nature of data collection and post-processing.
This section introduces a novel, comprehensive framework that is independent of specific ap-
plications or data types and enables the conditional generation of crowdsourced datasets with
location information for mobile and IoT networks. A key feature of the proposed methodology
is its ability to assess the uncertainty in newly generated samples, achieved through approximate
Bayesian methods. To validate this approach, numerical results are discussed in detail using the
illustrative task of minimization of drive test (MDT) data generation.

Motivations and Contributions

Crowdsourced datasets encounter several challenges, which drive the design of the proposed
generative framework:

– Device Heterogeneity: The quality of crowdsourced data varies due to differences in de-
vices, collection methods, and user behaviors, often requiring extensive post-processing
and cleaning. This process can result in data scarcity. Enhancing post-processed data
with high-fidelity synthetic data provides a significant advantage.

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 35

4.3. Reliable Mobile Data Generation

– Privacy: Since data collection in crowdsourcing is conducted by individual users, privacy
is a major concern. Synthetic data generation offers a viable solution to address this issue.

– Statistical Insufficiency: Motivating users to participate in crowdsourcing measurements
is challenging, often leading to regions with insufficient data coverage. Therefore, eval-
uating the interpolation capabilities of data augmentation methods and assessing uncer-
tainty in data-sparse regions is crucial.

– Sampling Bias: Crowdsourced datasets are susceptible to biases related to environmen-
tal conditions. For instance, as discussed in Sec. 4.4, RSRQ, a key radio performance
indicator, is influenced by network load. Since certain network load conditions are rare,
generating synthetic data as a function of these conditions can reduce the need for time-
consuming measurement campaigns.

To address these challenges, this section makes the following key contributions:

– We introduce a conditional generative framework for accurately producing synthetic crowd-
sourced datasets that include location information in mobile and IoT networks. The
framework offers two notable features: (1) it enables uncertainty evaluation during the
data generation process, which can be broken down into epistemic and aleatoric confi-
dence intervals using approximate Bayesian methods, thus ensuring a reliable and trust-
worthy generation process, and (2) it allows for the generation of new samples condi-
tioned on environmental factors, such as average network traffic load.

– The proposed method is validated through the illustrative task of MDT data generation.
For the first time, a detailed comparison is provided between the generated data and a
large-scale dataset of original MDT measurements collected from an MNO’s network in-
frastructure. This comparison leverages various metrics, with a focus on the algorithm’s
robustness, assessed in terms of calibration and interpolation capabilities, as well as the
evaluation of uncertainty in data-extrapolated regions. Although the analysis is tailored
to MDT data generation under adjustable network and traffic conditions, the proposed
methodology is broadly applicable for the generation and augmentation of other crowd-
sourced datasets with location information.

– Additionally, numerical results on downstream tasks using the generated dataset are pro-
vided. These results demonstrate that performance comparable to that achieved with
large-scale original MDT datasets can be obtained. The task of fingerprinting-based lo-
calization is presented as an illustrative example.

36 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.4. System Model

(a) San Giovanni in Persiceto, Italy, with cov-
erage from two tri-sectorial sites (6 eNBs).

(b) Peripheral area north of Bologna, Italy, covered
by six tri-sectorial sites (18 eNBs).

Figure 4.1: Reference scenario - Map of geolocated reference datasets.

4.4 System Model

As discussed in the previous section, the proposed framework is introduced using the specific
case of MDT data generation. For this, we rely on MDT data collected from an MNO’s network
infrastructure, covering different scales of deployment. In particular, the data are collected from
different urban environments, as shown in Fig. 4.1.
MDT data consists of a rich set of radio features. In this context, the focus is on generating
a representative set of radio indicators. Although some indicators were previously mentioned,
they are briefly reintroduced here to ensure the section is self-contained:

– RSRP of the serving cell: The RSRP is defined as a narrow-band power measurement
estimated by the UE based on the channel reference signal (CRS) sent over specific re-
source elements (REs) in the downlink. These signals are spread across multiple resource
blocks, with a pattern determined by the cell’s physical cell ID (PCI), and the UE detects
these signals within the received OFDM symbols. The RSRP is expressed as the sum
of the power carried by individual REs, denoted as PRE,i, divided by the number N of
sub-carriers carrying CRS across the entire system bandwidth [62]:

RSRP =
1

N

N∑
i=1

14∑
k=1

PRE,ik , (4.1)

where the sum over k accounts for the number of orthogonal frequency division multi-
plexing (OFDM) symbols in each time transmission interval (TTI), and PRE,ik is defined
as:

PRE,ik =

PRE,i if the k-th OFDM symbol carries CRS

0 otherwise .
(4.2)

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 37

4.4. System Model

The RSRP is a critical metric used in various RRM procedures, such as mobility manage-
ment and power control. As a linear average of independent power samples, the RSRP
estimates the median power component observed by the UE. For a detailed derivation of
the error lower bound on estimation accuracy, readers can refer to Appendix A.1.

– RSRP of neighbor cells: MDT measurements also capture the RSRP from neighboring
cells within visibility range. This provides valuable insights into interference patterns and
supports network optimization, resource allocation, and mobility management.

– RSRQ: The RSRQ is inversely proportional to the received signal strength indication
(RSSI), a wide-band measure capturing the power from both serving and non-serving
cells:

RSSI =
M∑
i=1

12∑
j=1

14∑
k=1

PRE,ijk . (4.3)

In (4.3), M represents the number of PRBs over the system bandwidth, and the sum over
j covers all OFDM subcarriers in a PRB. The RSRQ is then expressed as the product of
the number M of PRBs and RSRP, divided by RSSI:

RSRQ =
M · RSRP

RSSI
. (4.4)

The RSRQ provides key statistics about network usage, with the average load ρ being
inversely correlated with RSRQ.

– User association: Each MDT measurement is associated with a serving base station. This
is essential for observing traffic distribution and mobility load balancing. For accurate
analysis, each newly generated sample must be associated with a serving base station.

The proposed approach can be extended to different feature sets. The chosen indicators repre-
sent a mix of KPIs that either depend (e.g., RSRQ) or do not depend (e.g., RSRP) on external
factors like network load ρ. These factors may introduce sampling bias in the original dataset.

The mobile data generation process is handled through sub-problem decomposition. The gen-
eration and clustering of space-time-dependent traffic samples are treated independently from
the probabilistic regression of radio features. This approach captures geo-related dependencies
such as radio environment characteristics, line-of-sight (LoS)/non-line-of-sight (NLoS) condi-
tions, and clutter during the training of regression models. Fig. 4.2 and Fig. 4.3 illustrate the
system architecture for both training and inference phases.

38 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.4. System Model

Figure 4.2: System model - Training architecture.

Figure 4.3: System model - Inference architecture.

Training

The generation of space-time-dependent user samples and user association is framed as a tri-
variate density estimation problem over time, latitude, and longitude. User association plays an
important role in generating synthetic MDT data, though this may not be necessary for other
datasets or applications where preserving the serving base station information is less critical.
Formally, the density estimation problem is expressed as a maximum likelihood problem (or

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 39

4.4. System Model

equivalently, a minimum negative log-likelihood problem):

argmin
θ

Ex∼P (x) [− log f(x|θ)] , (4.5)

where x = (t, lat, lon) is the sampled data, P (X) is its distribution, θ represents the model
parameters, and f is the likelihood of the data x given the model parameters θ. The goal is to
minimize the expected negative log-likelihood.
In practice, this becomes the minimization of the loss function:

argmin
θ
L(θ) =

m∑
i=1

− log f(xi | θ), (4.6)

where {xi}mi=1 = D is the training set. A held-out validation set is typically used to fine-tune
model parameters.
For the probabilistic regression of radio features, the focus is on assessing uncertainty in pre-
dictions. A Bayesian approach is used for probabilistic regression, with models trained via
stochastic variational inference (SVI) by minimizing the variational free energy:

argmin
λ

KL[Qλ(θ)∥P (θ)] + Eθ∼Qλ(θ) [L(θ)] , (4.7)

whereL(θ) denotes any suitable regression loss function, and the expectation is computed using
Monte Carlo methods. Additional details on approximate Bayesian methods are provided in
Sec. 2.2 and Sec. 4.5.
Each problem is addressed using independent learners. After pre-processing, the original MDT
dataset is fed into the blocks shown in Fig. 4.2. External conditioning factors like network load
ρ are fed into regressors for conditional regression tasks (e.g., RSRQ), as detailed in Sec. 4.5.

Inference

After training, the inference phase proceeds through a pipeline (shown in Fig. 4.3) involving: (i)
sampling generated users in the time-space domain, (ii) user association, and (iii) probabilistic
(conditional) regression of radio features. A synthetic MDT sample includes the following
artificial features:

– sample latitude

– sample longitude

– sample serving cell ID

– sample primary RSRP

40 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.5. Algorithms and performance metrics

– sample neighbour RSRP 1, . . . , N

– sample neighbour RSRQ.

4.5 Algorithms and performance metrics

This section presents the theoretical foundations, design principles, and training processes in-
volved in the building blocks of the data generation framework.

Sample Generation and User Association via Gaussian Kernel Density Estimation

Data augmentation for tabular datasets can be tackled through various approaches, many of
which are available in ready-to-use libraries [91]. Among the state-of-the-art techniques are
Bayesian networks (BNs) [92], GANs, and variational autoencoders (VAEs) [93]. However, the
spatial distribution of MDT data introduces specific challenges for these models due to its in-
herent complexity and irregularity, which are influenced by the topography of the targeted area.
To address this issue, a non-parametric density estimation method known as kernel density es-
timation (KDE) is employed. KDE provides a smooth estimation of the probability density
function (pdf) by leveraging all sample points’ locations, allowing for the detection of multi-
modal patterns [94].
Given a sequence of samples D = {xi}mi=1, where each sample xi = {lati, loni} comes from a
distribution P (x), the estimated density f(x,D, h) : R2×n → R+, which approximates the true
distribution f ∗(x), is computed as:

f(x,D, h) = 1

n

n∑
i=1

K(x− x̂i, h) (4.8)

where

K(x− xi, h) =
1

h
√
2π

exp

(
−(x− xi)

2

h2

)
(4.9)

is the Gaussian kernel function, and x is the point at which the pdf is estimated. The model
parameters are derived from the n training samples D, and h is the smoothing parameter, also
referred to as bandwidth.
The fundamental assumption of KDE is that a higher sample density in a particular region
indicates a higher probability of observing new samples in that vicinity.
KDE is an unsupervised learning technique, and its bandwidth parameter h is optimized us-
ing empirical risk minimization (ERM) on a validation set Dval = {xi}nval

i=1 with nval samples.
Specifically, h is chosen to minimize the negative log-likelihood (4.5) of Gaussian kernel den-
sity estimation (G-KDE) on Dval:

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 41

4.5. Algorithms and performance metrics

argmin
h
−

nval∑
i=1

log f(xi,D, h) . (4.10)

The distribution of users across an area also exhibits temporal dependency. However, within
sufficiently short time intervals, f(x,D, h) can be assumed to be time-invariant. Therefore, N
represents the required number of time windows to capture independent, time-invariant user
probability distributions. The outcome is a tri-variate density distribution, continuous in space
and having N possible discrete values in time.
For each time window N , K distinct KDE models are trained using samples from each of the
K primary cells (PCELLs) in the area. This step is critical for correctly associating newly
generated samples (x′LAT, x

′
LON) with their serving PCELL. Let fO

j denote the overall density
estimation for the time window j ∈ {1, ..., N}, and fCi

j the density estimation trained on sam-
ples from PCELLi, with i ∈ {1, ..., K}. The association process consists of assigning each
new sample (x′LAT, x

′
LON) ∼ fO

j to the PCELL that corresponds to the distribution fCi
j with the

highest likelihood (4.11):

PCELL′ = argmax
i

{
log fCi

j (x′LAT, x
′
LON) ,where (x′LAT, x

′
LON) ∼ fO

j (x̂ij, h)
}
, (4.11)

where x̂ij represents the original MDT samples associated with PCELLi for time window j. The
complete generation process of new samples (x′LAT, x

′
LON, PCELL′) is outlined in Algorithm 2,

and an illustrative example is shown in Fig. 4.4.

Algorithm 2 G-KDE Sample Generation
Require:

1: j ∈ {1, .., N}, the selected time window
2: S, the total set of samples to be generated
3: for s ∈ S do
4: Initialize (x′LAT, x

′
LON)s ∼ fO

j

5: for each i ∈ {1, ..., K} do
6: L(i) = log

(
fCi
j (x′LAT, x

′
LON)s

)
7: end for
8: PCELL′s = argmaxi{L(1) . . .L(K)}
9: Assign (x′LAT, x

′
LON)s to PCELL′s

10: end for

RSRP: Bayesian Neural-Probabilistic Regression

To address feature regression, a Bayesian neural-probabilistic regression is employed. This
regression approach combines neural networks with variational inference (VI) (Sec. 2.2) to

42 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.5. Algorithms and performance metrics

(a) Ground-Truth: Each MDT sample is associ-
ated with its serving PCELL, represented by dif-
ferent colors.

(b) Synthetic MDT samples after G-KDE sam-
pling and the user association process described
in Algorithm 2.

Figure 4.4: Illustrative results of MDT sample generation and user association.

perform a regression task. The final layer of the neural network is modeled as a parameterized
probability distribution P (y | x, θ). As previously discussed in Sec. 2.2, the model is trained by
minimizing the variational free energy cost function:

KL[Qλ(θ) ||P (θ)]− Eθ∼Qλ,y∼P (y|x)[logP (y | x, θ)] , (4.12)

where the first term represents the Kullback-Leibler divergence between the variational poste-
rior and prior distributions, while the second term represents the negative log-likelihood. The
expectation over y is handled via ERM.

Handling the expectation over θ and the first loss term requires defining a prior distribution for
the model weights and specifying a parametric assumption for the output distribution. A com-
mon choice for the prior is an isotropic Gaussian distribution with covariance matrix Kθ̄ = σ2I .
However, special attention must be paid to the parametric assumption for the final distribution.
If this assumption is not well-aligned with the true distribution of the target variable, model
miss-specification may occur, which can degrade the model’s calibration performance. For the
task of RSRP regression, the final layer is modeled as a Gaussian distribution. For a detailed
analytical derivation, see Appendix A.1. This assumption is further validated by numerical re-
sults in Sec. 4.6, showing that the proposed model is calibrated by design, avoiding issues with
model miss-specification.

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 43

4.5. Algorithms and performance metrics

A concise formulation of the neural-probabilistic model can be expressed as:

ŷ ∼ N (µ(x,Qλ(θ)), σ(x,Qλ(θ))) (4.13)

In this expression, a predicted sample ŷ is drawn from a Normal distribution, where the mean
µ and standard deviation σ are functions of the variational distribution Qλ(θ) and the input
x. This probabilistic framework enables the model to capture both aleatoric and epistemic
uncertainties simultaneously. However, for interpretability or practical purposes, it is often
useful to decompose these two types of uncertainty.

Given an ensemble of M probabilistic models, {P (y | x, θi ∼ Qλ(θ))}Mi=1, one effective method
for decomposing uncertainty is the law of total variance [95]:

VP (y|x,D)(y)︸ ︷︷ ︸
total uncertainty ε

= VP (θ|D)(EP (y|x,θ)[y])︸ ︷︷ ︸
epistemic uncertainty εep

+EP (θ|D)[VP (y|x,θ)(y)]︸ ︷︷ ︸
aleatoric uncertainty εal

, (4.14)

where V(y) is the variance of y and E(y) its expectation. For the Gaussian parameterization
used in (4.13), Eq. (4.14) can be approximated using Monte Carlo sampling:

VP (y|x,D)(y) ≈
1

M

M∑
i=1

[µM − µi]
2 +

1

M

M∑
i=1

σ2
i . (4.15)

In this approximation, µi and σi are the mean and variance of the i-th probabilistic regression
model from the Bayesian ensemble and µM := 1

M

∑M
i=1 µi. This decomposition provides a

practical way to separate epistemic uncertainty from the inherent noise in the data. Moreover,
it can be used to assess the trustworthiness of model predictions in challenging scenarios, as
demonstrated in Sec. 4.6.

An additional important design consideration for the proposed model is the choice of input fea-
tures. Here, the inputs consist of device geolocation data—latitude (LAT), longitude (LON).
While these features are simple, they implicitly capture location-dependent factors that affect
RSRP, such as propagation environments, line-of-sight (LoS)/non-line-of-sight (NLoS) condi-
tions, surrounding clutter, and building materials. This allows the model to infer these depen-
dencies without needing additional contextual environmental information. By contrast, RSRQ
is influenced by factors such as the average cell load ρ, which are not strictly tied to location.
These additional factors must be provided explicitly as inputs for conditional regression, as
discussed in the following section.

The overall model architecture is shown in Fig. 4.5.

44 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.5. Algorithms and performance metrics

Figure 4.5: Bayesian neural-probabilistic model architecture

RSRQ: Conditional Bayesian Neural-Probabilistic Regression

In machine learning, dataset imbalance is a common issue that often leads to discrimination
against underrepresented classes [96]. When performing probabilistic regression of KPI fea-
tures in a crowdsourcing environment, this challenge is further complicated by sampling bias,
which must be carefully addressed. This issue is particularly significant for KPI features that
depend on non-location-specific factors, such as RSRQ. Since extreme traffic conditions (either
very high or very low) are rare, RSRQ samples collected under these conditions are typically
underrepresented.

To mitigate this imbalance, one effective solution is to apply inverse probability weighting
(IPW). When implemented correctly, IPW can enhance the efficiency and reduce the bias of un-
weighted estimators. Technically, IPW introduces a per-sample weighted cost function, where
each sample weight αi is proportional to the inverse of the probability of observing that sample
in the training set. For instance, when considering the log-likelihood cost function, the modified
cost function with IPW is given by:

L(θ) = log

|D|∏
i=1

αiP (yi | xi, θ) =

|D|∑
i=1

logαiP (yi | xi, θ) , (4.16)

where the weight αi is defined as:

αi ∝
1

P (xi | D)
. (4.17)

Here, P (xi | D) is the probability of observing the input value xi, estimated based on the
training dataset D. This probability is approximated using a histogram-based approach, where
the input values x are first discretized into bins, and categorical probabilities are then computed.

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 45

4.5. Algorithms and performance metrics

The choice of how to discretize the load space into bins is a design consideration.
By employing IPW, the objective function becomes biased towards underrepresented samples,
improving fairness in the regression process and addressing the issue of skewed data distribu-
tions.
When weights become excessively large due to low probability estimates, they can significantly
increase the variance of the regression model. This may lead to unstable learning dynamics
and potential overfitting to noise in regions with sparse data. To mitigate this issue, smoothing
techniques or regularization strategies can be employed. For instance, one can apply kernel
density estimation or incorporate Bayesian priors to prevent the estimated probabilities from
being overly influenced by the scarcity of data for certain regions. Additionally, techniques like
weight clipping (i.e., setting an upper limit on αi) can be useful to prevent any single sample
from dominating the learning process.

Performance Metrics

This section introduces the metrics used to evaluate the performance of the proposed generative
algorithmic framework. The focus is on assessing the effectiveness in probabilistic regression,
as well as in the downstream task of fingerprinting-based localization, which is performed using
the synthetic dataset.

Probabilistic regression

– MAE and RMSE: Two straightforward metrics for evaluating the effectiveness of the
neural-probabilistic regression approaches are MAE and root mean squared error (RMSE),
defined as:

RMSE =

√
1

|Dtest|
∑
i∈Dtest

(yi − ŷi)2 , (4.18)

MAE =
1

|Dtest|
∑
i∈Dtest

|yi − ŷi| , (4.19)

where ŷi is the estimated value for the i-th sample and yi is the ground truth. However,
these metrics alone do not capture the probabilistic aspect of the model.

– Calibration: Following [97], the quality of probabilistic regression is also evaluated in
terms of calibration plots and calibration error. Calibration plots show the true frequency
of points within each confidence interval versus the predicted frequency for that interval,
computed as:

P̃j =
|{yi | Fi(yi) ≤ Pj, i ∈ Dtest}|

|Dtest|
, (4.20)

46 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.5. Algorithms and performance metrics

where Pj is the true frequency for a given quantile j ∈ {0, . . . , 1}, P̃j is the empirical
frequency for that quantile, and Fi(yi) is the cumulative distribution function (CDF) for
the probabilistic output given input xi. For a Gaussian-parametrized output (4.13), Fi(yi)

can be computed as:

Fi(yi) = P (N (µ(xi, Qλ(θ)), σ(xi, Qλ(θ))) ≤ yi) =

=
1

σi

√
2π

∫ yi

−∞
exp

(x− µi)
2

σ2
i

dx.
(4.21)

A calibration error (CE) score can then be computed to quantify the model’s calibration
ability:

CE =
∑
j

wj|P̃j − Pj| , (4.22)

where wj ∝ |{yi | Fi(yi) ≤ Pj, i ∈ Dtest}| ensures that quantiles with fewer samples are
given less importance.

– Sharpness: As suggested by [97], sharpness evaluates how tightly the probabilistic model
bounds its predictions, measured by the predictive standard deviation σ(xi, Qλ(θ)), which
accounts for both epistemic and aleatoric uncertainties:

S = σ(xtest, Qλ(θ)) , (4.23)

where xtest is the vector of test data input values, and S is a vector with dimension R1×mtest ,
where mtest = |xtest|. To derive scalar metrics from (4.23), we compute the average
sharpness over the test set, E[S], and the sharpness standard deviation σ[S]:

E[S] =
1

mtest

mtest∑
i=1

σ(xi, Qλ(θ)) , (4.24)

σ[S] =

√√√√ 1

mtest

mtest∑
i=1

(σ(xi, Qλ(θ))− E [σ(xi, Qλ(θ))])
2 . (4.25)

A model with narrower sharpness produces more informative predictions, assuming equiv-
alent calibration.

– Average epistemic uncertainty εep: Finally, the average epistemic uncertainty is a key
metric derived from (4.13) and (4.14). Since aleatoric uncertainty εal is irreducible, a
model’s ability to minimize epistemic uncertainty directly reflects its reliability. The
average epistemic uncertainty over a set of L locations XA = {x1, . . . , xL} in an area

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 47

4.6. Numerical Results

A can be computed as:

EA[εep] = EA

[
VP (θ|D)

(
EP (y|x,θ)[y]

)]
=

1

LM

L∑
j=1

M∑
i=1

[µM,j − µi,j]
2 , (4.26)

where µi,j refers to µ(xi,j, Qλ(θ)) for simplicity, µM,j := 1
M

∑M
i=1 µi,j , and M is the

number of Monte Carlo experiments performed for each xj . This metric helps assess the
model’s ability to express uncertainty in extrapolation scenarios and defines a threshold
for distinguishing between “reliable” and “unreliable” predictions.

MDT-based fingerprinting

In addition to evaluating probabilistic regression, the quality of the synthetic data is assessed
through a downstream task on fingerprinting-based localization using the synthetic dataset. Per-
formance is measured by comparing the RMSE (4.18) achieved on the original dataset with that
obtained on the synthetic dataset, using identical models for both. In this task, the model pro-
vides a point estimate of the ground truth variable y, which represents the true position (latitude,
longitude).

4.6 Numerical Results

This section presents the results of the key metrics discussed earlier and compares the generated
data to a large-scale original dataset of MDT data from a MNO’s network infrastructure. To
comprehensively evaluate each model characteristic, the section is organized into the following
sub-sections: Interpolation, Extrapolation, Conditional Generation, and Downstream Tasks.

(a) Ground-Truth (b) Original training set (c) 10% training set size (d) 1% training set size (e) 0.1% training set size

Figure 4.6: Visual comparison of ground-truth values and RSRP predictions from a Bayesian
neural-probabilistic model trained on downsampled training sets.

48 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.6. Numerical Results

Metric Full training set Downsampling 90% Downsampling 99% Downsampling 99.9%
MAE [dB] 5.42 5.92 5.93 6.64

CE 2.09e-2 2.27e-2 2.67e-2 4.98e-2
S (E[S] [dB], σ[S] [dB]) (7.12, 1.55) (7.39, 1.43) (8.23, 1.25) (8.5, 0.95)

Table 4.1: Numerical comparison of ground-truth values and RSRP predictions under increasing
downsampling.

Figure 4.7: Calibration plot for BPNNs under increasing downsampling, showing Gaussian
distribution assumptions are confirmed.

Interpolation

This subsection evaluates the interpolation capabilities of the proposed Bayesian neural prob-
abilistic model. Using a 65/35 train-test split of the dataset, the model is trained on the urban
scenario depicted in Fig. 4.1a. The performance metrics—MAE, Calibration Error (CE), and
Sharpness—are evaluated as a function of decreasing training set size (see Tab. 4.1). Multi-
ple independent training runs are conducted with different downsampling rates applied to the
training data. Performance is assessed on a held-out test set that includes the original sample
locations and RSRP values.

Fig. 4.6 and Table 4.1 show that as the training set size decreases, the predictive performance
drops slightly. For instance, with 99.9% downsampling, the MAE only increases by 1.22 [dB]
compared to the full dataset. Fig. 4.7 illustrates the model’s calibration as downsampling in-
creases.

As shown in Fig. 4.7, the model becomes more under-confident as downsampling increases,
aligning with the desired cautious behavior in data-scarce scenarios. This supports two key con-
clusions: the model is robust to substantial downsampling and demonstrates reliable uncertainty-
aware predictions when data is sparse. Additionally, the model’s out-of-the-box calibration, as

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 49

4.6. Numerical Results

Figure 4.8: Distribution of epistemic uncertainty in extrapolation vs non-extrapolation regions.

seen in Fig. 4.7, empirically supports the assumption of Gaussian parameterization of the RSRP
distribution.

Extrapolation

In addition to its cautious behavior when confronted with sparse data, the model effectively
conveys uncertainty in extrapolation regions. A neural probabilistic model trained on the urban
scenario in Fig. 4.1a is used for inference in two areas: one with dense data and the other
sparsely sampled (see Fig. 4.8). The results show higher epistemic uncertainty in extrapolation
areas, where EA2[εep] = 21.9 [dB] compared to 0.87 [dB] in non-extrapolation regions.
This distinction is further highlighted in Fig. 4.8, where the epistemic uncertainty distributions
for the two regions are shown. This finding suggests the use of epistemic uncertainty thresholds
to classify new data points as “reliable” or “unreliable,” facilitating strategic planning for new
measurements in crowdsourced settings. This framework is aligned with the principles of active
learning [98], where data collection incurs costs such as drive tests or communication.

Conditional Generation

A notable feature of the proposed generative framework, as discussed in Sec. 4.5, is its ability
to generate probabilistic outputs conditioned on factors that are independent of sample loca-

50 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.6. Numerical Results

(a) Low ρ (10% quantile) (b) High ρ (90% quantile)

Figure 4.9: Conditional probabilistic regression of RSRQ based on different configurations of
ρ.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 quantiles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
AE

 [d
B]

Figure 4.10: MAE on RSRQ for the non-extrapolation regime.

tions and have varying probabilities of occurrence. This capability addresses the challenge of
sampling bias by mitigating its impact. Specifically, we evaluate the framework’s neural proba-
bilistic regressor in generating diverse RSRQ values, conditioned on the average cell load. The
focus is on assessing the MAE within the non-extrapolation regime. Fig. 4.10 shows the MAE
as a function of quantiles of the average cell load in the training set, where cell-level variations
may occur. The use of IPW proves beneficial in ensuring fairness, especially in underrepre-
sented quantiles such as the 10% and 90% quantiles.
Additionally, Fig. 4.9 visually illustrates the influence of conditioning on ρ on predicted RSRQ
values, where higher loads correspond to lower predicted values.

Downstream Task: Localization via Fingerprinting

ML-based fingerprinting [99] is a technique that uses ML algorithms to determine the location
of a UE by analyzing radio frequency (RF) signals. It involves two phases: during the offline

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 51

4.6. Numerical Results

Figure 4.11: Reference scenario for fingerprinting-based localization experiments. MDT data
with RSRP samples from the three cells shown, collected in the city center of Bologna, Italy.

phase, an ML algorithm is trained on a database of RF fingerprints—unique representations of
signal characteristics at known locations. In the online phase, the trained model infers location
based on newly observed fingerprints.
Here, we examine ML-based fingerprinting localization using datasets that include both original
MDT fingerprints and synthetically generated ones. Synthetic fingerprints are created by gen-
erating new samples in the space-time domain via G-KDE, followed by probabilistic regression
of their features (RSRP1,...,N), as depicted in Fig. 4.3. For the experiments, we focus on a dense
urban area in the city center of Bologna, Italy, as illustrated in Fig. 4.11. The dataset contains
11,000 samples, split 80/20 into training and test sets.
RF fingerprints, including the RSRP measurements from the three e-NodeBs (eNBs) in Fig. 4.11,
are defined as:

RFi = {RSRPi, A,RSRPi, B,RSRPi, C; {LATi,LONi}} (4.27)

A Random Forest is used as ML algorithm for regression, trained on both the original training
set (approximately 8.5K samples) and a synthetic training set generated from the original data,
each containing the same number of samples. Fig. 4.12 presents the results from both ML
models on the original held-out test set.
The Random Forest regressor trained on both original and synthetic MDT fingerprints yielded
RMSE values of 72.56 m and 77.54 m, respectively. These results support the generative frame-
work’s effectiveness, as localization based on synthetic samples shows comparable performance

52 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

4.6. Numerical Results

Figure 4.12: From left to right: Original test set, predicted positions based on original MDT fin-
gerprints (RMSE = 72.56 m), predicted positions based on synthetic MDT fingerprints (RMSE
= 77.54 m).

to models trained on original data.
Further experiments simulate received power samples, replacing real RSRP measurements.
Power samples pi are generated as per Eq. (4.28), with fixed transmit power p0 = 10 [dB],
an exponent β = {2, 4}, and varying shadowing standard deviation σS [dB]:

pi,A = p0 −
(
4πdA
λ

)β

+ n ∼ N (0, σ2
S) . (4.28)

The corresponding fingerprints are given by:

RFi = {pi,A, pi,B, pi,C ; {LATi,LONi}} . (4.29)

The primary goal is to evaluate the generative framework’s performance under different levels
of variability (σS) in the target variable. Fig. 4.13 shows error curves as a function of σ. The
Random Forest regressor trained on synthetic data performs similarly to the one trained on orig-
inal simulated fingerprints, with only minimal degradation (< 1 [m] on average). The slightly
larger discrepancy observed with real RSRP samples (< 5 [m]) is likely due to location-specific
noise σ in the crowdsourced data, as opposed to the constant σS used in the simulated sce-
nario. These results further validate the framework’s versatility across both real and simulated
geo-located datasets.

Conclusion

The findings presented in this section highlight the suitability of the proposed framework for the
synthetic generation and augmentation of real-world crowdsourcing datasets. The framework
demonstrates strong interpolation capabilities, with minimal performance degradation (only
1.22 [dB]) when trained on a downsampled dataset (from 1M to 1K samples). Furthermore,

Chapter 4. Bayesian Learning for Data Generation in Wireless Networks 53

4.6. Numerical Results

0 1 2 3 4 5 6
 [dB] of simulated RSRP

0

20

40

60

80

Po
sit

io
ni

ng
 e

rro
r [

m
]

RF regressor, original dataset, beta=2
RF regressor, synthetic dataset, beta = 2
RF regressor, original dataset, beta = 4
RF regressor, synthetic dataset, beta = 4

s

Figure 4.13: Fingerprinting results: RF regressor trained on original vs synthetic fingerprints as
a function of σS and β.

the model shows increased epistemic uncertainty in areas of extrapolation, enhancing its trust-
worthiness and suitability for planning new measurement campaigns.
The model also excels in conditional regression, accurately predicting rare network conditions
such as high or low average loads. Its robustness to misspecification is supported through both
analytical and empirical evidence. Additionally, synthetic samples generated by the model
retain comparable performance on downstream tasks like fingerprinting-based localization.
Future work could explore applying this generative framework in an online active learning con-
text, where distributed agents collect data. In such scenarios, the framework’s ability to quantify
uncertainty in newly generated samples could help balance the tradeoff between generating syn-
thetic data (which incurs no cost) and collecting new data, which incurs communication costs.

54 Chapter 4. Bayesian Learning for Data Generation in Wireless Networks

Chapter 5

Distributed Learning for Radio Resource
Management

In this chapter, we explore one of the core themes of this thesis: how “AI-native communication
systems” are poised to revolutionize next-generation autonomous networks. At the heart of this
transformation lies the convergence of distributed learning and wireless communications, which
represents a fundamental paradigm shift. In conventional wireless networks, the primary focus
is on data transmission and reception, with information flowing in a unidirectional manner.
However, 6G autonomous networks are envisioned to support the seamless exchange of data,
knowledge, and decision-making capabilities ubiquitously. Wireless nodes will evolve into in-
telligent entities that not only transmit data but also communicate their intents and learn from
the data they receive. As a result, wireless networks must become more data-efficient and adap-
tive, while machine learning principles must also evolve to leverage the unique opportunities
and challenges inherent in wireless environments.

In the context of distributed learning, the design focus for 6G networks has shifted from maxi-
mizing data rates to accelerating the training of ML models using distributed data sources [100].
Here, performance is measured by how communication influences a collaborative goal (e.g., the
training of an ML model), rather than by the accuracy of symbol transmission from one point to
another. This aligns with the effectiveness problem, first articulated by Shannon and Weaver in
“A Mathematical Theory of Communication”. Traditional wireless networks were not designed
with effective, or goal-oriented, communication in mind. As such, the design of communication
systems that reliably transmit signals has often been treated separately from the “language” nec-
essary for achieving coordination and cooperation among agents [20]. The future emphasis on
goal-oriented communications underscores the need for novel algorithms and techniques that
integrate communication and learning seamlessly.

A key area of focus in this chapter is multi-agent reinforcement learning (MARL), which high-
lights the integration of communication and learning to achieve specific goals. MARL involves

55

5.1. Leveraging Graph Structures for Distributed Learning

a set of distributed devices that work toward a common optimization objective within the frame-
work of a Markov game. One notable finding in this field is that the challenges traditionally as-
sociated with MARL can be mitigated by enabling communication among the agents involved
[23, 101].

In summary, the integration of distributed learning and wireless networks is set to reshape both
fields. This convergence, driven by the principles of communication and learning working to-
gether, promises more efficient and adaptable wireless networks, along with the development
of ML algorithms that can thrive in dynamic and resource-constrained environments. The fol-
lowing chapters will delve deeper into the theoretical underpinnings, practical implementations,
and future possibilities of this emerging paradigm. A central theme throughout the chapter is the
strategic use of graph structures as a key tool for efficiently delivering distributed learning over
wireless networks, including scalable network optimization and radio resource management via
graph-based multi-agent reinforcement learning (Sec. 5.3).

5.1 Leveraging Graph Structures for Distributed Learning

All neural network models inherently introduce a form of inductive bias. This bias is embedded
through various design choices, such as activation functions, the hierarchical organization in
multi layer perceptrons (MLPs), or the filter sizes in CNNs. However, when the problem domain
involves a network with critical structural or topological significance, a relational inductive bias
becomes more relevant.

Conventional neural network models often fall short in addressing the challenges posed by wire-
less networks because they fail to capture the structured relational biases intrinsic to these prob-
lems. In scenarios involving multiple distributed nodes within a wireless network—such as re-
source allocation, power control, scheduling, handovers, or access point (AP) selection—classical
DL architectures prove inadequate. These models lack the expressiveness needed to handle the
relational dynamics between the nodes.

A promising solution to these challenges, where the network’s topology and the mutual relations
between distributed wireless nodes are critical, is the adoption of model architectures that are
specifically designed to reflect the unique topology and physical dynamics of wireless networks.
Since the topology of a wireless network can naturally be represented as a graph, it becomes
intuitive to leverage graph-based architectures, such as GNNs, for these tasks. Graphs pro-
vide a flexible representation for modeling arbitrary (pairwise) relational structures, and graph-
based computations offer a robust relational inductive bias that exceeds what is achievable with
conventional convolutional or recurrent layers [102]. For example, the message-passing mecha-
nism, central to GNNs (discussed in Sec. 2.3), propagates information consistently across nodes
in a graph. This leads to a modular flow of information that can be effectively applied to graph-

56 Chapter 5. Distributed Learning for Radio Resource Management

5.2. Multi-Agent Systems

ical models of varying sizes and topologies [102].

5.2 Multi-Agent Systems

A multi-agent system involves multiple autonomous agents interacting within a shared environ-
ment to achieve individual or collective goals. In complex systems, such as wireless networks,
attempting to program intelligent behavior through traditional methods is extremely difficult, if
not impossible. Therefore, agents must adapt and learn autonomously over time. To this end,
RL, as discussed in Sec. 2.1, offers a viable solution. When applied to multi-agent systems, RL
becomes multi-agent reinforcement learning (MARL), a rapidly growing field that introduces
both new challenges and opportunities. One of the key advantages of MARL is its ability to
reduce the action space compared to centralized approaches, helping to mitigate the curse of
dimensionality commonly faced in such settings. However, this also presents new challenges,
such as non-stationarity, credit assignment, scalability, and partial observability [34, 35].

A common way to formalize MARL systems is through Markov Games (MG), as introduced in
[103]. A Markov Game generalizes the MDP by considering the joint actions of N agents. The
corresponding tuple is defined as:

⟨N,S,A(i)
i={1,...,N}, P{a1,...,aN}, R{a1,...,aN}, γ⟩ .

The solution to the MG differs from that of an MDP because the optimal strategy for each
agent depends not only on its own policy but also on the policies of other agents in the envi-
ronment [34]. This interdependence introduces non-stationarity, which is further complicated
by partial observability, transforming the problem into a partially observable MDP (PO-MDP)
for each agent. Various strategies have been proposed to address these challenges. One pop-
ular approach is centralized training-decentralized execution (CTDE), where agents exchange
information during training. Another approach, discussed earlier in this chapter, is to enable
communication among agents, helping them overcome non-stationarity through integrated com-
munication and learning.

In the following subsections, we will first introduce the CTDE framework and then discuss
methods to foster collaboration among agents through communication over graph structures.
This concept will be further explored in the next section, where we outline strategies for defin-
ing the graphical framework to effectively integrate communication and learning in a MARL
environment.

Chapter 5. Distributed Learning for Radio Resource Management 57

5.3. Multi-Agent Network Optimization

Figure 5.1: CTCE vs DTDE vs CTDE training schemes in MARL.

Centralized Training Decentralized Execution

The CTDE paradigm is the state-of-the-art approach for learning in multi-agent systems [35].
In CTDE, agents utilize shared computational resources or dedicated communication chan-
nels to exchange information during the training phase. This helps address non-stationarity
by allowing agents to differentiate between their own actions and the collective actions of
all agents in the system. CTDE stands in contrast to other training methods, such as cen-
tralized training-centralized execution (CTCE) and decentralized training-decentralized execu-
tion (DTDE). Fig. 5.1, inspired by [35], illustrates the key characteristics of these training
schemes. In CTCE, a single centralized controller manages all agents, inherently solving the
issue of non-stationarity. However, this approach lacks scalability and suffers from the curse of
dimensionality, as complexity grows exponentially with the number of agents and actions. On
the other hand, DTDE involves decentralized learning by individual agents, but it still struggles
with scalability and non-stationarity. CTDE, in contrast, mitigates these issues by facilitating
information exchange during training, which can include various forms of data sharing, such as
policy parameters (e.g., parameter sharing [104, 105]).

5.3 Multi-Agent Network Optimization

Wireless communication networks are complex systems that require careful optimization of net-
work procedures to meet predefined performance goals. MARL, with its inherent advantages,
has emerged as a promising approach for solving a variety of network optimization problems.
However, the practical application of MARL in real-world systems faces challenges, particu-
larly regarding convergence, which remains an active area of research. This section highlights
the use of graph structures as a powerful tool to mitigate non-stationarity in MARL systems
by introducing a relational inductive bias into the decision-making process. By employing

58 Chapter 5. Distributed Learning for Radio Resource Management

5.4. Literature Overview

GNNs as neural architectures for policy parameterization, the learning process benefits from
the convolution of features over neighboring entities. The core idea behind this approach is that
selecting the architecture with the appropriate bias for the problem at hand can significantly en-
hance cooperation among agents, allowing them to share local information with relevant peers
to overcome partial observability.

To illustrate the potential of this approach, this section applies graph structures to solve a power
control optimization problem, providing a practical example within the domain of radio re-
source management and network optimization in mobile radio networks. Special attention is
given to capturing the interactions between neighboring agents by introducing innovative strate-
gies for defining a graph-based framework that integrates communication and learning.

5.4 Literature Overview

The application of GNNs for optimizing wireless networks has garnered significant attention
in recent literature. This interest stems from the inherent characteristics of GNNs, which offer
scalable solutions, exhibit inductive capabilities, and, thanks to their permutation equivariance
property, enhance generalization. Notably, these properties have been leveraged in studies such
as [106], where GNNs are employed to model the dynamic structure of fading channel states,
enabling the learning of optimal resource allocation policies in wireless networks. Another key
area where GNNs have been extensively utilized is channel management in wireless local area
networks (WLANs), as demonstrated by works like [107] and [108]. A particularly notable
finding in [107] is the ability of GNNs to perform decentralized inference, making them a
promising approach for the practical implementation of MARL systems. Similarly, GNNs have
been applied to address power control optimization in wireless networks, as explored in works
such as [109], [110], and [111].

Across the relevant literature, GNNs are deployed either as centralized controllers or as de-
centralized entities that model data-driven policies through feature convolution over graphs.
However, despite the crucial role that graph structure plays in defining agent interactions, the
impact of different graph formation strategies on achieving collective goals is a topic often over-
looked. The choice of graph structure directly influences how communication occurs among
distributed agents, which is essential for enabling effective cooperation. Numerous studies
within the MARL domain highlight that communication is key to fostering multi-agent coop-
eration. For example, [112] argues that unrestricted information sharing among all agents in a
distributed setting can hinder the learning process. To address this, they propose an attentional
communication model that learns when communication should occur. Another significant work,
[113], demonstrates how targeted communication—where agents learn both what messages to
send and whom to address—can mitigate the issue of partial observability in multi-agent set-

Chapter 5. Distributed Learning for Radio Resource Management 59

5.5. System Model

tings.

In this chapter, we introduce graphs as communication-enabling structures for distributed op-
timization problems within MARL frameworks. Specifically, we explore how the relational
inductive bias, introduced through message transformation (i.e., what to communicate) and
message passing (i.e., whom to communicate with), deeply influences decision-making. Fur-
thermore, we demonstrate that modeling edge weights using increasingly sophisticated strate-
gies significantly enhances the agents’ ability to cooperate and improves overall system perfor-
mance. Finally, we propose a novel strategy for learning optimal edge weights, which shows
strong inductive capability and surpasses all baseline strategies based on domain knowledge.

5.5 System Model

Figure 5.2: Base stations perform power control optimization in a decentralized manner by
relying on a communication graph that enables the exchange of information exclusively among
connected nodes.

The reference scenario depicted in Fig. 5.2 involves a set of serving nodes (base stations) in
a wireless network. These nodes provide communication services to multiple UEs, which are
categorized based on their distinct service and performance requirements. Specifically, three
categories are considered, each with progressively stricter reliability requirements, defined in
terms of bit error rate (BER). In this section, we describe the wireless network model, the
requirements of the UEs, and the traffic distributions, along with the PO-MDP formulation.

60 Chapter 5. Distributed Learning for Radio Resource Management

5.5. System Model

Wireless Network Modeling

The network is modeled as a graph G = (V , E), where nodes V represent base stations (agents)1,
and edges E represent virtual communication links between them. To define the graph structure,
an adjacency matrix A ∈ R|V|×|V| is introduced, where each element au,v ∈ A indicates the
connectivity between nodes u and v ∈ V .
A critical aspect of this analysis is the formulation of an appropriate graph structure for the set
of base stations. In this context, we present four strategies for determining A.

Binary Edges

The first strategy involves binary edges, where au,v ∈ {0, 1} indicates whether two nodes are
connected, where

au,v =

1 if ||s(u)− s(v)||2 < D

0 otherwise
. (5.1)

Here, s(u) denotes the position of node u in the 2D-space, || · ||2 is the Euclidean distance,
and D ∈ R is a connectivity threshold. This results in a symmetric adjacency matrix, and the
corresponding graph G(V , E) is both unweighted and undirected.

Distance-Based Edges

A more informative approach is to define continuous edge values au,v ∈ R, which are based on
the physical distance between nodes. This is expressed as:

au,v ∝ e−||s(u)−s(v)||, (5.2)

where s(u) denotes the position of node u in 2D space. This yields a weighted and undirected
graph, as the physical distance between two nodes is a symmetric property.

Relation-Based Edges

This strategy defines edges based on the mutual interactions between nodes. Nodes are con-
nected if their actions have a direct influence on each other. Evaluating this mutual interaction
is complex and often requires tools such as directed graphical models [114, 115], causal infer-
ence [116], or, in the case of wireless networks, empirical models to quantify interference. This
interaction can be expressed as:

au,v ∝ I(u|v), (5.3)

1We use the terms base stations and agents interchangeably.

Chapter 5. Distributed Learning for Radio Resource Management 61

5.5. System Model

where I(u|v) represents the influence node v exerts on node u. Typically, I(u|v) ̸= I(v|u).
In wireless communication, I(u|·) could quantify the level of interference received by node u

from its neighboring nodes in G. This results in a weighted and potentially directed graph.

Learning-Based Edges

The final strategy involves an end-to-end learning approach for determining the adjacency ma-
trix A. During the training phase of the agents, edge weights are learned alongside policy
parameters. This is achieved using a secondary GNN, which dynamically assigns edge weights
based on network topological features.
The process begins by establishing edge features, denoted as Fu,v, for each directed edge au,v.
These features are defined as:

Fu,v = {du,v, sin(θu,v), cos(θu,v)}, (5.4)

where:

– du,v ≜ ∥u− v∥2 is the Euclidean distance between nodes u and v,

– θu,v ≜ arctan 2(vy − uy, vx − vx) is the angle between nodes u and v.

Next, an auxiliary graph Gf = (Vf , Ef) is introduced, where nodes Vf correspond to the edges
of the original graph G. The adjacency matrix for Gf is binary, where two nodes in Vf are
adjacent if their associated edges in G share a common node. This is expressed as:

auf ,vf =

1 if o(uf) = o(vf)

0 otherwise
, (5.5)

where o(uf) denotes the node o ∈ V from which the edge associated with uf originates.
Finally, the auxiliary GNN computes edge weights for the original graph G, while a primary pol-
icy GNN uses these weights to optimize power control. Both GNNs are updated jointly during
backpropagation, allowing for simultaneous learning of edge weights and policy parameters.

UEs’ Requirements and Traffic Modeling

In the proposed system model, the process of generating users follows a Poisson cluster process
(PCP). A PCP is a stochastic point process that represents the union of points generated by M

independent homogeneous Poisson point processes (PPPs) centered around base stations in the
Euclidean space R2. Formally, let ΦCi

represent a homogeneous PPP centered at base station
Ci with intensity λCi

> 0. This PPP generates a set of random points s ∈ R2, denoted by Cs,i.

62 Chapter 5. Distributed Learning for Radio Resource Management

5.6. PO-MDP Formulation

Each user is classified into one of S distinct categories based on their BER requirements. Con-
sequently, the i-th base station Ci is characterized by S intensity parameters, denoted as λ

(k)
Ci

,
where k ∈ {1, . . . , S} represents the category index. These intensity parameters account for the
distinct user categories associated with each base station. The resulting PCP, denoted by U , is
then expressed as the union of all generated points:

U =
⋃

i∈{1,...,M}
k∈{1,...,S}

C(k)s,i . (5.6)

To satisfy the varying BER requirements of different user categories, an independent adaptive
modulation and coding scheme (MCS) is employed for each category. This adaptive MCS
adjusts the link’s spectral efficiency, denoted by η, on a per-user basis to ensure that the required
average BER is met for every k-th user category.

The relationship between the signal-to-noise ratio and the average bit error rate Pb for an un-
coded M-QAM modulation scheme can be derived from the union bound on error probability.
This yields a closed-form expression that depends on the minimum distance between signal
constellation points, as given by [117]:

Pb ≃
1

log2 L

L− 1

L
erfc

(√
|h0|2
2 ·N

)
, (5.7)

where L =
√
M represents the modulation constellation order, 2|h0| denotes the minimum

distance between signal constellation points, and N is the noise power.

5.6 PO-MDP Formulation

The MARL problem is modeled as a partially observable Markov decision process (PO-MDP),
where agents gather local observations from the global environment. Since the optimization
problem involves distributed agents working towards an optimal power-tuning configuration,
and there are no temporal dependencies between the agents’ actions, the problem is treated as
a stateless PO-MDP. In this formulation, the state transition dynamics are independent of past
states or actions. The corresponding PO-MDP tuple is defined as ⟨S,A, Ra⟩.

Observation Space

Each agent collects information on user traffic distribution over a fixed-size grid G, defined in
polar coordinates and partitioned into bins, indexed by distance d and angle ϕ relative to the base
station’s position. This results in a state space of fixed dimensions, which can be represented as

Chapter 5. Distributed Learning for Radio Resource Management 63

5.6. PO-MDP Formulation

a 3D tensor:

S =

ud1,ϕ1 . . . ud1,ϕn

ud2,ϕ1

. . . ud2,ϕn

udm,ϕ1 . . . udm,ϕn

 , (5.8)

where ud,ϕ = (u
(1)
d,ϕ, . . . , u

(S)
d,ϕ) is a vector representing the aggregated traffic for all user cate-

gories, and each u
(k)
d,ϕ is calculated as:

u
(k)
d,ϕ =

∑
l∈Gd,ϕ

t
(k)
l , (5.9)

where t
(k)
l represents the traffic demand of the l-th user of category k in the bin indexed by

(d, ϕ) within G.

Action Space

Each agent i is tasked with tuning its own transmission power pi, selected from a discrete set,
based on its local observations. The action space is defined as:

A = {p0, . . . , pP} , (5.10)

where P represents the number of available power levels.

Optimization Problem

The objective guiding the distributed agents is to achieve an optimal solution for the power
control problem. The set of agents aims to solve the following maximization problem:

argmax
p

∑
l∈G

∑
k

η
(k)
l (p, Bl)Bl , (5.11)

where η
(k)
l (p, Bl) represents the link spectral efficiency for the l-th user, considering all users

within the reference area defined by G. The link spectral efficiency η
(k)
l is a function of the

perceived SINR, the service category k (each corresponding to different requirements of BER),
and the available bandwidth for the l-th user Bl that is affected by the noise power. In this
formulation, power constraints are inherently set by the action space definition (Sec. 5.6), as
each agent (or base station) must operate within its maximum available power pP . Additionally,
Bl is determined by the specific scheduling mechanism and the total number of users connected
to the serving cell of that user and considering a system bandwidth B. In this framework,
we consider a full frequency reuse scenario, meaning that all users share the entire system
bandwidth B without any dedicated frequency partitioning.

64 Chapter 5. Distributed Learning for Radio Resource Management

5.7. Graph Multi-Agent Reinforcement Learning

The objective function in (5.11) takes into account two critical factors: first, agents must choose
an appropriate collective power configuration p to maximize the average link spectral efficiency.
Second, the agents should perform mobility load balancing (MLB) to balance the number of
users across different base stations. User assignments to base stations occur after executing
action a, following a best-server criterion. Notably, optimizing the link spectral efficiency
depends on the distribution of user categories across base stations, which have distinct BER
requirements, leading to complex interference dynamics.

5.7 Graph Multi-Agent Reinforcement Learning

In the considered scenario, centralized training with decentralized execution (CTDE) is em-
ployed, alongside parameter sharing. This method enables agents to share their individual tra-
jectories with a centralized entity during training, facilitating the learning of a shared policy.
Policy derivation relies on policy gradient methods. Specifically, for the numerical experiments
detailed in the following sections, the REINFORCE algorithm [37, 38] is used. As described
in Sec. 2.1, REINFORCE provides an approximation of the state distribution u and the value
function Q, as defined in Eq. (2.7), using Monte Carlo sampling. Notably, REINFORCE follows
a model-free, on-policy approach, where the summation over states s and actions a can be
naturally substituted by an averaging procedure over the target policy π:

∇J(θ) = Eπ [Qπ(St, At)∇π(a | St,θ)] . (5.12)

Through algebraic derivation [36], Eq. (5.12) yields the following update rule for REINFORCE:

θ ← θ + α ∇ ln π(At|St,θ) R(τ)︸ ︷︷ ︸
∇J(θ)

, (5.13)

where R(τ) represents the return for a trajectory τ sampled over policy π. In the scenario
considered, the MDP is stateless, meaning each episode corresponds to a single action step.
While the policy is trained centrally, during execution, each agent has access only to local
information, and all agents operate in a distributed manner with implicit coordination. By
parameterizing the policy π with GNNs, a fully decentralized execution strategy is enabled.
This approach allows agents to transform and aggregate local features from neighboring agents
via message passing. The GNN architecture used in the numerical experiments is the local
k-dimensional GNN (Local k-GNN) [118], whose update function can be expressed as follows:

h(l+1)
v = σ

(
W

(l)
1 h(l)

v +W
(l)
2 AGG

({
e(l)u,v · h(l)

u , ∀u ∈ Nv

}))
, (5.14)

where e
(l)
u,v represents the edge weight between node u and node v, which is computed using

Chapter 5. Distributed Learning for Radio Resource Management 65

5.8. Simulation and Numerical Results

one of the strategies presented in Sec. 5.5, while W
(l)
1 and W

(l)
2 are learnable matrices. As

demonstrated by the numerical results in the subsequent sections, modeling edge weights using
different strategies (i.e., introducing biases on what to communicate through message trans-
formation, and to whom to communicate via message passing) has a significant impact on the
agents’ ability to learn cooperative behaviors, ultimately enhancing overall performance.

5.8 Simulation and Numerical Results

To validate the proposed framework and assess the impact of different graph modeling strate-
gies on learning cooperative behavior, a series of numerical experiments were conducted in a
simulated network scenario. The setup consists of 11 base stations with randomly generated
traffic, as outlined in Sec. 5.5. The system bandwidth is set to B = 60 MHz, the carrier fre-
quency to fc = 3.7 GHz, and the channel model follows the 3GPP UMa path loss model [119].
Four graph modeling strategies discussed in Sec. 5.5 are evaluated, using a baseline strategy
that employs REINFORCE combined with a classical DNN-based policy parameterization.
Specifically, the “relation-based edges” strategy—introduced in general terms—has been eval-
uated here using a mutual interference criterion. This criterion considers an average-to-worst-
case scenario, where the serving cell transmits at average power, while the interfering cell trans-
mits at maximum power. Mutual interference is significantly influenced by the distribution of
users across different service categories. Base stations that primarily serve users with more de-
manding requirements are more susceptible to inter-cell interference compared to those serving
other user groups. For all training and inference tests, the number of service categories, S, is
set to 3, where the the BER requirements for each category are set to 10−1, 10−3, and 10−5.

Training Performance

Fig. 5.3 presents the training performance of the simulated network environment. It shows the
evolution of the average reward over the training epochs for the four graph models and the
baseline, highlighting their respective performance. A total of 30 training instances were con-
ducted, and the results are presented as mean rewards with 99% confidence intervals. As the
figure indicates, the use of GNN-based policy parameterization results in faster convergence
and overall better performance compared to the DNN-based policy. Since both methods em-
ploy CTDE with parameter sharing, the results emphasize the importance of enabling agents to
communicate their local features to their neighbors, which significantly enhances cooperation
and overall performance. Furthermore, the figure shows that the choice of graph structure plays
a critical role in performance. The unweighted graph with binary edges, which cannot differ-
entiate between more or less relevant neighbors, achieves only mediocre results. In contrast,
graph structures that embed contextual information—such as physical proximity (orange curve)

66 Chapter 5. Distributed Learning for Radio Resource Management

5.8. Simulation and Numerical Results

0 10000 20000 30000 40000 50000 60000
Epoch

0

2

4

6

8

10

Av
er

ag
e

re
wa

rd
 g

ai
n

[M
bp

s]

GNN with binary edges
GNN with distance-based edges
GNN with relation-based edges
GNN with learning-based edges
Decentralized DNN

Figure 5.3: Training performance as a function of the number of training epochs.

or mutual interference (green curve)—outperform the simpler models. This finding highlights
the advantage of incorporating domain knowledge into the problem formulation, driving the
agents’ collective behavior towards a better solution in a shorter time. Lastly, the graph with
learnable edge weights (red curve) stands out as the most effective approach, as it learns the
optimal edge weighting and policy parameterization in an end-to-end fashion by leveraging the
geometrical features of the environment, as described in Sec. 5.5.

Generalization Tests

A distinctive feature of GNNs is their strong generalization capability, attributed to their in-
herent permutation equivariance (Sec. 2.3). This section presents and discusses the inductive
capability of the proposed models. As in the training phase, results are based on 30 independent
runs, with the mean score reported alongside 99% confidence intervals. The values are normal-
ized with respect to the rewards achieved by the learnable edges-based GNNs trained on larger
networks for the same number of epochs.

Fig. 5.4 illustrates the performance of the learned models when deployed in networks of increas-
ing size. It is evident that all GNN models maintain stable or slightly improved performance
as the network grows in size. This trend is linked to the increasing complexity of the learn-
ing task, which becomes more challenging as the network size expands. These results suggest
that training on smaller scenarios effectively scales to larger, unseen environments. Notably,
the GNN with learnable edges demonstrates superior performance, indicating not only better

Chapter 5. Distributed Learning for Radio Resource Management 67

5.8. Simulation and Numerical Results

2x 4x 6x 8x 10x
Network size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
re

wa
rd

GNN with binary edges
GNN with distance-based edges
GNN with relation-based edges
GNN with learning-based edges
Decentralized DNN

Figure 5.4: Inference test – network of increasing size.

policy learning but also better generalization to larger networks.
Finally, Fig. 5.5 presents the performance of the learned models when tested on networks with
increasingly distinct traffic patterns from those seen during training. In the simulation, traffic is
modeled using a Poisson cluster process (PCP), with each base station linked to three λ rates
corresponding to each user category. The x-axis measures the difference in traffic patterns using
cosine similarity between the vectors of λ rates, where the vector dimension is three times the
number of agents in the system. As in the previous case, results are normalized with respect
to the rewards of the learnable edges-based GNNs trained under increasingly different traffic
conditions. Despite a slight performance drop with varying traffic patterns, all GNN models
show strong generalization ability. Again, the GNN with learnable edges delivers the best
performance, underscoring its robustness in diverse traffic conditions.

68 Chapter 5. Distributed Learning for Radio Resource Management

5.8. Simulation and Numerical Results

0.95± 0.85± 0.75± 0.65± 0.55±
Cosine similarity between user distribution parameters

during training and test stages

0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
re

wa
rd

GNN with binary edges
GNN with distance-based edges
GNN with relation-based edges
GNN with learning-based edges
Decentralized DNN

Figure 5.5: Inference test – varying user distribution.

Chapter 5. Distributed Learning for Radio Resource Management 69

Chapter 6

Deep Learning and 5G Architectures for
Industrial IoT

The advent of 5th generation (5G) cellular technology has marked the beginning of a new era
in connectivity and innovation [120]. Serving as the backbone for the IoT, 5G networks are
poised to transform how data is collected, processed, and applied across multiple sectors and
industries [121], [122], [123]. In this context, 5G technology empowers the industrial internet-
of-things (IIoT) by enabling continuous equipment monitoring, with real-time data collection
from sensors and machinery [124], [125], [126]. This data-rich environment, coupled with
advanced data analytics and deep learning (DL) algorithms, enables industries to optimize op-
erations, extend equipment lifespan, reduce downtime, and mitigate safety risks from potential
failures [127]. As described in [124] and [125], the 5G Alliance for Connected Industries and
Automation (5G-ACIA) categorizes industrial use cases into several application areas:

– Factory Automation: Encompasses use cases for the automated control, monitoring, and
optimization of processes and workflows within a factory setting.

– Process Automation: Focuses on controlling production processes and managing mate-
rials, improving efficiency, safety, and energy use.

– Human-Machine Interface (HMI): Involves use cases where human operators interact
with production systems.

– Logistics and Warehousing: Covers transportation and storage of goods and materials
in industrial environments.

– Monitoring and Maintenance: Pertains to passive monitoring of industrial processes
and equipment for maintenance purposes.

71

Table 6.1: Association between application areas (rows) and industrial use cases (columns)
[124], [125].

MC CC MCP MR MWSN RAM AR CLPC PM PAM
Factory × × × ×

automation
Process × × × × ×

automation
HMI × ×

Logistics × × ×
and warehousing

Monitoring × × × ×
and maintenance

Each application area corresponds to a set of use cases. The relationship between application
areas (rows) and specific use cases (columns) is shown in Table 6.1.
The 5G-ACIA identifies several key use case categories for IIoT applications:

– Motion Control (MC in Table 6.1): These systems control the movement of industrial
machinery components with precision. Motion control systems, often implemented as
closed-loop control systems, cyclically collect sensor data and issue actuator commands.
An example is in automotive production, where conveyor synchronization for the body-
chassis marriage requires reliable communication.

– Control-to-Control (CC in Table 6.1): This category ensures safe interactions between
machinery and human operators. It includes two sub-cases:

– Local Control-to-Control: Involves devices with separate controllers interacting to
perform tasks, like shuttles in packaging machines communicating positions over
5G interfaces. Failed communication can lead to machine shutdowns.

– Remote Control-to-Control: Involves devices that typically operate autonomously
but need remote control for service or maintenance, such as remote control in as-
sembly lines.

– Mobile Control Panels (MCP in Table 6.1): Related to configuring, monitoring, and
maintaining machines or production lines.

– Mobile Robots (MR in Table 6.1): Mobile robots, used for tasks like object transporta-
tion in workshops, require precise interaction with their environment. Advanced indus-
trial robots use virtualized control systems, enabling flexible reconfiguration and reducing
deployment costs. AGVs, a sub-case, transport goods across factory floors. These vehi-
cles can be remotely controlled via wireless links and equipped with obstacle detection,
allowing for immediate response to potential issues.

72 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.1. Literature Overview

– Massive Wireless Sensor Networks (MWSN in Table 6.1): Monitor industrial equip-
ment and environmental conditions like temperature and vibration.

– Remote Access and Maintenance (RAM in Table 6.1): Refers to remote machine com-
munication for maintenance purposes, such as inventory management or extracting event
logs.

– Augmented Reality (AR in Table 6.1): Augmented reality enables remote monitoring
and operator assistance in complex environments, like nuclear plants, via specialized
equipment.

– Closed-Loop Process Control (CLPC in Table 6.1): Involves using sensor data to control
actuators and prevent accidents. Two sub-cases include:

– Process Monitoring (PM in Table 6.1): Focuses on gathering environmental data for
process monitoring. Reliability is a key requirement here.

– Plant Asset Management (PAM in Table 6.1): Utilizes sensor data to assess the
health of industrial assets, such as pumps or valves, detecting malfunctions in real-
time.

This chapter will conduct a holistic performance analysis of 5G IIoT networks in safety-critical
scenarios. As an illustrative example, in the context of “Monitoring and Maintenance,” we
explore the case of estimating the RUL of critical assets. Consider AGVs transporting hazardous
liquids, where failure could pose a risk to workers. These events can be anticipated using
data-driven RUL estimation. In 5G-enabled systems, AGVs collect real-time sensor data and
transmit it to a server, where DL methods predict failures. This enables preventative actions,
such as stopping the AGVs if a failure is foreseen, preventing liquid spills.

6.1 Literature Overview

The performance of 5G networks has been widely explored in the literature. Simulation tools are
indispensable for studying the behavior of complex wireless systems, such as cellular networks.
For instance, a system-level simulator is developed in [128] to investigate 5G networks, and
it is further expanded in [129] to study ultra-reliable low latency communication (URLLC)
scenarios, focusing on key metrics like latency, reliability, and throughput. Similarly, ns-3
[130], a discrete event network simulator, enables the simulation of various network types. The
module introduced in [131] allows the simulation of 5G mmWave networks, analyzing several
KPIs. In addition, custom simulators, such as the one in [132], have been developed to study
URLLC use cases in IIoT scenarios. While these works evaluate 5G systems primarily through

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 73

6.1. Literature Overview

KPIs and occasionally refer to requirements like those outlined by 5G-ACIA in [124], they do
not focus on experimental industrial use cases with specific requirements.

With the advancements in 5G devices, empirical evaluations of 5G New Radio (5G NR) per-
formance are emerging, as seen in [133, 134]. The study in [135] assesses 5G performance
for industrial automation but considers only generic requirements and use cases, not real-world
applications.

In contrast, the works in [136] and [137] explore IIoT scenarios where a 5G network enables
communication between an AGV and a remote programmable logic controller (PLC) that con-
trols the AGV’s movements. [136] evaluates system performance in terms of deviation from
planned trajectories and energy consumption, while [137] seeks to predict AGV malfunctions
by analyzing network traffic data. Despite the innovative approaches, both studies exhibit cer-
tain limitations. First, they only evaluate performance in terms of deviation from the planned
trajectory, neglecting the application’s specific requirements and failing to break down the im-
pact of network, actuation, and inference times on performance. Additionally, they do not assess
the influence of multiple AGVs on system performance.

Reliable remaining useful life (RUL) estimation is another critical component in industrial envi-
ronments, with the popularity of data-driven approaches rapidly growing. These techniques use
historical sensor data to detect potential hazards by analyzing signal patterns and establishing
RUL through inferred data correlations and causal relationships. Deep learning methods are
increasingly employed in this domain. For instance, autoencoders (AEs) are utilized in RUL
estimation to compress complex features into main components, followed by predictions using
DL networks [138]. recurrent neural networks (RNNs), specifically deep long-short term mem-
ory (LSTM) networks, have also been used for low-error prediction models, as demonstrated
in [139, 140]. More recently, CNNs have gained traction; in [141], multiple sensors and time
windows are used to predict the RUL of industrial engines. Combining these approaches can
further enhance prediction accuracy [142, 143].

Building on this background, this chapter introduces a safety-critical scenario in which we de-
velop a DL-based pipeline for RUL estimation, leveraging real sensor data from experiments
conducted in a pilot production plant. We investigate the performance of 5G networks under
various configurations of 5G NR and 5G core network (5CN), focusing on key factors such as
the number of AGVs, bandwidth, operating frequency, and the number of gNBs on RTT. A
holistic analysis is performed on the system, combining the 5G network with the DL-based
pipeline, addressing RTT requirements, and considering the inter-dependencies between com-
munication networks and data-driven applications in IIoT settings.

74 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.2. Data-Driven RUL Prediction Pipeline

6.2 Data-Driven RUL Prediction Pipeline

This chapter provides a comprehensive performance analysis of 5G IIoT networks in safety-
critical environments. As an example, we examine the estimation of the RUL of vital assets.
Specifically, consider AGVs transporting hazardous liquids, where a malfunction could endan-
ger workers. These risks can be mitigated by using data-driven RUL predictions. In 5G-enabled
systems, AGVs continuously gather real-time sensor data and send it to a server, where deep
learning techniques are applied to predict potential failures. This allows for proactive measures,
such as halting the AGVs before a failure occurs, preventing hazardous spills.

RUL Estimation as Binary Classification Problem

RUL prediction is a critical task that aims to estimate the amount of time until a machine or
system fails [144]. RUL prediction can be formulated as a binary classification task, where
the objective is to predict whether a machine or system will fail within a certain time horizon.
Within this formulation, sensor data are used to train DL models that can accurately classify
machines into different RUL classes. In the considered scenario, the classes are two: one for
representing the correct functioning of the system, the other for anomalous situation leading to
liquid falls from the AGV.

In binary classification settings, it is necessary to define the concept of margin, inherently
bounded to the problem formulation. The margin is a parameter of the system that corresponds
to the number of samples preceding the anomaly that are classified as anomalous. In this sce-
nario, if the margin is m and sampling frequency is 10 Hz, then the algorithm can predict the
anomaly at most m− 1 tenth of seconds in advance. In the time series, the last m samples will
be labeled as anomalous, while the others will be associated with the correct functioning of the
system.

Deep Learning-based Pipeline for RUL prediction

To perform RUL estimations in binary classification settings, we implemented DL-based pipeline
involving two main components: a DL model and an optimized threshold. The model is trained
on data collected during the experimental campaign to predict the RUL of the system. In gen-
eral, the raw output of a model trained for binary classification is produced by a sigmoid and
it is rounded to a binary value using the default threshold of 0.5. However, in our pipeline this
threshold is further fine-tuned via an iterative optimization algorithm, which aims to find the
optimal threshold to be applied on the DL model output which minimizes the cost determined
with a given cost model.

In the pipeline, the dataset should be partitioned in 4-folds for training, optimization, and testing

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 75

6.3. System Model

purposes. Specifically, the partitions required are: 1) a training set to train the DL model, 2) a
validation set to assess the DL model performance at training time, 3) another validation set to
optimize the threshold, and 4) a test set to evaluate the overall performance.
Several DL algorithms are selected and tested, including logistic regression (LR), deep neural
networks (DNNs), autoencoders (AEs), convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and vanilla transformers (VTs) [145–148]. The training code is detailed and
presented on Github 1, including the set of hyper-parameters tested. An optimal threshold over
the AGV axial acceleration is considered as baseline model for this task, since in this use case
abrupt braking is often associated to fall events.

6.3 System Model

In this section, the network system model implemented in the simulator is presented. We illus-
trate the network architecture, and the deployment, channel, and traffic models.

Network Architecture

Several architectures are considered, with different 5G NR and 5CN setups. The considered
5G NR configurations are the following:

1. RAN operating in FR1;

2. RAN operating in FR2.

We assume that RAN is always deployed inside the industrial plant. The impact of different
number of gNBs in each case is explored in following sections.
At the same time, we consider various configurations of 5CN, varying in the locations of user
plane function (UPF) and the application server and their distance D from the industrial plant:

1. non public network (NPN) on-premise: this configuration features a completely private
network, with 5CN deployed within the factory (D = 0 m);

2. NPN on-net: the 5CN is hosted at operator’s premises, and a dedicated pool of resources
is allocated to the client. 5CN is located up to tens of kilometers away (D > 10 km);

3. public network (PN): the used 5CN is the public one, there it can be hundreds of kilome-
ters away (D > 100 km).

Different 5G NR and 5CN configurations lead to different performance in terms of RTT. We
consider four different architectures, and from now on they are referred to as follows:

1Code: https://github.com/Lostefra/5G-IoT-AGV-RUL-prediction

76 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.3. System Model

(a) Arch. 1. (b) Arch. 2 and 3. (c) Arch. 4.

Figure 6.1: Representation of the four considered architectures.

1. Architecture 1: PN with RAN operating in FR1;

2. Architecture 2: NPN on-net with RAN operating in FR1;

3. Architecture 3: NPN on-net with RAN operating in FR2;

4. Architecture 4: NPN on-premise with RAN operating in FR2.

The four different architectures are pictured in Fig. 6.1.

Deployment Model

Before describing the deployment model, it is worth mentioning that, although the data gath-
ering has been conducted using a single AGV, in the following sections we assume to have
several AGVs. Furthermore, the simulated production plant is larger than the real one since
the latter is too small to accommodate the intended number of AGVs. The industrial plant is
represented as a rectangular cuboid whose dimensions are length (l), width (w), and height (h),
as shown in Fig. 6.2. Production machines are modelled as cubes of side sc positioned to main-
tain a given inter-machine distance d (measured from the center of the lower base), and they act
as obstacles for communications between AGVs and gNBs. Within the factory, N AGVs are
deployed in areas not occupied by the obstacles. The RAN is composed by one or two gNBs,
located in positions determined by the output of Alg. 3 and operating in FR1 or FR2, depending
on the architecture. If multiple gNBs are present, the total available bandwidth is equally split

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 77

6.3. System Model

Figure 6.2: Reference industrial scenario with 2 gNBs.

Algorithm 3 gNBs placing algorithm
Variables:

– x: longest side of the factory plant

– y: shortest side of the factory plant

– NG: number of gNBs, NG ∈ {1,2}
– coordinatesj : position of gNBj , j ∈ {1, . . . , NG}

Start:
step x← x

NG·2
for j ∈ {1, . . . , NG} do

xj ← step x · (2j − 1)
yj ← y

2
coordinatesj ← (xj , yj)

end for

between them, whitout considering frequency reuse. Each AGV communicates in both uplink
and downlink with gNBs, whose traffic model is described in the Sec. 6.3.

Channel Model

The channel model considered is detailed in 3GPP technical report (TR) 38.901 [149]. In
particular, the model proposes four indoor factory (InF) scenarios, depending on the density of
obstacles and the height of transmitters and receivers. Each of them is characterized by different
path loss (PL) and different log-normal shadowing fading. PL and shadowing, in turn, depends
on having line-of-sight (LoS) or non line-of-sight (NLoS) condition between AGVs and gNB.
This property is verified geometrically in our simulator, observing if the line that joins AGV and
gNB intersects any obstacle. After determining PL, it is possible to evaluate the signal quality.
The figure of merit we consider is signal-to-noise-ratio (SNR), expressed as follows:

SNR =
PRX

PN

, (6.1)

where PRX is the received power and PN is the noise power. PRX can be expressed as:

78 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.4. 5G-NR Simulation Setup

PRX =
PTX ·GTX ·GRX

PL · SH
, (6.2)

where PTX is the transmit power, GTX is the transmission gain, GRX is the reception gain, PL is
the path loss, and SH is the log-normal shadowing component. PN can be expressed as:

PN = kB · T ·B, (6.3)

where kB is the Boltzmann constant, T is the noise temperature, and B the bandwidth used by
the gNB. If two gNBs are present, it is clear that, since each gNB uses half of the available
bandwidth, PN will be lower.

SNR determines if a data plane physical (PHY) protocol data unit (PDU) is correctly received
and which is the modulation order used by the transmitter.

Traffic model

The traffic model implemented in this work emulates the behavior of AGVs within the refer-
ence scenario: each AGV periodically sends information to the application server in the format
described in Sec. 6.6, while the server sends a potential “failure alert” message only when the
DL-based pipeline predicts a liquid fall. Therefore, the transmission of messages from the
server to the AGV is aperiodic and the distribution of this process is determined by the consid-
ered DL-based pipeline and by the path travelled by the AGV. In the simulator, we consequently
modeled uplink traffic as periodic, and downlink traffic as Gaussian distributed with mean µDL

and standard deviation σDL.

6.4 5G-NR Simulation Setup

In this section, we present the 5G NR compliant network simulator that has been developed. It
is worth emphasizing that in this section, we refer to UEs instead of AGVs, since the imple-
mented scheduler is independent of specific device types. We begin by introducing the 5G NR
framework, followed by an overview on clustering of UEs, which determines the gNB serving
them, and we conclude by explaining the implemented scheduler. The simulator implements a
multi gNB system, an advanced channel model, and a scheduler.

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 79

6.4. 5G-NR Simulation Setup

5G-NR framework

We start this subsection by introducing the time-frequency structure determined by the OFDM
waveform. In the frequency domain, we transmit on a carrier frequency fc using a bandwidth
B, and a subcarrier spacing (SCS) ∆f . The bandwidth B is partitioned into nRB RBs, with
each consisting of 12 OFDM subcarriers, in particular:

nRB =

⌊
B

12∆f

⌋
, (6.4)

It is worth mentioning that the available bandwidth B is equally split among available gNBs.

In the time domain, OFDM symbols are organized into slots of 14 OFDM symbols each. How-
ever, since Rel. 15, in order to reduce latency, it is allowed to transmit over fractions of slots, the
so called “mini-slot” transmission. In this simulator, we used mini-slots of 7 OFDM symbols
each, and we used it as scheduling unit (SU) in both control plane and data plane.

We implemented the messages used in [132, 150], which are:

– physical uplink control channel (PUCCH): used by UEs when they ask to the gNB re-
sources for their uplink transmission. It occupies 1 SU and 1 RB;

– physical downlink control channel (PDCCH): used by gNB when it informs the UEs
which resources they can use, if any, for uplink or downlink transmission. It occupies 1
SU and 1 RB;

– physical uplink shared channel (PUSCH): used by UEs to transmit data plane PHY PDU.
It occupies at least 1 RB and 4 OFDM symbols;

– physical downlink shared channel (PDSCH): used by gNB to transmit data plane PHY
PDU to UEs. It occupies at least 1 RB and 4 OFDM symbols;

– hybrid automatic repeat request (HARQ): used to notify the sender regarding the outcome
of a PUSCH or a PDSCH transmission. It occupies 1 RB and 2 OFDM symbols.

The time needed to send PUSCH/PDSCH plus the reception of their correspondent HARQ is
exactly 1 SU, assuming that 1 OFDM symbol is needed for the radio to switch from transmission
to reception mode. It is important to note that this is done assuming that we are using half-
duplex devices. The duration of 1 SU is fixed in terms of OFDM symbols but variable in terms
of milliseconds because the OFDM symbol duration depends on SCS, which, in turn, affects
the SU duration.

80 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.4. 5G-NR Simulation Setup

Algorithm 4 Clustering algorithm
Variables:

– UEi: i-th UE, i ∈ {1, . . . , N}
– gNBj : j-th gNB, j ∈ {1, 2}
– SNRi,j : SNR perceived by UEi from gNBj

– UEi,j : UEi is associated to gNBj

– ξ: maximum imbalance factor between two clusters, ξ ∈ [0, 1]

– nj : number of UE associated to gNBj

– x: index associated to the gNB with more UEs

– y: index associated to the gNB with less UEs

Start:
/* compute all SNRi,j */
for j ∈ {1, 2} do

for i ∈ {1, . . . , N} do
compute SNRi,j

end for
end for

/* assign UEs to gNBs */
for i ∈ {1, . . . , N} do

if SNRi,1 ≥ SNRi,2 then
assign UEi,1

else
assign UEi,2

end if
end for

/* perform load balancing */
while nx > N · (ξ + 1) / 2 do

find UEi,x such that SNRi,y ≥ SNRz,y , ∀UEz,x

UEi,x → UEi,y /* associate UEi to the other gNB */
end while

Multi-gNB management and Clustering

In this work, we compare the performance of a single gNB system with that of a multi-gNB.
Specifically, we address the case in which the multi-gNB system comprises two gNBs. If there
is only one gNB, it is placed at the center of the ceiling of the production plant, while if there
are two gNBs, we place them in the centers of two rectangles of the same size that partition the
production plant, using Alg. 3.

In a multi-gNB system clustering has to be performed: UEs are assigned to one of the gNBs
based on their SNR. The clustering algorithm (Alg. 4) tries to maximize the SNR of each UE,
while guaranteeing a certain level of balance among clusters. For example, when the maximum
imbalance factor ξ is equal to 0.2, each cluster must have at maximum 60% of UEs and at
minimum 40% of UEs.

This algorithm is executed only once in the initialization phase of the system. It is worth men-
tioning that the simulator operates with a time basis of 1 OFDM symbol, which corresponds
to the radio switch time, as shown in Sec. 6.4. In a real system, the time needed for AGVs
to move from an area with good coverage to another with bad coverage, hence necessitating a

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 81

6.4. 5G-NR Simulation Setup

handover, can be in the order of tens of seconds or even minutes. Therefore, the simulator is
not suitable to study the impact of handover on system performance: the implementation of a
run-time handover algorithm and an AGV mobility model is beyond the scope of this work.
In Alg. 4, we firstly compute the SNR between each UE and each gNB. Subsequently, we
assign each UE to the gNB that provides the best SNR, neglecting shadowing effects. If the
cluster imbalance exceeds the maximum allowed, it is necessary to re-associate some of the
UEs. In particular, considering gNBx as the gNB with the higher number of UEs and gNBy as
the one with the fewest, the UEs currently associated with gNBx that exhibit the highest SNR
with respect to gNBy are selected for re-assignment to gNBy. It is worth mentioning that B is
equally splitted among the two gNBs.

5G-NR scheduler

The communication is managed by schedulers, one per gNB, and they work independently from
each other. Since the available bandwidth B is equally split among gNBs, and their bandwidths
do not overlap, the scheduler does not have to handle interference. Each scheduler allocates
resources to the UEs assigned to their gNB. Remarkably, assignments are performed by the
clustering algorithm described in Section 6.4.
We implemented a dynamic scheduler. The time axis is organized into groups of 8 SUs, referred
to as TCPP, which represents the control plane periodicity. These groups are further subdivided
into two sets of 4 SUs each: the first 4 SUs are used for control plane messages and are needed to
provide resource allocation to the UEs, while the second 4 SUs are used for data plane messages
and so for the effective transmission of information. In some instances, the number of RBs may
not be sufficient to ensure that all the UEs can request and then receive assignment of resources
in a single TCPP. To address this, we concatenate multiple TCPP, each one dedicated to a clearly
defined set of UEs, until we serve them all in the control plane: we call this time interval TSRP,
representing the scheduling request periodicity, that indicates how often control plane resources
are associated to an UE. Even if control plane resources are allocated every TSRP, an UE might
not have enough data plane resources to send all its bytes of information and in this case, other
resources will be allocated in the subsequent TSRP, unless a packet is discarded due to exceeding
the maximum allowed latency (indicated as QDL for downlink transmissions and QUL for uplink
ones).
The allocation of control plane resources is predetermined and it is static. Each UE has prior
knowledge regarding the resources to be used for PUCCHs transmission and PDCCHs recep-
tion. The 4 SUs dedicated to control plane are used as follows:

– first SU is used for PUCCHs transmission;

– second SU is used by the gNB for processing the received PUCCHs;

82 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.4. 5G-NR Simulation Setup

(a) Control Plane resource allocation when the number
of needed TCPP is even. nRB = 4 and n = 11.

(b) Control Plane resource allocation when the number
of needed TCPP is odd. nRB = 4 and n = 13.

Figure 6.3: Depiction of control plane resource allocation process described in Alg. 5 showing
the different approaches depending on the number of TCPP needed. n indicates the number of
AGVs while nRB indicates the number of RBs.

– third SU is used for PDCCH transmission;

– fourth SU is used by UEs for processing the received PDCCH.

In the control plane part of a TCPP, one RB is used for one PUCCH/PDCCH couple, having in
total nRB PUCCH/PDCCH couples in a TCPP. For a single UE, uplink and downlink communi-
cation requires one PUCCH/PDCCH couple each, that means one RB each in the control plane,
and these RBs might be in different TCPPs. Since downlink transmissions do not require PUCCH
messages, some resources are not utilized, but we have no alternative due to half-duplex nature
of UEs. In Alg. 5, we introduce the algorithm used to allocate control plane resources, whose
primary objective is to efficiently allocate control plane resources to UEs. We do not consider
the trivial case in which only one TCPP is needed to allocate all the resources. This alloca-
tion is designed to achieve, for each UE, a closely scheduled downlink after an uplink, thereby
minimizing the RTT. Fig. 6.3 shows the control plane resource allocation.
Concerning the data plane, the scheduler allocates resources following some policies. The
considered policies are the following, and they are applied in the order presented:

– prioritization of downlink traffic: given the importance of the information carried in
the downlink direction related to potential faults, this traffic flow is prioritized over the
uplink;

– fairness first (FF): to maintain fairness, a minimum portion of data is served for each
UE for each traffic flow direction. If there are still resources available, they are allocated
to the remaining part of UEs’ data;

– first in first out (FIFO): the users are served based on a FIFO criterion.

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 83

6.4. 5G-NR Simulation Setup

Algorithm 5 Control Plane static resource allocation
Variables:

– nRB: number of RBs

– n: number of UEs

– nUL: number of UEs allocated in uplink

– nDL: number of UEs allocated in downlink

– ULi,u,v : PUCCH/PDCCH couple for uplink of UEi in the u-th RB in the v-th TCPP

– DLi,u,v : PUCCH/PDCCH couple for downlink of UEi in the u-th RB in the v-th TCPP

– t: integer variable indicating the current TCPP, TCPP ≥ 2

– b: integer variable indicating the current RB

Uplink and downlink allocation:
function ALLOCATE UL DL(t):

for b ∈ {1, . . . , nRB} do
if t % 2 == 1 then

nUL ← nUL + 1
allocate ULnUL,b,t

if nUL == n then
break

end if
else

nDL ← nDL + 1
allocate DLnDL,b,t

if nDL == n then
break

end if
end if

end for
end function

Start:
/* Standard UL/DL allocation */
nUL ← 0
nDL ← 0
NT ← ⌈ 2·nnRB

⌉
if NT % 2 == 0 then

for t ∈ {1, . . . , NT } do
ALLOCATE UL DL(t)

end for
else

for t ∈ {1, . . . , NT − 2} do
ALLOCATE UL DL(t)

end for

/* allocate all remaining uplink resources */
for b ∈ {1, . . . , n% nRB} do

nUL ← nUL + 1
allocate ULnUL,b,NT−1

end for

/* fill second-last TCPP with downlink resources */
for b ∈ {n % nRB + 1, . . . , nRB} do

nDL ← nDL + 1
allocate DLnDL,b,NT−1

end for

/* allocate all remaining downlink resources */
for b ∈ {1, . . . , nRB} do

nDL ← nDL + 1
allocate DLnDL,b,NT

if nDL == n then
break

end if
end for

end if

84 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.5. Performance Metrics

6.5 Performance Metrics

The overall system performance are assessed through the following steps:

1. DL-based pipeline. We define a cost model C (Sec. 6.5) to evaluate the learning perfor-
mance of DL-based pipeline (Sec. 6.6).

2. RTT analysis. We perform a RTT analysis of the whole system (Sec. 6.5), with a partic-
ular focus on 5G network, and we evaluate the performance of 5G NR setups in Sec. 6.6.

3. End-to-end performance analysis. We assess the compatibility between the presented
architectures and the DL-based pipeline while varying the number of AGVs (Sec. 6.6),
also taking into account the execution time of the DL-based pipeline.

To perform these assessments, we need to define the performance metrics, which include the
cost model C and RTT.

Cost Model

In binary classification settings, the last activation function of DL models is usually a sigmoid,
which produces continuous values in the interval [0, 1]. Generally, 0.5 is the default threshold
used to round the output values to either 0 or 1. However, this threshold can be tuned to mini-
mize a cost model C through an iterative algorithm. In particular, the expression of C for a DL
model X over a set of K time series S = {S1, S2, . . . , SK} can be formulated as follows:

C =
K∑
k=1

Pk∑
p=1

CFP +
K∑
k=1

Qk∑
q=1

CFN(sq, Sk,m), (6.5)

where Pk is the number of false positive samples for the k-th time series, Qk is the number of
false negative samples for the k-th time series, CFP is the cost for a false positive sample, CFN

is the cost for a false negative sample. The expressions for CFP and CFN highly depend on
the specific application requirements. For instance, in this case, in order to penalize more false
negative samples rather than false positive samples, we set:

CFP = 0.2

CFN(sq, Sk,m) = m− |Sk|+ q,
(6.6)

where m is the margin, Sk is a time series, and q is the index of sq in Sk. We set the cost of
false positives CFP constant, regardless of when they occur. On the other hand, the cost of false

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 85

6.5. Performance Metrics

negatives, represented by CFN, escalates as the sample approaches the liquid fall. As a safety-
critical application, the cost model focuses on false negatives (i.e., the missed anomalies) rather
than false positives (i.e, the false alarms).
Nevertheless, the primary measure for evaluating the effectiveness of the DL-based pipeline is
the average advance function ā(DX). Here, DX = {s1, s2, . . . , sK} represents the set of the
initial samples in the time series correctly identified as faulty by a specific model X with a
given margin m. This metric indicates the time duration before the actual fault occurrence and
is defined as follows:

ā(DX) =

∑K
i=1 a(si)

K
, (6.7)

where a(si) is the advance function which indicates the amount of time before the actual fault
occurs after sample si.

Round Trip Time analysis

In this work, the primary metric under evaluation is RTT. This metric represents the time
elapsed between the generation of a data sample by an AGV and the subsequent execution of
an action, after having received a command from the server. Let us analyze which are the
contributions to RTT R:

R = T5G + TPS + TA, (6.8)

where:

– T5G is the delay contribution introduced by 5G network;

– TPS is the delay introduced by the DL-based pipeline for RUL estimation;

– TA is the delay introduced by actuation performed at AGV side after the reception of a
command.

T5G can be decomposed as follows:

T5G = TP UE + TRAN UL + TP gNB + TCORE + TCORE + TP gNB + TRAN DL + TP UE = (6.9)

= 2 · (TP UE + TP gNB + TCORE) + TRAN UL + TRAN DL

This delay contribution, that is studied mainly using the simulator described in Sec. 6.4, includes
the ones introduced by 5G NR and 5CN. The components are:

86 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.6. Numerical Results

– TCORE is the one-way delay introduced by the 5CN, and its value is provided by TIM,
who conducted experiments on its own network. Due to signed NDA, it is not possible to
explain how the results have been obtained.

– TP UE represents the time required by a UE to process data during both transmission and
reception, as it traverses from the PHY layer to the application layer and vice versa;

– TP gNB represents the time required by a gNB to process data during both transmission
and reception, as it traverses from the PHY layer to the network layer and vice versa;

– TRAN UL is the time needed to perform a successful RAN transmission in uplink;

– TRAN DL is the time needed to perform a successful RAN transmission in downlink;

We can introduce two additional terms:

TNR = 2 · (TP UE + TP gNB) + TRAN UL + TRAN DL (6.10)

TCN = 2 · TCORE (6.11)

that represents the contribution of 5G NR and 5CN to RTT, respectively. By substituting (6.10)
and (6.11) in (6.8), we obtain:

R = TNR + TCN + TPS + TA, (6.12)

that highlights all the different contribution to RTT. We also introduce:

R = TNR + TCN + TPS + TA, (6.13)

that is (6.12) averaged on the total number of AGVs N and the total number of simulations NS .

6.6 Numerical Results

In this section, we present our experimental setup and the numerical results achieved, with
the aim of i) delving into the details of data-driven RUL prediction pipeline as described in
Sec. 6.2, including the cost model C; ii) showing the impact of several parameters on 5G NR
performance; and iii) illustrating the global performance of the system, taking into account both
network and RUL prediction performance.

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 87

6.6. Numerical Results

Figure 6.4: AGV’s reference system (x, y, z) for Ax, Ay, and Gz.

Sensor Data Collection and Processing

We conducted an experimental campaign to collect real-time data from an AGV (see Fig. 6.4)
navigating the industrial pilot line at BI-REX2. For each data sample, the following features
were recorded:

– TC : Collection timestamp;

– Ax: Axial acceleration along the primary axis x of the AGV, parallel to its main direction
of movement;

– Ay: Axial acceleration along the secondary axis y, perpendicular to the main movement
direction and the vertical axis;

– Gz: Angular acceleration along the vertical axis z, perpendicular to the factory floor;

– Px̂, Pŷ: AGV position on the factory floor;

– O: AGV orientation relative to the factory floor;

Multiple navigation sessions were recorded, with each session involving the AGV carrying
a water bottle. During these sessions, a sudden trajectory change caused the bottle to fall,
allowing us to label the sensor data accurately. A custom script captured the timestamp of the
fall, labeling the corresponding sensor data as a Fault event. All other data points were labeled
as Non-Fault. The data collected during each session formed a time series, representing the
AGV’s movement over time, sampled at regular 100 ms intervals, yielding an ordered sequence
of observations. All collected data have been made publicly available3.
The collected real-time data underwent several pre-processing steps to address the following
issues:

2BI-REX is an Italian Competence Center for Industry 4.0 (see https://bi-rex.it/).
3Dataset: https://www.kaggle.com/datasets/lorenzoamorosa/5g-industrial-iot-for-remaining-useful-life/.

88 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.6. Numerical Results

– Imbalanced data. In RUL scenarios, the data are typically imbalanced due to the infre-
quency of failures relative to normal operations. This imbalance can bias DL algorithms
toward favoring the majority class. To mitigate this, we applied class weighting [151], a
common technique in RUL estimation tasks for handling imbalanced datasets.

– Feature creation. This technique can improve the performance of DL models by captur-
ing more informative patterns for RUL estimation. We extracted statistical features such
as mean, maximum, minimum, and standard deviation from fixed-length windows over
the axial and angular acceleration data [152]. Additionally, we calculated derivatives by
measuring variations between consecutive data points.

– Stationarity. Time series data often exhibit trends and seasonality, leading to non-
stationary behavior [153]. We employed differencing techniques to enforce stationarity,
thereby enhancing the precision of RUL estimations by revealing clearer patterns in the
data. Specifically, we subtracted the average axial and angular acceleration values from
each data point based on the AGV’s position and orientation.

– Standardization. Finally, we standardized each feature to accelerate training conver-
gence and ensure consistent scaling. This step prevents features with larger magnitudes
from dominating the model, thereby improving overall performance.

RUL prediction pipeline performance

The RUL problem has been tackled using three distinct margins m ∈ {5, 10, 15}. Higher
margins were also considered; however, they did not lead to good results. Empirically, it was
found that a fall event is attributable on average to braking occurring from the immediately
preceding second. Consequently, a too high margin is ineffective.
In Table 6.2 all the DL algorithms listed in Sec. 6.2 are assessed for the three considered mar-
gins. The data have been collected through two measurement campaigns, carried out on distinct
days for the training and test sets. The data encompass 28 faults for the training set (correspond-
ing to almost 33.500 training data points) and 13 faults for the test set (corresponding to almost
14.000 test data points).
In particular, Table 6.2 shows that a low margin (i.e., m = 5) corresponds to a low average
advance and cost, while a high margin (i.e., m = 10 and m = 15) corresponds to a higher aver-
age advance and cost. This is a direct consequence of the fact that high margins increase both
the maximum average advance achievable and learning task complexity, since more samples far
from the actual liquid fall are labeled as faulty.
This performance trade-off poses constraints on network architectures employed in the IIoT
system and the number of AGVs that can be served simultaneously. This analysis is performed
in Sec. 6.6.

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 89

6.6. Numerical Results

m = 5 m = 10 m = 15
Model X C ā(DX) C ā(DX) C ā(DX)

BASELINE 80.80 0.24s 306.40 0.46s 448.20 1.07s
LR 96.00 0.32s 221.20 0.44s 679.60 0.45s

DNN 43.40 0.27s 142.00 0.66s 311.20 0.95s
1D-CNN 28.80 0.27s 114.40 0.80s 197.60 1.33s

AE 2396.40 0.39s 2666.80 0.90s 2561.80 1.40s
LSTM 95.40 0.20s 346.40 0.34s 569.80 0.81s

BiLSTM 61.60 0.28s 272.40 0.48s 689.40 1.08s
GRU 85.40 0.23s 290.80 0.68s 539.80 0.92s
VT 67.00 0.22s 316.80 0.47s 511.80 0.91s

Table 6.2: Cost and average advance function of seven DL models and a baseline threshold-
based approach for three different margins.

Overall, 1D convolutional neural networks (1D-CNNs) are the best-performing models, as it
can be seen from Table 6.2. They were the most effective models in capturing the local tem-
poral patterns in the data related to the RUL prediction. The evidence shows also that complex
memory-based models such as long-short term memory (LSTM), bi-directional long short term
memory (BiLSTM), and gated recurrent unit (GRU) are not effective in this particular RUL
estimation task. The reason for this is that liquid falls prediction mainly requires a small num-
ber of significant input samples, while recurrent models are specifically designed to capture
long-term dependencies and patterns found in time series data. Another significant finding is
that the reconstruction error, which autoencoders aim to minimize, might not serve as an effec-
tive predictor for the RUL. These models demonstrated notably lower performance compared
to the alternative approaches. Despite their capabilities, vanilla transformers (VTs) fall short
of reaching their full potential due to the limited availability of training data and a relatively
low number of features compared to more prominent large language models (LLMs) [154].
Moreover, when applied to forecasting tasks involving time series data, transformers models
encounter additional fundamental limitations, as discussed in [155].

5G NR performance

Using the simulator presented in Sec. 6.4, an analysis on 5G NR performance is conducted, with
a deep focus on TNR evaluation, as defined in (6.13). Unless stated otherwise, the parameters
used for the simulations are the ones reported in Table 6.3. We will often refer to two different
operating frequency ranges: FR1 (with fc = 3.5 GHz and ∆f = 30 kHz) and FR2 (with
fc = 28 GHz and ∆f = 60 kHz), where fc represents the carrier frequency and ∆f represents

432 byte is the payload used in experiments conducted in Sec. 6.6. We considered also a payload of 500 byte,
assuming that other data could be used for RUL estimation.

90 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.6. Numerical Results

Table 6.3: Simulation parameters

Parameter Description Value
B Total system bandwidth {25, 50}MHz
∆f Subcarrier spacing {30, 60} kHz
fc Carrier frequency {3.5, 28} GHz
NG Number of gNBs {1, 2}
PUL Uplink payload {32, 500} byte[4]

PDL Downlink payload 1 byte
µDL Mean of downlink probability 300 ms

distribution
σDL Standard deviation of downlink 100 ms

probability distribution
ξ Maximum imbalance factor 0

TP gNB gNB processing time 7 OFDM symbols
TP UE UE processing time 7 OFDM symbols
TCPP Control Plane periodicity 8 mini-slots
TS Simulation time 10 s
τUL Uplink periodicity 100 ms
H 5G protocol stack header 72 byte
NS Number of simulations 10
l Factory plant length 1000 m
w Factory plant width 150 m
h Factory plant height 10 m
γ Plot confidence interval 99%
T Noise temperature 290 K

PTX UE UE transmit power 23 dBm
PTX gNB gNB transmit power 30 dBm
GUE UE antenna gain 0 dB
GgNB gNB antenna gain 0 dB
QDL Maximum allowed downlink 25 ms

latency
QUL Maximum allowed uplink 75 ms

latency

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 91

6.6. Numerical Results

Figure 6.5: TNR as a function of N , NG and ξ,
considering FR1 and B = 25 MHz.

Figure 6.6: TNR as a function of N , NG and
PUL, considering FR1 and B = 25 MHz.

Figure 6.7: TNR as a function of N , NG and
PUL, considering FR2 and B = 50 MHz.

Figure 6.8: TNR as a function of N , PUL and
considered frequency range (FR1, FR2). B =
25 MHz in FR1 and B = 50 MHz in FR2.

the SCS.

Impact of the clustering algorithm. We first study the effect of clustering algorithm on TNR,
focusing on the impact of the imbalance factor ξ.

As shown in Fig. 6.5, different scenarios yield very similar results in terms of TNR, irrespective
from the number of gNBs NG and ξ. It is noteworthy that with 2 gNBs, the performance is
more similar to the case with 1 gNB when we have balanced clusters. This is due to the fact
that, in case of imbalanced clusters, we might have a higher number of AGVs associated to
a gNB that leads to requiring an higher number of TCPP in a TSRP. Imbalanced clusters are
typically employed when we have heterogeneous gNBs or to perform load balancing. Given
that our current scenario does not fall into either of these categories, we will proceed with
ξ = 0, indicating balanced clusters for the subsequent tests.

Impact of a multi-gNB system. The second experiment aims to understand when 2 gNBs are
beneficial in our scenario. In Fig. 6.6, we can see the impact of having multiple gNBs in FR1

92 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.6. Numerical Results

Figure 6.9: TNR as a function of N , NG and
B, considering FR2 and PUL = 500 byte.

Figure 6.10: TNR as a function of N , NG and
B, considering FR2, PUL = 500 byte, B ∈
{40, 50, 60, 70, 80, 90, 100} MHz, and TNR ∈
[2.5, 5.5] ms.

with different payloads PUL. The performance in terms of TNR is nearly identical. Since there is
no improvement going from 1 to 2 gNBs, this implies that the SNR improvement provided by
2 gNBs in FR1 is negligible. Moreover, since TNR does not change with PUL, this suggests that
the control plane, rather than the data plane, is the bottleneck of the system. We conclude that
2 gNBs are useless in FR1.

In Fig. 6.7, we can see the impact of having multiple gNBs in FR2 with different payloads PUL.
Unlike the previous case, now performance is better when using 2 gNBs. In particular, the larger
the payload PUL and the greater the number of AGVs N , the more pronounced the improvement
introduced by 2 gNBs. This outcome suggests that data plane is limiting performance when
using 1 gNB. When using 2 gNBs, performance does not depend on the payload size PUL: this
suggests that, thanks to the higher average SNR, that leads to a lower number of re-transmissions
and an higher spectral efficiency, the data plane is no longer the bottleneck of the system, but
the control plane is. We conclude that 2 gNBs are useful in FR2.

The experiments reveal that doubling the number of gNBs does not uniformly improve system
performance, it depends on which system component acts as the bottleneck. In FR1, the perfor-
mance metric TNR remains nearly identical whether using one or two gNBs. This is because the
SNR in FR1 is already sufficient, and the control plane is the limiting factor. When two gNBs
are deployed, the available constant bandwidth is simply split between them, meaning that each
gNB ends up with fewer control-plane resources. Since the control-plane capacity governs the
system’s performance in FR1, the potential SNR gains from an extra gNB do not translate into
measurable improvement. Conversely, in FR2 the scenario is different. Here, especially under
conditions of larger payloads and a higher number of AGVs, the performance improvement
with two gNBs becomes evident. In FR2 the system can be data-plane limited, meaning that
factors like SNR, retransmissions, and spectral efficiency play a significant role. The use of

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 93

6.6. Numerical Results

two gNBs in FR2 boosts the average SNR, which in turn reduces retransmissions and increases
data-plane efficiency. As a result, the performance improves when data transmission is the main
challenge. However, it is important to note that once the data plane is no longer the bottleneck,
the same constant control-plane resource (divided equally between the two gNBs) again limits
the overall performance. This is why for small payloads, where the control plane dominates,
the improvement is marginal.
Impact of the operating frequency. In Fig. 6.8, we compare the performance of a system
operating in FR1 and FR2. In FR1, we use 1 gNB, while in FR2, we employ 2 gNBs, based
on previous research findings. To ensure a fair comparison, both configurations have an equal
number of RBs, resulting in the same number of AGVs served during each TCPP. It is possible
to appreciate that, independently from PUL, TNR is halved in FR2 with respect to FR1. Since
the bottleneck in both configurations lies in the control plane, particularly in the number of TCPP

within a TSRP, one of the main advantages of operating in FR2 becomes apparent: a reduced
TCPP duration due to a shorter duration of the OFDM symbol. Specifically, in FR1, we have
∆f = 30 kHz, while in FR2, we have ∆f = 60 kHz. Consequently, in the latter case, the TCPP

duration is halved compared to the former. This justifies why TNR is approximately halved in
FR2 with respect to FR1.
Impact of the bandwidth. In Fig. 6.9, we study the impact of B in FR2 on the system. We
consider PUL = 500 byte, and we test the system with 1 and 2 gNBs, considering N = 50 and
N = 250. As we can see, with N = 250 the general trend is that TNR decreases with higher B,
since there are more available RBs per AGV. With N = 50, there is no significant improvement
by using 2 gNBs, and when B = 10 MHz, it is even detrimental. This is due to the fact that,
in this extreme case, the overall amount of resources is so scarce that the improvement given
by the higher SNR when using two gNBs is lower than that the disadvantage introduced by
splitting resources.
In Fig. 6.10 we present the same data of Fig. 6.9, but focusing on B between 40 MHz and 100

MHz, in order to appreciate the step-wise performance improvement due to control plane. If
the increase of B leads to an increase of the number of RBs sufficient to save one TCPP when
serving all the AGVs, then TNR decreases sharply, as we can see in Fig. 6.10 where we have 2
gNBs, 50 AGVs, and we go from B = 70 MHz to B = 80 MHz. If the increase of B does not
lead to a reduction of the number of TCPP in a TSRP, the only effect introduced is the increase of
noise in the system, leading to worse performance. This effect is present only if data plane is
not the bottleneck of the system and with 1 gNB, since we are in an SNR limited system.

Performance of the End-to-End RUL Chain

Given the definition of average RTT R (6.13), we consider:

– TNR as studied in Sec. 6.6;

94 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

6.6. Numerical Results

– TCN as provided by TIM:

– Architecture 1: TCN = 14 ms;

– Architecture 2 and 3: TCN = 4 ms;

– Architecture 4: TCN = 2 ms;

– TPS is obtained through experimental tests using the best performing DL-based pipeline.
The computing platform consisted in an i9-11900K processor with 128 GB of RAM,
featuring 8 cores and 16 threads exploited through parallel programming. Despite we
tested a single CPU, we assumed to have more CPUs, to perform load balancing between
them, and that performance scales linearly with the number of CPUs.

– TA = 200 ms, derived from a commercial product5.

In Fig. 6.11, we present the overall results comprising the performance of DL-based RUL pre-
diction pipeline, 5G NR, and 5CN. We depict average RTT R as a function of N and different
architectures employed, and we show the average advance provided by 1D-CNN ā(D1D-CNN)

with m = 5 and m = 10. It is noteworthy that the 5G network has the smallest contribution on
the total average RTT R̄: processing time and actuation time are significantly larger. It is then
possible to appreciate the conditions under which we are able to prevent the failure, wherein the
average RTT R of the system is lower than the advance ā. Despite the average RTT R being
constantly lower than the average advance provided with m = 10, it is sub-optimal: in the case
of m = 5, the cost C is lower, leading to better performance in terms of false positives and false
negatives, as shown in Sec. 6.6. This implies that, when possible, it is preferable to choose to
use m = 5. When the number of AGVs N ≤ 100, average RTT R is lower than ā(D1D-CNN)

with m = 5, irrespective from the architecture. Conversely, for N ≥ 200, average RTT R

is greater than ā(D1D-CNN) with m = 5, regardless of the architecture, leading to the use of
m = 10. When N = 150, the architecture plays a fundamental role, determining which value
of m to use: this is the only scenario in which having a NPN leads to a significant advantage.
Finally, we note that although a margin of m = 15 allows for a greater average advance, it is
excluded from the comparison due to its high cost and because the average advance obtained
with m = 10 is always sufficient.

5Reference: https://www.hitbotrobot.com/product/z-efg-12-robotic-gripper/

Chapter 6. Deep Learning and 5G Architectures for Industrial IoT 95

6.6. Numerical Results

Figure 6.11: RTT R as a function of N and network architectures. The advances of the best
performing RUL-based pipelines are represented with horizontal dashed lines. We assume to
have 8 CPUs performing inference.

96 Chapter 6. Deep Learning and 5G Architectures for Industrial IoT

Chapter 7

Conclusions

This thesis has explored the confluence of wireless communications and artificial intelligence,
with the overarching objective of facilitating the development of next-generation autonomous
network systems. In pursuit of this objective, the work has yielded both technical innovations
and significant insights into the challenges and benefits inherent in interdisciplinary research.
A principal conclusion drawn from this research is that the effective integration of artificial in-
telligence and wireless communications is fundamentally interdisciplinary, requiring a profound
understanding of both domains. The research process encompassed several key aspects:

– The technical contributions presented, including the deep reinforcement learning (DRL)-
based adaptive optimization framework (Chapter 3), the Bayesian generative models for
synthetic data generation (Chapter 4), and the distributed learning approaches employing
multi-agent reinforcement learning (MARL) and graph neural networks (GNNs) (Chap-
ter 5), demonstrate that the successful fusion of theoretical AI concepts with the practical
constraints of real-world wireless networks is both a complex undertaking and a critical
necessity.

– While simulations offered a controlled environment conducive to the evaluation of novel
algorithms, this work also illuminated the persistent discrepancies between simulated
models and the complexities inherent in real-world deployments. Unpredictable inter-
ference, hardware imperfections, and dynamic mobility patterns, among other real-world
phenomena, necessitate the development of robust and adaptable solutions. This was
particularly evident in the 5G industrial internet of yhings (IIoT) case study and in the
capacity and coverage optimization (CCO) problem leveraging real-world data.

– In applications where safety is paramount, the requirement for explainable and trust-
worthy artificial intelligence is of utmost importance. The Bayesian generative models
developed in this thesis not only provide theoretical guarantees via uncertainty quantifi-

97

cation but also establish a precedent for the construction of AI systems that engender trust
among decision-makers.

– The availability of high-quality, labeled data remains a significant limiting factor in nu-
merous wireless scenarios. This thesis addressed data scarcity through the application of
techniques such as synthetic data generation and distributed learning, thereby emphasiz-
ing that innovative approaches to data management are of equal importance to algorithmic
advancements.

– For the successful convergence of artificial intelligence and wireless communications, the
establishment of standards that accommodate both application-specific requirements and
implementation details is essential. Such standardization would promote wider adoption
and facilitate interoperability across a diverse range of systems.

For researchers embarking on studies in this area, these reflections may serve as guidance:
embracing the inherent learning curve by extending beyond one’s disciplinary specialization
is crucial. A robust foundation in both artificial intelligence and wireless communications,
coupled with a dedication to bridging theoretical progress with practical realities, will prove
invaluable in navigating this intricate and rapidly evolving field.
While the primary focus of this thesis has been the development of robust AI-driven frameworks
for wireless networks, the techniques introduced inherently facilitate a transition towards goal-
oriented communications and learning—a promising avenue for future investigation.

– The DRL framework detailed in Chapter 3 is directly extensible to scenarios where re-
ward functions are tailored to specific operational objectives. For instance, rather than
optimizing for general performance metrics such as throughput, reward functions can be
designed to prioritize objectives such as minimizing energy consumption or ensuring the
timely delivery of critical control signals.

– The Bayesian generative model presented in Chapter 4 can be adapted to generate syn-
thetic data that emphasizes rare or critical events, such as fault scenarios in industrial
systems. This concept of goal-oriented data augmentation would be particularly ben-
eficial for training systems in situations where such events are sparsely represented in
real-world datasets.

– The distributed learning techniques introduced in Chapter 5 are inherently well-suited for
multi-agent scenarios where collaboration is essential. By leveraging graph structures and
GNNs, future research can explore cooperative frameworks in which agents communicate
and coordinate their actions to achieve specific, shared objectives—for example, the rapid
mapping of an unknown environment in a multi-robot exploration task.

98 Chapter 7. Conclusions

– The 5G Industrial IoT case study presented in Chapter 6 exemplifies a scenario where all
design choices are dictated by a clearly defined end goal—the estimation of the remaining
useful life (RUL) of an Automated Guided Vehicle (AGV). This emphasis on a concrete
objective illustrates how goal-oriented design can guide the integration of communication
infrastructures and deep learning techniques to fulfill specific operational requirements.

By redefining the objectives of wireless networks to align with specific application goals, rather
than generic performance metrics, future research can stimulate the development of more effi-
cient, robust, and trustworthy systems, particularly in mission-critical and resource-constrained
environments.
In conclusion, this thesis has advanced the state-of-the-art in AI-driven wireless networks while
concurrently providing insights into the broader challenges associated with interdisciplinary re-
search. By addressing critical issues such as the simulation-to-reality gap, the imperative for
explainability, data scarcity, and the significance of standardization, this work establishes a ro-
bust foundation for future investigations into fully autonomous, goal-oriented network systems.
It is the author’s hope that these reflections, in conjunction with the technical contributions
detailed throughout this thesis, will serve as inspiration and guidance for future researchers in
their pursuit of innovative solutions at the dynamic intersection of artificial intelligence and
wireless communications.

Chapter 7. Conclusions 99

Appendix A

Appendices

A.1 Uncertainty analysis and Gaussian assumption for RSRP
estimation

Here, we analyze the estimation uncertainty related to the Reference Signal Received Power
(RSRP), which serves as an estimator for the median component of the received power P(s) at
a fixed location s = (s1, s2). Since we are considering the role of the RSRP as an estimator
of the median component Me[P(s1, s2)], we hereafter denote the estimator as µ̂, and the target
value Me[P(s1, s2)] as µ. Our focus is to model the aleatoric uncertainty of µ̂ exclusively. This
is crucial for establishing a fair prior assumption in a neural-probabilistic model for the task
of RSRP regression. The RSRP, as defined by 3GPP [62], is a linear average over the narrow-
band instantaneous power of every resource element (RE) that carries cell-specific reference
signals (CS-RS). When considering an Orthogonal Frequency Division Multiplexing (OFDM)
scheme and a transmitter (eNB) equipped with channel equalization capability, the narrowband
instantaneous power of a resource element (RE) can be assumed to be an independent and iden-
tically distributed (i.i.d.) sample of P(s1, s2). Furthermore, assuming proper countermeasures
to small-scale fading, P(s1, s2) is mainly characterized by the shadowing noise σS , which fol-
lows a log-normal distribution. Hence, the median component of the received power in dB,
Me[P(s1, s2)] is equivalent to the mean E[P(s1, s2)]. Accordingly, we can define the probabil-
ity distribution of µ̂, fµ̂(µ, σS), as the joint probability distribution of N i.i.d. realizations of
P(s1, s2):

fµ̂(µ, σS) =
N∏
i=1

1√
2πσ2

S

exp
(pi − µ)2

2σ2
S

=

=

(
1√
2πσ2

S

)N

exp

∑N
i=1(pi − µ)2

2σ2
S

,

101

A.1. Uncertainty analysis and Gaussian assumption for RSRP estimation

where pi ∼ P(s1, s2) indicates the instantaneous i.i.d. received power sample. Since σS typ-
ically can be statistically determined, we can characterize the estimation uncertainty of the
estimator µ̂, namely εµ, by means of its Cramér-Rao Lower Bound (CRLB):

CRLB(µ̂) = −E
[
∂2 ln fµ̂(µ, σS)

∂µ2

]−1

= −E

 ∂2

∂µ2

ln

(
1√
2πσ2

S

)N

+ ln
1

2σ2
S

N∑
i=1

(pi − µ)2

−1

= E

[
∂

∂µ

(
1

σ2
S

N∑
i=1

(µ− pi)

)]−1

= E
[
N

σ2
S

]−1
=

σ2
S

N
= εµ .

We derived an intuitive result from the equation above: the estimation uncertainty of µ̂ becomes
negligible as N → ∞. Given that N is proportional to the number of REs carrying CS-RS,
which depends on the system bandwidth B, this indicates that the UE-measured RSRP is a
Minimum Variance Unbiased (MVU) estimator, as the system bandwidth B → ∞. Neverthe-
less, this formulation implies that εµ is the only source of error in the estimation process. When
moving to a crowdsourcing setting, this assumption falls, as the total aleatoric uncertainty, εal,
is characterized by additional error sources related to the diversity in receivers’ equipment and
measurement conditions. Leveraging on the central limit theorem, under the assumption of
i.i.d. error sources, we can express the sum of these additional error sources as a new random
variable εM ∼ N (0, σ2

M). Thus, the aleatoric uncertainty εal of µ̂ can be described as the sum
of a Normal random variable εµ with deterministic and reducible variance σ2

S/N , and a second
random variable εM , with irreducible and unknown variance σ2

M . Given that the sum of two
independent Normal random variables is a Normal random variable, the following holds:

εal = εµ + εM ⇒ εal ∼ N (0, σ2
S/N + σ2

M) .

This provides an analytical interpretation behind the assumption of a Gaussian prior over the
predicted RSRP, for any given fixed location (s1, s2). In Sec. 4.6, the validity of our analyti-
cal derivations is further ascertained by means of a calibration analysis, which shows that the
proposed neural-probabilistic regression is not affected by model miss-specification.

102 Appendix A. Appendices

List of Publications

The research activities described in this thesis have produced the following set of contributions:

1. Longhi, N., Amorosa, L. M., Cavallero, S., Buracchini, E., Verdone, R., “5G Architectures Enabling Re-
maining Useful Life Estimation for Industrial IoT: a Holistic Study”, IEEE Open Journal of the Communi-
cations Society, 2025.

2. Skocaj, M., Amorosa, L. M., Lombardi, M., Verdone, R. “GUMBLE: Uncertainty-Aware Conditional Mo-
bile Data Generation using Bayesian Learning”, IEEE Transactions on Mobile Computing, 2024.

3. Amorosa, L. M., Skocaj, M., Verdone, R., Gündüz, D. “Multi-Agent Reinforcement Learning for Power
Control in Wireless Networks via Adaptive Graphs”, IEEE ICC, 2024.

4. Amorosa, L. M., Longhi, N., Cuozzo, G., Bachan, W., Lieti, V., Buracchini, E., Verdone, R., “An End-To-
End Analysis of Deep Learning-Based Remaining Useful Life Algorithms for Satefy-Critical 5G-Enabled
IIoT Networks”, IEEE PIMRC, 2023.

5. Skocaj, M., Amorosa, L. M., Ghinamo, G., Muratore, G., Micheli, D., Zabini, F., Verdone, R. “Optimization
of the configuration of a Mobile Communications Network”, World Patent WO2023156301A1, 2023.

6. Skocaj, M., Amorosa, L. M., Ghinamo, G., Muratore, G., Micheli, D., Zabini, F., Verdone, R. “Cellular

network capacity and coverage enhancement with MDT data and deep reinforcement learning”, Computer

Communications, 2022.

The following set of contributions are not included in this thesis.

7. Amorosa, L. M., Gao, Z., Verdone, R., Popovski, P., Gündüz, D., “Learning to Send Shared Messages
Using a Decentralized Medium Access Control Protocol”, to be submitted to IEEE Transactions on Com-
munications.

8. Amorosa, L. M., Chahoud, T., Gao, Z., Verdone, R., Gündüz, D., “GNN-based Power Allocation for
Industrial IoT Networks with Varying Density”, IEEE ICMLCN, 2025.

9. Giovannini, A., Campolo, C., Todisco, V., Molinaro, A., Amorosa, L. M., Lei, L., Bazzi, A., “Path Selection
Based on Network Service Quality for Infrastructure-Assisted Automated Driving”, IEEE WCNC, 2025.

103

Bibliography

[1] Osvaldo Simeone. Machine learning for engineers. Cambridge university press, 2022.

[2] Yonina C Eldar, Andrea Goldsmith, Deniz Gündüz, and H Vincent Poor. Machine learn-
ing and wireless communications. Cambridge University Press, 2022.

[3] Fa-Long Luo. Machine learning for future wireless communications. John Wiley &
Sons, 2020.

[4] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang, Ying-
Chang Liang, and Dong In Kim. “Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey”. In: IEEE Communications Surveys &
Tutorials 21.4 (2019), pp. 3133–3174.

[5] Tugba Erpek, Timothy J O’Shea, Yalin E Sagduyu, Yi Shi, and T Charles Clancy. “Deep
learning for wireless communications”. In: Development and Analysis of Deep Learning
Architectures (2020), pp. 223–266.

[6] Deniz Gündüz, Paul de Kerret, Nicholas D. Sidiropoulos, David Gesbert, Chandra R.
Murthy, and Mihaela van der Schaar. “Machine Learning in the Air”. In: IEEE Journal
on Selected Areas in Communications 37.10 (2019), pp. 2184–2199.

[7] Jithin Jagannath, Nicholas Polosky, Anu Jagannath, Francesco Restuccia, and Tommaso
Melodia. “Machine learning for wireless communications in the Internet of Things: A
comprehensive survey”. In: Ad Hoc Networks 93 (2019), p. 101913.

[8] Manuel Eugenio Morocho-Cayamcela, Haeyoung Lee, and Wansu Lim. “Machine Learn-
ing for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Fu-
ture Directions”. In: IEEE Access 7 (2019), pp. 137184–137206.

[9] Osvaldo Simeone. “A Very Brief Introduction to Machine Learning With Applications
to Communication Systems”. In: IEEE Transactions on Cognitive Communications and
Networking 4.4 (2018), pp. 648–664.

[10] Xingqin Lin. “Artificial Intelligence in 3GPP 5G-Advanced: A Survey”. In: arXiv preprint
arXiv:2305.05092 (2023).

105

Bibliography

[11] 3GPP. Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface.
Tech. rep. 2023.

[12] Henrik Hellström, José Mairton B da Silva Jr, Mohammad Mohammadi Amiri, Mingzhe
Chen, Viktoria Fodor, H Vincent Poor, Carlo Fischione, et al. “Wireless for Machine
Learning: A Survey”. In: FTSCP 15.4 (2022), pp. 290–399.

[13] Christo Kurisummoottil Thomas, Christina Chaccour, Walid Saad, Merouane Debbah,
and Choong Seon Hong. “Causal Reasoning: Charting a Revolutionary Course for Next-
Generation AI-Native Wireless Networks”. In: arXiv preprint arXiv:2309.13223 (2023).

[14] Yong Xiao, Guangming Shi, Yingyu Li, Walid Saad, and H. Vincent Poor. “Toward
Self-Learning Edge Intelligence in 6G”. In: IEEE Communications Magazine 58.12
(2020), pp. 34–40.

[15] Walid Saad, Mehdi Bennis, and Mingzhe Chen. “A Vision of 6G Wireless Systems:
Applications, Trends, Technologies, and Open Research Problems”. In: IEEE Network
34.3 (2020), pp. 134–142.

[16] Jakob Hoydis, Fayçal Ait Aoudia, Alvaro Valcarce, and Harish Viswanathan. “Toward a
6G AI-Native Air Interface”. In: IEEE Communications Magazine 59.5 (2021), pp. 76–
81.

[17] Lauri Lovén, Teemu Leppänen, Ella Peltonen, Juha Partala, Erkki Harjula, Pawani Po-
rambage, Mika Ylianttila, and Jukka Riekki. “EdgeAI: A vision for distributed, edge-
native artificial intelligence in future 6G networks”. In: 6G Wireless Summit, March
24-26, 2019 Levi, Finland (2019).

[18] Wen Wu, Conghao Zhou, Mushu Li, Huaqing Wu, Haibo Zhou, Ning Zhang, Xuemin
Sherman Shen, and Weihua Zhuang. “AI-Native Network Slicing for 6G Networks”. In:
IEEE Wireless Communications 29.1 (2022), pp. 96–103.

[19] Khaled B Letaief, Yuanming Shi, Jianmin Lu, and Jianhua Lu. “Edge artificial intel-
ligence for 6G: Vision, enabling technologies, and applications”. In: IEEE Journal on
Selected Areas in Communications 40.1 (2021), pp. 5–36.

[20] Tze-Yang Tung, Szymon Kobus, Joan Pujol Roig, and Deniz Gündüz. “Effective Com-
munications: A Joint Learning and Communication Framework for Multi-Agent Re-
inforcement Learning Over Noisy Channels”. In: IEEE Journal on Selected Areas in
Communications 39.8 (2021), pp. 2590–2603.

[21] Emilio Calvanese Strinati and Sergio Barbarossa. “6G networks: Beyond Shannon to-
wards semantic and goal-oriented communications”. In: Computer Networks 190 (2021),
p. 107930.

106 Bibliography

Bibliography

[22] Luciano Miuccio, Salvatore Riolo, Sumudu Samarakoon, Daniela Panno, and Mehdi
Bennis. “Learning Generalized Wireless MAC Communication Protocols via Abstrac-
tion”. In: GLOBECOM 2022 - 2022 IEEE Global Communications Conference. 2022,
pp. 2322–2327.

[23] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson.
“Learning to communicate with deep multi-agent reinforcement learning”. In: Advances
in neural information processing systems 29 (2016).

[24] Mateus P Mota, Alvaro Valcarce, Jean-Marie Gorce, and Jakob Hoydis. “The emer-
gence of wireless MAC protocols with multi-agent reinforcement learning”. In: 2021
IEEE Globecom Workshops (GC Wkshps). IEEE. 2021, pp. 1–6.

[25] Sejin Seo, Jihong Park, Seung-Woo Ko, Jinho Choi, Mehdi Bennis, and Seong-Lyun
Kim. “Toward Semantic Communication Protocols: A Probabilistic Logic Perspective”.
In: IEEE Journal on Selected Areas in Communications 41.8 (2023), pp. 2670–2686.

[26] 3rd Generation Partnership Project (3GPP). 3GPP TR 36.902. Technical Report 36.902.
3GPP, 2009.

[27] 3rd Generation Partnership Project (3GPP). 3GPP TS 36.300. Technical Specification
36.300. 3GPP, 2009.

[28] 3rd Generation Partnership Project (3GPP). 3GPP TS 32.500. Technical Specification
32.500. 3GPP, 2022.

[29] European Telecommunications Standards Institute (ETSI). ETSI GS ZSM 001 V1.1.1
(2019-10): Zero-touch network and Service Management (ZSM); Requirements based
on documented scenarios. Technical Report GS ZSM 001 V1.1.1. ETSI, Oct. 2019.

[30] 3rd Generation Partnership Project (3GPP). TS 28.312: Management and orchestration;
Intent-driven management services for mobile networks. Technical Specification. 3GPP,
2023.

[31] 3rd Generation Partnership Project (3GPP). TR 28.912: Study on enhanced intent-driven
management services for mobile networks. Technical Report. 3GPP, 2023.

[32] European Telecommunications Standards Institute (ETSI). ETSI GR ZSM 011 V1.1.1
(2023-02): Zero-touch network and Service Management (ZSM); Intent-driven autonomous
networks; Generic aspects. Technical Report GR ZSM 011 V1.1.1. ETSI, Feb. 2023.

[33] Matteo Zecchin, Sangwoo Park, Osvaldo Simeone, Marios Kountouris, and David Ges-
bert. “Robust bayesian learning for reliable wireless ai: Framework and applications”.
In: IEEE Transactions on Cognitive Communications and Networking (2023).

Bibliography 107

Bibliography

[34] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. “Multi-agent reinforcement learning:
A selective overview of theories and algorithms”. In: Handbook of reinforcement learn-
ing and control (2021), pp. 321–384.

[35] Sven Gronauer and Klaus Diepold. “Multi-agent deep reinforcement learning: a sur-
vey”. In: Artificial Intelligence Review (2022), pp. 1–49.

[36] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[37] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning 8 (1992), pp. 229–256.

[38] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. “Policy gra-
dient methods for reinforcement learning with function approximation”. In: Advances
in neural information processing systems 12 (1999).

[39] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. “Weight
uncertainty in neural network”. In: International conference on machine learning. PMLR.
2015, pp. 1613–1622.

[40] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning”. In: international conference on machine learn-
ing. PMLR. 2016, pp. 1050–1059.

[41] Oliver Dürr, Beate Sick, and Elvis Murina. Probabilistic Deep Learning: With Python,
Keras and TensorFlow Probability. Manning Publications, 2020.

[42] William L Hamilton, Rex Ying, and Jure Leskovec. “Representation learning on graphs:
Methods and applications”. In: arXiv preprint arXiv:1709.05584 (2017).

[43] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolu-
tional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[44] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on
large graphs”. In: Advances in neural information processing systems 30 (2017).

[45] Viktor Berggren, Rafia Inam, Leonid Mokrushin, Alberto Hata, Jaeseong Jeong, Swarup
Kumar Mohalik, Julien Forgeat, and Stefano Sorrentino. Artificial Intelligence in next
generation connected systems. Tech. rep. Sept. 2021.

[46] Osianoh Glenn Aliu, Ali Imran, Muhammad Ali Imran, and Barry Evans. “A Survey
of Self Organisation in Future Cellular Networks”. In: IEEE Communications Surveys
Tutorials 15.1 (2013), pp. 336–361.

108 Bibliography

Bibliography

[47] 3rd Generation Partnership Project (3GPP). TS 37.320 - Universal Terrestrial Radio Ac-
cess (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio mea-
surement collection for Minimization of Drive Tests (MDT); Overall description; Stage
2. Rel 16.6.0. Sept. 2021.

[48] Wuri A. Hapsari, Anil Umesh, Mikio Iwamura, Malgorzata Tomala, Bodog Gyula, and
Benoist Sebire. “Minimization of drive tests solution in 3GPP”. In: IEEE Communica-
tions Magazine 50.6 (2012), pp. 28–36.

[49] Chiara Mizzi, Alessandro Fabbri, Sandro Rambaldi, Flavio Bertini, Nico Curti, Stefano
Sinigardi, Rachele Luzi, Giulia Venturi, D. Micheli, Giuliano Muratore, Aldo Vannelli,
and Armando Bazzani. “Unraveling pedestrian mobility on a road network using ICTs
data during great tourist events”. In: EPJ Data Science 7 (Dec. 2018).

[50] Andrea Scaloni, Pasquale Cirella, Mauro Sgheiz, Riccardo Diamanti, and Davide Micheli.
“Multipath and Doppler Characterization of an Electromagnetic Environment by Mas-
sive MDT Measurements From 3G and 4G Mobile Terminals”. In: IEEE Access 7
(2019), pp. 13024–13034.

[51] Davide Micheli and Giuliano Muratore. “Smartphones Reference Signal Received Power
MDT Radio Measurement Statistical Analysis Reveals People Feelings during Music
Events”. In: 2019 PhotonIcs Electromagnetics Research Symposium - Spring (PIERS-
Spring). 2019, pp. 427–437.

[52] TS 36.902 - Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-
configuring and self-optimizing network (SON) use cases and solutions. Rel 9.3.1. 3GPP.
Apr. 2011.

[53] TS 32.500 - Telecommunication management; Self-Organizing Networks (SON); Con-
cepts and requirements. Rel 16.0.0. 3GPP. July 2020.

[54] Osvaldo Simeone. “A Very Brief Introduction to Machine Learning With Applications
to Communication Systems”. In: IEEE Transactions on Cognitive Communications and
Networking 4.4 (2018), pp. 648–664.

[55] Mirza Golam Kibria, Kien Nguyen, Gabriel Porto Villardi, Ou Zhao, Kentaro Ishizu,
and Fumihide Kojima. “Big Data Analytics, Machine Learning, and Artificial Intelli-
gence in Next-Generation Wireless Networks”. In: IEEE Access 6 (2018), pp. 32328–
32338.

[56] Sascha Berger, Albrecht Fehske, Paolo Zanier, Ingo Viering, and Gerhard Fettweis.
“Online Antenna Tilt-Based Capacity and Coverage Optimization”. In: IEEE Wireless
Communications Letters 3.4 (2014), pp. 437–440.

Bibliography 109

Bibliography

[57] Alexander Engels, Michael Reyer, Xiang Xu, Rudolf Mathar, Jietao Zhang, and Hongcheng
Zhuang. “Autonomous Self-Optimization of Coverage and Capacity in LTE Cellular
Networks”. In: IEEE Transactions on Vehicular Technology 62.5 (2013), pp. 1989–
2004.

[58] Eren Balevi and Jeffrey Andrews. “Online Antenna Tuning in Heterogeneous Cellular
Networks With Deep Reinforcement Learning”. In: IEEE Transactions on Cognitive
Communications and Networking PP (Aug. 2019), pp. 1–1.

[59] Ryan M. Dreifuerst, Samuel Daulton, Yuchen Qian, Paul Varkey, Maximilian Balandat,
Sanjay Kasturia, Anoop Tomar, Ali Yazdan, Vish Ponnampalam, and Robert W. Heath.
“Optimizing Coverage and Capacity in Cellular Networks using Machine Learning”. In:
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2021, pp. 8138–8142.

[60] Filippo Vannella, Grigorios Iakovidis, Ezeddin Al Håkim, Erik Aumayr, and Saman
Feghhi. “Remote Electrical Tilt Optimization via Safe Reinforcement Learning”. In:
2021 IEEE Wireless Communications and Networking Conference (WCNC) (2021),
pp. 1–7.

[61] Yuanjie Lin, Hui Gao, Wenjun Xu, and Yueming Lu. “Dynamic Antenna Configuration
for 3D Massive MIMO System via Deep Reinforcement Learning”. In: 2020 IEEE 31st
Annual International Symposium on Personal, Indoor and Mobile Radio Communica-
tions. 2020, pp. 1–6.

[62] TS 36.214 - Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer;
Measurements. Rel 17.0.0. 3GPP. Apr. 2022.

[63] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc
G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540
(2015), pp. 529–533.

[64] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. “Deep reinforcement learning that matters”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 32. 1. 2018.

[65] Hang Zou, Qiyang Zhao, Lina Bariah, Mehdi Bennis, and Merouane Debbah. “Wireless
Multi-Agent Generative AI: From Connected Intelligence to Collective Intelligence”.
In: arXiv preprint arXiv:2307.02757 (2023).

[66] Helin Yang, Arokiaswami Alphones, Zehui Xiong, Dusit Niyato, Jun Zhao, and Kaishun
Wu. “Artificial-Intelligence-Enabled Intelligent 6G Networks”. In: IEEE Network 34.6
(2020), pp. 272–280.

110 Bibliography

Bibliography

[67] Hoon Lee, Sang Hyun Lee, and Tony Q. S. Quek. “Artificial Intelligence Meets Auton-
omy in Wireless Networks: A Distributed Learning Approach”. In: IEEE Network 36.6
(2022), pp. 100–107.

[68] Athanasios Karapantelakis, Pegah Alizadeh, Abdulrahman Alabassi, Kaushik Dey, and
Alexandros Nikou. “Generative AI in mobile networks: a survey”. In: Annals of Telecom-
munications (2023).

[69] Zhengwei Wang, Qi She, and Tomas E Ward. “Generative adversarial networks in
computer vision: A survey and taxonomy”. In: ACM Computing Surveys (CSUR) 54.2
(2021), pp. 1–38.

[70] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. “Improving
language understanding by generative pre-training”. In: (2018).

[71] Yinqiu Liu, Hongyang Du, Dusit Niyato, Jiawen Kang, Zehui Xiong, Dong In Kim, and
Abbas Jamalipour. “Deep generative model and its applications in efficient wireless
network management: A tutorial and case study”. In: arXiv preprint arXiv:2303.17114
(2023).

[72] Hojjat Navidan, Parisa Fard Moshiri, Mohammad Nabati, Reza Shahbazian, Seyed Ali
Ghorashi, Vahid Shah-Mansouri, and David Windridge. “Generative Adversarial Net-
works (GANs) in networking: A comprehensive survey & evaluation”. In: Computer
Networks 194 (2021), p. 108149. URL: https://www.sciencedirect.com/science/article/
pii/S1389128621002139.

[73] Ender Ayanoglu, Kemal Davaslioglu, and Yalin E Sagduyu. “Machine learning in nextg
networks via generative adversarial networks”. In: IEEE Transactions on Cognitive
Communications and Networking 8.2 (2022), pp. 480–501.

[74] Cong Zou, Fang Yang, Jian Song, and Zhu Han. “Generative Adversarial Network for
Wireless Communication: Principle, Application, and Trends”. In: IEEE Communica-
tions Magazine (2023), pp. 1–7.

[75] Timothy J. O’Shea, Tamoghna Roy, and Nathan West. “Approximating the Void: Learn-
ing Stochastic Channel Models from Observation with Variational Generative Adver-
sarial Networks”. In: 2019 International Conference on Computing, Networking and
Communications (ICNC). 2019, pp. 681–686.

[76] Yang Yang, Yang Li, Wuxiong Zhang, Fei Qin, Pengcheng Zhu, and Cheng-Xiang
Wang. “Generative-Adversarial-Network-Based Wireless Channel Modeling: Challenges
and Opportunities”. In: IEEE Communications Magazine 57.3 (2019), pp. 22–27.

Bibliography 111

Bibliography

[77] Tribhuvanesh Orekondy, Arash Behboodi, and Joseph B Soriaga. “Mimo-gan: Genera-
tive mimo channel modeling”. In: ICC 2022-IEEE International Conference on Com-
munications. IEEE. 2022, pp. 5322–5328.

[78] Ben Hughes, Shruti Bothe, Hasan Farooq, and Ali Imran. “Generative Adversarial Learn-
ing for Machine Learning empowered Self Organizing 5G Networks”. In: 2019 Inter-
national Conference on Computing, Networking and Communications (ICNC). 2019,
pp. 282–286.

[79] Paolo Di Francesco, Francesco Malandrino, and Luiz A. DaSilva. “Assembling and
Using a Cellular Dataset for Mobile Network Analysis and Planning”. In: IEEE Trans-
actions on Big Data 4.4 (2018), pp. 614–620.

[80] Chuanhao Sun, Kai Xu, Mahesh K. Marina, and Howard Benn. “GenDT: Mobile Net-
work Drive Testing Made Efficient with Generative Modeling”. In: CoNEXT ’22. New
York, NY, USA: Association for Computing Machinery, 2022.

[81] Jakob Thrane, Matteo Artuso, Darko Zibar, and Henrik L. Christiansen. “Drive Test
Minimization Using Deep Learning with Bayesian Approximation”. In: 2018 IEEE 88th
Vehicular Technology Conference (VTC-Fall). 2018, pp. 1–5.

[82] Songyang Zhang, Achintha Wijesinghe, and Zhi Ding. “RME-GAN: A Learning Frame-
work for Radio Map Estimation Based on Conditional Generative Adversarial Net-
work”. In: IEEE Internet of Things Journal 10.20 (2023), pp. 18016–18027.

[83] Danyang Zhang, Junhui Zhao, Lihua Yang, Yiwen Nie, and Xiangcheng Lin. “Genera-
tive Adversarial Network-based Channel Estimation in High-Speed Mobile Scenarios”.
In: 2021 13th International Conference on Wireless Communications and Signal Pro-
cessing (WCSP). 2021, pp. 1–5.

[84] Bassant Tolba, Maha Elsabrouty, Mubarak G. Abdu-Aguye, Haris Gacanin, and Hos-
sam Mohamed Kasem. “Massive MIMO CSI Feedback Based on Generative Adversar-
ial Network”. In: IEEE Communications Letters 24.12 (2020), pp. 2805–2808.

[85] Hao Han, Ximing Wang, Fanglin Gu, Wen Li, Yuan Cai, Yifan Xu, and Yuhua Xu.
“Better Late Than Never: GAN-Enhanced Dynamic Anti-Jamming Spectrum Access
With Incomplete Sensing Information”. In: IEEE Wireless Communications Letters 10.8
(2021), pp. 1800–1804.

[86] Suparna De, Maria Bermudez-Edo, Honghui Xu, and Zhipeng Cai. “Deep Generative
Models in the Industrial Internet of Things: A Survey”. In: IEEE Transactions on In-
dustrial Informatics 18.9 (2022), pp. 5728–5737.

112 Bibliography

Bibliography

[87] Mina Razghandi, Hao Zhou, Melike Erol-Kantarci, and Damla Turgut. “Smart Home
Energy Management: VAE-GAN synthetic dataset generator and Q-learning”. In: arXiv
preprint arXiv:2305.08885 (2023).

[88] Mina Razghandi, Hao Zhou, Melike Erol-Kantarci, and Damla Turgut. “Variational
autoencoder generative adversarial network for Synthetic Data Generation in smart
home”. In: ICC 2022-IEEE International Conference on Communications. IEEE. 2022,
pp. 4781–4786.

[89] Mustafizur R. Shahid, Gregory Blanc, Houda Jmila, Zonghua Zhang, and Hervé De-
bar. “Generative Deep Learning for Internet of Things Network Traffic Generation”.
In: 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing
(PRDC). 2020, pp. 70–79.

[90] Aidin Ferdowsi and Walid Saad. “Generative Adversarial Networks for Distributed In-
trusion Detection in the Internet of Things”. In: 2019 IEEE Global Communications
Conference (GLOBECOM). 2019, pp. 1–6.

[91] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. “The Synthetic Data Vault”. In:
2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).
2016, pp. 399–410.

[92] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui
Xiao. “PrivBayes: Private Data Release via Bayesian Networks”. In: ACM Trans. Database
Syst. 42.4 (Oct. 2017).

[93] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. “Mod-
eling Tabular Data Using Conditional GAN”. In: Proceedings of the 33rd International
Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran
Associates Inc., 2019.

[94] Stanislaw Wkeglarczyk. “Kernel density estimation and its application”. In: ITM Web
of Conferences. Vol. 23. EDP Sciences. 2018, p. 00037.

[95] Andrey Malinin, Liudmila Prokhorenkova, and Aleksei Ustimenko. “Uncertainty in
Gradient Boosting via Ensembles”. In: International Conference on Learning Repre-
sentations. 2021. URL: https://openreview.net/forum?id=1Jv6b0Zq3qi.

[96] Harsurinder Kaur, Husanbir Singh Pannu, and Avleen Kaur Malhi. “A Systematic Re-
view on Imbalanced Data Challenges in Machine Learning: Applications and Solu-
tions”. In: ACM computing surveys 52.4 (Aug. 2019). URL: https://doi.org/10.1145/
3343440.

Bibliography 113

Bibliography

[97] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. “Accurate uncertainties for
deep learning using calibrated regression”. In: International conference on machine
learning. PMLR. 2018, pp. 2796–2804.

[98] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xi-
aojiang Chen, and Xin Wang. “A Survey of Deep Active Learning”. In: ACM computing
surveys 54.9 (Oct. 2021).

[99] Daoud Burghal, Ashwin T Ravi, Varun Rao, Abdullah A Alghafis, and Andreas F
Molisch. “A comprehensive survey of machine learning based localization with wireless
signals”. In: arXiv preprint arXiv:2012.11171 (2020).

[100] Mingzhe Chen, Deniz Gündüz, Kaibin Huang, Walid Saad, Mehdi Bennis, Aneta Vul-
garakis Feljan, and H Vincent Poor. “Distributed learning in wireless networks: Recent
progress and future challenges”. In: IEEE Journal on Selected Areas in Communica-
tions 39.12 (2021), pp. 3579–3605.

[101] Kam-Chuen Jim and C. Lee Giles. “How Communication Can Improve the Performance
of Multi-Agent Systems”. In: Proceedings of the Fifth International Conference on Au-
tonomous Agents. AGENTS ’01. Montreal, Quebec, Canada: Association for Comput-
ing Machinery, 2001, pp. 584–591. URL: https://doi.org/10.1145/375735.376455.

[102] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. “Relational inductive biases, deep learning, and graph networks”. In:
arXiv preprint arXiv:1806.01261 (2018).

[103] Michael L. Littman. “Markov Games as a Framework for Multi-Agent Reinforcement
Learning”. In: Proceedings of the Eleventh International Conference on International
Conference on Machine Learning. ICML’94. New Brunswick, NJ, USA: Morgan Kauf-
mann Publishers Inc., 1994, pp. 157–163.

[104] Sainbayar Sukhbaatar, Rob Fergus, et al. “Learning multiagent communication with
backpropagation”. In: Advances in neural information processing systems 29 (2016).

[105] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. “Cooperative multi-agent
control using deep reinforcement learning”. In: Autonomous Agents and Multiagent
Systems: AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017,
Revised Selected Papers 16. Springer. 2017, pp. 66–83.

[106] Mark Eisen and Alejandro Ribeiro. “Optimal wireless resource allocation with random
edge graph neural networks”. In: IEEE transactions on signal processing 68 (2020),
pp. 2977–2991.

114 Bibliography

Bibliography

[107] Zhan Gao, Yulin Shao, Deniz Gunduz, and Amanda Prorok. “Decentralized channel
management in WLANs with graph neural networks”. In: arXiv preprint arXiv:2210.16949
(2022).

[108] Kota Nakashima, Shotaro Kamiya, Kazuki Ohtsu, Koji Yamamoto, Takayuki Nishio,
and Masahiro Morikura. “Deep reinforcement learning-based channel allocation for
wireless lans with graph convolutional networks”. In: IEEE Access 8 (2020), pp. 31823–
31834.

[109] Navid NaderiAlizadeh, Mark Eisen, and Alejandro Ribeiro. “Adaptive Wireless Power
Allocation with Graph Neural Networks”. In: ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2022, pp. 5213–
5217.

[110] Xiaochen Zhang, Haitao Zhao, Jun Xiong, Xiaoran Liu, Li Zhou, and Jibo Wei. “Scal-
able power control/beamforming in heterogeneous wireless networks with graph neural
networks”. In: 2021 IEEE Global Communications Conference (GLOBECOM). IEEE.
2021, pp. 01–06.

[111] Bohan Li, Lie-Liang Yang, Robert G Maunder, Songlin Sun, and Pei Xiao. “Heteroge-
neous graph neural network for power allocation in multicarrier-division duplex cell-
free massive MIMO systems”. In: IEEE Transactions on Wireless Communications
(2023).

[112] Jiechuan Jiang and Zongqing Lu. “Learning attentional communication for multi-agent
cooperation”. In: Advances in neural information processing systems 31 (2018).

[113] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rab-
bat, and Joelle Pineau. “Tarmac: Targeted multi-agent communication”. In: Interna-
tional Conference on Machine Learning. PMLR. 2019, pp. 1538–1546.

[114] Michael I. Jordan. “Graphical Models”. In: Statistical Science 19.1 (2004), pp. 140–
155. URL: https://doi.org/10.1214/088342304000000026.

[115] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. Cambridge, MA, USA: MIT Press, 2016.

[116] Judea Pearl. “Causal Inference”. In: Proceedings of Workshop on Causality: Objectives
and Assessment at NIPS 2008. Ed. by Isabelle Guyon, Dominik Janzing, and Bern-
hard Schölkopf. Vol. 6. Proceedings of Machine Learning Research. Whistler, Canada:
PMLR, Dec. 2010, pp. 39–58.

[117] Andrea Goldsmith. Wireless communications. Cambridge university press, 2005.

Bibliography 115

Bibliography

[118] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. “Weisfeiler and leman go neural: Higher-order graph
neural networks”. In: Proceedings of the AAAI conference on artificial intelligence.
Vol. 33. 01. 2019, pp. 4602–4609.

[119] TS 38.901 - Study on channel model for frequencies from 0.5 to 100 GHz. Rel 15.0.0.
3GPP. July 2018.

[120] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. “Next Generation 5G Wireless
Networks: A Comprehensive Survey”. In: IEEE Communications Surveys & Tutorials
18.3 (2016), pp. 1617–1655.

[121] Lalit Chettri and Rabindranath Bera. “A Comprehensive Survey on Internet of Things
(IoT) Toward 5G Wireless Systems”. In: IEEE Internet of Things Journal 7.1 (2020),
pp. 16–32.

[122] Kinza Shafique, Bilal A. Khawaja, Farah Sabir, Sameer Qazi, and Muhammad Mus-
taqim. “Internet of Things (IoT) for Next-Generation Smart Systems: A Review of
Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios”. In:
IEEE Access 8 (2020), pp. 23022–23040.

[123] Miaowen Wen, Qiang Li, Kyeong Jin Kim, David López-Pérez, Octavia A. Dobre,
H. Vincent Poor, Petar Popovski, and Theodoros A. Tsiftsis. “Private 5G Networks:
Concepts, Architectures, and Research Landscape”. In: IEEE Journal of Selected Top-
ics in Signal Processing 16.1 (2022), pp. 7–25.

[124] 5G-ACIA. 5G for Connected Industries and Automation, Second Edition. Feb. 2019.

[125] 5G-ACIA. 5G for Industrial Internet of Things (IIoT): Capabilities, Features, and Po-
tential. Nov. 2021.

[126] Aamir Mahmood, Luca Beltramelli, Sarder Fakhrul Abedin, Shah Zeb, Nishat I. Mowla,
Syed Ali Hassan, Emiliano Sisinni, and Mikael Gidlund. “Industrial IoT in 5G-and-
Beyond Networks: Vision, Architecture, and Design Trends”. In: IEEE Transactions on
Industrial Informatics 18.6 (2022), pp. 4122–4137.

[127] Senthil Kumar Jagatheesaperumal, Mohamed Rahouti, Kashif Ahmad, Ala Al-Fuqaha,
and Mohsen Guizani. “The Duo of Artificial Intelligence and Big Data for Industry
4.0: Applications, Techniques, Challenges, and Future Research Directions”. In: IEEE
Internet of Things Journal 9.15 (2022), pp. 12861–12885.

[128] Martin Müller, Fjolla Ademaj, Thomas Dittrich, Agnes Fastenbauer, Blanca Elbal, Ar-
mand Nabavi, Lukas Nagel, Stefan Schwarz, and Markus Rupp. “Flexible multi-node
simulation of cellular mobile communications: the Vienna 5G System Level Simulator”.
In: EURASIP Journal on Wireless Communications and Networking (2018).

116 Bibliography

Bibliography

[129] Lianfen Huang, Tao Chen, Zhibin Gao, Manman Luo, and Zhang Liu. “System Level
simulation for 5G Ultra-Reliable Low-Latency Communication”. In: 2021 International
Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI).
2021, pp. 1–5.

[130] George F. Riley and Thomas R. Henderson. “The ns-3 Network Simulator”. In: Mod-
eling and Tools for Network Simulation. Springer Berlin Heidelberg, 2010, pp. 15–34.
URL: https://doi.org/10.1007/978-3-642-12331-3 2.

[131] Marco Mezzavilla, Menglei Zhang, Michele Polese, Russell Ford, Sourjya Dutta, Sun-
deep Rangan, and Michele Zorzi. “End-to-End Simulation of 5G mmWave Networks”.
In: IEEE Communications Surveys & Tutorials (May 2017).

[132] Giampaolo Cuozzo, Sara Cavallero, et al. “Enabling URLLC in 5G NR IIoT Networks:
A Full-Stack End-to-End Analysis”. In: 2022 Joint European Conference on Networks
and Communications & 6G Summit (EuCNC/6G Summit). June 2022, pp. 333–338.

[133] Yong Zhao, Mingshuo Wei, Chunlei Hu, and Weiliang Xie. “Latency Analysis and Field
Trial for 5G NR”. In: 2022 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB). 2022, pp. 1–5.

[134] Justus Rischke, Peter Sossalla, Sebastian Itting, Frank H. P. Fitzek, and Martin Reisslein.
“5G Campus Networks: A First Measurement Study”. In: IEEE Access (2021).

[135] Junaid Ansari, Christian Andersson, Peter de Bruin, János Farkas, Leefke Grosjean,
Joachim Sachs, Johan Torsner, Balázs Varga, Davit Harutyunyan, Niels König, and
Robert H. Schmitt. “Performance of 5G Trials for Industrial Automation”. In: Elec-
tronics (2022). URL: https://www.mdpi.com/2079-9292/11/3/412.

[136] Winnie Nakimuli, Jaime Garcia-Reinoso, J. Enrique Sierra-Garcia, Pablo Serrano, and
Isaac Quintana Fernández. “Deployment and Evaluation of an Industry 4.0 Use Case
over 5G”. In: IEEE Communications Magazine (2021), pp. 14–20.

[137] Stanislav Vakaruk, J. Enrique Sierra-Garcı́a, Alberto Mozo, and Antonio Pastor. “Fore-
casting Automated Guided Vehicle Malfunctioning with Deep Learning in a 5G-Based
Industry 4.0 Scenario”. In: IEEE Communications Magazine 59.11 (2021), pp. 102–
108.

[138] Lei Ren, Yaqiang Sun, Jin Cui, and Lin Zhang. “Bearing remaining useful life prediction
based on deep autoencoder and deep neural networks”. In: Journal of Manufacturing
Systems (2018). Special Issue on Smart Manufacturing, pp. 71–77. URL: https://www.
sciencedirect.com/science/article/pii/S0278612518300475.

Bibliography 117

Bibliography

[139] Rui Zhao, Jinjiang Wang, Ruqiang Yan, and Kezhi Mao. “Machine health monitoring
with LSTM networks”. In: 2016 10th International Conference on Sensing Technology
(ICST). IEEE. 2016, pp. 1–6.

[140] Felix O Heimes. “Recurrent neural networks for remaining useful life estimation”. In:
2008 International Conference on Prognostics and Health Management. IEEE. 2008,
pp. 1–6.

[141] Xiang Li, Qian Ding, and Jian-Qiao Sun. “Remaining useful life estimation in prog-
nostics using deep convolution neural networks”. In: Reliability Engineering & System
Safety (2018), pp. 1–11. URL: https : / / www. sciencedirect . com / science / article / pii /
S0951832017307779.

[142] Kwangsuk Lee, Jae-Kyeong Kim, Jaehyong Kim, Kyeon Hur, and Hagbae Kim. “CNN
and GRU combination scheme for bearing anomaly detection in rotating machinery
health monitoring”. In: 2018 1st IEEE International Conference on Knowledge Innova-
tion and Invention (ICKII). IEEE. 2018, pp. 102–105.

[143] Rui Zhao, Ruqiang Yan, Jinjiang Wang, and Kezhi Mao. “Learning to monitor machine
health with convolutional bi-directional LSTM networks”. In: Sensors (2017), p. 273.

[144] Beata Mrugalska. “Remaining Useful Life as Prognostic Approach: a Review”. In: Hu-
man Systems Engineering and Design. 2019, pp. 689–695.

[145] Hassan Ismail Fawaz, Germain Forestier, et al. “Deep learning for time series classifica-
tion: a review”. In: Data Mining and Knowledge Discovery (Mar. 2019), pp. 917–963.
URL: https://doi.org/10.1007%2Fs10618-019-00619-1.

[146] Andrea Borghesi, Andrea Bartolini, et al. “Anomaly Detection Using Autoencoders in
High Performance Computing Systems”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (July 2019), pp. 9428–9433. URL: https : / / doi . org / 10 . 1609 %
2Faaai.v33i01.33019428.

[147] Yuting Wu, Mei Yuan, et al. “Remaining useful life estimation of engineered systems
using vanilla LSTM neural networks”. In: Neurocomputing (2018), pp. 167–179. URL:
https://www.sciencedirect.com/science/article/pii/S0925231217309505.

[148] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances
in Neural Information Processing Systems (2017).

[149] 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz. Technical Report
(TR). Version 16.1.0 Release 16. 3rd Generation Partnership Project (3GPP), Nov. 2020.
URL: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=3173.

118 Bibliography

Bibliography

[150] Sara Cavallero, Nicol Sarcone Grande, Francesco Pase, Marco Giordani, Joseph Eichinger,
Roberto Verdone, and Michele Zorzi. “A new scheduler for URLLC in 5G NR IIoT
networks with spatio-temporal traffic correlations”. In: ICC 2023-IEEE International
Conference on Communications. 2023, pp. 1010–1015.

[151] Guo Haixiang, Li Yijing, et al. “Learning from class-imbalanced data: review of meth-
ods and applications”. In: Expert Systems with Applications (2017), pp. 220–239. URL:
https://www.sciencedirect.com/science/article/pii/S0957417416307175.

[152] Jason Brownlee. Introduction to Time Series Forecasting with Python. Machine Learn-
ing Mastery, 2018.

[153] Radu Manuca and Robert Savit. “Stationarity and nonstationarity in time series anal-
ysis”. In: Physica D: Nonlinear Phenomena (1996), pp. 134–161. URL: https://www.
sciencedirect.com/science/article/pii/S016727899600139X.

[154] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
“Language models are few-shot learners”. In: Advances in Neural Information Process-
ing Systems (2020), pp. 1877–1901.

[155] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. “Are transformers effective for time
series forecasting?” In: Proceedings of the AAAI Conference on Artificial Intelligence.
2023, pp. 11121–11128.

Bibliography 119

	Frontespizio_0001025838_20250212
	phd_thesis_amorosa_febbraio

