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Abstract

This thesis explores the application of Data Science and Artificial Intelligence
(AI) within the field of educational sciences, focusing specifically on leveraging
machine learning (ML) techniques to enhance educational outcomes. The primary
case study revolves around predicting the risk of low achievement among students
using data from the national INVALSI test, which serves as a practical applica-
tion to address common challenges in Al integration in education: transferability,
explainability, and generalizability.

In addition to low achievement, the thesis considers other educational issues,
such as academic dropout and knowledge tracing, reflecting a broader perspective
on student performance. A key aspect of this work is the incorporation of Informed
Machine Learning (IML) principles, which facilitate the infusion of domain exper-
tise and other knowledge sources into predictive modeling. This methodological
and epistemological reflection underscores the importance of understanding how
predictive models can be effectively employed in educational settings to inform
policy and practice.

Throughout the thesis, various strategies are proposed to tackle the identified
challenges. For transferability, the potential for adapting models to different edu-
cational contexts is examined. The explainability of ML models is emphasized as
essential for fostering trust among stakeholders and supporting informed decision-
making processes. Additionally, generalizability is addressed through innovative
approaches to student representation across diverse cohorts.

By interconnecting these themes, this research aims to contribute to the under-
standing of predictive analytics in education and provides a framework intended
to support the thoughtful implementation of Al solutions in educational settings,
with the aspiration that it may lead to improved outcomes for students.






Contents

1 Introduction

1.1 Challenges and goals
1.2  Thesis structure

2 Students’ Low Achievement
2.1 Background and motivation . . . . ... ... 0oL

2.2  Related Works
2.3 The INVALSI dataset
2.4  Methods

24.1

2.5 Results
2.5.1

2.6 Discuss
2.7 Chapte

Students’ Learning Encoding. . . . . . ... ... ... ...
2.4.2 Machine Learning Techniques . . . . . ... ... ... ...
2.4.3 Performance metrics . . . . . ... ...
2.4.4 Experimental setup and preprocessing . . . . ... ... ..

Predictive models performance. . . . . .. . ... ... ...
2.5.2  Features importance . . . . . . ... ... ..

on .. ......
r Conclusion . . .

3 Academic Dropout: testing transferability
3.1 Background and motivation . . . . .. .. ... o000

3.2 Related Works

3.2.1

3.3.1
3.3.2
3.3.3
3.3.4

Machine Learning in School Dropout Prevention . . . . . . .

3.2.2  Data Sources and Features for Predicting Academic Risk . .
3.3 Materials and Methods
Dataset description . . . . . . .. ..o
Dataset preprocessing . . . . . .. ... ...
Experimental setup . . . . . ... ..o

Fairness analysis

10
12
14
14
16
17
18
20
20
21
23
24

31

CONTENTS



CONTENTS CONTENTS

3.4 Predictive Performance Results . . . . .. .. ... ... ... ... 39
3.4.1 Fairness analysis results . . . . . .. .. ... 40
3.5 Discussion . . . . . . ... 41
3.6 Chapter Conclusion . . . . . . ... ... ... .. .. ........ 43
Academic dropout: explainability 45
4.1 Background and motivation . . . . ... ... 45
4.2 Related Works . . . . . . . .. oo 46
4.3 Methods . . . . . . .. 47
4.4 Results. . . .. . 48
4.4.1 Global Feature Importance . . . . . . . . .. ... ... ... 49
4.4.2 SHAP for Local Explanations . . . . .. .. ... ... ... 51
4.4.3 SHAP for Global Explanations . . . .. .. ... .. .... 54
4.5 Discussion . . . . . ... 56
4.6 Chapter Conclusion . . . . . . . . .. ... ... .. ... Y
Informed Machine Learning for Knowledge Tracing 59
5.1 Motivation for a Systematic Literature Review . . . . . . . . . . .. 60
5.2 Background . . . ... ..o 62
5.2.1 Knowledge tracing . . . . . . . ... ... 62
5.2.2 Informed machine learning . . . . . . . .. ... .. ... .. 64
5.3 Methodology . . . . . . . .. 66
5.3.1 Research Questions . . . . . . ... .. ... ... 66
5.3.2 Literature surveying procedure . . . . . . . ... ... ... 66
5.3.3 The classification process . . . . . . .. ... ... 69
54 Results. . . . . . 71
5.4.1 Taxonomy of Informed Machine Learning for Knowledge Trac-
INg . . . 71
5.4.2 Quantitative analysis . . . . . ... ..o 76
5.4.3 Application of IML taxonomy for KT to a real case study. . 80
5.5 Discussion . . . .. ..o 81
5.5.1 Knowledge sources for Knowledge Tracing . . . .. ... .. 82
5.5.2  Knowledge representations for Knowledge Tracing . . . . . . 83
5.5.3 Knowledge integration for Knowledge Tracing . . . . . . .. 84
5.6 Chapter Conclusion . . . . . . . .. ... ... .. ... ... ... 86
Students’ Low Achievement: generalizability via IML 89
6.1 Background and Motivation . . . . . . ... .. .. ... ... 90
6.2 Graph-based student encoding . . . . . . ... ... 92
6.2.1 Methodology for the student graph-based encoding . . . . . 92

CONTENTS



CONTENTS

6.3 Semantic for the selected graph features . . . . . .. ... ... ..
6.4 Methods . . . . . . . . .
6.5 Results. . . . . . . . e
6.6 Discussion . . . . . . ...

6.6.1 Predictive Performance . . . . . . . . . ... ... ... ...

6.6.2 Explainability . . . . ... ..o
6.7 Chapter Conclusion . . . . . . . . . ... . ... ... ... ....

7 Conclusion
7.1 A two-steps methodology . . . . . . . ... ... ... ...
7.2 Final Remarks . . . . . . . . s

Bibliography

Bibliografia

107
107
109

110

110

129

CONTENTS






Chapter 1

Introduction

This thesis marks the culmination of four years of dedicated doctoral research,
during which I delved into the applications of Data Science (DS) within the realm
of educational sciences. During the last decades, we have witnessed a process of
digitization of society and the widespread adoption of data-driven practices in re-
search across most sectors. This renewed focus has led researchers and educators
to explore innovative solutions, including the integration of Artificial Intelligence
(ATI) techniques [1] into educational decision-making. AI, particularly through ma-
chine learning (ML), has shown exceptional capability in predictive and diagnostic
tasks across numerous fields. The application of Al in education yields substantial
benefits for the system, supporting the interests of various stakeholders. In pre-
senting the results of this thesis, we will highlight these benefits in the context of
the case studies considered.

This thesis fits into this research landscape, waving on various contributions
—some already published, others in the process of publication in international
journals or conferences. Most of the chapters are closely tied to a key publication
in my research path. The presented work is entirely my own, with specific men-
tions in the text and Acknowledgements section regarding collaborative efforts
with other researchers. Collaborative contributions are transparently indicated,
and comprehensive references are provided for all supporting literature and re-
sources. At times, I integrated sections of these papers into the thesis in their
original form, particularly when detailing the methodology applied to a specific
case study or presenting results and their discussion. In other instances, I found
it necessary to rephrase, add content, or provide a different perspective on these
prior contributions. This adjustment is often made in the introduction and con-
clusion of the papers, reflecting the evolution of these contributions during my
Ph.D. journey. It outlines how they influenced subsequent phases of my research
among various possibilities and contributed to the primary goals of this thesis.
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Furthermore, I have also incorporated unpublished sections, serving as extensions
of previous works identified in the papers as future endeavors.

The starting point of this research was strongly motivated by my professional
interests. For close to a decade, I dedicated myself to teaching mathematics in
Italian high schools —a subject often marked by students facing challenges in
meeting expected learning outcomes. This struggle is more pronounced among
Italian students than their peers in other OECD countries, as highlighted by the
students achievement in international Large Scale Assessment Tests [2]. Thus,
my research embarked on an exploratory journey, aiming to assess the potential
informativeness of data collected through such assessments in predicting the risk
of low achievement at an early stage.

We used data collected through the INVALSI test, a national Large Scale
Assessment Test administered annually by the Italian Ministry of Education [3].
While this exploration did yield satisfactory results in terms of predictive perfor-
mance metrics, it also brought to light certain limitations, which will be discussed
in greater detail in Chapter 2. The chapter is dedicated to presenting the main
case study of this thesis on machine learning (ML) methods for predicting at grade
5 the risk of underachievement in mathematics five years later, at the end of the
Italian compulsory education.

Here I sum up which are the three emerging issues in our main case study: the
transferability of the proposed predictive models, their explainability, and their
generalizability. These terms are widely used in the literature, and there are
varied interpretations regarding their usage [4, 5|. To clarify them in the context
of this thesis, in the following I briefly introduce specific meanings for each term.
Moreover, I utilize this introduction to define three goals that I aim to address in
this thesis related to these issues.

1.1 Challenges and goals

When using machine learning and data-intensive methods for developing pre-
dictive tools, several common challenges can undermine users’ trust in the model
and its large-scale implementation. As mentioned earlier, in the development of
this thesis research, I encountered three main issues that I will now introduce,
characterizing them with a sense resonating in the context of Al applications in
education.

A first challenge concerns Transferability. It is related to the applicability and
effectiveness of Al tools or models when they are applied in a different educational
setting or context. It estimates how well the modeling process gained from one
environment can be transferred and utilized in another educational context. We
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have interpreted this as having an educational data science pipeline that is appli-
cable to other relevant problems. The transferability issue led to the formulation
of the first goal for this thesis as follow:

G1 Evaluate the possibility of transferring the machine learning pipeline used in
the initial case study to other educational contexts and identify necessary
precautions.

In this thesis we addressed the transferability challenge, moving from students’
low achievement to academic dropout [6]. While this problem differs from the
main case study, involving a distinct educational segment (higher education) and
a different educational outcome (dropout instead of underachievement), it serves as
a suitable transferability context due to similarities in the processed data. Both the
educational outcomes can be detected analyzing tabular data; additionally, they
both show intrinsic differences in the collected data among cohorts of students
from different years, as I will elaborate on later.

As second issue, let us consider FExplainability. It refers to the ability of a
model or system to provide understandable and transparent explanations for its
predictions, decisions, or outcomes. It involves making the inner workings of the
AT model accessible and comprehensible to users, especially stakeholders in the
educational domain, such as teachers, students, or administrators. It is crucial in
gaining trust, facilitating user comprehension, and supporting informed decision-
making based on the insights generated by the Al tools.

This issue is crucial in the development of predictive models for both low
achievement and dropout. In fact, the significance of these models often ex-
tends beyond simply predicting a success or failure label for an individual student.
Rather, the value lies in comprehending the underlying reasons that influenced the
model’s prediction of a specific outcome. This understanding may support various
stakeholders in implementing actions of different scales to counteract undesirable
outcomes. I formulate here a second goal in this thesis:

G2 Explore explainability strategies for predictive models in the educational do-
main that provide value for the various stakeholders involved in designing
policy and educational actions to counteract undesirable outcomes

In this thesis, I addressed this challenge by conducting an analysis using various
techniques to determine feature importance, i.e. selecting the features that most
significantly impact the model’s predictions. Our main contribution for this objec-
tive concerns the application of three post-hoc explainability techniques, namely
permutation fetures importance, attention map-beased explanations, and SHAP
both to our main case study on student low achievement prediction and academic
dropout.
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The third emerging challenge concerns Generalizability. It pertains to the de-
gree to which findings, patterns, or models derived from a specific dataset —essen-
tially a subsample of the entire population— can be extrapolated to other similar
datasets or the entire population. This assesses the ability of insights to remain
valid beyond the specific conditions of the original study, including the capacity to
apply models to diverse student cohorts or other learning domains. This challenge
is particularly evident in the INVALSI dataset selected as main case study of this
thesis. The INVALSI tests, along with Large-Scale Assessment Tests in general,
assess the same skills and/or knowledge of students but through different ques-
tions each year of administration. Consequently, the data collected on a cohort’s
responses is specific to that particular group of students, making direct compar-
isons with any other previous or subsequent cohort challenging. This prompted
the need for a feature engineering process or other embedding solutions that facil-
itate the comparison of students across different cohorts, allowing the models to
be applied to cohorts not encountered during the training phase. In light of this,
we can establish the third goal of this thesis:

G3 Enable the application of developed predictive models on diverse student co-
horts by evaluating suitable forms of student representations derived from
the available tabular data.

We tackled this objective with two main attempts. Firstly, we drew up a fea-
ture engineering process aimed at computing new and more general features, which
can be calculated for all student cohorts, exploiting their set of responses to items
in the administered tests. The process was guided by the reference to a specific
domain knowledge, i.e. a taxonomy for the classification of the items through pre-
established categories by experts in mathematics education. Furthermore, this
feature engineering process, guided by theory, has outlined the possibility of inves-
tigating the presence and effectiveness of additional domain knowledge sources, as
well as exploring alternative methods for their integration into the standard ML
pipeline. The injection of domain knowledge or, more in general, of other prior
knowledge sources, has been explored in the literature under various names, includ-
ing Informed Machine Learning (IML) [7]. This methodological approach seems
promising for overcoming the issue of generalizability in student representation,
i.e. creating an abstract and robust student representation applicable to diverse
student cohorts. Thus, as second attempt, we dive into this direction through a
systematic literature review [8| and the proposal of a graph-based data engineering
process [9] to apply to the main case study considered in this thesis.

As a final remark for this introduction, I want to point out the strong intertwin-
ing between transferability, explainability and generalizability, in the sense that
addressing one meant also impacting the other two. Simultaneously, to pursue
any of the three paths, it was needed to consider the others. In the development
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of this thesis I try to assume a reductionist approach, considering the three chal-
lenges separately along the various experiments, analyses and discussions. The
connections between these three aspects are reconstructed at a later stage, as final
outcome of this research journey.

1.2 Thesis structure

The thesis structure unfolds as follows. In Chapter 2, the primary focus is
on the early prediction of students at risk of low achievement. This involves the
application of two well-established ML techniques: Random Forest and Neural
Networks. Addressing the challenge of generalizability, the chapter introduces a
feature engineering process, which is detailed along with information about the
available data and the framework guiding their collection. The chapter discusses
the model results using various performance metrics. Furthermore, a feature im-
portance analysis was performed for the Random Forest model, establishing a foun-
dation for the subsequent work on explainability. The conclusion of this chapter
provides insights into the motivation behind the three challenges and the research
directions previously introduced.

Chapter 3 significantly contributes to the issue of transferability. It presents
and discusses the results of the same architectures used in the main case study,
this time applied to academic dropout for one of the major Italian universities.
The conclusions drawn in this chapter are leveraged to highlight the precautions
necessary for the transferability of the ML pipeline described and implemented in
the previous chapter.

Moving on to Chapter 4, the focus shifts to the explainability problem, ex-
amining its application to both case studies presented in the preceding chapters.
This approach not only contributes to Goal G2 but also monitors the transferabil-
ity of the explainability techniques considered, which nevertheless fall within the
proposed Educational Data Science pipeline for tabular data in this thesis.

Chapter 5 provides an overview of the Systematic Literature Review conducted
on Informed Machine Learning (IML) approaches for student modeling [8]. The
primary focus is on understanding the consideration and integration of prior knowl-
edge sources into the standard machine learning pipeline when dealing with stu-
dent modeling in artificial intelligent systems. The challenge of generalizability
in student modeling here is explored in connection with the knowledge tracing
(KT) problem [10]. KT has different characteristics from those of predicting un-
derachievement through Large-Scale Assessment Tests. However, there are rel-
evant points of similarity that are discussed in this chapter. In the conclusion
of this chapter, I point out the state-of-the-art, shedding light on strengths and
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potential research directions in the application of IML to student modeling and,
consequently, to our main case study.

In Chapter 6, I introduce a potential alternative to feature engineering for
achieving generalizability. The main concept is to harness the similarity connec-
tions among test items, either based on their content or the types of skills they
engage in students. This approach aims to derive a representation of the student’s
cognitive state, which can be captured through their responses in the test. The
chapter begins by presenting the pedagogical and didactic assumptions that form
the foundation of these student models. Subsequently, I delve into the imple-
mentation of these assumptions and explore how they influenced the performance
metrics and explainability of the models proposed in Chapter 2. In the conclusion
of Chapter 6 I propose a two-step framework for Al systems like those considered
in this thesis, aimed at improving both the explainability and performance of such
systems. This framework is the result of interdisciplinary collaboration with many
fellow travelers during this journey. Our proposal has a dual perspective: first, we
decompose the scope of our predictive system into an epistemic aspect (hypothesis
testing for knowledge gathering), and then we consider a pragmatic one (knowl-
edge deployment in real-case scenarios). The framework is employed to discuss the
data science pipeline used in the previous chapter and the results obtained.

The Conclusion of this thesis is used to summarize and highlight the contri-
butions presented in the preceding chapters concerning the three goals stated in
this introduction. Within the same chapter, in addition to discussing individual
strengths and weaknesses regarding the three themes of transferability, explain-
ability, and generalizability, attention is given to how they intertwine. The focus
is on how advancements in one aspect may have positive repercussions on the oth-
ers. In addition, I provide some future works that may serve as possible extensions
for this thesis.

1. Introduction



Chapter 2

Students’ Low Achievement

In this chapter, I present the foundation of my research throughout my doctoral
studies. As mentioned in the Introduction, my initial goal was to explore how Data
Science and Machine Learning techniques could effectively analyze and address
the issue of students’ low achievement. This chapter’s content is primarily derived
from my paper presented at the AIED 2022 conference, co-authored with Dr. S.P.
Zingaro under the guidance of Prof. M. Gabbrielli [3]. There are three significant
enhancements from the original conference paper.

Firstly, I've expanded the introduction, now presented as the background and
motivation for my research activity (section 2.1). I aim to provide a more thorough
rationale for investigating low student achievement and applying predictive models
to this issue.

Secondly, I have included a more comprehensive description of the dataset
compared to the conference paper. The dataset used in this case study is extensive
and includes several features, based on a didactic framework that underpins the
test design. I thoroughly introduce the dataset in section 2.3, to support the
numerous references throughout the thesis. Moreover, the description of the data
collection choices that initiate the data-driven process enhances transparency and
fairness in interpreting the results [11, 12].

Thirdly, T have reorganized the presentation of the results. More space is
dedicated to the feature importance analysis (section 2.5.2), which had been com-
pressed due to page limits in the conference paper. Additionally, section 2.6 is
structured to highlight the gaps in the responses to the RQs that motivated the
subsequent steps in my research activities selected for this thesis.

2. Students’ Low Achievement
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2.1 Background and motivation

Student low achievement refers to the scenario where a student fails to meet
established learning objectives. This widespread issue has long-term repercussions
for both individuals and society. In 2016, more than 28% of students in OECD
(Organization for Economic Co-operation and Development) countries scored be-
low the baseline proficiency level in at least one of the three core subjects—reading,
mathematics, and science—assessed by PISA (Programme for International Stu-
dent Assessment) [13].

Low achievement is closely linked to school dropout, which is the premature
abandonment of the educational path by students. This connection is twofold.
Firstly, there is a causal link between underachievement and school dropout.
Poorly performing students often become trapped in a vicious cycle of demotiva-
tion and low grades, leading to further disengagement from school. This increases
their risk of dropping out [14] undermining both their prospects of cultural and
professional growth, and their future as engaged citizens [15]. Studies indicate that
the impact of low achievement on dropout rates can start as early as first grade,
where poor performance already serves as a significant predictor of future dropout
risk [16, 17].

Secondly, low achievement is not only a primary factor contributing to dropout
but also a form of dropout itself. INVALSI (the National Institute for the Eval-
uation of the Italian Education System) supports this thesis, presenting data in
their 2019 report [18]. They observed that 7.1% of students, by the end of their
school careers, exhibited underachievement in all subjects covered by national as-
sessments. These students remain in school but fail to meet the expected learning
standards, resulting in fragmented and uncertain knowledge despite sometimes
receiving passing grades. Thus, low achievement can be considered an “implicit”
form of school dropout. While these students may not leave school explicitly, they
do not acquire the necessary skills according to national standards. When consid-
ering both explicit and implicit dropouts, 2019 Italian data indicates that about
20% of students are affected by this phenomenon.

The strong connection of low achievement with dropout is one of the main
reasons why predicting it in advance is important. Implementing preventive mea-
sures for underachievement could, in turn, help mitigate the subsequent problem
of school dropout, which is much more challenging to address. Indeed, it is evi-
dent that once students leave the educational system, it becomes more difficult to
intervene and ensure their right to education and to support them in building the
skills necessary for active citizenship. Therefore, having predictive tools for the
risk of low achievement can be useful as an alert system.

This consideration led us to formulate our first research question:

2. Students’ Low Achievement
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RQ1.1 Is it possible to develop a suitable tool to predict, at an early
stage, the risk of low achievement at secondary school for students of
the primary school?

By using “early”, we mean as soon as possible, that is several years in advance so
that suitable countermeasure can be taken. This includes designing interventions
aimed at reducing the risk of underachievement and, consequently, the risk of
dropout [19].

The previously mentioned statistics on the incidence of low achievement among
students in OECD countries, and particularly in Italy, highlight the social impact
of this phenomenon. This raises the question of what causes underlie this prob-
lem and how to effectively address and mitigate them. Answering this question
is complex and multifaceted. Within the field of mathematical education, for in-
stance, Abd Algani and Eshal propose five categories of factors that can contribute
to underachievement: student-related factors, teacher-related factors, curriculum-
related factors, school-related factors, and family-related factors [20].

In this study, we focus on the Italian context using data from the INVALSI
national large-scale assessment test. This test is administered annually in three
core subjects common to all school curricula in Italy: Italian, mathematics, and
English. In this case study, we focus on assessing the risk of low achievement
specifically in mathematics, which is the subject most prominently affected by
this issue. According to the 2023 INVALSI report [21], by the end of compulsory
schooling (K-10), 44.1% of students do not achieve the expected level of compe-
tence in mathematics, and 38.5% do not reach the expected level in Italian. The
English test is administered only at the end of grade K-13.

The INVALSI dataset includes information related to most of the previously
mentioned categories, specifically demographic data on students, their responses to
the administered test questions, information about their family and socio-economic
context, and data about their schools. The dataset is described in greater detail
in the dedicated section 2.4. Here, we highlight two key strengths: firstly, its
extensive scope, with data on approximately 1000000 students over two years of
test administrations; and secondly, the detailed information on student responses,
showing how they performed on each question of the administered test. This allows
us to investigate whether it is possible to obtain a representation of students’ skills
achievement at the time of the test administration, and to determine if there are
any key educational factors in predicting the risk of future low achievement. Thus,
we can formulate these two additional research questions:

RQ1.2 Is it possible to quantitatively represent the level of knowledge
of students and build a model of their skills achievement?

RQ1.3 Is it possible to derive which are the factors that are most
related to students’ low achievement?

2. Students’ Low Achievement
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In diving into these research questions, we must consider the issue of generaliz-
ability. Specifically, we need to find a representation that is valid for students from
different cohorts who have taken different tests, thereby overcoming the specificity
of the administered test items. This approach also enables us to identify factors
relevant in determining the model predictions that are consistent across different
student cohorts. Such factors would have general value and potentially greater
significance. Indeed, delving into the three research question we aim to align with
the interests of various stakeholders, including policy-makers, principals and coor-
dinators, teachers, students and their families [22].

On one hand, the early predictor can serve as a warning system, notifying teach-
ers or families of the necessity to implement recovery and precautionary measures.
On the other hand, the underlying model derived from statistical learning provides
valuable knowledge that applies not only at the individual student level but also at
the systemic level. Identifying the key features influencing the model’s predictions
is particularly valuable, as it can highlight potential areas for intervention in social
and educational policies aimed at curriculum reform and improving school quality
indices.

Regarding methodological decisions, we opted for a data-driven approach, con-
fident that emerging digital technologies, especially artificial intelligence, would
offer valuable operational support. To strike a balance between explainability and
performance, aligned with the principles of Trustworthy AI [23, 24|, we evaluated
two state-of-the-art machine learning techniques: random forests and neural net-
works. We intend to leverage random forests [25] to extract rules that facilitate
interpreting model outcomes and to develop protocols for mitigating student un-
derachievement. Additionally, we explore two different neural networks for their
flexibility and potential performance enhancements.

The remaining of the chapter is organized as follows. Section 2.2 provides an
overview of the literature concerning the development of automatic tools—based
on machine learning techniques—that aim to exploit educational data to prevent
low achievement. Sections 2.3 and 2.4 describes the dataset and the techniques
used to build our predictive models, while Section 2.5 presents the results of the
experiments we carried out to validate our approach. Finally, in Section 2.6, we
discuss the main findings and conclude with some possible future directions for
this work, some of which are further developed in the subsequent chapters.

2.2 Related Works

The topic of students’ low achievement is a widely studied phenomenon in
the social sciences and education [26, 27]. The problem was also addressed in
terms of predictive models for student performance or dropout risk both at school,
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high school and academic levels. These models exploit different machine learn-
ing techniques, including supervised learning, e.g., random forests, support vector
machine and Bayesian network, unsupervised learning, e.g., k-means and hierar-
chical clustering, and recommender systems, e.g., collaborative filtering 28, 29].
Moreover, several kinds of data have been used to tackle the problem. In [30] the
training set is built with demographic data of the students and their grades in
some tasks. Other studies are based on students performance during first semester
courses [31, 32|. Some datasets include behavioural data supplemented with other
features related to learning results [33, 34, 35|, in a mix of cognitive and non-
cognitive characteristics.

It is worth noting that in all the researches considered so far, the performance
prediction is made within a relatively short period, i.e., one school or academic year
or cycle of studies. Furthermore, even when the datasets include cognitive features,
these are expressed in terms of previous or present education marks, total univer-
sity score and final or admittance exams. We aim to enrich the cognitive features
expressiveness by including variables for the representation of areas of knowledge
and skills, privileged indicators for the study of learning [36]. To overcome the
limitations mentioned above, we decided to consider data collected through the
administration of large-assessment tests. This kind of data lend by their nature to
greater generalizability than traditional educational or psychological studies, that
often rely on convenience samples [37]. These datasets are often used to support
educational policy decisions [38| or in studies aiming to determine the relation-
ship between socio-economic factors and school performances [39]. Nevertheless,
they are designed to measure students’ knowledge and skills and often to track
longitudinally the students’ learning path [40, 41], as in our interest.

In some studies data collected through large-scale assessment tests were used to
design predictive models of student performance through several machine learning
techniques. In [42, 43|, for example, the authors refer to data collected through the
PISA international large-scale assessment tests. In both cases, attributes directly
concerned with the students’ attitudes, intentions, behaviour as well as data about
out of school lessons, concepts familiarity and overall experience, have been used
as classification features. Moreover, the data refers to a single cohorts of students,
both for training and testing the models.

To the best of our knowledge, our proposal has three main novelty points.
It is the first in the literature that aims to develop a machine learning-based
predictive model targeting low achievement at secondary school when students are
still in their primary cycle of studies. Secondly, we aim to use the data collected
through a national large-scale assessment test to extract features directly related
to student learning in terms of knowledge and skills. In this way the explainability
of the model may enable useful information for teachers and didactic coordinators.

2. Students’ Low Achievement
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Finally, it uses different students cohorts to train and test the models, striving for
a transferability of our tools.

2.3 The INVALSI dataset

In this section we introduce the INVALSI dataset, used as data source for our
tools. It collects data from disciplinary tests and student surveys administered
across various school grades —at the levels K-2, K-5, K-8, K-10, and K-13—
in Italy in a census manner. These tests aim to evaluate students’ skills levels in
specific subjects, according to specific frameworks for each discipline. On the other
hand, the surveys collect socio-economic and cultural information that significantly
impacts educational outcomes, as supported by numerous international studies,
including those by the OECD [44]. Since the initial tests in the 2002/03 school
year, the scope and format of these assessments have evolved significantly.

Key milestones in the development of the INVALSI tests include:

e 2013/14: Introduction of separate tests for Italian and mathematics at grades
2,5, 8, and 10.

e 2017/18: Transition to computer-based testing and the inclusion of an En-
glish test at grades 5 and 8

e 2018/19: Expansion to include Italian, mathematics, and English tests at
grade 13, marking the end of secondary education.

While the primary objective of these tests is to measure students’ skills devel-
opment at various educational stages, their broader goal is to assess and improve
the quality of the national education system. This goal is emphasized by recent
legislative changes, such as Legislative Decree no. 62/2017, which removed the
requirement for these tests to be part of the final exams for grades 8 and 13.

A significant advantage of the INVALSI dataset is its ability to track students
longitudinally across different school years [40|. Since the 2011/12 school year, each
student has been assigned a unique identifier, the SIDI* INVALSI code, allowing
their test results to be traced over time. This longitudinal tracking enabled, for
instance, the 2018/19 administration of grade 13 tests to evaluate the school effect
on skill improvement for students who completed the first cycle of secondary edu-
cation in 2013/14. The school effect refers to the school’s contribution to changes

LSIDI is the acronym of Sistema Informatico Dell’Istruzione (Information Technology System
of Education)
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in students’ skill levels. This comprehensive dataset thus provides a robust foun-
dation for evaluating educational outcomes and informing policy decisions aimed
at enhancing the overall quality of education in Italy.

Data from the Math, Italian, and English tests provide extensive information
on individual students. The features in the dataset can be categorized into five
main groups:

1. Identifying Marks: this includes school code, class code, and SIDI IN-
VALSI code.

2. Items Boolean Variables: these indicate the correctness of the answers
given to each test item by the student.

3. Student Demographic Information: this includes gender, month, year
and place of birth, country of origin, province and region of residence, type
of school attended, and grades in Italian and Math.

4. Parent Demographic Information: This includes educational qualifica-
tion, job, and birthplace.

5. Synthesis Indices: These express the degree or level of certain aspects of
interest, such as WLE (Weighted Likelihood Estimation of ability according
to the Rasch Model) and ESCS (Economic, Social and Cultural Status).

The socio-economic-cultural survey data aim to gain information on the parents
studies and work or to explore the context and methods of learning, such as the
study environment at home, personal or external motivations for studying, and
meta-reflection on study methods and school lessons. These questions serve various
purposes and have evolved over time.

In our case study, we considered data on maths test from two cohorts of stu-
dents: K-5 of the 2012/13 school year (485225 students) and K-5 of the 2013/14
school year (477236 students). For each cohort we also had data from five years
later at grade K-10, to be used for the definition of the underachievement target.
We define the occurrence of low education achievement when the students level in
the test is less than or equal to 2 on a scale from 1 to 5, according to the INVALSI
interpretation of the large-scale assessment tests outcomes. We applied a feature
selection process to determine a subset of relevant features. In Section 2.4.4 we will
provide further information on the preprocessing steps which lead to the selection
of a subset of features.

As already mentioned, the datasets also contain a boolean feature for each test
item, where the students’ answers correctness are recorded. In order to enable
the use of our predictive models on different cohorts of students and to provide a
coherent representation of their learning in terms of areas of knowledge and skills,
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it is necessary to release the dataset from the individual items that constitute a
certain test. Therefore, we introduced a set of new features for students’ learning
encoding, which trace back to the same learning representation space students
belonging to different cohorts.

2.4 Methods

In the following, we motivate our methodological choices. First, we introduce
our knowledge-based approach to ensure generalizability across different student
cohorts for our models. Then, we briefly describe the selected ML algorithm, and
the chosen performance metrics. Finally, we present the experimental setup, with
particular emphasis on the necessary dataset preprocessing steps.

2.4.1 Students’ Learning Encoding.

Aiming to encode students’ learning, we used a knowledge-based approach
considering the items classification in terms of areas, processes and macro-processes
according to the INVALSI framework for the design of math tests?. In Figure 2.1,
we present a translated (Italian to English) item of the maths INVALSI test for
the year 2012/13, with its classification. In Table 2.1, we give for reference an

D1. Look at the following numbers.
3060. 315. 312. 96. Area: Numbers (NU)
They are Process: Know and mastering the specific contents of
A. Alleven mathematics (P1)
B. All multiples of 3
C. Allmultiples of 5
D. Allless than 1000

Macroprocess: Employing (MP3)

Figure 2.1: Example of item in INVALSI maths test with its classification on the
right

overview of the areas, processes, and macro-processes that have been used in the
encoding of the questions.

We propose a novel learning encoding by defining one new variable for each
area, process, and macro-process. Each of these new features takes the value cor-
responding to the percentage of correct answers provided by the student for that

2The framework is available on the INVALSI website at https://invalsi-areaprove.
cineca.it while the items’ classification for the reference test is available at https://www.
gestinv.it/Matematica.aspx.
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Table 2.1: Maths INVALSI framework for question encoding.

(NU) Numbers

(SF) Space and figures

(DF) Data and forecasts
(RF) Relations and functions

Process

(P1) Know and master the specific contents of mathematics

(P2) Know and use algorithms and procedures

(P3) Know different forms of representation and move from one to the other
(P4) Solve problems using strategies in different fields

(P5) Recognize the measurable nature of objects and phenomena in different
contexts and measure quantities

(P6) Progressively acquire typical forms of mathematical thought

(P7) Use tools, models and representations in quantitative treatment
information in the scientific, technological, economic and social fields

(P8) Recognize shapes in space and use them for problem solving

Macro-process

(MP1) Formulating
(MP2) Interpreting
(MP3) Employing
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Table 2.2: Example of the student’s learning final encoding.
Id P11 P2 P3 P4 P5 P6 P7 P8 MP1 MP2 MP3

1 086 075 090 080 0.71 0.80 1.00 0.89 1.00 0.67 091 0.75 0.81 0.73  0.94
2 050 0.25 050 053 029 060 050 022 1.00 033 0.73 025 050 047 044

specific group of items, namely, correctness rate. For example, the new feature
“Numbers” would assume the percentage of correct answers given to the items
that belong to the area “Numbers”; so the value of “Numbers” is the ratio be-
tween the number of items belonging to “Numbers” for which the student’s answer
is correct and the total number of items for “Numbers”. Last, we concatenate
the computed values to obtain a new flattened representation of learning, where
each item is a possible indicator and not its unique representative. Following
our strategy, we represent each student’s learning level in the space of fifteen
(15) dimensions, one for each possible area, process, and macro-process. This
multi-dimensional representation offers a more structured approach to analyzing
students’ learning, as it moves beyond raw scores to capture performance across
specific cognitive and mathematical dimensions. The rationale for choosing fifteen
dimensions stems from empirical research in educational assessment [45], where
categorizing student performance into distinct conceptual areas has been shown
to improve both predictive modeling and pedagogical insights. By structuring
learning performance along these dimensions, we align our representation with IN-
VALSI theoretical frameworks that emphasize domain-specific competencies and
cognitive processing.

In table 2.2, we show an example of applying our learning encoding strategy
for two students (identified by Id=1 and Id=2). Indeed, in the general case, once
items are classifiable using the same scheme we selected (area, process, and macro-
process), one can use the same encoding and obtain a representation aligned for
students belonging to different cohorts.

2.4.2 Machine Learning Techniques

We decided to exploit two state-of-the-art machine learning techniques to de-
velop an Al predictor for the risk of low achievement. As the first technique,
we used Random Forest (RF) It is a kind of ensemble learning classification al-
gorithms, which integrate the classification effect of multiple decision trees [25].
We trained our models through bootstrap aggregating (bagging), i.e., a random
sub-sample with fixed size and a limited number of features are used to fit each
tree. This reduces the overfitting of datasets and increases precision. To tune the
model, we performed a grid search [46] for finding the best hyper-parameters set-
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ting (number of estimators, max depth, percentage of features and percentage of
samples to use for each estimator). Moreover, we exploited k-fold cross-validation
to assess the quality of the model [47].

RF algorithm is widely used in Educational Data Mining and Learning Analyt-
ics for the high degree of explainability and effortless interpretation of the results.
For this purpose, we compare the features selected by two well-known technique,
namely, feature importance based on Mean Decrease of Impurity (MDI) [48] and
permutation feature importance (PFI) [49]. MDI is defined as the total decrease
in node impurity—weighted by the probability of reaching that node, which is
approximated by the proportion of samples reaching that node—averaged over all
trees of the ensemble. This is highly informative about how the ensemble model
provides its predictions. PFI directly measures feature importance by observing
how random re-shuffling of each predictor, thus preserving its distribution, influ-
ences model performance. This allows to fairy treat our dataset, whose features
are both categorical and numerical and have very different cardinality. Moreover,
PFI can be computed on a left-out test set, removing bias due to the training
set. By a comparison of the selected features, the involved stakeholders, such as
teachers, school principals and coordinators, can easily identify the most relevant
risk factors for the prediction of low achievement, as we will discuss in Section 2.6.

Then we relied on neural networks. The use of neural networks has recently
become widespread also in the field of Educational Data Mining and has also been
applied in predictive models for student performance [50]. We implemented two
neural networks based on different data transformation approaches.

Firstly, we used Categorical Embeddings (CE). It is a neural network that treats
the input depending on its type: if the input is categorical, we pass it through an
embedding layer; if the input is numerical, we feed it to a dense layer. Secondly,
we relied on a variant of the Feature Tokenizer Transformer (FTT). It is based on
attention mechanism [51|, able to identify the input or the group of inputs that
most influence the output, thanks to attention maps. Moreover, in its architecture
it exploits a feature tokenizer function to extract tokens from the input and then
fed these tokens to a Transformer architecture [52] for classification.

Neural networks are known to be less interpretable than statistical learning
models. However, recent advancements in explainable AI now enable post-hoc
analysis of feature importance for these models, though at a higher computational
cost. This approach is the focus of the study presented in Chapter 4.

2.4.3 Performance metrics

To evaluate our prediction models, we employ several common performance
metrics for binary classifiers: Accuracy, Sensitivity (Recall), and Specificity. These
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metrics provide a comprehensive assessment, especially crucial in our imbalanced
dataset.

Accuracy quantifies the proportion of correct predictions across both classes
relative to the entire dataset. While useful, its reliability can be compromised in
the presence of class imbalance, where the model may favor the majority class.
Therefore, we use additional metrics to provide a more nuanced evaluation.

Sensitivity (or Recall) measures the model’s ability to accurately identify stu-
dents at high risk, specifically those prone to low achievement in this case study.
This metric is crucial because, despite being a minority, the high-risk group holds
significant importance for educational stakeholders. High sensitivity ensures the
effective identification of students who need targeted interventions.

Specificity assesses the model’s performance in correctly identifying students
at low risk of dropping out. It complements sensitivity by indicating how well the
model avoids false positives.

2.4.4 Experimental setup and preprocessing

We carried out all the experiments using the Google Colaboratory Notebook
environment, with the Python programming language and popular machine learn-
ing libraries, such as scikit-learn and pandas.

The dataset for all the experiments was preprocessed in a sequence of steps.
Firstly, we cleaned features with many missing values, highly correlation (com-
puted by R? measure above 0.5) or specifically referred to a cohort of students,
preventing the model to be transferred to new cohorts (e.g. identification code for
a class). This features selection process, together with the elimination of the at-
tributes related to the items in the tests in favor of the coding of students’ learning
results in a set of 34 features, plus the target feature. These features refers both
to socio-economic and cultural context—as this significantly affects student for-
mative career [44]— demographic data and learning dimension —the core domain
for school actions. Table 2.3 lists all the 19 selected features, along with the 15
features we defined previously for students’ learning encoding ( Section 2.4.1) .

To deal with our hybrid dataset, we include a further preprocessing step, aimed
at encoding the values of categorical variables into numerical values. We selected
the “one-hot” encoding algorithm that encodes each variable of n categories into
n binary variables, whose value is 1 only for the variable corresponding to the
transformed category while it is 0 for the remaining ones.

Moreover, a comparison between the students in the K-5 datasets and those
in the correspondent K-10 datasets shows that about 27% of the students are
missing. We can assume that this is due to several causes—e.g. remedial students,
dropout, transition to vocational training, anonymization errors, and many more.
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Table 2.3: List of features to add to those for student’s learning encoding. From top
to bottom, they include: demographic information about the student, information
about their academic performance, information about their previous academic
career, and information about the parents.

Feature Name Type Range/Categories
Student’s Gender Categorical Female or male
Student’s month of birth Categorical One of the twelve months
Student’s place of birth Categorical 4 categories (Italy, EU country, european no-EU country, other)
Student’s Citizenship Categorical 4 categories (italian, EU, european no-EU, other)
ISTAT Province Code Categorical ID code for the residence province of the student (108)
Region Code Categorical ID code for the residence region of the student (19)
Student Geographical Area Categorical 5 categories (north-west, north-east, central, south, island)
ESCS Numeric Index for Economic, Social, and Cultural Status
Italian grade Number Student’s grade in Italian at the end of the first semester (range 1-10)
Math grade Number Student’s grade in Math at the end of the first semester (range 1-10)
Overall math score Number Score obtained in the mathematics test normalized (range 0-1).
Attendance of nursery school Boolean True if the student attended nursery school
Regularity Boolean True if the student has not repeated any school years
Father’s Place of Birth Categorical 4 areas (italian, EU, european no-EU, others)
Father’s Educational Qualification Categorical 6 levels of education from primary school to bachelor’s degree or higher
Father’s Occupation Categorical Type of profession (9 available categories)
Mother’s Place of Birth Categorical 4 areas (italian, EU, european no-EU, others)
Mother’s Educational Qualification Categorical 6 levels of education from primary school to bachelor’s degree or higher
Mother’s Occupation Categorical Type of profession (9 available categories)

Considering our focus on a predictive model for low achievements, we removed
from the dataset all the students who were missing over the five years for whatever
reason. Even after this preprocessing operations, the K-5 2012/13 cohort is still
made up of 351746 students, the K-5 2013/14 cohort of 354987.

For the definition of the training set we used the data from 2012/13 K-5 co-
hort. For the models based on neural networks we split this cohort to generate
both training and validation sets (split in 80% and 20% respectively). The K-5
2013/14 cohort was used as test set, to evaluate the transferability of the models
on different cohorts, i.e., obtained with a different INVALSI test. This allowed us
to evaluate the validity of the proposed learning encoding that is, the effective-
ness of abstraction from specific items to learning in terms of areas, processes and
mMacro-processes.

The dataset is unbalanced between underachievement/non-underachievement
classes; therefore balancing techniques were applied. In the development of the
RF models, a random undersampling technique was used, implemented in the
imblearn library. We trained neural networks using a weighted random sampler,
that samples the data to balance classes ratio in the training batches.
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2.5 Results

In this section we sum up the results of our experiments. We present them
in two subsections. The first one is dedicated to the performance metrics. We
selected three well-known metrics for classification: accuracy, precision and recall.
In the second subsection we show the results of the analysis we conducted on
features importance in the RF model.

2.5.1 Predictive models performance.

In Table 2.4, we present the overall results on the test dataset, i.e., the data
from cohort 2013/14, on three different models: Random Forest (RF), Categor-
ical Embedding neural network (CE) and Feature Tokenizer Transformer neural
network (FFT).

The models are compared accordingly to three standard metrics. Accuracy
expresses the percentage of good predictions for the models, but can be misleading
when the dataset is imbalanced. Precision is a measure of quality for the predictor,
and high value indicates that the model is not overfitting on the target class. Recall
is highly informative for our purpose, because it is related to the quantity of
students in underachievement condition who are retrieved correctly by the model.

Table 2.4: Performance on test set

Models Accuracy  Precision  Recall
Random Forest 0.77 0.62 0.67
CE neural network 0.76 0.76 0.76
FTT neural network 0.78 0.77 0.78

For RF, we considered the best hyper-parameters setting determined with the
grid search technique: 50 estimators in the forest, trained with 30% of random
samples, 60% of random features and max depth set to 11.

The FFT outperforms the other predictive models. The accuracy values are
similar for the three models, but FTT increase of the 1% with respect to the best
RF. Moreover, this architecture maintains higher performance on the test set in
terms of precision and recall, with increases of 15% and 11% respectively compared
to the RF model. The CE model performs slightly lower, trailing the FTT model
by 1-2 percentage points across all metrics.
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2.5.2 Features importance

RF offer great interpretability, especially through the analysis of rule-based
features importance. In Figure 2.2 we show the 8 top relevant features selected
with a MDI higher than 2%.

Feature Importance using MDI

test overall score f I Iy }—{
math grade |—|: N }—{ cw omm
islands }—E.]—{
ESCS |—H—|
south }—E;:l—{
north-east }—Ea—{ -
north-west }—I:Z'—{

Figure 2.2: Feature Importance model with MDI. The legend for the box-plot is
the following: the central rectangle in each line shows the second and the third
quartiles together, where the orange line represents the 50% threshold; the green
triangle is the average value for the importance of the selected feature on all the
decision trees in the RF model; dots represent outliers.

The first two selected features are the overall test score and the math grade.
Their average MDI is higher then 20%, which is significantly relevant with respect
to the other features, whose MDI values is always under the 5%. Four out of the
eight features selected with an MDI threshold greater than 2% pertain to the stu-
dent’s geographical area of residence. These are boolean features resulting from
the preprocessing of the categorical variable geographical area, conducted on the
dataset for the RF model. The only student learning encoding feature selected
is the one corresponding to process P7 — use tools, models and representations
in quantitative treatment information in the scientific, technological, economic
and social fields. However, we note an anomaly: the average MDI value for this
feature is near the end of the fourth percentile due to the presence of some out-
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liers—specifically, certain decision trees in the ensemble for which the MDI of P7
exceeds 25%), making it one of the most important features.

For the features importance analysis, we also adopted PFI. We aimed to com-
pare the top 8 features extracted using this technique with those selected by MDI.
For the PFI computation, for each feature we compute the mean difference be-
tween the default estimator score (accuracy) and the scores obtained by replacing
10 times the values of the feature with their permutation in a random way. In
Figure 2.3 we show the results.

Permutation Feature Importance - Computed on Test Set

math grade }H—|

test overall score }H-l

islands }H{“

north-east -)-HI
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= = o=
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0.00 001 0.02 0.03 0.04 005

Figure 2.3: Feature Importance model with PFI. The legend for the box-plot is
the same of figure 2.2.

In this case as well, the two most significant features are the math grade, with
random reshuffling causing an accuracy drop of over 5 percentage points, and the
overall test score, which decreases accuracy by about 2%. Many of the selected
features are again related to the student’s geographical area of residence; P7 is the
only student learning variable that appears, and student gender is identified as the
eighth most important feature by PFIL. It is worth noting that, after the first two
selected features, only the "Island" feature impacts accuracy by at least 1%; all
other features fall below this threshold.
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2.6 Discussion

Our research aims to understand how systems based on artificial intelligence
can be used to build early automatic prediction tools and derive new and useful
information on the phenomenon of low educational achievement. In this casestudy,
we selected information from the Italian Ministry of Education reporting both
demographic and socio-economic information and INVALSI test scores for a large
number of students. Concretely, we exploited this information to produce a dataset
which was then used to train three predictive models. The first one is based on
random forest algorithm, from which we derive useful rules for the understanding
of the underachievement phenomenon. The others are based on neural networks,
which improve the performance of the first one in terms of accuracy, precision and
recall, and is a good candidate for integration in automatic systems for teaching
support.

Our results demonstrate that the challenge of predicting low achievement risk
for primary and secondary school students can be effectively addressed through
the use of well-curated datasets and the choice of reliable predictive models: using
data from level K-5 we were able to predict the low achievement risk at K-10 with
accuracy and recall of 0.78 with our best model. Therefore, we can affirmatively
answer our RQ1.1 regarding the use of ML techniques for early prediction of the
risk of low achievement. A particular interest is addressed to recall; in fact, a high
recall score —also named sensitivity— indicates both a reduction in False Nega-
tives (those who would need a support intervention and are not intercepted by the
model) and validates the selection criteria learned from the model as effective indi-
cators of possible intervention areas. This ability to predict an underachievement
five years in advance with a reasonable precision offer, we believe, a practical tool
to policy makers, managers and educators who want to tackle this problem.

A key point in our approach is the abstract representation of (INVALSI) tests
and the related encoding of students learning that we defined: this allowed us
to generalize our models on different cohorts and therefore to obtain a meaning-
ful prediction, addressing RQ1.2. The chosen representation is knowledge-based,
meaning it is guided by the theory behind the design of test items according to the
relevant educational framework. It embodies the expertise of scholars and mathe-
matics education professionals who have refined a description of student learning
outcomes over the years. Although this approach relies on the implicit assumption
of isolating individual aspects of learning (areas, processes and macroprocesses),
without considering their interactions and overlaps, it has proven to be an effi-
cient baseline for addressing the problem of generalization. This has enabled all
proposed models to achieve good predictive performance.

As regards RQ1.3, the analysis of the feature importance highlights some
significant elements which enhance the RF model explainability. As expected,
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the most significant features for predicting achievement in mathematics are the
maths grade provided by the school and the overall score in the maths INVALSI
test. These are summative evaluation indices, designed to summarize learning out-
comes in a single value. While their relevance strengthens confidence in national
evaluation processes on the school system by satisfying an interest of school policy-
makers, on the other hand they do not highlight specific critical issues in learning.
With our students’ learning encoding, we sought greater granularity to verify if
some areas or skills were more crucial than others for low achievement prediction.
Through a statistical factor analysis the didactic coordinators and teachers could
plan targeted enhancement and recovery actions to prevent underachievement. As
already noted in other studies, an impact on the phenomenon is due to the socio-
economic and cultural context. The relevance of the features on the geographical
area suggests, for example, that a study on a regional basis, rather than a na-
tional one, could highlight further determining factors on low achievement in that
territory.

2.7 Chapter Conclusion

The results discussed in the previous section contribute to the goals of this
thesis and lay the groundwork for the studies presented in subsequent chapters.

This case study successfully addressed the issue of generalizing the represen-
tation of student learning across different cohorts, particularly in terms of the
model’s predictive performance, thus contributing to goal G3. However, the cho-
sen representation did not highlight didactic-disciplinary features among the most
relevant ones in the explainability study. This limitation affects the model’s util-
ity for stakeholders such as teachers and students, who may be interested in early
interventions of didactic nature to counter the risk of underachievement. Thus,
we tried to increase the quality of the information provided as input to the predic-
tive models, improving the students’ learning encoding. To achieve this, among
the many possible paths, we decided to explore strategies that mitigate a purely
data-driven approach by incorporating additional knowledge sources during the
model training phase. This direction will be presented in Chapter 5 and Chapter
6, following a methodological approach known as Informed Machine Learning [7].

Another important point is that both the RF and neural network-based models
demonstrated satisfactory predictive performance, with the FTT model emerging
as the most effective. The tabular data examined in this study are characteristic
of many other educational contexts. The pipeline used here —starting from the
generalization process across different student cohorts, the training and testing of
models with the same ML techniques used in this case study, and their interpreta-
tion and discussion — could therefore be extended and validated in other contexts
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that need to solve predictive problems in education using tabular data on students
and their learning outcomes. This approach enables us to investigate the issue
of transferability (goal G1), which we address in the next chapter through a case
study on academic dropout.

As for the contribution of this work to goal G2 concerning the explainability
challenge, here we limited to the feature importance analysis for the RF model.
However, advancements in Explainable Al now allow for post-hoc analysis of fea-
ture importance even for neural network models [53, 54]. As a development of this
work, it is worthwhile to compare post-hoc explainability techniques for feature
importance applied to both models, i.e. RF model and neural network-based ones.
This allows us to compare them not only in terms of predictive power but also
in terms of their transparency for various stakeholders. Additionally, comparing
the features identified as significant by models based on different techniques can
provide insights into the reliability of the explainability analysis. In this regard,
further research will be introduced in Chapter 4.
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Chapter 3

Academic Dropout: testing

transferability

The primary aim of this chapter is to test whether machine learning techniques
used to address the prediction of low achievement risk, as described in the previ-
ous chapter, can be transferred to other similar contexts. The similarity is based
on two main factors: firstly, the task remains a risk prediction within an edu-
cational context; secondly, the available data are tabular in nature, comprising
heterogeneous and mostly categorical information about students.

In this chapter, we examine the phenomenon of academic dropout, specifically
the prediction of a student’s risk of prematurely leaving their educational path.
This issue meets the similarity criteria mentioned above, but differs in two essential
aspects from the problem studied in Chapter 1. Firstly, it pertains to a different
educational segment, namely higher education instead of high school; secondly,
the target to predict is different, as it involves the actual early leaving of the
educational path rather than the quality of student learning outcomes.

The interest in this new case study is driven by two distinct reasons. The first
motivation is the significance of dropout at the societal level and its impact on
individual well-being. The second reason is more practical, stemming from the
interest of a major Italian university in developing tools, policies, and educational
actions to counteract student attrition. In the next section, we will delve deeper
into the motivations and background for this new case study.

A critical aspect of this investigation is understanding the conditions under
which predictive models trained on K-12 educational data can be effectively trans-
ferred to higher education. The feasibility of this transfer depends on several key
assumptions. Firstly, while both contexts involve students’ academic trajectories,
the underlying factors influencing performance and dropout may differ signifi-
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cantly. The primary predictors of low achievement in high school, such as atten-
dance, parental involvement, and early academic struggles, may not hold the same
predictive power in a university setting, where factors like financial constraints,
self-regulation, and institutional support play a greater role. Secondly, the dis-
tribution and nature of available data may vary: while K-12 datasets often come
from standardized testing and school records, higher education data may include
more self-reported and administrative variables. Lastly, the interventions available
in each context differ; while early interventions in high school often involve direct
teacher or parental support, universities rely more on academic advising, finan-
cial aid, and institutional policies. These considerations frame the transferability
of models and highlight the necessity of adapting feature selection, model tuning,
and evaluation metrics to align with the specific characteristics of higher education
dropout prediction. However, despite the necessary considerations just mentioned,
the transferability we test is methodological in nature, meaning, in a nutshell, the
application of the same type of machine learning algorithms to obtain predictive
models based on educational tabular data.

This chapter presents the research work detailed in [6]. The work was de-
veloped in collaboration with Dr. Zingaro and Prof. Gabbrielli, expanding on
their previous research [55]. The paper addresses two complementary aspects: the
transferability of techniques that have proven effectiveness in tackling the issue of
student low achievement, and the explainability of such models. In this chapter,
we focus on the first aspect, deferring the second part to Chapter 4. The ML tech-
niques considered are random forest (RF) and a Feature Tokenizer Transformer
(FTT), compared against a naive benchmark model. In the previous case study,
we also considered Categorical Embedding as an embedding technique for cate-
gorical features in neural networks, but it was discarded here due to its inferior
performance across all considered metrics. The analysis of the model’s predictive
performance has been supplemented with a fairness analysis, which examines the
model’s equity concerning students belonging to specific demographic groups.

All sections have been reorganized to emphasize the issue of transferability,
which is the main focus of this chapter. In the sections on related work, materials
and methods, and results, the content primarily involved selecting from the con-
tributions already presented. The results section, along with its discussion, has
been expanded with a more detailed analysis of fairness. In the journal version,
this analysis had been presented in a condensed form due to editorial constraints.
The introduction and conclusion of this chapter underwent the most significant
revisions to better align with the overarching thesis and its objectives. This re-
structuring creates a more cohesive narrative, providing clearer insight into how
the methods can be applied across different educational contexts.
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3.1 Background and motivation

Dropout is a critical issue in the field of education, with significant consequences
for individuals and society as a whole. The complexity and importance of this
phenomenon have prompted research efforts since the 70s [56]. A key indicator for
dropout is the ELET rate, which measures the percentage of Early Leavers from
Education and Training [15], referring to young people aged 18 to 24 who have
not attained an upper secondary qualification. Early leavers are more likely to be
unemployed or employed in low-paid jobs with few or no prospects for training
and further career progression; they are more prone to social exclusion and to
experience lower levels of health, wellbeing and life satisfaction; they are also more
likely to experience limited civic participation. In [57] the European Commission
indicated as one of the main targets to be achieved in education the reduction of
the ELET rate from 15% to 10% in the decade 2010-2020. While this target was
reached in several European countries, Italy in 2019 still had an ELET rate of
13.5%158].

These findings motivated us to choose academic dropout as a new case study.
We focus specifically on the outcomes of first-year students, using machine learning
techniques to analyze real data from a prestigious Italian university in a in-person
learning setting. We define dropout as a situation where a student does not re-
enroll in the same study program for the following academic year. Therefore, the
dropout target is always assessed after 12 months of enrollment.

To test the transferability of the techniques used for addressing student under-
achievement, as presented in Chapter 2, we establish our baseline as RF, and we
compared the results with the results gained by the FTT approach. RF is known
for its predictive performance and explanatory power in previous case studies of
academic dropout prediction [59]. Using the transformer technique, we explore
flexible strategies for handling the categorical data prevalent in our dataset to
adequately represent the findings. To the best of our knowledge, there are no
other studies in the literature applying FTT to address the prediction of academic
dropout risk. As a result, we address the following research question:

RQ2.1 To what extent does the use of FTT improve predictive models of student
dropout compared to state-of-the-art techniques?

We considered data on approximately 40,000 students. They cover multiple
information, including demographics, prior schooling, enrollment, and first-year
academic performance, to identify patterns in students’ academic trajectories and
predict dropout risk at an early stage. To facilitate early intervention, we include
data on the academic performance of the same cohorts of students at different
time intervals, i.e., at enrollment, after three, six, nine, and twelve months. By
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measuring the performance of the model at each time interval, we aim to answer
the second research question:

RQ2.2 To what extent does post-enrollment academic career information improve
model performance?

Given the current model of university assessment and education, we hypoth-
esize that students’ academic career characteristics can provide valuable insights
into predicting dropout risk. The validity of this hypothesis is tested using our
set of predictive models, trained at different stages, as a simulation tool. We use
appropriate performance metrics, including precision, recall, and F1, to test and
analyze the hypothesis. Our experiments were conducted using all available data,
including all students enrolled in any undergraduate course at the university over
three academic years, with no sub-sampling or data exclusion.

The chapter is structured as follows. Section 3.2 provides an overview of related
approaches. In Section 3.3, we describe the dataset, and introduce the preprocess-
ing pipeline. The ML techniques used for the Al predictor implementation are
not presented here because they overlap with those used for the previous work
described in Chapter 2. Section 3.4 presents the results, comparing predictive per-
formance. Section 3.5 discusses the results in relation to the research questions.
Finally, Section 3.6 provides concluding remarks and highlights future research
directions.

3.2 Related Works

The study of understanding and decreasing dropout rates within higher edu-
cation has advanced significantly, with numerous investigations utilizing diverse
analytical methodologies and data sources [1, 60]. This review focuses on research
in conventional in-person classrooms, categorized by machine learning algorithms
(RQ2.1) and the role of academic career information (RQ2.2).

3.2.1 Machine Learning in School Dropout Prevention

The landscape of machine learning algorithms for academic dropout prediction
has evolved significantly [55, 61, 62|, with a growing emphasis on the adaptabil-
ity and performance of deep architectures [63]. Early work by Anand et al. [64]
used recursive clustering to evaluate student performance in programming courses,
identifying underperforming students early. Alban and Mauricio introduced neu-
ral networks for university dropout prediction, using multilayer perceptrons and
radial basis function networks to achieve high accuracy rates [65]. Nabil et al. [63]
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compared various machine learning algorithms, finding that DNNs outperformed
traditional methods due to their ability to capture non-linear correlations between
student characteristics.

Baranyi et al. [66] extended the utility of deep learning by focusing on inter-
pretability. They used deep neural networks and gradient-boosted trees, achiev-
ing high prediction accuracy and providing feature ranking through permutation
importance and SHAP values. Tang et al. [67] introduced KIDNet, a knowledge-
aware neural network model that combines factorization machine and deep neural
network algorithms to capture both lower-order and higher-order feature interac-
tions, demonstrating its effectiveness on a real-world dataset.

In summary, the empirical validation of deep architectures for predicting aca-
demic dropout has enriched the state of the art and opened avenues for future
research. Our work aligns with this trend by adopting the FTT model [68], ex-
ploring the potential of attention-based neural networks for tabular data in the
context of academic dropout prediction. This research aims to leverage these
architectures to develop more effective and nuanced models to mitigate dropout
rates.

3.2.2 Data Sources and Features for Predicting Academic
Risk

We review the types of data sources and features used in existing literature to
predict academic risk, focusing on academic history information. Dekker et al. [69]
used structured data, such as student grades and attendance records, to predict
dropout in electrical engineering programs, achieving 75% to 80% accuracy with
decision trees. Kiss et al. [70] incorporated both structured and unstructured data,
including pre-enrollment achievement measures and first-semester performance in-
dicators, using artificial neural networks and boosting algorithms to highlight the
incremental predictive validity of early university performance indicators.

Jayaraman [71] used unstructured data from counselor notes, employing nat-
ural language processing techniques to extract sentiments and using them as fea-
tures in a random forest model, achieving 73% accuracy in predicting student
dropout. Del Bonifro et al. [55] presented a prediction tool that uses machine
learning techniques to assess the risk of first-year undergraduate students, incor-
porating a range of variables from personal data to proficiency credits. This study
serves as a foundational reference, particularly in its methodological approach to
using pre-enrollment and first-year academic data for predictive modeling.

Alwarthan et al. [72] conducted a systematic review of data mining techniques
used to predict student academic performance, identifying random forest and en-
semble models as the most accurate but noting a lack of consensus on the im-
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pact of admissions requirements on student performance. Alam [73]| introduced
a multimodal neural fusion network combining structured and unstructured data
to predict various student retention risks, reporting promising performance and
investigating the fairness of the model.

Our research aligns with the existing literature on using structured data for pre-
dictive modeling, capturing the temporal aspects of academic performance through
a time series approach. Our dataset comprises over 40,000 student careers, span-
ning three academic cohorts and including 110 different degree programs, enhanc-
ing the predictive power and generalizability of our models across different aca-
demic contexts.

3.3 DMaterials and Methods

In this section, we present the novel aspects in terms of materials and methods
compared to the case study described in the previous chapter. One of the most
significant contributions of this paper is the richness of the dataset considered,
which we detail in subsection 3.3.1. The preprocessing operations performed on
the dataset are described in subsection 3.3.2. Unlike the previous case study, there
are no major updates on the ML techniques used, as we still employ RF and FTT,
for which readers can refer to section 2.4.2. To put the performance of our chosen
models into perspective, in this new case study, we also implemented a basic model
that simply predicts the most frequent class for all instances. This naive baseline
serves as a point of reference to evaluate the added value of the more sophisticated
RF and FTT models, especially in the context of our dataset’s class imbalance.
The final subsection (3.3.4) introduces the methods used to conduct the fairness
analysis of the proposed models.

3.3.1 Dataset description

The dataset used for this work was extracted from a collection of real data from
one of the largest Italian universities. Specifically, we have considered pseudony-
mous data describing 44, 875 students enrolled in 110 courses in the academic years
2018/19, 2019/20, and 2020/21. The dataset is collected by the university, thanks
to the informed consent provided by students at the time of enrollment. This
allows the data to be used in pseudonymized form for research activities aimed at
improving the teaching offer and academic services. However, the pseudonymiza-
tion of the dataset ensures that students cannot be identified, thereby meeting the
ethical requirements of the research.

Our analysis focuses on the first year. Statistical evidence from the source
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data suggests a concentration of dropouts in the first year of the course, with
the phenomenon gradually decreasing in subsequent years. For the 2018 cohort
of students, the only one for which we have data three years after enrollment,
the dropout rate after one year is 14.8% of the total number of enrolled students,
while those who leave by the third year is 23.4%. This means that 63.2% of the
registered dropouts occurred in the first year, confirming the importance of acting
within the first year to prevent dropouts.

Table 3.1: Available features for each student in the original dataset, along with
the possible values range. The first column uniquely identifies the corresponding
feature.

Uld Features Type Range
AE Age of Enrollment Numeric >0
SG Student Gender Nominal 2

1
GOma Geographical Origin (macro) Nominal 1-6
GOmi Geographical Origin (micro) Nominal 1-76

1-8

EFSI EFSI Nominal 1-

HST  High School Type Nominal 1-10

HSM  High School (final) Mark Numeric  60-100

CD First/Single Cycle Degree Nominal 1, 2

AS Academic School 1D Nominal 1-11

DN Degree Name Nominal 1-97

PT Place of Teaching Nominal 1-9

ALR  Additional Learning Regs. Nominal 1,2, 3
WMA  Weighted Marks Average Numeric 0 or 18-30
NH Number of Honors Numeric >0

ECTS Number of Credits Numeric 0-60

DO Dropout Nominal True or False

Table 3.1 provides a comprehensive overview of the features of the dataset. The
table is divided into four columns: the first column serves as a unique identifier
for each feature, which will be referenced later in Section 4.4; the second column
names the feature; the third column specifies its type (either nominal or numeric);
and the fourth column outlines the possible values or ranges.

The features are categorized into four distinct groups.

Personal data includes characteristics such as gender, age, and geographi-
cal origin, as well as the Equivalent Financial Situation Indicator (EFSI), which
measures the economic status of the family at the time of enrollment.
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e Age of Enrollment. This numeric feature indicates the age of students at the
time of their enrollment. It can offer insights into the relationship between
age and academic performance or dropout rates.

e Student Gender. This feature captures the gender classes given as binary
(male or female) encoding. This is used as a basis for stratified analyses to
assess model fairness across gender categories.

e Geographical Origin. This feature is further divided into macro- and micro-
categorizations. The macro-categorization identifies six modalities, distin-
guishing between four macro-areas in Italy, foreign students, and instances
where the information is not available. The micro-categorization offers 76
possible values, corresponding to either the Italian region or the country of
origin for foreign students.

e EFSI. The Economic Financial Situation Indicator (EFSI) feature is optional
upon enrollment and is segmented into eight distinct financial bands. These
bands are designed to encapsulate the economic status of both the students
and their families. The bands are ordinal in nature, ranging from the lowest,
which signifies the most financially disadvantaged situations, to the highest,
indicative of more financially favorable conditions.

Educational background relates to the educational background attained at
the upper secondary level. Specifically, this group includes two key characteristics:

e High School Type. This nominal characteristic delineates ten different types
of high schools from which students graduated. It is used to capture the
diversity of educational backgrounds and to potentially elucidate any corre-
lations between the type of high school attended and academic performance
or dropout rates in higher education.

e High School Final Mark. This numerical characteristic represents the final
mark obtained by students at the end of their high school education. It is
intended to provide an initial quantitative measure of academic competence
that may be indicative of subsequent performance in higher education.

Academic program set relates to the characteristics of the program in which
the student is enrolled. This group comprises several attributes:

o [irst/Single Cycle Degree. This ordinal characteristic categorizes the length
of the program. A value of ‘1’ represents first cycle degrees, which typically
last three years, while ‘2’ corresponds to single cycle degrees, which last five
or Six years.
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e Academic School ID. This nominal feature identifies the academic school
selected by the student. The dataset currently includes eleven different aca-
demic schools, each potentially offering a unique set of degree programs.

e Degree Name. This characteristic serves as a unique identifier for the specific
program chosen by the student, allowing for granular analysis of academic
pathways.

e Place of Teaching. This nominal characteristic indicates the geographical
location of the program’s headquarters, with nine different cities represented
in the dataset.

o Additional Learning Requ(irement)s (ALR). This ordinal feature accounts for
the possibility of mandatory additional coursework during the first academic
year. Certain programs require an admission test, and failure to pass this
test necessitates additional coursework and subsequent examinations. The
ALR characteristic is coded as follows: ‘1’ indicates programs without ALR;
‘2’ indicates that the ALR exam was passed; ‘3’ indicates that the required
ALR exam was not passed.

Academic performance set relates to measures that capture students’ aca-
demic progress after enrollment. This group is informed by three main variables,
each available at different time intervals:

o Weighted Marks Average. This numerical characteristic represents the av-
erage examination mark, weighted by the corresponding ECTS credits for
each examination. In the context of the Italian academic evaluation system,
exam marks range between 18 and 30. Consequently, the weighted average
also falls within this interval. If a student has not passed any exams, this
average is set to 0.

o Number of Honors. This numerical characteristic quantifies the cases where
an exam was passed with honors. Note that although honors are recorded,
they do not affect the weighted average of exam grades.

o Number of Credits. This numerical characteristic indicates the total num-
ber of European Credit Transfer and Accumulation System (ECTS) credits
earned by the student. The maximum number of ECTS credits that can be
accumulated in a single academic year is 60.

The target variable for our predictive models is the ‘dropout’ characteristic,
represented as a Boolean variable with values of 0 and 1, encoding False and True
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respectively. Specifically, a value of 0 is assigned to students who exhibit canon-
ical academic outcomes, characterized by the continuation of their studies and
the successful acquisition of course credits. Conversely, a value of 1 encapsulates
three distinct non-canonical outcomes, each of which indicates a form of academic
withdrawal. The first category includes students who formally abandoned their
studies without transferring to other Italian programs. The second category in-
cludes students who have transferred to other programs within the same academic
institution. The third category consists of students who left their current program
to enroll in another university.

It is appropriate to categorize these three non-canonical outcomes as forms of
dropout, as they all represent a deviation from the student’s original academic
trajectory. The differences between them lie solely in the subsequent choices that
students make after dropping out. Moreover, these non-canonical outcomes collec-
tively constitute a minority in the dataset, accounting for 23.4%. Treating them
as separate classes would exacerbate the existing problem of class imbalance in
the dataset. Therefore, we opted for a binary classification framework where the
target variable is set to false for canonical outcomes and true for all non-canonical
outcomes, thereby simplifying the problem while retaining its essence.

In order to facilitate a nuanced analysis of students’ academic progress, we have
divided the data into five different time intervals, each of which captures a different
phase of the first academic year. These intervals are defined at 0, 3, 6, 9, and 12
months after enrollment. Importantly, each student is represented in each of these
intervals; no data points were excluded at any time. This approach resulted in
five different versions of the dataset for each cohort of students. The versions are
distinguished by the values of the fourth set of characteristics, which are updated
to reflect the academic metrics at each time interval. This methodology allows us
to strike a balance between making early predictions and capturing the evolving
academic trajectories of students. In the subsequent sections, we will use the
notation TO, T1, T2, T3, and T4 to distinguish between datasets collected at
different time intervals after enrollment, respectively 0, 3, 6, 9, 12 months since
the beginning of the academic year.

3.3.2 Dataset preprocessing

The dataset contains both numerical and categorical characteristics. Numerical
features, such as age at enrollment and final school grade, are processed as floating
point numbers. The target variable for classification, called the ‘dropout’ feature,
is Boolean, as explained in the previous subsection.

Categorical features require distinct preprocessing techniques to suit the spe-
cific requirements of RF and FTT algorithms. For RF, one-hot encoding is em-
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ployed to fit the training set, similar to the approach used in Chapter 2. In this
new scenario, unknown categories may also be present due to changes in study
programs offered across different cohorts of students, such as new institutions or
curriculum reforms. Therefore, all categorical variables are managed to account
for unknown categories by using a vector of zeros. In contrast, the FTT models
use label encoding, which assigns unique numerical labels to each category within
a feature. This method is advantageous for algorithms that benefit from ordinal
relationships between categories. Similar to RF, FTT models are trained on the
training set, and the same encoding scheme is used for validation and testing.
Unknown categories are coded as zero.

The dataset exhibits class imbalance, with dropout instances representing only
15.4% of the total. Such imbalance can negatively affect the performance of binary
classification models [74]. For RF models, the imbalance is mitigated by class-
weighted options. The weights are calculated based on the bootstrap sample for
each decision tree and are inversely proportional to the class frequencies. These
weights influence both the entropy criterion for splits and the “weighted majority
vote” of the terminal nodes [75]. In the case of FTT, random weighted batch
sampling is used to counteract the imbalance. This technique adjusts the selection
probabilities based on class frequencies, thereby improving the representation of
the minority class during training. This eliminates the need for data replication
and mitigates the effects of class imbalance.

3.3.3 Experimental setup

The dataset was split into training, validation, and test sets. We used data
from the academic years 2018/19 and 2019/20 for training and validation, while
data from 2020/21 was reserved for testing. The split ratio for the training and
validation sets was 70:30.

For training the RF models, we performed grid search cross-validation to iden-
tify the optimal hyperparameters, including the number of trees, maximum depth,
and minimum samples per leaf. The models were trained using 5-fold cross-
validation to ensure robustness and generalizability, i.e., the dataset was divided
into five subsets, the model was trained on four subsets and validated on the
remaining one.

The FTT models were trained using the Adam optimizer with a learning rate
schedule that decayed the learning rate based on the validation loss. We used early
stopping to prevent overfitting, monitoring the validation loss and halting training
when no improvement was observed for a set number of epochs. Random weighted
batch sampling was employed to handle class imbalance during training.

Evaluation metrics included accuracy, sensitivity, specificity, as described in
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Section 2.4.3, and weighted F1 score. These metrics were computed for both the
validation and test sets to assess model performance. We considered the Weighted
F1 Score important because it balances sensitivity (recall) and precision (positive
predictive value), providing a harmonic mean of these two metrics. This measure
is particularly useful in imbalanced datasets as it accounts for both false positives
and false negatives, giving a comprehensive view of the model’s performance. A
high F1 score indicates that the model is both accurate and sensitive, effectively
identifying students across risk categories.

To ensure the reproducibility of our results, we set random seeds for all random
processes involved in data splitting, model training, and evaluation. All experi-
ments were conducted using Python with libraries such as scikit-learn for the RF
models and PyTorch for the FTT models.

3.3.4 Fairness analysis

Fairness analysis was conducted to identify and mitigate potential biases that
may differentially impact specific demographic groups. We focused on several pro-
tected attributes, including gender, geographical origin (categorized into macro
regions), and economic status as indicated by the Economic and Financial Sit-
uation Indicator (EFSI). These attributes were chosen due to their relevance in
reflecting the diverse backgrounds of the student population and their potential
influence on academic outcomes.

For each protected attribute, we performed stratified analyses to evaluate the
performance metrics across different subgroups. The metrics analyzed included
accuracy, precision, sensitivity, specificity, false positive rates, and false negative
rates. This analysis was aimed at detecting any disparities in model performance
that could indicate bias.

To quantify fairness, we utilized several fairness metrics following recent piv-
otal research [76, 77]: (i) demographic parity: Ensures that the prediction rate is
similar across different demographic groups; (i) equalized odds: Requires that the
true positive rate and false positive rate are similar across different demographic
groups; (iii) predictive parity: Ensures that the precision is similar across different
demographic groups.

Confidence intervals at the 95% level were determined using bootstrap resam-
pling techniques. These intervals provide a measure of the variability in our fairness
metrics and help in assessing the statistical significance of any observed dispari-
ties. In the stratified analysis, we used the following steps: (i) define groups based
on the protected attributes (e.g., male vs. female for gender); (ii) calculates the
performance and fairness metrics for each group; (iii) compare the metrics across
groups to identify disparities and analyze the potential causes of any detected bias.
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The fairness analysis ensures that our predictive models not only achieve high
accuracy but also uphold the ethical standards essential in educational settings.
By systematically addressing fairness, our study contributes to the broader dis-
course on ethical Al in education, ensuring that our models are both effective and
equitable.

3.4 Predictive Performance Results

Table 3.2: Summary of Accuracy and Sensitivity on Test Set
Accuracy Sensitivity

Time Step RF FTT RF FTT

October enrolment (T0) 0.72 0.78 0.48 0.44
End of January (T1) 0.75 0.78 0.65 0.51
End of April (T2) 0.84 083 0.59 0.65
End of July (T3) 0.85 0.86 0.75 0.74
End of October (T4) 0.85 0.87 0.80 0.81

In Table 3.2 we present the performance metrics, including accuracy and sensi-
tivity, for both the RF and FTT models at different time intervals after enrollment,
as described in subsection 3.3.1. These metrics are evaluated on the test set. The
F'TT models generally demonstrate superior accuracy compared to their RF coun-
terparts, except when assessed six months post-enrollment. Conversely, the RF
models show improved sensitivity capabilities under certain conditions.

The best-performing model overall is the F'T'T variant trained on data available
twelve months after enrollment, achieving an accuracy of 0.87 and a sensitivity of
0.81. For comparative analysis, we also introduce a naive baseline classifier that
predicts the majority class label from the training set across all test instances.
This classifier achieves an accuracy of 0.84 and a sensitivity of 0.25 over all time
intervals considered.

Figures 3.1 and 3.2 illustrate the time trends in the performance metrics for
the RF and FTT models. The weighted F1 score, identified as the most equitable
metric in Section 3.3.3, also shows a general improvement over time. This suggests
that the quarterly updates of student career information contribute significantly
to the predictive power of the models.

For RF models, the most notable improvement in performance occurs between
the zero and six-month intervals, with a slight decrease in sensitivity thereafter.
For the FTT models, the metrics show a more consistent upward trend, reaching
satisfactory levels even at the time of enrollment. The performance of the naive
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Figure 3.1: RF Model Performance Over Time. Variation in accuracy, sen-
sitivity, specificity, and weighted F1l-score at different intervals from October en-
rollment. Actual weighted F1 score values are provided.

classifier serves as a baseline to help interpret the effectiveness of the RF and FTT
models, particularly in scenarios with unbalanced datasets.

3.4.1 Fairness analysis results

In Figure 3.3, we present a comprehensive comparison of the fairness analysis
of the best model in terms of predictive performance. The figure consists of 15
box plots, systematically arranged in a grid. Each row in this grid is dedicated
to the analysis of a particular feature, while each column corresponds to one of
the selected evaluation metrics—mnamely accuracy, recall, precision, false positive
rate, and false negative rate—all evaluated at a decision threshold of 0.5. This
visual representation serves as a robust tool for examining the performance of the
model across different subgroups, thereby facilitating a nuanced understanding of
its fairness attributes.

We conducted the fairness analysis by segmenting the dataset based on key
demographic and academic factors. Specifically, we focused on three variables to
define the subgroups: gender, geographical origin, and the Economic and Financial
Situation Index (EFSI). These variables were chosen as they are the most relevant
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Figure 3.2: FTT Model Performance Over Time. Fluctuations in accuracy,
sensitivity, specificity, and weighted F1l-score at specific intervals from October
enrollment. Actual weighted F1 score values are included.

for identifying subgroups within populations at risk of discrimination. Unfairness
often arises along income lines and demographic groups [78, 79|, and this segmen-
tation enabled us to assess the model’s performance across different subgroups,
ensuring that no particular group is disproportionately advantaged or disadvan-
taged. This fairness analysis ensures that our predictive models not only achieve
high accuracy but also adhere to the ethical standards critical in educational con-
texts.

3.5 Discussion

This section synthesizes the predictive and explanatory evidence to address
the research questions (RQs) outlined in the chapter introduction, incorporating
findings from similar studies and reflecting on the practical implications of our
results.

In response to our first research question (RQ2.1), our empirical study sup-
ports the effectiveness of FTT models in predicting academic dropout risk. As
detailed in Section 3.4, the FTT models, particularly the T4-FTT, consistently
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Figure 3.3: Quantitative analysis of fairness across multiple features and
metrics. The boxplot matrix is organized into three rows (student gender, geo-
graphical origin, economic class) and five columns (accuracy, recall, precision, false
positive rate, false negative rate), all evaluated at a decision threshold of 0.5. This
layout provides a comprehensive view of model fairness across different subgroups
and evaluation criteria.

outperform Random Forest (RF) models across various evaluation metrics, show-
ing at least a one percentage point improvement. These results align with the
trend of using deep learning algorithms for dropout prediction, recognized for
their adaptability and sophistication [55, 61, 62, 63]. The balanced performance
of FTT models in sensitivity and other metrics makes them suitable for dropout
intervention strategies, consistent with findings in [64, 65]. Furthermore, our fair-
ness analysis, which shows consistent results across different characteristics within
a 95% confidence interval, complements the focus on interpretability seen in [66].

Our study expands the use of deep learning in educational data mining, achiev-
ing high accuracy while improving model transparency and fairness. The flexible
architecture of FTT models, including an embedding component and attention
mechanism, allows customization to different feature sets and data distributions,
enhancing predictive fairness. This novel application of attention-based neural net-
works for tabular data in dropout prediction adds to the existing literature [68],
confirming the efficacy of FTT models for this task.
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Regarding our second research question (RQ2.2), our findings highlight the
crucial role of European Credit Transfer and Accumulation System (ECTS) cred-
its in predicting dropout risk, supporting prior research on the importance of
academic history information [69, 70, 71|. Using structured data, including ECTS
credits, our approach accurately predicts dropout risk, validated by our extensive
dataset capturing diverse academic paths. The temporal sensitivity of our models
to academic career characteristics underscores the dynamic nature of academic
risk factors, with incremental improvements in predictive performance using data
from progressively distant time points from enrollment. This aligns with Kiss et
al.’s emphasis on early university performance indicators [70].

However, relying solely on academic characteristics like ECTS credits, which
can change over time, has limitations. Building on the work presented in |71, 73],
we propose incorporating immediate behavioral features for a more comprehen-
sive assessment of dropout risk. Our study verifies ECTS credits as a reliable
dropout risk indicator and underscores the significance of analyzing academic ca-
reer characteristics over time. Combining structured data in a time series format,
our methodology contributes to the current academic discourse, proposing ways
to incorporate other information types for more comprehensive predictive models.

3.6 Chapter Conclusion

This chapter significantly contributes to the discussion on predicting academic
dropout by showcasing the effectiveness of innovative machine learning techniques.
Our research, aiming to evaluate the effectiveness of the Feature Tokenizer Trans-
former (FTT) compared to traditional models like Random Forest (RF) and to
assess the impact of academic career data, illustrates the powerful potential of
machine learning in identifying students at risk of dropout.

Our results indicate that FTT models exceed the predictive accuracy of RF
models for academic dropout prediction, albeit with higher computational expense.
The integration of academic career data markedly improves model performance,
especially by enhancing the sensitivity and enabling a more detailed profiling of
students likely to drop out.

For educational stakeholders, the implications are substantial. By harnessing
data-driven insights, institutions can better tailor their student retention strate-
gies. Utilizing comprehensive datasets and sophisticated models like F'TT allows
for a nuanced understanding of student behavior and risk factors, aligning with
prior research suggesting that these methods refine retention strategies when paired
with simulation-based analyses.

Despite these advances, further exploration is necessary. While ECTS credits
provide valuable data, they may not fully explain dropout causes. Future studies
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should incorporate qualitative aspects, such as student motivations and study
habits, to offer a holistic view of dropout causation. Additionally, developing
customized predictive models to cater to the unique dropout dynamics of different
academic programs is essential.

Ethical considerations are crucial in the application of predictive models in
education. Future research should address program-wide evaluations rather than
focusing solely on individual students, incorporating broader contextual factors
like environmental and support systems, as emphasized by previous studies. Com-
bining insights from educational, cognitive, and psychological research with data-
driven techniques enhances the ethical and effective use of machine learning in
educational contexts, ultimately leading to a comprehensive understanding of aca-
demic dropout patterns.

In summary, our study underscores the importance of integrating varied data
sources and advanced machine learning models to enhance the prediction of dropout
rates. This approach not only improves predictive accuracy but ensures interven-
tions are informed, ethical, and effective, contributing to a deeper understanding
of academic attrition and strategies to mitigate it.

Within the broader objectives of this thesis, this chapter emphasizes the trans-
ferability of machine learning techniques across educational settings. By predicting
low achievement risk in primary and secondary education and academic dropout
in higher education, we demonstrate the adaptability and robustness of models
like RF and FTT across varied environments and tasks.

This ability to transfer is critical, as it demonstrates that well-crafted ma-
chine learning models are not limited to singular datasets or problems, but can be
adapted to tackle a range of educational challenges. The success of FTT in higher
education—an area with limited existing literature—underscores the potential of
emerging techniques that extend beyond traditional methods in capturing intricate
patterns related to student achievement and dropout risks.

Achieving genuine transferability involves more than just applying machine
learning techniques to new datasets. It requires a thorough comprehension of the
entire modeling pipeline, including data preprocessing, feature selection, and model
tuning, ensuring models not only perform well across different contexts but also
provide interpretable and actionable insights. This process involves evaluating how
model behaviors align or diverge across studies, informing necessary adaptations
for each unique scenario.

In conclusion, our work highlights the value and challenges inherent in trans-
ferring machine learning methods across educational domains. By continuing to
refine and optimize these approaches, we can leverage Al more effectively to iden-
tify students in need across various educational stages, ultimately facilitating more
targeted and successful interventions.
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Chapter 4

Academic dropout: explainability

In this chapter, we shift our focus from the predictive accuracy of machine
learning models to their explainability, a crucial aspect that ensures transparency
and trust in Al applications within educational settings.

Our examination builds upon the work already presented in Chapter 3, where
we assessed the predictive performance of Random Forest (RF) and Feature To-
kenizer Transformer (FTT) models to tackle academic dropout. Here, we delve
into the explainability of these models, making advanced tools more interpretable
to educators and stakeholders, who require clear insights to effectively apply Al to
improve educational outcomes.

The research presented here introduces the explainability aspect through the
study conducted in [6], thereby integrating the contribution from the same paper
discussed in Chapter 3. Most of the content is directly drawn from the refer-
ence paper, with relevant sections selected to align with the chapter’s objectives.
The concluding section has undergone the major revisions to align with the ap-
proach proposed in this thesis. All pertinent information about the study’s context,
dataset characteristics, and developed models has already been covered in the pre-
vious chapter and is omitted here, as this chapter is intended to be an integral
part of the thesis rather than a self-contained unit.

4.1 Background and motivation

In the previous chapter, we examined the predictive performance of the models.
We now shift our focus to explainability, which is crucial for building trust in the
proposed models and enhancing their applicability for stakeholders dealing with
the dropout issue [80, 81|. Explainability involves the model’s capacity to provide
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transparent justifications for its predictions, allowing stakeholders to understand
the underlying factors [4].

By evaluating both predictive accuracy and explainability, we ensure that the
prediction models offer meaningful insights that can inform decisions and inter-
ventions. To achieve reliable measures of importance, we compare different post-
hoc explainability techniques. We adopt both a local and global perspective in
discussing explainability, taking into account the characteristics of the learning
algorithm to determine which techniques are most effective in extracting relevant
information. In section 4.3 we provide an overview on the selected methods.

Our aim is to assist educational stakeholders, including program coordinators
and higher education policymakers, in their decision-making processes by quan-
tifying the impact of each feature on predictions. This leads us to the primary
research question addressed in this chapter:

RQ3.1 To what extent do the explanations provided by various post-hoc explana-
tory techniques contribute to the reliability of the hypotheses underlying our
models and their results?

The chapter is organized as follows: the section 4.1 sets the stage by contex-
tualizing the challenge of explainability within our academic dropout case study,
and it formulates the primary research question addressed in this chapter. Section
4.2 provides a concise literature review associated with this topic. In Section 4.3,
we detail the explainability methods used, noting the specific differences between
those applied to the RF model and the FTT model. We explored three state-of-the-
art explainability techniques: grouped permutation feature importance, attention
map, and SHAP. Section 4.4 presents the findings, and the following section 4.5
provieds some insights on how these findings address the research question. The
chapter conclusion repositions the contribution of this work in relation to Goal
2 of this thesis, concerning the explainability challenge for predictive models in
education.

4.2 Related Works

Interest in explainability in Al (often referred to as XAI) has grown signifi-
cantly in recent years. This is partly because Al technologies have become more
widespread and partly because neural models, which often outperform standard
machine learning techniques, tend to be perceived as "black boxes." Educational
applications have followed this trend, often driven by the interests of various stake-
holders involved in educational processes [82]. The importance of interpretability
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and explainability in machine learning models is particularly pronounced in edu-
cational data mining, where the implications extend to human futures and career
trajectories. Cohausz [83| emphasized the need for a nuanced, multi-stage ap-
proach to interpretability, advocating a fusion of artificial intelligence and social
science methodologies, and extending LIME [84] for deeper interpretation.

Cannistra et al. [85] highlighted the pivotal role of feature relevance in early
dropout prediction, using an information-driven modeling strategy and consider-
ing the specific programs in which students were enrolled. Nagy and Molontay [86]
used a range of explainable artificial intelligence (XAI) tools, such as permutation
importance, partial dependence plots, LIME, and SHAP scores, demonstrating
their utility in elucidating both global and local aspects of dropout prediction mod-
els. Delen et al. [87] presented a hybrid machine learning framework designed to
provide actionable insights for individualized interventions, cautioning against the
indiscriminate application of group-level insights for individual decision-making.

In line with these contributions, our research highlights the criticality of model
interpretability and explainability. As detailed in Section 4.3, our methodology
incorporates both global and local perspectives on explainability, emphasizing
reliability and validity, underpinned by our comprehensive dataset and rigorous
evaluation metrics.

4.3 Methods

One of the main contributions of this work is the implementation of explain-
ability techniques to understand the predictions made by RF and F'T'T models. We
focus on computing feature importance, determining how each feature contributes
to the predictions. We applied our explainability strategies to the top-performing
model in each family: Grouped Permutation Importance (GPI) for RF [88], At-
tention Map (AM) for FTT [89, 68|, and SHAP [90] for both.

Random Forest (RF) models are valued for their interpretability. We used
GPI [91], an adaptation of Permutation Feature Importance (PFI) [92]|, which
addresses the consistency issue of one-hot encoded features by treating them as a
single block during shuffling. GPI also incorporates feature weighting within each
group to account for varying feature importance. This model-agnostic, post-hoc
technique can be applied universally to explain trained black-box models [4].

For FTT models, we used Attention Map (AM) to compute feature importance.
This model-specific technique relies on the attention mechanism in Transformers,
averaging the attention weights for each token in the sample to determine feature
importance.

In addition to GPI and AM, we employed SHapley Additive exPlanations
(SHAP) [93], inspired by Shapley values from cooperative game theory, to pro-
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vide local explanations for individual predictions. SHAP quantifies the influence
of each feature on a model’s prediction, offering nuanced insights into feature con-
tributions for each instance.

GPI and AM offer global explanations, identifying which features drive overall
model performance. GPI measures feature importance by the decrease in the
model’s sensitivity, while AM uses attention weights to estimate feature usage by
the model. SHAP provides local explanations, detailing the impact of features on
individual predictions.

We used GPI and AM to derive global explanations from the test set for RF
and FTT models, respectively, and compared the features identified by both tech-
niques. SHAP was used for local explanations on three selected students (early
dropout, transfer, non-dropout) and for a global perspective using a beeswarm
plot, summarizing how top features impact the model’s output.

Due to the high computational cost of SHAP, we applied approximation strate-
gies. Kernel SHAP [93] was used for general models, while Tree SHAP [90], opti-
mized for decision trees, was applied to RF models. This allowed us to include all
test instances in the RF beeswarm plot and limit FT'T samples to 200 randomly
selected instances.

4.4 Results

In this section, we outline the results of our explainability analysis, first adopt-
ing a global XAI framework similar to the methodology presented in [92], and
then extending our investigation through the application of localized techniques.
Among the RF-based models, we choose two versions: the model trained with
data six months after enrollment (referred to as T2-RF model hereinafter) and
the one trained with data twelve months after enrollment (T4-RF model). The
first analysis aims to get insights into why the model registered a pitfall in the
sensitivity performance to the advantage of specificity (see Figure 3.1). The sec-
ond model has been chosen because it has the highest results according to all the
performance metrics. For FTT, we considered the twelve months model (T4-FTT
model), which is our best model according to the results presented in Section 3.4.

Our explainability results are organized as follows. In Section 4.4.1, we present
the global explainability perspective with the techniques chosen for each model,
i.e., GPI and AM for RF and FTT respectively. In Section 4.4.2, we present the
results obtained with SHAP when used in its local explainability mode. We present
its application to students in different conditions of continuation of studies as an
example of the kind of insights that can be derived locally with SHAP. Finally,
in Section 4.4.3, we present beeswarm plots for a global perspective through SHAP
values, both for RF and FTT.
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Table 4.1: Grouped Permutation Importance Results for Random Forest computed
as mean decrease of sensitivity

Feature T2-RF T4-RF
Weighted Mark Average 0.248 (0.007)  0.001 (< 0.001)
Number of ECTS 0.036 (0.003)  0.493 (0.005)
Additional Learning Regs.  0.025 (0.003) 0.005 (0.002)
Academic School 0.019 (0.002) 0.005 (0.001)
Age of Enrollment 0.001 (< 0.001)  0.005 (0.003)

4.4.1 Global Feature Importance

The use of Grouped Permutation Importance (GPI) in the Random Forest
(RF) model facilitates the identification of salient features that contribute to the
generation of predictions for each trained instantiation of the model. In this study,
a feature is considered significant if its importance measure is greater than or equal
to 0.01. This corresponds to a minimum 1% decrease in sensitivity due to random
shuffling of that particular feature. Conversely, a feature is considered negligible if
its importance measure falls below the 0.01 threshold. We performed 100 random
shuffles for each feature to calculate the permutation feature importance. The
mean and standard deviation of the most salient features for the T2-RF and T4-
RF models are shown in Table 4.1.

In the T2-RF model, the most salient feature is the weighted mean grade,
denoted by meanwyya = 0.248, followed by the number of ECTS credits earned
within 6 months of enrollment, denoted by meangcrs = 0.036; i.e. they contribute
to a decrease in sensitivity of 25% and 4% respectively. The threshold of 1%
is also exceeded by the allocation of Additional Learning Requirements, which
are determined on the basis of admission tests, and by the categorization of the
Academic School.

For the T4-RF model, we visualized an equivalent number of features as iden-
tified for the T2-RF model. However, only the number of ECTS credits earned
twelve months after enrollment exceeds the 1% threshold criterion. Specifically,
this feature shows an average decrease of 50% in the sensitivity metric, and thus
emerges as the most important variable for identifying dropout risk. For the re-
maining features, the perturbation in sensitivity due to randomized reshuffling is
insignificant, falling below the 1% threshold criterion.

The key difference between the two models is the impact of WMA and ECTS
on sensitivity. As ECTS range increases along the academic year and WMA range
remains stable, ECTS’s importance grows relative to WMA®@Q. The results (see Fig-
ure 3.1) indicate that reliable ECTS information, available by the end of the first
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Figure 4.1: Attention Map based Feature Importance for T4-FTT model.
Each bar shows the average attention weight for a feature in the training dataset,
colored by information type as introduced in Section 3.3.

enrollment year, is crucial for model robustness compared to WMA. Indeed, where
WMA matters the most, according to GPI analysis, there is a pitfall in sensitivity.

For the FTT model, we applied an attention map-based feature importance
analysis to the T4-FTT model. In Figure 4.1, the average weight assigned to each
feature in the attention map is shown. It is noteworthy that no single feature has
a significantly higher average weight than the others. The average weights for all
features are in the range [0.0494,0.0626]. Nevertheless, it is worth noting that the
top five features, in descending order of importance, are the geographical region of
origin, the place of teaching, the number of awards obtained, the number of ECTS
credits obtained, and information on additional learning requirements.

The two global explainability techniques applied to their respective models (T4-
RF and T4-FTT) provide different insights. ECTS is by far the preeminent feature
for T4-RF with GPI; on the other hand, it ranks fourth for T4-FTT with AM
feature importance in a context where no feature stands out more than the others.
However, the relevance of features related to the student’s current academic career
is consistent across both models. While the Global Feature Importance procedure
offers a preliminary understanding of feature importance, it is worth noting that
the results may not fully capture the explainability power of the models. The
limitations of this kind of analysis suggest that more sophisticated techniques, such
as SHAP, could be employed to provide a more comprehensive and interpretable
understanding of the models’ decision-making processes.
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4.4.2 SHAP for Local Explanations

The SHAP explainability technique has been applied to both RF and FTT
models. We chose SHAP because it is an agnostic state-of-the-art explainability
technique. Thus, we considered the best models both for RF and FTT, i.e., T4-RF
and T4-FTT models, and we present and compare their explainability outcomes.
Firstly, we aim to introduce the results of local explainability gained from the
models on some selected students, taken as examples. Figure 4.2 and Figure 4.3
display how the selected models came to the prediction correctly for three selected
students, i.e., the predicted risk for the presented cases agrees with their actual
value. Figure 4.2 refers to the RF model; Figure 4.3 refers to the FTT one. In each
figure, we selected a student who early interrupts the academic career, a student
who transfers to another degree program, and a student for whom dropout does
not occur.

As for local explainability with the RF model, the number of ECTS is the one
with the highest SHAP value (longest bar in the plot) both for the student who
early interrupts the academic career (case a in Figure 4.2) and for the one for
whom dropout did not occur (case ¢). The bar color and its orientation tell how
this feature contributes to the predicted risk: for student a, pink and left-right
oriented ECTS bar, not having accrued credits in twelve months raises the risk
of dropout; for student ¢, blue and right-left oriented ECTS bar, having acquired
42 ECTS (out of 60 total) contributes to the prediction of a low risk of dropout.
The same feature acts misleadingly for student b. In this case, ECTS is the second
main feature according to its SHAP value. The attainment of 40 out of 60 ECTS
credits is considered to be satisfactory as per the model. Typically, 60 ECTS cred-
its represent the maximum amount of credits that a student can earn during the
first year of enrollment. Thus it is used to downgrade the dropout risk prediction,
although the actual target class for the student is positive to dropout. The most
relevant feature for high-risk dropout for student b is the academic school, whose
actual value is pharmacy and biotechnology. Statistics confirm that this academic
school is affected by the highest number of transfers compared to other schools of
the same university (36.9% in the three-year enrollment period 2018-2021 against a
university average of 8.4%). This is because many first-year students choose phar-
macy and biotechnology courses as a second study choice after being excluded from
other degrees with restricted admission procedures, e.g., medicine and surgery, or
veterinary medicine. As a final remark for the RF model, also WMA (weighted
marks average) appears as a relevant feature for the dropout predictions for all the
students (among the first five SHAP values).

As regards local explainability with the FTT model, we refer to the examples
in Figure 4.3, and introduce the enabled explanations also in comparison with our
observations for the RF model. Also for the FTT model, ECTS is the prominent
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Figure 4.2: SHAP Local explanations for RF model trained with data
twelve months after enrollment. Each line shows the main features impacting
the predicted dropout risk for a student, with bar lengths proportional to their
SHAP values. Pink bars indicate features that increase dropout risk, while blue
bars indicate features that decrease it. The combined contributions determine the
predicted value.

feature in the risk prediction for students a and c¢. The same feature is less rel-
evant for student b (it appears as the seventh positive SHAP value). We have
previously noted, based on the global analysis of feature importance using the AM
method, that ECTS stands out as one of the most significant features, despite not
being favored by the RF models. The different SHAP value of ECTS on different
samples fits with this result. Furthermore, we want to underline that, unlike what
was observed for the corresponding case for the RF model, the number of ECTS
acquired by student b here contributes to raising the dropout risk, despite being an
acceptable asset (40 out of 60). For student a, together with ECTS, the features
associated with higher SHAP values are the assignment of ALR that have not
been passed and the weighted marks average (equal to zero as no ECTS has been
acquired). All these factors contribute, as expected, to raise the risk of dropout.
The prominent feature for student b is DN, which identifies the degree program.
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Figure 4.3: SHAP Local explanations for FTT model trained with data
twelve months after enrollment. Each line shows the main features impacting
the predicted dropout risk for a student. Refer to Figure 4.2 for instructions on
reading the graph, which is similar for the RF model.

We found matching information for the RF model (related to the academic school),
and we have already motivated how to interpret these results with some descrip-
tive statistics. For student ¢, ECTS is definitely the prominent feature, followed
by data on the academic school, which is engineering and architecture.

To sum up, we find two main similarities between the local explanations gained
by the two models. Firstly, the relevance of ECTS for the dropout risk prediction
of students a and c¢. Secondly, the relevance of information on the context of
enrollment for student b, i.e., the enrollment in pharmacy. On the other hand,
we have a main difference in how the number of ECTS (40 out of 60) is used for
the dropout risk prediction of student b. One might wonder what interpretation
to give to this difference. We hypothesize that the RF model struggles more in
learning correlations between different features; the feature tokenizer module for
input features embedding and the attention mechanisms of the FTT architecture
provide greater flexibility, which allows, in the case of student b, to consider in a
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Figure 4.4: SHAP global explanations for RF model trained with data
twelve months after enrollment. The beeswarm plot for the T4-RF model
shows features ordered by average SHAP value. Each dot represents an instance,
positioned by SHAP value; colors indicate numeric feature values.

“contextualized” way the weight and the orientation effect of the number of ECTS.
We deepen this discussion in Section 4.5.

4.4.3 SHAP for Global Explanations

Let us move back again to a global explainability perspective, aggregating
local explanations computed with SHAP in a summary plot, namely beeswarm.
Figure 4.4 and Figure 4.5 refer respectively to RF and FTT models, trained with
data on students’ academic careers twelve months after enrollment. In a beeswarm
plot, for each instance, i.e., a student in our case study, the provided explanation
is visualized by a single dot on each feature row. The SHAP value of the row
feature for each instance determines the horizontal position of the dots, whose
distribution along each row shows a density graph. This information may be
exploited to provide a global overview of the feature’s importance. Features are
in descending order according to their mean SHAP value. Moreover, each dot for
numerical features is colored according to a chromatic scale to display the original
value of a feature for each instance. Thus, a blue point on the right side of the
ECTS row means that there is a student with a low number of acquired ECTS

54

4. Academic dropout: explainability



4.4 Results

»»»»»

ECTS we NN

PT
NH
EFSI

cD

SG

Figure 4.5: SHAP global explanations for FTT model trained with data
twelve months after enrollment. The beeswarm plot for the T4-FTT model
shows features ordered by average SHAP value for 200 randomly chosen samples.
Refer to Figure 4.4 for guidance on interpreting the chart.

and this has a great influence in boosting her/his risk of dropout.

As for categorical features, both binary and non-binary, we consider each of
them as a single factor of analysis, encompassing all its modes. Specifically, SHAP
values are computed for each instance by summing the SHAP values of all binary
features associated with that categorical feature. For this set of features, no color
mapping has been set to avoid implying an order among categorical features.

The beeswarm plot for T4-RF model points out ECTS as the main feature;
this is in line with the result retrieved with GPI. In particular, there is a high
density of pink dots on the left, thus we can infer that the model often uses the
acquisition of a high number of ECTS as an impact criterion to place the student
in the low-risk class. The weighted average mark is another determining factor for
the low-risk class, considering the high-density area of pink dots i.e., high weighted
average mark, on the left side. For the applicability of the model, it would be of
interest to determine the features that are most decisive for the high-risk class, i.e.,
we are looking for high-density areas in the right part of the plot. However, no
such situation is evident in any row. We may observe a slight correlation between
low age of enrollment or low weighted average mark with high dropout risk. It is
worth noting a counterintuitive result among the explanations used by the model:
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the final high school grade (HSM) when high, is often considered by the RF model
as a rationale for high dropout risk. Nevertheless, its impact on the prediction is
small according to SHAP values. Finally, we point out the relevance that numeric
features play in the RF model with respect to the categorical ones. The top three
consists of all numeric features, and this is even more impressive if we consider that
the dataset has only five numeric features against ten categorical ones. Among the
categorical features, the most effective (fourth position according to mean SHAP
value ranking) is the one on the attribution of ALR.

We conduct a similar analysis also for T4-FTT model. We limited the beeswarm
plot generation to 200 randomly chosen samples, due to time computational cost.
This represents a limit in the SHAP global perspective on FTT but still allows us
to obtain some insights. Similarly to the case of T4-RF, ECTS is the preeminent
feature with a cluster of pink dots on the left side of the plot. Thus, in many cases,
there is a correlation between a high achievement of ECTS and a lower dropout
risk prediction. Other relevant data are those on the academic school of the stu-
dents, their high school marks, age of enrollment, and information on additional
learning requirements. We observe a blue cluster for the age of enrollment on the
right side of the plot, revealing that young students are more likely to drop out.
Also for the FTT model, the numerical features are relevant in determining the
risk prediction. However, their distribution is less asymmetric than we observed
for the RF model. In Figure 4.4 for the T4-RF model, we have four out of the
first five features which are numerical. Moreover, the numerical features are all
in the first half of the ordered features. In the T4-FTT model, we have a more
homogeneous, albeit still not symmetrical, distribution.

4.5 Discussion

In examining the research question (RQ3.1), we explore the explainability of
predictive models within educational data mining. Our findings align with and
expand upon the current discourse on model interpretability. The significance
of ECTS credits across different explainability techniques, such as Global Post-
hoc Interpretability (GPI) and Shapley Additive Explanations (SHAP), supports
previous studies [86, 85]. The detailed explanations provided by SHAP for the FTT
model contribute to discussions about the adaptability of models to individual
student cases, a topic also explored by Cohausz [83] and Delen et al. [87].

While both RF and FTT models focus heavily on ECTS credits, their ability
to explain outcomes differs, highlighting the complexity of model interpretabil-
ity. Our analysis showcases the FTT model’s local explanatory power, especially
regarding ECTS features, and emphasizes its versatility in adjusting to various fea-
ture sets and samples, allowing for a detailed understanding of factors contributing
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to dropout rates.

Our study also focuses on improving the sensitivity of the T2-RF model by
evaluating the relationship between contextual information and academic career
data. Incorporating ECTS credits as a feature enhances the understandability and
reliability of predictive models, as highlighted by Delen et al. [87]. By transparently
utilizing ECTS credits in our predictions, we improve the credibility and trans-
parency of these models, emphasizing the importance of fairness and adaptability
in their implementation.

4.6 Chapter Conclusion

In this chapter, we explored a case study of explainability analysis for predictive
models assessing the risk of academic dropout. Together with Chapter 2, this
work extends the initial case study of the thesis, which focused on the risk of
low academic achievement among high school students. We not only tested the
transferability of the original methodology to a new context but also addressed
the emerging challenges of transparency in ML models to achieve reliability and
trust among stakeholders.

The explainability analysis and its results provide valuable insights that aid
decision-making processes to counteract undesirable phenomena like low achieve-
ment or dropout. By evaluating the importance of different factors in determining
risk, we offer quantitative evidence that supports the investigation of specific sit-
uations or the prioritization of certain actions.

For instance, the consistent significance of ECTS across multiple predictive
models, as highlighted by various explainability techniques, suggests the need for
a more detailed examination of the factors influencing their acquisition by students.
Since the ECTS index is an indicator of academic success or failure, additional data
could be collected on various aspects of study habits, such as study locations, tim-
ing, duration, resources used, and social learning networks. Furthermore, insights
into the formal learning environment might include factors like study program
organization, teaching methodologies, and the accessibility of lectures and materi-
als. These represent just a few examples of areas where further investigation could
yield beneficial information.

This work advances the exploration of explainability strategies for predictive
models in education (Goal 2). First, the case study itself demonstrates the ef-
fectiveness of various explainability techniques applied in other contexts. Second,
it equips the university with useful information for designing actions to combat
dropout. Building on this, we propose that explainability analysis should not be
viewed as the final step in the pipeline that merely provides model reliability.
Rather, it should be part of an iterative refinement process where findings, such
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as the significant role of ECTS, highlight areas for deeper investigation to enhance
both the model’s predictive performance and its explainability. This approach en-
courages consideration of whether additional data or knowledge sources related to
ECTS could be integrated into the model during both the training and applica-
tion phases. By doing so, we aim to achieve a more detailed and comprehensive
understanding of dropout causes, potentially enhancing both the model’s predic-
tions and its transparency. In forthcoming chapters, we will further develop this
iterative perspective and explore how it connects to the third goal of this thesis,
which is the theme of adequate student representation.
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Chapter 5

Informed Machine Learning for

Knowledge Tracing

In the previous chapter, we introduced a central issue for this thesis. To out-
line the roadmap of the journey thus far, three key points stand out. First, we
introduced predictive models for mitigating the risks of student low achievement
and academic dropout, aiming to identify the most effective tools by comparing
standard and innovative ML techniques. Next, we conducted an explainability
analysis of these models, primarily to provide reliability and transparency for the
benefit of various stakeholders. This analysis, however, raised epistemological
questions regarding the type of knowledge introduced, processed, and generated
by these models and their explainability analyses, and how this knowledge should
be utilized.

Specifically, when employing a predictive Al model, one might ask: what knowl-
edge was inputted for the model to learn its task? How is this knowledge processed
and given meaning in the context of prediction? How does this knowledge interact
with the educational setting or align with the stakeholders’ existing knowledge?

These questions led us to conceptualize the development of predictive models
not as a linear sequence of steps, but as an iterative process where the knowledge
generated by the model can suggest improvements for subsequent training phases
[9].

As noted in the conclusion of Chapter 2, a pivotal issue regarding this knowl-
edge theme is linked to student encoding. Representing a student involves complex
layers, such as their current learning status, socio-economic background, previous
academic history, and the dynamic educational context influenced by peers and
teachers. While on one hand, it is beneficial to collect extensive data across various
factors to map learning influences, pedagogical-related theories may also provide
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guidance for this data collection, and help in interpreting the results.

For these reasons, I turned my interest in exploring the knowledge tracing
through the lens of Informed Machine Learning. Knowledge tracing, as we will
detail later, is a well-established challenge in the AI literature within education,
differing from the prediction of low academic achievement or dropout, yet sharing
its reliance on student encoding. Its extensive literature history makes it a fertile
ground for exploration. Informed Machine Learning offers a hybrid approach—mnot
solely data-driven—focused on integrating diverse knowledge sources in Al tool
development. This approach aligns well with the aim of addressing epistemological
questions related to the development of predictive models.

In this chapter, I will present a comprehensive literature review on this topic
conducted during my time abroad at the DIPF - Leibniz Institute for Research
and Information in Education in Frankfurt [94]. This chapter lays the foundation
for the research developments to be discussed in Chapter 6, framing the context
and introducing key terminology required for understanding its impact. The only
modification from the original paper is the addition of a paragraph in the chapter’s
conclusion to underscore this chapter’s contribution to the overall objectives of the
thesis.

5.1 Motivation for a Systematic Literature Review

Learner modeling —also called student modeling— is a widely studied problem
due to its relevance in various technologies to enhance learning, including intel-
ligent tutoring systems (ITS) [95] and adaptive educational hypermedia systems
(AEHS) |96]. The problem’s relevance has its roots in the theories for individual-
ized learning, studied since the 1980s by Cohen et al. [97] and Bloom [98], which
prove its effectiveness compared to traditional classroom learning. This motivated
the search for technological support and strategies for learner modeling, which
could promote individualized learning.

A Learner Model (LM) is an abstract representation of the learner that consid-
ers cognitive and non-cognitive characteristics. According to Vagale and Niedrite [99],
the LM “contains all information that the system has on the user and maintains
live user accounts in the system", i.e. it keeps both static and dynamic informa-
tion about the learner. Specifically, static information is data that is not changed
during the student and system interaction, e.g. personal data or pedagogical and
preference data collected once and which stay unchanged during the system uti-
lization. On the other hand, dynamic information is data on the student’s learning
progress and interaction with the system. It can refer to the student’s performance,
i.e. student achievements during the course session, and the actual state of the
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student’s knowledge concepts and skills. The dynamic data component in the LM
determines a continuous flow of collecting and updating data about the learner.

As for the methodological approaches to tackle the learner modeling problem,
there are two main families [100]. The first set of approaches relies on psychometric
methods, e.g. Item Response Theory [101] and Cognitive Diagnostic Models [102],
which are mostly based on static data. However, in the last decades, technological
advances opened the possibility of collecting dynamic data while the student in-
teracts with a learning system. This attracted the interest of computer scientists
in Knowledge Tracing (KT) [10], which can be described as monitoring students’
changing knowledge states during the learning process and accurately predicting
their performance in future exercises.

However, there are two main challenges connected to the KT problem. The
first one concerns its complexity due to its interdisciplinarity nature. According to
Abyaa et al. [103], learner modeling is challenging since it is based on intertwin-
ing education science, psychology, and information technology. This led them to
suggest that “to construct an ideal learner model, one should identify and select
the learner’s characteristics that influence their learning, then take into consider-
ation the learner’s psychological states during their learning and choose the most
adapted technologies to model each characteristic with the best precision". This
challenge is inherited by KT as a subclass of learner modeling.

The second challenge is spread out by the limitations that emerge from the
implementation of ML techniques in KT. Although purely data-driven techniques
for KT achieve satisfactory performance, they have some pitfalls regarding their
applicability, reliability, or interpretability, that we do not find in psychometric
models [104]|. They mainly differ from purely data-driven approaches because they
are grounded in a theoretical framework. In Item Response Theory, for instance,
each item is associated with an a priori difficulty coefficient. Moreover, there is
the assumption that learning doesn’t occur during testing. Both these assump-
tions are used in designing the model. This theoretical advantage in psychometric
models led us to suggest a possible methodological framework for addressing the
pitfalls emerging by purely data-driven techniques, referring to Informed Machine
Learning (IML), introduced by von Rueden et al. [7]. In a nutshell, IML aims to
overcome a purely data-driven approach favoring hybrid ML models which inte-
grate alternative knowledge sources to data in the ML pipeline.

In this chapter, we want to contribute to the two challenges just presented,
by conducting a systematic literature review. Specifically, we aim to highlight if
and how the prior knowledge due to the interdisciplinary and complex nature of
KT can be used to overcome the limitations which emerge by using standard ML
methods. For this purpose, we want to verify if the paradigm proposed with the
IML is effective and productive for KT, i.e. whether it can be applied fruitfully to
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develop KT models. Therefore, we want to find references in the literature that
explicitly consider forms of prior knowledge injection to address the KT problem.
On the one hand, we can outline the state of the art in deploying hybrid ML
approaches for KT. On the other hand, we aim to point out the current gaps in
the literature and suggest new avenues for research

The rest of the chapter is organized as follows. In section 5.2 we introduce the
background. We describe the main ML techniques used for KT with their critical
issues. Then, we outline the main features of the IML paradigm. Section 5.3
describes the methodology. We display and motivate the RQs tackled through our
systematic literature review. We describe both the literature survey procedure and
the classification process. In section 5.4, we present the results of our analysis.
Firstly, we describe the taxonomy we distilled from the surveying of the papers.
It is an adaptation of the one proposed by von Rueden [7] due to our focus on
the educational field. Secondly, we show the classification results of the selected
papers gained by applying our IML adapted taxonomy. Section 5.5 discusses key
insights into the results concerning the RQs. In section 5.6, we summarise this
chapter’s main contributions and provide some concluding remarks.

5.2 Background

5.2.1 Knowledge tracing

Formally, the KT problem can be described as follows. Let us consider a
learner’s history exercise sequence X = {(q1,71);(q2,72);..; (¢t—1,7¢-1)}, where
{q;} is the id for the question answered by the learner at the i*"-time step, and
r; = 1 if the student provided the correct response to the question ¢;, 0 otherwise.
The goal of KT is to predict the probability of correctly answering the question ¢,
at time step ¢, i.e. computing P (r; = 1|g;, X). Hence, given the unknown function
f X — {0,1} which associate each learner’s history exercise sequence (X, ¢;) to
1 (g correctly answered) or 0 (otherwise), the KT goal is to determine a function
g : X — [0,1] which is a good approximation of f. The prediction is based on
hidden variables, whose values are updated at each time step and which model the
student’s knowledge state.

There are three main classes of ML techniques widely exploited in the literature
and well described by Minn [104]: Hidden Markov models, Factor Analysis models,
and Deep Learning-based models. The main exponent of the first class is Bayesian
Knowledge Tracing (BKT) [10]. In this model, the learner’s knowledge state is
represented through a set of binary variables for each skill or knowledge component
(KC), which assumes the true value if the student is in the learned state. The
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observed data is the student performance, the latent variables are the student
knowledge state for each skill. The truth value of the latent variable corresponding
to the skill or KC k depends on four factors: (i) the initial learning factor p(L%),
which is the prior probability that a student already masters k; (ii) the acquisition
factor P(T*), which is the probability for the student to pass from the unlearned
state to the learned state after the next practice opportunity; (iii) the guess factor
P(G*), i.e. the probability the student guessed the correct answer despite being
in the unlearned state; (iv) the slip factor P(S*), which models the probability
that the student makes a mistake despite being in the learned state. The estimate
of student mastery of k, i.e. the student knowledge state for k, is continually
updated every time a student responds to an item [10]. In a nutshell, the student
knowledge state for k after the n-th action of the student, indicated by P(L%), is
computed considering both the posterior probability that the student was already
in the learning state given the evidence (whether or not the n-th action is correct),
and the probability that he will make the transition to the learned state if it is
not already there. Then, the current student’s knowledge state for k is exploited
to compute the probability to perform a correct action taking into account the
mitigation effect of the slip factor P(S*) and the positive effect of the guess factor
P(G*).

Although BKT has been used successfully in many systems, it has some limi-
tations, well summarized by Tato and Nkambou [105]. Specifically, as a starting
point of BKT, there is a Bayesian network (BN) [106], which “sometimes implies
to manually define apriori probabilities and manually label student interactions
with relevant concepts". Also, “the binary response data used to model knowl-
edge, observations and transitions impose a limit on the kinds of exercises that
can be modeled". Furthermore, BKT is designed to model one skill or KC at
a time, ignoring the interactions between skills and KCs and affecting a single
performance.

As for the second class, it worths mentioning Performance Factor Analysis
(PFA) [107], which is is a logistic regression model to predict accuracy considering
the student’s number of prior failures and successes on that skill. It is an extension
of Learning Factor Analysis [108], designed to model multiple skills simultaneously,
i.e. the prediction of the student performance relies on the conjunction or com-
pensation of the skills needed in the performance by summing their contributions.
PFA is competitive and outperforms BKT models|[104]. However, PFA does not
consider important behavioral factors such as the order of answers and the proba-
bility of students guessing or slipping. This may affect the reliability of the models
prediction.

The third class of techniques is deep learning-based models, which have re-
cently been widely used for KT, as in many other domains. There are two main
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approaches in this class: Deep Knowledge Tracing models (DKT) [109], which is
based on recurrent neural networks; and Dynamic Key-Value Memory Networks
(DKVMN) [110], which is a memory-augmented neural network based on two
memory matrices to exploit the relationships between underlying concepts and di-
rectly output a student’s mastery level of each concept. As for the disadvantages
of DKT, Yeung and Yeung [111] highlight two main points. Firstly, the model
fails to reconstruct the observed input, i.e. the model predicts a failure for a stu-
dent in a certain skill, despite the observation that a student on the same skill in
the input data is a success, and vice versa. Secondly, the predicted performance
for skills across time steps is inconsistent, i.e. there are sudden spikes and falls
across time steps. This is intuitively undesirable and unreasonable as students’
knowledge state is expected to transit gradually over time but not to alternate
between mastered and not-yet-mastered. Moreover, neural networks have a high
computational cost and are prone to overfitting. Sun et al. [112] point out some
limitations also for DKVMN models. They ignore both the students’ behavior
features collected by their interaction with the learning system and the student’s
learning abilities, which affect the students’ knowledge state.

In his review, Minn [104] compares IRT, BKT, PFA and DKT on three dy-
namic public datasets (ASSSITments 2009-2010 and ASSISTments 2014-2015, de-
rived from the homonymous learning system, and Algebra 2005-2006, released in
KDD Cup 2010 competition). He obtained the best performance with the IRT
psychometric model, followed by the DKT model. The fact that the IRT model
performs better than ML models is surprising in the first instance. Minn argues
that “this result can be explained by the item difficulty factor, which is explicitly
taken into the IRT models and not by DKT nor other student models without
consideration of item information."

5.2.2 Informed machine learning

In section 5.1, we introduce two challenges. Firstly, the problem of KT lies
at the intersection of several disciplines, including pedagogy, psychology, cognitive
science, and information technology. Secondly, as supported by the previous sub-
section, standard ML models for KT show performance pitfalls that we do not find
in psychometric models, which integrate a theory-ladenness.

We can expand the first issue by affirming that learning cannot be described
only with information gathered directly from the learner or about the learner.
Learning is influenced by the context in which it takes place, understood as a
physical, relational, emotional, and disciplinary space [113|. The relevance of the
context on learning has been considered since the first research on I'TSs, which are
based on domain models, pedagogical models and tutor-learner interface models,
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Table 5.1: Informed Machine Learning taxonomy introduced in |7]

Representation Integration
Scientific knowledge Algebraic equations Training data
World knowledge Differential equations Hypothesis set
Expert knowledge Simulation results Learning algorithms

Spatial invariances Final hypothesis

Logic rules
Knowledge graphs
Probabilistic relations
Human feedback

together with the learner model [114]. However, these components are usually
modeled independently, i.e. as 4 separate parts in the system. Little attention is
paid to modeling how one can influence the others. Simplifying with an example,
on one hand, the domain model can be seen as an organizational model of the
repository for the system’s educational resources. On the other hand, it can be
understood as an epistemological model of an area of knowledge that may affect
how the student learns, hence affecting also the learner model [115].

As for the second point, several contributions in the literature affirm the need
to overcome purely data-driven approaches in machine learning [11, 116], espe-
cially in those contexts where the phenomenon is very complex, it is difficult to
obtain sufficiently large and representative datasets. A priori or a posteriori forms
of knowledge, acquired over years of research, are available [117]. All these factors
exist for KT: its complexity has been motivated in the previous point; the chal-
lenge of quantity and quality of data [118] is quite common in the form of class
imbalance [119] (e.g. correct answers on skills difficult to master), and a priori
and a posteriori knowledge are usually available and are already used in I'TSs and
AEHSs. In these cases, it may be worthy to test hybrid learning techniques [120],
which can be recognized as a strategy of Informed Machine Learning (IML).

von Rueden et al. [7] define IML as “learning from a hybrid information source
that consists of data and prior knowledge. The prior knowledge comes from an
independent source, is given by formal representations, and is explicitly integrated
into the machine learning pipeline". With the term knowledge, they assumed a
computer science perspective, defining it as “validated information about relations
between entities in certain contexts". Moreover, they introduced a taxonomy for
IML, outlining a scheme consisting of three types of knowledge sources, eight
possible knowledge representations, and four forms of integration, as shown in
Table 5.1. However, their paper did not refer to educational case studies. Hence,
whether their taxonomy fits with the specificity of KT remains to be explored.
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We suggest referring directly to their paper for a full description of the terms they
introduced in the taxonomy. In section 5.4, we display the terms that we have
distilled for our taxonomy, which is an adaptation of their proposal as a result of
our analysis.

5.3 Methodology

5.3.1 Research Questions

To sum up, we are assuming that the complex nature of KT can be addressed
by explicitly taking into account the information sources due to the different dis-
ciplines that deal with learning and the situation in which it takes place. This
means finding a way to integrate these forms of prior knowledge in data-driven
machine learning models. Therefore, we took as a reference the taxonomy pro-
posed by von Rueden et al. [7] for IML, trying to apply it to the specificity of
our topic. As already mentioned, in their framework the authors introduce three
dimensions: knowledge source, knowledge representation, and knowledge integra-
tion (see Table 5.1). They also associate each dimension with an analysis question.

Here we assume them as our research questions, focusing the field of study on the
KT problem.

RQ4.1 Which source of knowledge can be integrated into machine learning models
for knowledge tracing?

RQ4.2 How is the knowledge represented in those models?
RQ4.3 Where is the knowledge integrated into the machine learning pipeline?

We opted for a systematic literature review to highlight which avenues have
already been explored, which trends are more common to design hybrid models
for KT, and to identify new research methodological trajectories.

5.3.2 Literature surveying procedure

To perform our systematic literature review we followed the PRISMA state-
ment. [121]. We included four main databases which contain relevant literature in
the field: ACM Digital Library, IEEE Xplore, Scopus, and Web of Science. They
are authoritative databases for the research sector in learning analytics and arti-
ficial intelligence in education, for which it is possible to carry out searches with
articulated queries and by restricting the search field to some parts of the paper
(e.g. abstracts and titles).
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Figure 5.1: PRISMA 2020 flow diagram for the screening process. After
the identification of the potential candidates, there are two screening steps. The
first one (1) consists of applying 4 inclusion and 4 exclusion criteria considering
only papers’ titles and abstracts. The second (2) has been conducted with two
inclusion criteria to focus on the prior knowledge injection problem, considering
the papers’ full texts. The selection criteria are described in section 5.3.

The query used to retrieve results in these databases is the following: (“skill de-
velopment” OR “skill acquisition” OR “skill assessment” OR “knowledge tracking”
OR “knowledge tracing” OR “knowledge assessment”) AND (“machine learning”
OR “artificial intelligence” OR computing OR “deep learning” OR ‘“learning an-
alytics" OR “data mining") AND (education OR educational). The search was
limited to the titles, abstracts, and keywords of the documents in the databases to
select only papers with the main focus on the topic of our interest. The query con-
sists of the conjunction of three parts: the first is for keywords about the learning
object under study; the second aims to bind the research methodology reference
to machine learning and other related fields; the last one is used to disambiguate

!
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the terms knowledge and learning, collocating them into the educational sciences.
There is a fourth aspect characterizing our research questions regarding the use
and integration of sources of prior knowledge. However, it is not easy to identify
related keywords which are sufficiently general for an automatic filtering process
taking this aspect into account. In a sense, one of this research’s objectives is
identifying which sources are most used as prior knowledge and which lexicon is
used to refer to them. Therefore, the focus on prior knowledge was not considered
in the first phase of the PRISMA checklist and was integrated later, as we will
describe.

The query was run on August Hth, 2022, collecting 1267 documents. Figure 5.1
shows the main steps of the systematic review process according to the PRISMA
flow. In the top-left box of the diagram, we summarized the numbers of retrieved
documents with the query search, divided among the selected databases. After
removing duplicates and documents in the form of full books or conference pro-
ceedings, the list of potential candidate papers was reduced to 957.

On this set of papers, we carried out a manual screening of titles and abstracts
to assess the relevance of our study. Specifically, we considered the following
inclusion criteria:

e the paper has a methodological focus on KT, i.e. aims to describe a tech-
nique, an algorithm, or a method to deal with KT problems rather than
presenting a digital tech application (serious games, virtual reality systems,
web platforms, etc.);

e the main methodological approach refers to the field of machine learning,
computational intelligence, or data science;

e the data used to build the learner model are collected from the student’s
interaction with Learning Management System (LMS);

e the paper refers to human learning.

The first two criteria were chosen to pursue the methodological focus of the RQs.
The third and fourth criteria were chosen to explicit a sufficiently broad but defined
application target for knowledge tracing. Specifically, the third criterion narrows
the interest of this study to school, academic and training contexts that use LMS
as a teaching support tool. The fourth criterion disambiguates the word “learning",
which can be used in Al concerning machine or robot learning. In addition, we
considered four exclusion criteria:

e the full text of the paper is not available in English;

e the paper presents preliminary results, i.e. it is a position papers or the
authors declare that they are describing an exploratory study;
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e the paper has as its main objective a literature review;

e there are later more updated or complete versions of the paper by the same
authors and on the same research project.

The application of these criteria led to the selection of 221 papers considered
eligible. This set of papers has gone through a new screening phase on the full
text, aimed at selecting only documents with a focus on using and integrating
prior knowledge sources in ML tools. Specifically, it was decided to consider the
following inclusion criteria:

e the authors explicitly consider the need to integrate apriori forms of knowl-
edge with methods traditionally used to deal with KT;

e the paper includes a clear description of the methods, i.e. which prior knowl-
edge is taken into consideration and how this is integrated into the ML
pipeline.

To check the first criterion, we seek evidence in the text, particularly in the in-
troduction and conclusion sections, where authors usually state their main con-
tributions. For the second criterion, the methodology section of each paper was
examined.

As a final result, we identified the 53 papers included in this review. All selected
papers present case studies in which a close match occurs between the “informed"
models and authoritative datasets exploited for KT (e.g. ASSISTment, KDD cup
2010, or data collected with commonly used LMS). The experiments described in
the selected papers perform comparably to or better than the purely data-driven
models, taken as a reference benchmark. This motivates our interest in exploring
potentials and gaps of prior knowledge source integration into the ML pipeline.

5.3.3 The classification process

To classify the 53 papers considered eligible for the review, we tested and refined
the IML taxonomy by von Ruedend et al. [7], which we have already introduced
in section 5.2.

We felt comfortable using their notation about knowledge integration, which
refers to the main steps in any ML pipeline [122]. As for the knowledge representa-
tion forms, we relied on the existing taxonomy, although it remains to distill which
forms are actually used in the ML models for KT, and the possibility of expanding
the initial list if other forms emerge. On the other hand, we immediately perceived
the adaptation of the taxonomy for knowledge sources to our context as more del-
icate. von Rueden et al. proposed three main sources [7|: scientific knowledge,
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world knowledge, and expert knowledge. According to their definitions, scientific
knowledge mainly refers to science, technology, engineering, and mathematics, and
it is validated through formal reasoning or scientific experiments. World knowledge
alludes to facts from everyday life, which can be validated implicitly by human
reasoning based on intuition; they also subsume linguistics as world knowledge,
e.g. syntax and semantics of a language. Expert knowledge is common knowledge
within a specific experts’ community and is mainly validated through a group of
experienced specialists.

Following these definitions, scientific knowledge does not apply to KT, while
the other two forms fit with the educational context. However, it is sometimes dif-
ficult in our selected papers to distinguish whether a knowledge source is the result
of general knowledge or is based on an expert-domain learning theory. Further-
more, the classification in the world and expert knowledge is extensive and does
not capture some specificity of the sector, which a finer granularity of the taxon-
omy might capture. This refinement process was inspired by another taxonomy
source borrowed from I'TS and AEHS. These systems have four major components
[123]: domain model, pedagogical model, learner model and tutor-learner inter-
face model. The latter is mainly a model on a technical level: it determines the
admissible inputs (e.g. click, typing, speech) and produces output in different for-
mats (e.g. text, diagrams, animations, agents); it shapes the architecture through
which data are collected; it mediates the interaction between the learner and the
contents. On the other hand, the other three components are models for integrat-
ing information on different aspects that influence learning into ITS and AEHS.
Hence, they are eligible as possible sources of knowledge specific to our topic.

Operationally, a first screening of the paper was made to build a set of labels
suitable for classifying each of the three IML dimensions, taking into account the
previous considerations. The most appropriate categories were gradually detected
as the papers were analyzed. Once we derived the labels, we homogenized and
reorganized them to arrive at a stable classification taxonomy. We conducted a
second screening phase with this new label set by classifying the 53 papers. During
this classification process, we identified the knowledge source enclosed in the model
and how it was represented and integrated. Even more labels for each dimension of
the taxonomy can be applied to a single paper if there are more types of knowledge
sources or if the authors exploit different representation or integration strategies.

In the next session, we introduce the classification taxonomy obtained from
the first qualitative analysis of the papers and the classification results in quanti-
tative terms. Furthermore, we chose one of the papers included in our systematic
literature review to show how our taxonomy can be applied to describe the prior
knowledge injection flow in a real case study.
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Table 5.2: References classified by knowledge representation and knowledge source

Representation
Source

Algebraic Simulation Knowledge Probabilistic Other
equations results graphs relations data
g&r‘i]t [119, 117, 124, [131] [132] [133]
Domain Y 125, 126, 127,
knowledge 128, 129, 130]
Semantic [118, 134, 135,  [139]
similarity 136, 137, 138]
ﬁ;“i’xljige [140, 141, 142] [143, 135, 144, [117, 139, 124, [105, 154, 155,
145, 128, 137, 146, 147, 148, 156, 157]
142] 149, 150, 151,
152, 153, 141,
140]
Class .
context [139] [139, 158]
Learning Pedagog}cal [159] [160] [161]
assumptions
knowledge Cognitive
thc%)rics [162, 112, 129, [163] [150, 132, 164]
130, 138, 111]
Behavioural .
knowledge Time [165, 166, 167] [125] [133, 168]
Scaffolding
interactions [169] (157] [168]
Attompts [162] [i12, 133, 168,

170]

5.4 Results

5.4.1 Taxonomy of Informed Machine Learning for Knowl-
edge Tracing

Here we present the result of the qualitative analysis that led to the determina-
tion of the reference taxonomy for the selected papers’ classification. In illustrating
our results, we cite only the most recent paper among those included in the sys-
tematic review. The full classification, according to the introduced taxonomy, is
offered in Table 5.2 and Table 5.3. The two tables classify the papers by knowledge
representation and (path from) knowledge source and by knowledge representation
and (path to) knowledge integration.

Table 5.3: References classified by knowledge representation and knowledge inte-

gration
Integration Representation
Algebraic Simulation Knowledge Probabilistic Other
equations results graphs relations data
Training data [112, 165, 125, (118, 134, 135, |160, 146, 147, [125, 154, 150] 112, 133, 168,
127, 166, 128, 143, 136, 159, 148, 149, 150, 170|
129, 130, 167| 145, 128, 138, 151, 152, 153,
137| 141]
Hypothesis set [162, 124, 129, [144, 163, 142| 162, 117, 139, 139, 105, 161,
169, 138, 140| 124, 140, 131]| 132, 155, 156,
158, 157, 164]|
Learning Algo- [119. 117, 126,
rithm 141, 111]

Knowledge Source
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The first focus in our taxonomy concerns pointing up the knowledge sources
which can be considered when dealing with KT, i.e. other information retained
valuable to integrate those generally used in the standard KT models, that are,
the sequence of students’ performances. We developed a two-level classification,
which expresses different degrees of granularity, summarized in Figure 5.2. At the
first level, we have three nodes inspired by the I'TS components: domain knowl-
edge (domain models), learning knowledge (pedagogical models), and behavioral
knowledge (student knowledge).

With the term domain knowledge, we indicate both the disciplinary space, i.e.
information related in some way to the content object of the learning, and the con-
text where learning occurs. There are four kinds of information included under this
umbrella term: items’ difficulty, items’ semantic similarity, knowledge structure,
and class context. The first one refers to information about the difficulty level that
characterizes each item used to track the students’ knowledge development. It can
be assumed either as an intrinsic property of the item, i.e. the level of difficulty
is the same for all the students (e.g. [133]), or as a feature to be modelled prop-
erly for each student (e.g. [124]). Semantic similarity indicates the benefit of the
items’ texts as a source of knowledge. The general objective is to exploit semantic
similarities between the exercises to highlight valuable relationships among them,
as in [139]. In most cases, the integrated knowledge source concerns the knowl-
edge structure, i.e. making explicit the relationships between knowledge concepts,
skills, and exercises. This includes both links between concepts or skills consid-
ered to be communed by experts (e.g. [147]), and concept(s)-item or skill(s)-item
links (e.g. [135]). In this way, we are considering the epistemological structure of a
discipline to handle a typical issue in learning assessment: students’ mastery level
of a set of attributes cannot be measured directly but must be inferred from their
pattern of responses to the items. The last option in this family, namely class
context, indicates the use of information about the other students in the class
to infer characteristics of the context in which the learning took place, assuming
that this can influence each student’s learning. For example, in [139], Tong et al.
consider which exercises are often solved in sequence to infer hierarchical relations
between the items. In [158], Wang and Beck try to create a model of the class
because it can be representative of important information that affects a student’s
prior knowledge. For example, students in the same class have the same teacher
and curriculum and have been assigned the same homework.

The second family of knowledge sources is named learning knowledge. 1t refers
to expert knowledge about how learning occurs. We differentiate two types: peda-
gogical assumptions and cognition theories. In the first group, we enclose theories
or hypotheses on learning from an external point of view. For example, in [160],
Lee et al. cited knowledge space theory as a reference to capture the knowledge
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structure. They assumed that if students correctly solve a tough exercise on a
specific topic, they could even solve correctly other easier exercises on the same
topic. Among the cognition theories, we include references to the individual learn-
ing process, e.g. the Ebbinghaus forgetting curves proposed in cognitive science
studies [162].

As for behavioural knowledge, we refer to information concerning how students
behave during the learning process in terms of interactions with the learning mate-
rials (mainly the items in a learning system). We see a connection with the learner
model component of the ITS because this information is related to the student.
Still, it enriches the exercise-performance sequence traditionally considered in KT.
More granularly, we have identified three sub-labels: time, scaffolding interactions,
and attempts. In [125], they used the average time of answer to estimate items’
difficulty. Moreover, information about time is used to estimate the learner’s skill
mastery, as in [133]. As for scaffolding, in education, it refers to breaking up new
concepts so they can be learned more easily. Hence, taking into account scaf-
folding interactions indicates the willingness to integrate the learners’ data with
information about how or when they use scaffolding materials during their learning
process (e.g. [169]). Finally, considering the learners’ attempts means monitoring
their actions between two consecutive time steps, i.e. determining the knowledge
state in a time step also through the attempts and wins/fails ratios that have
occurred (e.g. [112]).

Knowledge Representation

As categories to define the forms for the representation of knowledge, we re-
ferred to the taxonomy introduced by von Rueden et al. [7] (see Table 5.1). Here
we describe only the forms of knowledge representation found in the papers exam-
ined in the review.

In most cases, algebraic equations are functions to express a mathematical re-
lationship between the variables and constants used to model the problem. Some-
times, the term algebraic constraints are more appropriate because the knowledge
is represented through inequalities to determine a feasible set of values (e.g. [162]).

Simulation results is used to describe the numerical outcome of a computer
simulation, intended as an approximate imitation of the behavior of a real-world
process. There are two recurring forms in the analyzed papers. Firstly, embedding
techniques (often pre-training) to obtain more informative representations from
the data. Secondly, the use of attention mechanisms in neural networks. For
example, in [135], the domain information on the exercises is integrated through
two simulation processes: a pre-training embedding of their texts to gain semantic
knowledge and an attention mechanism to model the relations between the items.

Knowledge graph is a common form of knowledge representation. A graph is
a pair (V, E), where V is the set of its vertices (or nodes), which usually describe
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Figure 5.2: Taxonomy of knowledge sources for the Knowledge Tracing
Problem. There are three main classes of knowledge sources for which we have
identified some subclasses.

concepts, and E is the set of its edges, i.e. the abstract relations among them.
A common knowledge graph within the KT is the Q-matrix, a binary matrix
showing the relationship between test items and latent or underlying attributes or
concepts [171]. It can be provided by an educational expert (e.g. [150]) or estimated
directly in the embedding layer by exploiting Graph Neural Network (GNN) that
extends existing neural network methods for processing the data represented in
graph domains (e.g. [146]).

Another knowledge representation type is probabilistic relation. It determines
the relations between two or more random variables according to their joint distri-
bution. According to von Ruedend et al. [7], "prior knowledge could be assump-
tions on the conditional independence or the correlation structure of random vari-
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ables or even a full description of the joint probability distributions". This form of
knowledge representation is the milestone of Bayesian network models [106], very
popular as KT techniques.

We add a new class of knowledge representation, named other data. There
are some cases in which the integrative knowledge source is expressed directly by
the collection of additional data to those usually considered in the KT problem
(e.g. [112]. As can be seen in Table 5.2, this is quite common when we aim to
integrate information on the learner’s behavior during learning.

As a final remark to the results concerning knowledge representation, we high-
light that there are four classes in the IML taxonomy (see Table 5.1) never used in
our qualitative analysis: differential equations, spatial invariances, logic rules and
human feedback.

Knowledge Integration

As for knowledge integration, we found three of the four steps of the ML
pipeline [122] in the qualitative analysis of the papers.

Integrating prior knowledge sources in training data is intended as acting on
the information provided as input to the model. There are several ways this can
happen. Firstly, we mention data augmentation. In [160], for example, Lee et al.
define synthetic data based on pedagogical rationales to deal with the complexity
of knowledge acquisition. Another common integration practice is embedding the
data with a feature engineering process. This process can be either expert-driven,
e.g. in [112] the authors define correct, and error rates as new features to model
the students’ learning ability, or data-driven, e.g. in [143] a pre-training embed-
ding architecture is designed to model the knowledge structure in the domain.
Lastly, some papers expand the training dataset with new kinds of data. In [118],
the author leverage knowledge in other domains, which can be transferred to the
KT’s domain (discipline) object. In other papers, the training dataset includes be-
havioural data obtained while tracking the learners’ interactions with the learning
system (e.g. [162].

The second step of the ML pipeline where prior knowledge can be integrated
is the hypothesis set. It can be defined as the set of functions to choose to solve
the initial problem. Relying on the notation introduced in section 5.2, the initial
problem is estimating f : X — {0,1}, and the hypothesis set H is the set of can-
didate functions among which to choose g : X — [0, 1], as a result of the learning
algorithm. It may be, for instance, the set of linear functions, the set of neural
networks, or the set of logistic functions. Integrating the prior knowledge in the
hypothesis set can be intended as bounding the form of the functions included
in ‘H. For example, Liu et al. in [162] manage two explicit choices in this direc-
tion: they exploit recursive functions in their architecture to handle the knowledge
master degree estimation according to constructive learning theories; they define a
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graph convolutional network to include latent learning ability estimation influence
on the learner’s knowledge concepts states.

The last knowledge integration type found in our literature review is in the
learning algorithm, i.e. how the model updates the parameters which define the
functions in H during the training. In a neural networks-based model, this integra-
tion consists of modifying the loss function to force the model to consider a prior
knowledge source. In [119], for example, the authors introduced a penalization
term in the loss function to handle item difficulty.

It is worth noting that we do not have any models where knowledge integration
occurs in the final hypothesis step. This kind of knowledge integration would occur
when the output of the machine learning pipeline is validated against existing
knowledge.

The distilled taxonomy of knowledge representation and integration for KT is
summarized in figure 5.3.

Algebraic Training Dataset
Equations

Simulation Hypothesis Set
Results

Knowledge Learning
Graphs __ Algorithm

Probabilistic
Relations

Other Data

Figure 5.3: Taxonomy of knowledge representation and integration for the
Knowledge Tracing Problem. Five main forms of knowledge representation
and three integration steps in the machine learning pipeline are distilled from our
systematic literature survey.

5.4.2 Quantitative analysis

We applied the taxonomy described in the previous subsection to the 53 eligible
papers selected for our systematic literature review. One paper can have more than
one path for prior knowledge integration. A path is defined by a triad “knowledge
source-knowledge representation-knowledge integration". We counted each path
separately for the quantitative analysis, identifying 77 paths. For instance, Tong
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Figure 5.4: Paths for integrating prior knowledge in a knowledge tracing
model. The nodes on the left represent the spectrum of knowledge sources distilled
from our iterative literature survey; we used three colors to distinguish the three
main classes (yellow for domain knowledge, light blue for learning knowledge,
and pink for behavioral knowledge). Central nodes cover the forms of knowledge
representations. The right nodes are for the types of knowledge integration. The
paths among nodes represent different approaches to integrating prior knowledge
into the ML pipeline.

et al. in [139] introduce 4 ways to integrate exercises learning dependencies in their
KT model. As a knowledge source, they exploit knowledge structure from experts,
the semantic similarity between items, class context leveraging common behaviours
in the class, or class context retrieved by studying the correlation among items an-
swered correctly by many students in the class. They represent the first three
knowledge sources using knowledge graphs, while the last is tackled through prob-
abilistic relations. In each path, the integration occurs in the hypothesis set step.
Hence, we have 4 triads and considered 4 paths in our labeling counting process.

The quantitative overview of this analysis is summarized through the Sankey
diagram in Figure 5.4. This visualization format depicts a flow from one set of
nodes to another. The paths connect the elements across the three dimensions
of the taxonomy and illustrate the approaches we found in the analyzed papers.
The height of each node is proportionate to its absolute frequency, which is also
expressed in number. The thickness of the links depends on the absolute frequency
with which the path connecting two nodes has been recorded.
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Let us point out three main pieces of evidence from the Sankey diagram. Firstly,
domain knowledge sources are the most exploited, with 40 paths out of 77 which
use them. Specifically, in 28 cases, the prior knowledge to integrate concerns the
knowledge structure, i.e. more than a third of the paths.

Secondly, the training dataset is the privileged integration path (43 cases out of
77) for all forms of representation except for probabilistic relations. The latter case
is often connected to the choice of the Bayesian network as inspiring architecture
for the model. Therefore, it is brought back to the hypothesis set class, i.e. the
form chosen for the objective function of the predictor.

Thirdly, we have some cases of exclusive inbound or outbound paths. As ex-
pected, when knowledge is represented by exploiting other data, we have a unique
outbound path to the training dataset, i.e. these new data sources are used to
increase the features considered for a more rich knowledge representation. More-
over, the knowledge integration into the learning algorithm step occurs only with
an inbound path from algebraic forms of knowledge representation. All the papers
that present this approach introduce a regularization term in the loss function,
which is optimized during the model training phase.

In addition, the diagram suggests that some representation and integration ap-
proaches (paths from knowledge sources to knowledge representations and paths
from knowledge representations to knowledge integrations) are more frequent than
others, i.e. some paths are more common. A measure for the relevance of each
approach is expressed by computing its conditional probability, i.e. the probability
that a path ends in a certain node B knowing that the source node is A. In other
words, we aim to interpret the Sankey diagram in Figure 5.4 as a weighted 3-partite
direct graph. The weights of the links are defined through conditional probabili-
ties; the three sets of independent nodes correspond to the three dimensions of the
taxonomy (knowledge sources, knowledge representations, and knowledge integra-
tions); the paths’ direction is from left to right.

We define the conditional probability p(B = b;|A = a;) as

p(B = bjlA=a) =22 (5.1)

where A and B are two variables, a; and b; stand for one of the modalities respec-
tively of A and B, f;; is the absolute bivariate frequency (i.e. how many times a;
and b; occur together), and f;. is the absolute marginal frequency (i.e. the number
of total occurrences of a;). The weights determine the relevance of the different
approaches.

For instance, we assume A as the variable for knowledge sources and B as
the variable for knowledge integration; A € {ay,as, ...,a9}, where a; denotes the
i-th modality for knowledge source from the top in Figure 5.4; similarly, B €
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Figure 5.5: Contingency Tables and Adjacency Matrices of the graph for
Informed Machine Learning Taxonomy for Knowledge Tracing. (a) is
the contingency table for all the possible combinations among knowledge sources
and knowledge representations modalities (left paths in Figure 5.4). (b) is the
adjacency matrix of the left fold of the graph defined on the Sankey diagram in
Figure 5.4. (c¢) and (d) are respectively the contingency table and the adjacency
matrix among knowledge representations and knowledge integrations (right fold in
Figure 5.4). We have bolded in the adjacency matrices the weights associated with
the most relevant approaches in the prior knowledge integration pipeline according
to the criteria described in the final part of section 5.4.

{b1, b2, ..., b5}, bj is the j-th modality for knowledge representation from the top in
the same figure. Hence, we have a; = ‘items difficulty’, b; = ‘algebraic equations’.
The co-occurencies of a; and b; is f1; = 9; the marginal frequency for a;n is
f1. = 12. Thus, according to definition 5.1, we have p(B = b;|A = a;) = 0.75. In
practice, 75% of the paths outgoing from the item difficulty source are integrated
into the model through an algebraic representation.

The tables in Figure 5.5 summarize the results for all the possible combinations
which define the paths in the Sankey diagram. In particular, we present the
contingency tables for the frequencies of each possible path and the adjacency
matrices which describe the graph defined on the Sankey diagram. The elements
of the adjacency matrices are the conditional probabilities computed according to
definition 5.1 as weights for the links. More details about the tables are provided
in the description of the figure.

From the results presented, we can highlight the following relevant approaches
among the paths from knowledge sources to knowledge representations: (i) items
difficulty - algebraic equations; (ii) semantic similarity - simulation results; (iii)
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cognitive theories - algebraic equations; (iv) attempts - other data. As for the paths
from knowledge representations to knowledge integration, the relevant approaches
are (i) probabilistic relations - hypothesis set; (ii) other data - training dataset
(already mentioned as an exclusive outbound path); (iii) semantic similarity -
training dataset. The relevant approaches have been identified by applying the
following criteria: the weight associated with the path is greater than or equal to
60%; both the marginal frequencies and the joint frequency are greater than 5%
of the total number of paths, i.e. fi;, fi., f; > 4.

5.4.3 Application of IML taxonomy for KT to a real case
study

Before discussing our results for our RQs, we want to show a case of the appli-
cation of our taxonomy. We aim to make clear what it means to integrate prior
knowledge sources in a KT model, following the full path in one of the reviewed
papers. We choose the paper by Wang et al. [141] because it is the only one that
considers the most frequent category in each dimension of our taxonomy (knowl-
edge structure as knowledge source, algebraic equations as representation form,
and training dataset as integration step).

They present a model based on a Deep Knowledge Tracing (DKT) architecture.
In figure 5.6, we present its diagram. The grey part concerns the DKT in its
purely data-driven fashion: the student past question-answer sequence feeds an
embedding layer; then passes through the sequential layer RNN-based; finally, the
feedforward layer predicts the student’s future answer to each question.

The red part encodes the prior knowledge injection flows. The first knowledge
source consists of question-question relations. These relations are based on their
skills and concepts similarity, i.e. two questions are the more similar the more
they test the same skills and deal with the same concepts. This knowledge source
is represented through a knowledge graph with adjacency matrix A. The adja-
cency matrix is a square matrix encoding whether pairs of vertices are adjacent
or not in the graph. Its integration takes place at the level of training data: the
question-question knowledge graph is used as input for the embedding layer of the
architecture.

The second knowledge source is the intuition that if a pair of questions requires
similar skills or involves similar concepts, students are expected to perform sim-
ilarly. The knowledge representation here occurs in the form of a regularization
term £, i.e. the algebraic expression p’ Lp, where p(i) indicates the probability
that the student can answer the i-th question correctly and L is the Laplacian
matrix associated to A. The loss function in the model is designed to capture this
information, and it is defined by two additional terms: £,, the cross-entropy loss,
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Figure 5.6: Architecture for DKT with prior knowledge integration. The
figure is adapted from the original paper [141]. In gray there is the standard
architecture for DK'T, and in red the prior knowledge that is integrated. Questions
are given as input to an embedding layer. The RNN-based sequential layer is fed
with the embedding output and a; which encodes whether the student answered
the question ¢; correctly. Prior knowledge is the similarity relationships between
questions. There are two integration paths. Firstly, it is represented through a
knowledge graph given as input to the embedding layer. Thus it is integrated
into the training data. Secondly, it is included in a regularization term added to
the binary cross-entry loss. Thus there is an algebraic re-shaping of the learning
algorithm.

and £, the regularization term. Thus the integration occurs at the level of the
learning algorithm.

5.5 Discussion

We now discuss our results, pointing out how they answer to our RQs. We keep
two main focuses. Firstly, we highlight some remarks on our distilled taxonomy for
IML applied to KT. Given our starting point in von Rueden et al.’s taxonomy |[7],
it is worthwhile to compare them, to show both points of contact and divergence,
and assessing the effectiveness of IML for KT. In this way, we can stress strengths
and limitations in our proposal, which can be interpreted as possible future research
avenues.

Secondly, we draw some considerations from the quantitative analysis. We
mostly exploited the quantitative results to emphasize relevant and widespread
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IML approaches among the results. This supports our response to the RQs. We
present this discussion in three subsections, one for each RQ.

5.5.1 Knowledge sources for Knowledge Tracing

As for the knowledge sources which can be integrated into the ML pipeline
to address the KT problem (RQ4.1), we distilled a two-level taxonomy which is
schematized in Figure 5.2. Comparing this to the taxonomy for the IML, there is
a basic difference in the type of labels that have been searched. In our case, we
have identified a label for each type of content or information that is integrated,
e.g. under the class “domain knowledge" we have four types of content taken as
prior knowledge (i.e. item difficulty, semantic similarity, knowledge structure, and
class context). von Rueden et al., on the other hand, defined the labels for the
knowledge sources by identifying who holds the prior knowledge, i.e. a scientific
theory, a human heritage, or the experts in a specific field.

The strength of our choice is the higher granularity and, thus, its descriptive
power. The list of identified classes represents a reference of valuable knowledge
sources which may integrate student performance data in KT tools. They can
be considered factors that influence the KT, improving the models’ performances;
hence, researcher may consider them while developing their models. Also, they can
be seen as elements which enhance the models’ explainability and interpretability;
that is, they are factors with a high semantic load, making it easier to attribute
meaning to the weights or components of the architectures of the designed models
(explainability) or favoring the identification of causal relationships between the
input and the output of the models (interpretability). In our opinion, this is the
first possible line of research that has not yet been sufficiently explored.

On the other hand, the drawback of this improvement in granularity is a loss
of generality. Our taxonomy is closely linked to the educational context, with
specific reference to the KT problem, while the one for IML applies to domains
that may be very different. Furthermore, our taxonomy for knowledge sources is
non-exhaustive because it refers to the types of prior knowledge encountered in this
literature survey. This does not exclude that there may be other types of relevant
content or information to consider. Our result outlines a picture of what exists in
the state of the art and can be taken as a starting point subject to updating as a
result of new research.

The quantitative analysis highlights one main point: the predominance of do-
main knowledge as the prior source. Within this class, some sub-classes are more
exploited than others: knowledge structure is highly considered, while little atten-
tion is paid to the class context. The high consideration of the knowledge structure
may be due to its easy availability. In fact, in I'TS and AEHS it is often necessary
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to provide this type of structure to organize the contents of the course. At the
same time, the lack of consideration of the class context is not surprising. Most
KT systems are applied to online asynchronous learning contexts, where the class
context is non-existent or has little influence. However, it would be interesting,
also in light of the teaching experiences that have characterized the recent years of
the COVID-19 pandemic, to investigate if and how these systems can be integrated
into mixed schooling contexts and estimate which is in this setting the weight of
the class context.

As regards other knowledge sources, there are few attempts to consider learn-
ing theories, perhaps also due to the difficulty of modeling and representing this
kind of knowledge. Most papers in which this occurs refer to cognitive science
models of learning curves or forgetting, which are easily representable through
algebraic equations. However there are many other psychological and cognitive
factors studied in the literature. For example, a little-considered aspect is the in-
fluence of emotions on learning, which has great relevance according to educational
experts [172|. This is a further gap to explore in IML for KT.

5.5.2 Knowledge representations for Knowledge Tracing

How the prior knowledge is represented (RQ4.2) to attain its integration into
the ML pipeline is depicted by the second dimension of our taxonomy (see the left
part in the schema of Figure 5.3). As already mentioned, we have a subset of the
labels used by von Rueden et al. (see Table 5.1), and we add a new label, i.e. other
data. The knowledge representations forms never met in our literature survey are
differential equations, spatial invariances, logic rules, and human feedback. The
first three forms of representation fit better to fields where mathematical modeling
of a phenomenon is among the best strategies for its description and study. In the
literature survey by von Rueden et al., neither of them is used to represent expert
knowledge sources, which is the case for almost all of our knowledge source labels
(except semantic similarity, which they include in the class of world or general
knowledge). Hence, it is not surprising that they are missing.

On the other hand, we expected human feedback, as defined by von Rueden
et al., among the knowledge representation forms of our taxonomy. In the IML
taxonomy, human feedback “refers to technologies that transform knowledge via

direct interfaces between users and machines. |[...] Typical modalities include
the keyboard, mouse, and touchscreen, followed by speech and computer vision,
e.g., tracking devices for motion capturing. |[...] This often occurs in areas of

reinforcement learning, or interactive learning combined with visual analytics" |7].
In other words, human feedback, as knowledge representation form, occurs when
the human user intuitively and informally expresses a preference or a relevant
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opinion concerning the output of the automatic model and this is used to enhance
the model’s performance.

We envision the human feedback representation as useful for personalized learn-
ing tools, where KT is the base to suggest to students resources based on their
individual needs, and content which is predicted to be too easy or too hard can
be skipped or delayed. For instance, camera devices can be exploited to inte-
grate the learner’s emotions during the learning process, i.e. the learner facial
expressions are assumed in the form of informal human feedback [173]. Another
example concerns the interactions among peers in face-to-face lessons, which could
be detected by recording audio or asking for explicit feedback from the teacher in
the classroom. The main obstacle to this information is the technological equip-
ment normally available to monitor learning, which is connected to a well-known
problem of multimodal learning analytics [174]. In other words, this representa-
tion also relies on the hardware technology’s availability, which affects its effective
use. Both examples refer to knowledge sources we have already stated as under-
considered in the papers selected for this systematic literature review. This could
justify why human feedback as a knowledge representation form is unused. How-
ever, in dealing with a research question about which learning theories may be
integrated into KT models, there is an issue on which forms of representations fit
better. We believe that an informal representation through human feedback could
have an interesting role here to be investigated.

The quantitative analysis has highlighted that the form of representation is
often linked to the type of knowledge source: (i) items difficulty and cognitive
theories are often represented in algebraic form; (ii) knowledge structure is almost
represented through graphs; (iii) the semantic aspects are represented through
simulation results (usually intended as embedding layers, see section 5.4, the sub-
section on knowledge representation). Except for the representation form “other
data", which is used in only 8 out of 77 paths, the other modalities are distributed
evenly. This, in our view, reinforces the need to investigate alternative forms of
representation to valorise all knowledge sources that may be relevant to KT.

5.5.3 Knowledge integration for Knowledge Tracing

Dealing with RQ4.3, the labels in our taxonomy are a subset of the one for
general IML and are shown in the right part of Figure 5.3. Our literature survey has
no cases for integration in the final hypothesis step. According to von Rueden et al.
definition, the integration in the final hypothesis step occurs when the output of a
learning pipeline is “benchmarked or validated against existing knowledge". This
sounds like ensuring trustworthiness and reliability to the output of the models
through a comparison with an authoritative apriori knowledge, i.e. a scientific
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theory or formal constraints. Such an approach to tackle the KT problem seems
unlikely.

The quantitative analysis points out that the training dataset is the privileged
step where prior knowledge is integrated into the ML pipeline. In many cases,
prior knowledge is used to find effective representations of either the students
learning or the items with which they interact. Thus, the tailored representation
is a way to arrange differently or augment the training dataset to fully exploit its
potential. This trend is not a surprise because it can be led to a characteristic of
the phenomenon under study. Specifically, the KT problem is strongly connected
with assessing students’ learning.

Referring to Hgjgaard [175], assessment is modeled as a three-step process:
characterizing, identifying, and judging. It is impossible to measure students learn-
ing directly; it is necessary to characterize what you are looking for, identify the
extent to which it is present in the situations involved in the assessment, and then
judge the identified. In other words, when dealing with the assessment of students
learning, there is an intrinsic problem of identifying some indicators that need to
be interpreted in some way. Automating this process, which is usually managed
by the teacher, means integrating it into the model. Characterization and identi-
fication precede the judgment phase and, in some way, are the premises on which
the judgment can be formulated. KT models, according to the definition we pre-
sented in section 5.2, automate the learning judgment phase and use it to predict
students’ performances on new items. Therefore, studying adequate representa-
tions becomes the way to manage the preliminary operation of characterization
and identification. It foregoes the model’s training, which is oriented to learning
how to judge, thus involving mainly the training dataset step.

The quantitative analysis has also brought out three main approaches to knowl-
edge integration based on the knowledge representation kind: (i) the probabilistic
relations form is often integrated into the hypothesis set step because probabilistic
reasoning is often handled with Bayesian networks (chosen as the form for the ob-
jective function in the ML pipeline); (ii) when the prior knowledge is represented
through new data, this is always integrated into the training dataset, becoming an
extra input source for the model; (iii) simulation results as knowledge representa-
tion form is almost integrated into the training dataset. This last point is in line
with two observations already stated in this paper: simulation results often occur
as embedding layers, thus connected to the problem of representing the input for
the models properly; the representation problem is a necessary pre-training phase
which enable the model to learn how to predict future learners’ performances, thus
it is handled in the first phase of the ML pipeline.
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5.6 Chapter Conclusion

To conclude, we summarise the main findings of our systematic literature review
and some final remarks.

To answer the three RQs on integrating prior knowledge in KT models, we
obtained a three-dimensional taxonomy (knowledge source, knowledge representa-
tion, knowledge integration) as main result of a qualitative analysis (see Figures
5.2 and 5.3). This taxonomy has been benchmarked with the one proposed by
von Rueden et al. [7] for the IML, taking into account the specific focus on KT.
Through a quantitative analysis, some common integration approaches were also
identified, which can be deduced interpreting the sankey diagram in Figure 5.4.
The analysis displays the state of the art at the moment in which the papers
involved in the systematic literature review were selected.

Discussing our results in section 5.5, we have emphasized some gaps in IML
for KT which outline future research directions. We summarize them by posing
a new set of research questions (NRQs). They are the result either of strengths
that we have found in our taxonomy (e.g. its high granularity), of the assumptions
we have made to justify why some prior knowledge injection approaches are more
widespread than others, or of some gaps with respect to the literature on learning
theories (e.g. the neglect of emotional aspects on KT). In this sense, they represent
open issues to be investigated and verified. We formulate six questions:

NRQ1 How the integrated prior knowledge sources impact in terms of explain-
ability and interpretability of KT models?

NRQ2 Which prior knowledge sources were not considered in the papers selected
for the systematic literature review and could expand the proposed taxon-
omy?

NRQ3 To what extent KT can be applied in contexts that include face-to-face
teaching?

NRQ4 Which role does the class context play as a prior knowledge source in
face-to-face (or mixed) teaching settings?

NRQ5 Which cognitive, psychological, or pedagogical theories have relevance in
KT (e.g. theory of emotions impact on learning)?

NRQ6 What forms of representation can be used to integrate these theories? (e.g.
can we exploit the under-considered human feedback form for knowledge
representation?)

Furthermore, we want to stress that despite the selected papers present hy-
brid machine learning models, most approaches to KT are still purely data-driven.
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However, all the papers considered in this systematic literature review claim that
their results are comparable to or better than those of traditional ML methods.
This encourages further research in this direction. The three RQs posed in section
5.3 can be a trace for researchers to identify which prior knowledge sources should
be considered, how to represent them, and where to integrate them during model
development. Our taxonomy can be a tool to use in the exploratory phase to
determine what to consider. Moreover, the good performances achieved by these
models can be evaluated with respect to the bias issues that characterize Al ap-
plications in education [176]. There are different levels at which bias may affect
the ML pipeline, e.g. in the data collection process, the data annotation step, the
learning algorithm choice, or the performance metrics selection. Integrating prior
knowledge can be a new source of bias or, conversely, act as a mitigating effect.
This was out of the scope of this work, but future research could investigate the
bias challenges of IML for KT.

As a final remark, we point out that in this study we didn’t consider the
implication for practice, i.e. how the results obtained can support teaching and
learning. This was outside the aim of the systematic literature review, whose focus
was more methodological. However, both to validate the utility of these hybrid
machine learning approaches to enhance personalized learning and to investigate
some aspects proposed in the NRQs, i.e. models’ interpretability or the use of
human feedback, it is important to develop research focused on the implication for
practice. We explicitly mention the link with the interpretability of the model or
the use of human feedback, because these are aspects that directly involve teachers
and learners; therefore, a global study of the benefits on teaching and learning is
needed.

The chapter makes a significant contribution to achieving Goal 3 of this thesis.
Specifically, this study has outlined the framework for a new form of student
encoding for the initial case study presented in Chapter 1. In the next chapter,
we will introduce this new encoding strategy, aiming to enhance the previous
predictive models for low achievement.
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Chapter 6

Students’ Low Achievement:

generalizability via IML

In this chapter, I introduce a novel extension of the predictive models discussed
in Chapter 2. The aim is to assess whether a new form of student encoding,
designed according to the Informed Machine Learning (IML) framework introduced
in Chapter 5, can enhance the performance of models for predicting the risk of low
academic achievement. Specifically, I will focus on how this approach can improve
the models’ predictive capabilities, considering both performance metrics (such as
accuracy and recall) and explainability.

The new form of student representation employs basic graph theory techniques.
It was developed in collaboration with Dr. Balzan, Dr. Ebli, Prof. Gabbrielli, and
Dr. Zingaro. We first introduced this concept in a position paper [9], presented
at a workshop on Responsible Knowledge Discovery in Education (RKDE 2023).
This work was further expanded in Dr. Ebli’s master’s thesis, where I served as a
co-advisor. In the thesis, we presented various graph-based techniques evaluated
through different clustering methods to assess their effectiveness in characterizing
diverse student groups. Here, I will summarize the essential aspects of this work
relevant to the advancement of my thesis, introducing the most promising graph-
based encoding. Moreover, we provide a semantic interpretation of the features
that have been identified as significant for characterizing the graphs and clusters
of student encodings. By doing so, we gain deeper insights into the underlying
factors that influence learning processes and outcomes.

Furthermore, I will evaluate the impact of this enriched representation on both
the predictive power and the explainability of the Random Forest model previously
introduced. By comparing these results with prior approaches, the research aims
to demonstrate how integrating diverse knowledge sources can lead to more effi-
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cient and comprehensible predictive models in educational settings. This chapter,
therefore, not only advances the theoretical understanding of student representa-
tion but also offers practical implications for the development of more effective Al
tools in education.

The chapter concludes with an epistemological reflection, focusing on the knowl-
edge sources utilized, how this knowledge is processed, and the type of knowledge
generated when employing these predictive models. The chapter’s case study exem-
plifies a methodological framework that we introduce to address some limitations
identified in previous chapters when developing predictive models in educational
settings.

6.1 Background and Motivation

The work presented thus far confirms the potential of artificial intelligence,
particularly machine learning models, to enhance the education system [177, 178].
Previous chapters have introduced research studies on predictive models for the
risks of low student achievement and academic dropout, as well as examined the
literature on knowledge tracing. These efforts provide concrete examples of the
success of Al-based predictive models in various educational tasks.

It is well-documented in the literature, supported by our cases, that sub-
symbolic models often outperform standard machine learning techniques. How-
ever, despite their ability to handle large volumes of data and recognize intricate
patterns, sub-symbolic ML models struggle to offer detailed explanations for their
predictions [179]. This limitation significantly impacts stakeholders, including edu-
cators and policymakers, by hampering their understanding of the rationale behind
Al decisions, which ultimately leads to reduced adoption rates [180, 181].

Within this context, we would like to refocus our attention on the case study
regarding the risk of low achievement. To frame the contribution of this chapter,
we would like to highlight a few crucial points in the development of this thesis,
which will be revisited later:

1. In Chapter 2, when we introduced the initial models for predicting the risk
of low achievement in mathematics, we faced the challenge of generalizing
the use of these models to make them applicable across different cohorts of
students. This led us to work on engineering the available dataset, specifically
the INVALSI standardized test dataset, to create a student representation
that spans various cohorts. Our initial approach involved encoding student
learning through a concatenation of scores related to different thematic areas
or skills in mathematics. While the results were satisfactory, there remains
room for improvement.
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2. In the same chapter, a preliminary study on the explainability of the Ran-
dom Forest models was introduced through the analysis of feature impor-
tance, which can be supplemented by other post-hoc explainability tech-
niques introduced later in Chapter 4, particularly SHAP. The preliminary
study indicated that the most important features for determining the model’s
predictions include certain socio-economic-demographic context features and
the overall test score.

3. The process of student encoding has, in fact, been an initial, somewhat
unconscious approach to Informed Machine Learning (IML). The feature
extraction process integrated a domain knowledge source, namely the taxon-
omy used by mathematics education experts for constructing and classifying
the items that comprise the tests. This taxonomy considers various dimen-
sions: areas of knowledge, specific skills, and macro-processes (see Section
2.4). However, a simplification was made that overlooks the relationships
that can exist between these different dimensions of mathematical learning.
The literature has shown that students who struggle to achieve the expected
outcomes often have difficulties in making connections between different ar-
eas of mathematical knowledge or competency [182, 183].

In light of these three points, we aim to investigate alternative strategies that
can enhance model exploitation. Specifically, as previously mentioned, we will con-
tribute further to the topic of generalizability across different cohorts by proposing
a new form of student encoding based on certain graph theory techniques, which
accommodates an interconnected view of the various dimensions of mathematical
learning. More details will be provided in the following sections.

The representation introduced here, as will be elaborated further, explicitly
utilizes certain metrics used to describe the topological characteristics of a graph.
To maintain the interpretability desired by stakeholders, we have sought to provide
a possible semantic interpretation of the features used for student encoding, with
the support of a group of italian maths teachers.

There are two methodological choices I would like to clarify upfront, as they
enable a more informed understanding of this chapter’s contribution. First, the
experiments conducted in this chapter were performed on a subsample of approx-
imately 2,000 students. This decision was primarily motivated by the computa-
tional cost associated with calculating a graph for each student’s representation
and the recognition that, at this stage, we are more interested in understanding
the mechanisms by which knowledge can be included and generated through our
analysis, rather than applying the model in a real-world context.

Additionally, we chose to consider only features related to students’ mathemat-
ical learning in the student encoding, focusing on granular rather than summative
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information. This means we excluded data on socio-economic context and compos-
ite scores, such as the overall test score or grades assigned by schools. This choice
aligns with the specific interest of many stakeholders, including myself as a sec-
ondary school teacher, in exploring which teaching and learning aspects are most
relevant and connected to the problem of low achievement, and on which schools
can directly intervene through instructional and educational actions. Therefore,
unlike previous chapters, the main focus here is as follows: an epistemological re-
flection and a comparison of the use of standard machine learning methods versus
Informed Machine Learning (IML) in education for data analysis.

The chapter is organized as follows. Section 6.2 introduces the novel student
encoding. A graph-based representation is presented, along with some metrics
useful for describing them. Section 6.3 introduces semantics for the selected graph
metrics, helping to provide interpretability to the representation through domain
expertise. The research questions investigated in this chapter are also explicitly
outlined at the end of the section. In Section 6.4, the ML techniques used to
conduct the experiment are revisited, with appropriate references to parts of this
thesis where they are described more comprehensively. Section 6.5 reports the
results in terms of both predictive metrics and the explainability of the models. In
Section 6.6, these results are discussed in comparison with the models introduced
earlier in Chapter 2. The chapter concludes with Section 6.7, summarizing the
chapter’s contribution to the overall goals of the thesis.

6.2 Graph-based student encoding

In this section, we introduce an alternative method for student encoding, dis-
tinct from that presented in Section 2.4. As previously discussed, the exploration
of alternative encoding strategies aligns with our objective of achieving general-
izability in the predictive models developed for assessing low achievement risk.
This aims to integrate prior knowledge sources from the mathematical education
domain, in accordance with the principles of IML.

6.2.1 Methodology for the student graph-based encoding

The proposed encoding utilizes a representation grounded in specific metrics
that describe spanning trees associated with each student. The selection of this
representation is founded on a systematic research approach encompassing sev-
eral pivotal steps. Firstly, we posited the hypothesis that accurately capturing a
student’s learning status in mathematics necessitates consideration of the inter-
connections between various topics and skills, as delineated in the prior section.
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This perspective aligns with the taxonomy introduced in Chapter 5, categorizing
this as a form of knowledge source designated as learning knowledge, underpinned
by pedagogical assumptions drawn from the relevant literature in math education
[182, 183].

Secondly, we resolved to encapsulate this knowledge in a graph structure, im-
plemented directly on the training dataset. For each student, we constructed a
graph following this procedure:

1. Test items are represented as nodes.

2. Two nodes are connected by a directed link if they share at least one classi-
fication dimension (such as area, process, or macro-process).

3. Each link is assigned a weight ranging from 1 to 3, corresponding to the
number of classification dimensions shared by the nodes.

4. If both items connected by an edge have been answered correctly, the edge
is considered bidirectional.

5. An item representing a correct answer that cannot be linked to any others,
according to the aforementioned criteria, appears as an isolated node.

6. Items that have not been answered correctly and lack connections to other
items based on step (2) are excluded from the graph.

Figure 6.1 shows an example of student graph encoding, taking a student from the
cohort 2013/14.

Thirdly, we computed the spanning tree for each graph. The spanning tree
of a connected graph is the minimal subset of edges that forms a tree connecting
all the graph’s nodes, while avoiding cycles. This representation is designed to
eliminate any cycles present in the previous configuration, while retaining the
original criteria of edge directionality, weight, and node inclusion. During the
spanning tree construction, whenever a node in the graph is explored, all child
nodes are incrementally added to the tree. A critical aspect of this process is
the strategy for selecting the next node to explore, which prioritizes child nodes
based on their difficulty levels. Specifically, the easiest node—defined as the one
that has received the highest number of correct answers relative to the reference
dataset—is selected. The criterion of item difficulty is a foundational element
frequently incorporated into student modeling, as elaborated in Section 5.4.

This methodology generates a cycle-free representation; however, to maintain
the integrity of correctness indicators for each answered question, any node repre-
senting a correct answer without child nodes is augmented with a fictitious child
node. This approach preserves the structural properties of the tree while ensuring
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A

Figure 6.1: Illustration of a student graph, where green nodes signify correct
answers and red nodes indicate incorrect answers. The black edges are weighted
at 1, the grey edges at 2, and the orange edges at 3.
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Figure 6.2: Central portion of an example student spanning tree, where green
nodes represent correct answers, red nodes denote incorrect answers, and light
grey nodes indicate fictitious nodes. The edge weights are as follows: black edges
have a weight of 1, grey edges a weight of 2, and orange edges a weight of 3.

that essential information regarding answer correctness is retained. In Figure 6.2,
we present a detailed view of the spanning tree representation of a student, with
a comprehensive example provided in Figure 6.3.

Following the construction of the spanning trees, we analyzed a set of global
metrics pertinent to the proposed representations. The decision to employ metrics
arises from the need for effective comparison of different student encodings. The
selected metrics, which will be briefly discussed in the next section, facilitate these
comparisons and, with the engagement of domain experts, have been utilized to
interpret the characteristics that emerge from the spanning tree encodings (see
Section 6.3).

6.3 Semantic for the selected graph features

The final representation we consider involves calculating a set of global metrics
for the spanning tree representation constructed from the graph associated with
individual students. In tables 6.1 and 6.2 we sum up all the metrics used to build
this student encoding.

According to our understanding, we aim to propose a potential interpretation
for this set of metrics in the context of student learning encoding. Recognizing
how to interpret these metrics may yield valuable insights into a student’s learning
characteristics and comprehension of the subject matter. It is important to note
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Figure 6.3: Example of a student shallow spanning tree. Colors of nodes and edges
are consistent with those in figure 6.2.

that our interpretation is not comprehensive; rather, it represents a foundational
perspective developed through collaborative discussions with a team of secondary
school mathematics teachers. This proposal serves as a starting point for interdis-
ciplinary research that integrates domain experts into the learning feedback loop.
A more detailed exploration of this approach will be presented in the final sec-
tion of this chapter, where we will introduce the concepts of human-in-the-loop
[184, 185], or more appropriately, machine-in-the-loop.

The average out-degree serves as an important indicator of the student’s ability
to connect different mathematical concepts. A higher average out-degree suggests
that the student is integrating various dimensions of their knowledge, indicative
of a comprehensive understanding of the material. Conversely, a lower out-degree
may reveal a fragmented conceptual framework, where the student struggles to
link different topics effectively.

The density of the graph reflects the overall connectivity of the student’s re-
sponses. A high density indicates that the student has successfully linked their
correct answers to multiple dimensions, pointing towards a robust grasp of the
content. In contrast, a low density may signify a prevalence of incorrect responses
and limited ability to connect concepts.

The number of isolated nodes is critical for identifying specific areas of misun-
derstanding. Isolated nodes represent topics where the student demonstrates a lack
of connections to the broader context, suggesting targeted areas for instructional
intervention.

Similarly, the number of weakly connected components provides insight into
the organization of the student’s knowledge. A higher count of these components
may indicate an inability to integrate separate topics, highlighting potential gaps
in the student’s understanding that could be addressed through focused teaching
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strategies.

The S-metric assesses the robustness of the student’s knowledge by evaluating
the interconnections within their responses. A larger S-metric indicates a well-
structured understanding with key concepts that create strong links throughout
the graph, suggesting a more comprehensive learning experience.

In terms of spanning tree-specific metrics, the size of the tree, quantified by the
sum of the weights of the edges, signifies the extent of the student’s engagement
with the material. An expansive size suggests that the student has navigated a
wide range of related concepts with proficiency, whereas a smaller size may reflect
limited engagement or understanding.

The breadth, determined by the maximum out-degree of any node, reveals the
student’s capacity to answer questions across various dimensions. High breadth
indicates a well-rounded command of the subject, while low breadth may reflect
difficulties in engaging with broader mathematical topics.

The height of the spanning tree, representing the longest path from the root
to the leaves, offers insight into the complexity of the student’s understanding.
Limited height may indicate that incorrect answers restrict deeper exploration of
content, while significant height could imply successful navigation through complex
topics.

Finally, the load balance metric assesses the equilibrium between incoming and
outgoing edges in the spanning tree. A balanced load suggests that the student
effectively connects concepts, while an imbalance may highlight areas where the
student is over-relying on certain topics at the expense of others.

After this excursus summarizing some relevant aspects of alternative forms of
student encoding, we now shift our focus to the effects of its use on one of the
models previously presented in Chapter 2. To facilitate this discussion, we will in-
troduce several research questions that will be addressed through the methodology
outlined in the following section.

RQ5.1: What effects does a student encoding designed according to the In-
formed Machine Learning (IML) paradigm have on model predictive performance?

RQ5.2: How does the integration of a data-driven method with a theory-driven
approach alter the explainability of the model?

6.4 Methods

The experiment was conducted on a subset of the INVALSI dataset, specifically
focusing on a sample of 1,733 students from the 2013/14 cohort. These students
were selected based on their province of residence. This selection was necessary
due to the high computational cost associated with generating the graph and the
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spanning tree for each student. The primary aim of this exploratory study was
to evaluate the potential benefits of employing the Informed Machine Learning
(IML) paradigm in addressing the previously examined issue of low achievement
risk prediction.

The dataset was processed using the procedures outlined in Section 6.2. Since
the focus of this study is to assess which intrinsic characteristics of learning possess
greater predictive power concerning the risk of low achievement, only features
related to this aspect were considered. Consequently, socio-economic, cultural, or
demographic features were excluded from the analysis.

For the modeling phase, a Random Forest algorithm was employed (see Section
2.4). Interpretation of the model was facilitated through techniques previously il-
lustrated in this thesis, specifically using Permutation Feature Importance and
SHAP (SHapley Additive exPlanations), applied in both global and local perspec-
tives (see Section 4.3). To provide a comparative benchmark with the student
learning encoding presented in Chapter 2, the model was trained and tested on
the same subset using the two forms of learning encoding proposed in this thesis.

In contrast to previous experiments, and given the limited sample size, an
Oversampling technique was utilized to address the issue of class imbalance within
the dataset, which exhibited approximately 80% instances of the False class and
20% of the True class (i.e., Low Achievement). The Synthetic Minority Over-
sampling Technique (SMOTE) was employed for this purpose. SMOTE functions
by generating synthetic examples of the minority class based on a combination
of existing instances, effectively balancing the dataset without simply duplicating
existing samples [186].

Regarding the experimental setup, it is worth noting that the dataset was split
into training and test sets in an 85-15 ratio. This partitioning ensures that the
model is adequately trained while retaining a robust test set for evaluation.

6.5 Results

The results of the experiment are summarized in Table 6.3. They highlight the
performance of the two student encoding approaches: graph-based encoding and
base encoding. For clarity, graph encoding refers to the methodology introduced
in this chapter, while base encoding pertains to the method discussed in Chapter
2, limited to features directly related to learning.

These results were obtained using the following set of hyperparameters, deter-
mined through grid search: for graph encoding, the parameters were 'max_depth’:
11, 'max_features’ 0.8, 'max_samples’: 0.6, and 'n__estimators’ 50; for base en-

coding, the parameters were 'max_depth’: 11, 'max_features’: 0.5, 'max samples’:
0.5, and 'n__estimators’: 60.
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Permutation Feature Importance - Computed on Test Set
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Figure 6.4: Feature Importance with PFI for RF model trained with
graph-based enconding of data.. The legend for the box-plot is the follow-
ing: the central rectangle in each line shows the second and the third quartiles
together, where the orange line represents the 50% threshold; the green triangle
is the average value for the importance of the selected feature on all the decision
trees in the RF model; dots represent outliers.

In terms of explainability, we present the analysis performed on the model
trained with the graph-based student learning encoding. Figure 6.4 illustrates the
Permutation Feature Importance (PFI) analysis, contributing to global post-hoc
explainability. Notably, only four features exhibited a median PFI value exceeding
2%, namely Load Balance, Compactness, Average Edge Betweenness Centrality,
and Density. Among these, Compactness and Average Edge Betweenness Central-
ity showed lower variance, indicating less dispersion in their contributions.

Furthermore, two of these features were also identified as important by SHAP,
as depicted in Figure 6.5, namely density and load balance. The newly selected
features in the top four by SHAP are Average Closeness Centrality and height,
highlighted as the most significant features overall. It is also evident from Figure
6.5 that low values of height and density are positively correlated with the risk of
low achievement. Conversely, low values of Average Closeness Centrality and Load
Balance frequently characterize students who do not experience low achievement.

Another relevant aspect emerges regarding the feature size; cases of low achieve-
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Figure 6.5: SHAP global explanations for RF model trained with graph-
based enconding of data. The beeswarm plot shows features ordered by average
SHAP value. Each dot represents an instance, positioned by SHAP value; colors
indicate numeric feature values.

ment are related to low values of this feature, which cluster in a very dense area,
indicating that these students are similar to one another in their learning profiles.

For completeness, Figure 6.6 provides an example of SHAP utilized locally on
a student to explain the model’s prediction.

6.6 Discussion

The results obtained from the experiment provide interesting insights into the
efficacy of different student encoding methods —mamely, graph encoding versus
base encoding—in predicting risks associated with low achievement among stu-
dents. However, they also come with certain limitations. This discussion will be
presented in two subsections: one focusing on the analysis of predictive perfor-
mance and the other on the analysis of explainability.
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Figure 6.6: SHAP Local explanations for RF model trained with graph-

based enconding of data..

Each line shows the main features impacting the

predicted dropout risk for a student, with bar lengths proportional to their SHAP
values. Pink bars indicate features that increase dropout risk, while blue bars
indicate features that decrease it. The combined contributions determine the pre-

dicted value.
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6.6.1 Predictive Performance

The comparison of performance metrics indicates that graph encoding demon-
strates a higher recall of 0.60 compared to the base encoding’s recall of 0.46. This
suggests that the graph-based approach is more effective at identifying students
at risk of low achievement, thereby highlighting its potential utility in early in-
tervention strategies. The ability of the graph encoding to capture intricate rela-
tionships and interactions among various learning dimensions likely contributes to
this observed performance. This result contributes to a positive answer to research
question RQ5.1 of this chapter regarding the benefits of integrating a data-driven
approach with a knowledge source from the application domain.

However, while these findings are encouraging, there are clear limitations.
While both encoding methods achieved reasonably high accuracy, with graph en-
coding achieving 0.78 and base encoding at 0.82, these values must be viewed in
light of the other metrics. The graph encoding’s Fl-score of 0.48 indicates room
for improvement in balancing precision and recall, emphasizing the potential need
for further refinement of the feature set or modeling approach to enhance both
metrics.

Some of these limitations can be addressed by enhancing the data and com-
putational sources used. The dataset used for this experiment is relatively small,
comprising only 1,733 students, which could affect the robustness of the results.
Furthermore, the exclusion of demographic and socio-economic variables from the
feature selection process may overlook significant contextual factors influencing
student performance. When comparing the results of base encoding with those
presented in Chapter 2, based on a dataset on 706733 students, it becomes evi-
dent that while accuracy remains consistent, recall and precision differ by 21 and
16 percentage points, respectively. This discrepancy raises important questions
regarding the relevance of contextual factors in learning outcomes.

On the other hand, the new graph-learning encoding demonstrates promising
results in recall, falling short by only 7 percentage points with respect to the model
introduced in chapter 2, despite the great difference in the dataset size. Therefore,
it suggests that with an adequately sized dataset, this gap could potentially di-
minish further. In summary, graph encoding appears to be more informative than
the previous representation in terms of intrinsic learning aspects relevant to low
achievement risk, outlining a viable direction for future work.

6.6.2 Explainability

The results from the explainability analysis provide important insights into
the features driving the predictions of the model trained with graph-based student
learning encoding. The Permutation Feature Importance (PFI) analysis identified
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Load Balance, Compactness, Average Edge Betweenness Centrality, and Density
as key metrics, with Compactness and Average Edge Betweenness Centrality ex-
hibiting lower variance in their contributions. This suggests a consistent influence
of these features on model predictions.

Notably, the SHAP analysis corroborates the significance of Density and Load
Balance, while highlighting Average Closeness Centrality and Height as additional
critical features. The observations indicate that low values of Height and Density
correlate positively with the risk of low achievement, implying that students with
less intricate learning connections may face greater challenges. Conversely, lower
values of Average Closeness Centrality and Load Balance tend to characterize
students who do not experience low achievement, suggesting that these students
effectively integrate their knowledge across concepts.

Moreover, the finding regarding Size is particularly striking. Instances of low
achievement are associated with low values of this feature, clustered in a dense
area, indicating that these students share similar learning characteristics. This
underscores the importance of understanding the intricacies of student profiles, as
a nuanced approach to analyzing these metrics could potentially inform targeted
interventions to support student learning.

Overall, these results emphasize the potential of graph-based student learn-
ing encoding to provide valuable insights into the factors that influence student
achievement. While the findings offer a promising direction for future research,
it is essential to approach these interpretations with caution, acknowledging the
complexity of educational contexts and the need for ongoing validation of these
metrics. Thus, it is essential to consolidate the interpretations that can be as-
signed to these metrics within the contextual domain. This appears to necessitate
collaboration with domain experts and support from a qualitative analysis of the
results, as will be further elaborated in the concluding chapter of this thesis.

Moreover, regarding the use of local explainability techniques, as illustrated in
Figure 6.6, an ablative study would be beneficial, comparing various prediction
cases—some correct and some incorrect—to gain a better understanding of the ar-
eas for improvement in what the model has learned. This outlines other directions
for future work.

6.7 Chapter Conclusion

This chapter has introduced a novel approach to student learning encoding
through the implementation of graph-based encoding methods. By comparing
this new encoding with the base encoding presented in Chapter 2, the findings
provide valuable insights into the predictive performance and explainability of the
models employed. The results suggest that graph encoding is more effective in
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identifying students at risk of low achievement, thereby highlighting its potential
utility in early intervention strategies.

In response to research question RQ5.1, which investigates the effects of a
student encoding designed according to the Informed Machine Learning (IML)
paradigm on model predictive performance, the results indicate that graph en-
coding achieves a higher recall compared to base encoding. Despite some lim-
itations due to the reduced dataset size and the exclusion of demographic and
socio-economic features, the graph encoding demonstrates a promising ability to
capture intricate relationships among learning dimensions that are crucial for ef-
fective prediction.

Regarding research question RQ5.2, which explores how integrating a data-
driven method with a theory-driven approach alters the explainability of the model,
the analysis reveals that key metrics such as Density and Load Balance contribute
significantly to the model’s predictions. The identification of these features through
both PFI and SHAP confirms their relevance in understanding student perfor-
mance. Interpreting Density and Load Balance in relation to our domain context,
both metrics appear to be associated with the level of interconnection between dif-
ferent areas and mathematical skills. However, to confirm this interpretation and
enhance the transparency and reliability of the explainability analysis, a dedicated
sector study is required.

This work contributes significantly to the overarching goals of the thesis. First,
the exploration of explainability through metrics relevant to student learning en-
coding directly supports the goal G2, emphasizing the importance of transpar-
ent and understandable models in educational settings. By highlighting learning
key features that influence predictions, this chapter contributes to fostering trust
among stakeholders and enhancing user comprehension, which are essential for
effective implementation of predictive analytics in education.

Additionally, the emphasis on developing robust student representations ad-
dresses the issue of generalizability. By leveraging graph-based encoding, this
chapter lays the groundwork for future applications of predictive models across
diverse student cohorts, developing a framework applicable beyond the specific
context of the study.

To conclude, this chapter presents a work that culminates in a doctoral jour-
ney that has opened new avenues and challenges. This work is not exhaustive and
complete; rather, it serves as a foundational step towards delineating fresh per-
spectives beyond traditional purely data-driven and conventional machine learning
approaches. This exploration prompts reflections on the value of mixed methods
and the role of human expertise in the implementation of Al solutions in education.
These themes will be explored in greater detail in the conclusion of this thesis.
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Metrics for Directed Graphs

Metric Definition Formal Definition
Average It calculates the average numbfar sz\i  Out-degree(v;)
Out- of edges that leave each node in
N

degree the graph.

It indicates how dense a graph is
Densit by comparing the actual number 2E

y of edges to the maximum possible N(N —-1)

number of edges.
Number It counts the number of nodes in
of Isolated | the graph that have no connec- [{v € V' : Degree(v) = 0}
Nodes tions to any other nodes.
Number
of Weakly | It calculates the number of
Con- groups of nodes where each group
nected is connected by paths but may
Compo- not connect to other groups.
nents
gz::vzieg(ei It measures the average frac- 1

tion of shortest paths that pass | Average Betweenness Centrality = ————
ness Cen- through a given node NN -1
trality ghas '
Average It calculates the mean recipro-

g cal of the shortest path distances .
Closeness Average Closeness Centrality =
. from a node to all other reachable V-1

Centrality b

nodes.
Average
Edee Be It evaluates the average frac- 1 ul(e

g tion of shortest paths that pass | Average Edge Betweenness = — Z LLiies

tweenness through each edge N # v
Centrality & 8e- e

It assesses the robustness of a
S-metric graph by evaluating connections S = Z degree(v;) - degree(v;)

between nodes.

(Ui,’t)j)EE

Table 6.1: Summary of Metrics for Directed Graphs
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Metrics for Spanning Trees

Metric Definition Formal Definition
Size It is the sum of the.weights of the Z Weight (v;, v;)
edges in the spanning tree. (vi0;)EE
It measures the maximum num-
Breadth ber of outgoing edges from any rlflea‘}( Out-degree(v)
single node in the spanning tree.
It calculates the longest path
Height from the root of the tree to its
leaves.
It assesses the average differ-
Load Bal- | ence between incoming and out- 1
— In-d — Out-d
ance going edges, accounting for edge | |V Z( n-degree(v) — Out-degree(v))

weights.

veV

Table 6.2: Summary of Metrics for Spanning Trees

Motric Qraph Encod- Base Encod-
ing ing

Recall 0.60 0.46

Precision 0.40 0.46

Accuracy 0.78 0.82

F1-Score 0.48 0.46

Table 6.3: Performance Metrics for Different Student Encoding Approaches

106

6. Students’ Low Achievement: generalizability via IML




Chapter 7

Conclusion

7.1 A two-steps methodology

In this section, we will introduce a framework for the implementation of Al
systems to support decision-making processes, with a specific focus on the educa-
tional context. This framework is general in nature; however, we will present it
using our foundational case study, which addresses the prediction of low achieve-
ment risk among students. The framework was first introduced in the position
paper referenced earlier [9].

The goal of this framework is to provide a structured approach that integrates
machine learning and data-driven methodologies with educational expertise. By
doing so, we aim to enhance the effectiveness of Al solutions in addressing the
challenges faced in educational settings. Through our case study, we will illustrate
how this framework can be operationalized to support stakeholders in making
informed decisions that contribute to improved educational outcomes.

In our proposal, achieving inherently explicable and successful Al depends on
distinguishing and sequencing its exploratory and exploitative uses, where epis-
temic (exploratory) processes precede pragmatic play (exploitation) [187]. The
exploratory phase, characterized as epistemic, can be viewed as a cycle of re-
finement that continues until a state of saturation is reached. In other words,
knowledge is input into the system through the data utilized during the train-
ing phase and the integration of additional knowledge sources. Through machine
learning techniques, knowledge is produced by processing this input; however, this
knowledge must be interpreted, verified, and compared.

The analysis of results, both predictive and explanatory, can suggest areas
for improvement. The nature of these modifications can vary: for instance, it
may be necessary to augment the dataset if it is not sufficiently representative; to
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consider other pedagogical, cognitive, or sociological theories during the machine
learning phases; or to modify the architecture of the chosen model, among other
considerations. The quality of the knowledge obtained at the end of each cycle is
evaluated through domain expertise, underscoring the need to incorporate human
expertise into the loop. Only when the cycle reaches saturation, indicating that
there are no longer significant changes in the knowledge generated by the predictive
model, can we transition to the actual implementation of the developed tool in
practice.

Following this exploratory phase, we transition into the exploitative, pragmatic
phase. This phase emphasizes the application of the knowledge gained during
exploration to implement actionable strategies aimed at improving educational
outcomes. In this context, exploitation involves utilizing Al systems to make
informed decisions, create personalized learning experiences, and ultimately refine
teaching practices based on the insights derived from the exploratory phase.

Thus, a comprehensive understanding of the educational system is not merely
a preliminary step; it is a prerequisite guided by the epistemic cycle. By empha-
sizing the epistemic phase before entering the pragmatic stage, we ensure that
the AI solutions deployed are informed by a rich context, which enhances their
effectiveness and acceptability in educational settings.

Here, we primarily focus on the epistemic phase, through the main case study
of this thesis. Our goal is not (only) to improve the data gathering process used by
INVALSI (left in figure 7.1); instead, we follow an approach similar to [27],using
the dataset as a valuable source of information about students’ learning states and
corresponding achievement rates. In Figure 7.1, we illustrate the general schema
of our proposal, applied to the casestudy presented in chapters 2 and 6, based on
the dataset extracted from the INVALSI test administration.

In a nutshell, the INVALSI dataset has been engineered to create a form of
student encoding that has been utilized for model training. The outputs are then
subjected to an explainability analysis. At this stage, the results are compared
with a domain expert (researchers or industry professionals), who can highlight
potential critical points. This represents an iteration of the epistemic cycle, corre-
sponding to the work presented in Chapter 2. The outcome of this phase suggests
that it is appropriate to enrich the dataset with a pedagogical hypothesis derived
from mathematical education, which takes into account the interconnections be-
tween different mathematical skills and knowledge. A second iteration of the cycle
then begins, where the representation is adjusted with the graph-based hypothesis
(of which the previous chapter represents a naive attempt at application).

In this framework, the role of the domain expert is crucial, leading us to refer to
the paradigm known in the literature as human-in-the-loop [184, 185]. However,
we would also like to introduce another perspective. The starting point of the
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Figure 7.1: The epistemic cycle involving the ML pipeline and the XAI module,
leading tomodel scaling and use for pragmatic purposes after achieving consensus
among domainexperts.

entire framework is a data collection process centered around the human element,
both because the educational context is strongly human-centered, and because the
very design of the data collection derives from pedagogical and cognitive hypothe-
ses upon which the assessment tests are built. The machine learning process is
also mediated by human expertise; furthermore, the implications of this complete
process (including the exploitation phase) return to the real educational context
as a decision-support tool for relevant stakeholders [55], rather than as a replace-
ment for their role. Thus, we could say that this thoughtfully designed process
embodies the machine-in-the-loop concept, continuing to acknowledge the central
and irreplaceable role of individuals at various levels, either in the field or in policy,
who are engaged in education.

7.2 Final Remarks

This thesis encompasses a coherent journey through the application of Data
Science and Artificial Intelligence (Al) in educational contexts, culminating in the
development of predictive models aimed at improving student outcomes. Each
chapter has contributed uniquely to the overarching themes of transferability, ex-
plainability, and generalizability, effectively shaping the road to addressing the
associated challenges.

Chapter 2 presented the initial case study focused on predicting the risk of low
achievement among students using machine learning methodologies. This chapter
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contributed significantly to the theme of generalizability by establishing a foun-
dation for applying predictive models across different cohorts, demonstrating how
these models can adapt to diverse educational contexts.

In Chapter 3, the exploration shifted toward academic dropout prediction.
By assessing the effectiveness of various machine learning models, particularly
the Feature Tokenizer Transformer (FTT) compared to traditional models like
Random Forest, this chapter emphasized the theme of transferability. The results
illustrated how methodologies can be effectively transferred to different educational
settings, fostering a deeper understanding of the factors contributing to student
success.

Chapter 4 focused on the explainability of predictive models, analyzing the
significance of key features in the context of low achievement and dropout pre-
diction. By employing methods such as Permutation Feature Importance (PFI)
and SHAP, this chapter reinforced the relevance of explainability in educational
Al applications, contributing directly to the goal of enhancing transparency and
understanding among stakeholders.

Chapter 5 provided a systematic literature review that opened up epistemolog-
ical questions regarding the integration of prior knowledge into knowledge tracing
models. This chapter not only laid the groundwork for addressing the challenges
of explainability and generalizability in a new way, but also introduced the ba-
sis for the two-step methodology framework that underscores the importance of
integrating domain expertise into the model-building process (see section 7.1).

Finally, Chapter 6 introduced a novel student learning encoding through graph-
based methods, demonstrating its potential benefits in both predictive perfor-
mance and explainability. The insights gained from this chapter further solidified
the contributions to generalizability and explainability by highlighting how well-
structured student representations enhance the effectiveness of predictive model-
ing.

In summary, the contributions of this thesis have collectively advanced our
understanding of how AI tools can be effectively implemented in educational set-
tings. The findings highlight the importance of addressing the interrelated themes
of transferability, explainability, and generalizability, each contributing to the de-
velopment of a framework that guides the implementation of Al systems for edu-
cational decision-making.

This work represents a foundational step in a doctoral journey that opens new
avenues for research and practice, suggesting the need for further exploration be-
yond traditional data-driven approaches. Moving forward, it invites consideration
of mixed methods [188] and emphasizes the central role of human expertise in the
application of Al solutions in education.
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