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Biomedical signal acquisition often occurs in resource-constrained environments, neces-
sitating advanced encoding or acquisition algorithms. In such contexts, Compressed Sensing
(CS) offers a promising solution but faces performance challenges, especially in practical
implementations.

This dissertation explores the integration of Neural Network and Compressed Sensing
techniques for the efficient acquisition and compression of biomedical signals, specifically
focusing on Electrocardiogram (ECG) and Magnetic Resonance Imaging (MRI) data.

For ECG, two innovative approaches are presented. The first approach introduces a data-
driven binary encoding to develop a lightweight encoding mechanism. The second approach
introduces an adaptive, incremental compression scheme that uses a performance predictor
to dynamically adjust the number of transmitted measurements.

For MRI data acquisition, the work delves into advanced undersampling techniques. The
first part builds on the state-of-the-art LOUPE architecture, incorporating CS-derived con-
straints into the training framework to improve the quality of reconstructed MRI images. The
second part, introduces the concept of incremental acquisition, where the number of acquired
k-space samples is dynamically adjusted based on real-time quality assessments.

This dissertation demonstrates how combining model-based CS with data-driven DNN
holds the potential to revolutionize acquisition methodologies for biomedical signals, making

advanced diagnostics efficient even in resource-hungry settings.
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Introduction

Biomedical signal acquisition and compression are pivotal in modern healthcare, enabling
the effective diagnosis, monitoring, and treatment of various medical conditions. Advances
in medical technology have made it possible to collect diverse types of physiological data
from the human body, such as electrical, biochemical, and mechanical signals. These signals
provide critical information about the state of different organs and systems, facilitating early
detection of diseases and guiding therapeutic interventions.

Biomedical signals are captured using a wide range of sensors and devices, tailored to
the nature of the physiological process being monitored. These sensors may be embedded in
wearable devices, placed on the skin, or even positioned inside the body to collect internal
measurements. The acquisition process varies significantly based on the type of signal, the
environment in witch it is recorded, and the intended purpose. For example, a wearable device
for daily health monitoring must prioritize energy efficiency and convenience, whereas a
clinical diagnostic setup may prioritize signal quality and detail [59].

To achieve this, compression techniques are a fundamental tool, helping to manage the
large volumes of data generated by prolonged monitoring and high-resolution imaging. How-
ever, the requirements for compression can differ significantly depending on the specific
biomedical application. Each scenario requires a tailored approach that takes into account
the unique constraints and goals associated with the specific type of signal. In this thesis,
we focus on the analysis and optimization of biomedical signal acquisition and compression
in two specific scenarios where resources are limited or encoding requires to be efficient:
Electrocardiogram (ECG) compression and Magnetic Resonance Imaging (MRI) acquisition
optimization.

Compressed Sensing (CS) is well-regarded for its ability to alleviate the computational
demands of encoding. This characteristic makes CS particularly suitable for scenarios where
acquisition or encoding is constrained, such as low-energy or low-speed acquisition systems.
However, CS has traditionally been confined to solving optimization problems, witch im-
poses certain limitations on its applicability. The advent of Machine Learning, and Deep
Neural Networks in particular, has shifted the landscape towards data-driven approaches.

In this thesis, we aim to advance the current research on integrating CS with DNNs, with
the goal of combining the strengths of both methodologies. This proposed framework seeks
to develop encoding and acquisition techniques that incorporate the rigor of CS’s prior-based
models while leveraging the adaptive, data-driven capabilities of DNNs. This dissertation is

organized as follows:



2 Introduction

PartI focuses on ECG, a signals representing the electrical activity of the heart over time.
In Chapter 1 we give an overview of ECG acquisition and transmission. ECG sensors are de-
ployed in low-power, resource-constrained environments, where efficient data compression
and transmission are crucial to extend battery life. To overcome this difficulties, in Chapter 2
we develop a binary compressed sensing technique, where DNN are used to optimize binary
sensing matrices. This way, only accumulation operations are used for encoding, drastically
reducing the computational burden. Standard CS is leveraged to decode the transmitted sig-
nal, and both encoder and decoder are jointly optimized [49]. In Chapter 3 we introduce
an iterative compression scheme, witch leverages neural performance predictors to adapt
the number of transmitted measurements in a standard CS-based scheme. Through real-time

adaptability, we achieve improved performances in terms of energy consumption [46].

Part II addresses MRI signals; high-resolution images of the internal structures of the hu-
man body. As better explained in Chapter 4, MRI are complex systems and acquisition oc-
curs in a resource-rich setting, that does not face power or computational resources shortages.
However, the challenge lies in accelerating the data acquisition process itself to improve pa-
tient comfort, reduce costs, and increase throughput. One effective way to optimize MRI
acquisition is to reduce the number of samples collected, a strategy known as undersampling
[39]. A process that can be viewed as a from of embedded compression, where the decoding
part, starting from incomplete data, outputs complete high-resolution images.

This work follows [50, 48, 47, 51] and organically presents the following main contribu-
tions. In Chapters 5 and 7 we improve a state-of-the-art DNN-based MRI encoder-decoder
system by integrating CS-based solutions in the training system [50] and in the model itself
[48]. In Chapter 4 we designing a novel callback [47] to mitigate the backpropagation issue
introduced by undersampling (designed as a quasi binary matrix with poor intrinsic derivabil-
ity). Finally, in Chapter 8 an iterative acquisition scheme enables to decide at acquisition-time
the number of samples to acquire, so to stop as soon as the estimated acquisition quality meets

the minimum acquisition target [51].
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Chapter 1

ECG Compression and Transmission

Electrocardiogram (ECG) monitoring is one of the most widely used techniques in health-
care, particularly for the prevention and diagnosis of cardiovascular diseases. The continuous
and reliable monitoring of heart signals helps in early detection of conditions like arrhyth-
mias and ischemia. With the proliferation of wearable health devices, efficient signal acqui-
sition and transmission have become increasingly important, especially given the energy-
constrained environments these devices often operate in. Wearable sensors need to ensure
accurate data acquisition while minimizing power consumption and computational demands,
witch presents unique challenges in the design and deployment of these systems.

Compressed Sensing (CS) has emerged as a powerful method to address these challenges
by reducing the amount of data that needs to be acquired and transmitted. This not only min-
imizes energy consumption but also ensures that continuous monitoring can be maintained
over long periods without frequent battery recharging. CS allows for efficient encoding of
ECG signals by projecting them onto a lower-dimensional space while preserving enough
information for successful reconstruction.

This chapter introduces to encoding and decoding techniques for ECG data based on CS.
Further chapters will explore two advanced neural compressed sensing methods. The first
approach focuses on binary compressed sensing, witch employs neural networks to optimize
sensing matrices, thus reducing the complexity of the encoding process while ensuring high
reconstruction quality. The second approach introduces an adaptive compression scheme us-
ing a performance predictor, witch dynamically adjusts the number of measurements based

on signal complexity to optimize energy use.

1.1 The ECG Signal

ECQG is one of the most widely studied biomedical signals for clinical purposes. Continuous
and rigorous monitoring of ECG signals is critical in the prevention of unexpected cardio-
vascular diseases and health issues. This makes the acquisition and transmission of ECG
signals a heavily researched area within biomedical applications, particularly given the hard-
ware limitations associated with wearable and mobile health devices. The design of these
systems requires special attention to reduce computational and transmission costs, especially
at the sensor side, witch must be as efficient as possible to minimize energy consumption and

computational overhead.
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ENCODER DECODER

v R .

FIGURE 1.1: Scheme of a transmission setup with encoding and decoding
stages.

In such systems, reducing power consumption while remaining within the limited com-
putational capabilities of a microcontroller is one of the main objectives. This challenge has
led to the development of various signal compression techniques, among witch Compressed
Sensing (CS) stands out due to its ability to minimize encoding complexity. CS encodes a
signal by projecting it onto random sensing waveforms, witch make up the sensing matrix.
The number of waveforms (or measurements) can potentially be much lower than the original
signal dimension, significantly reducing the data to be transmitted. At the encoder stage, this
involves a simple matrix multiplication, making the operation lightweight in terms of power
consumption and memory usage. On the other hand, decoding is often computationally de-
manding, as it involves solving an optimization problem to find the sparsest representation
of the signal on a predefined basis. A standard method to reconstruct the encoded signal is
Basis Pursuit Denoising [5, 63, 79, 58].

The design of a typical sensor node adheres to a well-established architectural struc-
ture [21], witch comprises three main components: (i) a sensing unit, often implemented as
an Analog Frontend (AFE) with an integrated analog-to-digital converter, (ii) a Microcon-
troller Unit (MCU) responsible for processing and managing the digitized data, and (iii) a
transmission stage that sends the processed output to a remote receiver (refer to Fig. 1.1).
The overall energy consumption of the sensor node can be modeled as the cumulative energy
cost of these individual components. Specifically, the energy requirements of the process-
ing and transmission stages can be balanced against one another to achieve reduced power
consumption by employing efficient and well-established compression algorithms.

Although CS lightens the computational load at the encoder, the decoder must solve a
complex optimization problem to reconstruct the signal. This trade-off makes CS an ap-
pealing choice for low-power devices, where encoding complexity is the primary concern.
However, the optimization involved in traditional CS reconstruction can be computationally
prohibitive, and the performances might be not competitive with standard algorithms. This
limitation has motivated the use of Deep Neural Networks (DNNs) to augment the optimiza-
tion process in CS.

By leveraging the powerful approximation capabilities of DNNs, CS reconstruction can
be made significantly faster and more adaptable. DNNs can learn the inherent characteristics
of signals from data, allowing them to provide efficient, real-time reconstruction without

the need for explicit optimization, thus bridging the gap between lightweight encoding and
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FIGURE 1.2: Compressed sensing framework incorporating a binary encod-
ing phase

computationally intensive reconstruction.

This work explores two approaches that combine CS and DNN for ECG signal acquisi-
tion and compression, aimed at optimizing both encoding and transmission processes.

The first approach focuses on minimizing the complexity of the encoder by using a binary
sensing matrix. Binary sensing matrices contain only Os and 1s, witch drastically reduce
the computation required during the encoding process. This results in a system where only
accumulations are necessary to produce the compressed output, as illustrated in Fig. 1.2.
Binary sensing matrices are advantageous in low-power environments because they reduce
the multiply and accumulate operations with simple accumulation operations, minimizing
the computational load.

The second approach tackles the problem of adapting the number of transmitted measure-
ments dynamically based on the complexity of each signal instance. In real-world scenarios,
the complexity of ECG signals can vary, and a fixed number of measurements may either
be insufficient for complex signals or unnecessarily high for simpler ones. To address this,
we propose an adaptive incremental encoding scheme where the number of transmitted mea-

surements is adjusted in real-time.

1.2 Compressed Sensing

Consider a signal instance x € R", where n represents the number of samples in the signal
acquired at the Nyquist rate. CS exploits the fact that many real-world signals, including
ECGs, are sparse when expressed on a proper basis. A signal is said to be x-sparse if it can
be represented as x = D¢, where D € IR"*" is a sparsity basis (e.g., a wavelet or Fourier
basis) and ¢ € IR" is the sparse representation, with at most ¥ < 7 non-zero entries.

To compress the signal, CS uses a random sensing matrix A € R"*" (with m < n)

that projects the signal onto a lower-dimensional space, resulting in a measurement vector
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y € R™ as follows:
y=A(x+v)=AD¢ + Av (1.1)

Here, v accounts for acquisition noise and non-idealities. The goal is to recover x (or
equivalently, its sparse representation ¢) from the compressed measurements vy, even though
the number of measurements m is much smaller than the original signal length 7.

Since the system is underdetermined, meaning there are infinitely many possible vectors
¢ that could produce the same y, CS exploits the sparsity of the signal to guide the recon-
struction. A well-established approach for reconstruction is the Basis Pursuit with Denoising

(BPDN) method, witch solves the following optimization problem:

E=argmin||¢]; st |y—ADE2<T (1.2)
¢eRM
where || - ||1 is the ¢1-norm promoting sparsity, and T is a threshold accounting for noise v.

The reconstructed signal is then obtained as £ = DE.

The effectiveness of CS depends heavily on the design of encoder and decoder. The sens-
ing matrix A is a crucial choice in the encoder design. To ensure accurate recovery of the
sparse signal, the matrix must satisfy certain properties, such as incoherence with the spar-
sity basis D. Random Gaussian matrices, whose entries are drawn from a normal distribution,
are often used to satisfy this requirement [15, 13], as they provide good incoherence guaran-
tees. Alternatively, matrices with values drawn from a discrete set can be used. Notoriously,
matrices with antipodal values (1) or binary values (0 and 1) can be employed, providing a
balance between randomness and computational simplicity, as they reduce the complexity of

matrix multiplications during encoding [20].

1.3 CSfor ECG

Standard CS techniques and their extensions can be applied directly to ECG signals. In
the standard CS framework, the high-dimensional ECG signal is projected onto a lower-
dimensional space using a random sensing matrix and reconstructed usings standard algo-
rithms.

The application of CS to ECG signals involves two main stages witch take place in differ-
ent places: acquisition happens at sensor side and reconstruction at server side. A low-power
sensor node uses a sensing matrix to project the high-dimensional ECG signal onto a lower-
dimensional measurement vector. At the receiver (or in the cloud), an optimization algorithm
recovers the sparse coefficient vector from the received compressed signal and reconstructs
the signal.

It is possible to specialize CS to the statistics of the ECG signal, by carefully designed
sensing matrix and by exploiting the inherent sparsity of the ECG in a proper transform do-
main. Many examples in the literature explore how CS can be extended by incorporating
additional prior knowledge about the structure of ECG, e.g., by exploring the wavelet trans-

forms.
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One approach is to incorporate structured sparsity into the recovery process. For instance,
once could enforce block-sparsity in the sparse representation vector to obtain improved re-
constructions. For example, block sparse Bayesian learning methods have been successfully
applied to ECG signals to exploit inter-beat correlations [32, 73].

Another direction is to combine model-based CS with adaptive dictionary learning. Since
the ECG morphology may vary from patient to patient, adaptive dictionaries can capture per-
sonalized features more effectively than fixed bases such as the Discrete Wavelet Transform
(DWT). Recent studies have shown that tailoring the sparsifying basis to the ECG data can
yield better reconstruction quality at lower compression ratios [14].

Another way to leverage the structure of ECG data is to utilize wavelet transforms, witch
exploit the quasi-periodic nature of ECG. CS techniques combined with wavelet-based trans-
forms can achieve higher compression ratios than standard CS [42].

In addition to these approaches, several adaptations have been proposed in the literature to
further optimize the sensing matrix. For example, the Rakeness framework adapts the sensing
matrix to the second-order statistics of the input signal, ensuring better reconstruction for

specific types of signals [43, 45].

1.4 CS and DNN in ECG

By projecting the signal onto a lower-dimensional space via a sensing matrix, CS achieves
compression directly during acquisition, reducing data storage and transmission needs. Al-
though encoding is lightweight, CS decoding requires optimization-based reconstruction,
witch can be computationally demanding and depends on the sensing matrix and signal spar-
sity properties.

DNNs, on the other hand, have become highly effective for tasks requiring adaptive,
data-driven solutions. Unlike CS, witch relies on mathematical formulations to ensure recon-
struction quality, DNNs learn patterns directly from data. This data-driven approach enables
DNNss to approximate complex functions, making them particularly suitable for tasks that in-
volve large datasets or high variability. In the context of signal processing, DNNs have been
used for denoising, feature extraction, and compression, as they can learn representations
that are optimized for the specific characteristics of the signal. In recent years, DNNs have
also been explored for reconstructing compressed signals, effectively replacing traditional
optimization-based methods in CS and achieving real-time performance improvements.

Combining CS with DNNs offers the potential to harness the efficiency of CS-based
encoding with the adaptability of DNN-based decoding. This hybrid approach allows encod-
ing to remain lightweight, while DNNs can provide fast and accurate signal reconstruction,
particularly beneficial in applications like real-time ECG monitoring. This fusion leverages
the rigor of CS in the acquisition phase and the adaptive power of DNNs in the decoding
phase, making it suitable for low-power, real-time applications in fields such as wearable
health monitoring. The integration of CS and DNNs represents an exciting area of research,
aiming to optimize both encoding and decoding while meeting the energy and performance

constraints of modern devices.
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CS-Net [72] combines CS-based sparse encoding with a deep network for decoding,
designed specifically for ECG data. The encoding stage uses a traditional CS sensing matrix
to reduce the signal dimension, while the DNN-based decoder reconstructs the ECG signals
efficiently. The model is trained end-to-end, allowing the decoder to adapt to the compressed
features, improving reconstruction accuracy for sparse ECG signals.

ReconNet [56] leverages a convolutional neural network (CNN)-based decoder to recon-
struct ECG signals from CS-encoded measurements. ReconNet adapts well to ECG data by
learning its structure, enabling faster and more accurate signal recovery compared to tra-
ditional optimization-based methods. The use of CNNs allows ReconNet to exploit spatial
correlations in ECG signals, yielding improved performance in real-time applications.

DeepCS [86] introduces a hybrid CS-DNN approach, where the encoder uses a light
sensing matrix, and the decoder consists of a multi-layer CNN trained to reconstruct com-
pressed ECG signals. This approach demonstrates high accuracy and low complexity, mak-
ing it suitable for mobile ECG monitoring devices. The decoder’s design specifically caters
to non-linearities in ECG signals, enhancing reconstruction fidelity.

[84] employs a recurrent neural network (RNN) as the CS decoder for ECG signals,
where temporal dependencies in the ECG data are explicitly modeled. The RNN-based de-
coder improves upon traditional CS by better capturing signal dynamics, essential for re-
constructing the inherently sequential structure of ECG data. This approach achieves high
compression ratios with robust reconstruction quality.

Most notably, Trained CS with Support Oracle (TCSSO) [44], witch has been extensively
tested with encoding-decoding of ECG signals, introduces a two-stage decoding scheme.
TCSSO simplifies the decoding process by breaking the sparse representation ¢ into two

components:

o the support s = supp(&), a binary vector that indicates the positions of the non-zero
elements in ¢, i.e.,s € {0,1}" withs; = 1if §; # 0 and 5; = 0 otherwise;

* the amplitudes of the non-zero elements of &, denoted as ¢, witch represent the actual

values of the non-zero entries.

TCSSO leverages a support oracle, implemented as a Deep Neural Network (DNN), to
return a support 5§ witch is an estimate of the support s. Once the support, the sparse signal is
reconstructed by inverting iy = AD‘ S(f ¢- Anytime s has k < m ones, (AD|S)Jr allows a unique

solution. In this case, using a simple pseudoinverse solves Eq. (1.1) without ambiguities:
2 t
&= (ADg) "y (13)

where |¢ Tepresents the submatrix (subvector) composed of the columns (elements) corre-
sponding to s; = 1 of the support $, and T indicates the Moore-Penrose pseudoinverse. The
final reconstructed signal is then £ = D¢.

The support is predicted a neural network, called oracle, witch can be implemented as
a fully-connected deep neural network, with an input layer of dimension 1, three hidden

layers of size 2n,2n,n, and a sigmoid-activated output layer of dimension 7. The output of
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the oracle is a vector p € [0,1]", where each entry pj represents the probability that the
corresponding element §; is non-zero. The estimated support § is obtained by thresholding
the probability vector p at a value 6 = 0.1, turning the probabilities into binary values.

The loss function £ used to train the oracle is the categorical cross-entropy loss:

n—1

L(ps) = - Z(:) [sj10g (pj) — (1= ;) log (1— py)] (14)
£

Note that, the sensing matrix A in TCSSO can be learned during training, enabling joint

optimization of both the sensing and decoding processes.

1.5 Limitations

While standard Compressed Sensing is reduces data acquisition and transmission costs for
ECG signals, it comes with several challenges and limitations that affect its practical imple-
mentation.

While CS simplifies the encoding process (making it computationally lightweight for
wearable devices), the reconstruction phase remains computationally stressful, as CS recov-
ery methods often rely on iterative convex optimization techniques (e.g., Basis Pursuit), witch
can be computationally expensive and slow. In the next chapters, mixed solutions based on
Deep Learning and CS are proposed to replace traditional decoders with neural networks able
to recover a signal in a single feedforward pass.

ECG signals are often contaminated by several noises from muscle activity, electrode
displacement, etc. Standard CS assumes that measurement noise is Gaussian and additive, but
real-world ECG noise is often more difficult to model. The introduction of DNN improves
adaptability to real data and improves robustness.

Standard CS typically employs a fixed number of measurements across all ECG sig-
nals, regardless of their complexity. However, ECG signals vary significantly depending on
the patient and her/his conditions. A fixed compression ratio can lead to inefficient sam-
pling‘A “Twasting resources on simple signals while providing insufficient data for complex
ones. In the next chapters adaptive CS strategies are proposed. Novel solutions, able to dy-
namically adjust the number of measurements based on signal complexity will be discussed.

The sensing matrix in CS plays a crucial role in ensuring stable signal recovery. Tradi-
tional choices include Gaussian random matrices, but as it will be shown in the next chapters,
more Hardware-friendly structured sensing matrices can be designed to improve efficiency

while maintaining reconstruction performance.
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Chapter 2

Binary Compressed Sensing with
Neural Optimization

We introduce a novel approach that combines binary compressed sensing with deep neu-
ral network optimization. Traditional compressed sensing methods often struggle producing
binary encoding matrices without degrading performances because of the lack of adapta-
tion. On the other hand, data-driven models, such as DNN, clash with the binary nature of
the sensing matrix. Gradients computed over discrete values hamper the backpropagation
of the gradient. Our method addresses this limitation by designing trainable binary sensing
matrices, significantly reducing computational complexity during signal acquisition without
compromising the performance. Our implementation also allows a joint optimization of the

encoding and decoding.

2.1 CS encoder with a Trainable Binary Sensing Matrix

The introduction of a trainable binary sensing matrix presents challenges for the typical
gradient-based optimization process. Standard training methods rely on differentiable out-
puts, while binary matrices, with values of either O or 1, yield gradients that are either un-
defined or zero, thus hindering the backpropagation algorithm. To overcome this, we follow
the methodology outlined in [2, 3], witch introduces a multi-stage process for producing a
quasi-binary matrix. The matrix is turned binary by the conclusion of training by applying a
threshold.

o U

o r MR a4

A 4

FIGURE 2.1: Block diagram of the sub-network generating a binary sensing
matrix.
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The key idea is to initialize the sensing matrix with random values within the range of
[0, 1] and progressively guide the training process towards values close to either O or 1. This
is achieved by generating the m X n quasi-binary matrix A using two auxiliary matrices:
a probability matrix P € [0,1)™*", witch dictates the likelihood of each element in A be-
ing 1, and a random matrix U € [0,1]™*", whose elements are sampled from a uniform

distribution. The quasi-binary matrix A is then computed as:

A=oc(P-U) (2.1
where 0, () is the sigmoid function:

1

11t exp (—r-) 2)

or ()
with 7 a so called slope scaling parameter. The role of the sigmoid function is to convert
every element to a probability value. In Eq. (2.1), the parameter 7 controls the degree of
resemblance between A and a binary matrix such that the higher the r, the closer to binary
the A. To definitely turn A into a binary matrix, at the end of the training a threshold v = 0.5
is applied to P.

The matrix P, witch governs the probabilities, is learned during the training phase. There
are two potential configurations for this process. First, if the number of ones in the matrix
is allowed to vary, P is computed from a trainable real matrix ' € R™*" by applying a
sigmoid function to each element, i.e., P = 0;(T'). Alternatively, if a fixed fraction « of ones
is required, the probability matrix is rescaled accordingly:

v

&P if (P') > o

]—%(]—P’) if (P') <

P = 2.3)

where P’ = 03(T'), (P’) is the mean value of the elements in P, and | is an m X n matrix of
ones. The rescaling process ensures that the desired fraction a of ones in the binary matrix
is achieved. The process is illustrated in Fig. 2.1, where the optional rescaling stage R is
depicted.

Finally, it’s worth highlighting that the only parameters learned during training are the
entries of the matrix I', witch can be trained in conjunction with the support oracle to jointly

optimize the sensing and decoding stages.

2.2 Numerical evidence

In this section, we evaluate the performance of our proposed binary encoding matrix trained
along with the two-stage decoder. Synthetic ECG data is used to illustrate the effectiveness of
our approach, and we compare it against both the original TCSSO (as in [44]) and traditional
CS methods.

Specifically, for the standard CS comparison, we utilize BPDN as the decoder with two

types of sensing matrices: i) a real-valued matrix (CS), where the elements are sampled from
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a random normal distribution, and ii) a binary matrix, created by thresholding the real ma-
trix to achieve a specified fraction of ones a. We evaluate cases with « = 0.1 (CS-BM10)
and « = 0.4 (CS-BM40). Additionally, we consider a TCSSO variant generalized to real-
valued encoding matrices (TCSSO) for a more comprehensive comparison with our proposed
method, witch includes a fixed « = 0.1 (TCSSO-BM10) and a case where « is automatically
learned during training (TCSSO-BM).

For the numerical simulations and neural network training, we use a synthetic ECG
dataset. This class of signals exhibits sparsity in the wavelet domain with respect to the set
of orthonormal vectors from the Symmlet6 family. To generate the noiseless waveforms, we
utilize MATLAB code', following the parameter settings outlined in [43]. Specifically, heart-
rate values are uniformly sampled between 60 and 100 beat per minute. We introduce noise
by adding Gaussian white noise with a power level set to achieve an intrinsic SNR (ISNR) of
60 dB. Using a sampling frequency of 256 sample per second, the signals are divided into 2 s
chunks, witch are further split into windows of n = 128 samples (with ¥ = 24). From these
chunks, we generate a total of 8 x 10° instances.

For training the neural networks, 80% of the dataset is randomly allocated for training,
while the remaining 20% is used to evaluate the model’s performance during testing.

The training of the models employs the ADAM optimization algorithm [29], with a batch
size of 100 and an initial learning rate of 0.001, witch is reduced when the loss function
ceases to decrease. Training is conducted for a maximum of 10,000 epochs, with early stop-
ping applied if convergence is detected. The generation of the sensing matrix A uses slope
parameters for the sigmoid functions set to f = 5 and r = 200.

We evaluate the model performance by measuring the signal quality in terms of Recon-
struction Signal-to-Noise Ratio (RSNR):

RSNR = (HXH2> 2.4)
[l — £[|2 / 48
While the average RSNR offers an overall indication of the reconstruction quality, it
does not provide insight into the variability of the performance across different instances.
To address this, we also consider the Probability of Correct Reconstruction (PCR), witch is
defined as:
PCR = Pr {RSNR > 55dB} (2.5)

where 55 dB is the minimum RSNR value required to classify an instance as correctly recon-
structed.

Fig. 2.2 and Fig. 2.3 illustrate the comparison between methods in terms of average
RSNR and PCR, respectively, across various values of m. Reconstruction quality improves as
m approaches #. Interestingly, the TCSSO-based methods outperform standard CS although
using binary matrices.

For values of m > 55, the performance of both TCSSO-BM and TCSSO-BM10 is nearly
identical, with both methods achieving an average RSNR of approximately 62 dB and a PCR

1Visit http://physionet.org/content/ecgsyn/
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FIGURE 2.2: Performance in terms of RSNR as function of m.

around 0.95. However, when compared to the original TCSSO, these binary-based methods
experience a reduction of about 3 dB in RSNR and a 3% decrease in PCR. As m decreases,
the model with the learned fraction of ones (« = 0.47) exhibits better performance, particu-
larly in terms of PCR, where the differences become more pronounced.

In contrast, standard CS with a real-valued sensing matrix consistently delivers higher
reconstruction quality compared to its binary matrix counterparts, demonstrating that real
matrices are generally more effective in this scenario.

A notable distinction between TCSSO and standard CS with binary matrices is the sharp
decline in performance observed in standard CS when the fraction of ones, a, exceeds 0.4. In
contrast, TCSSO consistently achieves optimal performance with a around 0.47, regardless
of the value of m. For the range of m considered, TCSSO-BM automatically determines & to
be within the interval [0.46,0.48].

To illustrate the differences in the sensing matrices produced by each method, Fig. 2.4
shows examples of matrices for both standard CS and TCSSO with m = 48. The matrices
on the left correspond to &« = 0.47, as learned by TCSSO-BM, while those on the right rep-
resent &« = (0.1. A clear distinction can be seen: standard CS matrices display no discernible
structure, while TCSSO matrices exhibit strong positive correlations between the elements
in each row. This suggests that TCSSO is learning and adapting the sensing matrix to cap-
ture statistical characteristics of the input signals. For instance, with ECG signals, witch are
inherently low-pass, the rows of the TCSSO sensing matrix show a low-pass behavior, while
still maintaining the necessary randomness for the CS framework.
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FIGURE 2.4: Examples of TCSSO (top) and standard CS (bottom) binary
matrices with m = 48 and & = 0.47 (left) and &« = 0.1 (right).
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2.3 Trade-off Summary

The primary benefit of using a binary sensing matrix is the substantial reduction in computa-
tional complexity and power consumption during data acquisition. This is especially impor-
tant for wearable devices where battery life and hardware simplicity are critical. However,
this efficiency comes at the expense of a modest decrease in reconstruction fidelity. In some
applications, a slight loss in signal quality might be acceptable if it means that the device can
operate for longer periods or at lower cost.

Binarization simplifies the hardware implementation, but it introduces additional hyper-
parameters (such as the sigmoid slopes). The performance of the system thus depends on
more factors.

In summary, the method strikes a balance between the need for low-power, computa-
tionally efficient encoding and the requirement for accurate signal recovery. The trade-offs
involve accepting a potential decrease in reconstruction quality and increased sensitivity to

hyperparameter choices.
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Chapter 3

Incremental Adaptive Compressed

Sensing with Performance Prediction

In this work, the compression process is not solely based on the statistical characteristics of
the signal but is dynamically adjusted for each specific signal instance. Traditional ECG com-
pression techniques often apply a fixed level of compression across all signal data, regardless
of the underlying variability of each segment. However, real-world ECG signals are highly
diverse, with some segments requiring more detailed representation than others to maintain
critical diagnostic information. This calls for a more adaptive approach to balance efficient
data compression with high signal fidelity.

The proposed method introduces an incremental, adaptive compression strategy that tai-
lors the level of compression to the unique characteristics of each individual ECG segment in
real time. By progressively adjusting the compression as more information about the signal
is acquired, this approach ensures that segments containing complex cardiac features receive
the necessary resolution while simpler, less significant portions are compressed more ag-
gressively. This incremental strategy dynamically modulates the number of measurements
based on real-time quality assessments, optimizing the trade-off between data reduction and

reconstruction quality.

3.1 ECG Incremental Acquisition

We introduce a method where the encoder adapts the number of measurements m to each
input x, ensuring that only the required measurements to achieve the desired reconstruction
quality are computed. This adaptive strategy reduces the computational effort needed to gen-
erate the measurement vector y, as well as the bandwidth required for transmission.

More specifically, the appropriate value of m for each signal x is determined through an
iterative process. Initially, the encoder compresses x using the sensing matrix A with my
rows, resulting in the measurement vector y(%), witch is sent to the decoder. The decoder
then performs an initial reconstruction, producing the signal estimate £(O)_If the estimated
RSNR(x, J?(O)) exceeds the predefined quality threshold RSNRin, the decoder signals the
encoder to terminate the acquisition for the current instance. Otherwise, additional measure-

ments are requested.
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In cases where further measurements are needed, the encoder computes an additional
set of m measurements, y(l) = AWy, using a new set of sensing sequences in the matrix
A, Upon receiving y(l), the decoder performs a new reconstruction by concatenating the
previous measurements y(*) and y(!), along with the matrices A(*) and A(1). This increases
the total number of measurements to my + my, thereby improving reconstruction quality.
The process repeats, adding m, measurements in each iteration until the required RSNRis
achieved.

Assuming the system must guarantee RSNR(x, £) > RSNRp;, with a probability of
over 99% (referred to as CS,ef), the traditional CS approach fixes a number of measure-
ments 1,; that is transmitted at once. Conversely, the incremental method (CSi,c) begins by
transmitting 7 measurements and, only when necessary, sends additional measurements in
batches of size mp until the quality requirement is met.

To compare the energy consumption of these two methods, we consider both computation
and transmission costs. The computational cost, measured in terms of Multiply-Accumulate
(MAC) operations, is directly proportional to the number of measurements. Specifically, the

number of MAC operations is given by:
#MAC =n-m 3.1

where m is either my¢ for the reference solution or mg + ntxmp for the incremental ap-
proach, with ntx representing the number of additional transmissions. The transmission cost,
on the other hand, depends on the number of bytes transmitted per measurement and the
overhead for each transmission. If By, is the number of bytes required to represent each mea-
surement and By represents the overhead bytes for each transmission, the total number of

bytes transmitted for each input x is:

3.2 Performance Predictor

The effectiveness of the incremental approach (CSinc) relies on accurately predicting the
reconstruction quality on the decoder side. For this, we employ a performance predictor de-
signed to estimate whether the reconstructed signal £ satisfies the condition RSNR(x, £) >
RSNR i, without knowing the original signal x.

This predictor is implemented as a DNN, witch acts as a binary classifier that outputs
a positive result when the RSNRexceeds the target RSNRin, and negative otherwise. The
inputs to the DNN include the reconstructed signal £, the received measurements y, and the
sensing matrix A used for compression. Since both v and A vary in size, they are zero-padded
into fixed dimensions ¥/ and A, with sizes n and n X n, respectively.

The architecture of the DNN, as illustrated in Fig. 3.1, is composed of three main com-

ponents. The first component processes £ and 7 through five 1D-convolutional layers'. The

IThe kernel size of the 1D-convolutional layers is 3, with filter sizes of 42, 51, 64, 85, and 128.
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FIGURE 3.1: Architecture of the DNN used for performance prediction. The
total number of parameters is 625,619 for n = 256.

output of these layers, with dimensions 7 x 128, is concatenated and reshaped to match the
dimensions of A. The second component processes the concatenated signal using five 2D-
convolutional layers”, followed by batch normalization and max-pooling® layers. Finally, the
third component consists of four fully connected Dense layers*, with batch normalization
applied to all but the last layer. The Rectified Linear Unit (ReLU) activation function is used
for all layers except the final one, witch uses a sigmoid function to produce the output prob-
ability. A threshold of 0.5 is applied to classify the result as positive or negative.

The DNN is trained using binary cross-entropy as the loss function and optimized with
the Adam algorithm, starting with a learning rate of 0.001. Early stopping and learning rate
reduction on plateau are applied to ensure convergence. To prevent overfitting, a dropout rate

of 50% is applied to the Dense layers.

3.3 Numerical Evaluation

The Electrocardiogram (ECG) signals used for evaluation are synthetically generated using a
realistic model [52], following the same configuration as in [43], with heart rates uniformly
distributed between 60 and 100 beats per minute at a sampling rate of 256 sps. White noise is
added to achieve an average signal-to-noise ratio of 40 dB. The Symmlet-6 wavelet basis [45]
is used as the sparsity basis D. Signals are compressed using antipodal sensing sequences
generated according to the rakeness framework, and reconstruction is performed by solving
the Basis Pursuit Denoising (BPDN) problem® with the Spectral Projected Gradient for L1
minimization (SPGL1) toolbox [5].

The compression performance, measured in terms of RSNR as a function of the mea-
surement vector dimension m, is shown in Fig. 3.2.

As expected, the average RSNR increases with the number of measurements 7. However,
the minimum value of m required to achieve a certain RSNR target varies widely. Fig. 3.3
illustrates this variability with histograms showing the distribution of m for two different
RSNRpin targets.

2The 2D-convolutional layers have kernel sizes of 3 x 3, with filter sizes of 42, 51, 64, 85, and 128.

3The first three max-pooling layers have pool sizes of 3 x 3, while the last two have pool sizes of 5 x 5, all
with a stride of 2.

4The Dense layers contain 50, 50, 25, and 1 neurons, respectively.

3The parameter T, accounting for noise, is set to T = 1074,
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FIGURE 3.2: Reconstruction quality (RSNR) as a function of the number of
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To satisfy the requirement for CS,¢, the value of m must ensure that 99% of instances
meet or exceed the RSNRnin. In contrast, CS;,. determines the minimum m needed for each
input.

The impact of the parameters my and ma on computation and transmission costs (as
described in Eq. (3.1) and (3.2)) is depicted in the top plots of Fig. 3.4. The trends for both
CS,et and CSypc are displayed for various combinations of n1g and i, and for three values
of the header size By.

The optimal values of mg and m, witch minimize transmission costs, are selected based
on the size of the target RSNRin and the corresponding values of By. The lower plots in
Fig. 3.4 show that CSy,¢ offers considerable reductions in the number of #MAC and trans-
mitted bytes compared to CS,f, even when using non-optimal values of 7y and m,. These
reductions are further highlighted in Fig. 3.5, where the savings range from 30% to 50% in
terms of #MAC, and transmission savings depend significantly on the value of By.

Lastly, we evaluate the performance of the DNN predictor. The dataset for training the
predictor is generated using 1,000 signal instances and the corresponding sensing matrices
A. The measurements y are calculated for different values of 72, and the reconstructions £ are
obtained. To balance the dataset, we select m values ranging from the minimum necessary to
achieve at least 20% positive examples to the maximum ensuring all examples are positive.
For target RSNRvalues of 15 dB and 25 dB, this corresponds to m € {32,...,72} and m €
{51,...,117}, respectively. The training set contains 32,800 examples, with 4,100 reserved
for validation, and the test set includes 8,200 examples.

The predictor’s performance is measured in terms of Accuracy, Precision, and Recall,
as summarized in Table 3.1. For both RSNRtargets, the predictor achieves an accuracy of
approximately 95%. The prediction errors are concentrated around RSNRvalues close to the

target, as shown by the scatter plot in Fig. 3.6, where errors are marked in red.
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FIGURE 3.5: Percentage reduction in #MAC and #bytes as a function of
RSNRtarget for various header sizes By.

TABLE 3.1: Performance of the predictor in terms of Accuracy, Precision,
and Recall for target RSNRof 15 dB and 25 dB.

RSNR Accuracy Precision Recall

15dB 94.7% 95.9% 95.7%
25dB 95.3% 96.7% 96.2%
- ---target ecorrect prediction e wrong prediction

RSNRmln =15 dB

30 | '-r. 2 $% 0
?ia
20 | A ISR AV
10 |48
. g ‘ ] RSNR:niq = 25dB
0 500 1,000 0 500 1,000
index index

FIGURE 3.6: RSNRfor 1,200 examples, indicating correct and incorrect pre-
dictions.
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TABLE 3.2: Optimal values of mg and m, for RSNRtargets of 15dB and
25 dB, with varying header sizes By.

RSNR 15dB 25dB
By 10 20 50 10 20 50
Mo 46 49 55 69 73 81
ma 9 9 12 9 12 14

3.3.1 Energy Consumption for Computation and Transmission
The system’s energy consumption is mainly composed of three parts:

* the energy consumed by the AFE,

* the processing energy used by the MCU, and

* the transmission energy.

Since the AFE consumption is independent of the compression method, we focus our analysis
on the latter two components.

The number of transmitted samples 1y and m, that better adapts to different By is sum-
marized in Table 3.2.

TABLE 3.3: Average computation and transmission costs for different com-
pression methods at specific RSNRp, targets.

RSNRpin  Method Computation Transmission
#MAC  Energy [pJ] #bytes Energy [uJ]
15dB CS.s 17,780 19.90 150 13.82
CSine 11,645 13.03 122 11.25
25 dB CSier 26,342 29.48 217 19.98
CSine 18,118 20.28 176 16.31
- None 0 0 545 50.23

TABLE 3.4: Average total energy cost for different compression methods at
specific RSNR,;, targets.

RSNRpin Method Total Energy [p]]

15dB CSier 33.72
CSine 24.28

25 dB CSier 49.46
CSine 36.59

- None 50.23

The computational cost for the encoder is largely determined by the matrix multiplication

y = Ax, with an energy cost per MAC operation, Eypjac, as benchmarked on the nRF5340
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microcontroller. By multiplying two #n X n matrices, where n = 100, and using CMSIS-
DSP with a DWT cycle counter, it was measured that 1,000,000 MAC operations require
6,141,510 clock cycles, translating to 6.14 cycles per MAC. Considering a clock speed of
64 M Hz (15.6ns per cycle) and an average current consumption of 6.48 mA at 1.8V, the
energy consumption per MAC is:

Enac = 6.48mA - 1.8V -15.6ns/cycle - 6.14 cycle/MAC
= 1.12n]/MAC

3.3)

Table 3.3 summarizes the #MAC and corresponding energy consumption for both CS, ¢
and CS;, at RSNRtargets of 15 dB and 25 dB. The table shows that CS;;,. reduces computa-
tion energy costs by over 30% compared to CS,.¢, while maintaining the same RSNRtarget.

For transmission energy, we focus on the energy required to send packets over BLE 5.3,
assuming the most efficient settings for the 1M physical layer [74]. With a transmission rate
of 1 ps/bit, each packet has an overhead of 11 B and a maximum payload of 250 B [8]. The
nRF5340 draws 6.4 mA at 1.8 V, resulting in an energy cost per byte of:

Eg = 6.4mA - 1.8V - 1ps/bit - 8bit/B
=92.16n]/B

34

Using Eq. (3.2) and (3.4), along with the assumption that both the input samples x and
the measurements y are represented with 16 bit, the energy required for transmission is cal-
culated for CS,ef, CSinc, and the no-compression case. Note that CS,¢ only requires a single
packet for transmission, while CS;,. may involve multiple packets, and the uncompressed
case always requires three packets to transmit all n = 256 samples. Table 3.4 provides
the average number of bytes transmitted and the corresponding energy consumption, with
By = 11 and B, = 2. The results show that CSj, reduces transmission energy costs by 18%
compared to CS;ef.

Overall, when considering both computation and transmission energy, CSi,. achieves
energy savings of 28% and 26% for RSNRtargets of 15dB and 25 dB, respectively. When

compared to the uncompressed case, these savings increase to 52% and 27%, respectively.

3.4 Trade-off Summary

This novel method gives complex ECG segments more importance, and more measurements,
while simpler segments are compressed more aggressively, thus optimizing both reconstruc-
tion fidelity and resource usage. It optimizes the transmission cost to the signal complexity
and as a result, our comparative analysis shows that the incremental approach can reduce
computation energy by over 30%.

This comes at the cost of increased complexity, as the incremental approach requires an
iterative process in witch the decoder repeatedly assesses reconstruction quality and commu-

nicates with the encoder to request additional measurements. This feedback loop potentially
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increases latency and requires more sophisticated synchronization between encoder and de-
coder.

Although incremental measurement can reduce the overall number of measurements,
each additional batch of measurements incurs transmitting a header bytes. In scenarios where
the signal is persistently complex (thus requiring many increments), the cuamulative overhead
might reduce the energy savings.

Moreover, the effectiveness of the approach hinges on the DNN predictor accurately esti-
mating whether the reconstructed signal meets the RSNR threshold. In case where the DNN
is trained on a dataset not matching the real acquired data, this affects the reliability of the
method.

The incremental adaptive CS approach provides a balance between energy efficiency
and reconstruction quality by dynamically adjusting the number of measurements based on
the signal‘A‘Zs complexity. This results in significant savings in both computational and
transmission energy, making it particularly attractive for wearable ECG applications where
power and bandwidth are limited. However, these advantages come with the cost of increased
system complexity, including the need for an iterative feedback loop between encoder and
decoder and the integration of a fully data-driven performance predictor. The major trade-off
remains balancing the benefits of adaptive, energy-efficient compression against increased

system complexity and potential predictor inaccuracies.

3.5 Neural ECG Conclusion

The work presented in these two papers introduces significant advancements in the field of
compressed sensing (CS) for biomedical applications, particularly for ECG signal compres-
sion and iterative adaptive signal acquisition. Both approaches showcase novel strategies to
enhance the efficiency and flexibility of CS encoding and decoding while minimizing the
computational and transmission costs, making them suitable for resource-constrained envi-
ronments, such as wearable health-monitoring devices.

The first paper introduces a trainable binary sensing matrix optimized using deep neural
networks (DNNs), witch dramatically reduces the computational complexity at the encoder
stage. This binary matrix approach provides two primary advantages. First, it maintains the
low power consumption characteristic of binary encoders while retaining a high level of re-
construction accuracy. Second, the flexibility of the learned binary matrix allows it to adapt to
the statistical properties of the signal class, leading to performance improvements over stan-
dard random matrices, especially for sparse signals like ECGs. This methodology provides a
balanced trade-off between computational efficiency and signal reconstruction quality, show-
casing the potential for real-time, low-power ECG monitoring in wearable devices.

The second paper extends the compressed sensing framework by introducing an adaptive
acquisition strategy that iteratively adjusts the number of measurements based on the signal
complexity. This method optimizes energy consumption by dynamically tuning the number
of transmitted measurements to achieve a target reconstruction quality. The primary novelty

of this approach lies in its use of a deep learning-based performance predictor, witch allows
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the system to stop acquiring additional measurements once the target quality is reached. This
iterative process not only reduces the number of computations required at the encoder but
also minimizes bandwidth usage, offering substantial energy savings in comparison to fixed-
measurement CS methods. Furthermore, the incremental acquisition framework introduces
the flexibility of dynamically adjusting to varying signal conditions, ensuring optimal perfor-
mance across a wide range of ECG signals.

Both papers highlight the critical role of deep neural networks in improving the adaptabil-
ity and performance of compressed sensing techniques, moving beyond static, model-driven
approaches toward more data-driven, real-time solutions. By integrating these novel strate-
gies, the works provide compelling solutions for the challenges of low-power, high-accuracy
biomedical signal acquisition and processing. These innovations offer promising avenues for
future research and practical applications in wearable devices and other resource-limited en-

vironments, where energy efficiency and real-time performance are paramount.
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Chapter 4

MRI Physics and Acquisition

Magnetic Resonance Imaging is a non-invasive medical tool that leverages the magnetic
properties of the particles composing the human body to find a mathematical representation
of such body. It is probably the most interesting feature of MRI that such abstract description
can be visually translated to obtain human-readable images.

An MRI machine can be schematized as the union of 4 fundamental components:

* Main Magnet: a massive solenoid coil maintained in superconductive state by a liquid
helium cooling system, that generates a constant and homogeneous magnetic field.
Because

» Radio Frequency emitter. Emits a homogeneous magnetic field with a frequency in the

radio frequency (RF) range (around 100MHZz) able to deposit energy in the nuclei.

» Radio Frequency receiver: a magnetic coil that collects the released energy of the ex-
cited atoms. It is built to be as sensible as possible to the emitted frequency, that is in

the same range of the transmitted frequency.

* Magnetic field gradient coils. A collection of coils that linearly modify the main mag-
netic field along specified directions allowing enabling precise localization of the scanned

anatomy.

Each of these components is utilized to stimulate, control or read a magnetic field.

4.1 MRI Physics

Every particle possess magnetic properties that define how such particle interacts with mag-
netic fields. By studying the interaction between magnetic fields and particles we can infer
useful information about the particles themselves. It is not convenient in in this context to
focus on the single particle; instead, it is more convenient to study the net magnetic field
generated by or affecting such particles to infer information about a wider section.

A fundamental property of a particle is the spin. Spin is an intrinsic from of angular mo-
mentum. Accurate models to describe the possible spin interactions require relativistic quan-
tum mechanics or quantum field theory. In this context, we limit our analysis to the magnetic

field generated by the ensemble of the spin of the hydrogen nuclei in a specific location of
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_>
the body ( 7 = [rx, Ty, rz]), at time f. This is measured in terms of net magnetization M:
%
M(7,t) = [My, My, M;] 4.1)

In general, the spins of elements that are not influenced by any external agent are uni-
formly randomly distributed along all directions, and the resulting net magnetization is null
along all axis.

At time t = 0, the main magnet generates a constant magnetic field of magnitude By
in the z direction (the main magnetic field direction defines the z direction), such that a
homogeneous magnetic field is created. We represent the generic magnetic field along the
three axis as:

B(7,t) = [By, By, B:] 42)
where at t = 0 we have By = 0,By = 0, B, = By. We neglect the magnetic field non-
idealities that might exist along the z axis. Common values for By are 1.5 T or 3 T.

When B is applied, the spins averagely tend to be more aligned along the z axis, and the
net magnetization reflects such change along the same direction:

N(7)72h*1,(I; +1)B.

M; = Mo(7) = 3KT

(4.3)

where N (7>) is the spin density, 7 is the gyromagnetic ratio (42.58e¢6 Hz/T for hydrogen),
h is the Planck’s constant (6.63e — 34vIJ/Hz), I is the spin number (1/2 for hydrogen), K is
Boltzmann’s constant (1.38¢ — 23 J/K) and T is the temperature (human body temperature
is 310 K). The net magnetization is linearly dependent on the density of spins at the specific
location, i.e., the concentration of hydrogen nuclei in the material under observation; and by
the strength of the main magnetic field. My and M, remain null.

While the main magnet applies an homogeneous magnetic field, the magnetic gradient
coils apply a magnetic field 8 = [Gx, Gy, G;] that varies linearly with 7. The resulting
magnetic field:

By = <Gy (1) (4.4)
B, = 1,Gy(t) (4.5)
B, = By + r.G.(t) (4.6)

Based on the magnetic field strength the hydrogen nuclei resonate at different frequencies

of the magnetic field, with the resonance frequency fr.s defined as:

freo=7|| B @7

In the MRI context fres is usually close to 100MHz.
The RF emitter coil produces a magnetic field with tunable frequency. For simplicity, let

us assume the gradient coil on the xy axis are off; by turning on the RF emitter coil on the
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xy axis with frequencies f, and f, respectively, B becomes:

By = Bf (7',t) cos (27t f«()t) (4.8)
B, = Bf (7, t) sin (27tf, (£)t) (4.9)
B,=By+ 7 G(t) (4.10)

where Bl+ is the intensity of the magnetic field applied by the transmitter gradient coils, witch
amplitude is typically in the range of 10uT.

When the the emitted frequency matches the resonance frequency at a certain time t = ,
ie., fx(F) = fres or fy(F) = fres, the nuclei experience resonance. In particular, the emitted
RF signal perturbs the net magnetization that loses its equilibrium. The direct consequence
of the misalignment on the nuclei is the net magnetization precession (measure as the "flip
angle" 0), responsible for a time-varying magnetic field.

Once the transmitted RF signal is turned off (Bl+ = 0), the nuclei lose the only energy
source to precess and return to their relaxation state following the Block equation, witch can
be studied separately for the transverse magnetization:

t

Myy(7,t) = My (7,0) exp 27 (4.11)

And for the longitudinal direction:
__t __t
M.(7,t) = Mo(7,0)exp 07 +Mo(7,4)(1 —exp 107)) (4.12)

This phenomena, called relaxation, describes the magnetization decays to their equilib-
rium state ﬁ(?,O) with an exponential time constant 17 and T for transverse and longi-
tudinal directions respectively.

During relaxation the receiving RF coils are activated to read the magnetic field emitted
by the relaxing nuclei. Such coils, typically in the range of 8 to 64 (also known as channels),
are tailored to the anatomy of interest, e.g. knee coils, abdomen coils, head coils. Every coil
has a sensitivity profile that characterizes the sensitivity to the emitted signals, typically influ-
enced by the distance from the origin of the emitted centre. Every coil readout is combined,
based on its sensitivity, to create a unique homogeneous readout.

Magnetic resonance experiments are described by a Pulse Sequence, witch is a timing
diagram encoding how the different magnetic fields are manipulated. In particular, they de-
scribe when and how the RF signal, the transversal and longitudinal gradients are applied,
and when the receiving coil is activated to read the emitted relaxation signal.

Fundamental parameters of a pulse sequence are:

* Flip Angle (6): how much the transmitted RF magnetic signal, that resonate the nuclei,

rotates the net magnetization.

* Echo Time (TE): the time between excitation and data acquisition, typically measured

between the center of the RF excitation pulse and the data acquisition window.
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FIGURE 4.1: An example of a pulse sequence.

* Repetition Time (TR): time between repetitions of the main pulse sequence block
* Number of Repetitions (NTgr): how many times the pulse sequence block is repeated.

* Data Acquisition (DAQ): the interval of time when the scanner collects the magnetic

resonance signals emitted by the relaxing nuclei.

An example of pulse sequence can be found in Fig. 4.1.

Because the MRI reads a signal over a portion of space, we define the "voxel" as the
smallest section of the body that the MRI machine can investigate at the same moment (one
sampled point refers to the properties of a voxel). The MRI punctual measurement is a sum

of the transverse magnetization across the voxel:

Svoxel = My d7 (4.13)

voxel
when, in general, the net magnetization along the xy directions is decaying during relaxation
with a time constant T5.

A simple pulse is the so-called "gradient pulse": a sequence sending RF signal to produce
6 = 90 and manipulating the gradients along all directions to create spatial encoding, as
visible in Fig. 4.1.

A more specialized MRI model takes into account the non-homogeneity of the main
magnetic filed By. This phenomena is called off-resonance, because local variations in the
magnetic field directly affects the resonance of the nuclei, as in Eq. (4.7). Indirectly, the
off-resonance variations affect the phase of the spins of the relaxing nuclei by de-phasing
them. Finally, this variation affects the signal sy.ye that is measured by the receiving coils.
Instead of experiencing homogeneous alignment, the decaying nuclei see their magnetization

rotating each with a different phase on the xy axis. Intuitively, this phenomena attenuates



4.1. MRI Physics 35

90° /\180° | ¥ N
RF /\ A A

d

q
<
q

v

C

v

v

O
>

j@)
v

TR

FIGURE 4.2: An example of a Gradient Echo Pulse Sequence

Syvoxel because when two magnetization vectors on the xy axis are not aligned, it exists a
component that negatively contributes to the sum, diminishing its final magnitude.

To compensate for such non-idealities, the "Gradient Echo Pulse Sequence"” is a pulse
sequence tailored to reduce the magnitude loss of the sum by re-aligning the spins. An ex-
ample of Echo Pulse sequence can be observed in Fig. 4.2, where a second RF signal of
0 = 180 is injected to flip (and re-focus) the magnetization. This has the effect of inverting
the phase accumulation of the off-resonance net magnetization, after witch the off-resonance
phase begins to cancel out.

Based on the received signal syqxel, it is possible to infer properties of the body tissues,
that directly reflect in the final MRI image contrast. In particular the relaxation times T1
(spin-lattice relaxation time), T2 (spin-spin relaxation time), T2* (T2 also accounting for lo-
cal magnetic inhomegeneities) in combination with the sequence parameters TE (echo time),
TR (time of repetition) and 6 (flip angle) are used to infer information about the tissue. For
example, liquids and fluids have longer T1 and T2, while solids have intermediate T1, short
T2 and fat has the shortest T1, intermediate T2. Typical values of T1 and T2 (ms) are known,

given the magnitude of By.
sequence

In mathematical terms, the acquired signal s___

is proportional to the desired time
constant T or T; by selecting the sequence type:

* Gradient Echo (GE): sE | « My exp %"

voxel

* Spin Echo (SE): s5E o My exp %

voxel

Differently, the T constant is measured by repeating the same sequence with a given
TR, such that there is incomplete recovery of the longitudinal magnetization and incomplete
recovery appears in the transverse magnetization. Also the flip angle 6 has a prominent role

in reading T;.
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TE
short long
short T1-weighted | Not Used
long PD-weighted | T2 or T2* weighted

TABLE 4.1: Example of sequence tuning and relative dependence with tissue
relaxation times.

To summarize, the parameters of the acquisition can be modified as in Tab. 4.1 to get the
desired readout. Intuitively, by letting the system fully relax (long TR) and by reading after
a long TE, we ensure that no T7 affects the readout, thus we read T». Conversely, by using
short TR and short TE we measure T7.

Note that, pulse sequences are not limited to the ones shown, but there exist many more.
For example the Inversion Recovery techniques use a 180-degree inversion pulse and are
commonly used to null tissue types. For example, so-called short-time inversion recovery
(STIR) is used to null fat signals, while fluid attenuated inversion recovery (FLAIR) is used
to null fluids.

The gradient coils, by applying a difference in the gradient field affect the phase of the

recessing nuclei such that:

My (7, 1) = My (7,0) exp (—i'y/ot C(1)- 7dr) (4.14)

i.e., their effect is to create phase accumulation depending on the cumulative gradient. This
allows to turn the gradients on and off to start and stop the phase accumulation, and also
reverse the gradient polarity to undo any prior phase accumulation.

Here, we introduce the concept of k-space, witch is a simplified representation of the

phase accumulation due to magnetic field gradients. It is defined as

K= —i% /Oté’(r)dr .15)

hence, the net magnetization can be written as:

Moy (7, ) = Myy(7,0) exp (—i2n?(t)7>) (4.16)

The MRI signal is the result of the sum of any precessing magnetization within the sen-

sitive volume (vol) of the RF receive coils:

Svol(t) :/ 1]\/Ixy(7>,t)d7> 4.17)

by integrating Eq. (4.16) and Eq. (4.17), this becomes:

Sval(t) = [ Myy(7,0)exp (—izn?(t)?) a7 4.18)

vol
where the integral, if expanded to the general range [— inf, + inf], encloses the Fourier Trans-
form F of the net magnetization, thus:
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s(t) = F [My] (?(t)) (4.19)

where, at time f, ? expresses the spatial frequency and s(t) the magnitude of such frequen-
cies in the volume of interest. Over time, s(t) is stored in a data matrix (2D example) with
known k-space locations, i.e., every ? is associated to its magnitude F [Mxy] (k)inagrid
that we call y. It is possible to retrieve the image in the spatial domain x (as opposed to the
image in the spatial frequency domain y) by simply applying the inverse Fourier Transform
FL

x=F Yy) (4.20)

A commonly adopted spatial encoding is the so-called "Cartesian" encoding, where the
k-space is sampled along a regularly spaced grid. The acquisition relies on two types of

encoding:

* Frequency encoding: one dimension is encoded using a constant gradient during data

acquisition. By convention, this is applied in the x-direction.

* Phase encoding: other dimensions are encoded using gradient applied after RF exci-
tation and before data acquisition. This gradient is incremented to provide complete
spatial encoding. To fill a line on the k-space grid this pulse is conventionally repeated

with different amplitudes.

While frequency encoding is always applied along one dimension, phase encoding can
be applied in one dimension for 2D imaging, and in two dimensions for 3D imaging.

We tune every component of 8 to obtain the desired ? We call "k-space trajectory” the
continuous pattern created by the gradients over time. Note that k-space trajectories always
start at the center of k-space. The most common trajectories are Cartesian trajectories, in
witch parallel lines of k-space are covered to sample a 2D (or 3D) grid. K-space trajectories
with other patterns, such as radial lines, spirals, rastered lines (echo-planar trajectories), or
blades are also possible.

Despite its numerous advantages, MRI has several complications and challenges that

limit its widespread use:

* Long Acquisition Times: One of the primary challenges of MRI is the lengthy ac-
quisition time, witch can range from several minutes to over an hour, depending on
the scan type. This is a major limitation in clinical practice, as it can lead to patient

discomfort, motion artifacts, and increased costs.

* Noise and Patient Motion: The MRI scanning process often generates considerable
noise from the machine, witch can be unsettling for patients. The confined space in-
side the MRI tube, where patients are required to lie completely still, can intensify
feelings of claustrophobia. As a result, some patients may choose to avoid undergoing

the procedure altogether.
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» High Cost and Maintenance: The complex structure of the MRI machine, particularly
the superconducting magnet, requires constant cooling (often with liquid helium) and
regular maintenance. The operational and maintenance costs make MRI one of the

more expensive imaging modalities.

4.2 Undersampling in MRI

Magnetic Resonance Imaging (MRI) is widely known for its ability to produce detailed im-
ages of internal structures without ionizing radiation. However, MRI acquisition times are
notoriously long, witch can be uncomfortable for patients and susceptible to motion arti-
facts. One of the most promising approaches to accelerate MRI acquisition is undersampling,
where fewer data points are collected during acquisition compared to traditional, fully sam-
pled k-space. In this section, we discuss why undersampling is feasible and advantageous,
and we explore how it affects the physical aspects of MRI acquisition.

When undersampling is employed, fewer samples of k-space are collected, leading to
gaps in the acquired data. These gaps introduce aliasing artifacts in the reconstructed im-
ages if not properly addressed. However, by utilizing advanced reconstruction techniques,
it is possible to mitigate these artifacts and reconstruct images that are visually similar to
those obtained from fully sampled data. The effect of undersampling on MRI physics can
be understood as a trade-off: fewer measurements reduce acquisition time but make the re-
construction problem more challenging, requiring sophisticated algorithms to recover the
missing information. Undersampling, by reducing scan time, enhances patient comfort and
minimizes motion artifacts, resulting in higher-quality images [7].

From a physical perspective, the process of undersampling modifies the timing and gradi-
ents used during data acquisition. In traditional MRI, gradients are used to encode spatial in-
formation systematically over time, ensuring uniform coverage of k-space. In undersampled
acquisitions, gradient trajectories may be altered to focus on acquiring the most important
spatial frequencies first or to create non-Cartesian trajectories such as radial or spiral paths,
witch inherently provide better coverage of the central, low-frequency regions of k-space [39,
7].

From a mathematical point of view, MRI machines acquire k-space samples, witch are
points in the k-space: a spatial frequency domain represented as a Cartesian grid, denoted as
ye C%*4_ These d x d samples represent the spatial frequency coefficients of the image. The
acquired data is then transformed into an image through the Inverse Fourier Transform, i.e.,
x=F *1(}/). In this context, a k-space sample refers to an individual value of the k-space
representing the frequency domain information. A standard full acquisition samples every
elemnt of y. In this context, undersampling means that only certain values are sampled. We
model such operation with binary masks M, or undersampling patter, that specify witch k-
space samples to acquire and witch to discard M € {0,1}% x d.

To design the undersampling pattern and reconstruct the missing samples, Compressed
Sensing (CS) has been introduced as a promising approach. CS enables the reconstruction

of a signal from fewer measurements than those required by the classical Shannon-Nyquist
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sampling theory, making it feasible to accelerate MRI while maintaining image quality [15,
37]. Notably, the adoption of CS for MRI has been approved by the FDA, paving the way for

its widespread clinical application [18].

4.2.1 Compressed Sensing Methods in MRI

Compressed Sensing is based on the premise that many natural signals, such as medical
images, are sparse in some transform domain. Mathematically, a generic input signal a € R?
is assumed to be x-sparse in an orthonormal basis D € IR?*?, meaning it can be expressed as
a = D¢, where & € R? contains only x non-zero entries, with ¥ < d. The signal acquisition
process can be represented by a sensing matrix A € R"*?, resulting in the acquisition vector
b = Aa = AD¢ [40].
The reconstruction of ¢ can be achieved by solving an optimization problem that enforces
sparsity:
¢ = arggg]iRr} I¢lln st. AD¢ =0, (4.21)

where the £1-norm promotes sparsity in the solution. Regularization terms such as the total
variation (TV) penalty [7] or wavelet-based sparsifying terms can be used to enhance recon-
struction quality by leveraging domain-specific knowledge [37]. In MRI, the input signal is
typically an image represented by x € IR?*?, witch is acquired in the frequency domain using
the Fourier transform F(x). The total number of elements in the k-space is defined as n = d°.
The undersampling process limiting acquisition to m < n samples can be described using a
binary mask M € {0, 1}dXd, with } M = m, that selects witch frequency components to
acquire:

y=Mo F(x), (4.22)

where o denotes the Hadamard (element-wise) product between matrices and Enc is intrin-
sically defined as the encoder and y as its output, i.e., the undersampled (encoded) MRI
acquisition.

We define r = 7 as the acquisition rate and R = 7. as the undersampling ratio. The
undersampled data y are then used by a decoder to reconstruct an image that closely ap-
proximates the fully sampled one [38, 27, 61]. The decoder commonly utilizes sparsifying
transforms or deep neural networks (DNNs) to compensate for the undersampling artifacts.

It is important to notice that in this dissertation, when dealing with undersampling pat-
terns, each k-space sample is assumed to be acquired independently of the others and in
the same amount of time. This assumption simplifies the analysis by allowing us to isolate
the contribution of each k-space sample to the image reconstruction. However, this is a sig-
nificant idealization, as acquisition times can vary due to the chosen strategy and physical
constraints.

Common and simple undersampling patterns are, for example:

* Cartesian Sampling[06, 61]: This method samples entire rows or columns in k-space,
making it compatible with conventional MRI hardware. Cartesian trajectories are com-

monly used in clinical settings.
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» Radial Sampling [34, 60]: This method samples k-space along radial lines from the
center, providing good coverage of low-frequency components, witch are essential for
capturing image contrast. Radial sampling is particularly robust to motion artifacts,

making it suitable for dynamic imaging [7].

* Spiral Sampling [53]: Spiral sampling involves trajectories that cover k-space in a

spiral manner, ensuring dense coverage of the center.

* Unconstrained Patterns [37]: Unconstrained undersampling of points in k-space is
often used to demonstrate the potential of the models. These patterns provide a bal-
ance between incoherence and computational efficiency, but their implementation in

practice can be challenging.

The design of an optimal undersampling pattern is a key challenge in CS-based MRI. In
this dissertation, we limit our analysis to two types of undersampling patterns: unconstrained
sampling, witch allows for flexible selection of k-space samples, and line-constrained sam-
pling, where k-space is sampled along straight lines. The constraint in line-constrained sam-
pling is an example of specific requirements imposed by the imaging system, whereas un-

constrained sampling provides more freedom in selecting k-space samples.

4.2.2 Model-based MRI Undersampling and Reconstruction

To improve MRI acquisition efficiency, various undersampling and reconstruction methods
have been developed, witch focus on exploiting the inherent properties of MRI signals. This
section introduces model-based reconstruction techniques for MRI undersampling:

The concept of CS was first introduced by Donoho [15], providing the foundational
theory for reconstructing signals from fewer measurements than dictated by the Nyquist-
Shannon theorem. This idea was later extended to MRI by Lustig et al. [37], where the authors
demonstrated that MRI images, witch are often sparse in transform domains like wavelets,
can be reconstructed accurately using CS. This work laid the groundwork for CS-based MRI,
significantly reducing the acquisition time while maintaining image quality.

Block et al. [7] explored the use of Toral Variation (TV) constraints for MRI reconstruc-
tion from undersampled k-space data. Their work focused on iterative image reconstruction
using a total variation constraint, witch effectively preserved edges and reduced aliasing ar-
tifacts, particularly in undersampled radial MRI.

Authors in [64] proposed a method based on Dictionary Learning for MRI reconstruc-
tion. Their approach trains a dictionary to represent image patches sparsely, witch allows for
the efficient recovery of images from highly undersampled k-space data, thereby improving
artifact suppression and preserving fine details.

Seeger et al. [70] introduced an approach for optimizing k-space trajectories for MRI
using Singular Value Decomposition (SVD) and Bayesian experimental design. This method
is particularly effective for dynamic MRI, such as cardiac imaging, where it is crucial to

capture dynamic processes while maintaining high image quality.
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Yang et al. [83] introduced an optimization method for MRI reconstruction using Lp-
norm minimization. By employing £,-norm minimization (with 0 < p < 1), they demon-
strated improved recovery of sparse signals compared to the conventional ¢1-norm, allowing
for better reconstruction quality under high undersampling ratios.

Bredies et al. [11] proposed the use of Total Generalized Variation (TGV) for MRI un-
dersampling, witch extends the total variation approach by incorporating multiple levels of
image derivatives. TGV is particularly effective in reducing staircasing artifacts, making it

suitable for preserving fine details in undersampled MRI reconstructions.

4.2.3 Data-Driven MRI Undersampling and Reconstruction

Deep Learning (DL) has revolutionized the field of image processing and analysis, particu-
larly in medical imaging. It leverages deep neural networks to automatically learn hierarchi-
cal feature representations from raw image data, allowing for high accuracy in various tasks
such as image classification, segmentation, and object detection. Unlike traditional meth-
ods, witch often rely on handcrafted features and domain-specific expertise, DL can extract
features automatically, significantly improving performance and efficiency. DL has shown
significant potential for enhancing diagnostic accuracy and reducing workloads. Example of
applications include segmentation of anatomical structures, detection of abnormalities, and
prediction of disease outcomes based on medical images [67]. A fundamental contribution in
the field of image processing is the use of Convolutional Layers. The breakthrough first hit
the biomedical field in the shape of a fully convolutional image analyses [36] and gradually
evolved. A milestone in this path is represented by the so-called U-Net, witch is particularly
effective in segmenting medical images [66].

The U-Net utilizes an encoder-decoder structure with skip connections to preserve spatial
details throughout the reconstruction. U-Net has been used extensively as a backbone for
various MRI reconstruction models, such as in the fastMRI competition, witch aimed to
develop and benchmark DL-based reconstruction methods that significantly speed up MRI
scans while maintaining diagnostic quality [28].

Generative Adversarial Networks (GANs) have also been adapted to address MRI re-
construction problems, with notable success in improving visual fidelity. GAN-based models
have been extended to include various loss functions to stabilize training and achieve better
reconstruction quality. For example, Yang et al. [82] proposed a GAN-based method that
uses a cyclic consistency loss to ensure consistency between the reconstructed and original
images, improving artifact reduction.

Another important line of research is the incorporation of domain-specific adaptations to
deep convolutional networks. In [68], Schlemper et al. introduced a deep cascade of convo-
lutional neural networks for MRI reconstruction. Their model iteratively refines the recon-
structed images by employing multiple stages of CNNs, achieving state-of-the-art results by
effectively learning a mapping from undersampled to fully sampled data.

Additionally, models incorporating multi-domain and recurrent neural network compo-

nents have demonstrated significant success. A notable example is the multi-domain approach
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presented in [75], witch processes both the k-space and image domain in a unified frame-
work, allowing the model to exploit redundancy across both domains for better reconstruc-
tions. This approach, adopted in the fastMRI challenge, demonstrates the ability of DL-based
multi-domain networks to achieve high-quality image reconstruction.

The use of attention mechanisms in MRI reconstruction has also shown promise. Qin
et al. [62] introduced a method that utilizes attention to focus on important spatial features,
improving the quality of reconstructions. This approach helps prioritize diagnostically rele-
vant regions during the reconstruction process, leading to improved artifact suppression and
overall image quality.

While significant advancements have been made in deep learning-based reconstruction
methods, there is also a growing body of work focused on optimizing the undersampling
patterns used in MRI, witch directly impacts acquisition efficiency and image quality. This
section highlights notable methods that introduce innovation specifically on the encoding
side.

One noteworthy approach for optimizing the k-space undersampling pattern is the work
by Knoll et al. [30], where the authors use the power spectrum of a set of example images
as a reference to derive adapted random sampling patterns. This approach leads to better
allocation of k-space samples and improved image quality compared to uniformly random
undersampling patterns.

Another important contribution is from Seeger et al. [70], who proposed optimizing k-
space trajectories through a Bayesian experimental design framework. This method formu-
lates the problem as an optimization task, aiming to find the most informative k-space loca-
tions to acquire, thus maximizing the quality of image reconstruction for a given acquisition
budget. Bayesian inference-based optimization has proven effective in reducing redundancy
in k-space sampling.

Recently, several data-driven approaches have been proposed to jointly learn the under-
sampling pattern with the reconstruction network in an end-to-end manner. In particular,
LOUPE (Learning-based Optimization of the Undersampling PattErn) introduced by Bahadir
etal. [2, 3] utilizes a deep neural network to learn optimal sampling masks. This work demon-
strated that undersampling masks could be trained alongside the reconstruction network to
achieve better performance than predefined masks.

Another approach is the Reinforcement Learning-based framework by Zhang et al. [88],
witch treats the selection of k-space samples as a decision-making process. The authors use
reinforcement learning to optimize the acquisition pattern, achieving significant acceleration
without compromising image quality. This adaptive selection process allows the model to
explore different sampling configurations, thereby identifying an optimal pattern for different
anatomy or imaging settings.

In addition, the method presented by Sriram et al. [75] integrates the learning of the
sampling mask into the reconstruction process by treating the mask as a trainable parameter
within the network. This approach allows for simultaneous optimization of the sampling
pattern and the reconstruction process, leading to superior overall performance compared to

separate optimization.
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FIGURE 4.3: The encoder-decoder framework represented as a unified au-
toencoder structure A, g(-).

Another significant contribution is from Zhang et al. [87], who focused on radial un-
dersampling, a pattern that is known for its robustness to motion artifacts. They proposed a
learnable radial subsampling strategy that dynamically adjusts sampling density to focus on
important regions of the k-space, thereby achieving high reconstruction quality with fewer
measurements.

Following the success of LOUPE, Aggarwal et al. [1] proposed MoDL (Model-based
Deep Learning), witch incorporates both model-based reconstruction and deep learning com-
ponents to jointly optimize the undersampling pattern and reconstruction model. MoDL uti-
lizes a deep network with multiple iterative updates to enhance the quality of MRI reconstruc-
tion, while simultaneously optimizing the sampling pattern to improve acquisition efficiency.

Another significant advancement was presented by Sun et al. [77], who introduced a
method for the joint optimization of sampling patterns and deep priors using a model-based
deep learning framework. Their approach integrates the learning of k-space trajectories as
trainable parameters in the reconstruction network, enabling the simultaneous optimization
of both aspects and resulting in an overall reduction of aliasing artifacts and improved image
sharpness.

Additionally, Schlemper et al. [69] developed a method that employs an unrolled opti-
mization strategy, where both the sampling mask and reconstruction network are iteratively
refined in a cascaded manner. By updating the sampling pattern based on feedback from
the reconstruction model, the approach adapts k-space acquisition strategies to best suit the
anatomical structure being imaged, leading to significant improvements in reconstruction

quality.

4.3 Learning-based Optimization of the Undersampling Pattern

LOUPE (Learning-based Optimization of the Undersampling Pattern) is designed as a deep
learning framework for jointly optimizing the undersampling pattern and the reconstruction
in MRI, integrating both an encoder for sampling and a decoder for reconstruction. The
encoder and decoder stages are modeled as a generalized autoencoder structure, denoted as
A, 0(-) = Decg(Enc, (-)), effectively representing the entire process as a single deep neural
network. Subscripts indicate parameter dependencies, meaning that any term with - or -, is

dependent on the respective variables 6 or -.
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The original input, a normalized image x € [0, 1]‘“‘1, undergoes encoding and decoding
to produce the reconstructed image & = A, ¢(x). The autoencoder is trained to approximate
the identity function, ideally resulting in ¥ ~ x.

The encoder Enc generates an undersampling mask, denoted by M., € [0, 1]”1”1, witch
controls the locations in k-space that are sampled:

y = Enc(x) = M, o Fx, (4.23)

Such structure is also sketched in Fig. 4.3.

The generation of M., differs between the training and inference stages. During training,
the mask is stochastic, while at inference it becomes deterministic.

At training-time, the mask is generated using a matrix T(7) € [0,1]9*, witch varies
randomly during training but is fixed during inference. The matrix T(7y) is computed as

follows:

¢ The matrix
S(y) = ai(y) € [0,1)" (4.24)

is generated by applying the sigmoid function to each element of ¢ € R%*¢. This

operation maps the trainable parameters <y into the [0, 1] range.

* T() is computed based on the average value of S(), (S(7)) = 72 Y0, Sii(v):

S S0 if (S(v)) > 1,

T(y) =
T 2 s), i () <,

(4.25)

where 1is an d X d matrix of ones, ensuring that the expected value of T(y) equals 7.

« During training, a random matrix U € [0,1]?*? is drawn with independent entries
uniformly distributed U ~ 1/(0, 1), and the mask M, is generated as:

M, =os(T(y) —U), (4.26)

where 0 (-) is another sigmoid function with slope s. The value of s determines the
trade-off between smooth gradients for easier backpropagation and sharper, more binary-

like masks.

The mask generation mechanism is implemented in four layers. The first layer computes
S(v) = o(7y), the second layer calculates T(y) using Eq. (4.25), and the last two layers
generate U and apply Eq. (4.26).

Similarly, at inference-time, once training is complete, a deterministic binary mask is

generated by thresholding T

0 if Tjx(y) <05,

(My)jx =
v 1 if Tjx(y) > 05,

jk=0,...,N—1. (4.27)
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FIGURE 4.4: LOUPE schematic representation.

Fig. 4.4 illustrates the LOUPE’s encoder-decoder flow during training.

The decoder Decg used in LOUPE is a slightly modified U-Net [66] designed to refine
the initial reconstruction obtained from the undersampled data. The decoder operates in two
stages. First, it reconstructs a baseline estimate |F ~'y| from the encoded data y, where
F 1. represents the inverse Fourier transform, and the modulus is used to ensure real-valued
outputs.

In the second stage, a sub-network Dg{ applies pixel-wise corrections to the initial esti-
mate:

& = Decy(y) = |F 'yl + Dg(F'y) (4.28)

where 0 are trainable parameters.
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The reconstruction error between the reconstructed image X and the ground truth x can

be implemented with a general £, norm difference:
ox; = ||& — x||; (4.29)

The parameters of the LOUPE architecture, including both < for the encoder and 6 for the
decoder, are trained using [ = 1 (the ¢; norm ||-||;) to minimize Eq. (4.29), with the corre-

sponding loss function defined as:
L%(y,8) = E,[0x1] (4.30)

where E[-] denotes the expectation over all possible images x.

4.4 Limitations

One of the major drawbacks of conventional MRI is its long acquisition time, witch can lead
to patient discomfort and motion-induced artifacts. To address these issues, undersampling
is employed, wherein only a fraction of the full k-space data is acquired. This results in a
significant reduction in scan time and mitigates motion artifacts, but it introduces challenges
in the from of artifacts in the reconstructed images.

Undersampling drastically reduces scan time, however, the fewer samples acquired, the
more challenging the reconstruction problem becomes. Advanced iterative algorithms and
deep learning methods are required to recover high-quality images from incomplete data. As
it will be shown in the next chapters, the trade-off between acceleration and reconstruction
quality is fundamental and much of the effort of this thesis is dedicated to optimizing this
balance.

Various undersampling strategies exist. Each has its own advantages and challenges. For
instance, Cartesian sampling is hardware-friendly and common in clinical settings, while
radial and spiral (up to unconstrained strategy) offer better coverage of important components
but may require more complex gradient designs. Complex acquisitions can be designed to
optimize acquisition, as it will be the case in the next chapters, but this comes at the cost
of a more complex hardware implementation. In the next chapter it will be investigated the
difference between unconstrained and Cartesian sampling strategies.

In MRI fast acquisition scenario, the need to simplify the model comes at the cost of
losing precision. The typical assumption that each k-space sample is acquired in the same
amount of time is a significant idealization. In practice, acquisition times may vary due to
the specific sampling strategy and hardware limitations. While this assumption simplifies
analysis, it may not fully capture the physical constraints and variability inherent in real-
world MRI systems.
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Chapter 5

Regularized LOUPE

Despite the notable success of existing deep learning methods for MRI reconstruction, they
possess a fundamental limitation: they do not ensure that the original measured frequencies
(i.e., the k-space measurements) are preserved throughout the reconstruction process. This
shortcoming can lead to discrepancies between the actual acquired data and the reconstructed
images, ultimately affecting the accuracy and reliability of the MRI scans.

To address this limitation, we introduce an approach that explicitly embeds the preser-
vation of the measured frequencies as a constraint within the reconstruction pipeline. By
ensuring that the encoder retains these measurements throughout the encoding and decoding
processes, we can significantly enhance the quality of the reconstructed images. An additional
advantage of our proposed method is the ability to incorporate a self-assessment mechanism
directly into the MRI reconstruction process. By embedding a quality evaluation module that
operates in parallel with the image reconstruction, our method can provide an estimate of
the reconstruction quality in real time. This self-assessment capability enables users to deter-
mine whether the reconstructed image meets predefined quality standards, facilitating more
informed decisions during the scanning procedure. Furthermore, this mechanism allows for
the estimation of the reconstruction error at inference time, offering a valuable metric to
guide further adjustments in the acquisition process. Similarly, next Sections further explore
the idea of imposing the measurement constraint into standard data-driven MRI encoding-
decoding scheme.

Although the current work is grounded in the LOUPE framework, it is important to note
that the principles and techniques we introduce are not restricted to this specific architecture.
The measurement-preserving mechanism, quality assessment capability, and overall frame-
work are generally applicable to a broader range of MRI reconstruction models. This flex-
ibility makes our contributions potentially useful for a wide array of deep learning-based
reconstruction methods, providing a foundational approach to enhance reliability and perfor-

mance across different architectures.

5.1 Measurement-Constrained Loss Regularization

As previously outlined, LOUPE shares similarities with Compressed Sensing (CS) in its
approach to reconstructing the original instance from the measurement vector, leveraging

the redundancy of information in the original domain. This implies that the sensing process
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FIGURE 5.1: Schematic representation of 5yp implementation

retains sufficient information to enable effective reconstruction. However, unlike traditional
CS, LOUPE does not require y to be obtained strictly through a linear projection of x.

Nevertheless, if reconstruction is successful, then & should approximate x closely enough
such that:

oy, = Hy—Mo}"ich (5.1

becomes negligible. Therefore, minimizing 5yp is desirable for improving reconstruction
quality. This objective can be incorporated into network training by adding a regularization

term to the loss function, resulting in an alternative formulation:

Lj (7,0) = Ex [gox1 + (1 - ¢)dy, | (52)

where ¢ is a tunable weight that balances the contributions of each term. This approach
allows us to approximate the constraint defined in Eq. (4.21). We refer to a model trained
using L; as a regularized-LOUPE (-LOUPE,), with p € {1,2}.

5.2 Introducing Self-Assessment Capabilities

Ideally, for properly reconstructed signals, the residual error 5yp defined in Eq. (5.1) should
approach zero. However, when the reconstruction fails, (5yp is expected to deviate signifi-
cantly from zero, making its magnitude a useful indicator of decoder performance. Since 5yp
can be computed directly from the available measurements y, as sketched in Fig. 5.1, it can
serve as a proxy for assessing the quality of the reconstruction.

This concept opens the door to a self-assessment mechanism integrated into the recon-
struction process. After the image x is reconstructed, (5yp is calculated. The self-assessment
stage can then either compare 5yp to a predefined threshold € to signal a potential reconstruc-
tion issue if dy, > €, or use dy,, to estimate the reconstruction quality through a function
O0X; = 0%y (5yp).

For simplicity, we focus on an affine relationship between (Syp and the estimated output

quality, expressed as:

6%1(0y,) = cody, +c1

where cg and ¢ are constants determined during the training process, witch help to fine-tune
the estimation based on the behavior of dy,,.
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This approach provides a practical tool for users, offering additional insight into the ac-
curacy of the reconstruction. It can enhance the interpretability of the system, making it pos-
sible to detect when an image may not be reliable due to poor reconstruction quality, without

needing access to the original image x.

5.3 Numerical Evidence

The numerical evidences presented in this section aim to validate the proposed methodologies

through rigorous experimental evaluation.

5.3.1 Dataset

For training and testing our models, we used the publicly available "Brain MRI Segmenta-
tion" dataset', witch consists of brain MRI images.

This dataset includes 2D brain scans from 110 patients as part of The Cancer Genome
Atlas (TCGA) lower-grade glioma collection’. The number of slices per patient varies be-
tween 20 and 88. To from the training set, we excluded some of the least informative images,
resulting in a dataset comprising 2753 scans for training (80%) and 688 scans for testing
(20%). All original images, witch have dimensions of 256 x 256, were resized to 128 x 128.
Each scan was also re-scaled so that pixel values fall within the range [0,1].

5.3.2 Results

The Peak Signal-to-Noise Ratio (PSNR) is the primary metric used to assess the quality of
reconstruction. It is defined as:
PSNR = 101log,, (mx{x}> = —101og,, (6x2)
(SXZ
where max{x} = 1 in our case, and dx; represents the £»-norm of the reconstruction error.

We evaluated our methods with acquisition ratios of R € {4, 8}, corresponding to under-
sampling where 25% and 12.5% of the entries in M are ones. For the regularization weights
that define -LOUPE,,, we selected values such that 0.99 < ¢ < 1.

The undersampling masks M for the different methods were generated using the trained
mask generator blocks as described in [3]. Specifically, each entry in the random instance of
M is selected based on the probability defined by the corresponding entry in an N x N matrix
that was trained during the model’s learning process. In Fig. 5.2, we show the probability
matrices for LOUPE, r-LOUPE,, and r-LOUPE,; for both R = 4 (top row) and R = 8
(bottom row).

Table 5.1 presents the average PSNR for all methods, along with the percentage of
cases where -LOUPE; or r-LOUPE; achieves a higher PSNR compared to LOUPE. Both
r-LOUPE; and r-LOUPE; outperform LOUPE in at least 97.7% of the cases, in terms of
average PSNR.

Uhttps://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
Zhttps://www.cancer.gov/tcga
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(A) LOUPE

(B) -LOUPE;

(¢) -LOUPE;

FIGURE 5.2: Matrices representing the probability that each element of M

equals one are depicted, with white denoting a probability of one and black

indicating a probability of zero. The majority of values lie very close to these

extreme probabilities. The first column plots correspond to R = 4, while the
second column plots are for R = 8.
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TABLE 5.1: Average PSNR and fraction of MRI images for witch -LOUPE,,
achieves higher PSNR with respect to LOUPE

Model Aver. PSNR [dB] % of success

R=14 R=38 R=14 R =38
LOUPE 38.65 32.67 - -
r-LOUPE; 39.26 34.15 98.7 97.7
r-LOUPE, 39.86 34.23 99.9 98.4

TABLE 5.2: AUC of the ROC for all considered models
with 6y, or dy, and withR =4 0orR =8

Model AUC using dy, AUC using dy,

R=4 R = R=4 R =38
LOUPE 0.971 0.934 0.969 0.955
r-LOUPE; 0.992 0.978 0.991 0.979
r-LOUPE; 0.992 0.983 0.993 0.986

Fig. 5.3 depicts the probability density functions (PDF) for PSNR values, showing distri-
butions for R = 4 (Fig. 5.3a) and R = 8 (Fig. 5.3b).

The dashed vertical line indicates a threshold PSNR, dividing the reconstructions into
"bad" and "good". The density curves for the three methods are similar in general shape,
but there are notable differences in their positions. LOUPE has a more significant portion
of its distribution below the threshold compared to r-LOUPE; and r-LOUPE,. This implies
that LOUPE is more prone to producing lower-quality reconstructions, as a greater part of
its distribution falls into the "bad reconstruction" region. -LOUPE; and r-LOUPE,, on the
other hand, demonstrate improved performance.

In Fig. 5.4, we provide a visual comparison by showing an original MRI scan alongside
its corresponding r-LOUPE, reconstructions for acquisition ratios R = 4 and R = 8.

To evaluate the self-assessment capability of our method, we set PSNR thresholds to
differentiate between high-quality and low-quality reconstructions. Specifically, for R = 4
and R = 8, reconstructions are classified as good if the PSNR exceeds 35dB and 30dB,
respectively. The classifier attempts to distinguish between good and bad reconstructions by
comparing 5yp with a threshold value €. By adjusting €, we can calculate the fraction of
good reconstructions that are incorrectly classified as bad (False Positive Rate, FPR) and the
fraction of bad reconstructions that are correctly identified as bad (True Positive Rate, TPR).
Both FPR and TPR take values in the range [0, 1].

The overall performance of the classifier is evaluated using the Receiver Operating Char-
acteristic (ROC) curve, witch plots TPR against FPR for various € values. An ideal classifier
would achieve FPR= 0 and TPR= 1 for all €, producing a ROC curve that degenerates into
the point (0,1). A common figure of merit for classifier performance is the Area Under the
ROC Curve (AUC), where a higher AUC (closer to 1) indicates a better-performing classifier.

Table 5.2 presents AUC values for LOUPE, r-LOUPE, and r-LOUPE,, showing that the
regularization introduced during the training phase improves the self-assessment capability.
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FIGURE 5.3: Estimated probability density functions of PSNR for LOUPE,
r-LOUPE; and r-LOUPE,. In case of (a) R = 4 and PSNR values lower than
35 dB are labeled as bad reconstruction. In case of (b) R = 8 and the PSNR

threshold is 30 dB.
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(C)R=8

FIGURE 5.4: Original MRI scan (a) and reconstructed images with r-
LOUPE, with: (b) R = 4 and PSNR=37.5 dB, (c) R = 8 and PSNR=31.6
dB.
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FIGURE 5.5: ROC curve for -LOUPE; with R = {4, 8} and both dy, and
0Y,.

0.01
0.015

0.008
2 0.006 2 o001

0.004
0.005

(B)R=38

FIGURE 5.6: Scatter plots reporting couples of dxq and dx, associated to

1-LOUPE;. Plots also report lines 6%1(dy;) = cody, + c1, used to predict

d0x1. We found: (a) R = 4 with ¢g = 0.06937 and ¢; = —0.001515; (b)
R = 8 with ¢y = 0.09815 and ¢; = —0.002042.
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TABLE 5.3: Average absolute and relative errors in estimating dx; from (5yp

Iop |0x; — %] |0x; — 0%|/ 6]

R=4 R =38 R=14 R=8
1 1 4.58e-04 8.19e-04 0.0752 0.0776
1 2 4.67e-05 1.01e-04 0.530 0.350
2 1 6.39¢-04 1.06e-03 0.104 0.103
2 2 3.50e-05 8.61e-05 0.434 0.266

The table also reveals minimal differences in AUC when comparing dy; and Jy,, with r-
LOUPE; consistently outperforming r-LOUPE;. Consequently, we focus on r-LOUPE; for
further analysis, and its ROC curve is displayed in Fig. 5.5.

As mentioned earlier, self-assessment can also be used to estimate Jx; by analyzing 5yp
with [, p € {1, 2}. For r-LOUPE,, we use a linear predictor to estimate dx; based on the
Eq. 6% = CO(SyP + ¢1. To mitigate the impact of outliers, we compute the coefficients cg
and c; using the Theil-Sen linear regression method [78, 71] on the training set. Table 5.3
summarizes the prediction performance on the test set in terms of prediction error.

Additionally, Fig. 5.6 shows a visual representation of the estimation of dx; based on
0y, for both R = 4 and R = 8. Across all cases, the relative error in predicting dx; remains
below 8%, indicating that the proxy dy, is an effective predictor of reconstruction quality.
The scatter plots show a relatively tight clustering around the regression line, indicating a
strong linear relationship between the quality estimation error and the reconstruction error.
The strength of this relationship suggests that quality estimation errors are reliable predictors

of image reconstruction errors, allowing effective self-assessment of reconstruction quality.

5.4 Trade-off Summary

By explicitly enforcing a measurement-preservation constraint within the loss function, Reg-
ularized LOUPE ensures that the original k-space frequencies are maintained throughout the
reconstruction process. This constraint helps to reduce discrepancies between the acquired
data and the reconstructed image, thereby improving the overall accuracy.

Moreover, the incorporation of a self-assessment mechanism via a dedicated deep neural
network allows the system to estimate reconstruction quality, adding a value to the returned
image. In this context, the estimated quality is used to increase reliability, i.e., enables the
identification of potential reconstruction issues. The quality estimation technique has broader
potential applications; for instance, it could be utilized to initiate corrective actions or adjust-
ments in the acquisition process. This aspect will be further explored in subsequent chapters
of this thesis.

The addition of a regularization term introduces extra components into the reconstruction
pipeline, causing the complexity to increase. This may lead to more challenging training
dynamics and necessitates additional hyperparameters tuning, such as the weight in the loss.
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Chapter 6

Training Binary Layers by
Self-Shrinking of Sigmoid Slope

DNNs are governed by a common set of learning principles, in witch training progresses
through two fundamental stages. First, a batch of input samples is passed through the net-
work to generate corresponding output predictions, witch are then compared against the true
reference labels to compute an average loss or error. In the subsequent stage, this loss is used
to calculate gradients through a process known as backpropagation (BP), and the network
parameters are adjusted in a direction that aims to minimize the loss.

For effective learning to occur, it is critical to manage the magnitude of these propagated
gradients. Ideally, gradients must neither vanish nor explode. Vanishing gradients, charac-
terized by values close to zero, result in negligible parameter updates and thereby hinder
learning. Exploding gradients, on the other hand, can lead to unstable updates, adversely af-
fecting the convergence of the model. These two challenges are commonly referred to as the
vanishing gradient problem and the exploding gradient problem [22, 4].

A widely adopted strategy to mitigate these problems is the tuning of the learning rate,
witch determines the size of parameter updates during training. However, in cases where the
architecture itself inherently causes vanishing or exploding gradients, adjusting the learning
rate alone often proves insufficient. In these situations, targeted interventions in the network
architecture are required to ensure stable gradient propagation.

One such architectural design challenge emerges in the context of custom trainable layers,
such as a binary mask layer. When constructing a trainable binary mask, as proposed in [2, 3],
it is necessary to replace the hard threshold responsible for generating binary values with a
differentiable approximation, often using a soft sigmoid-like function. While a hard threshold
effectively stops gradient flow, leading to vanishing gradients, a soft approximation allows the
gradients to flow smoothly, supporting efficient backpropagation. The use of a soft threshold
introduces a hyperparameter that controls the sharpness of binarization, essentially dictating
the trade-off between effective training and strict adherence to binary constraints.

We can think of this hyperparameter as a knob that regulates the "flow" of gradients, with
[3] progressively tuning it from a completely relaxed setting to a more rigid one as training

advances. However, challenges remains:

1. the optimal strategy for controlling this knob throughout the training process.
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2. the degree of "gradients fluidity" to achieve an optimal balance between model perfor-

mance and adherence to constraints.

To address these questions, we propose a novel training strategy termed Self-Shrinking
of Sigmoid Slope. This approach involves gradually decreasing the softness of the sigmoid
during training, akin to gently turning a knob to restrict the flow of gradients in a controlled
manner. By progressively reducing the softness, the network gradually transitions from a
relaxed state to a more constrained one, enhancing stability and allowing for more effective
parameter updates.

In the following chapter, we will delve into the details of this method, demonstrating how
it contributes to more stable and efficient training of binary mask layers, ultimately leading

to improved model performance and reduced sensitivity to gradient-related challenges.

6.1 Self-Shrinking of Sigmoid Slope

Although M., is generated by applying hard thresholding to P,(S(vy)) during inference,
the sigmoid function involved in the mask generation process during training, as defined in
Eq. (4.22), introduces a hyper-parameter s. This parameter can significantly influence the

model’s final performance. Poorly tuned values of s can lead to two types of errors:

* i) When s is too low, many mask entries will not converge to O or 1 during training, so
the hard thresholding process will alter the mask’s behavior significantly at inference

time, leading to performance degradation.

* ii) When s is too high, the sigmoid function risks experiencing vanishing gradient
problems, making training inefficient.

It is clear that the tuning of s is a critical and time-consuming task, often requiring numer-
ous training processes. Moreover, it is essential to note that s cannot be treated as a trainable
parameter. If it were, the network would naturally favor s = 0, resulting in a degenerate sce-
nario where all entries in M, are approximately 0.5, leading to an absence of undersampling.

In this work, we introduce a novel method to mitigate the burden of tuning s by imple-
menting a callback function, witch can automatically adjust the slope of the sigmoid function
during the training process. While this method is demonstrated in the context of the LOUPE
framework, it is equally applicable to a wide variety of problems, as discussed in [26, 19].

A callback function in the context of deep neural networks is a procedure that affects the
training process only during specific stages, such as at the end of an epoch. These functions
act independently of the backpropagation algorithm and are widely used in modern machine

learning workflows. Examples of callback functions include:

* 1) Early Stopping (ES), witch monitors the model’s loss at the end of each epoch and

halts training if the loss does not improve for a given number of epochs.

* ii) Reduce Learning Rate on Plateau (RLRP), witch lowers the learning rate when the

loss remains stagnant for a set number of epochs.
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* iii) Model Checkpointing (MC), witch saves the model’s weights each time the loss

decreases, ensuring that the best-performing model is retained.

To alleviate the need for manual tuning of s, we propose a callback function that auto-
matically adjusts the sigmoid slope by gradually increasing s as needed. Specifically, when a
set number of epochs (patience) pass without improvement in loss, the callback increases the
value of s. This process continues until a predefined maximum slope is reached. Through-
out the training process, model checkpointing ensures that only the best-performing weights,
associated with the lowest loss, are retained, and the model with the optimal auto-tuned s is
returned at the end of training.

We call this method Self-Shrinking of Sigmoid Slope (4S). The parameters of 4S include
the patience psg and a multiplication factor #1145 used to increment s after each trigger, such
that s; 11 = myg ;. In practice, the choice of these parameters is not critical, and we suggest
setting pss = 40 and myg = 1.5 as reasonable defaults.

The 4S method has a significant impact for several reasons:

* i) As training progresses, the mask M, becomes more "fossilized" as s increases, re-
sulting in a near-binary mask towards the end of training. This reduces the potential
performance drop typically associated with transitioning from a soft mask during train-

ing to a hard mask during inference.

* ii) The manual tuning of s is eliminated, simplifying the model development process

and enhancing training efficiency.

6.2 Numerical evidences

To evaluate the performance of our proposed strategy, we follow the structure outlined in
[3] and make use of a subset of the publicly available fastMRI dataset [76], witch has been
widely adopted in international competitions such as [57]. This subset includes 2269 normal-
ized grayscale MRI knee images, each with a resolution of 320 x 320 pixels. These images
are divided into three subsets: 1895 images (83.5%) for training, 188 images (8.3%) for val-
idation, and 186 images (8.2%) for testing. The dataset naturally groups scans into volumes,
where each volume represents a different knee, with approximately 40 slices per volume.
Every slice is normalized by the highest magnitude value in its respective volume to ensure
consistency across samples.

In alignment with our proposed model, the undersampling mask M., is not pre-defined
by the user but is entirely learned by the model during training. For inference tests, a deter-
ministic, binarized version of the trained masks is used.

We trained our models on an Nvidia V100 GPU using the Adam optimizer, starting with
an initial learning rate of 0.01 and a batch size of 16. The Peak Signal-to-Noise Ratio (PSNR)
is used as the primary figure of merit for evaluating reconstruction quality, witch is defined
as:

PSNR = —10log,, (MSE) (6.1)
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FIGURE 6.2: PSNR for R = 4 (circles) and R = 8 (squares), trained with
several fixed s values (blue points) and 4S (yellow points). 4S models return
s = 18800 and s = 1675 respectively for R =4 and R = 8.
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where MSE represents the mean squared error between the ground truth image x and the

reconstructed image & produced by the decoder.

6.2.1 Results and Comparison of Models with 4S

In this section, we compare the performance of models trained with and without our proposed
Self-Shrinking Sigmoid Slope (4S) technique. The models trained without 4S follow a tradi-
tional training process using Reduce Learning Rate on Plateau (RLRP), Early Stopping (ES),
and Model Checkpointing (MC). In contrast, the models trained with 4S first undergo a train-
ing phase using 45, ES, and MC, followed by a second training round where 4S is replaced
by RLRP. This two-stage strategy allows the model to explore various slope configurations
of s, resulting in more robust performance.

To illustrate how 4S operates, Fig. 6.1 presents histograms of the mask entries for dif-
ferent configurations of s = {20, 200, 2000, 5000, 10000, 50000}, both with and without 4S.
These histograms depict the values of the trained masks (before applying hard thresholding)
generated for R = 4 and R = 8. Specifically, we randomly sampled 1000 masks M, for
each s configuration and plotted the average distribution of their values. As expected, larger
values of s yield masks that are nearly binary, while lower s values result in masks with many
entries deviating from 0 and 1, thus reducing their binarized quality.

Notably, the 4S technique achieves excellent preservation of the binary structure in the
masks, with final s values of 18800 for R = 4 and 1675 for R = 8. This strong binary
structure in conjunction with the PSNR performance, as depicted in Fig. 6.2, further under-
scores the effectiveness of our approach and the importance of proper s tuning. The figure
suggests that the 4S method effectively identifies suitable settings that improve the image
reconstruction quality, highlighting its advantage over the fixed sampling approach.

Lastly, Fig. 6.3 provides a visual comparison of the masks generated for models trained
with R = 4 and R = 8, using s = {20,200,2000,50000} when applying 4S. As expected,
the masks associated with s = 20 exhibit many non-binary values, compromising their struc-
ture, while the masks generated with s = 50000 maintain a more binary configuration but
lack adaptability to the signal. In contrast, 4S successfully balances both aspects, producing
masks with a robust binary structure that are well-adapted to the input signal.

6.3 Trafe-off Summary

The Self-Shrinking of Sigmoid Slope makes training binary mask layers easier by automating
the tuning of a critical hyperparameter, i.e., it ensures a smooth transition to a near-binary

state. However, this comes at the cost of increased training complexity.
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(A) s=20

(B)

(c) s =2000

(D) s =15000

(E) 4S

FIGURE 6.3: Probability masks for R = 8 (first column) and R =
4 (second column), for cases where s is a hyperparameter (fixed s =
{20,200, 2000, 50000}) and for 4S (e, j) (s is automatically determined at
training time). Without 4S, low values of s produce mask values far from
either O or 1, so that the thresholding operation at inference time becomes
critical. High values of s hamper the training, and produce poor masks.
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Chapter 7

Embedding CS Constraint by Losses
and Projections

The foundational LOUPE architecture has made significant strides in the field of accelerated
MRI by introducing a learnable undersampling mask through its encoder-decoder structure.
However, despite its innovative approach, LOUPE faces certain limitations that hinder its
full potential. One of the main issues lies in the decoder design, witch, while effective, does
not fully exploit the information content provided by the undersampled measurements. As a
result, the quality of the reconstructed images may fall short, particularly when the under-
sampling is aggressive.

The encoder in LOUPE plays a critical role in determining witch parts of the frequency
space to sample, and it does so in a way that is optimized for the reconstruction process.
However, the decoder in LOUPE is relatively standard, focusing primarily on reversing the
effects of undersampling without adequately incorporating sophisticated corrections for the
artifacts that inevitably arise. This results in a potential loss of fine details, affecting the
overall quality and reliability of the reconstructed images.

To address these limitations, we propose a new approach that maintains the strengths
of LOUPE’s encoder while redesigning the decoder to better utilize the available measure-
ments. Our new decoder structure introduces additional layers specifically aimed at reducing
reconstruction artifacts and enhancing the quality of the final output. By incorporating deeper
correction mechanisms, our model is capable of achieving more accurate and detailed recon-
structions, witch are crucial for high-quality MRI applications.

Furthermore, our approach introduces a novel method to estimate the reconstruction error
directly from the measurements. This estimation serves as a proxy for image quality and
allows us to add a predictive capability to our model. By leveraging this feature, the model can
anticipate the quality of its reconstructions in real-time, offering a from of self-assessment.
This is particularly valuable in clinical settings, where ensuring the quality of reconstructed
images is paramount for accurate diagnosis.

In summary, our proposed model builds on the strengths of LOUPE but addresses its key
shortcomings by:

* Modifying the decoder to more effectively correct for undersampling artifacts, thereby

significantly enhancing the quality of the reconstructed images.
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* Introducing an error estimation mechanism that allows for real-time quality assess-
ment, paving the way for adaptive acquisition strategies that ensure consistent image

quality.

This new approach aims to push the boundaries of accelerated MRI, making it not only
faster but also more reliable, with built-in mechanisms for quality control. By addressing both
the reconstruction and the assessment aspects of MRI, we provide a more holistic solution

that promises better performance and robustness in practical applications.

7.1 Enhanced LOUPE

The original architecture and its training procedure can be improved in several directions. To

do so, we begin by defining a set of convex subsets of the space of complex-valued images
IIC == CdXdi

I, = {x[y=M,oF(x)}
II]R — IRdXd
Iy = [0,1]7

Notice that the original decoder Dec0- ensures that the reconstruction % belongs to IR,
Le., it is real-valued, but it does not guarantee that & € I 1), meaning the reconstruction may
not always be within the valid image range [0, 1].

For a generic subset I C I, we define I'Ty(+) as the projection operator that projects any
input onto I. The projections onto Ig and I g ¢j are given by:

My (x) = Refx}
Iy, () = max{0,min{l,Re{x}}}

where all operations are applied element-wise over the matrix.

For the projection onto I, observe that the encoding operator Enc(-) = M, o F(-) is
a non-injective linear operator that maps onto a (r#)-dimensional subspace (where 7 is the
undersampling ratio). The projection Iy, (x) can be computed as:

Iy, (x) = argmgin lc—x|, st Enc(¢)=y (7.1)
The solution to this minimization is given by:
Iy, (x) = x + Enc" (y — Enc(x)) (7.2)

where Enc™ (+) denotes the Moore-Penrose pseudo-inverse of Enc(-).
To derive this projection, note that the encoding operator can be split into two compo-

nents: Enc*(-) = (1— M,) o F(-), witch complements Enc(+) by operating on the masked
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out Fourier components. The Fourier transform of I, (x) is then:

.7:(H]1y (x)) = Enc(x)+ Enct (x) +y — Enc(x) + Enct (Enc™ (y — Enc(x)))
= Enct(x)+y

where we used the fact that Enc* (Enc™(-)) = 0. This gives the final projection in the image
domain:

Iy, (x) = F (1 — M) o F(x) +v) (7.3)

Thus, Iy, (x) is obtained by performing a Fourier transform, substituting the available mea-
surements y into the transformed image, and then applying an inverse Fourier transform.
We propose several improvements to the original decoder architecture, starting with a

slight modification of its structure (illustrated in Fig. 7.1), witch produces the estimate:
o 1 s — |1 C (-1
%, = Dec!(y) = |5 = |7} (y) + D§ (F ()| (7.4)

where X is an intermediate complex estimate, and Dg is a neural network responsible for
correcting both the real and imaginary parts of the reconstruction. In practice, Dg, maintains
the same architecture as Dg{ but its output is complex valued (two channels output, one for
the real and one for the imaginary part).

This modification introduces an additional error metric, 61, witch measures the difference

between the observed measurements y and those produced by the intermediate estimate X:
57 = lly — Enc(®)], (1.5)

A good reconstruction should yield a small value of 4. This new information can be

incorporated into the training process by defining a revised loss function:
L'(v,0) = Ey[(1 — ¢)dx + ¢67] (7.6)

where ¢ € [0,1] is a user-defined parameter that balances the importance of & being close
to the ground truth x and X reproducing the correct measurements. This multi-term loss al-
lows us to train the decoder with more attention to the accuracy of the measurements, thus
improving the overall quality of the reconstruction.

As an alternative approach, one can integrate the measurement matching criterion directly
into the signal chain, leading to the definition of the following decoder structure (see third

decoder architecture in Fig. 7.1):
%= DecX(y) = |y, (F~'(y) + DE(F ()| (1.7)

This decoder, Dec?(-), incorporates a projection onto I, of X, thus improving the measure-
ment matching criterion during the processing phase. It is typically trained using the loss
function L%(+y, 6).

A significant advantage of using Decz(-) is its ability to enhance the alignment of the
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=l

=t

FIGURE 7.1: Schematic representation of all LOUPE adaptations.
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estimated image with the actual measurements. This inclusion directly refines the decoder’s
ability to match the measurements observed during the acquisition phase.
Additionally, regardless of the specific inner decoder employed, a final stage can be ap-

pended to ensure that the reconstructed image meets all the necessary criteria, defined as:

x= Deci*(y) = H(Hyml[m]) (Deci(y)) (7.8)

The projection H(Hym]l[(]/l]) can be computed using Dykstra’s alternating projections algo-
rithm [16, 12], leveraging the elementary projections onto I, and I ).

Incorporating a final projection stage guarantees that the final image reconstruction is
consistent with the observed measurements and lies within the feasible image range [0, 1].
This strategy ensures that the reconstruction respects the available Fourier coefficients. How-
ever, it is important to note that during the decoding stage, the Fourier components of x
that are not directly measured remain unknown and cannot be utilized in the reconstruction
process.

Nevertheless, during training, all Fourier components of the ground-truth image x are
available. To take advantage of this, one can improve the performance of Dec™*(-) by incor-
porating a loss function that accounts for the non-measured Fourier components. This leads
to the definition of the error term:

Syt = HEHCJ‘ (%) — EncL(x)H2
This error captures how well the intermediate estimate ¥ matches the Fourier components
that x would have produced if they had been acquired. This criterion can be used to define an

alternative loss function:
L%(y,0) = Ex [(1 —p)ox + ¢5yL] (7.9)

where ¢ € [0,1] is a user-defined weight that balances the reconstruction error and the
mismatch of the non-acquired Fourier components.
It is worth mentioning that this approach has shown to yield substantial performance

improvements when combined with the decoder Dec!*(-).

7.2 Self-assessment

All the enhanced decoders we propose take advantage of the fact that high-quality recon-
structions should exhibit small values of 67.

In an ideal reconstruction pipeline, each estimated image should closely approximate the
original image, thereby generating measurements that align with the acquired ones. Thus, we
can reasonably assume that defining:

9 = |ly — Enc(2) |, (7.10)

when the reconstruction process fails, both i and/or 0 will be significantly larger than zero.
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Consequently, 6 and 61, both computable using only the actual measurements y, have
magnitudes that serve as proxies for the decoder’s performance. This insight can be leveraged
in a self-assessment stage, witch follows the reconstruction process. The purpose of this stage
is to provide the user with additional feedback about the quality of the reconstructed image
during inference, i.e., when the ground truth image x is unknown, and the system relies solely
on the frequency components present in y.

To evaluate the effectiveness of % and/or Jiy as predictors of decoder performance, we
compute the Pearson correlation coefficient,

o(a,b) = < @h),

Uaab
where cov (-, -) denotes the covariance between two vectors, and o refers to their standard
deviation.
We adopt p(0%, 54y) for Dec®(-), p(&a*c, 51) for Dec”(-), and p((Sy*c, 07y) for the other

* *
proposed decoders, where dx= Hx— x

.
7.3 Numerical Evidence

In this section, we present numerical evidence supporting the effectiveness of the proposed
approach for MRI undersampling and reconstruction. We provide comparisons with standard
undersampling methods, highlighting improvements in reconstruction quality.

7.3.1 Dataset

To ensure consistency with [3], we evaluated our models using a subset of the publicly avail-
able NYU fastMRI dataset [76], witch has been widely used in international MRI reconstruc-
tion competitions [31, 57].

The selected dataset consists of single-coil proton density-weighted scans, emulated from
the original 15-channel multi-coil raw data, acquired using the Biograph mMR scanner.

The dataset is structured in volumes, with each volume consisting of multiple grayscale
slices. Each slice is of size N = 320 x 320, and pixel values are normalized into the range
[0, 1] by dividing by the maximum magnitude within the respective volume.

The dataset was split into three parts: 50 volumes for training, 5 volumes for validation,
and 5 volumes for testing. Training volumes contain between 34 to 42 slices each, validation
volumes between 34 to 40 slices, and test volumes between 35 to 45 slices. This yields a total

of 1895 training slices, 188 validation slices, and 186 test slices.

7.3.2 Training and Evaluation

The original DE and our modified Dg architectures have nearly the same number of trainable
parameters (31,504,323 vs. 31,504,388). Training was performed on an Nvidia V100 GPU
using the Adam optimizer, with an initial learning rate of 0.01 and a batch size of 16.
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(B) Dec!|L!

(C) Dec!|L?

(D) Dec?|L°

FIGURE 7.2: Undersampling masks M, for all considered decoders (starred
and non-starred versions share the same undersampling mask). The first col-
umn is trained with R = 4, the second with R = 8.
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FIGURE 7.3: Effect of final projection on various decoders for R = 4.

To evaluate the reconstruction quality, we used the Peak Signal-to-Noise Ratio (PSNR)
metric, witch is defined as:

PSNR = 101og;, (%) (7.11)
where MSE is the mean square error between the ground truth image x and the reconstructed
image X.

We evaluated our models using R = 4 and R = 8. For each R, we tested four con-
L9 (original LOUPE
[3]), Dec! |L! (witch emphasizes the ability to reproduce physical measurements), Dec! |L?

figurations of decoder architectures and training loss functions: Dec’

(witch focuses on predicting the Fourier coefficients not captured during acquisition), and
Dec? |L? (witch incorporates an approximate measurement constraint directly in the network
architecture rather than the loss function).

In all cases, we also evaluated the performance of the "starred" version Dec™, witch
includes a final projection stage to ensure that the reconstructed image satisfies the physical
measurement constraints.

The best values of ¢ in Dec! |L! were determined experimentally as ¢ = 10~ for R = 4
and ¢ = 10~* for R = 8. For Dec!|L?, the optimization yielded ¢ = 1 for both R = 4 and
R = 8, suggesting that the best performance is obtained by focusing solely on the regular-
ization term, witch aims to predict the Fourier coefficients not captured during acquisition.

This approach performs best when combined with a final projection stage.

7.3.3 Undersampling Masks

To demonstrate how encoder adaptation functions in different architectures, Fig. 7.2 shows
the resulting fixed binary masks M, from Eq. (4.27) for each trained model. The white
dots indicate the Fourier coefficients that are retained by the system during acquisition. As
expected, the number of retained coefficients decreases with increasing R.

It is also evident that different decoder architectures and training strategies result in dif-
ferent undersampling masks, as the encoder is co-optimized with the decoder. This highlights
the interplay between undersampling patterns and decoder performance in CS-based MRI ac-

quisition frameworks.



7.3. Numerical Evidence 71

7.3.4 Results

The performance plots for the overall signal chain have a consistent format across different
configurations. Each plot shows the results for all the slices in the 5 test set volumes. The
horizontal axis corresponds to slice positions, where the first slice of volume i + 1 directly
follows the last slice of volume i. Each slice’s reconstruction quality is represented by a point
on the vertical axis, corresponding to the PSNR. The non-uniformity of the slices and the
volumes’ complexity results in a varied PSNR profile across the plots.

Fig. 7.3 illustrates the impact of adding the projection operator I Iy 4Ny tO modify Dec'

0,1
into Dec’* for R = 4. Dotted lines represent the non-starred conﬁgurati]ons, while solid
lines correspond to the starred versions. The comparison highlights the effect of the final
projection.

The final projection step shows minimal impact for Dec? |L?, as the architecture of Dec?
already includes I Ty " the primary component of Hllyﬁll[o,l] . For the other architectures, I'Ij Mgy
proves especially effective for the more challenging slices, with dramatic improvements when
the training loss function is L2. This is expected because, with ¥ = 0, the network focuses
on predicting the Fourier coefficients not acquired, witch complements the role of Hﬁymﬁ[m].

Overall, the highest performance on this dataset is achieved by Dec'* |L2, followed closely
by Dec?* | LY. To quantify these improvements over the original LOUPE (Dec? |L%), we present
the average, minimum, and maximum PSNR values in Table 7.1 for R = 4 and in Table 7.2
for R = 8. Notably, the proposed architectures deliver a PSNR improvement of up to 2.1 dB
for R =4 and 1.7 dB for R = 8 compared to the original LOUPE.

Additionally, Table 7.3 provides the comparison matrix for the test set, showing how
many slices were better reconstructed with the configuration in the column compared to the
row configuration. This table applies to R = 4 and shows a similar trend for R = 8. Further-
more, Fig. 7.4 compares the proposed methods (solid lines) with LOUPE (DecO | L% (dashed
line) for both R = 4 and R = 8. As expected, increasing the acquisition ratio from R = 4 to
R = 8 results in a PSNR reduction of approximately 3 dB (as also shown in Tables 7.1 and
7.2).

These numerical results underscore the significant improvements of the proposed archi-
tectures over the baseline LOUPE model in [3]. Specifically, Decz*|L0 consistently delivers
the best performance across all test set slices. For a visual comparison, Fig. 7.5 shows recon-
structed images using Decz*|L0 and the original LOUPE model, along with the correspond-
ing ground truth images.

Table 7.4 reports the Pearson correlation coefficient between the reconstruction errors at
the decoders’ outputs and the measurement approximation errors computed from the same
decoder outputs.

Excluding the case of Dec'* |L!, witch shows less promising results, the correlation val-
ues are generally strong, indicating a good agreement between decoder performance and the
adherence to the measurement constraint. These results suggest that the error in the approx-
imation of the measurements could serve as a proxy for evaluating the quality of the recon-

structed image. This ability to self-assess the decoder’s output may be useful for designing a
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TABLE 7.1: Average (i), minimum (min) and maximum (max) values of
PSNR [dB] for the five volumes composing the test set and R = 4.

Dec®|L0  Dec™|L® Dec™*|L! Dec™*|L2  Dec?|L°

U 42.2 42.7 43.1 43.4 43.6
vol.l min 40.4 41.2 40.7 42.1 423
max 45.2 45.6 45.7 45.9 46.1

U 42.3 427 43.1 43.3 434
vol.2 min 40.2 40.7 41.3 41.5 41.7
max 45.7 46.0 46.2 46.3 46.4

U 41.5 42.2 42.8 43.1 43.3
vol.3 min 40.6 41.4 42.1 42.4 42.5
max 43.5 44.2 44.5 44.8 45.0

U 43.9 443 44.7 45.0 45.1
vol4 min 41.8 42.4 429 43.2 43.3
max 47.5 47.8 48.0 48.1 48.2

U 439 44.4 44.7 45.0 45.1
vol.5 min 41.8 42.5 43.0 43.2 434
max 47.3 47.6 47.8 48.0 48.1

detector capable of identifying poorly reconstructed images, a topic we intend to explore in
future work.

To illustrate the meaning of the computed correlation coefficients, Fig. 7.6 presents scat-
ter plots showing the relationship between reconstruction errors and the errors in fitting the
measurement constraint. | Interestingly, all plots in Fig. 7.6 share the same y-axis scale, but
the x-axis scales vary significantly. This is due to the fact that, during training, Dec:O\L0

directly minimizes Jiy, while Dec! |L? and Dec? |L° do not explicitly minimize 6.

IThe results for Dec* |L1 are not included as they do not provide meaningful insights.

48

MMM

PSNR

40

| Decy | L0 Decy*| LO Decy*| L!
38| - Decg*| L‘2 — DecéT\LO | | | |
vol. 1 vol. 2 vol.3 vol. 4 vol. 5 vol. 1 vol. 2 vol.3 vol. 4 vol. 5
(@ R=4 (o) R=38

FIGURE 7.4: PSNR values for all considered decoders and for the 5 volumes
composing the test set. Volumes number 1,2,3 and 5 include 35 slices while
45 slides are in volume 4.
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(A) ground truth

(B) DeCO|L0

(C) Dec®|L0

FIGURE 7.5: Left side of (a) represents a single Knee image from the dataset
"fastMRI", volume 2 and slice number 24 in the test set. Left sides of (b) and
(c) correspond to reconstructed images by Dec” |L° with PSNR equal to 37.7
dB, and Dec?*| L with 38.9 dB. Reconstructions refer to R = 8. Right side
images highlight the region of the images in the left sides in the red box.
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TABLE 7.2: Average (i), minimum (min) and maximum (max) values of
PSNR [dB] for the five volumes composing the test set and R = 8.

Dec®|L0  Dec™|L® Dec™*|L! Dec™*|L2  Dec?|L°

U 39.9 40.3 40.6 40.8 41.0
vol.l min 38.0 38.5 39.1 39.3 39.5
max 43.2 43.5 434 43.7 439

U 40.1 40.4 40.6 40.8 41.0
vol.2 min 37.7 38.1 38.5 38.6 38.9
max 43.8 44.2 44.3 443 44.5

U 39.1 39.5 39.9 40.2 40.4
vol.3 min 384 38.8 39.2 39.5 39.7
max 40.9 41.4 414 41.9 42.1

U 41.6 42.0 42.3 42.4 42.6
vol.4 min 394 39.8 40.3 40.5 40.6
max 45.6 46.1 46.2 46.1 46.4

U 41.7 42.1 42.3 42.5 42.7
vol.5 min 394 40.0 40.3 40.6 40.7
max 45.5 45.9 46.0 46.0 46.2

7.4 Trade-off Summary

Our method explicitly incorporates a measurement-preservation constraint into both the loss
function and the decoder architecture. By enforcing this constraint, our approach enhances
image reconstruction quality, ensuring that the recovered signals remain faithful to the ac-
quired measurements while still allowing for learned optimizations in the encoding and de-
coding process.

One of the key advantages of our approach is its ability to discover new undersampling
patterns. In particular, as demonstrated for Decz*\LO, learn acquisition patterns in a novel
manner. Our approach jointly optimizes the encoder and decoder, hence the new patters are
a result of double optimization.

Another advantage is that the improved reconstruction quality comes with a negligible
increase in computational cost and model complexity, in particular for the case of Dec? |LO.
The new incorporation does not introduce significant overhead, making the approach as fea-
sible as its predecessor.

One drawback of our experiments is on undersampling patterns: without extensive evalu-
ation on commonly used undersampling patterns, the demonstrated performance need further
validation to improve generalization. Nevertheless, as a side result, in the following chapter

the method will be demonstrated to work on Cartesian sampling.
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FIGURE 7.6: Error in the measurement constraint fitting versus reconstruc-

tion error for the images composing the test set. Results are for all considered

approaches except for Dec!* |L!. Top plots are for R = 4 while bottom plots
are for R = 8.

TABLE 7.3: The improvement matrix for R = 4. Each cell contains the

number of slices in the test set for witch the configuration labeling the cor-

responding column performs better than the configuration labeling the cor-
responding row.

Dec®|L0 Dec™ |0 Dec™*|L! Dec*| 12 Dec?*|L0

0170
Dec’IL 186 183 186 186
Dec%| 19 0 179 186 136
Dec™*|L! 3 7 186 186
Dect¥| L2 0 0 0 186
Dec?*| L0 0 0 0 0

TABLE 7.4: Pearson correlation coefficient between reconstruction error
and the measurement mismatch.

Dec?|L0 Dec®|L0 Dec!|L! Dec!*|L2 Dec?*|L9

p(69,08)  p(09,6x)  p(omex)  p(mdx)  p(67,0%)

0.877 0.837 0.138 0.853 0.821
0.888 0.866 0.198 0.535 0.863

~ =
Il
®
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Chapter 8

Incremental Acquisition

Typically, the fast MRI acquisition problem is approached by optimizing the acquisition and
reconstruction process over a dataset consisting of multiple volumes, where each volume
contains several slices. Generally, the central slices tend to be more intricate and feature-rich,
whereas the peripheral slices are simpler and contain fewer details. Thus, applying the same
acquisition effort uniformly to all slices within a volume is inefficient. Nevertheless, this
is exactly how the conventional acquisition process operates-disregarding individual slice
optimization, ultimately limiting adaptability and quality control.

We propose a novel acquisition strategy called Incremental Adaptive MRI Acquisition,
witch aims to address these limitations by introducing a more flexible, quality-driven ap-
proach to MRI acquisition. Instead of using a fixed acquisition pattern, our method divides

the acquisition of each slice into batches, where each batch consists of three main steps:
* Sensing: Partial acquisition of k-space information.

* Reconstruction: Reconstruction of the current approximation of the slice from the ac-

quired k-space data.
* Quality Estimation: Evaluation of the reconstructed slice’s quality.

Based on the estimated quality, the sequence continues with additional sensing steps or ter-
minates once the desired quality is achieved. This iterative process is illustrated in Fig. 8.1,
showcasing the adaptive nature of our approach, witch tailors the acquisition to the content of
each slice, ultimately gaining control over reconstruction quality while overcoming the rigid
limitations of classic acquisition methods.

We build our experiments on top of the model that in Chapter 7 guaranteed the best
performances, i.e., Dec?* trained with the loss L0. To alleviate notation, we will now refer to
Dec?*|L as Dec and to its output as &.

This work is not the first to propose slice-adaptive k-space acquisition patterns, com-
monly referred to as masks or binary masks, in the context of MRI [23, 85, 24]. In [23],
the authors introduce slice-specific sampling strategies based on an initial acquisition batch
focused on a low-frequency segment of the k-space. Similarly, [85, 24] propose iterative
adaptation of k-space acquisition across a predefined number of K iterations, where each
iteration is informed by the results of the previous one. Specifically, [85] uses a single un-
rolled model throughout all iterations, whereas [24] utilizes separate networks for sampling

and reconstruction. Unlike these approaches, our method dynamically determines when to
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DECODER

QUALITY
ASSESSMENT

FIGURE 8.1: Incremental Acquisition scheme. At every iteration the MRI
machine acquires a batch of samples, that are accumulated with the previ-
ously acquired samples in the k-space. A decoder block recreates the anatom-
ical image witch quality is assessed by a specific block. If a target quality is
reached the acquisition stops, otherwise another iteration is launched.

terminate the acquisition based on a quality threshold, allowing the number of iterations K to
vary, thereby removing the necessity for a predefined K.

Additionally, we are not the first to associate a quality score to MRI reconstructions.
In [17], uncertainty is quantified using the Stein’s Unbiased Risk Estimator (SURE), witch
evaluates the effect of adding Gaussian noise to the encoded image by means of a Monte
Carlo simulation. SURE computes second-order statistics of the reconstructed image set to
provide an uncertainty measure. While the authors demonstrate that SURE can serve as an
indicator of reconstruction uncertainty, they also note that SURE is not necessarily a measure
of reconstruction quality. For example, adversarial loss training might yield lower SURE
values, suggesting lower reliability, even though it tends to improve the reconstruction quality
compared to standard loss training.

In general, implementing a quality estimator falls within the broad field of No-Reference
Image Quality Assessment (NR-IQA), whose goal is to estimate the quality of a corrupted
image without reference to the original image [54, 55]. However, unlike NR-IQA, we benefit
from prior domain-specific knowledge, albeit limited. NR-IQA applied to MRI acquisitions
often focuses on developing new metrics to better approximate human perceptual quality
[35].

In this work, we utilize well-established metrics such as Mean Absolute Error (MAE),
Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) for quality as-
sessment. Nevertheless, we believe that alternative evaluation metrics, such as those proposed
in [65, 17], metrics focused on detecting motion-related artifacts [33], or metrics from pure
NR-IQA approaches [81], could be integrated into our framework to further enhance the

overall acquisition process.
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This study explores unconventional strategies for MRI acquisition, focusing on simpli-
fied scenarios-namely, simplified MRI physics-to emphasize conceptual clarity over technical
complexity. Our aim is to inspire future advances in MRI acquisition methodologies, rather

than presenting a single fully-optimized model.

8.1 Model

In this section, we extend the traditional acquisition process by introducing a novel approach
called Incremental MRI Acquisition.

For undersampling factors R > 1, the autoencoder .A., g inevitably introduces reconstruc-
tion errors, resulting in quality degradation measured by a quality function Q(x, &). Given an
input x, it is reasonable to assume that there exists a monotonically decreasing relationship
between s and Q(x, &).

One approach is to determine a maximum undersampling factor R such that Q(x, &) >
Jmin holds for all images x € &', where X" denotes the set of all possible input instances.
However, instead of using a fixed value of R, it may be advantageous to develop a strategy
that dynamically identifies, for each image x, the highest s that still satisfies the minimum
quality requirement.

To achieve this, we consider a set of undersampling factors R = {R(l), ... ,R(N )},
with each R() corresponding to a different autoencoder A(Wi,)e and associated undersampling
mask M®). We then provide a procedure that, for each incoming image, selects the highest
undersampling factor that meets the quality constraint.

The task of determining the highest R € R that satisfies the quality condition Q(x, &) >
Jmin for a given image x is formulated as an optimization problem, with the solution referred

to as an oracle-based approach.

R* =argmaxR
RER (8.1)
subjectto  Q(x, %) > Gmin

The above problem cannot be solved at inference time because x is unknown, hence we

rewrite Eq. (8.1) as

R* =argmax R
RER (8.2)
subject to Q(y, &) > Gmin

where Q(y, &, - ), referred to as the Quality Assessment, serves as an estimate of the true
quality metric Q(x, &). The function Q(y, &, - - - ) leverages all available information, such
as y and %, to provide an approximation of image quality, potentially incorporating additional
inputs like x from Eq. (7.4).

Consider the elements of R arranged in descending order such that R® > RO+ and
construct the sequence of undersampling masks { M ™, .., MWV )} in a manner that respects

the incremental constraint M) — MU~ ¢ {0,1}9%4_This condition implies that any mask
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FIGURE 8.2: Incremental Acquisition scheme. At every iteration the MRI
machine acquires a batch of samples, that are accumulated with the previ-
ously acquired samples in the k-space. A decoder block recreates the anatom-
ical image witch quality is assessed by a specific block. If a target quality is
reached the acquisition stops, otherwise another iteration is launched.

s§@ Error Correction J

M includes all k-space samples selected by the preceding mask M (1), along with a batch
of additional samples.

Our approach to solving Eq. (8.2) involves an incremental method, where we utilize all
autoencoders AE:,)G(x) corresponding to undersampling factors R > R*. The proposed
algorithm for implementing this procedure is illustrated in Fig. 8.2 and detailed in Algo-
rithm 8.1, where 0 represents the null matrix, M 0 = 0, and get_sample(-) denotes the
MRI sampling operation, modeled by Eq. (4.23) during design, witch takes the undersam-

pling mask as input.

Algorithm 8.1 Incremental Adaptive Acquisition (slice)

Require: gmin: a minimum quality level
Require: {M ™, .., MN) }: a sequence of incremental masks with corresponding under-
sampling ratio {R("), ..., RN}, with M(©) =0
i1
g<0
y<0
while § < gmin do
Ay < get_sample(M®) — M(~1)
y < y+ AyY
&, X < Dec(y)
4 Qly,%,%)

i+—i+1
end while
R* = R(®)

return R*, &

Building upon the encoder design presented in the work [48], we introduce an incremen-
tal constraint on the sequence of binary masks that define the sequence of autoencoders. The

set of incremental masks {M @, MW )} is constructed by training the corresponding
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1)
Ny YRR
senting the lowest undersampling ratio s) and proceeding to i = 1 (the highest R). Notably,

autoencoders {.A , AEYI,\Q} in a decremental fashion', beginning from i = N (repre-

each mask M) is derived from M+ through a specialized layer within the encoder that
ensures the entries with value one in M) are a subset of those in MU +1).

To make this approach effective, the function Q( -+ ) must be capable of accurately pre-
dicting the reconstruction quality at each stage of the incremental acquisition process. In-
spired by recent advances in No-Reference Image Quality Assessment (NR-IQA) [41, 9],
we implement Q( -+ ) using a deep neural network. However, we deviate from the conven-
tional NR-IQA approach by utilizing additional information beyond just . Our architecture
is composed of two primary blocks: the Error Estimation block and the Error Correction
block. These two blocks produce scalar outputs that are subsequently combined to estimate
the final image quality. A schematic overview of the incremental acquisition, including the
neural quality predictor, is depicted in Fig. 8.2.

The first block takes as input the error € = |Enc (¥) — y||;, where ||-||; represents
the standard /1 norm, and uses it within a quadratic function to generate an output € =
ae? + be +c. As previously demonstrated [50, 48], this estimated value € serves as an initial,
albeit rough, proxy for the reconstruction quality. The Error Correction block then extracts

additional features:

v = gpool (Bs (B4 (Bs (B2 (B1 (Bo (%))))))) (8.3)

where gpool denotes a global average pooling operation that outputs a scalar feature 6 € IR,

and each block B; performs the following:

B;(-) = pool (BNﬁj (ReLu(Convaj ()))) (8.4)

where j represents the block index; pool indicates the average pooling operation with a win-
dow size of 2 x 2; BNy represents the batch normalization process with parameter §; ReLU
refers to the Rectified Linear Unit activation function; and Conv, denotes the convolution
operation with a 5 x 5 kernel, parameterized by «. The number of filters in each convolution
layer Conv,, is set to [10,8,6,4,2,1].

Subsequently, the outputs from the two branches are concatenated and passed to a fully
connected Dense layer, parameterized by we and w.,, witch yields the estimated quality:

Qy, &, %) = weé + wyy (8.5)

All parameters, namely a, b, ¢, «;, B;, we, and w., are trainable and are optimized during the

training process by minimizing the following loss function:

Lo(a,b,c,a, B,we,wy) = Ey [||Q(x, %) — Q(y, %,%)||,] (8.6)

'Empirical evidence indicates that training in a decremental order yields better performance compared to
training in incremental order.
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FIGURE 8.3: Incremental Acquisition scheme. At every iteration the MRI
machine acquires a batch of samples, that are accumulated with the previ-
ously acquired samples in the k-space. A decoder block recreates the anatom-
ical image witch quality is assessed by a specific block. If a target quality is
reached the acquisition stops, otherwise another iteration is launched.

Since z, and consequently X and X, depend on the undersampling mask M, a separate
quality estimator Q is required for each mask M @) in our approach.

A detailed visual depiction of the quality assessment block is provided in Fig. 8.3.

8.2 Numerical Evidence

In this section, we present the results of our incremental MRI undersampling approach, witch
dynamically adjusts the k-space acquisition based on the estimated reconstruction quality.
The proposed method is evaluated against traditional fixed-pattern undersampling, showcas-
ing significant improvements in efficiency by reducing the number of acquired samples while
maintaining or exceeding the desired image quality. The results demonstrate the adaptability
and effectiveness of the incremental approach in optimizing the MRI acquisition process,

ensuring a balance between acquisition time and reconstruction quality.

8.2.1 Dataset

To evaluate our proposed approach, we utilize two publicly available datasets: the NYU
fastMRI dataset [28] and the IXI dataset [10]. The fastMRI dataset contains fully-sampled



8.2. Numerical Evidence 83

knee scans, while the IXI dataset provides fully-sampled brain scans. In accordance with the
workflow presented in Fig. 8.2, we use the reconstructed images provided by these datasets
rather than the raw k-space data. We generate k-space by applying the Fourier transform to
each image from all volumes for both datasets considered in this study.

In our experiments, we represent the k-space as a two-dimensional Cartesian grid and
evaluate our method using two different sampling strategies: i) Line-Constrained, witch fol-
lows straight-line sampling paths, aligning with typical 2D imaging approaches, such as Spin
Echo sequences where the frequency-encoding dimension is represented on the x-axis and
the phase-encoding direction on the y-axis of the k-space; ii) Unconstrained, witch provides
more flexibility and enables an exploratory analysis of the model’s potential capabilities. Al-
though this unconstrained approach could theoretically be extended to 3D imaging (using one
frequency encoding dimension and two phase encoding dimensions), its practical deployment
would require additional investigation.

By combining the two datasets with the two sampling strategies, we derive four dis-
tinct scenarios, named as follows: i) FastMRI-U; ii) FastMRI-C; iii) IXI-U;iv) IXI-C,
where U and C denote Unconstrained and Line-Constrained sampling strategies, respectively.
We use the 320 x 320 single-coil proton density-weighted images from the FastMRI dataset,
and similarly, we work with 256 x 256 single-coil T1-weighted images from the IXI dataset’.

Both datasets are naturally organized into volumes, each containing multiple grayscale
slices. To address the inherent variability in intensity across volumes acquired independently,
each volume is normalized by dividing its pixel values by the maximum intensity within that
volume. This ensures consistent contrast across different patients without causing distortions.
The FastMRI dataset is divided into training, validation, and test sets, comprising 50, 5, and 5
volumes, respectively, with each volume containing between 34 to 45 slices. The IXI dataset
is similarly split into training, validation, and test sets consisting of 166, 11, and 8 volumes,
respectively, with each volume containing 150 slices.

For the IXI~-U and IXI-C experiments, the data split consists of 166, 11, and 8 volumes,
and 166, 12, and 7 volumes for training, validation, and test, respectively. An additional
validation volume was used for IXI~-C to estimate and compensate for an unexpected bias
in the quality assessment.

Within each volume, initial and terminal slices exhibit fewer anatomical details, with
higher concentrations of information towards the center of the volume. Fig. 8.4 illustrates
slices 5, 15, 25, and 35 (for FastMRI) and slices 30, 60, 90, and 130 (for IXI), confirming
this pattern.

8.2.2 Training Parameters

For training, we utilize the Adam optimizer with an initial learning rate of 0.01, combined
with early stopping and a learning rate reduction on plateau to ensure stable convergence.

During testing, binary masks are drawn based on the generated probabilities from training,

ZWhile this study focuses on single-coil data, our proposed acquisition strategy is extendable to multi-coil
scenarios, witch will be addressed in future work.
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FIGURE 8.4: Some slices from the first volume of both FastMRI and IXI

datasets (first and second columns respectively). Slice index for FastMRI are,

in order [5, 15,25, 35|, while for IXI are [30, 60,90, 130]. These sequences

show how a volume is made by images of different information content. For

improved visualization, all images have been linearly rescaled to enhance
visual contrast.
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FIGURE 8.5: Sampling pattern for the four use-cases. Each pixel of the im-

age is a sample of the k-space, that is painted proportionally with the under-

sampling ratio R at witch it is acquired. The higher the associated undersam-
pling ratio (the sooner it is acquired), the brighter the pixel.
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where each mask element (pixel or line) represents the probability of being non-zero. Once
a mask is drawn, it remains fixed throughout the evaluation phase.

The autoencoder model consists of approximately 31.5 million trainable parameters.
Each of the N self-assessment models, corresponding to different undersampling ratios R €
‘R, contains roughly 5.5 thousand parameters. For each model A,(Yi,)ﬂ, we perform training
across | different random weight initializations and subsequently select the model with the
highest average reconstruction quality. The value of [ is set to 5 for the FastMRI dataset and

2 for the IXI dataset.

R = {64, 32,24,20,16,12,10,8,6, 5,4, 3}.
For IXI-U we consider

R = {64,32,24,20,16,12,10,9,8,7.5,7,6.75,6.5,
6.25,6,5.75,5.5,5.25,5,4.75,4.5,4.25,4,3}.

while IXI-C refers to

R = {64,32,24,20,16,12,10,9,8,7,6.5,6,5.75,5.5,
5.25,5,4.75,4.5,4.25,4,3.75,3.5,3.25,3}.

For the FastMRI-U and FastMRI-C scenarios, we use a subset of undersampling
ratios R*. In a real-world application, the parameter gmin, Witch represents the minimum ac-
ceptable reconstruction quality, should be defined by domain experts. For experimental pur-
poses, we adjusted R to achieve competitive performance within the range gmin € [38,44].
To extend or modify this range, it is sufficient to adjust the set R.

8.2.3 Evaluation Metrics

To assess the quality of each reconstruction we adopt three different metrics:
» Peak Signal-to-Noise Ratio:

2
PSNR(x, %) = 10log,, (1\%) (8.7)

2

where MSE(x, &) = 1/ ;:01 ([x]; — [&];)?* is the Mean Square Error between x and
the decoder output and [x]; refers to the j-th pixel of the flattened matrix. Notice that,
max(x) = 1.

e Inverse dB Mean Absolute Error:
1 . max(x)
MAEdB (x, X) =20 loglo (]_\W) (88)

3For FastMRI-C, the final evaluation set is reduced to R = {16,12,10,8,6,5,4,3} due to failure in con-
vergence of the quality estimator for the remaining four undersampling ratios.
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Where MAE (x, &) = 1/ ;1:_01 |[x]; — [#]; is the Mean Absolute Error between x and
the decoder output.

e Structural Similarity Index:

(2uxpz + c1)(20%z + c2)
(12 +p2+c1)(02 + 02+ 2)

SSIM (x, &) = (8.9)

where iy and iz denote the local mean values for the original and reconstructed im-
ages, respectively; oy and o3 represent the local variances; and oy is the local co-
variance between the decoder output and the ground-truth. The term local implies that
these statistics are calculated over sliding windows of size 11 x 11, where each pixel
is weighted by a Gaussian kernel with a standard deviation of 1.5 pixels. In the above
formula, c; = (kyD)? and ¢c; = (kpD)?, with D being the dynamic range of pixel

values, and constants k1 = 0.01 and k, = 0.03 as recommended in [80].

8.2.4 Introduction to Experiments

To validate the effectiveness of our proposed approach, we conducted a series of experiments
aimed at evaluating different facets of the acquisition and reconstruction process. The exper-

iments are centered around three main aspects:

¢ Feasibility: We present all sampling patterns (acquisition masks) in a single figure,
particularly highlighting those corresponding to higher undersampling ratios (s). Ad-
ditionally, we provide examples of actual reconstructed images to demonstrate the ef-

ficacy visually.

* Quantitative Advantage Analysis: We illustrate the performance gains in terms of ac-
celeration achieved by our approach for different target reconstruction quality levels.
The improvements are analyzed both in terms of reconstruction quality and undersam-

pling ratios for a fixed acquisition objective.

* Quality Estimation Performance: We evaluate the accuracy of the quality estimator
and assess the reliability of the chosen metrics for image quality estimation.

In this section, we compare three distinct approaches to MRI acquisition:

* Oracle-Based Approach: This approach assumes perfect knowledge of the target
quality of the reconstructed image and selects the optimal undersampling ratio R to
meet the given quality requirement. The values of R are derived based on the solution

of Eq. (8.1). This method serves as an ideal upper bound for comparison.

* Incremental Approach: In this strategy, the undersampling ratio is progressively in-
creased based on real-time quality estimates, as described in Algorithm 8.1. This re-
flects a more practical and adaptive acquisition process that adjusts according to the

specific characteristics of each acquired slice.
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* Conventional Acquisition Approach: This baseline approach utilizes a fixed under-
sampling mask with a preselected value R. Here, the undersampling ratio remains con-

stant throughout the acquisition, serving as a reference point for evaluation.

To ensure a consistent comparison across all methods, we define a minimum quality
threshold, gmin, representing the lowest acceptable reconstruction quality achieved across the
entire test set. The oracle-based approach provides the benchmark for optimal performance,
while the incremental approach offers a practical, adaptable solution that dynamically modi-

fies the acquisition process to meet quality requirements.

8.2.5 Results

In this section, we present the experimental results comparing the performance of the pro-
posed methods across various acquisition strategies. The results are analyzed in terms of
undersampling ratios, reconstruction quality, and the accuracy of quality estimation. Below,
we summarize the main findings of our experiments.

Fig. 8.5 visualizes the association between each frequency in inthe k-space and its corre-
sponding undersampling ratio R for all four use cases. Frequencies corresponding to higher
values of R are prioritized and acquired before those associated with lower values of R, con-
sistently giving precedence to central frequencies. This observation underlines the model’s
adaptability to different types of signals, as evident from the noticeable structural differences
across use cases.

Results for the undersampling ratio R as a function of the minimum quality threshold
Jmin [MAEE&} are depicted in Fig. 8.6. Across all approaches, gmin displays a monotonic
relationship with s. The reported undersampling ratio values are computed as the reciprocal
of the average acquisition rates r over the entire test set: R = (% ]L;Ol rﬁ*) _1, where L
represents the size of the test set and r* = 1/R*.

The results clearly demonstrate that for all four use cases, the incremental acquisition
method consistently outperforms others in terms of the undersampling ratio for a fixed gmin.
The gap between the incremental and oracle-based curves provides an indication of the per-
formance of the quality assessment block. Due to inevitable errors introduced by Q(y, %),
the incremental acquisition curve tends to fall below the oracle-based curve.

Table 8.1 compares the average undersampling ratio R of the incremental approach to
the fixed undersampling ratio R of the classic approach for all use cases, with reference to
specific gmin values. These results offer a more detailed understanding of the improvement
achieved by the incremental acquisition method. As expected, the improvements in the Line-
Constrained cases are less pronounced compared to the Unconstrained cases, witch can be
attributed to the limited degrees of freedom imposed by the Line-Constrained sampling tra-
jectories.

Fig. 8.7 illustrates the reconstruction quality Q for the acquisition of 5 volumes from the
FastMRI and IXI test sets, with a fixed target quality of gmin = 40 dB. The x-axis represents
the indices of each slice across the 5 volumes, while the y-axis indicates the reconstruction

quality in terms of MAE;&. The periodic pattern observed reflects the anatomical structure
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FIGURE 8.6: R (average R over the test set) for incremental acquisition and

R for the classic acquisition, are plotted for many different gpmin. R is dis-

played for both the oracle-based and incremental acquisition; and for the four
selected use cases.

of the volumes, as shown in Fig. 8.4. As we move through the slices within a volume, they
transition from less detailed regions that are easier to reconstruct (i.e., higher PSNR) to more
complex regions (i.e., lower PSNR), and then back to simpler regions. When concatenating 5
volumes, this results in pseudo-periodic variations in PSNR. This effect is more pronounced
with the classic acquisition approach, witch maintains a fixed undersampling ratio across all
slices. In contrast, the incremental acquisition curve adjusts R according to the complexity
of each slice, resulting in PSNR values that more closely match the desired target gmin.

The difference between the classic and incremental acquisition curves is more evident at

the volume boundaries than at the center. This indicates the incremental acquisition’s ability
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FIGURE 8.8: Undersampling ratio R of the slices with classic, incremen-
tal and oracle based incremental acquisitions, given a target quality gmin =

40MAE

for all use cases FastMRI-U, FastMRI-C, IXI-U, IXI-C. The aver-

age R over the whole test set is reported with dashed lines. FastMRI displays
all the volumes of the test set, while IXI displays a subset of five volumes.

to adapt to the information content of the slices-specifically, adopting a higher undersampling

ratio R when the slice contains less information (typically at the extremities of the volume).

Due to the estimation error in assessing the reconstruction quality, the incremental approach

tends to over-sample the central slices, deviating from the optimal oracle-based trend. In the

oracle-based approach, the quality is consistently maintained just above the target threshold.
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the test set, for incremental acquisition, for three different target qualities.
TABLE 8.1: R for incremental and classic acquisitions, for different Gmin>
for all the use cases.
Jmin R: incremental / classic
[MAE;}]  FastMRI-U FastMRI-C  IXI-U IXI-C
38 49.4 /7 32.0 126 / 8.0 20.1 / 10.0 9.3 /525
39 39.0 / 20.0 11.2/ 8.0 17.4 / 8.00 8.6 / 5.00
40 19.6 / 12.0 87/ 6.0 15.8 / 7.50 8.2 / 4.50
41 154/ 8.0 74/ 5.0 13.0 / 7.00 7.4/ 4.50
42 91/ 5.0 63/ 4.0 12.0 / 6.75 6.8 / 3.75
43 7.1 /7 4.0 471 3.0 10.9 / 6.00 6.2 / 3.50
44 471 3.0 39/ 3.0 9.7 7 5.50 5.6 / 3.25

To further emphasize this point, Fig. 8.8 provides a visual comparison of the resulting un-
dersampling ratios R for the three acquisition approaches with a target quality of gmin = 40
dB. In the classic acquisition strategy, the undersampling ratio remains constant, represented
by the horizontal line (R), whereas the curves for the adapted approaches exhibit a pro-
nounced step-like behavior. The incremental acquisition curve consistently stays below the
oracle-based curve, and only occasionally falls below the classic acquisition line. This obser-
vation once again underscores the adaptability and superiority of the incremental acquisition
method. Additionally, the figure includes dashed lines that indicate the average undersam-
pling ratios across the entire test set for both adaptive approaches.

The results are presented in terms of MAE;&, as MAE serves as the loss function used
during the training of A, g, in line with [48]. Furthermore, we explore the relationship be-
tween MAEE& and the other two evaluation metrics.

The scatter plots in Fig. 8.9 illustrate, for every slice in the test set, the relationship

between reconstruction quality in terms of MAE&B1 and the corresponding quality in terms of
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FIGURE 8.10: Estimation error in terms of { or all the implemented quality

estimators. The central line within each box represents the median, while the

edges of the box correspond to the 1st and 3rd quartiles. Whiskers extend to
the 1st and 99th percentiles.

PSNR (top row) and SSIM (bottom row). The comparison is made for images acquired with
three different target qualities, each represented by a distinct color.

Interestingly, the results confirm that setting a target gmin in terms of MAE;BI influences
the reconstruction quality of slices in terms of both PSNR and SSIM. Moreover, in the case
of FastMRYI, a strong correlation can be observed between MAEEBl and the other two metrics.

Lastly, we evaluate the performance of the quality assessment model Q(y, &,%) in esti-

mating MAE;&. As a figure of merit, we compute the absolute error

1 L-1

j=

. The results for all the quality assessment models are presented in Fig. 8.10. The plots reveal
a general trend of increasing difficulty in quality estimation as the undersampling ratio R
Srows.

The encoder-decoder network processes images with an average runtime of 4.3 ms for
FastMRI and 2.7 ms for IXI, using an NVIDIA A100 GPU. The quality estimation step adds
0.78 ms for FastMRI and 0.36 ms for IXI, resulting in total processing times of 5.1 ms and
3.1 ms, respectively. In terms of computational requirements, the quality estimator requires
approximately 85 M MAC operations for FastMRI images and 54 M MAC operations for IXI
images.

Before concluding, Fig. 8.11 provides a visual comparison of slices acquired with both
the classic and incremental acquisition approaches, where the target quality is set to §min =
43 dB. Each image also displays (in red) the corresponding undersampling ratio R and the ac-
tual reconstruction quality. As expected, the slices acquired with the classic method share the
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FIGURE 8.11: Classically and incrementally acquired test slices (indexes
[5,15,25,35]) for the FastMRI dataset, and [30,60,90,130] for the IXI
dataset. In red, are both the acquisition undersampling ratio s and the real
reconstruction quality Q(x, &)[dB]. For improved visualization, all images
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FIGURE 8.12: Absolute difference between classically and incrementally
acquired slices w.r.t. the ground truth slices. Slices from the test set (in-
dexes [5,15,25,35]) for the FastMRI dataset, and [30, 60,90, 130] for the
IXI dataset. In red, the acquisition undersampling ratio R and the real recon-
struction quality Q(x, &)[dB]. Images have been linearly rescaled to enhance
visual contrast.
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same fixed value of R. In contrast, the undersampling ratio R in the incrementally-acquired
slices varies depending on the information content of the slice. It can be observed that, when
a sufficiently high gmin is chosen, incremental acquisition enables faster scanning with neg-
ligible degradation in quality. Indeed, as shown in the figure, even when the reconstruction
quality varies by more than 3 dB, no noticeable degradation can be observed, and similar
behavior is seen across the rest of the dataset. Fig. 8.12 further supports this analysis. In
this figure, we visualize the absolute differences between the reconstructed images and the
ground truth, with a color scale ranging from black to pink to white to highlight areas of min-
imal to maximal differences, respectively. The results confirm that incremental acquisition
introduces no significant perceptual degradation, with differences remaining minimal even in
cases where reconstruction quality deviates by over 3 dB.

The proposed method achieves a total processing time of 5.1 ms for knee slices of size
320 x 320 and 3.1 ms for brain slices of size 256 x 256. These runtimes encompass both
the reconstruction and quality assessment stages, and are significantly faster than the typical
Echo Times (TE) for standard MRI sequences, witch range from 22 ms to 65 ms for Spin
Echo sequence protocols used in knee imaging [25]. These results indicate that our method
has the potential to be integrated into real-time MRI acquisition workflows, enabling on-the-

fly adjustments of the undersampling ratio.

8.3 Trade-off Summary

The incremental adaptive MRI acquisition method optimizes k-space sampling by dynami-
cally adjusting undersampling based on slice complexity, ensuring efficient data acquisition
while maintaining a predefined quality threshold. This adaptability enhances acceleration
without compromising image fidelity, making it a promising alternative to fixed undersam-
pling techniques.

A major strength of this approach is real-time quality estimation, allowing adjustments
during acquisition. However, relying on a single metric may not fully capture image qual-
ity. While preliminary results suggest generalizability across different metrics, a more com-
prehensive evaluation is needed. Additionally, quality estimation errors may lead to over-
estimated quality, potentially impacting diagnosis. Setting a higher quality threshold could
mitigate this but at the cost of reduced overall acceleration.

The method also introduces flexibility, adapting undersampling to individual patients
rather than applying a fixed pattern. This personalization enhances imaging efficiency and
could be particularly beneficial for complex anatomies. Furthermore, it achieves low pro-
cessing times (a few milliseconds per slice) making real-time implementation feasible within
standard MRI protocols.

However, its validation has been limited to unconstrained undersampling and Cartesian
sampling, raising concerns about applicability to structured sampling patterns commonly
used in clinical settings. Future work should explore its performance across broader acquisi-

tion strategies to ensure integration into real-world MRI workflows.
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8.4 Conclusion

The method presented in this work is based on the LOUPE architecture for subsampled MRI
acquisition. We show that the reconstruction quality can be significantly improved by em-
bedding a measurement constraint via a regularization term, resulting in an average PSNR
increase of up to 1.6 dB for R = 4 and R = 8. Moreover, we demonstrate that the error
between re-acquisitions and actual acquisitions serves as an effective proxy for estimating
reconstruction quality against the unknown ground truth. This insight has led to the develop-
ment of two self-assessment tools: one to determine if a reconstructed scan meets a quality
standard at inference time, and another to estimate the image reconstruction error. These tools
enhance the robustness of the reconstruction process, enabling reliable quality predictions.

We also present a callback-based novel method that simplifies the hyper-parameters tun-
ing in a deep neural network, transforming a typically challenging task into a straightforward
process. Specifically, we demonstrate how this approach can be applied within the LOUPE
framework, witch involves a mask generator whose output is critically dependent on a hyper-
parameter. Our results indicate that using this novel approach achieves competitive perfor-
mance without requiring extensive parameter tuning.

Building on LOUPE, a state-of-the-art deep neural network capable of optimizing both
undersampling patterns and image recovery [2], we demonstrate that minor architectural
changes can further enhance reconstruction performance. In particular, we introduce three
methods to incorporate measurement constraints, each resulting in improved reconstruction
quality. Additionally, we solve an optimization problem to identify the best reconstructed
image within the image domain and its set of counterimages. Our experiments show average
PSNR improvements of 2.1 dB and 1.7 dB for acceleration rates of 4 and 8, respectively,
compared to the unoptimized version of LOUPE. We also establish a link between the re-
construction error over the entire image and the measurement-only reconstruction error, sug-
gesting that it is possible to estimate the former by examining the latter. We plan to further
explore this direction in future work.

Finally, we present a novel acquisition method capable of dynamically adapting the sam-
pling rate during inference acquisition. The acquisition process is divided into N tempo-
rally ordered batches, with each batch acquiring a portion of the k-space. After each batch,
a reconstructed slice is computed, and its quality is estimated using a neural predictor. As
additional batches are processed, the reconstruction quality improves monotonically. The ac-
quisition stops once a target quality is reached, often requiring fewer than N iterations. We
validate this method using a state-of-the-art deep neural encoder-decoder [48], demonstrating
that our approach achieves higher acceleration than standard acquisition methods. The tests,
conducted on the FastMRI and IXI datasets using both Unconstrained and Line-Constrained
sampling strategies, highlight the effectiveness of the proposed approach.

Since our acquisition method relies on a quality estimator, we provide a detailed de-
scription of the adopted architecture. Our experiments demonstrate that the proposed neural
quality estimator achieves performance comparable to an oracle-based solution, proving its

viability for practical applications.
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