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Abstract

The introduction of virtualization and cloud computing technologies

in the telco industry has significantly changed how network services

are delivered. The Network Function Virtualization paradigm lever-

ages these technologies to replace physical network appliances with

software network functions decoupled from the hardware. Moreover,

the emergence of software-defined approaches such as Software Defined

Networking and programmable data plane has increased network pro-

grammability. Although the combination of these paradigms provides

unprecedented flexibility, a seamless orchestration of all network com-

ponents is required to meet the functional and performance require-

ments of different types of services. This thesis addresses the manage-

ment and orchestration of network services with a cross-domain study,

presenting the orchestration solutions implemented during the three

years of PhD. The work exploits the capabilities offered by the men-

tioned technologies and studies the benefits and challenges of their ap-

plication in different scenarios. First, this thesis focuses on 5G network

slicing, reporting the design and implementation of a network slice for

mission-critical communications. Then, it discusses the orchestration

of an industrial network digital twin for cybersecurity testing in a real-

istic virtualized environment. Finally, it presents a novel orchestration

system to deploy secure machine learning pipelines for near-real-time

control of network services. Two solutions are considered to secure

the communications between the agents composing the pipelines. The

former exploits IPsec secure channels using a Distributed Ledger Tech-

nology network for key exchange. The latter proposes in-network en-

cryption performed with P4 programmable switches.
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Chapter 1

Introduction

Over the last decade, the emergence of paradigms that foster the de-

coupling between hardware and provided functionality has reshaped

the way the network infrastructure is managed and controlled, with

software and virtualization taking a prominent role. Two complemen-

tary trends underlie this evolution.

On the one hand, the advances in virtualization technologies and

the adoption of cloud computing models in the telco industry have

opened up the possibility of providing network services in a more

agile and cost-effective manner. The Network Function Virtualiza-

tion (NFV) paradigm leverages these technologies to replace tradi-

tional physical network appliances with software “building blocks”

called Virtualized Network Functions (VNFs) that can run on Virtual

Machines (VMs) or containers on Commercial Off-The-Shelf (COTS)

hardware. The European Telecommunications Standards Institute

(ETSI) has defined a reference architecture to implement NFV princi-

ples in [B1], where the NFV-MANO (Management and Orchestration)

components provide new capabilities to operate network services that

complement traditional management procedures. The decoupling of

network functions from dedicated hardware allows network operators

to take full advantage of cloud-based infrastructures to deploy and

manage network services with increased flexibility. That ensures a

higher degree of automation in the service lifecycle management and

the possibility to deploy, scale, and migrate VNFs dynamically. The

1



Chapter 1. Introduction

relevance of this trend is reflected by initiatives such as the Cloud iN-

frastructure Telco Task Force (CNTT) [B2], which designed guidelines

for a common “telco-cloud” (i.e., a cloud infrastructure for NFV-based

telco applications) to drive this innovation, and the proposal of several

platforms implementing NFV capabilities [B3].

On the other hand, the emergence of software-defined approaches

that foster a similar decoupling principle for network devices has in-

creased network programmability and reduced the management bur-

den. This second trend revolves around the idea of programming net-

work resources dynamically through software. The Software Defined

Networking (SDN) paradigm enables logically centralized and directly

programmable network control, allowing for dynamic traffic steering

across the infrastructure. SDN achieves this by decoupling the control

plane (i.e., the part that controls how packets are forwarded) from the

data plane (i.e., the part that physically receives, stores, and forwards

the packets) and by providing a unified, open, and programmable

interface to control network devices from different vendors. Further-

more, data plane programmability has introduced a novel “top-down”

approach that allows direct programming of how data plane devices

process packets. This approach provides unmatched flexibility, en-

abling the creation of custom processing pipelines to perform addi-

tional functionalities beyond regular forwarding [B4].

This thesis delves into the trends outlined in this overview and

investigates the management and orchestration of network services

from different perspectives. Three different application domains are

considered in the following chapters. Chapter 2 deals with 5G network

slicing, presenting a practical application of NFV and SDN principles

to provide a network slice tailored for mission-critical communications

in a multi-domain scenario. Based on the previous work, Chapter

3 addresses the application of the NFV-MANO approach to enable

the automated provisioning of digital twins to enhance the security

of connected systems in modern industrial networks. The aim is to

provide a virtualized network infrastructure to perform cybersecurity

analysis and validation without interfering with the real production

2



Chapter 1. Introduction

plant. Chapter 4 discusses the implementation of AI-driven control

mechanisms in next-generation mobile networks. Then, it presents

a novel orchestration system to deploy secure ML pipelines for near-

real-time control of network services.

3



Chapter 2

5G Network Slicing

Network slicing is a key paradigm of 5G networks. Current techno-

logical trends in network virtualization and programmability, along

with flexible service management and orchestration procedures, play

a pivotal role in implementing its principles. This chapter explores

the topic, presenting the design and implementation of a network slice

tailored for Mission Critical (MC) communications. As will be covered

more in detail in the following section, the MC ecosystem is one of the

vertical sectors leaning toward a new generation of services based on

5G technologies. The work reported here integrates the technologies

introduced in the previous chapter and aligns with 3rd Generation

Partnership Project (3GPP) standards on 5G and MC services. The

NFV-MANO approach is applied to orchestrate the slice components

on a cloud-based infrastructure spanning different data centers and au-

tomate the slice lifecycle management. In addition, a software-defined

transport network is proposed to manage the QoS in the interconnec-

tion between the network slice sections. The network slice architecture

includes all the 5G core network components and 3GPP-compliant MC

service elements. The network slice implementation was tested in a

private data center using open-source tools and a platform for MC

services provided by Leonardo S.p.A, an Italian company active in

the defense, aerospace, and security sectors that collaborated in this

research activity.

In recent years, many research works in the literature have delved

4



Chapter 2. 5G Network Slicing

into the network slicing paradigm, but only a few explore MC services

as a field of application. Moreover, although standardization bodies

have already defined an architectural framework compatible with 5G

networks for this specific domain, related real-life experiments and ap-

plications are still in their infancy. How to achieve effective slice man-

agement and orchestration is a relevant topic of discussion [B5],[B6].

Some solutions explored in the literature propose a slice-based cus-

tomization of mobile networks at different granularity levels [B7], and

combining the 5G architecture with an NFV-based network store to

provide on-the-fly resource reservation, deployment, and slice manage-

ment that matches end-users demand [B8]. However, further investi-

gation of fine-grained service composition strategies and approaches to

implement end-to-end slice orchestration that can guarantee specific

performance and functionalities is needed [B9]. In relation to some

aspects addressed in this chapter, the virtualization of mobile core

networks and the effects of user/control plane separation have been

studied before, but in a different application scenario [B10]. Among

the works exploring the mission critical scope, complementary ap-

proaches have been proposed that focus on slicing the Radio Access

Network (RAN) segment [B11],[B12].

The work presented here aimed to contribute to this research field

and to bridge the gap between standards and real-life experiments with

a comprehensive study covering the design and subsequent demonstra-

tion of the proposed network slice architecture. The results presented

here have been published in [P2].

2.1 Network slicing for Mission Critical

communications

5G networks are expected to serve efficiently heterogeneous vertical

applications [B13]. The increasing diversification of QoS requirements

makes the traditional “one-size-fits-all” approach no longer feasible,

demanding a more flexible infrastructure and service management.

Network slicing has emerged as a key paradigm to address this is-

2.1. Network slicing for Mission Critical communications 5



Chapter 2. 5G Network Slicing

sue, by enabling the coexistence of multiple logical networks (i.e., the

network slices) on the same physical infrastructure. Several standard-

ization bodies and industry associations, such as the ITU-T [B14],

the NGMN Alliance [B15], the GSMA [B16], and the 3GPP [B17],

have discussed the main principles of this paradigm. Apart from the

different focus of the organizations that drafted these documents, the

underlying concepts are the same. Each network slice can have distinct

characteristics and is tailored to meet the requirements of a specific

use case. Complete isolation between different slice instances must be

ensured so that they do not interfere with each other.

End-to-end network slices span the access, transport, and core

network segments. As discussed before, a seamless creation of sep-

arated logical networks across these main segments builds on top of

network virtualization and programmability technologies. NFV and

SDN paradigms are considered key enablers of the network slicing

concept [B5],[B6]. For instance, the NFV-MANO approach allows to

dynamically orchestrate the slice components as VNFs, taking advan-

tage of virtualization technologies and a cloud-based infrastructure.

At the same time, software-defined technologies enable to create over-

lay network sections in the transport segment that ensure traffic flow

isolation and QoS policy enforcement.

The Mission Critical ecosystem is one of the vertical sectors that

can benefit from current technological trends. MC communications

play a key role in serving Public Protection and Disaster Relief (PPDR)

forces (e.g., police officers, firefighters, and first-aid teams) during

their operations in critical scenarios, representing a strategic asset

for any nation. MC networks must guarantee reliable, low-latency,

and priority-access communications even in case of disruptive events,

such as large-scale emergencies or natural disasters, during which com-

mercial communication systems may fail. For this reason, MC services

traditionally rely on dedicated networks and radio access spectrum, us-

ing legacy narrowband technologies such as TErrestrial Trunked RA-

dio (TETRA), Tetrapol, Digital Mobile Radio (DMR), and Project

25 [B18]. These technologies ensure effective voice communications

2.1. Network slicing for Mission Critical communications 6
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but limited data throughput for advanced services. Therefore, PPDR

organizations have started to complement the MC offering with en-

hanced data services delivered over dedicated or mobile operators’

broadband networks, with the two options entailing different control

and costs [B19]. A critical aspect of using commercial mobile networks

is implementing differentiated priority and pre-emption mechanisms to

ensure service continuity to PDDR forces by overriding lower-priority

users when needed [B20]. Running MC services over a dedicated net-

work is therefore the safest option in terms of security and control,

but results in very high initial capital expenditure costs as well as

continuous support and maintenance costs.

The 3GPP standards define the architectural framework to deliver

MC services over LTE and 5G [B21]. This set of services, including

Push-To-Talk (PTT), Data, and Video services, is usually denoted by

Mission Critical Everything (MCX). In particular, given the architec-

tural evolution telco infrastructures have been undergoing in recent

years, economic and technological factors have opened to a new gen-

eration of MC systems based on 5G state-of-the-art technologies. The

integration of 5G network slicing in the MC ecosystem promises to of-

fer a solution to the performance and network isolation problem, at a

lower cost compared to deploying and maintaining a dedicated infras-

tructure. In fact, operators could instantiate a dedicated network slice

customized to fulfill the specific functional and performance require-

ments of this use case. The slice instance could be activated across

different data centers or, in general, wherever COTS hardware with

enough computing resources is available. Moreover, a cloud-based net-

work infrastructure promises to be more flexible with the possibility to

scale, migrate, or redeploy the virtual components as needed. All these

aspects make the delivery of services more agile in case of disruptive

events, an important characteristic for mission critical scenarios.

2.1. Network slicing for Mission Critical communications 7
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2.2 Network slice design

The network slice considered in this work is split into four logical

sections:

1. access network, either mobile or fixed;

2. edge network components located in an Edge Data Center (DC),

virtualizing the user plane part of the mobile core network and

the MC proxies for the exchange of the media data flows (voice,

video, etc.);

3. core network components located in a Core Data Center, virtu-

alizing the control plane part of both the mobile core network

and of the MC system;

4. interconnection network between the data centers, which could

be either a public network or a private geographical interconnec-

tion.

Figure 2.1 shows a high-level view of the network slice. This archi-

tectural design supports the separation between the control and data

plane and the distribution of the key network slice components where

they best fit the purpose. The core network control and user plane

functions are fully separated, according to the 5G Control User Plane

Separation (CUPS) principle. Therefore, the network signaling is log-

ically separated from the user traffic transported in the network for

service provisioning. Moreover, the user and control plane separation

is also applied at the MC service level to keep the media servers as close

to the user as possible to provide better communication performance.

The implementation poses some interesting challenges, most no-

tably:

– multi-data center and possibly multi-domain orchestration;

– traffic management for QoS guarantee in the transport network;

– cross data center applications and traffic management.

2.2. Network slice design 8
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Figure 2.1: The high-level architecture of the network slice for MC

services with the related main components.

These challenges require a network slice design properly tailored to

support them, as we will discuss later. Before proceeding, however, it

is important to recall some concepts that will be used extensively in

the rest of this chapter.

2.2.1 Actors and roles

The network slicing approach involves three main types of actors.

– Infrastructure Providers or infrastructure owners: they own the

infrastructure and provide all the infrastructural management

actions. A single network slice may span multiple infrastructure

domains. Therefore, its deployment and lifecycle management

require interactions with each Infrastructure Provider involved.

– Network Slice Provider: the provider of the communication ser-

vice implemented with the network slice.

– Network Slice Customers: the users of the communication ser-

2.2. Network slice design 9
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vice.

According to their respective roles, these actors must have differ-

ent rights, with the Infrastructure Providers and the Network Slice

Provider having specific management roles to keep the infrastructure

and the service up and running.

In our case, an Infrastructure Provider can be identified as a mo-

bile network operator, a mobile virtual network operator, or a public

body operating the infrastructure for the PPDR forces. At the same

time, the Network Slice Provider is the entity that directly manages

the mission critical communication services. Depending on the orga-

nizational model chosen, this may be a public body serving all the

various PPDR forces of the country or a specific body inside a PPDR

force (e.g., firefighters, police officers, etc.). Consequently, the Net-

work Slice Customers are the PPDR forces that will use the service

for communication.

From the brief discussion above, it follows that the organizations

acting as Infrastructure Providers and Network Slice Providers might

be different from case to case, either being closely bound to each other

or just linked by a conventional commercial agreement. Therefore, the

slice architecture must be very flexible to adapt to these diverse organi-

zational models, ensuring a seamless co-existence of these actors while

providing all of them with the required functionalities. For example,

management is an important issue for both infrastructure and service

providers, since no service can be properly set up or guaranteed in

real production environments without management capabilities. This

is considered in the NFV-MANO framework, where the management

components are clearly outlined. Specifically, it is assumed here that:

1. the Infrastructure Provider must have management access to the

whole infrastructure, including all the VNFs, to be able to inter-

act with the various components active in the cluster whenever

some high-level general configurations or recovery actions are

needed;

2. the Network Slice Provider must have management access to its

own infrastructure and VNFs to implement all the management

2.2. Network slice design 10



Chapter 2. 5G Network Slicing

Table 2.1: Example of characterizing NEST parameters for the MC

communications network slice

ATTRIBUTE VALUE

Coverage Local (Outdoor)

Guaranteed Downlink Throughput 391600 (391.6Mbps, band 3,

per Network Slice channel 20MHz(100RB), 256QAM, 4x4MIMO)

Mission Critical Support 1: mission critical

+ Mission Critical Capability Support 1: Inter-user prioritization, 2: Pre-emption,

3: Local control

+ Mission Critical Service Support 1: MCPTT, 2: MCData, 3: MCVideo

actions related to the production phase of the service, including

modification of the VNF configurations, performance monitor-

ing, etc.

2.2.2 Network slice description

A correct interaction between all the actors mentioned above has to

be guaranteed. The GSMA standard specifies how to describe the

characteristics of each network slice in a standardized way, starting

with the Generic Slice Template (GST) [B22].

The GST can be used to describe a network slice type. It is a dictio-

nary containing common slice attributes, such as supported through-

put/functionality and provided Application Programming Interfaces

(APIs). Once the GST is filled with values based on specific vertical

use cases, it gives birth to the NEtwork Slice Type (NEST), which can

be used by vendors, vertical industry customers, and network opera-

tors to reach their objectives. Table 2.1 shows an example of NEST

for the network slice type considered here. Once the NEST is avail-

able, it has to be translated into a description that allows the real-life

implementation of the network slice. Neither the GST nor the NEST

specifies the steps required to achieve this. The collection of all the

technical details that are necessary to implement a particular net-

2.2. Network slice design 11
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Figure 2.2: The network slice blueprint for a single data center.

work slice is usually referred to as the slice blueprint. This description

depends on the technological approach taken by each Infrastructure

Provider and it is not standardized.

The general slice blueprint designed to match the high-level im-

plementation goals and the NEST specifications is described in the

following subsection.

2.2.3 Network slice blueprint

At first, we designed and tested a network slice blueprint that was

quite general, to be sure it was suitable to meet all the requirements

mentioned above in terms of architecture, role splitting, and perfor-

mance characteristics. We started by considering a single data center

and designed the blueprint plotted in Figure 2.2. In the figure, the hor-

izontal or vertical bars represent virtual networks defined in the data

center, whereas the computer icons represent VNFs. This blueprint

aims at satisfying the following characteristics:

– separate management networks for the Infrastructure Provider

and the Network Slice Provider;

– isolation and protection of the VNFs providing the required func-

2.2. Network slice design 12
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tionalities, avoiding the direct exposure of their network inter-

faces to external networks;

– maximum flexibility of interconnection between the VNFs com-

posing the service.

We introduced two separate management networks since the In-

frastructure Provider must be able to talk to all its customers (ten-

ants) at once, whereas the Network Slice Provider, acting as a tenant

of the Infrastructure Provider, must be able to talk to its dedicated

infrastructure only, isolated from those of other tenants. Therefore,

two different management networks were implemented:

– the infrastructure management network, set up at system start-

up, devoted to the Infrastructure Provider, and shared among

all tenants;

– the tenant management network, set up as part of the network

slice, seen only by the Network Slice Provider running the slice.

This general architecture can be composed to create network slices

spanning across multiple data centers, according to the schematic pre-

sented in Figure 2.3. These data centers might belong to the same

provider or different ones. Regardless of that, this should be trans-

parent from the Network Slice Provider’s point of view, given the

existence of the interfaces required for these interactions.

The basic idea of this design is the following: production VNFs

run inside the data center, connected to two different management

networks, the former devoted to the Infrastructure Provider and the

latter to the Network Slice Provider. Moreover, a slice-specific man-

agement console connected to the management network is provided to

the Network Slice Provider, thanks to which it can manage the slice

components directly from the data center where they are deployed.

The VNFs of a slice section, like the one depicted in Figure 2.2, are

not directly connected to the data center networks providing access to

the outside world, but there are gateways in between. This choice is

motivated by two main reasons:

2.2. Network slice design 13



Chapter 2. 5G Network Slicing

!"#$%&'()*%+

,-./#0%-&1

!"#$%&'()*%+

,-./#0%-&1

23456&5

!76&856

9.-%&7:+:&9%*+%-;0<%&7:+:&9%*+%-

!"#$%&'()*%+

6%+=.->&!"#$%

,-./#0%-&5

!"#$%&'()*%+

6%+=.->&!"#$%

,-./#0%-&5

6%+=.->&!"#$% 5

6%+=.->&!"#$% 1

!"#$% 1

23456&%*0?@.#*+&.*&

+-:*'@.-+ *%+=.->&

!"#$% 5

23456&%*0?@.#*+&.*&

+-:*'@.-+ *%+=.->&

23456&1

Figure 2.3: Full network slice spanning two data centers. In this figure

an example with two slices deployed in parallel is shown to provide a

better understanding of the different management infrastructures for

Infrastructure Provider and Network Slice Provider.

– security: the network gateway provides the required traffic iso-

lation and acts like a firewall protecting the production section

of the slice;

– functionality: the network gateways can work as end-points of

tunnels (in this example VXLAN tunnels) providing an overlay

network between the involved data centers, thus allowing seam-

less slice management over different sections, even belonging to

distinct providers.

2.2.4 Network slice delivery and lifecycle manage-

ment

The management and orchestration of the network slice during its en-

tire lifecycle is a crucial issue to allow effective usage of this technical

approach. 3GPP and ETSI describe the lifecycle of a network slice in

their documents [B23] and [B24], identifying all the steps required to

provide the performance requirements for the network slice design, as

well as to instantiate, run, and terminate it. The steps implementing

2.2. Network slice design 14
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the complete network slice lifecycle management are depicted in Fig-

ure 4.3.1.1 in [B23]. The overall process consists of two main phases:

a preparation phase containing the description of the network slice

blueprint and the preparation of its run-time environment, and a life-

cycle management phase where the network slice instance is created,

run, and eventually terminated. The former phase is a matter of the

Infrastructure Providers, which will prepare all the necessary compo-

nents based on the NEST provided by the Network Slice Provider and

the chosen blueprint. In our case, it refers to the networks in the cloud

platform that must be shared between slices and must exist before the

single network slice instance is started. In particular, these are:

– the management network of the Infrastructure Provider, which

will be connected to the parts of the network slice that the

provider has to control to handle some emergency event (either

collaborating with or overriding the management actions from

the Network Slice Provider);

– the inter-DC interconnection network;

– the physical interconnection to the access networks, either mo-

bile or fixed.

Furthermore, the NEST and the slice blueprint are translated to a set

of Network Slice Templates and/or Network Service Descriptors, which

are then onboarded in the orchestration platform. These descriptive

files represent the list of VNFs and their interconnections for each slice

segment (e.g., for each Infrastructure Provider domain), adopting a

language understandable by the NFV-MANO system. On the other

hand, the latter phase involves the Network Slice Provider that can

start, run, modify, monitor, and stop the network slice at will, using

the interfaces provided by the Infrastructure Providers or through the

native interfaces of the applications deployed in it.

The testbed implemented in this work follows this paradigm. But

before proceeding with the description in the next section, it is relevant

to introduce an approximation adopted for the testbed realization. To

2.2. Network slice design 15
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simplify the deployment process, we assumed having a single Infras-

tructure Provider offering two data centers, one at the edge and the

other at the core. Nevertheless, the same considerations made for the

blueprint description and slice lifecycle management hold.

2.3 Network slice implementation

Following the general description discussed in the previous part of the

chapter, this section goes on to describe the approach employed to

build the slice and the system supporting it. To this end, we will

also introduce the software tools chosen to implement the proposed

system.

To support the performance requirements of the service, the net-

work slice is split into access and core parts, the former hosted in the

Edge DC and the latter in the Core DC. The actual implementation of

the access and core parts of the network slice are plotted respectively

in Figures 2.4 and 2.5. For the sake of readability, the connections

of the various VNFs with the Infrastructure Provider and Network

Slice Provider management networks (green bar at the bottom and

orange bar at the top, respectively) are omitted, but they follow the

general blueprint template in Figure 2.2. The motivation behind this

design choice is to place everything user-related as close as possible

to the user itself, with the aim of reducing the load in the network

core and improving the performance (e.g., by reducing the latency)

for the end-users. As mentioned before, it is also in line with the

CUPS principle.

The VNFs of the access section in Figure 2.4 are the User Plane

Function (i.e., the packet forwarder for the 5G data plane) and the

MCX edge component acting as a media server, forwarding media

streams from and to users. The core section in Figure 2.5 is simpler

since there is no “transit” traffic and a single internal interconnection

network is enough. The specific VNFs are all the components of the 5G

control plane and the MCX control element, which acts as a registrar

server for the MC applications, managing user registrations and their

2.3. Network slice implementation 16
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Figure 2.4: Architecture of the access section of the network slice in

the Edge DC.

communication profiles. It is worth noting that the slice architectures

presented here are just a graphical sketch. In practice, following the

NFV-MANO architecture [B1], each of the VNFs is actually deployed

as a pair of virtual machines: the former for production and the latter

for management, with an additional network in between to connect

them.

Regarding the tools selected for the implementation, we first in-

troduce the platforms for managing the infrastructure supporting the

proposed architecture (i.e., the tools of the Infrastructure Provider),

and then we present the software components running inside the slice

VNFs. Following the directives proposed by the CNTT group, we

chose OpenStack [B25] as the cloud management platform for the two

data centers. Specifically, we deployed the Stein release with Kolla

Ansible in both data centers. Then, to orchestrate the virtual func-

tions of the slice over these cloud-based infrastructures, we opted for

Open Source MANO (OSM) [B26], the open-source project backed by

ETSI that implements a standard-compliant NFV-MANO platform.

In particular, we used OSM Release 10 with descriptors following the

ETSI SOL006 specifications [B27]. Finally, to emulate the behavior

2.3. Network slice implementation 17
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Figure 2.5: Architecture of the control plane section of the network

slice in the Core DC.

of the transport network between the two data centers, we introduced

emulated delays in the outgoing interfaces connected to this network

with the Linux Traffic Control (tc) utility, which allows manipulat-

ing packet transmission settings in the kernel. In addition, we added

a single SDN-enabled Open vSwitch [B28] switch controlled by the

ONOS [B29] controller acting as the WAN Infrastructure Manager

(WIM).

Following the slice lifecycle presented in Subsection 2.2.4, after the

network environment preparation phase, we designed and onboarded

the descriptors and configuration files required by the NFV-MANO

platform. The implementation of the network slice considered in this

work is rather complex; for this reason, the deployment was split into

three steps to make the configuration and debugging process more

controllable. Three NFV-MANO descriptors have been designed for

the two sections of the slice. Descriptors can be reused and some are

common to the various slice sections. Therefore, the network slice

blueprint is represented by the complete set of these descriptors and

related configuration files (called packages).
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Specifically, the descriptors provide to the NFV-MANO platform

all the information about:

1. the VNF packages to be run in the slice;

2. the interconnections between them (Virtual Links in NFV-MANO

terminology), described in the Network Service Descriptors (NSDs)

and Virtual Link Descriptors (VLDs);

3. the Network Slice Template (NST) as a combination of Network

Service Descriptors;

4. the details of the Virtualized Infrastructure Managers (VIMs)

where the network slice has to be instantiated;

5. the VNF Forwarding Graph Descriptor (VNFFGD), specifying

the traffic path from one VNF to another, which has to be im-

plemented in the network slice.

Recalling the blueprint description (Subsection 2.2.3), the Infras-

tructure Provider management network is already part of the cloud

environment, even before the deployment of the slice. Therefore, the

first step of the slice deployment phase is the creation of the Net-

work Slice Provider management elements. This initialization deploys

the Network Slice Provider management network and the management

VNF, which is connected to the data center external networks and the

Network Slice Provider management network. Moreover, the Network

Slice Provider management VNF can automatically create an over-

lay network (e.g., VXLAN) on top of the inter-DC network, allowing

a seamless interconnection between components deployed in different

data centers. In the second step, the NFV-MANO triggers the deploy-

ment of the 5G core network elements based on the Open5GS [B30]

software package. It is an open-source implementation of a hybrid

4G/5G core network compliant with 3GPP Release 16. Finally, the

orchestrator instantiates the control and data plane elements of the

MCX application provided by Leonardo S.p.A.. More details on this

will be given in the remainder of this section.
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2.3.1 Mission critical components

As introduced at the beginning of the chapter, the MC services were

deployed with a product provided by Leonardo S.p.A. The Leonardo

Mission Critical Services is part of the Leonardo Communications Ser-

vice Platform product family [B31]. It is a complete Mission Critical

solution compliant with 3GPP MCX standards that extends the port-

folio of standard solutions for PPDR communications, ranging from

DMR to TETRA technologies, with next-generation broadband capa-

bilities. It offers Push-to-Talk communication, enhanced with voice,

video, multimedia chat, and a set of APIs for third-party application

development. It can be deployed over both commercial and private

mobile networks and can provide users with advanced functionalities

such as:

– instantaneous group and private high-quality voice communica-

tions;

– mobile broadband multimedia applications (real-time video stream-

ing, multimedia messaging, file/video/photo transfer, database

access);

– location-based services;

– emergency, man-down/immobility, and Land Mobile Radio stan-

dard interaction via InterWorking Function for augmentation of

traditional systems [B32].

The complete solution to provide MCX services is composed of the

following components:

– An Android client designed for on-field operations with a com-

plete set of functionalities providing all the MC service imple-

mentations as per the 3GPP standard, namely MCData, MCVoice,

and MCVideo. It can be installed on off-the-shelf smartphones,

as well as on ad-hoc terminals, with a fully customizable Human-

Machine Interface. It can be customized to provide a differen-

tiated User Experience, ranging from a traditional push-to-talk
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radio to a multimedia client similar to a conventional smart-

phone.

– A web-based dispatcher providing control, monitoring, and man-

agement of the operations of the teams.

– A dedicated interface for the management and monitoring of the

platform KPIs.

– A Session Initiation Protocol (SIP) Core server for user regis-

tration, location, and authorization, as well as for call signaling

management as per the 3GPP standard.

The SIP core is a cloud-native platform designed to be deployed

either as a virtual machine or as a containerized application. It also

supports a full separation of user and control planes, according to the

aforementioned 5G CUPS principle. In particular, the registration

server used for signaling can be decoupled from the media servers,

which will manage and deliver the media streams. Moreover, the in-

ternal SIP Core component can be easily plugged “in” and “out” at

run-time by using the MCX dashboard. External IP Multimedia Sub-

system (IMS) core servers are supported for large-scale deployments.

In this work, we took advantage of the control and user plane sep-

aration offered by the mission critical components by deploying them

in the core and edge data centers, respectively. In detail, the “MCX

Core” in Fig. 2.5 refers to the web-based dispatcher and the SIP

components in charge of registration and signaling, while the “MCX

Edge” in Fig. 2.4 represents the external media server used to ex-

change users’ voice or video messages. This choice allows us to keep

the media servers as close as possible to the final users, thus guar-

anteeing optimal performance in line with the 5G edge computing

concepts.

2.4 Experimental validation

All the experiments were run in a private data center with two sepa-

rate OpenStack clusters, one for the Edge DC and the other for the
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Core DC. Each cluster consists of two physical servers, equipped as

follows: 64 GB of RAM, 40 CPUs, 1.2 TB of disk, 1 Gbit/sec inter-

faces, and Ubuntu 18 LTS as OS. We emulated the 5G Radio Access

Network (RAN) elements with UERANSIM [B33], both the gNodeB

base station and the 5G User Equipments (UEs). Given the limited

laboratory setup, the results presented here were not meant to assess

the absolute performance achievable with the proposed approach. It

is expected that a more powerful configuration will likely lead to bet-

ter performance overall. Instead, the experimental phase was aimed

at demonstrating the feasibility of the proposed approach and inves-

tigating any performance issues and critical bottlenecks that might

occur at the various stages of the slice deployment.

2.4.1 Network slice instantiation

The first aspect that was evaluated is the time needed to create a new

network slice instance based on the proposed architecture. In particu-

lar, we measured the time required to instantiate all the network slice

components. As explained in the previous section, the process is split

into three phases:

1. initialization of the Network Slice Provider management infras-

tructure in the data centers, with the dedicated management

network and consoles;

2. deployment of the 5G mobile core network and gateways, with

all the required components split among the edge and the core

data centers;

3. provisioning of the service to the Network Slice Customers, run-

ning the MCX edge and core components respectively in the

edge and core data centers.

For each phase, ETSI MANO SOL006 [B27] compliant descrip-

tors were implemented and onboarded in the OSM platform for the

deployment in each OpenStack cluster.
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Table 2.2: Number of virtual components of the network slice instan-

tiated in each phase.

VNFs
Virtual

Machines

Virtual

Networks

Init. Core Data Center 1 1 1

Init. Edge Data Center 1 1 1

5G core net. Core Data Center 5 10 6

5G core net. Edge Data Center 3 6 5

MCX Core Data Center 1 1 0

MCX Edge Data Center 1 1 0

As reported in Table 2.2, in terms of virtual components, in the first

phase, we instantiate 1 VNF on a single virtual machine and 1 virtual

network per data center for the Network Slice Provider management

infrastructure. During the second phase, we activate in the Edge DC

3 VNFs running on 6 virtual machines (one for the management and

one for the service functionalities) and 5 virtual networks for the 5G

mobile core and the gateways components at the edge. Instead, in the

Core DC, we instantiate 5 VNFs on 10 virtual machines and 6 virtual

networks for the other slice components at the core. In the third

phase, we run 1 VNF on a single virtual machine per data center for

the MCX services.

We performed ten instantiation experiments, measuring the time

required to complete the various deployment phases in the edge and

core data centers. Table 2.3 reports the average time needed to in-

stantiate the network slice components at every step and the related

two-tailed 90% confidence interval computed assuming a Student’s

t distribution. The table also shows the values of the coefficient of

variation, calculated as the ratio of the standard deviation to the av-

erage estimated from the experimental results. The second phase is

more complex than the others since it involves a larger number of

virtual components. So, as expected, it takes more time for deploy-
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Table 2.3: Average time required by the orchestration system at each

stage to instantiate the various components of the network slice. The

values are averaged over the results of 10 different experiments. The

lower and upper bounds of the 90% confidence interval (min 90% and

max 90%, respectively) and the Coefficient of Variation (CV) are re-

ported along with the estimated average.

Average Min (90%) Max (90%) CV

Init. Core DC 49.9 s 45.72 s 54.08 s 0.14

Init. Edge DC 63.6 s 59.95 s 67.25 s 0.10

5G core net. Core DC 404.8 s 394.36 s 415.24 s 0.04

5G core net. Edge DC 273.3 s 267.41 s 279.20 s 0.04

MCX Core DC 75.5 s 67.23 s 83.77 s 0.19

MCX Edge DC 64.9 s 58.95 s 70.85 s 0.16

ment. The other two phases are of similar complexity and involve

a smaller number of components than the second phase. Therefore,

their instantiation requires a shorter time.

The variability of the measured values is due to the fact that we run

the experiments on physical servers in a realistic cloud environment.

Even though there are no other active network slices, the servers still

run the basic management tasks required by the cloud management

platform. These tasks share the CPU with all the others and introduce

some random delay in the execution of the slice instantiation. Intu-

itively, this sort of “white noise” in the measurements should affect the

short tasks more, while it should be less evident in longer ones. That

is what happens in practice. It is possible to see in Table 2.3 that the

confidence interval, with respect to the average time, is approximately

between 15% and 20% for the phases that require less time, while it

is around 5% for the second phase, which takes more time. Similarly,

the coefficient of variation values show greater variability in instantia-

tion times in the shorter phases than in the second phase, with values

ranging from 10% to 19% for the former and around 4% for the latter.
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Figure 2.6: Total time required to instantiate the full network slice.

The plot shows 10 measurements taken from 10 different experiments

on the same infrastructure. The horizontal dashed lines represent the

average values.

In Figure 2.6 we also graphically report the total time needed to

instantiate the edge and core network slice sections in each of the ten

experiments and their averages. The figure shows that the complete

network slice instance can be deployed in a few minutes. There is

some variability in the measured times, as discussed above, but the

reported averages provide a rather clear indication of the values we are

facing. Given the scenarios in which MC services are used, the PPDR

communication infrastructure supported by the considered network

slice should run for a reasonably long time, from a few days in the case

of an ad-hoc deployment because of a specific emergency to months or

even years for a stable deployment at the national level. Therefore, an

initialization time of the whole slice within a few minutes is reasonable.

This is also true in case of failure or infrastructure disruption. If the

images of the various virtual network functions are available, the entire

network slice can be restarted in a reasonably small amount of time

at a different location.
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Figure 2.7: Overall scenario and an example of the data flows showing

the separation between the control and data plane of the 5G network

as well as of the MCX infrastructure.

2.4.2 MCX service delivery

The network slice implementation was also evaluated from the MC ser-

vice perspective, testing the correct functional split of the MC compo-

nents and the split effect on the service delivery. The Mission Critical

service delivery scenario and the paths of the various traffic flows are

shown in Figure 2.7. From the SIP Uniform Resource Identifier (URI)

point of view, the domain is called test and two UEs are registered as

user1@test and user2@test. As discussed, the testbed guarantees

separation between the control and data plane. That is true at the 5G

level, as the standard implies, but also at the MC service level since

the core MCX server is dedicated to handling signaling traffic, such as

SIP registration and call set-up messages, while the edge MCX server

acts only as a media server. Therefore, the signaling for service and

call set-up follows a different path than the data flows carrying the

communication media streams.

Coming to the experiments, we tested at first the correct functional

splitting of roles of the two MCX servers according to the planned split

of workloads. Figure 2.8 shows the flow of an MCVIDEO call from

the point of view of the caller (user1@test 10.250.123.101) and of

the callee (user2@test 10.250.123.102). The two packet sequences

shown in the figure were obtained by capturing the packet traffic with
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Figure 2.8: Packet flows of an MCVIDEO call, capturing the traffic

on the caller (10.250.123.101) and on the callee (10.250.123.102).

Wireshark. The core MCX is located at 10.250.2.249, while the

edge MCX is located at 10.250.2.35. The figure shows that the

split of roles is implemented correctly. As planned, the SIP traffic re-

quired to set up and close the multimedia call between the two users

goes through the core MCX. All SIP signaling messages such as IN-

VITE, TRYING, and RINGING flow to and from the core MCX server

(10.250.2.249). Instead, the Real-time Transport Protocol (RTP)

media traffic flows to and from the edge MCX server (10.250.2.35).

Then, to prove the effectiveness of the Control User Plane Separation

approach, we exploited a built-in feature of the MC mobile app. This

feature provides a series of evaluation tools for measuring network

latency and capacity, as shown in Figure 2.9 and Figure 2.10.

To emulate a higher latency when connecting to the core infras-

tructure, we forced a delay of T = 200 ms on the inter-DC connection

by setting up the Linux traffic control on the interface towards the

transport network of the Core DC network gateway. We asked the

app to register on both the MCX core and the MCX edge. The MCX

core is the only one that allows the registration of a SIP user since it is

the only one running the control functions. When we ask the MC app
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Figure 2.9: Screenshot of the MC smartphone application executing

performance measurements while communicating with the MCX in

the edge.

to register on the MCX edge, acting only as a media server, the regis-

tration is not successful, but the app still allows the execution of the

performance test, albeit in a limited way. As a consequence, the two

screenshots are different. For the scope of this research, the relevant

fields to compare are: 2. CONNECT TCP and 3. HTTP PING. The for-

mer reports the time required to complete the three-way handshake

of TCP between the Android application user and the MCX server.

The latter reports the time taken to complete an HTTP request from

the user to the server. The values obtained depend on the Round-Trip

Time (RTT) of the data connection. We can see that both fields are

approximately 200 ms larger in the connection towards the MCX core

than to the MCX edge. That is perfectly in line with the additional

latency introduced in the path towards the Core DC, which is 200 ms

in this experiment. Therefore, we can conclude that in the case of a

real call the RTT of the media flows (voice and video) would be signif-

icantly lower than the RTT of the signaling towards the MCX in the

core. This is one of the expected advantages of the CUPS approach.
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Figure 2.10: Screenshot of the MC smartphone application executing

performance measurements while communicating with the MCX in

the core.

2.4.3 Inter-DC QoS management

Finally, we evaluated the QoS management in the inter-DC connec-

tion. The QoS management in the interconnection network between

the data centers will depend on the features made available by the

network owner and/or provider. In this work, we assumed Software

Defined Networking capabilities to test the possibility of managing the

QoS in an integrated way with the network slice management.

The scenario considered is again the one sketched in Figure 2.3:

– network slices A and B are deployed, serving customers C1 and

C2 respectively;

– the network slices are split in two sections and share an inter-

connection link at 10 Gbit/s;

– the transport link determines the end-to-end bandwidth avail-

ability (given that inter-VNF bandwidth inside the same data

center is typically larger);
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– C1 and C2 negotiated the following service level agreements:

– SliceAminimum guaranteed interconnection capacity CA =

1 Gbit/s

– SliceB minimum guaranteed interconnection capacity CB =

3 Gbit/s

The interconnection network is emulated as a virtual switch (imple-

mented with Open vSwitch) controlled by the ONOS SDN controller.

We set up a token bucket mechanism to enforce the negotiated QoS for

traffic flows belonging to the network slices A and B. In the switch,

token bucket queues at the minimum guaranteed capacity of the net-

work slices were implemented with a higher priority over a standard

FIFO queue used by other traffic flows. We used the Linux Traf-

fic Control utility to configure the rules to shape the bandwidth as

requested, setting as one of the parameters provided to tc the guaran-

teed bandwidth equal to the target capacity negotiated for the slices.

In addition, traffic forwarding rules were set by exploiting the ONOS

intent framework [B34], forcing the switch to push the packets of the

two slices into their specific queue. With reference to the slice lifecycle

presented in Subsection 2.2.4, these forwarding rules can be prepared

during the network slice design and can be instantiated when the net-

work slice is created. The QoS control is reactive and safeguards the

minimum required bandwidth of the slices when a network overload

happens. We forced these overload events by generating a very high

bandwidth background traffic into the interconnection link.

In Figures 2.11 and 2.12, we show results proving the effectiveness

of the QoS management strategy. In both cases, 2 minutes (120 sec-

onds) of communication are shown. Slices A and B generate traffic

trying to saturate the available bandwidth. The greedy background

traffic causing the link overload is at 10Gbit/s and causes link conges-

tion with high traffic losses in two different ways, as described below.

In Figure 2.11, the background traffic starts when the one generated

by slices A and B is already active with an almost even share between

them. When the background traffic starts and congestion arises, the
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Figure 2.11: Guaranteed bandwidth per slice interconnection when a

background traffic able to saturate the link is applied. The background

traffic starts when the inter-slice traffic flows are already established.

traffic control strategy safeguards the minimum guaranteed bandwidth

requested by the two network slices. After 90 seconds, the background

traffic stops and the two network slices can take over. Finally, when

slice B stops, slice A can consume the whole link capacity. In Fig-

ure 2.12 the background traffic is already active and saturates the link

for the entire duration of the experiment. Instead, slice B and slice A

start generating traffic at about 10 s and 20 s, respectively. As before,

the traffic control strategy throttles the background traffic to enforce

the minimum capacity required by the two slices.

2.4. Experimental validation 31



Chapter 2. 5G Network Slicing

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120

T
h

ro
u

g
h

p
u

t 
(G

b
it
/s

)

Time (seconds)

Background
Slice A
Slice B

Figure 2.12: Guaranteed bandwidth per slice interconnection when a

background traffic able to saturate the link is applied. The inter-slice

traffic flows are started sequentially when the background traffic is

already established.
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Chapter 3

Digital twin orchestration

The previous chapter addressed the application of NFV orchestration

principles to network slicing and demonstrated the automation of the

entire lifecycle management of a network slice instance. Building on

this research work and related insights, this chapter presents the ap-

plication of the NFV-MANO approach to enable the automated pro-

visioning of digital twins to enhance the security of connected systems

in modern industrial networks. The digital twin replicates the indus-

trial network infrastructure in a realistic virtualized environment that

can be used as a cyber range to perform cybersecurity assessment

and countermeasure validation without interfering with the real in-

dustrial plant. In the proposed approach, the lifecycle management of

the digital twin follows the one defined for network slices. Moreover,

the same orchestration techniques from the previous chapter are ap-

plied to deploy and configure the digital twin components in a flexible

and automated manner on a cloud platform. Following the proposed

methodology, the work reports a proof-of-concept implementation of

a digital twin of a typical industrial network infrastructure that in-

cludes network and security-related components. The work shows the

flexibility offered by combining NFV concepts with cloud computing

technologies, which enables the orchestration of virtualized network

environments according to users’ needs in different application do-

mains, even outside typical telco scenarios.

The chapter presents the results published in [P1]. In principle,
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the proposed implementation methodology can also be extended to

other application scenarios where it is useful to perform testing and

validation without impacting the real-world counterpart, as presented

in [P4].

3.1 Digital twin for enhanced security in

industrial networks

The manufacturing industry is increasingly relying on networking to

empower machinery and processes. The rise of interconnected sys-

tems in Operational Technologies (OT) is the basis of the Industry

4.0 paradigm, one of the major industrial turning points of the XXI

century [B35]. The opening of the OT network to the enterprise Infor-

mation Technology (IT) network and also to the Internet exposes the

manufacturing environment to novel cybersecurity threats. Several

attacks have been reported in recent years, making it clear that this

is a key issue to be addressed [B36, B37]. Standardization efforts are

also paving the way for a more systematic and uniform definition of

cybersecurity features for manufacturing connected systems [B38]. As

a result, assessing the cybersecurity characteristics and possible weak-

nesses of industrial networks, identifying mitigation techniques, and

implementing possible countermeasures in case of attack are all strate-

gic practices. However, industrial networks pose a whole new challenge

to the application of these principles. This is because production sys-

tems should not be perturbed to any extent. Every anomaly in their

behavior may result in a productivity loss or even permanent damage.

Therefore, performing cybersecurity tests directly in a real industrial

environment is challenging. One potential solution lies in leveraging

the concept of digital twin, a virtual replica that accurately mimics

the behavior and characteristics of the physical counterpart.

The work presented in this chapter proposes the implementation

of a digital twin that replicates a typical industrial network architec-

ture in a realistic virtualized environment. The aim is to provide a

cyber range to perform cybersecurity testing and “what-if” scenario
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validation without interfering with the real plant. In particular, the

work focuses on the following aspects: first, to define a methodology

that enables a flexible deployment of different digital twins from the

same tools and procedures; then, to support this methodology with

a platform to automate the orchestration of all components and re-

sources needed for the deployment of the selected digital twin; finally,

to implement and demonstrate the possibility of controlling the entire

digital twin lifecycle.

3.2 Implementation methodology

Implementing digital twins of industrial networks involves the cre-

ation and provision of virtual replicas of physical network infrastruc-

tures that may differ in terms of topology, components, and offered

service functionalities. Moreover, effective management and orchestra-

tion mechanisms are essential to ensure an automated and dynamic

deployment of the digital twin components according to manufactur-

ers’ needs. In fact, the digital twin should be a flexible infrastructure

that:

– can be created and deleted at will;

– can easily integrate new software components;

– is easy to modify in terms of network architecture.

Therefore, the digital twin should be a virtualized infrastructure man-

ageable during its whole lifecycle in a flexible way. To meet these

requirements, the proposed implementation methodology integrates

NFV and cloud computing technologies. The NFV-MANO approach

is adopted to provide automated management of the entire digital twin

lifecycle, starting from high-level MANO descriptors and including all

the operations to enforce configurations during the instantiation phase

and at run time (usually called Day 0/1/2 operations).

Figure 3.1 shows a schematic representation of the reference sce-

nario and the idea behind the digital twin implementation. The
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Figure 3.1: The perimeter of the digital twin, embracing the industrial

network and part of the field network. Real-life field networks can be

connected to the digital twin as well.

industrial environment comprises several elements such as network

nodes, middleboxes, and security-related components (e.g., Intrusion

Detection System (IDS) and firewall) that are provisioned as Virtual

Network Functions (VNFs) interconnected with virtual networks in a

cloud-based infrastructure. The digital twin thus provides a realistic

virtual replica of the industrial network.

However, two main challenges usually arise while building such a

twin. First, the field segment of the network is populated by sen-

sors, actuators, Programmable Logic Controllers (PLCs), and other

components that are closely bound to the hardware, making its vir-

tualization difficult. We addressed this aspect following two possible

alternatives: the field segment may be simulated in the digital twin

with software components that implement the protocols of interest

and simulate data exchanges on it, or real sections of the field net-

work may be connected directly to the digital twin to feed samples of

data. In this latter case, the connection can be active in parallel to the

real one, thus not interfering with normal operations. Second, when

digital twins are adopted to provide a faithful replica of the manufac-
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Figure 3.2: Schematic view of the digital twin lifecycle.

turing system, the traffic should mimic a real-life process, including

its dynamics and quantitative behavior. Given the application scope,

this is not necessary in the proposed work since it focuses on assessing

possible weaknesses of the network architecture or protocols, which

are reasonably independent of traffic dynamics.

3.2.1 Digital twin lifecycle management

In the proposed approach, the lifecycle management of the digital twin

follows the one defined by the 3GPP and ETSI standards for network

slices [B23],[B24]. Figure 3.2 shows a schematic representation of the

various steps that compose the entire lifecycle management process of

the digital twin. Applied to the digital twin case, they can be briefly

described as follows.

– The preparation phase precedes the instantiation of the digital

twin. This step includes the design of the digital twin architec-

ture using MANO descriptors, the onboarding of the descrip-

tor packages in the orchestration platform, and the environment

setup (e.g., uploading the needed cloud images and setting up

additional elements, such as specific networks for management

purposes and connectivity with the outside environment that are

not strictly related to the digital twin architecture).

– The commissioning phase is the step in which the digital twin

is instantiated from the selected descriptors, with all its com-

ponents deployed in a fully automated way in the underlying

infrastructure.
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Figure 3.3: Architecture supporting the digital twin implementation

– The operation phase starts when the digital twin instance is up

and running and involves the run-time monitoring and reconfig-

uration of its components as needed.

– The de-commissioning phase takes place at last when the digital

twin is no longer needed and thus involves eliminating all its

components and releasing allocated resources.

All these steps have been implemented in the testbed described in

this work and some quantitative evaluation of the time needed to per-

form the commissioning and decommissioning actions will be reported

in the remainder of this chapter.

3.2.2 Digital twin provisioning workflow

Figure 3.3 shows a representation of the proposed architecture to sup-

port the implementation of the digital twin. The architecture aligns

with the NFV-MANO framework [B1] and ensures the management
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of the digital twin instances during their entire lifecycle. As tradi-

tional cyber range environments, it also provides all the capabilities

to experiment with configurations and security tests in the digital twin

playground. Users can interact with the orchestration platform and

request on-demand the deployment of new digital twin instances on

the cloud-based infrastructure with an “as a Service” approach.

As mentioned above, the digital twin is modeled starting from

MANO descriptors that specify the characteristics of its “building-

block” components, providing any information required to instantiate

and configure them in the underlying infrastructure (e.g., virtual re-

sources and software images), and how they are interconnected. In

particular, the digital twin architecture is designed using the follow-

ing two types of MANO descriptors:

– The VNF Descriptor (VNFD) defines the specifications to final-

ize the instantiation of a VNF (i.e., of a single component of

the digital twin). The provided information includes its internal

architecture, the exposed connection points, configuration prim-

itives, and the Virtual Deployment Units (VDUs) flavors to run

the VNF on one or more virtual machines.

– The Network Service Descriptor (NSD) is a higher-level tem-

plate that defines the constituent VNFs to be run (recalling the

corresponding VNFDs) and the interconnections between them

with virtual networks (i.e., Virtual Links in the NFV-MANO

terminology). We use this type of template to describe the com-

position of the overall digital twin architecture.

This modular approach allows the reuse of descriptors and eases the

extension with new components. With this approach, a company may

flexibly implement digital twins of different industrial network archi-

tectures by creating the descriptors and providing the software images

to replicate the real-world entities and related connectivity in the vir-

tualized environment.

Once created, the descriptors are passed to the orchestrator, the

entity in charge of all orchestration decisions at the service and re-

source levels. When a user requests a new digital twin instance, the

3.2. Implementation methodology 39



Chapter 3. Digital twin orchestration

orchestrator converts the high-level specifications in the descriptors

into a precise set of directives that the infrastructure manager executes

to deploy and configure all needed virtual resources in the controlled

infrastructure. Thanks to the interactions between these entities, the

process is fully automated. That also applies to the other lifecycle

phases. The user can trigger the modification or deletion of the in-

stance simply by interacting with the orchestration platform.

3.3 Use cases and scenarios

In the following, we present some relevant use cases that can be effi-

ciently developed and integrated over a digital twin instance using the

proposed approach. In general, the flexibility of the digital twin lifecy-

cle management allows us to take advantage of the resulting virtualized

environment to address security challenges related to deployment, se-

cure provisioning, seamless integration with the Internet, testing, and

scalability, among others. As already discussed, in the considered

scenario, the main objective is to provide a digital twin of the man-

ufacturing system network to investigate possible weaknesses of the

implemented protocols or the deployed network architecture. There-

fore, the selected use cases focus on this aspect.

3.3.1 Key management

Public Key Infrastructure (PKI) is the state-of-the-art credential man-

agement solution on the Internet to ensure secure end-to-end commu-

nications between devices and services. However, PKI is built on a set

of protocols that were not designed for industrial environments and

presents a large management overhead related to the issuing, storage,

distribution, verification, and revocation of certificates. As a result,

the necessary public key operations tend to be computationally ex-

pensive and many industrial devices lack the required computing re-

sources. On the other hand, symmetric-key cryptography can provide

a lightweight solution for Industrial Internet of Things (IIoT) devices.

However, both key storage and key management are big issues if using
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symmetric-key encryption, especially when considering low-capacity

devices [B39]. In any case, secure communications rely on the se-

curity of the key management mechanism adopted. Key management

consists of the generation, distribution, storage, updating, and revoca-

tion of long-term keys on IIoT devices and can be either a centralized,

decentralized, or distributed mechanism [B40]. Overall, [B40, B41,

B42] show that there is no key management mechanism that can be

universally adopted, but it will always be tailored to the needs of

the particular deployment (e.g., memory requirement, computational

cost, energy requirement, and resource consumption). Thanks to the

enhanced flexibility and reconfigurability, simplified deployment pro-

cedures, and easy control of network topologies, the proposed indus-

trial network digital twin implementation gives the possibility to easily

test different key management mechanisms outside the production en-

vironment. Our setup may be adapted to find the one that best fits

the requirements of any specific scenario.

3.3.2 Testing of ad-hoc provisioning solutions

Secure device provisioning, also referred to as bootstrapping or on-

boarding, is a process that provides a device with all the information

it needs to connect securely to the network infrastructure and be op-

erational. During secure provisioning, devices are transformed from

their manufacturing state to a configured state that enables them to be

used in a functional and secure manner. As described by the NIST in

[B43], the secure provisioning process of a device is composed of four

general phases: pre-onboarding, network-layer onboarding, network

connectivity, and application-layer onboarding. Today, a mixture of

proprietary, standardized, and academic provisioning solutions exists.

In the following, a high-level description of the provisioning process is

given in a solution-neutral manner. The pre-onboarding phase occurs

before the device is associated with any given network. During this

first phase, the device and the network infrastructure are equipped

with their bootstrapping credentials (i.e., the information that each

entity needs to be identified and authenticated). The bootstrapping
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credentials will be then used in the successive onboarding phase to en-

able the device and the network infrastructure to establish sufficient

trust in each other to allow secure provisioning to take place. The goal

of the network-layer onboarding phase is to provide new credentials

to the device, which will enable it to securely connect to the network

in question. Once the device has established a secure network con-

nection, it can use the connectivity to perform the application-layer

onboarding if needed. During the application-layer onboarding phase,

the device can securely download the application it needs to execute

to perform the intended functionality. Once this application is down-

loaded and executed, the device becomes operational.

Since every device needs provisioning, the effort for device provi-

sioning scales at least linearly with the number of devices. Automated

provisioning solutions not only provide the means to scale deployments

from single to dozens of devices, but they also have an essential impact

on the security of the entire industrial network. Security attributes of

the provisioning process must ensure that the network is not jeopar-

dized when new devices are added to it. An inappropriately executed

provisioning, or a provisioning solution with an insufficient level of

security, can lead to insecure configurations that may enable attack-

ers to eavesdrop or even manipulate communication between devices.

By performing such attacks, adversaries can steal confidential data

or tamper with industrial processes, causing economic loss, material

damage, and even personal injury in some cases [B44].

In addition to these security considerations, another key difference

among provisioning solutions dwells on the characteristics of the em-

ployed devices. For instance, IIoT devices typically lack screens and

keyboards, so trying to provide their credentials can be cumbersome.

For consumers, secure provisioning should be easy; for enterprises, it

should enable large numbers of devices to be quickly provisioned with

unique credentials.

Ideally, the provisioning process should be trusted, efficient, and

flexible enough to meet the needs of various use cases. The proposed

digital twin can be used to efficiently test ad-hoc provisioning solutions
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customized to meet the needs of the specific industrial deployment

and, more considerably, the related security requirements. In particu-

lar, a new device can be represented by an additional virtual compo-

nent (e.g., run on a virtual machine) in the virtualized environment

of the digital twin. Moreover, the four phases of the provisioning pro-

cess can be straightforwardly mapped to the four steps of the digital

twin lifecycle management reported in Figure 3.2: the pre-onboarding

phase occurs in the preparation phase, while the other three phases

of the provisioning process take place in the operation phase. The

main advantage of testing provisioning solutions in a digital twin en-

vironment is therefore related to reducing the manual effort between

subsequent testing iterations and saving time between the initial pre-

onboarding phase and the final phase of rollback. In fact, testing a

provisioning solution in a real industrial scenario would actually re-

quire to manually perform the pre-onboarding phase and, in the end,

to manually restore the network infrastructure and the new device to

the state they were in before the provisioning process took place. By

means of the proposed digital twin approach, all the phases of the

provisioning process can be performed instead automatically through

the four steps of the lifecycle management.

3.3.3 Attack and defense

The proposed digital twin, being the virtual replica of its physical

counterpart, shares the expected functional requirements and opera-

tional behavior of the corresponding industrial network. Therefore,

the virtual environment of the digital twin can be employed practi-

cally as a testbed for cybersecurity assessments, implementing attacks

against industrial protocols or testing the prevention and detection ca-

pabilities of the overall network architecture. By taking this approach,

network administrators can focus on optimizing the cybersecurity re-

quirements of the industrial network architecture while leaving the

production environment operative. An example scenario of this use

case is presented and implemented as a proof of concept in the follow-

ing section.
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3.4 Proof-of-concept implementation

In line with the general framework in Figure 3.3, for the proof-of-

concept implementation we set up a testbed integrating Open Source

MANO [B26] as an NFV-MANO compliant platform and OpenStack

[B25] as a cloud management platform. OSM is in charge of the dig-

ital twin orchestration, while OpenStack supports the deployment by

providing seamless integration with the cloud infrastructure and dy-

namic control of compute, storage, and network resources needed for

the digital twin instantiation. The digital twin deployment is based

on VNFs running on VMs. In particular, the digital twin implemen-

tation described hereinafter was tested in a private data center using

an OpenStack cluster composed of two physical servers. Each server

is equipped with 64 GB of RAM, 40 CPU cores, 1.2 TB of storage, 1

Gbit/sec network interfaces, and Ubuntu 18 LTS as OS. The main ob-

jective of the presented experimental evaluation is to demonstrate the

potential of the proposed approach and the viability of its implemen-

tation even in a limited laboratory infrastructure. The considerations

made in the previous chapter about the network slice instance also

apply here. A more powerful setup is expected to provide better per-

formance overall.

3.4.1 Digital twin architecture

The digital twin architecture implemented for the experimental vali-

dation reported in this work is simple, yet it provides a clear under-

standing of the operational models we propose, achieving the goal of

enabling the execution of a set of cybersecurity tests safely in indus-

trial environments.

Figure 3.4 shows the design of the digital twin architecture. For

the design, we considered that a network architecture typical of an

industrial scenario (see Figure 3.1) may include:

– one or more industrial network segments of the production plants,

where different technologies (e.g., IIoT) may be used for data
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collection and connectivity of machinery and other devices pop-

ulating the OT;

– one or more gateways that manage the incoming and outgoing

traffic between the production plants and the rest of the infras-

tructure (e.g., for monitoring and data analysis);

– one or more Local Area Networks (LANs) with system compo-

nents dedicated to data analysis, monitoring, and security;

– an access network to interface with the Internet and the outside

world.

Therefore, considering the focus on cybersecurity assessment and

testing of the proposed use case, some relevant components that may

be included are:

– a firewall as a first defense of the infrastructure to filter the

network traffic,

– a Virtual Private Network (VPN) server to securely access the

enterprise networks,

– an Intrusion Detection System (IDS) and an Intrusion Preven-

tion System (IPS) to monitor the traffic and to detect/counteract

cyber-attacks and anomalous behaviors,

– a Deep Packet Inspector (DPI) to examine and manage the net-

work traffic.

As introduced before, the digital twin components outlined in the

scheme of Figure 3.4 are run as VNFs on different VMs in the cloud

infrastructure. The vertical and horizontal bars represent the vir-

tual networks that interconnect them. The architecture reflects the

considerations discussed above. One network of the architecture (the

green bar at the bottom) is dedicated to the management of the in-

frastructure and all digital twin components. A management console

connected to this network is provided as a VNF to users and network
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Figure 3.4: Architecture of the industrial network digital twin imple-

mented for the proof of concept. The colored bars represent virtual

networks. VNFs are depicted as computers.

administrators so that they can easily access and manage the envi-

ronment. Another network (the blue bar on the right) is used as an

access network to the outside environment and the Internet. Two in-

ternal LANs (the orange bars on the left and in the middle) are used

respectively as an interface network to the industrial part of the in-

frastructure and as a corporate network with monitoring and security

systems. A firewall is placed between the external access network and

the internal LANs. It can also serve as a VPN endpoint or NAT.

The traffic is mirrored on an IDS in the corporate network. An in-

ternal router interconnects the two LANs and can be complemented

by a data analytics system. For the proof of concept and to finalize

the experiments reported in this section, a Modbus server is added

as a VNF to the industrial LAN. The virtualized environment also

includes an attacker machine to perform a set of cybersecurity tests,

as will be presented in the following. As shown in the figure, the

IDS was implemented with Suricata [B45], a well-known open-source

threat detection engine.
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3.4.2 Digital twin instantiation

For this experiment, we created the NFV-MANO descriptors needed to

deploy the architecture in Figure 3.4, onboarded the resulting packages

in the OSM platform, and set up the cloud images for the various

building blocks of the digital twin in OpenStack.

We tested the time required to commission and decommission this

digital twin architecture. Figure 3.5 shows the time needed to com-

plete the commissioning process, reporting the results of 10 experi-

ments performed on the same infrastructure. Each point in the line

chart is the instantiation time measured in one of the runs, while the

horizontal dashed line represents the average time calculated on the

set of values measured in the 10 runs. The measurements show some

variability depending on the specific working conditions of the servers,

with an average instantiation time of just over 3 minutes. The time re-

quired instead by the decommissioning process is shown in Figure 3.6.

As in the previous figure, the graph shows the value measured in each

of the 10 experiments and the average termination time of approxi-

mately half a minute. As the intuition suggests, the decommissioning

phase is much faster. There is no persistence in components, which

need to be deployed and configured at each commissioning, but mostly

just switched off at decommissioning.

The figures show an overall amount of time for the commissioning

and decommissioning of a digital twin instance that is quite acceptable

for the purpose, even considering the limited hardware available in the

laboratory testbed. In fact, with the proposed approach a company

could shift from one digital twin architecture to another in a matter of

minutes, assuming that the needed descriptor packages are prepared

correctly in advance.

3.4.3 Cybersecurity testing

The use case implemented for the proof of concept is an example of

attack and detection on the Modbus protocol [B46]. Modbus is one of

the many industrial network protocols adopted for Supervisory Con-
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Figure 3.5: Time required for the digital twin commissioning (create

an instance). The graph shows the values in seconds measured in ten

different runs. The dashed line represents the average instantiation

time of approximately 3 minutes (182.2 s).
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Figure 3.6: Time required for the digital twin decommissioning (ter-

minate an instance). The graph shows the values in seconds measured

in ten different runs. The dashed line represents the average termina-

tion time of approximately 0.5 minutes (30.3 s).
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trol And Data Acquisition (SCADA) systems [B47]. Published origi-

nally in 1979 by Modicon for the purpose of using it with its PLCs, it

is now one of the most widely used protocols for industrial monitoring

and control applications. The original version of the Modbus protocol

was designed for serial communication channels, but has been subse-

quently extended with a variant to provide communications over the

TCP/IP stack.

Modbus cybersecurity weakness

All Modbus variants are based on a simple request-response commu-

nication mechanism to exchange messages between master and slave

units (i.e., controllers and field devices). The messages exchanged

contain function codes that indicate requested operations on slaves,

diagnostic functions, and error conditions. Modbus was not designed

with security in mind. In fact, it has inherent vulnerabilities that

attackers can exploit to carry out attacks in industrial networks if

appropriate countermeasures are not implemented [B48],[B47].

From a cybersecurity perspective, Modbus has three obvious flaws

that can be easily exploited by an attacker.

– Modbus has no encryption mechanisms, which means that all

data are transmitted in clear text. As a result, whole messages

can be easily intercepted and tampered with.

– The second flaw is related to the Modbus built-in function code

mechanism. Function codes are known and some of them may be

critical if misused. A simple example is the function code “08”,

which means diagnostic mode. If used with the sub-function

code “04”, it can force the execution of the slaves in listen-only

mode. If a hacker succeeds in broadcasting this function code

over the whole network to all slaves, he may be able to com-

pletely block the PLCs.

– In serial communication networks, Modbus uses the broadcast

transmission to send messages between the master device and
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the slave devices. In this scenario, the hacker can easily inter-

cept packets on the broadcast network and launch a man-in-the-

middle attack.

Test an attack

As a proof of concept, we first implemented enumeration and dis-

ruption attacks on the registers of Modbus devices (on the Modbus

server). We still refer to the schematic architecture in Figure 3.4. In

practice, the attack takes place in three phases:

1. identification of the Modbus server;

2. enumeration of the exposed registers, testing for the “read” and

“write” operations;

3. information gathering by massively reading all the registers.

During the identification phase, the attacker starts scanning the

industrial LAN looking for a Modbus server. Once the Modbus server

is identified, the register enumeration phase is started. The aim of

this phase is to map the attack surface to the devices connected to the

server. To achieve that, we tested the possibility of a single reading of

each register and then a massive reading of all the 65536 registers. Be-

sides leading to a disclosure of the information exposed by the Modbus

server, this massive reading can also cause a slowdown of the service

itself, and consequently lead to a denial-of-service attack. After map-

ping the active registers, we also tried to write on them. This attack

may cause two main effects: disrupt the system application or change

its behavior to a malicious one.

These are examples of tests that, despite their simplicity, can not

be carried out in a real production environment because they introduce

enough perturbations to create problems to the production chain.

Test IDS rules for attack detection

Finally, to complete the proof-of-concept experiments, we exploited

the digital twin to define and test countermeasures to the possible
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attacks. Countermeasures can rely on detection, mitigation, and pre-

vention mechanisms. Whatever mechanism is selected, it is important

to test it outside the industrial environment to be sure that it is ef-

fective and does not cause any problems to regular operations. In

general, this procedure of testing countermeasures on the digital twin

can be adopted to test new configurations before their implementation

in the real-world environment, as well as to evaluate the operation of

mechanisms already in use.

In the implemented example, a set of detection rules for the Suri-

cata IDS was tested in the digital twin. The rules under test are

reported in the following and are meant to detect the massive reading

attack by monitoring TCP connections on port 502, the one where the

Modbus server exposes the registers.

alert tcp $EXTERNAL_NET ANY -> $HOME_NET

502 (msg:"snort rule test 1"; sid:14265;

content:"|09|"; offset:9; rev:3;)

alert tcp $EXTERNAL_NET ANY -> $HOME_NET

502 (msg:"snort rule test 2"; sid:42299;

content:" |10 05|"; offset:10; rev:5;)

alert tcp $EXTERNAL_NET ANY -> $HOME_NET

502 (msg:"snort rule test 3"; sid:15076;

content:"|07|"; offset:7; rev:5;)

The traffic on the industrial LAN of the digital twin was mirrored

to the IDS, and the effectiveness of the rules could then be tested

along with the normal operations. The screenshot in Figure 3.7 shows

the IDS alerts that notify the malicious activity based on the rules we

entered.
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Figure 3.7: A screenshot of the IDS command line interface showing

the alerts of the Suricata detection rules.
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Orchestration of secure ML

pipelines

The previous chapters delved into the implementation of service man-

agement and orchestration procedures in two different application do-

mains, showing the level of flexibility and automation offered in service

deployment and lifecycle management with the integration of technolo-

gies such as NFV and SDN. This chapter shifts the focus to investi-

gating distributed control mechanisms that can be integrated with the

above-mentioned technologies to improve network service control.

As will be discussed in the following section, the increasing diver-

sification and dynamicity of services, as well as the growing network

heterogeneity and complexity, demand novel approaches to support

effective service and network management at different levels of the in-

frastructure. Novel control mechanisms based on Artificial Intelligence

(AI) and Machine Learning (ML) techniques are expected to play a

key role in B5G networks. In particular, near-real-time autonomous

network operation is required to deal with the expected large traf-

fic dynamicity and guarantee the stringent performance required by

future services.

This chapter presents an orchestration system to deploy ML pipelines

connecting distributed intelligent agents for near-real-time control of

network services. A Machine Learning Function Orchestrator (MLFO)

is proposed for deploying the control agents across the network and
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configuring them to form the overlay control system with the help of

an NFV-MANO platform. The MLFO is an original orchestrator that

has been developed in collaboration with the Optical Communications

Group of Universitat Politècnica de Catalunya (UPC).

Furthermore, the chapter presents the integration of the MLFO

with other components into an architectural framework to orchestrate

secure ML pipelines in a dynamic and automated way. Given the dis-

tributed nature of the control pipelines, and considering that agents

exchange information critical to determining the network behavior

over a public infrastructure, security is a key issue to be addressed.

Two approaches are proposed to secure communications between the

agents. In the first explored approach, communications are secured

with IPsec tunnels using a blockchain-based Distributed Ledger Tech-

nology (DLT) network for key exchange [P6]. The second solution,

instead, leverages an in-network encryption mechanism to encrypt/de-

crypt the traffic exchanged between the agents with P4 programmable

switches [P7].

4.1 Secure ML pipelines for near-real-time

control of 6G network services

Although the standardization process for 6G is still in its infancy, it is

expected that next-generation networks will rely on a pervasive use of

AI to improve network and service management [B49]. The vision for

6G sets a high bar for next-generation mobile networks, which shall

support increasingly heterogeneous vertical services and do so with

outstanding performance [B50]. Therefore, a new level of automation

in network control will be required to cope with the diversification

of functional and performance requirements, as well as the growing

complexity and heterogeneity of the network itself.

Control mechanisms rely on effective data collection and analy-

sis to build knowledge about the state of the network components

and make decisions based on that. Advances made in AI and ML

techniques in recent years have attracted the attention of the telco

4.1. Secure ML pipelines for near-real-time control of 6G network
services
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community and paved the way for novel data-driven control mecha-

nisms. AI and ML models have the potential to improve data analysis

and decision-making, increasing network automation to the point of

unlocking autonomous management operations through “zero-touch”

control mechanisms in the long run [B51].

However, the implementation of these mechanisms opens up new

challenges not only from the standpoint of AI techniques but also

on where and how to integrate this intelligence within the network

architecture and with current management and orchestration frame-

works. For instance, near-real-time autonomous control will be es-

sential to swiftly adjust the network resources and functions to dy-

namic traffic changes and ensure stringent requirements of upcoming

services. However, near-real-time decision-making is limited by the

centralized nature of control loops implemented in controllers and

orchestrators due to the latency in data transfer and decision com-

munication [B52]. A possible solution to reduce response time is to

deploy a distributed and coordinated control system based on a set of

intelligent agents (i.e., AI/ML-based control algorithms) executed in

different locations across the network infrastructure, as close as possi-

ble to the data sources. The agents are delegated to local autonomous

decision-making and coordinate to provide the overall control process

of network services. Therefore, the agents participating in the control

need to share knowledge and communicate with each other, forming

collaborative pipelines.

Nonetheless, this distributed approach could raise security con-

cerns as it makes the control system more vulnerable to some attacks

than a centralized one. Attacks can be crafted to undermine the agents

and their communications. Therefore, the implementation of this type

of control system requires the definition of procedures for orchestrat-

ing the agents and their connectivity, as well as addressing security

issues arising from such a distributed approach.

4.1. Secure ML pipelines for near-real-time control of 6G network
services
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4.2 ML Function Orchestrator

Drawing from the work in [B53], a dedicated orchestrator, namely a

Machine Learning Function Orchestrator, is proposed to orchestrate

the deployment of secure ML pipelines to control network services

in near-real-time and provide the needed supervision of the control

process. The concept of ML pipeline is extended to a multi-agent sys-

tem composed of intelligent agents distributed across the network that

coordinate to provide the overall control process by exchanging infor-

mation. The ML pipeline comprises the set of agents and the com-

munication infrastructure connecting them (i.e., the pipeline). The

intelligent agents make autonomous decisions under the supervision

of the orchestrator, based on measurements collected and processed in

different locations with a distributed telemetry process.

However, the distributed nature of agent pipelines makes the con-

trol system vulnerable to some malicious attacks. The agents exchange

data and other types of information critical to determining the overall

network behavior over a public infrastructure. Therefore, countermea-

sures to secure communications in case of eavesdropping must be an

integral part of the ML pipeline.

As will be discussed in more detail in the next section, the MLFO

is part of an orchestration framework and interacts with other system

components, such as a Service Management and Orchestration (SMO)

platform, to perform the dynamic and automated deployment of the

resources needed to run the agents, as well as the configuration of the

connectivity between them, also fulfilling the security requirements. It

is assumed that an ML pipeline per Network Service (NS) is activated.

Agents participating in the control are deployed dynamically in the

network infrastructure along with the required connectivity once the

NS is created. The MLFO is responsible for deciding the ML pipeline

composition, including the locations where agents need to be deployed

and how they need to be connected. The orchestration process takes

place in two subsequent phases:

– the deployment of the agents in the selected locations, orches-

trating the needed resources to run them, and establishing the
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required network connectivity;

– the configuration of the agents so that they can run the control

algorithms, establish secure communications, and coordinate to

form the overall overseen control system. They are also config-

ured to collect telemetry data from the targeted sources.

4.3 Deployment of secure ML pipelines

The deployment of the ML pipelines involves orchestrating both the

resources to run the agents and the required communication infras-

tructure to connect them. VXLANs can be configured to extend local

network segments across different clusters, providing a virtual overlay

network and logical isolation over the underlying infrastructure for the

control pipelines. Nonetheless, as discussed above, communications

between agents of an ML pipeline should be secured to prevent ma-

licious attacks in case of eavesdropping. VXLAN encapsulation does

not provide any intrinsic security feature, as ensuring secure end-to-

end connectivity is beyond the scope of the protocol.

4.3.1 Secure inter-agent communications

We rely on encryption to improve the security of inter-agent communi-

cations. Encryption protocols, such as the IPsec suite, allow the setup

of secure, authenticated communication channels at the network layer,

reducing rogue risk. Pre-shared keys can be used for peer authenti-

cation to streamline the IPsec secure channel configuration without

requiring the generation of certificates for each agent involved in the

control. Such a solution requires an authentication infrastructure to

distribute keys among authorized agents.

Distributed Ledger Technologies (DLTs) offer a promising solution

by providing a secure, shared, immutable, and decentralized ledger of

transactions. DLTs avoid the need for a trusted centralized authority

to manage transactions between parties. To add new data to the

ledger, the nodes participating in the DLT network have to validate the
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transactions (e.g., agree with their order and existence on the ledger)

with a consensus mechanism. In recent years, applications of DLTs in

the context of 5G services have been proposed and have showed that

the consensus mechanism has an impact on the overall performance

[B54]. Even with the simplest consensus mechanism, data exchange

can be slow for near-real-time applications. However, in the proposed

scenario, the impact of the consensus mechanism is limited to the

setup phase of the pipelines. It does not affect the actual exchange of

data between agents, which takes place in the secure communication

channel once established.

In particular, the proposed system uses Smart Contracts (SCs)

on the DLT network to facilitate the coordination and collaboration

between the agents and the MLFO. The MLFO handles the dynamic

association of the agents to the DLT. Smart contracts are then used

to exchange keys between the MLFO and the authorized agents.

4.3.2 Orchestration and control system

Figure 4.1 shows an overview of the orchestration and control sys-

tem. The MLFO coordinates the deployment and configuration of

the ML pipelines by interacting with the other entities. The SMO is

an NFV-MANO platform that manages the NSs and orchestrates the

components needed for the ML pipelines. The SMO system interacts

with several VIMs that manage clusters located in different locations,

providing local networking, computing, and storage resources to run

the agents. An SDN controller is then on top of the packet network

and manages the connectivity. The MLFO computes the ML pipeline

design according to information gathered from the SMO platform and

a topology server based on ALTO [B55], fed with topological and net-

working data. Finally, a DLT infrastructure comprises different dis-

tributed nodes participating in the network and supports the exchange

of the keys with a smart contract.

We implemented a testbed based on this architecture. The MLFO,

the algorithms and interfaces in the agents, and the ALTO server

have been developed in Python 3.10.4 and run in Docker containers.
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Figure 4.1: Overall orchestration and control system

The SMO platform was implemented with Open Source MANO v.14.

The MLFO interacts with OSM via the Northbound Interface (NBI)

using the OSM client library [B56]. Three OpenStack clusters (re-

lease 2013.1 Antelope) were set up to provide the resources for the

deployment. OpenDaylight (ODL) (release 16.0 Sulfur) was used as

the SDN controller. The DLT network was set up with four container-

based DLT nodes, based on the Geth implementation of the Ethereum

blockchain. The smart contract for the key exchange has been written

in the Solidity programming language.

4.3.3 Orchestration workflow

Figure 4.2 shows the workflow of the ML pipeline deployment. It is as-

sumed that the MLFO has been previously configured with the needed

credentials for the DLT network. The workflow consists of two phases:

i) the ML pipeline deployment and ii) the agents’ configuration and

key exchange.

The orchestration process is initiated by the SMO platform (OSM)

after the deployment of a new NS (step 0 in Fig.4.2). The SMO trig-
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Figure 4.2: ML Pipeline orchestration workflow

gers the ML pipeline deployment and requests the definition of an ML

pipeline for the NS given its relevant details, including the location of

the VNFs (1). Based on the NS details and the requirements of the

ML pipeline in terms of delay and throughput among the agents, as

well as the required resources for the agents, the MLFO requests the

ALTO server to compute a graph with the resources in the network

infrastructure that meet the requirements and can be used to sup-

port the ML pipeline (2). Based on all the information, the MLFO

computes the optimal ML pipeline design and sends back MANO de-

scriptors. The descriptors define the deployment characteristics of

the ML pipeline, including information such as the locations where

the agents need to be deployed (clusters), the resources needed to

run them, and the connectivity to be created. A list of iterations is

generated that includes the communication of the SMO system with

the VIMs (OpenStack) for the deployment of the agents encapsulated

into VMs (3), and with the SDN controller (ODL) for managing the

connectivity (4). Once the agents are running and the connectivity

is available, the ML pipeline is deployed and the configuration phase

starts (5). When the MLFO receives the request to configure the
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agents, it sends the initial configuration that includes the addresses of

the VNFs and that of the other agents, as well as the algorithms that

every agent runs (6). After that, the MLFO compiles the smart con-

tract that will be used to store the key for the ML pipeline (7). Next,

the MLFO creates the DLT accounts for the agents, deploys the smart

contract and registers the addresses with credentials to interact with

the smart contract (8). In this way, the MLFO can control the access

to the smart contract and add or revoke permissions if needed in case

of ML pipeline reconfiguration. Once the addresses are registered, the

MLFO distributes the credentials to interact with the smart contract

to the agents involved in the ML pipeline (9). The agents connect

to the smart contract through the local DLT node. The MLFO gen-

erates a random key that the agents can use to initialize the IPSec

secure communication channel and pushes the key to the smart con-

tract (10). At this time, the deployment of the NS ends from the

viewpoint of OSM. Once the transaction is validated by the DLT net-

work, agents receive a notification, download the key and use it for

setup a secure communication channel with other entities in the ML

pipeline for near-real-time control of the NS (11).

The deployment of ML pipelines following this workflow with the

proposed orchestration system was demonstrated with a proof-of-concept

demo presented in [B53]. Figure 4.3 shows the reference scenario con-

sidered in the demo, with an ML pipeline deployed in distant locations

over an optical network segment. For the demonstration, agents were

also configured to collect and exchange telemetry measurements from

the components to which they were assigned.

4.4 In-network encryption

This section extends the work presented in the previous part of the

chapter, reporting a second solution to secure the message exchange

between distributed control agents that leverages a programmable

data plane.

Data Plane Programmability (DPP) offers unprecedented flexibil-
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Figure 4.3: Schematic representation of an ML pipeline with agents

deployed in different locations close to the VNFs they have to monitor

ity in performing customized in-line packet processing on top of reg-

ular forwarding. This has paved the way for the implementation of

many functionalities beyond the set of protocols supported by the

fixed function pipelines of traditional network appliances [B4]. There-

fore, DPP creates the opportunity to offload additional services from

other nodes to network devices for in-network computation. P4 (Pro-

gramming Protocol-independent Packet Processors) is the most widely

used domain-specific language for programming the behavior of net-

work devices, based on a flexible parsing mechanism and a multi-stage

match-action pipeline [B57].

The work presented in this section takes advantage of the capabil-

ity offered by DPP to secure the communications between the agents

by performing in-network encryption on P4 programmable switches.

The switches will be able to identify the traffic related to agents of

the same control pipeline and cipher it properly while leaving the

other traffic unchanged. In particular, this section reports the imple-

mentation and related experimental validation of a custom P4 Parsing

Pipeline and an extern function in P4 switches to encrypt/decrypt the

payload of the traffic sent between the agents. The developed solu-
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tion leverages a standard implementation of the Advanced Encryption

Standard (AES) symmetric encryption algorithm [B58].

4.4.1 System architecture

Figure 4.4 depicts the envisioned system architecture in this second

scenario. The architecture represents an alternative to the orchestra-

tion framework presented in the first part of the chapter and shows

how the proposed in-network encryption solution can be integrated

with the MLFO to deploy secure ML pipelines across the network in-

frastructure. The deployment workflow overall aligns with what has

been discussed in the previous sections.

In this scenario, the MLFO coordinates the whole deployment pro-

cess and manages the pipeline configuration by gathering and sending

information directly to a Service Management and Orchestration plat-

form and a network controller via the exposed Northbound Interfaces.

Local Virtualized Infrastructure Managers control then the resources

in each computing cluster. As in the previous framework, the SMO

platform supports the orchestration process and is in charge of the

deployment of the control agents. The agents of the same control

pipeline can be distributed in different locations across the network

depending on the network services characteristics and based on the

MLFO requests. Other entities, as in the previous scenario, can pro-

vide additional information for the computation of the optimal ML

pipeline composition. Alongside the orchestrator, the network con-

troller manages P4 programmable switches placed at the edge of the

computing clusters to handle the connectivity and secure the commu-

nications between the agents.

When the deployment of a new control pipeline is triggered and

the MLFO creates the ML pipeline descriptors, the SMO platform

translates the high-level descriptors into lower-level implementation

directives and sends them to the VIMs to run the agents in contain-

ers in the underlying infrastructure. Once the distributed agents are

running, the network controller installs rules in the programmable

switches to match the traffic flows exchanged between the entities of
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Figure 4.4: Schematic representation of the system architecture and

its main entities. Agents deployed in different computing clusters that

belong to the same control pipeline exchange data through a secure

channel created with in-network encryption.

each pipeline and encrypt/decrypt the data.

This is just an example of integration and other scenarios involv-

ing, for instance, multiple local network controllers are possible. More-

over, the proposed in-network encryption can be generally extended

to other application scenarios beyond the case under consideration in

this chapter.

4.4.2 Encryption/decryption function implemen-

tation with externs

Several hardware-based (ASICs, NICs, FPGAs) and software P4 pro-

grammable targets (i.e., devices that can execute P4 programs) are

available these days, supporting different P4 architectures. These ar-

chitectures model variants of the processing pipeline and essentially

define the set of blocks, capabilities, and interfaces made available to
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the programmer. Along with the core language constructs, P4 tar-

gets can support, to different extents, additional built-in objects and

functions to provide features that may be useful for packet process-

ing in many P4 programs (e.g., checksum generation, registers, and

counters). Such capabilities are made available through the concept

of P4 extern. Externs are part of the P416 language specification [B57]

and provide a way to define interfaces between P4 programs and func-

tionalities implemented outside them. In principle, this approach also

allows the built-in capabilities to be extended with other custom fea-

tures that might be difficult to implement efficiently in P4 code.

In this work, we propose a proof-of-concept implementation of the

in-network encryption mechanism for the P4 software switch Behav-

ioral Model version 2 (bmv2) [B59]. For example, the source code of

bmv2 implements some additional primitives to execute hash functions

for checksum calculations and cyclic redundancy checks, which are

commonly employed to detect accidental errors in data transmissions.

However, bmv2 does not provide built-in cryptographic capabilities to

encrypt/decrypt data.

Drawing from the work concerning Hash functions in [B60], we

exploit the concept of P4 extern to provide the missing encryption and

decryption functions, similar to the other features already provided by

the programmable software switch. The developed functions are based

on a standard C++ implementation of the AES algorithm and, after

import and declaration of the extern, can be used in control blocks of

the parsing pipeline just like any other P4 function. More details will

be provided in the testbed description in the following subsection.

4.4.3 Testbed implementation

The reported implementation focuses on evaluating the proposed in-

network encryption within a virtualized environment, wherein each

constituent component is realized as a Docker container. We devel-

oped specialized Docker container images to implement the function-

alities of the agents. In turn, the agents are connected by P4 switches

implemented by means of two other containers. They are equipped
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with a simple level 2 forwarding pipeline and configured to only for-

ward traffic to the end hosts: the P4 code is compiled for the reference

virtual target bmv2. Furthermore, we developed a customized imple-

mentation of the control plane, responsible for making high-level deci-

sions including switch pipeline configuration among other tasks. The

controller, which executes the control plane functionalities, commu-

nicates with the switches through the P4Runtime specification [B61],

allowing P4 pipeline reconfiguration at runtime. P4Runtime is a well-

established API for controlling the data plane elements of a device

whose behavior is specified by a P4 program.

Taking into account that the communication between the agents

occurs through HTTP REST API, with data exchanged in JSON for-

mat, we developed a specific P4 Parsing Pipeline to handle the variable

length of the HTTP message. The steps performed are:

1. The parser extracts the Ethernet and the IP headers from each

packet;

2. If the Protocol field of the IPv4 header is equal to 6 (i.e. the

TCP protocol), the header is extracted;

3. Knowing the field Total Length of the IPv4 header field and the

field Data Offset of the TCP header, the P4 parser calculates

the actual length of the TCP header, including the TCP options,

and the total payload size;

4. Finally the HTTP message is extracted depending on the value

of the TCP payload size.

This procedure facilitates subsequent actions by providing the nec-

essary groundwork. It enables the switch to identify both the source

and destination endpoints, which is paramount in determining the

application of the encryption and decryption actions.

To secure the in-network channel, 128-bit key AES is the chosen al-

gorithm. Symmetric AES keys can be pre-installed in the P4 switches

at configuration time or can be exchanged between the controllers
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Figure 4.5: Example of a connection flow between two agents exchang-

ing data via REST API in JSON format. The two P4 programmable

switches encrypt and decrypt the TCP packet payload containing the

HTTP and JSON data.

via Diffie-Hellman (DH) key agreement [B62] at runtime and then in-

stalled on the switches. From an operational perspective, generally,

the establishment of the secure channel between the two bmv2 switches

can be accomplished in two ways. It can be configured permanently

at system start-up, routing all communication requiring encryption

through this channel. Alternatively, it can be established dynamically

for specific traffic flows, with each flow having its dedicated encrypted

channel. The decision regarding which strategy to employ is a matter

for the control plane.

As introduced before, we exploited the concept of P4 extern to

develop the AES encryption and decryption functions. An extern is

an API that uses an external dependency, which can be queried by

the target. In this case, the implemented extern leverages standard

C++ implementations of the AES 128-bit encryption and decryption
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functions. Each switch performs both encryption and decryption, de-

pending on the flow direction, as shown in Figure 4.5. Subsequently,

each pipeline encrypts and decrypts the payload in the ingress queue

control by calling the extern and emitting the encrypted/decrypted

payload in the Deparser pipeline, as summarized in Alg. 1 and Alg. 2.

Algorithm 1: Encrypt action in the bmv2 Ingress Pipeline

Input : The HTTP message m of the input packet.

Output: The encrypted data enc correspondent to the HTTP

message m.

1 enc← Encrypt(m): call P4 extern AES Encrypt function;

2 Update the value of the IPv4 header field Total Length;

3 m.setInvalid(): do not emit the original HTTP message in

the Deparser;

4 enc.setV alid(): emit the encrypted message in the Deparser.

Algorithm 2: Decrypt action in the bmv2 Ingress Pipeline

Input : The encrypted HTTP data enc of the input packet.

Output: The decrypted HTTP message m.

1 m← Decrypt(enc): call P4 extern AES Decrypt function;

2 Update the value of the IPv4 header field Total Length;

3 enc.setInvalid(): do not emit the encrypted message in the

Deparser;

4 p.setV alid(): emit the decrypted HTTP message in the

Deparser.

4.4.4 Experimental validation

This subsection reports the results obtained with the testbed described

above. The bar chart in Figure 4.6 shows the average round-trip time

calculated by exchanging 100000 HTTP messages between the agents.

The error bars in red represent the related standard deviation. For

comparison, as a communication time, we considered the time inter-

val between sending an HTTP request and receiving the subsequent
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response when the in-network encryption or a traditional IPsec secure

channel is used. For the IPsec case, we considered different configura-

tions by setting up a secure channel between the agents or the switches

using strongSwan [B63]. In tunnel mode, the entire IP packet is en-

crypted whereas only its payload is ciphered in transport mode. The

performance exhibited by our proposed solution, utilizing in-network

encryption, is comparable in order of magnitude to that of the vari-

ous IPsec configurations being evaluated. Given that the tests were

performed in a virtualized environment with software programmable

switches, mapping our approach on a P4 hardware pipeline should

improve performance.

Figure 4.7, instead, shows the average time needed to set up the

secure channel and start the connection in three different scenarios.

In the first two cases, the P4 programmable switches use pre-shared

keys or the Diffie–Hellman (DH) protocol to negotiate a shared secret

key over the insecure channel, respectively. In the third scenario, as

a comparison, we used the orchestrator to establish an IPsec Host-to-

Host tunnel between the agents without in-network encryption. To

test the latter scenario, we used Open Source MANO [B26] as an or-

chestration platform to deploy the agents running strongSwan in two

computing clusters with OpenStack [B25] as VIM and to configure

the IPsec tunnel at runtime with Day 2 operations defined in the de-

scriptor packages. Day 2 primitives allow the execution of actions on

VNFs at runtime. We exploited the Juju python framework to build

proxy charms [B64] as a set of scripts to configure the IPsec tunnel

on both agents with a shared secret key, start the secure connection,

and retrieve the entire process timestamps. Most notably, the average

secure connection establishment time with the DH exchange is far less

than the time needed to set up and establish an IPsec connection with

the orchestrator. Finally, it is important to highlight that if the sym-

metric keys are pre-installed in the P4 switches, then the encrypted

channel establishment time is reduced to the connection time.

The achieved results prove the feasibility of the proposed approach

and show that in-network encryption through P4 programmable switches
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Figure 4.6: Average communication time between agents, comparing

in-network encryption with traditional IPsec. The IPsec is configured

between the agents (Host-to-Host) in transport and tunnel mode or

between the switches (Net-to-Net).

is comparable in order of magnitude with the performance achieved

in the testbed with traditional solutions such as IPsec while providing

more flexibility in the setup phase.
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Conclusions

This thesis addressed the management and orchestration of network

services in different application domains. The work presented archi-

tectural models and practical instruments based on NFV and SDN

paradigms that can be employed to orchestrate network components

to provide the infrastructure needed to meet the functional and perfor-

mance requirements of each scenario. Specifically, Chapter 2 presented

the design and implementation of a network slice for MC communica-

tions. The NFV-MANO approach is applied to orchestrate the slice

components on a cloud-based infrastructure spanning different data

centers. The experimental validation showed that the network slice

can be instantiated in a few minutes, thus allowing maximum flexibil-

ity for infrastructure deployment in case of emergency events. More-

over, it showed that a complete separation between the control and

data planes can be achieved at both the network (5G) and the service

(MC) levels. Deploying media servers and 5G user plane function-

alities at the edge provides faster access to mission-critical services

and lowers communication latency. Finally, it also showed that the

QoS in the transport segment interconnecting the network slice sec-

tions can be managed in an integrated way with the slice management

thanks to an SDN control. Chapter 3 presented the application of the

NFV-MANO principles in a different domain, proposing the orches-

tration of an industrial network digital twin that provides a realistic

virtualized environment to perform cybersecurity testing without in-
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terfering with the real industrial plant. The work showed that the

digital twin architecture can be designed in a modular and flexible

way. The experimental validation demonstrated the automated on-

demand provisioning with a proof-of-concept digital twin, reporting

instantiation and elimination times. It also showed the potential of

using the digital twin to perform security tests and what-if scenario

validation. Finally, Chapter 4 presented an orchestration system to

deploy secure ML pipelines for near-real-time control of network ser-

vices. In this work, a novel ML Function Orchestrator performs the

deployment and configuration of the ML pipelines with the help of an

NFV-MANO platform and other entities. The chapter presented two

solutions to secure inter-agent communications. The former exploits

IPsec secure channels using a DLT network for key exchange. The lat-

ter proposes an in-network encryption mechanism to encrypt/decrypt

the traffic with P4 programmable switches. In this second case, the

chapter reported results comparing the in-network encryption perfor-

mance with IPsec.
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