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“What makes us the most normal,” said Reiko, “is knowing that we're not normal’.
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Monitoring physical systems has become pervasive, particularly in critical applications
where ensuring operational integrity is paramount. A fundamental task in this context
is identifying anomalous behaviors, commonly referred to as anomaly detection. Over
the past years, significant attention has been devoted to anomaly detection, leading to
the development of more accurate and robust algorithms capable of processing complex
data. However, several fundamental challenges remain. Firstly, anomaly detection is
inherently unsupervised, making it difficult to exploit prior knowledge about possible
anomalies during the design phase. Secondly, despite advances in related fields, anomaly
detection has not been thoroughly analyzed from an information-theoretic perspective.
This lack of exploration complicates its integration with other well-established tasks, such
as signal compression. This dissertation aims to address these challenges by presenting
both practical and information-theoretic frameworks for anomaly detection.

In the first part, we design a tool designed to mitigate the challenge of evaluating
anomaly detection performance in the absence of real anomalies. To this end, we de-
velop robust mathematical models that emulate possible anomalies in time series data
and propose a procedure for generating synthetic anomalies. Furthermore, we establish
a theoretical framework for performance assessment based on a novel concept of distin-
guishability.

In the second part, we employ these assessment tools to study the interaction be-
tween compression and anomaly detection from an information-theoretic standpoint. We
demonstrate that common lossy compression algorithms can compromise the effectiveness
of anomaly detection performed on compressed data. We then study how these tasks can
be jointly optimized and offer insights for developing practical systems that integrate both
functions. In a similar spirit, we design an autoencoder-based compression scheme that
not only minimizes distortion but also preserves information critical for anomaly detection.
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Introduction

Physical reality is constantly monitored, analyzed, and evaluated to guide decisions or
actions to modify it. This is achieved by integrating sensors into natural environments,
engineered systems, or even the human body, creating a cyber-physical system [69, 66,
110]. These sensors convert physical quantities of interest into electrical signals. Once
acquired, the signals are digitized for processing by digital systems, effectively capturing
the physical dynamics as data streams. These data streams are frequently transmitted
to cloud facilities for further analysis, where algorithms are used to extract valuable
information for various applications.

A critical task in monitoring scenarios is to assess whether the system’s behavior is
typical. When behavior deviates from the norm, this is reflected in the signals and should
be flagged by an anomaly detection algorithm [2]. Rapid and accurate identification of
abnormal behaviors is vital for counteracting fraud, repairing malfunctions, or addressing
health issues before they lead to financial loss or harm to human well-being.

Despite yielding a simple binary outcome—normal or anomalous—anomaly detection
is not trivial and faces several challenges. High dimensionality, the non-stationary and het-
erogeneous nature of the signals, and noise contamination must all be addressed to ensure
accurate decision-making [125]. While the deployment of more advanced algorithms can
mitigate some of these issues, other problems remain unresolved. A fundamental chal-
lenge lies in the unsupervised nature of anomaly detection: anomalies are rarely known
in advance, requiring algorithms to rely solely on signals that represent normal behavior.
This unavailability of anomalies also complicates the process of assessing which algorithm
will perform best for identifying specific behaviors, presenting a general model selection
problem in signal processing [40, 51].

As sensors collect more signals, efficient management of computational, memory, and
energy resources becomes imperative. A common approach is to exploit signal properties,
such as redundancy, structure, and sparsity to create a more compact representation while
retaining most of the original information [94, 87]. This process is known as compression,
and when it results in some loss of information, it is referred to as lossy compression [54].

Although compression helps reduce energy consumption and transmission costs, its
impact on anomaly detection performance remains an open question. Lossy compression
has been extensively explored in signal processing and Information Theory, particularly
through the rate-distortion curve, which illustrates the trade-off between the number
of bits required to represent a signal and the loss of fidelity due to compression [54,
34]. However, the information-theoretic analysis of anomaly detection remains largely
underexplored in the literature, complicating the understanding of how compression and
detection performance interact [125]. In parallel, with recent advances in computer vision,
supervised tasks such as classification and segmentation have been successfully integrated
with lossy compression, optimizing it not only to maintain signal fidelity but also to
preserve critical information for these tasks [147, 90, 88].

The objective of this dissertation is two-fold: /) to address the performance assessment
problem of the anomaly detection task, and ii) to analyze, using information-theoretic
methods, the synergy between compression and anomaly detection. This work is organized
as follows:



2 Introduction

Chapters 1 and 2 introduce the task of anomaly detection and the mechanisms of
lossy compression. In particular, we provide the mathematical models and outline the
algorithms that will be adopted throughout the dissertation.

Part | addresses the model selection and evaluation of the performance of the anomaly
detection task. In Chapter 3, we define a framework for benchmarking anomaly detection
algorithms that work with signals modeled as time series. The core of this framework is
an extensive set of anomaly models designed to capture a wide range of effects that real-
world anomalies have on the signal representing normal behavior. These models facilitate
a synthetic injection of corruptions into normal signals, enabling realistic simulations of
real-world anomalies. The effectiveness of this approach is validated in two monitoring
scenarios, in which multiple anomaly detection techniques are evaluated. In Chapter 4, we
focus on a more theoretical perspective. To measure anomaly detection performance, we
introduce the concept of distinguishability between normal and anomalous sources and
propose two information-theoretic metrics: one assumes prior knowledge of the anomalies,
while the other is completely agnostic. Additionally, we establish a framework based
on Gaussian signals to facilitate the derivation of theoretical results related to anomaly
detection.

Part Il explores the interplay between compression and anomaly detection. In Chap-
ter 5, we examine how lossy compression techniques, governed by the rate-distortion curve,
impact detection performance. To achieve this, we adapt the evaluation tools from Part |
to work with compressed signals, allowing us to derive theoretical insights and validate
them through practical applications. Next, in Chapter 6, we extend the rate-distortion
framework by introducing and analyzing the rate-distortion-distinguishability trade-off.
Considering Gaussian signals, we formulate and solve two optimization problems, one as-
suming prior knowledge of anomalies and the other operating without such knowledge,
revealing how distinguishability is influenced by both compression rate and distortion. The
observed theoretical trends are then confirmed through empirical tests in realistic scenar-
ios. Finally, Chapter 7 focuses specifically on autoencoder-based compression. Here, we
leverage the concept of distinguishability to design a novel loss function that includes
a regularization term, enabling the compressor to optimize for both reconstruction and
anomaly detection tasks. The effectiveness of this approach is validated in two different
use cases and for various types of anomalies.



Chapter 1

Anomaly Detection

Anomaly detection (AD) plays a fundamental role in various monitoring applications,
where the objective is to identify deviations from normal system behavior [2]. These
deviations, commonly referred to as anomalies', may indicate important events such as
equipment malfunctions, fraud in financial transactions, structural damage in buildings,
or system failures in industrial processes. Prompt detection of such anomalies can prevent
catastrophic outcomes, making AD a crucial tool in ensuring the reliability and safety of
complex systems.

In this chapter, we first present the mathematical model used to formalize the AD
problem. Section 1.2 provides an overview of the most common detection methods, while
the final section discusses a metric commonly adopted to evaluate detector performance.

1.1 Mathematical model

In a monitoring application, the system is tracked by acquiring at a specific time instant
t samples of a generic quantity x[t] representative of the system. In the AD context, x[t]
has to be considered as a realization from one of two distinct sources: one representing
normal behavior, x°%, and the other representing an anomaly, x¥°. We model these two
sources as discrete-time, stationary, n-dimensional stochastic processes, each generating
independent and identically distributed (i.i.d.) vectors x°¢ € R™ and x*° € R", with
different probability density functions (PDFs) fok : R® — R* and fX°: R” — R*. As a
result, at any given time ¢, the observed process is either x[t] = x°X[t] or x[t] = x*°[t].
Since the vectors are i.i.d., the time index can be dropped.

The goal of an anomaly detector is to distinguish between the normal instance x°
9k and the anomalous x¥° ~ fX°. When a detector processes an input x, whether
normal (ok) or anomalous (ko), its output can be interpreted as a function z(x) that
assigns a score to the instance. The higher the scores, the more abnormal the behavior
[2]. Typically a detector is designed only based on fo¥, as the anomalous source fk° is
usually unknown. We refer to this case as anomaly-agnostic, which in the literature is
commonly considered unsupervised AD. In contrast, when both 2% and fX° are available
to the detector, we call this scenario anomaly-aware, which covers semi-supervised or
supervised AD approaches [142, 108, 9, 127, 125]. The anomaly-aware scenario is less
typical than the anomaly-agnostic AD, but it will be an interesting reference case.

kN

1.2 Anomaly detectors

In the anomaly-agnostic scenario, a typical detector assigns a score to each instance
x based on the negative log-likelihood, specifically z(x) = —log foX(x). This score
increases as the processed instance deviates from the distribution f2X representing the

!Depending on the context, anomalies may also be called outliers, or novelties.



4 Chapter 1. Anomaly Detection

normality, effectively measuring how unlikely the instance is to be generated by fo. This
type of detector is referred to as a likelihood-based detector (LD).

In contrast, when the detector has access to both the normal and anomalous distribu-
tions, it computes the log-likelihood ratio, assigning the score z(x) = — log f2*(*)/fko(x) =
log fX°(x) — log fo¥(x). This ratio compares the likelihood of the instance under the
anomalous distribution fk° relative to the distribution of normality fo¥, offering a more
robust detection method. This approach comes from the Neyman-Pearson lemma, which
provides an optimal framework for hypothesis testing [34, Theorem 12.7.1], [74, Theorem
3.1]. We refer to this detector as a Neyman-Pearson detector (NPD).

Both LD and NPD detection methods, are indeed valuable theoretical tools. However,
in practical applications, not only is fX° unknown, making the anomaly-aware case less
typical, but also fo is usually not explicitly available, precluding the use of likelihood-
based scores. Instead, what is typically accessible is data representing normal behavior. In
the literature different techniques have been proposed to generate the score z(x) from this
data [29, 125], with each method trying to capture certain statistical characteristics of
normal data. In the remainder of this section, we will provide a brief overview of common
unsupervised detectors?, highlighting their main attributes and hyperparameters.

1.2.1 Principal component analysis (PCA)-based

Principal Component Analysis (PCA) [70] aims at representing a signal in a reduced k <
n~-dimensional subspace, where the majority of the signal's energy is concentrated. When
this subspace is built using normal data, anomalies can be detected by evaluating how
well each data point fits the subspace. To this end, the first step involves the covariance
matrix 2°K = E [XOkXOkTF estimation from the data. Next, a spectral decomposition

of the covariance matrix is performed, yielding X°% = UOkAOkUOkT, where UK is an
orthonormal matrix n X n that contains the eigenvectors of ¥°K, and A is a diagonal
matrix of size n X n with the corresponding eigenvalues /\8k > )\‘fk > e 2> )\;)Llil >0
on the diagonal. This allows us to identify the basis of the signal space U% and the
energy distribution in that space A°. The k largest eigenvalues correspond to the most
significant (principal) components and will identify the subspace defined by the matrix
U%k containing the first k columns of U°k,
With this information, two families of detectors can be derived [160]:

= Squared prediction error (SPE): This detector analyzes the residual space defined
by the eigenvectors that are not part of the principal components. The score is
computed as

2(x) = ||x - ngngTxuz. (1.1)

» Hotelling's T-squared test (T%): This detector aims at identifying anomalies within
the principal subspace. It computes the score as

2(x) = (Ag) 2 U x| (12)

where Aik is the k x k upper-left submatrix of A°K.

2|n this dissertation, the anomaly-aware scenario will primarily be explored from a theoretical perspec-
tive, with a focus on NPD. In the few instances where practical supervised detectors are considered, they
will be based on binary classifiers [142].

3Without loss of generality, we assume the mean vector of x°% to be null, i.e., E [x"k] = 0. If the
mean is not zero, the data can be centered by subtracting the mean.
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1.2.2 Gaussian distribution (GD)-based

These methods assume that normal data follows a multivariate Gaussian distribution. We
recall two different detectors:

= Mahalanobis distance (MD) [29]: This approach calculates the score as the Ma-
halanobis distance, which measures how far the vector x is from the center of the
estimated Gaussian distribution, with each component weighted by its variance.
Formally, the score is:

2(x) = ||(A%) 71/ UOkaH . (1.3)

= Autoregressive model (AR,) [2]: This method fits a linear regression model to
predict future samples based on past samples. During testing, the score is computed
from the residuals of these predictions. In particular, for a model of order p € [1,n),
the score is derived as:

z(x) =

Z (Tpti — ji)Q (1.4)

i

1 n—p—1
n—p =
where X contains the predictions for the last n — p samples of x, based on the first
p samples of the vector.

While MD and AR are simple and low-complexity detectors effective in simpler scenarios,
they may struggle in more complex, real-world cases where the data deviates from the
assumed Gaussian distribution.

1.2.3 Machine learning (ML)-based

= Local Outlier Factor (LOF}) [22]: This detector relies on nearest neighbors to
calculate the anomaly score for each data point. The score is computed as the
ratio between the average local density around the h nearest neighbors and the
local density of the point itself.

= Isolation Forest (IF,) [89]: This detection method is based on the principle that
anomalies can be more easily isolated from the rest of the data. It constructs ¢ tree-
like structures by recursively partitioning the dataset. The anomaly score depends
on the average path length (or depth) required to isolate a given data point across
multiple trees.

= One-Class Support Vector Machine (OCSVMyernel, ) [130]: This technique finds
a non-linear transformation that maps the input data into a higher-dimensional
space where a simple hyperplane can separate normal and anomalous points. The
score assigned to each point is the distance from the origin in this new space. The
main hyperparameters are the kernel of the non-linear mapping and v, which is the
lower bound of the fraction of vectors belonging to the training set used as support
vectors. In the case of specific kernels, such as the radial basis function (RBF),
OCSVM is equivalent to Support Vector Data Description (SVDD) [126].

1.2.4 Deep learning (DL)-based

Most of the techniques mentioned above have been adapted to neural networks [48, 76,
154, 126, 125, 156] to better capture non-linear data patterns. Some of the most notable
examples include:
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» Autoencoder (AE) [154]: This technique extends the concept of PCA by replac-
ing the linear projection onto a subspace with a non-linear transformation onto a
manifold. Transformation is performed by an encoder neural network (ENC), while
reconstruction is handled by a decoder neural network (DEC). Both networks are
trained simultaneously to best reconstruct normal data and then the reconstruction
error is used as an anomaly score:

2(x) = ||x — DEC(ENC(x))||*. (1.5)

Anomalous instances typically result in a high reconstruction error, as they deviate
significantly from the learned distribution of the normal data.

» Deep Support Vector Data Description (Deep SVDD) [126]: This method gener-
alizes the traditional SVDD framework [143] to a deep learning context. It uses a
deep neural network (ENC) to project the data into a latent space. ENC is trained
to enclose the projected normal data within a minimum-volume hypersphere and
anomalies are identified by evaluating the distance of data points from the center
c of this hypersphere:

z2(x) = ||lc — ENC(x)]| . (1.6)

Points lying far from the center are classified as anomalous.

Other techniques to mention are i) Variational AE [76] that extends upon the
classical autoencoder to learn the distribution of the normal data foX, and uses
the approximation to the negative log-likelihood as anomaly score; ii) in [156] the
authors present the Deep Isolation Forest, while iii) the autoregressive model has
been adapted to Recurrent Neural Networks [48].

1.3 Metrics

To make a binary decision, the detector’s score z(x) is compared against a threshold,
which must be carefully chosen based on the specific requirements of the application.
However, to assess detector performance independently of the threshold, a common metric
is the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC),
defined as:

AUC = Prob{z(x*°) > z(x°)} (1.7)

The AUC € [0,1] represents the probability that, given a random normal instance
and a random anomalous instance, the anomalous one will be scored higher. In practice,
the AUC does not typically have a closed-form solution and is usually estimated from
the detector’s scores [45]. A significant challenge with the AUC is that it requires a
sufficient number of anomalous examples to be reliably estimated. Typically, algorithms
are evaluated on standard datasets containing normal and anomalous data [5, 41, 16,
125]. However, this approach limits evaluation to specific scenarios and does not fully
account for real-world monitoring applications, where different normal data describes the
system and anomalous examples are scarce. In Chapter 3, we will introduce an alternative
method that addresses this issue by synthetically generating anomalous data based on the
available normal data.



Chapter 2

Compression

The increasing growth of sensor networks and Internet of Things (loT) devices highlights
the need for efficient data acquisition systems [69, 66, 110]. These systems are crucial in
various fields, including infrastructure and industrial process monitoring, environmental
observation, and scientific research. By collecting and storing large volumes of data, they
provide a detailed overview of the monitored environment, facilitating real-time analysis
and informed decision-making. However, managing the vast amounts of generated data
presents significant challenges in terms of storage, transmission, and processing.

Modern large-scale acquisition systems can typically be modeled as numerous sensing
units, each acquiring an unknown physical quantity and transforming it into samples of
random processes for transmission over a network. To reduce transmission bitrate, these
sensor readings are often compressed aiming to retain useful information while reducing
the data size [54, 59]. This compression can be either lossless or lossy. While lossless
algorithms completely preserve information, lossy algorithms are often preferred due to
significantly higher reduction factors. However, lossy techniques introduce a trade-off
between the bitrate and the amount of information loss, which is generally addressed in
Information Theory through the rate-distortion curve [34], a theoretical limit that defines
the minimum required bitrate for a given maximum level of distortion.

In practical scenarios, a compression mechanism corresponds to a specific rate-distortion
curve, and the compression level determined by the application identifies a point on that
curve. This is the case of a wide range of scenarios that require the extraction and
monitoring of features relevant to the system under monitoring, such as structural health
systems [24, 165], industrial plant sensorization [115, 157, 30|, and biomedical signal
processing [98, 21, 97]. Lower signal distortion generally increases the chance of meeting
the requirements of the main task.

Compression schemes are often asymmetric. In the specific case of sensor data,
encoding is lightweight and designed for low-complexity devices, while decoding is more
resource-intensive and typically performed in the cloud. This contrasts with video codecs,
where the asymmetry is reversed: encoding is more complex, involving computationally
intensive tasks to achieve high compression efficiency, whereas decoding is optimized to
be lightweight, enabling real-time playback across a wide range of devices.

This chapter presents the main tools of lossy compression that will be utilized through-
out the dissertation. Specifically, Section 2.1 recalls the rate-distortion theory, with a
particular focus on its application to Gaussian sources. In Section 2.2, a brief review of
some of the most well-known lossy compression schemes is presented.

2.1 Rate-Distortion Theory

Signals are compressed by encoding their information into symbols, which are then trans-
mitted over a communication channel with a limited capacity, measured by the maximum
number of symbols per second. When the available rate is insufficient, the compression
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process discards part of the information to comply with the constraints of the channel.
This loss of information causes the receiver to observe a distorted version of the origi-
nal signal. Intuitively, as the channel capacity decreases, the distortion increases. This
relationship is thoroughly studied in the rate-distortion theory [34, Chapter 13].

In this context, we consider a system whose main function is to transmit the informa-
tion content of a signal source x to a receiver over a channel with a constraint in rate.
At any given time ¢, a signal instance x[t] is fed to an encoder generating a compressed
version z[t], which can then be decompressed into an approximation X[t] C R".

The constraint in rate is such that lossy compression must be adopted, which means
that the encoding process is not injective and introduces some degree of distortion. The
encoder is specifically designed for the source x, which is modeled as an independent,
discrete-time, stochastic process of dimension n.

Distortion can be defined as:

D =B [|x[] - %[t]| (2.1)

where E[-] denotes the expectation. The minimum rate p required to achieve a maximum
allowed distortion level § is given by the rate-distortion optimization problem (RD) [34,
Theorem 13.2.1]:

(RD) p(&)= inf 7 (:x) )
st. D<§ .

where 7 (%;x) is the mutual information between %X and x [34, Chapter 8], and fx
is the conditional probability density function (PDF) modeling the possibly stochastic
relationship between the encoder and decoder. Although [34, Theorem 13.2.1] originally
defines the rate-distortion function for discrete sources, it can also be derived for well-
behaved continuous sources [34, Chapter 13], which is the case we will focus on.

For a memoryless source (which allows us to neglect the time index t) that generates
vectors of independent zero-mean Gaussian variables, i.e., x ~ A (0,3) where X is a
diagonal covariance matrix ¥ = diag(\g, ..., Ap—1) with A\g > A1 > -+ > A\,,—1 > 0, the
solution to (2.2) is:

N — 15" log (23)
p== 08y ————— = —= 08y Tj .
2 = min {6, \;} 2 =
n—1 n—1
5= min{0, N} =D N\ (2.4)
7=0 7=0

where 6 € [0, \o| is the so-called reverse water-filling parameter [34, Theorem 13.3.3],
and 7; = min {1,6/\;} represents the fraction of energy lost to distortion along the j-th
component.

The coding theorems behind this classical framework suggest that the optimal rate-
distortion trade-off, as given by (2.2), is asymptotically achievable by encoding an in-
creasing number of consecutive source symbols into a single block. This block is then
decoded into a sequence of distorted symbols.

2.2 Compressors

Lossy compression techniques aim to reduce the size of the source data while tolerating
some loss in precision or fidelity. The objective is to efficiently encode the data while
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FIGURE 2.1: Main blocks of a lossy compressor. Encoder compresses the
source, while the decoder recovers the signal from its compressed version
by performing inverse operations of the encoder.

minimizing the reconstruction error. A practical lossy compressor can be represented
as in Figure 2.1. The encoder (ENC) compresses the source signal x into z by first
discretizing it with a quantization stage [54] and then generates a bitstream by encoding
each symbol with lossless compression techniques, such as Huffman coding or arithmetic
coding [65, 122]. Lossless coders tend to assign shorter codes to more probable quantized
values, which helps to reduce the number of bits required to represent the quantized data.

The decoder (DEC) reconstructs the original signal from z by performing the inverse
steps: lossless decoding followed by dequantization.

The rest of this section provides a concise overview of several widely used lossy com-
pression methods.

2.2.1 Vector quantization-based compression

As rate-distortion theory suggests, it is more convenient to simultaneously compress mul-
tiple source symbols. The higher the number of symbols n processed by the compressor,
the better the high dimensionality of the signal space can be leveraged when discretizing
this space [54]. This idea is closely related to the sphere packing phenomenon, where
efficiently packing spheres in higher-dimensional spaces minimizes overlap and maximizes
space utilization, leading to better compression performance. A natural scheme that
arises from this consideration is vector quantization (VQ) [53]. In VQ, a quantizer par-
titions the n-dimensional space into cells by approximating the vectors using a finite set
C of representative vectors called centroids. Formally, a vector quantizer is a mapping
Q:R" —= C={c...,cp—1} C R” that, given an input vector of dimension n, maps
x to the nearest centroid ¢; € C based on a distance metric (typically the Euclidean
distance). The objective of VQ is to minimize the total distortion D which in this case
becomes:

D=E|[x-cl3]. (2.5)

In practice, the design of an optimal set C is typically performed starting from a training
dataset X = {xq,...,xn_1} via Lloyd's algorithm, a variant of k-means clustering, which
iteratively refines the centroids to minimize the distortion. However, the complexity of
designing an optimal VQ system increases exponentially with the input vector dimension
n, the size of the dataset IV, and the number of centroids M. At inference time, the
search for the nearest centroid can also become computationally expensive, making this
approach challenging for resource-constrained devices. Generally, other techniques are
preferred to VQ.

2.2.2 Transform coding-based compression

Transform coding is a fundamental technique in lossy compression [52]. In this technique,
data is first transformed from its original domain (often the time or spatial domain) into
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a new domain where it can be more efficiently represented. The key idea is that, in
the transform domain, the coefficients are often decorrelated, which largely simplifies the
compression process.

Once the signal components are decorrelated, simple scalar quantization (equivalent
to VQ with M = 1) can be applied independently to each component. Transform coding
represents a computationally efficient alternative to VQ: transformation is usually linear,
implemented either through an n x n matrix multiplication or more efficient O(n log, n)
algorithms. This approach largely simplifies quantization by allowing it to be performed
separately for each transformed coefficient. Despite this simplification, transform coding
offers good rate-distortion performance, as n signal components are still compressed
together.

The most well-known application of transform coding is in image compression algo-
rithms such as JPEG and JPEG2000 [152, 139]. JPEG uses the Discrete Cosine Transform
(DCT) [7] to transform 8 x 8 pixel blocks into the frequency domain, where most of the
high-frequency components are discarded. JPEG2000 uses the Discrete Wavelet Trans-
form (DWT) [120, 10] for multi-resolution image compression. In formats like MP3 and
AAC, transform coding is applied to audio signals using a modified version of the DCT
[23]. The coefficients corresponding to frequencies outside the range of human hearing
are discarded to achieve lossy compression without noticeable quality degradation.

Mathematical model

Given an n-dimensional signal x, the goal of transform coding is to apply a linear trans-
formation T to map x to a new set of coefficients y in a transformed domain. This
transformation is represented as:

y =Tx (2.6)

In most cases, the n x n transformation matrix T is orthogonal (i.e., TTT = I,,),
which implies that the inverse transformation can be easily performed to reconstruct the
original data, i.e.,

x=T ly=T'y (2.7)

In reality, after transformation, each of the coefficients is quantized z; = Q(y;), j =
0,...,n—1 forming a new vector z. The simplest form of quantization is uniform scalar
quantization, where each coefficient is divided by a quantization width ¢ and rounded
down to the nearest integer:

Y
5= |4, (2.8)

q

where |-| denotes the floor function.

After quantization, each component of z is then encoded using entropy coding tech-
niques, such as Huffman or arithmetic coding to produce a bitstream. At the receiver,
the quantized coefficients are decoded, and the inverse transformation T is applied to
z to reconstruct an approximation of the original signal X.

Common transformations

Several transformations are commonly used in transform coding, each with specific proper-
ties that make it suitable for different types of data. Some of the most popular transforms
are described below.

Karhunen-Loéve transform (KLT) The Karhunen-Loéve Transform (KLT) is a trans-
form derived from the statistical properties of the data and is closely related to the
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Principal Component Analysis (PCA) [8, 70]. The KLT is considered optimal in the sense
that the transform diagonalizes the signal covariance matrix, thus minimizing redundancy
among transformed components.

To compute the KLT, the covariance matrix of the signal, 3 = E[XXT], is first esti-
mated. The spectral decomposition of the covariance matrix is then performed, yielding

> =UAU' (2.9)

where U is an n X n orthonormal matrix that contains the eigenvectors of 3, and A is a
diagonal matrix of size n x n with the corresponding eigenvalues \g > A1 > --- > A1 >
0. The eigenvectors in U represent the directions along which the data is most spread
out, while the eigenvalues in A quantify the amount of variance along each direction.
The KLT is applied by projecting the original signal x onto the eigenvector space:

y=Tx=U'"x (2.10)
This transformation decorrelates the components of y, as shown by:
E[yy']| = A =diag (Ao, - A1), (2.11)

which means that the transformed coefficients in y are uncorrelated, with variances given
by the corresponding eigenvalues.

Although the KLT is theoretically optimal, it is computationally expensive due to the
need to compute (and store) the eigenvectors of the covariance matrix. This requires
solving an eigenvalue problem at design time and performing O(n?) operations to project
the signal onto the eigenvector space during deployment. As a result, the KLT is rarely
used directly in practice but serves as a theoretical benchmark for comparing the perfor-
mance of more computationally efficient transforms, such as the DCT and DWT. These
transforms approximate the properties of the KLT while being simpler to compute.

DCT The DCT [7] is one of the most widely used transforms, with applications extend-
ing beyond image, audio, and video compression [6]. It works by representing a signal as
a sum of cosines that oscillate at different frequencies, helping to concentrate the signal
energy into a small number of low-frequency coefficients. The 1D DCT of a signal x is
defined as:

n—1 . .
% + 1
yj:ajzxicos[wy j=01,...,n—1 (2.12)
=0
with aozﬁand aj:%forjzl,...,n—l.

The Inverse DCT (IDCT) allows the reconstruction of the original signal:
n—1 . .
214+ 1
aci:]Z_%)ozjyjcos[ﬁ(ZZ;‘;)‘7}7 1=0,1,...,n—1 (2.13)

In 2D (e.g., for image compression), the DCT is applied separately to each row and
column of an image matrix, resulting in the transformation of the entire image into the
frequency domain. The DCT's ability to concentrate the energy of natural signals in a few
low-frequency components makes it ideal for compression, as high-frequency components
(which often correspond to fine details or noise) can be discarded with minimal perceptual
loss. This principle is at the basis of the JPEG image compression algorithm.
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DWT DWT [120, 10] represents a signal as a composition of wavelet functions that are
localized in both the time and frequency domains. Unlike DCT, which uses globally defined
cosine functions that span the entire signal, wavelets are compact and can efficiently
capture both high- and low-frequency components with localized detail.

The DWT is obtained by recursively decomposing the signal into approximation (low-
frequency) and detail (high-frequency) components. Formally, the 1D DWT of a signal
X can be expressed as

y= [YIowa Yhigh] (2.14)

where yjo contains low-frequency components, and ypigh embeds the high-frequency
components. This process can be repeated on the low-frequency coefficients to achieve
multi-level decomposition, providing a hierarchical representation of the signal structure.

In image compression, such as in JPEG2000, the 2D DWT is applied to images,
resulting in a multi-resolution analysis of the image. This hierarchical decomposition
captures details at different scales, allowing efficient compression by prioritizing the more
significant low-frequency components while selectively neglecting less important high-
frequency details.

2.2.3 Dimensionality reduction-based compression

Dimensionality reduction, a concept closely related to lossy compression, performs signal
approximation by mapping high-dimensional data into a lower-dimensional space, retaining
only the most significant information [151]. While dimensionality reduction is not a proper
compression technique since the data is not quantized, it still leads to information loss.
As such, it can be used as a preprocessing stage in compression pipelines, selecting the
most informative components prior to quantization. This process results in a more efficient
compression strategy in which the essential components are retained, while the redundant
or less informative components are discarded.

In practice, dimensionality reduction and transform coding often complement each
other. Many transforms have a property of coefficients concentration, meaning that a
large part of the signal’s energy is contained within just a few transform coefficients.
This enables elimination of insignificant coefficients in the transformed domain, leading
to a reduced bitstream size and computational complexity at the cost of some additional
distortion.

Common dimensionality reduction methods

Principal component analysis PCA is one of the most widely used methods for di-
mensionality reduction [68, 24, 100]. It is based on KLT, as this transform is also optimal
in the sense that it concentrates the maximum possible energy of a signal x into the
fewest number of coefficients. In fact, the eigenvectors in U, corresponding to the largest
eigenvalues, identify the directions in the signal space that capture the most variance,
allowing for an effective reduction in the dimensionality of the signal.

Given a target dimensionality k of the subspace, the PCA dimensionality reduction is
performed by projecting the signal x onto the reduced subspace:

y=Ui'x (2.15)

where Uy, = [uy, ..., u;_1] contains the first k£ columns of U.
The original data is reconstructed as:
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By selecting the top k eigenvectors (or principal components), the reconstruction
error measured with D in (2.1) is minimized, ensuring that the most variance is retained
in the reduced subspace.

Autoencoder (AE) It is a particular neural network that is used for dimensionality
reduction [78]. An AE consists of an encoder (ENC) and a decoder (DEC), where the
encoder maps the input x to a /atent representation y, and the decoder reconstructs the
input from y, i.e.,

y = ENC(x), % =DEC(y). (2.17)

The whole network is trained to minimize the reconstruction loss that, up to a nor-
malization constant n, is measured with distortion D and estimated with Mean Squared
Error (MSE):

1 ] N-l )
L(x) = EMSE(X,X) = — > Ixi — %] (2.18)
=0

where N is the number of training examples of x.

Autoencoders are well-suited for capturing complex, non-linear relationships within
data that often reside on lower-dimensional manifolds embedded in higher-dimensional
spaces. A manifold represents a lower-dimensional structure that signals naturally form
within a larger space. Unlike PCA, which assumes linear subspaces, autoencoders can learn
non-linear mappings, reducing the dimensionality of signals by identifying and preserving
the manifold structure. This is especially useful for minimizing reconstruction error when
the signal’s underlying geometry is non-linear, as seen in cases such as images or audio.

2.2.4 Neural network-based compression

AEs play a key role in many of the so-called end-to-end optimized image compression
frameworks. Optimizing the components in the scheme shown in Figure 2.1 is not trivial.
Improving one module may not necessarily translate to enhanced overall rate-distortion
performance. With the rapid advancement of deep learning, several studies [145, 103,
63, 44] have investigated the potential of neural networks to simultaneously optimize
all components of the compression pipeline, allowing for better adaptability among the
modules. However, to function effectively as compression tools, AEs must be equipped
with two fundamental components: a quantizer and an entropy model.

The problem with quantization is its non-differentiability, which complicates training
with gradient-based optimization techniques. To address this, several methods have been
proposed, such as adding uniform noise during training to approximate the effects of
quantization [13] or using the straight-through estimator [145], which treats quantization
as the identity function during backpropagation. Some approaches also involve learning
quantization centers during training, as shown in [103], where smooth kernels are used to
relax the quantization during the backward pass.

In addition to quantization, entropy models play an important role in predicting the
probability distribution of quantized latent variables, allowing efficient encoding using
entropy coding techniques, such as arithmetic coding. Advanced entropy models, such as
those that incorporate context models [103], predict the probability of a latent variable
based on its context (i.e., previously decoded values), further improving compression
efficiency by capturing dependencies in the data.

The interplay between the quantizer and the entropy model is essential for achieving
high compression ratios, and both components are typically trained together with the AE
in an end-to-end manner, with the objective of optimizing rate-distortion performance.
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A comprehensive survey and benchmark of learned image compression techniques can
be found in [63], along with a survey on non-linear transform coding in [13].
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Chapter 3

Synthetic Anomalies for
Performance Assessment in Time
Series

In sectors such as healthcare, industry, and structural engineering, the use of monitoring
systems is a common practice aimed at tracking, controlling, and optimizing physical
environments. Such systems, equipped with multiple sensors, generate a large amount
of time-series data that are then processed to identify system malfunctions, data chain
failures, or unauthorized intrusions. As anticipated in Chapter 1, in this scenario, the
essential processing task becomes anomaly detection (AD). The literature offers numerous
AD algorithms [29] and the main challenge often lies in which AD algorithm to select for
the application at hand.

Selecting the most suitable algorithm for building an anomaly detector requires know-
ing the most common anomalies within the application and having a statistically signif-
icant number of examples of such anomalies to evaluate and compare the algorithms'’
performance. However, such data are not available in many practical cases, especially
during the design phase.

This problem can be categorized under the broader task of model selection, which
consists of choosing an appropriate statistical model based on available data [40, 51]. For
AD on time series, this issue has only recently been systematically addressed [51, 125,
129, 155], and the research suggests that generating synthetic anomalies can provide a
promising solution. However, to implement this approach, designers must: /) identify
common anomalies relevant to the application; /i) model and characterize such anomalies;
and iii) develop a procedure for the generation of synthetic anomalies that resemble them.
The literature still lacks a comprehensive framework that includes and automates all these
steps.

This approach has previously been explored in the context of image data. In [60], the
authors propose a framework to generate common image corruptions at varying intensities
to assess the robustness of classifiers. In [125] the authors employ this framework as one
of the reference benchmarks in image-based AD.

In the case of time series, most previous studies have focused on particular types of
abnormalities [131, 109, 132, 67], with only a few offering systematic procedures for the
generation of anomalies [83, 141, 56, 113, 51].

Some works have investigated anomalies affecting a monitoring system itself. For
example, [131, 109, 132] focus on common sensor faults such as spikes, stuck-at values,
and low battery, categorizing them into three types: short, noise, and constant. Similarly,
[67] models a limited number of faults to evaluate the detection capabilities of a One-Class
Support Vector Machine (OCSVM) detector [130].

More recent works [83, 56, 141] detach from the source of the anomaly and instead
classify anomalies based on their impact on the signal. For example, [83] models normal
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FIGURE 3.1: WOMBATS allows to assess a detector targeting unknown
anomalies coming from potentially multiple sources.

signals as a combination of seasonality and trend and generates anomalies by perturbing
these components. The works in [141, 56] present a more general model for normal
signals, but focus their analysis only on a few types of anomalies, such as global, local,
and dependency anomalies.

Finally, [113, 51] propose a broader set of anomalies, covering several effects that
anomalous signals may have on normal data in the real world. However, while these
contributions are important, the anomaly sets remain incomplete and there is still a lack
of a common parameter to all anomalies to quantify their severity, an essential requirement
for comparing detector performance across different types of anomalies.

In this chapter, we present a framework named WOMBATS (Wide Open Model-Based
Anomaly Test Suite)! and depicted in Figure 3.1 for a systematic evaluation of anomaly
detectors based on synthetic anomalies that designers can tailor to any context using
historical data and domain-specific information. Importantly, the framework only requires
normal data, as various anomalies are generated synthetically by controlling a single
parameter. We focus on the unsupervised (anomaly-agnostic) scenario, as supervised
detectors require prior knowledge of anomalies, which is not available by assumption?.

In detail, in Section 3.1 we model both normal and anomalous time series signals. For
anomalies, we first perform a taxonomy of the most common anomalies in time series
and then define a general model that accounts for multiple effects anomalies have on the
normal signal. This model is flexible enough to cover the analyzed and potentially other
anomalies.

In Section 3.2 the full framework for anomaly detector selection is described. We
start by categorizing anomalies according to their effect on the signal’s power — whether
it increases, remains invariant, or decreases. The first group includes superimposed dis-
turbances, the second captures deviations that leave the power unchanged but affect
information content, and the third comprises nonlinear distortions that reduce power.
To ensure consistency among different anomalies, each perturbation is modeled using a
parameter that controls the amount of deviation from the normal signal. After detailing
a generation procedure for each anomaly, we define a metric to evaluate the detector
starting from normal and anomalous examples.

'The source code can be found at https://github.com/SSIGPRO/wombats
2Exploring the use of synthetic anomalies for training and testing supervised detectors is an interesting
direction but requires further consideration beyond the scope of this chapter.
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Finally, in Section 3.3 we present and analyze the results of the experiments. The
framework was applied to two real-world scenarios: human health monitoring (using elec-
trocardiogram data) and structural health monitoring (using acceleration data). In both
cases, signals were synthetically corrupted to create datasets for testing and evaluating
various detectors. The performance of the detectors was compared on these synthetic
anomalies, demonstrating the framework’s effectiveness in assessing detector performance
across different contexts. Additionally, we proved its ability to predict how detectors would
behave when faced with real-world anomalies.

3.1 Models of normal and anomalous signals

In this section, we describe the model and assumptions used to represent normal obser-
vations and introduce a general model for defining anomalous behaviors.

3.1.1 From time series to time instances

Time series data consist of continuously collected and recorded measurements over a given
time. Formally, a time series can be defined as a set S of pairs, where each pair contains
a vector of m simultaneously monitored variables s; = (s(0), ..., s(™=1) observed at a
specific timestamp t;: S = {(s;, t;)|i € N, ¢, < t4 if p < ¢}. If only a single variable is
tracked (m = 1), the time series is called univariate, while if m > 1, S is a multivariate
time series.

In most cases, the time intervals between successive measurements remain constant,
allowing us to omit the explicit reference to time. For simplicity, in this work, we focus
on univariate time series, which can be seen as an ordered sequence of measurements
s = (50,51, --,8p,...). From now on, we treat s as a signal sampled at regular intervals,
with a sampling period T'.

In a realistic scenario where the signal s must be processed in real-time, it is impractical
to treat s as a single entity. Instead, we model s as a sequence of non-overlapping
signal instances, also referred to as windows, each consisting of n consecutive samples:
s=(Xg,%],Xg,--- ,x;, ...), where x; = (Sjp, ... ,sj(nﬂ),l)T

We assume that the length of each instance n is sufficiently large to ensure that
each x; captures the main statistical properties of the complete signal s. Furthermore,
we assume that the dependency between different segments, x; and x,, (for j # p), is
negligible. This allows us to analyze one instance x = (zg,...,%,_1) at a time.

3.1.2 Model of normal signals

Given these assumptions, the acquired signal samples are represented as a vector x € R",
which can be an example of a source of either normal readings x°¢ € R™ or anomalous
readings x¥° € R™. The two types of sources, normal and anomalous, are assumed to have
different statistical properties, which should help to distinguish between them. Without
loss of generality, we assume that the normal readings x°¢ have zero mean E [XOk} =0

. . T . .
and covariance matrix X°¢ = E {XOkXOk } We also assume that x°¥ is normalized to

have unit power, so that 1 E [HXOkHﬂ =1, where || - || denotes the ¢2 norm.

In real-world signals, power is typically unevenly distributed in the signal space. This
is evident from the spectral decomposition of the covariance matrix 3°K = UOkAOkUOkT,
where U°¥ is an n x n orthonormal matrix that contains the eigenvectors of 3ok and A%k
is a diagonal n x n matrix with the corresponding eigenvalues A< > A¢k > ... > Mok >
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TABLE 3.1: Examples of sensor faults and alterations of the system

Sensor faults

Type

Description

Noise faults

Short fault/spike

Clipping or satu-
ration

Stuck-at faults

Constant

Narrow-band in-

Occur due to hardware failure, environmental conditions, or battery
supply issues, resulting in unexpected high variance or noise in sensor
values [131].

Manifest as an instantaneous increase in the rate of change of sensor
values and is caused by hardware or connection failures [67, 161].

Result in a clipping of the extreme values in sensor readings, either due
to physical limitations of certain sensor types or calibration issues [37,
64].

Refer to situations when the output shows low variance with samples
concentrated around a constant value [118].

Due to improper calibration or drift of calibration parameters over time,
sensor readings may manifest a consistent deviation by a constant value
[106].

Considers spurious narrow-band signals contaminating the band of the

terference signal of interest [153].

Dead-zone Is a non-linearity that manifests when a sensor or actuator fails to pro-
vide a non-null output value [86].

System alterations

Type Description

Aging Occurs due to the natural and unavoidable variation of the physical
properties of the system over time [119, 92].

Wearing Alterations caused by degradation of the system’s components due to re-

Abrupt changes

peated environmental or mechanical stimuli, e.g., erosion, friction [72].

Sudden variations in the system’s behavior. Examples of such alterations
include damages in a civil structure (tendon/strand breakages [24] and
earthquakes [101]); irregular heart rate, irregular rhythm, and ectopic
rhythm during heart activity [85].

0. The eigenvalues are monotonically non-increasing and we can identify an integer k
such that the fraction of power contained in the first k& components is given by:

'yzﬁz%)\? >~ (3.1)
]:

This value of k estimates the number of principal components of the signal. The
components beyond the principal ones are usually dominated by noise and provide minimal
information about the features of the normal signal.

3.1.3 Model of anomalous signals

Anomalies are often described according to either their cause or their effect on the sys-

tem within a specific application.

Table 3.1 provides examples of sensor failures and
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anomalies that affect the monitored system in various scenarios. Although understanding
domain-specific causes and effects is important, creating a general framework for anomaly
detection requires abstracting from these specifics and focusing on the alterations that
anomalies introduce to acquired signals.

To achieve this, we propose a dictionary of anomalies based on a common mathemat-
ical model specialized to highlight changes in signal features that are typically affected
by real-world anomalies. The key idea is to represent anomalies as variations of a normal
signal in the sense that anomalous waveforms can be derived from normal waveforms as

X0 = ¢ (XOk) +d (3.2)

where ¢ : R™ — R" is a potentially nonlinear function that captures how the anomaly
alters the normal signal x°%, with the assumption that E [c (kaﬂ = 0. The vector d €

R" represents an independent disturbance, characterized by a power level 1E [||d[%] =
a®. The independence between d and x°¥ implies that the power contributions of normal
signal and disturbance are separable, i.e., E {XOde} =E [ch (ka)} = 0. The function

¢ can represent a range of transformations, including simple scaling, linear mappings (using
ann Xn matrix), or more complex nonlinear functions.

To effectively explore the anomaly space, we apply different variations to the normal
signal. When a? > 0, the anomaly is described by a signal scaling. If a? = 0, the
anomaly is obtained by either redistributing signal power through a linear transformation
or by introducing a non-linearity to the signal via c.

To quantify the difference between normal and anomalous signals, we introduce the
concept of deviation, defined as:

Xok _ Xko

A:lEU
n

Toreful] ek el)] ey

T7 . . . . .
where Tk = E {xkoxko } is the covariance matrix of the anomalous signal. This expres-

sion leverages the facts that %tr [EOk} =1 and that x°¢ and d are uncorrelated.

Deviation acts as a key parameter for controlling the difficulty of the AD task, allowing
detectors to be tested against anomalies of varying levels of challenge.

In cases where a? = 0 and ¢ (XOk) = Cx°¥, for some matrix C, we may set

C = UVAR VAR Uok’ (3.4)

where UX® and AX° represent the eigenvectors and eigenvalues from the spectral decom-
position of the anomalous signal’s covariance matrix k0 = UAU* " and where we
have used the straightforward definition of the square root of a diagonal matrix. Lever-
aging the linearity of this mapping, the expectation in (3.3) simplifies to:

E [XOkTC (x"k)} =tr {CZOk} =tr {Uko\/ﬁ\/ﬂUOkT} . (3.5)

3.2 WOMBATS: a framework for detector selection

In this section, we describe the proposed framework called WOMBATS for detector se-
lection, as illustrated in Figure 3.1. After training the target detectors on normal data,
the designer can generate an anomalous version of the test set using a predefined suite of
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anomalies. The intensity of these anomalies is set by the deviation parameter. The de-
tectors are then evaluated by testing them on both normal and anomalous data, allowing
for an assessment of their ability to discriminate between the two.

To elaborate further on the procedure, we: i) introduce the anomaly suite, categorized
by the effect of the anomalies on the signal's power; ii) explain the implementation of
these anomalies; iii) derive the deviation expressions for each type of anomaly; and iv)
define a metric to assess the detectors’ performance.

3.2.1 Anomalies that increase signal power

If we assume c is the identity and a? > 0, the anomalous signal has power %E {||xk°||2} =
1 4 a®. We will consider several possible disturbances.

Constant

The disturbance is constant, with d; .= £a for j =0,...,n — 1.

Step

We define
n =0,...,0—1
dj = *+a {T / I (3.6)

(1=r)yn-t)y j=1,...,n—1

here r € {—1,1} determines whether the step is rising or falling, and [ € {0,...,n — 1}
sets the step's position within the time window.

Impulse
if j =1
P L e R P T (3.7)
0 otherwise
where [ € {0,...,n — 1} sets the impulse's position.

Gaussian white noise (GWN)

We define d as a simple White Gaussian noise, i.e., d;j ~ N (0,1).

Gaussian narrowband noise (GNN)

The disturbance is a Gaussian signal with a frequency band of [fy — B/2, fo + B/2] where
0 < fo < 1/2 is the center frequency and 0 < B < min { fo,1/2 — fo} is the bandwidth.

3.2.2 Anomalies that do not change signal power

In this case, anomalies modify the normal signal by redistributing its power within the
signal space. This redistribution can either occur between the normal signal and an
independent disturbance or within the components of the normal signal itself.

Mixing with a disturbance

When a disturbance with power a?

c (XOk) = V1 —a2x°%. In this case, we focus on two types of disturbances: constant
and GWN.

< 1 is present, we model the mixing by defining
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Intra-signal mixing

When power redistribution occurs solely among the components of the normal signal,
we assume this happens via a linear transformation, represented by a matrix C, which
preserves power, ensuring that %tr [Zko} =1.

Time warping Time warping [20] produces local decelerations in the normal signal.
This can be modeled by assuming that the entries in x°% are discrete-time samples at
rate f,, taken from a continuous-time waveform x°%(¢). The time-warping transformation
w(t) creates an anomalous waveform x*°(¢) = x°%(w(t)), which is then sampled into the

vector x¥°. Considering the sampling times t; = % with j =0,...,n — 1, we have:

n—1
2 =X () = x(w(t)) = 3 g n(wt) fs — g) dw, (3:8)
q=0

where 7(-) is the interpolation function allowing the reconstruction of the continuous
waveform from its samples, and dw accounts for local time warping, guaranteeing power
preservation. In this case, the linear transformation matrix is C;, = n(w(t;) fs — q) dw,.

Further to redistribution along time, we also take into account power redistribution
in the spectrum. To this end, based on the spectral decomposition of the covariance
matrix 3K = UOkAOkUOkT, where the first £ components represent the principal ones
and characterize normality, we consider two types of spectral alterations.

Spectral alteration This anomaly modifies how power is distributed across the principal
components by altering the eigenvalues in A%, resulting in a new diagonal matrix AX°.
The transformation matrix C can be derived using the expression in (3.4).

Principal subspace alteration This anomaly alters the principal components them-
selves by modifying the columns of UK, resulting in a new orthonormal matrix UX°. The
transformation matrix C is again obtained relying on (3.4).

3.2.3 Anomalies that decrease signal power

Saturation

Saturation is modeled by clipping the largest samples in a window to a maximum value
TSAT as in

H ok . ok
ko _ TSAT Sign (azj ) if T3¢ > TSAT (3.9)
7 ok . :
3 otherwise

This ensures that any sample that exceeds the threshold is set to xgaT, preserving its
original sign.

Dead-zone

In contrast to saturation, the dead-zone anomaly sets to 0 the samples smaller than zpyz
as in

H ok
ko _ 0 if x5 < ITDp7
x?k otherwise

(3.10)
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3.2.4 Anomaly implementation

Considering the taxonomy of anomalies outlined above, we define how the random com-
ponents of the mathematical models translate into actual instances:

» The symbol £ is randomly assigned to either a + or — with equal probability of %

= The rising parameter 7 is uniformly selected from {0, 1}, while the position [ is set
to the midpoint of the window [n/2].

= When d is a Gaussian noise within the frequency band [fy — g, fo—+ g] it is drawn
as a Gaussian random vector with zero mean and covariance X, defined as [133]:

Sq = a2 cos (27(j — q) fo) sinc ((j — q) B) (3.11)

for j,q=0,...,n—1. If white noise is required, the covariance is simply ¥ = a’I,,,
with I, the identity matrix.

» The interpolation function 7 is implemented using 3-rd order cardinal splines de-
scribed in [150].

= The warping function is modeled as w(t) = (1 — «)t, with a € [0,1] controlling
the degree of local time deceleration.

= Spectral alterations are applied only to the principal components, while the noise
subspace remains untouched. Specifically, the eigenvalues A?O differ from )\?k for
j=0,...,k—1, but remain equal for j = k,...,n — 1. The number of principal
components k is determined using the criterion proposed in [47].

The first k eigenvalues of A% are altered by defining vectors

T T
o = L (\/)\ko,...,\/)\l,;°1> and (°F = L («/ gk, ..., Agkl)

0okl = Héko = 1, we set /k° = RkﬁZOk, where
Ry ¢ is a random k x k rotation matrix parameterized by an angle §. The modified
eigenvalues are then recovered by squaring and scaling the entries of £%°.

Since power invariance requires

= For principal subspace alterations, the new matrix UX° is generated by applying a
random n x n rotation matrix R,, g to the columns of Uk,

» Random rotation matrices are constructed assuming that both n and k are even.
The rotation matrix Ry is given by:

rg ... 0

Ro=Q: . :]|QT, ra:(cos@ _Si“9> (3.12)

sinf  cos@
0 ... 1y

where ry represents a 2D rotation matrix, and Q is derived by orthonormalizing a
sample of the Ginibre ensemble [49].

= In saturation and dead-zone anomalies, the thresholds are dynamically adapted in
each window to match the desired deviation A specified by equations (3.18) and
(3.19).

= Multiple anomalies can be combined to simulate complex real-world anomalies in-
volving superimposed effects. Further details can be found in the Appendix A.
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3.2.5 Deviations

Table 3.2 reports the relationship between the parameters used in the definition of each
type of anomaly and the resulting deviation A. These formulas enable the application
of alterations that impose a uniform predefined level of challenge on the detector under
test.

TABLE 3.2: Expressions of deviation A for each type of anomaly

Anomalies A

Increasing a? (3.13)

Mixing 2[1-V1-d] (3.14)

. . 1
Time warping 2 {1 — [CEOI‘H (3.15)
n
Spectral alt. 27y [1 — cos(0)] (3.16)
Principal 201 — cos(0)] (3.17)
subspace alt. .
. 0. 2
Saturation > [m?k — TSATSIEN (xjk)i| (3.18)
‘I‘;k|>zSAT
2
Dead-zone Z (xﬁk) (3.19)
|$§k|S$DZ

In (3.15), the deviation is governed by the parameter « inherent to C, while in (3.16),
the deviation arises from the alterations applied by Ry . Since the principal subspace
alterations induced by R, ¢ are equivalent to rotating each x°K into xX° by the same
angle, equation (3.17) is derived using equations (3.4) and (3.16). Finally, equations
(3.18) and (3.19) are used to determine the threshold values zgaT and xpy, ensuring
that the average deviation across the dataset corresponds to the specified A.

3.2.6 Metrics

As anticipated in Chapter 1, when a detector processes an input x, whether normal (ok)
or anomalous (ko), its output can be interpreted as a function z(x) that assigns a score
to the instance. Once normal and anomalous scores have been generated, it is possible
to use the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC)
[45] to measure the overall performance of the detector. We propose to adopt a variation
of AUC, reflecting the probability of correct detection:

AUC if AUC > 0.5
Py = { ! = (3.15)

1 —-AUC if AUC < 0.5.
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FIGURE 3.2: Examples of ECG anomalies for two different values of
deviation A = {0.05,0.8}.

The definition of Pp accounts for cases where a detector consistently assigns higher scores
to normal instances, meaning AUC < 0.5. In such cases, the detector can still be useful
if its output is interpreted in a reversed manner.

3.3 Numerical examples

To prove the effectiveness of the proposed anomaly models, we perform a numerical
evaluation of detector performance using two distinct datasets: Electrocardiogram (ECG)
signals from a health monitoring application and accelerometer (ACC) waveforms from a
structural health monitoring system.

3.3.1 Numerical setup

Detectors

We validate our approach by deploying a range of detectors, each utilizing different tech-
niques that can be found in the literature [29]. Specifically, we focus on the detectors
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TABLE 3.3: Significant signal features and the corresponding score z(x)

Feature z(x) Description
pk-pk max X — minx Peak-to-peak value
energy [|x]2 Energy of the vector x
n—1
TV 3 wir — il Total variation [124]
i=0
1 n—2 .
ZC 5 Z [1 — sign(z;zii1)] Number of zero-crossings
i=0

TABLE 3.4: Performance of different detectors (columns) in terms of
Pp, working on ECG anomalies (rows) with a fixed deviation A = 0.05

PCA-BASED GD-BASED ML-BASED FEATURE-BASED

ANOMALY SPEs; SPEsy T2 TZ% ARy ARys MD OCpey 001 LOFs IFss0 emergy TV ZC  pk-pk

0.70
0.76

GWN
IMPULSE
STEP
CONSTANT
GNN

0.76  0.66

INCREASING

MIXING w/ GWN

MIXING w/ CONSTANT
SPECTRAL ALT.
PRINCIPAL SUBSPACE ALT.
TIME WARPING 070 0.73 0.72

INVARIANT

SATURATION
DEAD-ZONE

0.79 0.81 0.83

0.73

DEC.

described in Chapter 1. However, in our analysis, we exclude Deep Learning-based meth-
ods, as the focus is to validate the effectiveness of the evaluation framework rather than
testing individual detectors.

Feature-based Along with the most common detectors, we also track some of the
signal’s representative features that can be efficiently computed. Each of the features
listed in Table 3.3 corresponds to a different score and its detection capabilities can
highlight the nature of the modeled anomalies.

Datasets

ECG signals The reference ECG signals were generated using a realistic ECG signal
generator as described in [102], following the setup adopted in [96]. Specifically, the
sampling rate was set at 256 sps, and heart rates were drawn uniformly in the range 60-
100 bpm. In total 7.7 x 10* segments of 2s each were generated and randomly divided
into non-overlapping windows, each of length n = 256, corresponding to vectors x € R".
To emulate realistic conditions, Gaussian white noise was added, guaranteeing a signal-
to-noise ratio (SNR) of 40dB. The number of principal components resulted in k = 52.
Finally, the dataset was split, with the 10% vectors reserved for testing performance and
the remaining vectors used for training.
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TABLE 3.5: Performance of different detectors (columns) in terms of
Pp, working on ECG anomalies (rows) with a fixed deviation A = 0.8

PCA-BASED GD-BASED ML-BASED FEATURE-BASED
ANOMALY SPEs; SPEsy T2, T%, ARy ARig MD OCpoy o001 LOFs IFaso energy TV ZC  pk-pk

o GWN

Z |MPULSE

2

< STEP

§ CONSTANT 075 0.71

< 6NN 0.70 0.74

MIXING w/ GWN

MIXING w/ CONSTANT
SPECTRAL ALT.
PRINCIPAL SUBSPACE ALT.
TIME WARPING 0.77 0.79 0.78

SATURATION 0.72
DEAD-ZONE

TABLE 3.6: Performance of different detectors (columns) in terms of
Pp, working on ACC anomalies (rows) with a fixed deviation A = 0.05

INVARIANT

DEC.

PCA-BASED GD-BASED ML-BASED FEATURE-BASED
ANOMALY SPEys SPEss T% T2 AR, ARy MD OCger oo1 LOFs IFs0 energy TV ZC  pk-pk

© GWN 0.80 0.76

5 IMPULSE 0.80 0.76

< STEP 0.82

& CONSTANT 0.81

Z o 0.78

- MIXING w/ GWN 0.79

2 MIXING w/ CONSTANT 0.81

& SPECTRAL ALT.

g PRINCIPAL SUBSPACE ALT.

TIME WARPING

SATURATION
DEAD-ZONE

DEC.

ACC signals The acceleration signals used in this example were collected during the
structural health monitoring of a viaduct located in Italy [101, 24]. The dataset con-
sists of measurements from 90 three-axis accelerometers, acquired at a sampling rate
of 100sample/s. These signals capture the elastic response of the structure to vehicle
transit and environmental stimuli. For this example, we considered only one axis of a
selected sensor and divided the data into 3.77 x 10° windows, each of length n = 100,
resulting in vectors x € R™. Due to the inherent noise in the dataset, the number of
principal components was determined to be k = 16. Similarly to the ECG data, the 10*
vectors were allocated for performance assessment, while the remaining vectors were used
for training.

3.3.2 Results

For each signal class and anomaly category, anomalous instances are obtained by modify-
ing the original input vectors as illustrated in Section 3.2. Figures 3.2 and 3.3 show how
different anomalies affect normal ECG and ACC signals, respectively. In these figures,
each subfigure represents a different anomaly type, showing both the original and the
altered signals for two levels of deviation A. As expected, higher levels of deviation lead
to more noticeable anomalies.
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TABLE 3.7: Performance of different detectors (columns) in terms of
Pp, working on ACC anomalies (rows) with a fixed deviation A = 0.8

PCA-BASED GD-BASED ML-BASED FEATURE-BASED
ANOMALY SPEls SPE35 T%G Tgs AR4 Ang MD OCRBF, 0.01 LOF5 |F500 energy TV ZC pk-pk
© GWN 0.76 0.89 0.81 0.80 0.82 0.67 0.83
%IMPULSE 0.77 0.89 0.80  0.64
S STEP 0.90 0.80
& CONSTANT 0.90 0.80
2
= GNN 0.88 0.79
- MIXING w/ GWN 0.76 0.79
z MIXING w/ CONSTANT 0.76
T SPECTRAL ALT.
<
E PRINCIPAL SUBSPACE ALT. = 0.78 0.87 0.73

TIME WARPING 0.67
SATURATION 089 069 (094 088 090 074 065 0.83  0.92
DEAD-ZONE [ o057 091 o7 066 [050] 081 0.63 077 0.78

Both original and corrupted with two levels of deviation vectors are used to test mul-
tiple detectors. The detection results, measured by Pp, are presented in Tables 3.4, 3.5,
3.6, and 3.7, where each column characterizes a different detector. These results highlight
which detector is most effective for each anomaly type, providing valuable feedback on
the detector’s performance during the design phase.

Tables 3.4 and 3.5 provide insight into the detectability of ECG signals for two devi-
ation levels: A = 0.05 and A = 0.8, respectively. The results show how each anomaly
affects the normal signal differently, leading to different detection performances. In partic-
ular, certain anomalies, such as constant or time-warping, are challenging for any detection
method.

When comparing the results between Table 3.4 and 3.5, it becomes clear that increas-
ing A improves detection performance, proving that A effectively controls the intensity
of the anomalies®.

For ACC signals, the detection results are summarized in Tables 3.6 and 3.7 for A =
0.05 and A = 0.8, respectively. As expected, the detection performance for ACC signals
differs significantly from that obtained with ECG signals. For the same level of deviation,
the values of Pp are generally lower in the ACC case. Moreover, spectral alterations,
time warping, and dead-zone anomalies were the most difficult to detect. Additionally,
feature-based detectors tend to underperform compared to more sophisticated techniques.

We want to point out that, to understand how the framework assesses a detector's
performance for a specific class of signals, the results in Tables 3.4, 3.5, 3.6, and 3.7
should be interpreted column-wise. Each column provides a summary of the expected
detection performance of the respective detector.

Figure 3.4 further illustrates the tool's capability to predict detector performance with
real-world anomalies. On the left-hand side, we present the scores of different detectors,
which were trained on a reference synthetic ECG signal. These scores change based on
the variations of a real-world ECG signal with anomalies [50] plotted at the top. While all
detectors can identify the anomaly between 16 and 22, some, e.g., T§2 and the energy-
based detector, fail in detecting a noise increase between 23-26 s that does not affect the
signal’'s power. This result, even in testing on a real ECG signal, aligns with the insights
provided in Table 3.4 as it is able to anticipate the performance of 12 out of 14 considered
detectors. In fact, for the exception of LOF5 and ZC, the detectors failing with this real

DEC.

3This is further demonstrated in the Appendix A, where Pp is plotted against A for each detector and
anomaly.
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3.3. Numerical examples
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anomaly, are the ones marked with a red cell in correspondence of the row MIXING w/
GWN in Table 3.4.

In addition, on the right side of Figure 3.4, the tool's ability to predict detector
performance in identifying an earthquake occurring in the time interval of 28-38s is
demonstrated. Since an earthquake typically amplifies the energy of all signal components,
it can be considered a GWN anomaly. Table 3.7 shows that SPEgs, AR and MD are
the most suitable for detecting this type of anomaly, while T?5 and ZC perform poorly.
This is consistent with the score trends shown in the figure, where SPEgs, AR and MD
exhibit sharp variations during the earthquake, while T4 and ZC show little deviation
compared to their behavior during normal operation.

Interestingly, in both cases, the most effective detectors are not machine learning-
based, but rather simpler and less computationally demanding solutions.

3.4 Conclusion

The assessment of anomaly detectors is often hampered by the limited availability of
anomalous data. In this chapter, we described a systematic framework, we call WOM-
BATS, for assessing the performance of anomaly detectors on time series data. This
framework is based on a dictionary of anomalies modeled as deviations from normal
signal behavior, which capture abnormal conditions in the monitored system or acquisi-
tion process, such as aging, wear, sudden shifts, hardware malfunctions, or disturbances.
Anomalies can be synthetically generated and controlled by a unique parameter that ad-
justs the severity of the deviation, allowing for control over the difficulty of anomaly
detection.

The effectiveness of the WOMBATS framework has been demonstrated in two real-
world applications: human health monitoring using ECG signals and structural health
monitoring using acceleration data. By assessing various anomaly detectors, the frame-
work highlights which detectors perform best and worst for specific types of anomalies.
The numerical results show that the framework can accurately anticipate performance in
real-world scenarios, such as identifying artifacts in ECG signals or detecting an earthquake
during bridge monitoring.

In summary, this framework provides several important benefits: i) it is flexible and
adaptable to any monitoring scenario; ii) it only requires access to normal data; iii) it
offers a comprehensive coverage of the effects of real anomalies; iv) it ensures consistency
with a unified anomaly model and a single parameter controlling anomaly severity.
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Chapter 4

Theoretical Performance
Assessment

As shown in Chapter 3, the probability of detection (Pp) is a reliable metric for evalu-
ating anomaly detection (AD) performance. The problem with Pp is that its analytical
expression is never available and even for simple sources, e.g., Gaussian sources, it has to
be estimated. Although Monte Carlo simulations can address this in practical applications
[45], the derivation of theoretical results using Pp remains challenging.

When dealing with complex performance measures, in statistics and Information The-
ory it is common to adopt criteria that are easier to evaluate and manipulate. For instance,
distance measures, such as Jeffrey's divergence or the Bhattacharyya distance, have been
studied as simpler substitutes for error probability in hypothesis testing [17, 68, 80, 71].

On this line, to overcome this limitation of Pp, in the first Section of this chapter,
we introduce information-theoretic measures of distinguishability for anomaly-aware and
anomaly-agnostic cases. In Section 4.2, we define a framework based on the assumption
of Gaussian signals, i.e., both normal and anomalous sources are considered to follow
a Gaussian distribution. This is a common assumption in Information Theory as we
have seen for the rate-distortion problem in (2.3)-(2.4). In this setting, we highlight the
importance of the white anomaly. In particular, we show that the white anomaly is the
average anomaly over the set of possible anomalies. It also becomes typical, meaning
that most of the anomalies resemble the white one, as the signal dimension increases. At
the end of the Section, we also outline a procedure for signal generation.

4.1 Distinguishability

Given two sources, the normal one x°% ~ fok and anomalous one x*° ~ fX° the per-
formance of anomaly detectors depends on the degree to which these two distributions
can be distinguished. We quantify this using two distinct information-theoretic measures,
each modeling a different scenario: one where the detector knows both f¢k and fk°, and
another where it only knows fok.

To formalize these measures, we rely on the differential cross-entropy functional de-
fined as:

Cix'sx") == [ foa)log, fur(a)da (+1)

The differential cross entropy represents the average coding rate, in bits per symbol, of a
source with (PDF) fx when encoded using a code optimized for a source with PDF f,.
In particular if one considers C(x;x), it equals the differential entropy of x [34, Chapter
8.

From a statistical point of view fx(a) = —logs fx () represents the negative log-
likelihood of observing a symbol a from source x, and C(x’;x"”) = E [lxr(«)|x'] is the
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average negative likelihood that an instance is generated by source x”, when it would be
from source x'.

4.1.1 Distinguishability in anomaly-agnostic detection

When only the distribution of normal signals £ is known and the anomalous distribution
fXo is unknown, we can only consider average coding rates based on a code optimized
for x°K, i.e., C(x*°; x°K) and C(x°%; x°%). To quantify the deviation between normal and
anomalous behavior we may measure the increase or decrease of average coding rate

compared to the expected case C(x°%; x°K). This can be expressed as
¢ = € (xh ) — ¢ (x5 x%) (4.2)
or equivalently,
¢= [ [#25@) = £22(0)] log, 13¥(@) da (4.3)

Since some anomalies can lead to a lower coding rate than normal signals, ( is not always
positive. As a result, to measure the distinguishability, we use the absolute value, Z = |(].
From a statistical perspective, ( represents the difference in the expected negative

log-likelihood for an instance « to be normal, given that o comes from either x° or x*°:

(=E [z(a)yxkO] _E [z(a)|x°k} . (4.4)

As anticipated in Chapter 1, the negative log-likelihood term ¢(a) = —log, fo¥(a) is
a natural AD score, indicating whether the instance « deviates from the distribution
representing the normal behavior.

4.1.2 Distinguishability in anomaly-aware detection

When both the distributions f2X and fX° are known, AD can be seen as a binary clas-
sification problem and tackled using the Neyman-Pearson Lemma [34, Theorem 12.7.1],
[74, Theorem 3.1]. According to this lemma, the key quantity to track is

ko a
r(a) = log, [)‘;‘Ea;] (4.5)

and used as an abnormality score, indicating whether the instance « deviates from normal
behavior. The distinguishability between foK and fX° can be measured by comparing the
average score for normal x°¢ and anomalous x*° signals, i.e.,

J=E [r(a) | xko} _E [r(a) | x(’k] . (4.6)

This expression can also be formulated as

ko ok o
J= /]R{n 13 (@) log [fzkga; da + /Rn f25(a) log, lfz‘ogaﬂ da, (4.7)

or equivalently:

J=C (xkO;XOk) —C (Xko;xko) +C (XOk;xkO) —C (XOk; XOk) , (4.8)
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Finally, we can write J as:
J =D (FEFX) + Drer (LRI (4.9)

where Dxy, (f’||f”) represents the Kullback-Leibler divergence, for which 7 becomes a
symmetrized version.

In fact, J is not exactly a novel quantity. The concept behind it has been exten-
sively used in binary classification and pattern recognition problems under the name of
divergence [68, 81, 148, 107].

In the AD context, measure J models a detector that is aware of both the normal
and anomalous distributions and therefore has access to their optimal codes. Looking

t (4.8), J can be interpreted as the sum of the differences in the average coding rate

for both compressed sources with a code optimized for the normal source C (xko;x°k> -

C (XOk;XOk) or for the anomalous source C (XOk; xk°> -C (xko;xk°>. Since the average
coding rate is expected to be shorter when adopted to code a source for which it has
been optimized, these differences are expected to grow when the disparity between the
distributions foX and fX° increases. Consequently, higher values of J correspond to a
stronger ability to detect anomalies.

Unlike ¢, the quantity 7 is always positive and can be used directly as a measure of
the distinguishability between normal and anomalous signals.

4.1.3 Discussion

The distinguishability metrics Z and J are introduced as simple yet effective measures
for evaluating AD performance. Unlike the probability of detection, Pp, which quantifies
detection in terms of probability, Z and J measure distinguishability in bits per symbol.
In the case of Z, as highlighted by equation (4.4), this metric quantifies the difference
in average scores produced by the likelihood-based detector (LD), where z(a) = ¢(«)
for normal and anomalous cases. Similarly, equation (4.6) suggests that 7 measures the
difference in the average scores generated by the Neyman-Pearson detector (NPD) for
which z(a) = r(a). In contrast, Pp can offer a complete characterization of detectors
(including LD and NPD) as it considers not only the first-order statistics, i.e., the average,
of the scores but their entire distributions.

In future analyses, we will compare the trends of Pp with those of Z and J to
demonstrate how theoretical metrics align with practical detection outcomes. While this
comparison will be largely qualitative, Z and J will effectively capture the main charac-
teristics of Pp.

Furthermore, while Z and J map to the true distinguishability measure Pp, ( corre-
sponds to a commonly adopted performance metric AUC. Therefore, the results derived
in the next section will also involve this functional.

Finally, distinguishability measures implicitly assume that detectors examine an in-
creasing number of signal instances, with performance improving as more data is pro-
cessed. Similar to how rate and distortion from (2.2) represent best-case bounds that can
be approached by increasing system complexity, distinguishability measures indicate how
fast a detector gathers enough information to identify an anomaly. The higher the value
of the measure, the fewer signal instances are required to confidently declare an anomaly,
or, conversely, the greater the confidence in a decision made after analyzing only one
instance.
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4.2 Gaussian framework

4.2.1 Signal models

Specifically, we consider signals with pu°% = p%° = 0 and covariance matrices X°¢ and
sko ¢ R™*7  |n general, 3¢ # 3K° but we assume that tr(2°) = tr(X*°) = n, where
tr(-) denotes the matrix trace. This implies that each vector sample contributes on average
one unit of energy. With the assumption of zero-mean signals with equal energy, we focus
on one possible effect of anomalies: energy redistribution across the signal's subspace.
Furthermore, without loss of generality, we assume 3°¢ = diag ()\Ok,...,)\gk_l) with
AgE > Ak > > A0k > 0.

With the established metrics, it is worth exploring the perspectives that emphasize
the importance of white noise within the Gaussian framework. One view suggests that
white noise represents the average over the set of all possible anomalies. In addition, it
reflects the asymptotic behavior of anomalies as the signal’s dimensionality increases.

4.2.2 Average on the set of possible anomalies

The anomalies modeled as fixed-energy, zero-mean Gaussian vectors are completely char-
acterized by their covariance matrix X*° with tr(3¥°) = n. We can decompose the

covariance matrix as 3K = UkOAkOUkOT, where AX° = diag(\§°, ..., Ak |) is a diago-
nal matrix, and U¥° is an orthonormal matrix.
The set of all possible eigenvalues A = (Ak°, ... Ak )T is defined by:
n—1
SP=(AeRY Y N =n (4.10)
j=0

Meanwhile, the set of all possible orthonormal matrices U is:
0" ={UecR™ |U'U=L}. (4.11)

By indicating with ¢/ (-) the uniform distribution over the domain of the argument,
we assume that Ak ~ 2/ (S™) when A¥° is unknown and similarly U ~ 2/ (O") when
U is unknown, with the two distributions being independent.

Since S™ is invariant under any permutation of );, the expected value E[AX°] must
also be invariant under the same permutations. Therefore, E[)\?O} = E[\] for any j, k,
and given the constraint on the sum of eigenvalues, we have E[AX°] = I,,. This leads to:

E[Zko] —E [UkoAkonoT} =Ey [UkoEA[Ako]UkoT} —E [UkonoT} ~1,. (4.12)
Hence, under this setting, the average anomaly behaves as white.

4.2.3 Asymptotic anomalies

White signals are not only the average anomalies but also represent the typical anomalies,
as formalized by this theorem (proof provided in Appendix B):

Theorem 4.1. If X*° = Ukodiag()\kO)UkoT, where Ak ~ U (S") and U*® ~ U (O"),
then for any 8 > 1/2, the quantity Ap = n=?||Z*° —1,,||, where ||-||r is the Frobenius
norm, converges to 0 in probability as n — oco.
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This means that, as the dimension n increases, most of potential anomalies exhibit
behavior similar to white signals. From an AD perspective, when dealing with a signal of
sufficiently large dimension, it is reasonable for the designer to consider the white anomaly
as a reference.

4.2.4 Distinguishability in the Gaussian framework

First of all, under the Gaussian assumption, we can obtain an analytical expression for C as
shown in the following Lemma, with the complete procedure provided in the Appendix B.

Lemma 4.1. Ifx' ~ N (0,%') and X" ~ N (0,%"), then

C(x;x") = ﬁ {ln [(2m)"™ |2"]] + tr [(2”)_12/}} (4.13)

where | - | denotes the determinant of the matrix.

Under the assumption of Gaussian sources, by combining the definitions of ¢ from
(4.2) and J from (4.8) with the expression for C in the Gaussian case from (4.13), we
obtain:

= 21n2tr [S — In} (4.14)
Z= 21112 o [2 - 1,]| (4.15)
J = 21112tr [SJ +3 - 214 : (4.16)

where X = (3°%)~1Xk° is an n x n matrix. Note that since 3 is linear with respect to
3ko ¢ also varies linearly, while it is evident that Z and J are convex with respect to
ko, Additionally, both ¢ and J vanish when ok — yrko

A notable special case arises when the normal signal is white, i.e., when XK = T,,.
This results in 3 = 3*°, leading to ¢ = Z = 0. This outcome is not surprising, as the
distinguishability modeled by Z relies on the statistics of x°X, which in this scenario has
no exploitable structure.

We can also compute the functional (1, and the distinguishability measures Zy and
J1, representing ¢ and Z, J when XX = I, In this case, ¥ = (X°)~! and is a
diagonal matrix whose elements on the diagonal are u; = /\%
Using these quantities, the three measures can be expreésed as:

1 ng—1
=555 2 (=1 (417
7=0
1 ng—1
1= 575 Z (uj — 1) (4.18)
7=0
1 Ml 1
jI:Q]nQ jz% (u]'—l-uj—2>. (4.19)

Note that, due to the linearity of {, we have (1 = E[(] and by Jensen's inequality,
this leads to Z1 < E[Z]. Moreover, by Jensen's inequality and the convexity of J we
also have 71 < E[J].
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4.2.5 Signal generation

Normal signals are modeled as x°% ~ J\/(O,ZOk), where X°K is the diagonal matrix

resulting from the eigendecomposition of a given matrix K, such that K = UX°KU T,
with U orthonormal. The matrix K is an n X n positive semidefinite matrix, where the
(j, k)-entry is assigned as Wikl for j,k = 0,...,n — 1. The parameter w is chosen
to generate different degrees of non-whiteness, measured by the so-called localization,

defined as: )
tr(32°%7) 1
Lok = —5rmy — —- 4.20

X T 02(2K)  n (4.20)
The localization ranges from L, ox = 0 for white signals to Lo =1 — % when the entire
energy is concentrated along a single direction of the signal space (see [99] for more
details). To illustrate the effects of realistic localizations [25], we consider the values of
w corresponding to L.k € {0,0.05,0.2}.

Anomalous signals are generated as xX° ~ N(O,Eko), where XX is drawn ran-

domly according to the uniform distribution defined in Section 4.2.2. Specifically, Z*° =
UkeAkouke | with Ak = diag(Ak°), where AX° ~ 1/ (S™) and U*® ~ 1/ (O™) are gener-
ated independently. The term A° is sampled according to the procedure from [112]: we
first draw &; ~ U ([0,1]) for 5 =0,...,n — 1 and then set

ko _ M log &;
T YRS logd

where )\?" > 0 and the entries of AX° sum to n. To generate term U ~ U/ (O") we
follow [104], where the matrix A is drawn from the Ginibre ensemble [49], which means its
entries are independent and normally distributed, A;; ~ N (0,1) for j,k=0,...,n—1.
We assign to U*° the orthogonal factor in the QR decomposition of A.

(4.21)

4.2.6 Numerical evidence

This random sampling is first used to provide numerical support for Theorem 4.1. Figure
4.1 shows the vanishing trends of the average squared (Ap with 8 = 1) and uniform
(defined as Apax = [|E5° — I [|max = max; g [(£X°); 1 — (I,);x|) deviations of uniformly
distributed covariance matrices X*° from I,,. The trend for Ap confirms Theorem 4.1,
while the trend for A.x empirically extends this result to a stronger deviation measure.
Thus, for sufficiently large n, white Gaussian noise can be considered a good candidate
to represent anomalies that arise independently of the statistics of the normal signal.

In the next chapters, further numerical evidence will be provided that confirms the
effectiveness of {, Z, and J in anticipating performance expressed in terms of Pp.
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FIGURE 4.1: Trends of Ag and A, .« for n € {2’“},197:7. Solid lines are
mean values over 2000 trials, while shaded areas represent 98% of the
population.

4.3 Conclusion

In this chapter, we defined a framework for the theoretical assessment of anomaly detec-
tion performance. We began by introducing two information-theoretic measures that
quantify distinguishability between normal and anomalous signals, applicable in both
anomaly-agnostic and anomaly-aware scenarios. These metrics are also complemented
with a statistical interpretation. To derive closed-form expressions for these metrics and
to model and subsequently generate possible anomalies, we described a set-up based on
Gaussian signals. This setting allowed us to derive the following theoretical results:

= The white anomaly is the average anomaly over all possible anomalies.
= As the dimensionality of the signal increases, the white anomaly becomes typical.

» The distinguishability metrics for white anomalies are representative of a detector’s
average performance across various types of anomalies.

In this part of the dissertation, we have tackled the issue of performance assessment
of the anomaly detection task. While in Chapter 3 the outlined framework offers a ready-
to-use tool for practical AD applications, in this Chapter we defined a framework that
can be adopted when theoretical derivations involving anomaly detection are required.
In the next part, we will examine the interplay between signal compression and anomaly
detection, where both practical and theoretical performance assessment tools will play a
key role.
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Chapter 5

Rate-Distortion Theory and
Distinguishability

As already anticipated in Chapter 2, in a monitoring system comprising numerous sensors,
to reduce the transmission bitrate, sensor readings are often compressed using lossy tech-
niques designed to retain useful information while reducing data size [94, 87]. A common
practice is to store and process compressed data using a remote unit [59, 157, 58]. Before
reaching cloud facilities, these compressed bitstreams often pass through hierarchical ag-
gregation layers and intermediate devices, commonly referred to as the edge of the cloud
[136]. The overall infrastructure is depicted in Figure 5.1. For latency, privacy, or security
reasons, certain computational tasks, such as anomaly detection (AD), may benefit from
being performed at the edge. However, lossy compression achieves efficiency by discarding
some signal details, resulting in distortion between the original and compressed signals,
and in a potential loss of features that could help anomaly detectors.

Typically, acquisition systems are subject to distortion constraints, designed to ad-
dress the trade-off between compression and distortion in the best way possible. In the
considered scenario, rate-distortion exists alongside another fundamental trade-off: the
relationship between signal distortion and the ability to distinguish between normal and
anomalous signals. In this Chapter, we analyze this trade-off using the same information-
theoretic framework applied in rate-distortion analysis presented in Chapter 2, and the
AD performance assessment framework defined in Chapter 4. We demonstrate that the
rate-distortion and distinguishability-distortion trade-offs are fundamentally different.

The impact of compression on a detector’s ability to distinguish between two informa-
tion sources has been widely explored in the literature. In [4], the problem of hypothesis

0 Cloud

¥ Edge devices

() g Sensors
(s )

FIGURE 5.1: A sensor equipped plant whose compressed acquisitions are
aggregated at the edge before being sent to the cloud.
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testing under a rate constraint for a single source is examined. This work has been
extended to multiterminal data compression scenarios, addressing statistical inference
problems in [57]. However, unlike the analysis we perform in this chapter, these works
do not impose a distortion constraint since reconstructing the original signals is not a
requirement. In contrast, we assume that compression is designed to maintain the quality
of service required by the processing tasks performed on the reconstructed data.

In some sense, our analysis is loosely related to the information bottleneck framework
[146, 140]. That approach allows optimizing the trade-off between rate and a distortion
measure more broadly defined with respect to (2.1). Unlike classical rate-distortion analy-
sis that targets signal reconstruction, this framework selects which aspects of the original
signal should be preserved during compression. The compressor reduces the rate while
retaining the features relevant to a secondary signal that accounts for the specific needs
of the target application. In the specific case of AD, this technique has been applied
in works such as [35, 36]. For a comprehensive overview of the information bottleneck
see [62]. Similarly to the information bottleneck principle, the authors of [138] proposed
an end-to-end framework that jointly optimizes the rate constrained on a task-specific
objective, evaluating its effectiveness in the context of classification tasks. In our case,
compression is not adapted to AD but designed in a classical sense to preserve the signal’s
overall information for subsequent analysis (see Figure 5.2). We extend the traditional
rate-distortion framework by adding a measure of distinguishability between normal and
anomalous sources subject to classical compression.

The distinction between our approach and the information bottleneck method is the
same that differentiates us from another variation of the classical rate-distortion theory
that substitutes energy-based distortion with perceptual criteria [19].

Although not directly related to the problem considered in this chapter, it is worth
mentioning studies such as [123, 137], which focus on how lossy compression affects the
estimation of certain parameters (e.g., the mean) of the original signal.

Finally, there are other scenarios where rate and distortion are combined with addi-
tional performance metrics that account for specific characteristics of the system. For in-
stance, [46] includes computational efficiency in the analysis of rate-distortion for wavelet-
based video coding.

This chapter presents an analysis of the performance of a generic AD system receiving
input signals distorted by compression mechanisms that comply with the rate-distortion
trade-off. To this end, in Section 5.1 we revisit the traditional rate-distortion theory
presented in Chapter 2 by explicating the optimal compression scheme and the distribu-
tions of compressed normal and anomalous Gaussian sources. Section 5.2 specializes the
anomaly-aware and anomaly-agnostic distinguishability measures defined in Chapter 4 to
the compressed domain, providing closed-form expressions for cases where the compressed
signals follow a Gaussian distribution. The results on the interaction between distortion
and distinguishability are supported by numerical evidence in Section 5.3. Additionally, we
demonstrate that the findings hold even when certain assumptions are relaxed, in particu-
lar when analyzing signals from real-world applications and/or using practical compression
methods.

In general, both theoretical and experimental results show that compression techniques
optimized for information preservation may not always be the most effective in retaining
distinguishability.
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5.1 Rate-Distortion Compression

A typical compression system is designed to achieve the best trade-off between rate and
distortion under normal operating conditions, i.e., when the observed signal follows the
normal model x = x°%. The trade-off between rate and distortion has been reviewed,
in particular for the Gaussian sources, in Chapter 2. Here we also want to consider
the situation when an anomalous source unexpectedly replaces the normal one and the
encoder must process anomalous signals, i.e., x = xX°_ In this scenario, since the encoder
is adapted to the normal signal, x°X is optimally compressed in the rate-distortion sense
into %°%, and the anomalous signal x¥° is sub-optimally compressed into %*°.

Within the Gaussian assumption, it is possible to derive the PDF of the distorted
signal x and the conditional PDF f4,, which stochastically maps an input x ~ N (0,%)
to x. Although not often explicitly stated, the expression of fg|x becomes important
when the compression mechanism is used to encode a signal different from that for which
it was originally designed, as is the case of our analysis.

Recall that the rate-distortion problem in (2.3)-(2.4) is governed by the reverse water-
filling parameter 6 € [0, Ao, such that 7; = min {1,0/\;} represents the fraction of
energy lost to distortion along the j-th component. By treating a zero-variance Gaussian
as a Dirac delta function we can define Sy = I,, — Ty with Ty = diag(o,...,7n—1) to
account for the fraction of energy that survives distortion along each component. With
this setup, and leveraging the Gaussian framework introduced in Chapter 4, we can state
the following lemmas, with the proofs provided in Appendix C.

Lemma 5.1. Ifx°k ~ N/ (0, EOk) is a memoryless source and we constrain the distortion
D <4, the optimally distorted signal has distribution

%% ~ (0, 3°%8)) (5.1)
and the optimal encoding mapping is

frx(@, B) = Gg, 3 s0k8,T, (@) (5.2)
where G, 5 (-) denotes a Gaussian PDF with mean vector ;v and covariance matrix 3.

Lemma 5.2. If an anomalous source x¥° ~ N (0, Eko) is encoded with the compression

scheme f;’%; of Lemma 5.1, then

0~ N (0,8,358 + 08, . (5.3)
This result has two important corner cases.

= If & — 07 there is no distortion. In fact, since Sy = I,,, according to Lemma 5.2,

f(ko ~ xko.

ok

s If xX° ~ x°K no anomaly is observed, X% = k0 and

Sp=KSy + 0Sy = [Sp + O(X°F) T1ZOkS, = 20kS,

where the last equality uses Sy = max {0, I, — 0(201‘)*1}. The possible disagree-

ments between Sy+6(2°¢)~! and I,, correspond to components multiplied by zeros
in the last Sy factor. Therefore, Lemma 5.2 and Lemma 5.1 can be compared to
confirm that X5 ~ %k
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FIGURE 5.2: Signal chain is adapted to the normal signal x°¢ to best

address the rate-distortion trade-off, guaranteeing a certain quality of ser-

vice to a given application (APP). An anomalous signal x*° may appear

and a detector working on the compressed signal z should be able to de-
tect it.

Lemmas 5.1 and 5.2 imply that when both normal and anomalous signals follow Gaus-
sian distributions prior to compression, the two resulting compressed sources also follow
Gaussian distributions.

5.2 Distinguishability in the compressed domain

After introducing the rate-distortion trade-off that rules lossy compression methods, we
now analyze the effects of processing a compressed signal on AD performance. Since
compression introduces distortion, it also limits the information available to the detector,
reducing its ability to distinguish whether the transmitted signal differs from the usual
observations. Consequently, in the case of AD performed on compressed signals, the
trade-off becomes three-dimensional, involving rate, distortion and distinguishability.

As illustrated in Figure 5.2, the compressed signal z is fed to the anomaly detector.
Since we assume the decoding stage to be injective, z contains the same information
as the reconstructed signal X, meaning that, in principle, analyzing z is equivalent to
analyzing x. The goal of the detector is to distinguish between normal reconstructed
signals %K ~ f§k and anomalous ones %*° ~ f}:o. According to the framework developed
in Chapter 4, we quantify this difference by specializing the 7 and Z measures, modeling
different scenarios: J is applied when the detector knows both f)fc’k and f}:", and Z when
it only knows f2¥. Additionally, when both normal and anomalous signals follow Gaussian
distributions prior to compression, the performance of anomaly detectors depends on the
degree to which the two resulting distributions in (5.1) and (5.3) can be distinguished.

5.2.1 Distinguishability in anomaly-agnostic detection

When only the distribution of normal signals f}fgk is known and the anomalous distribution
f}{o is unknown, we can consider ¢ and Z specialized to the compressed domain:

¢= [ [#4@) = £2(0)] ogs £3(@) da (54)
z=| [ [#40) - @) log, f2a) da (5.5)

or equivalently
¢ =C (%x%) — ¢ (x7;%°%) (5.6)

Z= \c (fckO;fcok) —C (xok; xk)‘ (5.7)
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Under the assumption of Gaussian sources, the optimal encoder (in rate-distortion
terms) retains only those components j for which )\?k > . Hence, the distributions f}:k
and fx° given by (5.1) and (5.3) have non-zero values only for the first ky components,
with ky = argman{/\?k > 0}. The remaining n — kg components are set to zero,
making them useless for distinguishing normal and anomalous cases. For this reason, we
only focus on the first kg components of %°K and %*°, which follow Gaussian distributions
with covariance matrices ﬁ]gk and ﬁ]lgo corresponding to the kg x kg upper-left submatrices
of kS, in (5.1) and SyX°kSy + 0Sy in (5.3), respectively.

By defining 3y = (395) 713250 as the kg x kg upper-left submatrix of (3°%)~1xkoS, +
Ty and using the expression of ¢ in the Gaussian case from (4.14), we obtain

(=

2ln2t1‘ [29 — Ike} . (5.8)

In this case, since 3y varies linearly with respect to 219‘0, ( is also linear. Moreover, with
the expression of ¢ in (5.8), we can consider important corner cases:

» When 3¢k = 3k, ¢ = 0.

= When normal signal is white, i.e., Yok — 1, and for any § < 1, we have Ty = 01,
and kg = n. This results in 3y = (1 — §)X*° + 01, leading to ¢ = 0.

= When the anomaly is white, i.e., ko — T, the matrix f)g is diagonal with elements

on the diagonal uy ; = L <1 — )\Zk) + %, which results in
j j

SoE
=
G==mn2§:(w4—1% (5.9)
=0

The simpler expression of (1 in (5.9) allows us to derive the following theorem, whose
proof is found in the Appendix C.

Theorem 5.1. If k = argmaxy, {)\zk > /\io = 1}, then (1 = 0 for at least one point
0< 6 <A

For the case of a white anomaly, the intuition behind this theorem is as follows.
When there is no distortion, i.e., no compression, since both XX° and %°¢ have the same
average energy, and the coding is adapted for %°K, C(x%; %°K) > C(x°K; %°K), resulting
in a positive (1. On the other hand, when the distortion is so high that only the first
component of x°k remains, i.e., ﬁgk = )\8k — 6, only one component survives in Rko.
In this setting, (1 depends on the difference between the scalar quantities ﬁ]gk and f)lgo.
With some algebraic manipulation, it can be proven that 2‘9’1‘ > ﬁ)ko, resulting in a
negative (.

Since (7 is continuous with respect to 6, it must cross zero at least once. Therefore,
there exists at least one critical distortion level where detectors that do not use information
on the anomaly become ineffective.

The previous properties of ( together with Theorem 5.1 in the Gaussian case allow

us to formulate the following corollary which proof arises naturally from considering that
Z =|¢].

Corollary 5.1. The anomaly-agnostic distiguishability measure vanishes, i.e., Z = 0,
when at least one of the following conditions is satisfied:

- Egk — 2150
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n 30k —T,
» 3k — 1, and O = 0* with 6% one of the critical distortion levels.

5.2.2 Distinguishability in anomaly-aware detection

When both the distributions f}gk and f}zo are known, distinguishability can be measured
with J specialized to the compressed domain such that:

ko « ok a
:/Rnf}jo(oz)l Hoka da +/ a) log, [f ()]da (5.10)

f(a)
or equivalently:

T =C (%95x%) — ¢ (£,%5°) + ¢ (3% %) — ¢ (39 %K) , (5.11)

Under the Gaussian assumption, the distinguishability measure 7 becomes:

j:

~ S
S5t B0+ 2" - 20, (5.12)
From this expression it is evident that 7 is convex with respect to 21‘0, and it vanishes
when 339K = 33k Additionally, the same rationale used to derive ¢y in (5.9) allows us to
express:

ug,j

1 kel 1
1= 52 JZ:; < ’]+_2> (5.13)

5.3 Numerical evidence

5.3.1 Simulation setup

In this subsection, we introduce three different encoding schemes adopted to compress
both normal signals and anomalies. We also describe well-established detectors and recall
a practical performance metric. This metric can be computed in both anomaly-aware and
anomaly-agnostic scenarios and will serve as a basis for comparing the distinguishability
measures Z and J.

Normal signal and anomalies The Gaussian signals x°% ~ N(O,EOk) and xX° ~

N (O,Eko) are generated following the procedure outlined in Chapter 4.

To further validate our theoretical framework, we consider two realistic applications
involving non-stationary and non-Gaussian signals: ECG and ACC.

ECG signals are generated following the approach in [102]', with a setup taken from
[96]. Specifically, the heart rate is randomly drawn from the range of 60-100 bpm, and
the sampling rate is set to 256sps. We generate 10° segments, each containing 512
samples, from which vectors x°¢ € R™ with n = 64 are randomly selected.

ACC signals come from structural health monitoring of a viaduct along an Italian
motorway [101, 105]. A total of 90 three-axis accelerometers have been deployed, each
recording 100 samples per second along three different axes. These signals represent the

!MATLAB and C code are available at the Physionet website:
https://physionet.org/content/ecgsyn/1.0.0/
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viaduct's elastic response to external stimuli like traffic or environmental conditions. In
this study, however, we focus on readings relative to a single axis of a single sensor.

Compressors We consider three compression schemes adapted to the normal signal,
which are applied to both normal and anomalous instances. Specifically, the signal x is
compressed and then reconstructed as X using the theoretically optimal compressor and
the dimensionality reduction-based strategies recalled in Chapter 2:

1. Rate-distortion (RD): This compression method is defined by the optimization prob-
lem in (2.2), which achieves the minimum transmission rate possible for a given
level of distortion.

2. Principal component analysis (PCA): This compression technique consists of pro-
jecting x onto the subspace spanned by the eigenvectors of 3°¢ defined by the
largest eigenvalues. PCA is a linear compression technique that minimizes distor-
tion when the n-dimensional vector x is represented in a lower-dimensional space
[101, 105].

3. Autoencoder (AE): This approach uses the autoencoder neural network to learn a
latent, non-linear signal representation, essentially generalizing PCA. The autoen-
coder we consider consists of fully connected layers, with compression dimension
k < n. The network architecture includes layers of size n, 4n, 2n, and k, followed
by a mirrored structure of layers of size k, 2n, 4n, and n. These networks are
trained to minimize distortion D as defined in (2.1).

The distortion introduced by the compressors is measured with the normalized distor-
tion d = D/n, that by considering a memoryless source x = x°* in (2.1) can be expressed
as:

-1 {onk _ 4ok
n

ﬂ . (5.14)

The three compression schemes handle the trade-off between compression and dis-
tortion in different ways. Since our model operates with continuous quantities, which
can lead to potentially infinite rates, each compressor must be paired with a quantization
stage to ensure a finite rate. Specifically, considering n = 32, we encode each component
of X using 16 bits, limiting the maximum rate to 16n = 512 bits per time step. The
quantization is assumed to be fine enough to preserve the Gaussian characteristics of
X. Hence, the mutual information between x and X is evaluated as if they are jointly
Gaussian, with their covariance matrix estimated by Monte Carlo simulation [11].

This estimation yields the rate-distortion curves shown in Figure 5.3, where the x axis
represents the normalized distortion, within the range d € [0,0.5], as higher distortions
typically extend beyond the operative ranges. As expected, the RD reaches the lowest
rates, confirming its role as a theoretical lower bound. Among the practical compressors,
PCA results in the highest rates, while AE, being a non-linear version of PCA, more closely
approaches the theoretical limit set by RD. Note that, only the results in Figure 5.3 rely on
the quantization stage, while the remainder of our analysis considers continuous sources.

From a signal perspective, both the RD and PCA preserve the Gaussian distribution of
the input, meaning that if the input is Gaussian, the compressed output remains Gaussian

2To mitigate performance degradation in AE, the autoencoder is initially trained with k =n — 1. The
latent node with the least average energy is then removed to reduce the network to a latent space of
dimension k£ — 1, and the network is re-trained with the weights learned previously as initialization. This
process is repeated, decreasing k and progressively increasing the distortion. Training is performed using
the ADAM optimizer [75] with a batch size of 128 and an initial learning rate of 0.01.
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FI1GURE 5.3: Rate distortion curves for the three compression techniques
we consider and for different values of the localization of the normal signal.

as well. In contrast, AE can alter the statistical distribution of a Gaussian source. We
refer to the output of a compressor as a Gaussian Compressed signal (GC) if the signal
maintains its Gaussian properties, and as a Non-Gaussian Compressed signal (NGC) if it
does not.

Lastly, it is important to note that the result of Theorem 5.1 is strictly guaranteed
for RD when applied to Gaussian sources. Nevertheless, we will show numerical evidence
that supports the validity of Theorem 5.1 for PCA and AE as well, demonstrating that
these compressors, which adapt the encoder-decoder pair to the statistical properties of
the normal signal, exhibit similar behavior.

Detectors The compressed signal is then processed by a detector, which assigns a score
to each instance, with higher scores indicating a greater likelihood for the instance to
be anomalous. A final binary decision is made by comparing the score to a predefined
threshold. We first focus on two detectors that do not rely on information about anomalies
(anomaly-agnostic):

» Likelihood detector (LD): This detector computes the same score used for the
distinguishability measure Z, assigning to each instance x the score z(X) = {(X) =

~ log f25(%).

= One-Class Support-Vector Machine (OCSVM) [130]: This detector uses a Gaussian

kernel and is trained on normal signal instances contaminated with 1% of unlabeled

white anomalies to help the algorithm in defining the boundary of normal instances®.

We also consider two detectors that leverage the knowledge of the anomalies (anomaly-
aware):

= Neyman-Pearson detector (NPD): This detector uses the same score as the distin-
guishability measure 7, assigning to each instance x the quantity z(X) = r(%X) =
log f£°(%) — log f2(%).

3The signal components are normalized by their variance, and the kernel scale is set to 1/kg.
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TABLE 5.1: Models we consider for input signals, compressed signals,
and detector families.

TAG Description Setting

Input signal model

stationary Gaussian signals LK

realistic, non-stationary, and non- ECG, ACC
Gaussian signals

Compressed signal model

GS compressed preserving the £°¢ with RD or PCA
Gaussianity
non-Gaussian compressed signal L£°% with AE; compressed ECG and ACC

Detector family

detector exploiting the PDF of the LD and NPD
compressed signal
data-driven detectors OCSVM and DNNC

= Deep neural network classifier (DNNC): This detector is a neural network classifier
with three fully connected hidden layers (with &, 2n, and n neurons, respectively),
ReLU activations, and a final sigmoid output neuron generating the score. The
network is trained* with a binary cross-entropy loss on a dataset of labeled normal
and anomalous instances.

As explained in Chapter 1, the LD and NPD detectors depend on the statistical
characterization of the signals, which means that they are only suitable to be employed
with Gaussian signals compressed by either RD or PCA. Conversely, OCSVM and DNNC
are data-driven detectors that can be applied to non-Gaussian compressed signals, such as
non-Gaussian sources processed by any compressor or Gaussian sources compressed with
AE. We classify the first group as distribution-based detectors (DbD) and the latter as
learning-based detectors (LbD). Table 5.1 summarizes the input signal models, compressed
signal models, and the corresponding detector families, including the tags used in the
upcoming figures.

LbD detectors do not require any assumptions about the signal distribution, but rely
on a training dataset, which in this case consists of 10° instances of normal signals. For
OCSVM, this dataset is contaminated with 1% of white noise instances, while DNNC
training requires additional anomalous examples. To this end, the training set is aug-
mented with 10° anomalous samples, where 50 different covariance matrices ko are
generated and a different model with the same architecture is trained for each one.

We evaluate the performance of each detector with probability of detection Pp intro-
duced in Chapter 3:

AUC if AUC > 0.5
Pp= { | = (5.15)

1—-AUC if AUC < 0.5.

*Training is done via backpropagation with the ADAM optimizer [75], using a batch size of 20, an
initial learning rate of 0.01, which is scaled by 0.2 whenever the validation loss reaches a plateau for 5
epochs. The validation set contains 10% of the instances devoted to training. This setup is the result of
a tuning.
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FIGURE 5.4: Distinguishability measures Z, J and Pp against normal-
ized distortion d in case of RD. The zoomed areas in the NPD and DNNC
plots emphasize performance in the low-distortion region.
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Ficure 5.5: Distinguishability measures Z, J and Pp against nor-
malized distortion d in case of PCA. The zoomed areas in the NPD and
DNNC plots emphasize performance in the low-distortion region.
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In the forthcoming analysis, we present the trends of Pp alongside those of Z and J
to highlight how theoretical metrics translate to practical detection scenarios. As antici-
pated in Chapter 4, the comparison is somewhat qualitative — since Z and J measure
distinguishability as the difference in average scores between normal and anomalous cases
expressed in bits per symbol, while Pp considers the entire distribution of these scores and
represents the probability of correct detection — this approach highlights the relationship
between theoretical and empirical performance.

5.3.2 Results

Starting from the established setup, we now match the theoretical derivations with the
quantitative evaluation of anomaly detectors’ performance in both anomaly-agnostic and
anomaly-aware contexts. These evaluations are applied to signals compressed using the
RD, PCA, and AE methods. Then we provide an analysis for the specific cases of ECG
and ACC signals.

In the upcoming plots, Pp is computed from 1,000 examples of both normal and
anomalous signals. The anomalies comprise white noise as well as 1,000 different distri-
butions, each defined by a randomly generated ¥*°. For the DNNC detector, we restrict
the analysis to 50 anomalies due to the need to retrain the network for each anomaly.

RD Figure 5.4 illustrates the results organized in two rows with three plots each. The
left-hand side shows detectors that have no information on the anomaly, while the right-
hand side shows detectors that can exploit such information. Different colors correspond
to various levels of L ok, dashed lines represent the average anomaly (white noise), and
shaded areas contain the spread of 50% of the Monte Carlo population. The plots on the
top depict the Z and J profiles, which should be compared to the detector performances
shown on the two lower rows. As expected, no Z profile appears for L .. = 0, since
¢ = 0 in this case (as mentioned in Section 5.2.1). Additionally, tags corresponding to
the settings in Table 5.1 are added above each row of plots.

The numerical evidence confirms the theoretical results: (1 = E[(], Z1 < E[Z] and
Ji < E[J], as discussed in Section 4.2.2. This supports the idea that white noise
can be adopted as a reference anomaly, allowing to compute average and lower bound
behavior for anomaly-agnostic detectors or a lower bound in anomaly-aware scenarios. As
demonstrated in Theorem 4.1, with increasing n, the white noise anomaly becomes the
dominant anomaly, to which tends any possible anomaly.

In the anomaly-agnostic scenario (left-hand side), the theory anticipates that detection
performance and distortion exhibit a non-monotonic relationship. There exists a point at
which distortion nullifies distinguishability, causing detectors to fail. This critical distortion
level corresponds to the point where Z crosses zero, and the relationship between normal
and anomalous scores inverts. Both the LD and OCSVM detectors exhibit this behavior.
The critical distortion point is also influenced by L,ox, as predicted by Theorem 5.1.
In general, abstract measures Z and J anticipate that in low-distortion regions, more
localized signals are easier to distinguish from anomalies, but at the same time detector
failure occurs at lower distortions with respect to less localized signals.

In the case of anomaly-aware detectors (right-hand side), complete failure only hap-
pens at the highest levels of distortion, as predicted by the distinguishability measure J.
By comparing the trend of J with the zoomed areas in the NPD and DNNC plots, we
show that, in the low-distortion region, more localized signals are easier to distinguish
from anomalies, although they also lead to more pronounced performance degradation as
distortion increases.



5.3. Numerical evidence 55

A 0.8 - A 0.8 -
A, A
0.6 [~ 0.6 [~
| | | | | | | | | |
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
d d
Loore =0 Lyor = 0.05 Bl =02
— mean 50% population -- ko1,

FIGURE 5.6: Distinguishability measure Pp versus normalized distortion
d in case of AE. The zoomed area in the DNNC plot emphasizes perfor-
mance in the low-distortion region.

PCA In terms of the rate-distortion trade-off, PCA is highly suboptimal. Yet, because
it is linear, both x and X remain jointly Gaussian, allowing us to compute the theoretical
values of Z and J using (5.8) and (5.12).

Figure 5.5 summarizes the results for this case, representing plots similar to those in
Figure 5.4. The qualitative behaviors discussed in the previous subsection are also present
here, and they align with the trends predicted by the theoretical measures.

The distortion levels at which anomaly-agnostic detectors fail are different from those
seen with RD, yet these points are still well-predicted by the theoretical profiles and
Theorem 5.1.

In this case, beyond the breakdown distortion level, the values of Z increase slightly
more than in the optimal compression scenario. This suggests that adopting a subopti-
mal compression method in terms of rate-distortion may enhance the distinguishability
between compressed normal and anomalous signals. This consideration is also confirmed
in practice, as shown by the improved performance of the LD and OCSVM detectors in
the left column of Figure 5.5.

AE In this scenario, the compression process is non-linear, meaning that x and X may
no longer be jointly Gaussian. As a result, it is not possible to compute the theoretical
measures Z and J, nor can we apply the LD and NPD detectors, which rely on the
knowledge of the signals. For this reason, Figure 5.6 only shows the performance of the
OCSVM and DNNC detectors.

Despite this limitation, it is worth noting that the qualitative behavior of these de-
tectors still roughly aligns, even if with more approximation, with the trends predicted by
the theoretical curves plotted for PCA.

Distinguishability in real applications To further confirm our theoretical results, we
also examine two practical applications involving non-stationary and non-Gaussian signals:
ECG and ACC.

Both ECG and ACC signals are compressed via PCA, while OCSVM and DNNC are
employed to distinguish between normal signals and instances of white anomalies x*°.
Given that the input x is NGS, the compressed signal X is also considered as NGC,

regardless of the compression method used.
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FIGURE 5.7: Distinguishability measure Pp versus normalized distortion
d in case of PCA for ECG and ACC signals with windows of n = 64
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FIGURE 5.8: Distinguishability measure Pp versus normalized distortion
d for a real anomaly in accelerometers (ACC) signals with windows of
n = 64 samples.

The results in Figure 5.7 resemble the patterns observed in previous experiments.
In the anomaly-agnostic scenario, OCSVM shows a critical but not disruptive distortion
point at which detecting white anomalies becomes impossible. As with prior settings,
different types of signals exhibit varying critical distortion values. In the anomaly-aware
case, the performance of DNNC is consistently monotonic with respect to distortion d.
Specifically, for ECG, Pp remains close to 1 across all d values, while for ACC, detection
performance gradually decreases as d increases.

As a final case study, we examine a real-world anomaly altering the ACC signal.
Specifically, this anomaly is a subtle, non-disruptive failure in the monitored civil structure,
characterized by a slight shift in its modal frequencies [101]. With such characteristics,
the anomaly cannot be described by a white noise distribution. The results, in terms of
Pp for the LD detector, are shown in Figure 5.8. The trend reported here matches with
the presence of a critical, non-disruptive distortion value, consistent with the distortion
level previously identified in Figure 5.7, where anomalies were emulated as white noise
instances.
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5.3.3 Discussion

To validate the distinguishability measures and the theoretical results based on them, we
analyzed several numerical settings. First, we examined a case that matches the theoreti-
cal framework, where synthetic Gaussian signals are compressed using an optimal encoder
in the rate-distortion sense. The results, illustrated in Figure 5.4, demonstrate how the
two metrics can predict the performance of detectors that either rely on the signal’s dis-
tribution or learn from data. Furthermore, in the anomaly-agnostic scenario, the results
confirm the presence of a critical distortion level that makes anomalies undetectable,
consistent with the prediction of Theorem 5.1.

Next, we incrementally relaxed the assumptions used to derive the theoretical results.
In Figure 5.5, the optimal encoder was replaced with PCA, a more realistic encoder that
still maintains Gaussianity in the compressed domain. In Figure 5.6, we considered the
non-linear AE encoder, which alters the statistical properties of the compressed signals. In
Figure 5.7, we substituted Gaussian signals with ECG and ACC, real-world non-Gaussian
signals. Finally, Figure 5.8 considered a real anomaly that also exhibited non-Gaussian
characteristics.

The numerical results provide strong evidence that the derived results offer valuable
insights for practical applications. However, it is important to stress that this analysis
specifically focused on cases where the encoder was adapted to the statistical properties
of the normal signal. Thus, these results cannot be directly applied to other compression
techniques that differ significantly from the conditions of Lemma 5.1 and Lemma 5.2.

5.4 Conclusion

Massive sensing systems often rely on lossy compression to reduce the bitrate of data
transmission while preserving the fidelity of the signals. As these compressed sensor
readings travel to centralized servers, they may be processed along the way for early
anomaly detection. Therefore, this detection is performed on compressed data.

In a framework where both normal and anomalous signals are modeled as Gaussian
sources, we extend the classical rate-distortion theory to describe the distributions of the
distorted signals and their corresponding mappings. This allows us to specialize Z and
J measures to quantify the distinguishability between normal and anomalous compressed
signals, applicable in both anomaly-agnostic and anomaly-aware scenarios.

When the analysis considers Gaussian sources, it reveals that

= The distinguishability metrics anticipate the detection performance measured in
terms of probability of detection.

= The distinguishability metrics for white anomalies are representative of a detector's
average performance across various types of anomalies.

= For anomaly-agnostic detectors, the relationship between distinguishability and dis-
tortion may not be monotonic, and it can feature at least one non-disruptive dis-
tortion level where white anomalies become undetectable.

We also provide numerical evidence supporting the effectiveness of our theoretical frame-
work in detecting Gaussian signals, using both rate-distortion-optimal compression schemes
and ideal detectors.

In addition, we broaden our analysis by relaxing some of the initial assumptions and
offering empirical evidence that demonstrates the robustness of the results in real-world
scenarios. Specifically, the predictive capability extends to generic data-driven detectors,
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even when they do not process Gaussian signals and when compression alters the distri-
bution of the original input signal. Moreover, the information-theoretic metrics remain
effective when applied to realistic non-Gaussian signals.
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Chapter 6

A Theoretical Framework for
Rate-Distortion-Distinguishability

A typical scenario in large-scale acquisition systems is characterized by numerous sensing
units that convert unknown physical phenomena into data samples, which are then trans-
mitted over a network. To reduce the volume of transmitted data and retain only key
information, these sensor readings are often compressed using lossy techniques [94, 87].
As shown in Chapter 2, this introduces a trade-off between the bit rate of transmission
and the amount of lost information, quantified by distortion.

Compressed data are often sent to a remote location, such as a cloud facility, for
further processing and storage. Before reaching these facilities, the compressed data may
pass through the intermediate edge devices [136].

Whether performed on the edge of the cloud or the cloud itself, an important task
in this context is the detection of anomalies, which implies determining whether a signal
originates from a normal or anomalous source [24, 82, 33, 93, 32]. If the statistical
characteristics of the anomalies are unknown, this task becomes unsupervised; otherwise,
it can be treated as a supervised problem.

Nevertheless, compression can negatively affect the performance of anomaly detec-
tors. Lossy compression is most effective when it discards information that is irrelevant
to reconstructing typical signals, i.e., minimizing distortion. Yet, the discarded infor-
mation might be essential to detect anomalies. Thus, designing a system that considers
both compression and detection requires addressing a three-fold trade-off: rate-distortion-
distinguishability (RDD).

In Chapter 5 we explored how compression schemes that balance rate and distortion
influence the ability to distinguish signals, proving that the rate-distortion and distortion-
distinguishability trade-offs are inherently different. This chapter extends this analysis to
include the full RDD trade-off. We examine the relationship between compression, infor-
mation loss, and the capacity to distinguish between normal and anomalous compressed
signals in both supervised and unsupervised contexts. This extended analysis yields a
Pareto surface that generalizes the rate-distortion curve [34] and optimally characterizes
the rate-distortion-distinguishability interaction.

In existing literature, the joint trade-off among rate, distortion, and distinguishability
has only been considered in the context of classification and other supervised tasks, and
not yet for anomaly detection (AD).

Focusing on classification, the authors of [42] introduce a rate-distortion framework
to assess the performance of various compression schemes combined with algorithms de-
signed to estimate target orientation. Similarly, [163] presents a theoretical framework
that investigates the interplay between rate, distortion, and classification accuracy, of-
fering practical insights into compression techniques designed for the classification of
compressed images. This trade-off is further explored with practical compression meth-
ods. Several studies [111, 14, 55, 84] focus on vector quantization and adapt standard
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vector quantizer design algorithms by integrating a classification-related term into the
distortion metric to improve classification performance. In [95], the authors fine-tune the
JPEG quantization tables to enhance either classification accuracy or image reconstruction
quality, given a rate constraint. Meanwhile, [27] and [12] propose neural network-based
frameworks that optimize compression, classification, and optionally signal decoding, all
in a unified process.

The works discussed in [95, 27] fall under a broader paradigm that targets communi-
cation for both human and machine vision. These studies address the three-fold trade-off
between rate, distortion, and a third metric reflecting performance in image or video tasks.
For instance, [147, 90, 88] focus on tasks such as classification, semantic segmentation,
object detection, foreground extraction, and depth estimation in images. On the other
hand, works such as [43, 135, 159] consider video processing tasks, comprising action
recognition, denoising, super-resolution, scene classification, semantic segmentation, and
object classification.

It is also worth mentioning the studies [19, 18] that examine how image perception
quality is affected by distortion and investigate the trade-off between rate, distortion, and
a perception measure.

With respect to these related works, the analysis proposed in this chapter focuses on
evaluating the trade-off between rate, distortion, and the performance of a detector in
distinguishing between normal and anomalous signals in both supervised and unsupervised
settings. Unlike typical binary classification, AD assumes that positive class occurrences
(anomalies) are rare, causing the compression mechanism to be adapted primarily on the
negative class (normal signals).

Specifically, in Section 6.1 we expand the traditional rate-distortion framework by
introducing anomaly-aware and anomaly-agnostic distinguishability metrics into the op-
timization process, formulating two RDD optimization problems. To derive theoretical
results, in Section 6.2, we adapt the framework assuming that both normal and anomalous
sources, as well as their compressed counterparts, obey Gaussian distributions. This as-
sumption allows us to solve the two RDD optimization problems numerically with convex
optimization tools. Finally, Section 6.3 presents the numerical results for the Gaussian
source and includes two Pareto surfaces, one for anomaly-aware and one for anomaly-
agnostic scenarios. In this theoretical setting, we also highlight how the signal com-
ponents are distorted when the compression mechanism is optimized according to the
rate-distortion-distinguishability trade-off. We then validate the trends observed in the
theoretical outcomes by applying them to real-world compression schemes and signals.
Specifically, we examine the following approaches: (i) a compression method based on
the Karhunen-Loéve Transform (KLT) applied to Gaussian signals; (ii)) JPEG compres-
sion, where quantization tables are adapted to enhance AD; (iii) a neural network-based
lossy compression that incorporates a parameter for improving AD performance. In each
scenario, we demonstrate how the performance of AD is influenced by both the rate and
the distortion.

6.1 A joint look at rate, distortion, and distinghuishability

In this section, we first recall the concepts behind rate-distortion problem and distin-
guishability measures, introduced in Chapter 2 and Chapter 5, respectively. Then we
blend these concepts by defining two rate-distortion-distinguishability problems.

Let x represent a generic stationary discrete-time source generating a random vector
x € R™ at each time step ¢t. This source typically produces typical signal instances but
rarely generates anomalies. To account for normal and anomalous signals, we consider
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two independent sources x°% and x*°, each following distinct probability density functions
(PDFs), fo% and fX°, respectively.

6.1.1 Rate and distortion

In the considered scenario, the observable signal x is compressed in a lossy manner into
symbols suitable for transmission over a channel with a rate constraint. Specifically, the
vector x € R" is encoded into a symbol z with reduced information, then sent through
the channel and later decoded into an approximation X. As a result, the receiver works
with the distorted versions X of x. The design of the encoder that processes x is guided
by the rate-distortion theory defined in [34, Chapter 13] and summarized in Chapter 2.

Since anomalies are rare, encoders are generally adapted to the normal signal, assum-
ing x = x°K. Distortion defined in (2.1) in this context can be expressed as:

Xok _ )A(Ok

D=E U ﬂ (6.1)
with E[-] the expected value.

The level of compression is measured by the transmission rate of z, which maps into
%. Given that the mapping from z to X is injective and the encoder assumes x = x°K,
this rate can be expressed by the mutual information 7 (chk;ka) between x°K and %°K
[34, Chapter 8].

Using these definitions, the minimum achievable transmission rate p and the maximum
allowable distortion ¢ are driven by the relationship:

RD §) = inf 7 (&°K;x°K
(RD) p(0) = inf ( ) (6.2)
st. D<§

as described in [34, Theorem 13.2.1]. Here, f4|x represents the conditional PDF modeling
the potentially stochastic mapping between the encoder and decoder, so that the PDF
of X is given by:

fx(@) = [ fue B)cle) do. (6:3)

6.1.2 Distinguishability

k

The encoder f3)x, designed considering x = x°%, is also applied to both normal and

anomalous signals. Consequently, the retrieved signal % can be either £ = %°% or % = %*°,
where these two vectors generally obey PDFs, f2X and fX°, as described by (6.3) with
fx = f2K for normal signals and fx = fX° for anomalous ones.

As compression increases and the rate decreases, the statistical properties of %°% and
%k° tend to align. In the limit case of maximum compression, i.e., zero rate, X becomes a
constant, independent of the source. This constitutes a second trade-off: the one between
compression and the ability to distinguish between %°% and %*°. This trade-off directly
conditions the effectiveness of detectors identifying anomalies given X.

Distinguishability is defined in information-theoretic terms in Chapter 4 and has been

specialized to compressed sources in Chapter 5 for two different scenarios:

= Anomaly-agnostic detector: If the detector only knows the normal source, distin-
guishability is measured by:

zZ= , (6.4)

[ [0 — 722()] oy £ do
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= Anomaly-aware detector: When the detector knows both normal and anomalous
signal statistics, distinguishability is measured by:

k
_ ok _ rko f;g (Oé)

J = /Rn [ffc (@) — fx (04)} log, [f}:o(a) da. (6.5)
Distinguishability reflects the detector’s ability to recognize the source of the signal.
However, in practice, the PDFs of signals are either rarely available or not easily estimable.
Therefore, in practice, detector performance is typically measured with the probability of

detection Pp, defined in Chapter 3 as:
AUC if AUC > 0.5,
Py = { FAUC = (6.6)

1— AUC if AUC < 0.5,

where AUC represents the Area Under the Curve of the Receiver Operating Characteristic.

6.1.3 Rate-Distortion-Distinguishability

The distinguishability metrics recalled in (6.4) and (6.5) are employed in Chapter 5, after
solving (6.2), to connect each rate-distortion pair (p,d) with a corresponding level of
distinguishability. This approach still addresses the classical rate-distortion trade-off. In
Chapter 5, we also show that, for Gaussian sources, these information-theoretic measures
accurately predict the detector performance measured in terms of Pp.

We now extend the analysis to a more general trade-off between rate-distortion and
distinguishability. To quantify distinguishability, we rely on the metrics in (6.4) and (6.5),
formulating this triple trade-off through the following optimization problems:

(RDD 2) (RDD J)
S,w) = inf T (%°k; x°k S,w) = inf T (&°K; xok
plO.) = Inf ( ) 6 0= ( ) (6.8)
s.t. D <9, s.t. D <4,
st. E[Z]>w. st. J>w,

where w accounts for the minimum acceptable level of distinguishability. We refer to
RDD Z and RDD J to differentiate between the anomaly-agnostic and the anomaly-
aware scenarios, respectively.

In the (6.7), the distinguishability constraint E[Z] represents the average distinguisha-
bility across a set of anomalies, rather than Z itself. This is because directly evaluating
Z requires prior knowledge of fX°, which is not available to anomaly-agnostic detectors.

The interplay between p, §, and w forms a Pareto surface in the three-dimensional
space of these parameters. This surface represents the locus of optimal solutions where
improving one quantity necessarily makes degrade at least one of the others.

It is important to note that, not only in (6.2) but also in (6.7) and (6.8), the rate and
distortion are considered for the normal source x°K, since the primary objective is AD.
AD can be viewed as a one-class classification problem, focusing on identifying deviations
from normal behavior, assuming these events (anomalies) to be rare. This scenario is
different from traditional binary classification, where both classes are equally relevant,
and there would be no reason for tuning rate and distortion based on only one class.
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6.2 The Gaussian case

The main distinction between problems (6.7) and (6.8) and the rate-distortion problem
(6.2) is the additional constraint that allows the encoder to be optimized for larger dis-
tinguishability. Solving (6.7) and (6.8) for general sources is fundamentally challenging,
certainly more so than solving (6.2). For this reason, we approach this problem by making
some assumptions. Specifically, we rely on the Gaussian framework defined in Chapter 4
such that x°% ~ N(O,Z}Ok) with 3°K a diagonal matrix and tr(X°%) = n. For the

anomalous signal, we still consider x¥° ~ N/ (O,Zko), but we relax the assumption on
the average energy of the anomalous samples, allowing it to be a generic a > 0, i.e.,
tr(Zk°) = an.

Under these assumptions, we recall some properties derived in Chapter 5. First,
the average anomaly is white, that is, E[Eko] = al, = W. In addition, the average
distinguishability values E[Z] and E[J] are related to those calculated for the white
anomaly, denoted as Zw and Jw. Specifically, according to Jensen's inequality, Zw <
E[Z] and Jw < E[J]. Therefore, in (6.7), Zw can serve as a lower bound for E[Z].

For the constraint on 7 in (6.8), the problem can be solved within the Gaussian frame-

work by considering anomalies where ¥ = diag ()\ko), with Ako = ()\150, cees )\1;0_1)
Although our approach will be generalized later, we initially assume that the encoding

is Gaussian-additive. That is, fx is such that A = X — x is a random vector that
contains zero-mean components that are mutually independent but jointly Gaussian with

those of x (and therefore X). The covariance matrices for the triads :?:;?k,m‘;-k,Aj are
given by
AR —0; AK—0; 0
Baokaoen) = (A0 A b (6.9)
0 —0; 0;
for some variances 0 < 0; < )\?k for j =0,...,n—1, which define the degrees of freedom

for the encoding operation.
For Gaussian-additive encodings, we can state two lemmas whose proofs can be found
in Appendix D.

Lemma 6.1. /f signal x°* consists of independent Gaussian components with zero mean
and variances )\?k. When a Gaussian-additive encoding is applied with variances 0; for
7 =0,...,n—1, the resulting rate is given by

T (x4 x%) = lni logy - (6.10)
j:

which represents the minimum achievable rate for any encoding that satisfies the condition

2
E[(ﬁc?k—x;’k) ] =; for each j=0,...,n— 1.
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Lemma 6.2. For a Gaussian-additive encoder defined by parameters 0; for j = 0,...,n—
1, the following hold:

n—1
D=n-Y X¥, (6.11)
§=0
1 n—1
= oma |2 "% (6.12)
j=0
1Rt g
— 1
j 21D2jz()1—7‘jfj7 (6 3)

ko
with r; =1 — % and 0; = A?k(l —¢&j), where §; € [0,1] represent normalized degrees
of freedom for the encoder.
Both Z and J are convex functions of the &;.

Now, consider the case where both a distortion and a distinguishability constraint
are imposed. According to Lemma 6.1, starting with a feasible encoding f)i(lx, one can

2 . . .. .
compute ¢; = E {(:f:;’k - x‘;k) and then define a Gaussian-additive encoder f)’{lx with
the corresponding parameters. If f}f(’|x satisfies both constraints, it provides a rate that is

not higher than that of f>/2|x'

However, since D = Z?;& 0; is independent of the specific encoder, the only con-
straint that needs re-evaluation when transitioning from f}f(‘x to f;(’|x is the distinguisha-
bility one.

To formalize this consideration, we rely on (6.12), (6.13), and (6.11) to define the
following two subsets of [0,n] x R:

Hz = {(6,w) ] 3o, ..., En 1 st. (6.11) =6 and (6.12) = w}, (6.14)
H7={(6,w) | o,...,En1 st. (6.11) =§ and (6.13) = w} . (6.15)

Thanks to its special characteristics, when (J,w) € Hz| 7, the rate-distortion-distingui-
shability (RDD) problems in (6.7) and (6.8) are effectively solved by using a Gaussian-
additive encoder. Outside of these regions, however, this property cannot be derived
directly and must instead be considered as an additional assumption, along with the
Gaussian nature of both normal and anomalous sources.

Regardless of the generality of the following derivations, the RDD trade-off under
investigation relies on solving (6.7) and (6.8), expressed in terms of the normalized degrees
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TABLE 6.1: Assumptions on the signals and the encoder on which the
problem in (6.16)-(6.20) relies.

Signals u X tr(X)
x ~ N (p,X)
ok 0 diag ()\Ok) n
RDD Z 0 Xk an
ko
RDD J 0 diag ()\k") an
Encoder Gaussian-additive if (6,w) ¢ Hz| s
of freedom &g, ..., & —1:
In(1 — 1
S 212Zn &) (6.16)
st. 0<¢& <1, (6.17)
n—1
st > ARG >n -4, (6.18)
j=0
n—1
either st. |> rV¢| > 2win2, (6.19)
j=0
—1 (2
or s.t. (r&)” > 2wln2, (6.20)
=0 1-— ’l“jgj

where only one of the constraints (6.19) or (6.20) should be considered at a time. In the

case of (6.19), r; =1— )\ok Moreover, it is important to note that the derivation of this

constraint makes use of the inequality Zw < E[Z].

Table 6.1 provides a summary of the assumptions under which the RDD problem
defined by (6.16)—(6.20) holds. The assumption about the normal signal does not reduce
generality. In the anomaly-agnostic scenario, we assume knowledge only of the scaling
factor «, which sets the average energy of the anomaly with respect to the normal signal.
In the anomaly-aware case, anomalies are modeled with a diagonal covariance matrix.

6.2.1 Solution to the optimization problems

We can express the constraint (6.19) as

n—1
Zr & >2wn2 U erfj < —2wln2. (6.21)
J=0 J=0

This disjunctive form allows us to find the minimum rate solution by solving two
separate maximization problems. In each case, the objective function is concave, the
constraints are linear, and the feasible space is convex.

As already shown, the left-hand side of (6.20) is a convex function, which must be
paired with a < relation to meet convex programming rules. However, in our case, the
presence of the > relation turns this into a reverse convex optimization problem, as
described in [61]. We address this issue heuristically, relying on the algorithm proposed
in [149, Algorithm 5.1], which reduces the problem to a series of sub-problems, each of
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FIGURE 6.1: Trade-offs between rate-distinguishability and rate-
distortion in the anomaly-agnostic case with o = 1.
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FIGURE 6.2: Trade-offs between rate-distinguishability and rate-
distortion in the anomaly-aware case with X¥° =1,

which involves maximizing a convex function. Then, we solve each sub-problem using the
Disciplined Convex-Concave Programming (DCCP) framework [134].

6.3 Numerical evidence

The numerical results consist of four parts. We begin by analyzing the solution of the opti-
mization problem defined in (6.16)-(6.20), which assumes Gaussian signals and Gaussian-
additive encoding (as highlighted in Table 6.1). Next, we progressively relax these as-
sumptions through three examples: (i) a compression scheme based on dimensionality
reduction, allowing us to process Gaussian signals; (ii) a modified version of the JPEG
compression standard, which lets us jointly optimize for distortion and detection per-
formance relying on (6.16)-(6.20); (iii)) a compression technique using an autoencoder,
incorporating a regularization term to enhance detection.

6.3.1 Solution to the Pareto problems

We begin by illustrating the solutions to both RDD Pareto problems, using the setup
for signal generation outlined in Chapter 4. Specifically, n = 32, and 3°F is a diagonal
matrix such that £, o« = 0.2. The resulting eigenvalue profile A°K is shown in the top
plot of Figure 6.6. The solution to the RDD minimization problem in (6.16)-(6.20), in
the anomaly-agnostic scenario defined by (6.19), is obtained by setting a = 1. For the
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(A) Pareto surface for the anomaly-agnostic (B) Pareto surface for the anomaly-aware case
case with a = 1. where 3% =1,,.

FIGURE 6.3: Rate-distortion-distinguishability Pareto surfaces.

0 10 20 30 0.6 0.7 0.8 0.9 1
| pE—— |

F T T T T T T 1 F T T T T ]

10% £ g E

L0t 1F E

P - 1 F :

10° ¢ 1F E

1071 ¢ N E

10-2 L |

w 0
FIGURE 6.4: Trade-offs between rate-distinguishability and rate-
distortion for the LD detector detecting the white anomaly.
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distortion for the NPD detector detecting the white anomaly.
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FIGURE 6.6: Distortion profiles of signal components for rate-distortion
(RD) and rate-distortion-distinguishability (RDD) with ¢ = 10.

anomaly-aware case, where detectability is set through (6.20), we assume 35 = I,, (refer
to Figure 6.6 for the Ak profiles).

The solutions for the RDD Pareto problems are shown in Figure 6.1 and Figure 6.2,
corresponding to the constraints from (6.19) and (6.20), respectively. These figures
highlight the relationship between distinguishability and rate at different distortion levels,
as well as the relationship between distortion and rate for different distinguishability levels.
In both the anomaly-aware and anomaly-agnostic scenarios, the results demonstrate that
for a fixed rate, increasing distortion improves distinguishability. Similarly, for a given
distortion, the distinguishability is enhanced as the rate increases. To further confirm
these trends, the Pareto surfaces are plotted in Figure 6.3.

Since Z and J are not directly comparable, we assess distinguishability using Pp to
compare the performance between anomaly-agnostic and anomaly-aware scenarios. To
estimate Pp, we first generate N = 10* samples of both %°¢ and %*°. For each sample,
we then calculate the anomaly score. In the anomaly-agnostic case, we use a likelihood-
based detector (LD) with a score 2(X) = — log f2¥(%X). In the anomaly-aware scenario, we
use the Neyman-Pearson detector (NPD) with the score 2(%) = log fX°(%) — log f¢¥(X).
Finally, we estimate AUC [45] from the normal and anomalous scores.

The results, shown in Figure 6.4 and Figure 6.5, compare the agnostic and aware
scenarios. It is evident that in the anomaly-aware case, the same level of distinguishability
(measured by Pp) is achieved at a lower rate. This outcome is expected, as the detector
in the anomaly-aware scenario can leverage additional information about the anomaly.

While Figure 6.4 and Figure 6.5 provide a performance comparison, Figure 6.6 offers
insight into how the optimization problem in (6.16)-(6.20) affects the compression process.
As already mentioned, the top plot shows the eigenvalue profiles of the normal (A°) and
anomalous (A*°) signals. In contrast, the two lower plots illustrate the relative distortion
applied to the input components by the compressor. These distortions depend on the
active constraints in the RDD problem for a distortion level of § = 10 and two different
values of the distinguishability constraint w.

When only constraints (6.17) and (6.18) are active (i.e., w = 0), we refer to the
problem as the classical rate-distortion (RD) case. This is equivalent to the Gaussian
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FIGURE 6.8: Rate-distinguishability and rate-distortion trade-offs admin-
istered by RCS compressor in case of LD detecting the white anomaly

source rate-distortion problem described in Chapter 2. However, when (6.19) or (6.20)
is also active, the problem becomes the rate-distortion-distinguishability (RDD) case.
We denote RDD Z and RDD J to identify the anomaly-agnostic and anomaly-aware
scenarios, respectively.

In the RD case, the compressor applies most of the distortion to the components
corresponding to the largest eigenvalues in A°% (the principal components), while it com-
pletely distorts the minor components. Essentially, the compressor neglects the lower-
energy components to allocate more rate to those with higher energy content, leading to
the increase of relative distortion 6;/); with j until it reaches 1 (complete distortion).

In the RDD cases, a similar behavior occurs, but the compressor reallocates some of
the rate from the principal components to the lower-energy components. This effect is
more evident with a stricter distinguishability constraint (higher w). The main difference
between RDD Z and RDD 7 is that for the latter, the compressor can utilize information
about the anomaly distribution to direct rate allocation where A% and Ak differ most.

The observation that components with the lowest variance are the most informative
for detection aligns with the theoretical results from [144], where it was demonstrated
that, during dimensionality reduction, retaining the low-variance components is more
advantageous for detection than keeping the high-variance ones. This fact has been
empirically validated in the context of both image data [121] and time series analysis
[101].
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istered by RCS compressor in case of NPD detecting the white anomaly

6.3.2 Random component selection

The RDD optimization problem works under certain assumptions about the signals and
the encoder. In this case, we relax the assumption on the encoder and consider a di-
mensionality reduction based on the Karhunen-Loéve Transform (KLT) followed by a
quantization stage, as shown in Figure 6.7. Dimensionality reduction leads to distortion
by projecting the input signal x onto a subspace spanned by k < n selected components,
which are the eigenvectors of X°K. The quantization stage, on the other hand, is used to
limit the rate. When the principal components are selected, this approach is equivalent to
the Principal Component Analysis (PCA)-based compression, described in Chapter 2, but
here we also explore the option of selecting components other than the principal ones.

Since dimensionality reduction is a linear operation and the quantization can be mod-
eled as a sum of Gaussian variables, the compressed signals retain their Gaussian nature.

The optimal dimensionality reduction for minimizing distortion relies on PCA, which
picks the k& components corresponding to the largest eigenvalues of 3°¢. However, the
addition of a distinguishability constraint makes the problem extremely hard to solve
analytically. Therefore, we adopt a heuristic approach to jointly optimize distortion and
distinguishability by randomly selecting & components. Specifically, we represent this
selection with a vector k, whose elements are the indices of the k randomly chosen
components from x, resulting in the signal y = (z;]j € k).

Given that the procedure is linear and the input vector x is Gaussian, the output signal
y is also Gaussian. The covariance matrices of y, depending on whether the input vector

is x°K or xX°, are given by:

Sk = diag (A j € k), == |n*] | (6.22)

k

where [-], denotes an operator that obtains a sub-matrix from a square matrix by selecting
rows and columns indexed by k. If 3°¢ is diagonal, then [Zko}k = diag ((A?olj € k))

The subsequent quantization stage solely limits the rate, which would otherwise be
infinite without it [15]. We consider a Gaussian source quantizer optimal from a rate-
distortion perspective, described in Chapter 2, and design it so that the introduced dis-
tortion is minimal, fixed at € < A%< ;. This quantizer is Gaussian-additive, yielding a
quantized vector z =y + A, where A is a zero-mean Gaussian vector with independent
components, each with variance 0. = €/k.
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Finally, the decoder reconstructs the signal X from the compressed vector z such that:

B {Zi where ¢ satisfies m; =j, je€k (6.23)

.iL‘j— 0 .
, j ¢k

In the designed scheme, the total distortion D is the sum of the dimensionality re-
duction and quantization contributions. The former is the sum of the eigenvalues corre-
sponding to the discarded components, while the latter is represented by ¢, a degree of
freedom that we set to be negligible. Thus, the resulting distortion is given by

D=Y Xf+e (6.24)
j¢k
On the other hand, the quantization stage determines the rate. Specifically, the rate
p = Z(%°K; x°%) is equivalent to Z(z°%; x°X), as %° and z°* contain the same information.
Since z°% is derived from yOk, which is in turn obtained from x°¥, the information shared
between yOk and z°K is the same as that shared between z°¢ and x°%. Hence, using (2.3),
the rate can be expressed as:

ok
Aj
0.’

N 1
ple) = T3 x%%) = T(2%y°%) = £ 3 log,
Jj€k

(6.25)

which highlights the rate’'s dependence on ¢, a free parameter. It is important to note
that the choice of e is irrelevant as long as 6. = ¢/k < K |, meaning none of the y°k
components are fully distorted. This can be proven using an alternative expression of
(6.25) [77]:

k

2e2Te

k
(2% y*") = 3 log +H(y) + o(1). (6.26)

It shows that the rate depends mainly on the subspace dimensionality k£, while the
differential entropy H(y°*) represents the rate's variability due to different combina-
tions of k£ components. The parameter € only determines the rate offset. In fact,
T (%°K; x°K) = T (%°%; x°K) — k (log 1/e’ — log 1/e").

ok

For the carried numerical analysis, we set € = Alno’l and randomly selected K =
min {(}), 10*} vectors k for each k € {1,...,n — 1}. For each encoder, we measured
the rate and distortion using (6.25) and (6.24), respectively. As in the previous example,
we modeled the anomaly with ¥*° = I,, and adopted Pp to assess the performance of
LD and NPD.

Figure 6.8 and Figure 6.9 show the resulting trade-offs. The profiles resemble the
trends observed with the optimal Gaussian additive encoder in Figure 6.4 and Figure 6.5,
where improving the performance of supervised and unsupervised detection performance
comes at the cost of a higher rate or increased distortion. However, since this compression
scheme is suboptimal, the rate required to achieve the same distortion-distinguishability
performance is necessarily higher than that of the Gaussian-additive encoder optimized
using (6.16).

6.3.3 JPEG compression and detection

In the previous section, we relaxed the assumption on the encoder. Here, we generalize
the approach by also relaxing the assumption on the signals. Specifically, we apply the
RDD framework to enhance the detection performance of a widely used compression
algorithm. For this, we selected JPEG [152], a standard for lossy compression of both



72 Chapter 6. A Theoretical Framework for Rate-Distortion-Distinguishability

Training set

19
3
o s
a N
€
8
=]
(e
[0)
(a]
L Decoder
€
8
=]
el ] o
| St ||
!E!! Encoder — — ok/ko
Detector

FI1GURE 6.10: JPEG block diagram.

color and grayscale images. For simplicity, we only consider grayscale images from the
MNIST dataset [39].

JPEG compression of grayscale images contains several stages. First, the image is
divided into square blocks of 8 x 8 pixels, with each block independently processed by
the Discrete Cosine Transform (DCT). The resulting DCT coefficients are then quantized
based on a quantization table that reflects the required reconstruction quality. Finally,
the quantized coefficients are encoded by entropy coding. Decoding involves reversing
this procedure, starting with entropy decoding, followed by dequantization and inverse
DCT (IDCT) to reconstruct the image blocks.

Since the quantization stage is the one responsible for information loss, it is also the
main target of the proposed RDD framework. The core idea is to adapt the quantization
table according to the distortion and distinguishability constraints derived from the RDD
optimization process. For this example, we limit our analysis to the unsupervised scenario,
where the compressor lacks knowledge of the anomaly, and we consider only RDD Z in

(6.7).
We assume that the DCT coefficients of each block are independent and obey a
Gaussian distribution with mean u‘;k and variance )\?k, where j = 0,1,...,63 represents

the index of the DCT coefficient. Let x be a block from a sample image in the training
set and let y = DCT(x) represent its corresponding DCT coefficients. For the j-th DCT
coefficient, the mean and variance are estimated as:

[y

N-1B- 1 N-1B-1

1 (4,0) k i 2
) J— ) )\0 y — 2
MJ NB i=0 =0 y 7 NB =0 [=0 [yj Mj } ’

(6.27)

o~

where yj(-”l) is the j-th DCT coefficient of the [-th block in the i-th image, N is the
number of images in the training set, and B is the number of blocks per image.

To reformulate the optimization problem from (6.7) into (6.16)-(6.19), we define a
zero-mean Gaussian signal y = y — p°%. The solution to this optimization problem
generates a set of parameters £ = (&, .. ., &3) that minimize the rate p without violating
the constraints on distortion ¢ and distinguishability w. From §;, we compute the average
distortion 0; = )\‘]?k(l — &) introduced by quantizing 7;, to balance the rate and the
constraints on distortion and distinguishability.

The relationship required to map the distortion into quantization steps is empiri-
cally estimated from the training set. Specifically, we map the distortion vector 6 =
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FIGURE 6.11: Variance of the DCT coefficients (A) and quantization
tables as a result of two different values of the distinguishability constraint
and same distortion 6 = 0.3 (B) and (C).

(0o, ..., 063) to a quantization table q, where each 6; corresponds to a quantization step
q; applied to y;, resulting in the quantized version z; = |y;/q;], where |-] represents
the rounding to the nearest integer. Figure 6.10 shows the JPEG encoder and decoder
block diagram, with the quantization table q derived from the RDD optimization in
(6.16)-(6.19)*.

In this scheme, the distortion is measured as the Mean Squared Error (MSE) between
x°¢ and %°K, while the rate is calculated as the Shannon entropy H of z°¥, following [3]:

p = I(x°%;%°%) ~ H(z) ~ —nZﬁl log py (6.28)
1

where P is the estimated probability that an entry in z is equal to the value .

Considering the MNIST dataset, which contains N = 60,000 training samples of
28 x 28 images, each image is divided into B = 16 blocks. Figure 6.11-(A) illustrates the
variance of the DCT coefficients A° estimated from the training set. Figures 6.11-(B)
and (C) present two examples of quantization tables generated with ¢ = 0.3 and varying
levels of the distinguishability constraint, w = 0 (no constraint) and w = 103, respectively.
Like most natural images, the MNIST dataset exhibits low-pass characteristics, resulting
in DCT coefficients associated with low frequencies (upper left corner of Figure 6.11-
(A)) with higher magnitudes on average, while the high-frequency coefficients (lower
right corner) have lower magnitudes.

In line with the observations from Figure 6.6, classical rate-distortion solutions apply
uniform distortion across all components, meaning that low-frequency components experi-
ence less relative distortion compared to high-frequency ones. This is clear in Figure 6.11-
(B), consistent with standard JPEG quantization tables [152]. However, as highlighted in
Figure 6.11-(C), when the distinguishability constraint is added, high-frequency compo-
nents undergo less distortion than mid-frequency ones, despite the latter being generally
more informative for reconstruction. Both quantization tables in Figure 6.11-(B) and
Figure 6.11-(C) adapt JPEG compression to the MNIST dataset, but the latter is opti-
mized for AD, allowing the detection of anomalies affecting the input while maintaining
the same distortion.

'Entropy encoding and decoding are omitted as they involve lossless compression, and jointly corre-
spond to an identity mapping.
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FIGURE 6.13: System for neural network-based CIFAR-10 image com-
pression and detection.

To evaluate the performance of such quantization tables, we introduce anomalies
in the form of uniform noise mixed with the MNIST images and use the Mahalanobis
Distance (MD) [38] to detect them. Since JPEG performs block-wise compression, the
detector analyzes the DCT coefficients of the image blocks to determine whether each
block corresponds to a corrupted image. The mean and covariance of the DCT coefficients
for each compressed block are estimated from the compressed images of the training set.

Figure 6.12 illustrates the Pareto curve for JPEG compression with the MD detector
when uniform noise is mixed with the input images. The rate is computed as the Shan-
non entropy of the quantized DCT coefficients. The trends align with previous obser-
vations, underlying that improving detection performance or reducing distortion requires
a higher rate. This result highlights the relevance of considering the rate-distortion-
distinguishability trade-off, even when dealing with images as signals and using JPEG as
a compressor.

6.3.4 End-to-end image compression and detection

As we have stressed in Chapter 2, autoencoder (AE)-based lossy compression methods
have recently gained popularity as they enable the end-to-end optimization of all the
components that form a compressor. In this context, we investigate the simultaneous
training of the compressor and the detector.
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While AEs perform dimensionality reduction, they need a quantization layer at the
bottleneck to limit the rate for proper lossy compression. We apply the quantization
method proposed in [3], which has been widely adopted in other compression techniques
based on AE [103, 18]. The quantization process consists of scaling the latent vector
within the range [—1, 1] using a tanh function, followed by uniform quantization of each
component with L levels.

In this particular example, we focus on the CIFAR-10 dataset [79] and adopt the AE
architecture from [126], adding a quantization layer. Specifically, the encoder reduces the
input image of size 32x32x3 (where n = 3072) to a latent vector y of dimension k = 128,
which is then quantized. The components of the quantized signal z are computed as:

zj = arg mkin |tanh (y;) — ¢ (6.29)

with ¢; = —1 + 2[/(L — 1) representing the [-th quantization level.
Given that this quantization step is non-differentiable, the backward pass is approxi-
mated using the soft quantization from [103]:

L—-1 6—\tanh(yj)—cl| (6 30)

cj = lz:% Zf;]l ef|tanh(yt)fct|cl'

The quantized vector z is processed by the decoder, which reconstructs the input as
X, while the detector outputs the anomaly score using the MD detector applied to z. To
promote detection, a regularization term acting on ||y||? is added, inspired by the Deep
Support Vector Data Description [126] presented in Chapter 1, and Shrink AE [26] models.
These models optimize the encoder for detection by minimizing the volume occupied by
normal data y°¥ in the latent space. The full system is illustrated in Figure 6.13 and is
trained using the following loss function:

o 1 R B N-1
£a(x) = SMSB(, 2% + 0 3 [y (6.31)
1=0

where 3 controls the regularization weight. This loss allows tuning the encoder for both
reconstruction (through minimization of MSE) and AD (via minimizing the regularization
term).

The distortion is estimated as MSE between x°¢ and %°X, while the rate is approxi-
mated by the Shannon entropy of z° as expressed in (6.28). In this case, the dimension
of z° is k, and py is the estimated probability of z°* to be equal to the I-th quantization
level ¢;.

As anomalies, we use the corruptions defined in [60], which has already been used
as a benchmark for AD in [125]. Specifically, we focus on the Gaussian blur as a target
corruption.

We train? several AEs, each characterized by a different combination of
L € {2,22,...,2%}, affecting the rate, and 3 € {0,107%,107°,...,10%}, acting on the
trade-off between distortion and detection. The resulting three-fold trade-off between
rate, distortion, and detection is presented in Figure 6.14. Despite making no assump-
tions about the signals or compressor, the results show that the relationship between
distinguishability, rate, and distortion aligns with theoretical trends.

2Training is performed using the Adam optimizer, with an l2 weight regularization coefficient of 107¢,
a batch size of 200, and an initial learning rate of 10™*, which is reduced when the loss reaches a plateau
for 20 epochs.
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network-based system working with CIFAR-10 images in the Gaussian blur
anomaly-agnostic case.

6.4 Conclusion

In applications where anomalies are detected from compressed signals, a trade-off arises
between three quantities: rate, distortion, and distinguishability. To jointly address this
trade-off, we extended the traditional rate-distortion theory by incorporating distinguisha-
bility constraints, resulting in the formulation of two optimization problems.

Assuming Gaussian signals and using a Gaussian-additive encoder, we solve these
optimization problems that reveal and allow us to discuss the Pareto surface involving
all three quantities in anomaly-agnostic and anomaly-aware scenarios. In the previous
chapter, we have demonstrated that minimizing distortion under a fixed rate budget
can impair the ability to distinguish normal and anomalous signals after compression.
In this chapter, we showed that preserving distinguishability and enhancing detection
performance requires increasing either the rate or the distortion. For instance, under
a fixed distortion constraint, a compressor can maintain distinguishability by allocating
part of the rate to components that may contribute less to reconstruction quality but are
critical for anomaly detection.

To assess the generality of our framework, we evaluated it in three different scenarios:
a compression scheme based on linear dimensionality reduction followed by quantization,
a modified JPEG compressor incorporating distinguishability, and an autoencoder-based
compression mechanism optimized for both reconstruction and detection. All three ex-
amples exhibited the theoretical trends we predicted, reinforcing the importance of jointly
managing the trade-off between rate, distortion, and distinguishability in such applica-
tions.
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Chapter 7

Anomaly Detection-Reconstruction
Trade-off via Autoencoder

A lossy compression approach often adopted in acquisition systems is based on autoencoder-
based dimensionality reduction (AE) [78]. As highlighted in Chapter 2, AEs are neural
networks that extend Principal Component Analysis (PCA) [24] by learning a manifold,
rather than just a subspace, that optimally preserves the signal's information content.
The AE comprises two components: an encoder that compresses the input data by reduc-
ing its dimensionality, and a decoder that recovers the original data from the compressed
version®. Both parts are trained simultaneously to minimize the reconstruction error, i.e.,
the deviation between the input and the output.

The impact of compression on reconstruction has been extensively studied since the
development of rate-distortion theory [34, Chapter 8] and is summarized in Chapter 2,
where the use of AE for compression has been highlighted.

Reconstruction may not be the main goal when working with compressed data. The
idea of optimizing an AE-like architecture for tasks besides reconstruction has been ex-
plored in [27, 12], where Variational AE-based frameworks were introduced. These frame-
works jointly optimize the encoder, decoder, and classifier for image data, improving
classification accuracy without significantly compromising reconstruction quality.

As discussed in the previous chapters, anomaly detection (AD) is a fundamental
analysis that goes along with reconstruction in fields such as structural health monitoring
[101, 128], condition monitoring [73, 164], and healthcare monitoring [97, 1]. In this
chapter, we aim to jointly optimize the AE for AD and reconstruction.

"While we have repeatedly emphasized that an AE is only a preprocessing step in the broader context
of lossy compression, it is common for the terms dimensionality reduction and compression to be used
interchangeably. This is often due to the assumption that the quantization is so fine that its effects can

be neglected.
b’¢
XOk ﬂ
.|| J1s1s y y
l ._\— —e4) (¢
e o X RX ’%
ko —l)

X
Sensor ok/ko

Cloud

FIGURE 7.1: Block diagram of the system composed of an encoder

(ENC) that compresses a signal and a decoder (DEC) that reconstructs

it for further processing applications (APPs). The signal is either normal

x°K or anomalous x*° and a detector (DET) discriminates between them
by processing the information at the receiver side.
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In case only AD is prioritized, AE-based dimensionality reduction remains a popular
strategy for enhancing performance. For instance, in [126], the authors introduced Deep
Support Vector Data Description (Deep SVDD), which first trains an AE to minimize
reconstruction error, and then tunes the encoder to minimize the volume of the latent
space for AD. On the other hand, the approach proposed in [26], known as Shrink AE
(SAE), accounts for latent space volume minimization through a regularization term
directly during the AE’s training. This eliminates the need for subsequent encoder fine-
tuning. However, since these methods are aimed at AD, they neglect reconstruction
quality.

The relationship between compression and AD has been covered in the previous two
chapters. Specifically, in Chapter 5 we have demonstrated that the detection performance
degrades rapidly with increasing distortion when compression is performed by an AE opti-
mized for only reconstruction. In Chapter 6 we have established a theoretical framework
for the joint optimization of distinguishability and reconstruction. The observed theoret-
ical trends were confirmed for several practical compression schemes, including one that
exploits the AE structure.

In this chapter, we present a novel practical approach based on AE that targets both
AD and reconstruction tasks. Specifically in Section 7.1, inspired by the information-
theoretic guideline provided by ( introduced in Chapter 4, we design a loss function for
AE that allows not only to minimize the distortion but also to preserve useful information
for AD. The latter is achieved by introducing into the loss function a regularization of
the differential entropy in the latent space. We propose two different strategies, each
based on a different differential entropy estimator. In one case the estimator assumes an
isotropic Gaussian distribution of the latent vector and in the other, the estimator makes
no assumptions about the distribution. In Section 7.2 we compare the performance of
these two AEs in managing the trade-off between AD and reconstruction. We used both
image data and time series ECG data as case studies, analyzing the trade-off across various
types of anomalies commonly found in these datasets.

The results show that the entropy-regularization strategy, independently of the es-
timator, helps to retain features beneficial for AD, at a slight cost in reconstruction
performance.

7.1 Mathematical models

We consider a system, illustrated in Figure 7.1, where a sensor acquires an n-dimensional
signal x, encodes it into a lower-dimensional k-dimensional vector y = ENC(x), where
k < n, and transmits it. At the receiver, the signal is reconstructed for further applications
(APPs) using a decoder x = DEC(y). Simultaneously, a detector (DET) identifies
whether the signal is normal x°% ~ f2k or anomalous x*° ~ fk°. The detector operates
on y as it contains information equivalent to X due to the injectivity of DEC.

In this setting, where an AE is utilized for compression, both ENC and DEC are
neural networks. Since anomalies are rare and unknown, training is performed on normal
signals, i.e., x = x°¢. The reconstruction quality is assessed using distortion defined in
(2.1) and which in this context can be expressed as:

D=E [onk — %%k

)2] | (7.1)



7.1. Mathematical models 79

D is often estimated by Mean Squared Error (MSE):

2
ok 5ok
X T X

N—
MSE( 5%) = L 3 7.2
=0

where x9% and %9¥ represent individual instances of x°¢ and %° from a set of IV instances.

Using an MSE-based loss function makes AE focus solely on reconstruction, which,
as highlighted in Chapter 5, can result in the elimination of the features of x crucial for
AD. In this chapter, we want to ensure that the AE retains critical information for AD at
the receiver's end.

In Chapter 4, we introduced a metric {, whose absolute value measures the distin-
guishability between ok and ko sources. The definition of ¢ in (4.2) is valid for any two
sources and since the detector operates on the encoded signal y, we specialize ¢ within
the latent space:

(=¢C (ka;yOk) -C (yOk;yOk) (7.3)

where C(y';y") = — Jgn [y (@) logy fyr(a)der is the cross-entropy, which represents the
average coding rate (in bits per symbol) of source y’ when encoded using a code optimized
for y”. Hence, ¢ captures the difference in average coding rate between anomalous and
normal signals when encoded by a code optimized for the normal signal.

Additionally, using H(-) to represent differential entropy and Dy, (-||-) for the Kullback-
Leibler divergence [34, Chapter 2], we express:

C i y*) = Hy™) + Dict, (£°1£5%) (75)

which allow us to write ( as:
¢ = H(y*) = H™) + D (K°155) (76)

Thus, improving AD would involve increasing the entropy of y*°, decreasing the entropy
of y°k, or increasing the divergence between f;,‘o and f;,’k. However, in an unsupervised
setting where only x° is available, the only term that can be optimized is H (y°X).

To make the AE retain the information necessary for AD at the receiver, we propose
to reduce H(y°¥), the differential entropy of the latent space representation y°¢. To
achieve this, we design the following loss function:

1
L(x°%) = EMSE(XOI‘, ) 4+ ZH (y°) (7.7)

where #(y°¥) is an estimator of H(y°%), and 8 > 0 is the entropy regularization weight.

7.1.1 Differential entropy estimation

We adopt two methods to minimize H(y°*). The first is based on the second-order Renyi
entropy estimator, as described in [116], and is defined as:

1N

5 1 =
Hao(y™) = ~logy (N2 > Gua, vy - y2k>) (78)
=0 5=0

J
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with G, (-) = exp (—%) a Gaussian kernel having width o. This is a non-parametric
estimator that makes no assumptions about the distribution of y.

The second method assumes that the latent space follows a zero-mean isotropic
Gaussian distribution, such that the minimization of H(y°¥) is equivalent to minimiz-
ing B [[[y*¥|? [127].

The resulting loss functions are:

1 N
LA (x%F) = EMSE(Xok, %K) 4 g%ﬁ(y‘)k) (7.9)
SAE ok 1 ok gok 6 = ok |2
L35 (x%) = =MSE(x*, %) + - > [ly{"]| (7.10)
n kN =

where RAE stands for Renyi entropy-regularized AE, and SAE refers to the Shrink AE
introduced in [26].

Both approaches allow exploration of the trade-off between reconstruction and detec-
tion by acting on the regularization weight 5. Although an increase in 3 will result in a
reduction in reconstruction performance, enhancing AD performance cannot be achieved
by arbitrarily increasing 3, rather the two terms should be properly weighted. In addition,
(7.9) requires careful tuning of the kernel width o.

7.1.2 Discussion

Since the literature on AD from an information point of view is limited [125], we want
to stress the relevance of  and its role in some widely adopted detectors, some of which
are detailed in Chapter 1. Considering (7.6), we only select the second term, i.e., normal
signal differential entropy, to be minimized. As already stated, minimizing the differential
entropy, under the Gaussian assumption, is equivalent to minimizing the Euclidean norm
employed in SVDD [143] and its deep counterpart Deep SVDD. The authors in [144, 101]
also embed the signal in components with lower variance, i.e., lower differential entropy,
and show that it favors the detection of anomalies. The concept of differential entropy
minimization aligns with the conclusions of the previous chapter, where components with
the lowest variance proved to be the most informative for detection. A hint about the
relevance of the first term of (7.6) can be found in [127] where the authors, besides
minimizing normal signal differential entropy, maximize the differential entropy of the
anomalous data to develop a semi-supervised version of Deep SVDD. Similarly, the third
term of (7.6) plays a key role in OCSVM [130] in which the separation between normal
and anomalous data samples is maximized.

The loss function in (7.9) is identical to the function in (6.31), utilized for the end-
to-end image compression and detection of the previous chapter, as both come from the
concept of SAE. In this chapter, however, the use of SAE is supported by the broader
theoretical framework of differential entropy minimization, with SAE being a specific
instance that leverages this principle.

7.2 Numerical evidence

We investigate how AE, RAE, and SAE administer the trade-off between reconstruction
and detection performance in two distinct scenarios: ECG time series data and CIFAR-10
image data.

In particular, to perform AD in the latent representation y, we employ two widely
adopted unsupervised detectors: Mahalanobis Distance (MD) and OCSVM. The detection
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performance is measured directly from their anomaly scores, using the probability of
correct detection (Pp), as defined in Chapter 3:

. 0.
P, = {AUC if AUC > 0.5 (7.11)

1—AUC if AUC < 0.5,

where AUC represents the Area Under the Curve of the Receiver Operating Characteristic
[45].

7.2.1 ECG

ECG signals were generated using a realistic synthetic generator? [102]. The setup, based
on [96], includes heart rates uniformly distributed between 60-100 bpm, a sampling rate
of 256 sps, and white noise was injected, guaranteeing a signal-to-noise ratio (SNR) of
40dB. To train and validate the AEs, we generated 6.4 x 10° windows, each containing
128 samples. Two additional sets of 10° and 10* windows were created to train the
detectors and evaluate the performance of both reconstruction and detection, respectively.

The reconstruction quality of the AEs is evaluated considering the Reconstruction
Signal-to-Noise Ratio (RSNR) defined as:

ok
RSNR = E [”X”?] . (7.12)
dB

HXOk _ )A(okH2

2MATLAB and C codes are freely available at the Physionet website https://physionet.org/
content/ecgsyn/1.0.0/
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As discussed in Chapter 3, injecting synthetic anomalies into signals representative
of normal behavior can mitigate the lack of real anomaly data. From the perturbations
introduced in Chapter 3, we selected three anomalies commonly associated with system
faults: constant, impulse, and Gaussian white noise (GWN). Two additional anomalies
were added to emulate changes in the sensed phenomenon: spectral alteration and prin-
cipal subspace (PS) alteration. These anomalies were injected in each window of the
normal test set, with intensity measured using the deviation metric from (3.3), recalled

here for convenience:
ko

x°k — x

1 2
A="-E U ] . (7.13)
n

Figure 7.2 illustrates examples of these anomalies, each sub-figure shows a different
anomaly type, representing the original signal alongside the altered signals at two different
deviation levels A. As well established in Chapter 3, higher values of A result in more
intense anomalies.

All AEs used an asymmetric neural network structure with a lightweight encoder
(ENC) and a more computationally expensive decoder (DEC). Specifically, as illustrated
in Figure 7.3-(A), ENC applies an affine transformation to the 128-dimensional input,
generating a 20-dimensional output. The decoder DEC, processes the 20-dimensional
input through three hidden layers with (128, 256, 256) units using ReLU activation func-
tions, and ends with a linear output layer.

The training was performed using the Adam optimizer [75], with a batch size of 128
and an initial learning rate of 0.001, which was reduced each time the loss plateaued for
20 epochs. For the RAE, the kernel width was set to o = 0.5, selected after tuning on a
validation set.

In Figure 7.4 we present the detection-reconstruction trade-offs for ECG signals. Each
row corresponds to a different type of anomaly, while each column refers to a different
detector. The anomaly intensities are indicated using different colors. Within each plot,
we show the Pp-RSNR curves for SAE (dashed line) and RAE (solid line), generated by
acting on the weight parameter 5. The standard AE performance (dotted line) is also
included for comparison.

As the results suggest, both RAE and SAE enhance detection performance compared
to AE in nearly all configurations. This improvement is observed with both the OCSVM
and MD detectors, but it comes at the cost of reduced reconstruction performance: the
higher the Pp improvement, the greater the loss in RSNR. The nature of the detector or
regularization method has minimal impact since the dashed and solid lines almost overlap.
Across all types of anomalies, the curves across the columns (detectors) are quite similar.
Significant detection improvements are achieved for anomalies such as GWN, impulse,
spectral alteration, and PS alteration. In contrast, performance for the constant anomaly
presents limited or no improvement. In most cases, the best Pp gains are achieved with a
reduction in RSNR that does not exceed 2dB. For example, in the case of PS alteration,
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both OCSVM and MD detectors achieve Pp of 53% (for A = 0.1) and 59% (for A = 0.5)
using the standard AE, but this increases by 40% when one between SAE or RAE is used.

7.2.2 CIFAR-10

For the image data, we focus on the CIFAR-10 dataset [79], which contains 6 x 10° color
images of size 32x 32, evenly distributed across 10 classes. To train the AEs and detectors,
we select 5 x 10° images, while the remaining 10* images are dedicated to performance
evaluation. We chose five common image corruptions as anomalies: Gaussian blur (GB),
brightness, contrast, saturation, and Gaussian noise (GN), with severity levels s = {1, 3}
as described in [60]. These corruptions have previously been used as benchmarks for
AD performance [125]. Figure 7.5 shows examples of a normal image and its anomalous
versions with severity s = 1.

For the AEs, we adopt a symmetric convolutional encoder-decoder architecture from
[126], shown in Figure 7.3-(B). The encoder ENC maps a 32 x 32 x 3 image into a
128-dimensional latent vector through three blocks, each comprising a sequence of 2D
convolution, batch normalization, leaky RelLU activation, and max-pooling. These con-
volution layers contain 32, 64, and 128 filters, respectively, all having stride 1 and kernel
size 5. The decoder DEC mirrors the encoder, replacing convolutions with transposed
convolutions and adopting upsampling instead of max-pooling.

Training is performed using the Adam optimizer with the ¢5 weight regularization set
to 1075, a batch size of 200, and an initial learning rate of 10~*, which is reduced when
the loss reaches a plateau for the 20 epochs. For RAE, the kernel width o is set to 1.

To evaluate the reconstruction quality of the AEs we consider the Peak Signal-to-Noise
Ratio (PSNR) defined as:

PSNR = E lm“(XOk)] (7.14)
dB

[ — %[

The trade-off between the detection and reconstruction performance observed with the
ECG data is validated for CIFAR-10 in Figure 7.6. However, in contrast to the ECG case,
here the choice of the regularization method has a greater impact. SAE performs better
for anomalies like brightness, saturation, and Gaussian noise. For the latter, specifically
with the MD detector, SAE leads to a Pp improvement of 24% for s = 1 and 43% for
s = 3. On the other hand, RAE outperforms SAE in detecting Gaussian blur and contrast
anomalies, in particular when paired with the OCSVM detector. In these cases, RAE
yields a 15% up to 30% boost in Pp while reducing PSNR by less than 0.5 dB. However,
for Gaussian blur and contrast anomalies, the MD detector used with AE already performs
well, and regularization fails to improve it further.

SAE shows more consistent improvements across all configurations as 3 increases.
Finally, the relatively small difference between RAE and SAE performances with OCSVM
and MD detectors indicates that choosing the detector is more critical when working with
the standard AE than with the regularized versions. This suggests that carefully designing
the compression phase could reduce the need for extensive detector tuning.

7.3 Conclusion

In this chapter, we considered monitoring systems where an autoencoder compresses
sensor data and the compressed data is either reconstructed or inspected for anomaly
detection. Although autoencoders are optimized for reconstruction, they require regu-
larization to improve anomaly detection. Starting from the information-theoretic metric
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¢, we show that effective regularization should aim to reduce the differential entropy of
the compressed representation of the normal signal. We then propose two differential
entropy-based regularization methods, SAE and RAE, and analyze how they address the
trade-off between detection accuracy and reconstruction quality.

Our investigation considered ECG time series and CIFAR-10 images, adopting two
detectors to characterize five common anomalies at different intensities. The experiments
showed that AE regularization brings significant improvements in anomaly detection at
the cost of an acceptable degradation in reconstruction. Specifically, for the ECG data,
both SAE and RAE achieved a 20% improvement in the detection probability (Pp),
with a corresponding 2dB drop in reconstruction quality (RSNR) across four out of five
anomalies. RAE showed a slight advantage by achieving the same Pp improvement with
a smaller decrease in RSNR.. In the case of CIFAR-10 images, SAE proved more effective,
outperforming RAE in detecting three out of five anomalies.

Overall, SAE offers consistent detection improvements (up to 43% in Pp) across
various scenarios. RAE, while potentially more effective in specific cases, requires a more
complex parameter tuning. Additionally, using either regularization method, the choice
of the detector becomes less important.



87

Conclusion

This dissertation addressed two critical challenges in anomaly detection: the performance
assessment of anomaly detectors and the impact of lossy compression on anomaly de-
tection performance. First, we provided a framework for both practical and theoretical
performance assessment of anomaly detectors. Second, we designed a framework for the
joint analysis of rate, distortion, and distinguishability, offering insights into optimizing
compressors for downstream anomaly detection tasks.

For practical assessment, we developed a framework named WOMBATS, which inte-
grates all essential modules for detector evaluation. It includes a generator of synthetic
anomalies with multiple signatures and controlled intensity levels, providing a systematic,
flexible, consistent, and comprehensive tool for evaluating anomaly detectors in real-world
monitoring scenarios.

From a theoretical perspective, we presented a framework based on novel information-
theoretic measures, termed distinguishability, applicable in both anomaly-agnostic and
anomaly-aware settings. These measures represent manageable quantities in theoreti-
cal analysis and effectively approximate practical performance metrics. Moreover, we
introduced a Gaussian-based anomaly model, highlighting the white anomaly—a refer-
ence anomaly that represents both the average and typical behavior across all possible
anomalies.

These assessment frameworks were leveraged to analyze how compression affects
anomaly detection performance. Our theoretical and numerical results show that com-
pressors optimized solely for the rate-distortion trade-off can compromise the effectiveness
of anomaly-agnostic detectors. To address this issue, we develop the rate-distortion-
distinguishability (RDD) framework that optimizes three key quantities: rate, distortion,
and distinguishability. Specifically, we formulated two optimization problems that provide
insights into designing compressors that balance these three factors, ensuring effective
anomaly detection while maintaining efficient compression.

Finally, we designed an autoencoder-based dimensionality reduction scheme that pre-
serves information not only for reconstruction but also for anomaly detection from the
compressed representation. By incorporating differential entropy-based regularization
techniques, we showed that anomaly detection performance can be significantly enhanced
while maintaining an acceptable trade-off with reconstruction quality.

Limitations and future developments

The proposed methodologies tackle both practical and theoretical challenges in anomaly
detection performance assessment and compression design. While effective, they still
present several limitations that open opportunities for future research.

A key limitation of WOMBATS is that it currently operates on univariate time series.
Extending this framework to multivariate time series would enable the evaluation of detec-
tors exploiting dependencies across multiple signals. Additionally, WOMBATS primarily
assesses detectors that operate on windows of signal samples. Future work could explore
approaches to evaluate detectors that process one time series sample at a time.
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While the designed synthetic anomalies have proven useful for detector benchmarking
at testing time, they could also be leveraged for self-supervised learning during train-
ing. This approach could potentially provide detectors that outperform fully unsupervised
approaches. Similar techniques have been explored in image-based anomaly detection,
where synthetic anomalies were used to design state-of-the-art detection methods [114,
158, 162].

Supervision could also help mitigate the performance degradation of anomaly-agnostic
detectors when working with compressed data. As observed in our analysis, anomaly-aware
detectors do not suffer from the same issue. This suggests the need for compression
schemes that explicitly support supervised discriminators on the receiver side, ensuring
that detection remains reliable despite compression.

Our RDD framework is currently specialized for Gaussian sources but can be extended
to non-Gaussian ones. For instance, aligning with rate-distortion-perception theory [18],
and adapting it to Bernoulli processes could provide valuable insights for image data.
While the Gaussian assumption limits RDD's applicability, prior research has shown that
deep feature extraction networks often produce representations that approximately follow
Gaussian distributions [121]. This suggests that a hybrid approach, where a neural network
extracts Gaussian-like features before applying our RDD framework for quantization, could
bridge the gap between theory and real-world applications.

Most importantly, further research is needed to explore real-world scenarios where the
interplay between rate, distortion, and distinguishability can be studied in depth. This
would help refine our framework and guide the development of more practical solutions for
anomaly detection in monitoring applications. Moreover, the insights provided by the RDD
framework should be leveraged to design new compression pipelines or enhance existing
ones, aligning anomaly detection-oriented compression with state-of-the-art methods that
target reconstruction quality [28, 31, 91].
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Appendix A

Synthetic Anomalies for
Performance Assessment in Time
Series

A.l PD vs. A

This appendix section presents a set of figures that provide complementary results, further
reinforcing the effectiveness of the proposed approach for systematically assessing anomaly
detectors introduced in Chapter 3. These results are examined for the two considered
use cases: Electrocardiogram (ECG) data and accelerometer telemetry from a structural
health monitoring system (ACC).

Figures A.1-A.6 illustrate the performance of the considered anomaly detectors, includ-
ing Principal Component Analysis (PCA)-based, Machine Learning (ML)-based, Gaussian
distribution (GD)-based, and feature-based methods, by evaluating Pp w.r.t the deviation
parameter A. These figures represent an extension to the results presented in Tables 3.4-
3.7, where Pp values were reported for two specific deviation levels, A = {0.05,0.8}.
Each figure focuses on a different anomaly class and on a different category of the nor-
mal signal. Figures A.1-A.3 show the detector performance for power-increasing, power-
invariant, and power-decreasing anomalies in ECG signals, whereas Figures A.4-A.6 depict
the results for ACC signals.

Figure A.1 presents the detection performance, measured in terms of Pp, for power-
increasing anomalies in ECG signals as a function of deviation A. Each row corresponds
to a different anomaly, while each column focuses on a different family of detectors. As
expected, detection performance improves with increasing A across all cases.

Among the anomalies, the constant anomaly is the most difficult to detect, particularly
for low values of A, whereas Gaussian White Noise (GWN) is the easiest to identify. No
single detector consistently outperforms the others across all anomalies and deviation
levels. For instance, in the first column, SPEsg achieves the best performance for GWN,
Gaussian Narrowband Noise (GNN), and impulse while performing at an average level for
constant and step anomalies. Conversely, TgQ is the most effective for constant and step
but performs worst for GWN, GNN, and impulse.

On average, detectors such as SPEsg, LOF5, and MD tend to outperform other
detectors within their respective families. Feature-based detectors exhibit high variability,
as their performance is strongly influenced by the specific type of anomaly.

Figure A.2 presents the detection performance, measured in terms of Pp, for power-
invariant anomalies in ECG signals w.r.t deviation A. Each row refers to a different
anomaly, while each column corresponds to a different class of detectors. As expected,
detection performance generally improves with increasing A. However, monotonicity is
not strictly maintained in certain cases—specifically, when GD-based detectors encounter
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FIGURE A.1l: Performance in terms of Pp of four families of detectors
(PCA-based, ML-based, GD-based, feature-based) against deviation A in
case of ECG power-increasing anomalies.
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case of ECG power-invariant anomalies.
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FIGURE A.3: Performance in terms of Pp of four families of detectors
(PCA-based, ML-based, GD-based, feature-based) against deviation A in
case of ECG power-decreasing anomalies.

a time warping anomaly and when the pk-pk detector faces the principal subspace (PS)
alteration and mixing with GWN anomalies. As already noted, these two anomalies pose
similar challenges for most detectors.

Among the anomalies, mixing with GWN and PS alteration are the easiest to detect,
particularly for GD-based detectors, whereas time warping remains the most problematic,
especially at low A values. As in the previous case, no single detector consistently outper-
forms the others across all anomalies and deviation levels. For instance, T§2 completely
fails at detecting PS alteration, time warping, and mixing with GWN but surpasses other
PCA-based detectors in identifying the spectral alteration.

On average, LOF5 and MD outperform other detectors within their respective families.
Regarding feature-based detectors, as expected, the energy-based detector struggles with
power-invariant anomalies, while ZC tends to achieve the best performance across this
category.

Figure A.3 illustrates the detection performance, measured in terms of Pp, for power-
decreasing anomalies in ECG signals as a function of deviation A. Each row focuses on
a different anomaly, while each column corresponds to a different family of detectors.
Once again, detection performance generally improves with increasing A, though some
PCA-based detectors do not exhibit strict monotonicity.

All GD-based detectors perform similarly and consistently outperform other detector
families for both anomalies. Among feature-based detectors, the ZC-based detector com-
pletely fails at detecting saturation anomalies but achieves the best performance for the
dead-zone anomaly. Conversely, the pk-pk detector struggles with the dead-zone anomaly
but is the most effective among feature-based detectors for saturation anomalies.

Figure A.4 shows the detection performance, measured in terms of Pp, for power-
increasing anomalies in ACC signals w.r.t deviation A. Each row corresponds to a different
anomaly, while each column illustrates the performance for different family of detectors.
As expected, detection performance improves with increasing A across all cases.

Unlike the ECG results shown in Figure A.1, the constant and step anomalies exhibit
a similar level of difficulty for the detectors compared to the other anomalies. Both T%G
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and TV detectors completely fail at detecting these two anomalies. While the ZC detector
performs well for constant and step, it fails for the impulse anomaly.

Figure A.5 presents the detection performance, measured in terms of Pp, for power-
invariant anomalies in ACC signals as a function of deviation A. Each row corresponds to
a different anomaly, while each column focuses on a different family of detectors. As in
previous cases, detection performance generally improves with increasing A. However, the
time warping and spectral alteration anomalies remain particularly challenging to detect,
even at high A values. Feature-based detectors perform relatively well only for the mixing
with constant anomaly but struggle with the others. Note that, unlike the ECG case in
Figure A.2, the mixing with GWN and PS alteration anomalies exhibit different levels of
difficulty for the detectors.

Figure A.6 presents the detection performance, measured in terms of Pp, for power-
decreasing anomalies in ACC signals as a function of deviation A. The two rows consider
the two types of power-decreasing anomalies, while each column represents a different
family of detectors. The ZC-based detector fails at detecting saturation anomalies but
performs best among feature-based detectors for the dead-zone anomaly. Conversely, the
pk-pk detector struggles with dead-zone anomalies but it outperforms other feature-based
detector for saturation anomalies.
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FIGURE A.5: Performance in terms of Pp of four families of detectors
(PCA-based, ML-based, GD-based, feature-based) against deviation A in
case of ACC power-invariant anomalies.



96 Appendix A. Synthetic Anomalies for Performance Assessment in Time Series

SPE16 36 IF500 mmm LOFs5 ARy mmmARqg energy mmm TV

mem SPEg; mmm T2,  mmm OCRer, 0.01 = MD pk-pk  mmm ZC
TTTTTTT T T TTTT T 111 T TTTTI LLLLLLAL T T TTTI7 TTTTTTT T T T 1T T 111 TTTTTI LLLLLLAL T \HHV‘

| SATURATION | SATURATION 4 | SATURATION | SATURATION
0.9 | | | |
2 0% i (s i ]
0.7 | - 4 - )
0.6 |- - 1 F - )
0.5 F 1 F | b
TR R WRTIT S TN AT B TR S R AT B TR T] A W] B AT
1 T T T TTTI T T 77T LLLLLALI S R U1 R Y T T T TTII T T 77T T T T T T T T T 1T
{ DEAD-ZONE -| | DEAD-ZONE 1 | DEAD-ZON { DEAD-ZONE
0.9 |- - 4+ -
& % 1 i 5
0.7 = -
0.6 & -
0.5 T T A Lol vl i T I pol ol \HHI|
10-2 107! 102 107! 10-2 107! 10=2 107!
A A A A

FIGURE A.6: Performance in terms of Pp of four families of detectors
(PCA-based, ML-based, GD-based, feature-based) against deviation A in
case of ACC power-decreasing anomalies.

A.2 Anomalies Mixtures

Different types of anomalies can be combined to simulate real-world anomalies that man-
ifest through multiple superimposed effects. Referring to the general anomaly model
introduced in equation (3.2) of Chapter 3:

xko = ¢ (x°k> +d, (A.1)

as previously discussed, anomalies can arise either from an alteration of the normal signal
through ¢(-) or by adding an independent disturbance signal d to the normal data.

When combining two different types of anomalies, we can have three cases: intra-
category combinations, where either two d-like anomalies or two ¢(-)-like anomalies are
superimposed, and an inter-category combination of one ¢(-) and one d-like anomalies.
While intra-category combinations can be handled similarly, inter-category cases require
special attention. For illustration, we focus on two examples: i) the mixture of constant
(power-increasing) and saturation (power-decreasing) anomalies, and /i) the combination
of spectral alteration and PS subspace alteration power-invariant anomalies.

A.2.1 Constant + saturation

Based on the model in (A.1), to combine constant and saturation anomalies, the normal
signal window x°% should first be altered by applying a saturation anomaly, followed by
the application of a constant anomaly. To achieve this, it is sufficient to set:

. ok . ok
ok) _ ) TSATSIgN (a:j ) if 7| > TAT (A2)
clzi) = o _ )
o otherwise

dj =%4a for j=0,...,n—1 (A.3)
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anomaly in case of ECG signal for five different values of weight 5 =
{0,0.25,0.5,0.75, 1} increasing from left to right.

Parameters xgaT and a are selected to satisfy a specified level of deviation
A =LA+ (1—-p8)A = Agar + AconsT (A.4)

where [ is a weighting parameter that controls the relative intensity of the two anomalies
and

ASAT = ﬁA = Z {x?k — :L‘SATsign (:L’?k)]Q (A5)

|x?k|>$SAT
Aconst = (1 - B) A =ad? (A.6)

The equation (A.4) holds since saturation and constant anomalies are independent.

We provide examples of the saturation-constant anomaly mixture applied to an ECG
signal, with A = 0.8 and five different values of 3, in Figure A.7. The transition from a
pure constant anomaly (8 = 0) to a pure saturation anomaly (8 = 1) is clearly visible.
For intermediate /3 values, the anomalies blend, resulting in a weighted combination of
the two single anomaly types.

It is important to note that this example can be generalized to any other mixture
where the first anomaly distorts x°k through ¢ (-), e.g., spectral alteration, dead-zone,
and the second anomaly is caused by a disturbance d, e.g., GWN, GNN; or, alternatively,
to a mixture where both anomalies arise from two different disturbances d.

A.2.2 Sprectral alteration + PS alteration

To create a mixture of spectral alteration and PS alteration anomalies, starting from
(A.1), it is enough to set c¢(-) as a composition of spectral alteration and PS alteration
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anomalies and d = O:

—1
¢ (x%) = Oxk = Ukov/Akey/Ack™ Uk xok (A7)
dj=0 for j=0,...,n—1 (A.8)

where Uk = R,, 5., UK and V' Ak is built such that

Ao for j=0,....k arest. (5 =Ryg, " (A.9)
VAR =A% for j=k,...,n—1 (A.10)

T T
with KOk:V}W(‘/ 81‘,...”/)\21‘_1) and fko:\/%c/)\lgo,...,,/)\l,;o_l) . The an-

gles s and fpgp are set to satisfy

A =gg [A/] =93 [5A/ +(1-75) A/] =93 [Aga + Apga] (A.11)
Agp = A" = 2y[1 — cos(fsa)] (A.12)
Apsa = (1 — B) A" = 2[1 — cos(fpsa )] (A.13)

with gg = 2 [1 — %tI‘CI&A/] the function that links the effective deviation A with the

imposed one A'.

Examples of the spectral alteration-PS alteration anomaly mixture applied to an ECG
signal, with A = 0.05 and five different values of 3 are shown in Figure A.8. By acting on
B, it is noticeable how the mixture transitions from a pure PS alteration anomaly (5 = 0)
to a pure spectral alteration anomaly (8 = 1). For intermediate [ values, the resulting
anomaly appears as a weighted combination of the two.

Note that, the anomaly resulting from spectral alteration-PS alteration mixture can
be further combined with disturbances following a procedure similar to the one illustrated
in the previous example.
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B.1 Proof of Theorem 4.1
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Proof of Theorem 4.1. We will rely on the following Lemma, the proof of which is pro-

vided immediately after this one.

Lemma B.1. If A¥ ~ U/ (S"), then for any integrable function f : R — R and any

j=0,....,n—1
n—1

B[] = St [ 50— ),

nn—1
To prove our thesis we start by writing Ap = n=?||Z*° — I,||F as
1
Ap = =5/t [(BF 1) (B —1,)].

By noting that UX° is orthonormal and thus that ¥ — I, = U (Ako - In) Uk’

we get

1
=5

1 2 1110 T
= nﬁ\/tr [(Ako _ In) Uko Uko}

1 n—1 9
= 5 (-1
k=0

Starting from the above expression, we obtain

E[A}] = 7;6:2;;13 {(A}; _ 1)2]

Ap \/ tr [Uk (A — 1,)° Uk |

1 ”z‘:ln—1_ 1 n-1
n? =n+1 n¥in4l

where we have applied Lemma B.1 to compute the expectation.
Hence, when 5 > 1/2,

E {A%} ——0

n—00
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that can be substituted into the Markov inequality to yield

E [A2 -
@ VA >0

Pr(At>A) <
and thus that A converges to 0 in probability with increasing n. O

Proof of Lemma B.1. For any function f: R — R we have

I1f(p)] :/ f(po)dpo ... dpn—1

n—po n—po—p1 N—po—pP1—"—Pn
—/ fpo/ / / dpo . . dpan

_/ f(p - po)) dpo.

Since A¥° is uniformly distributed over S™ the probability density is the constant
1/I1] = n~ ™1 (n — 1)! and the expectation of f is

BIFO)] =m0 n — U]
SpGing s / ' f(p)L " 4

nn—1 (n—2)!
= [ -
O
B.2 Proof of Lemma 4.1
Proof of Lemma 4.1.
C(x';x") = — | Gos (a)log, [Go s ()] da

Rn
1
= 5 logy [(2m)" |2 /R Gox (a)da

T m—1
+21n2/Rnoz (X a Go sy (o) dev
— Liog, [y 2] + o [
2 2 21n2

where the last summand has been computed as the expectation of a quadratic form in a
Gaussian multivariate for which Corollary 3.2b.1 in [117, chapter 3] gives a formula.
O
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Appendix C

Rate-Distortion Theory and
Distinguishability

C.1 Proof of Lemma 5.1

Proof of Lemma 5.1. The distortion is tuned to the normal case, which assumes a mem-
oryless source. Therefore, we can omit time indices and focus on a vector x with inde-
pendent components z; ~ N (0, \;) for j =0,...,n — 1.
We know from [77] that for a given value of the parameter 6, each component z; is
independently transformed into Z;. Specifically,
£ = {0 =0 (c1)
T+ Aj if )\j >0

where, to achieve the Shannon lower bound, A; must be a Gaussian random variable
independent of Z;. Consequently, the three quantities Z;, ; and A; must be such that

(.f'j,l‘j,Aj)T NN(O,E@].@].’AJ) with
A—0 Aj—0 0
Siama, = [ N—0 N -0, (C.2)
0 —0 0

That illustrates in which sense %, encodes x;. In fact, the non-diagonal elements
Aj — 0 are positive, indicating that Z; and z; are positively correlated.

From (C.2), if we accept to identify a Gaussian with 0 variance with a Dirac's delta
we conclude that ; ~ N (0,max{0, A; — 0}) and thus X ~ N (0, XSy).

Moreover, (;f:j,:cj)T ~ /\/’(O,E@j’wj) where X;. . represents the upper-left 2 x 2
submatrix of 3z, ;. A, in (C.2). Assuming that § < A;, from the joint probability of x;
and Z;, we can compute the action of f;|, on the j-th component of x; as the probability
density function (PDF) of Z; given z;, i.e.,

e ()
b (e = @ B) PTG
& jla; (O fu, (B) Go; (B)

1 1]a— sjﬁ]z
\/271')\)'7']'8]‘ 2 )\jTij

where 7; = min{1,0/A;} € [0,1], and s; = 1 —7;. Note that f; |, (c, ) becomes §(a)
for 7; — 1 (maximum distortion of this component implies that the corresponding output
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is set to 0) and ¢6(a— f3) for 7; — 0 (no distortion of this component, the output is equal
to the input).

We may assemble the component-wise PDFs into a vector PDF by employing the
matrix Ty = diag (0, ..., 7,_1) = min{L,, 0(X°%)~1}, and the matrix Sy = I, — Ty,
which ultimately leads us to the conclusion of the thesis. O

C.2 Proof of Lemma 5.2

Proof of Lemma 5.2. The PDF of %¥° distorted through fo can be expressed as

) = [ fseB)as = [ fia,)roB)s (€3)

First, consider the low-distortion regime where § < A%< ; that implies Ty = §(X°K)~!
and write

(e / Gs,p,30k8,T, (@) Go 50 (8) A
- GO,EOkSQTg ( ) X
/ o~ 5[BTS0(55S0Te) " 18p5—2a7 (5580 T9) 'S0
Go,so (8)dB

= GO,EOkSQTg (Oé) X

/ e~ 3(BTQB-275) 43
J (@) det Sko B2

with Q = Sy(ZKSyTy) 1Sy + (T*°)~! = (01,)"! — (BK)~! 4 (Zk°)~! and q =
(2°KSyTy)'Spar = /. To compute g(a) let Q = UDUT with D diagonal and U
orthonormal, and set §' = DI/QUTﬁ so that § = UD~ /23" and df = 48'//derq. With
this write

g(a)

(8T p'—2¢"UD 25 )dﬁ

g(a) = \/W §

at the exponent of which one may add and subtract ' Q 'q = q' UD~"/2D~"/2U"q
to yield

4(lg-p ) -aa )

)= s | ap
(27T) e%qqulq
det Q ’

Substituting this back into fgk we obtain

F2(0) = Go [(o1,)-1 - (550k) -1+ (50) -1 sk ok, T, () -
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Under the low-distortion assumption, a straightforward expansion of the definitions allows
us to simplify and rearrange the covariance matrix into

[(QIn)fl _ (Eok)q + (EkO)fl} ykoyokg, ) —

_ [(Gln)_l —(Zoy L4 (21«3)—1} yroyokg(xok)-1g,

= [k — g(z) 7B+ 01| S,

_ [1n _ e(zok)—l} zkog, 1 S,

= Sy3k°Sy + 6y (C.4)

as in the statement of the lemma.

To handle the case where 0 exceeds \°X |, note that as & — (\%% )™, the last diagonal
entry of Sy tends to 0. Consequently, by (C.4), the covariance tends to have zeros in its
last row and column. Since a Gaussian with vanishing—variance can be considered a Dirac
delta, this model the fact that the last component of both x° K and x © is fully distorted

and set to 0. Thus, (C.4) remains valid also for A%, < 6 < X%k, Yet, analogous
considerations can be extended for 6 — (X;k) and j=n—2,n— 3, ...,0so that (C.4)
is valid for any value of 6. O

C.3 Proof of Theorem 5.1

Proof of Theorem 5.1. From (4.17) we have that

ko—1
1 0

21n 2 ]ZOAJ'(@)

(=

with
1 0 0
Aj(g):ok<1_ok)+ok_1'
AS S AS

Note that A;(#) is continuous and its derivative is 60A =(1- 1/)\01‘)/)\01‘.

For the sake of simplicity assume A > Ak > ... > A% | > 0, set )\Ok =0, and
define O; ])\j+1,)\°k[ for j=0,...,n— 1 so that |f9 € O; then kg = j + 1.

As a functlon of 8, (7 is continuous. In fact, it is trivially continuous in each ©;. Yet,

it is continuous also at any chosen )\JQk with 7 =0,...,n — 1. To understand why, note
that
li li Aj(
L T ?
L im A(6)+ i A;(0)
21112 gﬁ/\ok* Ai J
1 i
= li A;(0)= 1l
iz, S 50 7 e
okt =

where we have utilized the fact that the A;(6) are continuous and thus their left and
right limits are equal, and that A;(A%) = 0.
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At the leftmost point of the domain, when § = A% = 0 (no distortion), we have

ko = n and thus
(= 1 nf L 1) >0
I7 92 & | \ok =
7=0 J

where the last inequality is derived from the fact that >~/ )\;?k = nand thus 377, 1/xk >
n.

At the rightmost end of its domain, when # = \3¥ (maximum distortion), we have
kg = 0 and thus (1 = 0. Yet, we also have that

B 1 kel 1
96~ 7m2 2 w(“w)
=0 "7J J

in which the summands are positive when A?k > 1. Therefore, if k = arg maxk{Agk > 1},
for 6 > )\%k, all the summands in the above expression are positive. This implies that
¢ > 0 for X% < 6 < AG¥. Given that (1 = 0 at the end of that interval, it must be
negative in its interior.

We also know that (g is positive for § = A%% = 0 and is continuous for § €]A%% AS¥[.
Hence, it must pass through zero at least once whenever it is not negative, i.e., for
0<O< )\%k. O
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Appendix D

A Theoretical Framework for
Rate-Distortion-Distinguishability

D.1 Proof of Lemma 6.1

Proof of Lemma 6.1. Let H(-) denote the differential entropy of a random vector and
H(:|-) represent the conditional differential entropy between two random vectors. By
applying the chain rule, we can express the mutual information as follows:

T(x%xK) = H (x) = H (xK[xF) (D.1)
= H (%) = H (3% — %ok |xok) (D.2)
> M (x%) = H (xk - %) (D.3)

where the inequality is given by the property that conditioning reduces entropy.

Let us define A = %°K — x°%. To further relax the bound, we observe that for the
covariance matrix =2 of A, the entropy H (—A) is maximized when A is a zero-mean
Gaussian vector. This leads us to the following lower bound:

z (ﬁOk;XOk) >H (x°k> - %10g2(2ﬂ'6> — %logg ’EA‘ (D.4)

Next, we note that the variances 0; of the components of A are specified, meaning the
diagonal elements of ¥4 are fixed. According to Hadamard's inequality, the determinant
‘EA‘ is maximized when all non-diagonal elements of =4 are zero, implying that the
components of A are independent.

All these conditions minimize the lower bound on the rate, which can be achieved
through a Gaussian additive encoding with variances ;. Therefore, such an encoding
yields to the minimum possible rate:

1 n—1 Aqk
ok) o _ = e
H (%) = H ( A)—2j§)10g2 3 (D.5)
2
Since such encoding satisfies the condition E [(i;k —jc?k) ] = 0; for each j =
0,...,n — 1, the total distortion can be expressed as:
n—1
D=Y90, (D.6)
§=0

O]
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D.2 Proof of Lemma 6.2

Proof of Lemma 6.2. Assuming a Gaussian-additive encoding, we can express X°X as

x%€ + A having independent zero-mean Gaussian components, and each element has
variance o2, = )\?k —0; for j = 0,...,n — 1. The results of Chapter 5 can be di-

ROk T
J
rectly applied in this slightly generalized scenario, allowing us to utilize the encoding fgx
(Lemma 5.1) and its application to the components of x° (Lemma 5.2).

This results in XX consisting of independent, zero-mean, Gaussian components with

variances
0; 0;
2 J ko J
O'il;_o = <1 — )\Qk> [)\j (1 - )\Qk> + Hj
' J J

foreach j=0,...,n— 1.
Finally, by applying Lemma 4.1 of Chapter 4, we can express both Z and J as
functions of the ratios

(D.7)

O30
Uj:szl—Tjgj. (DS)
quk
J
In particular, using Lemma 4.1, together with the definitions of Z and 7, leads to
equations (6.12) and (6.13).
Both Z(&) and J (&) are convex functions of & = (&,...,&,—1). Specifically, Z

is linear for Z}Z& r;& > 0 and for ?:_& r;j&; < 0. Furthermore, since r;¢; < 1, the

y y 2 - . .

function % is convex for j = 0,...,n — 1. Consequently, 7, being a sum of convex
VAV

functions, is also convex.

For the new degrees of freedom, the distortion can be written as:

n—1 n—1 n—1
D=>0;=> A1-¢&)=n-Y_ Ak (D.9)
j=0 j=0 j=0
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