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High Performance Computing (HPC) has rapidly evolved to meet the increasing
computational demands of data-intensive fields such as climate modeling, artificial
intelligence, and physics research. This growth is driven by the demand for mas-
sive computational power that spans various demographics, including researchers,
industry professionals, and governments, arriving at end-users with the growth of
Large Language Models (LLMs). Emerging trends in HPC, including many-core and
heterogeneous architectures, present significant complexity, especially as they adopt
advanced chiplet-based designs with specialized accelerators. These innovations
introduce challenges that necessitate sophisticated control strategies to manage power
and thermal dynamics effectively.

The open-source RISC-V ISA has spurred the entry of new players into this market
segment. However, despite advances in hardware design, there remains a noticeable
gap in research concerning on-chip power and thermal control strategies. Existing
efforts have largely focused on high-level, software-based control mechanisms at the
operating system or application level, leaving low-level control methods underex-
plored.

This thesis addresses this gap by developing and evaluating advanced low-level
control algorithms for power and thermal management in HPC environments. It
introduces a comprehensive modeling framework that captures essential system
dynamics and highlights the unique challenges of low-level control, such as leakage
power management, actuator non-idealities, and coupling constraints. The proposed
control strategies, including fuzzy-inspired and Model Predictive Control (MPC)
approaches, are validated using a Hardware-in-the-Loop (HIL) testing platform to
demonstrate their effectiveness in real-time scenarios.

Results indicate that these advanced controllers significantly enhance thermal reg-
ulation, minimize performance degradation, and achieve superior energy efficiency.
The thesis concludes by outlining future research directions, such as integrating
machine learning for predictive control and exploring distributed control frameworks
to further optimize HPC system performance.
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Chapter 1

Introduction

High-Performance Computing (HPC) has become a cornerstone of modern techno-
logical progress [82, 84, 105], powering applications in fields ranging from climate
modeling [125] and physics simulations [127], to Artificial Intelligence (AI) [74], big
data analytics [71], and many more. Its rapid growth is fueled by the increasingly pow-
erful computational resources requirements to tackle these complex, data-intensive
tasks. This demand has further intensified in recent years, driven by the rise in popu-
larity of Large Language Models (LLMs) [53], which rely heavily on HPC for training
large-scale models, and by global challenges such as the COVID-19 pandemic [139].
At the same time, the international push toward sustainability, accentuated by the
global energy crisis and climate change concerns, has highlighted the need for more
efficient and energy-conscious computing solutions [67, 121]. In this context, in-
novations in HPC are increasingly focused on optimizing power efficiency while
maintaining cutting-edge performance.

For years, a handful of established companies dominated the HPC chip mar-
ket [153]. Recently, however, the landscape has shifted with the emergence of new
players [86, 21], many encouraged by the openness of the RISC-V Instruction Set
Architecture (ISA), which stimulated innovation and enabled a range of companies to
pursue processor designs, with some specifically targeting the HPC sector [37]. How-
ever, HPC chip design extends beyond just the hardware architecture of computing
components; it also involves management and control functions, such as thermal and
power regulation. While the hardware delivers the core computational capabilities,
robust thermal and power management is important to sustain efficient and reliable
operational performance [49].

Although interest in HPC chip design has surged, research in thermal and power
management within this domain has largely focused on high-level control methods
at the application or Operating System (OS) level, with comparatively less emphasis
on direct chip-level regulation [16]. The author of this work conjectures this is
mainly due to the industrial secrets covering and restricting access to the HPC chips,
their details and technologies, making it difficult to study and modify chip-level
functionalities. Consequently, research on Low-Level Controllers (LLCs)—hardware
on-chip controllers that directly manage core operations, sensors, and actuators—has
stagnated, with most progress in this area dating back over a decade (4.1).

This thesis aims to address that gap by exploring the current state of low-level
control strategies in HPC chips, analyzing the associated challenges, and laying the
groundwork for future research. The goal is to not only advance the understanding
of HPC chip thermal and power control, but also to spark new academic interest in
this area, fundamental for next-generation HPC systems.

The favorable circumstances that enabled this research were made possible
through the participation in the European Project Initiative (EPI) [81], a project dedi-
cated to regaining technological independence in Europe by developing a competitive
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HPC chip on European soil [28]. This setting provided the opportunity to actively
participate in architectural design meetings and gain an in-depth understanding of
modern chip design, requirements, and technical challenges. In this work, the insights
and lessons learned throughout this process will be described, with a particular focus
on the power management and thermal control of the chip’s cores.

1.1 The European Processor Initiative (EPI) Project

The European Project Initiative (EPI) is a strategic project aimed at reducing Europe’s
dependency on non-European technologies in the field of HPC. Launched in 2018 as
part of the European Union’s Horizon 2020 program, EPI seeks to secure Europe’s
technological sovereignty by designing an energy-efficient high-performance pro-
cessor tailored to the needs of future European HPC systems, Al applications, and
automotive technologies. The initiative is a direct response to Europe’s reliance on
foreign technology for critical computing infrastructure, which poses potential risks
for both national security and competitiveness in a data-driven global economy [28].

One of the unique features of the EPI is its focus on open-source technologies,
specifically the adoption of the RISC-V architecture. This decision allows Europe to
build customizable Central Processing Units (CPUs) without relying on proprietary
solutions from non-European entities. The core of the EPI project is the development
of the Rhea HPC General-Purpose Processor (GPP), alongside the creation of the
European Processor Accelerator (EPAC) optimized for HPC vector workloads.

The consortium leading the EPI project includes major European industrial play-
ers, research centers, and universities, such as Atos, STMicroelectronics, the Barcelona
and the CINECA Supercomputing Centers, and the Universities of Ziirich, Pisa, and
Bologna.

1.2 RISC-V Instruction Set

The Instruction Set Architecture (ISA) serves as the foundational interface between
hardware and software in any computing system. It defines the set of instructions
a processor can execute, including data handling, memory access, and control flow
commands [123].

RISC-V was born out of research at the University of California, Berkeley, in 2010,
as part of a long history of research into Reduced Instruction Set Computer (RISC)
architectures [11]. The original goal was to create a simplified, efficient, and open-
source ISA that could avoid the complexities and proprietary constraints found in
older architectures like x86 and ARM. Its open-source nature means that anyone can
use, modify, and extend it without licensing fees, making it attractive for academic
research, startups, and new companies. Since its creation, RISC-V has rapidly gained
popularity and has become a widely adopted standard across industries, including
HPC and embedded systems.

In HPC, RISC-V’s openness supports the development of specialized processors
fine-tuned for scientific tasks, and recompiling programs for a new ISA is generally
straightforward. By contrast, older ISAs like x86-64 face the burden of backward
compatibility, with legacy instructions adding complexity to chip design and power
consumption, limiting their efficiency and scalability in modern applications. RISC-
V’s minimalist, modular approach avoids these issues, enabling energy-efficient,
customizable processors that are easier to design and better suited for a wide range
of tasks.
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RISC-V is now seen as a key driver of innovation in processor design, and it
has gained widespread adoption in a variety of sectors. The ability to customize
processors for specific tasks, along with the growing ecosystem of tools and software,
has made RISC-V a preferred choice for both academia and industry and accelerated
its adoption [65].

1.3 Current-era Chips Design

The design of modern HPC chips has undergone a significant transformation in the
last twenty years [12]. Traditionally, CPUs followed a monolithic, single-core design
philosophy, where performance improvements were largely driven by increasing
clock speeds and shrinking transistor sizes. However, as we approached the physical
limits of silicon-based technology—encountering stability issues and voltage limita-
tion—the industry had to shift its focus to multicore architectures to keep increasing
the processor performance at a constant rate as described by Moore’s law. Today’s
cutting-edge HPC chips integrate large number of cores, earning them the classifi-
cation of “many-cores architectures”. Performance improvement has also relied on
heterogeneous architecture characteristics that integrate general-purpose cores with
domain-specific accelerators such as tensor cores, Advanced Vector Extensions (AVX),
and Field-Programmable Gate Array (FPGA) [80].

As processor designs incorporate increasing numbers of cores, traditional single-
die architectures have faced limitations in scalability and manufacturing efficiency.
This challenge has driven a shift toward chiplet architectures [104], where various
parts of the processor are manufactured as separate, smaller dies, known as chiplets,
and then interconnected on a larger substrate. Chiplet-based design marks a signifi-
cant advancement in modern chip technology, enabling higher production yields and
reduced defect rates, as smaller dies are generally easier to fabricate with fewer errors.
Additionally, this modular approach supports the integration of heterogeneous IP
blocks, allowing designers to combine diverse cores, accelerators, and memory tech-
nologies within a single chip. With this flexibility, processors can be tailored to specific
workloads by optimizing individual chiplets with different transistor technologies,
enhancing performance and energy efficiency [90].

Despite these advancements, the industry is now facing the so-called “dark sili-
con” problem, a direct consequence of shrinking transistor technology and increasing
power densities in modern multicore processors. As chips integrate more and more
cores, it becomes infeasible to operate all of them at their maximum power simulta-
neously without causing thermal runaway or exceeding the chip’s Thermal Design
Power (TDP) limits. This results in sections of the chip remaining underutilized
(thus “dark”) to prevent overheating. The dark silicon phenomenon highlights the
thermal and power management challenges associated with modern HPC chips [88].
In this context, architectural specialization [169] plays an essential role, allowing HPC
systems to handle diverse tasks with high efficiency.

However, as the number of cores and the power density of specialized accelerators
increases, so does the challenge of controlling them. Each core and accelerator intro-
duces unique power, thermal, and performance characteristics, adding complexity
to the controller. The modularity and heterogeneity of chiplet-based designs is con-
fronting with the requirement of sophisticated control structures needed to manage
heat dissipation along with ensuring efficient and reliable power distribution [16].

The emerging trend in chip design of vertical stacking transistors, known as
3D integration, presents itself with a new set of thermal management challenges.
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Although fully stacked 3D chips remain experimental, two-layer designs with stacked
L3 cache over compute cores have already been incorporated into consumer CPUs [1,
62], particularly in gaming applications where they achieve leading performance [7].
However, optimally managing the thermal dynamics of these vertically integrated
layers, where power and heat rapidly fluctuate across closely packed transistors, is
essential for ensuring consistent performance and reliability, and is set to become one
of the challenges of the coming years [44].

The control challenges of modern HPC chips are further exacerbated by their
fastly-varying dynamic workloads. Computational demands may change rapidly
and unpredictably and cores may run vastly different tasks, leading to spatial and
temporal variations in power consumption and heat generation. For example, a
compute-heavy task on one core may produce significantly more heat than a memory-
bound task running on a neighboring core, creating hot spots that, if not managed
correctly, could lead to performance throttling or even hardware failure. In addition,
with shrinking geometries and increasingly dense transistor layouts, the thermal time
constants of these chips have decreased, meaning that heat can build up quickly in
localized areas, requiring fast-acting control mechanisms to prevent damage.

Given the complexity of modern chips, traditional thermal management tech-
niques, such as using fan speed for cooling or globally reducing clock speeds, are no
longer sufficient to ensure adequate system performance. Instead, advanced control
strategies are needed to manage power and thermal characteristics on a much finer
scale. These strategies often involve Dynamic Voltage and Frequency Scaling (DVFS),
where the operating voltage and clock frequency of individual cores or regions of the
chip are dynamically adjusted based on workload demands and thermal conditions.
Similarly, clock gating can be used to selectively disable portions of the chip when
they are not needed, further reducing power consumption and heat generation.

However, the need for fast and efficient control goes beyond simply adjusting
voltages and frequencies. Modern HPC chips require real-time, multi-variable control
strategies capable of reacting to changes in workload and thermal conditions within
milliseconds [16]. These systems must not only respond to fast changes but also
anticipate future evolutions. Advanced control techniques, such as Model Predictive
Control (MPC) and Machine Learning (ML)-based algorithms, are being adopted
with increased frequency to manage these dynamics (3.1).

In conclusion, the evolution of HPC chips toward many-core, heterogeneous
architectures with chiplets and specialized accelerators has unlocked new levels of
performance potential but also introduced significant thermal management chal-
lenges. As power densities rise and dark silicon becomes a growing concern, the
need for advanced, fast-acting control mechanisms becomes paramount. The ability
to manage thermal behavior and power consumption at a granular level is critical for
ensuring both performance and reliability in modern systems.

1.4 Outline

This work investigates the modeling and control of power and thermal dynamics in
HPC chips, with an emphasis on studying low-level control algorithms. The work
is structured to gradually introduce background knowledge, model development,
control challenges, control strategies, and their implementation, progressing from
foundational concepts to advanced experimental setups. Each chapter builds on
the previous one, presenting a structured approach that covers both theoretical and
practical aspects of thermal and power regulation in HPC.
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The outline of the thesis is as follows:

¢ Chapter 2: Background and System Modelling
This chapter lays the groundwork for the thesis by exploring fundamental prin-
ciples of thermal and power modeling in microelectronic systems. It outlines
the structure of an HPC chip, focusing on key on-chip and off-chip components
essential for the control. This foundational overview serves as the basis for
constructing an HPC chip model, providing the basis to understand the control
challenges and design decisions addressed in subsequent chapters.

¢ Chapter 3: The Control Problem - Analysis and Requirements

This chapter begins by delineating the various layers within the HPC control
hierarchy, then narrows down to define the specific control problem addressed
in this work, defining key control variables and requirements. An analysis of
challenges unique to HPC systems follows, particularly on system disturbances
and delays, as well as the impact of actuator non-idealities and the exponential
leakage power on control design. By describing in detail these requirements and
challenges, the chapter highlights the necessity for specialized control solutions
to effectively manage the complexity of modern many-core architectures.

¢ Chapter 4: Control Algorithms

This chapter introduces various control algorithms tailored for dynamic power
and thermal management. Starting with base techniques such as PID control
and moving average methods, the chapter progresses to more advanced ap-
proaches, including fuzzy control, iterative root-finding methods, and Model
Predictive Control (MPC). Each method is evaluated in terms of its suitability
for specific control objectives, providing a comparative basis for understanding
the strengths and limitations of different control choices in managing HPC
requirements.

¢ Chapter 5: Analysis and Comparison of Control Algorithms

In this chapter, the control algorithms introduced in Chapter 4 are evaluated
and compared using thermal and power regulation metrics, as well as target
compliance and performance indicators. The algorithms are tested under dif-
ferent workloads, thermal models, and architectural configurations, providing
insights into each algorithm’s effectiveness under different HPC operational
conditions. Numerical results demonstrate that the proposed fuzzy-inspired
iterative algorithm achieves up to a 5x reduction on the maximum exceeded
temperature compared to state-of-the-art methods, while providing an average
3.56% improvement in application execution runtime. Similar improvements
are also observed over other base control techniques presented in this work.
The fuzzy-inspired algorithm also delivers comparable application execution
performance with the more computationally intensive MPC algorithms, while
providing superior and more consistent power and thermal regulation results.
The proposed linearized MPC implementation, although leading to a decrease
in thermal and power regulation performance relative to a state-of-the-art
configuration, achieves an average 15.56% improvement in target compliance
metric. Finally, a test demonstrating the implementation of the gradient tracking
algorithm for a set of distributed controllers under a shared constraint reveals a
worst-case scenario delay of 30 iterations in achieving constraint satisfaction.

¢ Chapter 6: Hardware in the Loop (HIL) Implementation
This chapter describes the implementation of a Hardware in the Loop (HIL)
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platform developed to validate the proposed control algorithms under realistic
conditions and provide a hardware-software co-design framework. Details are
provided on the ControlPULP hardware, and the design process for the TPC
firmware and the simulation integration. Experimental results validate the HIL
capability to simulate realistic control scenarios for HPC chips, with insights
into algorithm execution timing, communication testing, and overall control
performance.

The resources and implementations developed in this work are publicly available
in the following repositories:

® https://github.com/Ev3ntine/AechPeSi_lab: the Matlab simulation environ-
ment and control part;

® https://github.com/pulp-platform/control-pulpandhttps://github.com/
pulp-platform/control_pulp_pct: the proposed parallel LLC controller, in-
cluding open-source hardware, firmware, and control algorithm;

® https://github.com/pulp-platform/pulp_hpc_cosim: the simulation envi-
ronment written in C for FPGA-based co-simulation.

These repositories provide the necessary tools and resources for further exploration,
replication, and extension of the methodologies presented in this thesis.


https://github.com/Ev3nt1ne/AechPeSi_lab
https://github.com/pulp-platform/control-pulp
https://github.com/pulp-platform/control_pulp_pcf
https://github.com/pulp-platform/control_pulp_pcf
https://github.com/pulp-platform/pulp_hpc_cosim

Chapter 2

Background and System Modelling

Modeling is a fundamental step in the journey of designing and developing complex
systems. It allows investigating system behaviors under different conditions without
physical prototypes or actual implementation, granting the flexibility of changing
the design with ease and without additional costs. By developing mathematical
representations of the system, it is possible to analyze its dynamic response to dif-
ferent inputs, disturbances, and changes in parameters, study stability properties,
robustness, control performance, and many other criteria [63].

When developing models, it is important to identify the correct degree of accuracy
and abstraction, as the level of detail and the appropriate assumptions have to
be carefully tailored to the specific objective. While a highly detailed model may
provide greater precision, it can also be computationally expensive and unnecessary
for certain applications, leading to counterproductive results. Conversely, over-
approximation or failures to identify relevant system non-idealities may lead to
inaccurate predictions and potentially false results, undermining the validity of the
control design.

There are various strategies to create a model, depending on the level of knowl-
edge about the system and the available information. Black-box models rely purely on
input-output experimental data and use identification techniques to generate models
without any knowledge of the system’s internal dynamics. White-box models, on the
other hand, are derived directly from first-principle equations requiring a compre-
hensive understanding of the system’s underlying physical laws. Gray-box models
blend empirical data with some understanding of the system’s physics, providing a
middle-ground approach [151].

This chapter provides a detailed description of the HPC CPU and its computing
chiplet structure from the perspective of the Dynamic Power and Thermal Manage-
ment (DPTM) controller, aiming to develop an accurate white-box representation.
The process starts with a comprehensive system description, which serves as the
foundation for formulating the simulation model.

2.1 Related Works

In CPU modeling, the main interest has been in the thermal and power behavior of
the system. Most studies [112, 108, 146], focus on modeling the thermal evolution,
while Power modeling is frequently addressed as a complementary aspect of it.
These surveys categorize thermal models in Finite-Element, Finite-Difference, and
Spectral or Transform-Based approaches regarding white-box methods, while gray
and black-box models are predominantly machine-learning-based or employ other
identification techniques [26, 54].
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Nearly all established and surveyed thermal modeling tools, such as HotSpot
[141], ThermalScope [5], Sniper [117], Gem5 [31], IBM Turandot [102], BSIM [140],
HSPICE [148], and other CAD softwares, are primarily designed to support hardware
and architectural design. Tools like FloTHERM [138] and Therminator [166] focus
on node-level cooling designs instead. Although these models are widely utilized
in DPTM research, they present challenges when applied to control testing contexts,
as extensive parameter adjustments are often required to make relevant thermal
behavior emerge for the analysis of control algorithms. Additionally, many of these
models lack integrated power dynamics or omit application-level execution factors,
necessitating the use of complementary models, which increases both integration
complexity and simulation time. Examples include McPAT [89] and Wattch [36],
which emphasize core modeling, and tools like Orion [77] and CACTI [154], which
focus on specific processor components. These limitations have led several studies
to employ custom in-house models that simplify the thermal behavior for specific
testing requirements.

In contrast, our modeling approach is orthogonal to these objectives, tailored
specifically for “scaled” real-time simulations aimed at testing control algorithms.
The proposed model abstracts beyond detailed hardware features, instead prioritizing
time-domain evolution with a granularity greater than tens of microseconds. This
abstraction allows for faster simulation speeds and captures key thermal trends
essential for evaluating DPTM control algorithms.

2.2 The Physics of Microelectronics

The fundamental component at the base of HPC processors and other microelectronics
is the transistor. By controlling the flow of electrical current, transistors enable
the binary logic necessary for all modern digital computation [20]. This switching
behavior is governed by an input voltage: below a certain threshold, the transistor
remains off, blocking current flow, while above this threshold, it turns on, allowing
current to pass through [91].

This switching capability is the key to digital circuits, enabling processors to
execute complex calculations at high speeds. However, transistors are not perfect
switches. Their operation is affected by several physical factors that impose limits
on their performance and power consumption, including a temperature range of
operation and considerations on energy losses [123].

Transistors experience two primary types of energy losses: resistive losses and
leakage current. Resistive losses occur as current flows through the semiconductor
material, where resistance causes energy dissipation in the form of heat. While these
losses may be small, billions of transistors switching millions of times per second
may accumulate significant heat generation. Leakage current, on the other hand, is
always present even when the transistor is not switching. The effect occurs because
the insulating layers are unable to fully block the electron flow, a problem that is
further amplified in modern nanometer-scale designs. This unwanted leakage not
only results in power loss but also adds to heat generation [103].

Heat generation poses a substantial challenge in transistor operation, as high
temperatures can lead to significant degradation or failure of the component. With
high temperatures, the materials within the transistor’s channel can experience struc-
tural and electrical changes, impairing the ability to control current flow effectively.
This thermal degradation not only increases leakage current but also disrupts the
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precise switching behavior required for reliable operation. In severe cases, prolonged
exposure to high temperatures can result in permanent damage to the component [46].

For HPC devices, which inherently generate considerable heat during operation,
this thermal sensitivity needs to be taken into account. As transistors are pushed
to operate at maximum performance, the excess heat produced must be carefully
managed to avoid performance bottlenecks or system failure [132]. Advanced thermal
management techniques and efficient cooling systems are essential to mitigate these
effects and ensure that transistors operate within safe temperature ranges, preserving
both the performance and longevity of the components.

2.2.1 Frequency-Voltage Relation

There is a physical relation between the frequency of a Processing Element (PE) (i.e.
the speed of its transistors switching) and the voltage supplied to it for function-
ing [70]. In a Field Effect Transistor (FET) transistor-based digital circuit, toggling
the transistor’s state involves switching its gate voltage below or above a defined
threshold. This process requires charging or discharging the transistor’s gate capac-
itance. The rate of speed at which this change can happen affects the maximum
frequency at which that digital circuit can operate. Higher voltages result in a faster
slew rate when charging and discharging, allowing an increased switching speed [20].
Additionally, increasing the gate voltage beyond the threshold reduces the resistance
of the FET’s conducting channel, resulting in a lower RC time constant, which further
accelerates the logic transitions [123].

Due to these physical characteristics, the maximum achievable frequency is depen-
dent on the supplied voltage. Achieving higher frequencies necessitates increasing
the voltage, though this relationship is sub-linear, meaning that frequency gains
diminish as voltage is raised [70]. This direct dependency dictates how voltage and
frequency can be changed dynamically. For instance, when increasing frequency, the
voltage must be raised first to support the higher switching speeds, and the system
must wait for the voltage transition to complete before the frequency can be safely
increased. Conversely, when lowering the voltage to reduce power consumption, the
frequency must be reduced first, as a lower voltage cannot sustain higher operational
speeds without risking instability or errors. This sequential dependency adds com-
plexity to the control mechanism, requiring synchronization between voltage and
frequency transitions [83].

2.3 The On-chip Controller

Given the critical role of thermal management in maintaining transistor performance
and reliability, modern high-performance processors rely on advanced dedicated
on-chip Thermal and Power Controller (TPC) [49]. These controllers are designed to
monitor and regulate temperature and power consumption dynamically, ensuring
that the processor operates within safe limits even under high workloads.
State-of-the-art TPCs are implemented as embedded microcontrollers within
the chip, counting one or more computing units and additional accelerators [110].
Due to their location, these controllers must be designed to operate with minimal
power consumption and area overhead to avoid negatively impacting the overall
performance of the processor. One of their primary responsibilities is Dynamic Power
and Thermal Management (DPTM), which is achieved through Dynamic Voltage
and Frequency Scaling (DVES). By adjusting voltage and clock frequency of the chip,
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the controller can optimize the power consumption and heat generation in real-time,
ensuring that the system remains within safe operational limits [132]. To perform
these functions, the TPC interacts with the physical components of the processor,
continuously reading data from embedded sensors and controlling various actuators.

In addition to DPTM, these controllers collect data regarding the system state,
aggregate and filter sensors data, and provide this information, upon request, to
other agents, such as external management systems or software layers [78]. To enable
this functionality, these controllers are equipped with a range of communication
interfaces, allowing efficient interaction with both internal subsystems and external
agents [110].

2.3.1 Local Controller for Distributed Control (LDC)

Recently, as many-core architectures have become more prevalent, the computational
capability of the TPC has emerged as a bottleneck when managing large numbers
of PEs [110]. To address this challenge, an emerging trend involves distributing
the control workload across multiple -generally more limited- Local Controller for
Distributed Control (LDC), each responsible for smaller clusters of PEs or even
individual ones.

This distributed approach, made almost mandatory by the rising PEs count, intro-
duces additional design considerations. On the hardware side, multiple LDCs require
efficient inter-controller communication to ensure consistent and timely coordination.
From a control perspective, developing robust distributed loops is fundamental to
achieving global power and thermal objectives without sacrificing performance or
reliability.

This distributed structure inherently enhances architectural modularity and scal-
ability by allowing additional PEs and clusters to be integrated without significant
redesign. Moreover, employing a hierarchical approach enables complex control al-
gorithms to be implemented on a centralized higher-level advanced controller, while
localized LDCs handle simpler, real-time decisions closer to the hardware. However,
the effectiveness of distributed control heavily depends on communication delays.
These delays can significantly impact the responsiveness of the system, particularly
in enforcing power and thermal limits [38].

2.4 The Structure of a Processor

The Processor, or Central Processing Unit (CPU), is the heart of the computing power
of an HPC system. It takes data and instruction from external memory and provides
a result output. It contains several Processing Elements (PEs) (also commonly known
as cores) and other modules to manage data and power lines. The CPU is installed on
a motherboard, which is the board that hosts and connects all different components
of a computing system, as well as the Power Delivery Network (PDN) [64]. The main
components of the PDN are the Voltage Regulator Modules (VRMs) which take the
power input from an external power supply and generate the correct voltage levels to
give to each component on the motherboard [171]. Different components may have
one or more VRMs, but it’s not uncommon to find VRMs and power delivery lines
shared across different components and parts.

Modern CPUs are no longer single-block silicon dies; instead, they consist of
multiple interconnected chiplets [104]. Chiplet design emerged as a response to the
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growing challenges in producing large, monolithic chips due to increased manu-
facturing costs, complexity, and diminishing performance gains at smaller process
nodes [90]. As transistors became harder to scale and power consumption rose, the
cost per area of silicon surged. By breaking a chip into smaller parts, manufacturers
can improve yield, lower costs, and optimize each chiplet for specific functions (e.g.
CPU cores, memory, or I/0), rather than using the same process node across the
entire die.

In a chiplet-based structure, multiple chiplets are integrated within a single pack-
age, typically connected using silicon interposers or advanced organic substrates,
enabling high bandwidth and reduced latency between components [85]. Some of
these high-speed interconnects are AMD’s Infinity Fabric [39] and Intel’s EMIB [94].

In this work, the focus will be on computing chiplets housing General Purpose
PEs, as these exhibit the highest power and thermal output, requiring more direct and
complex control mechanisms. When modeling the thermal behavior of an individual
chiplet, other chiplets are considered as external thermal sources. Depending on
the design, chiplets may be separated by air or insulating material, resulting in
near-thermal isolation !, or they may be positioned in close proximity, establishing a
stronger thermal coupling effect [16].

2.4.1 On-chip Components for DPTM

The primary components of the computing chiplets are the Processing Elements (PEs),
each capable of executing independent tasks. Generally, a single chiplet contains
multiple identical PEs. However, newer architectures particularly in consumer, mo-
bile, and Internet of Things (IoT) markets, are adopting heterogeneous designs that
integrate different types of PEs to improve specialization and energy efficiency [135].
While chiplets contain other elements such as caches (local fast memory), I/O con-
trollers, and other subsystems such as the security subsystem [64], the primary focus
of this work is on PEs.

The performance of PEs depends primarily on their Clock Frequency F, which
dictates how quickly PEs’ internal circuits switch states to complete operations. The
two primary on-chip mechanisms that regulate clock frequency are the Phase-Locked
Loops (PLLs) and the Dispatch Throttling (DT) [49]. PLLs are fundamental for gener-
ating the clock frequency for PEs, but they may be resource-intensive components,
making it impractical to assign one to every PE in large systems, such as many-core
CPUs. As aresult, PLLs may be shared among several PEs [114]. However, modifying
the clock frequency through a PLL incurs a delay during which the output frequency
is unstable, potentially requiring to stall PE operations. A common solution to this
problem is the use of dual PLLs: while one maintains the current clock signal, the
other adjusts to the new frequency, ensuring smooth transitions. HPC chips, due to
their performance requirements, may also contain a dual-PLL configuration for each
PE[116].

In addition to shared PLLs, DT mechanisms are employed to minimize the need
for frequent clock adjustments. These mechanisms are present in each PE and sub-
divide the clock signal at a more granular level, allowing finer control over the PE’s
execution speed without altering a shared PLL clock signal. This approach improves
performance and energy efficiency across all configurations.

IThis is due to the difference between fast silicon thermal time constant, and slower time constants
of large air or insulating material gaps. More details are provided in section 2.6, while time constant
computation is given from eq. (2.5).
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Another set of on-chip components with which the TPC interacts are the sensors
and the activity registers of the PEs. The most transversal is the Process, Voltage,
Temperature (PVT) sensors [6], as the name suggests, measure three important metrics
for the DPTM: the process variations, the supply voltage, and the temperature.

PVT Sensor

In semiconductor manufacturing, “process” refers to the series of steps used to create
integrated circuits on a silicon wafer, including techniques like lithography, etching,
doping, and metal layering to form transistors and other components [14]. Variations
in the process can result in slight differences in the physical or electrical properties of
the components, impacting performance and power consumption. Process variation
can also be tracked to analyze the degradation of the component due to aging effects,
and thus provide mitigation techniques [25, 43].

Although the supply voltage is regulated by off-chip components, such as the
VRMs, which provide monitoring and control capabilities, it is important to measure
the supply voltage also at the component level. Various factors, including on-chip
mechanisms that dynamically modulate voltage, voltage droop, and fluctuations
caused by activity spikes in other components sharing the PDN, can cause voltage
level variations at the individual component level [126]. These deviations from the
nominal value make it necessary to measure voltage directly at the PE to ensure a
precise application of DVFS. Additionally, measuring both process variation and
voltage allows for potential energy efficiency improvements by enabling fine-tuned
voltage adjustments under certain conditions [55]. Further details on VRMs, on-chip
voltage modulation mechanisms, and the relationship between voltage and frequency
are explored in subsections 2.4.2,2.4.3, and 2.2.1.

Temperature is the most important parameter measured by PVT sensors. By
continuously monitoring it, these sensors provide real-time feedback to the TPC,
enabling precise DPTM actions to maintain safe operating conditions. Accurate
temperature measurements not only prevent thermal violations but also allow for the
optimization of performance through dynamic adjustments to voltage and frequency.
Furthermore, they contribute to long-term system reliability by mitigating risks
associated with overheating and thermal stress, which can degrade hardware over
time.

The number and placement of PVT sensors can vary significantly depending on
design choices and system requirements. Generally, there is at least one sensor per
PE, but there may be cases where a single sensor might monitor multiple PEs, or
conversely, several sensors might be deployed per PE for more detailed monitoring
of the hot spots. These design variations are driven by the need to balance area
overhead, power consumption, and the level of monitoring granularity required for
the specific application [99].

Despite their importance, PVT sensors provide generally noisy data. This noise
arises from various factors, such as limitations due to design constraints, electromag-
netic interference, and transient effects from switching activity in nearby circuits [6].

Activity Registers

In addition to sensor data, PEs store records of their operations in dedicated activity
registers, providing insights into their execution performance. The data logged in
these registers includes details about the types and frequency of operations executed,
stalling or periods of inactivity, and transitions between active and sleep states [136].
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This information is not only valuable for DPTM [45] but also for debugging and
analyzing the performance of applications running on the PEs.

24.2 Off-chip Components for DPTM

HPC nodes contain several off-chip components. Most of them, such as Dynamic
Random Access Memory (DRAM), parallel and graphics accelerators, and other
peripherals, allow limited or no control by the TPC [64]. Consequently, these compo-
nents fall outside the scope of this work, which focuses on the control action on the
primary elements managed directly by the TPC.

One off-chip component important in this context is the Voltage Regulator Mod-
ule (VRM). VRMs are responsible for converting the input voltage from the exter-
nal power supply into appropriate voltage levels required by processors and other
on-chip and off-chip components. Precision in voltage regulation is particularly
important, as modern transistors are susceptible to even minor fluctuations [171].
To maintain safe operation, VRMs are equipped with protection features, such as
safeguards against overvoltage, undervoltage, and overcurrent conditions, prevent-
ing potential damage to the components. Beyond ensuring stable voltage levels,
VRMs also play an essential role in modulating voltage dynamically as part of DVFS
control [64].

When shifting between discrete voltage levels, VRMs introduce delays or “transi-
tion times”, necessitating either processor halting or enforcing a specific Frequency
value for the transition duration, which can reduce application execution perfor-
mance [116]. These transition times arise from the transient response limitations of
the VRM, as its inductive and capacitive components add natural delays when adjust-
ing the output to a new target. Consequently, voltage transitions involve waiting at a
saturated frequency until the transition completes, making it reasonable to model it
as a consistent maximum delay in the output response. This delay can impact overall
system responsiveness, particularly under high dynamic workloads where frequent
adjustments are necessary.

2.4.3 Shared Voltage Domains and Solutions

Similar to PLLs, VRMs are shared not only among PEs but also across chiplets and
other off-chip components. This configuration establishes specific Voltage Domains
within the system, where components must operate at the same voltage level, poten-
tially leading to performance penalties or reduced energy efficiency [64, 12]. While
PLLs use DT mechanisms for fast, decoupled signal level changes, recent voltage dis-
tribution architectures have incorporated additional components beyond VRMs, such
as Fully Integrated Voltage Regulators (FIVRs) and Digital Low-Dropout Regulators
(DLDOs), to avoid the highlighted issues [69].

FIVRs are on-chip regulators embedded directly within the die, allowing for
precise, localized voltage control [41]. By regulating voltage close to the PEs, they
minimize power losses from power distribution traces, simplify motherboard design,
and offer rapid transient responses to sudden load changes. This configuration is
especially beneficial for DVES control, where per-core voltage adjustments are needed
to optimize power and thermal efficiency.

DLDOs are linear regulators used to maintain stable, noise-free power at low
voltage levels, often following the primary regulation from VRMs or FIVRs [164].
Unlike their analog counterpart, they rely on continuous feedback loops, allowing
faster response and enabling their use for DVFS regulation [72]. DLDOs are less
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FIGURE 2.1: Representation of a PE from the control point of view.
The power consumption Px is grayed out because it is not directly
measurable per single PE.

efficient with large input-to-output voltage differences, and dissipate excess power
as heat.

Given their respective properties, FIVRs are commonly used to regulate voltage
for larger components, such as chiplets; DLDOs, on the other hand, are more effective
at a finer granularity, providing voltage adjustments for individual PEs or small
groups of PEs.

2.5 Modelling the PEs

PEs are the primary contributors to power consumption and heat generation in the
chip. Consequently, modeling their thermal and power characteristics is fundamental
for testing and analyzing the TPC. In microelectronics, heat generation occurs due to
the conversion of electrical energy into thermal energy during workload execution,
mainly through the charging and discharging of internal capacitances within transis-
tors [20]. Higher operating frequencies result in a higher rate of transistor switching,
which consequently increases heat generation. The nature of the workload affects
the number of logic gates activated to execute instructions, directly influencing the
amount of heat produced. Voltage has a dual effect, contributing to heat generation
through both active gate switching and passive leakage currents.

Logic-gate components are thus modeled as Multi-Input systems [16] as illustrated
in Figure 2.1. The controllable input signals are the Frequency (F) and Voltage (V),
while the Temperature (T) serves as the component’s state. Another input to the
system is the workload (w), defined by the instructions being processed by the
component. Differently from the control signals, the workload is not controllable by
the TPC and acts as a form of disturbance or noise. The resulting model equation is:

T=f(F,V,Tw,t) (2.1)

where f is the non-linear mapping function of the model. All values vary with time,
but the time dependency has been omitted for clarity.

Recently, HPC chip manufacturers have begun integrating instruction-gating
modules that can be controlled by the TPC [9, 165]. These modules temporarily
throttle certain types of instructions within specified time intervals, to filter out
power spikes. However, despite the presence of these modules, the workload still
acts as a source of noise. These modules only impose a limit on specific types of
instructions, while the rest of the workload remains uncontrollable and unpredictable.
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A conventional approach to divide and linearize system (2.1) is by introducing an
intermediate term, the power consumption of the component (P) [146]. This variable
is essential from a control perspective as it serves as one of the key objectives. The
power consumption of a single component cannot be typically measured directly,
but can still be estimated through the electrical energy conversion. However, the
cumulative power consumption of multiple components can be monitored through
off-chip VRMs [49].

By introducing power consumption, the model can be divided into two parts:
a linear dynamic thermal model and a non-linear algebraic power model. In this
structure, all inputs, including the workload, feed into the power model, while
the output of the power model becomes the input for the thermal model. This
separation introduces an approximation, as power consumption and temperature
were originally coupled in the equation (2.1). In the new dual-model approach, this
coupling can be preserved but is now treated as a relationship separated over time.
This approximation holds if the simulation timing is much faster than the thermal
evolution, making temperature changes negligible in the time delay [17].

The new modelling structure, illustrated inside the block of Figure 2.1, is particu-
larly useful because thermal and power models exhibit different, and often opposite,
characteristics. Power is typically modelled as an instantaneous, algebraic, non-linear
mapping with multiple inputs. In contrast, the thermal model is a slower, dynamic,
linear model, with multiple states and only one input [16, 146].

2.5.1 Thermal Model

Figure 2.2 illustrates the architecture considered for deriving the mathematical de-
scription of the thermal model of the system. It represents a chiplet integrated onto a
silicon die over a carrier Printed Circuit Board (PCB), with a copper heat spreader
placed over the active silicon devices to ease heat dissipation and provide a base for
mounting the aluminum heat sink.

When modeling the thermal behavior, it is essential to consider the entire heat
dissipation system. This includes the primary heat dissipation path, where heat
is transferred through the heat spreader to the heat sink, and the secondary path,
where heat is dissipated downwards through the substrate and into the PCB [142].
Additionally, it is important to account for not only vertical heat flow but also lateral
heat distribution across the chiplet, which impacts the thermal dynamics within
densely packed components [54]. Modeling in support of TPC algorithm design,
the structure of the computing chiplet can be approximated as a grid of PEs and
caches interconnected via communication lanes or Network on Chips (NoC) paths as
illustrated in Figure 2.3.

The modeling process begins with the silicon and heat-spreader layers. The alu-
minum heat sink and the PCB are modeled with a different approximated approach
provided in section 2.5.2 as an extension to the silicon and heat-spreader model. This
is justified by three main factors: (i) the thermal time constants for the heat sink and
PCB are three to four orders of magnitude slower than the faster thermal dynamics
of the silicon [142], making them less significant from the controller’s perspective?
and for tests over a short duration of a few seconds; (ii) the thermal model of the heat
sink is highly variable, depending on factors such as shape, material properties, and
airflow conditions from the fans; and (iii) the lower surface of the cores can effectively
be considered adiabatic [23, 146]. Consequently, modeling these components with

2See Chapter 3 for more details on why the TPC has to focus on the fastest dynamics.
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Heat Sink

FIGURE 2.2: Vertical representation of the HPC Processor thermal

structure. The main heat dissipation path is indicated by the red arrow

passing through the Heat Spreader, the Heat sink, and two Thermal

Interface Materials (TIMs) layers. The secondary heat dissipation path
goes through the PCB below the die to the Motherboard.

FIGURE 2.3: Example of finite elements spatial discretization of cores

(PEs), caches, and interconnect. On the right, is the lumped parameters

model of a single PE. The green part (below) concerns the silicon, with

Py being the consumed power generated by the PE, and the yellow part

(above) concerns the heat-spreader, with Tr being the main dissipation
path to the Heat Sink.

the same level of precision as the cores would introduce unnecessary complexity into
the thermal model. For similar reasons, the interposer layer, required by the chiplet
design is merged into the PCB model.

Starting from the physics first principles and applying Fourier’s heat equation to
the silicon and metallic layers, the following Partial Differential Equations (PDEs) are
derived:

oTs;(x,t .
PSz’CSiSla(tx) = kSiVZTSi(x, t) + q(x, t), with: x € Vg, t € R>g (2.2)

0T, J .
PCuCCuCMaSLX) = kCMVZTCu(x,t), with: x € V¢, t € R>, (2.3)

where Tg;(-) and T¢,(-) are the temperatures of the silicon device and the heat-
spreader defined in the open volumes Vs;, V¢, q(-) > 0 is volumetric thermal
power generated by internal sources (i.e. PEs” power output according to the model
separation described in section 2.5), and ps;, pcu, Csi, ccu, ksi, kcu are the density,
specific heat and thermal conductivity of the two materials respectively.

To develop a model that is tractable for control design purposes, the PDEs in (2.2)-
(2.3) can be “converted” into Ordinary Differential Equations (ODEs) by employing
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Euler discretization of the derivatives along the spatial coordinate x. Clearly, this
operation introduces some degree of approximation. However, resorting to the
structural properties of the thermal system for which the Maximum principle [56]
holds, it can be shown [155, 23, 141] that the feasibility of the thermal constraints can
be guaranteed by discretizing the original PDEs in space and focusing on the hot
spots of the die. For simplicity, n. finite elements (cells) are chosen, each associated
with a power source, i.e. a PE. Each finite element has two thermal states: one
representing the local temperature of the silicon die and the other for the local
metallic heat spreader. For the purpose of this model, the representation of the cache
is simplified by treating it as a resistive and capacitive element while its power output
is incorporated into the instruction-level power consumption.

Denoting with AV/{i} the set of all neighbors of the element i, then the differential
equation associated with a generic element reads as:

)3

Rh
jeN{i} CSi/lRSi,ij

Fo o P; n Tcu,i — Tsij
Siji =
Csi,i CsiiRG; ;

Tsij — Tsii

(2.4)

T Tsij — Teui | Tar— Teu,i Tew,j — Teu,i
Cuji = Yy, —

.RU LLRU
CC”rlRSi,i CSI,IRCu,i

jeN{i} CC“/iR}Clu,ij ’
where Cg; ;, Cc,, ; are the thermal capacitances, while Rgi,i, Rgu’i, Rgi,ij, R}éu,i]-, j e N{i}
are respectively the vertical and horizontal thermal resistances. T; is the temperature
of the aluminum heat sink, and P; is the aggregated consumed power obtained from
Pi(t) = st; q(x,t)dV. This representation, illustrated in Figure 2.3, draws a parallel
to electrical circuit models, where heat flow is analogous to electrical current, and
temperature difference corresponds to voltage. Thermal resistances and capacitances
represent the opposition to heat flow and the ability to store heat, respectively, similar
to their electrical counterparts.

These lumped parameters stem from the aforementioned spatial discretization
procedure, with a detailed formulation provided in [113] and [141]. The correspond-
ing equations are as follows:

1 l

0_7.7

R =, w (2.5)
1 h

RV = — .
kth [-w

where ¢y, ki, and p represent respectively the specific heat capacity ([J/ (kg - K)]),
the thermal conductivity ((W/ (m - K)]), and the density of the material. h, w, and !
denotes the height, width, and thickness of the component respectively.

Collecting all temperatures in a unique vector T = (Ts;1, Tcua, - - -, Tsin,, Tcun.,
Ta1)T the thermal model (2.4) can be compactly rewritten as:

{T(t) = AT(t) + BP(t) (2.6)

Tsi = CT(t)

where P = (Py,...,P,.)T,and A, B, C follow directly.
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2.5.2 Thermal Model Extensions

The aluminum heat sink and the PCB are modeled by introducing a single additional
thermal state for each element. These states interact with neighboring layers through
heat conduction, with the addition of a spreading resistance in series to account for
the different contact areas between the layers [141]. The formula for the spreading
resistances is derived in [87]. Albeit being an approximation [128], this approach
aims to introduce slow time-varying temperature and dissipation shifts to study the
impact of long-term dynamics and drifting states on the controllers.

To complete the two thermal dissipation paths, two additional states are added
to the thermal model: one for the motherboard and one for the case’s internal air.
Additional resistances are added to emulate the presence of the two TIM layers [76]:
the first between the cores and the heat-spreader, and the second between the heat-
spreader and the heat sink. These TIMs enhance heat transfer across layers by
eliminating air, which has a much higher thermal resistance. However, despite
improving overall heat conduction, they still introduce a degree of thermal resistance
between the surfaces.

Incorporating air as a thermal state requires two additional considerations: first,
modeling heat convection between components instead of heat conduction, and
second, accounting for the interaction with external air. Air heat convection occurs
horizontally with the motherboard, and both horizontally and vertically with the
heat sink.

For the heat sink, a multiplicative factor is introduced to account for its shape,
which generally includes multiple fins that significantly increase the surface area for
heat dissipation. This factor also accounts for active cooling provided by fans, which
enhances convection by forcing air over the heat sink, accelerating heat removal [2].
Modern heat sinks are often more complex than a piece of metal, incorporating heat
pipes that further improve thermal management by rapidly transferring heat away
from the core components. Heat pipes operate by utilizing phase-change technology:
a liquid inside the pipe evaporates as it absorbs heat, then condenses back into liquid
when it reaches a cooler section of the pipe, effectively transporting heat with high
efficiency [124]. However, for the purposes of this model, a simplified representation
of the heat sink is sufficient. The goal is not to capture every detail of the thermal
dynamics but rather to approximate the overall behavior and model a slow, long-term
thermal drifts.

Modeling the interaction between the internal case air and the external envi-
ronment is beyond the scope of this work. Accurate representation would require
advanced fluid dynamics simulations to account for powerful, high-speed fans that
push air either horizontally in rack-mounted systems or laterally in consumer cases,
generating turbulent patterns. Instead, a simplified approach is adopted by introduc-
ing a basic heat-exchange factor to approximate the thermal interaction between the
internal and external air. The external air temperature is also considered constant,
assuming an infinite thermal capacitance. The vectors and matrices of the model (2.6)
are extended with the inclusion of the described four states.

Fan speed presents an interesting challenge in thermal modeling, as it cannot be
directly treated as an input signal but rather modifies the thermal model parameters,
particularly the convective heat transfer rates. Modeling this interaction requires
the use of time-varying or hybrid models, where the system remains linear, but the
parameters that govern heat transfer are adjusted dynamically based on fan speed.
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2.5.3 Power Model

According to the model separation described in section 2.5, one power source P; is
associated with each PE. This algebraic power model is a non-linear function of all
the inputs to the HPC PE, as well as its current thermal state [20]:

Pi(t) = hi(Fi(t), Vi(t), wi(t), Tsii(t)), (2.7)

where h; is the nonlinear mapping function.

Various models can be employed for /() without altering the proposed structure
of the system model. The power model used in this work is the most commonly used
one [75, 146, 112, 103]. In this model, power is divided into two components: the
dynamic power P4y, with the exclusive dependence on the Frequency F and the
workload w, and the leakage power (or static power) Pst, which is independent of
these factors and instead depends only on Voltage V and temperature T.

p:pstat+den

(2.8)
=key + (IecV) - K(Tsi, V) + CepfFV?

where I is the static current and Cef is the effective capacitance which parametrizes
the type of workload (w(t)) being executed on the PE. K(Ts;, V) is a non-linear
function that encapsulates the dependency of the leakage power to the temperature
and voltage of the component.

Ceff represents the portion of capacitance involved in transistor switching ac-
tivity during computation. It accounts for the physical capacitances present in the
transistors and interconnects, as well as the switching activity factor, which reflects
how many transistors are toggling between states. Thus it depends on workload
characteristics, circuit architecture, and the activity levels of different processor com-
ponents [123].

In this work, an exponential relation based on [20, 130] is employed as the non-
linear leakage component K:

IC(TSZ, V) — e(kUV(t)-‘rkTT(t)-‘rkTo) (29)

where the k. parameters are constant and computed on the critical values Vjyax and
Tmax-

Incorporating temperature dependency into the power model has several impor-
tant implications. First, it preserves the original coupling (2.1) between temperature
and power, though this relationship is now decoupled in time. Second, it intro-
duces scenarios where, even with constant inputs (F, V) and workload w, power
consumption P may vary due to thermal drifts. Lastly, this addition models the
thermal runaway scenario [158] where temperature and power increase each other
in a positive feedback loop, leading to the irreversible damage of the component if
those variables are not appropriately controlled by the TPC.

Dynamics in (2.6) combined with the algebraic power model in (2.8) describe the
overall system thermal and power behavior.

2.54 Performance Model

In this work, the performance model is intended as two parts: modelling the instruc-
tion trace (or workload w) and the mechanism to use this trace within simulations to
compute C,sr, which is subsequently employed in the power model. Although from
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the perspective of the TPC, the workload is treated as a noise signal [16], accurately
modeling it is essential to achieving a dynamically variable testing setup. The rate
of workload “consumption” depends on the PE’s operational speed and changes in
real-time according to the frequency control signal, making the performance model
crucial for realistic testing analysis and comparison [20]. Furthermore, specific types
of applications and workload scenarios are targeted for the controllers evaluation and
comparison, and a well-developed performance model enables such characterization.

Modeling the workload with high precision is challenging, as it is architecture-
dependent and often beyond the scope of this work. Workload dynamically changes
with PE speed, which operates on a nanosecond scale, and is deeply influenced by
architectural features such as out-of-order execution, deep pipelines, hardware multi-
threading, and superscalar features [103, 12]. Additionally, execution characteristics
like cache misses and synchronization barriers introduce non-deterministic memory
latencies. Consequently, predicting the exact execution sequence of instructions in
modern HPC architectures is nearly impossible without any degree of approximation.

Quantum-Based Workload Modelling

To effectively model the instruction trace in this work, a quantum-based approach
is employed. Each “quantum” of instructions represents the smallest unit in the
trace. These quanta exhibit distinct characteristics, variable sizes, and can be flexibly
linked to each other. The primary assumption is that instruction density within
each quantum is uniform, allowing temporal and causal dependencies within the
quantum to be disregarded. This simplification is substantiated by the inherent
unpredictability of exact trace execution and by the discrete time steps used in the
thermal dynamic model. With a quantization matching the thermal model time step
tm, the introduced approximation is effectively masked by the time discretization
required to run the simulation, reducing the need for finer granularity within the
instruction trace. Additionally, PDN hardware smooths out any workload oscillations
below 100us [51], and for TPC control testing, the primary interest lies in application
phases and average workload behavior.

The quantum-based approach enables a shift from modeling individual instruc-
tions to representing workload behavior with instruction-characterized cycles, inher-
ently capturing characteristics such as Instructions per Cycle (IPC), memory stalls,
cache misses, and SIMD /vector instructions. This cycle-focused method facilitates
the use of real instruction traces from benchmarked executions and simplifies the
creation of the simulation part of the performance model. To illustrate the utility
of this shift, consider the case of the execution of a single instruction A which is
characterized by an IPC of 0.5 and incurs five additional cycles due to cache misses.
Within the quantum, this can be represented as two cycles attributed to A and five
cycles to cache misses. In this way, the cycle representation preserves architectural
complexity while allowing for an averaged approximation of execution behavior.

Before detailing the properties of each quantum unit, it’s necessary to introduce
a further characterization. Given the wide variety of instruction types and operand
values—each potentially impacting power consumption uniquely—instructions are
grouped into discrete power levels, each associated with its average C,¢f value to
determine the input for the power model.

Each quantum unit is defined by the following attributes:

¢ N: the number of cycles represented by the quantum

¢ Cycles per Level (CPL): the distribution of cycles per power level
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* Wait Time: a frequency-independent stall that generates the minimum C, ¢
level

¢ Memory Boundness: a factor describing how frequency impacts the consump-
tion rate of the quantum

¢ Additional Properties: these may include synchronization barriers (for coor-
dinating workloads across PEs), target changes (indicating the initiation of a
specific command to the TPC), and other desired characteristics.

Simulation Mechanism for Quantum Consumption

In the simulation, a mechanism extracts from each quantum a number of cycles equal
to the product of the PE’s current frequency and t;,. The discretization time step of
the thermal model ¢4, establishes the temporal resolution for the entire simulation.
Depending on the frequency and the quantum size N, multiple quanta may be
consumed within each t;, interval, or a single quantum may extend over several t,.
Consequently, the performance model must manage both the number of consumed
cycles and the position within the quantum trace, as well as accurately translating
wait time into cycle equivalents.

The memory boundness parameter determines how the operating frequency
impacts cycle consumption within each quantum. This parameter effectively governs
the relationship between frequency and cycle progression, directly influencing both
energy efficiency and performance in control comparisons. The memory boundness
value indicates the percentage of N cycles within the quantum that are unaffected by
the operating frequency in terms of cycle consumption rate, and thus are independent
of frequency changes. This serves as an alternative means to establish a pseudo-wait
time property but with a defined CPL power level.

The execution time of these memory-bound cycles, and possibly the wait time,
should instead be influenced by the uncore frequency [47]. The uncore frequency
governs the operation of components outside the PEs, such as the cache, memory
controller, and interconnects, which handle memory-bound operations. Adjusting
uncore frequency can impact data access times and overall memory latency, thereby
affecting the performance of memory-bound operations. However, this influence of
uncore frequency is not yet implemented in the current model.

2.6 Model Implementation

In order to execute the simulation accurately, it is necessary to address the timing and
dynamic requirements of each model. The performance model is relatively straightfor-
ward to implement, as its quantum-based design (2.5.4) allows it to adapt to various
resolutions, albeit with approximations depending on the chosen discretization. The
power model is defined by an algebraic equation (2.5.3) and thus it does not impose
specific dynamics on the simulation. However, timing constraints are introduced
by the hardware elements within the PDN, requiring power changes in the order of
100us to be managed by the TPC controller [51].

The thermal model, being dynamic, imposes stricter timing requirements. Pro-
cessor thermal time constants vary across different components, with values in the
order a ~ 10s, ~ 0.1s, ~ 1ms [26], relative to the heat sink, heat-spreader, and silicon
dynamic respectively. To avoid the complexity of solving continuous models through
ODEgs, the thermal model is discretized. This discretization also aligns well with the
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digital nature of the TPC controller, facilitating the execution of both within a unified
environment.

Considering these factors, a time discretization interval (and a simulation timestep)
ty, between 10us and 50pus is chosen. This timestep: (i) captures power fluctuations
relevant to the controller, (ii) avoids overly coarse approximation of workload dy-
namics (10pus at 5GHz represents 50.000 cycles), and (iii) effectively simulates thermal
dynamics by running at a rate approximately two orders of magnitude faster than
the shortest thermal time constant in the system, while striking a balance with com-
putational requirements.

Proper attention must be given to accurately modeling the system’s non-idealities
introduced by real sensors, actuators, and system architecture. A more detailed
discussion is provided in section 3.3. Of particular importance are the delays affecting
the TPC execution, including the sensors’ zero-order hold delay, communication de-
lays, and actuator delays, all of which influence and degrade the control response [58].
Moreover, the shared structure of actuators for VRMs and PLLs, and the relationship
between frequency and voltage F-V described in section 2.2.1 impose additional con-
straints. If these factors are not appropriately considered, they may lead to inaccurate
control performance results.

The parameters for the thermal and power models used in the simulation are
derived from our study of the EPI Rheal processor, supplemented with data from
other works [130, 23, 21]. This combination of empirical data and validated litera-
ture ensures that the models reflect realistic HPC chip behavior, providing a robust
foundation for testing and evaluating control algorithms.

2.7 Conclusion

This chapter has presented a comprehensive framework for modeling computing
chiplets, focusing on its application in simulating and evaluating the TPC and its
corresponding control algorithm. The modeling methodology has been examined
in detail, outlining the rationale behind approximations and the emphasis on accu-
rately representing elements that are critical for control interactions. The modeling
approach accounts for system dynamics, control algorithm execution periodicity, and
physical constraints, ensuring relevance in dynamic power and thermal management
scenarios.

The discussion has detailed the key components of an HPC chiplet, integrating
physical descriptions with functional modeling. The computing chiplet is decom-
posed into three distinct submodels—performance, power, and thermal— with their
own characteristics. The methodologies used to derive these models, including the
governing physical principles and necessary simplifications, have been systematically
presented.

The thermal model is structured as a spatially discretized representation of the
heat transfer dynamics within the silicon die, heat spreader, and associated cooling
mechanisms. By leveraging lumped-element modeling, the formulation captures
both vertical and lateral heat dissipation paths while maintaining computational
tractability for real-time simulations. The power model incorporates both dynamic
and leakage power components, highlighting the exponential dependency of leak-
age power on temperature and voltage, which introduces additional complexity
in control tasks. The performance model is constructed based on an instruction-
quantum abstraction, allowing flexible, modular, and computationally light workload
characterization, introducing approximations that don’t impact TPC testing.
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Beyond the formulation of these models, this chapter has emphasized the practi-
cal implementation aspects, including time discretization, the choice of simulation
parameters, and considerations regarding sensor noise, actuator response times, and
other real-world non-idealities. The selected time step balances accuracy and com-
putational efficiency. The modeling framework introduced in this chapter serves
as a foundation for the subsequent analysis of control strategies. The next chapter
builds on this framework by defining the control problem, formulating objectives
for the TPC, and analyzing the impact of non-idealities. The insights gained from
this simulation provide the necessary groundwork for designing and evaluating
advanced control algorithms tailored for HPC chiplets.
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Chapter 3

The Control Problem - Analysis and
Requirements

The development of control strategies requires a precise understanding of the system’s
scope, requirements, and inherent limitations. Achieving an effective control design
depends on accommodating the unique characteristics of the system, including non-
idealities, time delays, disturbances, and constraints on the control signal. Therefore,
it is essential to clearly define the control problem, encompassing its operational scope
and the limitations imposed by factors such as computational resources, available
information, and environmental conditions.

Control systems can be divided into different layers or hierarchies, each character-
ized by varying degrees of abstraction, time scales, and system knowledge. Lower
layers often deal with direct interactions with physical components, requiring rapid
responses to changes in the system’s state. Higher layers, in contrast, may focus
on strategic optimization, incorporating broader system-wide information to make
decisions over longer time horizons [143].

This strategy is known as cascade control design, where multiple controllers
are arranged in a nested configuration, allowing finer and more precise control of
complex systems. In this arrangement, the output of one controller, known as the
outer controller, serves as the reference or setpoint for another controller, called
the inner controller. The inner controller directly influences the system’s actuators,
allowing faster response to disturbances and more effective control over specific
system variables. This nested approach provides enhanced stability and reduces the
effects of disturbances that might affect the system between the two control loops. It
also improves system performance by separating and controlling dynamic behaviors
at different time scales on different hierarchy levels.

In HPC architectures, control is implemented through a cascade of control blocks,
each operating within distinct time domains, addressing different requirements, and
according to diverse abstractions. These blocks can be broadly categorized into
three main types as represented in Figure 3.1: the Low-Level Controller (LLC), the
High-Level Controller (HLC), and the Global-Level Controller (GLC) [24, 12].

As the name suggests, the LLC operates directly on the hardware, and it is the only
type of controller with unmediated access to the physical components and sensors of
the system [122]. Positioned at the lowest level of the control hierarchy, the LLC has
limited computational power and access only local system information. Designed to
meet strict dependability and safety requirements, LLCs perform real-time control
tasks with response times ranging from microseconds to milliseconds, ensuring fast
reactions to changes in operating conditions and workloads. Consequently, LLCs
typically rely on simple and reactive control strategies [49].

HLC instead operates at a higher level of abstraction within the software stack,
leveraging greater computational resources but with considerations on execution
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FIGURE 3.1: Cascade Control Architecture in an HPC System. The
three control blocks operate in separate time domains, each with its
own system abstraction and external data sources. The LLC (inner
light green) manages low-level actuators (VRM, DLDO, DT, PLL)
based on target operating points from the local HLC and retrieves
sensor data (PVT and others) for feedback. The HLC (middle dark
green) processes system and application data to compute operating
points. The GLC (external light blue) integrates system-wide and envi-
ronmental data to define performance and energy efficiency targets
for each local HLC.

overhead [16]. For this reason they have slower time scales, typically in the range of
milliseconds to seconds. Due to their execution context, HLCs have a broader knowl-
edge of the system, including workload characteristics, application performance
metrics, and the state of software execution. Their main objective is to optimize
the trade-off between performance, energy efficiency, and user experience. HLCs
generally employ more complex and computationally intensive algorithms that take
into account factors such as workload distribution, system state, and inter-system
coupling. They often rely on predictive control algorithms, such as MPC, to anticipate
system needs and optimize performance [103].

At the highest level of the hierarchy, the GLC abstracts even further from the
system hardware, focusing on managing and coordinating resources across the node
or even the entire computing center [95]. More similar to the HLC but with a more
managerial role, the GLC operates at a time scale of seconds with an even broader
scope, overseeing global power and thermal budgets, ensuring system stability,
and managing job dispatching and resource allocation. Their focus is on long-term
optimization and coordination rather than fine-grained control [163].

Other types of control agents, such as the Board Management Controller (BMC),
may also be present in an HPC system. The BMC functions as a hybrid between
LLC and HLC, being a controller on the motherboard and interacting with hardware
components [59]. However, from the LLC’s perspective, these agents merely set input
targets and constraints, making them functionally similar to HLCs in the context of
control strategies [16].

As outlined in the Introduction 1 and in section 2.3, this work focuses on the
LLC. In accordance with the separation property of cascade control, it is important
to understand the specific requirements of each controller to effectively differentiate
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their roles and scope. Therefore, in this chapter the LLC control problem is described,
distinguishing it from the characteristics and state-of-the-art approaches of other
types of controllers. By understanding the requirements and control challenges,
it becomes possible to compare the effectiveness of various control strategies and
propose more effective solutions.

3.1 Related Works

The majority of state-of-the-art research on HPC control focuses on HLC algorithms.
Much of the literature emphasizes prediction and optimization over a deep under-
standing of the physical system’s nuances, architecture, and constraints. When
research is tested on real systems, unless it pioneers work on newer RISC-V chips, it
automatically leans on an underlying LLC. Furthermore, several of these algorithms
address only a single metric, such as power or temperature, leaving other problematic
conditions to be managed by the LLC layer [122].

While HLC studies are valuable, comparable research specifically for LLC control
is limited. Some earlier studies could be loosely classified as LLC research [132], but
these typically involved basic control techniques targeting single-core systems with
significantly lower leakage power and fewer nonlinear behaviors.

Modern HLC controllers [49, 103] are devised to be implemented within the OS
routines or as user-level applications that run alongside the main system workload.
Leveraging application-class PEs, HLCs generally have access to greater compu-
tational resources than LLCs, albeit limited by the contention with the executing
workload, but their access to system internals is restricted for security reasons [122].
Current HLC designs support advanced control algorithms aimed at prediction and
optimality [145, 43]. These algorithms consider a broad characterization of the sys-
tem, including current executed workload and external conditions [49], rather than
focusing solely on the physical and architectural aspects of the system. Consequently,
HLCs tend to prioritize energy efficiency and optimal application performance trade-
offs over strict power and thermal constraints. To interface with the physical system,
HLCs frequently utilize abstractions provided by protocols like Advanced Configura-
tion and Power Interface (ACPI) [136].

Model Predictive Control (MPC) is commonly applied in HLC design for thermal
management, using optimized trajectories calculated from sophisticated cost func-
tions [23, 155, 96, 160, 161]. A group of HLC works [35, 27, 45] focuses primarily on
enhancing performance and energy efficiency through application analysis, as well
as optimized thread scheduling and placement. Model identification techniques [22,
43] including ML-based methods [97] support the development of complex and ac-
curate HLC controllers that adapt in real-time. A substantial body of research exists
on ML-based HLC controllers [115] that optimize not only energy efficiency and
performance but also task scheduling and thread management. Although there is
a growing interest in lightweight HLC controllers, this trend primarily applies to
mobile platforms [30, 48], which differ significantly from HPC systems in terms of PE
count and power scale.

Research on GLC is also flourishing [95, 57, 3], with a comprehensive focus
on efficient resource allocation, global thermal management, and energy efficiency.
Overseeing and coordinating multiple HLC and LLC controllers across numerous
nodes, GLCs optimize overall data-center performance, energy consumption, and
cooling efficiency. These controllers utilize large-scale optimization and predictive
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models to balance workload distribution, while real-time monitoring and adaptive
control strategies help mitigate thermal hotspots and reduce operational costs.

3.2 The LLC Control Problem

Due to the increasing specialization of processors, the advent of dark silicon designs,
and many-core configurations, it is no longer feasible for all cores to operate at their
maximum performance simultaneously [88]. Doing so would result in excessive
power consumption, surpassing the VRMs’ limits and the capacity of the PDN [64].
This would also lead to thermal constraints violation, as the heat generated by the
transistors would exceed the capacity of the cooling system, with horizontal thermal
coupling between neighboring PEs further exacerbating the issue.

In accordance with the separation principle of the defined cascade structure [143],
the control problem of the LLC can be formulated as follows::

* Apply as close as possible the inputs provided by the outer control loops

* Manage the faster dynamics, including the PEs’ fastest thermal response and
power spikes

¢ Ensure that all safety requirements are met, including transistor thermal limits,
VRMs power and current thresholds, and PDN constraints

Additionally, the secondary objective is to:

¢ Optimize the performance-to-energy efficiency trade-off based on received
targets.

Supplementary constraint requirements, such as a target PE temperature or a
lower power budget, may be requested from the LLC for optimization decisions
at higher levels of the control. However, selecting the most stringent requirement
(i.e., the lowest value) is sufficient to fulfill all requirements. Thus, to simplify the
notation moving forward, this minimal constraint assumption will be adopted when
discussing power budgets and thermal limits. In doing so, it is important to note that
the constraints become time-varying.

The control problem for the LLC can then be formulated as follows:

2
min )FT(t) R ‘R
subject to : iPi(t) < Pg(t)
i=1 (3.1)
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where F, = (F,1, ..., Faun.)T are the applied Frequencies to the n. PEs, Fr = (Fry, ...,
FTnC)T denotes the target frequencies provided as operating points from the higher
layers of the control system, and R € R"*" is a symmetric positive definite weight
matrix with | - | its corresponding norm. Pp represents the total power budget of the
node, while Pp, are the power budgets for the VRM domains. 1, refers to the number

of Dj voltage domains such that Z]”i \ 1j = nc. Lastly, T; is the temperature of the i
PE and Ti is the thermal limit.
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In this control framework, the variables P and Pp, exclude off-chip components
such as DRAMSs, storage devices, and Peripheral Component Interconnect (PCI)
components such as Graphic Processing Unit (GPU). However, subtracting from
those variables the power consumed by off-chip components, over which the TPC
has limited control, can effectively account for their power consumption without
adding complexity, as these values are already considered time-varying based on
earlier considerations. Additionally, this work primarily focuses on controlling the
PEs within a computing chiplet, which is why the control of off-chip components is
not considered.

3.3 Control Challenges

Numerous state-of-the-art solutions have been proposed to address the control prob-
lem (3.1) [132, 49]. However, many of these solutions do not fully consider all the
control challenges involved. Primarily, the described system operates as a multi-unit,
non-linear Multiple-Input Multiple-Output (MIMO) system, where the control objec-
tives are interconnected. Then, the control signals are both coupled and discretized
at specific values. Moreover, the system is subject to high-frequency, unpredictable
noise, arising from the unknown workload w(t) [16].

Additionally, the control algorithm must function at a frequency in the range
of 2 — 10kHz on an embedded microcontroller. This frequency is dictated by the
constraints imposed by the PDN and the fastest thermal time constants (as outlined
in section 2.6 and in section 3.3.4). Maintaining this operational frequency ensures
effective regulation of temperature and power capping, in accordance with commonly
applied control principles [58].

3.3.1 Exponential Leakage Power Analysis

Leakage power P, is a critical factor in modern HPC systems, and its modeling can
significantly impact power management strategies. As introduced in section 2.5.3, this
work presents an exponential leakage power model (EXP-PS), which offers a distinct
contrast to the linear models (LIN-PS) used in other studies [146, 75]. Figure 3.2
illustrates the comparison between the EXP-PS model (2.9) represented by the blue
plane, and the LIN-PS model shown with the magenta plane.

In the first plot, leakage power values are plotted against Voltage (V) and Tem-
perature (T). At high voltage and temperature, typical in HPC systems, the EXP-PS
model predicts values up to 10 times greater than those of the LIN-PS model. The
top-down view of the leakage power graph in the bottom left of Figure 3.2 illustrates
this further, revealing that for about half of the operating points, the EXP-PS model
produces results similar to or lower than the LIN-PS model. However, in high-power
and high-performance scenarios, the two models diverge significantly.

In the remaining three plots, the graphs compare leakage power to dynamic power
P4yn, with the yellow plane representing the lowest workload (LOW-PD) and the red
plane the highest (HI-PD). It can be observed that in low-power states—where the
EXP-PS and LIN-PS models overlap—the leakage power is comparable to LOW-PD.
However, in high-performance states, leakage power increases to levels that approach
those seen at moderate dynamic power workloads, eventually reaching values similar
to HI-PD.

As a result, the contribution of exponential leakage power is negligible in low-
power states. However, as the system moves into high-power states, leakage power
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grows substantially, accounting for nearly half of the total power consumption. This
behavior is driven by the non-linear relationship between leakage power, voltage,
and temperature, posing a challenge for simple control algorithms.

The EXP-PS model not only complicates the design of the control, but also strength-
ens the coupling between the two key control objectives: satisfying power and tem-
perature constraints. This interconnection results in a positive feedback loop, where a
rise in temperatures leads to higher leakage power, further increasing the temperature.
This feedback loop is the primary cause of the thermal runaway scenario described
in section 2.5.3, posing a significant control challenge in HPC systems.

3.3.2 Control Signals

As discussed in section 2.2.1, there is a relationship between the two control signals F
and V, where certain frequency levels can only be sustained with a corresponding
minimum voltage. However, these signals exhibit different characteristics: frequency
is directly linked to the execution performance of the application running on the
Application-class Processors (APs), while voltage serves as the primary control signal
for reducing power consumption ! to meet the given constraints. Since the signals are
coupled, simply increasing the frequency while lowering the voltage is not feasible.
Instead, it is crucial to find an optimal trade-off operating point [12, 70]. Indicating
with D; the jM voltage domain that supplies the component c;, and omitting the time
dependency for ease of reading, The F-V relation can be described as:

F e [F3., Frax(Vp, ;)] with ¢; € D; (3.2)

m

I According to (2.8) and (2.9), Voltage (V') affects both dynamic and static power components with a
superlinear dependency.
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FIGURE 3.3: The PE power consumption P(t), as modeled by (2.8),
as a function of frequency F (left) and voltage V (right) at 75°C. Each
graph displays only the operating points that satisfy the feasibility
conditions defined in (3.2). Different lines correspond to different fixed
values of the variable not explicitly plotted in the respective graph.

where F2. is the minimum PE frequency of the system.

Further complexity arises from shared actuators, response times, transition delays,
and synchronization, as outlined in subsections 2.4.1, 2.2.1, and 2.4.3. Frequency ad-
justments can be made more rapidly due to the fast response time of the DT, but these
adjustments will have a lower impact on power consumption compared to voltage
changes. This is because the voltage impacts powrer consumption quadratically and
exponentially (2.8). These challenges will be analyzed in the following subsections.

Moving forward, it is useful to define the target power Py, which controllers
generally use as the control variable. Pr is computed from the operating point pair
(F, V) and an estimate of the workload w, using the power model. Since Pr is linear
with respect to the system to be controlled (as detailed in section 2.5), linear controllers
may be employed. Additionally, Pr is directly related to both thermal and power
requirements providing further simplification. From Pr, the Target Efficient Power
(TEP) can be defined, representing the target power consumption of a PE at the most
efficient frequency and voltage pair [42], based on the Frequency-Voltage relationship
(3.2). This should not be confused with the related concept of Thermal Design Power
(TDP), which represents the average power that can be dissipated as heat over a
defined time window, ensuring that the system can sustain steady-state operation
without exceeding thermal limits. [64].

Power steps

The relationship between power, frequency, and voltage plays a crucial role in the
performance and efficiency of HPC systems. Understanding how power changes
with frequency and voltage adjustments is key to optimizing power consumption.
Figure 3.3 illustrates the progression of the TEP for a PE based on the frequency-
voltage relationship (3.2) in an HPC system. In the left figure, the target power Py
is plotted against the frequency, while in the right one, it is plotted against voltage.
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The bold blue line represents the TEP, and additional lines show Pr values at lower
performance-efficiency levels. When reading graphs, it is important to remember that
the actuator outputs are quantized on specific values or levels [12].

In the left part of Figure 3.3, each straight line represents Pr values at a fixed
voltage level, since power is linearly affected by the frequency F. As voltage levels
increase, the slope of each line becomes steeper, with each line ending at the maximum
rated frequency for its respective voltage level. Observing the blue TEP line, which
maximizes frequency for each voltage level, reveals that the power difference (the
power step) is much steeper when changing voltage levels compared to adjusting
frequency within a fixed voltage level. For example, the power jump along the TEP
line is more than 3x greater at 2.2GHz and 5x greater at 2.7GHz than the slope of Pr.
This indicates that while frequency adjustments within a voltage level have a smaller
impact on power and thermal output, changing voltage levels results in significant
power and thermal deviations.

Using the data from Figure 3.3 along the TEP blue line, increasing the frequency by
50MHz from 2.85GHz to 2.90GHz at 0.9V raises Pr by 62.7mW. However, the same
frequency increase from 2.90GHz to 2.95G Hz (which requires a voltage level increase
as 2.9GHz is the maximum allowed frequency for 0.9V) raises Pr by 740.7mW-over
10x more. It should also be noted that these values are measured at fixed temper-
atures and do not account for additional power increases caused by temperature
rising from the higher heat generation. The control algorithm must account for these
differences when selecting the operating point of each PE.

Voltage Domains

The complexity of the previous example increases when considering shared actuators,
particularly the PLL and VRM. The primary issue with the PLL is the limited number
of available frequency combinations, as for each individual PE only the DT can be
controlled directly, and not the PLL. Additionally, global changes to the PLL clock
may cause slight frequency shifts even with a constant control signal. However, as
described in section 3.3.2, small changes in frequency do not cause significant power
fluctuations.

The shared VRM introduces a more significant challenge, as seen in the right plot
of Figure 3.3, where Pr is plotted against the voltage V. The blue line represents
the same TEP as in the left figure, while the curved lines represent different fixed
frequency values. The shape of the lines is a result of the quadratic and exponential
dependence of Pr on V in the chosen model (2.8). When voltage is shared among
PEs, it creates an additional coupling between the control signals. Increasing the
voltage raises the power consumption (and temperature) of all PEs in the domain.
Conversely, reducing the voltage caps the maximum frequency, potentially limiting
the performance of PEs that were not previously constrained by power or thermal
limits. The control algorithm must account for this coupling when distributing power
or setting PE frequencies.

For instance, consider PE A, which is capped at 3.8W due to thermal limits and
operates at the TEP point {2.75GHz,0.85V }. If the domain’s voltage is increased to
0.95V, perhaps due to another PE’s frequency request, PE A would need to reduce its
frequency to 1.85GHz to maintain the same target power, resulting in a performance
loss.

Consider the opposite scenario where PE A has thermal headroom and could
operate at its maximum frequency. If PE B, sharing the same voltage domain, needs
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to reduce its voltage to dissipate accumulated heat?, PE A would be constrained to
the same maximum frequency as PE B, leading to underutilization of the available
power budget. Due to VRM sharing, a controller adjusting the voltage must consider
whether the resulting APr could cause power budget violations or temperature
overshoots in any PEs within the domain. Otherwise, the thermal control system
would need to reduce the frequency (and performance) to maintain safe operating
conditions.

To address this challenge and reduce the complexity of control algorithms, it is
important to introduce fine-grained voltage reduction mechanisms similar to how
the DT operates for PLLs. Some of the solutions currently used are presented in
section 2.4.3.

3.3.3 Disturbances and Oscillations

In HPC systems, various disturbances can significantly affect control accuracy and
performance. There are three major types of disturbances in a typical PE control
scenario: instruction variability, process variation and parameter drift, and sensor
noise. The common control strategies in the literature can address the magnitude of
sensor noise discussed in section 2.4.1. However, it is important to note that such
disturbances hinder precise power and workload identification at the individual PE
level when relying solely on PVT sensors, particularly in higher frequency domains.

Parameter and process deviations in transistor technology are largely due to
variations in the manufacturing process. Previous studies report that these deviations
can cause up to a 10% variation in the current flowing through the manufactured
devices [25, 168, 14]. Additionally, parameters can change gradually over time
due to aging effects. These variations influence the power consumption and thermal
response of the PE, meaning that control algorithms must account for these differences
and avoid controlling all PEs uniformly.

Instruction variability, instead, directly impacts the dynamic power component of
power consumption. Although power spikes are smoothed by the PDN [51], this vari-
ability still results in a constantly changing noise input to the controlled system. This
disturbance is unpredictable, varies at a frequency faster than the control algorithm’s
response time, and contributes significantly to overall power consumption [110], as il-
lustrated in Figure 3.2. Consequently, the system may experience power consumption
fluctuations of several watts per iteration, even when the input values of F(f;) and
V(t) (along with the estimated target power Pr) remain constant. For this reason,
the control strategy should be characterized by a careful balance between reactivity
and filtering to effectively manage this variability.

Power and Thermal

Power steps caused by voltage level quantization and non-linearities, described
in section 3.3.2, can cause significant oscillations around the thermal and power
constraint setpoint. These oscillations occur because the high amplitude of power
steps prevents precise tracking of the setpoints, leading to oscillating control signals
and throttling unless a margin around the setpoint—within which slight deviations
are acceptable—is allowed. This issue is more prevalent when dealing with a large

2From the left-hand side of Figure 3.3, a PE running at the minimum frequency (0.4GHz) and at
the maximum voltage, generates a considerable power consumption (5.52W). This is similar to the
power generated by the same PE at {3.0GHz,0.95V }. This means that, even when running at minimum
frequency, a PE may need to reduce its voltage level to reduce its temperature.
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number of PEs within a single shared actuator domain, where changes to the VRM or
PLL values can increase the oscillations, which are further intensified by the thermal
coupling of neighboring PEs.

Oscillations are also caused by disturbances, particularly instruction variability,
which can cause fluctuations in power consumption and subsequently affect tem-
perature. This issue is exacerbated by controller delays described in section 3.3.4.
High-amplitude oscillations may lead to violations of thermal and power capping
constraints, reduce performance over time if not properly filtered by the control algo-
rithm, and place additional stress on the hardware, accelerating its aging process [46].

3.3.4 Controller Delays

In digital control systems, such as the LLC and other embedded microcontrollers,
control actions are executed at discrete intervals, in contrast to continuous-time sys-
tems. This discrete-time nature introduces inherent delays into the control loop, as
the controller updates its output only at specific time steps rather than continuously.
These delays arise from the periodic execution of the control algorithm, where com-
putations are performed in batches between sampling instants [58]. As a result, any
change in the system’s state is not immediately acted upon but instead processed
at the next scheduled update, creating a lag between the system’s response and the
controller’s output.

Additionally, to ensure consistent output generation, digital discrete controllers
apply the computed output at the beginning of the next periodic execution cycle [58],
resulting in an additional delay of 1t;, where t; represents the controller’s periodic
execution interval.

These delays can negatively affect control performance, particularly in fast-
changing or highly dynamic systems, where timing mismatches can lead to instability,
oscillations, or sluggish response. The longer the delay, the more challenging it
becomes to maintain precision in controlling the system, as its state evolves faster
than the controller’s ability to respond [58].

In the control framework considered in this work, it is key to analyze how power
consumption is particularly affected by delays. As described in eq. (2.8), power is di-
rectly related to the workload w; however, as discussed in section 3.3.3, the workload
exhibits high variability and acts as a high-amplitude noise. When measured, the
workload is only observed during the subsequent control interval, which introduces
a delay. If there is a sudden shift in the workload’s average value—a common occur-
rence [45]—the controller’s response will inevitably lag. Considering the additional
delay for the consistent output generation, the total delay becomes (1 + v)t;, where
v € (0,1) represents the point within the control interval at which the workload
variation occurs. This delay contributes to power and thermal oscillations, with one
of the worst scenarios being an oscillating workload in phase with the controller
interval.

To reduce thermal oscillations, the controller interval t; should be less than half of
the fastest thermal time constant. This rule, commonly applied in control systems [58],
also ensures that the control algorithm can manage the maximum delay in power
consumption variations, preventing excessive PE temperature fluctuations.

Mitigating power oscillations caused by sensing delays typically requires the
use of hardware power management features built into the PE by the manufacturer.
Historically, Intel addressed this issue by forcefully reducing the frequency when spe-
cific high-power workloads were detected, as reported in [136]. More recent designs
incorporate microarchitectural mechanisms, such as dynamic micro-op scheduling,
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to delay the dispatch of high-power instructions, effectively distributing the asso-
ciated power increase over multiple control intervals [9, 165]. These mechanisms
can effectively mitigate power oscillations, but only within short time windows, as
extending them further would significantly compromise overall performance.

Actuators Delays

As described in sections 2.4.1 and 2.4.2 and in [116], the actuation of control signals
is not instantaneous and can introduce additional delays into the control system.
These delays are significant when PLLs and VRMs levels are adjusted, due to their
required settling times. To avoid introducing additional oscillations or performance
degradation, it is essential for controllers to either predict an optimal operating
point—thus minimizing the need for frequent adjustments—or to apply low-pass
smoothing filters to the control signals.

Loop Separation

Due to the differing characteristics of the two main control variables—temperature
and power—control algorithms can be divided into two different loops, each with
its own timing. Temperature evolves dynamically according to specific thermal time
constants, with the fastest evolution typically in the order of 1ms [141]. In contrast,
power consumption changes are instantaneous and unpredictable, requiring faster
control adjustments.

To address this, a fast control loop operating at approximately 10KHz can be im-
plemented to regulate power fluctuations and manage hardware instruction dispatch
mechanisms. This high-frequency control is essential for mitigating power spikes and
ensuring compliance with the PDN [51]. In contrast, a slower loop running at around
2KHz is sufficient for thermal management, as temperature variations occur over
longer timescales. By dividing the control algorithm into these two loops, the system
can effectively balance the distinct demands of power and thermal management [15].

3.4 Conclusion

This chapter has extended the modeling framework presented in Chapter 2 by inte-
grating a detailed analysis of the real-world challenges associated with controlling
an HPC system. The discussion has focused on key system non-idealities, including
shared actuator constraints, sensor noise, system delays, and power steps, all of
which significantly influence the effectiveness of control algorithms. These factors
introduce complexities that must be carefully considered when designing controllers
capable of achieving robust power and thermal management.

A fundamental aspect is the distinction between the Low-Level Controller (LLC),
High-Level Controller (HLC), and Global-Level Controller (GLC), clarifying their
respective roles in the control hierarchy. By reasoning within the separation princi-
ple, it is established how each layer operates at different time scales, with distinct
responsibilities and objectives. A key issue in prior research is the lack of a clear
distinction among these layers, often leading to confusion in control objectives and
improperly designed strategies that mix real-time enforcement with high-level opti-
mization policies. By precisely defining these roles, this work focuses exclusively on
LLC analysis, ensuring that control strategies are evaluated in their correct execution
domain, without conflating responsibilities that belong to the HLC or GLC. This clear
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separation provides a robust basis for defining the control objectives and thus enables
a precise comparison among algorithms.

Among the system non-idealities, this chapter highlights the importance of under-
standing the exponential nature of leakage power. The comparison between a linear
power model (LIN-PS) and an exponential leakage power model (EXP-PS) revealed
significant implications for control design. In low-power states, the two models yield
similar predictions, but as power and temperature increase, the exponential model
diverges substantially from the linear approximation. This discrepancy poses a major
challenge for linear controllers, which may fail to anticipate the rapid escalation
of power and temperature in high-performance states. The phenomenon is further
exacerbated by the thermal and power coupling, where temperature-induced leak-
age power growth leads to uncontrolled heating, necessitating advanced regulation
mechanisms that can preemptively mitigate such effects without overcompensating
in lower power states.

Additionally, the chapter has addressed the issue of power step quantization due
to discrete voltage and frequency levels. The transition between voltage levels intro-
duces abrupt power shifts, leading to oscillatory behavior if not carefully managed.
These oscillations can compromise stability, degrade system performance, and reduce
overall efficiency. The introduction of actuators, sensors, and controller delays further
exacerbates these effects, as control actions are not immediately applied, requiring
predictive strategies to anticipate system behavior.

Another critical aspect is the impact of voltage domain coupling, where multiple
processing elements share voltage regulation. This constraint imposes limitations
on Dynamic Voltage Scaling (DVS), creating trade-offs between performance and
regulation. The analysis demonstrated that controlling frequency and voltage inde-
pendently is not always feasible, as changes in voltage affect all processing elements
within a domain, leading to performance penalties and potential inefficiencies in
power distribution.

By framing the control problem in this realistic context, this chapter establishes a
foundation for the next section, where various control algorithms will be introduced
and analyzed. The insights gained from this discussion will inform the reasoning
behind control technique choices.
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Chapter 4

Control Algorithms

Designing effective control algorithms for HPC systems requires careful consider-
ation of the system’s characteristics, specific control requirements, and inherent
constraints. As modern HPC architectures continue to evolve toward many-core and
heterogeneous designs, the need for advanced, adaptive control strategies becomes
increasingly essential [80]. These considerations influence design decisions, such
as whether a centralized or distributed control approach is appropriate, and which
system sensors and actuators are to be used.

Safety and reliability criteria are major concerns in this context, and controllers
should maintain temperatures and power consumption within limits, while opti-
mizing their control action such as minimizing performance degradation due to
thermal throttling or power capping. To meet these requirements, a certain degree
of real-time responsiveness and robust steady-state performance must be achieved.
Satisfying these demands might require the integration of predictive and adaptive
mechanisms that can preemptively adjust to fluctuating system states, as purely
reactive approaches may prove insufficient [29].

Understanding the characteristics of the underlying system is thus fundamental
for an effective control design. HPC systems exhibit unique behaviors, such as
nonlinear power-temperature relationships, time delays introduced by actuators, and
the impact of workload variations on energy consumption and thermal distribution
(3.3). Accounting for these characteristics ensures that control algorithms are robust
and effective. For example, actuator delays might necessitate the implementation of
predictive control models, while the inherent nonlinearities of power and temperature
dynamics could be addressed through advanced techniques suitable for non-linear
systems. Additionally, the architecture’s physical structure, such as the distribution
of sensors and actuators, must be considered during the design phase.

This chapter explores various control algorithms, from conventional methods to
more advanced strategies, and discusses how each approach is tailored to the unique
demands of HPC systems.

4.1 Related Works

To the best of the author’s knowledge, four major players in the HPC industry
currently employ proprietary LLC systems: Intel, AMD, IBM, and ARM.

Intel’s approach centers on monitoring power consumption at the functional
block level, with dynamic budget allocation across various components [52]. Power is
estimated using a model that incorporates leakage information, voltage, temperature,
and workload estimates [157]. Intel’s control is implemented through an Exponential
Moving Average (EMA) algorithm over multiple time windows in the order of
seconds [133]. According to [66], additional thermal control features operate in
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parallel with power capping. One of Intel’s flagship management tools is the Running
Average Power Limit (RAPL), a hardware feature enabling fine-grained monitoring
of energy consumption and power/thermal capping across multiple power domains,
covering CPUs, GPUs, and DRAM [78]. Monitoring is conducted via model-specific
registers (MSRs), counters integrated within the architecture [68].

AMD, on the other hand, employs a distributed Proportional Integral Derivative
(PID) control structure [39, 32]. In AMD'’s system, thermal and power control are
handled independently, using frequency as the controlled variable, while a voting-box
mechanism resolves inter-component coupling by choosing the lowest frequency.
Given the design similarities, AMD’s power and thermal management approach
resembles Intel’s RAPL from a structural perspective.

IBM’s Power9 OpenPOWER firmware is available as open-source [73]. The control
uses a voting-box mechanism to select the most limiting frequency across components,
similar to AMD’s approach. Temperature and power are controlled independently,
with frequency as the controlled variable. Unlike AMD, however, IBM’s control
firmware follows a centralized design, collecting data to a central unit and performing
a single algorithmic computation with moving average filters and PID-like controllers.
One component in IBM’s voting-box mechanism incorporates workload estimation
to enhance control precision.

ARM has also released its System Control Processor (SCP) firmware as open-
source [8]. ARM'’s control design is a cascaded structure featuring weight-based
power distribution, with a thermal dispatching layer preceding the power reduction
layer. In this setup, power serves as the controlled variable, with a PID controller
enforcing thermal capping and a two-stage power distribution system with the sec-
ond layer distributing unused power to the cores via an accumulation variable. ARM
uses two independent TPCs based on the Arm Cortex-M7 microcontroller: the SCP
for power management and the Manageability Control Processor (MCP) for com-
munication functionalities [122]. In ARM-based System-on-Chip (SoC) architectures,
interactions with the operating system are managed through the System Control and
Management Interface (SCMI) protocol [92]. SCMI provides a set of OS-agnostic,
standardized interfaces for managing power domains, voltage, clock, and sensors via
a shared, interrupt-driven mailbox system.

In addition to traditional LLC approaches, advanced control strategies such as
Fuzzy logic and MPC have also been explored for DPTM in HPC environments.
Despite being typically employed as HLCs, these techniques have shown significant
potential in optimizing thermal and power performance. Notably, fuzzy control
strategies have demonstrated robustness and adaptability in varying thermal con-
ditions [101, 48], while MPC has been praised for its predictive capabilities and
ability to handle complex system dynamics and constraints [23, 155]. However, most
MPC implementations have focused exclusively on thermal capping, often neglecting
power constraints and key system interactions such as domain coupling and the
frequency-voltage relationship. Nonetheless, these approaches pave the way for
more sophisticated, integrated control solutions, bridging the research gap between
HLC and LLC controllers.

4.2 Baseline Algorithm: PID and Moving Average Techniques

In the development of control strategies, the initial algorithm implemented was struc-
tured as a two-stage process [15]. This design, called Baseline Algorithm (BA), incor-
porated both a heuristic-based power distribution mechanism and a PID controller,
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reflecting the most commonly used structures and algorithms in state-of-the-art
methodologies. The distinguishing feature of this approach was the power distri-
bution algorithm, which adapted dynamically to the temperature of PEs, coupled
with a cascade arrangement of the two control layers, rather than a parallel structure
commonly used in conventional designs. Consistent with the separation framework
outlined in section 2.5, the initial stage (PW-DIST) was responsible for power capping
and allocation among the PEs, followed by the PID algorithm (TH-PID) in the second
stage, tasked with regulating temperature.

In BA, the chosen control variable is the target power Pr. As outlined in section 3.3,
this variable is linear with respect to the system being controlled and can incorporate
all constraint requirements related to both temperature regulation and power capping.
The control action consists of four main steps:

1. Initial Power Estimation (Conv2P)
This initial conversion step uses Fr and w to estimate the power consumption
of each PE, denoted as Pes, through the controller’s power model hest.

Pest = hest(FT/ W, - ) 4.1)

2. Power Capping (PW-DIST)
The second stage applies power capping based on the total estimated power
consumption )/ Pegt ;. The control system ensures that the total power allocated
across the PEs remains within the predefined limits, distributing the available
power budget Pg. The reduction is activated when APc > 0, with:

e
APC = Z Pest,i - PB (42)
i=1

Power is distributed across PEs based on the thermal room, defined as the
difference between the thermal limit T;, and temperature T; of each PE. In
other words, frequency reductions are not uniform but are instead directly
proportional to the PEs’ temperatures, preventing power allocation to PEs that
would be thermally capped by (TH-PID). Furthermore, assuming that the HLC
layers provide accurate Dynamic Frequency Scaling (DFS) Fr targets, power
should not be overly reduced for PEs running high-performance workloads,
even if their temperatures are elevated. The a-Weighted Heuristic Algorithm
(«WHA) follows three steps:

(a) Compute the thermal-based a weights for each PE:

1
w; = m (4.3)
(b) Normalize the & weights:
& = Z:a (4.4)
(c) Reduce PEs’s power as:
Pr;j = Pesti — aiAPc (4.5)

This ensures that the total power consumption of all PEs } /' Pr; does not exceed
the target power limit Pg.
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3. Thermal Capping (TH-PID) In the third step, thermal regulation is applied
using a PID controller for each PE. This implementation employs only the pro-
portional and integral parts of the PID, enhanced with error banding techniques
to reduce oscillations. Since the PID in this structure provides a corrective action
on top of a control signal, rather than tracking a setpoint, the output of the PID
is added to the original Pr value. To prevent increasing power adjustments, the
output of the PID is subjected to upper saturation at the value of 0.

When the controller’s output is saturated, the error may continue accumulating
in the integrator despite the system no longer responding to it, causing the
integral term to grow excessively. This accumulation can lead to overshoot
or slow recovery. To mitigate this, an anti-windup mechanism is included to
saturate the accumulator of the integral component [13]. The implemented PID
structure is shown in Figure 4.1.

}

Saturation

e =

Toff

T -
+
Deadband

Delay / Save

FIGURE 4.1: Structure of the PID used in BA, including the Propor-

tional and Integral (discrete) components, along with Deadband, Anti-

windup, and Output Saturation features. The output is subtracted
from the Pr output of PW-DIST.

All PID parameters have to be tuned according to the specific characteristics
of the HPC system being controlled. The tuning process should find a balance
between achieving a fast response to power fluctuations caused by workload
variations, minimizing the impact of the measurement noise from PVT sensors,
and avoiding large overshoots or oscillations [10]. Overshoots and oscillations
may be particularly problematic as they could result in constraint violations
and performance degradation respectively.

4. Frequency and Voltage Selection (Conv2F) In this final conversion step, the
target power Pr of each PE is mapped back to an operating point defined by the
(F, V) pair. Several strategies can be employed to achieve this mapping, with
the most common approach being the use of a look-up table (LUT).

{F, V} = flest(Pr) (4.6)

where 7es¢() is the inverse of the hes () mapping function in the initial conversion
Conv2P.

Notably, in the entire cascade structure, each step of the algorithm is applied in-
dependently to each PE. The only instances where PEs are considered collectively
occur during the PW-DIST stage, where the estimated power contributions (Pest) are
summed, and during the normalization of the  weights.
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This control structure is similar to the basic ARM control scheme described in
section 4.1, with the notable difference being the absence of a ‘power recovery’
feature that would reallocate power capped during thermal regulation. However,
this limitation posed minimal impact, as power is distributed preferentially to PEs
further away from their thermal limits.

The BA was initially tested with a simplified simulation, where the voltage was
fixed, a LIN-PS power model was employed, voltage coupling in shared voltage
domains and secondary thermal effects such as thermal drift were not considered.
Under these simplifications, the algorithm demonstrated promising results, effectively
managing power distribution and thermal regulation. The findings are presented
in [15] and [17].

4.2.1 Enhanced Baseline Algorithm

While the BA demonstrated promising results under simplified conditions, several
enhancements were required to adapt the algorithm to a more realistic HPC model.
In particular, introducing variable voltage and accounting for the voltage-frequency
relationship, as discussed in section 2.2.1, along with the management of multiple
voltage domains, necessitated significant modifications to the initial design. In
particular, a DVS method needed to be incorporated.

The final Conv2F step of BA involves converting Py into the corresponding (F, V)
pair. This is a multi-variable problem with a non-unique solution. In cases without
voltage coupling, the pair could be selected using a LUT to get the (F, V) pairs along
the TEP line. However, this approach generated oscillations in the control outputs,
which degraded the overall controller performance. The origin of these oscillations is
analyzed in section 3.3.3.

In shared voltage domains, this approach may result in an overly conservative
policy. As emphasized earlier, the algorithm treats each PE individually. When volt-
age coupling constraints are introduced, a single voltage level must be selected for the
entire domain. If one of the higher levels is chosen to preserve the performance of the
faster PEs, this can lead to thermal constraint violations or cause severe performance
penalties to thermally constrained PEs, as detailed in section 3.3.2. Conversely, select-
ing the lowest voltage respects thermal constraints but sacrifices the performance of
faster PEs due to the maximum achievable frequency for a given voltage, while also
leaving some of the previously allocated power unused.

These considerations highlight that enforcing voltage coupling constraints a poste-
riori, i.e. after the final step, does not yield the best results. An alternative approach
for determining the (F, V) pair is to fix one of the two variables through all the steps
of the algorithm, allowing the controller to properly consider thermal and power
reduction on the other variable, and the Conv2F step to produce a unique result.

Voltage was selected as the fixed variable, as it tends to change less frequently,
while frequency has a wider range of available values within a fixed voltage level,
according to the frequency-voltage relationship (3.2). Additionally, voltage is the
variable subjected to coupling constraints and the one that produces the largest power
steps, making it the most likely to cause oscillations, which this approach seeks to
minimize.

The first control step, Conv2P, already requires a fixed voltage value to compute
Pest, meaning that the domain voltage must be selected as the first step of the control
algorithm. Thus, instead of determining the domain voltage based on the required
target frequency Fr, an Exponential Moving Average (EMA) low-pass filter on the
past PE applied frequencies F, is employed for selecting Vp,. This ensures that
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the voltage selection is based on a more realistic frequency (Fy_j4), minimizing
excessive performance cuts for both high-performance and thermally constrained
PEs. Additionally, this introduces a degree of optimization, as the 7! mapping
function loses one degree of freedom (the fixed V). By employing this approach, the
maximum voltage across the PEs in the domain can be selected, while the low-pass
filter helps smooth out rapid voltage changes, reducing oscillations.

After each iteration f; of the control algorithm, for each PE, the difference between
its target frequency Fr(t) and its applied frequency F,(f) is added to an accumula-
tion value Fva (t) specific to each PE, through a forgetting factor Aya. Over several
iterations, the value Fy_jy4 = Fr — Fpra converges to track the average frequency
selected by the control algorithm over a period (7va) dependent on the choice of
/\M A-

In the Conv2P step, Fva(t) is used to select the voltage level for the domain,
providing a more realistic estimation of the power consumption of each PE. However,
the target frequency Fr(ty) is still used in the computation of the estimated power Peg,
allowing the control algorithm to increase the applied frequency when thermal and
power headrooms are available. At each iteration, the Enhanced Baseline Algorithm
(EBA) executes for each domain D; the following operations in the improved Conv2P
step:

Fy_ma,i(te) = Fri(ty) — Fua,i(ti—1) Vi€ D; (4.7)
Vi(tk) = fv(Fy—ma,i(t)) (4.8)
Vo, (t) = gp( Vi(k) ) (4.9)
Pesti = hest(FT,i(tk)/ Vo, (t), -+ ) (4.10)

where fy () is a step-wise monotonically increasing function that computes the mini-
mum voltage required for a given frequency F, ensuring that the condition in (3.2) is
satisfied. Essentially, for each F, fy provides the corresponding V closest to the TEP
line. The function gp, () determines the domain voltage based on the np, voltages
across the domain. The final Conv2F is changed as:

Foi =1 "(Pri, Vp,(t), --+)  VieD (4.11)
Fuvai(te) = (1 = Ama) Fuai(te—1) + Ama(Fri(fe) — Fai(fr)) (4.12)

Equation (4.12) represents a discretized form of a low-pass filter, where the forget-
ting factor Ayia is defined as the ratio between the controller sampling time ¢; and
filter time constant 7. The value of 7 is selected to reject the system state perturbation
caused by workload variation and intercept the main trends. In this work, T is set to
T=125-10"2

The EMA approach can reduce performance during transients following a steep
change in one of the set points or system conditions, depending on the chosen
forgetting factor. To mitigate this effect, a phase detection strategy could be used to
reset Fyia (fx) when a phase shift is detected or a set point adjustment is required by
HLCs, significantly decreasing the “adaptation time”.

A second modification to the BA addresses the significant difference between the
estimated power ) Pest and the power consumption measured from the VRMs Pyes.
This deviation arises from the use of a simplified power model in the algorithm /st
compared to a more complex model in the simulated system. This difference can cause
the BA to deviate from the power budget set point by a large and variable margin. The
proposed solution employs an EMA adaptation filter where the difference between
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the total ) Pest and the measured power Pyjes is included into PW-DIST, to account for
the power model mismatch while minimizing high-frequency noise. The modified
PW-DIST is:

AProt(t) = Putes(te—1) — Y Pest,i (tk—d—1)
7

Xdown if APTot(tk) >0
PTot,,(tk) = PTota(tkfl)(l - D‘pw(tk)) + APTot(tk)“pw(tk)

k(1) = {“up if AProy(t) <0 (413)

where ayp and agown are two EMA parameters indicating whether the estimation
is greater or lower than the measured value. This configuration allows to define a
faster response when the estimation is higher and a more balanced response when it
is lower. Additionally, the a, parameters can change in time depending on how long
the estimation has been above or below the measured value. Notably, the parameter
d in (4.13) accounts for the controller delay discussed in section 3.3.4; the k — 1 time
step of Pyvies refers to the measurement being taken during the previous controller
sampling period f;.

The function gp responsible for selecting the voltage of the domain follows the
state-of-the-art approach of choosing the maximum selected voltage to avoid cutting
the performance of the highest-demanding PE [12]: gp(V;) = max(V;). However,
this is a naive method that does not account for optimizations aimed at minimizing
(3.1) according to the ‘importance matrix” R, thermal evolutions and predictions,
non-linear relations, and couplings.

Despite these enhancements, the EBA approach remains too simplistic to com-
prehensively address the power and thermal management challenges in many-core
systems, particularly under the influence of non-idealities. The following section
introduces an alternative algorithm designed to handle these complexities more
effectively.

4.3 Fuzzy and Iterative Roots-Finding Method

Rather than applying the coupling constraints before the control process, the Fuzzy-
inspired Iterative Control Algorithm (FCA) integrates constraint enforcement directly
into the final Conv2F step. This approach uses an iterative roots-finding technique to
solve the multi-variable conversion problem within Conv2F. It can be thought of as
moving the iterative moving average process, which typically improves over several
control intervals f;, into a single control cycle by employing an iterative solving
method. This enables FCA to account for voltage coupling and other constraints
faster and more effectively.

The TH-PID is replaced by a fuzzy-inspired LUT control, which offers improved
thermal regulation by considering the thermal derivative and directly adjusting
frequency and voltage setpoints. Additionally, the PW-DIST mechanism has been im-
proved to account for voltage domain constraints, ensuring better power distribution
across shared voltage domains.

4.3.1 Iterative Conv2F Step

For each domain D;, the relationships (4.6) regarding its PEs are grouped into a
system of equations where the domain voltage Vp, is substituted to V. This ensures
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that the voltage coupling is directly enforced in the conversion step:

Pri = nest (F1, Vp,, - )

. (4.14)

PT,n]v = est (Fnj/ VD]-/ T )

Vp, is obtained from the coupling function gp,(V;) as:
Vp, = ¢p,(Viep,) = ¢, (fv(Fiep;)) (4.15)

Several strategies could be employed to select the voltage level for the domain.
To remain consistent with state-of-the-art methods, the maximum selected voltage
is chosen, gp,(V;) = max(V;). Since fv(F) is a step-wise monotonically increasing
function, Vp], can be rewritten as:

VDj = fv (max(Fiepj)) (416)

By substituting eq. (4.16) into (4.14), j sets of non-linear systems of equations are
obtained, one for each domain D;:

Pri = fest (B, fv (maX(Fz‘eDj)), )

: (4.17)
PT,nj = Test (Fn]v fV (maX(FieD/))/ te )
Assuming Vi =1,.. . D
PT,l > min [ﬂest(Fl’fun/ VD]/ e )] (4 18)

PT,l < max [qest(Friaxl VD]I e )]

a solution to the system of equations (4.14) is guaranteed to exist.

As aresult, the Conv2F step becomes a root-finding task for j systems of non-linear
equations. The global Newton-Raphson iterative method could be employed to solve
these systems, using the Softmax function S, [60] as a differentiable approximation
of the max() function. However, even with hardware-optimized algorithms, solving
the global Newton-Raphson method with a reasonable tolerance is not feasible for a
real-time control solution running on an embedded LLC with tight timing constraints
such as the one described in [110].

Considering that the precision of system actuators is typically limited to 5 - 1073,
the bisection method [40] presents a suitable alternative to the Newton-Raphson
method. While the bisection requires more iterations to converge, each iteration is
faster as it does not require inverting the Jacobian, making its execution time less
dependent on the dimension of the domain. Additionally, since bisection does not
rely on derivatives, the max() function can be used, bypassing the need for the more
computationally expensive Softmax approximation. From a deployment perspective
on an embedded LLC, this means reducing the execution time, hence being able to
execute within the control period.
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To further simplify the computations, the function fy can be upper-bounded by a
non-linear polynomial, such as a second-order function:

fv(F) = F> + kF; + ko (4.19)

where the coefficients k; and ko can be determined based on the frequency-voltage
relationship of (3.2).

In this improved Conv2F step, both F and V are still treated as continuous vari-
ables rather than being quantized to specific levels. This approximation may lead
to some performance loss when rounding to the nearest lower level. An alternative
approach could involve treating the quantized F and V values by employing control
methods for systems over a finite alphabet [152], in which the system operates over
discrete levels, or multi-branch tree control schemes [4].

4.3.2 Fuzzy-inspired Thermal Control

The precise operating points provided by the iterative root-finding method, in com-
bination with the EBA PID led to significant oscillation yielding reduced control
performance. Although the thermal evolution of the system can be described by a
linear relation, the non-linearities and couplings introduced by real-world conditions
expose the limitations of the PID as a linear time-invariant controller.

In particular, the discrete coupled outputs which are exponentially related to
the temperature state, require PID tunings geared toward fast response to prevent
the thermal runaway. However, such tunings also lead to high output oscillations,
resulting in control performance degradation. These oscillations were especially
evident when the PID was used in conjunction with the improved Conv2F presented
in section 4.3.1. Consequently, the thermal capping regulation (TH-PID) was replaced
by a heuristic, LUT-based control inspired by fuzzy control theory.

Fuzzy control theory provides a simple and effective way to translate symbolic
decision tables into control laws. In practice, fuzzy logic involves three key steps [106]:

1. Control inputs are converted into fuzzy sets through a process known as Fuzzi-
fication

2. Logic rules are applied to determine the appropriate control signal

3. The control signal is converted back into a quantitative output in a process
called Defuzzification

Fuzzy control is applicable to non-linear systems as it does not require a model, is
simple to compute and modify, and offers modular flexibility. The logic set of rules
can be approximated into a LUT or by a mathematical function for faster computation
of the control actions.

Fuzzy logic’s capability to handle non-linearities allows the thermal control to be
applied directly to the frequency F and voltage V values. For this reason, the thermal
capping step in the FCA structure is placed before the power distribution step. This
modification ensures that power already allocated to PEs is not lost by subsequent
reductions caused by thermal constraints, improving effective power utilization. The
original BA structure was based on the assumption that the power directly influences
the temperature. However, with the updated model, temperature also affects power,
making the previous control strategy less effective.

In FCA, a fuzzy state is assigned to each PE. This fuzzy state embodies the reduction
in frequency and voltage due to thermal regulation. A LUT is constructed by dividing
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AT/TI[°C] <45 45-65 65—-80 80-Tr =>Ti
<0 2 2 1 0 -1
0-0.5 2 1 1 0 -1
0.5—-1.0 1 1 0 -1 -2
1.0-2.0 1 0 -1 -2 -3
> 2.0 0 0 -2 -3 -4

TABLE 4.1: LUT table used to determine the increment or decrement
of the fuzzy state based on the temperature derivative AT (t;) and the
temperature T(ty).

the temperature variable of each PE T;(f;) and its derivative AT;(tx), into regions
relevant to thermal control. The LUT is then populated with values that determine
whether to increase or decrease the fuzzy state.

The derivative is approximated as the difference between the current temperature
and the temperature of the previous s-th steps AT (t;) = T(tx) — T(tx —s), to help
filter sensors’ noise. The choice of s depends on the ratio between the system’s fastest
thermal time constant and the execution periodicity of the thermal step t, as well
as the ratio between the maximum potential temperature variation in a t; and the
amplitude of the noise.

The number of columns and rows in the LUT is determined primarily by the
memory and computational constraints of the LLC, and secondarily by the desired
quality of thermal control. The selection of the derivative threshold values is largely
based on the thermal time constants of the system, while the temperature thresholds
depend mainly on the slope of the power-temperature leakage relationship (see
Figure 3.2). The LUT values can be defined by discretizing a surface that represents a
trade-off between performance reduction and control effectiveness. The specific LUT
used in this work is shown in table 4.1.

Each negative integer value of the fuzzy state reduces half of the frequency step
between two consecutive voltage levels, with every even negative fuzzy state value
resulting in a one-level reduction in voltage. This configuration can also support a
frequency turbo boost feature through positive fuzzy states. However, since turbo
capabilities are not analyzed in this work, the fuzzy states are saturated at the upper
boundary of 0 to ensure a fair comparison with other algorithms.

4.3.3 PW-DIST and Conv2F Improvements

Two additional modifications are introduced to improve the other steps of the FCA
algorithm. First, the PW-DIST step is updated to account for the voltage domain
coupling, improving the allocation of power. This is an important addition as all
considerations related to domain coupling are deferred to the final conversion step.
Second, a hysteresis low-pass filter is applied after the Conv2F step, designed to
reduce oscillations caused by rapid voltage fluctuations. These refinements improve
efficient power utilization and control signal smoothness, particularly in scenarios
when both the thermal and power control are engaged.

The power distribution step is updated to account for voltage-sharing domain
configurations. Instead of applying the « power distribution algorithm (4.5) to each
individual PE, as the BA, it is now applied at the domain level. A linear combination
of the maximum and average temperature of the PEs within each domain, along

np.
with the total estimated power of the domain ), Pi Pegt i, serve as the inputs to the a
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heuristic algorithm. Defining the domain temperature Tp, as:

np.
Zi ! Tz‘

1’17_)].

Tp]. = k7 max(Ti) + ko Vie D] (4.20)

where k71 and kr; are the combinatorial coefficients, the a heuristic algorithm be-
comes:

1
N=—— Vien
T — Tp, J &
_ o
a; =
o (4.21)

np.

]
Pp, =) Pesti — &APC
7

where Pp, is the power allocated to the j-th domain.

Within each domain, the power is distributed based on the workload w; of each PE,
prioritizing the ones executing high-performance workloads. Defining the average
Ceff value within each domain D; as:

np.
_ Zi ]Ceff,z'

l’lpj

{p, VieD; (4.22)

the heuristic power distribution algorithm within each j-th domain becomes:

1
W= ———— VieD;
O ) J
& d
i = “up,
v (4.23)

I’lp].
Pri = Pesti — &i( ) Pesti — PDj)
7

The {p, term is introduced to achieve a more balanced power distribution, ensuring
that mid- and low-power workloads are not overly restricted.

The hysteresis filter is implemented to mitigate frequent voltage changes resulting
from the iterative root finding, which determines precise operating points at each
iteration t;. These adjustments, often by a single level, can induce oscillations and
lead to excessive hardware utilization. The filter delays voltage increases by p steps,
while allowing immediate voltage reductions, ensuring that power and thermal
capping regulation remain unaffected.

For each domain, the filter monitors whether Ve, j, the updated voltage proposed
by the FCA algorithm, remains consistently higher than the current voltage V, ;. If
this condition holds after p iterations, the final voltage at t is applied. The process
can be described as follows:

Vnew(tk)/ if Vnew(tk) < Va(tkfl)
Vu(tk) = Vnew(tk)/ if Vnew(ti) > Va(ti) Vie [k,k — p] (4.24)
Va(tg_1), otherwise
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FIGURE 4.2: The whole structure of the Fuzzy-inspired Iterative
Control Algorithm. Pg, Fr, T;, and Cg are the inputs, while F, and V,
are the resulting outputs.

Determining the appropriate value of p is essential for achieving a balance between
smoothing voltage fluctuations and ensuring an effective controller response.
The whole structure of the FCA is shown in Figure 4.2.

44 Model Predictive Control

Model Predictive Control (MPC) offers a powerful framework for optimizing control
actions in dynamic systems, particularly when dealing with several constraints and
multi-variable control objectives [61]. In the context of HPC, MPC can be leveraged
to predict future system states and adjust control signals to meet both power and
thermal management constraints, while optimizing for competing objectives, such as
performance and energy efficiency.

MPC relies on dynamic models of the system to predict its future behavior over
a finite time horizon. At each control step, it solves an optimization problem to
determine the optimal control signals that minimize a given cost function | while
satisfying system constraints. Despite its computational complexity, it is widely used
in applications requiring precise control of dynamic systems, and its characteristics
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fully align with the control problem described in eq. (3.1), making it a suitable option
for DVES control and DPTM in HPC systems [50].

Compared to previously discussed algorithms, MPC requires an accurate model
of the system, and, depending on the available sensors, it may also require the use of
a state observer to estimate unmeasured states. This adds a layer of complexity, as the
controller must account for uncertainties both in the model and in the state estimation.
Additionally, MPC is computationally more demanding, making its implementation
in real-time controllers with limited processing capabilities and tight time constraints,
such as those used in HPC environments [110], a significant challenge.

Additional considerations must be made due to the shared nature of the power
budget across multiple PEs and subsystems. Effective management of power re-
source distribution requires either a centralized control approach or a relaxation of
constraints, as necessitated by a distributed control framework (see section 4.5 for
details). However, centralized MPC does not scale well, leading to prohibitive compu-
tational requirements as the number of PEs increases. To address the scalability issue,
the MPC could be divided into smaller problems [23]. The optimization problem
is typically formulated as a Quadratic Programming (QP), which scales polynomi-
ally with the number of decision variables 7, constraints 7., and the length of the
prediction horizon Nj,,. The typical time complexity for QP solvers is O(n®) per
iteration, where n = Ny, (n, + n.) [144]. As established in Lemma 4.4.1, distributing
the MPC control problem among PEs by relaxing power budget constraints leads to
a consistent reduction in computational complexity, with the best scenario arising
when each PE is considered individually.

Lemma 4.4.1. Let n € (1,00) be a natural number, and let b; € N foralli € {1,...,n}.
Then, the following inequality holds:

3
Y b < (sz)
i=1 i=1

Proof. We begin by expanding the right-hand side of the inequality:

3
(Zh‘) = (b1+b2+"‘+bn)3-
i=1

Using the binomial theorem for expanding powers of a sum, we get:

3
n n
(Z bl-) = Y b} + cross-terms.
i=1 '

i=1

The cross-terms consist of all products of the form 3bi2b]-, 3bib]2, and 6b;b;by, (for distinct
i,],k).

Since each b; > 0, all the cross-terms are strictly positive. Therefore, we conclude
that:

3
Y b < (Z bi> :
i=1 i=1

In other words, the sum of the cubes of the b;’s is strictly less than the cube of the
sum, due to the contribution of the positive cross-terms. O
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Furthermore, the described control problem is inherently non-linear and involves
hybrid coupling constraints where voltage depends on frequency and is shared across
domains. Solving such non-linear and hybrid optimization problems in real-time
exceeds the capabilities of microcontrollers that are feasibly implementable within an
HPC chiplet [137]. Approximations must be introduced to deal with the non-linear
and hybrid nature of the problem.

In this work, the centralized MPC is employed, as implementing the distributed
approach would probably cause power constraint violation and require a further
analysis into the degree of relaxation that could be tolerated. Using advanced compu-
tational methods [144, 170, 109], the linear MPC variant can be feasibly implemented
on the TPC, provided that t; and Ny, are appropriately chosen. Nonetheless, the
distributed scenario remains an area of interest, particularly as industry is moving
toward integrating small, lower-capability local controllers at each PE, primarily for
managing local temperature control (2.3.1).

4.4.1 Control Problem Layout

An important initial decision is the choice of the control input. Selecting power
consumption Py ensures a linear MPC problem, as it reduces the system model to
the thermal dynamics alone. However, this approach prevents the optimization
from directly considering frequency and voltage separated from w, necessitating
the Conv2P and Conv2F steps and thus reintroducing the challenges discussed in
previous sections. Selecting Frequency F, Voltage V, or both as control inputs is not
enough to linearize the system, even modelling V as a linear function of F, as the
dynamic power eq. (2.8) includes the term FV?2.

To address this nonlinearity, the chosen control input is Py = FV?2. This ensures
that the dynamic power remains linear in the MPC model while providing the
capability to directly optimize on F and V. The temperature T is the MPC state for
the system model. However, the leakage power Pg,: still remains a non-linear term
even with the choice of Py, thus requiring linearization. To achieve a linear MPC
formulation, Pst.t is approximated through a linear combination of the state and input
variables as follows:

Pstat = k1T + k2 Py + ko (4.25)

Using the thermal model (2.6) and the power model (2.8), the linearized system model
for the MPC is formulated as:

T = AT+B<PMaJ+k1T+k2PM—|—k0) (4.26)
The constraints are taken from the control problem formulation (3.1):

TiSTL/ iZl,...,i’lC

Yoy (ki T; 4 Pagi(wi + k2) + ko) < Pg(t) (4.27)
np. R .

Zi:i (lei+PM/i(Wi+k2)+kQ) SPD].(t), 1 GD]', ]:1,...,I’ld

Additional constraints, such as lower and upper bounds on Py, and the linearized
power (Pyw + k1T + ka Pt + ko), can be added effortlessly.

The initial optimization cost | is derived from the primary control objective (3.1)
of minimizing the difference between the target and actual frequency. Additional
penalization terms are introduced for both the state and input variables, which
are normalized to their respective range values to ensure consistency during the
optimization process. The cost function is designed to be convex, ensuring that the
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optimization problem remains solvable efficiently.
~ ~ ~ ~ AT .~ N ~
] = (P, — Pu) " Re(Py; — Py) + P, RPy + TTQT (4.28)

All variables are treated as a vector, i.e. T = [Ty, - -, Ty, ], and the hat notation indi-
cates that the variable is normalized. Py; = Fr * fV(FT)2 represents the given target.
R¢, R, and Q are positive definite symmetric matrices that contain the optimization
coefficients.

Due to the choice of Py as the control input, which separates it from the workload
w, individual weights per PE can be incorporated into the control input penalization
matrix R to prioritize certain PEs over others for performance reasons. Had the target
power consumption Pr been used instead, adding a performance weight would have
penalized not only the dynamic power but also the static power component. Addi-
tionally, the dynamic power would have been subject to a scaling factor dependent
on the currently executed workload.

Let 6; € [0,1] represents the weight of each PE indicating its relative importance,
with the goal of minimizing its penalization in the optimization process. Let¢’ =1 —6
represent the complementary weight, the cost function can be reformulated as:

J= (B —Pu)-0) Re((Pyy — Put) - 0') + (B - 0)TR(Py, - 0) + TTQT  (4.29)

where 6’ is the vector collecting all the 8] weights, and - denotes the scalar product.

The incorporation of the power constraints in eq. (4.27) and the theta adjustment in
(4.29), introduce an advanced power allocation capability within the MPC controller.
This represents a novel approach, as MPC is typically applied solely as a thermal
control mechanism, as highlighted in section 4.1. Integrating power regulation
alongside thermal regulation enhances the synergy between these control functions,
potentially yielding an improved operating point.

Additional considerations must be made when selecting the time horizon Ny, as
it significantly affects both the performance and computational feasibility of the MPC.
Longer time horizons enable the controller to better anticipate and manage future
system dynamics; however, this comes at the expense of increased computational
complexity, which may exceed real-time control constraints. In the described HPC
system, future predictions are still prone to inaccuracies and significant deviations
due to the variability and unpredictability of the workload w as discussed in sec-
tion 3.3.3. Therefore, choosing a large time horizon is unlikely to yield significant, if
any, improvements.

A balanced approach is to select the time horizon such that the MPC prediction
covers a period between 1 and 2 times the fastest thermal time constant tty,. Therefore,
based on the controller execution interval £, the time horizon can be defined as:

At
Nizn = t“‘ with A € [1,2] (4.30)

S

This leads to important considerations regarding the choice of f; for the MPC
controller. Given the significant computational complexity of the centralized MPC in
systems with a large number of PEs, which scales with the choice of N, selecting a
larger t; not only provides more time for the MPC solver to complete its computation,
it also reduces the value of Nj, according to eq. (4.30), further reducing computa-
tional requirements. On the other hand, the choice of t; must still account for the fast
system dynamics and the exponential behavior described in section 3.3.1.
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Relying on the quality of the MPC control and prediction, a sampling interval
of t; = 1ms was selected in this work. While this is larger than the intervals used
by other presented control algorithms, it remains within a reasonable range. Faster
fluctuations can still be addressed effectively through the use of a separate high-
frequency power mitigation loop, as described in section 3.3.4.

4.4.2 Linearization

To linearize the static power P, the least-squares method was employed. This ap-
proach minimizes the sum of the squared differences between the model’s predicted
values and the actual data [33]. By fitting the linear polynomial formulation of Pyat
(4.25) to the nonlinear model, the least-squares method ensures that the linearization
best approximates the underlying trend of the data while minimizing the error across
all points.

Let M = [a,b] x [c, d] be the domain of the leakage power P, !, where T € [a,b] and
V € [c,d]. The objective is to minimize the square of the Ly-norm of the approximation
error S() over the set of parameters in IR>:

S(ky, ko, ko) = / (P(T, V) — (kaT + ksPut(V) + ko))? dT dV (4.31)
M

where ko, k1, and k; are the parameters of the linearized model to be determined.
Denoting the Ly-inner product as:

(g/h) = / g(x, y)h(x,y)dxdy (4.32)
M

the minimum is found with:

0= 105/0y, = ko(1,1) + ki (1, T) + ka(1, Prr) — (1, Ps),
0= 395/0, = ko(T, 1) + ki (T, T) + ko(T, Pm) — (T, Ps), (4.33)
0= 195/0k, = ko(Pm, 1) + k1 (Pum, T) + ko (Pa, Pm) — (Put, Ps).

Since the basis [T, Py, 1] is not orthogonal with respect to the Ly-norm inner
product, it is recommended to orthogonalize the basis with Gram-Schmidt [156].
Using:

(,L1) =(b—a)(c—4d)
(1,T) = (b* —a*)(d —c)/2

the pair [1, T — (b + a) /2] forms an orthogonal basis in the linear span of 1 and T.
By orthogonalizing P); with respect to this new basis, the third component Py —
(d+c¢)/2 is found. The fact that (Py;, T — (b +4a)/2) = 0 is a coincidence due to
the relationship between the basis and the domain of integration. The system of
equations (4.33) can be rewritten in the new basis with the coefficients m; as:

(4.34)

0 = 308/0m, = mo(1,1) — (1, P),
0= 508/0m =mi(T—(b+a)/2,T—(b+a)/2) — (T — (b+a)/2,Ps),

(4.35)

1From this point forward, the static (or leakage) power Pstat Will be referred to simply as Ps for
brevity.
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FIGURE 4.3: Figure 4.3a (left) illustrates the difference between the
linearized and actual leakage power models with respect to tempera-
ture (T) and voltage (V). The overlaid surface is interpolated among
the selected ks values that minimize variance within each region.
Colored lines indicate the division of the original surface into those
regions. Figure 4.3b (right) provides a top-down view, making the

regional segmentation clearer.

Solving the system of equations (4.35) with respect to the m; coefficients yield:

_ (L Py
EEGY)

B (T — (b+a)/2, P)
M T —+a)/2, T— (b+a)/2)
o (Pyi— (d+¢)/2, P.)

(Py—(d+c¢)/2, Pm—(d+c)/2)
and the linearized model for P is given by:

Pi~m(T— (b+a)/2)+my(Py— (d+c)/2)+ mg
ml(b+ a) +m2(d+c))
2

=m T+ myPy + (mg —

From (4.37), the k; coefficients are derived as follows:

k1:m1
kzzmz

my(b+a)+my(d+c
kO:(mO_ 1( )2 2( ))

(4.36)

(4.37)

(4.38)

To correctly integrate Py with respect to V, it is necessary to express F as a contin-
uous function of V. This can be achieved by inverting the second-order polynomial

approximation of the fy relation (4.19), as:
F=f'(V)=ci+(V +e)

As a result, the Py used to compute the k; coefficients is expressed as:

N|—

Py = (c1 4+ (V +c)2)V?

(4.39)

(4.40)
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4.4.3 Time-varying Linearization Offset

Linearizing the static power P still results in discrepancies between the approximated
model and the real system behavior. This difference is especially present in high-
temperature and high-voltage regions, where the non-linearity of P; is significantly
pronounced and where the control is primarily engaged. The difference between the
power model and linearization used in this work is shown in Figure 4.3a. Attempting
to refine the linearization to better approximate these areas could lead to either overly
conservative results or, in some cases, even negative values due to the steep slope of
the curve in those regions. To address this issue, an additional input kyes is introduced
into the MPC model.

kres is a time-varying residual adjustment for each PE to the offset term in eq.
(4.25). The term is added at each iteration of the controller, by determining the differ-
ence between the original leakage power model Ps and its linear approximation. This
difference, denoted as P, represents the error introduced by the linearization. The
3D surface of Py, is discretized into a LUT that depends on the current voltage V and
temperature T values. The rationale for employing a LUT, rather than directly com-
puting the exact Py, value, lies in the benefits of discretizing the surface into regions
with minimal variance, which may improve the overall approximation accuracy and
computational efficiency.

Indeed, the inclusion of ks introduces an inherent approximation, as it is treated
as a fixed value during the MPC optimization process. Throughout this optimization,
the MPC outputs may converge to operating points that differ significantly from those
used in the computation of ks, potentially reducing its effectiveness. By providing
a less precise initial value but one that is regionally more accurate, the MPC will
provide more accurate optimization results in that region.

To ensure proper discretization into the LUT, the surface must be divided into rect-
angular regions with parallel axes where adjacent regions share common boundaries.
An algorithm is employed to divide the surface in such a way that these regions are
well-suited for table representation, while also minimizing the sum of the variance
within each region. This approach ensures a more precise and uniform approximation
of the operating points.

The selection of the ny and nr divisions for the V and T ranges respectively,
should account for both memory constraints and the need to create regions large
enough to meet the aforementioned criteria. An example of the resulting region
division with ny = 4 and nr = 3 is illustrated in Figure 4.3b. The formulation of
the MPC remains unchanged, as it is sufficient to substitute the parameter ko with
kg = ko + kres(t)-

4.4.4 Hybrid Integration

The hybrid nature of the control problem originates from the relationship between
F and V described in eq. (3.2). This dependency is not continuous, but rather it
divides the operating space into feasible regions. Since the chosen control variable
is Py = FV?, and the F-V relationship has been approximated using continuous
functions, this hybrid characteristic cannot be directly implemented in the current
MPC framework.

To address this issue, a workaround is to guide the MPC optimization by embed-
ding in the cost function a preference for similar Py values across elements within the
same voltage domain. This inclusion encourages PEs to operate at similar points on
the F-V curve, thereby avoiding scenarios where PEs within the same voltage domain
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have vastly different operating points, which would lead to suboptimal performance,
as described in section 3.3.2.

For each domain Dj, the convex term used to penalize large value differences in
Py values across PEs within the domain is given by:

kij(Py, — Puy)? Vi,j €Dy with i > j (4.41)

where k;; are the penalization terms.

Considering the additional term PIQ”HPM in the cost function | (4.28), the quadratic-
form matrix H is constructed as follows. For each domain D; and for each pair of
distinct PEs i # j within Dy, the (i, j)-th element of H, as well as its symmetric (j,i)-th
element, are set to —k;;. All inter-domain elements, corresponding to pairs i # j
where i € D; and j ¢ D), are set to zero. On the main diagonal, the (7,7)-th elements
are assigned the negative sum of all other elements in the corresponding row (or
equivalently, column). The procedure is summarized as follows:

—ki]', if 1,] €D, and i >j
hy={ o HijEeDiand j2i (4.42)
0, ifieD;,j¢ D and i # |
o, ifi = ]
with:
i#j i#]
o, = hii = — Zklj = — Zkl] (443)
i ]

To illustrate the selection method for the /;; elements concerning the penaliza-
tion term in (4.41), consider a simple example involving a single 3x3 domain. The
additional term in the cost function is given by:

(kl + kz) —kq —ko Uq
MT%M = [u1 Un Mg} —kq (k1 +k3) —k3 Us
—ky —k3 (kz + k3) Us

= (k1 + kz)u% — 2kiuquy — 2kouquz + (k1 + k3)u% — 2kaupusz + (kz + k3)u§

= k1(u1 — uz)2 + ko (uq — u3)2 + ks (up — u3)2

(4.44)
which is the one defined in (4.41).
The resulting optimization cost is:
. . T . - c Toymg
J = ((Py;— Pm) -0') Re((Pyy — Pm) -0') + Pu HPu (4.45)

(P -0)TR(P,-0) + TTQT

Additional considerations could be made regarding whether the weight term 6’
should also be applied to the hybrid cost term.

4.5 Distributed Control

Until now, the presented control approaches were focused on a single computing
chiplet. However, in typical HPC systems, several chiplets are distributed across
multiple sockets on the same motherboard. This introduces a new layer of interactions
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between the different components and the need to develop a control framework that
manages power distribution optimally across the entire system.

A similar situation emerges with the interaction among Local Controller for Dis-
tributed Controls (LDCs), a new trend in HPC design discussed in section 2.3.1.
This configuration requires a coordinated power management strategy across all con-
trollers to ensure optimal performance. LDCs apply the control action on their specific
areas, but the overall system performance depends on a higher-level coordination
effort to avoid suboptimal global resource allocation.

These control structures fit well within the framework of distributed control
methodologies [38]. In distributed systems, controllers operate locally with individual
algorithms on a common variable, while abiding by global constraints and exchanging
limited information with their neighbors. Additionally, distributed control theories
generally do not require full-duplex direct communication between all components,
which helps to avoid increased latency and congestion within the NoC.

These principles of distributed control are rooted in consensus-based methods
and other techniques from network control theory, where the interactions among
agents are modeled using graph theory. Each agent aims to maximize its local
utility, often competing for shared resources such as available power. However,
global optimization requires these agents to agree on a shared set of values and
constraints to prevent conflicts and ensure optimal resource distribution across the
entire system [38].

4.5.1 Control Problem for Distributed Entities

Consider a configuration with four controllers arranged in a square, where each com-
ponent communicates only with its adjacent ones on the horizontal and vertical sides.
This setup defines a strongly connected graph [38]. Each of these four controllers
manages DPTM for its specific area and is constrained by a shared total power budget.
The control problem is to distribute this shared power optimally among the four
entities, each with varying requirements and conditions.

For instance, assume that power is initially distributed equally. Then, one con-
troller experiences a reduction in power demand due to thermal capping in its area,
another sees reduced consumption as its controlled PEs enter an idle state, while
yet another controller requires increased power to support a higher DVFS operating
point. The objective of this control problem is to dynamically allocate power among
peer controllers in response to these variable demands, optimizing according to a
predefined cost function.

The control configurations described above can be recast into a cost-coupled opti-
mization problem [107]. In distributed control systems, a cost-coupled optimization
problem arises when several interconnected agents aim to minimize a collective cost
function that is the sum of local cost functions, each dependent on a common decision
variable. Each agent has only partial information about the global system, typically
limited to its own local objective and constraints, and only a small part of data has
to be shared with a subset of agents. The objective is to achieve a globally optimal
solution while ensuring the overall system constraints are satisfied. The equation
describing cost-coupled problems is:

N
min ) _ fi(x) withx € X (4.46)

d
x€R i=1
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where X represents the global constraints set, x the common variable, and f; the local
cost function to optimize. In our particular case, x is the vector of all controllers’
power consumptions P;, X encapsulates the PDN power boundary limits and the
shared power budget limit Pg, and N is the total number of controllers.

The power budget constraint is also integrated into the cost function, alongside
the tracking of each controller’s specific power consumption target. This allows the
cost function to serve as a balancing mechanism between local controller decisions
and global system requirements. The local controller’s cost function can thus be
formulated as:

2
fi _ ri(Pi . Pi*)z + (1 ;[ri) (i p — PB> (447)
i=1

where P represents the target power consumption selected by the i-th controller
for its area, and P, is the resulting allocated power. The parameter r; € (0,1) is an
optimization coefficient specific to each controller, which could be determined as
a linear combination of the area’s thermal headroom and current workload, thus
prioritizing controllers managing high-demand workloads with sufficient thermal
headroom.

To enforce the constraint set X', the resulting P; in each controller are projected onto
A to ensure that any candidate solution remains within feasible bounds. Formally,
for a given point x outside of X, the projection ITy(x) is defined as the closest point
in X to x in terms of Euclidian distance. This projection step can be incorporated into
the control algorithm, allowing each controller to update its decision variables while
remaining compliant with the shared power budget. By doing so, the optimization
process respects the feasibility of each controller’s power allocation and prevents
constraint violations in the distributed system.

4.5.2 The Gradient Tracking Algorithm

The gradient tracking algorithm offers a distributed solution for the cost-coupled opti-
mization problems, such as the one described in section 4.5.1. The algorithm achieves
a consensus-based estimate of the global gradient using local limited information
exchanges. Compared to other methods, such as the distributed subgradient ap-
proach, it achieves a faster convergence rate due to its constant step size [107]. Faster
convergence is essential in HPC applications, where rapidly changing conditions and
workloads significantly impact power distribution.

In the gradient tracking setup, each controller has its local objective function
and operates with partial information, generally restricted to its neighbors” data in
a communication network. This limitation is counterbalanced by the algorithm’s
capability to “track” the gradient across agents dynamically, providing convergence
properties close to those achievable by centralized methods.

According to the consensus-based approach, at each time step t;, each agent i
updates its local solution estimate x; as follows:

xf"“ = aijx;k — ’yyfk (4.48)
JEN

where NV denotes the set of neighbors for controller 7, 7 is the step size, and y! is the
dynamically averaged local gradient. y! itself is updated based on local objectives
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and neighboring controllers” data as:

yrt =y ﬂijl/?‘ + <sz‘(xfk+1) - sz‘(xzt‘k)> (4.49)
JEN;

ensuring that all local estimates converge asymptotically to the globally optimal
solution.

Effective application of the gradient tracking algorithm requires the following
conditions [107]:

¢ A strongly connected communication network among controllers to ensure that
local updates propagate throughout the system

¢ A double-stochastic adjacency matrix to ensure consensus across nodes

¢ Each local cost function must satisfy the strong convexity property and have
Lipschitz-continuous gradients

The weighted adjacency matrix represents the communication links between con-
trollers in a network, where each entry defines the weight of influence one controller
has over another. Double-stochasticity implies that the sum of each row and column
of the matrix is 1, ensuring that information exchange is balanced and facilitating
network-wide convergence [107]. To normalize a non-negative adjacency matrix rep-
resenting a strongly connected graph, the Sinkhorn-Knopp algorithm can be applied
to obtain a double-stochastic matrix [79].

4.6 Conclusion

This chapter has introduced several control algorithms designed to operate power
and thermal regulation in HPC systems. Starting from industry-inspired approaches,
the discussion has evolved towards more refined and system-aware strategies that
better accommodate the complexities of modern computing architectures. Each
control method has been developed as a progressive enhancement of the previous
one, addressing shortcomings and design pitfalls that lead to poor performance.

The first step in this progression was the Baseline Algorithm (BA), which formal-
ized a structured approach to power and thermal management, reflecting widely
adopted industry techniques. This initial design was extended into the Enhanced
Baseline Algorithm (EBA), where improvements in voltage regulation and power
estimation accuracy were introduced to better align with real-world systems. The
Fuzzy-inspired Iterative Control Algorithm (FCA) further advanced this methodology
by integrating iterative root-finding techniques for frequency-voltage selection and
fuzzy logic for thermal regulation, providing a more robust response to non-linear
and coupled system dynamics.

Beyond these iterative refinements, this chapter has explored Model Predictive
Control (MPC) approaches, which shift from reactive to predictive strategies, allowing
for optimizing the choice of the operating point based on power and thermal model
predictions. While MPC introduces computational challenges, its ability to optimize
multi-variable constraints and enforce long-term stability represents a promising
direction in this field. Finally, the chapter has introduced distributed control for-
mulations, acknowledging the growing complexity of modern architectures where
multiple controllers operate concurrently within shared constraints. The discussion
of gradient-based optimization methods and consensus algorithms has highlighted
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potential pathways for coordinating control decisions across distributed processing
units.

Throughout this chapter, each algorithm has been systematically analyzed, with
a focus on design motivations, trade-offs, and key implementation challenges. The
reasoning behind each refinement has been linked to the findings of Chapter 2
and Chapter 3, ensuring that non-idealities are consistently incorporated into the
control strategies. Each algorithm has been designed with real-world deployment
feasibility in mind, balancing control effectiveness with execution constraints imposed
by embedded microcontrollers in HPC environments. The following Chapter 5 will
quantitatively evaluate the performance of these control strategies, comparing their
effectiveness under varied workloads, system architectures, and thermal conditions.
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Chapter 5

Analysis and Comparison of
Control Algorithms

A fair comparison among LLC control algorithms in HPC systems presents significant
challenges. The control performance is heavily influenced by the specific microarchi-
tecture of the system. Furthermore, the lack of a standardized metric for comparison
presents another significant obstacle, as most benchmarks evaluate the overall proces-
sor performance and cannot isolate the controller’s contribution. Finally, up-to-date
information on state-of-the-art control algorithms is often unavailable or restricted,
being guarded by industry confidentiality [16].

Despite these challenges, in this chapter the evaluation of the control algorithms
introduced in Chapter 4 is presented, compared to the widely used industry-standard
Voting Box Algorithm (VBA) [39, 136, 129]. The IBM On-Chip Controller (OCC)
control algorithm from the IBM Power9 chip, publicly released as open-source [73],
provides a reproducible baseline for comparison. This industry-standard algorithm is
compared to the novel control strategies developed in this work, providing insights
into their performance in dynamic power and thermal management.

It is important to note that including HLCs in this comparison would lead to
misleading results. As described in chapter 3, HLCs and LLCs are designed to
function cooperatively, each targeting specific objectives, execution scopes, and time
domains. Although HLCs leverage greater computational resources, they are not
suitable for comparison on LLCs objectives, as their longer control step and broader
system assumptions limit their effectiveness in handling the fast dynamics that LLCs
are optimized for. Moreover, HLCs may lack some features such as applying a given
target or jointly enforcing both power and thermal capping, further complicating
direct comparisons.

The results presented in this chapter focus on the effectiveness of the proposed
control algorithms in managing dynamic workloads and thermal conditions in HPC
systems. The analysis covers both steady-state and transient behaviors, with a focus
on trade-offs between energy efficiency, thermal stability, and application execution
performance. The provided comparison and analysis aims to highlight the strengths
and limitations of each algorithm, with a focus on their capacity to manage dynamic
system responses and fluctuations, under a wide range of thermal conditions and
types of workloads. By examining the achieved trade-offs between performance and
effective tracking in different scenarios, this work wishes to provide insights that can
guide future improvements in control strategies.
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5.1 Evaluation Methodology

To comprehensively assess each control algorithm, their behavior is examined across
different system configurations and operating conditions. This includes testing under
varied workloads, as well as using different thermal models to simulate diverse
cooling environments.

The following three workload scenarios are used to encapsulate the primary
operating conditions:

¢ MAX-WL: All PEs execute a vectorized workload with all the data stored in
cache, designed to maximize power consumption. The target frequency is
set to the maximum value (3.45GHz). This scenario is designed to stress the
controller’s ability to accurately meet the power and thermal constraints, and
how effectively it can bring the system to the optimal operating point to meet
the given targets under these stringent conditions.

Additionally, as all PEs operate under identical workloads and frequency targets,
and the workload remains constant throughout the test without variations, it
provides a reference for assessing the algorithm baseline performance.

* MULTI-WL: This scenario is designed to test the controller’s ability to effectively
allocate the available power across the PEs, each executing different constant
workloads with corresponding frequency targets. This configuration is useful to
examine how the voltage domain coupling constraints influence the controller’s
performance with respect to the baseline, and how it can manage simple DVFS
targets.

The PEs are divided into three groups:

- one executes vectorized workload at maximum frequency (3.45GHz)
- one performs a mix of floating point and integer operations at 2.70GHz

- the remaining PEs are kept at the minimum frequency (0.40GHz)

Each voltage domain in each system configuration includes at least one PE from
each group to better stress the voltage coupling constraints.

¢ CLOUD-WL: All PEs execute random, dynamically varying workloads, while
always requiring the maximum frequency (3.45GHz). This scenario is intended
to evaluate the controller’s responsiveness and adaptability under dynamic and
unpredictable workloads. Differently from the previous scenario, in this one
the maximum target frequency is always required for all PEs. Controllers able
to efficiently allocate power to the most demanding PEs are expected to get a
performance advantage.

Each of the workload scenarios is tested using three different thermal model
variants to evaluate the adaptability of each control algorithm. These thermal models
are designed to reflect common cooling configurations and their impact on silicon
temperatures. These configurations are:

* WATER: a water-cooled model where PE temperatures are more homogeneous

¢ AIR: an air-cooled model where temperatures follow a Gaussian-shaped spatial
distribution across the PEs
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* RACK: a rack air-cooled model where air flows from the front to the back,
creating a column-wise spatial temperature distribution with added thermal
coupling among PEs in each column

To fully probe the control algorithm, each test involves adjusting the processor’s
power budget four times, using both increasing and decreasing patterns. The aim is to
capture all possible controller combinations: when only thermal regulation is active,
when only power distribution is active, and when both mechanisms are engaged
simultaneously. This approach also provides insight into how the algorithms respond
to step input changes, particularly in handling both rising and falling signals.

The final stage of evaluation includes running each test under four different volt-
age domain configurations to assess the effects of voltage coupling on the controller.
These configurations are:

* 1-D: a single voltage domain shared by all PEs. This configuration imposes
the most rigid limitations on voltage control, as any adjustments affect all PEs
simultaneously, but it could simplify power distribution for some controller
compared to a more granular configuration.

* A-D: each PE is assigned its own independent voltage domain. This configura-
tion is the simplest, as it eliminates all voltage coupling constraints, reducing
the Conv2F to a case where a basic LUT is sufficient to select the optimal TEP
operating point.

* 4-D and 9-D: these configurations divide the PEs into four and nine voltage
domains respectively. These configurations offer progressively less stringent
voltage coupling constraints as the number of domains increases, while simul-
taneously introducing complex challenges in allocating power across multiple
domains. Additionally, they facilitate the observation of potential performance
trends when comparing the 1-D and A-D configurations.

Parameter uncertainties are introduced into the power and thermal models to
simulate real-world variability, while the temperature sensors include 1°C white
noise to reflect typical PVT sensor specifications. Each test runs for 2 seconds in a
Model in the Loop (MIL) framework. The primary comparison involves a 36-core
computing chiplet, and is repeated 10 times with varying initial conditions to ensure
the results are independent of the system’s initial state. For the second series of tests,
which involve MPC controllers, a 16-core chiplet is simulated on a set of four different
initial conditions. This adjustment is made to reduce simulation time, as the MPC
controllers require longer computational times due to quadratic optimization. A
single test is shown in Figure 5.1 as an example to illustrate a reference power and
thermal evolution.

5.1.1 Metrics and Performance Indicators

The metrics used to assess the performance of the control algorithms across the
described batteries of tests, are derived from the control objectives and can be sum-
marized as follows:

¢ Thermal Regulation:

- Peak Temperature Overshoot (TH-MAX) [°C]: this metric captures the
maximum difference between the silicon temperature with the thermal
constraint Tr. The importance of this value lies in the fact that significant
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FIGURE 5.1: Thermal and power evolution in the proposed test

scenario using the AIR model with a 4-D configuration, executing

CLOUD-WL, and controlled by the FCA algorithm. The first three

rows illustrate the temperature evolution of thermal dissipation paths

(1), heat-spreader (2), and PEs (cores) (3). The last row presents the to-

tal measured power consumption. Red dashed lines indicate thermal
and power limits.

overshoots can cause system instability, loss of functionality, or permanent
hardware damage [158]. TH-MAX allows the comparison of controllers’
thermal regulation responsiveness to sudden changes.

- Cumulative Over-Threshold Time (TH-CT) [%]: this metric is computed
as the percentage of time during which the system exceeds the thermal
constraint T;. It only accounts for periods where, in the absence of ther-
mal regulation, the system would exceed the thermal limit, excluding
phases with low power budget constraints or reduced frequency targets.
This value is used to assess and compare the overall effectiveness of the
controller’s thermal regulation.

* Power Regulation:

- Average Power Overshoot (PW-AV) [%]: this metric is computed as the
ratio of the average exceeded power to the power budget target Pp. Dif-
ferently from the thermal regulation, power spikes are mitigated by the
PDN and the capacitances within the power delivery system. However,
a sustained average power exceedance significantly above the target can
become problematic. PW-AV provides insight into the controller’s ability
to accurately track the power target.

- Cumulative Over-Threshold Time (PW-CT) [%]: this metric is computed
as the percentage of time during which the system exceeds the power
constraint Pg.

Both these values can be used to assess and compare the overall effectiveness of
the controller’s power regulation.
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¢ Target Compliance:

— Cumulative Frequency Difference (TF-CFD) [GHz/s]|: this metric is com-
puted as the Ly-norm of the difference AF = Fr — F;, normalized by the
number of elements and control steps 1; = tiest/ts. The normalization
ensures a fair comparison between controllers with different execution
time intervals t;. The Lo-norm assumes the R in (3.1) as the identity matrix,
meaning all PEs are considered equally important. Additionally, phases in
which the PEs are in an “idle workload” state are excluded from the com-
putation to avoid diluting the results. This metric is important to capture
how well LLC controllers achieve their primary performance objective
and how optimally they distribute power to PEs over the entirety of the
test, for example avoiding over-allocating resources to PEs which would
subsequently prompt thermal regulation. Important to note that lower
values of TF-CFD indicate better performance.

* Application Execution Performance:
These supplementary metrics offer an insight into performance objectives that,
while not directly managed by the LLCs, are central to the HLC. To ensure
they are independent of the specific DVFS target, the metrics are normalized to
the baseline results from executing the same workload under unconstrained
conditions, without thermal, power, or coupling limitations.

- Average Execution Progress (AP-AV) [%]: this metric is computed as the
mean of the execution progress across all the considered components. It
provides insights into the expected application performance that can be
achieved.

- Minimum Execution Progress (AP-MIN) [%]: this metric captures the
minimum of the execution progress across all the considered components.
In addition to indicating the expected worst-case performance, it can be
used alongside the AP-AV to analyze how controllers distribute power and
penalize different PEs, providing an insight into the range and variation in
execution performance.

5.2 Primary Controllers Comparison

The primary comparison aims to establish how the main control algorithms intro-
duced in this work perform relative to state-of-the-art controllers, establishing a
baseline for further evaluation. The Fuzzy-inspired Iterative Control Algorithm
(FCA) presented in section 4.3 will be compared to the Enhanced Baseline Algorithm
(EBA) of section 4.2.1 and the IBM Voting Box Algorithm (VBA), as it was the only
current state-of-the-art algorithm with available information [73, 16]. A subsequent
second comparison will assess the competitiveness of the MPC controllers under
similar conditions, analyzing the innovations introduced in this study.

Results data are aggregated into figures according to workload type (Figure 5.3),
Domain number (Figure 5.4), Model type (Figure 5.5), and initial conditions (Fig-
ure 5.6). This arrangement provides a structured overview of how each control
algorithm responds to each specific configuration and scenario, highlighting perfor-
mance trends and differences across tests. An additional figure using violin plots
(Figure 5.2) illustrates the distribution of results across all tests, offering insights into
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FIGURE 5.2: Overall distribution of control performance metrics for

each algorithm. The first row presents thermal metrics, the second row

shows power metrics, and the third row displays target compliance
and execution progress metrics.

the distribution and consistency of the results. These results were also presented
in [16].

5.2.1 Results
Thermal Regulation Metrics

FCA outperforms both EBA and VBA in all thermal capping metrics, exhibiting
the least variation among tests. This consistency suggests that the proposed fuzzy-
inspired thermal design provides a significant improvement over other PID-based
controllers. FCA achieves a TH-MAX maximum temperature that is 2.44 times lower
than EBA and 5.52 times lower than VBA, while reducing the average TH-CT by
over 90%. These results imply better responsiveness to changes in the underlying
dynamics, as clearly shown by the results grouped by workload type in Figure 5.3.

EBA, while showing the highest TH-CT (18.82%), maintains a relatively low
TH-MAX across tests, averaging 1.94°C. This implies that reducing the thermal
margin by approximately 2°C could effectively eliminate most instances of TH-CT.
A notable observation is that EBA’s performance improves as the voltage domains’
size shrinks (Figure 5.4), likely a reflection of its original BA development without
voltage coupling constraints.

In contrast, VBA demonstrates the weakest thermal capping performance of
the three algorithms. It produces the highest TH-MAX, posing a risk to hardware
safety, and struggles particularly in the RACK model and CLOUD-WL tests, where
it records TH-MAX temperatures approaching 20°C, with two spurious results ex-
ceeding 30°C. VBA’s thermal performance deteriorates as the voltage domains’ size
increases, indicating significant difficulties in managing voltage coupling.

In particular, both EBA and VBA struggle in the 1-D tests with high initial condi-
tions, likely due to the difficulty in achieving the faster response time required in a
fully coupled scenario with reduced heat transmission. This difficulty can be traced
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back to the use of fixed PID coefficients, which may limit adaptability to widely
changing thermal conditions.

Power Regulation Metrics

In the power regulation metrics, FCA exhibits a relatively high average PW-AV
(13.98%) but maintains a low PW-CT (3.25% on average). This suggests that con-
straint violations in power capping primarily occur during target or application
phase transitions. The distribution of the PW-AV results shows a greater variability
than the other two algorithms, with the PW-CT distribution containing a significant
number of outliers, particularly from the MULTI-WL tests, as shown in Figure 5.3.
Interestingly, performance deteriorates as the number of domains increases, except
for AD, suggesting that the issue may stem from managing oscillations in coupled
systems.

VBA has a similar behavior as FCA, recording an average PW-AV of 15.14%
and PW-CT of 1.76%. Although the PW-CT result is the most consistent among the
three algorithms, the PW-AV distribution contains numerous outliers, reaching up
to 105.84% of the power budget. These outliers predominantly originate from the
MULTI-WL tests. The consistency in exceeding time suggests that VBA handles
gradual power transitions well, yet it suffers in scenarios with fluctuating power
demands, such as the MULTI-WL tests. The relationship between the high PW-AV
and consistent PW-CT values indicates that while VBA prevents prolonged periods of
overconsumption, its difficulty in managing power spikes creates a risk of significant
power exceedance, which can strain the power delivery system.

In contrast, EBA demonstrates the opposite behavior to the other two algorithms,
achieving the most consistent and lowest average PW-AV (3.74%), but with the
highest PW-CT (32.84% on average) and high PW-CT variability.
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Target Compliance Metrics

On average, FCA demonstrates the best target compliance (TF-CFD) performance
across all tests, with the exception of the all-domains (A-D) configuration, where
EBA marginally outperforms it by 0.01GHz/s. Specifically, FCA shows a 12.26%
lower average TF-CFD value than EBA and a 15.67% lower average value compared
to VBA. Both EBA and VBA improve their target compliance as the number of
voltage domains increases, eventually matching FCA’s performance in the A-D
configuration. This result confirms EBA’s strength in scenarios without voltage
coupling constraints. VBA, on the other hand, tends to homogenize frequencies
across PEs, which leads to favoring less power-intensive PEs (such as those running
the mixed integer and floating point workloads at 2.7GHz). In contrast, FCA and
EBA prioritize PEs executing more demanding workloads, which consume more
power and generate more heat under the same conditions [20, 136].

Regarding results distribution, Figure 5.2 highlights that there exists a bimodal
trend with two peaks, the lower one specifically referring to the MULTI-WL test while
the other one to the other two workload scenarios. This is because, with most PEs
being constantly idle, control algorithms have more available power to allocate to
other PEs. Despite the bimodal considerations, FCA exhibits the smallest deviation,
with the other algorithms recording results above 1.5GHz/s. Figures 5.4, 5.5, and
5.6 further illustrates that FCA is the most consistent in terms of target compliance
as most of the variation observed is related to different workload scenarios. This
consistency is confirmed by Figure 5.3, where FCA’s error bars are significantly
smaller than those of the other algorithms.
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Application Execution Performance

FCA demonstrates superior application execution performance, with an average
AP-AV that is 3.34% higher than EBA and 3.77% higher than VBA. Additionally,
FCA achieves a 17.50% improvement in the average AP-MIN over EBA and a 14.39%
improvement over VBA. Similar to the trend in target compliance, both EBA and
VBA shows better results as the voltage domains’ size reduces, eventually matching
FCA'’s performance in the A-D configuration. In the MULTI-WL workload test,
VBA achieves a higher AP-AV but underperforms in AP-MIN. This is attributed to
VBA'’s tendency to homogenize frequencies across PEs, in contrast to FCA and EBA
demanding workloads prioritization. This meant that the Frequency of the more
demanding PEs was reduced more than the one of other PEs.

Regarding result variability, FCA exhibits smaller deviations in both AP-AV and
AP-MIN results, indicating that applications running with this algorithm are less
likely to experience significant performance degradation under specific conditions.
The reduced variation suggests that FCA provides a more consistent execution envi-
ronment, offering greater reliability.

Summary and Conclusions

The average results and their standard deviations, accounting for consistency across
tests, are summarized in table 5.1. FCA achieves the best target compliance and
application progress while outperforming the other algorithms in thermal regulation,
with comparable power capping performance to VBA. This indicates that FCA not
only more effectively applies the HLC targets but also improves application execution
speed by approximately 3% while operating with tighter thermal margins. Addition-
ally, FCA provides greater consistency in execution progress across PEs, with the least
difference between AP-MIN and AP-AV compared to the other algorithms. FCA also
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demonstrates the most consistent performance across varying cooling configurations,
domain numbers, and initial conditions, as clearly reflected in the smaller error bars
shown in Figure 5.3.

In contrast, EBA’s TH-CT and PW-CT distributions exhibit significant variability,
indicating inconsistent behavior when non-idealities are introduced into the model.
Both EBA and VBA encounter notable challenges in managing voltage coupling,
particularly with larger domain configurations. Conversely, FCA’s iterative root-
finding approach shows superior precision in reaching the desired operating points
under these types of control signal constraints.

Power regulation results further suggest that effectively capping power remains
challenging, with a clear trade-off between time and value metric. Each algorithm
displayed opposite trends in these metrics, highlighting the difficulty in balancing
power control across different scenarios.

Conversely, the effectiveness of the proposed fuzzy-inspired thermal regulation
over traditional state-of-the-art PID controllers is undeniable, as it consistently main-
tains superior performance across all configurations and scenarios. This demonstrates
the robustness and adaptability of the fuzzy-based approach, making it a highly reli-
able solution for managing thermal regulation in dynamic environments.
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TABLE 5.1: Summary of the average results of the battery of tests.
Standard deviation is included to show the constancy across different
tests. In green the best result, in red the worst.

5.3 MPC Controllers Comparison

This secondary comparison evaluates the performance of the MPC algorithm pre-
sented in section 4.4 under similar conditions to those used in the previous compari-
son, offering a focused analysis of the algorithm’s competitiveness and the specific
innovations introduced in this work.

In the previous analysis, FCA emerged as the best-performing algorithm, posi-
tioning it as the baseline reference for this secondary assessment. It is compared
against the MPC controller presented in this work, referred to as Linear Enhanced
MPC (LE-MPC). Regarding a state-of-the-art MPC comparison, as highlighted in
section 3.1, MPC controllers are predominantly employed as thermal regulators at
the HLC level, sometimes in conjunction with other power allocation algorithms, and
often not considering voltage coupling constraints. For a meaningful comparison, an
MPC controller was considered with the following design:

¢ power consumption Pr as the control input, according to the most common
configuration in the state-of-the-art

e same constraint formulation specified in (4.27), to be able to include all the LLC
control problem requirements

e target Pest calculated similarly to EBA, including moving average voltage selec-
tion and adaptive power adjustments. This is to address the voltage coupling
constraints.
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To prevent any interference with the results, only this MPC algorithm will be provided
with the complete array of temperature measurements, eliminating the need for
implementing an observer. In the test, this MPC configuration will be referred to as
Classic Thermal-Power MPC (TP-MPC).

For additional insight, a further algorithm, Linear Baseline MPC (LB-MPC), is
included in the comparison. LB-MPC represents a simplified version of LE-MPC
without the theta adjustments and hybridization enhancements. This inclusion
serves two purposes: first, to evaluate the robustness of the linearization approach in
comparison to TP-MPC, and second, as a baseline reference to assess the impact of
the proposed improvements in LE-MPC.

Notably, the performance of the MPC is strongly linked to the optimization matri-
ces Q, R, Ry, and H. This dependency already anticipates that results may exhibit high
variability; however, it also indicates the potential for achieving improved results
through an iterative process to refine and learn the optimal matrices.

In this work, the following penalization parameters are selected and applied along
the main diagonal of the respective matrices:

o TP-MPC:q=8,7r=0,r, =20,t; =1 x 1073, Ny, = 4
o LB-MPC: g =18,7r=0,7;, =20, t, = 1 x 1073, Nj,,,, = 4

e LEEMPC:q=10,r =75, =20,t; =1Xx 1073, Nj,,,, = 4. For the matrix #, the
coefficient h = 7.5 is chosen, with the k;; coefficients computed such that they
are uniform within each domain and satisfy }_k;; = h. Consequently k;; = %

As in the previous section, results are organized by workload type (Figure 5.8),
domain number (Figure 5.9), model type (Figure 5.10), and test iteration (Figure 5.11),
along with the violin plot (Figure 5.7) illustrating the distribution across all test cases.

5.3.1 Results

Thermal Regulation Metrics

The TH-MAX results of both Linearized MPCs (lin-MPCs) algorithms are comparable
to that of FCA, though with a wider distribution and a higher average value. TP-MPC
demonstrates the best performance, exceeding the target in only a few tests with
marginal values.

Conversely, the TH-CT metric reveals poor results for both lin-MPCs, with tar-
get exceedance observed in some tests for up to 40% of the test duration, with
an average value of 10% and high variance. In contrast, TP-MPC and FCA show
considerably better performance, with TH-CT averages of 0.15% and 6.4 x 107°%, re-
spectively. This disparity may be attributed to the linearization approximation, where
the time-varying offset does not fully mitigate model errors, particularly under high-
temperature and high-voltage conditions. Additionally, the state observer, which
supplies temperature measurements for the lin-MPCs, introduces further deviations,
contributing to the inconsistencies in threshold adherence.

Different thermal models do not impact the thermal performance of lin-MPCs
algorithms, provided each model was accurately ‘identified” before testing. Con-
versely, different initial conditions, particularly with elevated starting temperatures,
appear to affect the results negatively. This may be due to the previously mentioned
linearization errors and observer-related deviations.

Despite the high TH-CT values for the lin-MPCs, the average exceeded tem-
perature remain low, at 0.09°C and 0.10°C for the baseline and enhanced versions,
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FIGURE 5.7: Overall distribution of control performance metrics for

each algorithm. The first row shows thermal metrics, the second row

power metrics, and the third row target compliance and execution
progress metrics.

respectively. This suggests that although these factors influence TH-CT, the deviations
from the thermal limit (T7) are minimal and do not adversely impact the thermal
requirements.

Overall, the performance of all four algorithms is adequate and within acceptable
limits, demonstrating that the predictive capability of MPC can effectively prevent
large thermal overshoots and maintain a sufficiently fast response time, even with a
doubled control iteration time ¢; compared to FCA. This assessment is reinforced by
the consistency of results across all MPC algorithms illustrated in Figure 5.8 between
the MAX-WL and CLOUD-WL tests. Workload variations are absent in MAX-WL
but are significant in CLOUD-WL; thus, obtaining similar results indicates that fast
control response effectively manages workload uncertainty.

Power Regulation Metrics

A similar analysis to that of thermal regulation can be applied to power regulation
metrics. TP-MPC performs comparably to FCA, while both 1in-MPCs yield PW-
AV results similar to FCA but with a more widely spread deviation and noticeably
worse results in PW-CT. Weaker lin-MPC results were anticipated due to the linear
approximation. However, the addition of the time-varying offset helps keep the
PW-AV values in alignment with the other algorithms analyzed.

Interestingly, referring to Figure 5.9 the worst PW-AV results are observed in the
A-D configuration, whereas in all other configurations, lin-MPCs achieve PW-AV
results that are comparable to or better than the other algorithms. This suggests
that voltage coupling may help stabilize and mitigate control signal evolutions that
might otherwise attempt to track the given target too aggressively through R;. This
pattern cannot be attributed to the H matrix, which is zero in the A-D configuration;
additionally, both LE-MPC and LB-MPC have the same results pattern with LB-MPC
‘H matrix being zero across all tests. Conversely, the opposite trend is seen in PW-
CT, where larger domains tend to yield poorer results. This outcome aligns with
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expectations for both algorithms, given the more stringent coupling constraints in
larger domains.

It is also noteworthy that, similar to the thermal regulation results, power metrics
remain consistent between the MAX-WL test, with its constant and uniform workload,
and the more variable CLOUD-WL test. This consistency suggests that the disparity
in results between FCA /TP-MPC and lin-MPCs may be due more to the response to
step-input changes (such as adjustments in power budget) than to any limitation in
managing rapid workload variations.

Target Compliance Metrics

The first distinction in algorithms” performance becomes evident with TF-CFD. TP-
MPC performs notably worse than the other algorithms, with results that are slightly
better but comparable to those obtained by EBA and VBA in the previous comparison
of section 5.2. Additionally, distinctions between the two lin-MPCs start to emerge:
LE-MPC achieves a 0.51%improvement over FCA, while LB-MPC has a 4.88% worse
TF-CFD than FCA.

Examining specific configurations in more detail, LE-MPC shows its greatest
advantages over LB-MPC in the MULTI-WL scenario and in configurations with
larger voltage domains, as illustrated in Figures 5.8 and 5.9. These improvements
reflect the impact of the 6-based adjustments (4.29) enabled by using Py as control
input, along with the benefits of the hybrid integration described in section 4.4.4.
Specifically, the TF-CFD improvement for LE-MPC varies from 7.02% in the 1-D
configuration to 5,32% in the 9-D configuration, reaching nearly identical values
in the A-D configuration. Notably, this comparison test included only 16 cores,
resulting in a 9-D configuration with a maximum of two cores per domain. This
outcome suggests that the observed improvements stem from the inclusion of the H
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matrix, which enables LE-MPC’s optimization to better account for voltage coupling
constraints, rather than from severe limitations in voltage selection.

In terms of workload scenarios, as shown in Figure 5.8, TF-CFD improvements
between LE-MPC and LB-MPC in the MAX-WL test, where all PEs execute a constant
workload, are limited to 1.04%, likely due to the gains linked to domain configurations.
These improvements, however, increase to 1.56% in the CLOUD-WL scenario, where
workloads vary significantly, and reach 18.61% in the MULTI-WL scenario. The
primary cause of this large improvement difference may be attributed to the fact
that in MULTI-WL workloads remain constant over time, allowing LE-MPC to better
predict and allocate power, whereas the high workload variability in CLOUD-WL
reduces the opportunities for optimized power allocation. In Figure 5.11, the TF-
CFD improvement between LE-MPC and LB-MPC also appears to grow with rising
initial temperatures, likely due to the more stringent thermal conditions (i.e., reduced
thermal headroom) that emphasize LE-MPC’s ability to select a better operating
point.

TP-MPC performs worse than all other algorithms, with TF-CFD performance
diminishing as initial temperatures increase and with larger domain sizes, suggesting
a simpler algorithm that lacks advanced optimization features.

Comparing FCA’s TE-CFD results with both lin-MPCs algorithms, FCA performs
significantly better in the MULTI-WL scenario but records lower values in other
workloads, with the largest difference observed in CLOUD-WL. FCA also achieves
better results with larger voltage domains, but falls behind in the 9-D and A-D
configurations. This trend suggests that FCA has a stronger capability for power
allocation in scenarios with coupling constraints and constant workloads, while
its responsiveness to fast-varying workloads appears slightly weaker. It is also
noteworthy that, despite exhibiting a higher standard deviation due to the bimodal
distribution of results, FCA demonstrates less overall TE-CFD variability, as shown in
Figure 5.7. This indicates that FCA offers a more consistent option with comparable



76 Chapter 5. Analysis and Comparison of Control Algorithms

Thermal Model

Max Exceeding Temperature
T

30
=
T2
19 2 12,
143 10 og7 1019 ods 947
s ; i
o 9 o 000 0 | 037 0 | oz o0

Air Rack Water Air Rack

Total Exceeding Time - Temperature
T

Average Exceeding Power Total Exceeding Time - Power
T T

ElFCA
I TP-MPC
[ILB-MPC
IllLE-MPC

%]

L2-Norm of Frequency Difference
(less is better)

Water Air Rack ‘Water Air Rack ‘Water Air Rack

FIGURE 5.10: Control performance metrics for different thermal mod-

els: water cooling (WATER), air cooling (AIR), and horizontal rack

cooling (RACK), with relative error bars. The first row shows thermal

metrics, the second row power metrics, and the third row target com-
pliance and execution progress metrics.

average outcomes.

Application Execution Performance

The AP-AV metrics exhibit a pattern similar to TF-CFD, supporting a comparable
analysis. Nevertheless, additional insights can be gained by examining the AP-MIN
metric. LE-MPC achieves more consistent results than the other algorithms, including
FCA, with only a few low-value outliers. These outliers appear to stem from the
stricter conditions, specifically the RACK tests with the highest initial temperature
and 1-D configuration, regardless of the workload scenario.

Summary and Conclusions

The average results and their standard deviations, accounting for consistency across
tests, are summarized in table 5.2.

The analysis demonstrates the robust performance of FCA, which, despite being a
simpler and less computationally intensive algorithm, achieves results comparable to
the more complex MPC-based approaches. FCA maintains consistent thermal, power,
and performance requirements, specifically in scenarios with complex coupling
constraints. This stability and efficiency make FCA a reliable control choice, even
when benchmarked against the computationally demanding MPC algorithms.

The lin-MPC algorithms, in contrast, show more variation in their metrics due
to their cost function | depending on fixed optimization matrices, which may limit
their adaptability to diverse conditions. Although lin-MPCs exhibit higher variance
in the distribution of results particularly in TH-CT and PW-CT, these stem from the
limitations of the linear approximation rather than fundamental issues in meeting
thermal or power requirements. TP-MPC demonstrates the highest performance in
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FIGURE 5.11: Control performance metrics across test iterations with

relative error bars. The x-axis indicates the average initial system

temperatures. The first row shows thermal metrics, the second row

power metrics, and the third row target compliance and execution
progress metrics.

power and thermal regulation; however, these gains are less significant when consid-
ering the consistent and acceptable results produced by the other three algorithms,
coupled with TP-MPC’s lowest performance metrics.

The lin-MPC algorithms exhibit weaker thermal and power regulation results
compared to TP-MPC, which serves as the baseline, indicating that the linearization
introduces a non-negligible degree of approximation. Future improvements could
address this limitation by incorporating additional features, such as those based on
robust MPC theory. Nonetheless, both lin-MPC algorithms achieve superior target
compliance and application execution performance compared to the state-of-the-art
reference TP-MPC, with the enhancements described in section 4.4.1 and section 4.4.4
increasing this improvement even further.

Overall, these comparisons underscore the effectiveness of FCA as a practical and
efficient control solution in complex scenarios.
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Alg FCA | TP-MPC | LB-MPC | LE-MPC
Max | 4.09

&; TH-MAX [°C] Av 0.55
S SD | 0.70
<]
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Av

= PW-AV [%]
2
&
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=
2
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<
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TABLE 5.2: Summary of the average results of the battery of tests. The
standard deviation indicates the consistency of each algorithm across
different tests. The best results are in green, the worst in red.

5.4 Distributed Control Analysis

The application of distributed control strategies to HPC systems allows to solve the
problem of allocating a power budget across multiple interconnected controller nodes.
Leveraging ROS 2 [93], an open-source platform optimized for modular and real-
time communication, this work analyzes the efficiency and responsiveness of power
distribution across a network of controllers within a distributed control architecture.

This test considers a network configuration comprising nine controllers, each
represented as a node in a square grid topology with direct horizontal and vertical
communication links to adjacent nodes (see Figure 5.12). Each node is assigned
a constant power target and workload information, both of which remain fixed
throughout the test. The optimization objective is defined by the function in eq. (4.47),
and the gradient tracking algorithm described in section 4.5.2 is used to coordinate
the allocation of power among the nodes.

The enforced network-wide power budget constraint is set to approximately 75%
of the sum of the power targets of all nodes. A step size of v = 0.1 is applied.

The results in Figure 5.14b demonstrate that this network configuration success-
fully satisfies the shared power budget constraint within 30 controller iterations. It is
worth noting that, for each node i the initial values of the P; elements in x; relative
to the other nodes are initialized to a minimum value of 0.5W, significantly lower
than their actual target values. Figure 5.13 further illustrates this behavior, where the
thinner lines converge to the converged P; values of each node within approximately
30 iterations.
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FIGURE 5.12: Figure 5.12a on the left illustrates the 9-node square

network configuration, where each line represents a duplex communi-

cation. Figure 5.12b on the right shows the adjacency matrix used in
the test.

Upon reaching consensus, the P; values continue to evolve as the gradient tracking
algorithm minimizes the sum of the nodes’ cost functions while preserving the power
budget constraint. This evolution is reflected in Figure 5.14a, where the y; values,
which store the gradients of the cost functions, decrease over time as the optimization
progresses.

Additionally, Figure 5.13 highlights that nodes with higher power targets (i.e.,
those handling more demanding workloads) experience less reduction in their P}
targets compared to those with lower power demands, according to the r; parameters
in eq. (4.47).
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Iteration
FIGURE 5.13: Evolution of the power vector x; of each node under the
gradient tracking algorithm. Lines of the same colors correspond to
a single node. The thicker lines represent the node-specific P; values,
while the thinner lines indicate P; values of other nodes. Dashed lines
denote the power targets P;.
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FIGURE 5.14: Figure 5.14a (left) shows the y; gradient tracking value
of the algorithm. Lines of the same colors correspond to a single
node, with thicker lines representing the node-specific y; elements and
thinner lines indicating the y; elements of other nodes. Figure 5.14b
(right) illustrates the total network power consumption (blue line)
converging to the power budget threshold P (red dashed line).
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Chapter 6

Hardware in the Loop (HIL)
Implementation

In Chapter 5, the comparison between algorithms was conducted in a Model in the
Loop (MIL) environment. MIL is a method for testing the control action within a
simulated software environment, allowing developers to validate the performance
and correctness of their algorithm before deploying it on actual hardware systems.
This is only the first step in development as it may not fully capture real-world
hardware interactions, which can lead to differences in performance during actual
deployment [119].

The next step is to transition from simulation to hardware testing. This shift
allows for a more comprehensive evaluation of the control algorithms by assessing
their performance in a more realistic scenario. By conducting tests directly on the
hardware, it is possible to validate the system’s response to various inputs and ensure
that real-time constraints are met, while other tasks, such as communication and data
transfer, are carried out simultaneously. To perform this level of testing, a Hardware
in the Loop (HIL) framework was set up [100].

HIL testing adoption has been rising as an important tool in the development
and validation of control systems across various industries. By embedding physi-
cal hardware components into a real-time simulation environment, HIL offers an
alternative way to test and fine-tune the overall system behavior under a wide array
of testing conditions. This technique bridges the gap between pure simulation and
real-world application, allowing developers to validate control algorithms, hard-
ware functionality, and system integration without exposing the actual system to
potentially damaging scenarios.

The HIL approach enables rapid prototyping and iterative testing, removing the
need for repeated physical system builds during early design stages, and it allows
tests to be conducted under particular operating conditions that would be difficult
or costly to recreate in real-world environments. The ability to test failure modes
and critical situations in a safe virtual environment is particularly invaluable for
safety-critical systems such as HPC power and thermal control, where failures would
result into damaging a very expensive early testing sample [134].

In this work, a HIL framework is implemented using a Xilinx Ultrascale+ Field-
Programmable Gate Array (FPGA), specifically the ZCU102 board [167], to emulate
and validate real-time control in HPC systems. The ZCU102 integrates a powerful
Processing System (PS) with four Arm Cortex-A53 cores and a dual-core Cortex-R5F
Real-Time Processing Unit, alongside a Programmable Logic (PL) region that provides
extensive reconfigurability. This setup enables simultaneous execution of the control
firmware, running on the PL, while plant models are simulated on the PS, facilitating
real-time interactions. The framework’s setup involves programming the FPGA with
the TPC hardware’s bitstream, booting a lightweight version of Linux OS on the
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PS, loading the control firmware into the FPGA’s memory, and then launching the
simulation on the PS cores. This setup establishes a Hardware-Software Co-design
Framework that closely replicates real hardware conditions, enabling comprehensive
testing and evaluation of control algorithms in an HPC context. It also favors iterative
improvements across all components of the LLC controller subsystem, including
hardware, software, and control action [149].

6.1 Hardware-Software Co-design Framework

In HPC systems, effective thermal and power management relies on a tightly inte-
grated TPC controller (2.3). An HIL framework enables simultaneous improvements
of both hardware and firmware components, while ensuring that the control algo-
rithm keeps meeting real-time deadlines and performs as desired. This co-design
approach becomes critical when implementing complex algorithms, where both hard-
ware and software must coordinate to provide precise and fast responses to rapidly
changing conditions.

An iterative hardware-software co-design process allows for continuous refine-
ment and adaptation of the TPC to meet performance requirements. By adjusting
hardware resources, such as computing units or interrupt handling subsystems, in
tandem with firmware structure, scheduling policies, and control algorithms, devel-
opers can repeatedly test each component to achieve the control objectives effectively.
This iterative process is particularly beneficial in early design stages, where TPC
and system hardware are not yet available, leveraging FPGAs as a HIL emulation
platform. This framework is valuable for developing and testing control firmware in
scenarios that closely resemble real-world operating conditions, to iteratively test its
design along with all other components [134].

The developed Hardware-Software Co-design HIL framework consists of three
key components:

¢ the TPC hardware. Serves as the execution platform for control actions, in-
teracting directly with simulated sensors and setting operating points for the
simulated actuators.

¢ the Firmware. Manage the TPC’s core functionalities, implementing the control
algorithm to execute real-time adjustments based on sensor data and control
requirements.

¢ the Simulation. Simulates the controlled system (or “plant”), allowing for rapid
prototyping of control architectures across diverse systems and specific edge
cases, ensuring safe testing without dependence on physical hardware.

6.2 The TPC Hardware: ControlPULP

The HIL framework leverages ControlPULP [111] as the dedicated TPC hardware
microcontroller, chosen for its scalable architecture and compatibility with high-
performance control demands in HPC environments. ControlPULP is an open-source
RISC-V-based platform designed for the role of power and thermal management
controller in modern HPC processors. Based on the PULP project [131] it is tailored
to meet the control requirements of increasingly complex modern chips offering a
scalable, parallel architecture optimized for real-time capabilities.
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The motivation behind ControlPULP choice lies in the growing computational
needs for real-time, fine-grained control of power and thermal characteristics in
modern processors. With the increasing number of PEs in HPC systems, traditional
single-core microcontroller-based TPCs are no longer sufficient to provide the nec-
essary computational capabilities while maintaining low-power characteristics and
having minimal footprint on the die [110].

ControlPULP consists of two main subsystems: a single manager core and a multi-
core programmable cluster accelerator. The manager core, based on the CV32E40P
RISC-V processor, is responsible for handling fast interrupt-driven tasks, while the
programmable cluster accelerates the parallel computation of real-time power man-
agement policies. The architecture includes a dedicated Direct Memory Access (DMA)
engine to speed up data transfers, a specialized real-time interrupt controller, the
Core-Local Interrupt Controller (CLIC), which provides low-latency interrupt han-
dling with pre-emption support, and an advanced dedicated Floating Point Unit
(FPU) for each core of the cluster.

ControlPULP’s primary goal is to provide a platform capable of implementing
advanced Multiple-Input Multiple-Output (MIMO) control algorithms on a large
number of elements with predictable performance and low latency. To communicate
with the system, it includes a robust peripheral subsystem designed to manage off-
chip communication and system-level power management. This subsystem includes
a specialized I/O data engine unit known as the yDMA intellectual property (IP),
which enables efficient and autonomous data transfers between off-chip components
and the ControlPULP’s L2 SRAM. This feature minimizes the computing load on the
manager core, allowing it to focus on other tasks. The peripheral subsystem supports
industry-standard interfaces such as Adaptive Voltage Scaling Bus (AVSBus) and
Power Management Bus (PMBus), which extend traditional 12C and SPI protocols for
the digital monitoring and management of voltage and power rails. These interfaces
are crucial for coordinating with VRMs, ensuring that voltage and power delivery
to the processor cores are dynamically adjusted in response to changing workload
demands, power budgets, and thermal conditions [110].

In addition, ControlPULP integrates multiple I2C master/slave interfaces to
enable communication with the BMC and other board-level controllers. To this end,
it is able to support communication through the Platform Level Data Model (PLDM)
and the Management Component Transport Protocol (MCTP) transport layers.

For the on-die communication, ControlPULP offers a powerful DMA engine
capable of 2D stride transfers. This allows for efficient data movement, particularly
when reading data from the PVT sensors with non-contiguous address mappings,
such as those found in large-scale HPC systems. By offloading data acquisition tasks
to the DMA engine, ControlPULP significantly reduces the burden on the processor
cores, enabling the controller to acquire sensor data and compute control decisions in
parallel, enhancing both performance and responsiveness [110].

With its extensive peripheral subsystem, ControlPULP offers high integrability,
positioning it as a flexible and adaptable solution for power management across
large-scale systems, including HPC.

6.3 The TPC Firmware

Based on the capabilities of the ControlPULP hardware and the timing constraints
outlined in section 3.3.4, the firmware is designed to meet requirements important
for reliable operation in high-performance environments [147]:
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* Computationally Lightweight: the firmware must be designed to ensure re-
sponsive execution on resource-constrained hardware, allowing it to meet
real-time deadlines without introducing latency or computational bottlenecks.

¢ Real-Time Capabilities: to manage the varying timing and execution require-
ments of different operations—particularly control-related tasks—the firmware
is designed to ensure a deterministic, reliable execution with robust recovery
from potential failures. This includes maintaining prompt task scheduling with
prioritized execution, responsiveness to events, and prevention of execution
overruns to meet all time-sensitive demands.

¢ Safety Features and Interrupt Management: robust safety features are inte-
grated to manage critical interrupts effectively. These include priority-based
interrupt handling, protection against race conditions, and mechanisms for
managing fault conditions in real-time, ensuring stable and reliable control
action without risking system integrity.

¢ Modularity, Scalability, and Portability: the firmware’s modular design allows
each component to be independently upgraded or replaced, offering flexibility
for its modification and improvement. It has to be built for scalability to manage
changing system complexity or integrate additional modules as needed, and
portability to further ensure compatibility across diverse hardware configura-
tions.

Together, these characteristics form a cohesive and robust firmware foundation,
aligning with the requirements of responsive and reliable control in HPC systems.

6.3.1 Real-Time

In HPC systems, real-time firmware characteristics are essential for maintaining a safe
and stable operational state. Key requirements include control interval management,
task scheduling with prioritized execution, pre-emption and task swapping, and
efficient handling of interrupts during execution. Additionally, robust response to
deadline misses is fundamental to ensuring continuous and reliable system operation.
The firmware has to ensure that the control action executes with minimal latency,
responding to power level variations and thermal conditions promptly. Such rapid
response is crucial for mitigating risks associated with excessive heat or power, which
can otherwise compromise hardware integrity and lead to unsafe conditions [98, 150].

To meet these stringent real-time requirements, this work incorporates a real-time
kernel layer as the foundation of the TPC firmware architecture, with the firmware
developed directly on top of this layer. The software stack, shown in Figure 6.1,
leverages FreeRTOS as the chosen kernel to provide real-time capabilities such as
tasks scheduling, prioritization, and interrupt management.

FreeRTOS

FreeRTOS is a Real-Time OS (RTOS) designed for embedded applications requiring
minimal overhead, high reliability, and efficient task scheduling. Its lightweight
kernel provides pre-emptive multitask scheduling, allowing developers to manage
priorities, which is particularly beneficial for systems requiring predictable response
times. The architecture of FreeRTOS supports a wide range of microcontrollers and
platforms and can be readily adapted to new ones through the development of a
dedicated C porting file [18]. Its open-source nature further enhances its flexibility and
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FIGURE 6.1: TPC software stack. The application control policy exe-
cutes on top of FreeRTOS, which controls the hardware with target-
specific drivers and HAL Application Programming Interfaces (APIs).

suitability for this work, allowing for a seamless recompilation of the kernel for the
RISC-V ISAs, including ones with an extended instruction set such as ControlPULP.

Key features of FreeRTOS include support for task prioritization, inter-task com-
munication, and synchronization, achieved through mechanisms such as queues,
semaphores, and mutexes. FreeRTOS also incorporates memory management strate-
gies designed for small-footprint systems, including static and dynamic allocation
options. Additionally, the kernel includes a configurable tick rate, allowing devel-
opers to fine-tune the timing resolution according to the system’s real-time require-
ments [19]. This combination of low overhead, determinism, and configurability
positions FreeRTOS as a suitable solution for applications demanding strict timing
and reliability in their control actions.

The tick rate in FreeRTOS influences the timing of an internal management func-
tion responsible for kernel operations and task scheduling, including task context
switch management. The SysTick, which is the event triggering the tick change,
is typically configured at a frequency of 1kHz. To achieve specific periodic timing
solely with FreeRTOS, one approach is to reduce the SysTick frequency. However,
this increases the RTOS overhead, which may adversely impact the performance
of the TPC [15]. Linking the control task’s execution interval directly to FreeRTOS
introduces some limitations: (i) the control structure becomes tied to the FreeRTOS
structure, making control actions more susceptible to RTOS runtime issues; (ii) the
control task’s period can only be adjusted to integer multiples of the SysTick period at
runtime, limiting flexibility. An advanced configuration would allow for dynamically
adjusting the frequency with finer granularity—decreasing it if deadlines are not met
or increasing it when sufficient slack time is available to improve performance; (iii)
decreasing the SysTick frequency to lower the overhead could not be done. FreeRTOS
also supports internal software timers, but these operate as multiples of the SysTick,
thus incurring the same issues [19].

However, FreeRTOS enables the use of dedicated hardware timer interrupts
by appropriately configuring the FreeRT0SConfig.h file. In the work, a hardware
timer was configured to trigger an Instruction Service Routine (ISR) at a specific,
runtime-adjustable frequency to achieve the desired periodicity without the limita-
tions discussed above. To differentiate it from the SysTick, this interval is called Timer
Application Periodicity (TAP). Within the TAP ISR, the desired task is signaled using
the FreeRTOS API function vTaskNotifyGiveFromISR(). Task notifications provide
the fastest and most efficient method of blocking and unblocking tasks, allowing
them to interact with each other and synchronize with ISRs without requiring ad-
ditional communication objects. This approach makes task notifications faster and
more memory-efficient than other kernel objects that achieve similar functionality.
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While task notifications have some limitations, these do not impact the requirements
of this implementation.

Tasks also need to exchange data, commands, and status information. In a real-
time system with safety requirements, race conditions and data corruption must
be prevented by following a carefully designed sequence. FreeRTOS provides two
synchronization objects for this purpose: binary semaphores and mutexes. A binary
semaphore operates as a token representing the availability of a protected resource.
Mutexes are binary semaphores with a priority inheritance feature, with the downside
that they cannot be used within ISRs. Priority inheritance minimizes the effects of
priority inversion by raising the priority of a task holding the mutex to match the
highest priority of any blocked tasks attempting to acquire it. For data exchanged
between tasks, mutexes are employed, with one mutex assigned per global variable
accessed by multiple tasks. For variables accessed by both tasks and ISRs, binary
semaphores are used instead, allowing event-driven triggers, such as signaling when
data is ready or a transaction is successfully completed. When binary semaphores
are used, careful attention is given to ensuring they block only a single task without
nested blocking calls, thereby avoiding priority inversion [150].

The array of features and configurable options, combined with FreeRTOS’s
lightweight design, static memory management, fast response times, and safety
mechanisms, as well as its open-source nature enabling straightforward compilation
for ControlPULP hardware and future enhancements, establish FreeRTOS as an ideal
choice for the TPC firmware.

Scheduling Characteristics

The control action is divided into three distinct tasks—Fast, Periodic, and Slow
Control Tasks—each with specific execution intervals, priorities, and contexts. This
division helps to separate computational and timing requirements, as detailed in
section 3.3.4, enabling an optimized trade-off between accuracy and responsiveness
for each task. High-responsiveness features are allocated to the Fast Control Task
(FCT), which necessitates being computationally lightweight to avoid impacting
overall system schedulability. Control features requiring more intensive computation
are assigned to the Slow Control Task (SCT), which balances this demand with lower
execution interval frequency, while the primary control actions for thermal and power
regulation are managed within the Periodic Control Task (PCT).

This structure results in a real-time, priority-driven scheduling environment
with static task priorities. To ensure the FCT meets its deadlines and maintains
responsiveness, task preemption within the kernel is required.

Due to ControlPULP’s architecture, which includes both a manager core and an
accelerator, as described in section 6.2, either the PCT or SCT is offloaded to the
accelerator based on their respective execution interval-to-computation time ratios.
This allocation introduces a degree of hardware parallelism, simplifying the main
core’s scheduling by effectively managing only two control tasks, though it requires
additional measures to maintain data coherence.

To improve schedulability within the firmware, particular attention is given to
maintaining harmonic relationships between task execution time intervals. Using
harmonic frequencies in real-time scheduling minimizes latency and interference
by aligning task executions within predictable time slots. This approach simplifies
achieving a feasible schedule, particularly in priority-based systems, and reduces
the computational load associated with frequent preemptions [162]. In this work,
the proposed frequency for the FCT is 10KHz, for the PCT is 2KHz, and for the SCT
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is 200Hz. The addition of a task that manages communications with 1KHz is also
theorized.

6.3.2 Code Structure

Based on the requirements detailed in section 6.3, the firmware is organized into
modular components designed to be independently replaced, requiring no changes
to other modules and thus remaining self-contained. Each primary functionality of
the firmware is encapsulated within its own module:

¢ Core Module: contains the fundamental firmware operations and basic func-
tionalities

* RT Module: serves as a translation layer that encapsulates the real-time (RT)
kernel, allowing for future upgrades or replacement with alternative solutions

¢ Control Module: houses the control action, ensuring it operates independently
from other components, and allowing to easily test different algorithms

¢ Target Module: acts as an interface between the target hardware and drivers,
and the firmware code, enabling flexible hardware changes without affecting
other modules

¢ System Module: interfaces the system plant with the firmware, facilitating
integration and communication (e.g. sensors and actuators)

¢ Additional Libraries: the firmware can include supplementary modules and
libraries, such as a library for mathematical functions and another for communi-
cation protocols. These are customizable and less essential to core functionality.

This structure enables rapid swapping and modification of individual components
without compatibility issues. The system and target modules, in particular, facilitate
quick replacement of the plant and the controller hardware respectively, which is
especially valuable for testing and debugging.

Each module is designed with a standardized internal structure. In addition to
the classic src/include organization, three additional files have commonly defined
rules. A cfg_x.h file is included within each module, containing definitions and
parameters that determine the module’s behavior. This configuration file influences
only its specific module and allows for rapid iterative testing by adjusting these
parameters without modifying the module’s internal code. The asterisk in the file
name is intended as the module’s unique name. A pcf_x.h file holds the prototypes
for all functions within the module that are called by external entities, serving as a
stable API interface that remains unchanged when the module is replaced, upgraded,
or modified. Some modules may include a *_types .h file that defines custom types
specific to the module, ensuring consistency in data types across the firmware.

Additional consideration was given to the control module, as it contains the code
likely to be the most computationally demanding, necessitating parallelization. To
avoid maintaining multiple versions of the control algorithm (one for single-core and
another for parallel execution on the accelerator) and to allow run-time flexibility on
accelerator execution, a mechanism was developed to parallelize the iterations within
the control algorithm. This mechanism only requires that functions implementing
the control algorithm adhere to a standardized prototype:

float fNameOfTheFunction(int i_start, int i_end, int
i_increment, struct ctrl_task_index* tptr, void** args);
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The first three variables define the start, increment, and end values for any loops in the
code. tptr is a struct variable that contains all pointers and information related to the
control environment, including an indicator for parallel execution, which allows for
conditional use of parallelized math library functions. The args parameter provides
additional arguments for the function, while the float output is used when a final
summation is required.

The following function_paramstruct provides a configuration interface for setting
up the function for execution, defining its parameters and settings:

struct function_param {
float (*f)(int, int, int, struct ctrl_task_indexx*, void
**)
int total_iterations;
int parall_num;
int exec_time;
void** ptr_args;
struct ctrl_task_index *tptr;
float* return_value;

}s

where f represents the function to be parallelized, total_iterations defines the total
number of iterations in the internal loops, and parall_num indicates the number of
processing units available to run the parallelization. exec_time stores the measured
total execution time of f on a single core, ptr_args is the pointer to any additional
arguments required by the function, and return_value is the pointer to the function’s
return accumulation value. The macro used to put this function in execution is:

void MACRO_CP_CLUSTER_PARALLELIZE(struct function_param*

param) {

int exec_gain = param->exec_time / (int)param->
parall_num + CP_CLUSTER_OVERHEAD;

if ( (param->parall_num>1)&&(exec_gain<param->exec_time)
) {
if (param->return_value == NULL){bTargetClusterFork(

vDummyFork , (void*)param, param->parall_num);}

else {float accum[MAX_NUM_CLUSTER_CORE] = {0}; float

*ptr_hold = param->return_value; param->

return_value = (void*)accum;

bTargetClusterFork (vDummyFork, (voidx*)param,
param->parall_num) ;

*ptr_hold = VD_ZERO; for(int ccore=0; ccore <
param->parall_num; ccore++) {*ptr_hold +=
accum[ccorel;}} }

else {vStartMeasure(); if (param->return_value == NULL)
{param->f (0, param->total_iterations, 1, param->igl,
param->ptr_args) ;}

else{*(param->return_value) = param->f(0, param->
total_iterations, 1, param->igl, param->ptr_args
);}; param->exec_time = vStopMeasure() ;}

}

where bTargetClusterFork is the RT module function called to parallelize execution
within the cluster, and vDummyFork manages the computation of start, end, and
increment values as follows:

void vDummyFork (void *args)

{
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struct function_param* param = (struct function_paramx)
args;
int i = (int)1lTgtGetClusterCoresNumber () ;

int s = (int)1lTgtGetClusterCoreId () ;
int it_chunk = param->total_iterations / 1ij;
if ( (param->total_iteratiomns % i) != 0)

it_chunk += 1;
varFor e = s + i1 * it_chunk;

// Handle odd core number
if (e > param->total_iterations)

e = param->total_iterations;
if (param->return_value == NULL)
{

param->f(s, e, i, param->igl, param->ptr_args);

vTargetClusterTeamBarrier () ;

}
else
{
param->return_value[s] = param->f(s, e, i, param->
igl, param->ptr_args);
vTargetClusterTeamBarrier () ;
}

}

Naturally, scheduling and dynamically relocating the control function at run-time
introduces coherence challenges. Information from one control iteration must be
preserved for use in subsequent iterations. While the ControlPULP cluster includes
DMA capabilities to facilitate transfers, these operations must be programmed in
advance to manage data movement effectively.

This adaptable code structure establishes a foundation to enable updates and
iterative test capability needed to efficiently use the Hardware-Software Co-design
framework. The modules’ self-contained design supports ensures that even complex
changes can be managed with minimal impact on the overall firmware architecture.

6.3.3 Safety Requirements

Safety is a fundamental aspect of firmware design, particularly in real-time control
systems, where unexpected behavior or data inconsistencies can compromise system
stability. Essential safety features include mechanisms for detecting, handling, and
recovering from internal execution errors, as well as logging and signaling any issues.
In the event of critical failures, the firmware should incorporate fail-safe modes to
safely transition the system to a power-down sequence [147].

Watchdog timers and designated execution checkpoints are implemented to con-
tinuously monitor the firmware’s operational state, detecting potential deadlocks
or hangs in task execution [120]. Additionally, memory integrity checks further
contribute to safe operation by preventing corruption of data and instructions.

In the context of HPC DPTM firmware development, special attention is given
to validating operational results, as well as verifying the feasibility of incoming
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measurements and outgoing control commands. Where supported by TPC hardware,
privileged operations are also employed during communication with the HPC system
to further prevent information gathering or data tampering.

Currently, most of these safety features are not yet implemented, as the primary
focus has been on developing and analyzing the control algorithms. Nonetheless,
their implementation is essential in further development of the firmware toward a
finalized and reliable product.

6.4 The HPC Chip Simulation

The Simulation serves as a model of the plant (an HPC chip in this case), replicating
its thermal and power dynamics, sensor readings, and actuator effects on the system,
as well as target variations and workload traces. This simulation allows for testing
control algorithms in a safe, adjustable environment, enabling developers to refine
control strategies and evaluate performance across different scenarios without the
need for physical hardware.

The plant model is adapted from the one described in Chapter 2 and converted
into an executable file that can operate on a low-computation system, like the PS
cores of the FPGA. C was selected as the coding language for the simulation for its
performance efficiency, general applicability, and due to familiarity with the language,
although alternatives like C++ or Rust could also have been viable choices [118]. The
PS of the FPGA runs a lightweight custom Linux OS distribution, allowing the
simulation to execute as a privileged, compiled application [110].

The simulation is divided into multiple threads to enhance the computational
capacity through parallelized execution. The threads’ composition is as follows:

¢ Thermal Model Thread: the most computationally demanding thread, respon-
sible for running the thermal model

¢ Power and Performance Thread: manages the performance model through the
given operating frequency and compute the power model

¢ Data-Saving Thread: records data throughout the simulation for later analysis
of results, reading them directly from the DRAM

¢ Simulation Manager: coordinate the simulation while providing time-varying
HLC targets based on a predefined trace.

Linux timers manage the real-time aspects of the simulation, waking each thread at
specified intervals, while a custom implementation of pthread mutexes is used as
binary semaphores for thread synchronization. Data exchanges with the TPC occur
through shared DRAM addresses to ensure simplicity and rapid communication. This
setup requires specific Linux implementations with root privileges and appropriate
kernel settings.

The configuration of the simulated system is provided via a JSON file, while the
trace inputs for HLC target points and workload are provided as CSV files. The
data-saving thread, after gathering data directly from the DRAM at specific intervals,
transmits it to a database using the MQTT communication protocol. Custom publisher
and collector components, based on the Mosquitto library, were developed to handle
high data volumes and throughput efficiently. Data storage and visualization are
managed through Examon.

Examon is an open-source framework used for real-time monitoring and analysis
of performance and energy metrics in HPC systems [34]. It enables the collection
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of a large volume of data from various sources, such as hardware sensors and soft-
ware counters, and organizes it within a time-series database. Utilizing lightweight
protocols like MQTT, Examon efficiently transmits data at high frequencies, which
is essential for large-scale HPC environments, and this utilization with simulation
data. Visualization is facilitated through Grafana, providing interactive dashboards
that enable in-depth analysis of system behavior, performance trends, and energy
consumption.

Due to the restricted capabilities of the TPC hardware instantiated on the PL
of the FPGA and the limited computation power of the FPGA PS cores, both the
simulation and TPC firmware operate at 200 x slower than real-time. Specifically,
a slowdown factor of 25x is attributed to the reduced PLL frequency of the TPC
hardware, which operates below the achievable 500MHz of the actual hardware
due to FPGA limitations [110]. An additional 8 x slowdown is introduced by the
simulation running on the PS cores to prevent deadline misses, with a built-in check
to verify deadline adherence.

A representation of the HIL Co-design Framework is depicted in Figure 6.2.

6.5 Tests and Results on the HIL Co-design Framework

In this section, a series of tests and experimental studies conducted in collabora-
tion with other colleagues using the HIL co-design framework are presented. The
platform’s comprehensive capabilities enabled precise investigation across multiple
research objectives, facilitating analyses under varying conditions. Each experiment
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leveraged the platform’s architecture, underscoring its utility in testing and prototyp-
ing. Collectively, these studies demonstrate the platform’s effectiveness as a reliable
foundation for experimentation in high-performance environments.

6.5.1 Control Algorithm Execution Timing

In [111], the Hardware-Software Co-design HIL Framework was used to measure
the computational utilization of the BA control algorithm and evaluate the hardware.
The authors investigated the speedup provided by the ControlPULP accelerator
across various stages of BA, observing improvements ranging from 3x to 7.9x on
the 8-core cluster, with the TH-PID and Conv2F control steps demonstrating the best
improvement (Figures 3.a and 3.b). This speedup enabled the control of up to 256
HPC cores within a t; = 500us window.

Additionally, the study analyzed DMA performance and NoC latency delays for
ISRs, which provided insights into the data handling and responsiveness capabil-
ities of the ControlPULP hardware. Despite the focus on the hardware, the tests
in [111] were evaluated in coordination with the firmware and the control, effectively
demonstrating the utility of the Hardware-Software Co-design approach to ensure
comprehensive validation within the HIL environment. This setup underscores the
capability of ControlPULP to handle complex control tasks efficiently and in real-time,
offering a viable path forward for advanced control methodologies in HPC systems.

6.5.2 SCMI Communication Testing

The System Control and Management Interface (SCMI) is a standardized protocol
introduced by ARM to manage power and performance management communication
between HLC and LLC controllers in HPC environments [92]. Originally developed
to overcome the limitations of OS-centric power management, SCMI addresses the
need for real-time, low-latency communication through a standardized interface that
allows HLCs to send control target requirements to dedicated LLCs. This delegation
model not only reduces overhead on application-class processors but also enhances
response times for critical control actions, making SCMI an effective protocol for
DPTM in systems where conditions vary rapidly.

The hardware-software co-design framework developed in this work, enabled
the implementation and testing of SCMI, providing a platform where the interaction
between HLC and LLC could be examined under realistic conditions. This approach
allowed the authors in [159] to test SCMI’s latency, reliability, and effectiveness in
managing power control commands and DVEFS adjustments, while assessing the
impact of communication delays on the control requirements of HPC systems. SCMI
was implemented using a dedicated mailbox-based communication channel between
the HLC and LLC, which operates via shared memory. This setup allowed efficient
data transfer and control signaling, where each control request from the HLC is
passed to the LLC through interrupt-driven notifications.

Results from [159] demonstrated that SCMI does not disrupt power management
policies within an HPC control environment, achieving a message dispatch time
through the Linux software stack of 70.5us on average and an LLC processing re-
sponse time averaging 603.5us. Although relatively high, this value also accounts for
latencies introduced by the real-time scheduling of the communication task in the
TPC firmware, which operates with a 1ms interval as outlined in section 6.3.2. Indeed,
results show a uniform distribution ranging from 83us to 1065us, with occasional
outliers, as shown in Figure 3 of [159]. When isolating the latency specifically from
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FIGURE 6.3: Comparison between SCMI mailbox communication and
shared DRAM, used as a reference, in both periodic and event-based
HLC configurations.

the mailbox, interrupt handling, associated ISR, and the return to execution, the total
SCMI management time is reduced to 13.15us, as reported in Table I of [159].

Figure 6.3 ! illustrates the measured latency between a workload phase transi-
tion—specifically, shifting from memory-bound to high-power vectorized instruc-
tions—and the corresponding adjustment of the operating point by the LLC. The
study examines the comparison between the shared DRAM data exchange, which
serves as a baseline with minimal inherent hardware latency, alongside the SCMI
communication implementation for providing DVFS targets to the LLC. The analysis
includes both a periodic HLC version and an event-triggered version that activates
upon detecting a workload phase edge change. Results indicate that, on average,
SCMI introduces no significant delay to this process, with total latencies around
2.25 ms for the periodic configuration and 1.15 ms for the event-triggered configura-
tion—values that align well with the considerations discussed in sections 3.3.4 and
6.3.2.

This comparison highlighted SCMI’s ability to handle the communication de-
mands commonly encountered in HPC workloads, ensuring timely application of con-
trol policies without introducing significant delays. Overall, the hardware-software
co-design framework not only facilitated a reliable SCMI implementation but also
enabled extensive performance characterization, confirming SCMI’s suitability for
HPC environments.

6.5.3 EPI Light Reference Platform (LRP)

To further evaluate the TPC, the EPI project provided a Light Reference Platform (LRP)
for testing the controller alongside real VRM hardware. The Hardware-Software
Co-design framework, utilizing FMC connection cables, enabled interfacing of the

IReplication of Figure 4 from [159].
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FIGURE 6.4: The EPI LRP (on the right) connected to the FPGA (on
the left) executing the HIL framework.

TPC software stack—including the control action—with both the VRMs and the BMC
on the LRP. This setup highlights the versatility of the co-design platform and its
ability to interact with real hardware components, thereby enhancing the validity
of the HIL testing environment. Such adaptability in testing both simulated and
physical hardware reinforces the developed platform’s value testing setup.

6.6 Conclusion

The Hardware in the Loop (HIL) co-design framework built in this work is a pivotal
tool in the development and validation of the Thermal and Power Controller (TPC),
providing a seamless, iterative approach to implementing and testing it across all
its layers: hardware, firmware, and control algorithms. Unlike MIL, this framework
allows an authentic deployment of the TPC enabling a detailed study of the interaction
between its components and an evaluation of its realistic performance.

By integrating a real embedded controller with an HPC system simulation, it
allows for rapid evaluation, refinement, and benchmarking of design changes. This
enables a continuous improvement process, where the impact of each modifica-
tion—whether in hardware design, firmware optimizations, or control strategy tun-
ing—can be directly tested, tracked, and validated.

The co-design framework is structured around three key components:

* Simulated HPC Environment: a software model of the computing chiplet,
incorporating thermal, power, and performance models derived in previous
chapters. This model interacts with the TPC in real-time through shared mem-
ory, emulating the behavior of a real HPC system under dynamic workloads.
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* Embedded TPC Controller: a real implementation of the TPC with its hardware
and firmware. On it, the control algorithms described in Chapter 4 run in a real-
time environment, interfacing with the simulated system as if it were controlling
an actual HPC processor.

* Monitor Interface: through Examon a logging and data collection system that
tracks control performance, power and thermal system response. This facilitates
quantitive comparison and qualitative visual validation.

The HIL co-design framework has been utilized in multiple research projects,
demonstrating its effectiveness as a validation platform for TPC. One key applica-
tion involved evaluating the execution timing and computational utilization of the
BA control algorithm, and develop an optimized parallel version that runs on the
ControlPULP cluster. Another important use case focused on testing the SCMI com-
munication protocol for low-latency power and performance management, where the
framework enabled direct evaluation of message dispatch times and LLC response
latencies, ensuring compliance with real-time requirements.

Additionally, the framework facilitated integration with physical hardware com-
ponents, as demonstrated by the testing of the EPI Light Reference Platform (LRP),
where the TPC controller was tested alongside real VRMs and management interfaces.
This capability highlights the versatility of the framework in supporting both simu-
lated and physical hardware testing, reinforcing its value as a continuous integration
(CI) environment.
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Chapter 7

Conclusion

This thesis tracks a journey through the intricate landscape of power and thermal
control in HPC systems, collecting several years of research into this evolving field.
Leveraging the collaboration and participation in the European Project Initiative
(EPI) project, the work was structured to establish solid foundations, beginning
with a detailed system description, followed by an in-depth analysis of the key
control challenges, and culminating in the design, implementation, and comparison
of advanced control algorithms. All the necessary steps to develop a Thermal and
Power Controller (TPC) are comprised in this study, from modeling the system and
defining control strategies to setting up both Model in the Loop (MIL) and Hardware
in the Loop (HIL) testing frameworks to enable validation.

Clarifying the objectives of the TPC by distinguishing the roles of each control
layer and describing more in detail the system elements involved in regulation
with their non-idealities, are critical parts of this work. Research in this field has
lately been constrained by outdated assumptions and misconceptions about modern
CPU architectures, resulting in incomplete control methodologies that overlook
key limitations and interactions within modern many-core designs, and confusion
regarding the specific responsibilities of each cascade control layer.

At its core, this research is about understanding and mastering complexity. It
began by developing a comprehensive system model, designed specifically for control-
oriented simulations, integrating thermal behavior, power consumption dynamics,
and performance modeling. Unlike traditional models focused on architectural and
hardware design, this simulation was built to capture the key constraints, actuator
limitations, and non-idealities relevant to low-level power and thermal control, en-
suring that control strategies could be tested under realistic, dynamically changing
conditions.

With this foundation, the study moved towards the development and comparison
of control algorithms, progressing from industry-inspired baseline techniques to
advanced fuzzy control and predictive Model Predictive Control (MPC) strategies.
The results demonstrated that traditional PID-based methods struggle with mod-
ern many-core constraints, while iterative fuzzy control offers a robust solution to
managing power and temperature effectively.

MPC, while theoretically well-suited for handling multi-variable constraints and
optimization, encounters computational challenges that complicate its deployment in
embedded Low-Level Controllers (LLCs). To meet real-time execution constraints,
simplified and linearized versions must be employed, limiting its ability to fully
exploit its predictive mode-based capabilities. As a result, MPC struggles to consis-
tently outperform heuristic and simpler approaches in the fast-reacting, resource-
constrained LLC environment. Conversely, it remains a promising option for High-
Level Controller (HLC), where computational resources and longer decision horizons
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are available, and on the lower layer LLC has already smoothed system response and
filtered out peaks and oscillations.

Beyond the algorithms themselves, this work introduced a Hardware in the Loop
(HIL) co-design framework, enabling real-world evaluation. This framework allows
for iterative design and testing of all aspects of the TPC, including hardware, firmware,
and control algorithms, ensuring that each component can be refined and tested
under realistic conditions. This contribution is particularly relevant in the rapidly
expanding landscape of RISC-V projects, where new processors and architectures are
being actively developed. The proposed framework provides a unique opportunity to
study TPC implementations tailored to these emerging designs, allowing researchers
to explore novel control techniques and validate them on real hardware.

7.1 Looking Forward

This research has demonstrated that while traditional control methodologies may re-
main effective in some scenarios, emerging architectural challenges require rethinking
and refining existing approaches. For instance, MPC benefits are less pronounced in
LLC, where power fluctuations, actuator non-idealities, and unpredictable workload
noise hinder its prediction capability.

A central challenge in LLC algorithm design is the inability to predict these power
peaks and workload shifts, limiting the effectiveness of control strategies. Given the
high amplitude and frequency of workload noise, even the best control algorithms
struggle to preemptively adjust for such sudden changes. Future research should
explore the role of machine learning techniques, such as transformers, in predicting
workload transitions and power demands, providing a more informed basis for
control decisions. However, any ML-driven approach must be evaluated not only
for its prediction accuracy but also for its computational feasibility, as control loop
timing constraints remain stringent.

At the hardware level, instruction throttling mechanisms emerge as a critical but
underexplored tool for managing these power fluctuations. These mechanisms can
selectively delay high-power instructions, helping to enforce power limits set by TPC.
However, research into control algorithms that regulate these mechanisms without
introducing performance penalties—and in coordination with broader thermal and
power management strategies—remains largely absent.

From a control perspective, a dedicated hardware mechanism for accurately
measuring per-core power consumption would be highly beneficial. Such sensor
could reduce reliance on power models within control algorithms, eliminating the
need for indirect estimations and improving the precision of power allocation and
thermal management strategies.

A deeper investigation into the interaction and coordination between multiple
control components could unlock significant improvements in power and thermal
management. The control problem analyzed in this work involves conflicting ob-
jectives, such as maximizing execution performance while enforcing power and
thermal constraints, alongside requirements spanning multiple metrics, including
temperature, power, and current. Additionally, various actuation mechanisms, such
as throttling, frequency or voltage scaling, and power gating, provide different means
of adjusting the system’s operating point. In state-of-the-art approaches—as well
as in the control designs presented in this work, with the exception of MPC—these
challenges are typically addressed using separate algorithms, each dedicated to a
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specific objective, constraint, or even actuator, often structured in parallel or cas-
cade designs. However, achieving a well-structured and harmonized coordination
strategy, where each algorithm compensates for the limitations of others without inter-
fering or conflicting, could ensure that no performance potential is left unutilized. A
promising direction for future research on this is the development of heuristic control
algorithms designed for systems operating over a finite alphabet, or multi-branch tree
control schemes. These approaches could provide a more effective decision-making
mechanism, handling actuator quantization and coupled constraints.

Another promising direction is distributed control, which is increasingly rele-
vant given the scalability challenges of modern many-core architectures. As CPUs
continue to scale up in core count and power density, relying on a single central
controller becomes impractical. Instead, distributed local controllers will need to
coordinate and negotiate power and thermal constraints dynamically. However,
such approaches introduce overhead in communication, delays in consensus, and
potentially overconservative constraints that limit achievable performance. Future
work should focus on relaxing these constraints intelligently, determining acceptable
delays and coordination mechanisms that balance responsiveness with system-wide
efficiency.

More broadly, this work can provide insights into chip design in academic research.
Decisions regarding sensor placement, voltage domain configurations, and actuator
characteristics should be made not just for performance, but controllability in mind.
Future architectures can greatly benefit from tighter integration between hardware
design and control strategies, ensuring that power and thermal regulation are not
just an afterthought, but a fundamental part of system architecture.

7.2 Final Thoughts

Power and thermal control will only become more critical as HPC systems scale in
complexity. This research does not claim to provide a definitive solution, but rather
a set of refined tools and insights to advance the research in the field forward. By
releasing the co-design framework, the hardware, and the firmware as open-source,
this work aims to spark new interest and research, enabling both academic and
industrial communities to build upon a solid power management groundwork.

With open-source hardware gaining traction, there is a unique opportunity to de-
velop customized control solutions for next-generation computing architectures. The
open-source approach enables seamless integration into both research and industrial
projects, particularly for emerging RISC-V chips that require advanced thermal and
power management strategies.

In that sense, this thesis is not just a conclusion—it is a starting point.
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