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Abstract

In recent years, advancements in electronic systems have driven the development of

implantable and wearable devices that facilitate continuous health monitoring through

the extraction of physiological parameters from biosignals, such as Electrocardiogram

(ECG) and Electroencephalogram (EEG). Biosignal-based applications have become

central to various fields, ranging from fitness to medical-grade diagnostics. However,

implementing biosignal processing presents significant challenges, notably in achieving

a balance between computational power and energy efficiency, which is essential for

extended battery life in portable devices.

This thesis contributes to this field by presenting a framework of end-to-end method-

ologies designed to optimize energy efficiency in executing computationally intensive

signal processing tasks on resource-constrained embedded devices. Through a com-

bination of optimized system architectures, low-power processing strategies, and ma-

chine learning-based algorithms, the thesis offers novel solutions for achieving high-

performance ExG signal analysis within strict energy budgets. Key aspects include the

design of Analog Front Ends (AFEs) to ensure high-fidelity signal capture with minimal

energy draw, as well as optimizing digital processors to handle complex operations such

as filtering, feature extraction, and pattern classification within limited memory and pro-

cessing power. Additionally, this research explores the adaptation of machine learning

algorithms, such as CNNs and TCNs, for edge-based biosignal processing, emphasizing

model compression to reduce computational overhead.

The research demonstrates a sustainable solution for real-time biosignal processing

on ultra-low-power (ULP) parallel platforms, offering significant advantages over tradi-

tional MCUs in both energy efficiency and processing capability. To validate the pro-

posed methodologies, the thesis investigates two primary case studies. The first focuses

on ECG signal processing and classification, showcasing how on-device computation

minimizes data transmission and latency, thereby improving privacy, energy efficiency,

and responsiveness. The second evaluates ear-EEG as a promising alternative to con-

ventional, full-scalp EEG, demonstrating its viability in mobile health applications.

This dissertation advances the design of energy-efficient biosignal processing systems

for wearable and implantable devices, emphasizing the synergy between optimized hard-

ware, low-power digital processing, and machine learning algorithms to enable real-time,

on-device biomedical analysis.
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an active buffering PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Channels placement and electrodes configuration on a test subject. . . . . 75

5.3 System diagram (top) and photo (bottom) of the BioGAP platform next
to a one-cent coin. Image source: [228] . . . . . . . . . . . . . . . . . . . . 77

5.4 Measurement of the alpha wave activity in eyes closed vs eyes open con-
dition of CH1 in-ear. Filtered signal in the time domain (TOP) and
spectrogram (BOTTOM). . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Measurement of the alpha wave activity in eyes closed vs eyes open con-
dition of CH2 in-ear. Filtered signal in the time domain (TOP) and
spectrogram (BOTTOM). . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Power spectra at 80 Hz AM stimuli across all channels. CH1 and CH2
represent the in-ear channels of primary interest. . . . . . . . . . . . . . . 81

5.7 In-ear CH1 and CH2 power spectra comparison at 80 and 88 Hz AM stimuli. 82

5.8 In-ear CH1 and CH2 signal power spectra comparison between over-the-
ear (TOP) and bone-conduction headphones (BOTTOM) at 80 Hz AM
stimuli and rest condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



List of Tables

3.1 Instructions, hardware stalls, synchronizations occurrences, and through-
put (execution on 8 cores, 2048 data samples). . . . . . . . . . . . . . . . 33

3.2 Comparison with GSL and Kiss FFT on 8-core PULP (cycles). . . . . . . 36

3.3 Cycles for each sample, Instructions, Energy Efficiency, Throughput, and
Time executing on the target platforms (average values on a 25 s time
window). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Energy consumption of different SoA solutions for R peak detection (av-
erage values on a 25 s time window). . . . . . . . . . . . . . . . . . . . . 46

3.5 Comparison of R peaks accuracy. . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Comparison of the performance across data types. . . . . . . . . . . . . . 57

4.2 Performance comparison with the SoA. . . . . . . . . . . . . . . . . . . . . 64

4.3 Accuracy, Balanced Accuracy, and Number of Parameters on SoA. . . . . 69

4.4 Energy consumption compared with SoA solution considering one heart-
beat as input of the network. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Electrodes allocation and types. . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



Chapter 1

Introduction

Rapid advances in miniaturized and efficient electronic systems fuel the development

of discrete, implantable, and wearable devices, [1]. leading to exciting new applications.

Small-sized devices have gained popularity in healthcare and commercial applications

due to their portability [2]. These systems facilitate continuous monitoring of health con-

ditions by extracting physiological parameters from biosignal analysis [3]. The body’s

physiological activity generates biosignals, such as Electrocardiogram, Electroencephalo-

gram, and Electrooculographic (ExG), which provide information on biomedical param-

eters directly related to a person’s health status or enable pattern extraction for direct

communication with the external environment.

The growing trend of small form factor devices is pushing the development of wear-

ables, driven by systems such as health patches and trackers [4], [5]. In the fitness and

healthcare area, these systems facilitate remote and continuous monitoring of wellness

conditions, extracting physiological parameters from the analysis of biosignals [6].

Biosignal-based applications are beneficial in various fields, from consumer electron-

ics (e.g., fitness) [7] to medical-grade equipment (e.g., patient monitoring) [8]. For in-

stance, fitness-focused smartwatches (e.g., Apple Watch Series, KardiaMobile, and Qar-

dioCore), pacemakers [9], and Holter monitors [10] use Electrocardiogram (ECG) analy-

sis for heart rate monitoring and detection of general heart disease [11]. Electroencephalogram-

based systems are also gaining popularity in wearable applications for the treatment of

neurological disorders such as Parkinson’s disease [12], [13], epilepsy [3], and hearing

dysfunction [14], as well as for detecting drowsiness [15] and other conditions [16].

However, implementing these techniques requires significant computational power while

maintaining low energy consumption, a challenge that has only recently become feasible

for wearable devices. In fact, the main limitation of wearable sensor nodes is the need to
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perform computationally demanding tasks with high energy efficiency to extend battery

life

Examples of low-power digital design and efficient computational architectures [17], [18]

have enabled the development of real-time systems capable of executing complex algo-

rithms such as filtering [19], augmentation [18], and pattern identification [20].

Designing efficient real-time systems for processing biosignals presents several chal-

lenges. The development of Analog Front Ends (AFEs) is crucial, as they must en-

sure accurate signal capture while minimizing power draw. For example, [21] propose

ultra-low-power AFEs designed to reduce energy consumption during continuous ECG

monitoring while maintaining signal fidelity. Optimizing digital processors for real-time

ExG signal processing is also essential. These processors must perform computation-

ally intensive tasks such as filtering, feature extraction, and classification, often with

limited memory and processing power. This condition requires novel approaches in

system-level architecture design, including power management strategies that extend

battery life during continuous monitoring [22]. Algorithmic design also plays a signifi-

cant role. Algorithms like the Pan-Tompkins algorithm for ECG signal processing have

been optimized for real-time, low-power execution on embedded systems [23]. In recent

years, machine learning (ML) is constantly gaining traction in biosignal processing by

enhancing the accuracy, efficiency, and reliability of detection and diagnosis because of

its ability to identify patterns and relationships within large and noisy datasets, which

may not be apparent through traditional methods. However, applying advanced ML

techniques (e.g., CNNs or TCNs) for feature extraction and classification introduces ad-

ditional computational overhead, making it critical to adapt and compress these models

for edge devices [24]. Addressing these challenges requires a holistic approach inte-

grating advancements in AFEs, low-power digital processing, system architecture, and

optimized algorithms to create efficient real-time systems for ExG signal processing.

Modern multi-core platforms designed for ultra-low power processing can handle

computationally intensive algorithms while meeting real-time requirements, with power

consumption limited to just a few milliwatts through power management techniques and

near-threshold computing (NTC). NTC operates with supply voltages close to the tran-

sistor threshold, which can significantly reduce dynamic and static power consumption.

This technique enables processors to achieve substantial energy efficiency by sacrificing

clock speed in favor of increased parallelism. The target device used for the experimen-

tal assessment of this thesis work is the RISC-V Parallel Processing Ultra-Low Power

(PULP) many-core platform. Compared to commercial MCUs (e.g., ARM Cortex M4),

PULP-based architectures have demonstrated substantial computational power while
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staying within an ultra-low power budget, making them suitable for various applica-

tions.

1.1 Contributions & Thesis Structure

The contribution of the research presented in this thesis is the development of op-

timized end-to-end methodologies to achieve high energy efficiency in executing compu-

tationally intensive signal processing workloads for biomedical applications on resource-

constrained embedded devices. Specifically, this thesis describes novel system-level de-

signs for leveraging architectural features through software and hardware optimizations,

including parallel programming, specialized hardware, and memory management strate-

gies. Multicore architectures can distribute tasks across cores, allowing faster data

processing and helping meet real-time constraints in applications like ExG signal analy-

sis. When a single processing unit can meet latency constraints, multiple cores running

at lower frequencies can significantly reduce energy consumption, as demonstrated in

low-power, multicore systems optimized for biomedical signal processing [25], [26], [25].

Additionally, general-purpose architectures benefit from specialized hardware acceler-

ators, such as DSP or AI accelerators, designed to perform specific operations in a

few clock cycles. These accelerators can substantially enhance latency and energy ef-

ficiency by offloading computationally intensive tasks from the main processor. By

combining these methods, parallel and accelerator-based computing architectures en-

able new performance levels for real-time biomedical applications on constrained de-

vices [27], [28]. Memory management in embedded systems is challenging due to limited

resources, multi-level hierarchies, and stringent power and latency requirements, espe-

cially in applications with frequent data transfers. Efficient handling of these transfers

is crucial to maintain performance and energy efficiency, as excessive data movement

can drain power and increase delays, affecting real-time capabilities. Real-time applica-

tions of biosignal processing must orchestrate data movements to minimize latency and

power consumption. In architectures with memory hierarchies, employing efficient data

transfer strategies, such as data prefetching, memory tiling, and buffer management,

can help reduce latency and minimize overhead, especially in resource-constrained en-

vironments [29], [30], [31], [32]. Techniques like Direct Memory Access (DMA) are also

commonly used to offload data transfer tasks from the main processor, enhancing overall

system performance and energy efficiency [33], [34],[35].

As a first case study, this thesis addresses the challenge of processing and classi-

fying ECG signals directly on embedded systems, which offers significant advantages

over traditional online processing with an external device, as is often required [36], [37].
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Localized ECG processing reduces latency and data transmission requirements, which

is advantageous for privacy, energy efficiency, and responsiveness in real-time applica-

tions [38]. These benefits make on-device processing especially suitable for wearable or

implantable devices operating autonomously and maintaining reliable performance [39],

[40]. The primary contribution in this context is the creation of a HW/SW co-design

that supports inference on the edge. Current wearable devices on the market are reason-

ably reliable and accurate in providing heart rate data and detecting basic irregularities,

such as atrial fibrillation (e.g., Fitbit Charge 5). However, their signal processbing typ-

ically relies on remote servers rather than on-device (edge) processing, necessitating a

data connection for comprehensive analysis. While some advanced algorithms and ML

techniques achieve high accuracy, they often involve memory usage that exceeds the

capabilities of these devices and fail to report energy consumption values as in [41],

[42], [43], [44].

As a second case study, this thesis considers Electroencephalogram (EEG) signals,

particularly highlighting the advantages of ear-EEG over the traditional, full-scalp EEG

configuration. While standard EEG systems typically require multiple electrodes posi-

tioned across the entire scalp to capture comprehensive brain activity, ear-EEG offers a

promising alternative, enabling convenient, unobtrusive monitoring through electrodes

embedded in or around the ear canal. This design reduces the discomfort and setup

time associated with full-scalp EEG, thus making it especially suited for wearable de-

vices and prolonged monitoring in everyday settings [45]. Kappel and Kidmose [46]

conducted a comparative study between a dry-contact ear-EEG electrode and a scalp

EEG wet electrode. Additionally, ear-EEG has shown comparable reliability in specific

tasks such as sleep monitoring and auditory attention detection [47]–[49], suggesting it

is a viable approach for tasks like audiometric characterization in mobile health applica-

tions [48], [50]. This study aims to leverage these advantages by evaluating ear-EEG’s

feasibility for audiometric assessment, a step toward integrating simplified, non-invasive

brain-signal monitoring into compact wearable technology.

The contributions outlined above are elaborated in the following chapters as follows:

Chapter 2 presents the background of the research topics. It includes an in-depth de-

scription of the architectures explored in this dissertation (ARM Cortex and the PULP),

with an insight into the quantization and deployment tools adopted for ML workloads.

This chapter also introduces an overview of the current SoA for time-series data elabo-

ration. Finally, the chapter describes the parallel programming methodology, focusing

on the main concepts provided by the hardware abstraction layer (HAL).

Chapter 5 exposes the contribution of ear-based Electroencephalogram (EEG). The

target is a wireless, parallel ultra-low-power data acquisition platform (BioGAP) paired
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with in-ear EEG electrodes (SoftPulseTM, Datwyler Schweiz AG) to explore auditory-

based EEG protocols. Validating the signal quality from the ear-EEG electrodes by

analyzing alpha-wave responses and performing quantitative comparisons to standard

wet-electrodes (positioned behind the ear), this work demonstrates that the in-ear elec-

trodes allow the acquisition of high-quality EEG signals. It also includes the develop-

ment of an Auditory Steady-State Response (ASSR)-based experimental protocol with

a Python-based stimuli generator (sinusoidal tones with a carrier at 4 kHz and AM

modulation at 80 Hz and 88 Hz) that delivers sounds to headphones. BioGAP was

used to acquire EEG data from the ear-based electrodes, and an offline data analysis

extracted the corresponding EEG response in the frequency domain. The analyses suc-

cessfully detected the ASSR response from ear-EEG electrodes for multiple modulation

frequencies (80 Hz and 88 Hz) and multiple stimulation setups (over-the-ear headphones

and bone-conducting headphones). Additionally, the experiments proved the response

comparable to the one from standard wet electrodes positioned behind the ear.

Finally, Chapter 6 concludes the presented research.
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Chapter 2

Background

This chapter will present the fundamental concepts that form the basis of the work

discussed in this dissertation. Specifically, we will start with an overview of biomedical

applications and then explain the fundamental principles of time-series biosignal data

processing, which are essential for the biomedical applications discussed in the text.

We will explore key techniques such as signal preprocessing, feature extraction, and

classification methods. The chapter will highlight the SoA approaches, focusing on

the emerging edge computing trend for biosignal analysis and machine learning models

in this domain. Finally, the challenges associated with deploying complex biosignal

processing systems on resource-constrained edge devices will be addressed, providing a

comprehensive background for understanding the contributions made in this dissertation.

Next, it will outline the categories of microcontrollers relevant to this thesis. The chapter

will overview the tools and techniques for deploying ML models on embedded systems.

2.1 Biomedical Applications based on ECG and EEG Sig-

nals

Historically, human body signal monitoring was conducted in laboratories under

medical supervision. However, advancements have enabled the development of devices

that independently generate reliable data outside clinical settings. These devices al-

low continuous monitoring, with healthcare providers later analyzing the data to track

health status or detect events, providing immediate feedback when necessary. Offline

data processing also offers deeper insights into human physiological behaviors. Despite

technological progress, there are still scenarios requiring improvement in biomedical de-

vices. This dissertation explores efficient ECG arrhythmia detection and the feasibility

of ear-based EEG. Before delving into detailed discussions in subsequent chapters, we
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provide an overview of these application scenarios to highlight potential challenges and

issues.

2.1.1 Electrocardiogram (ECG)

Electrocardiogram (ECG) monitoring is a widely used method for detecting cardiac

arrhythmias, which are abnormal heart rhythms that can lead to severe health condi-

tions, such as stroke, heart failure, or sudden cardiac arrest. The increasing prevalence

of cardiovascular diseases and the need for early detection have driven advancements

in ECG arrhythmia detection systems [51]. Efficient ECG detection systems are cru-

cial for continuous monitoring and early diagnosis. Traditionally, ECG data has been

collected using clinical-grade equipment, which requires patients to visit a healthcare

facility and be monitored by a medical professional. However, with the rapid develop-

ment of wearable technology and mobile health platforms, it is now possible to perform

continuous ECG monitoring outside clinical environments. These systems detect irreg-

ular heart rhythms in real time, enabling timely intervention and reducing the risk of

life-threatening events.

Typical components of an ECG arrhythmia detection system include:

• Wearable ECG sensors: Lightweight, portable devices that can be worn on the

body to capture electrical signals from the heart.

• Signal processing algorithms: Techniques used to filter and preprocess ECG sig-

nals, removing noise and artifacts that may distort the data.

• Machine learning models: Algorithms designed to classify arrhythmias based on

patterns in the ECG signals, enabling automated detection and diagnosis.

In wearable applications, ECG arrhythmia detection systems must balance accu-

racy, power consumption, and user comfort. Their success relies not only on accurate

arrhythmia detection but also on continuous operation in resource-constrained environ-

ments [52]. While ECG arrhythmia detection systems have the potential to revolutionize

cardiac care, several challenges remain in ensuring their efficiency and reliability. As a

result, developers and researchers face various key issues when designing these systems.

ECG signals can be affected by various external factors, including motion artifacts,

electromagnetic interference, and body positioning. Wearable sensors are particularly

susceptible to noise due to movement and environmental influences. Therefore, one of

the primary challenges is maintaining high-quality signal acquisition and preprocessing.
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Effective noise-reduction techniques, including advanced filtering methods and adaptive

algorithms, are crucial for minimizing distortions and enhancing signal clarity [53], [54].

For ECG arrhythmia detection systems to be effective, they must operate in real-

time, continuously monitoring heart activity and providing immediate feedback. Real-

time processing is particularly challenging for low-power wearable devices with limited

computational resources since detection algorithms must be computationally efficient

and accurate enough to avoid false positives or missed arrhythmias [55]. Changing the

operational mode, the same algorithms can be applied in an offline processing scenario,

which involves the post-acquisition analysis of ECG data over longer periods, providing

insights that may not be immediately apparent. Moreover, continuous monitoring gen-

erates vast amounts of data, creating challenges for data compression and storage. Ad-

vanced machine learning algorithms can be highly beneficial in managing these datasets

without losing critical information. Offline processing is valuable for retrospective stud-

ies, helping refine detection models by identifying subtle arrhythmias that might not

trigger immediate alarms, providing insights for personalized treatments. The challenge

is to ensure that offline methods are efficient, minimizing delays while maintaining high

accuracy [56].

Machine learning models for arrhythmia detection require extensive datasets to accu-

rately identify a broad range of arrhythmias [57]. However, ECG signals can vary widely

due to individual differences such as heart anatomy, age, gender, and medical history.

Ensuring models generalize well across diverse patient populations is a challenge, requir-

ing fine-tuning to manage both common and rare arrhythmias while minimizing false

alarms, which could lead to unnecessary interventions or patient anxiety.

Energy efficiency is essential for wearable ECG sensors to operate continuously with-

out frequent recharging. This aspect is especially important for long-term monitoring in

patients with chronic conditions or those at high risk for cardiac events. Developers must

optimize power consumption while maintaining detection accuracy [58]. Since wearable

ECG systems are intended to be used over long periods, user comfort is an important

consideration. Devices that are too bulky or uncomfortable may lead to poor patient

compliance, reducing the effectiveness of the monitoring system. Developers must de-

sign discreet, comfortable, and easy-to-use sensors, such as armband devices [59], while

ensuring high signal quality.

Efficient ECG arrhythmia detection systems hold great promise for improving car-

diac care by enabling continuous, real-time monitoring and early detection of heart

abnormalities. However, the development of these systems is not without its challenges.

Issues such as signal noise, real-time processing, model accuracy, energy efficiency, and
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user comfort must be addressed to create reliable, user-friendly devices that can be de-

ployed in everyday settings. As wearable technology advances, future research should

focus on developing robust algorithms, improved signal processing techniques, and en-

hanced power management solutions. With these improvements, ECG arrhythmia de-

tection systems will be instrumental in reducing mortality and improving the quality of

life for millions with heart conditions.

2.1.2 Electroencephalogram (EEG)

Advances in cognitive neuroscience have allowed us to interface directly with the hu-

man brain. Thanks to its effectiveness, low cost, and portability, the electroencephalog-

raphy (EEG) signal is one of the most used techniques for investigating brain function

and pathology, both in clinical settings and scientific research [60], [61], [62]. Among

diagnostic and screening techniques, EEG analysis and instrumentation is an established

standard, since it directly records the electrical field generated by neural activity. The

most popular method uses a set of electrodes distributed on the head surface (scalp) [63].

However, other techniques and setups are being explored to enhance comfort and us-

ability, such as ear-EEG systems. Ear-EEG employs sensors embedded in earphones

or placed around the ear to capture brain signals in a more discreet and user-friendly

manner [49].

This approach offers several advantages over traditional scalp EEG. First, ear-EEG

is much more comfortable and non-invasive, allowing for prolonged use without the dis-

comfort associated with scalp electrodes. It is also less obtrusive, making it suitable

for real-world monitoring outside clinical environments. The compact and user-friendly

design of ear-EEG systems makes them ideal for portable applications, enabling con-

tinuous brain activity monitoring during daily activities. Additionally, since ear-EEG

systems can be integrated into common earphones, they provide a low-profile solution

for neurophysiological monitoring, which may enhance user compliance and make long-

term monitoring feasible. Despite these benefits, ear-EEG systems still face challenges

in terms of signal quality and spatial resolution, as the signals recorded from the ear

are generally weaker than those from the scalp. However, ongoing advancements in

sensor technology and signal processing are working towards overcoming these limita-

tions, making ear-EEG a promising option for applications such as auditory processing

research, sleep monitoring, and cognitive workload assessment.

Electroencephalography (EEG) is a widely used method for non-invasively measuring

electrical activity in the brain, providing insight into neural processes by capturing the

voltages generated by synchronized neural activity at the scalp. Originating from the
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firing of brain neurons , EEG signals are primarily the result of postsynaptic potentials

rather than action potentials, which create measurable voltage changes that propagate

through the brain tissue, skull, and scalp to reach the electrodes on the skin’s surface [63],

[64].

EEG Signal Properties EEG signals are characterized by oscillations across different

frequency bands related to specific cognitive and physiological states. These include

delta (0.5-4 Hz), theta (4-7 Hz), alpha (7-13 Hz), beta (13-30 Hz), and gamma (30+ Hz)

bands, each associated with distinct types of brain activity. For instance, alpha waves

are often linked to relaxation, while beta waves indicate active cognitive processing.

However, EEG signals are inherently low-amplitude (between 10-100 µV) and highly

susceptible to noise, which can arise from various sources such as muscle movements,

electrical interference, and impedance fluctuations at electrode sites [65], [66].

EEG Acquisition Techniques EEG acquisition typically employs electrodes placed

on the scalp, arranged according to standardized positioning systems such as the 10-20 or

10-10 system, which enables consistent recording locations across individuals and stud-

ies [67]. Modern EEG systems may use either wet electrodes, requiring conductive gel for

lower impedance, or dry electrodes, which allow for faster setup but with higher contact

impedance that can reduce signal quality [68]–[70]. The selection of electrode type de-

pends on the trade-off between signal quality and user comfort, especially in wearable or

portable applications [71]. Advanced EEG systems, such as in-ear or ear-EEG devices,

have also been developed to address specific application needs. These designs, which

house electrodes in the ear canal or outer ear, offer a discrete and convenient form factor

for monitoring brain activity, potentially suitable for long-term wearable use [72], [73].

Although they tend to capture a more localized signal than full-head systems, studies

indicate that ear-EEG can still provide meaningful data for applications in sleep moni-

toring [47], [74], drowsiness [75], epilepsy [76]–[80] and auditory perception analysis [48],

[49].

Challenges in EEG Acquisition One of the primary challenges in EEG acquisition

is maintaining signal quality despite interference. Noise sources can include physiolog-

ical artifacts (e.g., eye blinks and muscle contractions) and environmental noise, which

can mask or distort the brain signals of interest. Strategies to mitigate these issues

involve preprocessing techniques like artifact removal, filtering, and adaptive noise can-

cellation [81], [82]. Additionally, achieving a low-noise signal requires careful electrode

placement and skin preparation to reduce impedance, which can be labor-intensive in
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traditional systems. EEG acquisition faces additional constraints in embedded and low-

power applications, which demand energy efficiency. Processing the signals in real-time

with low latency while minimizing power consumption presents significant challenges, of-

ten necessitating the integration of specialized signal processing techniques and machine

learning algorithms optimized for energy-efficient hardware [83], [84].

EEG Applications A typical use case for EEG analysis is the examination of brain

responses to specific stimuli. In particular, EEG has been widely used in Auditory

Steady State Response (ASSR), significantly enhancing the understanding of how the

brain processes auditory stimuli [85]. ASSR refers to the brain’s continuous response to

auditory stimuli presented at a fixed frequency, making it a valuable tool for assessing

auditory system function. This is especially relevant in clinical contexts, such as diag-

nosing hearing impairments, auditory pathway dysfunctions, or brainstem anomalies.

EEG is particularly well-suited for capturing ASSRs due to its non-invasive nature and

high temporal resolution, enabling real-time analysis of auditory information processing.

ASSR is elicited using repetitive auditory stimuli, typically pure tones or modulated

sounds presented at specific frequencies (e.g., 40 Hz, 80 Hz) [86], [49]. These stimuli

evoke periodic electrical responses, captured through EEG, as neural oscillations phase-

lock to the stimulus frequency, creating a consistent pattern of brainwave activity. By

analyzing these signals, researchers can assess the integrity of the auditory pathways

and the brain’s sound-processing capabilities.

ASSR is particularly valuable for estimating hearing thresholds in populations where

behavioral responses are difficult, such as infants or individuals with cognitive impair-

ments [50]. ASSR provides an objective measurement that can be used to determine

hearing sensitivity across different frequencies. Clinicians use EEG-based ASSR to eval-

uate the integrity of auditory pathways from the cochlea to the auditory cortex, iden-

tifying specific dysfunctions and providing detailed insights into auditory processing

deficits [87]. It is also useful in assessing hearing aid and cochlear implant effectiveness,

enabling clinicians to fine-tune devices based on individual responses. In the research,

ASSR studies help explore neural mechanisms underlying auditory perception, speech

processing, and sound localization by analyzing brain responses to modulated sounds.

EEG Analysis To analyze EEG signals in the ASSR domain, estimating the Power

Spectral Density (PSD) plays a critical role in measuring the brain’s response to auditory

stimuli. Several methods are commonly used, each with advantages and limitations.

1. The Welch method: a well-established technique in spectral analysis, it is widely

used in ASSR studies to quantify EEG responses. It divides the EEG signal into
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overlapping segments, applies a window function to each segment, and averages

the resulting periodograms. This process reduces variance, providing a smooth

and accurate PSD estimate, making it ideal for noisy, non-stationary EEG signals.

The Welch method offers a balanced trade-off between spectral resolution and

noise reduction, making it particularly effective for steady-state responses, where

precise frequency analysis is crucial.

2. Multitaper method: this technique enhances spectral concentration by using mul-

tiple orthogonal tapers, improving variance reduction compared to single-taper

approaches [88]. However, the fixed design of the orthogonal tapers used in mul-

titapering can be less flexible compared to the wide range of window functions

available in the Welch method.

3. Burg method: this method utilizes autoregressive modeling to estimate the PSD,

offering high-frequency resolution and better handling of short data segments [89].

However, the estimated autoregressive model makes it less reliable for EEG signals

that often contain noise from sources like muscle activity or electrical interference.

4. Thomson’s multitaper method: this method applies multiple orthogonal tapers to

achieve an unbiased and consistent PSD estimate [90]. The choice of the number of

tapers and bandwidth parameters in Thomson’s multitaper method can be more

challenging to tune compared to the straightforward segment length and overlap

settings of the Welch method. Furthermore, the multiple tapers can sometimes

lead to over-smoothing of the power spectrum, which may obscure subtle frequency

components in the ASSR signal, particularly when precision in distinguishing peaks

is necessary.

Welch Method The Welch method is particularly effective in analyzing steady-state

responses, such as those elicited by periodic auditory stimuli in ASSR experiments. This

approach is ideal for EEG signals, which are typically noisy and non-stationary. By di-

viding the EEG signal into overlapping segments, applying a window function to each

segment, and averaging the resulting periodograms, the Welch method enhances the ac-

curacy and reliability of the spectral estimates, providing a balanced trade-off between

spectral resolution and noise reduction. The EEG data recorded during an ASSR ex-

periment are divided into overlapping segments. This segmentation is critical to reduce

noise and improve the estimate’s stability. A window function, such as a Hamming or

Hann window, is applied to each segment to reduce spectral leakage. This smooths the

edges of the segment, ensuring that discontinuities do not introduce artifacts into the

frequency analysis. For each windowed segment, the power spectrum is calculated using

the Fast Fourier Transform (FFT). The periodogram for each segment represents the
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distribution of power across different frequencies. The periodograms of all segments

are averaged to obtain a final PSD estimate. This averaging reduces the variance of

the spectral estimate, providing a more accurate representation of the brain’s response

to the auditory stimulus. The method provides good frequency resolution, making it

well-suited for ASSR studies where precise frequency analysis is essential. Since ASSRs

are typically elicited at specific modulation frequencies, the Welch method ensures that

the power at these frequencies can be accurately measured. The Welch method, by

averaging across multiple segments, helps to account for these changes, providing more

stable spectral estimates compared to single-segment approaches. In ASSR studies, the

Welch method is typically used to measure the EEG response at the frequency of the

auditory stimulus and its harmonics. By analyzing the power at these specific frequen-

cies, researchers can determine whether the brain has successfully phase-locked to the

stimulus. This analysis helps assess auditory function and detect abnormalities in neural

processing. For instance, in a typical 80 Hz ASSR study, the EEG response is analyzed

using the Welch method to estimate the power at 80 Hz. A strong peak in the power

spectrum at 80 Hz indicates that the brain is successfully entraining to the auditory

stimulus, suggesting normal auditory processing. Conversely, reduced or absent power

at this frequency may indicate auditory dysfunction.

While the Welch method is highly effective in analyzing EEG responses to auditory

stimuli, there are some challenges to consider. These include the selection of appropriate

window length and overlap, which can impact the frequency resolution and the ability

to detect the ASSR. Additionally, high noise levels in EEG signals may require advanced

artifact removal techniques before applying the Welch method to ensure accurate results.

2.2 Time-Series Biosignal Data Analysis

Time-series data, particularly biosignals such as ECG and EEG, play a crucial role

in modern healthcare. The ability to process biosignals effectively has led to the develop-

ment of advanced diagnostic tools, wearable health monitors, and personalized medicine.

Despite these advancements, processing biosignals in real-time and on-device (i.e., edge

computing) remains a significant challenge. Most SoA systems rely on cloud-based pro-

cessing, where raw or minimally processed data is transmitted to a central server for

analysis, which introduces latency, data privacy concerns, and high energy consumption.

This chapter discusses the SoA approaches in time-series biosignal data processing and

highlights the limitations and challenges associated with edge computing for real-time

biosignal analysis.
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Figure 2.1: Design methodology on wearable devices applied in this dissertation.

2.2.1 Biosignal Processing: Methodology

Time-series biosignal data are dynamic, often non-stationary, and exhibit noise due

to physiological and environmental factors. Consequently, processing such data involves

various pre-processing, feature extraction, and classification techniques. Historically,

biosignal processing has been dominated by techniques focused on analyzing the fre-

quency domain. In recent years, ML methods have gained momentum, with neural

network architectures achieving SoA results in classification and prediction.

The process depicted in Figure 2.1, follows a pipeline consisting of:

1. Preprocessing: Removal of noise and artifacts using filters or preprocessing algo-

rithms, such as the Pan-Tompkins algorithm. This step also involves Segmentation,

which divides the time-series data into manageable windows or segments.

2. Feature Extraction: Deriving useful metrics, such as heart rate, PQRST wave

characteristics in ECG, or specific frequency bands in EEG.

3. Training and Classification: Identifying patterns using ML algorithms or statistical

methods.

This dissertation explores the benefits of implementing algorithms on edge parallel

ultra-low-power (PULP) architectures, leveraging parallel computing inside a general-

purpose multi-core accelerator (called cluster) along with extensive software and hard-

ware optimizations. The goal is to maximize energy efficiency (i.e., prolong battery

life) while ensuring high accuracy and low latency. The target embedded architectures

are resource-constrained to enhance compactness and minimize energy consumption. A

methodology must be applied to optimize resource utilization to fully exploit these archi-

tectures. Key considerations include achieving a high degree of parallelism in many-core

implementations, optimizing execution through software or hardware enhancements, and

effectively managing the available memory on the SoC. Since the cluster processing ele-

ments are general-purpose independent cores and execute separate instruction flows, the

programming interface supports the single-program multiple-data (SPMD) paradigm.
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The PULP HAL [91] provides two main concepts: core identifiers and barriers. The

core identifier is a fundamental mechanism to split the workload among multiple exe-

cution flows (parallel orchestration). For instance, programmers can employ loop-level

parallelism using core identifiers in the control expressions (i.e., initialization, condition

check, and increment). A barrier is a HAL function that stops a core until all other cores

arrive at the same execution point. Barriers are synchronization points that guarantee

data consistency between adjacent code regions (before and after the barrier). The event

unit [92] is a dedicated hardware component providing low-overhead support for barriers

and enabling power-saving policies when cores are waiting.

To effectively implement an application on an embedded device, the initial step in-

volves conducting a thorough feasibility study on both the application and the potential

target architectures. This process can be achieved by breaking the application down

into smaller components (kernels), analyzing each kernel individually along with the

available resources on the architectures, and identifying which parts can be optimized

and any potential challenges that may arise. Another crucial factor to consider is the

optimal representation of the data. This analysis helps determine whether an integer

implementation is suitable for our processing needs or if floating-point (FP) operations

are necessary. In cases where the architecture lacks a Floating Point Unit (FPU), we

must assess the impact of software-based FP simulations on performance, particularly

for kernels that involve intensive FP computations. With these considerations in mind,

we can make an informed decision regarding the architecture to target for our processing

chain.

A recommended practice is to first implement the entire processing chain using a

scripting tool (such as MATLAB) to create a golden model. This allows for a thor-

ough verification of the theoretical accuracy of our implementation (including numeri-

cal results and overall precision) and enables comparison with the outcomes from the

embedded implementation. The subsequent step involves transitioning to the actual

implementation, where we examine the results of each kernel that makes up the final

application in C code. During this phase, we should consider all potential optimizations

and structure the code accordingly. This approach facilitates easier adaptation of the

code to the targeted architecture. Once we have a stable version, we can begin the

porting process to the target architecture, focusing on various optimizations to enhance

execution speed.

Furthermore, for initial setup and algorithm tuning, the STM32Cube IDE provides

a GUI that allows users to program STM32 MCUs to execute the code, also exploiting

ARM CMSIS [93] kernels for the comparison of the results.
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Techniques for Biosignal Pre-Processing and Inference This subsection ex-

plores the most common techniques in biosignal processing and inference. Traditional

methods of biosignal processing have long been the foundation of biosignal analysis,

enabling the extraction of meaningful features from raw data. Among these techniques,

the Fourier Transform (FT) and Wavelet Transform (WT) are frequently used to analyze

the spectral content of biosignals.

In ECG analysis, Fast Fourier Transform (FFT) is typically used to decompose heart

rate signals into their constituent frequency components, which can provide insights into

heart rhythm abnormalities [53] [94]. Wavelet-based methods have also been extensively

applied to ECG signals for arrhythmia detection. Choi [95] highlighted how multi-level

wavelet decomposition can isolate ECG signal features indicative of specific heart condi-

tions. Zidelmal [96] applied DWT for ECG signal denoising, achieving superior results

in noise suppression compared to traditional frequency-domain methods. Wavelet-based

techniques also offer flexibility in handling non-stationary signals like ECGs, where the

frequency content changes over time. For instance, Addison [97] showed how DWT can

help identify different types of heartbeats by analyzing the ECG signal across multiple

frequency scales. Additionally, ECG processing often involves multiple stages, including

noise reduction. Techniques like band-pass filtering are applied to remove baseline wan-

der and powerline interference, which can obscure critical ECG features. Arif et al. [98]

discuss how filtering enhances the accuracy of subsequent ECG analysis.

To detect a person’s alertness/drowsiness, Chen et al. [99] proposed a system that

includes the decomposition of EEG data into wavelet frequency sub-bands and FFT-

based spectral analysis for comparison. Then, they apply a single-hidden layer of feed-

forward neural networks for the recognition. In another study [100], the authors focused

on decoding the subjective perception of task difficulty to enhance operator performance

by automatically optimizing task difficulty levels. The study used a protocol with two

tasks, flying and visual recognition, to induce different difficulty levels and analyzed

EEG signals to distinguish between compound cognitive states.

More recently, ML models have emerged as powerful tools for biosignal processing.

Machine Learning models, such as CNNs, have demonstrated the ability to automatically

learn features from raw time-series data, significantly reducing the need for manual

feature engineering. For instance, the authors of [101] applied a 1D-CNN architecture for

automatic ECG classification, achieving SoA performance on the MIT-BIH Arrhythmia

dataset. Other ML models, such as Recurrent Neural Networks (RNNs), particularly

LSTMs, have been effective in modeling the temporal dependencies inherent in biosignal

data. Liu et al. [102] leveraged LSTMs for EEG-based emotion recognition, showcasing

the potential of ML for decoding complex biosignals in real-time. Zhang et al. [103]
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introduced the adaptive exponential smoothing (AES) technique for smoothing ECG

and EEG signals in combination with a bounded support vector machine (BSVM) to

classify different levels of operator mental workload.

Despite their effectiveness, the ML approaches require significant computational re-

sources, making them unsuitable for real-time analysis on resource-constrained edge

devices. Although these models achieve high accuracy, their deployment on edge de-

vices remains limited due to large model sizes, high computational power demands, and

substantial memory requirements. As a result, most current approaches still rely on

cloud-based servers for model inference, with biosignal data being offloaded from the

edge to the cloud.

2.2.2 Challenges in Edge Computing

Edge computing has emerged as a potential solution to address the limitations of

cloud-based processing by moving computation closer to the data source. In an edge

computing framework, biosignals are processed directly on the device, offering several

advantages, including reduced latency, improved data privacy, and lower energy con-

sumption due to reduced transmission of data. However, edge computing for biosignal

processing has not yet been widely adopted. There are several technical and computa-

tional challenges associated with deploying complex biosignal processing algorithms on

edge devices, which are typically constrained by limited processing power, memory, and

energy capacity.

Resource Constraints Edge devices, such as wearable systems or portable health

monitors, are often battery-operated and have limited computational resources. Run-

ning ML models on such devices requires significant model compression or hardware

accelerators, which is still an evolving area of research. Sarkar et al. [104] showed that

pruning and quantization techniques can reduce the size of neural networks, but there

is often a trade-off between accuracy and computational efficiency.

Energy Consumption Most ML models for biosignal processing are computation-

ally intensive. For edge devices, managing the energy consumption of these models is

crucial to prolong battery life. The energy-efficient CNN-based approach for real-time

ECG classification on edge devices proposed in [105] reduces energy consumption by 3x

compared to traditional methods.
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Real-Time Processing : Time-series biosignals, particularly in critical health ap-

plications, require real-time processing to provide immediate feedback (e.g., detecting

abnormal heart rhythms in ECG). Attaran et al. [106] demonstrated a real-time system

using edge computing, but the proposed method only detects stress conditions.

2.2.3 ECG and EEG analysis on the edge: an Overview

While the literature on edge computing for biosignal processing is still nascent, some

notable works are paving the way.

Tsai et al. [107] developed edge-based techniques for QRS complex detection using a

low-power ARM Cortex M4 processor. Their system, while the accuracy is not reported,

demonstrated the feasibility of on-device processing for biosignals in resource-constrained

environments. De Giovanni et al. [52] proposed a software-based methodology that

implements a Bayesian filter, normalization, and a clustering technique to optimize

the R peak detection for low-power platforms. However, the authors do not consider

the aspects related to real-time signal acquisition due to the use of an existing system

(BIOPAC) that requires a 9 V battery and is not energy efficient. Nguyen et al. [108]

focused on EEG monitoring from wearable sensors. They applied the Welch method for

the power spectral analysis as a preprocessing stage. To detect drowsiness, the authors

employed two NN models (Multi-Layer Perceptron and CNN) and apply quantization

techniques to reduce the computational complexity at the expense of negligible reduction

in accuracy.

A convolutional autoencoder model is proposed in [109] for denoising single-lead

ECG signals, optimized for low-power edge devices. It aims to reduce noise and motion

artifacts in ECG data, improving the accuracy of detecting conditions like atrial fibril-

lation. Betti et al. [110] developed a system of wearable physiological sensors, including

ECG and EEG, to capture human stress and evaluate if the detected changes in these

physiological signals correlate with salivary cortisol levels, a reliable stress biomarker. A

support vector machine (SVM) classification algorithm was used for statistical analysis.

In [111], the authors propose a robust seizure detection method for wearable platforms,

tested on the CHB-MIT Scalp EEG database, achieving a sensitivity of 0.966, specificity

of 0.925, and a 34.7% reduction in false alarms. It demonstrates the system’s capabil-

ity to function for up to 40.87 hours on a single battery charge, showing potential for

real-time use.

Zanetti et al. [112] presented a methodology based on the Random Forest classifier

to implement cognitive workload monitoring (CWM) on resource-constrained wearable

devices using four peripheral EEG channels. It includes a data processing strategy such
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as artifact removal along with a band-pass filter, as well as feature extraction for process-

ing data in small batches to reduce memory requirements. The challenge of balancing

performance and power consumption in wearable EEG applications such as epileptic

seizure detection by introducing a novel Knowledge Distillation (KD) methodology is

presented in [113]. The goal is to reduce the number of EEG channels, and thus the com-

putational and memory requirements, without compromising performance. The method

involves training a high-performing model (teacher) on data from all channels and then

training a simpler model (student) on a reduced set of channels using the teacher’s soft

labels. Risso et al. [57] uses a TCN-based solution to classify the ECG arrhythmia and

a Neural Architecture Search (NAS) methodology to optimize the network parameters.

The shift toward processing biosignals on the Edge offers several promising op-

portunities. The research needs to address the issues such as model compression and

optimization. Chapter 3 will delve into the acquisition and preprocessing of the ECG

signals, as well as the application of ML, which are central to the focus of this work.

2.3 Microcontrollers of Interest

The increasing demand for portable, small-sized devices has led to significant ad-

vancements in healthcare and commercial applications. Microcontroller Units (MCUs)

have been pivotal in this shift, enabling compact devices with capabilities such as sensor

integration and real-time data processing. However, integrating complex data analy-

sis on embedded platforms poses challenges, requiring a balance between computational

efficiency and energy consumption. This dissertation focuses on optimizing biosignal pro-

cessing pipelines and machine learning (ML) techniques for deployment on MCUs. The

primary microcontrollers explored include the STM32F4 and the PULP-based GAP8

and GAP9, which represent two distinct Instruction Set Architectures (ISAs): ARM for

the STM32F4 and RISC-V for the GAP series.

The STM32F4microcontroller, developed by STMicroelectronics, features an ARM

Cortex-M4 core [114]. It is engineered to optimize computational performance while

maintaining low power consumption, making it suitable for general-purpose computing.

A detailed block diagram is provided in Figure 2.2. The MCU features both data

and instruction caches, which significantly improve performance by reducing the time

required to fetch instructions and load data into registers. However, this performance

gain comes at the cost of increased energy consumption.

The ARM Cortex-M4 processor in this MCU supports frequencies up to 84 MHz with

a power consumption of 20 mW. Additionally, the STM32F4 offers various peripherals,
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Figure 2.2: Block diagram of the STM32 MCU (sub-family STM32F401xD/xE).
Image source: [115].
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including a Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I²C), and Analog-

to-Digital Converters (ADCs) for sensor data acquisition.

Unlike the ARM ISA, the RISC-V ISA is open-source, allowing for the development

of various public extensions, such as those for Digital Signal Processing (DSP). This

flexibility has enabled the creation of new architectural designs based on the RISC-

V ISA for general-purpose MCUs, incorporating specialized components to accelerate

tasks like deep learning. Advances in this area include the integration of specialized

accelerators and hierarchical memory systems that exploit data regularity.

A notable example is the Parallel Ultra-Low Power (PULP) computing platform,

which leverages near-threshold computing to achieve high energy efficiency and uti-

lizes parallelism to mitigate performance degradation at low voltages. The PULP

architecture focuses on optimizing the RISC-V ISA for DSP and Deep Neural Net-

works (DNNs), heterogeneous parallel acceleration where different compute units are

assigned to distinct tasks, and manually controlled memory hierarchies. Key extensions

to the ISA include Single Instruction Multiple Data (SIMD) Multiply-and-Accumulate

(MAC) operations—central to DNN computations—as well as load/store instructions

with post-increment, which streamline memory operations by automatically updating

indices. Most current implementations of the PULP paradigm utilize a SoA single-core

MCU, known as fabric controller, which includes a standard set of peripherals. It of-

floads computation-intensive tasks to a programmable parallel accelerator referred to as

cluster, which contains multiple cores and operates within its own voltage and frequency

domain.

A commercial embodiment of the PULP architecture is GreenWaves Technologies’

(GWT) GAP8 [116], depicted in Figure 2.3. The GAP8 features nine RISC-V cores

(one I/O core and an 8-core cluster), making it one of the most advanced MCUs

with dedicated optimizations for ML workloads. The GAP8 cluster comprises eight

RI5CY cores with a four-stage in-order single-issue pipeline [118], utilizing the RISC-V

RV32IMCXpulpV2 instruction set architecture (ISA). The XpulpV2 extension is designed

specifically for domain-specific applications, optimizing DSP performance through fea-

tures such as hardware loops, post-modified load/store access, and SIMD instructions

supporting vector operands as small as 8 bits. All cores in the cluster share a unified

first-level memory, consisting of a 64 kB multi-banked L1 Tightly-Coupled Data Memory

(TCDM), which is accessible through a high-bandwidth logarithmic interconnect with

single-cycle latency [118]. Data transfers between the L1 TCDM and the second-level

512 kB L2 memory are managed by a cluster DMA [34], providing bandwidth up to

2GB/s and a latency of 80 ns at peak frequency. The L2 memory acts as a scratchpad

and resides in the SoC domain. Additionally, an autonomous I/O subsystem, the I/O
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Figure 2.3: Block diagram of the GWT GAP8 microcontroller. Image source: [117].

DMA [119], facilitates data exchange between the L2 memory and external interfaces,

including the L3 HyperRAM/HyperFlash module available on the board. Through the

HyperBus interface, with a bandwidth of up to 200MB/s, external L3 memory can be

connected, providing up to 64 MB of Flash for read-only data and 8–16MB of DRAM

for volatile data. GWT GAP9 [120] is the more recent iteration of GWT GAP8, with

analogous architectural principles. The chip is equipped with an accelerator (hardware

convolution engine) designed to optimize both energy efficiency and bandwidth usage.

GAP9 sets the standard for low-power processors, having achieved the top ranking in

both latency and energy consumption in the MLPerf Tiny v1.0 benchmarks [121].

2.4 Embedding Networks: Compression & Deployment

ML models are increasingly embedded into the digital frameworks of the consumer

and healthcare sectors. ML has taken a leading role in addressing various computational

challenges for running ML inference locally on edge devices. However, edge platforms

are limited by strict constraints on memory and power usage, and handling time-series

data adds further complexities, especially concerning computation delays. While some

modern edge computing devices are equipped with specialized hardware accelerators to

boost performance, efficiently leveraging these resources demands a deep understand-

ing of hardware-specific programming. Research at the algorithmic and software level

focuses extensively on compression techniques to reduce the resource demands of train-

ing and inference. This thesis examines strategies designed to lower the memory and

computational requirements of ML model inference in resource-limited settings.
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2.4.1 Quantization

In this dissertation, the most significant network compression technique explored is

quantization. Other effective methods to reduce a model’s computational burden and

memory footprint are pruning [122] and vector compression. A detailed review of

deep network compression techniques falls outside the scope of this thesis; instead, the

focus will be specifically on quantization.

Quantization simplifies models by approximating floating-point values (real num-

bers) with integer values of reduced bit-width, enabling computations with lower preci-

sion [122]–[124]. Typically, deep learning models are trained using formats like float32

or float16 for parameters and activations. However, utilizing smaller bit-widths can

greatly improve memory efficiency and inference speed with only minimal accuracy loss.

Model developers can also assign different numerical precision to the parameters and

activations of each layer, thus enabling mixed-precision models that strike a balance

between computational efficiency and model accuracy. Quantization tends to be most

effective when applied during training (Quantization-Aware Training, or QAT). How-

ever, Post-Training Quantization (PTQ) is another commonly used method.

In the context of this thesis, the quantization is linear and uniform across layers.

This means that the elements ti of the tensors t (such as weights W, inputs x, hidden

activations a, and outputs y) with dynamic range [αt, βt) are mapped to N -bit integers

t̂ using the following transformation:

ti = αt + εtt̂i, with t̂i ∈ Z (2.1)

With

εt ≜
βt − αt

2N − 1
(2.2)

Here, εt, referred to as the quantum, represents the smallest difference between values

in the quantized tensor. In general, a layer consists of a sequence of three operators:

a linear operation, an optional batch normalization (BN), and a non-linear activation

function. The latter is merged with a quantization step. This is because the activation

function already processes the pre-activation output. Instead of applying activation and

then separately quantizing the result, both steps can be combined into a single function

to reduce computational overhead [123]–[125].

Without loss of generality, we can assume αx = αa = αy = 0 for all the inputs of lin-

ear operations and outputs of Quantization/Activations operators, but not for weights.

If the original activation function is a Rectified Linear Unit (ReLU), the activations

automatically satisfy the assumptions; otherwise, simple transformations can enforce
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them. All operators can be mapped in the integer domain by exploiting Equation 2.1.

For linear layers:

φ =
∑
n

Wmnxn −→ φ̂ =
∑
n

Ŵmnx̂n; (2.3)

whereas for BNs:

φ′ = κ · φ+ λ −→ φ̂′ = κ̂φ̂+ λ̂. (2.4)

For inference, the BN parameters can be merged-pair-wise:

κ ≜
γ

σ
, λ ≜ β − µ

γ

σ
. (2.5)

The dot-product operation in Equation 2.3 induces a shrinking of the quantum, leading

to

εφ = εWεx ≪ εW, εx (2.6)

since, typically, εW, εx ≪ 1. The integer output of the linear operator φ̂ (e.g., 32 bits)

requires higher precision than its inputs and weights during the accumulation, then it is

re-quantized. An analogous effect happens in the BN layers for the output φ̂′. The final

quantization/activation operator introduces non-linearity and compresses the result into

a lower bit-width using the following equation:

ŷ = mφ̂′ >> d, with m ≜

⌊
εφ̂′

εy
2d
⌋

(2.7)

where >> denotes a right shift. The integer d is set to ensure that εφ̂/εy is repre-

sented with enough precision for accurate computations. This process is similarly ap-

plied when multiple branches of a network, each with different quantization scales, need

to be merged.

2.4.2 Frameworks and tools for embedded neural inference

The tools and frameworks used for deploying and running neural networks on edge

computing platforms are essential for SoAML applications in both research and industry.

A major benefit of the leading deployment frameworks is their ability to support and

partially automate various compression techniques, which are vital for adapting neural

networks to the limitations of edge computing platforms [126].

In the results presented in this thesis, activations and weights are quantized to

8-bit precision, while accumulators and BN parameters retain 32-bit precision. The

quantization is performed using NNTool [127], a neural network deployment tool within

the GAP SDK. This tool plays a crucial role in facilitating the deployment of ML
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models on ultra-low-power, RISC-V-based processors optimized for edge computing and

embedded applications. NNTool enables developers to import pre-trained models from

widely used ML frameworks such as TensorFlow or ONNX, as described as follows. After

importing, the tool optimizes the model for efficient execution on the processors, with a

focus on minimizing memory usage and enhancing computational performance. NNTool

offers support for post-training quantization, enabling the conversion of model weights

and activations to lower-precision formats such as int8. This significantly reduces the

memory and computational requirements, making it suitable for deployment on resource-

constrained devices like the GAP processors. The tool supports techniques like layer

fusion, combining multiple layers into a single computational unit to minimize data

movement and improve performance. It also handles tiling, which divides large neural

network layers into smaller chunks to fit within the limited on-chip memory, such as the

L1 cache, while maintaining efficient data processing.

Once the neural network model is optimized, NNTool generates highly efficient C

code that is tailored to the GAP processor’s architecture. This includes managing

memory hierarchies, scheduling operations, and optimizing data transfers between the

on-chip and off-chip memory. NNTool is integrated into the GAP SDK, which is part

of the broader PULP ecosystem. This allows developers to leverage GAP’s parallel

processing capabilities and specialized instructions for digital signal processing (DSP)

and machine learning tasks, such as SIMD operations and hardware loops.

TensorFlow Lite (TFLite)[128] is a streamlined tool designed for running inference

on edge devices, built on the widely-used TensorFlow framework[129]–[131]. TFLite

supports post-training quantization, including half-precision floating point (float16)

and int8 data types. It is also compatible with quantization-aware training and prun-

ing techniques available in TensorFlow and Keras [132], allowing models developed with

these upstream tools to be imported into TensorFlow Lite Micro [133], a runtime frame-

work optimized for ML inference on MCUs.

Open Neural Network Exchange (ONNX) [134], [135] is an open-source, machine-

independent format designed for ML models. Its primary goal is to share models across

various frameworks and tools while also accommodating the target hardware, including

mobile and edge devices. ONNX facilitates quantization to the int8 format during both

training and inference time for convolutional, fully-connected, and activation layers. This

feature enables models to be executed in a framework different from the one used for

training, allowing greater flexibility in combining SoA frameworks when implementing

an ML pipeline or product.

Neural Minimizer for PyTorch (NeMO) [125], [136] is an open-source Python li-

brary designed for quantizing neural networks built with PyTorch [137], [138]. NeMO
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is specifically aimed at deployment on ultra-low power computing devices that have

strict memory limitations, with a particular emphasis on PULP-based MCUs [139].

The library incorporates the Parameterized Clipping Activation (PACT) quantization

technique [140] along with other methods, allowing users to configure the quantization

bit-width for activations, weights, and BN parameters, as well as facilitate BN folding.

NeMO supports mixed-precision quantization and provides a semi-automated approach

for precision relaxation.

Deployment Oriented to Memory (DORy) [123], [124], [141] is an automated tool

designed for deploying deep learning models on resource-constrained embedded plat-

forms, typically those with an on-chip SRAM memory budget of ≤ 1MB. DORy

addresses memory limitations by treating tiling as a Constraint Programming (CP)

problem, focusing on maximizing L1 memory utilization while adhering to the topo-

logical constraints of each model layer. The tool generates C code to manage both

off-chip and on-chip data transfers and computation phases; DORy is compatible with

the GWT Virtual System-on-Chip (GVSoC) [142], which simulates RISC-V processors

for PULP-based platforms such as GWT’ GAP8 [116], [120] and GAP9.

STM32 CubeAI [143] is an extension of the STM32 CubeMX [144] code generation

tool. It features a graphical user interface (GUI) that enables users to configure STM32

microcontrollers for executing deep learning model inference. The tool supports TFLite

and ONNX models and includes functionality for post-training compression. The gener-

ated code provides APIs that facilitate the integration of multiple models within a single

codebase while optimizing inference performance through the use of ARM CMSIS [93]

kernels.

Quantization Library (QuantLib) [145] is an open-source library designed for model

quantization. It is also an integral part of Quantization Laboratory (QuantLab) [146], [147],

which includes additional tools for managing large-scale machine learning tasks. This

includes support for multi-GPU acceleration of neural network training in combination

with Horovod [148]. Although QuantLib and QuantLab are not used in this work,

they are worth mentioning as they have become the primary quantization tools within

the PULP Platform project, with applications in image recognition [149] and epilepsy

detection [150].



Chapter 3

ECG Applications - Efficient

Transforms and Heart Rate

Detection Algorithm

Chapter 3 and Chapter 4 introduce the original contributions of this thesis in the

area of ECG low-power signal processing and classification. These contributions include

optimizing and implementing efficient methods, such as optimized transform algorithms

that can be useful in the biosignal analysis pipeline presented in Section 2.2. Addition-

ally, the Pan-Tompkins algorithm, a widely used method for preprocessing and feature

extraction, is discussed.

3.1 Signal Description and Acquisition

Electrocardiography is a method used to record the heart’s electrical activity over

time. The heart’s rhythmic contractions generate the ECG signal and provide crucial

information about the heart’s condition. Typically, an ECG consists of several distinct

waves, such as the P-wave, QRS complex, and T-wave, which correspond to different

phases of the heart’s electrical cycle as depicted in Figure 3.1. Roughly 160 ms af-

ter the P wave onset, the right and left ventricles depolarize, resulting in around 80

ms of QRS complex. The end of the QRS complex corresponds to the end of the re-

polarization of the atria [151]. ECG signals are acquired using electrodes placed on

the skin, which capture the small electrical changes produced by the heart’s activity.

These electrodes are positioned in specific locations on the chest and limbs to provide

a complete picture of the heart’s function from different angles. The electrical signals

are amplified, filtered, and digitized for further analysis. Modern wearable devices and
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Figure 3.1: The PQRST wave represents the complete electrical cycle of a single
heartbeat. Image source: [152].

low-power embedded systems enable continuous ECG monitoring, providing real-time

insights into heart health without bulky, hospital-grade equipment. However, noise from

muscle activity, motion artifacts, and electromagnetic interference can affect the signal

quality, requiring advanced filtering and signal processing techniques to ensure accurate

interpretation.

3.2 Efficient Transforms

As described in Section 2.2.1, several techniques exist for the filtering and classifica-

tion of the ECG signal [153]. This part proposes an efficient parallel design of the widely

used short-time Fourier transform (STFT) and discrete wavelet transform (DWT) tar-

geting ultra-low-power devices [154]. The key performance challenges are related to

fine-grained synchronization and banking conflicts in shared memory. Modern end-node

devices must support computationally intensive workloads at a limited power budget.

Parallel ultra-low-power architectures are a promising target for this scenario, and the

availability of highly optimized software libraries is crucial to exploit parallelism and

reduce software development costs.
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3.2.1 Related Work

The ultra-low-power (ULP) parallel computing platforms based on the RISC-V in-

struction set architecture (ISA) have proved to be an effective solution for Internet of

Things (IoT) end nodes as an open alternative to proprietary ISA MCUs (e.g., ARM

Cortex-M4) [155], [156]. The parallel ultra-low-power platform (PULP) [157] is an open-

source hardware project aiming to provide a RISC-V programmable architecture with

the primary goal of meeting the computational requirements of IoT applications within

a power envelope of 10 mW. The recent embodiments of this architecture include a

control core dedicated to I/O and system management coupled with a cluster of cores

sharing a tightly-coupled data memory (TCDM). The PULP approach enables operat-

ing the cluster at the energy-optimal operating voltage (i.e., near-threshold [158]) while

achieving high computational throughput thanks to parallel execution [159].

The availability of efficient shared-memory parallel software libraries for fundamental

algorithmic kernels is a key enabler to fully exploit ULP platforms and reduce software

costs. For traditional single-core MCUs, CMSIS-DSP [160] is a hardware abstraction

layer (HAL) targeting ARM Cortex-M cores, which provides a set of optimized digital

signal processing (DSP) kernels. A key challenge in developing similar libraries for

PULP is to achieve a good parallel speed-up, which is essential for obtaining high energy

efficiency.

DSP applications make pervasive use of the 1-D floating-point variants of these algo-

rithms: They enable the extraction of relevant features on time and frequency domains

serving as preprocessing stages for ML methods. In real-life use cases, DWT is used

in [161] to extract features from physiological data in a pattern recognition applica-

tion that relies on an embeddable support vector machine (SVM). STFT is used in

[162] for structural anomaly detection, providing the time-frequency analysis of current

consumption, voltage, and vibrations of industrial equipment. Since machine learning

models adopted for near-sensor processing, such as multi-layer perceptron (MLP) [163]

and SVM [18], are amenable to lightweight designs executing in a few thousand cycles,

optimizing the preprocessing stages based on DWT and STFT is crucial to improve

performance and energy efficiency. The main block of STFT is the fast Fourier trans-

form (FFT) algorithm. FFTW [164] is the most widespread FFT implementation, and

it is widely used in scientific computing. However, this library has a complex design,

and embedded system designers do not commonly adopt it for performance reasons. In

most cases, lightweight FFT libraries are not portable and do not provide optimized

parallel support. For instance, Kiss FFT [165] is parallelized using OpenMP directives,

but it is not optimized. The GNU scientific library (GSL) [166] provides a parametric
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implementation of the DWT algorithm even though it does not provide any support for

code parallelization.

The following section describes an algorithm design for FFT and DWT focused on

performance optimization on ULP IoT end nodes. This goal requires a fine-grain analysis

to maximize the instructions per cycle (IPC) for each processing thread. Second, this

chapter provides an experimental assessment of an 8-core PULP cluster with 4 floating-

point units (FPUs), analyzing the impact of the key design optimizations. Finally, a

comparison is conducted between the Cortex-M4 platform and alternative libraries, such

as GSL and Kiss FFT, to evaluate their relative performance and efficiency.

3.2.2 Algorithms Design

STFT STFT is illustrated in Figure 3.2. Input buffer size, number of data samples,

and overlap size are configurable parameters. The most relevant kernel of the STFT

is FFT calculation, based on the mixed-radix variant of the decimation-in-frequency

Cooley–Tukey algorithm, a solution also used by Kiss FFT and CMSIS. This class of

algorithms recursively breaks down a transform on input with size N = r × m into r

smaller transforms of size m. Each recursive call is called a stage, and transforms of

size r are generally referred to as butterflies. Our design adopts a mixed-2-8 variant

that applies a radix-8 FFT when the size of the input is a power of eight; otherwise, it

performs one or two preliminary radix-2 stages.

The first FFT stage (N/2 butterflies) can be equally split among the available cores.

Each of the following stages includes 2s ×m transform step, where s is the zero-based

stage index. The butterflies inside a transform step are equally split among the cores

if they are enough to guarantee workload balancing – i.e., m/r must be greater or

equal to the number of available cores. Otherwise, transform steps are partitioned into

disjoint sets that are distributed among the cores. This approach guarantees workload

balancing in all cases, and it also minimizes the overhead of parallel orchestration since

workload distribution is always associated with a single loop. Each stage requires a

single barrier at the end to guarantee data consistency for the next one. Decimation-

in-frequency algorithms require output reordering as a final stage. Index remapping is

provided by a pre-computed look-up table so that this task can be equally split among

the cores. However, access to the look-up table and subsequent swap operations are

highly memory-bound and cause TCDM stalls. To hide this latency, we applied loop

unrolling to the reordering outer loop. Instead of processing one element per iteration,

loop unrolling executes multiple reorder operations in a single iteration. This reduces the

number of loop overhead instructions (e.g., increment). While one set of swap operations
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waits for memory access, the processor can execute other operations in parallel. This

overlaps computation with memory accesses, reducing stall time. Unrolling decreases

the number of conditional checks and jumps, improving efficiency on deeply pipelined

architectures. Accessing multiple contiguous elements in one iteration improves spatial

locality, reducing cache misses and minimizing memory stalls.

DWT DWT is a time-frequency analysis technique relying on a pair of recursive con-

volutions, which decompose the original signals, extracting its low and high-frequency

contents, referred to as the time domain [167]. As depicted in Figure 3.2, for a given

input signal of length N, DWT applies the two convolutions followed by dyadic down-

sampling, producing two output vectors that contain namely approximation (i.e., cA)

and detail (i.e., cD) coefficients. The first convolution applies a low-pass filter g, and

the second a high-pass filter h related to g in a quadrature relationship as they derive

from the same mother wavelet. The filter coefficients are pre-computed and passed to

the algorithm as input parameters. Initial input data are also provided for the first

level, while approximation coefficients represent the input of the next level. The filter

size (FS ) is an even number equal to or greater than two, and the case of FS = 2 is also

referred to as Haar wavelet.

In the design, three main optimizations are applied. First, the implementation of a

strided convolution routine that performs convolution and downsampling of both filters

in a single step, reducing the total number of instructions required to compute cA and cD.

Second, a coding variant for the Haar wavelet, which does not require border paddings

and fully unrolls the last loop to compensate for the small filter size that induces memory

access stalls. Third, the algorithm copies cA values into the input data structure at the

end of the second loop, reducing the total memory footprint for data allocation (e.g.,

GSL requires an additional memory buffer).

The loop-level parallelization is applied on the second level. In the general code

variant, this level is further split into three parts, corresponding to the border and

inner data. The size of the iteration space for the border computation is equal to

FS − 1; consequently, an ideal workload balancing of this code is impracticable when

there are more numerous cores than iterations. Synchronization barriers are required

after applying the filters and after preparing input data for the next level.

3.2.3 Results

The methods are evaluated using a cycle-accurate PULP emulator on a Xilinx Ul-

traScale+ VCU118 FPGA board. The setup included 8 cores and 4 FPUs, chosen for
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Figure 3.2: Structural and working flow diagrams of STFT and DWT.

Table 3.1: Instructions, hardware stalls, synchronizations occurrences, and through-
put (execution on 8 cores, 2048 data samples).

STFT DWT
FS=2 FS=8 FS=16

Instructions (per core) 20677 3090 12629 23848

TCDM stalls [cycles] 1034 58 610 1539

I-cache stalls [cycles] 504 127 76 189

FPU stalls [cycles] 4992 517 2285 3022

Synchronization occurrences 11 20 20 20

Throughput [samples/µs] 18.81 134.35 32.78 17.86

their energy efficiency in near-sensor applications [168]. The metrics used are execution

cycles, instructions, and stalls across different code regions using hardware performance

counters. For power analysis, Synopsys PrimeTime 2019.12 is employed, assuming a

nominal voltage of 0.65 V and a frequency of 250 MHz. Key metrics for the analysis

include:

• Parallel speed-up: sequential versus parallel execution time.

• Throughput: input data samples per total execution cycles.

• Energy Efficiency: operations per second relative to power consumption.

Parallel speed-up and overheads Parallel performance is limited by overheads de-

riving from two main sources: stalls in the core pipeline during the execution of instruc-

tions and time spent in synchronization. Table 3.1 reports stalls and synchronization

occurrences considering 8 cores and 2048 data samples. This table also reports the

throughput of the algorithms as an absolute performance metric. On PULP, pipeline

stalls derive from memory latency (load-use stalls), concurrent accesses to the TCDM

banks (memory contention arbitration stalls), concurrent requests to a shared FPU (FPU

contention arbitration stalls), and instruction cache misses. Analyzing the cause of stalls
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Figure 3.3: Speed-up of STFT varying the number of cores and the input size.

guided fine-grain tuning of the optimization techniques described in the previous section.

Synchronization happens on barriers required by the algorithms. As reported in [92],

the barrier cost with the event unit is 6 cycles, which implies an average synchronization

overhead of around 1.41%. Without the event unit, the barrier overhead is 176 cycles

(on 8 cores), and the average synchronization overhead rises to 41.48%.

Figure 3.3 reports the parallel speed-up of STFT. Each value on the x-axis corre-

sponds to a fixed number of input data samples, while the window overlap does not

affect speed-up. In general, the speed-up increases with data samples since this trend

amortizes the overheads due to loop-level parallelism. The case of 512 data samples is

out of trend because a preliminary radix-2 stage is not required since 512 is a power

of eight. Table 3.1 shows that the 8-cores configuration is mainly limited by the FPU

sharing since the contribution of FPU stalls (4992) over the total instructions (20677)

is around 25%.

Figure 3.4 reports the parallel speed-up of DWT. Each bar provides the values of

the speed-up for a filter size (FS ) equal to 2 (light shade), 8 (intermediate shade), and

16 (dark shade). In general, the speed-up increases with the filter size, but there are

some remarkable exceptions. Executing on 2 cores with a workload of size 512 or 1024,

the speed-up of FS = 2 is higher than FS = 8 (label 1). This effect is even more

evident when executing a workload of 2048 data samples on 2 or 4 cores, where the case

of FS = 2 becomes the highest speed-up (label 2). This trend is because the parallel

orchestration of the Haar wavelet is more lightweight, as explained in Section 3.2.2. The

8-core configuration implies additional overheads (i.e., TCDM contentions and FPU

stalls in Table 3.1) and workload unbalancing (see Section 3.2.2) hiding this beneficial

effect.
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Figure 3.5: Energy efficiency of STFT varying number of cores and input size.

Energy efficiency Figure 3.5 and Figure 3.6 depict the energy efficiency of STFT

and DWT, respectively. This metric grows with the input size when considering a

fixed number of cores. Moreover, it increases by fixing the input size and changing the

number of cores from 1 to 4, but it presents a trend inversion passing from 4 to 8 cores in

DWT. Again, this is due to the additional overheads implied by the 8-core configurations,

together with the higher power consumption. This effect can be amortized by computing

a bigger input set. For instance, the energy efficiency is almost equivalent between the

4-core and 8-core configurations for 2048 samples.

Comparison with other libraries and architectures Table 3.2 compares the exe-

cution time of our solution with the ones of the libraries introduced in Section I, namely

GSL and Kiss FFT, executing on an 8-core PULP cluster with an input size of 2048 sam-

ples. GSL only supports Haar wavelets (FS = 2). We applied minimal modifications to

these algorithms to use the PULP HAL. Overall, our design outperforms other libraries

thanks to our domain-specific code optimizations and parallel design. The design of
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Figure 3.6: Energy efficiency of DWT varying number of cores and input size.

Table 3.2: Comparison with GSL and Kiss FFT on 8-core PULP (cycles).

Our FFT Kiss FFT Our DWT (FS = 2) GSL DWT (FS = 2)

27218 2293231 3881 67973

Kiss FFT applies parallelization only at the outer loop level (transform steps), which

does not guarantee a perfect workload balancing when the number of cores is higher

than four, with detrimental effects on performance. Both algorithms do not employ

the optimization techniques (e.g., loop unrolling) described in Section 3.2.2. We also

performed a comparison between PULP (8-core configuration) and Cortex-M4, using an

STM32F401C-DISCO development board running at 1.7 V and 84 MHz, with an average

power consumption of 20 mW. The STFT implementation for the Cortex-M4 platform

makes use of the armrfftfastf32 function from CMSIS-DSP, which is partially written

using inline assembly and is the most efficient FFT implementation available for this

platform. The DWT implementation for Cortex-M4 uses our library since a preliminary

analysis highlighted that it is 60% faster than GSL. Figure 3.7 shows that parallel execu-

tion on the PULP platform outperforms Cortex-M4 by one order of magnitude. In terms

of energy efficiency, PULP achieves 145.11 and 172.55 Gop/s/W for STFT and DWT,

respectively, as reported in Figures 3.5 and 3.6. Considering the performance measured

on Cortex-M4 (71.4 and 75.6 Mop/s), it reaches 3.42 and 3.63 Gop/s/W, which is about

two orders of magnitude worse than PULP.

Experimental results assess that both algorithms achieve high parallel speed-ups,

throughput, and energy efficiency on the PULP platform, outperforming a conventional

single-core MCU in terms of performance and energy efficiency. These algorithms are

pervasive in many applications running on IoT end nodes. For this reason, high opti-

mization is crucial to satisfy the ever-increasing requirements of future applications.
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Figure 3.7: STFT and DWT throughput on PULP / Cortex-M4 varying input size.

3.3 Optimized Heart Rate Detection System

This section focuses on another method of the processing of the signal. In real-time,

the R peaks detection of the ECG signal is crucial to providing information on cardiac

functionality, and several strategies have been presented in the past. The time interval

between consecutive R peaks is called the R-R interval, and the heart rate (or heart

frequency) is the inverse of this interval. To obtain the heart rate in beats per minute

(BPM), divide 60 by the R-R interval (in seconds):

Heart rate (BPM) =
60

R− R interval [sec]
(3.1)

So, the R peak distance helps determine the heart frequency.

This work adapts the classical Pan and Tompkins (PT) algorithm [169] for efficient

execution on low-power MCU platforms to design a full-fledged heart rate detection

system. The target is a commercial MCU based on ARM Cortex-M4 and the ULP

solution based on the RISC-V Parallel Ultra-Low-Power Platform (PULP) [170]. This

recent SoC is implemented in 22 nm technology, namely Vega [171]. It provides a

DSP-oriented instruction set architecture (ISA). Experimental results show that this

approach achieves an accuracy above 99.5%, comparable to the SoA solutions, and an

energy efficiency that is one order of magnitude better than other software solutions.

The contributions of this work, as discussed in this thesis, are as follows:

• A lightweight design for HR computation based on the PT algorithm.

• An implementation of the PT algorithm optimized for a balanced trade-off between

computational complexity and energy efficiency.
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• A real-time ECG monitoring application featuring an end-to-end system from data

acquisition to signal inference.

The proposed methodology is optimized by simulating the real-time operation in

MATLAB and then implementing it with a multi-board setup. Then, the processing

is coded in C language and can work in data streaming or with an existing dataset.

The proposed system provides a power budget of less than 5 mW for wearable and

near-sensor processors. We aim to process ECG signals to carry out the HR, which

is a crucial physiological parameter to detect anomaly conditions in heartbeats [172].

Our methodology obtains an acceptable HR detection reliability (higher than 99%) in

pathological or sudden changes of the biosignal. The target device that we use for

experimental assessment is the Parallel processing Ultra-Low Power (PULP) many-core

platform designed for smart ULP embedded devices [170]. For the evaluation, we analyze

the performance on the Vega SoC [171], a PULP platform running at 0.8 V at an

operating frequency of 170 MHz, and on ARM Cortex-M4, using the STM32 NUCLEO-

F401RE development board at 1.8 V and 84 MHz. The PULP provides extreme energy

efficiency, and we obtained an energy consumption of 0.2 mJ when considering an average

of 25 s of running time. We performed tests on four datasets, three existing ones and

one acquired from the proposed system in real-time, taking into account several options:

normal conditions, arrhythmia [173], intense physical exercise [174]. Overall, we achieved

accuracy above 99.5% that we compared with other SoA solutions.

3.3.1 Related Work

Several works exploit digital platforms capable of executing digital signal processing

(DSP) to achieve ULP consumption [175], [176]. In this context, the designers typically

adapt optimization strategies to reduce the algorithm complexity and find the best

trade-off between reliability and low power consumption. Among the biopotentials that

can be acquired with real-time low-power devices, [1], heart activity parameters are the

most used to detect and monitor acute severe conditions. Analyzing the QRS complex

and detecting R peaks is crucial for providing cardiac functionality information. The

scientific literature includes several strategies based on well-established signal-processing

techniques. Park et al. [177] propose a technique based on a wavelet transform (WT)

coupled with the Shannon energy envelope method in addition to a moving average

filter and a squaring operation for the preprocessing step. This method achieves an

accuracy of over 99%. However, the algorithm is computationally intensive, and it is

not suitable for real-time execution on an ultra-low-power embedded device. Martinez

et al. [178] adopt the phasor transform. This approach converts each ECG sample into a

complex number, maintaining the phase and the root mean square values to enhance the
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wave variations and distinguish them from each other. The overall accuracy is higher

than 99% also in this case. However, the analysis excludes five records from the MIT-

BIH Database because of the low-quality acquisition of highly variable signals or noise

distortion.

A widely explored family of approaches for ECG signal analysis includes slope-based

methods. In Tekeste et al. [51], the authors optimize peak detection by providing a

hardware unit to approximate the computation of the signal derivative. The power con-

sumption of the system, implemented in 65 nm technology, is 3.9 nW at an operating

frequency of 3 kHz. Nevertheless, they do not consider the contribution to the power

consumption of the additional computations that are strictly required by a real-life

scenario. In our work, we use microcontroller-class devices that can perform preprocess-

ing, peak detection, and subsequent computations. De Giovanni et al. [52] propose a

software-based methodology that can be considered the current SoA. Their algorithm

implements a Bayesian filter, normalization, and a clustering technique to optimize the

R peak detection. The authors test the system on a biosignal dataset where sudden

event changes occur, such as during intense physical exercise [174]. These physical con-

ditions reduce the robustness of the traditional algorithms, affecting their reliability.

Hence, they propose an accurate adaptive design for low-power platforms. However, the

authors do not consider the aspects related to real-time signal acquisition. They use

an existing system (BIOPAC) that requires a 9 V battery and is not energy efficient.

Furthermore, the peak detection algorithm, including all the proposed phases, is very

complex and requires a core with native FPU support because the fixed-point represen-

tation decreases the accuracy significantly. Overall, we will show that their results in

mJ are 7× higher than our method.

An effective and computationally efficient threshold-based approach for QRS ex-

traction and heart rate (HR) calculation is the PT algorithm. It relies on an adaptive

dual-threshold technique for R peak detection, leveraging a filtering stage and simple

adaptive thresholding methods. PT is a robust technique that uses a preprocessing

pipeline that includes standard filtering techniques (pass-band, derivative, squaring, in-

tegration). This technique can also be applied to signals with arrhythmia. Furthermore,

it can be adapted to process real-time streaming data, which is crucial in the context

of wearable systems. PT is a standard approach that was proposed several years ago,

but recent works have adopted this methodology yet [179], [180]. We outperformed the

accuracy and energy consumption of these works, optimizing the R peak detection on

our target architecture.
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Figure 3.8: Hardware diagram of the proposed system. The active electrodes are
located on each forearm and one on a wrist, setting Lead I for the collected data.
Single-channel ECG is acquired with a custom AFE board (MAX30003), which sends
data via SPI to the platform for processing. We consider two alternative designs: (1)
STM32NUCLEO for the initial setup and (2) Vega for ULP optimization. Output and
communication are managed via a B/mini-USB and a micro-USB cable, respectively,
that leads the platform to a terminal to visualize the HR values.

3.3.2 System Architecture

This work proposes a modular setup for ECG detection. The acquisition board

relies on Maxim MAX30003 [181], a chip for ULP acquisition of ECG. MAX30003 is a

complete, biopotential analog front-end solution for wearable applications. It offers high

performance for clinical and fitness applications at extreme energy efficiency, reaching 85

µW average power consumption. The analog acquisition is based on a 2 leads differential

channel providing ECG waveforms and heart rate detection. The biopotential channel

has ESD protection, EMI filtering, internal lead biasing, and DC lead-off detection.

The biopotential channel also has high input impedance, low noise, high CMRR, and

programmable gain, as well as low-pass and high-pass filter options. The digital back

end is based on an SPI interface to enable data streaming and communication with an

external MCU.

Fig. 3.8 depicts the custom board equipped with MAX30003 and with two alter-

native test benches: the first one with NUCLEO-F401RE board, used for initial setup

and algorithm tuning, and the second one with Vega custom board [171], employed for

ULP operation and optimized performance. In both test benches, ECG data are sent

from AFE to MCU via SPI. Vega allows a USB device mode interface with a micro

USB connector at an operating frequency of 2.4 GHz with a reference oscillator fre-

quency of 32 MHz. Vega receives data from AFE via a 5 MHz SPI channel connection
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Figure 3.9: Signal processing steps based on PT technique: (1) Cancellation of DC
component and addition of Normalization; (2) Band-pass filter that combines the low-
and the high-pass filters; (3) Derivative function; (4) Squaring function; (5) Moving
window integrator (MWI); (6) R peaks detection. In the last step, we compute the HR
in beats per minute.

(Vega acts as master). Data loaded via SPI is stored in the Vega L2 memory as 24-bit

signed fixed-point numbers. Acquired ECG samples are used as input of the embedded

implementation, described and profiled in Section 3.3.4.

The presented prototype can be integrated into a single PCB with a 20×10 mm

form factor, suitable for minimally obtrusive wearable applications. The PULP SoC is

equipped with a 2 MB SRAM scratchpad memory (L2), hosting the resident code and

application data. A hardware unit called µ-DMA performs autonomous data transfers

between the L2 memory and the peripherals. The peripherals and the MCU core reside

in different clock domains so that the frequency of each domain can be tuned to sustain

the application workload with low power consumption (up to 500 MHz for a 22 nm

technology node). The peripheral clock can be further divided to match the operating

frequency of slower external devices.

3.3.3 Algorithm Description

To compute the HR, we adopt a signal processing pipeline based on the PT tech-

nique [169]. This methodology adopts a dual-threshold technique to detect the R peaks

and includes multiple preprocessing signal steps required to improve the signal analysis.

The block diagram is depicted in Fig. 3.9.

The signal processing pipeline includes a set of preprocessing digital filters followed

by the computation of R-peaks. The original implementation considers a sampling rate

of 200 Hz.
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1. Band-pass filter. The low-pass component applies a second-order transfer func-

tion to the signal, obtaining a difference equation with a delay of 5 samples and

a DC gain of 36. The high-pass design is characterized by a first-order transfer

function, with a delay of 16 points and a gain of 1. Overall, the band-pass filter

provides a 3 dB pass-band between 5 and 12 Hz and reduces the noise due to the

muscle, the baseline wander, and the T-wave interference/frequency content. This

filter supplies poles and zeros only on the unit circle, so the system is character-

ized by a minimum phase, a minimum group delay, and better stability. As a final

effect, it increases the signal-to-noise ratio.

2. Derivative. The signal is differentiated using a 5-point derivative. The result

provides information about the slope of the input waveform. This filter introduces

a delay of 2 samples and a gain of 0.1.

3. Squaring. The output of the derivative signal is squared to enhance the R peaks,

leading the signal to the positive y-axis to emphasize the high frequencies that

include the R peaks. This step makes it easier to distinguish R peaks from T-

waves.

4. Integration. From the output of the squared signal, a moving window integra-

tor extracts the duration of the QRS complex, obtaining a time-averaged signal.

Usually, the window length is equivalent to the widest QRS complex (around 150

ms, corresponding to 30 samples at 200 Hz). The time of the rising direction of

the window is the duration of the QRS complex.

5. Computation of R peaks. The final part of the algorithm finds a set of fiducial

marks corresponding to the temporal location of the peaks in the integrated sig-

nal. Fiducial marks determined in this area are potential candidates for R peaks.

An initial phase of the implementation is necessary for the tuning (2 seconds at

128 Hz). The fiducial mark is compared with a threshold value thresholdI1 that

considers the current estimation and both signal and noise peaks:

thresholdI1 = npkI + 0.25 ∗ (spkI − npkI) (3.2)

where npkI is the estimation for any peak that is not related to an R peak (e.g.,

the peaks of T waves), and spkI is the estimated value for the R peak level. When

a new peak peakI is detected, it must be classified as a noise peak or a signal

peak. If a sample is greater than the current threshold value thresholdI1, then

it is a peak candidate. In addition, it must have a distance of at least 200 ms

from the previously detected peak: this value, referred to as min rr width, is the

minimum latency time between adjacent R peaks due to physiological constraints.
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Otherwise, the fiducial mark is considered a noise peak. spkI and npkI parameters

are updated accordingly:

spkI = 0.125 ∗ peakI + 0.875 ∗ spkI (3.3)

npkI = 0.125 ∗ peakI + 0.875 ∗ npkI (3.4)

If no R peak candidate is found in an interval of duration 1.66 ∗ max rr width

starting from the previous peak and ending with the current sample, the algo-

rithm performs a search-back operation on this interval the interval using a lower

threshold thresholdI2 that is empirically computed as:

thresholdI2 = 0.5 ∗ thresholdI1; (3.5)

The original PT algorithm performs R peak detection also on the output of the

band-pass filter, introducing a set of variables with the same meaning (i.e., peakF ,

spkF , npkF , thresholdF1, and thresholdF2). We verified experimentally that this

step can be skipped without invalidating the detection quality. If a peak candidate

occurs after the 200 ms refractory period but within 360 ms of the previous peak,

the algorithm makes an additional check to determine if it is an abnormally promi-

nent T wave. This decision is based on the mean slope of the waveform at that

position, which must be greater than one-half that of the previous peak. Finally,

the average distance between R peaks is computed as the mean of the eight most

recent RR intervals. The average HR can be used to refine the duration of the

search back interval.

3.3.4 Evaluation

This section provides an experimental evaluation of our system. We use GV-

SoC [142], an open-source simulator for PULP architectures, to implement and debug

the algorithm. GVSoC can simulate a full platform, including multi-memory levels and

multi I/O peripherals, and provides a good trade-off between simulation speed, timing

accuracy, and completeness. The average energy consumption for the Vega platform has

been derived by a post-place-&-route simulation on the RTL. The metrics of interest

for our performance analysis are throughput (computed as the number of input data

samples over the total execution cycles), energy efficiency (operations performed in a

second over power consumption), total energy consumption (in mJ), and accuracy of the

detection rate (in percentage).
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Figure 3.10: Output result of the proposed R peaks detection and R-R intervals
method from a segment of record 232 characterized by the supraventricular ectopic
beats from the MIT-BIH database.

3.3.5 Implementation on the PULP platform

The AFE IC, described in Section 3.3.2, is connected to the ECG electrodes using

3 ECG surface sensors: two sensors are placed on the wrist, and the other one around

the upper forearm of the subject, as a voltage reference. This setup allows sampling

with an 18-bit resolution at 128 Hz. In this application, the signal is read 13 samples

at a time using a FIFO. We apply the PT algorithm described in Section 3.3.3, imple-

mented in C language, to support different (integer or floating-point) data types. The

code supports both buffered and data-streaming simulation with configurable parame-

ters for the sampling frequency. In the case of buffered execution, the input buffer size

is selected to contain at least 1.66 times an R-R interval, considering that the maximum

physiological beats per minute are 60 or 80 (max 1.66 beats per second). The code

includes buffers for the results of the intermediate filters. These buffers have the exact

window size for the corresponding filter and are implemented as circular buffers to re-

duce memory consumption. Buffered execution can be used to execute the algorithm on

pre-recorded ECG datasets, while the streaming variant is more efficient for real-time

data acquisition.

In addition to the original PT design, we added a preliminary normalization step that

removes the DC drift by subtracting the mean value and then dividing by a maximum
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absolute value. In the case of buffered execution, this value can be computed as the

maximum value in the input buffer; otherwise, we can use the maximum value provided

by the sensor as reported in the datasheet. The result is a signal normalized in the range

[-1, 1], improving the numerical stability and precision of the next steps.

The filter coefficients are pre-computed using MATLAB and saved into the local

memory to maximize the efficiency of the initial steps. To guarantee the minimum

latency for streaming execution, we designed a step-by-step convolution function that is

invoked for each new available value (i.e., a new input sample or a value computed by

the previous filter) and applied a linear convolution filter to the tail on the corresponding

data buffer. As introduced in Section 3.3.3, we only consider the integrated signal for R

peak detection. Finally, we apply the computation of the HR (beats per minute) from

the RR average value.

HR = 60/(RRavg/Fs); (3.6)

where Fs is the sampling rate.

Parallelization strategies are applied to improve efficiency and performance when

processing ECG signals. The BUFFER SIZE-based shifting mechanism is used to main-

tain a rolling window of past ECG samples. Instead of processing the entire signal at

once, this shifting method enables a streaming approach, where different sections of

the signal can be processed in parallel; the convolution operations used in filtering (low-

pass, high-pass, derivative, and integration) could benefit from loop unrolling to improve

instruction-level parallelism. This reduces overhead from loop control instructions and

allows multiple computations to be performed per iteration; the searchback algorithm,

which scans the ECG signal to detect R-peaks, is split into searchback start and end

regions, enabling parallel execution of peak detection across different segments; the algo-

rithm maintains separate calculations for threshold-based peak detection and adaptive

threshold adjustment, which could be independently parallelized across available cores;

the HR calculation iterates over detected peaks to compute an average. The use of a

fixed-size circular buffer allows efficient parallel reductions to compute the mean RR

interval, enabling multi-core processing.

Figure 3.10 shows an example of the output result of the R peaks detection and

the R-R intervals assessment extracted from a segment of the record 232 of the MIT-

BIH Arrhythmia Dataset. Even though some fiducial points can be drifted forward or

backward by one sample w.r.t. the exact peak positions, this effect does not affect the

correct computation of the R-R distance.
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Table 3.3: Cycles for each sample, Instructions, Energy Efficiency, Throughput, and
Time executing on the target platforms (average values on a 25 s time window).

Pulp VEGA
Cortex-M4

(processing pipeline)
Cycles 2771 3154
Instructions 2204 3148
Energy efficiency [Gop/s/W] 34.7 3.8
Throughput [samples/ms] 61.35 26.63

Table 3.4: Energy consumption of different SoA solutions for R peak detection (aver-
age values on a 25 s time window).

Platform
Architecture

ISA Algorithm
Technology

[nm]
Operating

frequency [MHz]
Energy

consumption [mJ]

De Giovanni et al. [52] Pulp (Mr.Wolf) RV32ICMF
+ Spec. Ext. Adaptive slope 40 170 1.553

This work Cortex-M4 ARMv7-M PT 90 84 2.652

Pulp (Vega) RV32ICMX
+ Spec. Ext. PT 22 170 0.203

3.3.6 Performance analysis and energy consumption

Table 3.3 reports the performance parameters executing the program (in streaming

mode) on PULP (VEGA SoC) and Cortex-M4 (STM32NUCLEO-F401RE development

board). We deployed an alternative setup for these experiments where an additional

STM32NUCLEO board is used in place of VEGA for the signal processing pipeline. In

both cases, the energy consumption of the Nucleo board used for system initialization

and debugging is not considered. The resulting values show that execution on the PULP

platform is 2.3× faster than Cortex-M4.

Table 3.4 depicts the energy consumption (in mJ) of our algorithm executed on NU-

CLEOF401RE and Vega platforms compared to the state-of-the-art solution described

by De Giovanni et al. [52], which executes on a PULP platform based on the Mr.Wolf

architecture [159]. The operating frequency reported for Cortex-M4 is its maximum

frequency. For VEGA, we are using an operating frequency lower than the maximum

to make a more fair comparison with state-of-the-art solutions. The energy consump-

tion has been estimated using an average power consumption reported by the datasheet.

Considering an execution time of 25 s, the average energy consumption of our system is

almost 7× lower.

3.3.7 Algorithm Accuracy

Table 3.5 reports an accuracy comparison between our solution and other works.

In the worst case, our algorithm reaches 99.53% on the high-intensity physical exercise
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Table 3.5: Comparison of R peaks accuracy.

Acc [%]
Moreira et al. [180] 93.26
De Giovanni et al. [52] 97.90
Tekeste et al. [51] 99.37
Lu et al. [179] 99.41
This work 99.53

dataset [174]. To evaluate the accuracy, we used the MATLAB findpeaks function as

a golden reference, which returns the local maxima. It is extremely accurate, but it

has two main flaws. First, it is computed intensive, which is highly detrimental to

its adoption in the ultra-low-power embedded domain. Second, it cannot be adapted

to a streaming context, so its adoption would increase the latency of the results. We

computed the accuracy as follows:

RMSD =

√∑n
i=1 (xG,i − xPT,i)2

n
; (3.7)

Acc = 100− (
RMSD

xmax − xmin
); (3.8)

where xG and xPT are the RR intervals (in samples) computed using the golden model

or the proposed method, respectively. The parameter n is the number of detected RR

intervals, and xmax and xmin are the maximum and minimum in the set of RR interval

values.

Figure 3.11 depicts the accuracy of the code tested on four different datasets. The

datasets we consider are Normal Sinus Rhythm (NSR) and Atrial Flutter (AFL). They

are both from the MIT-BIH Arrhythmia database, sampled at 360 Hz [173]. The third is

the ECG signal acquired in real-time (RT) from our signal acquisition system (described

in Section 3.3.2). Finally, the signal on high-intensity exercise (HIE), sampled at 250

Hz [174]. The figure shows the higher value in NSR, for which we achieve 99.95%. In

the case of tachyarrhythmia, called atrial flutter (AFL), the accuracy is 99.62%. In the

RT, we obtain an accuracy of 99.61%. In HIE, where the beats change suddenly, we

assess the lower value of 99.53%.

3.3.8 Discussion

This part of the work presents the design and implementation of a heart-rate detec-

tion system leveraging the PT algorithm on low-power MCUs. This approach considers
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Figure 3.11: Accuracy evaluation on four different datasets: High-Intensity Exercise
(HIE) [174], acquired ECG signal in real-time (RT) with the proposed system design,
Atrial Flutter (AFL) [173], and Normal Synus Rhythm (NSR) [173].

two alternative platforms: a commercial MCU based on ARM Cortex-M4 and an ultra-

low-power solution based on RISC-V, namely the Vega SoC. Experimental results show

that this approach implies a lightweight design, with execution times of a few thousand

cycles. This system provides a lifetime battery of 81 hours with a 100 mAh battery,

achieving an accuracy comparable to the SoA solutions and a better energy efficiency of

one order of magnitude.

This chapter refers to publications [154], and [182].

This work does not aim to classify specific health problems but rather to apply

preprocessing techniques and to detect HR in real-time with high reliability and energy

efficiency. Chapter 4 focuses on machine learning algorithms (e.g., TCN and CNN) to

the system pipeline to detect anomalies in HR variability, such as arrhythmia or stress

conditions. Moreover, it proposes to design a parallel version of the code using the

programmable parallel accelerator available on PULP platforms to improve performance

and energy efficiency further compared to commercial alternatives.



Chapter 4

ECG Applications - ML approach

This chapter presents a machine learning (ML) approach to detect pathological con-

ditions in the ECG signal as the final step in the processing pipeline. The primary

objective is to design a highly energy-efficient convolutional neural network (CNN) opti-

mized for arrhythmia detection on the PULP platform [157]. This approach also enables

a comparison with current state-of-the-art (SOA) solutions on accuracy and energy con-

sumption.

4.1 ML approach for ECG inference

As a first step, we experimented with implementing a temporal convolutional net-

work (TCN) and analyzed its performance based on accuracy, inference operations, and

energy efficiency. However, due to the inherent trade-off between computational cost

and accuracy, we ultimately found CNNs more suitable for our objectives. This chapter

details the evaluation results of both models, concluding that CNNs offer a balanced and

scalable solution for reliable ECG-based arrhythmia detection on low-power platforms

as explained in Section4.7.

Hence, the CNN solution uses the PT algorithm to perform real-time identification

of the heartbeats on the ECG data stream, as described in Section 3.3.3. Next, the

processing pipeline includes a CNN that can recognize five arrhythmia classes. The PT

workload is negligible compared to the CNN inference, and the heartbeat localization

prevents us from running the network continuously. This approach achieves a 95%

accuracy on the best energy-efficient configuration, which is 3% lower than the best solu

tion available in the current SoA; at the same time, this solution is 3× more energy-

efficient in the performance of network inference. Considering the full processing pipeline
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Figure 4.1: Complete CNN representation. Image source: [183].

that takes advantage of the power savings states available on the target platform, the

total reduction in energy consumption is approximately 28%. This design improves the

battery lifetime compared to the current SoA solution based on TCNs and transformers.

CNN has been adapted to process one-dimensional (1D) data, such as ECG signals.

In this case, the input to the network is structured as a 1D channel, which is conceptually

equivalent to an image with just one pixel in either the height or width dimension. This

design choice enables CNN to extract temporal features from time-series data, similar

to how it would detect spatial patterns in a two-dimensional (2D) image. Figure 4.1

illustrates an example of the overall structure of a CNN, using an image as the input to

help visualize the process.

To provide a clear context, we first introduce the concepts of CNN and TCN.

Convolutional Neural Networks CNNs are a type of ML model designed primarily

for processing data with grid-like topology, such as images, but it can also be adapted

for 1D signals like ECG data. CNNs are highly effective at identifying patterns through

their ability to automatically learn spatial hierarchies of features from input data using

a structure composed of convolutional layers, pooling layers, and fully connected layers.

The key components of a CNN are:

1. Convolutional Layers: The core building blocks of CNNs are convolutional layers,

where a set of filters (or kernels) slides over the input data and computes feature maps.

These filters detect local patterns like edges or textures in images or specific waveforms

in time-series data like ECG signals.
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2. Activation Functions: After each convolution operation, an activation function

(typically ReLU) is applied to introduce nonlinearity into the model, enabling it to learn

more complex patterns.

3. Pooling Layers: Pooling layers, such as max pooling, reduce the spatial dimen-

sions of the feature maps, helping to downsample the data and reduce computational

complexity while preserving important information.

4. Fully Connected Layers: After a series of convolutional and pooling layers, the

extracted features are flattened and passed to fully connected layers, which combine the

features to make predictions based on the learned patterns.

5. Output Layer: In classification tasks, the final fully connected layer outputs

class probabilities through a softmax activation function, enabling the model to classify

the input into predefined categories (e.g., different heart conditions in the case of ECG

signals).

Advantages of CNNs:

• Efficient Feature Extraction: CNNs excel at learning and extracting features auto-

matically from input data without requiring extensive manual feature engineering.

• Translation Invariance: Convolutions provide spatial invariance, meaning the net-

work can detect features regardless of their position in the input.

• Scalability: CNN can handle large and complex datasets, adapting to different

input sizes by adjusting the number and depth of convolutional layers.

Temporal Convolutional Networks TCNs are a variant of CNNs designed to catch

temporal dependencies within a bio-signal by utilizing 1D-convolutional layers operat-

ing along the time dimension. [184], [185]. Compared to Recurrent Neural Networks

(RNNs), TCNs are less computationally demanding since they only perform 1D convo-

lutions along the time dimension. Moreover, TCNs overcome common issues associated

with recurrent topologies, such as the vanishing gradient problem and memory retention

limitations [186]. At the same time, they have been demonstrated to provide compara-

ble accuracy for bio-signal applications. TCNs utilize dilated convolutions and enforce

causal connections, ensuring that predictions at any point depend only on past data.

This approach helps to capture long-range dependencies but introduces some complexity

due to the dilation and causality requirements described below. Dilation increases the

receptive field exponentially, but it also leads to sparse connections, which can affect

efficient memory access and computation. Causal convolutions enforce a strict ordering



ECG Applications - ML approach 52

of inputs, which require additional padding or masking, increasing computational over-

head. While dilated convolutions reduce the number of layers needed to achieve a large

receptive field, the overall number of parameters may still be significant, especially if

large kernel sizes or multiple channels are used.

The concepts of causality and dilation hold special significance when dealing with

time-dependent inputs and activations in TCNs. Causality ensures that no output yt

at time t is influenced by future input values, maintaining temporal consistency. This

means the output yt is derived solely from past input samples, specifically from the set

xt−K+1 . . . , xt, weighted by the convolutional kernel of lengthK. Dilation is a technique

used in TCNs to expand the receptive field of the convolution without increasing the

model size or computational complexity. It introduces a fixed interval d between the

input samples considered by the convolutional kernel, allowing the model to capture

wider temporal patterns with fewer parameters.

Thus, a general temporal convolution operation incorporating both causality and

dilation can be represented by the following formula:

ycoutt =

Cin−1∑
cin

K−1∑
k=0

W coutcin
k xcinst−dk (4.1)

for cout = 0, . . . , Cout−1 and t = 0, . . . , T −1; where x and y are the convolutions’ input

and output, respectively, t is the index of the time sample, T is the sequence length, W

is the tensor of kernel parameters, cin and cout are the indices of the input and output

channels, respectively, Cin and Cout are the total numbers of input and output channels,

respectively, K is the temporal size of the filter, s is the stride, and d is the dilation.

The extension of the receptive field is F = (K − 1)d+ 1 [187].

It is important to note that while causality and dilation are potential features of

TCNs, they are not strictly necessary for effectively processing time-series data. In the

embedded TCN applications developed in this thesis, the entire input time window is

available at the time of inference, and the inference process begins as soon as all the

data within the window have been acquired. This allows for the use of a symmetrical

neighborhood around each sample without causing any leakage of future data.

Regarding dilation, the emphasis on it derives from the successful heuristics in orig-

inal temporal deep models, such as the WaveNet architecure [188], which proved to

benefit from a modular structure where the i-th convolutional layer of each model had

dilation factor di = 2i. On the contrary, in the embedded applications of this thesis, the

goal is to pursue accuracy with the lightest possible models. Moreover, some works on

TCNs emphasize the presence of residual connections [184] in a strong relationship with
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ResNet [189]. However, residual connections only sometimes prove beneficial in practice;

in particular, they are not used in the work presented in this thesis. Additionally, several

studies on TCNs highlight the role of residual connections [184], drawing a strong par-

allel to ResNet [189]. However, in practice, the advantages of residual connections are

not always evident, and they are not implemented in the work discussed in this thesis.

4.1.1 Related Work

In recent years, the remarkable success of transformer models in Natural Language

Processing (NLP) has raised interest in applying them to other application domains,

including time series processing. One of the major advantages of Transformers is their

ability to learn long-range dependencies and model complex relationships between dif-

ferent parts of the time series data. In the context of ECG signal analysis, Busia et

al. [190] presented a tiny transformer model able to recognize five arrhythmia classes.

The accuracy of this model is high (98.97%), and the limited number of parameters

(6k) enables its deployments on memory-constrained MCU-class devices. However, the

energy consumption of these solutions is significantly higher than that of other ML ap-

proaches, and this may severely affect the lifetime of battery-powered devices. Typically

ML approaches involve simpler architectures like feed-forward layers or convolutions with

local connections and lower parameter counts. Transformers use complex self-attention,

multi-head mechanisms, and deep stacks of layers, resulting in higher FLOPs and mem-

ory bandwidth requirements and increase power consumption due to dense computation

and large model sizes.

Li et al. [191] experiment with different ML techniques, achieving the maximum

accuracy (81.02%) with an approach that combines the filter bank common spatial pat-

tern (FBCSP) algorithm with multiple binary classifiers. Ismail et al. [192] implement

a TCN model, achieving an accuracy of 93.4%. However, they do not report values for

energy consumption. In the following work, Ismail et al. [193] adopt an approach based

on reinforcement learning to optimize the training and selection of hyperparameters for

multiple DL models, including MLP, CNN, LSTM, and GRU, in their evaluation. They

achieve the best accuracies with CNN and LSTM (95.82% and 96.41%, respectively) but

require a memory usage not suitable for our target devices (8.8 GB and 30.8 GB)

ECG-TCN [58] is a TCN-based solution that classifies the same arrhythmia classes

considered in this thesis; processing one heartbeat at a time, they achieve an accuracy

of 93.8% with an energy per inference of 0.10 mJ. Risso et al. [57] uses ECG-TCN with

dilation set to 1 and a Neural Architecture Search (NAS) methodology to optimize the
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Figure 4.2: GAP9 architecture diagram.

network parameters. They obtain an energy consumption similar to ours (0.04 mJ) but

with an accuracy of 93.16%.

In recent years, Transformer-based models have demonstrated remarkable success

in different fields. In [194] and [195], the authors adopt an approach based on Trans-

formers and Autoencoders. They report high accuracy (99% and 87.7%, respectively),

but their results are not comparable with our setup because they group the pathological

classes into a single one, performing a binary classification. Additionally, the size and

parameters of the model, along with the inference time and energy consumption, are

not reported. Hu et al. [196] and Yan et al. [197] use the multiple classes MIT-BIH

Arrhythmia dataset, achieving very high accuracy (>90%) but requiring high complex-

ity (5M parameters) and not suitable for limited computational resources and power

constraints, such as MCUs. In [190], the authors tackle this challenge by training a Tiny

Transformer with fewer parameters to make the deployment feasible on MCUs, and we

consider this solution the current SoA.

Another approach is provided by neuromorphic processing, as presented in [198].

This method is based on delay-based reservoir computing, classified as an RNN, but

it differs in that it uses an artificial neuron and a delay line. The accuracy values

are comparable to the state-of-the-art, but only one class is detected, using only three

records from the entire dataset, and energy consumption values are not reported.
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4.2 CNN Methodology

4.2.1 Hardware platform

This thesis targets GAP9 [199], introduced in Section 2.3, a PULP commercial plat-

form based on the RISC-V Vega architecture [200]. Figure 4.2 provides a high-level

overview of the system architecture. The fabric controller (FC) is a conventional single-

core MCU serving as the central orchestrator and controlling a 9-core programmable

compute cluster for workload acceleration. FC and cluster cores reside in dedicated

clock and voltage domains, supporting three power modes: active, deep sleep, and re-

tentive sleep. The FC domain includes a wide set of peripherals and a micro direct

memory access (uDMA) unit that can be programmed to handle data transfers between

peripherals and memory.

The cluster cores share four transprecision floating-point units (TFPUs) and a Sqrt/-

Div unit. TFPUs support three different formats (binary32, binary16, and bfloat16).

The cluster also contains the Neural Engine 16-channels (NE16) [201] [202], a con-

volutional accelerator supporting multiple filters (1x1, 3x3, depthwise, linear), a pro-

grammable number of bits for the parameters, and an arbitrary number of input/output

channels. This design allows programmers to offload convolutional kernels to a dedicated

hardware unit, which significantly improves performance and energy efficiency.

The GAP9 memory hierarchy includes a 128 KB L1 memory local to the cluster and

a 1.5 MB L2 memory local to the fabric controller that can operate at frequencies up

to 360 MHz. Common synchronization primitives (e.g., barriers and mutual exclusion)

are accelerated by a dedicated hardware unit (Synch). In addition, the FC domain

includes 2 MB of Magnetoresistive Random Access Memory (MRAM), a non-volatile

memory technology that offers several advantages over other more common technologies

(e.g., Flash memory), mainly faster access times, lower power consumption, and greater

durability [203]. All data transfers between memory levels are software-managed through

a direct memory access (DMA) unit that can perform efficient data transfers without

keeping the cores busy. The GAPMod development board also includes 32 MB of low-

power Synchronous Dynamic Random Access Memory (SDRAM), which can be used

as an L3 memory. The access latency and energy consumption are higher since this

memory level is off-chip, but its adoption is mandatory when the network parameters

do not fit the available L2 memory.

The GAP9 software ecosystem [204] includes NNTool [127], a framework to deploy

NN graphs starting from the ONNX representation that ML frameworks can export, as
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Figure 4.3: Processing pipeline for ECG signal classification. The input is a window of
256 samples (one heartbeat) centered on the R peak. The CNN design includes multiple
sub-blocks, progressively increasing the number of filters and reducing the kernel size,
followed by a dimensional flattening and a fully connected (FC) layer.

discussed in Section 2.4.2. NNTool includes different options for network deployments,

including different quantizations and the NE16 usage.

4.2.2 CNN Preprocessing

We utilize the version of the PT algorithm [169], [182] optimized as discussed in

Section 3.3, for the target platform. PT is a signal processing technique used to detect

the PQRST complex in the feature extraction step, namely the sequence of waveforms

seen on an ECG representing the electrical activity of the heart during a cardiac cycle.

The points depicted on the ECG signal in Figure 4.3 are the R peaks detected by the PT

algorithm. After this, the processing pipeline feeds a window of 256 samples centered

around the heartbeat to a 1D-CNN.

4.2.3 1-D CNN architecture

Our CNN architecture is composed of multiple 1D convolutions used to extract the

features of the ECG signal. The network categorizes the heartbeat into five classes: N

(non-ectopic), S (supra-ventricular ectopic), V (ventricular ectopic), F (fusion), and Q

(unclassifiable ).
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Table 4.1: Comparison of the performance across data types.

CONFIG (ϕ) MACs [M]
FLOAT32 FLOAT16 INT8

Acc. [%]
Param.
[MB]

Acc. [%]
Param.
[MB]

Lat. [ms] Acc. [%]
Param.
[MB]

Cluster
Energy/

Inference [mJ]

Cluster
Lat. [ms]

NE16
Energy/

Inference [mJ]

NE16
Lat. [ms]

0 0.923 91.9 1.062 91.6 0.531 1.262 91.8 0.265 0.013 0.606 0.010 0.532
1 1.822 93.7 1.398 93.6 0.699 2.707 94.0 0.349 0.033 1.371 0.021 1.014
2 3.714 94.7 2.246 94.7 1.123 4.389 95.0 0.561 0.053 2.071 0.033 1.565
3 7.162 95.4 4.828 95.4 2.414 12.413 95.7 1.207 0.294 4.967 0.204 4.399
4 13.472 97.5 7.078 97.5 3.539 23.567 97.6 1.769 0.486 9.018 0.546 8.021

As introduced in Section 1, AI-enabled embedded devices must support computa-

tionally demanding tasks at high energy efficiency. Our CNN design is parametric to

find the best trade-off between power consumption and accuracy. We vary our architec-

ture by changing the depth (d), i.e., the number of layers, and the width (w), i.e., the

number of filters in each layer, following the compound scaling schema proposed in [205].

Unlike them, we do not scale the input size between configurations since the heartbeat

duration constrains it.

The compound scaling proposed in [205] introduces the scaling factor ϕ and uses it,

in turn, to define the scaling of depth d = αϕ and width w = βϕ where α and β are

constants following

α ∗ β2 ≈ 2 (4.2)

Given our starting number of filters, we have selected β = 1.33 for a more straightforward

scaling, and α = 1.15 was selected accordingly based on the Formula 4.2. The number

of MAC operations approximately doubles at each step, as depicted in Table 4.1.

Figure 4.3 depicts the full processing pipeline. As our baseline, we use a network with

five layers. Each of the sub-blocks of the network structure comprises a 1D Convolutional

kernel (detailed in Figure 4.4), Batch Normalization, ReLU activation, and Max Pooling.

In the final step, the network includes a flattening followed by a Fully Connected (FC)

layer. The first two convolutions have a kernel size of seven and five elements with a

stride of two, while all the others have a kernel size of three and a stride of one. At each

increase in the scaling factor, we introduce two new 1D convolutions; considering that

the input size remains fixed, we do not introduce new pooling layers and set the stride

of each convolution to one.

Due to the limited memory available on the target platform, we employ quantization

techniques to reduce the memory footprint. We evaluated two quantization schemes

based on 8-bit integer (INT8) or IEEE 754 16-bit floating-point (FP16) formats. Our

results, shown in Table 4.1, indicate that the INT8 quantization outperforms the FP16

one in terms of accuracy, memory footprint, and latency. Considering both the NE16

support for INT8 and the higher energy demand for FP16, we focus on INT8 quantization

in the remainder of this chapter. For the sake of completeness, Table 4.1 also reports
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Figure 4.4: The details of the Conv1D kernel processing a single heartbeat segment
(256 samples), with the R peak of the heartbeat highlighted. The dashed squares
illustrate the sliding windows used in the convolution process.

the accuracy and memory footprint for the IEEE single-precision floating-point type

(FLOAT32). As this data type is not supported by the deployment tool, we cannot

provide its latency values.

4.2.4 Dataset

For ECG, we use the MIT-BIH Arrhythmia Database [173] for the experimental

assessment. This dataset contains a set of two-channel ECG half-hour-long signals from

47 subjects sampled at 360 Hz. The MLII channel represents the signal recorded with the

positive electrode placed on the left leg and the negative electrode on the right arm, while

the V2 channel records a signal of a chest lead positioned on the fourth intercostal space

at the right sternal border. We analyze the MLII channel because normal beats in the V2

channel may be difficult to distinguish [206]. Two or more cardiologists independently

annotated each record. Following established literature practices, we adhered to the

AAMI standard [207] to categorize arrhythmias into the five classification groups (N,

S, V, F, and Q). Consistent with AAMI guidelines, records containing paced beats,

specifically those labeled as ”102”, ”104”, ”107”, and ”217”, were excluded from both

the training and test datasets.
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Figure 4.5 displays heartbeats from three subjects classified into five distinct classes.

The shapes of classes N and S are quite similar, often leading to confusion between them.

Following the approach utilized in [208], we employ an input size of 256 samples centered

on the R peak position within the QRS complex, as depicted in Figure 4.4. Considering

the sampling frequency of the MIT-BIH Arrhythmia Database, the heartbeat corre-

sponds to a duration of 0.71 s.

The ECG5000 dataset [209] is used for the experimental assessment of the TCN

design, as discussed in Sections 4.5, to compare the performance with the primary refer-

ence in SoA [58]. This dataset is part of the BIDMC Congestive Heart Failure Database

(chfdb) [210] [211]. It includes severe congestive heart failures labeled in five classes:

Normal Signal (N), R-on-T Premature Ventricular Contraction (r), Supraventricular

Premature or Ectopic beat (S), Premature Ventricular Contraction (V), and Unclassi-

fiable Q). The data have been pre-processed to extract heartbeats and make each one

equal in length using interpolation. We determined an input size of 140 samples for the

TCN network based on the data characterization.

The dataset includes 5000 samples, split into 4500 for the test set and 500 for

the training. Considering a time window including one heartbeat at a time, the TCN

can effectively learn the temporal dependencies and patterns within the ECG signal.

However, this dataset is imbalanced since some classes are under-represented. This

can induce misclassification errors, and data techniques such as data augmentation and

oversampling address this issue. In the subsection 4.5.2, we explain our mitigation based

on oversampling.

4.2.5 Training Process

Networks are generated and trained using TensorFlow and Keras [212]. We divided

the dataset into three subsets: training, validation, and test, with a split ratio of 7:1:2,

as reported in [197]. We trained the network for 250 epochs using a batch size of 128,

the Adam optimizer with a learning rate of 4 · 10−4, and categorical cross-entropy loss.

If the loss does not decrease for 10 epochs, we decrease the learning rate by halving it.

Additionally, we employed early stopping based on the F1 score of the validation set,

stopping training if it does not improve for 25 epochs. Then, we conduct fine-tuning

for 10 epochs on the validation set using the Adam optimizer with a learning rate of

5 · 10−6. As a data augmentation technique, we generated training data by randomly

selecting 256 samples from windows of 300 samples centered on the R peaks.
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Figure 4.5: Variations in heartbeat patterns across five classes in three subjects taken
randomly from the MIT-BIH Arrhythmia Database.

4.3 CNN Experimental setup

The system is configured to duty cycle between deep sleep and active power states

(see Section 4.2.1). This design choice requires retrieving network weights before each

inference phase. Adopting retentive sleep would also preserve data in the L2 memory;

however, considering this application’s timings, using deep sleep represents the most

energy-efficient solution. Compared to other application domains (e.g., drone control),

the time spent in a sleeping mode is higher. Consequently, the application must fetch

the network weights from the MRAM to the L2 memory (network generation phase)

before performing the inference (inference phase). Our preliminary experiments show

that using retentive sleep would result in a ∼10× increase in power consumption, as

indicated in the GAP9 datasheet [213], specifically 41 µW compared to 468 µW. These

correspond to daily energy consumption values of 3.5424 J and 40.4352 J, respectively.

To report the energy consumption in Section 4.3.2, we consider three phases of the

end-to-end application: R peaks detection, network generation, and inference. Power

measurements were conducted using a Power Profiler Kit II (PPK2) connected to the

GAP9 board, while execution time was measured using the performance counters avail-

able on the chip. Measurements have been repeated, setting the frequency at two alter-

native values (240 MHz and 370 MHz).
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0 1 2 3 4
Energy/Inf. @370 MHz 0.014 0.030 0.049 0.325 0.504
Energy/Inf. @240 MHz 0.010 0.021 0.033 0.267 0.425
Accuracy 91.76 93.99 95.01 95.70 97.57
F1 score 93.30 95.03 95.76 96.30 97.77
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Figure 4.6: Energy consumption across five configurations with INT8-NE16. At 240
MHz, CONFIG2 is the best trade-off between energy and accuracy.

In this study, we examine five architecture configurations (CONFIG0-1-2-3-4 based

on the network size, from smallest to largest), described in Section 4.2.3.

4.3.1 Accuracy and energy consumption

This part aims to find the configuration that provides the best trade-off between

accuracy and energy consumption [214]. Figure 4.6 shows that the accuracy and F1 score

increase with the network complexity. As expected from intuition, this trend follows the

increase in the scaling factor described in Section 4.2.3. Starting from CONFIG3, the

total memory amount required to store weights and activations does not fit the L2

memory. To solve this issue, weights are stored in the MRAM and activations in the

SDRAM, and both are tiled to L2 memory to perform inference. Indeed, Figure 4.6

shows a significant increase for CONFIG3 and CONFIG4 due to these effects.

Consistently with findings in [190], 240 MHz is the optimal operating frequency for

minimizing energy consumption, and this choice does not affect the timing constraints.

After these considerations, we designated CONFIG2 with INT8-NE16 as the best trade-

off between accuracy and energy efficiency. Figure 4.7 depicts the confusion matrix for

this configuration.
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4.3.2 Comparison with the state of the art

We compared the performance of our optimal solution (CONFIG2) with the current

SoA, taking into account [190] as the primary reference; to the best of our knowledge,

this is the most efficient alternative targeting the same platform.

The power consumption of PT, estimated at 0.013 mJ from the optimized PULP

version [182], is constant across all variants. Based on the number of parameters re-

ported in [190], we analyzed the network generation cost, assessing it to be two orders of

magnitude lower than our solution (0.0005 mJ vs. 0.027 mJ). Conversely, our inference

phase demonstrates superior efficiency compared to their (0.03 mJ vs. 0.09 mJ).

We observed that the inference phase is the major contributor to energy consump-

tion. Specifically, based on 70 beats per minute requiring 100800 duty cycles between

deep sleep and active states in 24 hours, our solution consumes 7413 mJ daily, while daily

energy consumption for the Tiny Transformer [190] is 10433 mJ. In general, single-core

MCU platforms (e.g., STM32 MCUs) are too constrained for complex neural architec-

tures ([215]); [171] shows that PULP platforms are more computationally powerful and

energy efficient. We achieve higher efficiency even in comparison with the study by [216],

where they tested their porting to STM32.

Table 4.2 compares our solution with other SoA systems. Our solution achieves the

best trade-off between Energy/Inference and accuracy. Our network is ∼3× more com-

putationally demanding (in terms of MACs) than the Tiny Transformer [190]; however,

we achieve ∼3× faster inference speed with only a 3.17 degradation in accuracy. We also

compare with the ECG-TCN solution proposed by [58], showcasing the higher efficiency

of our approach (∼3.33× in terms of Energy/Inference). Furthermore, we overcome [57]

in accuracy (95.01% vs. 93.16%) with similar energy consumption (0.03 mJ vs. 0.04 mJ).

Both [58] and [57] use a different dataset (i.e., ECG5000), which could introduce a bias

in the comparison. Lastly, our solution achieves higher accuracy than an LSTM-based

approach with an equivalent computational load proposed by [216] (95.0% vs. 90.2%).

4.4 Conclusion and Future work

This chapter introduces a processing pipeline to detect pathological conditions in

the ECG signal using a methodology based on a preprocessing stage followed by a para-

metric CNN. Our goal was not merely to surpass the accuracy of the SoA solutions

but to find an optimal trade-off between accuracy and energy consumption. To this

extent, the experimental assessment was performed on the GAP9 PULP platform to
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Figure 4.7: Confusion matrix that displays the probability of true positives within
the test set for CONFIG2 with INT8-NE16.

understand the interdependencies between software parameters (e.g., number of CNN

layers) and hardware constraints (e.g., limited memory). As a result, we found a solution

whose accuracy is marginally lower than Transformer-based solutions but improves en-

ergy efficiency by 3×. Future work will focus on extending the design knobs to platform

architectural parameters (e.g., external memory size, FPU support, number of cores),

promoting a hardware-software co-design methodology. Finally, we will also explore

Transformer models with adjustable parameters.
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4.5 TCN Methodology

4.5.1 TCN architecture

As regards the TCN, this section proposes the simplified network topology w.r.t.

the recent work on TCNs of Bai et al. [184].

Each of the seven sub-blocks of the network structure contains a Convolutional

kernel, Batch Normalization, ReLu activation, and Max Pooling. Finally, the network

applies the inference based on the whole temporal information, using a Fully Connected

(FC) layer followed by a flattening and a Softmax. To improve the performance of

the TCN model, we apply a variable dilation to increase the receptive field. Also, to

ensure causal convolution and to maintain the output sequence with the same length

as the input sequence, we apply zero-padding only on the left side of the input feature

map/tensor. This configuration is called causal padding. Considering stride = 1, we

compute the padding size for each block as:

pi = (KernelSizei − 1) ∗ di; (4.3)

where i is the i-th block, and d is the variable dilation factor.

Due to the compact size of the TCN model, we do not need to employ heavy quan-

tization techniques to save memory space at the cost of reduced accuracy. We adopt

the IEEE 754 16-bit format (FP16) that reduces the memory footprint and computation

requirements while preserving the model accuracy [217]. This approach allows to effi-

ciently deploy and run the TCN on the hardware platform, ensuring good performance

and resource utilization, as described in Section 4.6.

4.5.2 Training

Data imbalance is prevalent in biomedical datasets where certain events or conditions

of interest are underrepresented with a few (or even just a single) occurrences. This

scarcity of data for specific classes can severely impact the performance of machine

learning models, particularly in classification tasks, as the model may become biased

towards the majority class. Oversampling and data augmentation are two common

approaches to mitigate the issue of data imbalance.

Data augmentation techniques create new training examples by applying various

transformations to the existing data, such as rotations, flips, or translations. As a result,
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Training subset: 
Class N: 292
Class r: 177
Class S: 10
Class V: 19
Class Q: 2

Test set: 
Class N: 2627
Class r: 1590
Class S: 86
Class V: 175
Class Q: 22

Figure 4.8: Oversampling and mapping of dataset labels. Train data and test data.

Training subset: 
Class N: 234
Class r: 141
Class S: 8
Class V: 15
Class Q: 2

Validation set: 
Class N: 58
Class r: 36
Class S: 2
Class V: 4
Class Q: 0

Figure 4.9: Oversampling and mapping of dataset labels. Training data is split into
training subset and validation data.
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Training subset 2: 
Class N: 234
Class r: 141
Class S: 8
Class V: 15
Class Q: 1

Validation set: 
Class N: 58
Class r: 36
Class S: 2
Class V: 4
Class Q: 1

Figure 4.10: Oversampling and mapping of dataset labels. Class 5 (Q) correction.
Class 5 is in the training subset and validation data.

Training subset 3: 
Class N: 234
Class r: 234
Class S: 234
Class V: 234
Class Q: 234

Validation set: 
Class N: 58
Class r: 36
Class S: 2
Class V: 4
Class Q: 1

Figure 4.11: Oversampling and mapping of dataset labels. Oversampling on the
training subset.
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more data are available for training, and the models become more robust and less prone

to overfitting. However, since the data in this application are highly dependent on the

shape of the ECG trace, techniques that add signal distortion are prone to degrading

performance in real use cases.

On the other hand, oversampling involves increasing the number of instances in the

minority class. One standard method is to duplicate existing examples in the minority

class. As illustrated in Figure 4.8, a noticeable data imbalance emerges in our dataset,

particularly concerning the last class, which contains only two occurrences. To address

this imbalance, we partitioned the dataset into a training subset (80%) and a validation

set (20%), as depicted in Figure 4.9. This partition resulted in 400 samples for training

and 100 samples for validation.

In Figure 4.10, our focus turns to class Q (class 5), which experiences significant

underrepresentation. We employed an oversampling technique to mitigate this issue,

as shown in Figure 4.11. This method involves artificially augmenting the number

of samples in the minority class by duplicating existing data points. This approach

effectively balances the class distribution.

In this experiment, the ML framework is based on TensorFlow and Keras [212].

For the TCN training, we applied a batch size of 32 samples for 100 epochs with an

Adam optimizer and categorical cross-entropy loss. Instead of performing a single run

or training session of the model, we run the model training ten times, providing a more

stable and robust average performance estimate.

Furthermore, we compute the validation sample weight to improve the validation

accuracy. The validation sample weight refers to a parameter we can use when training

a model to assign different weights to individual samples in our validation set. These

weights affect the contribution of each sample to the overall validation loss during train-

ing. It is a way to control the importance of different validation samples when computing

the validation loss.

In summary, we follow these processing steps

1. Data Preparation

• Train/validation split.

• Handling of minority class Q.

• Oversampling of the training subset.

2. TCN model training with repetitions (runs = 10).

• Calculation of the validation sample weight.
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Table 4.3: Accuracy, Balanced Accuracy, and Number of Parameters on SoA.

Ingolfsson et al. [58]
(NEMO/DORY)

This work

Accuracy [%] 92.8 91.2

Balanced Accuracy [%] 94.8 93.8

#Parameters 10K 4K

3. Estimation of the best validation accuracy between the models.

The GAP9 software ecosystem comprises NNTool [127], a framework to deploy NN

graphs on embedded platforms starting from its ONNX representation that can be ex-

ported by ML frameworks. The current version of NNTool only supports 2D convolu-

tions, while TCNs require 1D convolutions; we overcome this limitation by considering

a second EGG channel as the depth dimension.

4.6 TCN Results

Table 4.3 reports the computation of the accuracy and parameters, compared with

the current SoA for ECG anomaly detection on embedded devices [58]. The accuracy

metric is computed as the ratio between true positives (TP) for that class and the

total number of instances (support). It indicates how well the model correctly predicts

instances of a given class. Since the ECG5000 dataset is highly imbalanced, we also

consider a balanced accuracy metric, calculated as the weighted average between the

Sensitivity and Specificity. Weighted average considers the class distribution, giving

higher weights to the minority class. Hence, it provides a more stable and reliable

estimate of the model performance when dealing with class imbalance.

For a fair comparison, we execute the ECG-TCN, replicating the experiment de-

scribed in [218] to compute their balanced accuracy using the NEMO/DORY configura-

tion. Table 4.3 shows that our model achieves a balanced accuracy of 93.8%, comparable

with [218], and an accuracy of 91.2%, even though it reduces the number of parameters,

with a beneficial impact on energy consumption.

Table 4.4 reports the energy consumption compared with [218], considering the same

input size of 140 samples. The time per inference of our solution is 7.3× faster than the

methodology proposed by Ingolfsson et al. [58]. Considering MACs as a performance

metric, which does not depend on the technology node, our implementation results are

9.1× faster. This effect is primarily due to the complexity reduction of the net topology

and directly impacts battery lifetime.
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Moreover, implementation on the GAP9 processor features only 0.01 mJ per infer-

ence, maintaining a floating point data representation for input data and intermediate

layers. Deploying the algorithm on an end-to-end platform with a commercial analog

front-end (AFE) for ECG (e.g., MAX 30003, which consumes 85 µW), the battery life-

time of the whole system (AFE + GAP9) reaches 6316 hours, compared to 5310 hours

in [58], corresponding to a 19% improvement.

As mentioned at the beginning of Section 4.1, the implementation of the CNN over-

comes the TCN performance in terms of MACs/cycles and power consumption and

achieves an accuracy of 95% (Table 4.2 in Section 4.3.2)) vs. 91.2%, respectively.

4.7 CNN vs TCN discussion

As outlined in Section 4.1, we selected CNN over TCN as the optimal solution for

this application. CNNs, which leverage convolutional layers to extract spatial features,

can process entire data sequences without enforcing temporal causality. This capability

simplifies the model, resulting in enhanced classification performance for our purposes

since the CNN does not depend on time constraints inherent to TCN models.

In this study, there’s no need to enforce TCN’s causality property, as all temporal

dependencies are already met by the pre-processing (PT) stage, which pinpoints the rel-

evant interval in the ECG signal for the CNN. The PT algorithm requires data windows

that capture information after each heartbeat so the network can operate on complete

data without maintaining causality constraints at inference time.

Although CNNs incur a slightly higher energy cost per inference (0.049 mJ) com-

pared to TCNs (0.01 mJ) at an operational frequency of 370 MHz, they achieve higher

accuracy (95% vs. 91.2%) and lower computational complexity, making them more

advantageous for energy-efficient embedded edge applications.

Chapter 4 refers to publication [219].
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Chapter 5

EEG Applications

The last category of biosignals explored in this thesis is the electroencephalogram

(EEG) as introduced in Section 2.1.2. This dissertation prioritizes the evaluation of

ear-EEG sensors in terms of feasibility and signal quality rather than focusing solely on

optimizing offline processing. Specifically, the study develops a system that adheres to

the Auditory Steady-State Response (ASSR) protocol and includes an analysis of alpha

waves (AW).

For the validation measurements, data is collected and processed offline using two

distinct approaches: (i) AW analysis via spectrogram computation and (ii) automated

peak detection of the response at the 80 Hz amplitude-modulated frequency, which

follows a Power Spectral Density (PSD) analysis. This methodology allows for a com-

prehensive assessment of the ear-EEG system’s performance in capturing relevant neural

activities related to auditory stimuli.

5.1 Ear-EEG Description

As reported in Chapter 1, wearable devices are particularly valuable in healthcare

and wellness, as they enable monitoring of health metrics in everyday environments be-

yond the confines of clinical settings [220]. Ear-worn wearable devices are particularly

appealing for physiological sensing due to their unique positioning on the head, enabling

the unobtrusive monitoring of various physiological signals. Designed to resemble com-

mon audio devices, such as earphones or earbuds, earables are discreet and convenient.

The ear’s anatomical structure also provides a stable and accessible location to house

the necessary electronics for a wearable sensor, making earables an ideal platform for

continuous, comfortable physiological monitoring [221]. EEG is traditionally captured
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by placing electrodes on the scalp, a procedure usually done in clinical settings since

electrode positioning and preparation are critical for data accuracy and usability. In

2011, ear-centered EEG systems were introduced as a more convenient alternative, al-

lowing for EEG measurement from around the ear region, which simplifies setup and

enhances user comfort without compromising data quality [72]. Ear-centered EEG de-

vices are user-friendly and require significantly less setup time than traditional EEG,

which involves placing multiple electrodes on the scalp by trained personnel.

In this chapter, I present the characterization and testing of a custom sensor de-

veloped by Dätwyler Schweiz AG [222] in collaboration with ETH Zürich during my

internship. The focus of this work involves applying the Auditory Steady-State Re-

sponse (ASSR) protocol, particularly targeting frequencies of 80 Hz and 88 Hz, along

with alpha-band modulation (7-13 Hz).

5.2 ASSR Related Work

The wide use of the ASSR as an objective method for measuring hearing in clinical

settings is due to its high-frequency specificity. It can accurately assess hearing ability

at specific sound frequencies without relying on the patient’s subjective responses. The

recruitment phenomenon (a condition associated with hearing loss where soft sounds

are not heard, but loud sounds are perceived as disproportionately more audible than

they are) is typically detected through subjective evaluations, which require direct com-

munication with the patient. If the recruitment phenomenon could be detected using

ASSR, it would simplify diagnosing patients who cannot communicate effectively, such as

those with developmental disorders or infants. This is because ASSR provides objective

measurements that do not depend on active responses from the patient [223].

Kidmose et al. [49] conducted a study testing four different Evoked-Related Poten-

tials (ERP) paradigms—ASSR, steady-state visual evoked response, an auditory-evoked

P1–N1–P2 complex, and a visual-evoked onset response—using ear-EEG on a group of

healthy subjects. The findings revealed that the ear-EEG signal amplitude was typi-

cally around 20 dB lower than the scalp EEG recorded over the temporal cortex. To

assess ear-EEG performance in real-life settings, Kappel and Kidmose [46] compared a

dry-contact ear-EEG electrode with a traditional wet electrode scalp EEG across four

paradigms (ASSR, SSVEP, auditory onset response, and alpha-band modulation) and

in both controlled and real-life environments. They found a high level of similarity be-

tween ear-EEG and scalp EEG results, particularly when referencing the Cz electrode

on the scalp. Although statistically significant responses were only noted for the ASSR

in both environments when using within-ear-referenced electrodes, the results support
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Figure 5.1: Ear-EEG electrode fabricated by Dätwyler Schweiz AG and connected to
an active buffering PCB

ear-EEG’s reliability in everyday contexts. To further explore this application, Paul et

al. [224] introduced a fully integrated in-ear EEG prototype with Ag/AgCl dry elec-

trodes designed to both elicit and detect ASSR responses, highlighting the potential of

ear-EEG for convenient auditory monitoring.

Christensen et al. [225] further validated the potential of ear-EEG-based ASSR as

a hearing assessment tool. In their study, the researchers found that, in response to

broadband chirp stimuli with repetition rates ranging from 20 to 95 Hz, the ASSR

amplitude recorded with ear-EEG was generally lower across most frequencies than

conventional scalp-EEG recordings.

Finally, Fiedler et al. [226] also identified ear-EEG as a promising approach for

capturing neural responses during a range of auditory stimuli, including discrete, di-

chotic, and continuous biotic sounds. When comparing their in-ear EEG device with

signals from a 64-electrode scalp EEG system, they observed that event-related poten-

tials (ERP) obtained through ear-EEG highly depended on the reference configuration.

Their findings support the feasibility of integrating ear-EEG technology into hearing

aids for effective neural activity monitoring.

5.3 Methodology

5.3.1 Setup Description

The electrodes used in this setup are ear-EEG electrodes as depicted in Figure 5.1,

fabricated by Dätwyler Schweiz AG [222]. These specialized electrodes are designed to

be placed in the ear to capture EEG signals with minimal interference from ambient

noise. The ear-EEG electrodes offer a more comfortable and less intrusive alternative to

traditional scalp electrodes, making them suitable for long-term monitoring and testing
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Naison

Headphones

Figure 5.2: Channels placement and electrodes configuration on a test subject.

in both clinical and real-life settings. The use of these electrodes enhances the ability to

detect neural responses to auditory stimuli while maintaining the participant’s comfort

during the procedure.

In these ASSR experiments, stimuli are delivered using either over-the-head or bone-

conduction headphones. This choice of headphones is significant, as both options offer

distinct advantages for auditory testing. Over-the-head headphones are typically used

for their comfort and ability to deliver clear sound, making them suitable for prolonged

listening sessions. On the other hand, bone-conduction headphones transmit sound

vibrations directly through the skull to the inner ear, which is particularly beneficial

in scenarios where traditional headphones may not be effective, such as for individuals

with conductive hearing loss [227].

To compare the signal quality, we also used traditional wet (gel-based) electrodes

around the ear, as benchmarks. Figure 5.2 and Table 5.1 show the placement and the

type of the electrodes and their corresponding channels.

The data is stored in the following format: ’N yyyy mm dd PROTOCOL’, where

N represents the subject number, PROTOCOL is the protocol name AW or ASSR for

alpha waves or auditory steady-state response, respectively, and the date of the data

acquisition is formatted as year month day.

5.3.2 Data Acquisition

The acquisition platform used in this setup is BioGAP [228] (see Figure 5.3) a

PULP-based architecture, specifically the GAP9 microcontroller discussed in Section 2.3,

which features powerful TOPS (tera operations per second) capabilities and includes 10
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Table 5.1: Electrodes allocation and types.

Channel Location Type

CH1 In-ear (left) Ear-EEG electrode + active buffering

CH2 In-ear (right) Ear-EEG electrode + active buffering

CH3 Front of the ear (left) Wet electrode + active buffering

CH4 Back of the ear (left) Wet electrode + active buffering

CH5 Front of the ear (right) Wet electrode + active buffering

CH6 Back of the ear (right) Wet electrode + active buffering

REF Mastoid (left) Wet electrode + active buffering

BIAS Mastoid (right) Wet electrode

RISC-V cores optimized for energy-efficient, high-performance computation tailored for

tinyML applications. This architecture allows for robust, parallel processing suitable for

low-power embedded applications such as biosignal processing.

The platform is equipped with a Nordic nRF52 module for connectivity, enabling

efficient Bluetooth Low Energy (BLE) communication, essential for wireless data transfer

in wearable applications. Additionally, the platform offers versatile interfacing with a

range of sensor inputs, making it adaptable to different biosignal acquisition setups.

The platform integrates an ADC (Analog-to-Digital Converter) module to capture

biopotential signals, specifically the ADS1298. This module provides 8 ExG channels

with 24-bit resolution, allowing for precise, high-quality signal acquisition across multiple

channels, which is ideal for applications requiring detailed and accurate biosignal data.

The EEG data acquired by the system is continuously transmitted to a PC for real-

time visualization and is saved in a log file for further analysis. After initialization,

BioGAP establishes a Bluetooth Low-Energy (BLE) connection with the receiver don-

gle. It transitions into a low-power BLE-connected state, awaiting further instructions.

Real-time measurements are displayed using a Java GUI, which also sends commands

(e.g., switch between streaming and sleep mode; start or stop measurement) and param-

eters (e.g., number of active EEG channels, sampling frequency, EEG gain). When the

measurement is complete, it returns to the connected state. If inactive, BioGAP can

enter sleep mode through a BLE command to conserve power and can be reactivated

with a double-tap gesture.

5.4 Alpha Waves Validation Measurements

This validation procedure is designed to assess the presence and power of AW (7–13

Hz) in EEG data using a controlled protocol in which subjects alternate between eyes-

open and eyes-closed states every 10 seconds. This alternating pattern aids in identifying
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Figure 5.3: System diagram (top) and photo (bottom) of the BioGAP platform next
to a one-cent coin. Image source: [228]

changes in alpha wave power associated with eye closure, typically observed as a natural

increase in the 7–13 Hz frequency range when the eyes are closed.

5.4.1 Alpha Waves Processing

The raw EEG signals are preprocessed through a series of filters followed by spectral

analysis, with the processing code developed in MATLAB to optimize data handling and

analysis:

• Band-Pass Filtering: A 10th-order Butterworth filter with cutoff frequencies set

at 0.5 Hz and 40 Hz isolates the relevant EEG frequency range, removing very low

and high-frequency noise while retaining most of the alpha-band activity.

• Notch Filtering: To suppress 50 Hz powerline noise, a notch filter of order 2 is

applied. This step is crucial in minimizing electrical interference that could distort

the analysis of alpha frequencies.

• Spectrogram Computation: a sliding-window spectrogram is generated to visualize

the temporal evolution of signal power in different frequency bands. Each window

contains 1024 samples (2 seconds), with a 768-sample (1.5 seconds) overlap, pro-

viding a near-continuous display of frequency power over time. This approach

enables a dynamic analysis of the alpha wave intensity, particularly in response
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Channel 1 in-ear

eyes closed eyes open

Figure 5.4: Measurement of the alpha wave activity in eyes closed vs eyes open
condition of CH1 in-ear. Filtered signal in the time domain (TOP) and spectrogram
(BOTTOM).

to the open- and closed-eye conditions, supporting insights into how alpha wave

power fluctuates in a practical, non-invasive setup.

This methodology provides a reliable system for AW validation, which is crucial for

applications involving EEG analysis in wearable or non-traditional electrode placements.

5.4.2 Results

Figures 5.4 and 5.5 (TOP) illustrate the EEG response from one subject of both

in-ear channels (CH1 and CH2, respectively) in the time domain, showing distinct am-

plitude variations between the open- and closed-eye conditions. Meanwhile, the same

figures at the bottom present a spectrogram computed for a signal segment during an

eye transition, where a high-energy component in the alpha band is noticeable during

the closed-eye phase and declines significantly as the subject opens their eyes.
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Channel 2 in-ear

eyes closed eyes open

Figure 5.5: Measurement of the alpha wave activity in eyes closed vs eyes open
condition of CH2 in-ear. Filtered signal in the time domain (TOP) and spectrogram
(BOTTOM).

5.5 ASSR Validation Measurements

5.5.1 ASSR Protocol

This study uses an ASSR protocol to assess the feasibility of ear-EEG measure-

ments for auditory stimulus detection. The protocol was conducted with five healthy

volunteers, each outfitted with in-ear electrodes and headphones. During each session,

subjects were allowed to read to create a natural setting, which minimizes artificial

conditions while maintaining consistent auditory stimulation.

The auditory stimulus was presented through over-the-ear headphones, consisting of

a sinusoidal tone with a 4 kHz carrier frequency [14], [223] modulated at two different

frequencies, 80 Hz and 88 Hz, based on common testing standards in auditory research

studies. The software we developed using PsychoPy [229] allows the user to customize

the duration of the tone, carrier frequency, and modulation frequency. The intensity of

the auditory stimulus was set at 65 dB SPL (Sound Pressure Level), with each acquisition

session lasting 15 minutes, consistent with standard EEG protocols for auditory testing
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(stimuli). In addition, a silent 15-minute session was conducted to observe and compare

responses in the absence of stimuli (rest), following similar protocol setups [230].

EEG data was acquired using the BioGAP platform at a sampling frequency of

500 Hz, sufficient to capture the ASSR frequencies of interest accurately. This protocol

aimed to detect the brain’s steady-state response to these modulated auditory stimuli,

providing insights into the performance of ear-EEG for real-world auditory monitoring

applications.

5.5.2 Signal Processing Pipeline for ASSR Analysis

The signal processing pipeline for analyzing the ASSR in EEG data includes several

key steps designed to filter, analyze, and quantify the auditory response. I implemented

the processing for this analysis in MATLAB. Below is an outline of each stage in the

pipeline:

1. Filtering

• Band-pass Filtering: A 10th-order Butterworth filter is applied to retain fre-

quencies between 30 and 180 Hz, isolating the desired range that captures

relevant ASSR frequencies while excluding lower and higher frequency noise.

• Notch Filtering: To reduce interference from power line noise and its har-

monics, two notch filters are applied at 50 Hz (for Power Line Interference,

PLI) with an order of 2 and a quality factor of 100, and at 100 Hz (second

harmonic of PLI) with the same parameters.

2. Power Spectral Density (PSD) Analysis using Welch’s Method

• Windowing: Segments the signal into 5-second windows.

• Discrete Fourier Transform (DFT): Computes the periodogram for each win-

dow.

• Power Spectrum Estimation: The squared magnitude of the DFT yields power

estimates for each segment.

• Averaging: The individual power spectra are averaged across segments to

minimize noise, producing an array of power measurements versus frequency

bins, resulting in a robust estimate of the power distribution over frequencies.

3. Peak Detection and SNR Estimation



EEG Applications 81

Figure 5.6: Power spectra at 80 Hz AM stimuli across all channels. CH1 and CH2
represent the in-ear channels of primary interest.

• Automatic Peak Detection: Detects the peak in the power spectrum at the

amplitude-modulated (AM) frequency (80 Hz and 88 Hz) corresponding to

the ASSR.

• Signal-to-Noise Ratio (SNR) Estimation: An automatic estimation of SNR is

performed to assess the clarity and significance of the response signal relative

to background noise.

This structured approach facilitates the extraction of clean and interpretable ASSR

signals from the raw EEG data, which is essential for evaluating auditory responses

efficiently and reliably.

5.5.3 ASSR Results

Figure 5.6 presents the power spectra for a single subject across all eight channels,

highlighting a prominent peak at the AM frequency of 80 Hz. This peak is visible in

each channel, with higher amplitude observed in the two ear-EEG channels, emphasizing

their effectiveness in capturing the ASSR signal.

In Figure 5.7, we also compared the power spectrum at 80 Hz with a secondary

frequency at 88 Hz. The peak was distinctly visible at both frequencies, particularly

in the two in-ear channels, indicating a consistent and strong response for the ear-

EEG channels across different AM frequencies. This result supports the effectiveness of
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Figure 5.7: In-ear CH1 and CH2 power spectra comparison at 80 and 88 Hz AM
stimuli.

the in-ear setup for capturing auditory steady-state responses across multiple stimulus

frequencies.

Finally, we compared signal quality using bone-conduction headphones, as illustrated

in Figure 5.8. As discussed in Section 5.3.1, bone-conduction headphones transmit sound

vibrations directly through the skull to the inner ear, which can be especially useful in

situations where conventional headphones are less effective, such as for individuals with

conductive hearing loss. This method bypasses the outer and middle ear, allowing the

user to perceive sound even if those areas are impaired. Furthermore, bone conduction

is a promising alternative for minimizing overlap and reducing discomfort caused by the

combination of an in-ear sensor and over-the-ear headphones.

5.6 Future Work

In future work, a significant focus could be placed on optimizing signal processing

techniques specifically for the ASSR and perform AW analysis on low-power, embedded

systems. The current study prioritized setup verification and assessed the feasibility

and signal quality of ear-EEG, leaving considerable potential for computational im-

provements. One of the primary computational elements, the Welch method for Power

Spectral Density (PSD) estimation, is particularly demanding in terms of processing

power due to its requirement for extensive Fourier transformations and averaging across



EEG Applications 83

Figure 5.8: In-ear CH1 and CH2 signal power spectra comparison between over-the-
ear (TOP) and bone-conduction headphones (BOTTOM) at 80 Hz AM stimuli and rest
condition.

multiple windows. Optimizing this method at the software level, such as with a low-

complexity Welch method, could substantially reduce computational load and energy

consumption, making real-time analysis more feasible on embedded platforms such as

the BioGAP system used in this study [231] .

Furthermore, future work could explore the integration of machine learning tech-

niques optimized for edge computing to facilitate real-time classification of alpha wave

activity or response to ASSR stimuli. This could enable more sophisticated monitor-

ing applications in wearable form factors, such as continuous monitoring for auditory

or neurological assessments, without the need for high-power computational resources.

Lastly, evaluating the potential of bone-conduction headphones as an alternative stimu-

lus delivery method would address any discomfort arising from overlapping ear sensors

and traditional headphones, potentially broadening the use case for individuals with

conductive hearing impairments. This line of inquiry would contribute to establishing a

more accessible, adaptable, and power-efficient ear-EEG-based platform.



Chapter 6

Conclusion

This thesis explores the design and optimization of ultra-low-power systems for real-

time biosignal processing, focusing on enabling efficient on-device computation for wear-

able and implantable applications. By addressing key challenges in signal acquisition,

digital processing, and algorithmic optimization, this research contributes to the field

by developing comprehensive methodologies for energy-efficient and high-performance

biosignal analysis.

Through a multi-faceted approach encompassing optimized Analog Front Ends (AFEs),

digital processing techniques, and adapted machine learning algorithms, the work demon-

strates that achieving real-time processing on constrained devices is feasible without

sacrificing accuracy or reliability. The RISC-V Parallel Processing Ultra-Low Power

(PULP) platform, with its near-threshold computing (NTC) capabilities, proved essen-

tial in achieving these goals by balancing processing power and energy efficiency. This

system’s ability to handle complex tasks within a stringent energy budget showcases its

applicability across various biomedical applications.

The two case studies presented highlight the real-world implications and adaptabil-

ity of the developed methodologies. The first case study, focused on ECG processing,

illustrates the advantages of on-device signal analysis, such as reduced latency, enhanced

privacy, and higher responsiveness in real-time monitoring applications. The second case

study examines the potential of ear-EEG, demonstrating the viability of this more con-

venient alternative to full-scalp EEG for monitoring brain activity in wearable devices.

This study confirms that ear-EEG can achieve comparable signal quality and reliabil-

ity for specific tasks, such as sleep and auditory response monitoring, with the added

benefits of user comfort and a simpler setup.
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In conclusion, this thesis provides valuable insights and practical solutions for energy-

efficient biosignal processing on resource-constrained platforms, demonstrating the po-

tential to advance wearable healthcare technology. Future work may explore additional

signal types, refine machine learning models for further optimization on embedded sys-

tems, and extend these methodologies to other application areas within mobile health.

The continued development of low-power, real-time processing solutions holds promise

for a new generation of autonomous, intelligent biomedical devices capable of improving

patient outcomes and accessibility to healthcare monitoring.
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