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Abstract

Transient effects in the response of the Earth to surface unloading events is a topic that,
in spite of its first appearance almost fifty years ago, is still a matter of debate in the
geophysical community. Transient patterns have been recognized in post seismic defor-
mation, and their presence as a creep mechanism is observed in laboratory experiments.
However, when it comes to Glacial Isostatic Adjustment, or, more in general, unload-
ing (and loading) events, their presence is hard to identify. The reasons are numerous
as much as the variables that take part in this process - Earth’s rheology and struc-
ture, ice-sheet evolution, size and dynamics, et cetera. Still, recognizing their presence
(or justifying their absence) would represent a significant step towards a comprehensive
understanding of mantle relaxation mechanisms at intermediate time scales.

In this work, I examine the response of several Earth models including layers with
transient rheology. The aim is outlining the most favorable conditions under which we
can expect to observe, through geodetic techniques, transient deformations following
an unloading event. Particularly, this Thesis explores in a detailed way the Andrade
rheology, a transient model that has gained much success in recent years, especially in
the planetary sciences community. Two of the main results of my work are indeed the
recovery of the analytical expressions of the relaxation modulus in the time domain of
the Andrade model and the Love numbers for an homogeneous Andrade planet. The
methods that I developed in the context of the transient Earth’s response to surface

unloading are rather general, so I have been able to apply them also to a set of case



studies about the response of extrasolar planets to tidal and loading forcings. Part of
this work is presented here as well. To probe the influence of transient rheology, I employ
Andrade’s law in some of the layers of my Earth’s models, notably those which compose
the mantle, and I run some comparison test to evaluate potential discrepancies with
similar Earth’s models that instead contemplated only steady-state rheology (Maxwell)
in their viscous layers. These experiments consider three different scenarios: the first
two are toy-tests, whose design is kept simple to allow a easy and direct interpretation or
the role of each model parameter; contrarily, the last depicts a more realistic situation,
and employs a high-resolution ice model describing the evolution of Helheim Glacier, in
Greenland.

My findings indicate that fast changes in the load history (i.e., the function that
describes the temporal evolution of the ice load) and the position of the observation
point with respect to the melting masses are parameters of utmost relevance. In regions
characterized by a shallow elastic lithosphere, transient features emerge more clearly, due
to the stronger influence of the underlying viscous layers given by their proximity to the
surface. Moreover, the displacement rates reach the maximum difference from their non-
transient counterparts in the regions right beneath the shrinking load, suggesting that,
in the future, sub-glacial geodesy campaigns may significantly improve the identification
of transient features in the Earth’s response. My work also suggests that there exists a
range of viscosities in which the discrepancies between the surface response produced by
the Andrade Earth’s models and the Maxwell ones are maximized: indeed, small values
of viscosity allow Maxwell models to relax earlier and to produce trends similar to those
of Andrade’s ones, while in case of larger viscosity values, the differences between the
output rates increase. However, assuming larger values of viscosity in the uppermost
part of the mantle makes both configurations more stiff, and, as a result, the responses
at the surface are extremely similar to their elastic counterpart, and the viscoelastic

contribution is difficult to recognize. Finally, by comparing the outcomes produced by



various kinds of ice-histories, it is evident that sudden changes promote the identification
of transient displacements at the surface, whilst in case of slow, progressive ice evolution,
which allows the Earth’s model to adjust gradually, it is not possible to distinguish
any transient regime. However, a noteworthy result of my tests consists in the fact
that even for medium-scale glaciers, the viscoelastic (or anelastic) contributions to the
displacement may be significant already on short time periods (~ 15 yr).

These results emphasize the importance of studying transient rheological phenomena.
Moreover, these kind of studies became even more crucial in the context of present-
day climate change. Many ice-covered regions around the world, like Antarctica and
Greenland, are experiencing a rising number of extreme melting events, calvings, and
other important variations that affect the equilibrium between the hydrosphere, the
cryosphere and the geosphere. Hence, the growth both in number and magnitude of
this phenomena may increase our possibility to observe transient signals in the Earth’s

response.



Chapter 1

Introduction

Understanding the Earth’s dynamic behavior represents one of the most challenging tasks
of modern geophysics (and maybe, also of modern physics). Our planet is a complex
system made of many sub-parts that interact with one another in a non-linear way -
and that is why it is called “Earth System”. For this reason, in latest years, many
fields of geophysics that followed separate paths in the past, have joined up together
to allow a deeper understanding of a broad range of geophysical phenomena. This
is particularly true in the field of Glacial Isostatic Adjustment (GIA), a process that
involves the response of the Earth to the variation of surface masses like ice sheets,
glaciers, and the oceans. This response includes every physical mechanism through which
the planet responds to the redistribution of masses, including sea level (SL) changes,
vertical and horizontal displacement at the surface over a broad range of time scales,
polar wander, changes in the planet’s moment of inertia et cetera.

In this thesis I present the outcomes of my research which concerns an aspect of
GIA modeling: the response of the Earth’s surface to the variation of surface loads.
The interest of the community in surface (and tidal) loads resides in the fact that, as
well as seismic waves, they allow us to make hypotheses about the Earth’s internal

behavior, and more specifically they are essential to infer Earth’s mantle viscosity and
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rheology. Seismology offers the chance to understand the Earth elastic behavior that,
yet, represents just a “snapshot”, a part, of the entire response range: in this sense,
GIA provides complementary information that enables us to further understand Earth’s
rheology and dynamics. Ultimately, it is the way in which mantle flows that manifests
Glacial Isostatic Adjustment.

My goal is to understand whether a particular type of deformation, the “transient
deformation”, can be recognized after or during unloading events. Transient deforma-
tions are expected on the basis of microphysical arguments (Karato, 2021), observed in
laboratory experiments (Gribb and Cooper, 1998; Jackson and Faul, 2010), and even in
other geophysical phenomena such as post-seismic deformation (Pollitz, 2005). However,
until now, their role in GIA is not clear, and it has been difficult to recognize them. The
main reason is because the transient stage happens in between the instantaneous elastic
response and the following constant flow phase, and thus is highly probable that, if ever
present, the transient stage eventually triggered by the end of the last ice age, ceased
long ago. However, present-day Climate Change (CC) could represent a further push
for the study of transient rheology in unloading events. The conclusions of Nield et al.
(2014) further motivate the last claim: in their paper, the authors state that the simul-
taneous presence of low upper mantle viscosity and important on-going ice-mass changes
(likely due to CC) produces displacements that can only be explained by invoking a vis-
coelastic response. Although in this latter example a transient is not strictly necessary
to justify the observed rates, it may be required once one tries to reconcile present day
observations with past rates over longer timescales. Thus, it is reasonable to think that
the unprecedented rise in temperature could lead to a larger number of extreme melting
events, increasing the chance of observing transients in fast-evolving ice-covered regions.

For this reason, in this work, I analyse systematically the role that each variable
(rheology, viscosity, ice history, load size) plays in the modeling of this phenomenon,

starting from toy experiments and concluding with a study of more realistic scenarios
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concerning Greenland. The aim is not finding evidence of transient deformations from
data, rather outlining precisely which are the optimal observational conditions that could
permit to detect them in the field.

The Thesis is organized as follows. Chapter 1 summarizes the state of the art of the
two main topics of my research work, transient rheology in geophysics and the Surface
Loading Problem. The last section is dedicated to a presentation of Greenland as a case
study for the surface loading problem. In Chapter 2, focused on the “Andrade rheology”,
some results of my research on this particular rheological model are presented. This part
constitutes the theoretical basis for the applications that are presented in the following.
In Chapter 3, I present the calculation of Love Numbers for some cases of interest, and it
includes several outcomes of my work that have been published in two academic journals,
concerning respectively the study of “Andrade Love numbers” and the “Love Numbers
of fluid planets”. In Chapter 4, devoted to the “Surface Loading Problem”, I present
the methods I followed to run my tests, including the numerical calculation and analysis
of Love numbers and the calculation of the Surface Response Function. In Chapter 5
the results of the experiments, presented in this Thesis sorted by increasing complexity,
are shown and discussed point-by-point. Chapter 6 shortly draws the conclusions of my

work, also suggesting future research directions.

1.1 Basics of rheology

Rheology is the branch of physics that studies the “flow” of matter, or the way in which
matter is deformed after the application of a stress. This discipline lays the foundations
for modern geophysics, building a bridge between the physical study of matter behaviour
at the micro scale and its consequences at the macro scale (Kennett and Bunge, 2008).

To further study the scope of rheology, the readers are referred to the fundamental books

of Christensen (1982), Ranalli (1995), and Mainardi (2022).
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Examples of well-known rheological models, largely used also outside the field of

geophysics, are:

e Hooke model: the oldest rheological model, the linear elastic body shows an in-
stantaneous deformation e following the application of an instantaneous and con-

stant stress ogH (t) (or, creep test). In one dimension, we can write:

o(t) = pe, with o(t) = ooH(t), = et)=22 for t>0, (L1)
W

where g is the elastic rigidity.

e Newton model: the simplest mathematical way to describe a fluid body. In a
creep test, the Newtonian fluid exhibits a constant strain rate:
o(t) =né,, with o(t) = ooH(t), = e(t)="2t for ¢t>0, (1.2)
n

where 7 is the Newtonian viscosity.

e Maxwell model: A linear combination of the Hooke and Newton models, in other
words, the instantaneous elastic response is followed by a steady state flow:

et) = 22H(t) + 2°t, for t>0. (1.3)
K n

It is useful, for the purposes of this Thesis, to define two basic quantities in rheology:
the creep compliance J(t), that expresses the deformation that the body undergoes after
the application of a Heaviside-type unit stress o(t) = oo H (t), and the relazation modulus
G(t), that describes the stress response following a Heaviside unit deformation €(t) =
eoH (t). For example, the creep compliance and the relaxation modulus of the Maxwell

body read:

GM(t):,ue_ﬁ, with TM:Q, tZO,
M
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Figure 1.1: Deborah Number of some Geophysical phenomena assuming a relaxation

time 737 ~ 10~ kyr. This figure is inspired to Figure 1.1 of Sabadini et al. (2016).

respectively, where 7y = n/u is called Mazwell relazation time. Functions J(t) and G(t)
are also referred to as material functions of the viscoelastic body (Christensen, 1982);
they obey the causality principle and thus they vanish for negative times (Mainardi and
Spada, 2011).

The main reason that makes rheology a pivotal discipline in geophysics is the exis-
tence of a wide range of rheological laws that can be attributed to different geophysical
materials. Inside the Earth different compositions of minerals, pressure and temperature
conditions lead to a vast range of rheological behaviours. However, what is interesting,
when we specifically consider the case of the Earth’s mantle, is that it can exhibit various
“types” of rheological behaviour: in seismology, to study seismic waves propagation, it
is appropriate to consider it as an elastic body, to a first approximation; on the contrary,
many other phenomena like Glacial Isostatic Adjustment and polar wander require the
mantle to behave in a viscoelastic way, and eventually, for mantle convection, a viscous
fluid mantle is assumed. This underlines one of the most important features of rheology,

that is its deep interconnection with time scales.
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Time is of paramount importance in rheology (Ranalli, 1995). The propagation of
seismic waves has characteristic times in the interval between 10~* and 10" s, those of GIA
are traditionally estimated to be of the order of 10%1! s (i.e., between 107! and 10* kyr),
and mantle convection is even slower (see the time scale diagram in Figure 2.1). These
characteristic times must be compared to the relazation time, T, of the mantle (also
referred to as Maxwell time), a parameter defined as the ratio between the Newtonian
viscosity 1 and the elastic rigidity pu of a viscoelastic material. It gives an indication
on the characteristic time scale on which steady-state behaviour occurs (Ranalli, 1995).
The relaxation time of the mantle is generally considered to be approximately included
in the range between 107! and 1 kyr. This means that, on the characteristic time scales
of seismic waves propagation, the mantle is not able to relax, and it is crossed by seismic
waves as it was effectively elastic, while on the other hand, the time and spatial scales
of ice ages are large enough so that the mantle can manifest its viscoelastic features.
Another important time parameter of rheology, is the observation time, 7,, that could
be defined as the time scale of the geophysical event, or, also, as the time span in which
a geophysical phenomenon is observed. During the Fourth International Congress on
Rheology, which took place in August 1964 in Providence, Markus Reiner (1964) merged
together the concepts of relaxation time 7, and observation time 7, to further distinguish
the notions of solid and fluid, introducing the Deborah Number as a useful parameter to

disclose the apparent plurality of the mantle rheology:

De = (1.5)

To
When the Deborah number is large (De > 1), the material shows elastic (or solid)
features. As reported in Figure 1.1, the field of seismology fits perfectly this condition.
On the other hand, when it is small (De < 1), considering a steady state rheology for
the mantle is appropriate (as it is done in the modeling of mantle convection). Those
simplifying assumptions are not possible when the Deborah number is De ~ 1, that

is when the relaxation time 7,; is comparable with the observation time 7,. In this
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scenario, “transient deformations” gain great importance. The transient, often referred
to as “primary creep” (Ranalli, 1995), is the phase of deformation that immediately
follows the elastic response, in which the strain rate varies with time. Transient signals
have been observed observed in the context of post-seismic deformation: after a large
earthquake, a part of the stress changes induced by the event will gradually be released
through time-decaying deformation. (see e.g., Pollitz (2005); Weiss et al. (2019)).

Through the years, a large number of transient models have been proposed, and one
of the most employed in geophysics, especially for describing Earth’s mantle, is the bi-
viscous Burgers model. The Burgers model, indeed, can account for both a fast transient
response and for a Maxwell-style viscoelastic relaxation on longer timescales, thus being
able to satisfactorily represent the behavior of the mantle in response both to seismic
waves and post glacial rebound (Peltier et al., 1986). However, a drawback of Burgers
model is the fact that it exhibits a discrete relaxation spectrum (Mainardi and Spada,
2011), contrary to laboratory evidence.

Another interesting rheological model which shows transient behavior is that of An-

drade. Its creep compliance reads:
1
Jo(t)=—+pt*, t>0, (1.6)
1

where p is the elastic rigidity, and « and 8 are empirical parameters. This model was
conceived at the beginning of the previous century from the English physicist Edward
Neville Andrade da Costa, in his attempt of describing deformation of metal wires under
a constant tensile stress (Andrade, 1910). The “Andrade law” (1.6) is particularly appre-
ciated for its elegance and conciseness, and its transient features are due to its fractional
power function time dependence ~ t°.

The Andrade law has been successfully employed to describe the behavior of several
materials, including metals (Cottrell and Aytekin, 1947), silicate rocks (Tan et al., 1997;
Gribb and Cooper, 1998; Jackson and Faul, 2010), poly-crystalline ices (McCarthy and
Castillo-Rogez, 2013), and glass forming materials (Plazek and Plazek, 2021). In his
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empirical stress-strain relationship for the transient “f-flow”, Andrade originally sug-
gested the exponent o = 1/3, but subsequent laboratory investigations have indicated
that values in the range 0 < o < 1 are indeed possible for some materials (Walterova
et al., 2023). Further studies (Mott, 1953; Cottrell, 1996; Louchet and Duval, 2009) have
attempted to justify the Andrade power law theoretically; in particular, Cottrell (2004)
has developed a microscopic theory that can explain, under certain conditions, the “43
law of flow” suggested by Andrade (1910, 1962).

During last decade, Andrade model has gained a lot of popularity in planetary science
(see the review of Walterova et al. 2023). An exhaustive list of works employing Andrade
model for the study of satellites and planets is given in Gevorgyan et al. (2020). The
underlying reason of adopting the Andrade rheology for Earth-like planets relies upon
the existence of a power law scaling for dissipation, recognized both in seismic studies
and geodetic experiments (Efroimsky, 2012b). Furthermore, it has been preferred to
the traditional non-transient Maxwell model, having the potential of capturing the in-
elasticity that characterizes high-frequency deformations, such as those caused by solid
tides (Castillo-Rogez et al., 2011; Efroimsky, 2012a; Steinbriigge et al., 2018; Renaud
and Henning, 2018; Bagheri et al., 2019; Tobie et al., 2019). Although Maxwell rheology
is appropriate for describing the relaxation of a planet for forcing time scales of the order
of or exceeding the Maxwell time (i.e., the viscosity to shear modulus ratio), it largely
underestimates viscosity when it is employed to describe tidal deformations (Bierson and
Nimmo, 2016; Tobie et al., 2019; Walterova et al., 2023).

Nevertheless, a drawback that Andrade model inherits from the Maxwell one is the
inability to distinguish between the relaxed and unrelaxed values of the elastic part of
the deformation. To overcome this limitation, more general transient laws have been
proposed, such as the one by Sundberg and Cooper (2010). Nonetheless, the advantage
of the Andrade rheology consists in a reduced number of material parameters, which

makes it more convenient for modeling the tidal response of inaccessible planets for
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which few constraints (if any) on the internal structure are available, as pointed out by
Padovan et al. (2014).

For these reasons, following a renewed interest for transient deformation in Glacial
Isostatic Adjustment studies (Ivins et al., 2020; Adhikari et al., 2021; Simon et al., 2022;
Lau, 2023; Paxman et al., 2023; Pan et al., 2024; Lau, 2024; Boughanemi and Mémin,
2024), I have adopted Andrade rheology for the study of post glacial rebound. The aim
of the work presented here is a systematic investigation of the differences in the velocity
fields generated by Earth models which include Andrade transient rheology, and others
based upon the traditional Maxwell rheology. The ultimate goal is to outline a list of
scenarios in which, through geodetic observations, the presence of a transient response

should be easier to detect.

1.2 The surface loading problem and the sea level
equation

The surface loading problem (SLP) constitutes the physical basis over which the modeling
of Glacial Isostatic Adjustment (GIA) and Elastic Rebound (ER) are built. It is a
classical problem of continuum mechanics, whose formalism was largely borrowed from
tidal studies. From this scientific field indeed, the SLP adopts the formalism of the Love
Numbers (LNs), adimensional coefficients first introduced by Love (1909) to describe the
deformation of the Earth under a tidal potential.

Before the LNs formalism was introduced, the first attempts to describe the de-
formation of an elastic half-space stressed by an impulsive point load is attributed to
Boussinesq (1885), who addressed this problem at the end of the XIX century (Fung,
1965; Peltier, 1974). In the scope of the “geoelastic” problems in linear elasticity, Boussi-
nesq’s one comes together with two other similar problems, i.e., the Cerruti’s problem

(Cerruti, 1882), which considers the equilibrium of an elastic half-space perturbed by
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a horizontal force (Okumura, 1995), and the Kelvin’s problem (Thomson, 1848), where
the point force is acting inside an infinite elastic space (Lubarda and Lubarda, 2020).

Within the framework of flat half-spaces, the first attempt of describing post glacial
rebound was made by Haskell (1935, 1937). These studies represent pivotal works in
GIA modeling: Haskell assessed for the first time the bulk viscosity of the Earth’s man-
tle (102! Pa- s; see e.g., Spada, 2017; Whitehouse, 2018), a milestone result in this field.
Haskell model consists in a highly viscous incompressible half-space subject to a sym-
metrical load applied to its surface. He obtained his estimate by applying his model to
the case of the of the Angerman River in Sweden, whose post-glacial uplift rates were
known (Mitrovica, 1996).

As reported by Whitehouse (2018), when Haskell deduced its estimate of the Earth’s
bulk viscosity, the scope of GIA studies was at its beginning: several works were already
published, but they repeatedly missed fundamental elements, like the Earth’s defor-
mation due to the ice loading or the water redistribution, feedback effects such as the
gravity change following mass migration, and also the mass conservation. A complete
and exhaustive historical review is given in Spada (2017) and Whitehouse (2018). Among
these studies, the first one introducing a basic idea of the Sea Level Equation (SLE) was
Woodward (1888), who recognized the importance of the gravitational attraction of the
ice sheet upon ocean water distribution (see Spada and Stocchi, 2007). However, his
work considered a rigid Earth therefore neglecting its deformation in response to surface
loading or unloading (Whitehouse, 2018).

Almost one century later, the SLE was improved by the fundamental work of Farrell
(1972) and its modern formulation that appeared in Farrell and Clark (1976). The SLE
can be considered as the ultimate application of SLP to a self-gravitating, spherical and
layered Earth, accounting for the mutual interaction between surface loads evolution
(cryosphere and hydrosphere) and Earth’s interior (geosphere). The work of Farrell and

Clark is actually a further implementation of Longman’s work of 1963, who, in turn,

19



derived the formalism and equilibrium equations from the theory of the free oscillation
of the Earth (Alterman et al., 1959; Kaula, 1963).

The SL (S) is defined as the difference between the sea surface height change (N)
and the solid Earth vertical displacement (U), always referred to the Earth’s centre of

mass:
S=N-U. (1.7)

The SLE, which describes the variation in the SL between a time ¢ and some reference

time to, at a given location in (6, \), can be explicitly written as:

mll) _PiesT ParErs. (18)

SOt =G 0 T+ 22, 0,5 —
Y y pwio Y Y

(Farrell and Clark, 1976; Spada and Stocchi, 2006), where:
e [(0, )\, t) is the variation of ice thickness relative to an initial reference state;

e p;, and p, are ice and ocean water density, respectively, and 7 is the reference

gravity acceleration at the Earth’s surface;

e (G, represents the Green’s function describing the perturbations to the displacement

field and the gravitational potential caused by an impulsive surface loading;

e symbols ®; and ®, denote spatiotemporal convolutions over the ice sheets and the

surface of the oceans, respectively;

e the third term on the r.h.s. of the SLE is the eustatic term, which accounts for a
spatially uniform sea-level variation, where A, is the ocean area and m;(t) is the

variation in ice mass;

e the overlines in the last two terms represent averages over the surface of the oceans,

as required by the mass conservation principle.
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The LNs h (vertical), k (potential) and [ (horizontal) are hidden inside the the Green’s
functions representing the response of the Earth model to an impulsive load (Peltier,
1974; Spada and Stocchi, 2006). LNs are strictly connected to the Earth’s internal
structure, particularly to the number of layers and their rheology.

One of the most important characteristics of the SLE (1.8) is the fact that it is
an integral (implicit) equation and thus iterative methods are necessary to solve it.
However, the initial formulation of the SLE in Farrell and Clark (1976) presented several
limitations, like the fact that it did not account for the temporal variation in ocean area
and it did not include the rotational feedback on sea level (Whitehouse, 2018). These
limitations were later addressed by a number of authors (see e.g., Wu and Peltier, 1984;
Johnston, 1993).

During the years, the research on GIA and SL modeling has progressed fast: from
the classical pseudo-spectral approach, a range of different methods have been used, like
finite-elements, spectral finite-elements, and finite-volumes; again, for a comprehensive
review on the topic, the readers are referred to the work of Whitehouse (2018). However,
the aim of this Thesis is not to present them systematically. Instead, for the purpose
of this work, two points are still important to mention: the implementation of transient
rheology in Earth models and the Elastic Rebound (ER). Regarding the first one, we
refer the reader to the next section.

ER is the instantaneous elastic response of the Earth to surface loading (or un-
loading). ER is thus included in GIA, and represents the primary creep phase of the
deformation of the Earth induced by the ice melting. The ER triggered by the intense
changes at the end of the last glacial maximum 21 kyr ago has already been exhausted,
giving way to the viscous response that still persists in previously glaciated areas of the
Northern Hemisphere and adjacent regions. While it is assumed that the mantle flow
is the principal engine of the viscous displacements, ER is caused by the elasticity of

the outermost layers of the Earth, that produces an immediate response to the variation
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of surface loads (Bevis et al., 2012). In the context of GIA modeling, the study of ER
is particularly important when the areas of interest are still covered with ice: this is,
for example, the case of Antarctica and Greenland. There, both the seasonal and net
variation of the ice masses that we observe today induce an elastic displacement (ER)
that superimposes on the viscous patterns caused by the past ice evolution. In several
locations, indeed, the magnitudes these two contributions are comparable (Spada et al.,
2012). Therefore, modeling ER, in response to present-day variations of ice loads is es-
sential to correctly infer GIA. For the sake of completeness, I shall specify that from now
on in this Thesis, I will use the term “ER” to indicate the instantaneous displacement
of the Earth’s surface due to present day ice mass variation.

While for the case of seasonal (annual) variations in ice volumes the elastic response is
undeniable, its validity on multidecadal forcing can be questioned. As it will be explained
in the next section, present day climate change has triggered a negative trend in the mass
balance of many glaciers and ice sheets around the world. In Greenland, this record is at
least twenty years long (The IMBIE team, 2020), and even longer in certain locations.
Basically, in this Thesis work, we are asking how much truly “elastic” is the response of
the solid Earth to current ice loss, when observations span over timescales of decades.
The next section treats this topic in detail.

A final fundamental remark on ER due to ice unloading concerns its typical spatial
scales, definitively smaller than those of GIA. It is indeed a well known rule of thumb,
in GIA studies, assuming that the spatial extent of the load is proportional both to the
depth of the Earth’s layers having more influence on the resulting surface displacement
pattern, and on its spatial area of influence (McKenzie, 1967). In this way, we can con-
sider the displacements due to GIA as long wavelength features, which is superimposed
with short wavelength patterns caused by ER. This has important consequences upon
ER modeling: it is shown indeed in Spada et al. (2012) that, for the modeling of ER in

Greenland, a full solution of the SLE can be unnecessary. This is an important point for
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this thesis, being the solution of the SLE rather expensive from a computational point
of view, on a high resolution grid (see Spada and Melini, 2019). In this way, instead
of evaluating the sea level variation S, we will consider the vertical displacement of the

solid Earth U.

1.3 Greenland

1.3.1 Overview

The unprecedented rise in temperature during the latest 50 years is widely recognized as
one of the major societal challenges of the 21st century (see e.g., Ruane, 2024). From the
solid Earth point of view, one of the main issues caused by climate change is the system-
atic variation in the spatial and time distribution of water masses, in their gaseous, solid,
and liquid states. As we have anticipated in previous section, the solid Earth responds
to the loads acting on its surface, including the atmosphere. What makes difficult the
study of these mass redistributions is the complexity of the Earth system, and particu-
larly the mutual interaction between each part of the system; atmosphere, cryosphere,
hydrosphere, geosphere and biosphere. When a certain quantity of ice melts and mi-
grates from the glacier to a water reservoir, that could be a lake, a sea or the ocean, the
state of the Earth system changes, and each part reacts to retrieve the equilibrium. An
example of non-linear interaction could be the melting of a marine-terminating glacier.
During a warmer period, ocean and air temperatures rise, increasing the ice melting rate.
As a consequence, the glacier melts and retreats, causing the elastic uplift of the Earth
and the SL fall near the grounding line. Moreover, some studies suggest that the retreat
of the ice from the ocean may stabilize the glacier, thus providing a negative feedback
mechanism. (Gomez et al., 2015; Barletta et al., 2018).

Greenland hosts the second largest ice sheet on Earth, with an equivalent sea level

potential of (7.42 £ 0.05) m (Morlighem et al., 2017). A recent study estimates that
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Greenland ice sheet lost 3902 + 342 billion tonnes of ice between 1992 and 2018, causing
the mean SL to rise by (0.011 £ 0.001) m in the same time period (The IMBIE team,
2020). It is interesting to remark that this study reveals that half of this loss has
occurred during the period between 2006-2012. In 2011, the ice loss reached the record
of (345 £ 66) Gt/yr, but since then, the rate decreased, until reaching (85 + 75) Gt/yr
in 2018.

The stability of the ice sheet and its peripheral glaciers are subjects of particular
interest among scientists, and many efforts have been made to understand its role in the
Earth’s climate system. The main mechanisms through which Greenland ice sheet loses
ice are surface melt water runoff and all those phenomena which involve ice dynamics,
like the acceleration of the marine-terminating glaciers, the retreat of the front line or the
iceberg calving. According to King et al. (2020), the increasing ice discharge of the last
twenty years is to be mainly attributed to the retreat of the glacier fronts that occurred at
the beginning of the 2000s, that could have eventually unlocked a condition of sustained
mass loss. The study of Choi et al. (2021) forecasts that by the end of the century,
50 4+ 20% of the total mass loss will be caused by ice discharge from marine-terminating
glaciers. Understanding the mechanisms through which glaciers and ice sheets lose and
gain mass is fundamental to model the Earth response in a correct way.

There are different methods to assess the health condition of Greenland’s ices. A
powerful tool is the computation of the “Mass Balance” (MB), i.e., the difference be-
tween the accumulated and ablated ice during a specific time period. To assess a MB,
a number of techniques and methods have been proposed: satellite altimetry, interfer-
ometry, gravimetry, surface mass balance model simulation and input-output method.
Each method has its pros and cons, and efforts to retrieve a reconciling value have been
successfully carried on recently (Shepherd et al., 2012; Barletta et al., 2013; Khan et al.,
2015; The IMBIE team, 2020).

24



1.3.2 Glacial isostatic adjustment and elastic rebound in Green-

land

The interest that the GIA community nurtures towards Greenland is then easily mo-
tivated: with the exception of the elastic response caused by present-day ice melting,
the rest of the world’s largest island observed deformation shall be mainly attributed to
GIA. Greenland is indeed considered a stable cratonic region, and its seismic activity is
very low and confined on its margins (Olivieri and Spada, 2015). The sole hindrance
to a systematic campaign to assess surface displacements in Greenland is its unique en-
vironment: the presence of the ice sheets and the prohibitive weather conditions make
it difficult to install instrumentation. For this reason, satellite missions like GRACE or
ICESat allowed an important step forward in the monitoring of the ice sheet. On land,
the largest and most recent effort of deploying a network of GNSS stations is GNET. It
comprises a total of 58 stations situated around Greenland’s coasts (Bevis et al., 2012).
The oldest one dates back to 1995, but the vast majority was installed during 2007-2009
(Barletta et al., 2024). GNET represents a powerful tool to investigate Greenland both
from a glaciological and geodynamical point of view. For example, in Barletta et al.
(2024), GNET data are used to obtain constraints to probe GIA models; its records
are also used to validate elastic rebound and glacial isostatic adjustment models (Spada
et al., 2012; Berg et al., 2024) and to monitor local glacier dynamics (Liu et al., 2017). In
addition, the GIA community disposes of several tide gauge records, that besides their
scarcity in the territory, provide long period time series (Spada et al., 2014). Finally, to
complete the picture of available data, we must mention also geomorphological ones like
Holocene SL Curves (Bennike et al., 2002; Long et al., 2011).

The final aim of every GIA model should be the comparison with the GNSS data.
Hypothetically, if we knew the exact ice history, and if we knew the right viscosity struc-
ture of the Earth, then the prediction of the GIA model should coincide with the GNSS

records, once every other additional signal has been removed. For the specific case of
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Greenland, this means (generally) removing the elastic component, that part of the dis-
placement due to present day ice mass loss. However, recent works have underlined that
this procedure has been often underestimated: the PREM model has been the standard
model for this procedure, although more realistic and suitable models nowadays exist
(Adhikari et al., 2021); as demonstrated in Swarr et al. (2024), indeed, the choice of
the wrong elastic model can lead to very significant differences in the predicted displace-
ment; also, ignoring possible sources of inelasticity in the crust can be the cause of biased
estimates (Durkin et al., 2019).

To remove the elastic component from the GNSS record, the standard procedure
consists in computing the displacement due to an unloading AH that is supposed to
happen instantaneously. The unloading model, when is referred to the entire Greenland
ice sheet, is generally derived using data collected through different techniques like Syn-
thetic Aperture Radar (SAR, see Rignot and Kanagaratnam, 2006), satellite gravimetry
(GRACE and GRACE-FO, see Wahr et al., 1998; Barletta et al., 2013), or satellite
altimetry (ICESat and ICESat2, see Schutz et al., 2005; Sgrensen et al., 2011).

On the other hand, load models for GIA are built in a very different manner. Clearly,
the uncertainties connected to past ice evolution are significant, and the methods used to
infer it are indirect. Through geomorphological studies it is possible to recognize typical
features generated by the presence of former ice sheets, and thus reconstruct the old ice
extent and flow. To infer the past ice thickness instead, the main technique is cosmogenic
exposure dating. Another method is inverting the GIA problem and considering the ice
evolution as unknown, tuning the model to reconcile its output with low latitude SL
records (Whitehouse, 2018). Examples of ice models used in GIA studies are ICE-5G
and ICE-6G developed by the Toronto school (e.g., Peltier, 2004) and the ANU models
developed by the Australian National University (e.g., Lambeck et al., 2014).

It is clear then that the resulting loading models for GIA and ER are extremely

different in terms of resolution and associated uncertainties. As discussed in Pan et al.
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(2024), it was the attempt to reconcile these two kinds of load models using a 1-layer
mantle Earth model that set off the hypotheses of transient deformations in Greenland
(Peltier et al., 1986). In those years, the hypothesis of transient features in the Earth’s
mantle response to GIA gained much popularity (Peltier et al., 1980; Sabadini et al.,
1985; Miiller, 1986; Yuen et al., 1986). However, it was (temporarily) abandoned once it
was clear that the two types of ice models could lead to reconciling output if multilayered
mantle models where taken into account. The mantle has indeed a different resolving
power for the two models representing past and present-day ice evolution, because of the
different spatial scale of the associated surface loading (Mitrovica, 1996; Pan et al., 2024).
Nevertheless, in recent years, an interest on the topic arouse again, with an increasing
number of scientific publications regarding this topic.

In Ivins et al. (2020) it is shown that, for the case of a Boussinesq’s half space
loading problem, the effects of transient rheology are relevant on the sub-decadal time
scales. Adhikari et al. (2021) recognizes that on sub-centennial time scales, the inferred
viscosity of the Earth mantle results one order of magnitude smaller than the upper
mantle viscosity inferred from GIA. They show that a more realistic rheological model
than the Maxwell one, combined with a more complete ice history that accounts also for
recent events like the Little Ice Age are sufficient to explain the majority of data-model
misfit, if a reduced mantle strength is considered. Similar conclusions were found by
Boughanemi and Mémin (2024), who argue that assuming a low-viscosity layer in the
upper mantle and using transient rheologies (Andrade and Burgers) can reduce the misfit
between the modeled displacement and the observed data in Antarctica. Also, the need
of transient rheology in surface unload modeling arises in local field studies, ¢.e., in all
those works where the distance between the observation point and the former load is
small (Simon et al., 2022). All these studies prove that, when the time resolution of
the ice history increases, i.e., when the description of the ice evolution becomes infra-

decadal, transient rheologies are invoked (and required), otherwise it is necessary to lower
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the Maxwell viscosity of the model to fit the data (Nield et al., 2014; Pan et al., 2024).
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Chapter 2

The Andrade’s rheology

2.1 Transient rheologies

Part of the results presented in this Chapter are taken from Consorzi et al. (2024), pub-
lished on Earth and Space Science (Sept, 2024).

In rheology, a “transient” is that phase of deformation where the strain rate exhibits
time-dependent features, i.e. the strain rate is é(t) # const. If we consider a purely elastic
body, no transient occurs: the response to a stress is virtually instantaneous. However,
the typical outcome of a cyclic test (periodic succession of loading and unloading phases)
performed on a general poly-crystalline material exhibits a smoother transition, in which
the instantaneous response is followed by a transient (and thus temporary) phase, that
eventually precedes a stage of steady-state creep, if temperatures and pressure conditions
are suitable (Ranalli, 1995). This situation is sketched in Figure 2.1. The transient phase,
often referred to as primary creep, is the macroscopical manifestation of microscopical
creep mechanisms, which involve the motion of the lattice defects such as dislocations
or vacancies. As argued by Karato (2021), the transient phase in plastic deformation is

the result of the strain dependency of both defects density and their distribution, which
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Figure 2.1: Sketched representation of creep in polycristalline materials (the figure is
freely inspired to Ranalli 1995). The response is depicted in terms of strain €(¢) and it is
assumed that a constant stress is applied between times t = t; and t = t5 (creep recovery

test).

in turn does not remain constant, but varies with the deformation.

At the beginning of the XX century, Andrade (1910) defined one of the first quantita-
tive descriptions of deformation of metal and poly-crystalline materials at high temper-
ature, studying the response of metal wires (Pb and Cu) under the application of tensile
stresses. Andrade rheology, briefly introduced in the previous chapter (Eq. 1.6), will be
studied in much greater detail in what follows. However, it represents just one of the
many transient rheologies proposed: the time dependency of the transient varies from
case to case, and each material has its own characteristics (Ranalli, 1995). Examples of

other transient rheological models are:

e Burgers model: this model has seen vast applications in geophysics. Also known

as bi-viscous model, it is the result of a series combination of a Maxwell element
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with a Kelvin-Voigt element. The Burgers creep compliance, i.e., the unit strain

in response to the application of a unit stress, is:

t
1 t l—e
Jet) = =4 L dze ™)y (2.1)
Har o MM MK
where 1y, and 1y, are respectively the rigidity and viscosity of the Maxwell element,
pr is the rigidity of the Kelvin-Voigt element, and 7x is the ratio between the

Kelvin-Voigt viscosity nx and pg (retardation time).

Modified Lomnitz law: a more general version of the Lomnitz law, proposed
by Jeffreys and Crampin (1970). Originally conceived to describe deformation in

fluid-like materials including igneous rocks, its creep compliance reads:
Jut) = Jo (1 + (), £>0, 2:2)

where ¢ > is a dimensionless material constant and
(1 + Tio) -1
_ ‘ (2.3)

In this model, the possible value of «, initially assumed in the range 0 < a < 1,
was later extended to o < 1 to yield a continuous transition from a linear elastic

solid (& — —o0), to a Maxwell body (o = 1) (Mainardi and Spada, 2011).

Sundberg-Cooper model: conceived by Sundberg and Cooper (2010) to address

some drawbacks of the Andrade model, its creep compliance is:
1 _t t
ch(t):—+5J(1—e T)—l—ﬁta—f——, t>0, (24)
H Ui

where p is rigidity, n is viscosity, a and  are the Andrade’s parameters discussed
in next section, d.J is the magnitude of the anelastic contribution, and 7 is the time

constant that governs the anelastic response (Bagheri et al., 2019).
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There are several reasons for which, together with my supervisor, I decided to use
the Andrade rheology to account for transient deformation: first, with respect to the
Burgers model, it has less parameters; second, the planetary sciences community is not
new to this rheology, which has been often employed to study tidal deformation of rocky
planets; third, its simplicity makes it a more appealing model than the more complex

Sundberg-Cooper and Lomnitz rheologies.

2.2 Material functions of the 1-D Andrade model

In the two subsections that follow I discuss the material functions of the 1-D Andrade
model, namely the creep compliance J,(t) and the relaxation modulus G,(t). These two
complementary quantities, related to ideal experiments, are fundamental to describe the
behavior of any rheological model. The creep compliance represents the response of the
body, in terms of strain, to the application of an instantaneous unit stress, kept constant
afterwards; the relaxation modulus instead, is the stress response to the application of a

stepwise unit strain.

2.2.1 Creep compliance

The creep compliance, that expresses the unit strain in response to the application of a
unit stress, for the Andrade rheological law can be obtained from the original work of

Andrade (1910) and reads:

1
Jo(t) ==+ pt*, t>0, (2.5)
0

where p is the elastic shear modulus of the material, 5 is a parameter depending upon the
sample properties and laboratory conditions and, according to Andrade’s experiments,
the time exponent is & = 1/3. In subsequent laboratory investigations, values ranging
between o = 0.2 and a = 0.5 have been suggested even for some non-metallic sub-

stances (see Walterova et al., 2023). Several attempts were made to explain Andrade’s
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parameters in terms of micro-physical processes (Cottrell and Aytekin, 1947; Mott, 1953;
Louchet and Duval, 2009). In what follows, we will assume that « is expressed as a proper
fraction o = p/q, with p and ¢ being integer numbers and p < ¢, which corresponds to
a€]0,1].

In his treatise, Mainardi (2022) refers to Eq. (2.5) as a “fractional Maxwell model”,
since its mechanical analogue stems from the connection (in series) of a Hookean elastic
element (a spring) of shear modulus p with a Scott-Blair creep element characterized
by a fractional power-law sometimes referred to as a pot (see Scott-Blair, 1951, 1970).

In modern applications to planets, the pure Andrade creep law expressed by Eq. (2.5)
is generalized to account for a long-term steady state behaviour. This extension is
performed by connecting a Newtonian element (a dashpot) in series with the elastic
spring and the transient pot (Walterova et al., 2023). Accordingly, the complete form of

the Andrade creep compliance reads:

1 t
Jo(t)=—+pt+—-, t>0, (2.6)
H n

where 7 is the Newtonian viscosity. To reduce the number of free parameters from four

to three, Castillo-Rogez et al. (2011) proposed to define the g-factor as

p=t_. (2.7)

However, as pointed out by Walterova et al. (2023), the fractional dimension of the /-
factor hinders the understanding of the physical meaning of (2.6). Therefore, it is more
convenient to rewrite the creep compliance in the form
1 AN
Ja(t):—(1+<—> +—) ., t>0, (2.8)
H TA ™

where

™™ —

(2.9)

=13
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is the “Maxwell time”, i.e., the characteristic timescale on which steady-state behavior

occurs, while

Ta=(Bp) = (2.10)

is the “Andrade time” i.e., the transient response timescale. Efroimsky (2012a,b) intro-

duced the non-dimensional ratio:

(=14 (2.11)

™
which allows to cast the Andrade creep law in the so called “a — ( parameterization”
Ja(t) _! <1+§‘“ (i)aJri) , >0, (2.12)
H ™ ™
with J,(t) reducing to the Maxwellian creep compliance in the limit ¢ — oo (i.e., for an
infinite Andrade time 74).

As pointed out by Castillo-Rogez et al. (2011) in their study about the tidal history
of Iapetus, the constraint § = /% or, equivalently, ( ~ 1, should be regarded as a
first-order approximation, awaiting for laboratory data of sufficient quality. Nowadays,
the approximation ¢ ~ 1 is generally considered as outdated, with plausible values of
¢ ranging between 1072 and 1, although values as high as 10° have been shown to be
consistent with the tidal response of the Earth (Walterova et al., 2023; Amorim and
Gudkova, 2024).

In Figure 2.2a, the Andrade creep compliance J,(t) is shown as a function of the
normalized time /7y, for different values of @ = 1/n, where n is an integer, and ¢ = 1
is assumed. The original Andrade result (n = 3, or @ = 1/3) is depicted by a turquoise
curve. The time scale characterizing the transient phase (i.e., the time required to reach
a constant creep rate) decreases with increasing n. For o = 1, no transient occurs after
the elastic step at ¢ = 0, and the response is Maxwellian. In this case, the transient term
in (2.12) duplicates the steady-state term, hence the response is that of a Maxwell body
with Newtonian viscosity 1/2. Figure 2.2b depicts J,(t) for different values of parameter
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¢, keeping the fractional exponent fixed to o = 1/3. As expected from its definition,
the value of ¢ controls the relative importance of the steady-state and transient terms in
(2.12), with large values of ¢ producing a response increasingly similar to the Maxwellian
one. Here the original Andrade result is represented by the orange curve.

The Laplace transform of the Andrade creep law (2.12) can be obtained by elementary
methods and it reads

Jo(s) = (1+F(1+0‘)+ ! ) (2.13)

N E (CTMS)O‘ STMm

where s is the complex Laplace variable and I'(x) is Euler’s gamma function.

2.2.2 Relaxation modulus

To fully characterize the rheological behaviour of the Andrade model, it is also desirable
to obtain the relaxation modulus G,(t), which physically represents the stress per unit
strain in a relaxation experiment (Christensen, 1982). In the time domain, the relaxation
modulus G(t) of a general linear viscoelastic material is related with the creep compliance
J(t) through J(t) * G(t) = t, where * denotes time-convolution (Mainardi, 2022). In
the Laplace domain, this relation reads J(s) G(s) = 1/s%, hence s Go(s) = 1/(s.J,(s)).

Therefore, using (2.13), the Laplace-transformed relaxation modulus is easily obtained:

~ _ KTm
Gol8) = GrdF T 1 o)) 7 1° (2.14)

Evaluating the Laplace inverse of Eq. (2.14) analytically is not straightforward. This
issue challenged me for a while. In my master thesis (Consorzi, 2021) I briefly addressed
the problem, without finding any elegant solution. Following the advice of my supervisor,
I tackled again this topic during my PhD. With the help of Mathematica©) symbolic
manipulator (Wolfram Research, Inc., 2024), and after several attempts I finally managed
to retrieve an analytical, still not elementary, expression (Eq. 2.23 below). As far as

I know, this was an original and unpublished result. Once Mathematica(C) assured the
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Figure 2.2: Andrade creep compliance J,(t), according to Eq. (2.12). In (a), J,(¢) is
shown for (=1 and a = 1/n (n=1, 3,6, 10, 20), while in (b) « is set to 1/3 and different
values of parameter (=74/7) are considered, as indicated. The Maxwell response is

attained for { — oo.
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existence of a closed-form solution, the new task was understanding how to gather it
analytically. After some quick consultations, Prof. F. Mainardi perceived some formal
analogies between this problem and the generalized Basset problem that concerns the
motion of a particle within a viscous fluid. Some attempts later, following the method
used in Mainardi et al. (1995), T finally managed to close the circle. Afterward, my
computations were checked and published by other authors in (Gonzalez-Santander et al.,

2024). However, in what follows, I will present the details of this calculation.

Computation of the Andrade relaxation Modulus in the time domain

The main hindrance for the Laplace inversion of expression (2.14) is the presence of the
fractional exponent a. To overcome this problem, I followed the strategy presented in
(Mainardi et al., 1995), and I operated a change of variable st); — 29, where we recall
that ¢ is related to the definition of « as proper a fraction, namely o = §7 p < q. In this

way, one obtains an expression for G, that does not contain any fractional exponents:

~ _ HTMm
Gu(z) = P T+ o) @) T 1 (2.15)

Then, recognizing that the denominator P, (x) of Eq. (2.15) is a polynomial of degree

q (shown in Figure 2.3), and naming zj, its roots,
Pog(zp) =2 + T T(1+a)(z)" " +1=0, (2.16)

it is possible to write P, ,(x) using the partial fraction decomposition method:

1 1 1
P, () ; P]g,q(xk)(x — ) (2.17)

p.q

where P is the derivative of P, , with respect to . In this way, the relaxation modulus

can be written as:

1
= T Z @+ (= p)C T+ @)l ” )z —an) (2.18)
1
= Ty ; B )@= (2.19)
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Now we can come back to the variable s7),, obtaining:

Ga(s) = pru Z ! - : (2.20)

=1 By g (@) ((s7ar) 0 — )
In this form, the computation of the inverse transform turns out to be easier. We use

the relation (E.53) from Mainardi (2022):

a-p
-1 s . _ 4B-1 o
t| =t"'F —\t 2.21
£ [s%LA’] o (ZAE) (2.21)
where

is the two-parameter Mittag-Leffler transcendental function (Mittag-Leffler, 1903), whose
properties and fields of application are now well known (Mainardi, 2020; Gorenflo et al.,
2020). The Mittag-Leffler function is considered the “Queen function” of fractional
calculus (Gorenflo et al., 2020; Mainardi, 2020), given its crucial role in the field of
linear viscoelasticity.

Considering that in this case a = f = 1/q and A = —xy, I obtained, making explicit

the terms of P/ (z), one of the main results of this thesis:

£\
B L
o - " G%LM)>
Go(t) = ———= , =0, (2.23)

1—1
(L) S e (G
™

Note that although some of the x’s are complex, the properties of the Mittag-Leffler

Qe

function ensure that in Eq. (2.23) the relaxation modulus G,(t) is a real function. Note
also that, for ( > 1 (i.e. for 74 > 7)), the roots of polynomial (2.16) can be approxi-
mated by z;, ~ €'®*~1)™/4 for k = 1,...,q. The result (2.23) is reported in Consorzi et al.
(2024).

It is important to remark that, for the Andrade law in the fundamental form given

by (1.6), the relaxation modulus can be expressed in terms of the classical (one index)
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P1,n(x)

Figure 2.3: Plot of the P, ,(x) polynomial defined by Eq. (2.16), for some n values and
(=1. One real and negative root is only found for odd values of n, as we have also
verified for n > 5. For n=3, the value suggested by the original work of Andrade (1910),
the three roots of the polynomial are r ~ —1.401 and 753 ~ (0.254 £ 7 0.805).
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Figure 2.4: Relaxation modulus G,(t) for an Andrade body, according to Eq. (2.23). In
(a), (=1 and a=1/n are assumed (n=1, 3,6, 10,20). For n=1 the decay is exponential,
since Fy1(—x)=e". In (b), the modulus is shown for o = 1/3, using different values of

the ratio ¢ = 74/7). The Maxwell case (dashed black) corresponds to { — oo.
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Mittag-Leffler transcendental function defined as E,(z) = E,1(z). Therefore, the re-
sult expressed by Eq. (2.23) can be considered as an extension of the previous findings
of Mainardi and Spada (2011) to the case of the generalized Andrade model expressed
by (2.8).

The Andrade relaxation modulus G,(t) in (2.23) is shown for ¢ = 1 in Figure 2.4a as
a function of the normalized time t/7);, in the special case « = 1/n with n = 1,...,5;
Figure 2.4b shows again the relaxation modulus but for a fixed a = 1/3 and various
values of (. From this figure it is apparent that, as expected, the relaxation modulus
converges to that of a Maxwell solid as ( — oo (black dashed curve). These figures
include the original Andrade result, depicted by a turquoise curve in Figure 2.4a and by
a orange one in Figure 2.4b.

In the next section, I will briefly examine some limiting cases of the expression of the

Andrade relaxation modulus in the time domain Eq. (2.23).

2.2.3 Limiting cases of the Andrade relaxation modulus

In the following, I present the details of the computation of two notable limits of the

Andrade relaxation modulus.

Case 1: ( — o©

Is it possible to foresee from Figure 2.4 that with increasing values of ¢, the behaviour of
Equation (2.23) tends to those of the relaxation modulus of a Maxwell body. I checked
graphically that this holds true for arbitrary values of p and ¢, as long as p < ¢ and both
are integers.

To prove that, in the limit ( — oo, the Andrade relaxation modulus is equivalent

to the Maxwell one, we must start considering which form assume the roots of the
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polynomial P, , in the aforementioned case. Being

lim P, (x) = lim F,(z) =27+1, (2.24)

(—o0 (—o0
we can write the roots of Eq. (2.24) in the following way:

im(2k—1)

Tp=e « k=1,..q. (2.25)

Then, in the Maxwell limit { — oo, Eq. (2.23) can be recast in the form:

1
q Eia <<L> ! l‘k)
W 1 qa'q ™
¢ it > — : (2.26)
k

Performing the Laplace-transform of A,(¢) and substituting the z’s with their explicit
values (2.25), it is possible to show that the following relation holds true:
q 1—q

LI8(0] = Ayls) =3 ¢ ke -1 (2.27)

P stV — sty +1

The demonstration of this last statement requires some work.

First of all, I start defining the index £ = h + 1, so that the roots z; may be recast in

the following form:

Thyy = (—1)Vae2mih/a, (2.28)
from which, it follows that

x};‘{ = (—1)U-9/ag2mih/qg=2mih (2.29)

Thus, I obtain

g1 (1 9)/qp2mih/q,—2mih

STM 1/‘1 — —1)1/f1@27”h/q

(2.30)

OM
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which, with a little algebra, can be simplified in the following expression:

q—1 i
627mh/q

Afo)==>" vyl (2.31)

h=0
where I have abbreviated o = (—s7)s). To better explain what follows, I consider the

particular case ¢ = 2. By developing each term of the sum, one finds:

. 1 1
Aqlo) == {—1 +ol2 1+ 01/2}
B 1 1+o'/2 1 —1+0'/2
1 e2\1+0l2) 1402\ 14012
14024102

—1+4 (—s7y)
2

sty +1

(2.32)

which is exactly what we want to demonstrate, if we assume ¢ = 2. By employing the
same procedure for any generic ¢, that is, by multiplying each element of the sum for a
suitable dummy term, one finds:

27iah/q g 4+ e2mila=Dh/agel/a 4 4 e2mila—(a—1))h/q45(a-1)/q

Ay (o) = — : : (2.33)

—e2migh/a 4+ 5a/q

Now, to continue, in view of what I have just shown in Eq. (2.33), I re-write the sum in
Eq. (2.31) as

q—1 i
627mh/q

Afo)=-S"—“7
q( ) ol/a — e2mih/q

h=0

a7l a7l omi(g—U)h/al/a

=y — (2.34)

627rzh + 0o

-1 g—1
1

_ Z€2wilh/q0_l/q ]
-1

h=0 1

=0
Since [ ranges from 0 to ¢ — 1, by virtue of the identity

i
L

. g if =0
627rzhl/q — (235)

0 0 if 1#£0

>
Il
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(see Mainardi (2022), Eq. E10), we can write:

1 qg—1

. 1 .
Aq(S) _ Z eZﬂ'zlh/qO_l/q
h

c—1
0 1=0

1 _
qao/q (2.36)

oc—1
_ q
sty + 17

Now that we have concluded this demonstration, from Eq. (2.27), it is straightforward

to transform back to the time domain A,(s):
o [Aq(sﬂ . (2.37)
that, inserted into Eq. (2.26) gives exactly the expression of the relaxation modulus of

a Maxwell body

t

Gu(t) = pe ™ . (2.38)

Case 2: a— 1

For the limiting case o — 1, inspecting the definition of the Andrade creep compliance
(2.5), the final result I expect is the Maxwell relaxation modulus of a body with viscosity
n/2. The case « — 1 includes the simplified case (p,q) — 1 but also the more general
one p — q. I shall start with the first one, being the simplest to analyse.

If (p,q) — 1, the relaxation modulus (2.23) assumes the form:

t
li G,(t) = uF — , 2.39
(p,q)lg(ll,l) () =n b (xl <TM)> ( )

with

T = — (1 + g) = —%C. (2.40)

Using the properties of the Mittag-Leffler function we have:
(e
Ga(t) = pe ¢ () : (2.41)
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and finally, since for a Maxwell body 74 = 7y = ¢ = 1, I obtain:
Ga(t) = pe2(G7) = e () (2.42)

If instead we impose only p — ¢, we would find a situation very similar to that of
case 1 (previous paragraph, ( — o0), with the only difference that, in this limit, the

polynomial P, ,(x) becomes:

r(2) 14¢

Ppg(r) = 2%+ +1l=a'4—, (2.43)
¢ ¢
and thus its roots zj will be, considering that ¢ = 1.
ir(2k—1)
T =2e a k=1,..q, (2.44)

Except for this difference, the rest of the calculation is basically the same.
These further computations support the validity of the result expressed in Eq. (2.23),
which correctly reproduces a Maxwell (or Maxwell-like) behaviour under particular con-

ditions of the parameters o and (.
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Chapter 3

Love Numbers

A part of this Chapter, Section 3.4, largely follows Consorzi et al. (2023), published on
Astronomy & Astrophysics in August 2023.

The Love numbers are coefficients first introduced by Love (1909) in the context of
tidal deformation. A. E. H. Love was a British mathematician who produced, during his
brilliant career, a number of works of fundamental importance for the theory of elasticity:
we owe to him the mathematical description of the surface “Love” waves, the introduction
of the Love strain function (Love, 2013) and, of course, Love numbers (LNs). LNs have
been a central topic in my work, since they contain most of the information about the
way in which a planetary body can be deformed by the effect of external potentials or
surface loads.

The idea behind LNs consists of a simple ansatz. Let’s consider the simplest case,
a homogeneous spherical planet whose gravitational potential is perturbed by the pres-
ence of an external body (a parent star, or another planet). The total perturbation
to the gravitational potential, evaluated at the surface of the planet, must be the sum

of two contributions: a direct potential ¢g, and an indirect one ¢, due to the planet
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readjustment in response to the external forcing:

Prot = G0+ &' (3.1)

Love supposed that since the tidal deformation can be considered small, then the indirect

potential should be proportional to the direct one:

¢ = K(r)po (3.2)
so that
Grot = (14 K(r))¢o, (3.3)

where K(r) is a function of the radius r. Considering the geometry of the problem, it is
convenient to switch to a description in spherical harmonics. Hence, the proportionality

that Love assumed, applies to each coefficient of the series

[e.9]

Gt = 3 (L4 Kn(r)) o (3.4)

n=0
where, if @ is the radius of the planet, then the value K, (a) = k, is the LN of degree n
for the gravitational potential.

Love applied the same strategy to the study of the vertical component of the dis-
placements induced by a tidal perturbation, defining the h,, LN:

U, = —hn@, (3.5)
9o

where g is the reference gravity acceleration at the surface (r = a). Later, T. Shida in
1912, introduced the LN [,, describing the horizontal component of the displacement:

%

V,=—-1l,—.
90

(3.6)

Later, the formalism of LNs was applied to the study of deformations induced by sur-

face loads, and a new class of LN was introduced, often referred to as Load Deformation

47



Coefficients, or Load LNs. The only difference between the tidal (or potential) LNs
and the load LNs lies in the definition of the boundary conditions, in which the latter

include the term of the normal stress that, instead, is missing in the former (Farrell,

1972).

3.1 Love Numbers in the modeling of planetary in-
teriors

The use of LNs is not limited to the study of the Earth. They have been largely employed
in Planetary Science for the study of other planets of the Solar System. Moreover, recent
works suggest that the study of transit light curves of extra-solar planets may provide
information upon the value of their second degree fluid LN ky (Carter and Winn, 2010;
Correia, 2014; Kellermann et al., 2018; Hellard et al., 2018, 2019; Akinsanmi et al., 2019;
Barros et al., 2022). According to Padovan et al. (2018), estimates of ko for extra-solar
planets may become available in the near future, in view of the expected improvements
in the observational facilities and the increasing amount of data. Since the ks LN of
a giant fluid-like planet is sensitive to the density layering (Ragozzine and Wolf, 2009;
Kramm et al., 2011; Padovan et al., 2018), transit observations may potentially provide,
in the upcoming years, new constraints on the internal structure of exoplanets. These
will have important implications upon our knowledge of the internal planetary dynamics
and the formation history (Kramm et al., 2011).

Similar motivations encouraged me to consider also the case of rocky planets: it is
not necessary to invoke the case of exoplanets to dispose of many case studies still poorly
examined. This is the case, for example, of the moons and minor satellites that populate
the planetary systems of Uranus and Neptune, which, up to now, have been the target of
only one mission, Voyager 2, respectively in 1986 and 1989. These systems, particularly

Uranus, include several satellites which are considered good candidates for hosting liquid
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water. The presence (or absence) of deep oceans can be inferred from the values of the
ks LN and the quality factor @) (Castillo-Rogez et al., 2023), making once again the
observation of these parameters a goal of uppermost importance.

For these reasons, I delved into the study of LNs, with a strong focus on three scenar-
ios: the first, presented in Section 3.2, shows the calculation of LNs for a homogeneous
sphere (Kelvin model); this first case is of great importance, since, in view of the Corre-
spondence Principle, its results can be extended to investigate other linear viscoelastic
rheologies (Section 3.3). The second case, in Section 3.4, concerns layered inviscid fluid
planets, a perfect first-order approximation for gas giants. In this section I further in-
vestigate the possibility of an analytical relation between the ky LN and the moment of
inertia V. Lastly, in Section 3.5, I consider a Kelvin model with Andrade rheology, whose
versatility has already been described in the previous chapters. The models presented in
this chapter, despite their simple structure (homogeneous, two-layer), have the advan-
tage of allowing for a full analytical investigation. This fact is noteworthy, since it often

permits to identify explicitly the relations between the LNs and each model parameter.

3.2 Love Numbers for the elastic Kelvin model

In this section I will present the computation of the LNs of an elastic Kelvin sphere
(i.e., an homogeneous, self-gravitating sphere). Here I would like to stress out that the
calculations that will follow in this section 3.2 and the next 3.3 are not original, and
for further details the reader is referred to Spada (1992) and Martens (2016). They are
reported here for completeness and to ease the comprehension of the calculations that
follows, the discussion on Love number and the results presented in the last chapter.

Let’s start from the equation of motion for an elastic medium, which reads:
F+V-T=)pu, (3.7)
where F' is the sum of all the volume forces acting on the body, T is the stress tensor
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and wu is the displacement field. If we limit our analysis to quasi-static (i.e., very slow)

deformations, we can neglect the acceleration:

F+V -T=0, (3.8)
and we can define T as

T=—-pl+T", (3.9)

with p and T™ being the pressure and the non-hydrostatic part of the stress tensor. In
this dissertation, the only volume force we consider is that associated to the gravitational

potential ¢:

F=—pVo, (3.10)
where we notice that

g=-Vo (3.11)

is gravity acceleration. In addition, the gravitational potential ¢ is a solution of Poisson’s

equation

where G is the universal gravitational constant. Since at the equilibrium state, we assume
a condition of perfect hydrostatic equilibrium, we have the following fundamental system
of equations:

(

Fo=—poVoo Volume force

Ty = —pol Stress Tensor
(3.13)

V3¢ = 47Gpy Potential

\Vpg = —pogoT Hydrostatic pressure,
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where subscript 0 denotes all fields in the initial unperturbed state. Substituting the

expression for Ty and Fy in the Equation of motion (3.8), we obtain:
poV oo+ Vpo =0. (3.14)

Let’s now assume that this system is subject to a deformation. In this case, the

density field, the gravitational potential and the pressure field vary as

P =po+p1 ¢ = ¢+ 1 p=po+ P, (3.15)

where we have assumed that these variations are infinitesimal, so that p; < pg, ¢1 < ¢o
and p; < po.

To define the density perturbation p;, we apply the law of mass conservation to a
portion of volume of the elastic medium, indicating by m the normal direction to the

surface X containing the volume V:

/pdV:/podV—/p0u~ﬁdE (3.16)
1% v b

and by applying the divergence theorem on the integral over Y, we can derive an expres-

sion for py:
p—po=p1=—V-(pou)=—(poV - u+u0po). (3.17)

Hence, in the perturbed state, neglecting the higher order term p; V¢, F' becomes:

F = —(pVo) = —(po + p1)V(¢o + 61)

(3.18)
= —poVo + (poV - u + u,0rpo)go™ — poVer
and for the stress tensor, we have:
T=—pl+T" = —(po+ u,0,po)I + T*. (3.19)
Putting together Eq. (3.18) and Eq. (3.19) we have:
V- T — V(pogour) — poVP1 + (poV - u + u,0.p9)goT = 0. (3.20)
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The gravitational potential variation is also a solution of Poisson’s equation
V201 = 471GV - (pou) . (3.21)

Together with Eq. (3.20) and (3.21), we also must account for the constitutive equation

for an elastic continuum
T = ANV -u)l+2uE, (3.22)
where the infinitesimal strain tensor is:
1 T
E = 5((Vu + (Vu)") . (3.23)

Assuming incompressibility, thus V - u = 0, the previous equations become:

p

V- T" — V(pogour) — poV1 =0
V26, = 0

§ T =1III + 2uE (3.24)

where the product II = AV - u, is assumed to have a finite limit as V-u — 0 and A — oo
(Love, 1911). We will now consider the case of an impulsive unit load perturbation

applied on the surface of the sphere in 6 = 0:
['0) =6(0). (3.25)

Given the symmetry of the problem, we can assume that the displacement vector de-
pends only upon co-latitude, i.e. w = wu(r,0). In this way, the number of unknowns
reduces from four to three: the two components of the displacement u, and wug, and the
perturbation of the gravitational potential ¢;. It is also convenient to seek for solutions

that can be expressed in terms of Legendre polynomials. In this way, it will be possible
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to transform the set of partial differential equations (3.24) into a system of ordinary

differential equations Farrell (1972). Therefore we write

o0

u(r,0) = Z [Un(r)Pn(cos 0)7 + V05 Py (cos 0)0
o (3.26)
$1(r,0) = ¢a(r)Pu(cos ),

and, by doing so, the unknowns become the functions U, (r), V,,(r) and ¢, (r). Substitut-
ing Egs. (3.26) into the system (3.24), after cumbersome calculations that I skip for the
sake of simplicity (for a comprehensive treatise, the reader is referred to James (1991);
Martens (2016)), one obtains a system of linear differential equations of the form

(1) = Au(r)p, (1), (3.27)

where the vector of the solutions y,, is defined by:

yn(T> = [Un; Vna Tr'rn7 Tr@na ¢n7 Qn] = [yla Y2,Y3,Ya, Ys, y6] ) (328)

and where U, and V,, are the radial and tangential part of the displacement field, T;..,
and T, are the horizontal and tangential stresses, ¢, is the perturbation of the potential
and finally @), is an auxiliary variable, defined as

_d¢n  (n+1)

dr r gbn + 47TG100UTL ) (329)

Qn:

introduced to simplify the application of the boundary conditions (Sabadini et al., 2016).
The matrix A, (r) reads:

—2 L 0 0 0 0
_1 1 0 1L 0 0
r r m
A, (r) = : (37# —pogo) =7 (67” —pogo) 0 & ——pO(Trl) Po (3.30)
Ol aee 201 _ 1 3 P

r ( r pOgO) 7“2(1 2L)'u r r r 0
—47Gpy 0 o o -

_ 4nGpo(n+1) 47Gpo L 0 0 0 (n=1)
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where L = n(n+1). Before I delve into the final part of the calculation of LNs, I present
in the following sub-section the boundary conditions (BCs) for case of a impulsive J-like

surface load, and those for the tidal loading.

Boundary conditions for the mass load

The surface load expression of an impulsive unit load, expanded in series of Legendre

polynomials, can be written as:

oo

e =3y 2t (3.31)

4ma?
n=0

To solve the system (3.24) it is necessary to fix BCs respectively on the vertical and

horizontal components of the stress field, and on the gravitational potential:

e On the surface, the vertical traction must compensate the load I'(f) defined in
(3.31) and thus we have

2n+1

Trrn = - dra2

e The horizontal traction must become null on the surface: 71,9, = 0 in r = a.

e Through the application of the Gauss’ law for the gravity field, one finds that the

gravitational potential must satisfy

dost deim o+ 1
no_ Sn _y .
dr dr TG poln F 4ra® )’ (3:33)
2n+41

being the terms and poU, the contributions of the d-like load mass and the

4ra?
induced mass redistribution within the Earth. Assuming the continuity of the

int
n ?

gravitational potential ¢¢** = a possible solution for ¢, could be, taking also

into account that it must satisfy the Laplace equation outside the planet
a n+1
¢n = Cn <_> 5 (334)
r
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with ¢, being an arbitrary constant. Thus, since

dép, — n+1
O 221, (3.35)
Eq. (3.33) becomes:
do, n+1 2n+1
_ 4 = :
o ¢+ ArGpoU, 47TG( P ) ) (3.36)
implying that, the definition of @,, (Eq. 3.29) is, in r = a
2n+1 2n+1)G
— 4 S i it i :
@n e ( = ) " (3.37)

In conclusion, the BCs for the unit é-like load reads:
(

Trrn - y3(a> - _%90

Tron = y4(a) =0 (338)

Boundary conditions for the tidal load

The first aim of this thesis is the study of the Earth’s response to surface unloading;
however, for the sake of completeness and also to ease the discussion on fluid layered
planets, I shall report here also the BCs for tidal loading. Once again, for a complete
description of the calculation procedure, the reader is referred to the book of Sabadini
et al. (2016). Thus, for the case of an impulsive tidal perturbation exerted by a point

mass located along the z-axis, the BCs read:

(

TL! = yy(a) = 0
QTidal — yo(q) = _@nt1)G
o a2 )

which, with the exception of ys(a), are identical to those of the impulsive J-like load:
as a matter of fact, in tidal phenomena the disturbing mass is not in contact with the

planet, and so the vertical (and the tangential) stresses at the surface must vanish.
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Solution for the Homogeneous Elastic Planet

The general solution of the system (3.24) can be written in the following compact matrix

form:
y(r) =Y(r)c, (3.40)

where ¢ is a vector of arbitrary constants to be set through BCs and Y (r) is the funda-

mental matrix

Y(r)=
3@nT3) et e 0 Q(Z:jl)rin () 0
e e T TS L
nﬂogot(?ggf:;"*?’)urn (ougor 2n=1) por” <”+1)P20<92T:12)(:j++13;n*1)# (ovgor +20010) (1)
0 0 rh 0 0 p—(n+1)
211G po g™ 4rGpor™™t  (2n 4 1)r"t 2rGpoftr ™" 471G por—(+2) 0

(3.41)

whose columns are six linearly independent solutions of (3.24).

For the specific case of an homogeneous elastic sphere (i.e., the “Kelvin sphere”) we
need solutions that are regular at the centre of the planet. Thus, we must consider only
the first three columns of the matrix Y (r): the other columns contain indeed singular
terms in r, that would diverge for r — 0. Denoting it by Y g, the solution we seek has

the following form:

y(r) = Yg(r)c (3.42)
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To determine ¢, we first notice that the BCs (3.38) and (3.39) can be written in matrix
form as
001000
Pyy(a)=b, P,=1000 10 0], (3.43)
000001
where Ps is the so-called “projector operator” (Spada, 1992), whose purpose is selecting
the components of y on which we prescribe the boundary conditions (namely the third,
the fourth and the sixth, as it is clear from its definition in Eq. (3.28)), and b is the
vector containing the BCs (3.38). Then, in view of Eq. (3.42) and (3.43) we obtain:

c= (PyYg(a)™'b. (3.44)

Now, recalling the definitions of LNs in Egs. (3.4, 3.5, 3.6) and considering that, for the

case of an impulsive unit load, the coefficients of the direct gravitational potential are:

G ago

Pon(a) = e T m (3.45)
we have:
y1(a) h,
2= o) | = — L, . (3.46)
ys(a) —(1+ k)90

By recasting these definitions in a matrix formalism, we can write, considering Eq. (3.42)

and (3.44)
z = Piy(a) = P,Y g(a)e = P,Y g(a)(PyY r(a))™'b, (3.47)

being P; the projection matrix

100000
Pi=(o10000/. (3.48)
000010
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After long calculations that have been handled with the use of a symbolic manipulator, it
is possible to find an analytical expression for z; Finally, inverting Eq. (3.46), we obtain

the definition of the loading LNs for the elastic Kelvin sphere:

2n+1

hy, X -
E_ ||~ 1 3.49
T, ln 1+c oy ) ( )

kE -1
with
2n? + 4n + 3
c= i, @=—t and A, = FIES (3.50)
Podold n

It is noteworthy to remark that from the definition of the elastic loading LNs (3.49) it
is possible to draw the expression for the LNs in the “fluid limit” by imposing that the
rigidity g — O:

ANE
kE -1

In case of a viscoelastic model, the value of the LNs depends on time. In this case, as
we will see in the following, the fluid limit of LNs is obtained by computing their limit

for t — oo.

3.3 Viscoelastic Love numbers

The elastic solution found in previous Section 3.2 can be easily extended through the
Correspondence Principle to any other linear viscoelastic rheology (Fung, 1965). The
constitutive equations of linear viscoelastic bodies describe the relation between the

stresses o and the strain €, and can be expressed as:
Po(x,t) = Qe(x, 1), (3.52)
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where x indicates the position and P, Q are differential operators of the form F =

> =0 fjjTjJ" In the Laplace domain, one obtains:
P(s)3(2,5) = Qs)é(w, ) (3.59)

where P and () have become polynomials in the variable s. Then, writing

g(x,s) = %é(w, s) = E(s)é(zx, s) (3.54)

one obtains an expression that is formally identical to the Hooke linear elastic law,
o(x,t) = E(t)e(x,t). In other words, we have shown that the solution of a viscoelas-
tic problem can be found by solving in the Laplace domain the corresponding elastic
problem, taking care of correctly substituting the constant E with the corresponding
E(s).

In the specific case of LNs, from the expressions for the elastic Kelvin sphere Eq. (3.49),
one can easily get the Laplace-transformed viscoelastic ones just by substituting to the

elastic rigidity the suitable complex modulus f:

Bn(‘S) r
Zo(s) = | I,(s) | = H‘”ﬁ (3.55)
Fon(s) "

For example, the Laplace domain loading LNs of a Kelvin sphere with Maxwell’s rheology

can be obtained by substituting in (3.55) the Maxwell complex rigidity

s
M<S)_S+%

(3.56)

To recover the time domain LNs, the inverse Laplace transform of Eq. (3.55) must be
computed. After some efforts, the time-domain LNs for a Kelvin model with Maxwell’s

rheology can be written as:

hy! (1) L1
BUt) | =, 0(t) + H(t)z, (—Wl - ;M> el =t (3.57)
k! (t)
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with 7y = n/p being the Maxwell time and 7}, = 73/(1 + ¢); more details about this
calculation can be found in (Consorzi, 2021). The previous equation can be recast in a

more compact form as:
M (t) = xPo(t) + H(t)xY e /™™ | (3.58)

where £ indicates the vector containing the LNs. More in general, this definition can
be extended to any other rheological model, and it is known as “multi-exponential form”

of the LNs:

T, (t) = @lo(t) + H(t)> a) e /™. (3.59)

k=1
The multi-exponential form of LNs is introduced in the viscoelastic normal modes (VNM)
method (Peltier, 1974), and as it is clear from above, it allows to write the LNs as the
sum of two components: an elastic one xZ, that depends on the density and elastic
parameters, and the viscous one ), that depends also on the rheology. A more detailed

discussion on VNM method will be presented in Section 4.2.

3.4 Love Numbers for layered fluid planets

Part of this work was published on Astronomy and Astrophysics by Consorzi et al. (2023).

This section is dedicated to the study of LNs of a layered fluid planet, a model often
employed in planetary sciences for applications to gas giants or exoplanets. Generally,
LNs for multi-layered planets are computed numerically (Padovan et al., 2018; Melini
et al., 2022), but in several special circumstances, optimal simplification of the equations
could lead to analytical expressions. These fortunate cases offer the possibility to further
investigate the role of each model parameter in the determination of LNs. This is the case

of a two-layer model of a fluid planet, whose LN k5 in closed-form was first published by
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Ragazzo (2020). In parallel, the work of Padovan et al. (2018) shows that the mean polar
moment of inertia (N) and the Love number (k) of a planet have a similar sensitivity
to the mass concentration, supporting the results of Kramm et al. (2011).

With the purpose of refining the implicit approximation of Padovan et al. (2018),

namely N = ko, we delved into the N-ko relationship. Our two major findings are:

e a simple power-law relation (rule of thumb) exists between the normalized mean
polar moment of inertia and the normalized k,, namely N = E(Q)A. This result was

already reported by Ragazzo (2020), following other methods.

e for multi-layered models the rule of thumb determines an upper limit for N for a
given, hypothetically observed ko value. Our work demonstrate that this rule is

superior to the Radau-Darwin formula (Cook, 1980).

3.4.1 The homogeneous fluid planet

In the special case of a fluid planet, k5 only depends upon the density profile. In the next
lines, we shall demonstrate this statement. In the unperturbed state, the assumption of

hydrostatic equilibrium implies:
Vpo = —poV o (3.60)

with p being the hydrostatic pressure, p the density and ¢ the gravitational potential, al-

ways obeying Poisson’s equation. In the perturbed state, the previous equation becomes

V(po +p1) = —(po + p1)V(go + ¢1) (3.61)
= —poVoo — poVo1 — p1Vo — p1Veor . (3.62)

Discarding the second order term and considering Eq. (3.60), we obtain:

Vp1r = —p1Véy — poVé1 = —pigo — poVr (3.63)
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By making explicit the gradient in the previous expression, it is possible to demonstrate

that

p1=—podr - (3.64)

From the radial component of Eq. (3.63) we have

o - I
or —Fo ar P190, (3.65)

and using Eq. (3.64) we find:

0
% 1= P19o0 - (366)

In this way, the perturbed gravitational field, that must obey to Laplace equation, can

be recast as:

4
V26, = 4nGpy = G000 (3.67)
go Or

With an approach identical to that presented in the previous Section 3.2, we seek for

a solution that can be expressed in terms of Legendre Polynomials
$1(r,0) = o1 Pu(cosb), (3.68)
n=0

where ¢1,(r) are suitable radial functions, B, is the n'"—degree Legendre polynomial
and 6 is co-latitude. Finally, substituting Eq (3.68) into Poisson’s equation Eq. (3.67),
the latter reduces to a second order differential equation for ¢, that reads:

2 nin—+1 4G
901”+;901’—< ( ; )+ m p6> @1 =0, (3.69)

r

where we have dropped the n subscript of ¢; to lighten the notation, and the prime
denotes the derivative with respect to radius r (Wu and Peltier, 1982). Assuming a
layered model in which, inside each layer, the density remains constant (i.e., pj = 0),

Eq. (3.69) allows for a closed-form solution in terms of powers of r.

'Eq. (46a) of Wu and Peltier (1982) contains a misprint and py should be substituted by pj.
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As it has been done before, it is convenient to introduce an auxiliary variable that

we shall call @s:

, n+1 4nG
902(7”):%-1-( -z po) ©1, (3.70)

r 90

that is equivalent to:

n+1 4nG
o (r) = 2 — ( - po) 1 (3.71)
r 9o
After some algebra, it is also possible to obtain:
871G po n—1 4nGpy
: = -1 — . 3.72
) = T 1)y 4 (P - T 5.7
The solutions of Eqs. (3.71) and (3.72) can be found in a straightforward way:
901(7”> = cr" + C*T*(nJFl) (373)
2 1 4ArnG ArG
o) = ¢ < n+1 4w Po) Py ( T Po) (1) (3.74)
r 90 90

where ¢ and c¢* are constants whose values must be determined by imposing suitable
BCs. Finally, by casting the equations above into a 2 x 2 matrix, we find the analogue

of the solution matrix Y (r) in Eq. (3.24) for a homogeneous fluid shell:

n T—(n-‘,—l)
Yi(r) = (3.75)
2n+1 _ 47Gpo rn 47Gpo ,r’f(nJrl)
r go 9o

As argued before, in case of a homogeneous planet we must consider only the regular
part of the solution (3.75). In this case, the gravitational acceleration is simply go(r) =
%WGpo’l”, and thus the solution matrix can be compacted into the following solution

vector:
n

If(T’) — ) ] (3.76)
2(n — 1)r»=H
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3.4.2 Analytical results for a fluid two-layer planet

In this Section we will delve into the detail of the computations of the ky LN for a fluid
two-layer inviscid planet. I will denote by 7. and p. the radius of the inner layer (the
“core”) and its density, respectively, and by r,, and p,, the corresponding quantities for
the outer shell (to which T will refer to as “mantle”). In this case, we must take into
account the BCs both at the layers interface, and at the surface. Across the density

discontinuity at radius r» we impose the continuity of 1 and ¢s:

pi(r) = (") (3.77)

pa(r”) = pa(r") (3.78)

Since we are only interested in the tidal LN ko, the vector z can be compacted to
a scalar including only the term ¢;(r). Having just one unknown, the following BC,
obtained from calculations analogous to those that yielded to the third element of vector

Eq. (3.39), is sufficient for our purpose:

b= a(rm) = _@nt DG (3.79)

2
At this point, the procedure to compute the tidal LN ky is similar to that followed
in the Section 3.2: the only difference is the presence of a density discontinuity, the
“Core-Mantle Boundary” (CMB).

To find the solution for the ko LN, we start by noticing that the solution vector

y<7”) = (4,01(7"), 902(7’)) at r = r. must be:
y(r) =I'(r)c. with 0<r <r,, (3.80)

where ¢, is an unknown constant and we have used I since it is the regular part of the
solution matrix, and we need the solution to be non-singular at the center of the planet.

At the same time, inside the mantle we have:
y(r) =Y (r)e, with r.<r<r, (3.81)
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where ¢, is a (two component) vector of unknown constants. The continuity at the

CMB implies:

Y/ (ro)en = I (ro)e. (3.82)
from which we can express c,, as:

Cm =Y (r)' I (r)c. . (3.83)
In this way, the solution vector at the surface becomes:

y(rm) =Y (rn)enm = Y ()Y () 71 (r e, (3.84)
Now, applying the BC for ¢5:

Poy(rn) =b, with Py= (0 1) , (3.85)
it follows that

b= PyY'(r,)Y'(ro) "I/ (r)c., (3.86)
from which we obtain

ce=R'D, with R= P Y/ (r,,)Y'(r))'I'(r,). (3.87)
Finally, as we did in Eq. (3.47),

2= 01(rm) = P1y(rm)
= PlYf(rm)Yf(rc)_lIf(rc)cc

(3.88)
=P Y/ (r,)Y/ (r) ' (r.)R7'D
= QR 'b,
where
Q=P.Y!'(r,)Y!(r) I (r), and P,= (1 0) . (3.89)
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To find the LN ko, it is then sufficient set n = 2 in the computations and, at the end,
recalling the third term of Eq. (3.46), we obtain:

m
With the aid of the Mathematica(C) symbolic manipulator (Wolfram Research, 2010), we
find

5+a<5a68+8(1—a)55+3a—8>

ko =2 , (3.91)
10+a<965(a—1)—|—5ﬁ3(5—3a)+6a— 16>
where k5 is the normalized LN
_ ks
- = .92
"= T (3.92)
and
3

is the LN for a homogeneous planet (Munk and MacDonald, 1975). In (3.91) we have

introduced the non-dimensional core radius

8= Te : (3.94)

Tm
with 0 < 8 < 1, and the ratio

Pc — Pm
Pe

o =

(3.95)

Notice that the parameter a should not be confused here with Andrade’s parameter. In
case of a gravitationally stable planet (p. > p,,) we have 0 < o < 1. The value a = 1
corresponds to the limit case of a mass-less mantle (p,, = 0), whereas for a homogeneous
planet (p,,, = p.), one has a = 0.

Since the planet is fluid and inviscid, vertical displacement is interpreted as the

displacement of equi-potential surfaces so that the vertical LN is hy = 1 + k. As the
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tangential displacement is undetermined within a perfect fluid, the I LN is undefined.
Further, ki, = ko— ho, where K is the loading LN for gravitational potential (Molodensky,
1977). Hence k% + 1 = 0, which manifests a condition of perfect isostatic equilibrium
(Munk and MacDonald, 1975). It is worth to remark that, although in Eq. (3.91) k, is
written in terms of o and f3, it depends implicitly upon the four parameters defining the
model (namely, 7., 7, p. and p,,). Thus, even assuming that the size of a hypothetical
extra-solar planet is known and that we dispose of an observed value of ks, it is impossible
to determine the remaining three quantities unambiguously.

As expected, the well-known result ko = 1 valid for the Kelvin sphere (Thomson,
1863), is retrieved from Eq. (3.91) whenever one of the three limits o — 0, 5 — 0 and
b +— 1 are taken. The smallest possible value of ky is met in the extreme condition of
a point-like mass concentration at the planet centre (Roche model, see Roche, 1873).
Indeed, with p,, < p. (hence o+ 1) and g — 0, Eq. (3.91) gives ky +— 0, in agreement
with Padovan et al. (2018). In Figure 3.1a, the normalized LN k, is shown as a function
of a and § for the two-layer model, according to Eq. (3.91). It is apparent that, for a
given a value, the same value of ky may be obtained for two distinct values of 3. On
the contrary, for a given 3, knowledge of ko would determine o unequivocally. However,
due to the definition of this parameter (Eq. 3.95), knowledge of o would not suffice to

determine the layers densities.

3.4.3 Moment of inertia and the k; fluid Love number
Two-layer models

The normalized polar moment of inertia of a spherical planet is defined as:

C

where C' is the polar moment of inertia, M is the mass of the body, and R is the mean

radius (see, e.g., Hubbard, 1984). In case of a homogeneous body, N assumes the well-
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Figure 3.1: Contour plots showing &, (a) and N (b) as a function of parameters o and /3
for a two-layer fluid planet, according to Eqgs. (3.91) and (3.97), respectively. Since these
variables are normalized to the values attained in the case of a homogeneous planet, they

both range in the interval (0,1).

known value Ny, = 2/5.
Now, defining N = N/N,,, through elementary algebra it is possible to express the

normalized moment of inertia N of a two-layer planet as:

— 14+a(p—1)
N= l+a(@-1)

Both k, and N depend on the density profile of the planet, and comparing their def-

(3.97)

initions (3.97) and (3.91), one can see immediately that they depend on the same pa-
rameters « and . In this context, following the work of Kramm et al. (2011), Padovan
et al. (2018) have shown that for a planet with two constant density fluid layers, N and
ko are directly correlated, both decreasing with increasing mass concentration at depth.
However, Padovan et al. did not propose explicitly a general relationship between these
two quantities.

It has been long known that an approximate relationship between N and ks is ex-

pressed by the Radau-Darwin (RD) formula, which is exact for a homogeneous body
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but it only constitutes an approximation for layered planetary models (Kramm et al.,
2011; Padovan et al., 2018). This motivates the search for alternatives. On one hand,
by comparing Figure 3.1a with 3.1b it is apparent that, for our two-layer model, func-
tions ko and N have broadly similar shapes in the (o, 3) plane, immediately suggesting
a straightforward linear relationship N ~ k,. Such relation has been implicitly proposed
by Padovan et al. (2018) and would be exact for a uniform sphere. On the other hand,
if we limit ourselves to an inspection of the analytical expressions (3.91) and (3.97), it is
not easy to guess whether an exact N-k, relation may exist in analytical form. A priori,
for a non-homogeneous planet such relation might be non-univalent, with more N values
corresponding to a given ko and viceversa.

After some symbolic manipulations, we have verified that solving Eq. (3.97) for «
and substituting into (3.91) would not provide insightful results. This suggests that an
exact relationship N = N(k,) not involving a and z explicitly and valid for all values of
these parameters can be almost certainly ruled out. Nevertheless, simple relationships of
partial validity could exist in some limiting cases where « or z take special values. For
example, it is easy to show that for small core bodies (8 + 0), N ~ 1 + (2/5)(ky — 1),
which holds for all values of a and still implies that mass concentration at depth increases
for decreasing k. Along the same lines, for o — 1, corresponding to case of a dense
“core” surrounded by a “light mantle”, Eq. (3.97) gives N ~ 2 and since from Eq. (3.91)
ko ~ [3°, by eliminating § we obtain an appealingly simple approximate power-law
relationship N ~ EQM. We notice that this last relationship is actually an exact result
for a homogeneous sphere surrounded by an hypothetical zero-density mantle, and can
be obtained analytically by rescaling the results for a Maclaurin spheroid (Hubbard,
2013) of radius a to the outer radius r > a of the mass-less envelope (Hubbard, 2023,
personal communication).

The approximate N-k, relationships discussed above are only valid for specific ranges

of o and z. Certainly, a straightforward linear relationship captures the broad similitude
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of the diagrams in Figures 3.1a and 3.1b, but it may represent a too simplistic solution.
Here, we seek a more general rule of thumb (or ROT) providing, within a certain level of
approximation, a relationship between N and ky over all the points of the (a, 3) plane.
To quantify the error associated to a given ROT (say, Ngror(ks)), we introduce the

non-dimensional root mean square

RMS = \//1/1 [N — Nror(ks)]” dadz, (3.98)

where the double integral is evaluated numerically by standard methods.

First, we assume a direct proportionality
N =ck,, (3.99)

where ¢ > 0 is a constant. Figure 3.2a shows, as a function of ¢, the RMS obtained with
Nror = cky. The minimum RMS (close to 0.1168) is obtained for ¢ ~ 1.08, suggesting
that the approximation N ~ ky proposed by Padovan et al. (2018) and corresponding to
¢ =1, is indeed close to the best possible linear ROT.

Next, we consider a power-law relationship
N=F'", (3.100)

where F > 0 is an adjustable exponent. In Figure 3.2b we show, as a function of E, the
RMS corresponding to N gor = Ef. It is apparent that the RMS is minimized for an
exponent F ~ (.42, close to the value of 0.4 found analytically for a zero-density mantle.
The corresponding minimum RMS value is /=~ 0.0082. These findings suggest that the

relationship
Nak (3.101)

represents a simple and valid ROT expressing the link between N and k, for a two-layer,

fluid, stably layered planet characterized by arbitrary parameters o and z.
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Figure 3.2: Non-dimensional RMS, evaluated according to Eq. (3.98), for a linear ROT
N = cky (frame a) and for a power law ROT N ~ Ef (b), as a function of the param-
eters ¢ and F, respectively. Integrals in Eq. (3.98) have been evaluated numerically by

the dblquad function included in the SciPy library (Virtanen et al., 2020).
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Arbitrarily layered models

Up to now, we have limited our attention to four-parameters models composed by two
distinct fluid layers. To fully assess the validity of the ROT (3.101), it is important
to consider the case of a planetary structure consisting of an arbitrary number L of
homogeneous layers.

Due to the model complexity, in this general case an analytical expressions for ks is
not available; however, it is possible to evaluate ky numerically, for instance following
the propagator method outlined by Padovan et al. (2018) or employing numerical LNs
calculators like ALMA (Melini et al., 2022). Conversely, an analytical expression for the
normalized moment of inertia N is easily obtained also in the general case of an L-layer

planet, and it reads
L
S a0 (8 - BL,)

AT =1
N==X : (3.102)

> (L —a) (8 = 8L)

=1

where (; = r;/rp, is the normalized radius of the outer boundary of the i-th layer (5y = 0)

and

a; =10 (3.103)
P1

where p; is the density of the i-th layer. By definition, g; < ... < gp = 1, while
gravitational stability imposes p; < ... < ppsothat 1 > ap > ... > a; =0. It is easily
shown that, for L = 2, Eq. (3.102) reduces to (3.97) with & = s and § = f;.

To test whether the ROT (3.101) can be of practical use also for general planetary
structures, we have generated an ensemble of 5 x 10° models with a number of layers
variable between L = 2 and L = 10, all characterized by a gravitationally stable density
profile. For each of the planetary structures so obtained, we have computed N according
to Eq. (3.102) and ky with the numerical codes made available by Padovan et al. (2018).

The corresponding values of N and ky are shown in Figure 3.3 as gray dots.
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For a given, hypothetically observed ks value, the corresponding value of N is clearly
not unique. Rather, N ranges within an interval, defined by the cloud of points, whose
width represents the uncertainty associated to the degree of mass concentration at depth.
It is apparent that the maximum relative uncertainty on N (up to ~ 50%) occurs for
ko values < 0.2 and that, for ks exceeding ~ 0.5, the N value is rather well constrained
(to within ~ 10%). Of course, this does not imply that the density profile of the planet
is actually constrained, since Eq. (3.102) cannot be inverted for «; and f; unequivocally
without introducing further assumptions. The solid red line in Figure 3.3 represents the
ROT (3.101), obtained in the context of the two-layer model in the previous paragraph.
It is apparent that the ROT remains valid also in the general case of a L-layer planetary
model and, for ky > 0.5, it provides a good estimate of N once k; is known. For smaller

values of ko, the ROT represents an upper bound to the normalized moment of inertia:
N<k. (3.104)

In the context of planetary structure modeling, the polytrope of unit index (Chan-
drasekhar and Milne, 1933) has a particular relevance. This simplified model resembles
the interior barotrope of a hydrogen-rich planet in the jovian mass range and, by virtue
of the linear relation between mass density and gravitational potential, it allows for the
derivation of exact results useful for calibrating numerical solutions. Hubbard (1975)
obtained analytical expressions of the moment of inertia and of the ks fluid LN for a
polytrope of index one, which are marked by a blue dot in Figure 3.3. More recently,
Wahl et al. (2020) modeled the equilibrium tidal response of Jupiter through the con-
centric Maclaurin spheroid method; their results in the non-rotating limit are marked by
a green triangle in Figure 3.3. It is evident that the ROT turns out to be in excellent
agreement with these two particular cases. However, we remark that for a quantitative
application of our results to real exoplanets, rotational effects and nonlinear responses to

rotational and tidal terms should be also considered (see, e.g. Wahl et al., 2017, 2020).
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Figure 3.3: Fluid LN k, and normalized moment of inertia N for a random ensemble
of 5 x 10° models with a number of layers 2 < L < 10. The solid line shows the ROT
N = E(ZM. The dashed one represents the Radau-Darwin (RD) formula (e.g., Cook, 1980;
Padovan et al., 2018; Ragazzo, 2020). The RD formula is exact for a homogeneous body
but it constitutes an approximation for layered planets (Kramm et al., 2011; Padovan
et al., 2018). The ROT and the RD formula match for k; > 0.3; for smaller values, our
ROT represents a more rigorous upper limit to N. The blue dot corresponds to values
of ky and N for a polytrope of index one, while the green triangle corresponds to results

by Wahl et al. (2020) for the equilibrium tidal response of Jupiter.
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LN xf xF

tidal forcing surface loading

Potential, k, ﬁ 1
Vertical, h,, 1+ ﬁ _2n3+1

3
2n(n—1)

|
3=

Horizontal, [,

Table 3.1: Expressions of the fluid limits x'=2%(n) in Eq. (3.105) for the LNs h,,, k,
and [,,, corresponding to tidal and surface loading boundary conditions, as a function of

the harmonic degree n. These expressions are based upon Wu and Peltier (1982).

3.5 Love numbers of an Andrade planet

In this section, we discuss two different forms of the LNs for a uniform planet with
Andrade rheology, namely the Laplace domain (subsection 3.5.1) and the time domain
LNs (3.5.2), respectively. Here I remark that the result presented here, the analytical
expression for the LNs of a Kelvin sphere in the time domain, was unpublished before
Consorzi et al. (2023). This expression derives from the general form of the relaxation

modulus G,(t) obtained in Section 2.2, which was previously unknown as well.

3.5.1 Andrade’s Love numbers in the Laplace domain

We report here the general form of the Laplace transformed LNs for a homogeneous,

incompressible, viscoelastic planet subject to an impulsive load (see Eq. 3.55):

(s) 1
T

where the values of " for both the tidal and loading LNs are summarized in Table 3.1.

(3.105)

Similarly, to have an idea of the magnitude of the parameters, Table 3.2 lists numerical

values for the bulk properties of some terrestrial bodies, along with the corresponding
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Planet a P 1 T4 c
km  kg/m® 10" Pa - n=2
Mercury 2439.7 5427 0.75 1.53 14.55
Venus 6051.8 5243 1.45 0.52  4.90
Earth 6370.9 5514 1.46 0.42 4.02
Moon 1737.1 3348 0.67 7.09 67.35
Mars 3389.5 3918 1.05 2.13  20.24

Table 3.2: Numerical values of the y/ and ¢ constants (at degree n=2) for some terrestrial
bodies in the Solar System. Average radii (a), densities (p) and elastic shear moduli ()

are from Table 1 of Zhang (1992).

1 = p/(pga) and c values obtained at degree n = 2. For the Earth, y/ ~ 0.4, about

1

= estimated by Love (1911) in his seminal work.

twice the value u' ~

According to (3.105), in order to evaluate the LNs explicitly, the expression for the
Andrade complex shear modulus fi,(s) is necessary. The modulus is related to the
transformed creep compliance and relaxation modulus by fiq(s) = 1/sJ,(s) = 5G4(s)
(e.g., Mainardi, 2022). Using, in particular, the second of these identities and recalling

Eq. (2.14), the expression of the complex shear modulus for the Andrade rheology turns

out to be

fals) _ (s7a0)°
1 (sar)® 4+ (T (1 4+ ) + (sTay)* L

(3.106)

and is easily verified that, as expected, in the limit ( — oo the complex shear modulus

(3.106) reduces to that of a 1-D Maxwell body, i.e.

. WS R
1 B — . 1
lm jia(s) = —— Iy fim(s) (3.107)

Substitution of (3.106) into (3.105) yields, after some algebra,

@ o c(star)®
af ! (1+¢)(sar)® + ¢ oT(1 + ) + (sar)* 1’ (3.108)
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which represents the Laplace transformed LN for a uniform Andrade planet subject to
an impulsive forcing.

In Figure 3.4, we show the landscape of the complex-valued function F(z) = L(z)/zF
in the Argand-Gauss plane, where variable z is defined as z = s7y; = x + iy, with
i = v/—1. Here we have assumed the traditional Andrade power law with exponent
a =1/3 and ¢ = 1, and we have set ¢ = 4, a value representative of the Earth. Function
Re(F(z)), shown in Figure 3.4a, is continuous in the whole z plane and symmetric
with respect to the z axis, where the extrema are attained for = < 0 (3.4c, solid line).
Function Im(F(z)) is anti-symmetric with respect to the z-axis and vanishes for = > 0
(see 3.4b); furthermore, it shows a jump discontinuity along the real negative axis (3.4d,
solid lines). In Figures 3.4c¢-d, dashed lines show numerical results for the ratio between
the ho tidal LN and its fluid limit for a compressible sphere, obtained by substituting the
complex shear modulus (3.106) in the analytical expressions published by Love (1911)
and assuming a Lamé first parameter A\ = p, which corresponds to a Poisson ratio

v = It is readily seen that, on the real negative axis, the differences between the

.
LNs spectra in the compressible and incompressible cases are very small, of the order
of a few percent. Conversely, on the real positive axis the compressible spectrum shows
singularities related to the Rayleigh-Taylor instabilities, which for a layered Earth have
been discussed by Hanyk et al. (1999) and Vermeersen and Mitrovica (2000) in the

framework of the viscoelastic normal modes theory of Peltier (1974).

3.5.2 Andrade’s Love numbers in the time domain

To describe the time-evolution of the LNs, instead of the impulsive solution (3.108) it is
more meaningful and physically intuitive to consider a load imposed at time ¢ = 0 and
held in place thereafter, as it is customarily done in glacial isostatic adjustment studies
(Spada et al., 2011). Since the Laplace transform of a Heaviside step function H(t) is
1/s, the corresponding LN is 27 (s) = Z(s)/s. After multiplication of Eq. (3.108) by 1/s,

7



2) Re[“] b) Im[ =1
Ly
0.4}
> 0.0f— { >
-0.4}
06 04 -02 00 02

25

<)

2.0

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 02 -06 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

Figure 3.4: Contour plots of the real part (a) and of the imaginary part (b) of F(z) =
L(z)/x", for an Andrade sphere with a=3, c=4 and (=1. In (c), the real part is shown
along the real axis while in (d), the imaginary part is plotted along two axes just above
and just below the z-axis, defined by y=+10"*. In (c¢) and (d), dashed lines show
numerical results for the ratio between the hy tidal LN of a compressible sphere and its

fuid limit.
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it is possible to write the Heaviside LN in the computationally convenient form:

(s) 1 CTM
o s (T4 c)(stm) + T (1 + a)(sma) = + 1 (8:109)

and it is easily shown that, in the limit ¢ — oo, #(s) reduces to the Laplace transform

for the LN of a uniform Maxwell sphere, 7.e.

. i’H(S> 1—|—STM 1 1
b = A oGn) 1 s MO

(3.110)

,u
where fi,,(s), defined in (3.107), is the complex shear modulus appropriate for the 1-D
Maxwell rheological body (e.g., Mainardi and Spada, 2011).

Assuming that a = p/q < 1, where p and ¢ are integers, the r.h.s. of Eq. (3.109) can
be Laplace-inverted in closed-form following the same approach adopted to invert éa(s)
in Section 2.2. Indeed, with the aid of Mathematica@©@ (Wolfram Research, Inc., 2024),

we have verified that the time-domain Heaviside LN can be cast in the form:

—1-0,,(t), t>0, (3.111)

£\
Eia ((—) Zk:)
q’q ™

r <1 + §> zg_p_l +q(1+ c)zg_l

where we have defined

q

C

Bpglt) = ——— Y
i 7 k=1
T™

and where the z;’s are the (distinct) roots of the algebraic equation F,,(z) = 0, with

, (3.112)
Sl

Ay

F,,(z) = P, 4(x) + cz?, with polynomial P, ,(z) defined by Eq. (2.16). Notice that the
zr’s are themselves depending upon parameters ¢ and (. Since the properties of the

Mittag-Lefller function ensure that 1tlier ®,,(t) =0, in Eq. (3.111) condition
—+o0

lim 2% (t) = 2 (3.113)

t—+00
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is met, as it is expected for consistency. We have also verified that, through a repeated

application of De L’Hopital’s rule and some cumbersome calculations, that

c
lim &, ,(t) = 114
Jim &, (1) = 7 (3.114)
and thus, in other words, the elastic limit reads:
H o+ a’
07) = ) 3.115
0 = G (3.115)

To corroborate the mathematical result given by Eqgs. (3.111) and (3.112), we have ob-
tained independent numerical results by the ALMA® planetary LNs calculator (Melini
et al., 2022). ALMA? is a code that implements the Post-Widder Laplace inversion tech-
nique (Post, 1930; Widder, 1934) for spherically symmetric models with general incom-
pressible linear viscoelastic rheology (Spada and Boschi, 2006; Spada, 2008). Figure 3.5,
obtained using a uniform model whose parameters are listed in the caption, considers
various combinations of the o and ( parameters. The match between the analytical
(solid curves) and numerical results (dotted) is very satisfactory, with a relative error
never exceeding the 0.1% level. Notice that the LNs are characterized by short timescale
(elastic) and long timescale (fluid) asymptotes that are not influenced by the value of
parameter . However, the transition from elastic to fluid regimes is controlled by the
value of «, with the response becoming slower for decreasing «.

To study the sensitivity of the LNs to the model parameters, in Figure 3.6 we consider
the tidal LN k2 (t), a quantity of fundamental importance in planetary studies since it
characterizes the tidal response of the body. Figure 3.6a shows the LN kl’(¢), obtained
from Eq. (3.111) with o = 1/3 and ¢ = 1 as a function of time, for various values of
the normalized shear modulus y’ characterizing distinct hypothetical planetary models.
Since y/ o< i/ (pa)?, a small ¢/ may correspond to a low-rigidity planet (small u) or to a
body with with large a and/or p (hence a large gravity at the surface). Conversely, a large
p' value may correspond to an elastically stiff planet (large p) and/or to a small-radius

and a low-density body. We notice that for an Earth-like planet, ' ~ 0.4 (see Table 3.2).
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Figure 3.5: Comparison between LNs obtained analytically (solid curves) and numer-
ically by the ALMA® code (dotted). A homogeneous Andrade planet is assumed, with
radius a = 6371 km, elastic shear modulus p = 1.46 x 10! Pa, Newtonian viscosity
n = 102! Pa - s and density p = 5514kg - m™3. Curves in (a) and (b) are obtained by
setting ¢ = 1 and a = 1/3, respectively. All numerical experiments with ALMA® have

been carried out in a multi-precision environment using 128 digits.
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the normalized shear modulus y/ are shown. In (b) we have used ¢ = 4, corresponding
to ' ~ 0.4, and curves for different values of parameter ( are shown. The dashed curve

shows the Maxwell response, attained for values of ¢ > 1.
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From Figure 3.6a it is apparent that the value of 1/ has a strong influence on the evolution
of k¥ (t). In particular, the elastic response k(0) increases with decreasing y/, which is
expected since the initial deformation is large for a low-rigidity body. Furthermore, the
transition to the fluid limit k& (c0) = 3/2 is characterized by a time scale that increases
with increasing p/, since stiff bodies relax slowly. However, Figure 3.6 shows that, as
expected, the fluid limit attained for ¢ — oo is not dependent upon p'.

In Figure 3.6b, the k& (t) LN is shown for an Earth-like planet, assuming a = 1/3,
¢ = 4 and varying ¢ in the range between 1072 and 102. As expected, the choice of ¢
does not affect the elastic and fluid limits, which are controlled by the p' parameter,
but it affects significantly the transition between the two regimes. Indeed, as we have
discussed in Section 2.2, the values of ¢ control the relative importance of the transient
and steady-state terms, with the former becoming negligible for increasing values of (.
The dashed curve in Figure 3.6b shows the kZ () Heaviside LN for a Maxwell rheology.
As ( increases, the response of the Andrade rheology approaches the Maxwell curve,
with a close match for ¢ = 102. We have also verified analytically that, by virtue of
the properties of the Mittag-Leffler functions, the expression (3.111) for z(¢) reduces
to that of a Maxwell rheology for ( — oo. The procedure is formally identical to that
followed in Section 2.2.3 for the calculation of the limit for ( — oo of the relaxation

modulus, with the exception of the presence of a multiplicative factor (1 + ¢).
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Chapter 4

Methods

This chapter is devoted to the description of the methods I followed to obtain the final
results presented in Chapter 5. More specifically, I delve into the main steps of the
computation of the horizontal and vertical components of the displacement field at the
surface and the geoid height variation in response to surface unloading. These fields, also
referred to as Surface Response Functions (SRFs), are the result of three-dimensional
convolutions between suitable Green Functions (GFs), representing the Earth’s model
characteristics, and proper “Load Functions” (LFs), that describe the load evolution in
space and time. For more details about these calculations the reader is referred to Spada
(2003).

First, in Section 4.1, I describe the Earth’s models that I have employed for the
experiments presented in the next chapter. All the models include a elastic lithosphere,
a viscoelastic shallow upper mantle and deep upper mantle, a viscoelastic lower mantle
and a fluid core. Hence, in view of the complexity of the Earth’s models, to compute the
LNs I relied on ALMA (Melini et al., 2022), a LNs calculator that will be briefly presented
in Section 4.2. Also, in this same Section, I show several examples of ALMA’s output:
indeed, already from the LNs, it is possible to draw useful preliminary information about

the Earth’s models response. Finally, I briefly expose the main step needed to compute
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the Surface Response Function (SRF) in Section 4.3. For the sake of completeness,
in Section 4.4, I report the time convolutions needed for the computation of the SRF
concerning two particular types of load history which are of interest for this Thesis,

namely the Heaviside and Ramp unloading ice histories.

4.1 Earth’s models

In this section I briefly describe the Earth’s models that I have considered in my ensuing
experiments. I remark that for these computations, I have considered a spherically
symmetric incompressible Earth (1D models). All the models are composed of five

layers, that is (from the outermost to the innermost):

e An Elastic Lithosphere, whose thickness d; varies in some experiments (90, 110,

130 and 150 km),

A Viscoelastic Shallow Upper Mantle (SUM), i.e. the outermost part of the mantle.

In many experiments I employed different values for the viscosity, ranging between

5-10"% and 1-10%° Pa - s,

A Viscoelastic deep upper mantle (DUM), with a fixed viscosity of 1.0 - 10* Pa - s,

A Viscoelastic lower mantle (LM), with a fixed viscosity of 1.0 - 10** Pa - s,

A fluid, inviscid and homogeneous core.

In addition to the thickness of the lithosphere and the viscosity of the SUM, I also tested
the sensitivity of the SRF to the rheological configuration of the mantle, i.e. the various
combinations of rheological laws (Andrade or Maxwell) employed to describe the mantle

layers. In particular, I considered three different cases:

o “Maxwell”: SUM; DUM, and LM are all characterized by a Maxwell’s rheology.
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Layer | Radius (10° m) | Dens. (kg/m?®) | Rig. (10'° Pa) | Visc. (Pa - s) Rheo.
Litho. 6.371 2854.6 4.49 - Elastic
SUM 6.371— d, 3550.0 7.12 NSuM And/Max
DUM 5.951 3801.7 14.5 1.0 -10% And/Max
LM 5.701 4877.9 22.0 1.0 -10% And/Max
Core 3.480 10931.7 - - Fluid

Table 4.1: Scheme used for the implementation of the Earth’s models. Each column re-
ports the radius (upper boundary), density, rigidity, viscosity and rheology relative to the
indicated layer. The parameters in blue are those which were varied in the experiments:
the lithospheric thickness, d;, which can assume the values 90, 110, 130 and 150 km, the
viscosity of the SUM, nsyas, which can assume the values in a range included between
5.0 -10'® and or 1.0 - 10*° Pa - s, and the rheology of the mantle, which could be set by
choosing between the Maxwell (Max) and the Andrade (And) model.

e “Andrade”: SUM; DUM, and LM are described by Andrade rheology. Andrade

parameters are set to a = 1/3 and ( = 1 respectively.

e “Andrade+Maxwell”: Andrade’s rheology describes the SUM, while the rest of the

mantle is characterized by a Maxwell’s rheology.

In the following, I will use the terms “Maxwell”, “Andrade” and “Andrade-+Maxwell”
to refer to one of these rheological configurations. These models are summarized by the
scheme of Table (4.1), where the entries in blue are those which could change in the
various experiments.

A remarkable weakness of this approach is the low degree of details of the lithosphere.
Of course, especially for loads of small to medium spatial scale, the layering of the
lithosphere is important to correctly assess the SRF. A thinner lithosphere allows the

load to be “more in contact” to the viscous layer of the Earth, which, consequently, lay
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closer to the surface. As we will see later in Chapter 5, this has important consequences
on the magnitude of the observed rates. However, assuming a uniform, compact purely
elastic lithosphere allows us to attribute, if present, any transient or inelastic feature of
the SRF directly to the viscoelastic mantle. I made this choice to focus the attention
on the viscoelastic layers of the Earth’s model rather than on the elastic parameters
of the lithosphere. For this reason, I remark here that the effects of the rigidity of
the lithosphere are not investigated in this Thesis. Instead, the role of the lithospheric
thickness d; is considered since it has direct consequences both on the thickness of the

underlying SUM and on the distance of the latter from the surface.

4.2 ALMA: the plAnetary Love nuMbers cAlculator

In the previous chapter we saw that the existence of closed-form or analytical solutions
for LNs is limited to very few fortunate cases, concerning extremely simple models.
As already argued, these formulae are important to understand the role of the model
parameters, but when it comes to the study of more sophisticated models, numerical
solutions are necessary. This is the case of GIA studies: in this field, a minimum of three
layers is necessary (elastic lithosphere, viscoelastic mantle, fluid outer core) to suitably
model the Earth response (see e.g., Whitehouse, 2018). For this reason, in this thesis
work in which I consider 5-layer Earth’s models, I employed ALMA (Melini et al., 2022) for
the numerical computation of LNs. In this section, I briefly illustrate the ideas behind

this program, also showing and discussing some out the outputs obtained.

4.2.1 Some words about ALMA

In 1974, W. Peltier introduced the “Viscoelastic Normal Modes” method (Peltier, 1974).
For a basic introduction about this topic, let’s consider a layered incompressible vis-

coelastic planet subject to an impulsive d-like load: once again, we seek for the solutions
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at the surface of the vertical and horizontal components of the displacement field and the
incremental potential. To do so, as I have shown in Section 3.3, that through the appli-
cation of the correspondence principle, one can solve the corresponding elastic problem

in the Laplace domain. The solution vector z(s) = (41,92, 75)” reads:
2(s) = (P1A(s)J) (PyA(s)J) ' b, (4.1)

where J is a matrix that accounts for the BCs at the CMB (e.g., Sabadini et al., 2016),
b is the vector containing the loading or tidal BCs (see Eqgs. 3.38 and 3.39), and

A(s) = T[] Yilrisr, s)Y i (ris) (4.2)

with N being the number of layers in addition to the core, 7y is the radius of the interface
between the (k — 1)-th and the k-th layer, with r < ... <ry, r =7, and ry41 = 7. and
rn+1 = a is the planet radius (Melini et al., 2022). The similarity between Eq. (4.1) and
Egs. (3.88), (3.47) is clear: these formulae express the propagation of the solution from
the centre of the planet to the surface, accounting for all the BCs between each internal
interface. For the Kelvin model, this method allows to find a solution that simultaneously
respects the BCs at the surface and does not diverge at r = 0, while for the two-layered
fluid planet, the solution accounts for the presence of a density discontinuity. However,
seen the small number of layers (one and two respectively), a formal definition of the
propagation matrix was indeed not necessary. Here, by means of A(s), the solution is
propagated from the fluid core, whose BCs are imposed through the interface matrix J,
to the outer layers, up to the surface, where the BCs are set via b.

From the solution of Eq. (4.1), one can obtain the LNs in the Laplace domain:

hin(s) = %an@, (4.3)
I(s) = %T)n(s), (4.4)
Fn(s) = — (1 + ;n—ggén(s)) . (4.5)
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Then, using Cauchy’s residue theorem, we can recast the last three equations in the

following form:

M .IV

~ __E n,k

Tn(s) =, + 5 P (4.6)
k=1 n

where 7,(s) is any of the three LNs, xZ is the corresponding elastic limit, x}f i and M are
the viscoelastic components of LNs and the number of viscoelastic normal modes respec-
tively, and the s® are the (real and negative) roots of the secular equation Det(PyA(s)J) =
0 (see, e.g., Melini et al., 2022). In the time domain the previous equation reads (as pre-

viously presented in Section 3.3):
M
wa(t) = 2Bo(t) + H(t) Y ) e (4.7)
k=1

Unfortunately, the application of this model gets increasingly difficult as the planet
layering becomes thinner and/or when more realistic rheologies are employed (more
details can be found in Melini et al. (2022), Spada (2008), Spada and Boschi (2006)).

The calculation of the LNs for the Earth’s model of interest of this thesis was per-
formed with ALMA, the plAnetary Love nuMbers cAlculator (Melini et al., 2022; Spada,
2008), a program based upon the Post-Widder formula, that represents an alternative
to the VNM method. However, for the purpose of this thesis, by courtesy of my co-
supervisor Dott. D. Melini, I used a newer version of ALMA, still under development. This
new version implements the so called “Collocation Method”, introduced by Schapery
(1962a,b), which is based on an approximation of the multi-exponential form of LNs

(3.59):
x(t) = 2¥5(t) + =V (1), (4.8)
where each component of *V () shall be written as
oV (t) = i ae Vi (4.9)
i=1
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where the a; coefficients are numerically determined to minimize the misfit between z*V

and 2V, and where the number of n terms and «; are fixed a priori (Mitrovica and Peltier,
1992). Thus, differently from the previous versions of ALMA, whose output consisted in
Real and Complex LNs, with the collocation analysis the results are the elastic and
viscoelastic parts of the LNs for a set of selected time steps. As we will see later, this
form of LNs greatly facilitates the implementation of the convolutions that I will present

in Section 4.4.

4.2.2 Computing the Love numbers with ALMA

In this section I present the LNs of some Earth’s models used to obtain the results pre-
sented in the next chapter. Here I consider the standard form of LNs (k, (), h,(t), 1,(t))
in the time domain, since for the aims of this thesis, showing their evolution through
time at each harmonic degree could help in the interpretation of the final result presented
in the next chapter. Even if the full response to a particular input load is to be obtained
through the SRF, we can foresee its main features (in general terms, at least) already

from the time evolution of its LNs.

General features of Love Numbers in the time domain

Figure 4.1 shows the LNs k,(t), h,(t), and [, (¢) in the time domain for the “Andrade”
configuration with ngyy = 5.0 - 10 Pa - s and d; = 110 km. The purpose of this
figure is showing the general features of time domain LNs. With the exception of higher
degrees LNs (n > 400, third row), we can distinguish three phases: an initial one,
characterized by a constant value, followed by a transition that leads to a third and final
phase, characterized again by a constant behavior. The initial and final phase are called
“elastic” and “fluid” regimes, respectively. Basically, since the model has viscoelastic
layers, if the characteristic time ¢ of the perturbation is too short, the model will respond

in an elastic way (elastic regime). On the contrary, on sufficiently long time-scales, the
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Figure 4.1: LNs h(t), k(t), l(t) of the “Andrade” configuration with SUM vis-

cosity nsyy = 5.0 - 101 Pa - s and d; = 110 km for various values of harmonic degree n.
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model exhibits a fluid behavior (fluid regime).

On the other hand, for high harmonic degrees (n > 400, third row), it seems that the
fluid limit coincides with the elastic one. It is important to recall that each harmonic
degree is connected to a spatial scale. Lower degrees are associated to longer wavelengths,
while larger degrees are connected to more local features. Since the first 110 km of
the Earth’s model are composed by an elastic lithosphere, we can expect that all the
harmonic degrees exceeding a certain value, will only “see” this layer, exhibiting thus the
characteristic constant trend represented by the elastic limit value. Similar results were
found in Boughanemi and Mémin (2024), who considered an elastic lithosphere 100 km
thick. This fact is confirmed also by a Rule of thumb known as “the Jeans rule” Jeans

(1923), that relates the spatial scale A (or wavelength) to the harmonic degree n:

2ma
A= ——— 4.10
n+1/2° (4.10)

where a is the radius of the planet. With A set to 110 km, it turns out that n ~ 360.

Effects of the rheological law

Figure 4.2 scopes the role of the mantle rheology on LNs h(t), k(t) and [(t). The three
configurations presented in Section 4.1 are considered: “Maxwell” in the first row, “An-
drade” in the second and “Andrade+Maxwell” in the third. I chose to plot the LNs
of degrees 20, 30, 40, 80, since they should reflect contribution mainly due to the mantle
layers. By comparing each row, we should not be surprised by the similarity of the
curves obtained for the different rheological configurations. The main differences be-
tween them, especially between “Andrade”, “Andrade+Maxwell” and “Maxwell” occur
during the elastic phase and the “transitory” phase (hereafter, the term “transitory” is
used to describe the phase in between the elastic and fluid regimes, and it has nothing
to do with the rheological “transient”). By a careful examination, it is possible to see

that Andrade’s model have a shorter elastic phase, that with respect the Maxwell one,
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Figure 4.2: LNs h(t), k(t), I(t) of the three rheological configurations
“Maxwell” (first row), “Andrade” (second row) and “Andrade+Maxwell” (third
row). The lithospheric thickness is set to d; = 110 km and the viscosity nsyy =
1.0 - 102 Pa - s. The models with Andrade’s rheology in the SUM have a slightly
smother transition between the elastic and fluid regime. Although the differences seem
negligible, I remark that the time axis is logarithmic and that the time-scales of interest

of the tests shown in the next chapter are of the order of 1073,1072 kyr.
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starts immediately (even if slowly) to evolve. Basically, we see that while the Maxwell
configuration is still in its elastic regime, the Andrade’s ones are already in a anelastic
stage, which, in principle, should be responsible of the transient phase that we will see

in the SRF. This is more evident in h(t) and k(t) than in I(t).

Effects of Viscosity

As we can see from Figure 4.3, the effects of viscosity on LNs are extremely evident. The
shape of the curves remains the same, but the transition between the elastic and fluid
regime is shifted in time: lower viscosities mean earlier transitions. The reason is easily
said: changing the magnitude of mantle’s viscosity means modifying the relaxation time
of the model. Less viscous models will start flowing earlier. Except from this, viscosity
does not cause any other significant modifications. However, as we will see later, this

variation is the one that produces the most evident consequences in the SRF.

Effects of Lithospheric Thickness

The sensitivity of LNs to the thickness of the lithosphere d; is considered in Figure 4.4.
The values accounted are d; = 90 km, 110 km, 130 km and 150 km. It is important to
remark that, differently from the other cases presented earlier, in this one the total mass
of the Earth’s model changes, since the lithospheric density is kept constant. However,
these results appear quite interesting: the elastic limit does not change significantly
following a variation in the lithosphere’s thickness, while this is not the case for the fluid
limit, that exhibits different values. This finding is true for the LNs h(t) and k(t), while
[(t) does not seem to be very sensitive to the lithospheric thickening. To explain this
trait, I could speculate that, as regard the horizontal displacement, Jean’s rule may be a
little different: even the shallowest model considered (d; = 90 km) is already too thick to
allow these displacements to be sensitive to any other parameters. Another feature that

we can appreciate concerns the amplitude of the transitory phase: as the lithosphere
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Figure 4.3: LNs h(t), k(t), I(t) of “Andrade” model, with lithospheric thick-

ness d; = 110 km for different values of ngyar. More precisely, ngiar = 5.0-10'% Pa-

s in the first row, ngyy = 5.0- 1012 Pa - s in the second and ngyy = 1.0-102°Pa - s in the

third. Here we can appreciate that the viscosity “shifts” (in time) the transition between

the elastic and fluid regimes.
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width increases, the gap between the fluid and elastic regime diminishes, making the
value of the fluid limit more and more similar to that of the elastic one. In other words,

thicker lithospheres make the Earth’s models more elastic and less viscous.

4.3 Surface response functions

The calculation present in this section follows Spada et al. (2003). For more details, the
reader is referred to the book "The theory behind TABOO” distributed with the code
at https://github.com/danielemelini/TABOO.

In mathematics, given a linear differential operator D = D(z) acting on the collection
of distributions over a subset ) of some Euclidean space R", a Green’s function I' =

['(x, s) at the point s in Q corresponding to D, is any solution of
DI'(z,s) = 0(z — s), (4.11)

where 0 denotes the Dirac’s delta function. More generally, we can see the GF as the
response of a system to a unit impulse at a certain time ¢t = ¢’ (Boas, 2006).

In the scope of the surface load problem, the GFs express the response (in terms of
a certain observable, such as the displacement field) of the Earth’s model to a impulsive
unit load. Through a convolution with a suitable function that describe the load evolution
(i.e., the “Load Function”) , it is possible to obtain the so called “Surface Response

Function” (SRF). In other words:

SRE(7,t) = (T ® L£)(7,t) = /_ T / Tt = )L ) (4.12)

where 7 = (6, ) is the point at which the SRF is evaluated, I' is the GF, L is the load
function describing the load geometry and history, v is the angular distance between

the impulsive point load of the GF and ~, and the |

stands for the integration over
earth

the Earth’s surface. The SRF is the final product of the calculations, that includes all

the information regarding how the Earth’s model responds to the load evolution. In the
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following, we will see how to obtain a SRF for a compensated disc-shaped ice load, i.e.

a type of load which accounts for the principle of mass conservation (PMC).

In view of the geometry of the problem, to ease the calculations that will follow, we

start by writing the GFs in the following way (Spada, 2003):

T(a,t) = mi 3" 2, (t) Pu(cos ), (4.13)

with the z,, indicating one of the three loading LNs:

7

O(t) + kn(t), I'=TY Geoid height
Tn(t) = hn(t), ['=T" Vertical displacement (4.14)

I(t), I'=TY Horizontal displacement

where in the particular case of the horizontal displacement I remark that it is necessary
to substitute P,(cost) with its derivative with respect to with respect to . Similarly,
we will consider a general load function that can be expanded in complex spherical

harmonics, such as:

. ]- *
L= E LomVom, with L, = yy /ﬁ(”y,t)y am(7)dy (4.15)
Y

nm

being V.., the spherical harmonic function of degree n and order m, and )*,,,,, its complex
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conjugate. In this way, we can decompose the SRF as follows:
SRF(~,t) / dt/ (Wt =)L, t)dA
/ dt/( an t—t) Cos¢> (chm ) Vormr (7 )) a’dy'
S I AP T SECALIRNE) RERTE
~me — 2n + 1 nm o i
~ 5 2nll) >/ W =) Y Lt ) [ Vi () Vs () 7
me . 2n+1 —00 " n'm! o ¥ e o
3 )
_ Ama Zy”mm / T (=) Lo (') At

me 4= 2n+1
= " SREum()Yum(7) .
o (4.16)
where
SRFum(t) = ’ @Z(ZZ fn{; = o

e . . . . . .
and where p, = 2’7?;3 is the Earth’s average density, and * indicates a time convolution.

In this way we have reduced the original 3-D convolution to a simpler 1 — D time con-

volution between the LNs and the Load Function.

From now on, we will assume that the load stems from two contributions:
L(y,t)=Li+ Ly, (4.18)

where the first term, £;, accounts for the variations of the ice load, and £, mimics
complementary water-covered region needed to ensure the PMC. According to Spada

(2024), we have:

Li(y,t) = p'd ()X (1) f(t), (4.19)
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where p’, is the ice density (917 kg/m?), d(v) is the ice thickness, fi(t) is the time
history (a function describing the time evolution of the load), and x*(7) is the ice mask

function

Z, 1, if ~vei
X'(v) = (4.20)
0, otherwise.

As regard L,,(7,t), one can write

Lo(v,t) = p"d”()x"(7), (4.21)
where pv, is the water density (1000 kg/m?), the water mask function is

1, if yew
X“(v) = (4.22)
0, otherwise,

and d"(t), the water thickness, is a variable to be determined in order to ensure the
PMC. For this reason, d“(t) is time dependent and relies upon function f(t).

I remark that this modeling approach is quite basic since during the experiments we
assume that the areas of the two regions - ice and water - do not change and do not
overlap. Now, in compliance with the PMC, for which the average of the load variation

over the Earth surface must be zero,
(L(y, )™ =0, (4.23)

and by switching to the representation in terms of complex spherical harmonics, already

introduced in Eq. (4.15), we can express the Load Function in the following way:
Lom = plfl(ﬂd:z%ynm(’” ) (4'24>

where d are suitable coefficients that account for both the ice and water part of the

Load Function (that is why we have introduced the superscript ) and the PMC:

v —di, - ( ) . (4.25)
Xo00
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By doing so, we are describing the so called “compensated load”. Also, in the latter
equation, d,~and x“ are suitable coefficients of the expansion in complex spherical
harmonics of the ice term d’()x’(7y) and the water-region mask (7).

By substituting this expression into the convolution Eq. (4.16), we can recast it in

the following way:

( ) ( )
U 1
. . . ch(t) -
0 3p" a 0
v,t) = = @) ¢ Vi (7) 4.26
b (O pe%;?nﬁ (t) o () (4.26)
ch(t)
g 1
\ ) \ )
where the time-convolutions are:
ch hE
o (t) = / dt’ ¢ t—t)f (), (4.27)
cr o+ kX

and where U is the vertical displacement SRF, V, and V), are the co-latitudinal and
longitudinal component of the horizontal SRF and G is the geoid height variation SRF.

We will now consider a disc-shaped load: this case is of particular interest, since it
is one of the possible “axis-symmetric” loads. This scenario is schematically depicted by
Figure 4.5. It consists of a disc of half-amplitude o (angle between the centre of the load
and its border, measured w.r.t the geometrical centre of the Earth) over which height d’

is constant, and whose area defines the mask function
1 0<f<q

X'(0) = (4.28)
0 a<f<m.

As a consequence, the complementary mask function of the ocean will be:

XU (0) = - (4.29)
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Figure 4.5: Sketch representation of a compensated disc load of half-amplitude «.

In this circumstance, the independence from the longitudinal coordinate 7 allows us to

access to a sequence of simplifications leading to a description of the SRF in term of

Legendre polynomials, instead of complex spherical harmonics. The details on these

calculations can be found in Spada (2003). The final result reads:

;

U
Vo
1 2%
g

\

)

/

with the term d defined as:

A =

3pi X Jw
0,t) = L
(6.%) e ;Qn—kl
g Poyi(e) — Bii(a)
1+ cosa

§
ch(t)
e (1)
ch(t)

\
if n=0,
otherwise .

1
Vi
Vi

1

)

> P, (cos ), (4.30)

J

(4.31)

where here, for the sake of simplicity, we have abbreviated P,(cos ) by P,(a), and d' is
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Figure 4.6: Load coefficient d** as a function of the harmonic degree n of a disc load

of unit height d* for various half-amplitudes o.

the height of the disc.

In Figure 4.6 the load coefficient d’* is shown as a function of n (from 0 to 1024),
for different half-amplitudes (o = 0°,0.25°,0.5°,0.75°,1.0°). As we can see, the size of
the load determines which harmonic degree (and thus which LNs) will contribute more
to the final displacement. For example, the disc load of o = 0.25° will promote mostly
the coefficients of the harmonic degrees between 200 and 600, so that the SRF will be

mainly sensitive to the LNs at those harmonic degrees.

4.4 Evaluation of the convolutions

To compute the SRF, it is necessary to solve for the time convolutions in Eq. (4.27). To
this end, it is extremely useful to consider their transformation in the Laplace domain,
where they became mere multiplications between the ice history f (s) and the Laplace-

domain LNs. The results, expressed in the time domain and ready-to-use, for a notable
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Figure 4.7: Sketch representation of the Heaviside and the ramp unloading ice histories.

number of ice histories are reported in Spada (2003). In the following I expose, for
the sake of completeness, only the results of the two cases of interest of this thesis: the
Heaviside and the ramp ice histories, represented in Figure 4.7. The following expressions
are taken from Spada (2003). These results, together with the expressions of the SRF
of the vertical displacement, horizontal displacement and geoid height variation were
implemented in my Julia code. Instead, the computation of LNs has been performed

through ALMA.

Heaviside unloading

The Heaviside unloading ice history describes an instantaneous unloading of the ice
mass. For the unloading, we assume that the load was present since ¢ = —oo, and that
at t = 0 kyr it disappears entirely. This kind of model is the most basic possible, but
it can still offer some food for thought. When the information and data about the load
evolution are insufficient, or when we can assume that the time-scale of the unloading is
much smaller than the characteristic time of response of the Earth’s model, this simple

ice history is still largely used (this is the case of ER, for instance). In the time domain,
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the Heaviside unloading fs,(t) and its derivative f,,(t) read:

fuy(t) =1—H(1),

(4.32)
fh¢ =0.
Likewise, one can also define the Heaviside loading ice history fi,(%):
fm(t) = H(t),
! (4.33)
fmr = 0.
Recalling that each LN can be separated into a elastic ¥ and a viscoelastic x} (t) com-
ponent, and that the fluid limit satisfies:
F E xy
— _ T 4.34
of =z zl: o (4.34)
The result of the convolution ¢ (t) and its derivative cj, | (¢) read:
Vv
cn () =a(t) * fr(t :wF—Ht) <xF—i- ii—?esit> )
() ( '¢() ( 2 (435)
Cny(t) = () * fuy(t) = —H()x] e,
while for ¢4 (t) and ¢ép4(t) we have:
Vv
cn(t) = a(t) * fur(t) = H(t) <:1:F—i- ii—'_esit> ,
1 ( +() 2 (436)

Ent(t) = () * fur(t) = H(t)w) et

These convolutions allow to compute the SRF presented in the previous section (Eq. 4.30),

and their time derivatives.

Ramp unloading

The ramp unloading ice history represents a load that melts at a constant rate. In this

case, it is assumed that the load was present at —oo <t < 0, and then, in a time period
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T, it decreases at a constant rate. Finally, for ¢ > 7, it is absent. Thus, the ice history

and its time derivative are:

fr@) =1—=H(t)+ (1 —t/7)[H(t) — H(t = 7)] ,

fr(t) = —(1/7) [H(t) — H(t = 7)] .

(4.37)

Instead, in the case of a ramp loading, the ice grows at a constant rate: the load is
absent for —oo <t < 0, it starts to accumulate at a constant rate for a time 7, and then

remains unchanged for ¢ > 7. The ice history f.1(t) and its derivative f;,(t) are:

fr) = 1= fr(t) = H{) = (L = t/7) [H({) = H(t = 7)] ,

' (4.38)
fer(t) = (/) [H(t) — H(t = T)] .
The convolutions of the previous ice history with the LNs yield:
Cw(t) :hF—
t x/ [t 1 — et
H(t) [2F= — — | -
o152 (5|
t zV 1 —esilt=7)
H(t — Fl-—1)— e
+H(t—7) [m (T > D ] (4.39)
xF 2V (1 esit]
() =—H(t) |— — - --
) <>[T S (-7
F Vo aV(t 7')_
FHE-T) | Y
T ; S; T
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and

t zV 1 — esilt=7)
— - L2 — S
H(t—r7) [x (T 1) S e ] ; (4.40)
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Chapter 5

Results and Discussion

In this chapter I present and discuss the main outcomes of my work. While other
original results regarding rheology and LNs were already shown in the previous chapters,
here I focus the attention on the findings of the experiments I ran concerning surface
unloading. The goal of this section, and the aim of Thesis in general, is to obtain a list
of “guidelines” useful for the recognition of the optimal conditions for the observation of
a transient regime in unloading phenomena. This list could be considered by geodesists
and geophysicists as a sort of “zero-order reference” for setting up a campaign which aims
to detect transient effects caused by natural or anthropogenic unloading. Thus, even if
the focus of the Thesis is the response to ice unloading in Greenland, the conclusions of
this chapter can be extended to any other case studies.

Here I examine how different parameters like depth, thickness, viscosity, distance
from the load, size of the load, or the ice history of the load can enhance (or even hide)
transient responses. From these results, I try to sum up which of the aforementioned
variables plays a major role, and which not. Given the high number of variables, I have
intentionally kept the Earth’s models as simple as possible. Indeed, the introduction of
many Earth’s layers, and thus the increase of the number of model parameters, makes

the interpretation of the results more complicated.
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The results discussed in this chapter have been obtained through a Julia code that
mimics the TABOO “task 2”7 functionality: the code relies upon ALMA for the computation
of an approximate form of multi-exponential Love numbers, and then uses the formulas
obtained in Section 4.3 to compute the SRF of the displacements and the geoid height
variation, as well as their time derivatives. To check the validity of my code, I ran a
comparison test with TABOO (Spada et al., 2011), whose results are presented in Section
5.1. The need of a new code was due to the fact that TABOO does not include, in its native
version, transient rheological models. Still, the code I developed has some drawbacks
w.r.t. TABOO, like the fact that it includes just two type of ice histories (Heaviside and
Ramp), while TABOO implements a total of eight different ice histories. However, for the
aims of this Thesis, this was sufficient to run comprehensive experiments.

The case studies examined are sorted by increasing complexity, but they all refer to
compensated disc-loads. The first experiments concern the case of the instantaneous
unloading of a disc-like glacier: a large ice mass is removed at t(, assuming a pre-existing
condition of equilibrium. This scenario, which could appear extremely simplicistic, is
instead largely used by the scientific community: in GIA studies, to implement ER
(Elastic Rebound) corrections to GNSS records, the ice model representing present-day
ice melting is discretized on a set of disc load with an associate amplitude o and mass
loss Am (Spada et al., 2012). Scoping pro and cons of this approach is instead notably
useful to understand the limit of ER modeling. Then, always considering a disc load,
I have investigated the effects of a “ramp” unloading, i.e., a constant rate unloading,
that is particularly suited to describe present day ice loss. Indeed, many glaciers and
ice sheets around the globe are experiencing negative trends over the years. Usually,
those trends are well described by a ramp with a negative slope, or even by a sequence of
ramps. This evolution is a bit more realistic that the Heaviside one, and we shall see that
it should be recommended when the time period of the unloading becomes significant

(> 10yr).
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Radius (10° m) | Density (kg/m?) | Rigidity (10* Pa) | Viscosity (Pa - s) | Rheology
6.371 2689 0.282 - Elastic
6.281 4430 0.837 10% Maxwell
5.701 4919 2.17 10% Maxwell
3.480 10927 - - Fluid

Table 5.1: Description of the model used to compare my code with TABOO. The model,
described at page 113 of the “Taboo User Guide” (Spada et al., 2003), was originally
designed by Yuen et al. (1982).

Finally, a more realistic case study is presented: the aim of the last experiment is
modeling the Earth’s response in the neighborhood of Helheim Glacier, a peripheral
glacier in South-east Greenland. For this experiment I used a fine grid of ~ 47,000
points representing the evolution of the Glacier from year 2007 to 2022, courtesy of Dr.
V.R. Barletta and Dr. C. Gong. Each grid point, which is associated to an area and a
height loss rate, has been converted into an equivalent disc, and then the contribution
of each disc is computed in two points, representing the location of two GNSS stations,

HEL2 and KULU.

5.1 Numerical benchmark

This section presents the results of the benchmark test done by comparing the output of
my code with those of TABOO (Spada et al., 2004). The tests include two toy-scenarios
describing the time evolution of the vertical displacement and the vertical velocity fol-
lowing two different types of ice history, respectively an instantaneous unloading and a
ramp unloading. These two kinds of ice histories, depicted in Figure 4.7, are the sim-
plest possible: they describe an ice mass that instantaneously disappears at a given time

to = 0 yr, and a mass that is kept constant from —oco < ¢ < 0, then decreases linearly
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between 0 < t < 7, and then is absent for ¢ > 7, with 7 = 3 kyr. The Earth’s model
used for this computation is reported in Table 5.1, and it has been chosen among those
available in TABOO (it was originally introduced by Yuen et al. (1982)). In both cases,
the ice load is a compensated disc, with an angular half amplitude of 1°, whose total ice
height loss is 100 m, and the computations refer to a time window of 20 kyr. These tests
are fundamental to check the validity of the results that will follow.

The outcomes of this test are reported in the following, in Figures 5.1, 5.2, 5.3 and
5.4. Each of them shows, on the left, the results of the computations performed by
my Julia code (red, dashed curves) and TABOO (green solid curve) and, on the right, the
relative differences (output; 4500 —output ;,,..)/output, 4500 From the latter, we can
see that the relative differences are always below ~ 5%. We can also notice, by comparing
the four panels of each figure, representing the output observed at various observation
distances, that they are more relevant underneath and in the proximity of the load, and
they decrease with increasing distance. Nevertheless, it is undeniable that the relative
differences increase with time. However, this does not represent a problem for the aims
of this Thesis, since the typical time scale of the experiments that I present reaches a
range of 100 yr utmost. In this time range the relative differences are even lower than
the aforementioned ~ 5%: this is clearly shown in Figure 5.3 and 5.4, panel (b) (that

zooms panel (a) on the time period (0,1000) yr of the ramp unloading experiment).

5.2 Heaviside unloading experiments

This section is dedicated to the presentation and discussion of the tests ran using a
compensated disc load described by a Heaviside unloading ice history (see Figure 4.7,
(left)). In the following I discuss the role of the rheological law and viscosity of the SUM,
the lithospheric thickness and the size of the load.

111



TABOO — 006 1 TABOO| —
. Julia e Julia e 005 |
/ 0.05 : /
0.04
2 / 0.04 | 2 /
? / sl 8 ’; / = 51) 03 |
% 3| / <]§n.u:s- \_:: L / <]:3
0.02
0.02
By |/
/ 001 | / 001
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (ykr) Time (kyr) Time (ykr) Time (kyr)
(a) Observation distance: 0.1° (b) Observation distance: 0.5°
- - 0.04 F —01 f— -
TABOO
Julia yd Julia / ooos |
s
/ 0.03 o2 r /
/ / 0.006
—03 |
oy . =
E / :1 :E(mz + £ / <13 4
s / = ¥ ot / = o004 |
o1/ /
/ worr =05 - / 0.002 |
af
0 5 10 15 20 0 5 10 15 20 0 5 10 15 2 0 5 10 15 20
Time (ykr) Time (kyr) Time (ykr) Time (kyr)
(¢c) Observation distance: 1° (d) Observation distance: 3°

Figure 5.1: Displacement - Heaviside unloading case. Each box shows, on the left,
the time evolution (from 0 to 20 kyr) of vertical displacement and on the right (in blue)
the relative difference between TABOO and my computations, based upon an ad-hoc Julia
code, at different distances from the centre of the disc load (0.1°, 0.5°, 1° and 3°). For this
experiment, I used a disc load of height 100 m, half-amplitude of 1° and the Earth model
described in Table 5.1. The relative differences tend to decrease with increasing distance.
They remain under the threshold of 1.2% in the first 10 kyr, while from 12.5 kyr they
increase up to 6%. However, for the purpose of this work, which focuses on the Earth’s

response on centennial time scales, I have verified that the relative differences are of

~ 0.1%.
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Figure 5.2: Displacement rates - Heaviside unloading case. Same as Figure 5.1,

but for the displacement rate.
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Figure 5.3: Displacement - Ramp unloading case. Each box shows the time evolu-
tion, in the time range between 0 to 20 kyr, of the vertical displacement (left, green and
red) and the relative differences between my computations (“Julia”) and TABOO’s output
(right, in blue), at various distances from the centre of the disc load (0.1° in the first raw
and 1° and 3° in the other). For this experiment I used a disc load of semi-amplitude
1°, and the Earth’s model of Table 5.1. During the melting phase, between 0 and 3 kyr
the load decreases at a constant rate from a height of 100 m to 0 m. As shown in (b),

in this phase the relative differences are significantly low (< 0.1%). These results show

10 15
Time (ykr)

20

0 5 10 15 20
Time (kyr)

(d) Observation distance: 3°

that the relative differences remain globally below the 1.2% level in the first 10 kyr.
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Figure 5.4: Displacement rates - Ramp unloading case. Same as Figure 5.3, but
for the displacement rate. From panel (b) we can see that in the first 1 kyr, during the

melting phase, the relative differences are significantly low, < 0.15%.
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5.2.1 Role of rheology and viscosity

This experiment is the first of a group of three performed with an instantaneous un-
loading ice history. The aim is understanding the role of rheology and viscosity in the

determination of the displacement and velocity profile. I consider two cases:

e case (a): Load half-amplitude « of 1°. In scale, it could represent a toy-model of

a portion of an ice-sheet (a = 1° ~ 100 km).

e case (b): Load half-amplitude of 0.3°, representing a medium size glacier (o =

0.3° ~ 30 km).

I remind here that, as we have saw in Figure 4.6, the size of the load acts as a “filter”
in the SRF, promoting the contribution of certain harmonic degrees at the expense of
some others.

The results of this test are shown in Figures 5.6, 5.5, and 5.7. In Figures 5.6 and 5.5
the time evolution of the displacement rate is displayed from two different observation
points located at the centre of the load (6, = 0°, left) and at an angular distance of 6, = 1°
(right). The two figures show the response caused by a disc-shaped load of half amplitude
a = 1° and a = 0.3° respectively, that instantaneously disappears at t = 0 yr. Instead,
Figure 5.7 represents the displacement rates as a function of the angular distance from
the centre of the load at the observation time ¢ = 0 yr. The Earth’s models considered
in this experiment include the three rheological configurations reported in Section 4.1
and consider three different values for the SUM viscosity ngyas, namely 5.0 - 1018 Pa - s,
5.0 - 10" Pa - s and 1.0 - 102°Pa - s. As expected, the models including the lowest values
of nsuar (light colors) are those which produce the highest velocities.

The first conclusion that we can draw is that transient models allow to retrieve,
without changing the viscosity profile, higher displacement rates. This fact is consistent
with the findings of Boughanemi and Mémin (2024). The presence of a transient assures

an earlier departure from the elastic regime, as we have observed in the figures concerning

116



6, — 0 6, — 2
20 F —— p—
R T 10 YT
\ —— M, - 1.0E20 Pa s \ —— M 1-1.0E20 Pa's
L 15 SR | L s
> N A 1—T0E20 Pa 4 > S A 1-T.0E20 Pa «
g ~ g 6 ~.
= 10T ~. 2 ~—
S~ _ 4 F —
S M= — — e —
1 1 1 = _I — _ﬁ 2 L 1 T — f — t
0 25 50 75 100 0 25 50 75 100
Time (yr) Time (yr)
o o
A—DM 6,—0 A—DM 6,—2
2.5 r=5.0E1S Pas 1.2 1 T=5.0E18 Pas
2.0 + T 0E20 b s 1.0 b Y 020 P s
£ 15 £ 08 r
B £ 06 ¢
1.0 ’
. = 04|
0.5 | 0.2k
0.0 & 1 1 i 1 0.0 & 1 1 1 1
25 50 75 100 0 25 50 75 100
Time (yr) Time (yr)

Figure 5.5: (TOP) Vertical displacement rates, as a function of time for various
Earth models observed at = 0° and 6, = 2°, for a disc load of half-amplitude o = 1°.
(BOTTOM) Difference between pairs of equivalent “Maxwell” and “Andrade”
models, always as a function of time. From this latter we can see that the configurations
which include the layers with the highest viscosity values (nsya = 5.0 - 101 Pa - s and

(nsuam = 1.0 - 10*°Pa - s) are those which remain distinguishable for longer times.
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function of time.

118



o

a=1, A=50m

2 F Maxwell, n=5.0e18 Pa s
Maxwell, n=5.0e19 Pa s
e Maxwell, n=1.0e20 Pa s
Andrade, n=5.0el18 Pa s
Andrade, n=5.0e19 Pa s
Andrade, n=1.0e20 Pa s
Andrade+Maxwell, n=5.0e18 Pa s
Andrade+Maxwell, n=5.0e19 Pa s
o= Andrade-+Maxwell, n=1.0e20 Pa s

10

Rate (mm/yr)

~_

0 1 2 3 4
0, (decimal degrees)

(a)

5

a=03", A=50m

Maxwell, n=5.0e18 Pa s
Maxwell, n=5.0e19 Pa s
e Maxwell, n=1.0e20 Pa s
Andrade, n=5.0el18 Pa s
2.0 Andrade, n=5.0e19 Pa s
Andrade, n=1.0e20 Pa s
Andrade-+ Maxwell, n=>5.0e18 Pa s
=== Andrade-+Maxwell, n=5.0e19 Pa s
Andrade+Maxwell, n=1.0e20 Pa s

\

0.0 L L L
0.0 0.5 1.0 1.5 2.0

0, (decimal degrees)

(b)

Figure 5.7: Displacement rate profiles. Panels (a) and (b) display the response (as a
function of the angular distance from the centre of the load 6,) to a Heaviside disc load
of initial height h = 50 m and half-amplitude 1° and 0.3° respectively. The green curves
refer to Maxwell models, the orange to Andrade ones, and the red to the Andrade +

Maxwell ones. Different intensities in the colors reflect different SUM viscosities.
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LNs in the previous chapter (Figure 4.2). This fact is largely known in geodynamics but
also in planetary science. For instance, Tobie et al. (2019) argues that using a Maxwell
rheology for modeling the tidal response of the Moon led to an underestimation of the
viscosity. This is because, at higher frequencies, far from those associated to the 1), of
the model, Maxwell rheology underestimates the viscous dissipation. This is true for
tidal loading, but, translated in the framework of surface loading, this means that the
Maxwell system is less prone to start flowing on too short time scales. However, we
must retain that in many cases in geophysics, the viscosity is the main unknown, and its
assessment is the final goal of many GIA studies. Thus, one of the primary strategies
to fit anomalous rates is invoking the presence of low viscosity zones (see, e.g., Barletta
et al., 2018), instead of supposing the presence of a more complex rheological behavior. It
is clear that both approaches can be correct as far as no other constraint on the viscosity
value is available.

From Figures 5.6 and 5.5 (bottom) it is interesting to notice that the models that
produces the most significant differences between the “Maxwell” and “Andrade” config-
urations output are those with higher viscosities in the SUM. Also, as the time increases,
we see that the models with ngyy = 5.0 - 101%Pa - s tend to merge more quickly, while
the other maintain a higher discrepancy for a longer time.

Then, by comparing the two panels of Figure 5.7, we can see that the differences
between the pure “Andrade” model (orange) and the mixed “Andrade-+Maxwell” model
(red) are negligible, suggesting that the displacements are not very sensitive to the rhe-
ology of the layers below the SUM (for this very reason, the “Andrade-+Maxwell model
was lacking in the previous Figures 5.6 and 5.5, since it made quite problematic the
interpretation of the plot). Instead, the magnitude of the “Maxwell” model is substan-
tially lower, at least below and in the proximity of the load. Another clear difference
is the rate at which the values decrease with distance from the center of the load. In

both cases, at a distance of 1.5°, the magnitude of the rates has been reduced by half
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with respect to the value at 6, = 0°, meaning that in panel a), the rate has decreased by
—6.67(mm/yr) per degree, while in panel b) it is —0.67(mmy/yr) per degree. However,
as we will see in Section 5.2.2, this fact is ultimately due to the thickness of the elastic

lithosphere w.r.t. the size of the load.

5.2.2 Role of the elastic lithosphere thickness

Figure 5.8 displays the vertical displacement rate as a function of the angular distance
from the centre of the load. Each color refers to a different model: “Maxwell” (blue),
“Andrade” (red), “Andrade + Maxwell” (purple), while the four shades refer to different
thicknesses of the lithospheric layer. For this plot, the viscosity of the SUM was set to
5.0-10YPa - s. As anticipated before, the thickness of the lithosphere influences the way
in which the rate decreases with the distance from the load. From the physical point of
view, thin lithospheres can produce higher rates in the proximity of the load, because
the influence of the underlying SUM is more relevant, being closer to the surface. From
a formal perspective, this is due to the way in which the load deformation coefficients
and the LNs mix together. In this case, I have kept fixed the load size, while the
LNs varied since the lithospheric thickness changed. As we saw in Figure 4.4, thicker
lithospheres produce “more elastic” LNs, meaning that the effects of the lithosphere
were more significant. If we instead keep the same model and increase the dimension
of the load, we see (always with the aid of Figure 4.6) that the load coefficients tend
to magnify the role of the lower degree terms, i.e., the LNs that influence the most the
analysis become the low degree ones, those that can sense the large-scale structure of the
Earth most. To sum up this paragraph, we could say that the larger the load extension,
the more it will be sensitive to the deeper structure of the Earth’s model.

To better visualize this result, I made the second panel of Figure 5.8, reporting the
very same results but with each curve normalised by its maximum value (that corresponds

to the value at 6, = 0°). Here it is clear that the profiles corresponding to the models

121



O{ZO.SO, A:50m Time = 0.0 yr

1.5
Maxwell, d=90.0 km
Maxwell, d=110.0 km
e Maxwell, d=130.0 km
Maxwell, d=150.0 km
Andrade, d=90.0 km
Andrade, d=110.0 km
10k Andrade, d=130.0 km
C Andrade, d=150.0 km
= Andrade-+Maxwell, d=90.0 km
E Andrade+Maxwell, d=110.0 km
Andrade+Maxwell, d=130.0 km
£ Andrade-+ Maxwell, d=150.0 km
O
=
=]
& o5
0.0 L L L
0.0 0.5 1.0 1.5 2.0
0, (decimal degrees)
(a)
°
a=03, A=50m
1.0
0.8
=
=)
~~
§ 0.6
=
5}
=
=}
X
0.4 Andrade, d=110.0 km
Andrade, d=130.0 km
Andrade, d=150.0 km
Andrade+Maxwell, d=90.0 km
Andrade+Maxwell, d=110.0 km
Andrade+Maxwell, d=130.0 km
0.2 + Andrade+Maxwell, d=150.0 km ~
L L 1

0.0 0.5 10 15 2.0
0, (decimal degrees)

(b)

Figure 5.8: a) Displacement rate profile of the three rheological configurations for
different values of the Lithospheric thickness d; = 90, 110,130, 150 km; below, panel b)

shows the same trend but normalized w.r.t. the maximum of each profile.
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with thinner lithospheres are those which decay more rapidly with the distance from the
centre of the load. Again, we can conclude that in this case the lithosphere works as a

low-pass filter: the thicker it is, the more the high frequencies of the SRF are cut out.

5.2.3 Role of the disc-load size and mass

The size of the load is an important parameter in surface load problems: as a rule of
thumb, it is generally assumed that the Earth’s response is mostly driven by those layers
that stay at depths comparable with the spatial extent of the disc load.

To test and verify this statement, I plotted the displacement rate as a function of the
half-amplitude of the disc load (i.e., the load size) for different observation points. These
plots and all the other presented from now on until the end of this section, report the
rates observed at time ¢ = 0 yr, the instant right after the disappearance of the ice load.
The first set of results are shown in Figures 5.9 and 5.10, which report the comparison
between “Andrade”, “Maxwell”, and “Andrade” and “Andrade+ Maxwell” respectively.
The conclusions we can learn from these plots are twofold: first, the displacement rate
produced by the different rheological configurations are significantly different mainly
below and in the proximity of the disc load, that is when a > 6,; second, that once we
fixed the Earth model and the observation point, there exists a load size (and mass) that
maximizes the displacement rate. For example, consider panel (a) of Figure 5.9, which
displays the case of an observer placed (hypothetically) at the centre of the ice load, thus
below the ice. The size of the load that maximizes the displacement rate (for this set
of Earth models) in that observation point is around 3° and 4°: this means that if we
enlarge the size of the load over 4°, we would not observe higher rates.

To better address this point, Figure 5.11 shows the displacement rates as a function of
the load half-amplitude and observation point. In the figures we can clearly identify the
presence of the maximum located between 3° and 4°, for 6, = 0°. Notice that when the

load half-amplitude « is smaller than 6, (i.e., the observer is outside from the load), the
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Figure 5.9: Displacement rates as a function of the angular distance from the
centre of the load. Comparison between the Maxwell (blue) and Andrade (red) models.
The different intensities of colors refer to various viscosities of the SUM (5 - 10 Pq - s,
5-10%Pa- s, 1-102°Pa - s). One can notice the presence of a maximum whose location
changes depending on the observation point. Also, it appears clear that the differences
between the pairs of rheologies are enhanced when o > 6,, i.e., when the observation

point is inside the area of the load.
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Figure 5.10: Displacement rates as a function of the angular distance from

the centre of the load. Same as Figure 5.9, but here the comparison is between the

“Andrade + Maxwell” (purple) and “Andrade” (red) models.
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Figure 5.11: Displacement rate as a function of the ice load size and observation
distance 6,, for different lithospheric thicknesses (columns) and viscosities of the SUM
(rows). Here I considered the “Andrade” configuration. The pattern is the same in all
the six panels, confirming that for a < 6, the rates are lower. Small values of viscosity
and lithospheric thickness enhance the magnitudes of the maxima. It is interesting to
notice that, for very large loads, the rates are extremely similar, independently from the
setting of the lithosphere and the SUM. This reflects the fact that such large loads would
be primarily influenced by the deepest layers of the Earth, which in these experiments

are identical in every model.
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rates are minimal. Also, the figure investigates the effects of the lithospheric thickness,
since on the right, we have the output to a model with d; = 90 km, and on the left, a
similar model, but with a lithospheric thickness d; = 150 km. The difference between
the two figures are subtle, but with a little effort one can see that, in case of a thicker
lithosphere, the maximum rates are attained for a narrower range of load half-amplitude.
Once again, this is due to the low-pass filter effect of the lithosphere.

Figure 5.12 was made along the same line of the previous one, but here, for the
same lithospheric thickness (d; = 110 km) and SUM viscosity (5.0 - 10!8Pa - s), since
the comparison is between the three rheological configurations (“Maxwell”, “Andrade”,
“Andrade + Maxwell”). While “Andrade” and “Andrade + Maxwell” produce almost
undistinguishable results, we can instead notice some difference with the “Maxwell” one.
It seems that the use of Maxwell rheology has an effect similar to those observed when
the lithosphere thickness is increased: smaller rates at the margins around o ~ 6, and
the maxima occupy a reduced portion of the plot.

Finally, in Figure 5.13 I plot the differences between the expected rates of equivalent
models having different rheologies in the SUM: “Andrade” - “Andrade + Maxwell” and
“Andrade” - “Maxwell” respectively. The idea behind these plots is highlighting where,
for a given disc size, the two models show their most significant differences. As regard
the first columns of plots, showing the result of “Andrade” - “Andrade + Maxwell” for
various values of the SUM viscosity, we notice that differences tend to diminish with in-
creasing observation distance 6,, but they increase with larger disc load size. The other
column on the right shows the result for “Andrade” - “ Maxwell”. Here the biggest

differences are located around the area of the maximum rates.

To end this section, I summarize the main results [ have obtained:

e The main difference between “Andrade” and “Maxwell” configurations in the dis-

placement rate occur in the early stages of the experiment, right after the disap-
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Figure 5.12: Displacement rate as a function of the ice load size and observation
distance 6, for different rheologies of the SUM. Here we see clearly a feature that could
be appreciated also in Figures 5.9: with equal settings of the models, Andrade’s maxima
fill a larger area than the Maxwell one, suggesting, once again, a greater predisposition

to the bending.
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pearance of the ice load. With increasing time, these differences tend to vanish.
I thus conclude that, with equal elastic and viscoelastic model parameters, the
magnitudes of the accelerations differ, and that those produced by the “Andrade”

configuration are greater than those expected from the Maxwell one.

Since the early stages of deformation, the size of the load controls which Earth
layers will contribute more to the determination of the output rates. Loads of
small dimension will be mainly affected by the flexure of the lithosphere, while

those of larger size will sense also the deeper viscoelastic layers.

The lithosphere acts like a low-pass filter: the thicker it is, the more the signal

flattens and spreads out.

Viscosity and rheological law have similar effects, increasing or decreasing the ex-

pected rates.

Observation points below the load are those in which it is possible to appreciate
the greater differences among the model predictions. As we move away from the

border of the load, these discrepancies tend to diminish.

5.3 Ramp unloading experiments

The second set of experiments considers a compensated disc load with a ramp ice-history:

for —oo <t <0, the ice load is kept constant and its height is A, then, from 0 <t < T,

it is turned off at a constant rate and finally, for ¢ > 7, where 7 > 0, the load is absent

(see Figure 4.7, right). This type of ice history is certainly more “realistic” than the

Heaviside one. In general, glaciers and ice sheets experience periods of accumulation and

ablation of various time scales. The shortest one is the seasonal signal, characterized

by a phase of mass accretion, during the winter season, followed by a phase of mass

loss, in summer. If we enlarge the observation time over the years, we would notice
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that the seasonal variation is superimposed to another signal with a lower frequency,
which is generally referred to as the “trend”. The ramp ice history is suitable for both
describing one of the two parts of the seasonal signal and the trend. However, since I did
not expect to find any appreciable difference between elastic, viscoelastic or transient
models over time periods smaller than & a year, for these tests I considered only ramp
histories whose length 7 is of the order of ~ 10! yr and ~ 10? yr. These ramps aim at
being representative examples of the mass losses that many ices around the world have
experienced during last century. Also the extent of the load, that has a half-amplitudes
of 0.3°, corresponding to a radius of about ~ 30 km, symbolizes a medium-size glacier.

The first target of this experiment is understanding if, over a time-window comparable
with those of GNSS records, transient deformations can be significant. The second
purpose is understanding the role of the ramp length, to figure out which impact it has
in the occurrence of transient deformations.

The Earth’s models considered here are the same as in previous section, plus some
“elastic” models (in green in the plots), whose density and rigidity layering is identical to
that of the viscoelastic counterpart. These model serves as a reference to better quantify

the amount of viscoelastic contributions predicted by the other models.

5.3.1 Role of the Ramp duration

The first set of tests considers a disc load of half-amplitude 0.3°, that, over a variable
period 7, loses mass with a constant height decrease of 10 m/yr. This rate, quite large,
has been chosen as an upper limit for the ice loss, a sort of best case scenario: it suffices
to know that in the case of Helheim Glacier, that will be presented in next section, the
maximum height loss effectively accounted by the model used in this Thesis is around
7m/yr. Thus, the results shown in the following must be read in a qualitative way rather
than a quantitative one: once again, the aim is understanding how the combination of

parameters regulate the final result.
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Figure 5.14: Vertical uplift rates for different observation points (6, = 0°, 0.3°, 0.5°,
1°). The legend with the models description is reported in the first panel of each group.
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In Figure 5.14 the results of a ramp unloading of 7 = 30 yr and 7 = 100 yr are
shown, for several Earth models. Red curves refer to “Andrade” configurations, blue to
“Maxwell” ones, and the green ones are the Elastic models, that constitute the reference
models. The intensity of colors is related to the viscosity values, while the type of
curve (dashed or solid) refers to the lithosphere thickness. The motivation behind this
particular choice of models is easily said: my purpose was to investigate how “softer”
and “harder” models respond to ramp unloading. The “harder” ones, those indicated
by dashed curves, have a very thick lithosphere (150 km) and high value of viscosity
(1-10?° Pa-s), and are also those that produce results more similar to the elastic response,
characterized by a constant rate during all the unloading phase 0 < ¢t < 7, and the
instantaneous achievement of the equilibrium right after the disappearance of the load,
exhibiting thus a vanishing velocity for ¢ > 7. On the other hand, the models outlined by
the solid curves, especially the lightest, those with the lowest viscosity value, 5-10'® Pa- s,
are those which mostly differ from the elastic results, showing increasing rates during all
the duration of the ramp.

To compare the two panels (a) and (b) of Figure 5.14 it is important to remark that,
while the ice loss rate is the same, 10m/yr, the total height loss is extremely different:
for the 30 yr long ramp, it is 300 m, whilst in the other case is 1000 m. For this reason,
the uplift rates at the end of the unloading phases are very different. In panel (b), the
presence of a longer ramp allows to better appreciate, especially for the “softer” models,
an initial moment of decreasing acceleration, that later settles around a constant value.
A common characteristic to both panels is the fact that the rate drop at t = 7 decreases
in magnitude, with the distance from the centre of the load. Also, the magnitude of this
drop seems to be independent from the ramp length.

As regard the differences between the pairs of Andrade and Maxwell models, during
the unloading phase, while (¢ < 7), they have an initial stage in which they increase,

until they adjust on two parallel paths; then, at ¢t = 7, the disappearance of the load
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causes an abrupt decrease in the rates. In this second phase, the softer models, those
with n = 5 108 Pa - s, show very little differences between each other, while the ones
with n = 5- 10 Pa - s reflect a more visible discrepancy, especially right after the sudden
drop. This suggests that, at least for this configuration of the Earth model and load
size, lower values of viscosities in the SUM do not help in recognizing the presence of
any transient pattern; instead, if we considered more viscous SUMs, the discrepancies
between Maxwell and Andrade arise more clearly. In the next subsection 5.3.2 T will
investigate with more detail the role of the SUM viscosity. However, it is also true that
higher values of viscosity produce trends that are very similar to the elastic ones, making
the identification of any inelastic contribution more difficult.

To conclude, we can see that the presence of a thicker lithosphere, as suggested by
the dashed models, would make it more difficult to distinguish between “Maxwell” and
“Andrade” configuration, limiting the influence of the viscoelastic SUM on the resulting

uplift rates.

5.3.2 Role of the shallow upper mantle viscosity

The previous tests suggest that some values of the SUM (shallow upper mantle) viscosity
intensify the differences between the rates produced by the “Maxwell” and the “Andrade”
configuration. From Figure 5.14, it appears that these discrepancies are maximized by
high values of viscosity. To understand the role of the viscosity, I ran a set of tests
using different ramp lengths (30, 100 yr), considering a wider range of viscosities for the
SUM. The results, presented in Figure 5.15, refer to the rates observed at the centre of
the load (6, = 0°). The first plot on the left (in blue) represents the output rates from
Maxwell configurations, on the right (in red) we have the Andrade ones and lastly, below,
(in green) the differences between the two. It is clear that, as previously anticipated,
higher values of viscosity increase the difference between the two models. Moreover, these

discrepancies increase with time: at the very beginning of the ramp, we can clearly see in
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the “Andrade-Maxwell” plots that all the curves assume similar values, and then, only
after some time, they start to diverge. Nevertheless, it is true that even if we increase
the discrepancies by increasing the viscosity, we are also making the model to be more
elastic: thus, the amount of viscoelastic contribution will decrease, making it difficult to
recognize them.

The main outcomes of this section are:

e Viscosity has a double action. On one hand, high viscosity values help to distinguish
between “Maxwell” and “Andrade”, but on the other hand, they suppress the
viscoelastic contribution, making the trend much similar to those produced by the

elastic models.

e A long unloading phase gives the model the time to manifest possible peculiar
features. By comparing the two group of plots in Figure 5.14, it is clear that, in
the case of ramp length 7 = 100 yr, the Maxwell and Andrade’s output have more
time to develop their discrepancies and, at the end, their differences have a greater
magnitude w.r.t. the case of 7 = 30 yr. Of course this is permitted by the fact that
the melting rate of the ice mass is constant, and that, at the end of the day, the
net mass loss is extremely different in the two cases, so we are basically comparing

two ice masses of different size that melt at the same rate.

e Differently from the previous experiment, the presence of an ice history that evolves
gradually does not allow any sudden changes, making it more difficult to infer any

transient features.
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5.4 A case study: the Helheim glacier

| Helheim Glacier

Figure 5.16: Helheim Glacier.
The two GNSS stations HEL2 and
KULU are evidenced by green la-
bels.

The Helheim glacier (Figure 5.16) is one of the largest
marine terminating outlet glaciers in Greenland: it is
located in the southeast and it has a total area of ap-
proximately 50,000 km? . The interest toward this
glacier is due to its high rates of solid ice discharge,
as well as its wide-ranging dynamics, that showed
episodes of multi-annual retreats and re-advances in
the last 20 years (Ultee et al., 2022). The first of them
began between 2003-2005, when the glacier started
showing a dramatic retreat (Williams et al., 2021).
According to Williams et al. (2021), Helheim is now
more vulnerable than at any moment since the Little
Ice Age, meaning that the ice loss rate could reach
a tipping point capable of pushing it into a new dy-
namic state. The two nearest GNSS station to the
glacier are HEL2 (lat : 66.4012; lon = —38.2157) and
KULU (lat = 65.5793; lon = —37.1494); the former
is located in the proximity of the ice, whilst the latter

is around 100 km distant. Thus, HEL2 is expected

to be extremely sensitive to Helheim dynamics and mass balance variation: here the

local signal of the glacier is superimposed with the elastic uplift of the surface due to

the ice sheet and the viscoelastic response due to GIA. If the Helheim mass variations

are able to trigger a transient response in the Earth, this station should be close enough

to detect them. On the contrary, KULU is too far to be influenced significantly from

Helheim glacier, but should report a signal of elastic rebound (ER) and glacial isostatic

adjustment (GIA) similar to those observed at HEL2. The aim of this last test is under-
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standing whether it is possible, under model conditions that try to mimic the structure of
the Earth in the region of Helheim, to discern any transient signal during an observation
time-period comparable with the one of GNSS records (~ 15 yr).

The ice model (courtesy of Dr. V. Barletta and Dr. Cheng Gong) consists in 46,434
disc elements of variable area, each associated to a rate of height variation (m/yr). The
rates refer to a 15-year period, from January 2007 to January 2022. Among those used
in this Thesis, this ice model is the more realistic. Here, the Earth’s models considered
have always a lithospheric thickness of 110 km, representative of the Helheim area.

The first experiments were performed considering that the ice history of each disc was
represented by a Heaviside unloading. With respect to the typical time scales of GIA,
103 yr, a deglaciation of 15yr can be considered, in first approximation, instantaneous.
Of course, this is not what is happening in Helheim, but this first experiment aims at
evaluating the response of the Earth’s models to a sudden change of the surface load. To
apply the results of this test to a real scenario, one simply needs to rescale the amount
of lost mass in order to represent a surge event or an episode of anomalous melting.
This adjustment will affect only the magnitude of the resulting displacements, without
altering their relative differences or temporal evolution. The results are in Figures 5.17,
5.18, 5.19, which show displacement rates obtained with a SUM viscosity of 5.0-10'® Pa-s,
5.0-10¥Pa - s and 1.0 - 10%° Pa - s, respectively. The difference between Figure 5.17 and
the other two (Figures 5.18 and 5.19) is noteworthy: such a low viscosity in the SUM
allows the “Maxwell” model to assume a trend that is very similar to the Andrade’s
one. On the contrary, the cases in which nsya was set to 5.0 - 10" Pa - s (Figure 5.18)
and 1.0 - 10*°Pa - s (Figure 5.19) exhibit a rate that for the “Maxwell” model is almost
constant. Andrade’s model instead, clearly shows a time dependent decay, that only for
time ¢t > 15 yr assumes a nearly steady state. However, the magnitude of these rates is
quite small. A possible explanation could be that for this very case, a better resolution

in the layering of the lithosphere is necessary to obtain more reliable results.
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Figure 5.17: Vertical rates at HEL2 and KULU stations, and the difference HEL2-
KULU assuming a Heaviside unloading. Earth model with rheological configurations
“Andrade” and “Maxwell”, ngyy = 5.0 - 10 Pa - s. Notice that the y-scale is different

in each plot.
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Figure 5.18: Vertical rates at HEL2 and KULU stations, and the difference HEL2-
KULU assuming a Heaviside unloading. Same as Figure 5.17, but for nsyy = 5.0 -
10 Pa - s. Notice that the y-scale is different in each plot.
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Figure 5.19: Vertical rates at HEL2 and KULU stations, and the difference HEL2-
KULU assuming a Heaviside unloading. Same as Figure 5.17 and 5.18 but for ngyy =
1.0 - 10?°Pa - s. Notice that the y-scale is different in each plot.
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Figure 5.20: Vertical rates at HEL2 and KULU stations, and the difference HEL2-

KULU assuming a ramp unloading. Earth model with rheological configurations “An-

drade” and “Maxwell”, ngyar = 5.0 - 10 Pa - s. Notice that the y-scale is different in

each plot.
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Figure 5.21: Vertical rates at HEL2 and KULU stations, and the difference HEL2-

KULU assuming a ramp unloading. Same as Figure 5.20 but for ngyy = 5.0- 101 Pa - s.

Notice that the y-scale is different in each plot.
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Figure 5.22: Vertical rates at HEL2 and KULU stations, and the difference HEL2-
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