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Abstract

Transient e↵ects in the response of the Earth to surface unloading events is a topic that,

in spite of its first appearance almost fifty years ago, is still a matter of debate in the

geophysical community. Transient patterns have been recognized in post seismic defor-

mation, and their presence as a creep mechanism is observed in laboratory experiments.

However, when it comes to Glacial Isostatic Adjustment, or, more in general, unload-

ing (and loading) events, their presence is hard to identify. The reasons are numerous

as much as the variables that take part in this process - Earth’s rheology and struc-

ture, ice-sheet evolution, size and dynamics, et cetera. Still, recognizing their presence

(or justifying their absence) would represent a significant step towards a comprehensive

understanding of mantle relaxation mechanisms at intermediate time scales.

In this work, I examine the response of several Earth models including layers with

transient rheology. The aim is outlining the most favorable conditions under which we

can expect to observe, through geodetic techniques, transient deformations following

an unloading event. Particularly, this Thesis explores in a detailed way the Andrade

rheology, a transient model that has gained much success in recent years, especially in

the planetary sciences community. Two of the main results of my work are indeed the

recovery of the analytical expressions of the relaxation modulus in the time domain of

the Andrade model and the Love numbers for an homogeneous Andrade planet. The

methods that I developed in the context of the transient Earth’s response to surface

unloading are rather general, so I have been able to apply them also to a set of case
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studies about the response of extrasolar planets to tidal and loading forcings. Part of

this work is presented here as well. To probe the influence of transient rheology, I employ

Andrade’s law in some of the layers of my Earth’s models, notably those which compose

the mantle, and I run some comparison test to evaluate potential discrepancies with

similar Earth’s models that instead contemplated only steady-state rheology (Maxwell)

in their viscous layers. These experiments consider three di↵erent scenarios: the first

two are toy-tests, whose design is kept simple to allow a easy and direct interpretation or

the role of each model parameter; contrarily, the last depicts a more realistic situation,

and employs a high-resolution ice model describing the evolution of Helheim Glacier, in

Greenland.

My findings indicate that fast changes in the load history (i.e., the function that

describes the temporal evolution of the ice load) and the position of the observation

point with respect to the melting masses are parameters of utmost relevance. In regions

characterized by a shallow elastic lithosphere, transient features emerge more clearly, due

to the stronger influence of the underlying viscous layers given by their proximity to the

surface. Moreover, the displacement rates reach the maximum di↵erence from their non-

transient counterparts in the regions right beneath the shrinking load, suggesting that,

in the future, sub-glacial geodesy campaigns may significantly improve the identification

of transient features in the Earth’s response. My work also suggests that there exists a

range of viscosities in which the discrepancies between the surface response produced by

the Andrade Earth’s models and the Maxwell ones are maximized: indeed, small values

of viscosity allow Maxwell models to relax earlier and to produce trends similar to those

of Andrade’s ones, while in case of larger viscosity values, the di↵erences between the

output rates increase. However, assuming larger values of viscosity in the uppermost

part of the mantle makes both configurations more sti↵, and, as a result, the responses

at the surface are extremely similar to their elastic counterpart, and the viscoelastic

contribution is di�cult to recognize. Finally, by comparing the outcomes produced by
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various kinds of ice-histories, it is evident that sudden changes promote the identification

of transient displacements at the surface, whilst in case of slow, progressive ice evolution,

which allows the Earth’s model to adjust gradually, it is not possible to distinguish

any transient regime. However, a noteworthy result of my tests consists in the fact

that even for medium-scale glaciers, the viscoelastic (or anelastic) contributions to the

displacement may be significant already on short time periods (⇠ 15 yr).

These results emphasize the importance of studying transient rheological phenomena.

Moreover, these kind of studies became even more crucial in the context of present-

day climate change. Many ice-covered regions around the world, like Antarctica and

Greenland, are experiencing a rising number of extreme melting events, calvings, and

other important variations that a↵ect the equilibrium between the hydrosphere, the

cryosphere and the geosphere. Hence, the growth both in number and magnitude of

this phenomena may increase our possibility to observe transient signals in the Earth’s

response.
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Chapter 1

Introduction

Understanding the Earth’s dynamic behavior represents one of the most challenging tasks

of modern geophysics (and maybe, also of modern physics). Our planet is a complex

system made of many sub-parts that interact with one another in a non-linear way -

and that is why it is called “Earth System”. For this reason, in latest years, many

fields of geophysics that followed separate paths in the past, have joined up together

to allow a deeper understanding of a broad range of geophysical phenomena. This

is particularly true in the field of Glacial Isostatic Adjustment (GIA), a process that

involves the response of the Earth to the variation of surface masses like ice sheets,

glaciers, and the oceans. This response includes every physical mechanism through which

the planet responds to the redistribution of masses, including sea level (SL) changes,

vertical and horizontal displacement at the surface over a broad range of time scales,

polar wander, changes in the planet’s moment of inertia et cetera.

In this thesis I present the outcomes of my research which concerns an aspect of

GIA modeling: the response of the Earth’s surface to the variation of surface loads.

The interest of the community in surface (and tidal) loads resides in the fact that, as

well as seismic waves, they allow us to make hypotheses about the Earth’s internal

behavior, and more specifically they are essential to infer Earth’s mantle viscosity and
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rheology. Seismology o↵ers the chance to understand the Earth elastic behavior that,

yet, represents just a “snapshot”, a part, of the entire response range: in this sense,

GIA provides complementary information that enables us to further understand Earth’s

rheology and dynamics. Ultimately, it is the way in which mantle flows that manifests

Glacial Isostatic Adjustment.

My goal is to understand whether a particular type of deformation, the “transient

deformation”, can be recognized after or during unloading events. Transient deforma-

tions are expected on the basis of microphysical arguments (Karato, 2021), observed in

laboratory experiments (Gribb and Cooper, 1998; Jackson and Faul, 2010), and even in

other geophysical phenomena such as post-seismic deformation (Pollitz, 2005). However,

until now, their role in GIA is not clear, and it has been di�cult to recognize them. The

main reason is because the transient stage happens in between the instantaneous elastic

response and the following constant flow phase, and thus is highly probable that, if ever

present, the transient stage eventually triggered by the end of the last ice age, ceased

long ago. However, present-day Climate Change (CC) could represent a further push

for the study of transient rheology in unloading events. The conclusions of Nield et al.

(2014) further motivate the last claim: in their paper, the authors state that the simul-

taneous presence of low upper mantle viscosity and important on-going ice-mass changes

(likely due to CC) produces displacements that can only be explained by invoking a vis-

coelastic response. Although in this latter example a transient is not strictly necessary

to justify the observed rates, it may be required once one tries to reconcile present day

observations with past rates over longer timescales. Thus, it is reasonable to think that

the unprecedented rise in temperature could lead to a larger number of extreme melting

events, increasing the chance of observing transients in fast-evolving ice-covered regions.

For this reason, in this work, I analyse systematically the role that each variable

(rheology, viscosity, ice history, load size) plays in the modeling of this phenomenon,

starting from toy experiments and concluding with a study of more realistic scenarios
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concerning Greenland. The aim is not finding evidence of transient deformations from

data, rather outlining precisely which are the optimal observational conditions that could

permit to detect them in the field.

The Thesis is organized as follows. Chapter 1 summarizes the state of the art of the

two main topics of my research work, transient rheology in geophysics and the Surface

Loading Problem. The last section is dedicated to a presentation of Greenland as a case

study for the surface loading problem. In Chapter 2, focused on the “Andrade rheology”,

some results of my research on this particular rheological model are presented. This part

constitutes the theoretical basis for the applications that are presented in the following.

In Chapter 3, I present the calculation of Love Numbers for some cases of interest, and it

includes several outcomes of my work that have been published in two academic journals,

concerning respectively the study of “Andrade Love numbers” and the “Love Numbers

of fluid planets”. In Chapter 4, devoted to the “Surface Loading Problem”, I present

the methods I followed to run my tests, including the numerical calculation and analysis

of Love numbers and the calculation of the Surface Response Function. In Chapter 5

the results of the experiments, presented in this Thesis sorted by increasing complexity,

are shown and discussed point-by-point. Chapter 6 shortly draws the conclusions of my

work, also suggesting future research directions.

1.1 Basics of rheology

Rheology is the branch of physics that studies the “flow” of matter, or the way in which

matter is deformed after the application of a stress. This discipline lays the foundations

for modern geophysics, building a bridge between the physical study of matter behaviour

at the micro scale and its consequences at the macro scale (Kennett and Bunge, 2008).

To further study the scope of rheology, the readers are referred to the fundamental books

of Christensen (1982), Ranalli (1995), and Mainardi (2022).
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Examples of well-known rheological models, largely used also outside the field of

geophysics, are:

• Hooke model: the oldest rheological model, the linear elastic body shows an in-

stantaneous deformation ✏ following the application of an instantaneous and con-

stant stress �0H(t) (or, creep test). In one dimension, we can write:

�(t) = µ✏ , with �(t) = �0H(t) , =) ✏(t) =
�0

µ
for t � 0 , (1.1)

where µ is the elastic rigidity.

• Newton model: the simplest mathematical way to describe a fluid body. In a

creep test, the Newtonian fluid exhibits a constant strain rate:

�(t) = ⌘✏̇, , with �(t) = �0H(t) , =) ✏(t) =
�0

⌘
t for t � 0 , (1.2)

where ⌘ is the Newtonian viscosity.

• Maxwell model: A linear combination of the Hooke and Newton models, in other

words, the instantaneous elastic response is followed by a steady state flow:

✏(t) =
�0

µ
H(t) +

�0

⌘
t , for t � 0 . (1.3)

It is useful, for the purposes of this Thesis, to define two basic quantities in rheology:

the creep compliance J(t), that expresses the deformation that the body undergoes after

the application of a Heaviside-type unit stress �(t) = �0H(t), and the relaxation modulus

G(t), that describes the stress response following a Heaviside unit deformation ✏(t) =

✏0H(t). For example, the creep compliance and the relaxation modulus of the Maxwell

body read:

JM(t) =
H(t)

µ
+

t

⌘
, t � 0 ,

GM(t) = µe
� t

⌧M , with ⌧M =
⌘

µ
, t � 0 ,

(1.4)
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Figure 1.1: Deborah Number of some Geophysical phenomena assuming a relaxation

time ⌧M ⇠ 10�1
kyr. This figure is inspired to Figure 1.1 of Sabadini et al. (2016).

respectively, where ⌧M = ⌘/µ is called Maxwell relaxation time. Functions J(t) and G(t)

are also referred to as material functions of the viscoelastic body (Christensen, 1982);

they obey the causality principle and thus they vanish for negative times (Mainardi and

Spada, 2011).

The main reason that makes rheology a pivotal discipline in geophysics is the exis-

tence of a wide range of rheological laws that can be attributed to di↵erent geophysical

materials. Inside the Earth di↵erent compositions of minerals, pressure and temperature

conditions lead to a vast range of rheological behaviours. However, what is interesting,

when we specifically consider the case of the Earth’s mantle, is that it can exhibit various

“types” of rheological behaviour: in seismology, to study seismic waves propagation, it

is appropriate to consider it as an elastic body, to a first approximation; on the contrary,

many other phenomena like Glacial Isostatic Adjustment and polar wander require the

mantle to behave in a viscoelastic way, and eventually, for mantle convection, a viscous

fluid mantle is assumed. This underlines one of the most important features of rheology,

that is its deep interconnection with time scales.
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Time is of paramount importance in rheology (Ranalli, 1995). The propagation of

seismic waves has characteristic times in the interval between 10�4 and 101 s, those of GIA

are traditionally estimated to be of the order of 109÷11 s (i.e., between 10�1 and 101 kyr),

and mantle convection is even slower (see the time scale diagram in Figure 2.1). These

characteristic times must be compared to the relaxation time, ⌧M , of the mantle (also

referred to as Maxwell time), a parameter defined as the ratio between the Newtonian

viscosity ⌘ and the elastic rigidity µ of a viscoelastic material. It gives an indication

on the characteristic time scale on which steady-state behaviour occurs (Ranalli, 1995).

The relaxation time of the mantle is generally considered to be approximately included

in the range between 10�1 and 1 kyr. This means that, on the characteristic time scales

of seismic waves propagation, the mantle is not able to relax, and it is crossed by seismic

waves as it was e↵ectively elastic, while on the other hand, the time and spatial scales

of ice ages are large enough so that the mantle can manifest its viscoelastic features.

Another important time parameter of rheology, is the observation time, ⌧o, that could

be defined as the time scale of the geophysical event, or, also, as the time span in which

a geophysical phenomenon is observed. During the Fourth International Congress on

Rheology, which took place in August 1964 in Providence, Markus Reiner (1964) merged

together the concepts of relaxation time ⌧M and observation time ⌧o to further distinguish

the notions of solid and fluid, introducing the Deborah Number as a useful parameter to

disclose the apparent plurality of the mantle rheology:

De =
⌧M

⌧o
. (1.5)

When the Deborah number is large (De � 1), the material shows elastic (or solid)

features. As reported in Figure 1.1, the field of seismology fits perfectly this condition.

On the other hand, when it is small (De ⌧ 1), considering a steady state rheology for

the mantle is appropriate (as it is done in the modeling of mantle convection). Those

simplifying assumptions are not possible when the Deborah number is De ⇡ 1, that

is when the relaxation time ⌧M is comparable with the observation time ⌧o. In this
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scenario, “transient deformations” gain great importance. The transient, often referred

to as “primary creep” (Ranalli, 1995), is the phase of deformation that immediately

follows the elastic response, in which the strain rate varies with time. Transient signals

have been observed observed in the context of post-seismic deformation: after a large

earthquake, a part of the stress changes induced by the event will gradually be released

through time-decaying deformation. (see e.g., Pollitz (2005); Weiss et al. (2019)).

Through the years, a large number of transient models have been proposed, and one

of the most employed in geophysics, especially for describing Earth’s mantle, is the bi-

viscous Burgers model. The Burgers model, indeed, can account for both a fast transient

response and for a Maxwell-style viscoelastic relaxation on longer timescales, thus being

able to satisfactorily represent the behavior of the mantle in response both to seismic

waves and post glacial rebound (Peltier et al., 1986). However, a drawback of Burgers

model is the fact that it exhibits a discrete relaxation spectrum (Mainardi and Spada,

2011), contrary to laboratory evidence.

Another interesting rheological model which shows transient behavior is that of An-

drade. Its creep compliance reads:

Ja(t) =
1

µ
+ �t

↵
, t � 0 , (1.6)

where µ is the elastic rigidity, and ↵ and � are empirical parameters. This model was

conceived at the beginning of the previous century from the English physicist Edward

Neville Andrade da Costa, in his attempt of describing deformation of metal wires under

a constant tensile stress (Andrade, 1910). The “Andrade law” (1.6) is particularly appre-

ciated for its elegance and conciseness, and its transient features are due to its fractional

power function time dependence ⇠ t
↵.

The Andrade law has been successfully employed to describe the behavior of several

materials, including metals (Cottrell and Aytekin, 1947), silicate rocks (Tan et al., 1997;

Gribb and Cooper, 1998; Jackson and Faul, 2010), poly-crystalline ices (McCarthy and

Castillo-Rogez, 2013), and glass forming materials (Plazek and Plazek, 2021). In his
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empirical stress-strain relationship for the transient “�-flow”, Andrade originally sug-

gested the exponent ↵ = 1/3, but subsequent laboratory investigations have indicated

that values in the range 0 < ↵  1 are indeed possible for some materials (Walterová

et al., 2023). Further studies (Mott, 1953; Cottrell, 1996; Louchet and Duval, 2009) have

attempted to justify the Andrade power law theoretically; in particular, Cottrell (2004)

has developed a microscopic theory that can explain, under certain conditions, the “t
1
3

law of flow” suggested by Andrade (1910, 1962).

During last decade, Andrade model has gained a lot of popularity in planetary science

(see the review of Walterová et al. 2023). An exhaustive list of works employing Andrade

model for the study of satellites and planets is given in Gevorgyan et al. (2020). The

underlying reason of adopting the Andrade rheology for Earth-like planets relies upon

the existence of a power law scaling for dissipation, recognized both in seismic studies

and geodetic experiments (Efroimsky, 2012b). Furthermore, it has been preferred to

the traditional non-transient Maxwell model, having the potential of capturing the in-

elasticity that characterizes high-frequency deformations, such as those caused by solid

tides (Castillo-Rogez et al., 2011; Efroimsky, 2012a; Steinbrügge et al., 2018; Renaud

and Henning, 2018; Bagheri et al., 2019; Tobie et al., 2019). Although Maxwell rheology

is appropriate for describing the relaxation of a planet for forcing time scales of the order

of or exceeding the Maxwell time (i.e., the viscosity to shear modulus ratio), it largely

underestimates viscosity when it is employed to describe tidal deformations (Bierson and

Nimmo, 2016; Tobie et al., 2019; Walterová et al., 2023).

Nevertheless, a drawback that Andrade model inherits from the Maxwell one is the

inability to distinguish between the relaxed and unrelaxed values of the elastic part of

the deformation. To overcome this limitation, more general transient laws have been

proposed, such as the one by Sundberg and Cooper (2010). Nonetheless, the advantage

of the Andrade rheology consists in a reduced number of material parameters, which

makes it more convenient for modeling the tidal response of inaccessible planets for
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which few constraints (if any) on the internal structure are available, as pointed out by

Padovan et al. (2014).

For these reasons, following a renewed interest for transient deformation in Glacial

Isostatic Adjustment studies (Ivins et al., 2020; Adhikari et al., 2021; Simon et al., 2022;

Lau, 2023; Paxman et al., 2023; Pan et al., 2024; Lau, 2024; Boughanemi and Mémin,

2024), I have adopted Andrade rheology for the study of post glacial rebound. The aim

of the work presented here is a systematic investigation of the di↵erences in the velocity

fields generated by Earth models which include Andrade transient rheology, and others

based upon the traditional Maxwell rheology. The ultimate goal is to outline a list of

scenarios in which, through geodetic observations, the presence of a transient response

should be easier to detect.

1.2 The surface loading problem and the sea level

equation

The surface loading problem (SLP) constitutes the physical basis over which the modeling

of Glacial Isostatic Adjustment (GIA) and Elastic Rebound (ER) are built. It is a

classical problem of continuum mechanics, whose formalism was largely borrowed from

tidal studies. From this scientific field indeed, the SLP adopts the formalism of the Love

Numbers (LNs), adimensional coe�cients first introduced by Love (1909) to describe the

deformation of the Earth under a tidal potential.

Before the LNs formalism was introduced, the first attempts to describe the de-

formation of an elastic half-space stressed by an impulsive point load is attributed to

Boussinesq (1885), who addressed this problem at the end of the XIX century (Fung,

1965; Peltier, 1974). In the scope of the “geoelastic” problems in linear elasticity, Boussi-

nesq’s one comes together with two other similar problems, i.e., the Cerruti’s problem

(Cerruti, 1882), which considers the equilibrium of an elastic half-space perturbed by
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a horizontal force (Okumura, 1995), and the Kelvin’s problem (Thomson, 1848), where

the point force is acting inside an infinite elastic space (Lubarda and Lubarda, 2020).

Within the framework of flat half-spaces, the first attempt of describing post glacial

rebound was made by Haskell (1935, 1937). These studies represent pivotal works in

GIA modeling: Haskell assessed for the first time the bulk viscosity of the Earth’s man-

tle (1021 Pa · s; see e.g., Spada, 2017; Whitehouse, 2018), a milestone result in this field.

Haskell model consists in a highly viscous incompressible half-space subject to a sym-

metrical load applied to its surface. He obtained his estimate by applying his model to

the case of the of the Angerman River in Sweden, whose post-glacial uplift rates were

known (Mitrovica, 1996).

As reported by Whitehouse (2018), when Haskell deduced its estimate of the Earth’s

bulk viscosity, the scope of GIA studies was at its beginning: several works were already

published, but they repeatedly missed fundamental elements, like the Earth’s defor-

mation due to the ice loading or the water redistribution, feedback e↵ects such as the

gravity change following mass migration, and also the mass conservation. A complete

and exhaustive historical review is given in Spada (2017) and Whitehouse (2018). Among

these studies, the first one introducing a basic idea of the Sea Level Equation (SLE) was

Woodward (1888), who recognized the importance of the gravitational attraction of the

ice sheet upon ocean water distribution (see Spada and Stocchi, 2007). However, his

work considered a rigid Earth therefore neglecting its deformation in response to surface

loading or unloading (Whitehouse, 2018).

Almost one century later, the SLE was improved by the fundamental work of Farrell

(1972) and its modern formulation that appeared in Farrell and Clark (1976). The SLE

can be considered as the ultimate application of SLP to a self-gravitating, spherical and

layered Earth, accounting for the mutual interaction between surface loads evolution

(cryosphere and hydrosphere) and Earth’s interior (geosphere). The work of Farrell and

Clark is actually a further implementation of Longman’s work of 1963, who, in turn,
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derived the formalism and equilibrium equations from the theory of the free oscillation

of the Earth (Alterman et al., 1959; Kaula, 1963).

The SL (S) is defined as the di↵erence between the sea surface height change (N)

and the solid Earth vertical displacement (U), always referred to the Earth’s centre of

mass:

S = N � U . (1.7)

The SLE, which describes the variation in the SL between a time t and some reference

time t0, at a given location in (✓,�), can be explicitly written as:

S(✓,�, t) =
⇢i

�
Gs ⌦i I +

⇢w

�
Gs ⌦o S � mi(t)

⇢wAo
� ⇢i

�
Gs ⌦i I �

⇢w

�
Gs ⌦o S , (1.8)

(Farrell and Clark, 1976; Spada and Stocchi, 2006), where:

• I(✓,�, t) is the variation of ice thickness relative to an initial reference state;

• ⇢i and ⇢w are ice and ocean water density, respectively, and � is the reference

gravity acceleration at the Earth’s surface;

• Gs represents the Green’s function describing the perturbations to the displacement

field and the gravitational potential caused by an impulsive surface loading;

• symbols ⌦i and ⌦o denote spatiotemporal convolutions over the ice sheets and the

surface of the oceans, respectively;

• the third term on the r.h.s. of the SLE is the eustatic term, which accounts for a

spatially uniform sea-level variation, where Ao is the ocean area and mi(t) is the

variation in ice mass;

• the overlines in the last two terms represent averages over the surface of the oceans,

as required by the mass conservation principle.
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The LNs h (vertical), k (potential) and l (horizontal) are hidden inside the the Green’s

functions representing the response of the Earth model to an impulsive load (Peltier,

1974; Spada and Stocchi, 2006). LNs are strictly connected to the Earth’s internal

structure, particularly to the number of layers and their rheology.

One of the most important characteristics of the SLE (1.8) is the fact that it is

an integral (implicit) equation and thus iterative methods are necessary to solve it.

However, the initial formulation of the SLE in Farrell and Clark (1976) presented several

limitations, like the fact that it did not account for the temporal variation in ocean area

and it did not include the rotational feedback on sea level (Whitehouse, 2018). These

limitations were later addressed by a number of authors (see e.g., Wu and Peltier, 1984;

Johnston, 1993).

During the years, the research on GIA and SL modeling has progressed fast: from

the classical pseudo-spectral approach, a range of di↵erent methods have been used, like

finite-elements, spectral finite-elements, and finite-volumes; again, for a comprehensive

review on the topic, the readers are referred to the work of Whitehouse (2018). However,

the aim of this Thesis is not to present them systematically. Instead, for the purpose

of this work, two points are still important to mention: the implementation of transient

rheology in Earth models and the Elastic Rebound (ER). Regarding the first one, we

refer the reader to the next section.

ER is the instantaneous elastic response of the Earth to surface loading (or un-

loading). ER is thus included in GIA, and represents the primary creep phase of the

deformation of the Earth induced by the ice melting. The ER triggered by the intense

changes at the end of the last glacial maximum 21 kyr ago has already been exhausted,

giving way to the viscous response that still persists in previously glaciated areas of the

Northern Hemisphere and adjacent regions. While it is assumed that the mantle flow

is the principal engine of the viscous displacements, ER is caused by the elasticity of

the outermost layers of the Earth, that produces an immediate response to the variation
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of surface loads (Bevis et al., 2012). In the context of GIA modeling, the study of ER

is particularly important when the areas of interest are still covered with ice: this is,

for example, the case of Antarctica and Greenland. There, both the seasonal and net

variation of the ice masses that we observe today induce an elastic displacement (ER)

that superimposes on the viscous patterns caused by the past ice evolution. In several

locations, indeed, the magnitudes these two contributions are comparable (Spada et al.,

2012). Therefore, modeling ER in response to present-day variations of ice loads is es-

sential to correctly infer GIA. For the sake of completeness, I shall specify that from now

on in this Thesis, I will use the term “ER” to indicate the instantaneous displacement

of the Earth’s surface due to present day ice mass variation.

While for the case of seasonal (annual) variations in ice volumes the elastic response is

undeniable, its validity on multidecadal forcing can be questioned. As it will be explained

in the next section, present day climate change has triggered a negative trend in the mass

balance of many glaciers and ice sheets around the world. In Greenland, this record is at

least twenty years long (The IMBIE team, 2020), and even longer in certain locations.

Basically, in this Thesis work, we are asking how much truly “elastic” is the response of

the solid Earth to current ice loss, when observations span over timescales of decades.

The next section treats this topic in detail.

A final fundamental remark on ER due to ice unloading concerns its typical spatial

scales, definitively smaller than those of GIA. It is indeed a well known rule of thumb,

in GIA studies, assuming that the spatial extent of the load is proportional both to the

depth of the Earth’s layers having more influence on the resulting surface displacement

pattern, and on its spatial area of influence (McKenzie, 1967). In this way, we can con-

sider the displacements due to GIA as long wavelength features, which is superimposed

with short wavelength patterns caused by ER. This has important consequences upon

ER modeling: it is shown indeed in Spada et al. (2012) that, for the modeling of ER in

Greenland, a full solution of the SLE can be unnecessary. This is an important point for
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this thesis, being the solution of the SLE rather expensive from a computational point

of view, on a high resolution grid (see Spada and Melini, 2019). In this way, instead

of evaluating the sea level variation S, we will consider the vertical displacement of the

solid Earth U .

1.3 Greenland

1.3.1 Overview

The unprecedented rise in temperature during the latest 50 years is widely recognized as

one of the major societal challenges of the 21st century (see e.g., Ruane, 2024). From the

solid Earth point of view, one of the main issues caused by climate change is the system-

atic variation in the spatial and time distribution of water masses, in their gaseous, solid,

and liquid states. As we have anticipated in previous section, the solid Earth responds

to the loads acting on its surface, including the atmosphere. What makes di�cult the

study of these mass redistributions is the complexity of the Earth system, and particu-

larly the mutual interaction between each part of the system; atmosphere, cryosphere,

hydrosphere, geosphere and biosphere. When a certain quantity of ice melts and mi-

grates from the glacier to a water reservoir, that could be a lake, a sea or the ocean, the

state of the Earth system changes, and each part reacts to retrieve the equilibrium. An

example of non-linear interaction could be the melting of a marine-terminating glacier.

During a warmer period, ocean and air temperatures rise, increasing the ice melting rate.

As a consequence, the glacier melts and retreats, causing the elastic uplift of the Earth

and the SL fall near the grounding line. Moreover, some studies suggest that the retreat

of the ice from the ocean may stabilize the glacier, thus providing a negative feedback

mechanism. (Gomez et al., 2015; Barletta et al., 2018).

Greenland hosts the second largest ice sheet on Earth, with an equivalent sea level

potential of (7.42 ± 0.05) m (Morlighem et al., 2017). A recent study estimates that
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Greenland ice sheet lost 3902± 342 billion tonnes of ice between 1992 and 2018, causing

the mean SL to rise by (0.011 ± 0.001) m in the same time period (The IMBIE team,

2020). It is interesting to remark that this study reveals that half of this loss has

occurred during the period between 2006-2012. In 2011, the ice loss reached the record

of (345 ± 66) Gt/yr, but since then, the rate decreased, until reaching (85 ± 75) Gt/yr

in 2018.

The stability of the ice sheet and its peripheral glaciers are subjects of particular

interest among scientists, and many e↵orts have been made to understand its role in the

Earth’s climate system. The main mechanisms through which Greenland ice sheet loses

ice are surface melt water runo↵ and all those phenomena which involve ice dynamics,

like the acceleration of the marine-terminating glaciers, the retreat of the front line or the

iceberg calving. According to King et al. (2020), the increasing ice discharge of the last

twenty years is to be mainly attributed to the retreat of the glacier fronts that occurred at

the beginning of the 2000s, that could have eventually unlocked a condition of sustained

mass loss. The study of Choi et al. (2021) forecasts that by the end of the century,

50± 20% of the total mass loss will be caused by ice discharge from marine-terminating

glaciers. Understanding the mechanisms through which glaciers and ice sheets lose and

gain mass is fundamental to model the Earth response in a correct way.

There are di↵erent methods to assess the health condition of Greenland’s ices. A

powerful tool is the computation of the “Mass Balance” (MB), i.e., the di↵erence be-

tween the accumulated and ablated ice during a specific time period. To assess a MB,

a number of techniques and methods have been proposed: satellite altimetry, interfer-

ometry, gravimetry, surface mass balance model simulation and input-output method.

Each method has its pros and cons, and e↵orts to retrieve a reconciling value have been

successfully carried on recently (Shepherd et al., 2012; Barletta et al., 2013; Khan et al.,

2015; The IMBIE team, 2020).
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1.3.2 Glacial isostatic adjustment and elastic rebound in Green-

land

The interest that the GIA community nurtures towards Greenland is then easily mo-

tivated: with the exception of the elastic response caused by present-day ice melting,

the rest of the world’s largest island observed deformation shall be mainly attributed to

GIA. Greenland is indeed considered a stable cratonic region, and its seismic activity is

very low and confined on its margins (Olivieri and Spada, 2015). The sole hindrance

to a systematic campaign to assess surface displacements in Greenland is its unique en-

vironment: the presence of the ice sheets and the prohibitive weather conditions make

it di�cult to install instrumentation. For this reason, satellite missions like GRACE or

ICESat allowed an important step forward in the monitoring of the ice sheet. On land,

the largest and most recent e↵ort of deploying a network of GNSS stations is GNET. It

comprises a total of 58 stations situated around Greenland’s coasts (Bevis et al., 2012).

The oldest one dates back to 1995, but the vast majority was installed during 2007-2009

(Barletta et al., 2024). GNET represents a powerful tool to investigate Greenland both

from a glaciological and geodynamical point of view. For example, in Barletta et al.

(2024), GNET data are used to obtain constraints to probe GIA models; its records

are also used to validate elastic rebound and glacial isostatic adjustment models (Spada

et al., 2012; Berg et al., 2024) and to monitor local glacier dynamics (Liu et al., 2017). In

addition, the GIA community disposes of several tide gauge records, that besides their

scarcity in the territory, provide long period time series (Spada et al., 2014). Finally, to

complete the picture of available data, we must mention also geomorphological ones like

Holocene SL Curves (Bennike et al., 2002; Long et al., 2011).

The final aim of every GIA model should be the comparison with the GNSS data.

Hypothetically, if we knew the exact ice history, and if we knew the right viscosity struc-

ture of the Earth, then the prediction of the GIA model should coincide with the GNSS

records, once every other additional signal has been removed. For the specific case of
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Greenland, this means (generally) removing the elastic component, that part of the dis-

placement due to present day ice mass loss. However, recent works have underlined that

this procedure has been often underestimated: the PREM model has been the standard

model for this procedure, although more realistic and suitable models nowadays exist

(Adhikari et al., 2021); as demonstrated in Swarr et al. (2024), indeed, the choice of

the wrong elastic model can lead to very significant di↵erences in the predicted displace-

ment; also, ignoring possible sources of inelasticity in the crust can be the cause of biased

estimates (Durkin et al., 2019).

To remove the elastic component from the GNSS record, the standard procedure

consists in computing the displacement due to an unloading �H that is supposed to

happen instantaneously. The unloading model, when is referred to the entire Greenland

ice sheet, is generally derived using data collected through di↵erent techniques like Syn-

thetic Aperture Radar (SAR, see Rignot and Kanagaratnam, 2006), satellite gravimetry

(GRACE and GRACE-FO, see Wahr et al., 1998; Barletta et al., 2013), or satellite

altimetry (ICESat and ICESat2, see Schutz et al., 2005; Sørensen et al., 2011).

On the other hand, load models for GIA are built in a very di↵erent manner. Clearly,

the uncertainties connected to past ice evolution are significant, and the methods used to

infer it are indirect. Through geomorphological studies it is possible to recognize typical

features generated by the presence of former ice sheets, and thus reconstruct the old ice

extent and flow. To infer the past ice thickness instead, the main technique is cosmogenic

exposure dating. Another method is inverting the GIA problem and considering the ice

evolution as unknown, tuning the model to reconcile its output with low latitude SL

records (Whitehouse, 2018). Examples of ice models used in GIA studies are ICE-5G

and ICE-6G developed by the Toronto school (e.g., Peltier, 2004) and the ANU models

developed by the Australian National University (e.g., Lambeck et al., 2014).

It is clear then that the resulting loading models for GIA and ER are extremely

di↵erent in terms of resolution and associated uncertainties. As discussed in Pan et al.
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(2024), it was the attempt to reconcile these two kinds of load models using a 1-layer

mantle Earth model that set o↵ the hypotheses of transient deformations in Greenland

(Peltier et al., 1986). In those years, the hypothesis of transient features in the Earth’s

mantle response to GIA gained much popularity (Peltier et al., 1980; Sabadini et al.,

1985; Müller, 1986; Yuen et al., 1986). However, it was (temporarily) abandoned once it

was clear that the two types of ice models could lead to reconciling output if multilayered

mantle models where taken into account. The mantle has indeed a di↵erent resolving

power for the two models representing past and present-day ice evolution, because of the

di↵erent spatial scale of the associated surface loading (Mitrovica, 1996; Pan et al., 2024).

Nevertheless, in recent years, an interest on the topic arouse again, with an increasing

number of scientific publications regarding this topic.

In Ivins et al. (2020) it is shown that, for the case of a Boussinesq’s half space

loading problem, the e↵ects of transient rheology are relevant on the sub-decadal time

scales. Adhikari et al. (2021) recognizes that on sub-centennial time scales, the inferred

viscosity of the Earth mantle results one order of magnitude smaller than the upper

mantle viscosity inferred from GIA. They show that a more realistic rheological model

than the Maxwell one, combined with a more complete ice history that accounts also for

recent events like the Little Ice Age are su�cient to explain the majority of data-model

misfit, if a reduced mantle strength is considered. Similar conclusions were found by

Boughanemi and Mémin (2024), who argue that assuming a low-viscosity layer in the

upper mantle and using transient rheologies (Andrade and Burgers) can reduce the misfit

between the modeled displacement and the observed data in Antarctica. Also, the need

of transient rheology in surface unload modeling arises in local field studies, i.e., in all

those works where the distance between the observation point and the former load is

small (Simon et al., 2022). All these studies prove that, when the time resolution of

the ice history increases, i.e., when the description of the ice evolution becomes infra-

decadal, transient rheologies are invoked (and required), otherwise it is necessary to lower
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the Maxwell viscosity of the model to fit the data (Nield et al., 2014; Pan et al., 2024).
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Chapter 2

The Andrade’s rheology

2.1 Transient rheologies

Part of the results presented in this Chapter are taken from Consorzi et al. (2024), pub-

lished on Earth and Space Science (Sept, 2024).

In rheology, a “transient” is that phase of deformation where the strain rate exhibits

time-dependent features, i.e. the strain rate is ✏̇(t) 6= const. If we consider a purely elastic

body, no transient occurs: the response to a stress is virtually instantaneous. However,

the typical outcome of a cyclic test (periodic succession of loading and unloading phases)

performed on a general poly-crystalline material exhibits a smoother transition, in which

the instantaneous response is followed by a transient (and thus temporary) phase, that

eventually precedes a stage of steady-state creep, if temperatures and pressure conditions

are suitable (Ranalli, 1995). This situation is sketched in Figure 2.1. The transient phase,

often referred to as primary creep, is the macroscopical manifestation of microscopical

creep mechanisms, which involve the motion of the lattice defects such as dislocations

or vacancies. As argued by Karato (2021), the transient phase in plastic deformation is

the result of the strain dependency of both defects density and their distribution, which
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Figure 2.1: Sketched representation of creep in polycristalline materials (the figure is

freely inspired to Ranalli 1995). The response is depicted in terms of strain ✏(t) and it is

assumed that a constant stress is applied between times t = t1 and t = t2 (creep recovery

test).

in turn does not remain constant, but varies with the deformation.

At the beginning of the XX century, Andrade (1910) defined one of the first quantita-

tive descriptions of deformation of metal and poly-crystalline materials at high temper-

ature, studying the response of metal wires (Pb and Cu) under the application of tensile

stresses. Andrade rheology, briefly introduced in the previous chapter (Eq. 1.6), will be

studied in much greater detail in what follows. However, it represents just one of the

many transient rheologies proposed: the time dependency of the transient varies from

case to case, and each material has its own characteristics (Ranalli, 1995). Examples of

other transient rheological models are:

• Burgers model: this model has seen vast applications in geophysics. Also known

as bi-viscous model, it is the result of a series combination of a Maxwell element
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with a Kelvin-Voigt element. The Burgers creep compliance, i.e., the unit strain

in response to the application of a unit stress, is:

JB(t) =
1

µM
+

t

⌘M
+

(1� e
� t

⌧K )

µK
, t � 0 , (2.1)

where µM and ⌘M are respectively the rigidity and viscosity of the Maxwell element,

µK is the rigidity of the Kelvin-Voigt element, and ⌧K is the ratio between the

Kelvin-Voigt viscosity ⌘K and µK (retardation time).

• Modified Lomnitz law: a more general version of the Lomnitz law, proposed

by Je↵reys and Crampin (1970). Originally conceived to describe deformation in

fluid-like materials including igneous rocks, its creep compliance reads:

JL(t) = J0 (1 + q (t)) , t � 0 , (2.2)

where q > is a dimensionless material constant and

 (t) =

⇣
1 + t

⌧0

⌘↵
� 1

↵
. (2.3)

In this model, the possible value of ↵, initially assumed in the range 0  ↵  1,

was later extended to ↵  1 to yield a continuous transition from a linear elastic

solid (↵ ! �1), to a Maxwell body (↵ = 1) (Mainardi and Spada, 2011).

• Sundberg-Cooper model: conceived by Sundberg and Cooper (2010) to address

some drawbacks of the Andrade model, its creep compliance is:

JSC(t) =
1

µ
+ �J(1� e�

t
⌧ ) + �t

↵ +
t

⌘
, t � 0 , (2.4)

where µ is rigidity, ⌘ is viscosity, ↵ and � are the Andrade’s parameters discussed

in next section, �J is the magnitude of the anelastic contribution, and ⌧ is the time

constant that governs the anelastic response (Bagheri et al., 2019).
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There are several reasons for which, together with my supervisor, I decided to use

the Andrade rheology to account for transient deformation: first, with respect to the

Burgers model, it has less parameters; second, the planetary sciences community is not

new to this rheology, which has been often employed to study tidal deformation of rocky

planets; third, its simplicity makes it a more appealing model than the more complex

Sundberg-Cooper and Lomnitz rheologies.

2.2 Material functions of the 1-D Andrade model

In the two subsections that follow I discuss the material functions of the 1-D Andrade

model, namely the creep compliance Ja(t) and the relaxation modulus Ga(t). These two

complementary quantities, related to ideal experiments, are fundamental to describe the

behavior of any rheological model. The creep compliance represents the response of the

body, in terms of strain, to the application of an instantaneous unit stress, kept constant

afterwards; the relaxation modulus instead, is the stress response to the application of a

stepwise unit strain.

2.2.1 Creep compliance

The creep compliance, that expresses the unit strain in response to the application of a

unit stress, for the Andrade rheological law can be obtained from the original work of

Andrade (1910) and reads:

Ja(t) =
1

µ
+ �t

↵
, t � 0 , (2.5)

where µ is the elastic shear modulus of the material, � is a parameter depending upon the

sample properties and laboratory conditions and, according to Andrade’s experiments,

the time exponent is ↵ = 1/3. In subsequent laboratory investigations, values ranging

between ↵ = 0.2 and ↵ = 0.5 have been suggested even for some non-metallic sub-

stances (see Walterová et al., 2023). Several attempts were made to explain Andrade’s
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parameters in terms of micro-physical processes (Cottrell and Aytekin, 1947; Mott, 1953;

Louchet and Duval, 2009). In what follows, we will assume that ↵ is expressed as a proper

fraction ↵ = p/q, with p and q being integer numbers and p < q, which corresponds to

↵ 2 ]0, 1].

In his treatise, Mainardi (2022) refers to Eq. (2.5) as a “fractional Maxwell model”,

since its mechanical analogue stems from the connection (in series) of a Hookean elastic

element (a spring) of shear modulus µ with a Scott–Blair creep element characterized

by a fractional power-law sometimes referred to as a pot (see Scott-Blair, 1951, 1970).

In modern applications to planets, the pure Andrade creep law expressed by Eq. (2.5)

is generalized to account for a long-term steady state behaviour. This extension is

performed by connecting a Newtonian element (a dashpot) in series with the elastic

spring and the transient pot (Walterová et al., 2023). Accordingly, the complete form of

the Andrade creep compliance reads:

Ja(t) =
1

µ
+ �t

↵ +
t

⌘
, t � 0 , (2.6)

where ⌘ is the Newtonian viscosity. To reduce the number of free parameters from four

to three, Castillo-Rogez et al. (2011) proposed to define the �-factor as

� =
µ
↵�1

⌘↵
. (2.7)

However, as pointed out by Walterová et al. (2023), the fractional dimension of the �-

factor hinders the understanding of the physical meaning of (2.6). Therefore, it is more

convenient to rewrite the creep compliance in the form

Ja(t) =
1

µ

✓
1 +

✓
t

⌧A

◆↵

+
t

⌧M

◆
, t � 0 , (2.8)

where

⌧M =
⌘

µ
(2.9)
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is the “Maxwell time”, i.e., the characteristic timescale on which steady-state behavior

occurs, while

⌧A = (�µ)�
1
↵ (2.10)

is the “Andrade time” i.e., the transient response timescale. Efroimsky (2012a,b) intro-

duced the non-dimensional ratio:

⇣ =
⌧A

⌧M
, (2.11)

which allows to cast the Andrade creep law in the so called “↵� ⇣ parameterization”

Ja(t) =
1

µ

✓
1 + ⇣

�↵

✓
t

⌧M

◆↵

+
t

⌧M

◆
, t � 0 , (2.12)

with Ja(t) reducing to the Maxwellian creep compliance in the limit ⇣ ! 1 (i.e., for an

infinite Andrade time ⌧A).

As pointed out by Castillo-Rogez et al. (2011) in their study about the tidal history

of Iapetus, the constraint � = µ↵�1

⌘↵ or, equivalently, ⇣ ⇡ 1, should be regarded as a

first-order approximation, awaiting for laboratory data of su�cient quality. Nowadays,

the approximation ⇣ ⇡ 1 is generally considered as outdated, with plausible values of

⇣ ranging between 10�2 and 1, although values as high as 105 have been shown to be

consistent with the tidal response of the Earth (Walterová et al., 2023; Amorim and

Gudkova, 2024).

In Figure 2.2a, the Andrade creep compliance Ja(t) is shown as a function of the

normalized time t/⌧M , for di↵erent values of ↵ = 1/n, where n is an integer, and ⇣ = 1

is assumed. The original Andrade result (n = 3, or ↵ = 1/3) is depicted by a turquoise

curve. The time scale characterizing the transient phase (i.e., the time required to reach

a constant creep rate) decreases with increasing n. For ↵ = 1, no transient occurs after

the elastic step at t = 0, and the response is Maxwellian. In this case, the transient term

in (2.12) duplicates the steady-state term, hence the response is that of a Maxwell body

with Newtonian viscosity ⌘/2. Figure 2.2b depicts Ja(t) for di↵erent values of parameter
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⇣, keeping the fractional exponent fixed to ↵ = 1/3. As expected from its definition,

the value of ⇣ controls the relative importance of the steady-state and transient terms in

(2.12), with large values of ⇣ producing a response increasingly similar to the Maxwellian

one. Here the original Andrade result is represented by the orange curve.

The Laplace transform of the Andrade creep law (2.12) can be obtained by elementary

methods and it reads

J̃a(s) =
1

µ s

✓
1 +

�(1 + ↵)

(⇣⌧Ms)↵
+

1

s⌧M

◆
, (2.13)

where s is the complex Laplace variable and �(x) is Euler’s gamma function.

2.2.2 Relaxation modulus

To fully characterize the rheological behaviour of the Andrade model, it is also desirable

to obtain the relaxation modulus Ga(t), which physically represents the stress per unit

strain in a relaxation experiment (Christensen, 1982). In the time domain, the relaxation

modulus G(t) of a general linear viscoelastic material is related with the creep compliance

J(t) through J(t) ⇤ G(t) = t, where ⇤ denotes time-convolution (Mainardi, 2022). In

the Laplace domain, this relation reads J̃(s) G̃(s) = 1/s2, hence s G̃a(s) = 1/(sJ̃a(s)).

Therefore, using (2.13), the Laplace-transformed relaxation modulus is easily obtained:

G̃a(s) =
µ⌧M

(s⌧M) + ⇣�↵�(1 + ↵)(s⌧M)1�↵ + 1
. (2.14)

Evaluating the Laplace inverse of Eq. (2.14) analytically is not straightforward. This

issue challenged me for a while. In my master thesis (Consorzi, 2021) I briefly addressed

the problem, without finding any elegant solution. Following the advice of my supervisor,

I tackled again this topic during my PhD. With the help of Mathematica© symbolic

manipulator (Wolfram Research, Inc., 2024), and after several attempts I finally managed

to retrieve an analytical, still not elementary, expression (Eq. 2.23 below). As far as

I know, this was an original and unpublished result. Once Mathematica© assured the
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Figure 2.2: Andrade creep compliance Ja(t), according to Eq. (2.12). In (a), Ja(t) is

shown for ⇣=1 and ↵ = 1/n (n=1, 3, 6, 10, 20), while in (b) ↵ is set to 1/3 and di↵erent

values of parameter ⇣=⌧A/⌧M are considered, as indicated. The Maxwell response is

attained for ⇣ ! 1.
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existence of a closed-form solution, the new task was understanding how to gather it

analytically. After some quick consultations, Prof. F. Mainardi perceived some formal

analogies between this problem and the generalized Basset problem that concerns the

motion of a particle within a viscous fluid. Some attempts later, following the method

used in Mainardi et al. (1995), I finally managed to close the circle. Afterward, my

computations were checked and published by other authors in (González-Santander et al.,

2024). However, in what follows, I will present the details of this calculation.

Computation of the Andrade relaxation Modulus in the time domain

The main hindrance for the Laplace inversion of expression (2.14) is the presence of the

fractional exponent ↵. To overcome this problem, I followed the strategy presented in

(Mainardi et al., 1995), and I operated a change of variable s⌧M ! x
q, where we recall

that q is related to the definition of ↵ as proper a fraction, namely ↵ = p
q , p < q. In this

way, one obtains an expression for G̃a that does not contain any fractional exponents:

G̃a(x) =
µ⌧M

xq + ⇣�↵�(1 + ↵)(x)q�p + 1
. (2.15)

Then, recognizing that the denominator Pp,q(x) of Eq. (2.15) is a polynomial of degree

q (shown in Figure 2.3), and naming xk its roots,

Pp,q(xk) = x
q
k + ⇣

�↵�(1 + ↵)(xk)
q�p + 1 = 0 , (2.16)

it is possible to write Pp,q(x) using the partial fraction decomposition method:

1

Pp,q(x)
=

qX

k=1

1

P 0
p,q(xk)(x� xk)

(2.17)

where P 0
p,q is the derivative of Pp,q with respect to x. In this way, the relaxation modulus

can be written as:

G̃a(x) = µ⌧M

qX

k=1

1

(qxq�1
k + (q � p)⇣�↵�(1 + ↵)xq�p�1

k )(x� xk)
(2.18)

= µ⌧M

qX

k=1

1

P 0
p,q(xk)(x� xk)

. (2.19)
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Now we can come back to the variable s⌧M , obtaining:

G̃a(s) = µ⌧M

qX

k=1

1

P 0
p,q(xk)((s⌧M)

1
q � xk)

. (2.20)

In this form, the computation of the inverse transform turns out to be easier. We use

the relation (E.53) from Mainardi (2022):

L�1


s
↵��

s↵ + �
; t

�
= t

��1
E↵,� (��t↵) , (2.21)

where

E↵,�(z) ⌘
1X

k=0

z
k

�(↵k + �)
, with ↵, � 2 C, Re(↵) > 0, z 2 C , (2.22)

is the two-parameter Mittag-Le✏er transcendental function (Mittag-Le✏er, 1903), whose

properties and fields of application are now well known (Mainardi, 2020; Gorenflo et al.,

2020). The Mittag-Le✏er function is considered the “Queen function” of fractional

calculus (Gorenflo et al., 2020; Mainardi, 2020), given its crucial role in the field of

linear viscoelasticity.

Considering that in this case ↵ = � = 1/q and � = �xk, I obtained, making explicit

the terms of P 0
p,q(x), one of the main results of this thesis:

Ga(t) =
µ

✓
t

⌧M

◆1� 1
q

qX

k=1

0

BBBB@

E 1
q ,

1
q

 
xk

✓
t

⌧M

◆ 1
q

!

q x
q�1
k + q�p

⇣p/q
�

✓
p

q
+ 1

◆
x
q�p�1
k

1

CCCCA
, t � 0 , (2.23)

Note that although some of the xk’s are complex, the properties of the Mittag-Le✏er

function ensure that in Eq. (2.23) the relaxation modulus Ga(t) is a real function. Note

also that, for ⇣ � 1 (i.e. for ⌧A � ⌧M), the roots of polynomial (2.16) can be approxi-

mated by xk ⇡ e
i(2k�1)⇡/q for k = 1, . . . , q. The result (2.23) is reported in Consorzi et al.

(2024).

It is important to remark that, for the Andrade law in the fundamental form given

by (1.6), the relaxation modulus can be expressed in terms of the classical (one index)
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Figure 2.3: Plot of the P1,n(x) polynomial defined by Eq. (2.16), for some n values and

⇣=1. One real and negative root is only found for odd values of n, as we have also

verified for n > 5. For n=3, the value suggested by the original work of Andrade (1910),

the three roots of the polynomial are r1 ⇡ �1.401 and r2,3 ⇡ (0.254± i 0.805).
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Figure 2.4: Relaxation modulus Ga(t) for an Andrade body, according to Eq. (2.23). In

(a), ⇣=1 and ↵=1/n are assumed (n=1, 3, 6, 10, 20). For n=1 the decay is exponential,

since E1,1(�x)=e�x. In (b), the modulus is shown for ↵ = 1/3, using di↵erent values of

the ratio ⇣ = ⌧A/⌧M . The Maxwell case (dashed black) corresponds to ⇣ ! 1.
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Mittag-Le✏er transcendental function defined as E↵(z) = E↵,1(z). Therefore, the re-

sult expressed by Eq. (2.23) can be considered as an extension of the previous findings

of Mainardi and Spada (2011) to the case of the generalized Andrade model expressed

by (2.8).

The Andrade relaxation modulus Ga(t) in (2.23) is shown for ⇣ = 1 in Figure 2.4a as

a function of the normalized time t/⌧M , in the special case ↵ = 1/n with n = 1, . . . , 5;

Figure 2.4b shows again the relaxation modulus but for a fixed ↵ = 1/3 and various

values of ⇣. From this figure it is apparent that, as expected, the relaxation modulus

converges to that of a Maxwell solid as ⇣ ! 1 (black dashed curve). These figures

include the original Andrade result, depicted by a turquoise curve in Figure 2.4a and by

a orange one in Figure 2.4b.

In the next section, I will briefly examine some limiting cases of the expression of the

Andrade relaxation modulus in the time domain Eq. (2.23).

2.2.3 Limiting cases of the Andrade relaxation modulus

In the following, I present the details of the computation of two notable limits of the

Andrade relaxation modulus.

Case 1: ⇣ ! 1

Is it possible to foresee from Figure 2.4 that with increasing values of ⇣, the behaviour of

Equation (2.23) tends to those of the relaxation modulus of a Maxwell body. I checked

graphically that this holds true for arbitrary values of p and q, as long as p < q and both

are integers.

To prove that, in the limit ⇣ ! 1, the Andrade relaxation modulus is equivalent

to the Maxwell one, we must start considering which form assume the roots of the
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polynomial Pp,q in the aforementioned case. Being

lim
⇣!1

Pp,q(x) ⌘ lim
⇣!1

Fq(x) = x
q + 1 , (2.24)

we can write the roots of Eq. (2.24) in the following way:

xk = e
i⇡(2k�1)

q k = 1, ...q . (2.25)

Then, in the Maxwell limit ⇣ ! 1, Eq. (2.23) can be recast in the form:

lim
⇣!1

Ga(t) =
µ

q

1
⇣

t
⌧M

⌘1� 1
q

qX

k=1

0

BB@

E 1
q ,

1
q

✓⇣
t

⌧M

⌘ 1
q
xk

◆

x
q�1
k

1

CCA

| {z }
�q(t)

. (2.26)

Performing the Laplace-transform of �q(t) and substituting the xk’s with their explicit

values (2.25), it is possible to show that the following relation holds true:

L [�q(t)] = �̃q(s) =
qX

k=1

x
1�q
k

(s⌧M)1/q � xk
=

q

s⌧M + 1
. (2.27)

The demonstration of this last statement requires some work.

First of all, I start defining the index k = h + 1, so that the roots xk may be recast in

the following form:

xh+1 = (�1)1/qe2⇡ih/q , (2.28)

from which, it follows that

x
1�q
h+1 = (�1)(1�q)/q

e
2⇡ih/q

e
�2⇡ih

. (2.29)

Thus, I obtain

�̃q(s) =
q�1X

h=0

(�1)(1�q)/q
e
2⇡ih/q

e
�2⇡ih

(s⌧M)1/q � (�1)1/qe2⇡ih/q
, (2.30)

42



which, with a little algebra, can be simplified in the following expression:

�̃q(�) = �
q�1X

h=0

e
2⇡ih/q

�1/q � e2⇡ih/q
, (2.31)

where I have abbreviated � = (�s⌧M). To better explain what follows, I consider the

particular case q = 2. By developing each term of the sum, one finds:

�̃q(�) = �


1

�1 + �1/2
� 1

1 + �1/2

�

= �


1

�1 + �1/2

✓
1 + �

1/2

1 + �1/2

◆
� 1

1 + �1/2

✓
�1 + �

1/2

�1 + �1/2

◆�

= �1 + �
1/2 + 1� �

1/2

�1 + (�s⌧M)

=
2

s⌧M + 1

(2.32)

which is exactly what we want to demonstrate, if we assume q = 2. By employing the

same procedure for any generic q, that is, by multiplying each element of the sum for a

suitable dummy term, one finds:

�̃q(�) = �e
2⇡iqh/q

�
0
q + e

2⇡i(q�1)h/q
s
⇤1/q + ...+ e

2⇡i(q�(q�1))h/q
�
(q�1)/q

�e2⇡iqh/q + �q/q
. (2.33)

Now, to continue, in view of what I have just shown in Eq. (2.33), I re-write the sum in

Eq. (2.31) as:

�̃q(�) = �
q�1X

h=0

e
2⇡ih/q

�1/q � e2⇡ih/q

= �
q�1X

h=0

q�1X

l=0

e
2⇡i(q�l)h/q

�
l/q

e2⇡ih + �

= � 1

� � 1

q�1X

h=0

q�1X

l=0

e
2⇡ilh/q

�
l/q

.

(2.34)

Since l ranges from 0 to q � 1, by virtue of the identity

q�1X

h=0

e
2⇡ihl/q =

8
><

>:

q if l = 0

0 if l 6= 0
(2.35)
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(see Mainardi (2022), Eq. E10), we can write:

�̃q(s) = � 1

� � 1

q�1X

h=0

q�1X

l=0

e
2⇡ilh/q

�
l/q

= � 1

� � 1
q�

0/q

=
q

s⌧M + 1
.

(2.36)

Now that we have concluded this demonstration, from Eq. (2.27), it is straightforward

to transform back to the time domain �̃q(s):

L�1
h
�̃q(s)

i
= qe

� t
⌧M , (2.37)

that, inserted into Eq. (2.26) gives exactly the expression of the relaxation modulus of

a Maxwell body

GM(t) = µe
� t

⌧M . (2.38)

Case 2: ↵ ! 1

For the limiting case ↵ ! 1, inspecting the definition of the Andrade creep compliance

(2.5), the final result I expect is the Maxwell relaxation modulus of a body with viscosity

⌘/2. The case ↵ ! 1 includes the simplified case (p, q) ! 1 but also the more general

one p ! q. I shall start with the first one, being the simplest to analyse.

If (p, q) ! 1, the relaxation modulus (2.23) assumes the form:

lim
(p,q)!(1,1)

Ga(t) = µE1,1

✓
x1

✓
t

⌧M

◆◆
, (2.39)

with

x1 = �
✓
1 +

�(2)

⇣�1

◆
= �1 + ⇣

⇣
. (2.40)

Using the properties of the Mittag-Le✏er function we have:

Ga(t) = µe
� 1+⇣

⇣

⇣
t

⌧M

⌘

, (2.41)
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and finally, since for a Maxwell body ⌧A = ⌧M ) ⇣ = 1, I obtain:

Ga(t) = µe
�2

⇣
t

⌧M

⌘

= µe
�( t

⌘/2µ) . (2.42)

If instead we impose only p ! q, we would find a situation very similar to that of

case 1 (previous paragraph, ⇣ ! 1), with the only di↵erence that, in this limit, the

polynomial Pp,q(x) becomes:

Pp,q(x) = x
q +

�(2)

⇣
+ 1 = x

q +
1 + ⇣

⇣
, (2.43)

and thus its roots xk will be, considering that ⇣ = 1.

xk = 2e
i⇡(2k�1)

q k = 1, ..., q , (2.44)

Except for this di↵erence, the rest of the calculation is basically the same.

These further computations support the validity of the result expressed in Eq. (2.23),

which correctly reproduces a Maxwell (or Maxwell-like) behaviour under particular con-

ditions of the parameters ↵ and ⇣.
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Chapter 3

Love Numbers

A part of this Chapter, Section 3.4, largely follows Consorzi et al. (2023), published on

Astronomy & Astrophysics in August 2023.

The Love numbers are coe�cients first introduced by Love (1909) in the context of

tidal deformation. A. E. H. Love was a British mathematician who produced, during his

brilliant career, a number of works of fundamental importance for the theory of elasticity:

we owe to him the mathematical description of the surface “Love” waves, the introduction

of the Love strain function (Love, 2013) and, of course, Love numbers (LNs). LNs have

been a central topic in my work, since they contain most of the information about the

way in which a planetary body can be deformed by the e↵ect of external potentials or

surface loads.

The idea behind LNs consists of a simple ansatz. Let’s consider the simplest case,

a homogeneous spherical planet whose gravitational potential is perturbed by the pres-

ence of an external body (a parent star, or another planet). The total perturbation

to the gravitational potential, evaluated at the surface of the planet, must be the sum

of two contributions: a direct potential �0, and an indirect one �0, due to the planet
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readjustment in response to the external forcing:

�tot = �0 + �
0
. (3.1)

Love supposed that since the tidal deformation can be considered small, then the indirect

potential should be proportional to the direct one:

�
0 = K(r)�0 (3.2)

so that

�tot = (1 +K(r))�0 , (3.3)

where K(r) is a function of the radius r. Considering the geometry of the problem, it is

convenient to switch to a description in spherical harmonics. Hence, the proportionality

that Love assumed, applies to each coe�cient of the series

�tot =
1X

n=0

(1 +Kn(r))�0,n , (3.4)

where, if a is the radius of the planet, then the value Kn(a) = kn is the LN of degree n

for the gravitational potential.

Love applied the same strategy to the study of the vertical component of the dis-

placements induced by a tidal perturbation, defining the hn LN:

Un = �hn
�0

g0
, (3.5)

where g0 is the reference gravity acceleration at the surface (r = a). Later, T. Shida in

1912, introduced the LN ln describing the horizontal component of the displacement:

Vn = �ln
�0

g0
. (3.6)

Later, the formalism of LNs was applied to the study of deformations induced by sur-

face loads, and a new class of LN was introduced, often referred to as Load Deformation
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Coe�cients, or Load LNs. The only di↵erence between the tidal (or potential) LNs

and the load LNs lies in the definition of the boundary conditions, in which the latter

include the term of the normal stress that, instead, is missing in the former (Farrell,

1972).

3.1 Love Numbers in the modeling of planetary in-

teriors

The use of LNs is not limited to the study of the Earth. They have been largely employed

in Planetary Science for the study of other planets of the Solar System. Moreover, recent

works suggest that the study of transit light curves of extra-solar planets may provide

information upon the value of their second degree fluid LN k2 (Carter and Winn, 2010;

Correia, 2014; Kellermann et al., 2018; Hellard et al., 2018, 2019; Akinsanmi et al., 2019;

Barros et al., 2022). According to Padovan et al. (2018), estimates of k2 for extra-solar

planets may become available in the near future, in view of the expected improvements

in the observational facilities and the increasing amount of data. Since the k2 LN of

a giant fluid-like planet is sensitive to the density layering (Ragozzine and Wolf, 2009;

Kramm et al., 2011; Padovan et al., 2018), transit observations may potentially provide,

in the upcoming years, new constraints on the internal structure of exoplanets. These

will have important implications upon our knowledge of the internal planetary dynamics

and the formation history (Kramm et al., 2011).

Similar motivations encouraged me to consider also the case of rocky planets: it is

not necessary to invoke the case of exoplanets to dispose of many case studies still poorly

examined. This is the case, for example, of the moons and minor satellites that populate

the planetary systems of Uranus and Neptune, which, up to now, have been the target of

only one mission, Voyager 2, respectively in 1986 and 1989. These systems, particularly

Uranus, include several satellites which are considered good candidates for hosting liquid
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water. The presence (or absence) of deep oceans can be inferred from the values of the

k2 LN and the quality factor Q (Castillo-Rogez et al., 2023), making once again the

observation of these parameters a goal of uppermost importance.

For these reasons, I delved into the study of LNs, with a strong focus on three scenar-

ios: the first, presented in Section 3.2, shows the calculation of LNs for a homogeneous

sphere (Kelvin model); this first case is of great importance, since, in view of the Corre-

spondence Principle, its results can be extended to investigate other linear viscoelastic

rheologies (Section 3.3). The second case, in Section 3.4, concerns layered inviscid fluid

planets, a perfect first-order approximation for gas giants. In this section I further in-

vestigate the possibility of an analytical relation between the k2 LN and the moment of

inertia N . Lastly, in Section 3.5, I consider a Kelvin model with Andrade rheology, whose

versatility has already been described in the previous chapters. The models presented in

this chapter, despite their simple structure (homogeneous, two-layer), have the advan-

tage of allowing for a full analytical investigation. This fact is noteworthy, since it often

permits to identify explicitly the relations between the LNs and each model parameter.

3.2 Love Numbers for the elastic Kelvin model

In this section I will present the computation of the LNs of an elastic Kelvin sphere

(i.e., an homogeneous, self-gravitating sphere). Here I would like to stress out that the

calculations that will follow in this section 3.2 and the next 3.3 are not original, and

for further details the reader is referred to Spada (1992) and Martens (2016). They are

reported here for completeness and to ease the comprehension of the calculations that

follows, the discussion on Love number and the results presented in the last chapter.

Let’s start from the equation of motion for an elastic medium, which reads:

F +r · T = ⇢ü , (3.7)

where F is the sum of all the volume forces acting on the body, T is the stress tensor
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and u is the displacement field. If we limit our analysis to quasi-static (i.e., very slow)

deformations, we can neglect the acceleration:

F +r ·T = 0 , (3.8)

and we can define T as

T = �pI+T⇤
, (3.9)

with p and T ⇤ being the pressure and the non-hydrostatic part of the stress tensor. In

this dissertation, the only volume force we consider is that associated to the gravitational

potential �:

F = �⇢r� , (3.10)

where we notice that

g = �r� (3.11)

is gravity acceleration. In addition, the gravitational potential � is a solution of Poisson’s

equation

r2
� = 4⇡G⇢ , (3.12)

where G is the universal gravitational constant. Since at the equilibrium state, we assume

a condition of perfect hydrostatic equilibrium, we have the following fundamental system

of equations:

8
>>>>>>>><

>>>>>>>>:

F0 = �⇢0r�0 Volume force

T0 = �p0I Stress Tensor

r2
�0 = 4⇡G⇢0 Potential

rp0 = �⇢0g0r̂ Hydrostatic pressure ,

(3.13)
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where subscript 0 denotes all fields in the initial unperturbed state. Substituting the

expression for T0 and F0 in the Equation of motion (3.8), we obtain:

⇢0r�0 +rp0 = 0 . (3.14)

Let’s now assume that this system is subject to a deformation. In this case, the

density field, the gravitational potential and the pressure field vary as

⇢ = ⇢0 + ⇢1 � = �0 + �1 p = p0 + p1 , (3.15)

where we have assumed that these variations are infinitesimal, so that ⇢1 ⌧ ⇢0, �1 ⌧ �0

and p1 ⌧ p0.

To define the density perturbation ⇢1, we apply the law of mass conservation to a

portion of volume of the elastic medium, indicating by n̂ the normal direction to the

surface ⌃ containing the volume V :
Z

V

⇢dV =

Z

V

⇢0dV �
Z

⌃

⇢0u · n̂d⌃ (3.16)

and by applying the divergence theorem on the integral over ⌃, we can derive an expres-

sion for ⇢1:

⇢� ⇢0 ⌘ ⇢1 = �r · (⇢0u) = � (⇢0r · u+ ur@r⇢0) . (3.17)

Hence, in the perturbed state, neglecting the higher order term ⇢1r�1, F becomes:

F = �(⇢r�) = �(⇢0 + ⇢1)r(�0 + �1)

= �⇢0r�0 + (⇢0r · u+ ur@r⇢0)g0r̂ � ⇢0r�1 ,

(3.18)

and for the stress tensor, we have:

T = �pI+T⇤ = �(p0 + ur@rp0)I+T⇤
. (3.19)

Putting together Eq. (3.18) and Eq. (3.19) we have:

r ·T⇤ �r(⇢0g0ur)� ⇢0r�1 + (⇢0r · u+ ur@r⇢0)g0r̂ = 0 . (3.20)
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The gravitational potential variation is also a solution of Poisson’s equation

r2
�1 = 4⇡Gr · (⇢0u) . (3.21)

Together with Eq. (3.20) and (3.21), we also must account for the constitutive equation

for an elastic continuum

T⇤ = �(r · u)I+ 2µE , (3.22)

where the infinitesimal strain tensor is:

E =
1

2
(
�
ru+ (ru)T

�
. (3.23)

Assuming incompressibility, thus r · u = 0, the previous equations become:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

r ·T⇤ �r(⇢0g0ur)� ⇢0r�1 = 0

r2
�1 = 0

T⇤ = ⇧I+ 2µE

E = 1
2(ru+ (ru)T )

r · u = 0

(3.24)

where the product ⇧ = �r ·u, is assumed to have a finite limit as r ·u ! 0 and �! 1

(Love, 1911). We will now consider the case of an impulsive unit load perturbation

applied on the surface of the sphere in ✓ = 0:

�(✓) = �(✓) . (3.25)

Given the symmetry of the problem, we can assume that the displacement vector de-

pends only upon co-latitude, i.e. u = u(r, ✓). In this way, the number of unknowns

reduces from four to three: the two components of the displacement ur and u✓, and the

perturbation of the gravitational potential �1. It is also convenient to seek for solutions

that can be expressed in terms of Legendre polynomials. In this way, it will be possible
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to transform the set of partial di↵erential equations (3.24) into a system of ordinary

di↵erential equations Farrell (1972). Therefore we write

u(r, ✓) =
1X

n=0

h
Un(r)Pn(cos ✓)r̂ + Vn@✓Pn(cos ✓)✓̂

i

�1(r, ✓) =
1X

n=0

�n(r)Pn(cos ✓) ,

(3.26)

and, by doing so, the unknowns become the functions Un(r), Vn(r) and �n(r). Substitut-

ing Eqs. (3.26) into the system (3.24), after cumbersome calculations that I skip for the

sake of simplicity (for a comprehensive treatise, the reader is referred to James (1991);

Martens (2016)), one obtains a system of linear di↵erential equations of the form

d

dr
yn(r) = An(r)yn(r) , (3.27)

where the vector of the solutions yn is defined by:

yn(r) = [Un, Vn, Trrn, Tr✓n,�n, Qn] ⌘ [y1, y2, y3, y4, y5, y6] , (3.28)

and where Un, and Vn are the radial and tangential part of the displacement field, Trrn

and Tr✓n are the horizontal and tangential stresses, �n is the perturbation of the potential

and finally Qn is an auxiliary variable, defined as

Qn = �d�n

dr
� (n+ 1)

r
�n + 4⇡G⇢0Un , (3.29)

introduced to simplify the application of the boundary conditions (Sabadini et al., 2016).

The matrix An(r) reads:

An(r) =

0

BBBBBBBBBBBB@

�2
r

L
r 0 0 0 0

�1
r

1
r 0 1

µ̃ 0 0

4
r

�
3µ
r � ⇢0g0

�
�L

r

�
6µ
r � ⇢0g0

�
0 L

r �⇢0(n+1)
r ⇢0

�1
r

�
6µ
r � ⇢0g0

�
� 2

r2 (1� 2L)µ �1
r �3

r
⇢0
r 0

�4⇡G⇢0 0 0 0 � (n+1)
r 1

�4⇡G⇢0(n+1)
r

4⇡G⇢0L
r 0 0 0 (n�1)

r

1

CCCCCCCCCCCCA

, (3.30)
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where L ⌘ n(n+1). Before I delve into the final part of the calculation of LNs, I present

in the following sub-section the boundary conditions (BCs) for case of a impulsive �-like

surface load, and those for the tidal loading.

Boundary conditions for the mass load

The surface load expression of an impulsive unit load, expanded in series of Legendre

polynomials, can be written as:

�(✓) =
1X

n=0

2n+ 1

4⇡a2
(3.31)

To solve the system (3.24) it is necessary to fix BCs respectively on the vertical and

horizontal components of the stress field, and on the gravitational potential:

• On the surface, the vertical traction must compensate the load �(✓) defined in

(3.31) and thus we have

Trrn = �2n+ 1

4⇡a2
g0 . (3.32)

• The horizontal traction must become null on the surface: Tr✓n = 0 in r = a.

• Through the application of the Gauss’ law for the gravity field, one finds that the

gravitational potential must satisfy

d�
ext
n

dr
� d�

int
n

dr
= 4⇡G

✓
⇢0Un +

2n+ 1

4⇡a2

◆
, (3.33)

being the terms 2n+1
4⇡a2 and ⇢0Un the contributions of the �-like load mass and the

induced mass redistribution within the Earth. Assuming the continuity of the

gravitational potential �ext
n = �

int
n , a possible solution for �n could be, taking also

into account that it must satisfy the Laplace equation outside the planet

�n = cn

⇣
a

r

⌘n+1

, (3.34)
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with cn being an arbitrary constant. Thus, since

d�n

dr
= �n+ 1

r
�n , (3.35)

Eq. (3.33) becomes:

d�n

dr
� n+ 1

r
�+ 4⇡G⇢0Un = 4⇡G

✓
2n+ 1

4⇡a2

◆
, (3.36)

implying that, the definition of Qn (Eq. 3.29) is, in r = a

Qn = �4⇡G

✓
2n+ 1

4⇡a2

◆
= �(2n+ 1)G

a2
. (3.37)

In conclusion, the BCs for the unit �-like load reads:
8
>>>>><

>>>>>:

Trrn = y3(a) = �2n+1
4⇡a2 g0

Tr✓n = y4(a) = 0

Qn = y6(a) = � (2n+1)G
a2 .

(3.38)

Boundary conditions for the tidal load

The first aim of this thesis is the study of the Earth’s response to surface unloading;

however, for the sake of completeness and also to ease the discussion on fluid layered

planets, I shall report here also the BCs for tidal loading. Once again, for a complete

description of the calculation procedure, the reader is referred to the book of Sabadini

et al. (2016). Thus, for the case of an impulsive tidal perturbation exerted by a point

mass located along the z-axis, the BCs read:
8
>>>>><

>>>>>:

T
T idal
rrn = y3(a) = 0

T
T idal
r✓n = y4(a) = 0

Q
T idal
n = y6(a) = � (2n+1)G

a2 ,

(3.39)

which, with the exception of y3(a), are identical to those of the impulsive �-like load:

as a matter of fact, in tidal phenomena the disturbing mass is not in contact with the

planet, and so the vertical (and the tangential) stresses at the surface must vanish.
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Solution for the Homogeneous Elastic Planet

The general solution of the system (3.24) can be written in the following compact matrix

form:

y(r) = Y (r)c , (3.40)

where c is a vector of arbitrary constants to be set through BCs and Y (r) is the funda-

mental matrix

Y (r) =
0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

n
2(2n+3)r

n+1
r
n�1 0 n+1

2(2n�1)r
�n

r
�(n+2) 0

n+3
2(n+1)(2n+3)r

n+1 1
nr

n�1 0 2�n
2n(2n�1)r

�n � 1
n+1r

�(n+2) 0

n⇢0g0r+2(n2�n�3)µ
2(2n+3) r

n (⇢0g0r+2(n�1)µ)
r2�n ⇢0r

n (n+1)⇢0g0r�2(n2+3n�1)µ
2(2n�1)r(n+1)

(⇢0g0r+2(n+1)µ)
r(n+3) ⇢0r

�(n+1)

n(n+2)
(2n+1)(2n+3)µr

n 2(n�1)
n µr

n�2 0 n2�1
n(2n�1)µr

�(n+1) 2(n+2)
n+1 µr

�(n+3) 0

0 0 r
n 0 0 r

�(n+1)

2⇡G⇢0
n

2n+3r
n+1 4⇡G⇢0rn�1 (2n+ 1)rn�1 2⇡G⇢0

n+1
2n�1r

�n 4⇡G⇢0r�(n+2) 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

(3.41)

whose columns are six linearly independent solutions of (3.24).

For the specific case of an homogeneous elastic sphere (i.e., the “Kelvin sphere”) we

need solutions that are regular at the centre of the planet. Thus, we must consider only

the first three columns of the matrix Y (r): the other columns contain indeed singular

terms in r, that would diverge for r ! 0. Denoting it by Y R, the solution we seek has

the following form:

y(r) = Y R(r)c (3.42)
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To determine c, we first notice that the BCs (3.38) and (3.39) can be written in matrix

form as

P 2y(a) = b , P 2 =

0

BBB@

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

1

CCCA
, (3.43)

where P 2 is the so-called “projector operator” (Spada, 1992), whose purpose is selecting

the components of y on which we prescribe the boundary conditions (namely the third,

the fourth and the sixth, as it is clear from its definition in Eq. (3.28)), and b is the

vector containing the BCs (3.38). Then, in view of Eq. (3.42) and (3.43) we obtain:

c = (P 2Y R(a))
�1b . (3.44)

Now, recalling the definitions of LNs in Eqs. (3.4, 3.5, 3.6) and considering that, for the

case of an impulsive unit load, the coe�cients of the direct gravitational potential are:

�0,n(a) = �G

a
= �ag0

me
, (3.45)

we have:

z =

0

BBB@

y1(a)

y2(a)

y5(a)

1

CCCA
=

a

me

0

BBB@

hn

ln

�(1 + kn)g0

1

CCCA
. (3.46)

By recasting these definitions in a matrix formalism, we can write, considering Eq. (3.42)

and (3.44)

z = P 1y(a) = P 1Y R(a)c = P 1Y R(a)(P 2Y R(a))
�1b , (3.47)

being P 1 the projection matrix

P 1 =

0

BBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1

CCCA
. (3.48)
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After long calculations that have been handled with the use of a symbolic manipulator, it

is possible to find an analytical expression for z; Finally, inverting Eq. (3.46), we obtain

the definition of the loading LNs for the elastic Kelvin sphere:

xE
n =

0

BBB@

h
E
n

l
E
n

k
E
n

1

CCCA
=

1

1 + c

0

BBB@

�2n+1
3

1
n

�1

1

CCCA
, (3.49)

with

c = µ
0
�n , µ

0 =
µ

⇢0g0a
and �n =

2n2 + 4n+ 3

n
. (3.50)

It is noteworthy to remark that from the definition of the elastic loading LNs (3.49) it

is possible to draw the expression for the LNs in the “fluid limit” by imposing that the

rigidity µ ! 0:

xF
n =

0

BBB@

h
F
n

l
F
n

k
F
n

1

CCCA
=

0

BBB@

�2n+1
3

1
n

�1

1

CCCA
. (3.51)

In case of a viscoelastic model, the value of the LNs depends on time. In this case, as

we will see in the following, the fluid limit of LNs is obtained by computing their limit

for t ! 1.

3.3 Viscoelastic Love numbers

The elastic solution found in previous Section 3.2 can be easily extended through the

Correspondence Principle to any other linear viscoelastic rheology (Fung, 1965). The

constitutive equations of linear viscoelastic bodies describe the relation between the

stresses � and the strain ✏, and can be expressed as:

P�(x, t) = Q✏(x, t) , (3.52)
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where x indicates the position and P , Q are di↵erential operators of the form F =
Pn

j=0 fj
dj

dtj . In the Laplace domain, one obtains:

P (s)�̃(x, s) = Q(s)✏̃(x, s) (3.53)

where P and Q have become polynomials in the variable s. Then, writing

�̃(x, s) =
Q(s)

P (s)
✏̃(x, s) = E(s)✏̃(x, s) (3.54)

one obtains an expression that is formally identical to the Hooke linear elastic law,

�(x, t) = E(t)✏(x, t). In other words, we have shown that the solution of a viscoelas-

tic problem can be found by solving in the Laplace domain the corresponding elastic

problem, taking care of correctly substituting the constant E with the corresponding

E(s).

In the specific case of LNs, from the expressions for the elastic Kelvin sphere Eq. (3.49),

one can easily get the Laplace-transformed viscoelastic ones just by substituting to the

elastic rigidity the suitable complex modulus µ̃:

x̃n(s) =

0

BBB@

h̃n(s)

l̃n(s)

k̃n(s)

1

CCCA
=

xF
n

1 + c
µ̃(s)
µ

. (3.55)

For example, the Laplace domain loading LNs of a Kelvin sphere with Maxwell’s rheology

can be obtained by substituting in (3.55) the Maxwell complex rigidity

µ̃(s) =
µs

s+ µ
⌘

. (3.56)

To recover the time domain LNs, the inverse Laplace transform of Eq. (3.55) must be

computed. After some e↵orts, the time-domain LNs for a Kelvin model with Maxwell’s

rheology can be written as:
0

BBB@

h
M
n (t)

l
M
n (t)

k
M
n (t)

1

CCCA
= xE

n �(t) +H(t)xF
n

 1
⌧M

� 1
⌧ 0M

1 + c

!
e
(�t/⌧ 0M )

, (3.57)
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with ⌧M = ⌘/µ being the Maxwell time and ⌧
0
M = ⌧M(1 + c); more details about this

calculation can be found in (Consorzi, 2021). The previous equation can be recast in a

more compact form as:

xM
n (t) = xE

n �(t) +H(t)xV
n e

�t/⌧ 0M , (3.58)

where xM
n indicates the vector containing the LNs. More in general, this definition can

be extended to any other rheological model, and it is known as “multi-exponential form”

of the LNs:

xn(t) = xE
n �(t) +H(t)

iX

k=1

xV
n,ie

�t/⌧n,i . (3.59)

The multi-exponential form of LNs is introduced in the viscoelastic normal modes (VNM)

method (Peltier, 1974), and as it is clear from above, it allows to write the LNs as the

sum of two components: an elastic one xE
n , that depends on the density and elastic

parameters, and the viscous one xV
n , that depends also on the rheology. A more detailed

discussion on VNM method will be presented in Section 4.2.

3.4 Love Numbers for layered fluid planets

Part of this work was published on Astronomy and Astrophysics by Consorzi et al. (2023).

This section is dedicated to the study of LNs of a layered fluid planet, a model often

employed in planetary sciences for applications to gas giants or exoplanets. Generally,

LNs for multi-layered planets are computed numerically (Padovan et al., 2018; Melini

et al., 2022), but in several special circumstances, optimal simplification of the equations

could lead to analytical expressions. These fortunate cases o↵er the possibility to further

investigate the role of each model parameter in the determination of LNs. This is the case

of a two-layer model of a fluid planet, whose LN k2 in closed-form was first published by

60



Ragazzo (2020). In parallel, the work of Padovan et al. (2018) shows that the mean polar

moment of inertia (N) and the Love number (k2) of a planet have a similar sensitivity

to the mass concentration, supporting the results of Kramm et al. (2011).

With the purpose of refining the implicit approximation of Padovan et al. (2018),

namely N ⇡ k2, we delved into the N -k2 relationship. Our two major findings are:

• a simple power-law relation (rule of thumb) exists between the normalized mean

polar moment of inertia and the normalized k2, namely N = k
0.4
2 . This result was

already reported by Ragazzo (2020), following other methods.

• for multi-layered models the rule of thumb determines an upper limit for N for a

given, hypothetically observed k2 value. Our work demonstrate that this rule is

superior to the Radau-Darwin formula (Cook, 1980).

3.4.1 The homogeneous fluid planet

In the special case of a fluid planet, k2 only depends upon the density profile. In the next

lines, we shall demonstrate this statement. In the unperturbed state, the assumption of

hydrostatic equilibrium implies:

rp0 = �⇢0r�0 (3.60)

with p being the hydrostatic pressure, ⇢ the density and � the gravitational potential, al-

ways obeying Poisson’s equation. In the perturbed state, the previous equation becomes

r(p0 + p1) = �(⇢0 + ⇢1)r(�0 + �1) (3.61)

= �⇢0r�0 � ⇢0r�1 � ⇢1r�0 � ⇢1r�1 . (3.62)

Discarding the second order term and considering Eq. (3.60), we obtain:

rp1 = �⇢1r�0 � ⇢0r�1 = �⇢1g0 � ⇢0r�1 (3.63)
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By making explicit the gradient in the previous expression, it is possible to demonstrate

that

p1 = �⇢0�1 . (3.64)

From the radial component of Eq. (3.63) we have

@p1

@r
= �⇢0

@�1

@r
� ⇢1g0 , (3.65)

and using Eq. (3.64) we find:

@⇢0

@r
�1 = ⇢1g0 . (3.66)

In this way, the perturbed gravitational field, that must obey to Laplace equation, can

be recast as:

r2
�1 = 4⇡G⇢1 =

4⇡G

g0

@⇢0

@r
. (3.67)

With an approach identical to that presented in the previous Section 3.2, we seek for

a solution that can be expressed in terms of Legendre Polynomials

�1(r, ✓) =
1X

n=0

'1,nPn(cos ✓) , (3.68)

where '1,n(r) are suitable radial functions, Pn is the n
th�degree Legendre polynomial

and ✓ is co-latitude. Finally, substituting Eq (3.68) into Poisson’s equation Eq. (3.67),

the latter reduces to a second order di↵erential equation for '1 that reads:

'1
00 +

2

r
'1

0 �
✓
n(n+ 1)

r2
+

4⇡G

g0
⇢
0
0

◆
'1 = 0 , (3.69)

where we have dropped the n subscript of '1 to lighten the notation, and the prime

denotes the derivative with respect to radius r (Wu and Peltier, 1982)1. Assuming a

layered model in which, inside each layer, the density remains constant (i.e., ⇢00 = 0),

Eq. (3.69) allows for a closed-form solution in terms of powers of r.

1
Eq. (46a) of Wu and Peltier (1982) contains a misprint and ⇢0 should be substituted by ⇢00.
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As it has been done before, it is convenient to introduce an auxiliary variable that

we shall call '2:

'2(r) = '
0
1 +

✓
n+ 1

r
� 4⇡G⇢0

g0

◆
'1 , (3.70)

that is equivalent to:

'
0
1(r) = '2 �

✓
n+ 1

r
+

4⇡G⇢0
g0

◆
'1 . (3.71)

After some algebra, it is also possible to obtain:

'
0
2(r) =

8⇡G⇢0
g0r

(n� 1)'1 +

✓
n� 1

r
� 4⇡G⇢0

g0

◆
'2 . (3.72)

The solutions of Eqs. (3.71) and (3.72) can be found in a straightforward way:

'1(r) = cr
n + c

⇤
r
�(n+1) (3.73)

'2(r) = c

✓
2n+ 1

r
� 4⇡G⇢0

g0

◆
r
n + c

⇤
✓
4⇡G⇢0
g0

◆
r
�(n+1) (3.74)

where c and c
⇤ are constants whose values must be determined by imposing suitable

BCs. Finally, by casting the equations above into a 2 ⇥ 2 matrix, we find the analogue

of the solution matrix Y (r) in Eq. (3.24) for a homogeneous fluid shell:

Y f (r) =

0

@ r
n

r
�(n+1)

2n+1
r � 4⇡G⇢0

g0
r
n 4⇡G⇢0

g0
r
�(n+1)

1

A (3.75)

As argued before, in case of a homogeneous planet we must consider only the regular

part of the solution (3.75). In this case, the gravitational acceleration is simply g0(r) =

4
3⇡G⇢0r, and thus the solution matrix can be compacted into the following solution

vector:

If (r) =

0

@ r
n

2(n� 1)r(n�1)

1

A . (3.76)
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3.4.2 Analytical results for a fluid two-layer planet

In this Section we will delve into the detail of the computations of the k2 LN for a fluid

two-layer inviscid planet. I will denote by rc and ⇢c the radius of the inner layer (the

“core”) and its density, respectively, and by rm and ⇢m the corresponding quantities for

the outer shell (to which I will refer to as “mantle”). In this case, we must take into

account the BCs both at the layers interface, and at the surface. Across the density

discontinuity at radius r we impose the continuity of '1 and '2:

'1(r
�) = '1(r

+) (3.77)

'2(r
�) = '2(r

+) (3.78)

Since we are only interested in the tidal LN k2, the vector z can be compacted to

a scalar including only the term '1(r). Having just one unknown, the following BC,

obtained from calculations analogous to those that yielded to the third element of vector

Eq. (3.39), is su�cient for our purpose:

b = '2(rm) = �(2n+ 1)G

r2m

. (3.79)

At this point, the procedure to compute the tidal LN k2 is similar to that followed

in the Section 3.2: the only di↵erence is the presence of a density discontinuity, the

“Core-Mantle Boundary” (CMB).

To find the solution for the k2 LN, we start by noticing that the solution vector

y(r) = ('1(r),'2(r)) at r = rc must be:

y(r) = If (r)cc with 0 < r  rc , (3.80)

where cc is an unknown constant and we have used If since it is the regular part of the

solution matrix, and we need the solution to be non-singular at the center of the planet.

At the same time, inside the mantle we have:

y(r) = Y f (r)cm with rc < r  rm (3.81)

64



where cm is a (two component) vector of unknown constants. The continuity at the

CMB implies:

Y f (rc)cm = If (rc)cc , (3.82)

from which we can express cm as:

cm = Y f (rc)
�1If (rc)cc . (3.83)

In this way, the solution vector at the surface becomes:

y(rm) = Y f (rm)cm = Y f (rm)Y
f (rc)

�1If (rc)cc . (3.84)

Now, applying the BC for '2:

P 2y(rm) = b , with P 2 =
⇣
0 1

⌘
, (3.85)

it follows that

b = P 2Y
f (rm)Y

f (rc)
�1If (rc)cc , (3.86)

from which we obtain

cc = R�1
b , with R = P 2Y

f (rm)Y
f (rc)

�1If (rc) . (3.87)

Finally, as we did in Eq. (3.47),

z ⌘ '1(rm) = P 1y(rm)

= P 1Y
f (rm)Y

f (rc)
�1If (rc)cc

= P 1Y
f (rm)Y

f (rc)
�1If (rc)R

�1
b

= QR�1
b,

(3.88)

where

Q = P 1Y
f (rm)Y

f (rc)
�1If (rc) , and P 1 =

⇣
1 0

⌘
. (3.89)
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To find the LN k2, it is then su�cient set n = 2 in the computations and, at the end,

recalling the third term of Eq. (3.46), we obtain:

k2 = �1�
✓

m

grm

◆
'1(rm) . (3.90)

With the aid of the Mathematica© symbolic manipulator (Wolfram Research, 2010), we

find

k2 = 2
5 + ↵

⇣
5↵�8 + 8 (1� ↵) �5 + 3↵� 8

⌘

10 + ↵

⇣
9�5 (↵� 1) + 5�3 (5� 3↵) + 6↵� 16

⌘ , (3.91)

where k2 is the normalized LN

k2 =
k2

k2h
(3.92)

and

k2h =
3

2
(3.93)

is the LN for a homogeneous planet (Munk and MacDonald, 1975). In (3.91) we have

introduced the non-dimensional core radius

� =
rc

rm
, (3.94)

with 0  �  1, and the ratio

↵ =
⇢c � ⇢m

⇢c
. (3.95)

Notice that the parameter ↵ should not be confused here with Andrade’s parameter. In

case of a gravitationally stable planet (⇢c � ⇢m) we have 0  ↵  1. The value ↵ = 1

corresponds to the limit case of a mass-less mantle (⇢m = 0), whereas for a homogeneous

planet (⇢m = ⇢c), one has ↵ = 0.

Since the planet is fluid and inviscid, vertical displacement is interpreted as the

displacement of equi-potential surfaces so that the vertical LN is h2 = 1 + k2. As the
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tangential displacement is undetermined within a perfect fluid, the l2 LN is undefined.

Further, k0
2 = k2�h2, where k0

2 is the loading LN for gravitational potential (Molodensky,

1977). Hence k
0
2 + 1 = 0, which manifests a condition of perfect isostatic equilibrium

(Munk and MacDonald, 1975). It is worth to remark that, although in Eq. (3.91) k2 is

written in terms of ↵ and �, it depends implicitly upon the four parameters defining the

model (namely, rc, rm, ⇢c and ⇢m). Thus, even assuming that the size of a hypothetical

extra-solar planet is known and that we dispose of an observed value of k2, it is impossible

to determine the remaining three quantities unambiguously.

As expected, the well-known result k2 = 1 valid for the Kelvin sphere (Thomson,

1863), is retrieved from Eq. (3.91) whenever one of the three limits ↵ 7! 0, � 7! 0 and

� 7! 1 are taken. The smallest possible value of k2 is met in the extreme condition of

a point-like mass concentration at the planet centre (Roche model, see Roche, 1873).

Indeed, with ⇢m ⌧ ⇢c (hence ↵ 7! 1) and � 7! 0, Eq. (3.91) gives k2 7! 0, in agreement

with Padovan et al. (2018). In Figure 3.1a, the normalized LN k2 is shown as a function

of ↵ and � for the two-layer model, according to Eq. (3.91). It is apparent that, for a

given ↵ value, the same value of k2 may be obtained for two distinct values of �. On

the contrary, for a given �, knowledge of k2 would determine ↵ unequivocally. However,

due to the definition of this parameter (Eq. 3.95), knowledge of ↵ would not su�ce to

determine the layers densities.

3.4.3 Moment of inertia and the k2 fluid Love number

Two-layer models

The normalized polar moment of inertia of a spherical planet is defined as:

N =
C

MR2
, (3.96)

where C is the polar moment of inertia, M is the mass of the body, and R is the mean

radius (see, e.g., Hubbard, 1984). In case of a homogeneous body, N assumes the well-
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Figure 3.1: Contour plots showing k2 (a) and N (b) as a function of parameters ↵ and �

for a two-layer fluid planet, according to Eqs. (3.91) and (3.97), respectively. Since these

variables are normalized to the values attained in the case of a homogeneous planet, they

both range in the interval (0, 1).

known value Nh = 2/5.

Now, defining N = N/Nh, through elementary algebra it is possible to express the

normalized moment of inertia N of a two-layer planet as:

N =
1 + ↵ (�5 � 1)

1 + ↵ (�3 � 1)
. (3.97)

Both k2 and N depend on the density profile of the planet, and comparing their def-

initions (3.97) and (3.91), one can see immediately that they depend on the same pa-

rameters ↵ and �. In this context, following the work of Kramm et al. (2011), Padovan

et al. (2018) have shown that for a planet with two constant density fluid layers, N and

k2 are directly correlated, both decreasing with increasing mass concentration at depth.

However, Padovan et al. did not propose explicitly a general relationship between these

two quantities.

It has been long known that an approximate relationship between N and k2 is ex-

pressed by the Radau-Darwin (RD) formula, which is exact for a homogeneous body
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but it only constitutes an approximation for layered planetary models (Kramm et al.,

2011; Padovan et al., 2018). This motivates the search for alternatives. On one hand,

by comparing Figure 3.1a with 3.1b it is apparent that, for our two-layer model, func-

tions k2 and N have broadly similar shapes in the (↵, �) plane, immediately suggesting

a straightforward linear relationship N ' k2. Such relation has been implicitly proposed

by Padovan et al. (2018) and would be exact for a uniform sphere. On the other hand,

if we limit ourselves to an inspection of the analytical expressions (3.91) and (3.97), it is

not easy to guess whether an exact N -k2 relation may exist in analytical form. A priori,

for a non-homogeneous planet such relation might be non-univalent, with more N values

corresponding to a given k2 and viceversa.

After some symbolic manipulations, we have verified that solving Eq. (3.97) for ↵

and substituting into (3.91) would not provide insightful results. This suggests that an

exact relationship N = N(k2) not involving ↵ and z explicitly and valid for all values of

these parameters can be almost certainly ruled out. Nevertheless, simple relationships of

partial validity could exist in some limiting cases where ↵ or z take special values. For

example, it is easy to show that for small core bodies (� 7! 0), N ' 1 + (2/5)(k2 � 1),

which holds for all values of ↵ and still implies that mass concentration at depth increases

for decreasing k2. Along the same lines, for ↵ 7! 1, corresponding to case of a dense

“core” surrounded by a “light mantle”, Eq. (3.97) gives N ' �
2 and since from Eq. (3.91)

k2 ' �
5, by eliminating � we obtain an appealingly simple approximate power-law

relationship N ' k2
0.4
. We notice that this last relationship is actually an exact result

for a homogeneous sphere surrounded by an hypothetical zero-density mantle, and can

be obtained analytically by rescaling the results for a Maclaurin spheroid (Hubbard,

2013) of radius a to the outer radius r > a of the mass-less envelope (Hubbard, 2023,

personal communication).

The approximate N -k2 relationships discussed above are only valid for specific ranges

of ↵ and z. Certainly, a straightforward linear relationship captures the broad similitude
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of the diagrams in Figures 3.1a and 3.1b, but it may represent a too simplistic solution.

Here, we seek a more general rule of thumb (or ROT) providing, within a certain level of

approximation, a relationship between N and k2 over all the points of the (↵, �) plane.

To quantify the error associated to a given ROT (say, NROT (k2)), we introduce the

non-dimensional root mean square

RMS =

sZ 1

0

Z 1

0

⇥
N �NROT (k2)

⇤2
d↵ dz , (3.98)

where the double integral is evaluated numerically by standard methods.

First, we assume a direct proportionality

N = c k2 , (3.99)

where c > 0 is a constant. Figure 3.2a shows, as a function of c, the RMS obtained with

NROT = c k2. The minimum RMS (close to 0.1168) is obtained for c ⇡ 1.08, suggesting

that the approximation N ' k2 proposed by Padovan et al. (2018) and corresponding to

c = 1, is indeed close to the best possible linear ROT.

Next, we consider a power-law relationship

N = k2
E
, (3.100)

where E > 0 is an adjustable exponent. In Figure 3.2b we show, as a function of E, the

RMS corresponding to NROT = k
E
2 . It is apparent that the RMS is minimized for an

exponent E ⇡ 0.42, close to the value of 0.4 found analytically for a zero-density mantle.

The corresponding minimum RMS value is ⇡ 0.0082. These findings suggest that the

relationship

N ⇡ k2
0.4

(3.101)

represents a simple and valid ROT expressing the link between N and k2 for a two-layer,

fluid, stably layered planet characterized by arbitrary parameters ↵ and z.

70



Figure 3.2: Non-dimensional RMS, evaluated according to Eq. (3.98), for a linear ROT

N ⇡ ck2 (frame a) and for a power law ROT N ⇡ k
E
2 (b), as a function of the param-

eters c and E, respectively. Integrals in Eq. (3.98) have been evaluated numerically by

the dblquad function included in the SciPy library (Virtanen et al., 2020).
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Arbitrarily layered models

Up to now, we have limited our attention to four-parameters models composed by two

distinct fluid layers. To fully assess the validity of the ROT (3.101), it is important

to consider the case of a planetary structure consisting of an arbitrary number L of

homogeneous layers.

Due to the model complexity, in this general case an analytical expressions for k2 is

not available; however, it is possible to evaluate k2 numerically, for instance following

the propagator method outlined by Padovan et al. (2018) or employing numerical LNs

calculators like ALMA (Melini et al., 2022). Conversely, an analytical expression for the

normalized moment of inertia N is easily obtained also in the general case of an L-layer

planet, and it reads

N =

LX

i=1

(1� ↵i)
�
�
5
i � �

5
i�1

�

LX

i=1

(1� ↵i)
�
�
3
i � �

3
i�1

�
, (3.102)

where �i = ri/rm is the normalized radius of the outer boundary of the i-th layer (�0 ⌘ 0)

and

↵i =
⇢1 � ⇢i

⇢1
, (3.103)

where ⇢i is the density of the i-th layer. By definition, �1  . . .  �L = 1, while

gravitational stability imposes ⇢1  . . .  ⇢L so that 1 � ↵L � . . . � ↵1 = 0. It is easily

shown that, for L = 2, Eq. (3.102) reduces to (3.97) with ↵ ⌘ ↵2 and � ⌘ �1.

To test whether the ROT (3.101) can be of practical use also for general planetary

structures, we have generated an ensemble of 5 ⇥ 105 models with a number of layers

variable between L = 2 and L = 10, all characterized by a gravitationally stable density

profile. For each of the planetary structures so obtained, we have computed N according

to Eq. (3.102) and k2 with the numerical codes made available by Padovan et al. (2018).

The corresponding values of N and k2 are shown in Figure 3.3 as gray dots. F3.3
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For a given, hypothetically observed k2 value, the corresponding value of N is clearly

not unique. Rather, N ranges within an interval, defined by the cloud of points, whose

width represents the uncertainty associated to the degree of mass concentration at depth.

It is apparent that the maximum relative uncertainty on N (up to ⇠ 50%) occurs for

k2 values . 0.2 and that, for k2 exceeding ⇡ 0.5, the N value is rather well constrained

(to within ⇡ 10%). Of course, this does not imply that the density profile of the planet

is actually constrained, since Eq. (3.102) cannot be inverted for ↵i and �i unequivocally

without introducing further assumptions. The solid red line in Figure 3.3 represents the

ROT (3.101), obtained in the context of the two-layer model in the previous paragraph.

It is apparent that the ROT remains valid also in the general case of a L-layer planetary

model and, for k2 & 0.5, it provides a good estimate of N once k2 is known. For smaller

values of k2, the ROT represents an upper bound to the normalized moment of inertia:

N . k
0.4
2 . (3.104)

In the context of planetary structure modeling, the polytrope of unit index (Chan-

drasekhar and Milne, 1933) has a particular relevance. This simplified model resembles

the interior barotrope of a hydrogen-rich planet in the jovian mass range and, by virtue

of the linear relation between mass density and gravitational potential, it allows for the

derivation of exact results useful for calibrating numerical solutions. Hubbard (1975)

obtained analytical expressions of the moment of inertia and of the k2 fluid LN for a

polytrope of index one, which are marked by a blue dot in Figure 3.3. More recently,

Wahl et al. (2020) modeled the equilibrium tidal response of Jupiter through the con-

centric Maclaurin spheroid method; their results in the non-rotating limit are marked by

a green triangle in Figure 3.3. It is evident that the ROT turns out to be in excellent

agreement with these two particular cases. However, we remark that for a quantitative

application of our results to real exoplanets, rotational e↵ects and nonlinear responses to

rotational and tidal terms should be also considered (see, e.g. Wahl et al., 2017, 2020).
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Figure 3.3: Fluid LN k2 and normalized moment of inertia N for a random ensemble

of 5 ⇥ 105 models with a number of layers 2  L  10. The solid line shows the ROT

N = k
0.4
2 . The dashed one represents the Radau-Darwin (RD) formula (e.g., Cook, 1980;

Padovan et al., 2018; Ragazzo, 2020). The RD formula is exact for a homogeneous body

but it constitutes an approximation for layered planets (Kramm et al., 2011; Padovan

et al., 2018). The ROT and the RD formula match for k2 & 0.3; for smaller values, our

ROT represents a more rigorous upper limit to N . The blue dot corresponds to values

of k2 and N for a polytrope of index one, while the green triangle corresponds to results

by Wahl et al. (2020) for the equilibrium tidal response of Jupiter.
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LN x
F

x
F

tidal forcing surface loading

Potential, kn
3

2(n�1) �1

Vertical, hn 1 + 3
2(n�1) �2n+1

3

Horizontal, ln
3

2n(n�1) � 1
n

Table 3.1: Expressions of the fluid limits x
F=x

F (n) in Eq. (3.105) for the LNs hn, kn

and ln, corresponding to tidal and surface loading boundary conditions, as a function of

the harmonic degree n. These expressions are based upon Wu and Peltier (1982).

3.5 Love numbers of an Andrade planet

In this section, we discuss two di↵erent forms of the LNs for a uniform planet with

Andrade rheology, namely the Laplace domain (subsection 3.5.1) and the time domain

LNs (3.5.2), respectively. Here I remark that the result presented here, the analytical

expression for the LNs of a Kelvin sphere in the time domain, was unpublished before

Consorzi et al. (2023). This expression derives from the general form of the relaxation

modulus Ga(t) obtained in Section 2.2, which was previously unknown as well.

3.5.1 Andrade’s Love numbers in the Laplace domain

We report here the general form of the Laplace transformed LNs for a homogeneous,

incompressible, viscoelastic planet subject to an impulsive load (see Eq. 3.55):

x̃(s)

xF
=

1

1 + c

✓
µ̃(s)

µ

◆ , (3.105)

where the values of xF for both the tidal and loading LNs are summarized in Table 3.1.

Similarly, to have an idea of the magnitude of the parameters, Table 3.2 lists numerical

values for the bulk properties of some terrestrial bodies, along with the corresponding
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Planet a ⇢ µ µ
0

c

km kg/m3 1011 Pa – n = 2

Mercury 2439.7 5427 0.75 1.53 14.55

Venus 6051.8 5243 1.45 0.52 4.90

Earth 6370.9 5514 1.46 0.42 4.02

Moon 1737.1 3348 0.67 7.09 67.35

Mars 3389.5 3918 1.05 2.13 20.24

Table 3.2: Numerical values of the µ0 and c constants (at degree n=2) for some terrestrial

bodies in the Solar System. Average radii (a), densities (⇢) and elastic shear moduli (µ)

are from Table 1 of Zhang (1992).

µ
0 = µ/(⇢ga) and c values obtained at degree n = 2. For the Earth, µ0 ⇡ 0.4, about

twice the value µ
0 ⇡ 1

5 estimated by Love (1911) in his seminal work.

According to (3.105), in order to evaluate the LNs explicitly, the expression for the

Andrade complex shear modulus µ̃a(s) is necessary. The modulus is related to the

transformed creep compliance and relaxation modulus by µ̃a(s) = 1/sJ̃a(s) = s G̃a(s)

(e.g., Mainardi, 2022). Using, in particular, the second of these identities and recalling

Eq. (2.14), the expression of the complex shear modulus for the Andrade rheology turns

out to be

µ̃a(s)

µ
=

(s⌧M)↵

(s⌧M)↵ + ⇣�↵�(1 + ↵) + (s⌧M)↵�1
, (3.106)

and is easily verified that, as expected, in the limit ⇣ ! 1 the complex shear modulus

(3.106) reduces to that of a 1-D Maxwell body, i.e.

lim
⇣!1

µ̃a(s) =
µ s

s+ 1/⌧M
⌘ µ̃m(s) . (3.107)

Substitution of (3.106) into (3.105) yields, after some algebra,

x̃(s)

xF
= 1� c(s⌧M)↵

(1 + c)(s⌧M)↵ + ⇣�↵�(1 + ↵) + (s⌧M)↵�1
, (3.108)
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which represents the Laplace transformed LN for a uniform Andrade planet subject to

an impulsive forcing.

In Figure 3.4, we show the landscape of the complex-valued function F (z) = L̃(z)/xF

in the Argand-Gauss plane, where variable z is defined as z ⌘ s⌧M = x + iy, with

i =
p
�1. Here we have assumed the traditional Andrade power law with exponent

↵ = 1/3 and ⇣ = 1, and we have set c = 4, a value representative of the Earth. Function

Re(F (z)), shown in Figure 3.4a, is continuous in the whole z plane and symmetric

with respect to the x axis, where the extrema are attained for x < 0 (3.4c, solid line).

Function Im(F (z)) is anti-symmetric with respect to the x-axis and vanishes for x � 0

(see 3.4b); furthermore, it shows a jump discontinuity along the real negative axis (3.4d,

solid lines). In Figures 3.4c-d, dashed lines show numerical results for the ratio between

the h2 tidal LN and its fluid limit for a compressible sphere, obtained by substituting the

complex shear modulus (3.106) in the analytical expressions published by Love (1911)

and assuming a Lamé first parameter � = µ, which corresponds to a Poisson ratio

⌫ = 1
4 . It is readily seen that, on the real negative axis, the di↵erences between the

LNs spectra in the compressible and incompressible cases are very small, of the order

of a few percent. Conversely, on the real positive axis the compressible spectrum shows

singularities related to the Rayleigh-Taylor instabilities, which for a layered Earth have

been discussed by Hanyk et al. (1999) and Vermeersen and Mitrovica (2000) in the

framework of the viscoelastic normal modes theory of Peltier (1974).

3.5.2 Andrade’s Love numbers in the time domain

To describe the time-evolution of the LNs, instead of the impulsive solution (3.108) it is

more meaningful and physically intuitive to consider a load imposed at time t = 0 and

held in place thereafter, as it is customarily done in glacial isostatic adjustment studies

(Spada et al., 2011). Since the Laplace transform of a Heaviside step function H(t) is

1/s, the corresponding LN is x̃H(s) = x̃(s)/s. After multiplication of Eq. (3.108) by 1/s,
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Figure 3.4: Contour plots of the real part (a) and of the imaginary part (b) of F (z) =

L̃(z)/xF , for an Andrade sphere with ↵=1
3 , c=4 and ⇣=1. In (c), the real part is shown

along the real axis while in (d), the imaginary part is plotted along two axes just above

and just below the x-axis, defined by y=±10�4. In (c) and (d), dashed lines show

numerical results for the ratio between the h2 tidal LN of a compressible sphere and its

fluid limit.
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it is possible to write the Heaviside LN in the computationally convenient form:

x̃
H(s)

xF
=

1

s
� c⌧M

(1 + c)(s⌧M) + ⇣�↵�(1 + ↵)(s⌧M)1�↵ + 1
, (3.109)

and it is easily shown that, in the limit ⇣ ! 1, x̃H(s) reduces to the Laplace transform

for the LN of a uniform Maxwell sphere, i.e.

lim
⇣!1

x̃
H(s)

xF
=

1 + s⌧M

(1 + c)(s⌧M) + 1
=

1

s

1

1 + c

✓
µ̃m(s)

µ

◆ , (3.110)

where µ̃m(s), defined in (3.107), is the complex shear modulus appropriate for the 1-D

Maxwell rheological body (e.g., Mainardi and Spada, 2011).

Assuming that ↵ = p/q  1, where p and q are integers, the r.h.s. of Eq. (3.109) can

be Laplace-inverted in closed-form following the same approach adopted to invert G̃a(s)

in Section 2.2. Indeed, with the aid of Mathematica© (Wolfram Research, Inc., 2024),

we have verified that the time-domain Heaviside LN can be cast in the form:

x
H(t)

xF
= 1� �p,q(t) , t � 0 , (3.111)

where we have defined

�p,q(t) =
c

✓
t

⌧M

◆1� 1
q

qX

k=1

0

BBBB@

E 1
q ,

1
q

 ✓
t

⌧M

◆ 1
q

zk

!

q�p
⇣p/q

�
⇣
1 + p

q

⌘
z
q�p�1
k + q(1 + c)zq�1

k

1

CCCCA
, (3.112)

and where the zk’s are the (distinct) roots of the algebraic equation Fp,q(x) = 0, with

Fp,q(x) = Pp,q(x) + cx
q, with polynomial Pp,q(x) defined by Eq. (2.16). Notice that the

zk’s are themselves depending upon parameters c and ⇣. Since the properties of the

Mittag-Le✏er function ensure that lim
t!+1

�p,q(t) = 0, in Eq. (3.111) condition

lim
t!+1

x
H(t) = x

F (3.113)
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is met, as it is expected for consistency. We have also verified that, through a repeated

application of De L’Hôpital’s rule and some cumbersome calculations, that

lim
t!0+

�p,q(t) =
c

1 + c
, (3.114)

and thus, in other words, the elastic limit reads:

x
H(0+) =

x
F

(1 + c)
. (3.115)

To corroborate the mathematical result given by Eqs. (3.111) and (3.112), we have ob-

tained independent numerical results by the ALMA
3 planetary LNs calculator (Melini

et al., 2022). ALMA3 is a code that implements the Post-Widder Laplace inversion tech-

nique (Post, 1930; Widder, 1934) for spherically symmetric models with general incom-

pressible linear viscoelastic rheology (Spada and Boschi, 2006; Spada, 2008). Figure 3.5,

obtained using a uniform model whose parameters are listed in the caption, considers

various combinations of the ↵ and ⇣ parameters. The match between the analytical

(solid curves) and numerical results (dotted) is very satisfactory, with a relative error

never exceeding the 0.1% level. Notice that the LNs are characterized by short timescale

(elastic) and long timescale (fluid) asymptotes that are not influenced by the value of

parameter ↵. However, the transition from elastic to fluid regimes is controlled by the

value of ↵, with the response becoming slower for decreasing ↵.

To study the sensitivity of the LNs to the model parameters, in Figure 3.6 we consider

the tidal LN k
H
2 (t), a quantity of fundamental importance in planetary studies since it

characterizes the tidal response of the body. Figure 3.6a shows the LN k
H
2 (t), obtained

from Eq. (3.111) with ↵ = 1/3 and ⇣ = 1 as a function of time, for various values of

the normalized shear modulus µ0 characterizing distinct hypothetical planetary models.

Since µ0 / µ/(⇢ a)2, a small µ0 may correspond to a low-rigidity planet (small µ) or to a

body with with large a and/or ⇢ (hence a large gravity at the surface). Conversely, a large

µ
0 value may correspond to an elastically sti↵ planet (large µ) and/or to a small-radius

and a low-density body. We notice that for an Earth-like planet, µ0 ⇡ 0.4 (see Table 3.2).
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Figure 3.5: Comparison between LNs obtained analytically (solid curves) and numer-

ically by the ALMA
3 code (dotted). A homogeneous Andrade planet is assumed, with

radius a = 6371 km, elastic shear modulus µ = 1.46 ⇥ 1011 Pa, Newtonian viscosity

⌘ = 1021 Pa · s and density ⇢ = 5514kg · m�3. Curves in (a) and (b) are obtained by

setting ⇣ = 1 and ↵ = 1/3, respectively. All numerical experiments with ALMA
3 have

been carried out in a multi-precision environment using 128 digits.
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Figure 3.6: Tidal Heaviside LN k
H
2 (t) for a uniform Earth-like planet with viscosity

⌘ = 1021 Pa · s and ↵ = 1/3. In (a), ⇣ = ⌧A/⌧M = 1, and results for di↵erent values of

the normalized shear modulus µ0 are shown. In (b) we have used c = 4, corresponding

to µ
0 ⇡ 0.4, and curves for di↵erent values of parameter ⇣ are shown. The dashed curve

shows the Maxwell response, attained for values of ⇣ � 1.
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From Figure 3.6a it is apparent that the value of µ0 has a strong influence on the evolution

of kH
2 (t). In particular, the elastic response k

H
2 (0) increases with decreasing µ

0, which is

expected since the initial deformation is large for a low-rigidity body. Furthermore, the

transition to the fluid limit kH
2 (1) = 3/2 is characterized by a time scale that increases

with increasing µ
0, since sti↵ bodies relax slowly. However, Figure 3.6 shows that, as

expected, the fluid limit attained for t ! 1 is not dependent upon µ
0.

In Figure 3.6b, the k
H
2 (t) LN is shown for an Earth-like planet, assuming ↵ = 1/3,

c = 4 and varying ⇣ in the range between 10�2 and 102. As expected, the choice of ⇣

does not a↵ect the elastic and fluid limits, which are controlled by the µ
0 parameter,

but it a↵ects significantly the transition between the two regimes. Indeed, as we have

discussed in Section 2.2, the values of ⇣ control the relative importance of the transient

and steady-state terms, with the former becoming negligible for increasing values of ⇣.

The dashed curve in Figure 3.6b shows the k
H
2 (t) Heaviside LN for a Maxwell rheology.

As ⇣ increases, the response of the Andrade rheology approaches the Maxwell curve,

with a close match for ⇣ = 102. We have also verified analytically that, by virtue of

the properties of the Mittag-Le✏er functions, the expression (3.111) for x
H(t) reduces

to that of a Maxwell rheology for ⇣ ! 1. The procedure is formally identical to that

followed in Section 2.2.3 for the calculation of the limit for ⇣ ! 1 of the relaxation

modulus, with the exception of the presence of a multiplicative factor (1 + c).

83



Chapter 4

Methods

This chapter is devoted to the description of the methods I followed to obtain the final

results presented in Chapter 5. More specifically, I delve into the main steps of the

computation of the horizontal and vertical components of the displacement field at the

surface and the geoid height variation in response to surface unloading. These fields, also

referred to as Surface Response Functions (SRFs), are the result of three-dimensional

convolutions between suitable Green Functions (GFs), representing the Earth’s model

characteristics, and proper “Load Functions” (LFs), that describe the load evolution in

space and time. For more details about these calculations the reader is referred to Spada

(2003).

First, in Section 4.1, I describe the Earth’s models that I have employed for the

experiments presented in the next chapter. All the models include a elastic lithosphere,

a viscoelastic shallow upper mantle and deep upper mantle, a viscoelastic lower mantle

and a fluid core. Hence, in view of the complexity of the Earth’s models, to compute the

LNs I relied on ALMA (Melini et al., 2022), a LNs calculator that will be briefly presented

in Section 4.2. Also, in this same Section, I show several examples of ALMA’s output:

indeed, already from the LNs, it is possible to draw useful preliminary information about

the Earth’s models response. Finally, I briefly expose the main step needed to compute
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the Surface Response Function (SRF) in Section 4.3. For the sake of completeness,

in Section 4.4, I report the time convolutions needed for the computation of the SRF

concerning two particular types of load history which are of interest for this Thesis,

namely the Heaviside and Ramp unloading ice histories.

4.1 Earth’s models

In this section I briefly describe the Earth’s models that I have considered in my ensuing

experiments. I remark that for these computations, I have considered a spherically

symmetric incompressible Earth (1D models). All the models are composed of five

layers, that is (from the outermost to the innermost):

• An Elastic Lithosphere, whose thickness dl varies in some experiments (90, 110,

130 and 150 km),

• A Viscoelastic Shallow Upper Mantle (SUM), i.e. the outermost part of the mantle.

In many experiments I employed di↵erent values for the viscosity, ranging between

5 · 1018 and 1 · 1020 Pa · s,

• A Viscoelastic deep upper mantle (DUM), with a fixed viscosity of 1.0 · 1020Pa · s,

• A Viscoelastic lower mantle (LM), with a fixed viscosity of 1.0 · 1022Pa · s,

• A fluid, inviscid and homogeneous core.

In addition to the thickness of the lithosphere and the viscosity of the SUM, I also tested

the sensitivity of the SRF to the rheological configuration of the mantle, i.e. the various

combinations of rheological laws (Andrade or Maxwell) employed to describe the mantle

layers. In particular, I considered three di↵erent cases:

• “Maxwell”: SUM; DUM, and LM are all characterized by a Maxwell’s rheology.
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Layer Radius (106 m) Dens. (kg/m3) Rig. (1010 Pa) Visc. (Pa · s) Rheo.

Litho. 6.371 2854.6 4.49 - Elastic

SUM 6.371� dl 3550.0 7.12 ⌘SUM And/Max

DUM 5.951 3801.7 14.5 1.0 ·1020 And/Max

LM 5.701 4877.9 22.0 1.0 ·1022 And/Max

Core 3.480 10931.7 - - Fluid

Table 4.1: Scheme used for the implementation of the Earth’s models. Each column re-

ports the radius (upper boundary), density, rigidity, viscosity and rheology relative to the

indicated layer. The parameters in blue are those which were varied in the experiments:

the lithospheric thickness, dl, which can assume the values 90, 110, 130 and 150 km, the

viscosity of the SUM, ⌘SUM , which can assume the values in a range included between

5.0 · 1018 and or 1.0 · 1020 Pa · s, and the rheology of the mantle, which could be set by

choosing between the Maxwell (Max) and the Andrade (And) model.

• “Andrade”: SUM; DUM, and LM are described by Andrade rheology. Andrade

parameters are set to ↵ = 1/3 and ⇣ = 1 respectively.

• “Andrade+Maxwell”: Andrade’s rheology describes the SUM, while the rest of the

mantle is characterized by a Maxwell’s rheology.

In the following, I will use the terms “Maxwell”, “Andrade” and “Andrade+Maxwell”

to refer to one of these rheological configurations. These models are summarized by the

scheme of Table (4.1), where the entries in blue are those which could change in the

various experiments.

A remarkable weakness of this approach is the low degree of details of the lithosphere.

Of course, especially for loads of small to medium spatial scale, the layering of the

lithosphere is important to correctly assess the SRF. A thinner lithosphere allows the

load to be “more in contact” to the viscous layer of the Earth, which, consequently, lay
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closer to the surface. As we will see later in Chapter 5, this has important consequences

on the magnitude of the observed rates. However, assuming a uniform, compact purely

elastic lithosphere allows us to attribute, if present, any transient or inelastic feature of

the SRF directly to the viscoelastic mantle. I made this choice to focus the attention

on the viscoelastic layers of the Earth’s model rather than on the elastic parameters

of the lithosphere. For this reason, I remark here that the e↵ects of the rigidity of

the lithosphere are not investigated in this Thesis. Instead, the role of the lithospheric

thickness dl is considered since it has direct consequences both on the thickness of the

underlying SUM and on the distance of the latter from the surface.

4.2 ALMA: the plAnetary Love nuMbers cAlculator

In the previous chapter we saw that the existence of closed-form or analytical solutions

for LNs is limited to very few fortunate cases, concerning extremely simple models.

As already argued, these formulae are important to understand the role of the model

parameters, but when it comes to the study of more sophisticated models, numerical

solutions are necessary. This is the case of GIA studies: in this field, a minimum of three

layers is necessary (elastic lithosphere, viscoelastic mantle, fluid outer core) to suitably

model the Earth response (see e.g., Whitehouse, 2018). For this reason, in this thesis

work in which I consider 5-layer Earth’s models, I employed ALMA (Melini et al., 2022) for

the numerical computation of LNs. In this section, I briefly illustrate the ideas behind

this program, also showing and discussing some out the outputs obtained.

4.2.1 Some words about ALMA

In 1974, W. Peltier introduced the “Viscoelastic Normal Modes” method (Peltier, 1974).

For a basic introduction about this topic, let’s consider a layered incompressible vis-

coelastic planet subject to an impulsive �-like load: once again, we seek for the solutions
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at the surface of the vertical and horizontal components of the displacement field and the

incremental potential. To do so, as I have shown in Section 3.3, that through the appli-

cation of the correspondence principle, one can solve the corresponding elastic problem

in the Laplace domain. The solution vector z̃(s) = (ỹ1, ỹ2, ỹ5)T reads:

z̃(s) = (P 1⇤(s)J) (P 2⇤(s)J)�1 b , (4.1)

where J is a matrix that accounts for the BCs at the CMB (e.g., Sabadini et al., 2016),

b is the vector containing the loading or tidal BCs (see Eqs. 3.38 and 3.39), and

⇤(s) =
1Y

k=N

Y k(rk+1, s)Y
�1
k (rk, s) , (4.2)

with N being the number of layers in addition to the core, rk is the radius of the interface

between the (k� 1)-th and the k-th layer, with r1  ...  rN , r1 = rc and rN+1 = rc and

rN+1 = a is the planet radius (Melini et al., 2022). The similarity between Eq. (4.1) and

Eqs. (3.88), (3.47) is clear: these formulae express the propagation of the solution from

the centre of the planet to the surface, accounting for all the BCs between each internal

interface. For the Kelvin model, this method allows to find a solution that simultaneously

respects the BCs at the surface and does not diverge at r = 0, while for the two-layered

fluid planet, the solution accounts for the presence of a density discontinuity. However,

seen the small number of layers (one and two respectively), a formal definition of the

propagation matrix was indeed not necessary. Here, by means of ⇤(s), the solution is

propagated from the fluid core, whose BCs are imposed through the interface matrix J ,

to the outer layers, up to the surface, where the BCs are set via b.

From the solution of Eq. (4.1), one can obtain the LNs in the Laplace domain:

h̃n(s) =
m

a
ũn(s) , (4.3)

l̃n(s) =
m

a
ṽn(s) , (4.4)

k̃n(s) = �
✓
1 +

m

ag
'̃n(s)

◆
. (4.5)
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Then, using Cauchy’s residue theorem, we can recast the last three equations in the

following form:

x̃n(s) = x
E
n +

MX

k=1

x
V
n,k

s� skn

(4.6)

where x̃n(s) is any of the three LNs, xE
n is the corresponding elastic limit, xV

n,k and M are

the viscoelastic components of LNs and the number of viscoelastic normal modes respec-

tively, and the skn are the (real and negative) roots of the secular equationDet(P 2⇤(s)J) =

0 (see, e.g., Melini et al., 2022). In the time domain the previous equation reads (as pre-

viously presented in Section 3.3):

xn(t) = x
E
n �(t) +H(t)

MX

k=1

x
V
n,ke

sknt (4.7)

Unfortunately, the application of this model gets increasingly di�cult as the planet

layering becomes thinner and/or when more realistic rheologies are employed (more

details can be found in Melini et al. (2022), Spada (2008), Spada and Boschi (2006)).

The calculation of the LNs for the Earth’s model of interest of this thesis was per-

formed with ALMA, the plAnetary Love nuMbers cAlculator (Melini et al., 2022; Spada,

2008), a program based upon the Post-Widder formula, that represents an alternative

to the VNM method. However, for the purpose of this thesis, by courtesy of my co-

supervisor Dott. D. Melini, I used a newer version of ALMA, still under development. This

new version implements the so called “Collocation Method”, introduced by Schapery

(1962a,b), which is based on an approximation of the multi-exponential form of LNs

(3.59):

x(t) = xE
�(t) + x⇤V (t) , (4.8)

where each component of x⇤V (t) shall be written as

x
⇤V (t) =

nX

i=1

aie
�t/↵i , (4.9)
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where the ai coe�cients are numerically determined to minimize the misfit between x
⇤V

and x
V , and where the number of n terms and ↵i are fixed a priori (Mitrovica and Peltier,

1992). Thus, di↵erently from the previous versions of ALMA, whose output consisted in

Real and Complex LNs, with the collocation analysis the results are the elastic and

viscoelastic parts of the LNs for a set of selected time steps. As we will see later, this

form of LNs greatly facilitates the implementation of the convolutions that I will present

in Section 4.4.

4.2.2 Computing the Love numbers with ALMA

In this section I present the LNs of some Earth’s models used to obtain the results pre-

sented in the next chapter. Here I consider the standard form of LNs (kn(t), hn(t), ln(t))

in the time domain, since for the aims of this thesis, showing their evolution through

time at each harmonic degree could help in the interpretation of the final result presented

in the next chapter. Even if the full response to a particular input load is to be obtained

through the SRF, we can foresee its main features (in general terms, at least) already

from the time evolution of its LNs.

General features of Love Numbers in the time domain

Figure 4.1 shows the LNs kn(t), hn(t), and ln(t) in the time domain for the “Andrade”

configuration with ⌘SUM = 5.0 · 1019Pa · s and dl = 110 km. The purpose of this

figure is showing the general features of time domain LNs. With the exception of higher

degrees LNs (n � 400, third row), we can distinguish three phases: an initial one,

characterized by a constant value, followed by a transition that leads to a third and final

phase, characterized again by a constant behavior. The initial and final phase are called

“elastic” and “fluid” regimes, respectively. Basically, since the model has viscoelastic

layers, if the characteristic time t of the perturbation is too short, the model will respond

in an elastic way (elastic regime). On the contrary, on su�ciently long time-scales, the

90



(a) h(t) (b) k(t) (c) l(t)

Figure 4.1: LNs h(t), k(t), l(t) of the “Andrade” configuration with SUM vis-

cosity ⌘SUM = 5.0 · 1019Pa · s and dl = 110 km for various values of harmonic degree n.
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model exhibits a fluid behavior (fluid regime).

On the other hand, for high harmonic degrees (n � 400, third row), it seems that the

fluid limit coincides with the elastic one. It is important to recall that each harmonic

degree is connected to a spatial scale. Lower degrees are associated to longer wavelengths,

while larger degrees are connected to more local features. Since the first 110 km of

the Earth’s model are composed by an elastic lithosphere, we can expect that all the

harmonic degrees exceeding a certain value, will only “see” this layer, exhibiting thus the

characteristic constant trend represented by the elastic limit value. Similar results were

found in Boughanemi and Mémin (2024), who considered an elastic lithosphere 100 km

thick. This fact is confirmed also by a Rule of thumb known as “the Jeans rule” Jeans

(1923), that relates the spatial scale � (or wavelength) to the harmonic degree n:

� =
2⇡a

n+ 1/2
, (4.10)

where a is the radius of the planet. With � set to 110 km, it turns out that n ⇠ 360.

E↵ects of the rheological law

Figure 4.2 scopes the role of the mantle rheology on LNs h(t), k(t) and l(t). The three

configurations presented in Section 4.1 are considered: “Maxwell” in the first row, “An-

drade” in the second and “Andrade+Maxwell” in the third. I chose to plot the LNs

of degrees 20, 30, 40, 80, since they should reflect contribution mainly due to the mantle

layers. By comparing each row, we should not be surprised by the similarity of the

curves obtained for the di↵erent rheological configurations. The main di↵erences be-

tween them, especially between “Andrade”, “Andrade+Maxwell” and “Maxwell” occur

during the elastic phase and the “transitory” phase (hereafter, the term “transitory” is

used to describe the phase in between the elastic and fluid regimes, and it has nothing

to do with the rheological “transient”). By a careful examination, it is possible to see

that Andrade’s model have a shorter elastic phase, that with respect the Maxwell one,
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(a) Maxwell, h(t) (b) Maxwell, k(t) (c) Maxwell, l(t)

(d) Andrade, h(t) (e) Andrade, k(t) (f) Andrade, l(t)

(g) Andrade+Maxwell, h(t) (h) Andrade+Maxwell, k(t) (i) Andrade+Maxwell, l(t)

Figure 4.2: LNs h(t), k(t), l(t) of the three rheological configurations

“Maxwell” (first row), “Andrade” (second row) and “Andrade+Maxwell” (third

row). The lithospheric thickness is set to dl = 110 km and the viscosity ⌘SUM =

1.0 · 1020 Pa · s. The models with Andrade’s rheology in the SUM have a slightly

smother transition between the elastic and fluid regime. Although the di↵erences seem

negligible, I remark that the time axis is logarithmic and that the time-scales of interest

of the tests shown in the next chapter are of the order of 10�3
, 10�2

kyr.
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starts immediately (even if slowly) to evolve. Basically, we see that while the Maxwell

configuration is still in its elastic regime, the Andrade’s ones are already in a anelastic

stage, which, in principle, should be responsible of the transient phase that we will see

in the SRF. This is more evident in h(t) and k(t) than in l(t).

E↵ects of Viscosity

As we can see from Figure 4.3, the e↵ects of viscosity on LNs are extremely evident. The

shape of the curves remains the same, but the transition between the elastic and fluid

regime is shifted in time: lower viscosities mean earlier transitions. The reason is easily

said: changing the magnitude of mantle’s viscosity means modifying the relaxation time

of the model. Less viscous models will start flowing earlier. Except from this, viscosity

does not cause any other significant modifications. However, as we will see later, this

variation is the one that produces the most evident consequences in the SRF.

E↵ects of Lithospheric Thickness

The sensitivity of LNs to the thickness of the lithosphere dl is considered in Figure 4.4.

The values accounted are dl = 90 km, 110 km, 130 km and 150 km. It is important to

remark that, di↵erently from the other cases presented earlier, in this one the total mass

of the Earth’s model changes, since the lithospheric density is kept constant. However,

these results appear quite interesting: the elastic limit does not change significantly

following a variation in the lithosphere’s thickness, while this is not the case for the fluid

limit, that exhibits di↵erent values. This finding is true for the LNs h(t) and k(t), while

l(t) does not seem to be very sensitive to the lithospheric thickening. To explain this

trait, I could speculate that, as regard the horizontal displacement, Jean’s rule may be a

little di↵erent: even the shallowest model considered (dl = 90 km) is already too thick to

allow these displacements to be sensitive to any other parameters. Another feature that

we can appreciate concerns the amplitude of the transitory phase: as the lithosphere
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(a) ⌘SUM = 5.0 · 1018Pa · s (b) ⌘SUM = 5.0 · 1018Pa · s (c) ⌘SUM = 5.0 · 1018Pa · s

(d) ⌘SUM = 5.0 · 1019Pa · s (e) ⌘SUM = 5.0 · 1019Pa · s (f) ⌘SUM = 5.0 · 1019Pa · s

(g) ⌘SUM = 1.0 · 1020Pa · s (h) ⌘SUM = 1.0 · 1020Pa · s (i) ⌘SUM = 1.0 · 1020Pa · s

Figure 4.3: LNs h(t), k(t), l(t) of “Andrade” model, with lithospheric thick-

ness dl = 110 km for di↵erent values of ⌘SUM . More precisely, ⌘SUM = 5.0·1018Pa·

s in the first row, ⌘SUM = 5.0 · 1019Pa · s in the second and ⌘SUM = 1.0 · 1020Pa · s in the

third. Here we can appreciate that the viscosity “shifts” (in time) the transition between

the elastic and fluid regimes.
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a) 90km

b) 110km

c) 130km

d) 150km

Figure 4.4: LNs h(t), k(t), l(t) of “Andrade” model, with

⌘SUM = 5.0 · 1019Pa · s for di↵erent values of the lithospheric thickness. Each

row shows a di↵erent case, i.e., dl = 90 km, 110 km, 130 km and 150 km.
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width increases, the gap between the fluid and elastic regime diminishes, making the

value of the fluid limit more and more similar to that of the elastic one. In other words,

thicker lithospheres make the Earth’s models more elastic and less viscous.

4.3 Surface response functions

The calculation present in this section follows Spada et al. (2003). For more details, the

reader is referred to the book ”The theory behind TABOO” distributed with the code

at https://github.com/danielemelini/TABOO.

In mathematics, given a linear di↵erential operator D = D(x) acting on the collection

of distributions over a subset ⌦ of some Euclidean space Rn, a Green’s function � =

�(x, s) at the point s in ⌦ corresponding to D, is any solution of

D�(x, s) = �(x� s) , (4.11)

where � denotes the Dirac’s delta function. More generally, we can see the GF as the

response of a system to a unit impulse at a certain time t = t
0 (Boas, 2006).

In the scope of the surface load problem, the GFs express the response (in terms of

a certain observable, such as the displacement field) of the Earth’s model to a impulsive

unit load. Through a convolution with a suitable function that describe the load evolution

(i.e., the “Load Function”) , it is possible to obtain the so called “Surface Response

Function” (SRF). In other words:

SRF(�, t) = (�⌦ L)(�, t) =
Z 1

�1
dt

0
Z

earth

�( , t� t
0)L(�0, t0)dA0

, (4.12)

where � = (✓,�) is the point at which the SRF is evaluated, � is the GF, L is the load

function describing the load geometry and history,  is the angular distance between

the impulsive point load of the GF and �, and the
R
earth stands for the integration over

the Earth’s surface. The SRF is the final product of the calculations, that includes all

the information regarding how the Earth’s model responds to the load evolution. In the
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following, we will see how to obtain a SRF for a compensated disc-shaped ice load, i.e.

a type of load which accounts for the principle of mass conservation (PMC).

In view of the geometry of the problem, to ease the calculations that will follow, we

start by writing the GFs in the following way (Spada, 2003):

�(↵, t) =
a

me

1X

n=0

xn(t)Pn(cos ) , (4.13)

with the xn indicating one of the three loading LNs:

xn(t) =

8
>>>>><

>>>>>:

�(t) + kn(t) , � = �g Geoid height

hn(t) , � = �u Vertical displacement

ln(t) , � = �g Horizontal displacement

(4.14)

where in the particular case of the horizontal displacement I remark that it is necessary

to substitute Pn(cos ) with its derivative with respect to with respect to  . Similarly,

we will consider a general load function that can be expanded in complex spherical

harmonics, such as:

L =
X

nm

LnmYnm , with Lnm =
1

4⇡

Z

�

L(�, t)Y⇤
nm(�)d� , (4.15)

being Ynm the spherical harmonic function of degree n and orderm, and Y⇤
nm its complex
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conjugate. In this way, we can decompose the SRF as follows:

SRF(�, t) ⌘
Z 1

�1
dt

0
Z

e

� ( , t� t
0)L (�0, t0) dA0

=

Z 1

�1
dt

0
Z

�

 
a

me

1X

n=0

xn (t� t
0)Pn(cos )

!
·
 
X

n0m0

Ln0m0 (t0)Yn0m0 (�0)

!
a
2
d�

0

=
a
3

me

Z 1

�1
dt

0
Z

�

 1X

n=0

xn (t� t
0)

2n+ 1

nX

m=�n

Y⇤
nm (�0)Ynm(�)

!
· (· · · )d�0

=
a
3

me

X

nm

Ynm(�)

2n+ 1

Z 1

�1
dt

0
xn (t� t

0)
X

n0m0

Ln0m0 (t0)

Z

�

Y⇤
nm (�0)Yn0m0 (�0) d�0

=
4⇡a3

me

X

nm

Ynm(�)

2n+ 1

Z 1

�1
xn (t� t

0)Lnm (t0) dt0

=
X

nm

SRFnm(t)Ynm(�) ,

(4.16)

where

SRFnm(t) =
3 (xn(t) ⇤ Lnm(t))

⇢e(2n+ 1)
(4.17)

and where ⇢e =
3me

4⇡a3 is the Earth’s average density, and ⇤ indicates a time convolution.

In this way we have reduced the original 3-D convolution to a simpler 1�D time con-

volution between the LNs and the Load Function.

From now on, we will assume that the load stems from two contributions:

L(�, t) = Li + Lw , (4.18)

where the first term, Li, accounts for the variations of the ice load, and Lw mimics

complementary water-covered region needed to ensure the PMC. According to Spada

(2024), we have:

Li(�, t) = ⇢
i
d
i(�)�i(�)f i(t) , (4.19)
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where ⇢i, is the ice density (917 kg/m
3), di(�) is the ice thickness, f i(t) is the time

history (a function describing the time evolution of the load), and �i(�) is the ice mask

function

�
i(�) ⌘

8
><

>:

1 , if � 2 i

0 , otherwise .
(4.20)

As regard Lw(�, t), one can write

Lw(�, t) = ⇢
w
d
w(t)�w(�) , (4.21)

where ⇢w, is the water density (1000 kg/m
3), the water mask function is

�
w(�) ⌘

8
><

>:

1 , if � 2 w

0 , otherwise ,
(4.22)

and d
w(t), the water thickness, is a variable to be determined in order to ensure the

PMC. For this reason, dw(t) is time dependent and relies upon function f
i(t).

I remark that this modeling approach is quite basic since during the experiments we

assume that the areas of the two regions - ice and water - do not change and do not

overlap. Now, in compliance with the PMC, for which the average of the load variation

over the Earth surface must be zero,

hL(�, t)iearth = 0 , (4.23)

and by switching to the representation in terms of complex spherical harmonics, already

introduced in Eq. (4.15), we can express the Load Function in the following way:

Lnm = ⇢
i
f
i(t)diwnmYnm(�) , (4.24)

where d
iw
nm are suitable coe�cients that account for both the ice and water part of the

Load Function (that is why we have introduced the superscript iw) and the PMC:

d
iw
nm = d

i
nm �

✓
d
i
00

�
w
00

◆
�
w
nm . (4.25)
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By doing so, we are describing the so called “compensated load”. Also, in the latter

equation, dinm and �
w
nm are suitable coe�cients of the expansion in complex spherical

harmonics of the ice term d
i(�)�i(�) and the water-region mask �w(�).

By substituting this expression into the convolution Eq. (4.16), we can recast it in

the following way:
8
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>>>>>>=
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Ynm(�) , (4.26)

where the time-convolutions are:
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>>>=

>>>;
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0) f i (t0) , (4.27)

and where U is the vertical displacement SRF, V✓ and V� are the co-latitudinal and

longitudinal component of the horizontal SRF and G is the geoid height variation SRF.

We will now consider a disc-shaped load: this case is of particular interest, since it

is one of the possible “axis-symmetric” loads. This scenario is schematically depicted by

Figure 4.5. It consists of a disc of half-amplitude ↵ (angle between the centre of the load

and its border, measured w.r.t the geometrical centre of the Earth) over which height di

is constant, and whose area defines the mask function

�
i(✓) ⌘

8
><

>:

1 0  ✓  ↵

0 ↵ < ✓  ⇡ .

(4.28)

As a consequence, the complementary mask function of the ocean will be:

�
w(✓) ⌘

8
><

>:

0 0  ✓  ↵ ,

1 ↵ < ✓  ⇡ .

(4.29)
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Figure 4.5: Sketch representation of a compensated disc load of half-amplitude ↵.

In this circumstance, the independence from the longitudinal coordinate � allows us to

access to a sequence of simplifications leading to a description of the SRF in term of

Legendre polynomials, instead of complex spherical harmonics. The details on these

calculations can be found in Spada (2003). The final result reads:
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with the term d
iw
n defined as:

d
iw
n ⌘

8
><

>:

0 if n = 0 ,

�d
iPn+1(↵)� Pn�1(↵)

1 + cos↵
otherwise .

(4.31)

where here, for the sake of simplicity, we have abbreviated Pn(cos↵) by Pn(↵), and d
i is
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Figure 4.6: Load coe�cient diw
n as a function of the harmonic degree n of a disc load

of unit height di for various half-amplitudes ↵.

the height of the disc.

In Figure 4.6 the load coe�cient d
iw
n is shown as a function of n (from 0 to 1024),

for di↵erent half-amplitudes (↵ = 0�, 0.25�, 0.5�, 0.75�, 1.0�). As we can see, the size of

the load determines which harmonic degree (and thus which LNs) will contribute more

to the final displacement. For example, the disc load of ↵ = 0.25� will promote mostly

the coe�cients of the harmonic degrees between 200 and 600, so that the SRF will be

mainly sensitive to the LNs at those harmonic degrees.

4.4 Evaluation of the convolutions

To compute the SRF, it is necessary to solve for the time convolutions in Eq. (4.27). To

this end, it is extremely useful to consider their transformation in the Laplace domain,

where they became mere multiplications between the ice history f̃(s) and the Laplace-

domain LNs. The results, expressed in the time domain and ready-to-use, for a notable
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fr(t)
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Figure 4.7: Sketch representation of the Heaviside and the ramp unloading ice histories.

number of ice histories are reported in Spada (2003). In the following I expose, for

the sake of completeness, only the results of the two cases of interest of this thesis: the

Heaviside and the ramp ice histories, represented in Figure 4.7. The following expressions

are taken from Spada (2003). These results, together with the expressions of the SRF

of the vertical displacement, horizontal displacement and geoid height variation were

implemented in my Julia code. Instead, the computation of LNs has been performed

through ALMA.

Heaviside unloading

The Heaviside unloading ice history describes an instantaneous unloading of the ice

mass. For the unloading, we assume that the load was present since t = �1, and that

at t = 0 kyr it disappears entirely. This kind of model is the most basic possible, but

it can still o↵er some food for thought. When the information and data about the load

evolution are insu�cient, or when we can assume that the time-scale of the unloading is

much smaller than the characteristic time of response of the Earth’s model, this simple

ice history is still largely used (this is the case of ER, for instance). In the time domain,
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the Heaviside unloading fh#(t) and its derivative ḟh#(t) read:

8
><

>:

fh#(t) = 1�H(t) ,

ḟh# = 0 .
(4.32)

Likewise, one can also define the Heaviside loading ice history fh"(t):

8
><

>:

fh"(t) = H(t) ,

ḟh" = 0 .
(4.33)

Recalling that each LN can be separated into a elastic x
E and a viscoelastic x

V
i (t) com-

ponent, and that the fluid limit satisfies:

x
F = x

E �
X

i

x
V
i

si
, (4.34)

The result of the convolution ch#(t) and its derivative c
0
h#(t) read:

8
><

>:

ch#(t) = x(t) ⇤ fh#(t) = x
F �H(t)

⇣
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P
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i
si
e
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ċh#(t) = x(t) ⇤ ḟh#(t) = �H(t)xV
i e

sit ,

(4.35)

while for ch"(t) and ċh"(t) we have:

8
><

>:

ch"(t) = x(t) ⇤ fh"(t) = H(t)
⇣
x
F +

P
i
xV
i
si
e
sit
⌘
,

ċh"(t) = x(t) ⇤ ḟh"(t) = H(t)xV
i e

sit .

(4.36)

These convolutions allow to compute the SRF presented in the previous section (Eq. 4.30),

and their time derivatives.

Ramp unloading

The ramp unloading ice history represents a load that melts at a constant rate. In this

case, it is assumed that the load was present at �1  t < 0, and then, in a time period
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⌧ , it decreases at a constant rate. Finally, for t � ⌧ , it is absent. Thus, the ice history

and its time derivative are:
8
><

>:

fr#(t) = 1�H(t) + (1� t/⌧) [H(t)�H(t� ⌧)] ,

ḟr#(t) = �(1/⌧) [H(t)�H(t� ⌧)] .
(4.37)

Instead, in the case of a ramp loading, the ice grows at a constant rate: the load is

absent for �1  t < 0, it starts to accumulate at a constant rate for a time ⌧ , and then

remains unchanged for t � ⌧ . The ice history fr"(t) and its derivative f
0
r"(t) are:

8
><

>:

fr"(t) = 1� fr#(t) = H(t)� (1� t/⌧) [H(t)�H(t� ⌧)] ,

ḟr"(t) = (1/⌧) [H(t)�H(t� ⌧)] .
(4.38)

The convolutions of the previous ice history with the LNs yield:
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and
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Chapter 5

Results and Discussion

In this chapter I present and discuss the main outcomes of my work. While other

original results regarding rheology and LNs were already shown in the previous chapters,

here I focus the attention on the findings of the experiments I ran concerning surface

unloading. The goal of this section, and the aim of Thesis in general, is to obtain a list

of “guidelines” useful for the recognition of the optimal conditions for the observation of

a transient regime in unloading phenomena. This list could be considered by geodesists

and geophysicists as a sort of “zero-order reference” for setting up a campaign which aims

to detect transient e↵ects caused by natural or anthropogenic unloading. Thus, even if

the focus of the Thesis is the response to ice unloading in Greenland, the conclusions of

this chapter can be extended to any other case studies.

Here I examine how di↵erent parameters like depth, thickness, viscosity, distance

from the load, size of the load, or the ice history of the load can enhance (or even hide)

transient responses. From these results, I try to sum up which of the aforementioned

variables plays a major role, and which not. Given the high number of variables, I have

intentionally kept the Earth’s models as simple as possible. Indeed, the introduction of

many Earth’s layers, and thus the increase of the number of model parameters, makes

the interpretation of the results more complicated.
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The results discussed in this chapter have been obtained through a Julia code that

mimics the TABOO “task 2” functionality: the code relies upon ALMA for the computation

of an approximate form of multi-exponential Love numbers, and then uses the formulas

obtained in Section 4.3 to compute the SRF of the displacements and the geoid height

variation, as well as their time derivatives. To check the validity of my code, I ran a

comparison test with TABOO (Spada et al., 2011), whose results are presented in Section

5.1. The need of a new code was due to the fact that TABOO does not include, in its native

version, transient rheological models. Still, the code I developed has some drawbacks

w.r.t. TABOO, like the fact that it includes just two type of ice histories (Heaviside and

Ramp), while TABOO implements a total of eight di↵erent ice histories. However, for the

aims of this Thesis, this was su�cient to run comprehensive experiments.

The case studies examined are sorted by increasing complexity, but they all refer to

compensated disc-loads. The first experiments concern the case of the instantaneous

unloading of a disc-like glacier: a large ice mass is removed at t0, assuming a pre-existing

condition of equilibrium. This scenario, which could appear extremely simplicistic, is

instead largely used by the scientific community: in GIA studies, to implement ER

(Elastic Rebound) corrections to GNSS records, the ice model representing present-day

ice melting is discretized on a set of disc load with an associate amplitude ↵ and mass

loss �m (Spada et al., 2012). Scoping pro and cons of this approach is instead notably

useful to understand the limit of ER modeling. Then, always considering a disc load,

I have investigated the e↵ects of a “ramp” unloading, i.e., a constant rate unloading,

that is particularly suited to describe present day ice loss. Indeed, many glaciers and

ice sheets around the globe are experiencing negative trends over the years. Usually,

those trends are well described by a ramp with a negative slope, or even by a sequence of

ramps. This evolution is a bit more realistic that the Heaviside one, and we shall see that

it should be recommended when the time period of the unloading becomes significant

(> 10yr).
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Radius (106 m) Density (kg/m3) Rigidity (1011 Pa) Viscosity (Pa · s) Rheology

6.371 2689 0.282 - Elastic

6.281 4430 0.837 1021 Maxwell

5.701 4919 2.17 1022 Maxwell

3.480 10927 - - Fluid

Table 5.1: Description of the model used to compare my code with TABOO. The model,

described at page 113 of the “Taboo User Guide” (Spada et al., 2003), was originally

designed by Yuen et al. (1982).

Finally, a more realistic case study is presented: the aim of the last experiment is

modeling the Earth’s response in the neighborhood of Helheim Glacier, a peripheral

glacier in South-east Greenland. For this experiment I used a fine grid of ⇠ 47, 000

points representing the evolution of the Glacier from year 2007 to 2022, courtesy of Dr.

V.R. Barletta and Dr. C. Gong. Each grid point, which is associated to an area and a

height loss rate, has been converted into an equivalent disc, and then the contribution

of each disc is computed in two points, representing the location of two GNSS stations,

HEL2 and KULU.

5.1 Numerical benchmark

This section presents the results of the benchmark test done by comparing the output of

my code with those of TABOO (Spada et al., 2004). The tests include two toy-scenarios

describing the time evolution of the vertical displacement and the vertical velocity fol-

lowing two di↵erent types of ice history, respectively an instantaneous unloading and a

ramp unloading. These two kinds of ice histories, depicted in Figure 4.7, are the sim-

plest possible: they describe an ice mass that instantaneously disappears at a given time

t0 = 0 yr, and a mass that is kept constant from �1 < t < 0, then decreases linearly
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between 0 < t < ⌧ , and then is absent for t > ⌧ , with ⌧ = 3 kyr. The Earth’s model

used for this computation is reported in Table 5.1, and it has been chosen among those

available in TABOO (it was originally introduced by Yuen et al. (1982)). In both cases,

the ice load is a compensated disc, with an angular half amplitude of 1�, whose total ice

height loss is 100 m, and the computations refer to a time window of 20 kyr. These tests

are fundamental to check the validity of the results that will follow.

The outcomes of this test are reported in the following, in Figures 5.1, 5.2, 5.3 and

5.4. Each of them shows, on the left, the results of the computations performed by

my Julia code (red, dashed curves) and TABOO (green solid curve) and, on the right, the

relative di↵erences (outputTABOO�outputJulia)/outputTABOO. From the latter, we can

see that the relative di↵erences are always below ⇠ 5%. We can also notice, by comparing

the four panels of each figure, representing the output observed at various observation

distances, that they are more relevant underneath and in the proximity of the load, and

they decrease with increasing distance. Nevertheless, it is undeniable that the relative

di↵erences increase with time. However, this does not represent a problem for the aims

of this Thesis, since the typical time scale of the experiments that I present reaches a

range of 100 yr utmost. In this time range the relative di↵erences are even lower than

the aforementioned ⇠ 5%: this is clearly shown in Figure 5.3 and 5.4, panel (b) (that

zooms panel (a) on the time period (0, 1000) yr of the ramp unloading experiment).

5.2 Heaviside unloading experiments

This section is dedicated to the presentation and discussion of the tests ran using a

compensated disc load described by a Heaviside unloading ice history (see Figure 4.7,

(left)). In the following I discuss the role of the rheological law and viscosity of the SUM,

the lithospheric thickness and the size of the load.
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(a) Observation distance: 0.1° (b) Observation distance: 0.5°

(c) Observation distance: 1° (d) Observation distance: 3°

Figure 5.1: Displacement - Heaviside unloading case. Each box shows, on the left,

the time evolution (from 0 to 20 kyr) of vertical displacement and on the right (in blue)

the relative di↵erence between TABOO and my computations, based upon an ad-hoc Julia

code, at di↵erent distances from the centre of the disc load (0.1°, 0.5°, 1° and 3°). For this

experiment, I used a disc load of height 100 m, half-amplitude of 1° and the Earth model

described in Table 5.1. The relative di↵erences tend to decrease with increasing distance.

They remain under the threshold of 1.2% in the first 10 kyr, while from 12.5 kyr they

increase up to 6%. However, for the purpose of this work, which focuses on the Earth’s

response on centennial time scales, I have verified that the relative di↵erences are of

⇠ 0.1%.
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(a) Observation distance: 0.1° (b) Observation distance: 0.5°

(c) Observation distance: 1° (d) Observation distance: 3°

Figure 5.2: Displacement rates - Heaviside unloading case. Same as Figure 5.1,

but for the displacement rate.
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(a) Observation distance: 0.1° (b) Zoom of Figure (a)

(c) Observation distance: 1° (d) Observation distance: 3°

Figure 5.3: Displacement - Ramp unloading case. Each box shows the time evolu-

tion, in the time range between 0 to 20 kyr, of the vertical displacement (left, green and

red) and the relative di↵erences between my computations (“Julia”) and TABOO’s output

(right, in blue), at various distances from the centre of the disc load (0.1° in the first raw

and 1° and 3° in the other). For this experiment I used a disc load of semi-amplitude

1°, and the Earth’s model of Table 5.1. During the melting phase, between 0 and 3 kyr

the load decreases at a constant rate from a height of 100 m to 0 m. As shown in (b),

in this phase the relative di↵erences are significantly low (< 0.1%). These results show

that the relative di↵erences remain globally below the 1.2% level in the first 10 kyr.
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(a) Observation distance: 0.1° (b) Zoom of Figure (a)

(c) Observation distance: 1° (d) Observation distance: 3°

Figure 5.4: Displacement rates - Ramp unloading case. Same as Figure 5.3, but

for the displacement rate. From panel (b) we can see that in the first 1 kyr, during the

melting phase, the relative di↵erences are significantly low, < 0.15%.
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5.2.1 Role of rheology and viscosity

This experiment is the first of a group of three performed with an instantaneous un-

loading ice history. The aim is understanding the role of rheology and viscosity in the

determination of the displacement and velocity profile. I consider two cases:

• case (a): Load half-amplitude ↵ of 1�. In scale, it could represent a toy-model of

a portion of an ice-sheet (↵ = 1� ' 100 km).

• case (b): Load half-amplitude of 0.3�, representing a medium size glacier (↵ =

0.3� ' 30 km).

I remind here that, as we have saw in Figure 4.6, the size of the load acts as a “filter”

in the SRF, promoting the contribution of certain harmonic degrees at the expense of

some others.

The results of this test are shown in Figures 5.6, 5.5, and 5.7. In Figures 5.6 and 5.5

the time evolution of the displacement rate is displayed from two di↵erent observation

points located at the centre of the load (✓o = 0°, left) and at an angular distance of ✓o = 1°

(right). The two figures show the response caused by a disc-shaped load of half amplitude

↵ = 1° and ↵ = 0.3° respectively, that instantaneously disappears at t = 0 yr. Instead,

Figure 5.7 represents the displacement rates as a function of the angular distance from

the centre of the load at the observation time t = 0 yr. The Earth’s models considered

in this experiment include the three rheological configurations reported in Section 4.1

and consider three di↵erent values for the SUM viscosity ⌘SUM , namely 5.0 · 1018Pa · s,

5.0 · 1019Pa · s and 1.0 · 1020Pa · s. As expected, the models including the lowest values

of ⌘SUM (light colors) are those which produce the highest velocities.

The first conclusion that we can draw is that transient models allow to retrieve,

without changing the viscosity profile, higher displacement rates. This fact is consistent

with the findings of Boughanemi and Mémin (2024). The presence of a transient assures

an earlier departure from the elastic regime, as we have observed in the figures concerning
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Figure 5.5: (TOP) Vertical displacement rates, as a function of time for various

Earth models observed at ✓ = 0° and ✓o = 2°, for a disc load of half-amplitude ↵ = 1°.

(BOTTOM) Di↵erence between pairs of equivalent “Maxwell” and “Andrade”

models, always as a function of time. From this latter we can see that the configurations

which include the layers with the highest viscosity values (⌘SUM = 5.0 · 1019Pa · s and

(⌘SUM = 1.0 · 1020Pa · s) are those which remain distinguishable for longer times.
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Figure 5.6: (TOP) Vertical displacement rates plotted as in Figure 5.6 but for a disc

load of half-amplitude ↵ = 0.3° and a Heaviside ice history. (BOTTOM) Di↵erence

between pairs of equivalent “Maxwell” and “Andrade” models, always as a

function of time.
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(a)

(b)

Figure 5.7: Displacement rate profiles. Panels (a) and (b) display the response (as a

function of the angular distance from the centre of the load ✓o) to a Heaviside disc load

of initial height h = 50 m and half-amplitude 1� and 0.3� respectively. The green curves

refer to Maxwell models, the orange to Andrade ones, and the red to the Andrade +

Maxwell ones. Di↵erent intensities in the colors reflect di↵erent SUM viscosities.
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LNs in the previous chapter (Figure 4.2). This fact is largely known in geodynamics but

also in planetary science. For instance, Tobie et al. (2019) argues that using a Maxwell

rheology for modeling the tidal response of the Moon led to an underestimation of the

viscosity. This is because, at higher frequencies, far from those associated to the ⌧M of

the model, Maxwell rheology underestimates the viscous dissipation. This is true for

tidal loading, but, translated in the framework of surface loading, this means that the

Maxwell system is less prone to start flowing on too short time scales. However, we

must retain that in many cases in geophysics, the viscosity is the main unknown, and its

assessment is the final goal of many GIA studies. Thus, one of the primary strategies

to fit anomalous rates is invoking the presence of low viscosity zones (see, e.g., Barletta

et al., 2018), instead of supposing the presence of a more complex rheological behavior. It

is clear that both approaches can be correct as far as no other constraint on the viscosity

value is available.

From Figures 5.6 and 5.5 (bottom) it is interesting to notice that the models that

produces the most significant di↵erences between the “Maxwell” and “Andrade” config-

urations output are those with higher viscosities in the SUM. Also, as the time increases,

we see that the models with ⌘SUM = 5.0 · 1018Pa · s tend to merge more quickly, while

the other maintain a higher discrepancy for a longer time.

Then, by comparing the two panels of Figure 5.7, we can see that the di↵erences

between the pure “Andrade” model (orange) and the mixed “Andrade+Maxwell” model

(red) are negligible, suggesting that the displacements are not very sensitive to the rhe-

ology of the layers below the SUM (for this very reason, the “Andrade+Maxwell model

was lacking in the previous Figures 5.6 and 5.5, since it made quite problematic the

interpretation of the plot). Instead, the magnitude of the “Maxwell” model is substan-

tially lower, at least below and in the proximity of the load. Another clear di↵erence

is the rate at which the values decrease with distance from the center of the load. In

both cases, at a distance of 1.5�, the magnitude of the rates has been reduced by half
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with respect to the value at ✓0 = 0�, meaning that in panel a), the rate has decreased by

�6.67(mm/yr) per degree, while in panel b) it is �0.67(mmy/yr) per degree. However,

as we will see in Section 5.2.2, this fact is ultimately due to the thickness of the elastic

lithosphere w.r.t. the size of the load.

5.2.2 Role of the elastic lithosphere thickness

Figure 5.8 displays the vertical displacement rate as a function of the angular distance

from the centre of the load. Each color refers to a di↵erent model: “Maxwell” (blue),

“Andrade” (red), “Andrade + Maxwell” (purple), while the four shades refer to di↵erent

thicknesses of the lithospheric layer. For this plot, the viscosity of the SUM was set to

5.0 · 1019Pa · s. As anticipated before, the thickness of the lithosphere influences the way

in which the rate decreases with the distance from the load. From the physical point of

view, thin lithospheres can produce higher rates in the proximity of the load, because

the influence of the underlying SUM is more relevant, being closer to the surface. From

a formal perspective, this is due to the way in which the load deformation coe�cients

and the LNs mix together. In this case, I have kept fixed the load size, while the

LNs varied since the lithospheric thickness changed. As we saw in Figure 4.4, thicker

lithospheres produce “more elastic” LNs, meaning that the e↵ects of the lithosphere

were more significant. If we instead keep the same model and increase the dimension

of the load, we see (always with the aid of Figure 4.6) that the load coe�cients tend

to magnify the role of the lower degree terms, i.e., the LNs that influence the most the

analysis become the low degree ones, those that can sense the large-scale structure of the

Earth most. To sum up this paragraph, we could say that the larger the load extension,

the more it will be sensitive to the deeper structure of the Earth’s model.

To better visualize this result, I made the second panel of Figure 5.8, reporting the

very same results but with each curve normalised by its maximum value (that corresponds

to the value at ✓o = 0�). Here it is clear that the profiles corresponding to the models
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(a)

(b)

Figure 5.8: a) Displacement rate profile of the three rheological configurations for

di↵erent values of the Lithospheric thickness dl = 90, 110, 130, 150 km; below, panel b)

shows the same trend but normalized w.r.t. the maximum of each profile.
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with thinner lithospheres are those which decay more rapidly with the distance from the

centre of the load. Again, we can conclude that in this case the lithosphere works as a

low-pass filter: the thicker it is, the more the high frequencies of the SRF are cut out.

5.2.3 Role of the disc-load size and mass

The size of the load is an important parameter in surface load problems: as a rule of

thumb, it is generally assumed that the Earth’s response is mostly driven by those layers

that stay at depths comparable with the spatial extent of the disc load.

To test and verify this statement, I plotted the displacement rate as a function of the

half-amplitude of the disc load (i.e., the load size) for di↵erent observation points. These

plots and all the other presented from now on until the end of this section, report the

rates observed at time t = 0 yr, the instant right after the disappearance of the ice load.

The first set of results are shown in Figures 5.9 and 5.10, which report the comparison

between “Andrade”, “Maxwell”, and “Andrade” and “Andrade+ Maxwell” respectively.

The conclusions we can learn from these plots are twofold: first, the displacement rate

produced by the di↵erent rheological configurations are significantly di↵erent mainly

below and in the proximity of the disc load, that is when ↵ > ✓o; second, that once we

fixed the Earth model and the observation point, there exists a load size (and mass) that

maximizes the displacement rate. For example, consider panel (a) of Figure 5.9, which

displays the case of an observer placed (hypothetically) at the centre of the ice load, thus

below the ice. The size of the load that maximizes the displacement rate (for this set

of Earth models) in that observation point is around 3� and 4�: this means that if we

enlarge the size of the load over 4�, we would not observe higher rates.

To better address this point, Figure 5.11 shows the displacement rates as a function of

the load half-amplitude and observation point. In the figures we can clearly identify the

presence of the maximum located between 3� and 4�, for ✓o = 0�. Notice that when the

load half-amplitude ↵ is smaller than ✓o (i.e., the observer is outside from the load), the
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Figure 5.9: Displacement rates as a function of the angular distance from the

centre of the load. Comparison between the Maxwell (blue) and Andrade (red) models.

The di↵erent intensities of colors refer to various viscosities of the SUM (5 · 1018Pa · s,

5 · 1019Pa · s, 1 · 1020Pa · s). One can notice the presence of a maximum whose location

changes depending on the observation point. Also, it appears clear that the di↵erences

between the pairs of rheologies are enhanced when ↵ > ✓o, i.e., when the observation

point is inside the area of the load.
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Figure 5.10: Displacement rates as a function of the angular distance from

the centre of the load. Same as Figure 5.9, but here the comparison is between the

“Andrade + Maxwell” (purple) and “Andrade” (red) models.
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(a) Litho. thick.= 90km (b) Litho. thick.= 150km

Figure 5.11: Displacement rate as a function of the ice load size and observation

distance ✓o, for di↵erent lithospheric thicknesses (columns) and viscosities of the SUM

(rows). Here I considered the “Andrade” configuration. The pattern is the same in all

the six panels, confirming that for ↵ < ✓o the rates are lower. Small values of viscosity

and lithospheric thickness enhance the magnitudes of the maxima. It is interesting to

notice that, for very large loads, the rates are extremely similar, independently from the

setting of the lithosphere and the SUM. This reflects the fact that such large loads would

be primarily influenced by the deepest layers of the Earth, which in these experiments

are identical in every model.
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rates are minimal. Also, the figure investigates the e↵ects of the lithospheric thickness,

since on the right, we have the output to a model with dl = 90 km, and on the left, a

similar model, but with a lithospheric thickness dl = 150 km. The di↵erence between

the two figures are subtle, but with a little e↵ort one can see that, in case of a thicker

lithosphere, the maximum rates are attained for a narrower range of load half-amplitude.

Once again, this is due to the low-pass filter e↵ect of the lithosphere.

Figure 5.12 was made along the same line of the previous one, but here, for the

same lithospheric thickness (dl = 110 km) and SUM viscosity (5.0 · 1018Pa · s), since

the comparison is between the three rheological configurations (“Maxwell”, “Andrade”,

“Andrade + Maxwell”). While “Andrade” and “Andrade + Maxwell” produce almost

undistinguishable results, we can instead notice some di↵erence with the “Maxwell” one.

It seems that the use of Maxwell rheology has an e↵ect similar to those observed when

the lithosphere thickness is increased: smaller rates at the margins around ↵ ⇠ ✓o and

the maxima occupy a reduced portion of the plot.

Finally, in Figure 5.13 I plot the di↵erences between the expected rates of equivalent

models having di↵erent rheologies in the SUM: “Andrade” - “Andrade + Maxwell” and

“Andrade” - “Maxwell” respectively. The idea behind these plots is highlighting where,

for a given disc size, the two models show their most significant di↵erences. As regard

the first columns of plots, showing the result of “Andrade” - “Andrade + Maxwell” for

various values of the SUM viscosity, we notice that di↵erences tend to diminish with in-

creasing observation distance ✓o, but they increase with larger disc load size. The other

column on the right shows the result for “Andrade” - “ Maxwell”. Here the biggest

di↵erences are located around the area of the maximum rates.

To end this section, I summarize the main results I have obtained:

• The main di↵erence between “Andrade” and “Maxwell” configurations in the dis-

placement rate occur in the early stages of the experiment, right after the disap-
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Figure 5.12: Displacement rate as a function of the ice load size and observation

distance ✓o, for di↵erent rheologies of the SUM. Here we see clearly a feature that could

be appreciated also in Figures 5.9: with equal settings of the models, Andrade’s maxima

fill a larger area than the Maxwell one, suggesting, once again, a greater predisposition

to the bending.
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(a) Andrade-(Andrade+Maxwell) (b) Andrade-Maxwell

Figure 5.13: Di↵erences between two rheological settings. This figure shows the

di↵erences between pairs of equivalent models, having di↵erent rheologies in the SUM.

Each row displays the result for models having the viscosity of the SUM set on 5.0 ·

1018Pa · s, 5.0 · 1019Pa · s, 1.0 · 1020Pa · s.
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pearance of the ice load. With increasing time, these di↵erences tend to vanish.

I thus conclude that, with equal elastic and viscoelastic model parameters, the

magnitudes of the accelerations di↵er, and that those produced by the “Andrade”

configuration are greater than those expected from the Maxwell one.

• Since the early stages of deformation, the size of the load controls which Earth

layers will contribute more to the determination of the output rates. Loads of

small dimension will be mainly a↵ected by the flexure of the lithosphere, while

those of larger size will sense also the deeper viscoelastic layers.

• The lithosphere acts like a low-pass filter: the thicker it is, the more the signal

flattens and spreads out.

• Viscosity and rheological law have similar e↵ects, increasing or decreasing the ex-

pected rates.

• Observation points below the load are those in which it is possible to appreciate

the greater di↵erences among the model predictions. As we move away from the

border of the load, these discrepancies tend to diminish.

5.3 Ramp unloading experiments

The second set of experiments considers a compensated disc load with a ramp ice-history:

for �1  t  0, the ice load is kept constant and its height is h, then, from 0  t < ⌧ ,

it is turned o↵ at a constant rate and finally, for t � ⌧ , where ⌧ > 0, the load is absent

(see Figure 4.7, right). This type of ice history is certainly more “realistic” than the

Heaviside one. In general, glaciers and ice sheets experience periods of accumulation and

ablation of various time scales. The shortest one is the seasonal signal, characterized

by a phase of mass accretion, during the winter season, followed by a phase of mass

loss, in summer. If we enlarge the observation time over the years, we would notice
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that the seasonal variation is superimposed to another signal with a lower frequency,

which is generally referred to as the “trend”. The ramp ice history is suitable for both

describing one of the two parts of the seasonal signal and the trend. However, since I did

not expect to find any appreciable di↵erence between elastic, viscoelastic or transient

models over time periods smaller than ⇡ a year, for these tests I considered only ramp

histories whose length ⌧ is of the order of ⇠ 101 yr and ⇠ 102 yr. These ramps aim at

being representative examples of the mass losses that many ices around the world have

experienced during last century. Also the extent of the load, that has a half-amplitudes

of 0.3�, corresponding to a radius of about ⇠ 30 km, symbolizes a medium-size glacier.

The first target of this experiment is understanding if, over a time-window comparable

with those of GNSS records, transient deformations can be significant. The second

purpose is understanding the role of the ramp length, to figure out which impact it has

in the occurrence of transient deformations.

The Earth’s models considered here are the same as in previous section, plus some

“elastic” models (in green in the plots), whose density and rigidity layering is identical to

that of the viscoelastic counterpart. These model serves as a reference to better quantify

the amount of viscoelastic contributions predicted by the other models.

5.3.1 Role of the Ramp duration

The first set of tests considers a disc load of half-amplitude 0.3�, that, over a variable

period ⌧ , loses mass with a constant height decrease of 10 m/yr. This rate, quite large,

has been chosen as an upper limit for the ice loss, a sort of best case scenario: it su�ces

to know that in the case of Helheim Glacier, that will be presented in next section, the

maximum height loss e↵ectively accounted by the model used in this Thesis is around

7m/yr. Thus, the results shown in the following must be read in a qualitative way rather

than a quantitative one: once again, the aim is understanding how the combination of

parameters regulate the final result.
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(a) Ramp length: 30 yr, Ice loss rate: 10 m/yr

(b) Ramp length: 100 yr, Ice loss rate: 10 m/yr

Figure 5.14: Vertical uplift rates for di↵erent observation points (✓o = 0�, 0.3�, 0.5�,

1�). The legend with the models description is reported in the first panel of each group.
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In Figure 5.14 the results of a ramp unloading of ⌧ = 30 yr and ⌧ = 100 yr are

shown, for several Earth models. Red curves refer to “Andrade” configurations, blue to

“Maxwell” ones, and the green ones are the Elastic models, that constitute the reference

models. The intensity of colors is related to the viscosity values, while the type of

curve (dashed or solid) refers to the lithosphere thickness. The motivation behind this

particular choice of models is easily said: my purpose was to investigate how “softer”

and “harder” models respond to ramp unloading. The “harder” ones, those indicated

by dashed curves, have a very thick lithosphere (150 km) and high value of viscosity

(1·1020Pa·s), and are also those that produce results more similar to the elastic response,

characterized by a constant rate during all the unloading phase 0 < t < ⌧ , and the

instantaneous achievement of the equilibrium right after the disappearance of the load,

exhibiting thus a vanishing velocity for t > ⌧ . On the other hand, the models outlined by

the solid curves, especially the lightest, those with the lowest viscosity value, 5 ·1018Pa·s,

are those which mostly di↵er from the elastic results, showing increasing rates during all

the duration of the ramp.

To compare the two panels (a) and (b) of Figure 5.14 it is important to remark that,

while the ice loss rate is the same, 10m/yr, the total height loss is extremely di↵erent:

for the 30 yr long ramp, it is 300 m, whilst in the other case is 1000 m. For this reason,

the uplift rates at the end of the unloading phases are very di↵erent. In panel (b), the

presence of a longer ramp allows to better appreciate, especially for the “softer” models,

an initial moment of decreasing acceleration, that later settles around a constant value.

A common characteristic to both panels is the fact that the rate drop at t = ⌧ decreases

in magnitude, with the distance from the centre of the load. Also, the magnitude of this

drop seems to be independent from the ramp length.

As regard the di↵erences between the pairs of Andrade and Maxwell models, during

the unloading phase, while (t < ⌧), they have an initial stage in which they increase,

until they adjust on two parallel paths; then, at t = ⌧ , the disappearance of the load
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causes an abrupt decrease in the rates. In this second phase, the softer models, those

with ⌘ = 5 · 1018Pa · s, show very little di↵erences between each other, while the ones

with ⌘ = 5 ·1019Pa ·s reflect a more visible discrepancy, especially right after the sudden

drop. This suggests that, at least for this configuration of the Earth model and load

size, lower values of viscosities in the SUM do not help in recognizing the presence of

any transient pattern; instead, if we considered more viscous SUMs, the discrepancies

between Maxwell and Andrade arise more clearly. In the next subsection 5.3.2 I will

investigate with more detail the role of the SUM viscosity. However, it is also true that

higher values of viscosity produce trends that are very similar to the elastic ones, making

the identification of any inelastic contribution more di�cult.

To conclude, we can see that the presence of a thicker lithosphere, as suggested by

the dashed models, would make it more di�cult to distinguish between “Maxwell” and

“Andrade” configuration, limiting the influence of the viscoelastic SUM on the resulting

uplift rates.

5.3.2 Role of the shallow upper mantle viscosity

The previous tests suggest that some values of the SUM (shallow upper mantle) viscosity

intensify the di↵erences between the rates produced by the “Maxwell” and the “Andrade”

configuration. From Figure 5.14, it appears that these discrepancies are maximized by

high values of viscosity. To understand the role of the viscosity, I ran a set of tests

using di↵erent ramp lengths (30, 100 yr), considering a wider range of viscosities for the

SUM. The results, presented in Figure 5.15, refer to the rates observed at the centre of

the load (✓o = 0�). The first plot on the left (in blue) represents the output rates from

Maxwell configurations, on the right (in red) we have the Andrade ones and lastly, below,

(in green) the di↵erences between the two. It is clear that, as previously anticipated,

higher values of viscosity increase the di↵erence between the two models. Moreover, these

discrepancies increase with time: at the very beginning of the ramp, we can clearly see in
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(a) Ramp length: 100 yr, Ice loss rate: 10 m/yr

(b) Ramp length: 30 yr, Ice loss rate: 10 m/yr

Figure 5.15: Uplift rates at ✓o = 0�, for various values of the viscosity of the SUM of

Maxwell’s (blue) and Andrade’s (red) models, and their di↵erence (green).
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the “Andrade-Maxwell” plots that all the curves assume similar values, and then, only

after some time, they start to diverge. Nevertheless, it is true that even if we increase

the discrepancies by increasing the viscosity, we are also making the model to be more

elastic: thus, the amount of viscoelastic contribution will decrease, making it di�cult to

recognize them.

The main outcomes of this section are:

• Viscosity has a double action. On one hand, high viscosity values help to distinguish

between “Maxwell” and “Andrade”, but on the other hand, they suppress the

viscoelastic contribution, making the trend much similar to those produced by the

elastic models.

• A long unloading phase gives the model the time to manifest possible peculiar

features. By comparing the two group of plots in Figure 5.14, it is clear that, in

the case of ramp length ⌧ = 100 yr, the Maxwell and Andrade’s output have more

time to develop their discrepancies and, at the end, their di↵erences have a greater

magnitude w.r.t. the case of ⌧ = 30 yr. Of course this is permitted by the fact that

the melting rate of the ice mass is constant, and that, at the end of the day, the

net mass loss is extremely di↵erent in the two cases, so we are basically comparing

two ice masses of di↵erent size that melt at the same rate.

• Di↵erently from the previous experiment, the presence of an ice history that evolves

gradually does not allow any sudden changes, making it more di�cult to infer any

transient features.
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5.4 A case study: the Helheim glacier

Figure 5.16: Helheim Glacier.

The two GNSS stations HEL2 and

KULU are evidenced by green la-

bels.

The Helheim glacier (Figure 5.16) is one of the largest

marine terminating outlet glaciers in Greenland: it is

located in the southeast and it has a total area of ap-

proximately 50, 000 km
2 . The interest toward this

glacier is due to its high rates of solid ice discharge,

as well as its wide-ranging dynamics, that showed

episodes of multi-annual retreats and re-advances in

the last 20 years (Ultee et al., 2022). The first of them

began between 2003-2005, when the glacier started

showing a dramatic retreat (Williams et al., 2021).

According to Williams et al. (2021), Helheim is now

more vulnerable than at any moment since the Little

Ice Age, meaning that the ice loss rate could reach

a tipping point capable of pushing it into a new dy-

namic state. The two nearest GNSS station to the

glacier are HEL2 (lat : 66.4012; lon = �38.2157) and

KULU (lat = 65.5793; lon = �37.1494); the former

is located in the proximity of the ice, whilst the latter

is around 100 km distant. Thus, HEL2 is expected

to be extremely sensitive to Helheim dynamics and mass balance variation: here the

local signal of the glacier is superimposed with the elastic uplift of the surface due to

the ice sheet and the viscoelastic response due to GIA. If the Helheim mass variations

are able to trigger a transient response in the Earth, this station should be close enough

to detect them. On the contrary, KULU is too far to be influenced significantly from

Helheim glacier, but should report a signal of elastic rebound (ER) and glacial isostatic

adjustment (GIA) similar to those observed at HEL2. The aim of this last test is under-
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standing whether it is possible, under model conditions that try to mimic the structure of

the Earth in the region of Helheim, to discern any transient signal during an observation

time-period comparable with the one of GNSS records (⇠ 15 yr).

The ice model (courtesy of Dr. V. Barletta and Dr. Cheng Gong) consists in 46,434

disc elements of variable area, each associated to a rate of height variation (m/yr). The

rates refer to a 15-year period, from January 2007 to January 2022. Among those used

in this Thesis, this ice model is the more realistic. Here, the Earth’s models considered

have always a lithospheric thickness of 110 km, representative of the Helheim area.

The first experiments were performed considering that the ice history of each disc was

represented by a Heaviside unloading. With respect to the typical time scales of GIA,

103 yr, a deglaciation of 15yr can be considered, in first approximation, instantaneous.

Of course, this is not what is happening in Helheim, but this first experiment aims at

evaluating the response of the Earth’s models to a sudden change of the surface load. To

apply the results of this test to a real scenario, one simply needs to rescale the amount

of lost mass in order to represent a surge event or an episode of anomalous melting.

This adjustment will a↵ect only the magnitude of the resulting displacements, without

altering their relative di↵erences or temporal evolution. The results are in Figures 5.17,

5.18, 5.19, which show displacement rates obtained with a SUM viscosity of 5.0·1018Pa·s,

5.0 · 1019Pa · s and 1.0 · 1020Pa · s, respectively. The di↵erence between Figure 5.17 and

the other two (Figures 5.18 and 5.19) is noteworthy: such a low viscosity in the SUM

allows the “Maxwell” model to assume a trend that is very similar to the Andrade’s

one. On the contrary, the cases in which ⌘SUM was set to 5.0 · 1019Pa · s (Figure 5.18)

and 1.0 · 1020Pa · s (Figure 5.19) exhibit a rate that for the “Maxwell” model is almost

constant. Andrade’s model instead, clearly shows a time dependent decay, that only for

time t > 15 yr assumes a nearly steady state. However, the magnitude of these rates is

quite small. A possible explanation could be that for this very case, a better resolution

in the layering of the lithosphere is necessary to obtain more reliable results.
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Figure 5.17: Vertical rates at HEL2 and KULU stations, and the di↵erence HEL2-

KULU assuming a Heaviside unloading. Earth model with rheological configurations

“Andrade” and “Maxwell”, ⌘SUM = 5.0 · 1018Pa · s. Notice that the y-scale is di↵erent

in each plot.
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Figure 5.18: Vertical rates at HEL2 and KULU stations, and the di↵erence HEL2-

KULU assuming a Heaviside unloading. Same as Figure 5.17, but for ⌘SUM = 5.0 ·

1019Pa · s. Notice that the y-scale is di↵erent in each plot.
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Figure 5.19: Vertical rates at HEL2 and KULU stations, and the di↵erence HEL2-

KULU assuming a Heaviside unloading. Same as Figure 5.17 and 5.18 but for ⌘SUM =

1.0 · 1020Pa · s. Notice that the y-scale is di↵erent in each plot.
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Figure 5.20: Vertical rates at HEL2 and KULU stations, and the di↵erence HEL2-

KULU assuming a ramp unloading. Earth model with rheological configurations “An-

drade” and “Maxwell”, ⌘SUM = 5.0 · 1018Pa · s. Notice that the y-scale is di↵erent in

each plot.
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Figure 5.21: Vertical rates at HEL2 and KULU stations, and the di↵erence HEL2-

KULU assuming a ramp unloading. Same as Figure 5.20 but for ⌘SUM = 5.0 · 1019Pa · s.

Notice that the y-scale is di↵erent in each plot.
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Figure 5.22: Vertical rates at HEL2 and KULU stations, and the di↵erence HEL2-

KULU assuming a ramp unloading. Same as Figure 5.20 and 5.21 but for ⌘SUM =

1.0 · 1020Pa · s. Notice that the y-scale is di↵erent in each plot.
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Then, the second round of experiments considers a ramp unloading for each disc

element. This approach is similar to that adopted by Boughanemi and Mémin (2024):

in their works, the authors obtained a ramp unloading using a sequence of Heaviside

step functions. Our result should be theoretically consistent, with the only di↵erence

being that using a pure ramp function should prevent the presence of artifacts in the

output. Figures 5.20, 5.21 and 5.22 display the output rate for di↵erent values of the

SUM viscosity (5 · 1018Pa · s, 5 · 1019Pa · s, and 1 · 1020Pa · s). The first noticeable

di↵erence w.r.t. the previous set of experiment is that here the “Maxwell” and “Andrade”

models produce much similar trends, with no distinctive features. This result was already

presented in the previous section, and must be attributed to the fact that a Heaviside ice

history represents a sort of “shock” for the Earth’s model, that is suddenly subject to an

instantaneous mass redistribution. Instead, with the ramp ice history, the evolution of

the ice is more regular, and the Earth model must adjust, at each time steps to smaller

mass redistribution.

As regard Figures 5.20, 5.21 and 5.22, we can appreciate that the models with the

lowest value of viscosity (Figure 5.20) are the ones that produce the highest rates at the

end of the unloading period; however, like we have seen in the section regarding the ramp

experiment, the model with the higher value of SUM viscosity ⌘ = 1.0 · 1020Pa · s is that

which shows the greatest di↵erences between the “Andrade” and “Maxwell” rheologies.

Nevertheless, at the end of the ramp, their rates deviate only of ⇠ 0.1 mm/yr, and the

two curves show a very similar evolution, making these two results hard to discern on

the field. We can conclude that, under these experimental conditions it would not be

possible to identify any transient: by tuning the value on the SUM viscosity the Maxwell

model could produce a trend equivalent to the Andrade’s one.

However, a remarkable outcome is the di↵erence of the viscoelastic curves (both

Maxwell and Andrade) from the elastic one. Considering Figure 5.22, we can conclude

that at HEL2, in 15 yr, the viscoelastic models have reached a rate that is a 10%
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greater than the constant elastic rate. This suggests to investigate what would happen

if these rates were extended over a longer time period. This is exactly what Figure 5.23

shows: I supposed that the observed rate at Helheim were obtained after a 30-years

long measurement campaign, something that will be possible in the next future. In this

hypothetical case, the final rates produced by the models with ⌘SUM = 5.0 · 1018Pa · s

and ⌘SUM = 1.0 · 1020Pa · s are, respectively, 3.9 and 2.9 mm/yr, while the elastic

counterpart exhibits a fixed trend around 2.4 mm/yr. This means an increase w.r.t.

the initial elastic rate of 60% and 20% respectively. Nevertheless, even if it is true that

with a longer observation window the discrepancies between “Andrade” and “Maxwell”

models increase, the general evolution of the trends is similar, and the e↵ects of rheology

can be mimicked by adequately tuning the viscosity.

This fact suggests that, in the near future, the concept of “elastic” contribution could

become no longer adequate to account for geodetic observations: as I discussed in the

introduction, the general approach used to justify the rates at Greenland GNSS stations

is considering the record as the result of the sum of the elastic displacement due to

present day ice evolution, and a viscoelastic contribution from GIA.
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(a) Ramp length: 30 yr, ⌘ = 5.0 · 1018Pa · s (b) Ramp length: 30 yr, ⌘ = 1.0 · 1020Pa · s

Figure 5.23: Uplift rates at HEL2 and KULU, for models with SUM viscosity of

⌘ = 5.0 · 1018Pa · s and ⌘ = 1.0 · 1020Pa · s respectively.
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Chapter 6

Concluding remarks and outlook

In this Thesis work, I have explored the possible e↵ects of transient rheology on the

surface response of a spherical planet, with a particular attention to the region of Green-

land.

The first part of my research (Chapter 2) has been devoted to a full investigation

of the Andrade rheology, a transient model that has gained much success in the latest

years, especially in planetary science. The main results include two previously unknown

analytical expressions: the Andrade’s relaxation modulus and the the Love numbers of

a uniform sphere with Andrade rheology. These formulas can be employed to assess the

deformation and gravity field variations of planets (and exoplanets) with unknown or

poorly constrained structure, to obtain a first approximate estimate of their response

to tidal or surface forcing. Since they contain the higher transcendental Mittag-Le✏er

Function, they are characterized by a certain degree of complexity. By an analytical

approach, I have demonstrated that they obey a series of limiting cases that further

confirm their correctness. These include the elastic limit for t ! 0, the fluid limit for

t ! 1 and the Maxwell limit for ⇣ ! 1.

In Chapter 3, I have approached the calculation of Love numbers for a spherical, sym-

metric and incompressible planet. Particularly, for the case of a two-layer fluid, inviscid
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planet, together with my supervisor and co-supervisor, we retrieved a surprisingly sim-

ple approximated relation between the normalized LN k̃2 and the normalized moment of

inertia Ñ , which reads Ñ ⇠ k̃
0.4
2 , and which provides a good estimate of Ñ as a function

of k2 over a wide range of possible two-layer models. We have verified that in case of

gravitationally stable planetary models with an arbitrarily large number of homogeneous

layers, this rule of thumb provides an upper limit to the possible range of mean moment

of inertia corresponding to a given value of k̃2. Remarkably, the simulations have shown

that, especially for small values of k2, the ROT is more accurate than the celebrated

Radau-Darwin formula.

Finally, in the last part of the Thesis, I have delved into the analysis of some case

studies, sorted for increasing complexity. I have explored the role of several parameters

involved in the determination of the SRF. The aim was to outline the best condition

in which it is possible to distinguish transient e↵ects following surface unloading events,

with a particular attention to the applications in the Greenland region.

For this part, my main conclusions are:

• Rheology: Identifying a clear transient pattern following a surface unloading

event is not straightforward. From the comparison of the Heaviside ice histories

and the ramp ones, it follows that rapid changes in the ice evolution, i.e., sudden

modifications of the system, are those in which the transient features arise more

clearly. Instead, in case of a gradual and smooth ice history, like the ramp one,

distinguishing between a viscoelastic model and a transient one is hardly possible.

• Viscosity: it plays a crucial role in the determination of the magnitudes of the

displacement rates. Low viscosities have been suggested in presence of anomalously

fast GNSS rates (Nield et al., 2014; Barletta et al., 2018, 2022). However, the e↵ects

of viscosity can be confused with those produced by a “softer” rheological model,

like the Andrade’s one. Indeed, as we have seen here, the transient in Andrade’s

rheology allows for a faster transition between the elastic phase and the viscous
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flow. Nevertheless, in view of the not clear di↵erence between the vertical pattern

produced by a low viscosity or that due to a di↵erent rheological mechanism, it is

not possible to draw further conclusions. To do so, an independent constraint on

the viscosity value would be necessary.

• Lithosphere: The thickness of the lithosphere is another important parameter.

By fixing it, we are setting the depth of the first viscoelastic layer, and thus we are

setting a lower limit for the ice load dimension: if the load has a smaller size, it

will not sense the presence of the viscoelastic layers, that lay too deep beneath the

surface. To have an idea of the length-scales involved in a general experiment, a

good point to start is plotting the load coe�cients, to understand which harmonic

degrees (and so, which spatial scales) are more significant.

• Distance from the centre of the load: Some of the outcomes of the first

experiment suggest that a large part of the Earth response is “hidden” beneath

the ice load. As we increase the distance of the observation point, we start noting

that not only the magnitude of the rates diminishes, but also that the discrepancies

between the various models is washed out.

I believe it is important to highlight some of the limitations of my modeling approach

and of the numerical tests performed. First of all, the maximum harmonic degree of my

computation is set to lmax = 1024. Although for the first two experiments this parameter

is appropriate in view of Jeans’ rule (Jeans, 1923; Bevis et al., 2016), it is legitimate to

wonder whether this is also the case of the last experiment. Indeed, in this last case,

I considered a set of smaller disc loads with variable amplitude. Another consideration

concerns the lithospheric model. Here I assumed a thick, homogeneous layer, while

in general, in Elastic Rebound modeling (see Spada et al. (2012); Nielsen et al. (2012);

Adhikari et al. (2021)), the PREM model is often employed. In this way, one disposes of a

more detailed description of the outermost layer of the Earth, since this model assumes
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that the density ⇢, and the Lamé constants µ and � are defined through polynomial

functions of radius r. Of course, the choice of a uniform lithosphere may a↵ect the

magnitude of the computed rates of deformation. Also, one must wonder whether a

perfectly elastic lithosphere is indeed a correct model of the Earth’s outer layer (Ranalli,

1995).

Speaking of which, the anelastic contributions in the lithosphere or in the crust may

a↵ect the modeled rates. This issue has been discussed in Durkin et al. (2019): in this

work, the authors correct the values of rigidity to account for local inelastic contribution,

showing that they can produce uplift rates with a discrepancy up to 20–40% with respect

to those modeled using PREM. Regarding the rheological model, all the experiments have

been performed setting the values of the Andrade’s parameters to ↵ = 1/3 and ⇣ = 1.

The influence on the SRF of a variation of these two parameters has not been considered

in this work.

To sum up, the optimal conditions that increase the possibility of observing and

identifying transient features include the geographical proximity of the GNSS station, the

observation point, from the source of the unloading, or even better, an observation point

below the load, and the presence of shallow lithospheres, i.e. not too deep viscoelastic

layers. This implies that much e↵ort should be placed into subglacial geodesy, a field

that is not yet achieved and that would enable direct observation of the Earth response

to ice unloading beneath glaciers and ice sheets (Schroeder et al., 2024).

The presence of a low viscosity zone does not imply higher chances to infer transient

deformations, but if further constraints on the viscosity are available, then it may become

possible to discern between a full-Maxwell SUM, or a more complicated model.

In the last experiment, I had the chance of evaluating the e↵ect of a more realistic ice

model. From this last case, it is apparent that the viscoelastic and anelastic components

in the displacements represent a significant contribution already at decadal time scales.

This is consistent with the findings of Ivins et al. (2020); Adhikari et al. (2021); Paxman
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et al. (2023) and Lau (2024). This suggests that in the near future, it may be necessary

to surpass the modeling of a pure elastic response to present-day ice melting, in favor of

a more rheologically sophisticated Earth’s model.
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42. Gevorgyan, Y., Boué, G., Ragazzo, C., Ruiz, L. S. and Correia, A. C. (2020), ‘An-

drade rheology in time-domain. Application to Enceladus’ dissipation of energy

due to forced libration’, Icarus 343, 113610.

43. Gomez, N., Pollard, D. and Holland, D. (2015), ‘Sea-level feedback lowers projec-

tions of future antarctic ice-sheet mass loss’, Nature communications 6(1), 8798.
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Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,

Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt,

P. and SciPy 1.0 Contributors (2020), ‘SciPy 1.0: Fundamental Algorithms for

Scientific Computing in Python’, Nature Methods 17, 261–272.

155. Wahl, S. M., Hubbard, W. B. and Militzer, B. (2017), ‘The Concentric Maclau-

rin Spheroid method with tides and a rotational enhancement of Saturn’s tidal

170



response’, Icarus 282, 183–194.

URL: https://www.sciencedirect.com/science/article/pii/S0019103516305735

156. Wahl, S. M., Parisi, M., Folkner, W. M., Hubbard, W. B. and Militzer, B. (2020),

‘Equilibrium Tidal Response of Jupiter: Detectability by the Juno Spacecraft’,

The Astrophysical Journal 891(1), 42.

URL: https://dx.doi.org/10.3847/1538-4357/ab6cf9

157. Wahr, J., Molenaar, M. and Bryan, F. (1998), ‘Time variability of the earth’s

gravity field: Hydrological and oceanic e↵ects and their possible detection using

grace’, Journal of Geophysical Research: Solid Earth 103(B12), 30205–30229.
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