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Chapter 1

Introduction

Recent econometric theory has developed an increasing interest in nonparametric estima-
tion of structural parameters of economic models. The (possibly functional) parameter of
interest describes the economic agent’s behavior or the equilibrium market’s characteris-
tics. In other words, structural econometrics has not for purpose the estimation of objects
directly linked to the data’s distribution F , like the density or the hazard function, or
the estimation of some characteristics of the data’s conditional distribution, such as the
conditional expectation. The structural parameters have not a statistical interpretation
and, in general, they are not simple transformations of the sampling distribution of the
data.
The relationship between structural parameters and the sampling distribution F is, in most
of the cases, only implicitly defined through a functional equation. Hence, the structural
parameter is characterized as solution of this functional equation. When the dimension of
the structural parameter is finite, the functional equation reduces to a matrix equation.
Several authors, see, among others, Florens (2003), Hall and Horowitz (2005), Linton and
Mammen (2005), Carrasco, Florens and Renault (2007), have developed a general frame-
work for structural functional inference in connection with the inverse problem literature.
A complete list of references can be found in Carrasco, Florens and Renault (2007).
Economic theory can provide information about the shape (like convexity, concavity) or
the differentiability of the parameter of interest, but never provides a parametric form for
it. Hence, it is really suitable to not restrict inference to parametric classes. Nonpara-
metric estimation reduces the risk of mispecification but, at the same time, rises problems
of continuity, uniqueness and existence of the solution of the corresponding functional
equation, so that some care must be taken in solving it. Such a problem is known as the
ill-posedness of the inverse problem we want to solve. The lack of continuity of the solution
entails a strong sensibility of the solution to the estimation errors of certain elements of the
functional equation. The noises in the functional equation arise because some elements in
it can be (and usually are) imperfectly known (like for instance the sampling distribution)
and they are replaced by consistent estimators. Hence, small estimation errors can be
strongly amplified in the estimated parameter.
Classical econometric literature deals with these problems by proposing different tech-
niques of stabilization of the solution. Classical stabilization techniques consist in replac-
ing the non-continuous estimator with an approximation of it that is continuous and that
converges in the sense that, as the noise level in the functional equation tends to zero, the
approximated estimator tends to the true one.
My work develops bayesian nonparametric methods to estimate structural economic quan-
tities. It analyzes the role played by the prior distribution in solving these problems of
continuity and existence of the solution of the functional equation.
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Bayesian analysis considers an inverse problem in a different way with respect to the
classical analysis since it restates the functional equation in a larger space of probabil-
ity distributions. This reformulation of an inverse problem was due to Franklin (1970)
[33]. From a Bayesian point of view all the quantities in the structural model are random
functions. Hence, the structural parameter of interest having generated the data is the
realization of some random process. I substantially look for an estimation of such process
and I take the posterior distribution of the parameter as the estimator.
When the dimension of the problem is finite the ill-posedness is principally due to a
problem of multicollinearity. In this case, classical and Bayesian approaches are strongly
related since the ridge regression (that is a classical method proposed for dealing with
multicollinearity) has a Bayesian interpretation. Therefore, in finite dimension we can re-
move the ill-posedness by incorporating the available prior information. On the contrary,
I prove that in infinite dimensional problems, a general prior distribution does not get
ride of the ill-posedness of the problem since general prior covariance matrices do not have
the regularization properties that have in the finite dimensional case. In particular, being
covariance matrices impossible to continuously inverse we still need some regularization
technique and the bayesian approach only lies in changing the nature of the problem.
Nevertheless, an exciting result of my work is that there exists a class of prior distribu-
tions, or more precisely, of covariance operators, that are able to solve for the ill-posedness
as in the finite dimensional case.
I believe that a bayesian approach for solving functional equations is suitable for many
reasons that I discuss in the following. (i) It is very important to incorporate, in the
estimation procedure, the information that we may have a-priori on the structural pa-
rameter that we want to recover, for instance shape information or other constraints given
by economic theory. This can be easily done through a Bayesian procedure. We could
choose a prior mean function of the form suggested by the economic theory. Otherwise,
we can specify a prior covariance operator that restricts the space in which the solution
can lie to a subspace of functions satisfying the constraints we want to impose. The im-
portance of incorporating the prior information that is available is not to underestimate,
above all in nonparametric estimation where the parameter is often weakly identified by
data because the amount of data is small with respect to the dimension of the parameter
to estimate (although it is identified from a mathematical point of view). Moreover, in the
most applied research, for instance in finance or in consulting studies, people are strongly
inclined to exploit all the prior information that they can have, like the opinion of some
expert.
(ii). The fact to get a posterior distribution of the structural parameter of interest rep-
resents a big advantage with respect to classical estimation procedures. The posterior
distribution has good small sample properties and so it can be used for recovering every
quantity linked to it (as quantiles and credible sets) and for implementing testing pro-
cedures. On the contrary, classical procedures give punctual estimators that have good
properties asymptotically and not in small samples. Moreover, the proof of such properties
is sometimes very demanding and very complicate.
(iii). In nonparametric estimation there usually are some free parameters (i.e. tuning
parameters) to choose, like the bandwidth in kernel estimation or the regularization pa-
rameter in stabilization techniques. Some methods for choosing them are provided by the
existing theory, but bayesian theory could give some further insight, from a practical point
of view, for optimally choosing them. In particular, the prior-to-posterior transformation
would provide a value for the tuning parameter that incorporates information in both our
prior knowledge and data.
(iv). Bayesian nonparametric analysis of structural models broadens the nonparametric



3

estimation techniques available to bayesian statisticians. In fact, I assume the error in
the functional equation is gaussian and this suggests to use a conjugate model where the
prior distribution is also a gaussian process. This makes the bayesian nonparametric esti-
mation that I propose different from the usual bayesian nonparametric estimation based
on Dirichlet process and its transformations. A gaussian prior distribution has the big
advantage, with respect to the Dirichlet process, that it is able to generate trajectories
that are continuous. Furthermore, being the model conjugate, the posterior distribution
is still gaussian and all the interesting quantities of a gaussian distribution (as quantiles or
confidence intervals) are well-known. The gaussian prior measure cannot be substituted
by a non-informative prior since we are working in infinite dimensional spaces and it does
not exists an invariant non-informative distribution on such spaces.
(v). Developing a Bayesian approach for structural estimation permits to create a link be-
tween econometric theory and the Machine Learning and Computer Science theory where
huge amount of data are available. In this field the object of interest is a functional pa-
rameter and it is estimated with bayesian techniques by specifying a gaussian prior on it.

The infinite dimension of the problem we are considering makes the Bayesian analysis
interesting per se from a theoretical point of view. In fact, properties that are usually
satisfied by bayesian estimators in finite dimension do not necessary hold when the di-
mension of the problem is infinite. The infinite dimension of the objects I am working
with demands to verify properties like admissibility of the estimator and in particular
posterior consistency. A Bayesian estimator is consistent in the bayesian sense, i.e. with
respect to the joint distribution, even in infinite dimensional problems, but it does not
need to be consistent in the frequentist, or sampling, sense, i.e. with respect to the sam-
pling distribution. Frequentist consistency is also referred to as posterior consistency and
it will be of peculiar interest in my study. The concept of posterior consistency implies
the assumption that a true value of the structural parameter of interest that generates the
data exists; it can be interpreted as the realization of a random process that has occurred
in a very preliminary step. We say that the posterior distribution is consistent if, as the
number of observations increases, it degenerates in a point mass in correspondence of the
true value of the parameter.
Nonparametric structural estimation represents a good example of lack of posterior con-
sistency in infinite dimensional problems under very general assumptions. I prove this
fact, that is substantially due to the lack of continuity stressed before, and I confirm what
other authors have already found in situations that are, for some aspects, similar to the
mine, see Diaconis et al. (1986) and Mandelbaum (1984).
One of the main contributions of my work consists in proposing a new posterior distribu-
tion, for the gaussian model, that is consistent in the sampling sense and that is based on
regularization techniques, like Tikhonov regularization, similar to the one used for solving
functional equations in a classical way. I call this new posterior distribution regularized
posterior distribution.
Even if this approach holds for very general gaussian sampling models and priors, it is
possible to find a class of gaussian prior distribution for which the posterior distribution
is consistent, in the sampling sense, even without regularizing it. I detect such a class and
I study the particular conditions that must be verified in order to have this nice result.
The idea is to specify a prior distribution that degenerates, at a suitable speed, towards
a point mass concentrated on the prior mean as the sample size increases. Moreover, it
must exist a certain link between the prior covariance operator and the sampling model.
Under such conditions, we do not need to regularize the posterior distribution since the
prior-to-posterior transformation has a regularizing effect of the same type as the Tikhonov
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regularization in the Hilbert Scale induced by the prior covariance operator. I exploit the
regularizing power of the prior distribution as it happens in the finite dimensional case
(see, for instance, the ridge regression to correct for multicollinearity). Therefore, when
the prior distribution is linked to the sample size and particular conditions are satisfied,
the stabilization procedure that in classical nonparametric estimation of structural mod-
els is done through regularization schemes, in the bayesian approach is simply obtained
by incorporating the prior distribution. In these particular cases the prior distribution
is linked to the sample size n through a function 1

g that scales the prior variance, with
g = g(n) and g → ∞ as n → ∞. This prior distribution is an extension of the g-prior
introduced by Zellner (1986) [81]. The parameter g, scaled by the inverse of the sample
size, plays the role of a regularization parameter and it can be either considered as known
or interpreted as an hyperparameter for which a prior must be specified. In this second
case, the maximum a posteriori gives an estimator for g that has the optimal speed of
convergence.

I compute the rate of convergence, towards the Dirac measure concentrated in the true
value of the parameter, of both the regularized posterior distribution and the posterior
distribution based on extended g-prior and I make comparison with the classical rates.
The rate of convergence obtained when I regularize the posterior distribution through a
simple Tikhonov regularization scheme can be considerably improved. In order to improve
it, I propose to use a Tikhonov regularization in the Hilbert scale induced by the prior
covariance operator. What is noteworthy is that the choice of the Hilbert scale is naturally
induced by the prior distribution and I do not need to use some ad-hoc operator. There
exists a strong relationship between the choice of the prior distribution and the choice
of the Hilbert scale. The convergence of the regularized posterior distribution is faster
since the Hilbert Scale regularization allows to exploit all the regularity of the structural
function of interest and this impact on a faster speed if the structural function is highly
regular.
Finally, the optimal value of the regularization parameter and the optimal rate of con-
vergence are provided. The speed of convergence depends on the regularity conditions,
like differentiability, that we are willing to assume about the true value of the structural
parameter that we want to estimate. The fact to consider only functions that are quite reg-
ular is not astonishing in nonparametric estimation since estimating infinite dimensional
parameters with a finite number of observations does not allow to recover too complicate
functions. Consequently, assumption of good behavior and smoothness of the function of
interest must be introduced.

I start my work by laying the foundations of the bayesian approach to nonparametric
structural econometric models. My bayesian theory is stated and developed for infinite di-
mensional Hilbert spaces In Chapter 2 I state the theory for a general functional equation.
This is the classical signal-noise model in a broad gaussian framework. The regularized
posterior distribution is defined and is shown to have good asymptotic properties. As ex-
ample of application of the signal-noise model, I analyze and develop different estimation
problems in statistics and econometrics and I rewrite them as functional equations that
have the parameter of interest as solution. Examples are the density estimation, regression
estimation, deconvolution, hazard rate estimation and instrumental variable estimation.
For each of them I compute the exact or asymptotic sampling distribution on Hilbert
space.
Furthermore, I analyze extensions and variations of the basic functional equation. In par-
ticular, I develop the case in which also the operator in the functional equation is unknown
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and estimated. This situation is frequently encountered in econometrics, for instance in
the instrumental regression estimation.
In Chapter 3 I analyze the conditions under which the posterior distribution does not need
to be regularized in order to be consistent. I show that the prior-to-posterior transfor-
mation is equivalent to compute a Tikhonov regularization in Hilbert Scale if we use an
extended g-prior distribution, namely a gaussian distribution with a covariance operator
strictly linked to the sampling model. Moreover, I am able to introduce the regularization
parameter of the Hilbert Scale regularization as a transformation of the g hyperparameter
of the prior distribution since it is assumed that g is a function of the sample size.
The second part of this essay focuses on econometric applications of the general theory
developed in these preliminary chapters. In Chapter 4 I deal with the estimation of an
instrumental regression by exploiting the informative content of instrumental variables
and moment restrictions concerning them. I consider a joint prior distribution on the
instrumental regression function and on the variance parameter of the reduced form. The
marginal posterior distribution of the instrumental regression is more complicated and it
is recovered either in a closed form as a Student process or through a Gibbs Sampling
implemented in infinite dimensional Hilbert Spaces.
In Chapter 5 I deal with integral equations of type II. These functional equations are
different with respect to the type considered in the basic model of Chapters 2 and 3, that
is a functional equation of first kind. The proposed bayesian methodology can be applied
to estimate every kind of Euler Equations. In particular, I go into the consumption based
asset pricing model in the style of Lucas (1978) to recover the equilibrium asset pricing
functional. In order to obtain the sampling distribution, I need to transform this model
in such a way that, at the end, I get a functional equation of the basic type.
The bayesian nonparametric approach to structural inference that I propose is completely
new. In the inverse problems literature some attempts to solve functional equation in a
bayesian way are present, see Mandelbaum (1984) or Lehtinen et al. (1989). Anyway,
the problem of posterior consistency is not considered at all and the lack of continuity is
solved in a way that is not applicable in most of empirical problems.
The incorporation of the prior distribution in nonparametric estimation is noteworthy,
in particular in economics and finance. This work opens the way for plenty of further
development that may be done and I intend to do them in the future.



Chapter 2

Regularized Posterior in linear
ill-Posed Inverse Problems1

joint with Jean-Pierre Florens.

Abstract

This chapter studies Bayesian solution for a signal-noise problem stated in infinite dimensional
Hilbert spaces. The infinite dimensional parameter of interest is characterized as the solution of a
functional equation which is ill-posed because of compactness of the operator appearing in it. We
restate the problem as a parameter estimation problem where inference is performed in a Bayesian
way. The solution of this problem is the posterior distribution of the parameter of interest, but the
infinite dimension of the considered spaces causes a problem of non continuity of the posterior mean
and a consequent problem of frequentist inconsistency of this solution. We propose to solve this
problem through a regularization of the posterior distribution.We adopt a Tikhonov regularization
scheme for constructing a new posterior distribution that is continuous and that we call regularized
posterior distribution. We prove that this regularized posterior distribution is consistent in a
”frequentist” sense. Our results agree with previous literature on infinite-dimensional Bayesian
experiments, see for instance Diaconis and Freedman (1986).

2.1 Introduction

We consider the functional equation

Ŷ = Kx + U, x ∈ X , Ŷ ∈ Y (2.1)

where X and Y are infinite dimensional separable Hilbert spaces over R supposed to be
Polish 2 with inner product < ·, · > and norm ||·||. K : X → Y is a known Hilbert-Schmidt
(HS, hereafter), then compact, linear operator with infinite dimensional range 3. K∗ will

1Sections 2.1 to 2.4 of this chapter are adapted from: Florens, J.P., and A., Simoni (2008), Regularized
Posteriors in Linear Ill-Posed Inverse Problems, mimeo. Sections 2.5 and 2.6 are adapted from: Florens,
J.P., and A., Simoni (2008), Regularized Posteriors in Linear Ill-Posed Inverse Problems: Extensions,
mimeo.

2In mathematics, a Polish space is a separable completely metrizable topological space.
3Every Hilbert-Schmidt operator is compact. Hence, the Hilbert-Schmidt property is commonly used

to show that an operator is compact

6
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denote the adjoint of K, i.e. K∗ is such that < Kϕ, ψ >=< ϕ, K∗ψ >, ∀ ϕ ∈ X and
ψ ∈ Y. Compactness of operator K and the infinite dimension of the range of K make
the inverse K−1 not continuous.
The error term U is an Hilbert-valued gaussian random variable with zero mean and co-
variance operator Σn : Y → Y: U ∼ GP(0, Σn), where n can be interpreted as the sample
size.
The aim of this paper is to recover x from the noisy observation Ŷ , i.e to solve an ill-posed
inverse problem, through a Bayesian approach. The Hilbert-valued random element x is
supposed to induce a gaussian measure on X : x ∼ GP(x0, Ω0), x0 ∈ X and Ω0 : X → X .
From a Bayesian point of view, the solution to an inverse problem is the posterior distribu-
tion of the quantity of interest. This reformulation of an inverse problem as a parameter
estimation is due to Franklin [33].
As an example of spaces, we could take both X and Y to be L2 spaces. An L2 space,
endowed with a Gaussian measure defined on it, is a Polish space, see [45].
If problem (2.1) was formulated in finite dimension then it would have as solution the clas-
sical gaussian posterior distribution of x given Ŷ : x|Ŷ ∼ N (x0 +Cov(x, Ŷ )V ar(Ŷ )−1(Ŷ −
Kx0), V ar(Ŷ ) − Cov(x, Ŷ )V ar(Ŷ )−1Cov(x, Ŷ )), see [49]. In finite dimensional inverse
problems it is possible to remove ill-posedness by incorporating the available prior infor-
mation, but this is no longer true when dimension is infinite since the covariance operator
V ar(Ŷ ) is no longer continuously invertible. So, covariance operators do not have the reg-
ularization properties that have in the finite dimensional case. This prevents the posterior
mean from being continuous in Ŷ and consequently from being a consistent estimator.
Therefore, the posterior distribution suffers of a problem of inconsistency in the sampling
sense too.
This problem has been solved in past literature by restricting the space of definition of
Ŷ − Kx0, see [33], [65], [60] and [53]. However, this solution is not always appropriate
since the observed data do not always satisfy this restriction.
Our contribution lies in proposing an alternative method to deal with the lack of conti-
nuity of the inverted covariance operator. The idea is to apply a regularization scheme
to this inverse. We introduce the concept of regularization of a distribution, that consists
in regularizing the moments characterizing it in order to obtain new moments with good
asymptotic behavior. The posterior distribution that results is slightly modified and we
call this new distribution regularized posterior distribution. We show that, as the number
of observations in the sample grows, our proposed solution degenerates, with respect to
the sampling measure, to a probability mass in a neighborhood of the true value of the
parameter x having generated the data. This is the concept of posterior consistency, or
frequentist consistency (or consistency in the sampling sense) of the posterior distribution,
see [16].
We propose to use two alternative regularization schemes for computing the regularized
posterior distribution. We consider first a classical Tikhonov regularization scheme where
(V ar(Ŷ ))−1 is replaced by (αnI +V ar(Ŷ ))−1. Secondly, we use a Tikhonov regularization
scheme in the Hilbert scale induced by the prior covariance operator Ω0 that substitutes

(V ar(Ŷ ))−1 with (αnL2s + V ar(Ŷ ))−1, with L = Ω
− 1

2
0 , s ∈ R and αn the regularization

parameter. Two facts have to be remarked: (i) the choice of the Hilbert scale is naturally
suggested by the prior; (ii) the speed of convergence is considerably improved with the
second regularization scheme.
The chapter is developed as follow. Section 4.2 presents the Bayesian experiment asso-
ciated to (2.1). In Section 2.3 we define the regularized posterior distribution, for both
regularization schemes; its consistency is proved in Section 2.4.
Extensions of the basic model are developed in Sections 2.5 and 2.6. More specifically, we
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propose in Section 2.5 the more general case where the operator K is unknown and we
prove that, under some minor assumption, this does not affect the speed of convergence
of the regularized estimated solution. In Section 2.6 we consider the case in which the
transformation of the parameter of interest x is made by an operator Ki that is different
from an observation to another one. Section 5.7 concludes. All the proofs are given in
Appendix A, examples of possible applications are given in Appendix B and numerical
simulations are provided in Appendix C.

2.2 The Model

2.2.1 Sampling Probability Measure

Quantities Ŷ , x and U in equation (2.1) have to be meant as Hilbert-random variables.
Let F denote the σ-field of subsets of the sample space Y. We endow the measurable
space (Y,F) with the sampling distribution P(Ŷ |x) of Ŷ given x, denoted with P x and
characterized by Assumption 1 below.

Assumption 1 Let P x be a conditional probability measure on (Y,F) given x such that
E(||Ŷ ||2) < ∞, Ŷ ∈ Y. P x is a Gaussian measure that defines a mean element Kx ∈ Y
and a covariance operator Σn : Y → Y.

For a characterization of Gaussian measures in Hilbert spaces we refer to Baker (1973)
[3]. Assumption 1 implies that the covariance operator Σn is linear, bounded, nonneg-
ative, selfadjoint and trace-class. A covariance operator need to be trace-class in order
the associated measure be able to generate trajectories belonging to the Hilbert space

of reference (Y in this case). The fact that Σn is trace-class entails that Σ
1
2
n is HS. HS

operators are compact and compacity of Σ
1
2
n implies compacity of Σn. Compact operators

are particularly attractive since they can be approximated by a sequence of finite dimen-
sional operators and this is useful when we do not know such an operator and we need to
estimate it.
We also suppose that Σn → 0 as n → ∞, where n is usually meant as the sample size.
Indexing Σn to a parameter n is natural since in several applications Ŷ is a consistent
estimator of the transformed signal Kx, see examples in Appendix B.
Usually, in functional analysis literature the curve Ŷ is supposed to be observed only at a
finite number of points. A peculiarity of our model is to allow for more general observa-
tional schemes. The whole infinite dimensional object Ŷ may be observed, for example this
is the case with high-frequency financial data. Alternatively, we could observe a sample of
discrete objects and the curve Ŷ is a mathematical object obtained by transforming these
data. Transformations of this kind are frequent in statistic and econometrics: for instance
nonparametric estimators like kernel density estimator, empirical characteristic function,
empirical cumulative distribution function or estimated integrated hazard function, see
examples in Appendix B.

2.2.2 Prior Specification and Identification

Let µ denote the prior measure induced by x on the parameter space X endowed with the
σ-field E . We specify a conjugate prior:
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Assumption 2 Let µ be a probability measure on (X , E) such that E(||x||2) < ∞, ∀x ∈ X
4. µ is a Gaussian measure that defines a mean element x0 ∈ X and a covariance operator
Ω0 : X → X .

The covariance operator Ω0 has the same properties discussed for Σn, then it is compact.
We introduce the Reproducing Kernel Hilbert Space associated to the covariance operator
Ω0 (denoted with H(Ω0)). Let {λΩ0

j , ϕΩ0
j }j be the eigensystem of Ω0. We define the space

H(Ω0) embedded in X as:

H(Ω0) = {ϕ : ϕ ∈ X and
∞∑

j=1

| < ϕ, ϕΩ0
j > |2

λΩ0
j

< ∞} (2.2)

and, following Proposition 3.6 in [10], H(Ω0) = R(Ω
1
2
0 ), where R(·) denotes the range

of the corresponding operator. Let x∗ denote the true value of the parameter having
generated the data Ŷ , we assume that

Assumption 3 (x∗ − x0) ∈ H(Ω0), i.e. there exists δ∗ ∈ X such that (x∗ − x0) = Ω
1
2
0 δ∗.

This assumption is only a regularity condition and it will be exploited for proving asymp-
totic results.
The support of a centered Gaussian process, taking its values in an Hilbert space X , is
the closure in X of the Reproducing Kernel Hilbert Space associated with the covariance
operator of this process, see[77]. Then, for the prior distribution, x − x0 ∈ H(Ω0) with
µ-probability 1, but, with µ− probability 1, x− x0 is not in H(Ω0). This implies that the
prior distribution is not able to generate a trajectory x that satisfies Assumption (24) or,
in other words, the true value x∗ having generated Ŷ cannot have been drawn from µ.
Anyway, if Ω0 is injective, the space H(Ω0) is dense in X and therefore µ can generate
trajectories as close as possible to the true value x∗ even if µ puts zero probability on
H(Ω0). This kind of problem is known as prior inconsistency and it is due to the fact
that, because of the infinite dimensionality of the parameter space, the support of the
prior can cover only a very ”small” part of it. A similar result is found with the Dirichlet
process, in nonparametric probabilities estimation, in the sense that such a process puts
zero probability mass on absolutely continuous probability measures but it is able to gen-
erate probability functions close to them.

From a Bayesian point of view we say that a model is identified if the posterior distribu-
tion completely revises the prior distribution, for what we do not need to introduce strong
assumptions, see [27] Section 4.6 for an exhaustive explanation of this concept. Neverthe-
less, this chapter focuses on consistency in the sampling sense of the posterior distribution,
see Section 2.4, and for that we need the following assumption for identification.

Assumption 4 The operator KΩ
1
2
0 : X → Y is one-to-one on X .

This assumption guarantees continuity of the regularized posterior mean defined below.
The classical hypothesis for identification of x in model (2.1) requires that K be one-to-

one. This is a stronger condition since, if Ω
1
2
0 is one-to-one, K one-to-one implies KΩ

1
2
0

one-to-one, but the reverse is not true. Therefore, frequentist consistency in a Bayesian
model requires a weaker identification condition than a classical model does.

4We use the same notation E(·) for denoting the mathematical expectation taken with respect to
whatever distribution. Which distribution is meant should result clear.



10

2.2.3 Construction of the Bayesian Experiment

The relevant probability space associated to (2.1) is the real linear product space X × Y
defined as the set

X × Y := {(x, y);x ∈ X , y ∈ Y}
with addition, scalar multiplication and scalar product defined in the usual way. The
product σ-field associated to X × Y is denoted with E ⊗ F and the probability measure
defined on (X × Y, E ⊗ F) is denoted with Π and constructed by recomposing µ and P x.
Let Υyy = (Σn + KΩ0K

∗) be the covariance operator of the predictive distribution P and
Υ be the covariance operator associated to Π defined as Υ(ϕ,ψ) = (Ω0ϕ + Ω0K

∗ψ, (Σn +
KΩ0K

∗)ψ + KΩ0ϕ), for all (ϕ,ψ) ∈ X × Y.

Lemma 1 The covariance operators Υ and Υyy are trace class. In particular, Υyy trace
class is a necessary condition for Υ being trace class.

Next, we state that the joint and predictive probabilities, Π and P , are gaussian.

Theorem 1

(i). Under Assumptions 1 and 2, the joint measure Π on (X × Y, E ⊗ F) is Gaussian
with mean function mxy = (x0,Kx0) ∈ X × Y and covariance operator Υ.

(ii). Let P be a gaussian measure on (Y,F) with mean function my = Kx0 in Y and
covariance operator Υyy. Then, P is the marginal distribution on (Y,F) associated
to the joint gaussian measure Π defined in (i).

The Bayesian Experiment Ξ associated to inverse problem (2.1) is:

Ξ = (X × Y, E ⊗ F , Π = P x ⊗ µ) (2.3)

and it constitutes the object of our study. The aim will be to determine the inverse
decomposition of Π into the marginal P and the posterior distribution µF = P(x|Ŷ ):
Π = P ⊗ µF . Existence of this inverse decomposition is ensured if a regular version of
the posterior probability exists. The posterior distribution µF will be the solution to the
initial inverse problem.

2.3 Solution of the Ill-Posed Inverse Problem

Due to infinite dimension of the Bayesian experiment, application of Bayes theorem is
not evident and in computing the posterior distribution three points require a particular
attention: (i) the existence of a regular version of the conditional probability on E given
F , (ii) the fact that it is a gaussian measure and (iii) its continuity.

(i) The conditional probability on E given F exists and it is unique since it is the
projection on a closed convex subset of L2(X × Y), where L2(X × Y) is the Hilbert
space of random variables defined on X×Y that are square integrable with respect to
Π. A conditional probability is called regular if a transition probability characterizing
it exists. The existence of such a transition for µF is guaranteed by Jirina Theorem,
see [62], if the space (X × Y) is Polish.
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(ii) By slightly modifying the proof given in Section 2.2 of [60] it is trivial to show that
µF is gaussian. The associated characteristic function takes the form

E(ei<x,h>|Ŷ ) = ei<AŶ +b,h>− 1
2
<(Ω0−AKΩ0)h,h>, h ∈ X .

Then, x|Ŷ has mean: AŶ + b, and variance V = Ω0 − AKΩ0. Since E(x) =
E(E(x|Ŷ )), b = (I −AK)x0 and A is deducible from the following development:

< Υ12ϕ,ψ > = Cov(< x, ϕ >, < Ŷ , ψ >)
= Cov(E(< x, ϕ > |Ŷ ), < Ŷ , ψ >)
= Cov(< AŶ , ϕ >, < Ŷ , ψ >)
= < (Σn + KΩ0K

∗)A∗ϕ,ψ >, ∀ϕ ∈ X , ψ ∈ Y (2.4)

where Υ12 = KΩ0 is a component of operator Υ determined in Theorem 1. Hence,
A : Y → X is solution of

A(Σn + KΩ0K
∗)ψ = Ω0K

∗ψ, ψ ∈ Y (2.5)

and then A = Ω0K
∗(Σn + KΩ0K

∗)−1.

(iii) Expression for A is not well-defined since (Σn + KΩ0K
∗) is a compact operator

with infinite range and its inverse is not continuous on the whole Y. Therefore, the
posterior mean is not continuous in Ŷ and we have to deal with a further ill-posed
inverse problem. Continuity is crucial for asymptotic properties of the estimator,
in particular for posterior consistency. Problems of inconsistency are frequent in
nonparametric Bayesian experiments, see [16].
Therefore, Bayesian analysis of inverse problems changes the cause of the ill-posedness
of the equation (2.1): inconsistency is no longer due to non-continuity of K−1 but
to non-continuity of (Σn + KΩ0K

∗)−1.
Past literature on Bayesian inverse problems, see [60] and [53], proposed, as strategy
to solve this problem of non-continuity, to restraint the space of the observable Ŷ .
It was implicitly assumed that Ŷ belongs to R(Σn +KΩ0K

∗) or to a subspace of it.
We do not wish to make this kind of restriction since we admit any trajectory Ŷ in
R(Σn + KΩ0K∗). Thus, a different strategy, based on Tikhonov regularization, will
be proposed in the next paragraph.

2.3.1 Tikhonov Regularized Posterior distribution

We propose to solve the problem of unboundedness of A by applying a Tikhonov regular-
ization scheme to equation (2.5). We define the regularized operator Aα as:

Aα = Ω0K
∗(αnI + Σn + KΩ0K

∗)−1 (2.6)

where αn > 0 is a regularization parameter appropriately chosen such that αn → 0 with
n.
We could interpret the Tikhonov regularized Aα as the operator that we would obtain if
we considered a new Bayesian experiment Ŷ = Kx + U + η, with η a further error term
with variance αnI. In this case the sampling measure would define a covariance operator
αnI + Σn. This covariance operator is not trace class so that the trajectories generated
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by this distribution would not be in the Hilbert space Y. This interpretation is useful
since it provides a new Bayesian method that can be used for selecting the regularization
parameter αn from its posterior distribution once a prior distribution on it has been
specified. We do not develop this point here and it will be object of future research.
The regularized versions of b and V , with A replaced by Aα are

bα = (I −AαK)x0,

Vα = Ω0 − Ω0K
∗(αnI + Σn + KΩ0K

∗)−1KΩ0. (2.7)

These regularized objects characterize a new distribution that is gaussian with mean
(AαŶ + bα) and covariance operator Vα. This distribution is called regularized poste-
rior distribution and is denoted with µFα . It is a new object that we define to be the
solution of the signal-noise problem and that we will show in Section 2.4, is consistent.
Moreover, we keep as punctual estimator of x the regularized posterior mean

Eα(x|Ŷ ) = x0 + Ω0K
∗(αnI + Σn + KΩ0K

∗)−1(Ŷ −Kx0). (2.8)

2.3.2 Tikhonov regularization in the Prior Variance Hilbert scale

We propose in this subsection an alternative regularization scheme, for recovering A,
based on Tikhonov regularization in the Hilbert scale induced by the inverse of the prior

covariance operator, see [19] for general theory. Let L = Ω
− 1

2
0 be a densely defined un-

bounded self-adjoint strictly positive operator in the Hilbert space X . More clearly, if
D(L) denotes the domain of L, L is a closed operator in X satisfying: D(L) = D(L∗) is
dense in X , < Lx, y >=< x, Ly > for all x, y ∈ D(L), and there exists γ > 0 such that
< Lx, x > ≥ γ||x||2 for all x ∈ D(L). The norm || · ||s is defined as ||x||s := ||Lsx||. We
define the Hilbert Scale Xs induced by L as the completion of the domain of Ls, D(Ls),
with respect to the norm || · ||s; moreover Xs ⊆ Xs′ if s′ ≤ s, ∀s ∈ R. Usually, when a
regularization scheme in Hilbert Scale is adopted, the operator L, and consequently the
Hilbert Scale, is created ad hoc. In our case the Hilbert Scale is not created ad-hoc but is
suggested by the prior information we have and this is a noteworthy fact that represents
a considerable advantage with respect to the standard methods. For the theory to work
it is necessary the first of the following assumptions to be satisfied.

Assumption 5

(i) ||KΩ
1
2
0 x|| ∼ ||Ω

a
2
0 x||, ∀x ∈ X and for some a > 0;

(ii) (x∗ − x0) ∈ Xβ+1 for some β > 0, i.e. ∃ ρ∗ ∈ X such that (x∗ − x0) = Ω
β+1

2
0 ρ∗

(iii) a ≤ s ≤ β + 1 ≤ 2s + a.

Assumption (i) is equivalent to say that in specifying the prior distribution we take into
account the sampling model, hence the prior variance is linked to the sampling model
(2.1) we are studying and, in particular, to operator K. This kind of prior specification
is not new in Bayesian literature since it is similar to the Zellner’s g-prior, see [81] or [1].
Parameter a can be interpreted as a degree of ill-posedness. Therefore, the prior is specified
not only by taking into account the sampling model but also the degree of ill-posedness
of the problem.
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Assumption (ii) is known as a source condition and is formulated in order to reach a
certain speed of convergence of the regularized solution. Under Assumption 24, it says

that δ∗ ∈ R(Ω
β
2
0 ), hence Xβ+1 ≡ R(Ω

β+1
2

0 ) ≡ D(Lβ+1). The meaning of such an assumption
is that the prior distribution contains information about the regularity of the true value
of x. In fact, parameter β is interpreted as the regularity parameter. These two remarks
stress the fact that we are not taking whatever Hilbert Scale, but the Hilbert Scale linked
to the prior. Either we first choose the Hilbert Scale and then we use the information
contained in it to specify the prior distribution or we use the information contained in the
prior distribution to specify the Hilbert Scale.
The restriction β + 1 ≥ s means that the centered true value x∗ has to be at least an
element of Xs and it guarantees that the norm ||Lsx|| exists ∀x ∈ Xβ+1. The parameter a
denotes the degree of ill-posedness in the Bayesian problem.
Under such assumptions the Tikhonov regularized solution in Xs to equation (2.5) is:

As = Ω0K
∗(αnL2s + Σn + KΩ0K

∗)−1. (2.9)

The regularized posterior distribution is thus defined similarly as in Section 2.3.1 with Aα

substituted by As and is denoted with µFs . The regularized posterior mean and variance
are

Es(x|Ŷ ) = AsŶ + (I −As)x0

Vs = Ω0 −AsKΩ0. (2.10)

This regularization method has the advantage that it permits to better exploit the regu-
larity of the true function x∗. A classical Tikhonov regularization method allows to obtain
a rate of convergence to zero of the regularization bias that is at most of order 2; on the
contrary with a Tikhonov scheme in an Hilbert Scale the smoother the function x∗ is,
the faster the rate of convergence to zero of the regularization bias will be. Moreover, we
will show in Section 5.4.2 that µFs reaches a faster speed of convergence toward the true
solution.

2.4 Asymptotic Analysis

This section focuses on the study of the consistency of the regularized posterior distri-
bution and of the regularized posterior mean. We start by showing the consistency, and
by computing the rate of convergence, of the Tikhonov regularized posterior distribution
µFα defined in paragraph 2.3.1. Consistency of µFs defined in 2.3.2 will be analyzed in
subsection 5.4.2.
The aim of this section is to analyze ”frequentist” consistency of the recovered posterior
distribution. If P x denotes the sampling probability, this means that we analyze con-
vergence P x-a.s., or convergence in probability with respect to the measure P x, of the
regularized version of the posterior distribution that we have defined.
Following Diaconis et al- (1986) [16] we give the following definition of posterior consis-
tency :

Definition 1 The pair (x, µF ) is consistent if µF converges weakly to δx as n →∞ under
P x-probability or P x-a.s., where δx is the Dirac measure in x.
The posterior probability µF is consistent if (x, µF ) is consistent for all x.
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If (x, µF ) is consistent in the previous sense, the Bayes estimate for x, (i.e. the posterior
mean for a quadratic loss function), is consistent too.
The meaning of this definition is that, for any neighborhood U of the true parameter x,
the posterior probability of the complement of U converges toward zero when n → ∞:
µF (U c) → 0 in P x-probability, or P x-a.s. Therefore, since distribution expresses one’s
knowledge about the parameter, consistency stands for convergence of knowledge towards
the perfect knowledge with increasing amount of data.
In general, in an identified i.i.d. model with final dimensional parameter space we have
posterior consistency if the true value of the parameter is in the support of the prior distri-
bution. On the contrary, when the parameter space is of infinite dimension, this condition
is no more sufficient to guarantee the consistency of the posterior, as it is remarked in [16].
Besides the problem of infinite dimension of the parameter space, we also encounter the
difficulty that we are dealing with the regularized posterior distribution, µFα . Then, we
are going to extend the concept of posterior consistency in order to be applied to the
regularized posterior distribution and it makes sense to speak about regularized posterior
consistency.

To prove posterior consistency in the case of a Gaussian posterior measure, it is suffi-
cient to prove consistency of the posterior mean and convergence to zero of the posterior
variance. In fact, let x∗ be the true value of the parameter characterizing the DGP of Ŷ ,
by using Chebyshev’s Inequality and for any sequence Mn →∞

µFα {x : ||x− x∗|| ≥ Mnεn} ≤ Eα(||x− x∗||2|Ŷ )
(Mnεn)2

=
< Vα(x(t)|Ŷ ), 1 >X +||Eα(x|Ŷ )− x∗||2

(Mnεn)2

≤ ||Vα(x|Ŷ )||X + ||Eα(x|Ŷ )− x∗||2
(Mnεn)2

(2.11)

with π a measure on R. The RHS of (5.19) goes to 0 if both the terms in the numerator
converge to zero. We start by proving consistency of the regularized posterior mean, i.e.
||Eα(x|Ŷ ) − x∗|| → 0 P x∗-a.s. when n → ∞. For any true value x∗ ∈ X , the Bayes
estimation error is

Eα(x|Ŷ )− x∗ = Ω0K
∗(αnI + Σn + KΩ0K

∗)−1K(x∗ − x0)
+ Ω0K

∗(αnI + Σn + KΩ0K
∗)−1U − (x∗ − x0)

and it converges to 0 under conditions given in the theorem below. Let Φβ denote the β-

regularity space of the operator KΩ
1
2
0 , i.e. Φβ ≡ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0.

Theorem 2 Under Assumptions 24 and 25 if αn → 0, 1
αn

trΣn → 0 and 1
α3

n
||Σn||2 ∼

Op(1), then:

(i) E(x|Ŷ ) →Px∗ 0 in X norm;

(ii) moreover, if δ∗ ∈ Φβ, for some β > 0, the bias is of order

||Eα(x|Ŷ )− x∗||2 = Op(αβ∧2
n +

1
α4

n

||Σn||2α(β+1)∧2
n +

1
αn

trΣn).
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The larger β is, the smoother the function δ∗ ∈ Φβ will be and faster the regularization
bias will converge to zero. However, for a Tikhonov regularization scheme, β cannot be
grater than 2, this is the reason why we bound it by 2 in αβ

n. With classical Tikhonov
regularization scheme it is useless to have a function x∗ with a degree of smoothness larger
than 2. In the remaining of this section, for simplifying writing, we will not explicitly write
β ∧ 2, but it will be implicit that we are assuming β ≤ 2 and if β > 2 it must be set at 2.
Condition 1

α3
n
||Σn||2 ∼ Op(1) is sufficient to guarantee that 1

α4
n
||Σn||2α(β+1)∧2

n → 0 since

for every β, (β + 1) ∧ 2 > 1 and then α
(β+1)∧2
n converges to zero even after having been

simplified with the αn in the denominator.
Furthermore, if we assume that trΣn is of the same order as ||Σn||, for instance trΣn ∼
||Σn|| ∼ Op( 1

n), convergence to zero of the second and third rates in the bias require sat-

isfaction of conditions αn → 0 and α
3
2
nn →∞. Classical conditions for convergence of the

solution of stochastic ill-posed problems are αn → 0 and α2
nn →∞ (see [78]). Therefore,

we require weaker conditions to get optimal speed of convergence.

If trΣn is of the same order as ||Σn|| the fastest global rate of convergence is obtained
when αβ

n = 1
αn
||Σn||, that is, when the optimal regularization parameter α∗n is proportional

to

α∗n ∝ ||Σn||
1

β+1 .

With the optimal value α∗n, the condition 1
α3

n
||Σn||2 ∼ Op(1) is ensured if β ≥ 1

2 . Hence,

the speed of convergence of the regularized posterior mean is proportional to ||Σn||
β

β+1 .
Assuming the trace and the norm of the covariance operator be of the same order is not
really stringent. For instance, in almost all real examples they are both of order 1

n .

Let us proceed now to the study of the regularized posterior variance. We want to
check that ||Vαϕ|| → 0 for all ϕ ∈ X .

Theorem 3 Under Assumption 25, if αn → 0 and 1
α3

n
||Σn||2 ∼ Op(1) then

(i) Vα(x|Ŷ )ϕ →Px∗ 0 in X norm;

(ii) moreover, if the posterior variance is applied to ϕ ∈ X such that Ω
1
2
0 ϕ ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 ,

for some β > 0, it is of order

||Vα(x|Ŷ )ϕ||2 = Op(αβ
n +

1
α4

n

||Σn||2α(β+1)∧2
n ).

With the optimal α∗n, under the conditions in the above theorem and if β ≥ 1
2 , the squared

norm of the regularized posterior variance converges to zero at the speed of ||Σn||
β

β+1 . Its

norm is slower and is of order ||Σn||
β

2(β+1) .
Finally, from inequality (5.19) it follows that µFα degenerates to the Dirac measure in
x∗. Thus, under the fundamental assumption (x∗ − x0) ∈ H(Ω0), the regularized pos-
terior probability of the complement of any neighborhood of the true parameter x∗,
µFα {x : ||x − x∗||X ≥ Mnεn}, goes to zero and, if trΣn ∼ Op(||Σn||), it is of optimal

order ||Σn||
β

2(β+1) . We have in this way proved the posterior consistency of µFα .
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Lastly, we wish to compare the speed of convergence that we find with the Bayesian
method with the rate founded by applying a classical Tikhonov resolution method to
equation (2.1) (that is suggested by the classical literature on inverse problems). In the
following, we shall call these two methods Bayesian method and classical method, respec-
tively; we refer to [19] and [10] for a review of the classical method. For simplifying, we
set x0 = 0. To make this comparison possible we have to consider a particular case for the
prior covariance operator: Ω0 = c1(K∗K)γ , with c1 a constant of proportionality. In this
particular case the fastest rate of convergence of the regularized posterior distribution is
slower than the rate of convergence that would be obtained with the classical method. The
regularity condition required in the classical method is x∗ ∈ R(K∗K)

γ
2 and the optimal

speed of convergence is (trΣn)
γ

γ+1 , with γ ≤ 2 or γ set equal to 2 if γ ≥ 2. Therefore, if we
choose β in order to have the same regularity condition, i.e. R(K∗K)

(γ+1)β
2 = R(K∗K)

γ
2

and then β = γ
γ+1 , the fastest rate of convergence in the Bayesian method is proportional

to (trΣn)
γ

2γ+1 that is slower with respect to the classical one. This result is due to the fact
that the Bayesian method increases the degree of ill-posedness. However, no comparison
can be done outside of this particular form taken by Ω0. In the following subsection we
show that the speed of convergence is improved when we use µFs and the same speed of
convergence as with the classical method is attained.

2.4.1 Speed of convergence with Tikhonov regularization in the Prior
Variance Hilbert Scale

We compute in this subsection the speed of convergence for the regularized posterior
distribution with Tikhonov regularization in Hilbert scale, under Assumption 5. The
speed obtained in this case is faster than that one with a simple Tikhonov regularization
scheme and it is the same speed as we would have obtained if we had solved the functional
equation directly in an Hilbert scale without applying the bayesian method. We suppose
Assumption 5 holds, the attainable speed of convergence is given in the following theorem,
the proof of which is provided in Appendix 5.8.

Theorem 4 Let Es(x|Ŷ ) and Vs be as in (5.18). Under Assumptions 24, 25 and 5

||Es(x|Ŷ )− x∗||2 ∼ Op

(
α

β+1
a+s
n + α

1−a
a+s
n trΣn +

1
α2

n

||Σn||2α
β−a
a+s
n +

1
α2

n

||Σn||2trΣnα
1−a
a+s
n

)
.

Moreover, if the covariance operator Vs is applied to elements ϕ ∈ X such that Ω
1
2
0 ϕ ∈

R(Ω
β
2
0 ), then

||Vsϕ||2 ∼ Op

(
α

β+1
a+s
n +

1
α2

n

||Σn||2α
β−a
a+s
n

)
.

The optimal αn is obtained by equating the first two rates of convergence of the
posterior mean, that gives:

α∗n ∝ (trΣn)
a+s
a+β

and the corresponding optimal speed is proportional to (trΣn)
β+1
a+β . With this choice of

the regularization parameter the remaining rates goes to zero if β > a+2s
3 . This constraint

is binding with respect to the constraint in Assumption 5 (iii), i.e. a+2s
3 ≥ s − 1, if the
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ill-posedness parameter satisfies a ≥ s − 3. It should be noted that parameter s charac-
terizing the norm in the Hilbert scale does not play any role in the speed of convergence.
An advantage of the Tikhonov regularization in Hilbert Scale is that we can even obtain a
rate of convergence for other norms, namely || · ||r for −a ≤ r ≤ β + 1 ≤ a + 2s. Actually,
the speed of convergence of these norms gives the speed of convergence of the estimate of
the r-th derivative of the parameter of interest x.

If we directly solved functional equation (2.1) with a Tikhonov regularization in an
Hilbert scale we would obtain a solution xs = (αnL2s + K∗K)−1K∗Ŷ and a speed of
convergence of order (trΣn)

u
ā+u , under the hypothesis ||Kx|| ∼ ||L−āx|| and x ∈ Xu, with

ā the degree of ill-posedness in the classical problem. By comparing these assumptions to

the bayesian ones it results that ||KΩ
1
2
0 x|| ∼ ||L−āΩ

1
2
0 x|| and, substituting to L the opera-

tor Ω
− 1

2
0 , this norm is equivalent to ||Ω

ā+1
2

0 x||, that implies that the degree of ill-posedness
in the Bayesian problem is greater than the degree of ill-posedness in the classical prob-
lem: a = ā + 1. Moreover, if we take the same regularity condition in the two problems,
i.e. β + 1 = u, the rate of convergence of the regularized posterior and of the Tikhonov
regularized solution in Hilbert scale would be the same.
This confirms the improvement, in terms of speed of convergence, of the Tikhonov reg-
ularization in Hilbert scale with respect to the classical Tikhonov regularization. Take
for instance the particular case with Ω0 = (K∗K) and impose the same regularity con-
dition in X and in the Hilbert scale Xs. The regularity condition in Theorem 2 re-

quires that δ∗ ∈ R(Ω
1
2
0 K∗KΩ

1
2
0 )

γ
2 ≡ R((K∗K)γ) for a certain γ > 0 5, that implies

(x∗ − x0) ∈ R((K∗K)γ+ 1
2 ). The regularity condition for the Hilbert scale regularization

is (x∗ − x0) ∈ R(Ω
β+1

2
0 ) ≡ R((K∗K)

β+1
2 ); henceforth the conditions are equal if 2γ = β.

Taking this value for β, the rate of convergence in the Hilbert scale Xs is proportional
to (trΣn)

2γ+1
2γ+2 that is faster than the speed of convergence in X (that is proportional to

(trΣn)
γ

γ+1 ).
Even without restricting to this particular form for Ω0 it is possible to show the improve-
ment in term of speed of convergence obtained with an Hilbert scale. To this end, it is

sufficient that Assumption 5 (i) holds since it implies the equivalence ||(Ω
1
2
0 K∗KΩ

1
2
0 )

γ
2 v|| ∼

||Ω
aγ
2

0 v||, for some v ∈ X . Then, ||Ω
β
2
0 v|| ∼ ||Ω

aγ
2

0 v|| if and only if β = aγ (or β = (ā+1)γ).

The optimal bayesian speed of convergence with an Hilbert scale is (trΣn)
aγ+1
a+aγ that is

fastest than the bayesian speed of convergence with a classical Tikhonov: (trΣn)
γ

γ+1 ,
∀γ > 0.

2.5 The case with unknown operator K

In several econometric and statistical applications of inverse problem (2.1) both Y and
K are unknown. In such situations we are faced with the so-called stochastic ill-posed
problem described in Vapnik (1998) [78]. Examples are the nonparametric instrumental
regression model, see Darolles et al. (2006) [15] and Florens and Simoni (2008a) [29],
the conditional density estimation and the regression function estimation. We study in
this section the signal-noise problem when operator K is unknown and we analyze as this
affects the rate of convergence of the regularized posterior distribution.
When operator K is unknown, the measurement error U can be defined in two different

5Note that for diversify with respect to the regularity parameter in the Hilbert scale we use letter γ,
instead of β as used in Theorem 2 for the regularity on X .
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ways. Either (i) we can interpret U as the estimation error in Y : U = Ŷ − Kx like in
(2.1), or (ii) U denotes the difference between the two estimated quantities Ŷ and K̂:
U = Ŷ − K̂x. The second way to define the error is motivated by the fact that in real
applications it is not always possible to recover the distribution of U = Ŷ − Kx (even
asymptotically), while the distribution of U = Ŷ − K̂x results easier to obtain. It should
be noted that Y and Kx are equal but they are not the same object. Consequently, the
equality is no more valid for their estimators.
We focus on the first definition of the measurement error: Ŷ = Kx+U , that is our general
model (2.1). Nevertheless, when K is unknown the regularized posterior distribution µFα
previously defined is no longer computable. Thus, we replace the infeasible distribution
µFα with the estimated regularized posterior distribution µ̂Fα that is feasible and that is
obtained by replacing K with a consistent estimator of it. For instance, if K is the
conditional expectation its kernel can be estimated through a kernel smoothing. We
denote with K̂ the consistent estimator of K and with K̂∗ the consistent estimator of the
adjoint K∗. In general, the adjoint of the estimator is different than the estimator of the
adjoint: (K̂)∗ 6= K̂∗.
The estimated µ̂Fα is a gaussian measure on X characterized by the estimated regularized
mean function and covariance operator :

Êα(x|Ŷ ) = Ω0K̂∗(αnI + Σn + K̂Ω0K̂∗)−1(Ŷ − K̂x0) + x0

V̂α = Ω0 − Ω0K̂∗(αnI + Σn + K̂Ω0K̂∗)−1K̂Ω0.

The posterior µ̂Fα is the solution to the ill-posed inverse problem (2.1) and it has been
computed by applying a classical Tikhonov regularization scheme to the inverse of (Σn +
K̂Ω0K̂∗).
Alternatively, we could use a Tikhonov regularization scheme in the prior variance Hilbert
Scale, as it has been proposed in section 2.3.2. We develop in this essay general computa-
tions and asymptotic analysis only for the classical Tikhonov case. Extension to Tikhonov
regularization in Hilbert Scale are trivial and would require only minor modifications.

2.5.1 Asymptotic Analysis

We proceed to analyze consistency of the estimated regularized posterior distribution µ̂Fα
and we adopt the frequentist notion of consistency given in definition 1.
We start by analyzing convergence of the mean function and we decompose the estimation
error as

x̂α − x∗ = (x̂α − x̃α) + (x̃α − xα) + (xα − x∗), (2.12)

where x̂α = Êα(x|Ŷ ) and xα = Eα(x|Ŷ ) denote the regularized posterior mean with
unknown and with known operator K, respectively, and

x̃α = Ω0K̂∗(αnI + Σn + K̂Ω0K̂∗)−1(K̂x∗ + U − K̂x0) + x0

denotes the regularized posterior mean with unknown K conditioned to the observation
Ỹ = K̂x + U . We have decomposed the estimation error in three terms: the first one
takes into account the estimation error about Y −Kx∗, the second one is the estimation
error about the operator K and the third term is the approximation error due to have
approximated x by using the regularized posterior mean. We analyze convergence in
X -norm:
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||x̂α − x∗||2 ≤ ||x̂α − x̃α||2 + ||x̃α − xα||2 + ||xα − x∗||2.
The asymptotic behavior of the third component of the estimation error was provided in
Theorem 2. In order to have convergence to zero of the other two terms, we require that
K̂ and Ŷ converge towards the true values K and Y , respectively, at a suitable rate.

Assumption 6 (a) ||Ω
1
2
0 K̂∗K̂ − Ω

1
2
0 K∗K||2 = Op(δ1);

(b) ||K̂Ω0K̂∗ −KΩ0K
∗||2 = Op(δ2);

(c) ||Ω
1
2
0 (K̂∗ −K∗)||2 = Op(δ3);

(d) ||K̂ −K||2 = Op(δ4).

The order of convergence δ1, δ2, δ3 and δ4 of these operators depend on the nature of K and
Ω0 and on the kind of estimators used. Therefore, they need to be determined contextually
to every problem. In most of the cases, even if we use a nonparametric estimator for the
operator K, the rates δ1 and δ3 are faster than the nonparametric rate of convergence.

This is caused by the smoothing effect due to application of operator Ω
1
2
0 that allows to

improve the speed of convergence and sometimes even to reach the parametric one (e.g.
instrumental variable estimation, see Florens et al. (2008a) [29]). The following theorem
states consistency of the estimated regularized posterior mean x̂α.

Theorem 5 Under Assumptions 24, 25 and 6, if αn → 0, 1
αn

trΣn → 0, 1
α3

n
||Σn||2 ∼

Op(1), δ1
α2 ∼ Op(1), δ2

α2 ∼ Op(1), δ3
α ∼ Op(1) and δ4

α2 ∼ Op(1) then:

||x̂α − x∗||2 → 0

in P x∗-probability as n →∞.

Moreover, if δ∗ ∈ R(Ω
1
2
0 K∗KΩ

1
2
0 )

β
2

||x̂α − x∗||2 = Op

( δ1

α2
n

αβ +
δ2

α3
trΣn +

δ3

α2
trΣn +

δ4

α4
||Σn||2

+αβ +
1
α4

n

||Σn||2α(β+1)∧2
n +

1
α

trΣn

)
.

A remark is in order, the rate 1
α3

n
trΣnδ2 can be written in an equivalent way as 1

α3
n
(trΣn)3 δ2

(trΣn)2
.

The first factor of this expression converges to 0 under the hypothesis in Theorem 5. The
second factor δ2

(trΣn)2
is particularly interesting. It is the square of the ratio between the

rate of the estimating error of the operator and the rate of decline of the measurement
error in the inverse problem (2.1). For this ratio being bounded it is necessary that the
combination of estimated operators K̂Ω0K̂∗ does not converge too slowly with respect to
the residuals. In other words, the combination of estimated operators must have at least
the same speed of decline as the measurement error U , otherwise the ratio explodes as
n →∞.
If the hypothesis set in the theorem hold, the terms in the rate of convergence that ac-
count for the operator estimation error are negligible with respect to the terms due to the
approximation errors ||xα − x∗||2. Henceforth, if trΣn ∼ ||Σn||, for instance Σn = 1

nΣ,
and β ≥ 1

2 , we find the same optimal regularization parameter as in the case with known
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K: α∗n ∝ ||Σn||
1

β+1 and the optimal speed of convergence is ||Σn||
β

β+1 .
Analysis of the asymptotic behavior of the estimated regularized posterior variance re-
quires a decomposition similar to that one done for the mean: V̂α = (V̂α−Vα)+Vα. Here,
we only have the error about estimation of K. Then, ||V̂α||2 ≤ ||V̂α − Vα||2 + ||Vα||2 and
we have the following theorem.

Theorem 6 Under Assumptions 25 and 6 (a) and (d), if αn → 0, δ1
α2

n
∼ Op(1), δ4

α2
n
∼

Op(1) and 1
α3

n
||Σn||2 ∼ Op(1) then ∀ϕ ∈ X

||V̂αϕ||2 → 0

in P x∗-probability as n →∞.

Moreover, if V̂α is applied to ϕ ∈ X such that Ω
1
2
0 ϕ ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 , for some β > 0, it

is of order

||V̂αϕ||2 = Op

( δ1

α2
n

αβ
n +

δ4

α4
n

||Σn||2 +
1
α4

n

||Σn||2α(β+1)∧2
n + αβ

n

)
.

If we set the regularization parameter αn equal to the optimal one α∗n, this guarantees

convergence to zero of ||V̂αϕ||2 at the speed ||Σn||
β

β+1 if β ≥ 1
2 . Moreover, under all the

hypothesis given in Theorems 5 and 6, the estimated regularized posterior distribution µ̂Fα
converges at the rate of ||Σn||

β
2(β+1) . This is proved by using a Chebyshev’s inequality:

µ̂Fα {x : ||x− x∗|| ≥ Mnεn} ≤ ||V̂α(x|Ŷ )||+ ||Êα(x|Ŷ )− x∗||2
(Mnεn)2

.

By summarizing, when operator K is unknown and substituted by some nonparametric
consistent estimator with suitable rate of convergence, the speed of convergence of the
regularized posterior distribution is not affected and we are able to achieve the same
optimal speed as when the operator is known.

2.6 The case with different operator for each observation

We present in this section a slightly modified version of model (2.1). Suppose to observe
an n-sample of Hilbert-valued curves Ŷ1, . . . , Ŷn, with Ŷi ∈ Y, ∀ i, each of them is a noisy
transformation of the parameter of interest x through an observation-specific transforma-
tion Ki, namely operator K changes with the index of observation. More clearly,

Ŷi = Kix + Ui i = 1, . . . , n Ui ∼ iid (2.13)

where we still assume Ki, i = 1, . . . , n, is a known, linear, non-random and Hilbert-Schmidt
operator. This is the classical linear regression model with fixed regressors, where the op-
erators {Ki} play the role of explanatory variables.
The observational scheme is the following: either we directly observe n curves or we dis-
pose of n samples of discrete observations and through a mathematical transformation
of the observations in each of these samples we obtain n infinite dimensional objects Ŷi.
In the first case we observe infinite dimensional elements of the Hilbert space Y, in the
second case we observe elements in Rl, for some l > 0.
The parameter of interest x belongs to the probability space (X , E , µ) where the prior dis-
tribution µ is still assumed to be gaussian with mean function x0 and covariance operator
Ω0. On the contrary, the sampling distribution is not the same for all the observations
and it is specified in Assumption 7 below.
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Assumption 7 Let P x
i be a probability measure on (Y,F) conditioned on E such that

E(||Ŷi||2) < ∞, where E denotes the expectation taken with respect to P x
i . P x

i is a Gaussian
measure that defines a mean element Kix ∈ Y and a covariance operator Σ : Y → Y.

Therefore,

Ŷi|x ∼ i GP(Kix,Σ) i = 1, . . . , n. (2.14)

and Σ satisfies the usual properties of covariance operators (i.e. it is linear, bounded,
nonnegative, self-adjoint and trace-class).
Throughout this section we will adopt the following notation: Ŷ = (Ŷ1, . . . , Ŷn)′ is the
n × 1 vector of noisy observations, U = (U1, . . . , Un)′ is the n × 1 vector of error terms,
K = (K1, . . . , Kn)′ : X → Yn is the n × 1 vector of observation-specific operators, K∗ =
(K∗

1 , . . . ,K∗
n) : Yn → X is the 1× n adjoint vector of K. Moreover, (Yn,Fn) denotes the

product of the measurable spaces {(Y,F) : i = 1, . . . , n} and the joint sampling measure
on it will be denoted with P x ≡ P x

1 ⊗ . . .⊗ P x
n . The corresponding Bayesian Experiment

will be defined by the following probability space, denoted with ΞD:

ΞD = (X × Yn, E ⊗ Fn, Πn), (2.15)

where Πn = µ⊗ P x
1 ⊗ . . .⊗ P x

n .

The following Lemma is only an adaptation of Theorem 1 to the particular case with
different operators. For this reason the proof is omitted.

Lemma 2 Under Assumptions 7 and 2:

(i) the joint measure Πn on (X × Yn, E ⊗ Fn) is Gaussian with mean function mn
xy =

(x0,Kx0) ∈ X × Yn and covariance operator Υn such that Υn(ϕ,ψ) = (Ω0ϕ +
Ω0K

∗ψ, KΩ0ϕ + (In ⊗ Σ + KΩ0K
∗)ψ), for all (ϕ,ψ) in X × Yn.

(ii) The marginal distribution P = P1⊗ . . .⊗Pn on (Yn,Fn) is a gaussian measure with
mean function mn

y = Kx0 ∈ Yn and covariance operator Υn
yy = (In ⊗ Σ + KΩ0K

∗).

For clarifying the writing, we rewrite in matrix form the covariance operator of the
marginal distribution of the n-dimensional gaussian process Ŷ .

V ar(Ŷ ) = (In ⊗ Σ + KΩ0K
∗)

=




Σ + K1Ω0K
∗
1 K1Ω0K

∗
2 . . . K1Ω0K

∗
n

K2Ω0K
∗
1 Σ + K2Ω0K

∗
2

...
. . .

...
KnΩ0K

∗
1 . . . Σ + KnΩ0K

∗
n


 ,

where In is the n-dimensional diagonal matrix with the non-null elements equal to identity
operators.

2.6.1 Marginalization of the Bayesian experiment

In order to simplify long computations caused by large amount of statistical data, we
can reduce Bayesian experiment (2.15) through a marginalization of it. We consider a
marginalization on the sample space, namely, if T ⊂ F is the sub-σ-field generated by
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a sufficient statistic t defined on the sample space (Yn,Fn), we are considering the re-
striction of Πn on E ⊗ T , denoted with Πn

E⊗T and defined as the trace of Πn on E ⊗ T ,
i.e. Πn

E⊗T (A) = Πn(A), ∀A ∈ E ⊗ T . In the following, we work with the statistic
t =

∑n
i=1 K∗

i Ŷi (≡ K∗Ŷ ) and we show in Appendix 2.8 that it is sufficient for the Bayesian
experiment ΞD. To prove sufficiency is easy in finite dimension, but in infinite dimension
it is more troublesome and requires more caution. By exploiting the sufficiency property
and Assumption 7 we get that t, conditioned on x, induces a gaussian measure on X :
K∗Ŷ |x ∼ GP(K∗Kx, K∗ΣK), where K∗ΣK =

∑
i K

∗
i ΣKi.

The statistic t is not well-defined for n large, so that we should divide it by n. We denote
tn = 1

nK∗Ŷ the scaled sufficient statistic. Actually, the factor scaling 1
n is appropriate only

if the data are i.i.d., if, for instance, we had time series data we could necessitate to divide
by n2 if there is a trend. Also the asymptotic behavior of K∗ΣK and K∗K =

∑
i K

∗
i Ki

are noteworthy. If these operators are deterministic, then we should divide this sum by
n to guarantee summability of the series. On the contrary, Ki could be a transformation
of some sample of random variables wi, therefore the rate for which we have to divide t
depends on properties of wi. For keeping thinks simple, we assume in this analysis that
the data are such that the scaling factor 1

n is appropriate for all the sums.
Let TT be the σ-field generated by tn, i.e. TT = σ( 1

nK∗Ŷ ). The sampling probability of
tn restricted to TT , P x

TT
, is gaussian with mean function 1

nK∗Kx and covariance operator
1
n2 K∗ΣK. In the analysis of asymptotic properties, we shall assume that 1

nK∗ΣK con-
verges towards a well-defined operator, so that 1

n2 K∗ΣK converges to 0 with n. The joint
measure restricted to E⊗TT is gaussian with mean (x0,

1
nK∗Kx0) and covariance operator

[
Ω0 Ω0

K∗K
n

K∗K
n Ω0 ( 1

n

(
K∗ΣK

n

)
+ K∗K

n Ω0
K∗K

n )

]

and the marginal distribution PTT
restricted to TT is also Gaussian.

The solution to the ill-posed problem (2.13) is the regularized conditional distribution µTT
α

of x given the observed tn, that we denote with µTT
α for analogy with previous notation.

The regularization is obtained with a Tikhonov scheme and the regularized quantities
defining the posterior distribution µTT

α are

AD,α = Ω0
K∗K

n

(
αnI +

1
n

(K∗ΣK

n

)
+

K∗K
n

Ω0
K∗K

n

)−1
,

bD,α = (I −AD,α
K∗K

n
)x0,

VD,α = Ω0 −AD,α
K∗K

n
Ω0

= Ω0 − Ω0
K∗K

n

(
αnI +

1
n

(K∗ΣK

n

)
+

K∗K
n

Ω0
K∗K

n

)−1 K∗K
n

Ω0 (2.16)

Therefore, the regularized posterior mean is

ED,α(x|t) = Ω0
K∗K

n

(
αnI +

1
n

(K∗ΣK

n

)
+

K∗K
n

Ω0
K∗K

n

)−1
t +

(I − Ω0
K∗K

n

(
αnI +

1
n

(K∗ΣK

n

)
+

K∗K
n

Ω0
K∗K

n

)−1 K∗K
n

)x0.(2.17)

Note that also in this extension of the basic model we could use a Tikhonov regu-
larization in the prior variance Hilbert Scale. We do not develop this here since, as we
have already stressed in Section 2.5, computations and asymptotic analysis can be easily
recovered by minor modifications.
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2.6.2 Asymptotic Analysis

We analyze asymptotic properties and we check that posterior consistency is verified. The
arguments for deriving convergence and speed of convergence are essentially the same
as in previous sections, thus the details given here and in the proofs of theorems will
be minimal. To have well-defined sums of operators for n → ∞ we shall assume that
1
n

∑
i K

∗
i ΣKi → Q1 and = 1

n

∑
i K

∗
i Ki → Q2, for Q1 and Q2 two bounded operators.

Posterior consistency means convergence of the regularized posterior distribution toward
the Dirac mass in x∗ and convergence will be in P x∗

TT
-probability. Consistency is obtained

under a slightly modified identification condition: Assumption 25 is substituted by

Assumption 8 The operator K∗KΩ
1
2
0 : X → X is one-to-one on X .

The following Theorem formalizes convergence to zero of the squared norm of the bias of
the regularized posterior mean. In the following of this section we assume that β ≤ 2 and
if β > 2 then it must be set to 2 (comments on this fact is given in previous sections).

Theorem 7 Consider inverse problem (2.13) and the regularized posterior distribution
µTT

α with mean and variance defined in (2.17) and in (2.16), respectively. Under Assump-
tions 24 and 8, if αn → 0, 1

n

∑
i K

∗
i ΣKi → Q1, 1

n

∑
i K

∗
i Ki → Q2 with Q1 and Q2 two

bounded operators, 1
αn

tr(Q1

n ) → 0 and 1
α3

n
||Q1

n ||2 ∼ Op(1) then:

Eα(x|t) →P x∗
TT x∗

in X norm. Moreover, if δ∗ ∈ R(Ω
1
2
0

K∗K
n

K∗K
n Ω

1
2
0 )

β
2 the bias is of order:

||ED,α(x|t)− x∗||2 = Op(αβ
n +

1
αn

tr
(Q1

n

)
+

1
α4

n

∣∣∣
∣∣∣Q1

n

∣∣∣
∣∣∣
2
α(β+1)∧2

n ).

It should be noted that the third rate is negligible with respect to the other two if 1
α3

n

∣∣∣
∣∣∣Q1

n

∣∣∣
∣∣∣
2

is bounded. In general we can suppose tr(Q1

n ) is of the same order as ||Q1

n ||, in particular,
this is satisfied when tr(Q1

n ) ∼ ||Q1

n || ∼ Op( 1
n) that is very frequent for Ui being an

estimation error. We deduce that the optimal αn is determined by equating the first two
rates: αβ

n = 1
αn

tr(Q1

n2 ). Thus,

α∗n ∝
∣∣∣
∣∣∣Q1

n

∣∣∣
∣∣∣

1
β+1 and ||ED,α(x|t)− x∗||2 = Op

(∣∣∣
∣∣∣Q1

n

∣∣∣
∣∣∣

β
β+1

)
.

For having consistency of the posterior distribution we also need to prove convergence to
zero of the regularized posterior variance. This is shown in the next theorem:

Theorem 8 Under Assumption 8, if αn → 0, 1
n

∑
i K

∗
i ΣKi → Q1, 1

n

∑
i K

∗
i Ki → Q2,

with Q1 and Q2 two bounded operators, and 1
α3

n
||Q1

n ||2 ∼ Op(1) then for all ϕ ∈ X :

VD,α(x|t)ϕ →P x∗
TT 0

in X norm.
Moreover, if VD,α is applied to ϕ ∈ X such that Ω

1
2
0 ϕ ∈ R(Ω

1
2
0 (K∗K

n )2Ω
1
2
0 )

β
2 , the squared

norm of VD,α is of order:

||VD,αϕ||2 = Op(αβ
n +

1
α4

n

∣∣∣
∣∣∣Q1

n

∣∣∣
∣∣∣
2
α(β+1)∧2

n ).

The optimal speed of convergence of the norm of the regularized posterior variance VD,α

and of the regularized posterior distribution µTT
α is of order ||Q1

n ||
β

2(β+1) .
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2.7 Conclusions

This chapter analyzes posterior distribution of the solution of a functional equation in
Hilbert Spaces. When the parameter of interest is of infinite dimension its posterior mean
is not continuous. What is new in this paper is the construction of a new kind of posterior
distribution that we call Regularized Posterior Distribution and that has the important
property to be continuous in the observed quantity.
We have computed the regularized posterior distribution in two ways: with a classical
Tikhonov regularization scheme and with a Tikhonov regularization in the prior variance
Hilbert Scale. The Hilbert Scale that we use is naturally suggested by the prior distribu-
tion and it is not chosen ad-hoc as usually happens in inverse problems literature.
The regularization parameter αn is in practice unknown. An estimation method for it is
the data-driven method discussed in [19] Ch. 4., and implemented, among others, in [29].
Alternatively, a new method that we have suggested consists in putting a prior distribu-
tion on it and obtain an estimator from its posterior distribution.
In this paper we have considered the basic case with both K and Σn known. We have
extended this basic model in [32] where we consider the cases where K is unknown, where
operator K is specific to every observation and the case with partially unknown Σn.

2.8 Appendix A: Proofs

Proof of Lemma1

Note that tr(Σn + KΩ0K
∗) = trΣn + tr(KΩ0K

∗). Since Σn is trace class, we only have to prove

that KΩ0K
∗ is trace class, or that Ω

1
2
0 K∗ is an HS operator.

Let Ω
1
2
0 =

∫
R a(z, t)g(t)dt and K∗ =

∫
R b(s, t)f(s)ds with g and f measures on R, then Ω

1
2
0 K∗ =∫

R×R a(z, t)b(s, t)g(t)f(s)dsdt and its HS square norm is

∫

R×R

∣∣∣
∫

R
a(z, t)b(s, t)g(t)dt

∣∣∣
2

f(s)h(z)dsdz

≤
∫

R×R

( ∫

R
|a(z, t)b(s, t)|g(t)dt

)2

f(s)h(z)dsdz

≤
∫

R×R

(( ∫

R
a2(z, t)g(t)dt

) 1
2
( ∫

R
b2(s, t)g(t)dt

) 1
2
)2

f(s)h(z)dsdz

=
∫

R

∫

R
a2(z, t)g(t)h(z)dtdz

∫

R

∫

R
b2(s, t)g(t)f(s)dsdt

< ∞
since both Ω

1
2
0 and K∗ are Hilbert Schmidt operators. This prove that Ω

1
2
0 K∗ is Hilbert Schmidt

and then (Σn + KΩ0K
∗) is trace-class.

Let now consider Υ:

Υ =
[

Ω0 Ω0K
∗

KΩ0 Σn + KΩ0K
∗

]
.

Let ej = (e1j , e2j) be a basis in X × Y, the trace of Υ is:

tr(Υ) =
∑

j

< Υej , ej >

=
∑

j

(< Ω0e1j , e1j > + < Ω0K
∗e2j , e1j > + < KΩ0e1j , e2j >

+ < (Σn + KΩ0K
∗)e2j , e1j >).
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For the above part of this proof and since Ω0 is trace-class, the infinite sum of the first and last
terms are finite. We only have to consider the two terms in the center:

∑
j(< Ω0K

∗e2j , e1j > + <

KΩ0e1j , e2j >). This term is equal to 2
∑

j < Ω
1
2
0 K∗e2j ,Ω

1
2
0 e1j > and

2
∑

j

< Ω
1
2
0 K∗e2j ,Ω

1
2
0 e1j > ≤ 2

∑

j

||Ω
1
2
0 K∗e2j || sup

j
||Ω

1
2
0 e1j ||

≤ 2||Ω
1
2
0 ||

∑

j

||Ω
1
2
0 ||||K∗e2k||

that is finite since Ω
1
2
0 is bounded and K∗ is HS. The necessity of Υyy being trace-class to have Υ

trace-class is evident and this complete the proof.

Proof of Theorem 1

(i). Let (x̃, ỹ) ∈ X × Y. Assumptions 1 implies that ỹ = ỹ1 + ỹ2, with ỹ1 ∈ R(K) and ỹ2 ∈
R.K.H.S.(Σn). Therefore, ỹ1 and ỹ2 are independent and for all (ϕ,ψ) ∈ X × Y

< (x̃, ỹ), (ϕ,ψ) > = < x̃, ϕ > + < ỹ1 + ỹ2, ψ >

= < x̃, ϕ > + < Kx̃, ψ > + < ỹ2, ψ >

= < x̃, ϕ + K∗ψ > + < ỹ2, ψ >

and < x̃, ϕ + K∗ψ > + < ỹ2, ψ > is distributed as

= N (< x0, ϕ + K∗ψ >, < Ω0(ϕ + K∗ψ), (ϕ + K∗ψ) > + < Σnψ, ψ >).

We have proved that the joint measure Π on X ×Y is gaussian. The mean mxy is defined through
< mxy, (ϕ,ψ) >= EΠ < (x̃, ỹ), (ϕ,ψ) > and since < x0, ϕ + K∗ψ >=< (x0,Kx0), (ϕ,ψ) > we get
mxy = (x0,Kx0). From the definition of Υ, we get

< Υ(ϕ,ψ), (ϕ,ψ) >=< Ω0ϕ,ϕ > + < (Σn + KΩ0K
∗)ψ, ψ >

that concludes the proof.

(ii). Let Q be the projection of Π on (Y,F) with mean function mQ and covariance operator
RQ. Since Π is gaussian, the projection must be gaussian. Moreover, ∀ψ ∈ Y

< mQ, ψ > = < mxy, (0, ψ) >

= < (x0,Kx0), (0, ψ) > = < Kx0, ψ >

and

< RQψ, ψ > = < Υ(0, ψ), (0, ψ) >

= < (Ω00 + Ω0K
∗ψ, (Σn + KΩ0K

∗)ψ + KΩ00), (0, ψ) >

= < (Σn + KΩ0K
∗)ψ, ψ > .

Hence, mQ = my and RQ = Υyy. This implies Q ≡ P since there is an unique correspondence
between a gaussian measure and its covariance operator and mean element.
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Proof of Theorem 2

Write (Eα(x|Ŷ )− x∗) as:

−
I︷ ︸︸ ︷

[I − Ω0K
∗(αnI + KΩ0K

∗)−1K](x∗ − x0)
+ [Ω0K

∗(αnI + Σn + KΩ0K
∗)−1K − Ω0K

∗(αnI + KΩ0K
∗)−1K](x∗ − x0)︸ ︷︷ ︸

II

+Ω0K
∗(αnI + Σn + KΩ0K

∗)−1U︸ ︷︷ ︸
III

. (2.18)

The first term looks very similar to the regularization bias of the solution of a functional
equation. More properly, to obtain such a kind of object we use Assumption 24:

I = [I − Ω0K
∗(αnI + KΩ0K

∗)−1K]Ω
1
2
0 δ∗

= Ω
1
2
0 [I − Ω

1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 ]δ∗,

We take the norm in X of I:

||I||2 ≤ ||Ω
1
2
0 ||2||(I − Ω

1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 )||2||δ||2.

Note that (I − Ω
1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 ) has the same eigenvalues as

[I − (αnI + Ω
1
2
0 K∗KΩ

1
2
0 )−1Ω

1
2
0 K∗KΩ

1
2
0 ]. (2.19)

that is the regularization bias associated to the regularized solution of the ill-posed inverse problem
KΩ

1
2
0 δ∗ = r computed using Tikhonov regularization scheme. It converges to zero when αn → 0

and then the second norm in ||I||2 is bounded. This way to rewrite the above operator justifies

the identification condition in Assumption 25. Injectivity of KΩ
1
2
0 ensures that the solution of

KΩ
1
2
0 δ = r is identified.

The speed of convergence to zero of ||(I −Ω
1
2
0 K∗(αnI + KΩ0K

∗)−1KΩ
1
2
0 )||2 depends on the regu-

larity of δ∗, and consequently of (x∗−x0). If δ∗ ∈ Φβ , it is at most of order αβ
n, see [10]. We admit

without proof the following lemma. Then ||I||2 = Op(αβ
n).

Now, let us consider the II and III terms. We have ||II||2 = ||Ω0K
∗(αnI+Σn+KΩ0K

∗)−1(−Σn)(αnI+
KΩ0K

∗)−1K(x∗ − x0)||2 and it is less than or equal to

||Ω0K
∗||2||(αnI + Σn + KΩ0K

∗)−1||2||Σn||2||(αnI + KΩ0K
∗)−1K(x∗ − x0)||2

where the first norm is bounded and the second and the third ones are Op( 1
α2

n
) and Op(||Σn||2)

respectively. The last norm can be written as:

||(αnI + KΩ0K
∗)−1KΩ

1
2
0 δ∗||2,

and, by using the hypothesis that δ∗ ∈ Φβ

||(αnI + KΩ0K
∗)−1KΩ

1
2
0 δ∗||2 =

1
α2
||α(αnI + KΩ0K

∗)−1KΩ
1
2
0 (Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 ρ||2,

for some ρ ∈ X and it is at least of order 1
α2 αβ+1. As a consequence of the fact that, with a

Tikhonov regularization, a degree of smoothness greater than or equal to 2 may be useless, we get
||(αnI + KΩ0K

∗)−1K(x∗ − x0)||2 ∼ Op( 1
α2

n
α

(β+1)∧2
n ).

To find speed of convergence of term III we re-write it as:
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III = Ω0K
∗[(αnI + Σn + KΩ0K

∗)−1 − (αnI + KΩ0K
∗)−1]U︸ ︷︷ ︸

A

+

Ω0K
∗(αnI + KΩ0K

∗)−1U︸ ︷︷ ︸
B

.

By standard computation and by Kolmogorov theorem, it is trivial to determine that ||A||2 ∼
Op( 1

α3
n
||Σn||2trΣn) and ||B||2 ∼ Op( 1

αn
trΣn), since ||U ||2 is bounded in probability if E||U ||2 < ∞.

Finally, E||U ||2 = trΣn.
The first term of ||III||2 is negligible with respect to the other terms in ||II||2 and ||III||2.

Proof of Theorem 3

By recalling expression (2.7), we can rewrite the regularized posterior variance as

Vα =

IV︷ ︸︸ ︷
Ω0 − Ω0K

∗(αnI + KΩ0K
∗)−1KΩ0 +

Ω0K
∗(αnI + KΩ0K

∗)−1KΩ0 − Ω0K
∗(αnI + Σn + KΩ0K

∗)−1KΩ0︸ ︷︷ ︸
V

.

Since Ω0 is a positive definite self-adjoint operator, it can be decomposed as Ω0 = Ω
1
2
0 Ω

1
2
0 .

For term IV we follow the same reasoning done for term I in (5.21), so that we conclude that, if

Ω
1
2
0 ϕ ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 , ||IV ϕ||2 = Op(αβ

n). Operator V in (2.20) applied to ϕ ∈ X is equivalently
rewritten as

Ω0K
∗(αnI + Σn + KΩ0K

∗)−1Σn(αnI + KΩ0K
∗)−1KΩ

1
2
0 Ω

1
2
0 ϕ

and by using the same proof as for term II in (5.21), its squared norm is bounded and of order
||V ||2 = Op( 1

α4
n
||Σn||2α(β+1)∧2

n ).

Proof of Theorem 4

We admit the following Lemma:

Lemma 3 Let Xs, s ∈ R, be a Hilbert scale induced by L and let T : X → Y be a bounded operator
satisfying ||x||−a ∼ ||Tx|| on X for some a > 0. Then for B := TL−s, s ≥ 0 and |ν| ≤ 1

||x||−ν(a+s) ∼ ||(B∗B)
ν
2 x||.

Moreover, R((B∗B)
ν
2 ) = Xν(a+s).

Proof:ee proof of Corollary 8.22 in [19].

The bias Es(x|Ŷ )− x∗ is rewritten as

I︷ ︸︸ ︷
[I − Ω0K

∗(αnL2s + KΩ0K
∗)−1K](x∗ − x0)

+Ω0K
∗[(αnL2s + Σn + KΩ0K

∗)−1K − (αnL2s + KΩ0K
∗)−1K](x∗ − x0)︸ ︷︷ ︸

II

+Ω0K
∗(αnL2s + Σn + KΩ0K

∗)−1U︸ ︷︷ ︸
III

.
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Let us start by considering term I, note that

||I|| ≤ ||Ω
1
2
0 ||2||[I − (αnΩ−s

0 + Ω
1
2
0 K∗KΩ

1
2
0 )−1Ω

1
2
0 K∗KΩ

1
2
0 ]Ω

β
2
0 ρ∗||

if Ω0 is such that Ω
1
2
0 K∗(αnL2s + KΩ0K

∗)−1 = (αnΩ−s
0 + Ω

1
2
0 K∗KΩ

1
2
0 )−1Ω

1
2
0 K∗, i.e. Ω−s+ 1

2
0 K∗ =

Ω
1
2
0 K∗L2s. By using Assumption 5 (ii) and the notation B = KΩ

s+1
2

0 , we rewrite

||I|| ≤ ||Ω
1
2
0 ||2||Ω

s+1
2

0 (I − (αnI + B∗B)−1B∗B)Ω
β−s

2
0 ρ∗||

≤ ||Ω
1
2
0 ||2||Ω

s+1
2

0 (I − (αnI + B∗B)−1B∗B)(B∗B)
β−s

2(a+s) v||
∼ ||(B∗B)

β+1
2(a+s) αn(αnI + B∗B)−1v||

∼ Op(α
β+1

2(a+s)
n )

where the second line follows from the fact that R(Ω
β−s

2
0 ) ≡ Xβ−s ≡ R((B∗B)

β−s
2(a+s) ), then

Ω
β−s

2
0 ρ∗ = (B∗B)

β−s
2(a+s) v, for some v ∈ X . The third equivalence is a consequence of Lemma

3. It follows that ||I||2 ∼ Op(α
β+1
a+s
n ).

We use similar steps for obtaining the convergence of the other terms, so that we omit any
redundant comment.

||II|| ≤ ||Ω0K
∗(αnL2s + Σn + KΩ0K

∗)−1||||Σn||||(αnL2s + KΩ0K
∗)−1KΩ

1
2
0 δ∗||

and the norm in the last term can be developed as

||(αnL2s + KΩ0K
∗)−1KΩ

1
2
0 δ∗|| = ||KΩ

1
2
0 (αnΩ−s

0 + Ω
1
2
0 K∗KΩ

1
2
0 )−1δ∗||

= ||B(αnI + B∗B)−1Ω
s+β
2

0 v||
∼ ||(B∗B)

2s+β+a
2(a+s) (αnI + B∗B)−1v||

∼ Op(
1

αn
α

2s+β+a
2(a+s)

n ).

Thus, ||II||2 ∼ Op

(
1

α4
n
||Σn||2α

2s+β+a
(a+s)

n

)
.

We proceed with term III that can be decomposed as

III = Ω0K
∗[(αnL2s + Σn + KΩ0K

∗)−1 − (αnL2s + KΩ0K
∗)−1]U︸ ︷︷ ︸

IIIA

+

Ω0K
∗(αnL2s + KΩ0K

∗)−1U︸ ︷︷ ︸
IIIB

,

where the squared norm ||IIIA||2 of the first term is less or equal then

||Ω0K
∗(αnL2s + KΩ0K

∗)−1||2||Σn||2||(αnL2s + Σn + KΩ0K
∗)−1||2||U ||2

≤ ||Ω
s+1
2

0 (αnI + Ω
s+1
2

0 K∗KΩ
s+1
2

0 )−1Ω
s+1
2

0 K∗||2||Σn||2||(αnL2s + Σn + KΩ0K
∗)−1||2||U ||2

∼ ||(B∗B)
a+2s+1
2(a+s) (αnI + B∗B)−1||2||Σn||2||(αnL2s + Σn + KΩ0K

∗)−1||2||U ||2

∼ Op

( 1
α4

n

||Σn||2trΣnα
a+2s+1

a+s
n

)
.

The norm of the term IIIB is:
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||IIIB|| = ||Ω0K
∗(αnL2s + KΩ0K

∗)−1U ||
= ||Ω

1
2
0 (αnΩ−s

0 + Ω
1
2
0 K∗KΩ

1
2
0 )−1Ω

1
2
0 K∗U ||

= ||Ω
s+1
2

0 (αnI + B∗B)−1B∗U ||
∼ ||(B∗B)

s+1
2(a+s) (αnI + B∗B)−1B∗U ||

≤ ||(B∗B)
2s+a+1
2(a+s) (αnI + B∗B)−1||||U ||

∼ Op(α
1−a

2(a+s)
n ||U ||).

Thus ||IIIB||2 ∼ Op(α
1−a

(a+s)
n trΣn).

The variance Vs is applied to an element ϕ ∈ X such that Ω
1
2
0 ϕ ∈ R(Ω

β
2
0 ) and Ω

s+1
2

0 ϕ ∈ R(Ω
β−s

2
0 ).

Then the variance can be decomposed as

Vsϕ =

IV︷ ︸︸ ︷
[Ω0 − Ω0K

∗(αnL2s + KΩ0K
∗)−1KΩ0]ϕ

+Ω0K
∗[(αnL2s + KΩ0K

∗)−1 − (αnL2s + Σn + KΩ0K
∗)−1]KΩ0ϕ︸ ︷︷ ︸

V

.

Computation of ||IV || is specular to that one for term ||I|| above and computation of ||V || to

that one for term ||II||, therefore we give only the result: ||IV ||2 ∼ Op(α
β+1
a+s
n ) and ||V ||2 ∼

Op

(
1

α2
n
||Σn||2α

β−a
(a+s)
n

)
.

The result follows.

Proof of Theorem 5

For brevity, let H = KΩ
1
2
0 , Ĥ = K̂Ω

1
2
0 , H∗ = Ω

1
2
0 K∗ and Ĥ∗ = Ω

1
2
0 K̂∗. Moreover, we denote

Ỹ = K̂x∗ + U , x̃α = Eα(x|Ỹ ) and we use decomposition (2.12) of the regularized estimation bias.
We start to analyze the estimation error about Y −Kx∗:

x̂α − x̃α = Ω0K̂∗(αI + K̂Ω0K̂∗ + Σn)−1(K − K̂)x∗

= Ω
1
2
0 [Ĥ∗(αI + ĤĤ∗ + Σn)−1 − Ĥ∗(αI + ĤĤ∗)−1](K − K̂)x∗

+Ω
1
2
0 Ĥ∗(αI + ĤĤ∗)−1(K − K̂)x∗.

Then, ||x̂α − x̃α||2 is less or equal than

||Ω
1
2
0 ||2||Ĥ∗(αnI + ĤĤ∗)−1||2(||Σn||2||(αI + ĤĤ∗ + Σn)−1||2||(K − K̂)x∗||2 +

||(K − K̂)x∗||2)

∼ Op(
1

α3
n

||Σn||2||K̂ −K||2 +
||K̂ −K||2

αn
)

∼ Op(
1

α3
n

||Σn||2δ4 +
δ4

αn
),

The second term x̃α − xα in decomposition (2.12) is equal to

A︷ ︸︸ ︷
Ω0[K̂∗(αnI + K̂Ω0K̂∗ + Σn)−1K̂ −K∗(αnI + KΩ0K

∗ + Σn)−1K](x∗ − x0)

+Ω0[K̂∗(αnI + K̂Ω0K̂∗ + Σn)−1 −K∗(αI + KΩ0K
∗ + Σn)−1K]︸ ︷︷ ︸

B

.
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Term A can in turn be decomposed as

A =

AI︷ ︸︸ ︷
Ω

1
2
0 [Ĥ∗(αnI + ĤĤ∗ + Σn)−1Ĥ − Ĥ∗(αnI + ĤĤ∗)−1Ĥ]δ∗

+Ω
1
2
0 [Ĥ∗(αnI + ĤĤ∗)−1Ĥ −H∗(αnI + HH∗)−1H]δ∗︸ ︷︷ ︸

AII

−Ω
1
2
0 [H∗(αnI + HH∗ + Σn)−1Ĥ −H∗(αnI + HH∗)−1H]δ∗︸ ︷︷ ︸

AIII

.

The squared norm of term AI is

||AI||2 ≤ ||Ω
1
2
0 ||2||Ĥ∗(αnI + ĤĤ∗ + Σn)−1||2||Σn||2||(αnI + ĤĤ∗)−1Ĥδ∗||2

∼ Op(
1

α2
n

||Σn||2 1
α2

n

||αn(αnI + ĤĤ∗)−1Ĥδ∗||2)

and with the first order Taylor expansion around the true value of the operator

(αnI + ĤĤ∗)−1Ĥδ∗ ' (αnI + HH∗)−1Hδ∗ + (αnI + HH∗)−1(Ĥ −H)δ∗
+(αnI + ĤĤ∗)−1(ĤĤ∗ −HH∗)(αnI + HH∗)−1Hδ∗

we get ||αn(αnI + ĤĤ∗)−1Ĥδ∗||2 ∼ Op(α
(β+1)∧2
n (1 + δ2

α2
n
) + δ4) by using the regularity condition

δ∗ ∈ R(H∗H)
β
2 . Then ||AI||2 ∼ Op( 1

α4
n
||Σn||2[α(β+1)∧2

n (1 + δ2
α2

n
) + δ4]) and under the hypothesis

that δ2
α2

n
∼ Op(1) the second term in the squared brackets is negligible with respect to the first one

so that ||AI||2 ∼ Op

(
1

α4
n
||Σn||2

(
α

(β+1)∧2
n + δ4

))
.

After permutation of operators H and H∗ the squared norm ||AII||2 of term AII is less or equal
than

||Ω
1
2
0 ||2|| − [I − (αnI + Ĥ∗Ĥ)−1Ĥ∗Ĥ]δ∗ + [I − (αnI + H∗H)−1H∗H]δ∗||2

≤ ||Ω
1
2
0 ||2||(αnI + Ĥ∗Ĥ)−1||2||Ĥ∗Ĥ −H∗H||2||αn(αnI + H∗H)−1||2

≤ ∼ Op(
δ1

α2
n

αβ
n).

We use the same logic to recover the rate of ||AIII||2: ||AIII||2 is less or equal than

||Ω
1
2
0 ||2||H∗(αnI + H∗H + Σn)−1||2||Σn||2||(αnI + H∗H)−1Hδ∗||2

∼ Op(
1

α4
n

||Σn||2α(β+1)∧2
n ).

Therefore, ||A||2 ∼ Op( 1
α4

n
||Σn||2α(β+1)∧2

n + δ1
α2

n
αβ

n + δ4
α4

n
||Σn||2). Lastly, term B can be decomposed

in a way specular to that one used for A and the proof is substantially identical, then omitted. We
conclude that ||B||2 ∼ Op( 1

α3
n
||Σn||2trΣn + δ2

α3
n
trΣn + δ3

α2
n
trΣn).

The norm of the last term in decomposition (2.12) is given by Theorem 2. By collecting all these
results and by deleting the negligible terms we find the rate given in the theorem. The convergence
to zero of ||x̂α − x∗||2 is proved thanks to the rate of convergence we have determined and the
conditions αn → 0 and 1

αn
trΣn → 0.
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Proof of Theorem 6

For brevity, let H = KΩ
1
2
0 , Ĥ = K̂Ω

1
2
0 , H∗ = Ω

1
2
0 K∗ and Ĥ∗ = Ω

1
2
0 K̂∗. First, we rewrite the

decomposition of the estimated regularized posterior variance:

V̂αϕ = (V̂α − Vα)ϕ + Vαϕ

||V̂αϕ||2 ≤ ||(V̂α − Vα)ϕ||2 + ||Vαϕ||2, ϕ ∈ X .

Convergence and rate of convergence of the second norm in the right hand side is given in Theorem
3. The first term: (V̂α − Vα)ϕ is equal to

Ω0[−K̂∗(αnI + K̂Ω0K̂∗ + Σn)−1K̂ + K∗(αnI + KΩ0K
∗ + Σn)−1K]Ω0ϕ

that is less or equal than

Ω
1
2
0 [−Ĥ∗(αnI + ĤĤ∗ + Σn)−1Ĥ + Ĥ∗(αnI + ĤĤ∗)−1Ĥ]Ω

1
2
0 ϕ

−Ω
1
2
0 [Ĥ∗(αnI + ĤĤ∗)−1Ĥ −H∗(αnI + HH∗)−1H]Ω

1
2
0 ϕ

+Ω
1
2
0 [H∗(αnI + HH∗ + Σn)−1Ĥ −H∗(αnI + HH∗)−1H]Ω

1
2
0 ϕ.

This expression coincide with term A in the proof 2.8 of Theorem 5 with the only difference that δ∗
must be substituted with Ω

1
2
0 ϕ. Hence, ||(V̂α−Vα)ϕ||2 ∼ Op( 1

α4
n
||Σn||2α(β+1)∧2

n + δ1
α2

n
αβ

n+ δ4
α4

n
||Σn||2)

and it converges to 0. By collecting the rate of convergence of the two terms in the variance
decomposition and after neglecting the redundant term we get the result.

Sufficiency of K∗Ŷ

In Section 2.6.1 the use of t = K∗Ŷ to make inference was justified under the condition that it
is sufficient. We prove here that it is a sufficient statistics, namely that Fn ‖ E|σ(K∗Ŷ ), where
σ(K∗Ŷ ) denotes the σ-field generated by statistic t. Actually, sufficiency of statistic t entails
sufficiency of every bijective transformation of

∑n
i=1 K∗

i Ŷi.
Due to the fact that we are working in infinite dimensional spaces and we have not a likelihood
function, we can not use the factorization criterion in order to prove sufficiency. Hence, we propose
to consider a sequential model, obtained by projecting the model on an orthonormal bases, and to
take into account only a finite number k of projections. The idea is to find a sufficient statistic for
the sequential model and to analyze its asymptotic behavior.
Let {λj , ψj}j be the singular system of the covariance operator Σ, the sequence {ψj}j represents
a base that will be used to project the model. A sequential Bayesian Experiment is defined by

ΞDs = (X × Yn, E ⊗ Fn, Πn, Ek ↑ E∞,Fn
k ↑ Fn

∞), (2.20)

with Ek ⊂ Ek+1 ⊂ E and Fn
k ⊂ Fn

k+1 ⊂ Fn two filtrations in (X × Yn, E ⊗ Fn). The filtration Ek

is generated by the projected true parameter x: Ek = σ({< x, K∗ψj >}j=1,...,k)6. The filtration
Fn

k is generated by the n-dimensional vector of projected observed curves Ŷ : Fn
k = σ({< Ŷ , ψj >

}j=1,...,k). The sub-σ-field E∞ and Fn
∞ are defined to be the σ-field generated by the random

functions x and Y respectively: E∞ = E and Fn
∞ = Fn. The k-dimensional sequential model is

written as

< Ŷi, ψj > i=1,...,n
j=1,...,k︸ ︷︷ ︸

n×k matrix: {ŷij}ij

= < Kix, ψj > i=1,...,n
j=1,...,k︸ ︷︷ ︸

n×k matrix

+< Ui, ψj > i=1,...,n
j=1,...k︸ ︷︷ ︸

n×k matrix

,

with < Ui, ψj >∼ N (0, λj) and Cov(< Ui, ψj >,< Ui, ψj′ >) = 0, ∀j 6= j′. If we consider the
sequential bayesian model with only a finite number k of projections we are able to find a sufficient

6More clearly, the sub-σ-field Ek is identified with the sub-σ-field of cylinder sets Ek×F = {B×F ; B ∈
Ek}.
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statistic by using the factorization criterion. We use the result of the following Lemma that is
proved in the next section.

Lemma 4 Let Ŷi(k) be the partial sum of the Fourier series of Ŷi, i.e.
∑k

j=1 < Ŷi, ψj >
ψj

λj
. The

statistic t =
∑n

i=1 K∗
i Ŷi(k) is sufficient in the sequential Bayesian experiment ΞDs.

Let Tk = σ(K∗Ŷ (k)) be the sub-σ-field and we define the tail σ-field TT as

TT =
⋂

k≥0

∨

m≥k

Tm, (2.21)

that, by definition of Tk, is equal to the smallest σ-field that makes measurable the function K∗Ŷ (k)
depending on the last coordinate, i.e. TT = σ(K∗Ŷ ), see Florens et al. (1990) [27]. Our point is to
prove that TT is a sufficient statistic for the initial Bayesian experiment ΞD, namely: Fn ‖ E|TT .
The following theorem, that is a slightly modified version of Theorem 7.2.7 in Florens et al. (1990)
[27], shows that sufficiency in the sequential Bayesian Experiment implies sufficiency in the limit
Bayesian Experiment. The proof is given in Appendix 2.8

Theorem 9 Let (E×F, E⊗F) be a measurable space. Consider two filtrations in E⊗F : Fk ↑ F∞
and Ek ↑ E∞ along with a sequence Tk adapted to Fk, i.e.,

(o) Tk ⊂ Fk ∀k ∈ N.

If

(i) Fk ⊥ Ek|Tk,

then

(ii) F ⊥ E|TT .

This theorem applies to Bayesian Experiment defined in (2.15) with (E×F, E ⊗F) substituted
by (X × Yn, E ⊗ Fn), Fk and F replaced by Fn

k and Fn
∞ ≡ Fn, respectively. Hence, K∗Ŷ is a

sufficient statistic for parameter x.

Proof of Lemma 4

In the sequel, indices i and j in the sums and products are meant to belong to {1, 2, . . . , n} and
{1, 2, . . . , k}, respectively. Consider the likelihood function of the sequential experiment (2.20):

L({< x, K∗
i ψj >}ij |{ŷij}ij) =

∏

i

[
1

(2π)
k
2

∏

j

λ
− 1

2
j exp{−1

2
1
λj

(ŷij− < x, K∗
i ψj >)2}],

and the log-likelihood l(:= log L) is proportional to the following expression:

l({< x,K∗
i ψj >}ij |{ŷij}ij) ∝

∑

ij

1
λj

(ŷij− < x,K∗
i ψj >)2

∝
∑

ij

(< Ŷi, ψ̃j >2 + < x, K∗
i ψ̃j >2

−2 < Ŷi, ψ̃j >< x, K∗
i ψ̃j >), (2.22)

where ψ̃j = ψj√
λj

is the scaled singular value. By the factorization principle, t (≡ S({ŷij}ij)) is

sufficient if the loglikelihood can be written as l({< x,K∗
i ψj >}ij |{ŷij}ij) ∝ f({ŷij}ij) + g(x) +

h(S({ŷij}ij); x), where f, g and h are three real-valued functions. We develop the third term in
(2.22) in such a way to obtain a function of x and K∗Ŷ (k):
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∑

ij

< Ŷi, ψ̃j >< x, K∗
i ψ̃j > = < x,

∑

ij

< Ŷi, ψ̃j > K∗
i ψ̃j >

= < x,
∑

i

K∗
i

∑

j

< Ŷi, ψ̃j > ψ̃j >

= < x,
∑

i

K∗
i Ŷi(k) >

= < x, K∗Ŷ (k) >,

where Ŷ (k) is the partial sum of the Fourier series of Ŷ .

Proof of Theorem 9

Let a be a random variable defined on Ek′ , 0 ≤ k′ ≤ k and belonging to L1. Since Tk ⊂ Fk, (i) is
equivalent to

(iii) E(a|Fk) = E(a|Tk),

where (iii) is true with probability 1. Moreover, E(a|Fk) is an Fk-martingale, therefore by
martingale properties

(iv) E(a|Fk) →L1 E(a|F∞) a.s.

Taking the lim supk on both sides of (iii) we have, by using (iv)

lim sup
k

E(a|Fk) = lim sup
k

E(a|Tk),

therefore

E(a|F∞) = lim sup
k

E(a|Tk) a.s.

Now, lim supk E(a|Tk) = lim supk E(a|T k) = E(a| lim supk T k) 7 and it is a random variable defined
on lim supk T k =

⋂
k≥0

∨
m≥k T m = (T )T = TT . Then,

(v) E(a|F∞) = E(a|TT ) = E(a|TT ).

By definition of the tail σ-field TT and filtration, we have TT ⊂ F∞. It follows that (v) is
equivalent to F∞ ⊥ E∞|TT .

Proof of Theorem 7

||Eα(x|t)− x∗||2 = || 1
n

AD,α(K∗(Kx∗ + U)− 1
n

K∗Kx0) + x0 − x∗||2

that is less or equal than

≤

I︷ ︸︸ ︷
||Ω0

K∗K
n

[αnI +
1
n

(K∗ΣK

n

)
+

K∗K
n

Ω0
K∗K

n
]−1 K∗U

n
||2

+ ||(I − Ω0
K∗K

n
[αnI +

1
n

(K∗ΣK

n

)
+

K∗K
n

Ω0
K∗K

n
]−1 K∗K

n
)(x∗ − x0)||2

︸ ︷︷ ︸
II

.

7In general, for a σ-field M, we denote with M the completed σ-field.



34

We consider terms I and II separately by starting with term I:

I = Ω0
K∗K

n
[(αnI +

( 1
n

K∗ΣK

n

)
+

K∗K
n

Ω0
K∗K

n
)−1

−(αnI +
K∗K

n
Ω0

K∗K
n

)−1]
K∗U

n

+Ω0
K∗K

n
(αnI +

K∗K
n

Ω0
K∗K

n
)−1 K∗U

n

||I||2 ≤ ||Ω
1
2
0 ||2

(
||Ω

1
2
0

K∗K
n

(αnI +
K∗K

n
Ω0

K∗K
n

)−1||2||K
∗ΣNK

n2
||2

||(αnI +
K∗V ar(Y )K

n2
)−1||2||K

∗U
n

||2 +

||Ω
1
2
0

K∗K
n

(αnI +
K∗K

n
Ω0

K∗K
n

)−1||2||K
∗U
n

||2
)

From the distribution of Ui we can infer K∗
i Ui ∼ i GP(0,K∗

i ΣKi) and we can write

|| 1
n

K∗U ||2 = || 1
n

n∑

i=1

K∗
i Ui||2

≤ 1
n2

n∑

i=1

||K∗
i Ui||2

that by Kolmogorov theorem is bounded in probability if E|| 1nK∗U ||2 < ∞. Therefore, asymptotic
behavior of || 1nK∗U ||2 will be determined by asymptotic behavior of E|| 1nK∗U ||2. Let (λ̃ij , ϕ̃ij)j

be the eigensystem of the self-adjoint compact operator K∗
i ΣKi

n , then, since
∣∣∣
∣∣∣K∗

i Ui

n

∣∣∣
∣∣∣
2

=
∑∞

j=1 <

K∗
i Ui

n , ϕ̃ij >2, we have

E|| 1
n

K∗U ||2 ≤ E
∞∑

i=1

∣∣∣
∣∣∣K

∗
i Ui

n

∣∣∣
∣∣∣
2

≤
∞∑

i=1

E
∣∣∣
∣∣∣K

∗
i Ui

n

∣∣∣
∣∣∣
2

≤ 1
n

∞∑

i=1

∞∑

j=1

λ̃ij

≤ 1
n

tr
(K∗ΣK

n

)

that goes to zero with n. Moreover, we assume that 1
n2 K∗V ar(Y )K → ( 1

nQ1 + Q2Ω0Q2) with n,
with Q1 and Q2 are bounded operators. It follows that ||(αnI + 1

n2 K∗V ar(Y )K)−1||2 = Op(α−2
n )

and ||Ω
1
2
0

K∗K
n (αnI + K∗K

n Ω0
K∗K

n )−1||2 = Op(α−1
n ). Therefore, we get

I = Op

( 1
α3

n

||Q1

n
||2 1

n
tr(Q1) +

1
αn

tr(
Q1

n
)
)

where we have substituted K∗ΣK
n with its limit. Then, the trace of this operator converges to zero.

To analyze term II, it is advisable to rewrite it in the following way by using the notation
Tn = K∗K

n :
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II = ||(I − Ω0Tn(αnI + TnΩ0Tn)−1Tn)(x∗ − x0)

−Ω0Tn(αnI +
1
n2

K∗V ar(Ŷ )K)−1Tn(x∗ − x0)

+Ω0Tn(αnI + TnΩ0Tn)−1Tn(x∗ − x0)||2

≤
III︷ ︸︸ ︷

||(I − Ω0Tn(αnI + TnΩ0Tn)−1Tn)(x∗ − x0)||2

+ ||Ω0Tn(αnI +
K∗V ar(Y )K

n2
)−1 1

n

(K∗ΣK

n

)
(αnI + TΩ0T )−1T (x∗ − x0)||2

︸ ︷︷ ︸
IV

.

For term IV we proceed exactly as for term II in the proof of Theorem 3 in [? ] with the operators
opportunely replaced. Thus, we get IV = Op(||Q1

n ||2 1
α4

n
α

(β+1)∧2
n ) by using Assumption 24, 8 and

the regularity condition δ∗ ∈ R(Ω
1
2
0 T 2

nΩ
1
2
0 )

β
2 .

Lastly, we carry out asymptotic analysis of term III, we rewrite it as

III = ||(Ω
1
2
0 − Ω0Tn(αnI + TnΩ0Tn)−1TnΩ

1
2
0 )δ∗||2

≤ ||Ω
1
2
0 ||2||(I − Ω

1
2
0 Tn(αnI + TnΩ0Tn)−1TnΩ

1
2
0 )δ∗||2.

The second norm is of the same order as the bias of regularization of the solution of TnΩ
1
2
0 δ∗ = r:

||(αnI + Ω
1
2
0 T 2

nΩ
1
2
0 )−1Ω

1
2
0 T 2

nΩ
1
2
0 ||2,

then it goes to zero. Under the regularity condition δ∗ ∈ R(Ω
1
2
0 T 2

nΩ
1
2
0 )

β
2 , the bias of regularization is

at most of order Op(αβ
n). By summing the rate of convergence found and neglecting the negligible

rate in term I we get the result of the theorem.

Proof of Theorem 8

We outline only the principal steps of this proof since it is substantially similar to Proof 2.8 of
Theorem 7 and the proof of Theorem 4 in [? ]. The basic decomposition that is employed is :

VD,αϕ =

A︷ ︸︸ ︷
(Ω0 − Ω0Tn(αnI + TnΩ0Tn)−1TnΩ0)ϕ

Ω0Tn(αnI +
1
n2

K∗V ar(Y )K)−1 1
n

( 1
n

K∗ΣK
)
(αnI + TnΩ0Tn)−1TnΩ0ϕ

︸ ︷︷ ︸
B

.

if Ω
1
2
0 ϕ ∈ R(Ω

1
2
0 T 2

nΩ
1
2
0 )

β
2 , the norm ||A||2 is equivalent to ||I||2 and ||B||2 ∼ ||IV ||2 in Proof 2.8 of

Theorem 7.
Thus ||A||2 ∼ Op(αβ

n) and ||B||2 ∼ Op(||Q1
n ||2 1

α4
n
α

(β+1)∧2
n ).

2.9 Appendix B: Examples

Our estimator can be applied to all the classical examples of linear inverse problems, for instance
digital image analysis, see [11], tomography, cancer therapy, time resolved fluorescence problem.
Statistics and econometrics offers several examples of applications, see [78] and [10], and we develop
in this section some examples in these fields.
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Example 1: Density estimation

We propose a new approach for density estimation that is substantially different from the other
Bayesian methods existing in the literature like [47], [21], [28], [66], [24] and [52].
Let X = L2

π(R) and Y = L2
ρ(R), with π and ρ two measures on R different than the Lebeasgue

measure. We consider a real-valued random variable ξ with c.d.f. F , F (ξ̄) = P(ξ ≤ ξ̄), admitting
a density f(ξ) ∈ X that is characterized as the solution of an inverse problem.
If an i.i.d. sample ξ1, . . . , ξn from F is available we estimate F by F̂n(ξ̄) = 1

n

∑n
i=1 1{ξi ≤ ξ̄} and

the probability density function is obtained by solving

F̂n(ξ̄) =
∫ ξ̄

−∞
f(u)du + Un,

with K : L2
π(R) → L2

ρ(R) the integral operator with kernel 1{u ≤ ξ̄} 1
π(u) and Un the estimation

error. The adjoint of K, K∗ : L2
ρ(R) → L2

π(R), has kernel 1{ξ̄≥u}
ρ(ξ) . If 1{u ≤ ξ̄} 1

π(u) is square
integrable with respect to the product of measures π(u)ρ(ξ), K is an HS operator and then it is
compact.
The sampling probability P f is inferred from asymptotic properties of the empirical distribution
function, so that it is asymptotically a Gaussian measure with mean F and covariance operator
Σn = 1

n

∫
R̄ F (tj ∧ tl)− F (tj)F (tl)dtj .

Example 2: Regression estimation

Let (ξ, w) be a R1+p-valued random vector with cdf F and L2
F (w) be the space of square integrable

functions of w, integrable with respect to F . We define the regression function of ξ given w as
a function m(w) ∈ L2

F (w) such that ξ = m(w) + ε, E(ε|w) = 0 and E(ε2|w) = σ2. Then,
m(w) = E(ξ|w).
Let g(w, t) : Rp ×R→ R be a known function defining an HS integral operator with respect to w,
then E(g(w, t)ξ) = E(g(w, t)m(w)), with the expectation taken with respect to F , and m(w) is the
solution to a linear inverse problem. The fact that K is HS ensures that Km ∈ L2

π(R), with π a
measure on R; moreover, the fact that ξ has finite second moment ensures that E(g(w, t)ξ) ∈ L2

π(R).
We suppose F (ξ|w) is unknown while F (·, w) is known; this implies that E(g(w, t)ξ) must be
estimated but the operator K =

∫
g(w, t)dF (·, w) is known. If we dispose of a random sample

(ξi, wi) we get the consistent estimator

Ê(g(w, t)ξ) :=
1
n

n∑

i=1

g(wi, t)ξi.

The statistical inverse problem with estimated LHS becomes

Ê(g(w, t)ξ) = Km(t) + Un(t).

The empirical process
√

n(Ê(g(w, t)ξ)−E(g(w, t)ξ)) weakly converges toward a zero mean gaussian
process with covariance operator

Λ =
∫

R
(σ2

∫

Rp

g(w, t)g(w, s)f(w)dw − E(g(w, t)ξ)E(g(w, s)ξ))π(s)ds.

So, the sampling measure Pm is approximately gaussian with mean E(g(w, t)ξ) and variance 1
nΛ.

In most of the cases the cdf F is completely unknown and also operator K must be estimated.
However, under some regularity assumption, this does not affect the speed of convergence of our
estimator to the true solution, see [32].
Alternative approaches existing in Bayesian literature can be found in [43] or [74].
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Example 3: Hazard rate function estimation with Right-Censored Sur-
vival data

Let X1, . . . , Xn be i.i.d. survival times with absolutely continuous distribution function, char-
acterized by the cdf F , hazard rate function h = F ′

1−F and integrated hazard function A(t) =∫ t

0
h(u)du. We consider a sequence of survival times X1n, X2n, . . . , Xnn. In reality we do not

observe X1n, . . . , Xnn but only the right-censored sample (X̃in, Din), i = 1, . . . , n, where X̃in =
Xin ∧ Uin and Din = 1(X̃in = Xin) for some sequence of censoring times U1n, . . . , Unn from a
distribution function Gin. We suppose that the survival times X1n, . . . , Xnn and the censoring
times U1n, . . . , Unn are mutually independent for each n.
The aim is to get an estimate of the hazard rate function h, given an estimate of A(t), by solving
the functional equation

Ân(t) =
∫ t

0

h(u)du + Un(t)

where Un(t) is introduced to account for the estimation error. We propose to estimate A(t) with
the Nelson-Aalen estimator, see [2] and from asymptotic properties of this estimator we can infer
an approximate sampling distribution.
This inference method is really new with respect to previous bayesian literature, see [46], [25], [80],
[18], [48],[69].

Example 4: Deconvolution.

Let (X,Y, Z) be a random vector in R3 such that Y = X + Z, X be independent of Z and ϕ(·),
f(·), g(·) be the marginal density functions of X, Y and Z respectively. The density f(y) is defined
to be the convolution of ϕ(·) and g(·)

f(y) = ϕ ∗ g :=
∫

ϕ(x)g(y − x)dx.

We assume that ϕ(·), f(·), g(·) are elements of L2
π(R) where π is a symmetric measure assigning

a weight decreasing to zero to points far from the median. We suppose g(·) is known, x is not
observable, f(y) is estimated nonparametrically and our interest is to recover the density ϕ(x).
The corresponding statistical model is

f̂(y) = Kϕ(y) + U,

where K =
∫

g(y− x)dx is known and U is the estimation error. Distribution of process U should
be inferred from asymptotic properties of the nonparametric estimator f̂(y). This is not possible
for a nonparametric estimation since a nonparametric estimator defines an empirical process with
trajectories that are discontinuous and independent at each point.
To solve this problem, we propose to transform the model. Let A be a known operator with the
property of smoothing the nonparametric estimate. For instance, it could be an integral operator
A =

∫
a(y, t)dy, between Hilbert spaces. The transformed deconvolution model becomes:

Ey(a(y, t))(t) = AKϕ(t),

where Ey denotes the expectation taken with respect to f(y). We substitute f(y) with a kernel
estimator and we get the error term V defined as V =

∫
a(y, t)f̂(y)dy − AKϕ.

√
nV weakly con-

verges toward a gaussian process with zero mean and covariance operator with kernel E(a(yi, t)−
E(a(y, t)))(a(yi, τ)− E(a(y, τ))), from which we infer the sampling distribution.

Example 5: Instrumental Regression Model.

Let (Y, Z,W ) be a random vector in R × Rp × Rq with cdf F . Let L2
F be the space of square

integrable functions of (Y,Z, W ) and L2
F (Z) ⊆ L2

F be the space of square integrable functions
depending on Z. The instrumental regression ϕ(Z) ∈ L2

F (Z) is defined by
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Y = ϕ(Z) + ε, E(U |W ) = 0, V ar(ε) = σ2. (2.23)

ϕ(Z) is the parameter of interest and is solution of an integral equation of first kind: E(Y |W ) =
E(ϕ(Z)|W ). If we want to stay completely nonparametric, the estimator of the LHS gives an empir-
ical process with discontinuous trajectories. We have the same kind of problem as in deconvolution
to determine the (asymptotic) distribution of the estimation error. Hence, we need to transform
the model by re-projecting it on L2

F (Z). The instrumental regression is now characterized as the
solution of

E(E(Y |W )|Z) = Kϕ, K = E(E(·|W )|Z).

By substituting the LHS with a nonparametric estimator, we get a model like (2.1)

Ê(Ê(Y |W )|Z) = Kϕ + U.

The (approximated) distribution of U is gaussian with zero mean and covariance operator 1
nσ2K∗K,

where K∗ denotes the adjoint of K, see [29].

2.10 Appendix C: Monte Carlo Simulations

In all these simulations we take the regularized posterior mean as punctual estimator for the
solution of inverse problem (2.1).

Functional equation with a parabola as solution

We take X = L2
π and Y = L2

ρ, with π and ρ two measures taken to be uniform on [0, 1]. The data
generating process is

Ŷ =
∫ 1

0

x(s)(s ∧ t)ds + U, x∗ = −3s2 + 3s (2.24)

U ∼ GP(0,Σn), Σn = n−1

∫ 1

0

exp{−(s− t)2}ds

x ∼ GP(x0,Ω0), x0 = −2.8s2 + 2.8s

Ω0ϕ(t) = ω0

∫ 1

0

exp(−(s− t)2)ϕ(s)ds.

The covariance operators have eigenvalues of order O(e−j), the regularization parameter α has
been set to 2.e− 03, n = 1000 and the discretization step is 0.01.
We show in Figure 2.1a the true function x∗ (continuous line) and the regularized posterior mean
estimation (dotted line) for the prior given above with ω0 = 2. We propose, in Figure 2.1b a
comparison between our estimator and the estimator obtained by solving equation (2.1) with a
classical Tikhonov regularization method (small dotted line) (with α = 2.e− 04).
To analyze the role of the prior distribution we have performed the simulation for different priors,
see Figures 2.1c and 2.1d. It should be noted that the far the prior mean is from the true parameter
the bigger should be the prior covariance operator.
Finally, in Figure 2.1 results of a Monte Carlo experiment with 100 iterations are shown. Panels
(2.1e), (2.1g) and (2.1h) are Monte Carlo experiment conducted for the three different priors
distribution considered. The dotted line represents the mean of the regularized posterior means
obtained for each iteration. Panel (2.1f) shows the Monte Carlo mean of the regularized posterior
means for the first specification of the prior distribution (dotted line) and of the classical Tikhonov
solutions (small dotted line).
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(a) x0 = −2.8s2 + 2.8s,

Ω0ϕ(t) = 2
∫ 1
0 exp(−(s− t)2)ϕ(s)ds
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(c) x0 = −2s2 + 2s,

Ω0ϕ(t) = 40
∫ 1
0 ((s ∧ t)− st)ϕ(s)ds
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(d) x0 = −2.22s2 + 2.67s− 0.05,
Ω0 =

100
∫ 1
0 (0.9(s− t)2− 1.9|s− t|+1)ds
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(e) x0 = −2.8s2 + 2.8s,

Ω0ϕ(t) = 2
∫ 1
0 exp(−(s− t)2)ϕ(s)ds
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(g) x0 = −2s2 + 2s,

Ω0ϕ(t) = 40
∫ 1
0 ((s ∧ t)− st)ϕ(s)ds
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(h) x0 = −2.22s2 + 2.67s− 0.05,
Ω0 =

100
∫ 1
0 (0.9(s− t)2− 1.9|s− t|+1)ds

Figure 2.1: Figures (2.1a) - (2.1d) represents simulations with only one trial. Figures
(2.1e) - (2.1h) represent the Monte Carlo experiment.
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Density Estimation

This is a simulation of example 2.9 and the notation will be the same. The true density f∗ is the
density of a standard gaussian measure on R and the measures π and ρ, defining the L2 spaces, are
uniform measure on [−3, 3]. We use the sample ξ1, . . . , ξn to estimate F and the sampling variance
Σn. The operator K is known.
The prior mean is f0 = 1√

2πσ
exp{− 1

2σ2 (ξ−θ)2} and the prior variance is Ω0ϕ(t) = ω0

∫ 3

−3
exp(−(s−

t)2)ϕ(s) 1
6ds.

Parameters (σ, θ, ω0) have been differently set to see the effect of prior changes on the estimated
solution. The regularization parameter αn has been set equal to 0.05 and the sample size is of
n = 1000. Figures (2.2a)- (2.2d) shows the regularized posterior mean estimator for different
specification of the parameters. In panels (a) and (c) the true density (continuous line), the prior
mean (dotted line) and the regularized posterior mean estimator (dashed-dotted line) are drawn;
panels (b) and (d) show the comparison between our estimator and the classical Tikhonov solution
(dotted line).
Figures 2.2e and 2.2f represent a sample of curves dawn from the prior distribution together with
the prior mean (continuous line) and the true density (dotted line). Lastly, in Figures 2.2g and
2.2h, the results of a Monte Carlo experiment are shown. The dashed-dotted line is the mean of the
regularized posterior means obtained in each replication, the dashed line is the mean of Tikhonov
solutions for each Monte Carlo iteration and the solid line is thetrue density function.

Regression Estimation

This is a simulation of example 2.9; the notation is the same. We consider w ∈ R ∼ F =
N (2, 1) and a Gaussian white noise ε ∼ N (0, 2) independently drawn. Function g(w, t) has been
alternatively specified as an exponential function, g(w, t) = exp(−(w − t)2), or as an indicator
function, g(w, t) = 1{w ≤ t}, but we only report here the results for the second specification.
g(w, t) define an HS operator K : L2

F (w) → L2
π, with π ∼ N (2, 1).

The true regression function is m∗(w) = cos(w)sin(w) and the prior distribution is Gaussian:
m(w) ∼ GP(m0(w), Ω0ϕ(w)), with Ω0ϕ(w1) = ω0

∫
exp(−(w1−w2)2)ϕ(w2)f(w2)dw2, ∀ϕ ∈ L2

F (w)
and ω0 = 2 or ω0 = 10. We have considered three different prior mean specifications: m0(w) =
m∗(w), m0(w) = 0.067w − 0.2, or m0 = 0. After having drawn a sample of (ξ, w) we estimate
E(g(w, t)ξ) for any t by using the sample mean. The regularization parameter α is set equal to
0.05, the sample size is n = 1000 for a single estimation and n = 500 for Monte Carlo simulations.
In Monte Carlo Simulation we have done 50 replications.
Figure 2.3 shows the results. Panels (a), (c) and (e) shows the estimation for only one replication,
Panels (b), (d) and (f) shows the estimation for each Monte Carlo replication and the mean over
all the replications (dashed-dotted line).
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(g) σ = 1, θ = 0.5, ω0 = 10
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Figure 2.2: Panels (2.2a)- (2.2d): regularized posterior mean and Tikhonov estimators.
Panels (2.2e) - (2.2f): Drawn from the prior distribution. Panels: (2.2g) - (2.2h): Monte
Carlo simulation.
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(c) m0(w) = 0.067w − 0.2, Ω0ϕ(w1) =
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(d) m0(w) = 0.067w − 0.2, Ω0ϕ(w1) =
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(f) m0(w) = 0, Ω0ϕ(w1) =
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Figure 2.3: Panels (2.3a), (2.3c) and (2.3e): estimation for different prior means. Panels
(2.3b), (2.3d) and (2.3f): Monte Carlo Experiment with N = 100, α = 0.05, 50 iterations.



Chapter 3

On the Regularization Power of
the Prior Distribution in Linear
ill-Posed Inverse Problems1

joint with Jean-Pierre Florens.

Abstract

We consider models described by a functional equation in an Hilbert space of the type Ŷ = Kx+U .
We wish to recover the functional parameter of interest x after having observed Ŷ . This problem
is ill-posed because the operator K is assumed to be compact so that its inverse is not continuous
on the whole space of reference and the estimator of x is in general non consistent.
We specify a prior distribution on x of the g-prior type and we detect a class of models for which the
prior distribution on x is able to correct for the ill-posedness also in infinite dimensional problems.
The prior distribution depends on the regularization parameter and on the degree of penalization.
We prove that, under some conditions, the posterior distribution is consistent in the sampling sense.
In particular, the prior-to-posterior transformation can be interpreted as a Tikhonov regularization
in the Hilbert scale induced by the prior covariance operator.
Finally, the regularization parameter is treated as an hyperparameter and we propose how to
exploit its posterior distribution for optimally selecting it.

3.1 Introduction

Let consider the solution to the noisy functional equation

Ŷ = Kx + U, x ∈ X , Ŷ ∈ Y (3.1)

where X and Y are infinite dimensional separable Hilbert spaces over R supposed to
be Polish with inner product < ·, · > and norm || · ||. U is a measurement error.
K : X → Y is a known Hilbert-Schmidt (HS, hereafter), then compact, linear opera-
tor with infinite dimensional range. K∗ will denote the adjoint of K, i.e. K∗ is such that
< Kϕ, ψ >=< ϕ, K∗ψ >, ∀ ϕ ∈ X and ψ ∈ Y. Compactness of operator K and the
infinite dimension of the range of K make the inverse K−1 not continuous on the whole

1This chapter is adapted from: Florens, J.P., and A., Simoni (2008), On the Regularization Power of
the Prior Distribution in Linear ill-Posed Inverse Problem, mimeo.
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Y so that some regularization of this inverse is demanded.
This kind of model is classical in the inverse problem literature and it is encountered
in many real applications. Classical techniques of regularization consist in Spectral cut-
off regularization, Tikhonov regularization, or Landweber-Fridman regularization, among
other, see Kress (1999) [50]. On the other side, Bayesian methodologies propose the pos-
terior distribution of x as solution for 3.1. This posterior distribution is in general non
well-defined, in the sense that it is not consistent in a frequentist sense. In the previous
Chapter we have proposed to regularize this distribution and we have defined a new object
called Regularized Posterior distribution that plays the role of the posterior distribution.
Lehtinen et al. (1989) [53] and Mandelbaum (1984) [60] propose to regularize through a
restriction of the space of definition of Ŷ .
In this chapter we consider a class of models where the regularization is automatically per-
formed by the prior-to-posterior transformation, so that the posterior distribution that we
obtain is well-defined and no ad-hoc regularization need to be introduced. In particular,
the prior distribution depends on the regularization parameter and the degree of penal-
ization, chosen for measuring the variability of the solution (as, for instance, the higher
order of derivatives in a Sobolev penalization).
We assume that U induces a gaussian process (GP in the following) on Y. Consequently,
the sampling distribution of Ŷ is gaussian:

Ŷ |x ∼ GP(Kx, δΣ) (3.2)

with δ = δ(n) a function of the sample size n such that δ → 0 as n →∞. The covariance
operator Σ : Y → Y is assumed to be a fixed and given operator. It follows that it is
linear, bounded, nonnegative, self-adjoint, compact and trace-class. Let R(·) denote the
range of an operator and D(·) its domain. We make the following assumption:

Assumption 9

(a) R(K) ⊂ D(Σ−
1
2 );

(b) there exists an unbounded densely defined operator L that is self-adjoint and positive
such that ||L−ax|| ∼ ||Σ− 1

2 Kx||.

Part (a) of Assumption 9 ensures that operator Σ−
1
2 K is well-defined and it is equivalent

to say that we are demanding a compatibility between the sampling covariance operator
Σ and the operator K in the sampling mechanism. This is very common in practical
examples, like estimation of a density, a regression or an instrumental variable regression,
where the covariance operator is of the form Σ = (KK∗)r, for some r ≥ 1. We develop
this particular case in Section 3.3.
For all s ∈ R, operator L in Assumption 9 (b) induces the Hilbert scale (Xs)s∈R, where
Xs is an Hilbert space defined as the completion of

⋂
s∈RD(Ls) with respect to the norm

||x||s := ||Lsx||. Parameter a is the degree of ill-posedness in the bayesian experiment. It
is usually different than the degree of ill-posedness in the classical problem Ŷ = Kx.
We assume that the functional parameter of interest x is characterized by the following
gaussian distribution:

x|g, s ∼ GP
(
x0,

1
g
L−2s

)
, (3.3)

with g = g(n) a function of n such that g →∞ with n. The two conditioning parameters g
and s are for the moment treated as fixed. In Section 3.4 we partially relax this assumption
and treat g as an hyperparameter. The operator L−2s plays the role of the prior covariance
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operator, then, following notation in Chapter 2, Ω0 = L−2s, where Ω0 : X → X is a linear
operator that is bounded, nonnegative, self-adjoint, compact and trace-class. This choice
of the prior covariance is aimed to link the prior distribution with the operator K and the
sampling model. Such a link is evident from Assumption 9 (b) and it is a natural idea
in linear regression models, see for instance Zellner’s g-prior (1986) [81]. Our prior is an
extension of the Zellner’g-prior.
The predictive distribution, obtained by integrating out x, is Ŷ |g, s ∼ GP(Kx0, (δΣ +
1
gKΩ0K

∗)).
From a frequentist point of view, there exists a true value of the parameter of interest x
having generated the data Ŷ . We denote this value with x∗ and it will be used in the
asymptotic analysis since we care for the weak convergence of the posterior distribution
of x towards a point mass in x∗ as n → ∞. This type of convergence has been widely
discussed in Section 3.2 of Chapter 2; it is a convergence with respect to the sampling
probability and it is known as posterior consistency. We introduce a regularity assumption
about the centered true value of the parameter of interest.

Assumption 10 For some β ≥ s, we assume that (x∗ − x0) ∈ Xβ, i.e. there exists a

ρ∗ ∈ X such that (x∗ − x0) = L−βρ∗ (≡ Ω
β
2s
0 ρ∗).

Because β ≥ s, it follows that R(Ω
β
2s
0 ) ⊂ R(Ω

1
2
0 ) and Assumption 10 implies that there

exists a δ∗ such that (x∗ − x0) = Ω
1
2
0 δ∗ and δ∗ = Ω

β−s
2s

0 ρ∗. Moreover, after Proposition

3.6 in Carrasco et al. (2007), we can write R(Ω
1
2
0 ) = H(Ω0), where H(Ω0) denotes the

Reproducing Kernel Hilbert Space associated to Ω0 and embedded in X , i.e.

H(Ω0) =
{

ϕ : ϕ ∈ X and ||ϕ||Ω0 :=
∞∑

j=1

| < ϕ, ϕΩ0
j > |2

λΩ0
j

< ∞
}

.

Hence, Assumption 10 implies that (x∗ − x0) ∈ H(Ω0).

Hereafter we use the notation: α = δg, B = Σ−
1
2 KΩ

1
2
0 , T = Σ−

1
2 K. Operator T is well

defined under Assumption 9 (a). A further assumption needs to be introduced in order
that the operator B be well-defined.

Assumption 11

(a) R(KΩ
1
2
0 ) ⊂ D(Σ−1);

(b) a, β and s are three real parameters satisfying the inequalities 0 < a ≤ s ≤ β ≤ 2s+a;

(c) there exists a γ ∈]0, 1] such that the operator (B∗B)γ is trace class, i.e. if {λ2
j}

denotes the eigenvalues of B∗B, then
∑

j λ2γ
j < ∞ must be verified.

Under Assumption 11 (a), R(KΩ
1
2
0 ) ⊂ D(Σ−1) and, since D(Σ−1) ⊂ D(Σ−

1
2 ), operator B

is well-defined.
The last assumption will be exploited for computing the speed of convergence of the
posterior distribution. When γ = 1, Assumption 11 (c) is the classical Hilbert-Schmidt

assumption of operator Σ−
1
2 KΩ

1
2
0 . For γ < 1 this assumption is more demanding. The

parameter α := δg will be used as the index for the family of posterior distributions, it
plays the role of a regularization parameter and it is linked to the error δ in the observa-
tions. It must satisfy the two classical properties required for a regularization parameter:
α → 0 and α2n → ∞ as n → ∞. If δ ∝ 1

n , this implies that g
n ∼ op(1) and g√

n
→ ∞, or
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equivalently
√

n
g ∼ op(1), i.e. g must increase faster than

√
n but slower than n.

The solution of (3.1) is the posterior distribution of x, denoted with µY . µY is a
conditional probability on X that exists and is gaussian, see Section 2.3 of the previous
Chapter. It has mean function A(Ŷ − Kx0) + x0 and covariance operator Ω0 − AKΩ0,
where A : Y → X is an operator such that its adjoint is defined as the solution of the
functional equation:

(
δΣ +

1
g
KΩ0K

∗
)
A∗ϕ =

1
g
KΩ0ϕ, ∀ϕ ∈ X . (3.4)

Hence,

(αΣ + KΩ0K
∗)A∗ = KΩ0

⇔ Σ
1
2 (αI + Σ−

1
2 KΩ0K

∗Σ−
1
2 )Σ

1
2 A∗ = KΩ0

⇔ (αI + BB∗)Σ
1
2 A∗ = BΩ

1
2
0

⇔ Σ
1
2 A∗ = (αI + BB∗)−1BΩ

1
2
0

⇔ Σ
1
2 A∗ = B(αI + B∗B)−1Ω

1
2
0

⇔ A∗ = Σ−
1
2 B(αI + B∗B)−1Ω

1
2
0 .

that is well-defined under Assumption 11 (i) since R(KΩ
1
2
0 ) ⊂ D(Σ−1). Such assumption

concerns the degree of regularity (i.e. the differentiability) of the prior covariance operator
with respect to the sampling covariance operator. Then,

A = Ω
1
2
0 (αI + B∗B)−1(Σ−

1
2 B)∗ (3.5)

that is continuous and defined everywhere. In general, it is not sure that the inverse of
operator B∗B exists, since if it is compact its eigenvalues are countable and they accu-
mulate only at zero, then (B∗B)−1 explodes. However, this possible problem is solved by
the presence of operator αI that translates the eigenvalues sufficiently far from zero, or
equivalently extends the range of B∗B to the whole space Y. In other words, when As-
sumption 11 holds, the prior-to-posterior transformation is equivalent to apply a Tikhonov
regularization scheme to the inverse of B∗B, i.e. to regularize the solution of the equation
Bϕ = r, with ϕ ∈ Y and r ∈ X .

Two comments are noteworthy to be pointed out.
1) The construction of the posterior mean can be interpreted as a regularization in the
Hilbert scale induced by Ls. Take for simplicity x0 = 0, then

E(x|Ŷ , g, s) = AŶ

= L−s(αI + L−sK∗Σ−1KL−s)−1L−sK∗Σ−
1
2 Σ−

1
2 Ŷ

= (αL2s + T ∗T )−1T ∗Σ−
1
2 Ŷ

that results to be the regularization, in the prior variance Hilbert Scale, of the solution of
the model

Σ−
1
2 Ŷ = Tx + Σ−

1
2 U.
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This model is the transformation of (3.1) through operator Σ−
1
2 . We remark that there is

no reason why the quantities Σ−
1
2 Ŷ and Σ−

1
2 U exist, so that this model is per se incorrect,

but it is useful in order to interpret the prior-to-posterior transformation as an Hilbert
Scale regularization.

2) In the specification of the prior distribution we may wish to stay as general as
possible by choosing a prior variance of the form Ω0 = 1

gQL−2sQ∗, for some bounded
operator Q not necessarily compact. Then, the previous case is a particular case of this
one for Q = I. Operator A takes the form

A = QL−s(αI + B∗B)−1(Σ−
1
2 B)∗,

for B = Σ−
1
2 KQL−s. Hence, Ls is the Hilbert Scale for Σ−

1
2 KQ and Assumption 9 (a)

is replaced by R(KQ) ⊂ D(Σ−
1
2 ) that is weaker. Moreover, operator B is well-defined if

R(KQL−s) ⊂ D(Σ−1) that is also less demanding than Assumption 11 (a).
In order to obtain the same order of convergence of the posterior distribution we also
have to replace Assumption 10 with the assumption that there exists an element δ̃∗ ∈
R(L−(β−s)) such that (x∗ − x0) = QL−sδ̃∗.

3.2 Asymptotic Analysis

The posterior distribution µY , previously defined, can reveal to be useful also for classical
statisticians if, as more and more observations are accumulated, it degenerates towards a
Dirac measure in x∗. This is the concept of posterior consistency. In other words, if the
posterior distribution is consistent with respect to the sampling distribution, then it can
be used as an estimator not only by bayesian statisticians but also by classical statisticians.
In this section we study convergence in X -norm with respect to the sample distribution
as n → ∞. This reduces to study consistency of the posterior mean and convergence to
zero of the posterior variance.
In order to prove posterior consistency we make use of Corollary 8.22 in Engl et al. (2000)
[19]. We give a simplified version of it:

Corollary 1 Let Xs, s ∈ R be a Hilbert scale induced by L and let Σ−
1
2 K : X → Y be a

bounded operator satisfying ||L−ax|| ∼ ||Σ− 1
2 Kx||, ∀x ∈ X and for some a > 0. Then, for

B = Σ−
1
2 KL−s, s ≥ 0 and |ν| ≤ 1

||(B∗B)
ν
2 x|| ∼ ||L−ν(a+s)x||

and R((B∗B)
ν
2 ) = Xν(a+s) ≡ D(Lν(a+s)).

We refer to [19] for the proof of it.

Let start by analyzing the posterior bias E(x|Ŷ )− x∗ that we re-write as

E(x|Ŷ )− x∗ =

C︷ ︸︸ ︷
−(I −AK)(x∗ − x0)+

D︷︸︸︷
AU ,

with A is as defined in (3.5). Let v ∈ X be such that (x∗ − x0) = L−βv, then
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||C||2 = ||[I − Ω
1
2
0 (αI + B∗B)−1(Σ−

1
2 B)∗K]L−βv||2

= ||Ω
1
2
0 [I − (αI + B∗B)−1(Σ−

1
2 B)∗KΩ

1
2
0 ]Ls−βv||2

= ||(B∗B)
s

2(a+s) [I − (αI + B∗B)−1B∗B](B∗B)
β−s

2(a+s) ṽ||2

= ||α(αI + B∗B)−1B∗B](B∗B)
β

2(a+s) ṽ||2

∼ Op(α
β

a+s ).

The third equality is obtained by applying Corollary 1 and ṽ is an element of X such that

Ls−βv = (B∗B)
β−s

2(a+s) ṽ.
Let consider now term D:

||D||2 = ||AU ||2
≤ tr(AV ar(U)A∗).

The last inequality is obtained by applying Markov inequality: P{U ∈ Y; ||AU ||2 ≥ ε} ≤
1
εE(||AU ||2) and E(||AU ||2) = V ar(AU) since U has zero mean. Application of Corollary

1 implies that R(Ω
1
2
0 ) ≡ D(Ls) is equal to R(B∗B)

s
2(a+s) so that A = (B∗B)

s
2(a+s) (αI +

B∗B)−1(Σ−
1
2 B)∗ and then

tr(AV ar(U)A∗) = tr((B∗B)
s

2(a+s) (αI + B∗B)−1(Σ−
1
2 B)∗δΣΣ−

1
2 B(αI + B∗B)−1(B∗B)

s
2(a+s) )

= δtr((B∗B)
s

2(a+s) (αI + B∗B)−1B∗B(αI + B∗B)−1(B∗B)
s

2(a+s) )

after simplification. By denoting with {λ2
j} the sequence of eigenvalues associated to BB∗,

or equivalently to B∗B, we have

tr(AV ar(U)A∗) ≤ δ
∑

j

λ
2s

a+s
+2

j

(α + λ2
j )2

= δ
∑

j

λ
2s

a+s
+2−2γ

j

(α + λ2
j )2

λ2γ
j

≤ δ sup
j

λ
2s

a+s
+2−2γ

j

(α + λ2
j )2

∑

j

λ2γ
j

∼ Op

(
δα−

γ(a+s)+a
a+s

)
,

where we have exploited Assumption 11 (c).
In choosing α we find the usual trade-off: while ||C||2 is increasing in α, ||D||2 is decreasing
in α. The optimal α, denoted with α∗, is the value for which ||C||2 and ||D||2 are of the
same order:

α
β

a+s ∼ δα−
γ(a+s)+a

a+s

⇔ α∗ = c1δ
a+s

β+a+γ(a+s)
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with c1 some constant. The fastest speed of convergence of the posterior mean, obtained

by substituting the optimal α∗, is of order δ
β

β+a+γ(a+s) that is decreasing in sγ. We have
therefore proved the following theorem.

Theorem 10 Let consider the probability specification in (3.2) and (3.3). Under Assump-
tions 9, 10 and 11 the posterior mean of x is consistent in the sense that ||E(x|Ŷ , g, s)−x∗||2
converges to zero with respect to the sampling probability. It is of order

||E(x|Ŷ , g, s)− x∗||2 ∼ Op

(
α

β
a+s + δα−

γ(a+s)+a
a+s

)
.

Moreover, if α = c1δ
a+s

β+a+γ(a+s) , for some constant c1,

δ
− β

β+a+γ(a+s) ||E(x|Ŷ )− x∗||2 ∼ Op(1).

When g is not treated as an hyperparameter 2, it has to be chosen so that g → ∞
holds. This in turn guarantees that the prior distribution degenerates to a point mass in
correspondence of the prior mean, but in order this makes sense, it must degenerate at
the good rate that, as we have already stressed, must be faster than

√
n and slower than

n.
Once the optimal α has been determined, the corresponding optimal g can be obtained
through the relationship α = δg:

g∗ ∝ α∗δ−1

= c2δ
− β−s+γ(a+s)

β+a(1+γ)+sγ ,

with c2 some constant. The requirement that g must goes to infinity slower than n is
satisfied if −a < s, that is always true under Assumption 11 (b). In addition, in order to
have that g converges to +∞ faster than

√
n one demands that β > (2s + a)− γ(a + s),

that makes sense under Assumption 11 (b) since 2s + a > β > (2s + a)− γ(a + s).
The asymptotic behavior of the posterior variance is similar to that one of term C previ-
ously considered:

V ar(x|Ŷ , g, s)φ = [Ω0 − Ω
1
2
0 (αI + B∗B)−1(Σ−

1
2 B)∗KΩ0]φ,

for any φ ∈ X . If φ ∈ X is such that Ω
1
2
0 φ ∈ R(Ω

β−s
2s

0 ), then

||V ar(x|Ŷ , g, s)φ||2 = ||Ω
1
2
0 [Ω

1
2
0 − (αI + B∗B)−1(Σ−

1
2 B)∗KΩ0]φ||2

= ||(B∗B)
s

2(a+s) [I − (αI + B∗B)−1B∗Σ−
1
2 KΩ

1
2
0 ]Ω

1
2
0 φ||2

= ||(B∗B)
s

2(a+s) [I − (αI + B∗B)−1B∗B](B∗B)
β−s

2(a+s) υ||2

∼ Op

(
α

β
a+s

)

where υ ∈ X is such that Ω
1
2
0 φ = (B∗B)

β−s
2(a+s) υ. We summarize this result in the following

theorem.
2We shall consider g as an hyperparmater in Section 3.4.
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Theorem 11 Let consider the probability specification in (3.2) and (3.3). Under As-
sumptions 9 and 11 the posterior variance of x converges to zero in X -norm with respect
to the sampling probability: ||V ar(x|Ŷ , g, s)φ|| → 0, ∀φ ∈ X . If φ ∈ X is such that

Ω
1
2
0 φ ∈ R(Ω

β−s
2s

0 ), it is of order

||V ar(x|Ŷ , g, s)φ||2 ∼ Op(α
β

a+s ).

When the optimal α is used, the posterior variance converges at the optimal speed of

Op(δ
β

β+a+γ(a+s) ).

3.3 A particular case

We consider in this section the particular case where L is chosen to be the canonical
Hilbert scale L = (K∗K)−

1
2 , i.e. L is chosen in according to the sampling model, and

where, for some r, s ∈ R+

δ =
σ2

n
, Σ = (KK∗)r, Ω0 = (K∗K)s.

Then,

Ŷ |x ∼ GP
(
Kx,

σ2

n
(KK∗)r

)

x|g, s ∼ GP
(
x0,

σ2

g
(K∗K)s

)

Ŷ |g, s ∼ GP(Kx0, σ
2
( 1

n
(KK∗)r +

1
g
K(K∗K)sK∗

)
). (3.6)

The prior distribution is in the extended Zellner’s g-prior form, but when s = 1 we exactly
have the Zellner’s g-prior.
In this case, Assumption 9 (a) and (b) holds for r ≤ 1 and a = 1 − r, respectively.
Assumption 11 (a) holds for s ≥ 1, while Assumption 11 (c) is trivially verified for
γ = 1

s+1−r since in this case the eigenvalues of (B∗B)γ are equal to the square of the
eigenvalues of K.
Hence, we replace Assumptions 9 and 11 by

Assumption 12

(a) a, b and s are three real parameters satisfying the inequalities 0 < a ≤ s ≤ β ≤ 2s+a;

(b) r ≤ 1 and s ≥ 1;

(c) a = 1− r so that ||(K∗K)
a
2 x|| = ||(KK∗)−

r
2 Kx||;

(d) there exists a γ ∈]0, 1] such that the operator (B∗B)γ is trace class, i.e. if {λ2
j}

denotes the eigenvalues of B∗B, then
∑

j λ2γ
j < ∞.

Assumption 10 remains valid.
The expressions obtained for the general case simplify, so that

A = (K∗K)
s
2 (αI + (K∗K)

s
2 K∗(KK∗)−rK(K∗K)

s
2 )−1((K∗K)−rK(K∗K)

s
2 )∗,
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with α = g
n . We use the same decomposition of the posterior bias in the sum C + D as in

the previous section. Hence,

||C||2 = ||[I − (K∗K)
s
2 (αI + (K∗K)

s
2 K∗(KK∗)−rK(K∗K)

s
2 )−1(K∗K)

s
2 K∗(KK∗)−rK](x∗ − x0)||2

= ||[I − (K∗K)sK∗(α(KK∗)r + K(K∗K)sK∗)−1K](K∗K)
β
2 v||2

where the second equality has been obtained after permutation of the operator (KK∗)−
r
2 K(K∗K)

s
2

with its adjoint and under Assumption 10. Let {ρ2
j} be the sequence of eigenvalues asso-

ciated to operator K∗K (or equivalently to KK∗). The order of the squared norm ||C||2
is equal to the square of the maximum eigenvalues of C:

||C||2 ∼
(
supj

[
ρβ

j −
ρ
2(s+1)+β
j

αρ2r
j + ρ

2(s+1)
j

])2

∼
(
supj

[
ρβ

j −
ρ
2(s+1−r)+β
j

α + ρ
2(s+1−r)
j

])2

∼
(
supj

[ αρβ
j

α + ρ
2(s+1−r)
j

])2

∼ Op(α
β

s+1−r )

that converges to zero if r < s + 1. Note in particular that, for the case considered here,
B = (KK∗)−

r
2 K(K∗K)

s
2 and it is well defined if supj ρs+1−r

j < ∞, that is guaranteed if
s + 1 > r since ρj accumulates at zero. This condition is satisfied under Assumption 12
(b).
Markov inequality is still used to analyze term D, so that we obtain:

||D||2 ≤ tr(V ar(D))

=
σ2

n
tr(A(KK∗)rA∗)

=
σ2

n

∑

j

ρ
2(2s+1−r)
j

(α + ρ2(s+1−r))2

=
σ2

n

∑

j

ρ
2(s+1−r)(1−γ)+2s
j

(α + ρ
2(s+1−r)
j )2

ρ
2(s+1−r)γ
j

≤ σ2

n
sup

j

ρ
2(s+1−r)(1−γ)+2s
j

(α + ρ
2(s+1−r)
j )2

∑

j

ρ
2(s+1−r)γ
j

∼ Op

( 1
n

α
−γ(1−r+s)−1+r

1−r+s

)
.

By equating the speed of convergence of ||C||2 and ||D||2 we get the optimal α:

α∗ = c3

( 1
n

) s+1−r
β+1−r+γ(1−r+s)

c3

( 1
n

) s+a
β+a+γ(a+s)

,



52

for some constant c3, that is the same rate obtained for the general case if δ = 1
n and

under Assumption 12 (c). The fastest speed of convergence of the squared norm of the

posterior mean is of order
(

1
n

) β
β+a+1 , where we have used the value for a and γ.

From the optimal α we can find the optimal value of the associated g by using the
relation α ∝ g

n :

g∗ = c4

( 1
n

)− β+γ(a+s)−s
β+a+γ(a+s)

,

for some constant c4, and it goes to ∞ if β > s − γ(a + s) that is a condition than that
one required for the general case.
The posterior variance has norm

||V ar(x|Ŷ , g, s)φ||2 = ||(K∗K)
s
2 [I − (αI + B∗B)−1(K∗K)

s
2 K∗(KK∗)−rK(K∗K)

s
2 ](K∗K)

s
2 φ||2

= ||(K∗K)
s
2 [I − (αI + B∗B)−1(K∗K)

s
2 K∗(KK∗)−rK(K∗K)

s
2 ](K∗K)

β−s
2 v||2

∼ Op

(
α

β
s+1−r

)

for any φ ∈ X such that there exists a v ∈ X for which (K∗K)
s
2 φ = (K∗K)

β−s
2 v.

Thus, we have proved the following Corollary to Theorems 14 and 11,

Corollary 2 Under the distributional assumptions given in (3.6), under Assumptions 10
and 12 and if γ = 1

s+1−r , then ||E(x|Ŷ , g, s) − x∗||2 and ||V ar(x|Ŷ , g, s)φ||2 converge to
zero with respect to the sampling probability. Moreover,

||E(x|Ŷ , g, s)− x∗||2 ∼ Op

(
α

β
s+a +

1
n

α−
γ(a+s)+a

s+a

)

and ∀φ such that (K∗K)
s
2 φ ∈ R((K∗K)

β−s
2 )

||V ar(x|Ŷ , g, s)φ||2 ∼ Op(α
β

s+a ).

Furthermore, if α = c3

(
1
n

) s+a
β+a+1 , for some constant c3,

n
β

β+1+a ||E(x|Ŷ , g, s)− x∗||2 ∼ Op(1)

n
β

β+1+a ||V ar(x|Ŷ , g, s)φ||2 ∼ Op(1).

The definition of α as a regularization parameter demands that it satisfies the two condi-
tions: α → 0 and α2n →∞. Then, since α = g

n , the optimal g must go to ∞ faster than√
n and slower than n. This is verified under the same conditions as in the general case:

β > (2s + a− γ(a + s)) and −a < s.

3.4 g as an hyperparameter

In the preceding sections we have treated the parameter g in the prior distribution as a
fixed parameter that has to be chosen in order to get the good rate of contraction of the
prior distribution. Now, we want to consider g as an hyperparameter and express our
degree of ignorance of the prior through a prior distribution on g.
The distributional scheme is the following:
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g ∼ ν

x|g ∼ µg

Ŷ |x, g ∼ P x.

The indices g and x mean that the prior and the sampling distributions are conditioned
on g and x, respectively. Hence, implicitly we are saying that, conditionally on x, Ŷ is
independent on g, in symbols Ŷ ‖ g |x. The specification of P x and µg remains as in (3.2)
and (3.3), respectively, i.e. P x ∼ GP(Kx, δΣ) and µg ∼ GP(x0,

1
gL−2s).

We use the joint conditional distribution of (Ŷ , x), conditioned on g, to integrate out x
from the sampling distribution. The resulting predictive distribution P g is conditional on
g. The model that we use to recover a posterior estimator for g is

g ∼ ν

Ŷ |g ∼ P g,

with P g ∼ GP(Kx0, δΣ + 1
gKΩ0K

∗). A result of Kuo (1975) [51] shows that it is possible
to define a density for P g with respect to another measure different than the Lebesgue
measure. We restate this result applied to our case in the following Theorem.

Theorem 12 Let P g be a gaussian measure on Y with mean Kx0 and covariance oper-
ator S2 = (δΣ + 1

gKΩ0K
∗) and P∞ another gaussian measure on the same space with

same mean and covariance operator S1 = δΣ. If there exists a positive definite, bounded,

invertible operator T such that S2 = S
1
2
1 TS

1
2
1 and T − I is Hilbert-Schmidt, then P g is

equivalent to P 0. Moreover, the Radon-Nikodym derivative is given by

dP g

dP∞ =
∞∏

j=1

√
α

λ2
j + α

e

λ2
j

2(λ2
j
+α)

z2
j
, (3.7)

with
λ2

j

α the eigenvalues of T−I, z2
j = <Ŷ−Kx0,ϕj>2

δl2j
and {l2j , ϕj} the eigensystem associated

to Σ.

It is possible to notice that

(
δΣ +

1
g
KΩ0K

∗
)

=
√

δΣ
1
2

[
I +

1
g
√

δ
Σ−

1
2 KΩ0K

∗Σ−
1
2

1√
δ

]
Σ

1
2

√
δ,

so that T = [I + 1
g
√

δ
Σ−

1
2 KΩ0K

∗Σ−
1
2

1√
δ
]. All the properties of T in the Theorem are

trivially satisfied. Assumption 11 (c) guarantees that T − I is Hilbert Schmidt, since it
guarantees that

∑
j λ2

j < ∞ that implies that
∑

j λ4
j < ∞, where {λ2

j} are the eigenvalues

of Σ−
1
2
KΩ0K∗Σ−

1
2 .

The density in (3.7) has been expressed as function of α instead of g. This is aimed
to directly select the regularization parameter α = δg. We put a non-informative prior
distribution on α (or equivalently on g) and we select the regularization parameter that
maximizes the posterior distribution of α. Clearly, the posterior distribution of α is pro-
portional to the density in (3.7) so that it is enough to maximize it with respect to α. The
nice results that we get is that the value of α maximizing the posterior distribution is of
the same order as the optimal one.
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Lemma 5 Under Assumptions 9, 10 and 11

∂ log(dP g/dP∞)
∂α

∼ Op(α
a+β
a+s + δα−γ).

The Maximum a Posteriori (MAP) estimator for α is of order αMAP ∝ δ
a+s

a+β+γ(a+s) .

3.5 Conclusion

In this Chapter we have introduced a new class of prior distributions called extended
g-priors in honour of Zellner’s g-prior. These prior distributions are gaussian measures
with a covariance operator that is linked to the sampling mechanism. The difference with
respect to the classical g-priors is that the covariance operator does not need to be an
exact transformation of operator K, but we admit for a more general relationship between
the prior covariance operator and K. Furthermore, we require that, as the sample size
increases, the prior distribution degenerates towards the prior mean at a rate faster than√

n and slower than n.
We analyze the classical signal-noise problem stated in infinite dimensional Hilbert spaces.
We prove that when the prior distribution belongs to the class of extended g-prior, and
under a certain compatibility between operators K and Σ in the sampling model, the
posterior distribution of the signal is consistent. Thus, it can be used as a well-defined
estimator of the solution of the signal-noise problem.
The assumptions that are necessary for having consistency of the posterior distribution, are
satisfied by several statistical and econometric estimation problems. In these example the
sampling covariance operator assumes a particular structure that simplifies computations
and the proof of consistency. We have explicitly treated this particular case in Section 3.3.
We show that the prior-to-posterior transformation acts as a regularization scheme and
it can be interpreted either as a Tikhonov regularization or as a prior variance Hilbert
scale regularization but that is directly introduced by the prior distribution. Therefore,
the regularization parameter is part of the prior distribution of the signal x. Finally, we
consider the regularization parameter as an hyperparameter and we propose a completely
Bayesian method for optimally selecting the regularization parameter.

3.6 Appendix A: proofs

Proof of Lemma 5

We first consider the density dP g

dP∞ in (3.7) with the product truncated at J < ∞. Its logarithm is
proportional to

J∑

j=1

log
α

α + λ2
j

+
J∑

j=1

(< K(x∗ − x0), ϕj >2 + < U,ϕj >2 + < K(x∗ − x0), ϕj >< U,ϕj > λ2
j )

δl2j (α + λ2
j )

after having replaced Ŷ with its expression. Then, we equate to zero the derivative with respect
to α and we multiply by δα:
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IJ︷ ︸︸ ︷
δ

α

J∑

j=1

αλ2
j

α + λ2
j

=

IIJ︷ ︸︸ ︷

α

J∑

j=1

< K(x∗ − x0), ϕj >2 λ2
j

l2j (α + λ2
j )2

+

IIIJ︷ ︸︸ ︷

α

J∑

j=1

< U,ϕj >2 λ2
j

l2j (α + λ2
j )2

+

IVJ︷ ︸︸ ︷

α

J∑

j=1

< K(x∗ − x0), ϕj >< U,ϕj > λ2
j

l2j (α + λ2
j )2

.

We take the limit for J →∞ of each term:

lim
J

IJ =
δ

α
lim
J

J∑

j=1

αλ
2(1−γ)
j

α + λ2
j

λ2γ
j

≤ δ

α

(
sup

j

αλ
2(1−γ)
j

α + λ2
j

)
lim
J

J∑

j=1

λ2γ
j

∼ Op

( δ

αγ
lim
J

J∑

j=1

λ2γ
j

)

and the limit of the sum is finite under Assumption 11 (c). To analyze term IIj , note that
Assumption 9 (b) implies that Σ−

1
2 and KΩ0K

∗ have the same eigenfunctions. Then there exists
{bj} such that KΩ0K

∗ϕj = bjϕj . Moreover, {ϕj} are also the eigenvalues of BB∗ since BB∗ϕj =
Σ−

1
2 KΩ0K

∗Σ−
1
2 ϕj = (bj/l2j )ϕj . Hence,

lim
j

IIJ = α lim
J

J∑

j=1

< KΩ
1
2
0 δ∗, Σ−

1
2 ϕj >2 λ2

j

(α + λ2
j )2

= α lim
J

J∑

j=1

< Ω
β−s
2s

0 ρ∗, ψj >2 λ4
j

(α + λ2
j )2

= α lim
J

J∑

j=1

< (B∗B)
β−s

2(a+s) v, ψj >2 λ4
j

(α + λ2
j )2

= α lim
J

J∑

j=1

< v, ψj >2 λ
2(2+ β−s

(a+s) )

j

(α + λ2
j )2

≤ α
(

sup
j

λ
2(2+ β−s

(a+s) )

j

(α + λ2
j )2

)
lim
J

J∑

j=1

< v, ψj >2

∼ Op

(
α

1+β
a+s ||v||2

)
.

By using Markov inequality it is possible to show that term IIIJ is negligible with respect to term
IJ and that term IVJ is equal to zero in probability.
Then, the αMAP is such that α

a+β
a+s = δ

αγ and the result follows.

3.7 Appendix B: Numerical Implementation

We take X = L2
π and Y = L2

π, with π the uniform distribution on [0, 1]. Let K =
∫ 1

0
(s∧ t)ds, then

K is self-adjoint: K = K∗. The data generating process is
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Ŷ =
∫ 1

0

x(s)(s ∧ t)ds + U, x∗ = −3s2 + 3s (3.8)

U ∼ GP(0,
1
n

KK),

x ∼ GP(x0,
1

αn
Ω0), x0 = −2.8s2 + 2.8s

Ω0ϕ(t) = (KK)s, s = 1, αn = g.

We first compute estimation of x∗ by fixing α to 0.3. In a second step we estimate α by using
the technique suggested in Section 3.4. In order to compute it we need to write down the density
dP g

dP∞ with the product in it truncated at a certain J < ∞. We make use of the eigensystem
{λ2

j , ϕj} associated to K. This eigensystem is well known to be λj = 4
π2j2 , ϕj(t) =

√
2 sin(πjt

2 ),
j = 1, 3, 5, . . ..
In Figures 3.1a and 3.1c we represent the likelihood dP g

dP∞ drawn against different values for α. We
select the value of α that maximizes this curve and that is shown with an arrow in the figure.
Then, we recompute the posterior distribution by taking this value of α. In Figure 3.1b and 3.1d,
we show the true curve in black continuous line and the prior mean in dashed line. Then, in each
graph, we represent the posterior means obtained for an arbitrarily selected value of α and for the
value of α selected with the previous method.
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Chapter 4

Nonparametric Estimation of an
Instrumental Regression: a
Bayesian Approach Based on
Regularized Posterior1

joint with Jean-Pierre Florens.

Abstract

In this paper we deal with Bayesian inference about an instrumental regression function ϕ that
is defined through a moment condition involving the random vector S = (Y, Z,W ). S is jointly
distributed according to F ; the variables in the subvector (Y,Z) are endogenous while W is a
subvector of instruments. Moment restrictions of this kind are very often encountered in structural
econometric models and we exploit them to construct a conditional probability measure on the
sample space given the parameter ϕ. The instrumental regression is not constrained to belong to
a finite dimensional space, but we only impose some regularity condition and inference is directly
performed in the infinite dimensional space L2.
The solution of this inference problem is the posterior distribution of the unknown random function
ϕ. Since this distribution is inconsistent in the sampling sense, we adopt a regularized version of
the posterior distribution that we compute through a Tikhonov regularization scheme and that we
show to satisfy posterior consistency.
We consider three different degrees of knowledge of the joint distribution F (·, Z,W ): completely
known, known up to a finite dimensional parameter and completely unknown. In the last two
cases estimation is performed in two steps: in the first step we get either a bayesian parametric
estimator or a classical nonparametric estimator of F (·, Z,W ) and in the second step we compute
the regularized bayesian estimator of ϕ. We develop asymptotic analysis in a frequentist sense and
posterior consistency is proved in all the three cases.

1This chapter is adapted from: Florens, J.P., and A., Simoni (2008), Nonparametric Estimation of
Instrumental Regression: a Bayesian Approach Based on Regularized Posterior, mimeo.
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4.1 Introduction

Instrumental regression estimation plays a central role in econometric theory. Economic
analysis provides econometricians with theoretical models, describing a certain phenomenon,
that specify relations between economic variables: a response variable, denoted with Y ,
and a vector of explanatory variables, denoted with Z. The variables in Z can be endoge-
nous or exogenous and the relation is of the form Y = ϕ(Z)+U , where ϕ(·) expresses the
link we are interested in and, in the most easy case, with Z exogenous, ϕ(Z) = E(Y |Z).
Unfortunately, in several economic models the explanatory variables are endogenous and
so the parameter of interest ϕ(Z) is not the conditional expectation function. In this latter
case, the structural econometric model we have to deal with can be written in very general
terms as

Y = ϕ(Z) + U, E(U |Z) 6= 0.

The hypothesis about the error term plays a crucial role and, if we neglect it and perform a
classical estimation by considering Z as exogenous, we get an estimation of the conditional
expectation function E(Y |Z) that is not the structural parameter of interest.
This specification of the model is not enough to estimate the structural parameter of in-
terest ϕ and some assumption must be added in order to have a further characterization
of ϕ. A first strategy proposed in literature consists in adding hypothesis regarding the
joint distribution of U and Z, but this will not be the strategy followed here.

Alternatively, it is possible to add to the vector of observations (Y, Z) a vector of
observed variables correlated with Z, that we call W . Since the variables in W are intro-
duced to make inference possible, they are called instrumental variables and the vector
of observed variables becomes (Y, W,Z). Moreover, in order to characterize and define ϕ,
some restriction concerning the disturbances in the model and the instrumental variables
W must be satisfied by W .
A third approach proposed in literature for treating endogeneity problems is the control
function approach proposed by Newey et al. (1999) [64]. They consider a triangular non-
parametric simultaneous equations model with some restriction on the exogenous variables
and on the error terms of the structural and reduced form equations.
In this chapter we adopt the instrumental regression approach. We increase the vector
(Y, Z) with the vector W of instruments and we replace the classical hypothesis of exogene-
ity E(U |Z) = 0 with the hypothesis E(U |W ) = 0. Our aim is to obtain a nonparametric
Bayesian estimation of ϕ. As stressed by Newey and Powell (2003) [63], when we are
considering a nonparametric estimation, the strong condition that the error term is mean
independent of the instrument is important for identification while a finite number of zero
covariance restriction between the instruments and the disturbances will not suffice to
identify an infinite dimension parameter. Therefore, the structural parameter of interest
ϕ is characterized as the solution of

E(Y − ϕ(Z)|W ) = 0

and it is called instrumental regression. Hence, estimating ϕ is the same as solving an
inverse problem.
In this paper we are going to exploit this moment restriction in order to make inference
about the instrumental regression without imposing any constraint on the functional form
of ϕ. Even if we do not limit ϕ to be in a space of finite dimension, we propose to
take into account all the information we have a priori on the data generating process of
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the instrumental regression by incorporating it in a prior distribution on the parameter
space. We conceive therefore the instrumental regression not as a given parameter but
as a realization of a random process and we work in the product space of the sampling
and parameter space. This study is primarily aimed by a Bayesian philosophy and we
transform an inverse problem in a problem of estimation, as it is natural in the Bayesian
approach to inverse problems, see Franklin (1970) [33]. We refer to Chapter 2 for a more
complete discussion about this approach.
Application of Bayes theorem in infinite dimensional spaces is perfectly known (see [33]
and [60]), the posterior distribution of ϕ is well defined and the posterior mean is bounded
and continuous in Y in finite samples. On the contrary, as the sample size increases, the
posterior mean looses property of continuity and it is not consistent in the frequentist
sense. This is due to the fact that its expression involves the inverse of a covariance
operator that converges towards an unbounded operator. To overcome this problem, we
adopt the strategy proposed in Chapter 2 consisting in applying a Tikhonov regularization
scheme to the inverse of the covariance operator. The posterior distribution that results
is slightly modified and it is called regularized posterior distribution.
The idea of estimating the instrumental regression ϕ by exploiting the theory of inverse
problems is primarely due to Florens (2002) [26], Hall and Horowitz (2005) [38] and
Darolles, Florens and Renault (2006) [15].
The Bayesian optics that moves this study is in any case not binding. In particular, if
we adopt a classical point of view, where a true value of the parameter of interest that
characterizes the distribution having generated the data exists, our proposed Bayesian es-
timator of the instrumental regression converges toward this true value. This convergence
is known as posterior, or frequentist, consistency and it demands that the regularized
posterior distribution degenerates in a Dirac measure in correspondence of the true value
of the parameter of interest.
The paper is organized as follows. In Section 4.2 the instrumental variable model is write
down. Section 4.3 presents the formal statement of the Bayesian experiment in the general
case with unknown variance parameter and conjugate prior distributions. We characterize
the solution of the inference problem as a regularized version of the posterior distribution.
Then, we consider the slightly different situation with independent priors. In Section 4.4
we develop inference on ϕ when the joint distribution of the explanatory variables and the
instruments F (·, Z, W ) is unknown. A preliminary step of estimation of this density is re-
quired and, in particular, two alternative strategies to accomplish this step are presented.
The first one is a Bayesyan parametric method that applies when the joint distribution
is known up to a finite dimensional parameter; the second one consists in a classical non-
parametric estimation and applies when the density is completely unknown. Numerical
simulations are in Section 4.5 and Section 5.7 concludes. All the proofs can be found in
the Appendix.

4.2 The Model

Let S = (Y,Z, W ) denote the random vector belonging to R× Rp × Rq with distribution
characterized by the cumulative distribution function F . We assume that F is absolutely
continuous with respect to Lebeasgue measure, with density f , and defines the Hilbert
space L2

F of square integrable functions with respect to F . We denote with || · || the norm
in this space. We consider a model of the type

Y = ϕ(Z) + U, E(U |Z) 6= 0. (4.1)
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This model is a structural model in the sense that it is directly proposed by the economic
theory; it is characterized by the fact that the intervening variables Y and Z are both
endogenous. The endogeneity of Y and Z can be explained by the fact that they have
been simultaneously generated by the relations given in the model. The lack of any further
characterization of ϕ or any constraint on it, except regularity requirements, that will be
explicit below, makes the model the most general as possible.
In order to be able to estimate the instrumental regression ϕ, we suppose that a vector
of instruments W , such that E(U |W ) = 0, is available. This is the instrumental variables
approach that characterizes the structural model by the relation

E(Y |W ) = E(ϕ(Z)|W ) (4.2)

and assumes that there exists an unique element ϕ∗ satisfying this equality. The only
requirement we make on the true ϕ∗ having generated the data according to (4.1) is that
it belongs to L2

F (Z), where L2
F (Z) ⊂ L2

F is the subset of square integrable functions of Z
with norm || · ||.
Uniqueness of the solution in (4.2) ensures identifiability, in the classical sense, of the pa-
rameter of interest ϕ by the moment condition (4.2) and, using terminology of functional
analysis, it is equivalent to assume that the conditional expectation operator is one-to-one
(or equivalently that its kernel is reduced to zero).
Furthermore, a classical solution to equation (4.2) exists if and only if the regression
function E(Y |W ) belongs to the range of the conditional expectation operator E(·|W ) :
L2

F (Z) → L2
F (W ), where L2

F (W ) ⊂ L2
F denotes the space of square integrable functions of

W , integrable with respect to F , and notation R(·) will be reserved to denote the range
of an operator. Non existence of this solution characterizes the so-called problem of overi-
dentification. Henceforth, overidentified solutions come from equations with an operator
that is not surjective and non identified solutions, as we have already stressed, come from
equations with an operator that is not one-to-one. Indeed, properties ensuring existence
and uniqueness of the classical solution are properties of the cdf F of S.
Anyway, we are not concerned with under and over-identification since our approach is
Bayesian and we need a weaker condition for identification than the conditions necessary
to guarantee existence and uniqueness of the classical solution. In a Bayesian optics, a
model is identified if the prior distribution is completely revised. Though we are moved
by a Bayesian philosophy in constructing our estimator, we adopt a classical (frequen-
tist) notion of consistency, i.e. posterior consistency and then we need a condition for
identification, but this condition is weaker than demanding injectivity of the conditional
expectation operator, as it is done in the most of the classical literature about nonpara-
metric instrumental regression estimation. In particular, if Ω0 denotes the prior covariance
operator in L2

F (Z), we will prove that our estimator will be consistent under the hypoth-

esis that E(Ω
1
2
0 |W ) : L2

F (Z) → L2
F (W ) is one-to-one on L2

F (Z). Hence, the identification
assumption is

Assumption 13 The operator E(Ω
1
2
0 |W ) : L2

F (Z) → L2
F (W ), characterized by the true

cdf F , is one-to-one on L2
F (Z).

This assumption is weaker than requiring that E(·|W ) is one-to-one since if Ω
1
2
0 and

E(Ω
1
2
0 |W ) are both one-to-one, this does not imply that E(·|W ) is one-to-one. This is

caused by the fact that we are working in spaces of infinite dimension. 2. On the contrary,

2If we were working on finite dimensional spaces, and consequently Ω
1
2
0 and E(·|W ) would be matrices,

Ω
1
2
0 one to one and E(Ω

1
2
0 |W ) one to one would imply E(·|W ) is one to one
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if Ω
1
2
0 and E(·|W ) are both one-to-one this do imply E(Ω

1
2
0 |W ) is one-to-one.

A classical procedure in models with endogenous variables consists in transforming the
structural model, provided by economic theory, in a reduced form model that is tractable
from an estimation point of view. This means that the model is solved for the endogenous
variables in function of exogenous variables and random noise. Then, the reduced form
corresponding to (4.1) is

Y = E(Y |W ) + ε, E(ε|W ) = 0
= E(ϕ(Z)|W ) + ε, E(ε|W ) = 0. (4.3)

The reduced form will be used as sampling model for inference. We stress that the error
term ε in the reduced form is different from the structural error term U in (4.1). It
should be noted that model (4.3) is a conditional model, conditional on W , and that it
does not depend on Z. This is a consequence of the fact that the instrumental variables
approach specifies a statistical model concerning (Y, W ), but not concerning the whole
vector (Y, Z,W ) since the only information available is that E(U |W ) = 0 and nothing is
specified about E(U |Z) except that it is different than 0. Note that with a control function
approach we probably could specify a Bayesian experiment concerning the whole vector
(Y, Z,W ), anyway, we do not consider this approach here.
We will denote with small letters realizations of random variables: si = (yi, zi, wi) is the
i-th observation on the random vector S. Boldface letters z and w will denote the matrix
of observations on vectors Z and W , respectively. We assume to observe a sample of S:

Assumption 14 si = (yi, zi, wi), i = 1, . . . , n is an i.i.d. sample of observations on
S = (Y, Z,W ).

Each observation satisfies the reduced form model: yi = E(ϕ(Z)|wi)+εi with E(εi|w) =
0, for i = 1, . . . , n. After having scaled every term in the reduced form by 1√

n
, we rewrite

it in matrix form as

y(n) = K(n)ϕ + ε(n), (4.4)

where

y(n) =
1√
n




y1
...

yn


 , ε(n) =

1√
n




ε1
...

εn


 ,

∀φ ∈ L2
F (Z), K(n)φ = 1√

n



E(φ(Z)|W = w1)

...
E(φ(Z)|W = wn)


 , K(n) : L2

F (Z) → Rn

and ∀x ∈ Rn, K∗
(n)x = 1√

n

∑n
i=1 xi

f(Z,wi)
f(Z,·)f(·,wi)

, K∗
(n) : Rn → L2

F (Z).

Operator K∗
(n) is the adjoint of K(n), as it can be easily checked by solving the equation

< K(n)φ, x >=< φ, K∗
(n)x > ∀x ∈ R and φ ∈ L2

F (Z). By analogy with this notation we
denote with K = E(·|W ) the operator from L2

F (Z) in L2
F (W ) and with K∗ its adjoint:

K∗ = E(·|Z) : L2
F (W ) → L2

F (Z).
It should be noted that K(n) and K∗

(n) are finite rank operators, so that they have only n
singular values different than zero.
To keep things easy we make a distributional assumption for εi:
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Assumption 15 The error terms of the reduced form model are independent and identi-
cally distributed gaussian, conditionally on (w1, . . . , wn): εi|w ∼ i.i.d.N (0, σ2).

As a consequence ε(n)|w ∼ N (0, σ2

n In), where In is the identity matrix of order n. We
only treat the homoskedastic case.

4.3 Bayesian Analysis

In this section we develop and analyze the Bayesian experiment associated to the reduced
form model (4.4) and we consider a sample from it. Elements yi

(n) of vector y(n) represent
n independent, but not identically distributed, draws from a sampling probability P σ,ϕ,wi

conditional on W = wi
3. The product sample space will be denoted by Y = RN and

its associated Borel σ-field by FY . We shall denote with P σ,ϕ,w the conditional sampling
measure on FY associated to the whole vector y(n) and conditioned on the vector of
instruments w.
Two parameters characterize the model: the nuisance variance parameter σ2 and the
instrumental regression ϕ that represents the parameter of interest. We use notation
B for the σ-field associated to R+ and ν for the prior probability defined on it, then
σ2 ∈ (R+,B, ν). The parameter of interest ϕ(Z) has only been constrained to be square
integrable with respect to F , implying that it belongs to L2

F (Z). We denote with E the
σ-field of measurable subsets of L2

F (Z) and with µσ the prior distribution , conditional on
σ2.
Finally, the product parameter space is (R+ × L2

F (Z),B ⊗ E , ν × µσ) and there exist two
possible ways for specifying the probability measure on it. The traditional approach calls
for a conjugate model with a joint distributions on the parameter space that is separable in
a marginal on R+ and a conditional µσ, given B, on L2

F (Z). Otherwise, new developments
in Bayesian literature propose more and more models in which the prior distribution on
the parameter space is the product of two marginal independent distributions, in this case
µσ = µ since it does not depend on the variance parameter. Inference analysis changes in
the two cases; we start by treating the conjugate model and we present the independent
case in subsection 4.3.3.
The conjugate bayesian experiment associated to model (4.4) is summarized as

Ξ = (R+ × L2
F (Z)× Y,B ⊗ E ⊗ F ,Πw = ν × µσ × P σ,ϕ,w),

where Πw is the conditional joint measure on the product space, conditional on w.
Bayesian inference consists in finding the inverse decomposition of Πw in the product
of the posterior distribution νF ,w × µσ,F ,w and the predictive measure Pw. In the follow-
ing, we shall lighten notation by simply writing νF for νF ,w and µσ,F to denote µσ,F ,w.
We assume that the prior ν is an Inverse Gamma distribution with known parameters ν0

and s2
0. The distribution µσ, conditional on σ2, is a Gaussian measure on L2

F (Z) defining
a mean element ϕ0 ∈ L2

F (Z) and a covariance operator σ2Ω0 : L2
F (Z) → L2

F (Z). µσ is
such that E(||φ||2) < ∞, ∀φ ∈ L2

F (Z), where E(·) is the expectation taken with respect to
µσ. Moreover, Ω0 results to be a trace-class operator and this guarantees that realizations
of this process will be in L2

F (Z) with probability 1.
The support of the centered prior distribution µσ is the closure in L2

F (Z) of the Repro-
ducing Kernel Hilbert Space associated to Ω0, (H(Ω0) in the following). Let {λΩ0

j , ϕΩ0
j }j

be the eigensystem of the compact self-adjoint operator Ω0, see Kress (1999) [50] for a
3Notation P σ,ϕ,wi means the conditional probability P( 1√

n
yi|σ2, ϕ, W = wi).
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definition of eigensystem and singular value decomposition. We define the R.K.H.S.(Ω0)
embedded in L2

F (Z) as:

H(Ω0) = {φ : φ ∈ L2
F (Z) and

∞∑

j=1

| < φ, φΩ0
j > |2

λΩ0
j

< ∞} (4.5)

and, following Proposition 3.6 in [10], we have the relation H(Ω0) = R(Ω
1
2
0 ).

If Ω0 is injective then H(Ω0) is dense in L2
F (Z) and the support of µσ will be the whole

L2
F (Z).

Under Assumption 15 the sampling probability P σ,ϕ,w is gaussian with mean K(n)ϕ and
covariance matrix σ2

n In. The marginal P σ,w, marginalized with respect to µσ, is still
gaussian with mean K(n)ϕ0 and with covariance matrix σ2Cn = σ2(K(n)Ω0K

∗
(n) + 1

nIn)
that is positive-definite and of full rank n.
From a classical point of view, there exists a true value of the regression function that has
generated data y(n) through model (4.4). We denote this value with ϕ∗ and we assume
that

Assumption 16 (ϕ∗ − ϕ0) ∈ H(Ω0), i.e. there exists δ∗ ∈ L2
F (Z) such that ϕ∗ − ϕ0 =

Ω
1
2
0 δ∗.

This assumption is only a regularity condition and it will be exploited for proving asymp-
totic results with a convergence analyzed in the sampling sense. In reality, the gaussian
prior measure µσ is not able to generate trajectories in this space since µσ{ϕ;ϕ ∈ H(Ω0)} =
1, but µσ{ϕ; ϕ ∈ H(Ω0)} = 0. However, if Ω0 is injective, H(Ω0) is dense in L2

F (Z) and µσ

is able to generate trajectories as close as possible to the true one. The incapability of the
prior to generate the true parameter characterizing the data generating process is known
in literature as prior inconsistency. This problem is present only for infinite dimensional
parameter sets since it is difficult to be sure about a prior on an infinite dimensional pa-
rameter space and so it can happen that the true value of the parameter is not in the
support of the prior, see e.g. [34] or [37].

The elements in K(n) and K∗
(n) depends on the density f(Z, W ) and its marginaliza-

tions. For the moment we take these densities as known, but this is not always true in real
applications. When they are unknown they can be seen as nuisance parameters affecting
both distributions P σ,ϕ,w and P σ,w. In Section 4.4 we will analyze the unknown density
case and we will index these two probabilities with f : P f,σ,ϕ,w and P f,σ,w.
Summarizing, we have

σ2 ∼ IΓ(ν0, s
2
0)(

ϕ
y(n)

) ∣∣∣σ2 ∼ GP
((

ϕ0

K(n)ϕ0

)
, σ2

(
Ω0 Ω0K

∗
(n)

K∗
(n)Ω0

1
nI + K(n)Ω0K

∗
(n)

))
,

so that (ϕ, y(n)) is a jointly gaussian process conditionally on σ2.
The posterior distribution of σ2 is easily computable and does not rise any relevant prob-
lem; we will handle it in the next subsection.
More problems are found concerning the posterior distribution of ϕ. We start by consid-
ering the conditional posterior distribution of ϕ, conditional on σ2. The main theoretical
question concerns the existence of conditional gaussian processes in Hilbert spaces, namely
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the existence of a transition probability characterizing the posterior distribution of ϕ condi-
tional on σ2. The existence of a well-defined posterior distribution is guaranteed by Jirina
theorem, see Neveu (1965) [62] since the spaces we are working in are Polish spaces4. We
refer to Chapter 2 of this essay, to Franklin (1970) [33] and Mandelbaum (1984) [60] for a
complete discussion about this point.
The conditional posterior distribution of ϕ, given σ2, is gaussian; this follows from the
form assumed by the characteristic function of ϕ given (y(n), σ

2). We characterize this
distribution in the following Theorem. The conditional expectation of ϕ, given (y(n), σ

2)
exists, since |ϕ|2 is integrable, and it is an affine transformation of y(n). We remark again
that all the posterior probability have to be meant computed for a given w.

Theorem 13 Let ϕ and y(n) be two conditionally jointly distributed gaussian random
elements, conditional on σ2, in L2

F (Z) and RN , respectively. Then, the conditional distri-
bution of ϕ given y(n) and σ2 is gaussian with mean Ay(n) + b, where

A = Ω0K
∗
(n)C

−1
n , b = (I −AK(n))ϕ0 (4.6)

and covariance given by

σ2Ωy = σ2(Ω0 −AK(n)Ω0).

Proof of this theorem can be found in Mandelbaum (1984) [60]. Then E(ϕ|y(n), σ
2) =

ϕ0 + Ω0K
∗
(n)C

−1
n (y(n) − K(n)ϕ0), if (y(n) − K(n)ϕ0) ∈ R(Cn) that is always satisfied in

finite dimension. The variance parameter σ2 affects the posterior of ϕ only through the
posterior covariance operator, so that E(ϕ|y(n), σ

2) = E(ϕ|y(n)).
For small samples, the posterior distribution µσ,F is well defined in the sense the opera-
tors in its mean and variance are bounded due to the fact that Cn is an invertible n × n
matrix because its n eigenvalues are all different than zero. On the contrary, as n → ∞,
the inverse C−1

n that appears in operator A converges towards a noncontinuous operator
and then A converges to a non-continuous linear operator defined in the set of (yi)i∈N .
This prevents the posterior mean from being consistent in a sampling sense even if it is
consistent in a Bayesian sense, i.e. with respect to the joint distribution of observations
and parameters.
For different reasons explained just below, we want that our Bayesian estimator be con-
sistent in the sampling sense, namely with respect to the sampling probability. In the
following, terms like frequentist consistency, classical consistency or posterior consistency
will be equally used for referring to this convergence. The pair (ϕ, µσ,F ) is consistent,in
the classical sense if for P σ,ϕ,w-almost all sequences y(n), the posterior µσ,F converges
weakly to point mass at ϕ. Moreover, µσ,F is consistent in the classical sense if (ϕ, µσ,F )
is consistent for all ϕ. This concept of frequentist consistency is extensively developed in
Diaconis and Freedman (1986) [16] among others, where Bayesians are separated into two
groups: ”classical” and ”subjectivist”. Classical bayesians believe there exists a true value
of the parameter that has generated the data, therefore they care for, as data set becomes
large, the posterior converging to a point mass at the true parameter. In point of fact,
posterior consistency is interesting also for subjective Bayesian for different reasons (e.g.
”intersubjective agreement” or to check if the posterior is a correct representation of the
updated prior, see [16] and [27]).
Furthermore, having a posterior distribution (and hence a bayesian estimator) that is con-
sistent justifies, also from a classical point of view, the estimator obtained with a bayesian

4A Polish space is a separable completely metrizable topological space. Both L2
F (Z) and R are Polish

spaces, see for instance [45].



65

approach. On the basis of this argument we are persuaded about the importance to find
an estimator that is consistent in the sampling sense. The following lemma states the non
consistency of the posterior µσ,F .

Lemma 6 Let ϕ∗ be the true value of the parameter having characterized the data gen-
erating process P σ,ϕ∗,w. The pair (ϕ∗, µσ,F ) is inconsistent, i.e. µσ,F does not weakly
converge to a point mass δϕ∗ in ϕ∗.

Proof: See Appendix 4.7.

The intuition of this lemma is that, when n becomes large, even if ( 1
nIn + K(n)Ω0K

∗
(n))

looks like a Ridge regularization, 1
n goes to 0 too fast to control the ill-posedness of the

limit of the inverse of K(n)Ω0K
∗
(n). The number of eigenvalues of Cn grows with n up

to form a decreasing sequence having 0 as the only accumulating point. Contrarily to
finite dimensional cases, where the Ridge regression has a Bayesian interpretation and a
regularization effect, the prior specification does not solve the problem of ill-posedness in
infinite dimensional problems because of compacity of Ω0.
For solving the lack of continuity we propose to apply a Tikhonov regularization scheme
to the inverse of Cn: C−1

n,α = (αnIn + 1
nIn + K(n)Ω0K

∗
(n))

−1, where αn is a regularization
parameter. In practice, this consists in translating the eigenvalues of Cn far from 0 by a
factor αn > 0. As n → ∞, αn → 0 at a suitable rate to ensure operator Cn stays well
defined asymptotically.
We call Regularized (conditional) Posterior Distribution, denoted with µσ,F

α , the condi-
tional distribution on E , given (y(n), σ

2), defined in Theorem 13 in which operator A has
been substituted by the Tikhonov regularized operator Aα = Ω0K

∗
(n)C

−1
n,α. This object

has been introduced in Chapter 2 and defined as the Bayesian solution to a functional
equation in Hilbert spaces.
The instrumental variables model we are treating describes an equation in finite dimen-
sional spaces, but the parameter of interest is of infinite dimension, so that the reduced
form model can be seen as a projection of ϕ on a space of smaller dimension. Even if the
problem we are considering is substantially different with respect to that one considered
in Chapter 2, asymptotic arguments motivates us to adopt the regularized posterior dis-
tribution µσ,F

α as solution for our inference problem. On the other side, if we wanted to
solve (4.4) in a classical way, we would realize that some regularization scheme would be
necessary also in the finite sample case since ϕ̂ = (K∗

(n)K(n))−1K∗
(n)y(n), but K∗

(n)K(n) is
not full rank and than non invertible.
Summarizing, the regularized (conditional) posterior distribution µσ,F

α is a gaussian mea-
sure defining a mean element and a covariance operator

ϕ̂α := Eα(ϕ|yn, σ2) = Aαy(n) + bα

σ2Ωy,α := V arα(ϕ|yn, σ2) = σ2(Ω0 −AαK(n)Ω0), (4.7)

with

Aα = Ω0K
∗
n

(
αnI +

1
n

I + K(n)Ω0K
∗
(n)

)−1

bα = (I −AαK(n))ϕ0.
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We will take the regularized posterior mean as punctual estimator for the instrumental
regression, as suggested for a quadratic loss function. In section 4.3.2 we will state con-
sistency of this solution.

4.3.1 The Student t Process

We proceed now to computation of the posterior distribution of σ2. Then, this distribution
will be exploited in order to marginalize the regularized conditional posterior distribution
µσ,F

α of ϕ, given σ2, with respect to σ2.
A conjugate model allows to integrate out ϕ from the sampling probability P σ,ϕ,w to
obtain P σ,w := P(y(n)|σ2,w) and then to use the two probabilities

σ2 ∼ IΓ(ν0, s
2
0)

y(n)|σ2 ∼ N (K(n)ϕ0, σ
2
( 1

n
In + K(n)Ω0K

∗
(n)

)
)

to make inference on σ2. The posterior distribution of σ2 has the kernel:

νF ∝
( 1

σ2

)ν0/2+n/2+1
exp{− 1

2σ2
[(y(n)−K(n)ϕ0)′

( 1
n

In+K(n)Ω0K
∗
(n)

)−1
(y(n)−K(n)ϕ0)+s2

0]}

that identifies an IΓ distribution 5. Then

σ2|y(n) ∼ IΓ(ν∗, s2
∗), with

ν∗ = ν0 + n

s2
∗ = s2

0 + (y(n) −K(n)ϕ0)′
( 1

n
In + K(n)Ω0K

∗
(n)

)−1
(y(n) −K(n)ϕ0).

Obviously the posterior distribution of σ2 does not depend on ϕ and then it can be used for
marginalizing the regularized conditional posterior distribution of ϕ by directly integrating
out σ2. When the model is conjugate we do not necessitate of a Gibbs sampling, as in the
case with independent priors.
Analogy with the finite dimensional case, where integration of a gaussian density with
respect to an Inverse Gamma gives a Student t distribution, suggests that we should find
a similar result in infinite dimension: ϕ|y(n) should be a Student t Process in L2

F (Z). We
introduce a new process called Student t Process. In the next definition, we define it in a
general Hilbert space through the scalar product in this space.

Definition 2 Let X be an Hilbert space with inner product < ·, · >X and x ∈ X . x
is a Student t Process with parameters x0 ∈ X , Ω0 : X → X and ν ∈ R+, denoted
x ∼ StP(x0, Ω0, ν), if and only if ∀δ ∈ X ,

< x, δ >X ∼ t(< x0, δ >X , < Ω0δ, δ >X , ν),

i.e. < x, δ >X has a density proportional to
5There exist different specifications of the Inverse Gamma distribution; we use in our study an IΓ(ν0, s

2
0)

with density: f(σ2) ∝
(

1
σ2

)ν0/2+1

exp
{
− 1

2

s2
0

σ2

}
. The corresponding mean and variance are E(σ2) =

s2
0/2

ν0/2−1
=

s2
0

ν0−2
and V ar(σ2) =

s4
0/4

(ν0/2−1)2(ν0/2−2)
, respectively.
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[
ν +

(< x, δ >X − < x0, δ >X )2

< Ω0δ, δ >X

]− ν+1
2

,

with mean and variance

E(< x, δ >X ) = < x0, δ >X , if ν > 1

V ar(< x, δ >X ) =
ν

ν − 2
< Ω0δ, δ >X , if ν > 2.

At the best of our knowledge, this kind of process has never been encountered in the
existing literature.
We admit the following Lemma, concerning the marginalization of a Gaussian Process
with respect to a variable distributed as an Inverse Gamma.

Lemma 7 Let σ2 ∼ IΓ(ν, s2) and x|σ2 ∼ GP(x0, σ
2Ω0), with σ2 ∈ R+ and x ∈ X . Then,

x ∼ StP
(
x0,

s2

ν
Ω0, ν

)
.

Proof of this lemma is trivial and follows immediately if we consider the scalar product
< x, δ >, ∀δ ∈ X , so that it has a normal distribution on R.
We apply this result to the instrumental variable process ϕ for integrating out σ2 in the
regularized posterior distribution. Hence,

ϕ|y(n) ∼ StP(ϕ̂α,
s2∗
ν∗

Ωy,α, ν∗),

with marginal mean ϕ̂α and marginal variance s2∗
ν∗−2Ωy,α. We call this distribution regu-

larized posterior distribution and denote it with µFα .

4.3.2 Asymptotic Analysis

We focus, in this section, on asymptotic frequentist properties of the posterior distributions
of σ2 and ϕ. As it has already been pointed out, our study can be classified among
classical bayesian studies in the sense that we believe in the existence of a true value for
the parameters having generated the data. This fact gives more generality to our analysis
since the bayesian philosophy moving it is less binding.
The regularized posterior distribution µσ,F

α is consistent if the probability, taken with
respect to this distribution, of any complement of a neighborhood of ϕ∗ converges to zero.
Posterior consistency of µσ,F

α is stated in the following theorem.

Theorem 14 Let ϕ∗ be the true value having generated the data and µσ,F
α a gaussian

measure on L2
F (Z) with mean Aαy(n) + bα and covariance operator σ2Ωy,α defined in 4.7.

Under Assumption 24, if αn → 0 and α2
nn →∞, then:

(i) µσ,F
α weakly converges to a point mass δϕ∗ in ϕ∗;

(ii) if moreover Ω
− 1

2
0 (ϕ∗ − ϕ0) ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0, then

µσ,F
α {ϕ : ||ϕ− ϕ∗|| ≥ εn} ∼ Op

(
α

β
2
n +

1
αn
√

n
α

β
2
n +

1
α2

nn

)
.
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The condition required for the second part of the theorem is only a regularity condition
that is necessary for having convergence at a certain speed. The hypothesis that really
matters for having posterior consistency is the fact that (ϕ∗ − ϕ0) ∈ H(Ω0).
A corollary provides the necessary results for Theorem 14, it concerns consistency of the
regularized posterior mean and convergence to zero of the regularized posterior variance.

Corollary 3 Under Assumption 24, if αn → 0 and α2
nn →∞,

(i) ||ϕ̂α − ϕ∗|| → 0 in P σ∗,ϕ∗-probability and if δ∗ ∈ R(Ω
1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0,

||ϕ̂α − ϕ∗||2 ∼ Op

(
αβ

n +
1

α2
nn

αβ
n +

1
α2

nn

)
;

(ii) ||Ωy,α|| → 0 in P σ∗,ϕ∗-probability and ∀φ ∈ L2
F (Z) such that Ω

1
2
0 φ ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2

for some β > 0,

||Ωy,αφ||2 ∼ Op

(
αβ

n +
1

α2
nn

αβ
n

)
.

The rates governing the bias are the first and the third one in brackets, being the second
one the product of the two. While the first rate αβ

n requires a regularization parameter
αn going to zero as fast as possible, the third rate requires an αn going to zero as slow as
possible. Hence, the optimal rate for αn will be obtained when the two rates are equated:
αβ

n = 1
α2

nn
. This gives an optimal regularization parameter proportional to

αn ∝ n
− 1

β+2

and a global rate of convergence of the regularized posterior mean and variance (in squared

norm) proportional to n
− β

β+2 that is the fastest one. The regularized posterior distribution

converges at the slower rate n
− β

2(β+2) .
Now we concentrate on the posterior consistency of νF . We denote with g(Z, wi) the

transformation of the kernel of K∗
(n) by operator Ω

1
2
0 , i.e. if ω0(s, Z) denotes the ker-

nel of Ω
1
2
0 , g(Z,wi) = Ω

1
2
0

f(s,wi)
f(s)f(wi)

=
∫

ω0(s, Z) f(s,wi)
f(s)f(wi)

f(s)ds. In particular, we have

Ω
1
2
0 K∗

(n)ε(n) = 1
n

∑
i εig(Z, wi).

Theorem 15 Let σ2∗ be the true value of σ2 having generated the data and νF the posterior
Inverse Gamma distribution on R+ described in subsection 4.3.1. Under Assumption 24,

if there exists a γ > 1 such that ∀ w, g(Z,w) ∈ R(Ω
1
2
0 K∗KΩ

1
2
0 )

γ
2 , then:

√
nγ−1(E(σ2|y(n))− σ2

∗) ∼ Op(1).

It follows that νF{σ2 : |σ2 − σ2∗| ≥ εn} → δσ2∗ , where δσ2∗ is the point mass in σ2∗.

We conclude this section by giving a result of joint posterior consistency, that is the
joint measure νF × µσ,F degenerate towards a Dirac measure in (σ2∗, ϕ∗).

Lemma 8 Under condition of Theorems 14 and 15, the joint measure

νF × µσ,F{(σ2, ϕ) ∈ R+ × L2
F (Z); ||(σ2, ϕ)− (σ2

∗, ϕ∗)||R+×L2
F
≥ εn}

converges to zero in P σ∗,ϕ∗-probability.
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4.3.3 Independent Priors

We adopt in this section an alternative specification of the joint prior measure on the
parameter space: we assume that the prior for ϕ does not depend on σ2. Then, we denote
with µ the prior on L2

F (Z) and the joint prior distribution on R+ ×L2
F (Z) is equal to the

product of the two marginal ν and µ. Hence,

σ2 ∼ IΓ(ν0, s
2
0)

ϕ ∼ GP(ϕ0, Ω0)

y(n)|ϕ, σ2 ∼ Nn(K(n)ϕ,
σ2

n
In).

In this case it is not allowed to integrate out ϕ from the sampling distribution of y(n)

since we do not have a conditional measure for ϕ given σ2. This particular structure
of the problem makes computation of the marginal posterior distributions of ϕ and σ2

unfeasible, nevertheless it is possible to obtain closed form for the posterior distribution
of ϕ conditional on σ2, µσ,F and for the posterior distribution of σ2 conditional on ϕ,
denoted with νϕ,F . Then, a Gibbs sampling algorithm will allow, for a large number of
iterations, to get a good approximation of the stationary laws represented by the desired
regularized marginal posterior distributions µFα and νFα .6

We start by computing the conditional posterior distribution of ϕ. Conditionally on σ2

(y(n), ϕ) are jointly normally distributed with mean and variance

E
( y(n)

ϕ

)
=

( K(n)ϕ0

ϕ0

)
, V ar

( y(n)

ϕ

∣∣∣
)

=
( Ω0 Ω0K

∗
(n)

K(n)Ω0 (σ2

n I + K(n)Ω0K
∗
(n))

)

and the parameter σ2 only affects the variance of y(n). The conditional posterior of ϕ
still suffers of a problem of inconsistency since it demands the inversion of the covariance
operator of y(n)|σ2 that, as n → ∞, converges towards an operator with non continuous
inverse. Hence, we use the Tikhonov regularization scheme already introduced and the
regularized conditional posterior distribution of ϕ, still denoted with µσ,F

α is a gaussian
measure:

ϕ|y(n), σ
2 ∼ GP(Aσ

αy + bσ, Ωσ
y )

Aσ
α = Ω0K

∗
(n)(αnIn + K(n)Ω0K

∗
(n) +

σ2

n
In)−1

bσ = (In −Aσ
αK(n))ϕ0

Ωσ
y,α = Ω0 − Ω0K

∗
(n)(αnIn + K(n)Ω0K

∗
(n) +

σ2

n
In)−1K(n)Ω0).

It should be remarked the difference between operators Aσ
α and Aα and operators Ωσ

y,α

and Ωy,α defined in the conjugate case.
For computing the posterior distribution of σ2 given ϕ, we use the homoskedastic model
specified in Assumption 15 for the reduced form error terms: ε(n)|σ2 i.i.d. ∼ N (0, σ2

n In),
with ε(n) = y(n) −K(n)ϕ. Computation of this posterior distribution demands to know ϕ

and this means, in a Gibbs sampling algorithm, that we have to draw ϕ from µσ,F
α before

to use it for constructing ε(n). This makes clear the fact that the regularization scheme

6The meaning of the index α will be clarified below.
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plays a role also in the conditional posterior distribution for σ2 through ϕ, so that we
also index the conditional posterior distribution of σ2 with α: νϕ,F

α . Then, we talk about
regularized error term for εi,α = yi − Ki

(n)ϕ, with ϕ ∼ µσ,F
α and Ki

(n) denoting the i-th
component of the vector. Trivial computations provide us with the conditional posterior

νϕ,F
α ∼ IΓ(ν∗, s2

∗)

ν∗ = ν0 + n, s2
∗ = s2

0 +
n∑

i=1

(yi − E(ϕ|wi)).

The associated Gibbs sampling algorithm is the following:
(i) fix an initial value for σ2: σ2

(0);

(ii) draw ϕ(i) from µα(ϕ|F , σ2
(i−1));

(iii) draw σ2
(i) from να(σ2|F , ϕ(i));

(iv) iterate (ii) - (iii) for i = 1, . . . , 2J ;
(v) discard the first J values and use the other ones to estimate the posterior distributions

µFα and νFα .
Implementation of this algorithm requires to determine two elements: the starting value
σ2

(0) and the number of iterations J necessary to get the stationary distribution. We
propose to draw the starting value σ2

(0) from an IΓ distribution with parameters chosen
in such a way that some feature of the sample are reproduced. First, we estimate σ2

through a nonparametric estimation of εi: ε̂i = yi − Ê(y|wi). For instance, Ê(y|wi) is
obtained by using a kernel smoothing estimator. Therefore, σ̂2 = V̂ ar(ε̂i) and we set the
first theoretical moment of σ2 equal to σ̂2. Since σ2 ∼ IΓ(ν̃0, s̃

2
0), E(σ2) = s̃2

0
ν̃0−2 and then

s̃2
0 = σ̂2(ν̃0 − 2). Lastly, ν̃0 will be fixed such that the degree of freedom associated to

the distribution will be smaller than the sample size, i.e. ν̃0 < n, in order to make the
distribution more dispersed. At the end, we draw the starting value σ2

(0) from IΓ(ν̃0, s̃
2
0).

In order to determine the number of iterations J we propose a method that is an adaptation
of the technique proposed in Gelman and Rubin (1992) [35]. This strategy consists in
using several independent sequences, with starting points sampled from an overdispersed
distribution, and in analyzing the multiple sequences by computing estimates of quantities
of the target distribution to see how close the simulation process is to convergence.
We simulate M independent sequences, each one with length 2J , with different starting
points drawn from IΓ(ν̃0, s̃

2
0), with ν̃0 and s̃2

0 determined as described above:

ϕij ∼ µσ,F
α , i = 1, . . . , M ; j = 1, . . . , 2J

σ2
ij ∼ νϕ,F

α , i = 1, . . . , M ; j = 1, . . . , 2J.

The target distribution of each parameter can be estimated in two ways. First, a distri-
butional estimate is formed by using between-sequence and within-sequence information;
this is more variable than the target distribution, because of the use of overdispersed
starting values. Second, a pooled within-sequence estimate is formed and used to monitor
the convergence of the simulation process. In principle, when the simulations are far from
convergence, the individual sequences will be less variable than the target distribution,
but as the individual sequences converge to the target distribution, the variability within
each sequence will grow to be as large as the variability of the target distribution.
The first J iterations of each sequence are discarded and the last J are used to compute
the following quantities:



71

B =
J

M − 1

M∑

i=1

(σ2
i. − σ2

..)
2, σ2

i. =
1
J

J∑

j=1

σ2
ij , σ2

.. =
1
M

M∑

i=1

σ2
i.

WW =
1
M

M∑

i=1

s2
i , s2

i =
1

J − 1

J∑

j=1

(σ2
ij − σ2

i.)
2

V̂ ar(σ2) =
J − 1

J
WW +

1
J

B.

B is the between-sequence variance and WW is the within-sequence variance of σ2.
V̂ ar(σ2) is an estimate of the variance that would be unbiased if the starting points of
the simulation were really drawn from the target distribution, and it is an overestimation
under the more realistic assumption that the starting values are overdispersed. Mean-
while, for J finite, quantity WW underestimates the variance of σ2 since the individual
sequences have not had time to range over all the support of the target distribution and
then will have less variability.
For the parameter ϕ we compute the same quantities, but due to the fact that the tra-
jectory ϕ(·) is a function on R, all the corresponding quantities will be functions on R.
Therefore, we have an uncountable number of these quantities: one for every point in the
domain of the realization ϕ.

Bϕ(·) =
J

M − 1

M∑

i=1

(ϕi.(·)− ϕ..(·))2, ϕi.(·) =
1
J

J∑

j=1

ϕij(·), ϕ..(·) =
1
M

M∑

i=1

ϕi.(·)

WWϕ(·) =
1
M

M∑

i=1

(sϕ
i )2(·), (sϕ

i )2(·) =
1

J − 1

J∑

j=1

(ϕij(·)− ϕi.(·))2

V̂ ar(ϕ(·)) =
J − 1

J
WWϕ(·) +

1
J

Bϕ(·).

To monitor convergence of the iterative simulation, it is suggested in Gelman and
Rubin (1992) [35] to compute the potential scale reduction, denoted with R̂ (respectively
R̂ϕ). This quantity estimates the factor by which the scale of the current distribution for
the parameter σ2 (respectively ϕ) might be reduced if the iterations were continued in the

limit J → ∞. The potential scale reduction for σ2 is computed as the ratio R̂ = V̂ ar(σ2)
WW

and then its square root is taken. The idea is to compare something that overestimates
with a quantity that underestimates the variance in the target distribution (νFα )−1.
It will be selected a number of iterations for which the potential scale reduction is near
1 for all parameters of interest. The target distribution will be summarized by using the
simulated values from the last halves of the simulated sequences. The strategy described
in [35] is adapted only for scalar parameters. In particular, a problem arises in determining
the potential scale reduction for an infinite dimensional parameter. Indeed, we have an
uncountable number of R̂ϕ for the parameter ϕ and check for all of them will be unfeasible.
Our suggestion is to consider the uniform norm of this quantity:

√
R̂ϕ∞ =

√
||R̂ϕ||∞,

where ||R̂ϕ||∞ = sups |R̂ϕ(s)| and R̂ϕ(s) = V̂ ar(ϕ(s))
W ϕ(s) . In practice, with numerical simula-

tions we shall have only a finite number of points s because of discretization of function
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ϕ. Therefore, our method can be seen as equivalent to a Gibbs sampling for a large, but
finite, number of parameters where we are checking that the potential scale reduction is
near 1 for all the parameters.
Alternatively, because of the finite number of discretization points s used in a numerical
simulation, instead of computing variance for each fixed point s we suggest to compute the
covariance matrix of ϕ(s) for the vector of all discretization points of ϕ. Then, quantities
Bϕ, WWϕ, V̂ ar(ϕ) become matrices and we can compute the maximum eigenvalues λmax

and λW
max of V̂ ar(ϕ) and WWϕ, respectively. We propose to estimate the potential scale

reduction as the ratio between these two eigenvalues:
√

R̂ =
√

λmax

λW
max

and again to check
that it is near 1.

4.4 The Unknown Operator Case

In the previous section we have developed Bayesian analysis by supposing that the joint
density f(Z, W ) was known. Though this hypothesis considerably simplifies inference, it
is not always realistic. In most of the cases it is more appropriate to consider that it is
partially or completely unknown.
In this section, first we develop inference when the joint density f(Z, W ) is known up to a
parameter θ of finite dimension and then when f(Z, W ) is totally unknown. In the latter
case, nonparametric estimation methods require to be considered.

4.4.1 Unknown Finite Dimensional Parameter

When F (Z, W ) is known up to a finite dimensional parameter θ a further Bayesian exper-
iment, different than Ξ, has to be specified. This is due to the fact that the instrumental
variable model that we use to characterize Ξ, and in particular the sampling probability
in it, does not specifies any characteristic of the distribution of (Z, W ). The parameter
space will be denoted with Θ ⊂ Rl, A is the associated σ-field and ρ is the probability
measure defined on it.
Let consider an i.i.d. sampling from F (Z,W ), the Bayesian experiment is

ΞZ,W = (Θ× YZ,W ,A⊗FZ,W , ρ× F θ),

with YZ,W = R(p+q)N the sampling space for the sample (z,w) and FZ,W its associated
σ-field. F θ represents the sampling distribution on FZ,W . The instrumental variable
approach does not provide any way to rely together the two Bayesian experiments ΞZ,W

and Ξ, actually it only defines Ξ and, when θ is unknown, a Bayesian inference on it is
possible only by specifying a new experiment ΞZ,W and by considering a sample different
than that one used to make inference on ϕ. This means that we have two completely
separated model: the first one, ΞZ,W , will be used to estimate θ and the second one,
Ξ, will be used to estimate ϕ given the previously obtained estimate for θ. To make
this concept operational we need two samples: one on (Z, W ) of size ñ, denoted with
s2 = (z̃, w̃) = (s2,1, . . . , s2,ñ) and a different one on (Y, W ) of size n, denoted with s1 =
(y,w) = (s1,1, . . . , s1,n) as specified in the following assumption:

Assumption 17 s1,i = (yi, wi), i = 1, . . . , n and s2,j = (z̃j , w̃j), ĩ = 1, . . . , ñ are two
i.i.d. samples of observations on S1 = (Y, W ) and S2 = (Z, W ), respectively. Moreover,
we assume that the samples (wi)i=1,...,n and (w̃j)j=1,...,ñ have been generated by the same
distribution F (W ) characterized by the true value of parameter θ∗.
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To simplify things we suppose the variance parameter σ2 to be known and we use the
notation Ξθ, instead of Ξ as before, for the Bayesian experiment for ϕ. Hence, Bayesian
model Ξθ results to be

Ξθ = (L2
F (Z)× Y, E ⊗ F , Πw = µ× P θ,ϕ,w).

The sampling and marginal probabilities in Ξθ depends on the realized value of θ, this
justifies the notation P θ,ϕ,w, P θ,w for the sampling and marginal distribution and µF ,θ for
the posterior probability. As already stressed, Bayesian experiment in Section 4.3 can be
seen as a particular case of Ξθ, in the sense that it is the conditional model in the case in
which θ is known. In this case, Θ and A degenerate in a point θ∗ and ρ degenerates into
a point mass in θ∗.
Bayesian analysis is separated into two steps. In the first one, the parameter θ is esti-
mated by only using the sample (z̃, w̃). The second step performs posterior analysis of ϕ
conditionally on a θ drawn from the posterior ρ(θ|z̃, w̃) and it only demands the use of
the sample (y,w) and model Ξθ.
We assume that the subvector S2 = (Z,W ) induces a gaussian measure on Rp+q with mean
vector m ∈ Rp+q and covariance matrix V ∈ Cp+q, where Cp+q is the cone of (p+q)×(p+q)
positive definite matrices. Therefore θ = (m,V ) ∈ Θ = Rp+q × Cp+q and

s2,i|θ ∼ i.i.d.Np+q(m,V ), i = 1, . . . , ñ

and F θ is the product of ñ multidimensional normal distributions. In order to simplify
simulations, we consider the precision matrix Σ = V −1 instead of V , hence parameter θ
becomes: θ = (m,Σ). We specify a conjugate prior for θ:

Σ ∼ W(Σ0, v0), Σ0 ∈ Cp+q, v0 > (p + q) + 1

m|Σ ∼ N(p+q)(m0,
1
u0

Σ−1), m0 ∈ Rp+q, u0 ∈ R+,

where W(Σ0, v0) stands for a Wishart distribution with parameters a matrix Σ0 of con-
formable dimensions and a scalar v0. Standard Bayesian computations give the posterior
of (m,Σ)

ρ(m,Σ|(s2,i)i=1,...,ñ) ∝ |Σ| 12+
v∗−(p+q+1)

2 exp
{1

2
[u∗(m−m∗)′Σ(m−m∗) + trΣ−1

∗ Σ]
}

and its decomposition

ρ(Σ|(s2,i)i=1,...,ñ) ∼ W(Σ∗, v∗) (4.8)

ρ(m|Σ; (s2,i)i=1,...,ñ) ∼ N(p+q)(m∗,
1
u∗

Σ−1), (4.9)

with
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u∗ = ñ + u0

m∗ =
1
u∗

(
∑

i

s2,i + u0m0)

v∗ = ñ + v0

Σ−1
∗ = Σ−1

0 +
∑

i

s2,is
′
2,i + u0m0m

′
0 −

ñ2

u∗
s̄2s̄

′
2 − ñ

u0

u∗
(s̄2m

′
0 + m0s̄

′
2)−

u2
0

u∗
m0m

′
0

s̄2 =
1
ñ

ñ∑

i=1

s2,i.

Once the posterior distribution ρ(θ|(s2,i)i=1,...,ñ) has been obtained, we draw from it
a value of θ that will characterize the sampling measure P θ,ϕ,w in Ξθ and the regularized
posterior distribution µF ,θ

α , conditional on θ, is computed as usual. The dependence of µF ,θ
α

on the particular value θ extracted from ρ(θ|(s2,i)i=1,...,ñ) will be eliminated by integrating
out θ:

Eα(ϕ|y(n),w) =
∫
Eα(ϕ|θ, y(n),w, z̃, w̃)ρ(θ|y(n),w, z̃, w̃)dθ (4.10)

V arα(ϕ|y(n),w) =
∫

V arα(ϕ|θ, y(n),w, z̃, w̃)ρ(θ|y(n),w, z̃, w̃)dθ +

V ar(Eα(ϕ|θ, y(n),w, z̃, w̃)|y(n),w, z̃, w̃) (4.11)

where the last variance is taken with respect to ρ(θ|y(n),w, z̃, w̃). For statistical coherence,
we write all the conditioning variables, but we could simplify things by eliminating the
variable with respect to which there is conditional independence:

Eα(ϕ|θ, y(n),w, z̃, w̃) = E(ϕ|θ, y(n),w)
ρ(θ|y(n),w, z̃, w̃) = ρ(θ|z̃, w̃)

V arα(ϕ|θ, y(n),w, z̃, w̃) = V arα(ϕ|θ, y(n),w).

Quantities (4.10) and (4.11) completely characterize µFα and integrals in them, with
respect to ρ, can be approximated thanks to Monte Carlo integration, after a number J
of θ have been drawn from ρ(θ|(s2,i)i=1,...,ñ). In practice, µFα will be obtained by running
the following iterative algorithm. This algorithm assumes σ2 = V ar(εi|W ) known.
(i) to draw θ(j) from the posterior ρ(m,Σ|(s2,i)i=1,...,ñ);
(ii) to compute f (j)(Z|W ) and f (j)(Z) in order to compute the kernel of operators K(n)

and K∗
(n). We will denote the corresponding operators with K̂(j) and K̂∗(j), respec-

tively;

(iii) to compute the regularized posterior distribution µ
F ,θ(j)
α given θ(j) characterized by

the mean function ϕ̂
(j)
α = A

(j)
α y(n) + b

(j)
α and the covariance operator Ω(j)

y,α = Ω0 −
A

(j)
α K̂(j)Ω0, with A

(j)
α = Ω0K̂

∗(j)(αnIn + K̂(j)Ω0K̂
∗(j) + σ2

n In)−1 and b
(j)
α = (I −

A
(j)
α K̂(j))ϕ0;

(iv) to iterate (i) - (iii) up to obtain a large number J of estimations ϕ̂
(j)
α and Ω(j)

y,α,
j = 1, . . . , J ;
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(v) to compute the sample average of the J regularized posterior means: Êα(ϕ|y(n),w) =
1
J

∑
j ϕ̂

(j)
α and of the J regularized posterior variances, Ω̃y,α = 1

J

∑
j Ω(j)

y,α, to ap-
proximate the first term in the RHS of (4.11). Approximate the second term in the
RHS of (4.11) by 1

J

∑
j(ϕ̂

(j)
α )2 − ( 1

J

∑
j ϕ̂

(j)
α )2. Let denote ϕ̂α = Êα(ϕ|y(n),w) and

Ω̂y,α = V̂ arα(ϕ|y(n),w) the estimated regularized posterior mean and variance char-
acterizing µFα .
The sample counterparts ϕ̂α, Ω̂y,α of the mean and variance of µFα characterize the

estimated regularized posterior distribution µ̂Fα that is the solution to the inference problem
for ϕ when f(Z, W ) is known up to a parameter. The estimation errors caused by an
unknown θ are shown to be negligible with respect to the error due to approximation
of ϕ∗ by µFα . More precisely, for the estimated regularized posterior mean we have the
decomposition:

||ϕ̂α − ϕ∗||2 ≤ ||ϕ̂α − Eα(ϕ|y(n),w)||2 + ||Eα(ϕ|y(n),w)− Eα(ϕ|θ̂, y(n),w)||2
+||Eα(ϕ|θ̂, y(n),w)− Eα(ϕ|θ∗, y(n),w)||2 + ||Eα(ϕ|θ∗, y(n),w)− ϕ∗||2.

We have denoted with θ∗ the true value of θ having generated the data (z̃, w̃) and θ̂ the
posterior mean of θ, i.e. θ̂ =

∫
θρ(θ|(s2,i)i=1,...,ñ)dθ. The first term is the error due to

Monte Carlo integration, then it declines to 0 as fast as more discretization points are
considered. Since the second and third error terms are Op( 1

ñ), they are negligible with
respect to the last term which has the speed of convergence given in Theorem 4.
The following theorem shows consistency of the estimated posterior mean under some
minor hypothesis.

Theorem 16 Let ϕ̂α = Êα(ϕ|y(n),w). Under Assumption 24, if αn → 0, 1
αnn → 0,

1
α3

nn2 ∼ Op(1), and ∂Eα(ϕ|θ,y(n),w)

∂θ ∈ L2
F (Z) for θ = θ∗ and θ = θ̂, then

(i) ||ϕ̂α − ϕ∗||2L2
F
→ 0 in F θ × P θ,ϕ,w;

(ii) if moreover δ∗ ∈ R(Ω
1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0, then

||ϕ̂α − ϕ∗||2L2
F

∼ Op

(
αβ

n +
1

α2
nn

αβ
n +

1
α2

nn

)
.

We implicitly assume in Theorem 16 that all the conditions necessary to guarantee
consistency of the posterior mean θ̂ of a finite dimensional parameter are satisfied, see
Bernstein (1934) [5], Gosh and Ramamoorthi (2003) [36] or Von Mises (1964) [79] for
technical details.
Let study convergence to zero of the regularized posterior variance Ω̂y,α:

Ω̂y,αφ =
1
J

J∑

j=1

[Ωy,α(θ(j))φ](ζ) +
1
J

J∑

j=1

(ϕ̂(j)
α )2(ζ)−

( 1
J

J∑

j=1

ϕ̂α

)2
(ζ) (4.12)

with φ ∈ L2
F (Z), Ωy,α(θ(j)) = V arα(ϕ|θ(j), y(n),w) = Ω(j)

y,α.

Theorem 17 Let Ω̂y,α : L2
F (Z) → L2

F (Z) be computed as in (4.12). If αn → 0, 1
αnn → 0,

1
α3

nn2 ∼ Op(1), ∂Eα(ϕ|θ,y(n),w)

∂θ ∈ L2
F (Z) and ∂

∂θΩy,α(θ) ∈ L2
F (Z) for θ = θ∗ and θ = θ̂ then

(i) ||Ω̂y,αφ||2
L2

F
→ 0 in F θ × P θ,ϕ,w;
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(ii) moreover, ∀φ ∈ L2
F (Z) such that Ω

1
2
0 φ ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0

||Ω̂y,αφ||2L2
F
∼ Op

( 1
α2

nn
αβ

n + αβ
n

)
.

Chebyshev’s Inequality allows to show that, under conditions given for point (i) of
Theorems (16) and (17), posterior consistency is preserved also in the case with unknown
θ:

µ̂Fα {ϕ : ||ϕ− ϕ∗|| ≥ εn} ≤ 1
εn

(||ϕ̂α − ϕ∗||2 + ||Ω̂y,α||).

Moreover, under conditions given in point (ii) of Theorems 16 and 17, with optimal
regularization parameter α∗, µ̂Fα degenerates towards a point mass in ϕ∗ at the optimal

speed of n
− β

2(β+2) . This means that the optimal speed of convergence does not change with
respect to the better case in which F is completely known.

4.4.2 Unknown Infinite Dimensional Parameter

When the joint density f(Z,W ) is totally unknown we have to deal with a nonparametric
problem that presents complex difficulties. Pioneer Bayesian nonparametric estimation
was based on Dirichlet processes (introduced by Ferguson (1973) [23]) that has the draw-
back of producing discrete random probabilities measures with probability one. In alter-
native, Polya tree priors, initially considered by Ferguson (1974) [24] and then by Lavine
(1992) [52], can be chosen to generate only absolutely continuous distributions. We refer
to Choudhuri et al. (2005) [13] for a complete review on Bayesian nonparametric methods.
The technique that we propose in this paper for dealing with this case is essentially dif-
ferent and it does not appear among Bayesian methods. We propose to substitute the
true f(Z, W ) in operators K(n) and K∗

(n) with a nonparametric classical estimator and to
redefine the structural function ϕ as the solution of the estimated reduced form equation

y(n) = K̂(n)ϕ + η(n) + ε(n). (4.13)

We use the notation K̂(n) and K̂∗
(n) for the corresponding operators with the density

f(Z,W ) substituted by a nonparametric estimator. We have two error terms: ε(n) is
the classical error term of the reduced form and η(n) accounts for the estimation error of
operator K(n), i.e. ηi = 1√

n
(E(ϕ|wi)− Ê(ϕ|wi)) and η(n) = (η1, . . . , ηn)′ 7. The estimated

operator K̂(n) is seen as the true operator characterizing a functional equation and it must
not be considered as an element of the Bayesian experiment in the sense that we do not
specify a probability measure on the space of absolutely continuous probability measure
of (Z, W ). Equation (4.13) defines a new Bayesian experiment that results to be a slightly
modification of Ξ in Section 4.3 primarily for the fact that σ2 is known and then it no more
enters the Bayesian experiment, and secondly for the fact that the sampling distribution
depends on f̂(Z,W ) instead of on f(Z, W ) (we will see this below):

Ξf = (L2
F (Z)× Y, E ⊗ F , Πw = µ× P̂ϕ,w).

Nonparametric estimation of f(Z, W ) is performed by kernel smoothing; we stress the
fact that here, contrarily to the previous case where f was known up to a parameter θ, we
use the same sample for getting an estimate of f and the posterior distribution of ϕ. Let

7It should be noted that properties of ηi are not affected by the function ϕ at which operator K̂(n) is
applied.
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L be a kernel function satisfying the usual properties and ρ be the minimum between the
order of L and the order of differentiability of f . We use the notation L(u) for L(u

h) where
h is the bandwidth used for kernel estimation such that h → 0 as n → ∞ (for lightening
notation we have eliminated the dependence on n from h). The estimated density function
is

f̂(W,Z) =
1

nhp+q

n∑

i=1

Lw(wi −W )Lz(zi − Z),

where we have used different subscripts in the kernel for W and for Z, Lw and Lz respec-
tively. Estimate of K(n) and K∗

(n) are obtained by plugging in the estimate f̂ :

K̂(n)ϕ =
1√
n




∑
j ϕ(zj)

Lw(w1−wj)∑
l Lw(w1−wl)
...∑

j ϕ(zj)
Lw(wn−wj)∑
l Lw(wn−wl)


 , ϕ ∈ L2

Z

K̂∗
(n)x =

1√
n

∑

i

xi

∑
j Lz(z − zj)Lw(wi − wj)∑

l Lz(z − zl) 1
n

∑
l Lw(wi − wl)

, x ∈ Rn

and

K̂∗
(n)K̂(n)ϕ =

∑

i

(∑

j

ϕ(zj)
Lw(wi − wj)∑
l Lw(wi − wl)

) ∑
j Lz(Z − zj)Lw(wi − wj)∑

l Lz(Z − zl) 1
n

∑
l Lw(wi − wl)

.

The element in brackets in the last expression converges to E(ϕ|wi), the last ratio converges
to f(Z,wi)

f(Z)f(wi)
and hence by the Law of Large Number K̂∗

(n)K̂(n)ϕ → E(E(ϕ|wi)|Z).
Asymptotic properties for kernel estimation of regression function justifies the following

hypothesis:

Assumption 18 η(n) ∼ Nn(0, σ2

n2hq D(n)), where D(n) = diag( 1
f(wi)

∫
L2

w(u)du), i = 1, . . . , n.

The fact that the covariance matrix is diagonal follows from the asymptotic independence
of kernel estimator of the regression function at different points: Ê(ϕ|wi) ‖ Ê(ϕ|wj), ∀i 6= j.
The covariance operator of the sampling measure induced on Rn by y(n) is determined by
the covariance of error term η(n) + ε(n). As in the case with f known, ε(n) has variance
σ2

n In so that the variance of η(n) is negligible with respect to it, since, by definition, the
bandwidth h satisfies nhq → ∞. The same can be said for the covariance between η(n)

and ε(n); therefore we are content to simply write V ar(y(n)|ϕ) = (σ2

n + op( 1
n))In and we

denote this matrix with Σn. At this point we are able to specify the prior and sampling
probabilities µ and P̂ϕ,w:

ϕ ∼ GP(ϕ0, Ω0)
y(n)|ϕ ∼ Nn(K̂(n)ϕ,Σn).

The sampling probability depends on the sample size and, as n becomes large, P̂ϕ,w

weakly converges to Pϕ,w. As in the basic case, the factor 1
n in Σn dose not stabilize the

inverse of the covariance operator: it converges to zero too fast to compensate the decline
towards 0 of the spectrum of operator K̂(n)Ω0K̂

∗
(n). Therefore, to guarantee consistency
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of the posterior distribution it must be introduced a regularization parameter αn > 0 that
goes to 0 slower than 1

n and 1
n2hq . Hence, we need to consider a regularized posterior

distribution that, since in this case it employs K̂(n) instead of K(n), we will call estimated
regularized posterior distribution. It will be denoted with µ̂Fα while the predictive will be
denoted with P̂w and they are given respectively by:

ϕ|y(n) ∼ GP(Êα(ϕ|y(n)), Ω̂y,α)

y(n) ∼ Nn(K̂(n)ϕ0, Σn + K̂(n)Ω0K̂
∗
(n))

with

Êα(ϕ|y(n)) = ϕ0 +

Âα︷ ︸︸ ︷
Ω0K̂

∗
(n)(αnIn + Σn + K̂(n)Ω0K̂

∗
(n))

−1(y(n) − K̂(n)ϕ0)

Ω̂y,α = Ω0 − Ω0K̂
∗
(n)(αnIn + Σn + K̂(n)Ω0K̂

∗
(n))

−1K̂(n)Ω0.

Asymptotic properties of the posterior distribution for the case with unknown f are
very similar to that one shown in Theorem 14 and in Corollary 4. In fact, the estimation
error associated to K̂(n) is negligible with respect to the other terms in the bias and
variance.

Theorem 18 Let ϕ∗ be the true value of the parameter and µ̂Fα a gaussian measure on
L2

F (Z) with mean Âα(y(n) − K̂(n)ϕ0) + ϕ0 and covariance operator Ω̂y,α. If (ϕ∗ − ϕ0) ∈
H(Ω0) and if αn → 0, α2

nn →∞, then
(i) µ̂Fα weakly converges to a point mass δϕ∗ in ϕ∗;

(ii) if moreover Ω
− 1

2
0 (ϕ∗−ϕ0) ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0, ||K̂∗

(n)K̂(n)−K∗K||2 ∼
Op( 1

nhp + h2ρ) and ||Ω
1
2
0 (K̂∗

(n)K̂(n) −K∗K)Ω
1
2
0 ||2 ∼ Op( 1

n + h2ρ) , then

µ̂Fα {ϕ : ||ϕ− ϕ∗|| ≥ εn} ∼ Op

(
(αβ

n +
1

α2
nn

+ (αβ−2
n +

1
α4

nn
)(

1
n

+ h2q)
)

If the bandwidth h is chosen in such a way to guarantee that the last factor rate is
negligible with respect to the first two, the optimal speed of convergence is obtained by
equating αβ

n = 1
α2

nn
, that provides the optimal regularization parameter αn ∝ n

− 1
β+2 and

the optimal speed of convergence proportional to n
− β

β+2 exactly as for f known. The last
factor is negligible if 1

α2 ( 1
n + h2ρ) ∼ Op(1), that implies a choice of the bandwidth such

that

hn ∝ n
− 1

2ρ .

4.5 Numerical Implementation

In this section we investigate the goodness of fit of the regularized posterior distribution
in all the considered cases. A large-sample simulation study of asymptotic properties of
the estimator is performed. Only results for two different specifications for the prior dis-
tribution of ϕ are reported here. All the simulations have been performed with Matlabr.
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We simulate a model where there is only one covariate, that is endogenous, and a
bivariate vector of instruments is available. Our design uses a simple specification for the
true value of the structural function: ϕ∗(Z) = Z2 and the structural model for generating
the yis and zis is

yi = ϕ∗(zi) + ui

ϕ∗(zi) = z2
i

ui = −0.5vi + ξi

εi ∼ N (0, (0.27)2)
ξi ∼ N (0, (0.05)2)
zi = 0.1wi,1 + 0.1wi,2 + vi

wi =
(

w1,i

w2,i

)
∼ N

((
0
0

)
,

(
1 0.3

0.3 1

))
.

This mechanism of generation entails that wi, vi and ξi are mutually independent for every
i; moreover it entails the joint density f is




Z
W1

W2


 ∼ N3 (




0
0
0


 ,




0.0989 0.13 0.13
0.13 1 0.3
0.13 0.3 1


).

Endogeneity is caused by correlation between ui and the error term vi affecting the
covariates. The simulation is made for n = 1000 and αn = 0.3. The fixed value for αn

has been determined by letting this parameter vary in a very large range of values and
selecting that one producing a better estimation. We present in the next section a data-
driven method to select αn.
We have performed simulations for the conjugate model with known f(Z,W ) (Case I)
and for the case with completely unknown f(Z, W ) and known σ2 (Case II). The most
important step in bayesian estimation is a correct specification of the prior distribution.
It summarizes our prior knowledge about the parameter we desire to estimate. We chose
an Inverse Gamma - Gaussian distribution for Case I and a Gaussian distribution for
the only parameter ϕ that we have in Case II.

Case I. Conjugate Model with f(Z,W ) known.
In this simulation we choose a conjugate prior:

σ2 ∼ IΓ(5, 0.12)
ϕ ∼ GP(ϕ0, σ

2Ω0)

with covariance operator (Ω0δ)(Z) = σ0

∫
exp{−(s−Z)2}δ(s)f(s, ·)ds, where f(s, ·) is the

marginal density of Z and δ is any function in L2
F (Z). We have performed simulations for

several choices for ϕ0 and σ0 in order to see the impact of different prior distributions on
our estimator.
The results are reported in Figure 4.1. The first three graphs are drawn for ϕ0(Z) =
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0.95Z2 + 0.25 and σ0 = 0.5 and the last three for ϕ0(Z) = 7
9Z2 − 7

9Z + 4
9 and σ0 = 200.

Panels (4.1b) - (4.1c) and (4.1e) - (4.1f) represent drawn from the prior and posterior
distribution of ϕ. In Figure 4.2 we show the histogram of a sample of observations drawn
from the prior and the posterior distribution of σ2.
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(a) ϕ0(Z) = 0.95Z2 + 0.25,
(Ω0φ)(Z) = 0.5

∫
exp(−(s− Z)2)φ(s)fz(s)ds,

αN = 0.3, N = 1000
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(b) Sample drawn from the prior of ϕ
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(c) Sample drawn from the regularized
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(Ω0φ)(Z) = 200
∫

exp(−(s− Z)2)φ(s)fz(s)ds,
αN = 0.3, N = 1000
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(e) Sample drawn from the prior of ϕ
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Figure 4.1: Case I. Conjugate Model with f(Z,W ) known. Graphs (4.1a) - (4.1c) are for
ϕ0(Z) = 0.95Z2 + 0.25 and σ0 = 0.5; graphs (4.1d) - (4.1f) are for 7

9Z2 − 7
9Z + 4

9 and
σ0 = 200

Case II. f(Z, W ) unknown and σ2 known.
In this simulation we have specified a prior only on ϕ since σ2 is supposed to be known:
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Figure 4.2: Case I. Conjugate Model with f(Z, W ) known.
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ϕ ∼ GP(ϕ0, Ω0)

with ϕ0 and Ω0 specified as in Case I. We show in Figure 4.3 only the results for the prior
distribution with ϕ0(Z) = 7

9Z2 − 7
9Z + 4

9 and σ0 = 200. Panels 4.3a shows the estimated
regularized posterior mean, together with the true curve and the prior mean; panel 4.3b
reports a sample drawn from the estimated posterior distribution.
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(a) Regularized Posterior Mean of ϕ for
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Figure 4.3: Case II. f(Z, W ) unknown and σ2 known

4.5.1 Data driven method for choosing α

In regularization of inverse problems theory there exist several a-posteriori parameter
choice rules for choosing αn which depend on the noise level δ in the observed data y(n),
with δ such that ||y(n)−K(n)ϕ|| ≤ δ. In the real world, such noise level information is not
always available, therefore it is often advisable to consider alternative parameter choice
rules that does not require knowledge of δ. The idea is to select αn only on the basis of
the performance of the regularization method under consideration. This parameter choice
technique is widely known and developed in literature and is called error free, see for
instance Engl et al. (2000) [19].
The data-driven method that we apply in this section rests upon a slightly modification
of the estimated residuals derived when the regularized posterior mean of ϕ is used as a
punctual estimator of the instrumental regression. This choice for the estimator is dictated
by the use of a quadratic loss function. The use of residuals instead of the estimation error
||ϕ̂α−ϕ∗|| is justified only if the residuals are adjusted in order to preserve the same speed
of convergence as the estimation error. In particular, as it is noted in Engl et al. (2000)
[19], there exists a relation between the estimation error and the residuals re-scaled by a
convenient power of 1

αn
. Let να denote the residual we are considering, we have to find

the value d such that asymptotically

||να||
αd

∼ ||ϕ̂α − ϕ∗||.

Therefore, it seems to make sense to take ||να||
αd as a measure of the estimation error and

to select the optimal αn as the one which minimizes the ratio:

α∗n = arg min
||να||
αd

n

.
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In the light of this argument, while the classical residual y(n) − K(n)ϕ̂α would seem the
natural choice, it is not acceptable since it does not converge to zero at the good rate. On
the contrary, convergence is satisfied by the projected residuals defined as

να = Ω
1
2
0 K∗

(n)y(n) − Ω
1
2
0 K∗

(n)K(n)ϕα

that for simplicity we rewrite as να = T ∗(n)y(n)−T ∗(n)K(n)ϕ̂α, using notation T ∗(n) = Ω
1
2
0 K∗

(n)

and T(n) = K(n)Ω
1
2
0 .

Nevertheless, even if the ratio is constructed through projected residuals, there is no value
of d for which it achieves the same speed of convergence as the estimation error. This is
due to the undesirable fact that Tikhonov regularization (that has been used to construct
ϕ̂α) can allow to achieve a speed of convergence of at most α2. Thus, we solve this problem
by substituting the Tikhonov regularization scheme with an iterated Tikhonov that results
in better convergence rate. In our case, it is sufficient to iterate only two times, so that
the resulting operator A

(2)
α , for the conjugate case described in Section 4.3, takes the form:

A(2)
α = (αΩ0K

∗
(n)C

−1
n,α + Ω0K

∗
(n))C

−1
n,α.

We denote with ϕ̂
(2)
α the regularized posterior mean obtained by using operator A

(2)
α and

with ν
(2)
α the corresponding projected residuals.

Lemma 9 Let ϕ̂
(2)
α be the regularized posterior mean obtained through a two-times-iterated

Tikhonov scheme in the conjugate case and ν
(2)
α = T ∗(n)(y(n) − K(n)ϕ̂

(2)
α ). If αn → 0,

α2
nn →∞, (ϕ∗−ϕ0) ∈ H(Ω0) and Ω

− 1
2

0 (ϕ∗−ϕ0) ∈ R(Ω
1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0, then

||ν(2)
α ||2 ∼ Op

(
αβ+2

n +
1
n

)
.

The rate of convergence given in Lemma 9 can be made equivalent, up to negligible
terms, to the rate given in Corollary 4 (i) by dividing the squared norm of the residual by
α2

n.
Hence, once we have performed estimation for a given sample, we construct the curve
||ν(2)

α ||2
α2

n
, as a function of αn and we select the value for the regularization parameter which

minimizes it. The minimization program does not change if we take an increasing trans-
formation of this ratio, for instance we have considered the logarithmic transformation.
This simplifies representation of the curve.
Figure 4.4 shows the performance of the data-driven method for the simulation scheme

applied to Case I. In Panels (4.4a) and (4.4c) the log-ratio curve log ||ν
(2)
α ||2
α2

n
is plotted

against a range of values for αn in the interval [0, 1], for two different choices of the prior
specification. For the first specification of the prior it is selected a value αn = 0.0285,
while for the second prior a larger value of αn = 0.1233 is selected. In Panels (4.4b) and
(4.4d) we show the goodness of our estimation method when the data-driven selected value
for αn is used. We see that the regularized posterior mean is more affected by the data
than by the prior mean; this is due to the smaller value selected for αn with respect to
the value we had previously chosen.

A result similar to Lemma 9 can be derived when the density f(Z, W ) is unknown
and the nonparametric method described in subsection 4.4.2 is applied. In this case we

denote T̂(n) = K̂(n)Ω
1
2
0 and T̂ ∗(n) = Ω

1
2
0 K̂∗

(n) the corresponding estimator for T(n) and T ∗(n).
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Figure 4.4: Known Operator. Logarithm of the norm of the ratio of the Projected Resid-
uals and α2: log ||να||2

α2 for two different prior specification for ϕ. In Panel (4.4a) it is
selected an α = 0.0285; in Panel (4.4c) it is selected an α = 0.1233.
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We define the estimated projected residual, obtained with a two times iterated Tikhonov,
as: ν̂

(2)
α = T̂ ∗(n)(y(n) − K̂(n)Êα(ϕ|y(n))). We obtain the following result.

Lemma 10 If αn → 0, α2
nn →∞, (ϕ∗ − ϕ0) ∈ H(Ω0), Ω

− 1
2

0 (ϕ∗ − ϕ0) ∈ R(Ω
1
2
0 K∗KΩ

1
2
0 )

β
2

for some β ∈ (0, 2], ||K̂∗
(n)K̂(n)−K∗K||2 ∼ Op( 1

nhp +h2ρ) and ||Ω
1
2
0 (K̂∗

(n)K̂(n)−K∗K)Ω
1
2
0 ||2 ∼

Op( 1
n + h2ρ) then

||ν̂(2)
α ||2 ∼ Op

(
αβ+2

n + (
1
n

+ h2ρ)(αβ
n +

1
α2

n

(
1
n

+ h2ρ) +
1

α2
nn

) +
1
n

)
.

It is necessary to re-scale the residual by 1
α2

n
to reach the same speed of convergence given

in Theorem 18. Figures 4.5a and 4.5c represent the curve log ||ν̂α||2
α2 against different values

for α ∈ [0, 1], for two different prior mean specifications. It is indicated the value of α
for which the curve reach its minimum and the in Figures 4.5b and 4.5d it is drawn the
regularized posterior mean obtained with these selected αs.
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Figure 4.5: Unknown Operator - Kernel estimation. Logarithm of the norm of the ratio
of the Projected Residuals and α2

n: log ||ν̂α||2
α2 for two different prior specification for ϕ. In

Panel (4.5a) it is selected an α = 0.15199; in Panel (4.5c) it is selected an α = 0.23101.

4.6 Conclusions

We have proposed in this chapter a new method to make bayesian inference on an in-
strumental regression ϕ defined through a structural econometric model. The peculiarity
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of our method is that it does not require any specification of the functional form for ϕ,
though it allows to incorporate all the prior information available. However, a deeper
analysis of the role played by the prior distribution seems to be advisable.
Several possible extensions of our model can be developed. First of all, it would be inter-
esting to consider other regularization methods, different from Tikhonov scheme, and to
analyze the way in which the regularized posterior mean is affected. We could also con-
sider Sobolev spaces, instead of general Hilbert spaces, and regularization methods using
differential norms.
Lastly, a fully nonparametric Bayesian approach, that uses some kind of Polya tree or
Bernstein polynomials prior on density functions, it is noteworthy as an alternative to the
classical nonparametric model that we propose.

4.7 Appendix A

In all the proofs that follow the notation will be the following:
- (ϕ∗, σ2

∗) is the true parameter having generated the data;
- H(Ω0) = R.K.H.S(Ω0);

- If (ϕ∗ − ϕ0) ∈ H(Ω0), we write (ϕ∗ − ϕ) = Ω
1
2
0 ψ, ψ ∈ L2

F (Z);

- T = KΩ
1
2
0 , T : L2

F (Z) → L2
F (W );

- T(n) = K(n)Ω
1
2
0 , T(n) : L2

F (Z) → Rn;

- T̂(n) = K̂(n)Ω
− 1

2
0 , T̂(n) : L2

F (Z) → Rn;

- T ∗ = Ω
1
2
0 K∗, T ∗ : L2

F (W ) → L2
F (Z);

- T ∗(n) = Ω
1
2
0 K∗

(n), T ∗(n) : Rn → L2
F (Z);

- T̂ ∗(n) = Ω
1
2
0 K̂∗

(n), T̂ ∗(n) : Rn → L2
F (Z);

- Ω
1
2
0 =

∫
ω0(s, Z)f(s)ds;

- g(Z, wi) =
∫

ω0(s, Z) f(s,wi)
f(s)f(wi)

f(s)ds

Proof of Lemma 6

To clarify the discussion in the following, we will index the posterior distribution with the sample
size n, so that µσ,F

n will substitute the usual notation µσ,F . The limits are taken for n →∞.
Definition of weak convergence of probability measures says that a sequence of probability measures
µσ,F

n on an Hilbert space L2
F (Z), endowed with the Borel σ-field E , converges weakly to a probability

measure δϕ∗ if

||
∫

a(ϕ)µσ,F
n (dϕ)−

∫
a(ϕ)δϕ∗(dϕ)|| → 0,

for every bounded and continuous functional a : L2
F (Z) → L2

F (Z).
We prove that this convergence is not satisfied at least for one functional a. We consider the
identity functional a : φ 7→ φ, ∀φ ∈ L2

F (Z), so that we have to check convergence of the posterior
mean. Let take, for brevity, null prior mean, ϕ0 = 0, the posterior mean estimator for ϕ is

E(ϕ|y(n)) = Ω0K
∗
(n)

( 1
n

I + K(n)Ω0K
∗
(n)

)−1

y(n).

We are interested in the L2
F norm:
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||E(ϕ|y(n))− ϕ∗|| ≤

I︷ ︸︸ ︷
||Ω0K

∗
(n)

( 1
n

I + K(n)Ω0K
∗
(n)

)−1

K(n)ϕ∗ − ϕ∗||

+ ||Ω0K
∗
(n)

( 1
n

I + K(n)Ω0K
∗
(n)

)−1

ε(n)||
︸ ︷︷ ︸

II

.

If we assume ϕ∗ ∈ H(Ω0) 8, term I can be rewritten as

||Ω
1
2
0 [I − Ω

1
2
0 K∗

(n)(
1
n

I + K(n)Ω0K
∗
(n))

−1K(n)Ω
1
2
0 ]γ||,

and it has the same eigenvalues as

||Ω
1
2
0 [I − (

1
n

I + T ∗(n)T(n))−1T ∗(n)T(n)]γ||
obtained by permuting the operators. The term in squared brackets is the regularization bias of
the equation T(n)γ = r with regularization parameter 1

n . However this regularization scheme does
not regularize properly since the regularization parameter goes to 0 at a faster rate than the speed
at which T ∗(n)T(n) degenerates towards an infinite rank operator T ∗T with unbounded inverse. In
particular, by Kolmogorov’s Theorem ||T ∗(n)T(n)−T ∗T ||2 ∼ Op(δ) if E(||T ∗(n)T(n)−T ∗T ||2) ∼ Op(δ),
where the expectation is taken with respect to the distribution of wi. This is the usual MISE and
it can be decomposed into the sum of the squared bias and the variance. The bias is zero since
E(T ∗(n)T(n)) − T ∗T = 0, while the variance goes to zero at the speed of 1

n , so that ||T ∗(n)T(n)|| ∼
Op( 1√

n
). Therefore this regularization scheme is not well defined and so term I is not convergent.

A similar argument proves that also II term does not go to 0 and this complete the proof.

Proof of Corollary 4

To prove the first point we develop the bias in two terms:

ϕ̂α − ϕ∗ = −

I︷ ︸︸ ︷
(I − Ω0K

∗
(n)(αnI +

1
n

I + K(n)Ω0K
∗
(n))

−1K(n))(ϕ∗ − ϕ0)

+ Ω0K
∗
(n)(αnI +

1
n

I + K(n)Ω0K
∗
(n))

−1ε(n)

︸ ︷︷ ︸
II

.

We start by term I:

||I||2 ≤
IA︷ ︸︸ ︷

||(I − Ω0K
∗
(n)(αnI + K(n)Ω0K

∗
(n))

−1K(n))(ϕ∗ − ϕ0)||2

+ ||Ω0K
∗
(n)(αnI +

1
n

I + K(n)Ω0K
∗
(n))

−1 1
n

I(αnI + K(n)Ω0K
∗
(n))

−1K(n))(ϕ∗ − ϕ0)
︸ ︷︷ ︸

IB

and by permuting operators, ||IA||2 is shown to be equivalent to

||Ω
1
2
0 [αn(αnI + T ∗T )−1ψ + (αn(αnI + T ∗(n)T(n))−1ψ − αn(αnI + T ∗T )−1ψ)]||2

that is less than or equal to

||Ω
1
2
0 ||2

(
||αn(αnI +T ∗T )−1ψ||2 + ||(αnI +T ∗(n)T(n))−1||2||T ∗(n)T(n)−T ∗T ||2||αn(αnI +T ∗T )−1ψ||2

)
.

8We notice that this condition becomes (ϕ∗ − ϕ0) ∈ H(Ω0) in the case with non null prior mean.



88

In particular, if ψ ∈ R(T ∗T )β/2 then ||αn(αnI + T ∗T )−1||2 ∼ Op(αβ
n), see Carrasco et al. (2007)

[10]. Therefore, ||IA||2 ∼ Op(αβ
n + 1

α2
nnαβ

n).

Term IB = Ω
1
2
0 T ∗(n)(αnI + 1

nI + T(n)T
∗
(n))

−1( 1
nI)(αnI + T(n)T

∗
(n))

−1T(n)ψ is negligible with re-
spect to IA, in fact, by permuting operators in a similar way as above, we get that ||IB||2 ∼
Op( 1

α4
nn2 (αβ

n + 1
α2

nnαβ
n)) that goes to zero if ||IA||2 → 0.

Let consider now term II. An analogous decomposition as for I gives

||II||2 ≤ ||Ω
1
2
0 ||2

(
||T ∗(n)(αnI + T(n)T

∗
(n))

−1ε(n)︸ ︷︷ ︸
IIA

||2

+||T ∗(n)(T(n)T
∗
(n) + αnI +

1
n

I)−1(
1
n

I)(T(n)T
∗
(n) + αnI)−1ε(n)

︸ ︷︷ ︸
IIB

||2
)

||IIA||2 ≤ ||(αnI + T ∗(n)T(n))−1||2||T ∗(n)ε(n)||2,

where T ∗(n)ε(n) = 1√
n

[
1√
n

∑
i εig(Z, wi)

]
. By Central Limit Theorem (CLT) the term into squared

brackets is bounded because it converges toward a normal random variable; then ||T̂ ∗ε(n)||2 ∼
Op( 1

n ) and ||IIA||2 ∼ Op( 1
α2

nn ) since ||(αnI + T ∗(n)T(n))−1||2 ∼ Op( 1
αn

) because T ∗(n)T(n) converges
faster than αn.
Term IIB accounts for the covariance operator 1

nI of the sampling probability and, due to the
fact that 1

n converges to zero faster than αn, it is negligible with respect to IIA. Its squared norm
is equivalent to

||(T ∗(n)T(n) + αnI +
1
n

I)−1(
1
n

I)(T ∗(n)T
∗
(n) + αnI)−1T ∗(n)ε(n)||2

that goes to zero at the speed of ( 1
α2

nn2
1

α2
nn ).

Summarizing, ||ϕ̂α − ϕ∗||2 ∼ Op((αβ
n + 1

α2
nnαβ

n)(1 + 1
α4

nn2 ) + 1
α2

nn (1 + 1
α2

nn2 )) that, simplifying the
term that are negligible becomes Op(αβ

n + 1
α2

nnαβ
n + 1

α2
nn ).

Derivation of the speed of convergence of the covariance operator Ωy,α is essentially similar. We
apply this operator to an element φ ∈ L2

F (Z) and we decompose it into two terms (one including
1
nI and an other one not including it):

Ωy,αφ = σ2
(

A︷ ︸︸ ︷
[Ω0 − Ω

1
2
0 T ∗(n)(αnI + T(n)T

∗
(n))

−1T(n)Ω
1
2
0 ]φ

+Ω
1
2
0 T ∗(n)[(αnI + T(n)T

∗
(n))

−1 − (αnI +
1
n

I + T(n)T
∗
(n))

−1]T(n)Ω
1
2
0 φ

︸ ︷︷ ︸
B

)

We have to consider the squared norm in L2
F of Ωy,αφ: ||Ωy,αφ||2 ≤ |σ2|2(||A||2 + ||B||2). By

Kolmogorov’s theorem |σ2|2 ∼ Op(δ) if and only if E[(σ2)2|y(n)] ∼ Op(1). Since the second moment
of σ2 is E[(σ2)2|y(n)] = V ar(σ2|y(n))+E2(σ2|y(n)), it follows from Theorem 15 that |σ2|2 ∼ Op(1).
Concerning term A we have
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||A||2 ≤ ||Ω
1
2
0 ||2||(I − T ∗(n)(αnI + T(n)T

∗
(n))

−1T(n))Ω
1
2
0 φ||2

≤ ||Ω
1
2
0 ||2||(I − (αnI + T ∗(n)T(n))−1T ∗(n)T(n))Ω

1
2
0 φ||2

≤ ||Ω
1
2
0 ||2||αn(αnI + T ∗(n)T(n))−1Ω

1
2
0 φ||2

≤ ||Ω
1
2
0 ||2

(
||αn(αnI + T ∗T )−1Ω

1
2
0 φ||2 + ||[αn(αnI + T ∗(n)T(n))−1 − αn(αnI + T ∗T )−1]Ω

1
2
0 φ||2

)

= ||Ω
1
2
0 ||2

(
||αn(αnI + T ∗T )−1Ω

1
2
0 φ||2

+||(αnI + T ∗(n)T(n))−1(T ∗(n)T(n) − T ∗T )αn(αnI + T ∗T )−1]Ω
1
2
0 φ||2

)

and ||αn(αnI + T ∗T )−1Ω
1
2
0 φ||2 ∼ Op(αβ

n) if Ω
1
2
0 φ ∈ R(T ∗T )

β
2 . Moreover, the second term in

brackets is an Op( 1
α2

nnαβ
n) and ||Ω

1
2
0 ||2 ∼ Op(1) since Ω0 is a compact operator. So, we get ||A||2 ∼

Op(αβ
n + 1

α2
nnαβ

n).
Lastly, term B is equivalent to term IB in the mean decomposition above, except that ψ is
substituted by Ω

1
2
0 φ, but this does not alter the speed of convergence. Hence, ||B||2 ∼ Op( 1

α4
nn2 (αβ

n+
1

α2
nnαβ

n)). To sum up, ||Ωy,α||2 ∼ Op((1 + 1
α4

nn2 )(αβ
n + 1

α2
nnαβ

n)) that, once the fastest terms are
neglected, becomes Op(αβ

n + 1
α2

nnαβ
n).

Proof of Theorem 14

Both points (i) and (ii) in the Theorem are consequences of Corollary 4 and Chebishev’s Inequality.
More clearly, we have

µσ,F
α {ϕ : ||ϕ− ϕ∗|| ≥ εn} ≤ Eα(||ϕ− ϕ∗||2|σ2, y(n))

ε2n

≤ 1
ε2n

(||V ar(ϕ|σ2, y(n))||+ ||Eα(ϕ|σ2, y(n))− ϕ∗||2)

and the result follows.

Proof of Theorem 15

The posterior mean E(σ2|y(n)) = s2
∗

ν∗−2 is asymptotically equal to

E(σ2|y(n)) ≈ 1
n

(y(n) −K(n)ϕ0)′
( 1

n
In + K(n)Ω0K

∗
(n)

)−1

(y(n) −K(n)ϕ0)

=

I︷ ︸︸ ︷
1
n

(K(n)(ϕ∗ − ϕ0))′
( 1

n
In + K(n)Ω0K

∗
(n)

)−1

(K(n)(ϕ∗ − ϕ0)) +

2
n

(K(n)(ϕ∗ − ϕ0))′
( 1

n
In + K(n)Ω0K

∗
(n)

)−1

ε(n)

︸ ︷︷ ︸
II

+
1
n

ε′(n)

( 1
n

In + K(n)Ω0K
∗
(n)

)−1

(K(n)ε(n)

︸ ︷︷ ︸
III

.

Under the assumption that (ϕ∗ − ϕ0) ∈ H(Ω0) ≡ R(Ω
1
2
0 ), there exists a ψ ∈ L2

F (Z) such that

(ϕ∗ − ϕ0) = Ω
1
2
0 ψ, then
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I =
1
n

< K(n)Ω
1
2
0 ψ,

( 1
n

In + K(n)Ω0K
∗
(n)

)−1

K(n)Ω
1
2
0 ψ >

= < ψ, Ω
1
2
0 K∗

(n)

( 1
n

In + K(n)Ω0K
∗
(n)

)−1

K(n)Ω
1
2
0 ψ >L2

≤ 1
n
||ψ||L2 ||T ∗(n)

( 1
n

In + T(n)T
∗
(n)

)−1

T(n)||L2 ||ψ||L2

∼ Op

( 1
n

)

since ||T ∗(n)(
1
nIn + T(n)T

∗
(n))

−1T(n)||L2 = ||( 1
nIn + T ∗(n)T(n))−1T ∗(n)T(n)|| and it is bounded.

Let notice that ||ε(n)|| =
√

1
n

∑
i ε2

i converges to the true value σ∗ and that || 1n ( 1
nIn+T(n)T

∗
(n))

−1T(n)||L2 =
1√
n
|| 1√

n
( 1

nIn + T(n)T
∗
(n))

−1T(n)||L2 = 1√
n
Op(1) and then it converges to 0 as n →∞. Therefore,

II =
1
n

< ε(n),
( 1

n
In + T(n)T

∗
(n)

)−1

T(n)ψ >

≤ ||ε(n)||
∣∣∣
∣∣∣ 1
n

( 1
n

In + T(n)T
∗
(n)

)−1

T(n)

∣∣∣
∣∣∣||ψ||

∼ Op

( 1√
n

)
.

Third term requires a little bit more computations. First, we recall that, by Binomial Inverse
Theorem, ( 1

nIn+T(n)T
∗
(n))

−1 = nIn−n2T(n)(IL2 +nT ∗(n)T(n))−1T ∗(n), where IL2 denotes the identity
operator in L2

F . Hence,

III = ε′(n)ε(n) − nε′(n)T(n)(IL2 + nT ∗(n)T(n))−1T ∗(n)ε(n) (4.14)

Moreover, it is easy to see that

ε′(n)ε(n) → σ2
∗

T̂ ∗ε(n) =
1
n

∑

i

εig(Z, wi)

n(IL2 + nT ∗T(n))−1T ∗(n)ε(n) =
1
n

∑

i

εi

(
(
1
n

IL2 + T ∗(n)T(n))−1g(Z, wi)
)
.

The second term in (4.14) becomes

nε′(n)T(n)(IL2 + nT ∗(n)T(n))−1T ∗(n)ε(n) = < T ∗(n)ε(n),
( 1

n
IL2 + T ∗(n)T(n)

)−1

T ∗(n)ε(n) >

≤ ||T ∗(n)ε(n)||
∣∣∣
∣∣∣
( 1

n
IL2 + T ∗(n)T(n)

)−1

T ∗(n)ε(n)

∣∣∣
∣∣∣.

The first norm is an Op( 1√
n
) since ||T ∗(n)ε(n)|| = 1√

n

(
1√
n

∑
i εi||g(Z, wi)||L2

)
and the factor in

brackets is bounded in probability because it converges to a normal random variable (by the CLT).
If g(Z,wi) ∈ R(T ∗T )

γ
2 , for some γ > 0, then there exists a function h(Z, wi) ∈ L2

F such that
g = (T ∗T )

γ
2 h(Z, wi) and hence

||
( 1

n
IL2 + T ∗(n)T(n)

)−1

T ∗(n)ε(n)|| = || 1
n

∑

i

εi

(
(
1
n

IL2 + T ∗T )−1(T ∗T )
γ
2 h(Z,wi)

)
|| (4.15)

+|| 1
n

∑

i

εi

(
[(

1
n

IL2 + T ∗(n)T(n))−1 − (
1
n

IL2 + T ∗T )−1]g(Z,wi)
)
||
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The first norm in the left hand side is

|| 1
n

∑

i

εi

(
(
1
n

IL2 + T ∗T )−1(T ∗T )
γ
2 h(Z, wi)

)
|| ≤ n

n

∑

i

|εi|
∣∣∣
∣∣∣ 1
n

(
1
n

IL2 + T ∗T )−1(T ∗T )
γ
2

∣∣∣
∣∣∣

︸ ︷︷ ︸
∼Op(n−

γ
2 )

||h(Z, wi)||

= Op(n1− γ
2 )

1
n

∑

i

|εi|||h(Z,wi)||

that is bounded since εi is absolutely integrable.
The second norm in (4.15), || 1n

∑
i εi

(
[( 1

nIL2 + T ∗(n)T(n))−1 − ( 1
nIL2 + T ∗T )−1]g(Z, wi)

)
||, can be

developed as

|| 1
n

∑

i

εi

(
[(

1
n

IL2 + T ∗(n)T(n))−1(T ∗T − T ∗(n)T(n))(
1
n

IL2 + T ∗T )−1](T ∗T )
γ
2 h(Z, wi)

)
||

that is an Op(n1− γ
2 ). Finally, nε′(n)T̂ (IL2 + nT ∗(n)T(n))−1T ∗(n)ε(n) ∼ Op(n

1−γ
2 ) and it goes to 0 if

γ > 1. Therefore, by eliminating negligible terms,

E(σ2|y(n))− σ2
∗ ∼ Op(

1√
n

( 1
n

) γ−1
2

).

Proof of Theorem 8

Note that

||(σ2, ϕ)− (σ2
∗, ϕ∗)||R+×L2

F (Z) = ||(σ2 − σ2
∗, ϕ− ϕ∗)||R+×L2

F (Z)

=
√

< (σ2 − σ2∗, ϕ− ϕ∗) >R+×L2
F (Z)

=
√

< (σ2 − σ2∗), (σ2 − σ2∗ >R+ + < (ϕ− ϕ∗), (ϕ− ϕ∗) >L2
F (Z)

= (||σ2 − σ2
∗||2R+

+ ||ϕ− ϕ∗||2L2
F (Z))

1
2

≤ ((||σ2 − σ2
∗||R+ + ||ϕ− ϕ∗||L2

F (Z))
2)

1
2

= ||σ2 − σ2
∗||R+ + ||ϕ− ϕ∗||L2

F (Z).

Then,

νF × µσ,F{(σ2, ϕ) ∈ R+ × L2
F (Z), ||(σ2, ϕ)− (σ2

∗, ϕ∗)||R+×L2
F (Z) > ε}

≤ νF × µσ,F{(σ2, ϕ) ∈ R+ × L2
F (Z), ||σ2 − σ2

∗||R+ + ||ϕ− ϕ∗||L2
F (Z) > ε}

= EνF (µσ,F{||ϕ− ϕ∗||L2
F (Z) > ε− ||σ2 − σ2

∗||R+}),

where EνF denotes the mean taken with respect to the posterior distribution of σ2. Since µσ,F is a
bounded and continuous function of σ2, by definition of weak convergence of a probability measure
and by Theorem 15, this expectation converges in R-norm toward

µσ∗,F{||ϕ− ϕ∗||L2
F (Z) > ε}

that in turn converges to 0 by Theorem 14.
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Proof of Theorem 16

We start by decomposing the estimation error in four parts:

||ϕ̂α − ϕ∗||2 ≤ ||ϕ̂α − Eα(ϕ|y(n),w)||2 + ||Eα(ϕ|y(n),w)− ϕ̂θ̂
α||2 + ||ϕ̂θ̂

α − ϕ̂θ∗
α ||2 + ||ϕ̂θ∗

α − ϕ∗||2,

where ϕ̂θ̂
α = Eα(ϕ|θ̂, y(n),w) and ϕ̂θ∗

α = Eα(ϕ|θ∗, y(n),w). For brevity, we have suppressed the
subscript L2

F (Z) in the norm, being implied that it is the norm in this space. The first term is the
error due to Monte Carlo approximation of (4.10) and it is negligible as J →∞. The second error
term is due to having integrated out θ instead of to set it equal to the posterior mean. The third
one accounts for the estimation error of θ and the last term is the usual regularization bias due to
the fact that we approximate parameter ϕ with a regularized version of the posterior mean and
it converges to 0 at the speed given in Theorem 14. We shall show that the other two terms are
converging at a faster speed and then are negligible.
We start with the second term. Note that Eα(ϕ|y(n),w) =

∫
ϕ̂θ

αρ(θ|(s2,i)i=1,...,ñ)dθ, then

||Eα(ϕ|y(n),w)− ϕ̂θ̂
α||2 =

∫ ( ∫
(ϕ̂θ

α(Z)− ϕ̂θ̂
α(Z)ρ(θ|(s2,i)i=1,...,ñ)dθ

)2

f(Z, ·|θ∗)dZ

≤
∫ (

ϕ̂θ
α(Z)− ϕ̂θ̂

α(Z)
)2

ρ(θ|(s2,i)i=1,...,ñ)dθ f(Z, ·|θ∗)dZ

≈ trV ar(θ|(s2,i)i=1,...,ñ)
∫ (∂ϕ̂θ̂

α

∂θ

∂ϕ̂θ̂
α

∂θ′

)
(Z)f(Z, ·|θ∗)dZ

∼ Op

( 1
ñ

)

if ∂ϕ̂θ̂
α

∂θ ∈ L2
F (Z). The approximated equality has been obtained through a first order Taylor

expansion of ϕ̂θ
α around the posterior mean θ̂.

Consider now the third error term. A first order Taylor expansion around the true value θ∗ gives:

ϕ̂θ̂
α ≈ ϕ̂θ∗

α +
∂ϕ̂θ∗

α

∂θ
(θ̂ − θ∗).

Classical results in Bayesian statistic (see e.g. Bernstein (1934) [5], Gosh and Ramamoorthi (2003)
[36] or Von Mises (1964) [79]) show that, under some regularity condition that we assume to be
satisfied,

√
N ||θ̂ − θ∗|| ∼ Op(1). This implies

||ϕ̂θ̂
α − ϕ̂θ∗

α ||2 ≤ ||∂ϕ̂α(Z, θ∗)
∂θ

||2||(θ̂ − θ∗)||2

∼ Op(
1
ñ

)

if ∂ϕ̂θ∗
α

∂θ ∈ L2
F (Z). The result follows.

Proof of Theorem 17

In order to show convergence to 0 of Ω̂y,α we decompose it in different terms and study each of

them separately. Let φ ∈ L2
F (Z) be such that Ω

1
2
0 φ ∈ R(Ω

1
2
0 K∗KΩ

1
2
0 )

β
2 for some β > 0, then

||Ω̂y,αφ||2 ≤ ||Ω̂y,αφ− V arα(ϕ|y(n),w)φ||2

+||[
∫

V arα(ϕ|θ, y(n),w)ρ(θ|(s2,i)i=1,...,n)− V arα(ϕ|θ̂, y(n),w)]φ||2

+||V arα(ϕ|θ̂, (y(n),w))φ− V arα(ϕ|θ∗, (y(n),w))φ||2 + ||Ωy,α(θ∗)φ||2

+|| 1
J

J∑

j=1

(ϕ̂(j)
α )2 −

( 1
J

J∑

j=1

ϕ̂α

)2

(ζ)||2 (4.16)
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with Ωy,α(θ∗) the covariance operator of the regularized posterior distribution µFα when F is known.
The first term is the error due to Monte Carlo integration, therefore it is negligible assuming that
we are taking a large number of discretization points drawn from ρ(θ|(s2,i)i=1,...,ñ). For simplicity,
we rewrite V arα(ϕ|θ, y(n),w) as Ωy,α(θ), thus the second error term becomes:

||
∫

[Ωy,α(θ)− Ωy,α(θ̂)]φρ(θ|(s2,i)i=1,...,ñ)dθ||2

that is equal to

∫ (∫
[Ωy,α(θ)φ− Ωy,α(θ̂)φ](ζ)ρ(θ|(s2,i)i=1,...,ñ)dθ

)2

f(ζ, ·|θ∗)dζ

≤
∫ ∫

[Ωy,α(θ)φ− Ωy,α(θ̂)φ]2(ζ)ρ(θ|(s2,i)i=1,...,ñ)dθ f(ζ, ·|θ∗)dζ

≈ trV ar(θ|(s2,i)i=1,...,ñ)
∫

∂Ωy,α(θ̂)φ
∂θ

∂Ωy,α(θ̂)φ
∂θ′

(ζ)f(ζ, ·|θ∗)dζ

∼ Op

( 1
ñ

)
if

∂Ωy,α(θ̂)φ
∂θ

∈ L2
F (Z).

Using the same notation as before the third error term is

||Ωy,α(θ̂)φ− Ωy,α(θ∗)φ||2 =
∫

[(Ωy,α(θ̂)φ)(ζ)− (Ωy,α(θ∗)φ)(ζ)]2f(ζ, ·|θ∗)dζ

≈ tr(θ̂ − θ∗)(θ̂ − θ∗)′
∫

∂(Ωy,α(θ∗)φ)(ζ)
∂θ

∂(Ωy,α(θ∗)φ)(ζ)
∂θ′

f(ζ, ·|θ∗)

∼ Op

( 1
n

)
if

∂Ωy,α(θ∗)φ
∂θ

∈ L2
F (Z).

It should be noticed that all the approximated equalities in previous terms are obtained thanks to
a first order Taylor expansion.
Consider the last norm of (4.16):

||V̂ ar(Eα(ϕ|θ, y(n),w, z̃, w̃))||2 ≤ ||V̂ ar(Eα(ϕ|θ, y(n),w, z̃, w̃))− V ar(Eα(ϕ|θ, y(n),w, z̃, w̃))||2
||V ar(Eα(ϕ|θ, y(n),w, z̃, w̃))||2,

where the first term of the decomposition is the Monte Carlo approximation error and it is
negligible. By using the notation: ϕ̂θ

α := Eα(ϕ|θ, y(n),w, z̃, w̃) = Eα(ϕ|θ, y(n),w) and ϕ̂α :=∫
ϕ̂θ

αρ(θ|z̃, w̃)dθ, we can rewrite the last norm as

||
∫ (

ϕ̂θ
α − ϕ̂α

)2

ρ(θ|(s2,i)i=1,...,ñ)dθ||2

= ||
∫ (

ϕ̂θ
α ± ϕ̂θ̂

α − ϕ̂α

)2

ρ(θ|(s2,i)i=1,...,ñ)dθ||2

≤ ||
∫ [

(ϕ̂θ
α − ϕ̂θ̂

α)2 + (ϕ̂θ̂
α − ϕ̂α)2

]
ρ(θ|(s2,i)i=1,...,ñ)dθ||2

since 2(ϕ̂θ
α − ϕ̂θ̂

α)(ϕ̂θ̂
α − ϕ̂α) = −2(ϕ̂θ̂

α − ϕ̂α). Therefore,

||V ar(Eα(ϕ|θ, y(n),w, z̃, w̃))||2 ≤ ||
∫

(ϕ̂θ
α − ϕ̂θ̂

α)2ρ(θ|(s2,i)i=1,...,ñ)dθ||2 + ||(ϕ̂α − ϕ̂θ̂
α)2||2.

Proof of Theorem 16 shows that these norms are Op( 1
ñ ).

Therefore, all the error terms in (4.16) are negligible with respect to ||Ωy,α(θ∗)||2 which is an
Op(αβ

n + 1
α4

nn4 α
(β+1)∧2
N ) as is shown in Theorem 14 and this proves the result.
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Proof of Theorem 18

The proof is analogous to that one for Theorem 14 with the regularized posterior distribution re-
placed by its estimated version. Therefore, we limit ourselves to recover the speed of convergence of
the estimated regularized posterior mean and variance. First, we use the following decomposition:

Êα(ϕ|y(n))− ϕ∗ = −
I︷ ︸︸ ︷

(I − Ω0K̂
∗
(n)(αnI + K̂Ω0K̂

∗
(n))

−1K̂(n))(ϕ∗ − ϕ0)

+ Ω0K̂(n)[(αnI + Σn + K̂Ω0K̂
∗
(n))

−1 − (αnI + K̂Ω0K̂
∗
(n))

−1]K̂(n)(ϕ∗ − ϕ0)︸ ︷︷ ︸
II

+ Ω0K̂
∗
(n)(αnI + ΣnK̂Ω0K̂

∗
(n))

−1(η(n) + ε(n))︸ ︷︷ ︸
III

As usual, we assume (ϕ∗ − ϕ0) ∈ H(Ω0), then (ϕ∗ − ϕ0) = Ω
1
2
0 ψ. Hence,

||I||2 ≤ ||Ω
1
2
0 ||2||I − T̂ ∗(n)(αnI + T̂(n)T̂

∗
(n))−1T̂(n)||2||ψ||2

= ||Ω
1
2
0 ||2||I − (αnI + T̂ ∗(n)T̂(n))−1T̂ ∗(n)T̂(n)||2||ψ||2

≤ ||Ω
1
2
0 ||2︸ ︷︷ ︸

∼Op(1)

(||αn(αnI + T ∗T )−1||2︸ ︷︷ ︸
∼Op(αβ

n)

+ ||αn(αnI + T̂ ∗(n)T̂(n))−1(T ∗T − T̂ ∗(n)T̂(n))(αnI + T ∗T )−1||2
︸ ︷︷ ︸

∼Op(αβ−2
n ||T̂∗(n)T̂(n)−T∗T ||2)

||ψ||2

where the power β is found under the assumption Ω
1
2
0 (ϕ∗−ϕ0) ∈ R(T ∗T )

β
2 . Let consider term II:

||II||2 ≤ ||Ω
1
2
0 ||2||T̂ ∗(n)(αnI +

σ2

n
I + T̂(n)T̂

∗
(n))

−1(−σ2

n
I)(αnI + T̂(n)T̂

∗
(n))

−1T̂(n)||2||ψ||2

≤ ||Ω
1
2
0 ||2||(αnI +

σ2

n
I + T̂ ∗(n)T̂(n))−1||2||σ

2

n
I||2||(αnI + T̂(n)T̂

∗
(n))

−1T̂ ∗(n)T̂(n)||2||ψ||2

' ||Ω
1
2
0 ||2||(αnI +

σ2

n
I + T ∗T )−1 + (αnI +

σ2

n
I + T ∗T )−2(T̂ ∗(n)T̂(n) − T ∗T )||2||σ

2

n
I||2

||(αnI + T ∗T )−1T ∗T + [(αnI + T ∗T )−1 + (αnI + T ∗T )−2T ∗T ](T̂ ∗(n)T̂(n) − T ∗T )||2||ψ||2

∼ Op

(
(

1
α2

nn2
+

1
α4

nn2
||T̂ ∗(n)T̂(n) − T ∗T ||2)(1 +

1
α2

n

||T̂ ∗(n)T̂(n) − T ∗T ||2)
)
,

where the third approximated equality follows from a first order Taylor expansion around the true
value of operator T ∗T . Lastly, term III can be rewritten as

||III||2 ≤ ||Ω
1
2
0 ||2

( IIIA︷ ︸︸ ︷
||T̂ ∗(n)(αnI + T̂(n)T̂

∗
(n))

−1(η(n) + ε(n))||2 +

||T̂ ∗(n)(αnI +
σ2

n
I + T̂(n)T̂

∗
(n))

−1(−σ2

n
I)(αnI + T̂(n)T̂

∗
(n))

−1(η(n) + ε(n))||2
︸ ︷︷ ︸

IIIB

)
;

||IIIA||2 ' ||(αnI + T ∗T )−1 − (αnI + T ∗T )−2(T̂ ∗(n)T̂(n) − T ∗T )||2||Ω
1
2
0 ||2||K̂∗

(n)(η(n) + ε(n))||2

∼ Op(
1

α2
nn

+
1

α4
nn
||T̂ ∗(n)T̂(n) − T ∗T ||2)

||IIIB||2 ∼ Op

(
(

1
α2

nn2
+

1
α4

nn2
||T̂ ∗(n)T̂(n) − T ∗T ||2)( 1

α2
nn

+
1

α4
nn
||T̂ ∗(n)T̂(n) − T ∗T ||2)

)
.
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The rates of IIIA and IIIB have been obtained through a first order Taylor expansion. The
last thing we need to prove is that ||T̂ ∗(n)T̂(n) − T ∗T ||2 ∼ Op( 1

n + h2ρ). This is an easy task if

we note that K̂∗
(n)K̂(n)ϕ has the same asymptotic behavior of

∫ ∫
ϕ(z)f̂(z|wi)dz f̂(z,wi)

f̂(z)
dwi that is

the operator T ∗
F̂
TF̂ defined in Darolles et al. (2006) [15]. We use their result (that they prove in

the Appendix B): ||T ∗
F̂
TF̂ − T ∗F TF ||2 = Op( 1

nhp + h2ρ) and it follows that K̂∗
(n)K̂(n) is of the same

order. Then, we smooth by applying the integral operator Ω
1
2
0 to the first order Taylor expansion

T ∗
F̂
TF̂ − T ∗F TF = (T ∗

F̂
− T ∗)T + T ∗(TF̂ − T ). We compute the squared bias and the variance of the

last two terms as described in Darolles et al. (2006) [15]; the smoothing effect acts only on the
variance (that is now of order 1

n ) and not on the squared bias (that remains equal to h2ρ).
Henceforth, after having deleting the negligible terms we get: ||I||2 ∼ Op(αβ

n + αβ−2
n ( 1

n + h2ρ)),
||II||2 ∼ Op( 1

α2
nn2 + 1

α4
nn2 ( 1

n + h2ρ)) and ||III||2 ∼ Op( 1
α2

nn + 1
α4

nn ( 1
n + h2ρ)) since term IIIB is

negligible with respect to IIIA. Finally, simplification of the redundant and negligible terms in
||I||2 establishes the result.

Proof of Lemma 9

Let Rα = (αIn + T(n)T
∗
(n))

−1 and Rα = (αIn + 1
nI + T(n)T

∗
(n))

−1. We decompose the residual as

να(2) =

I︷ ︸︸ ︷
T ∗(n)[I − (αK(n)Ω0K

∗
(n)R

α + K(n)Ω0K
∗
(n))R

α]K(n)(ϕ∗ − ϕ0)

+

II︷ ︸︸ ︷
T ∗(n)[(αK(n)Ω0K

∗
(n)R

α + K(n)Ω0K
∗
(n))R

α − (αK(n)Ω0K
∗
(n)R

α
(n) + K(n)Ω0K

∗
(n))R

α
(n)]K(n)(ϕ∗ − ϕ0)

+

III︷ ︸︸ ︷
T ∗(n)[I − (αK(n)Ω0K

∗
(n)R

α + K(n)Ω0K
∗
(n))R

α]ε(n)

+
IV

T ∗(n)[(αK(n)Ω0K
∗
(n)R

α + K(n)Ω0K
∗
(n))R

α − (αK(n)Ω0K
∗
(n)R

α
(n) + K(n)Ω0K

∗
(n))R

α
(n)]ε(n)︸ ︷︷ ︸

.

Standard computations similar to those one used in previous proof allows to show that: ||I||2 ∼
Op(αβ+2 + 1

n ), ||II||2 ∼ Op( 1
n2 + 1

α2n2 + α2

n ), ||III||2 ∼ Op( 1
n + 1

α2n2 ), ||IV ||2 ∼ Op( 1
α2n3 + 1

α4n3 ).

Proof of Lemma 10

The same as the Proof of Lemma 9 with T(n), T ∗(n), K(n) and K∗
(n) replaced by T̂(n), T̂ ∗(n), K̂(n)

and K̂∗
(n). Then we have the same decomposition and we get: ||I||2 ∼ Op(αβ+2 + ( 1

n + h2ρ)),
||II||2 ∼ Op(αβ+2 + ( 1

n + h2ρ)αβ), ||III||2 ∼ Op( 1
α2n ( 1

n + h2ρ)), ||IV ||2 ∼ Op( 1
n + 1

α2n ( 1
n + h2ρ)).



Chapter 5

Bayesian Nonparametric
Estimation of Asset Pricing
Functionals1

Abstract

We recover the posterior distribution of the equilibrium asset pricing functional p in a completely
nonparametric way. We consider rational expectation models for assets pricing as in Lucas (1978),
where the pricing functional p is a function of a vector of n state variables and is characterized as
the solution of an integral equation of second kind, stated in an Hilbert space. We adopt a Bayesian
procedure since it allows to incorporate all the prior information we have and this is particular
useful in nonparametric estimation. Moreover, a Bayesian estimation mimics the Bayesian learning
process of economic agents that leads to form rational expectations.
Integral equations of second kind are well posed inverse problems, but the use of a Bayesian
approach for solving them introduces ill-posedness. Therefore, the posterior distribution of p
is inconsistent, due to non-continuity of its posterior mean. The contribution of this paper is
to propose two consistent estimators for the pricing functionals. The first one is a regularized
posterior distribution and the second estimator is the posterior distribution obtained through a
prior distribution of the g-prior type, like in Zellner (1986), that we show is able to get rid of the
ill-posedness in the posterior distribution.
These two estimators allow to benefit from the advantages of being Bayesian without suffering of
the drawbacks that we had with the usual posterior distribution.

5.1 Introduction

In this chapter we propose a new nonparametric Bayesian estimator for the solution of
an Euler equation. In particular, we focus on the Euler equation defined in consumption-
based asset pricing model.
We link two ingredients. The first one is the bayesian nonparametric approach we have
proposed in Chapters 2 and 3 to solve integral equations of first kind, stated in infinite
dimensional Hilbert spaces. In this paper we develop a similar bayesian procedure for
solving integral equations of second kind, whose Euler Equations are a well-known exam-
ple in economics. The second ingredient is the consumption-based asset pricing model in
the style of the Lucas’(1978) tree model.
We have introduced the nonparametric bayesian approach in a general setting where the

1This chapter is adapted from: Simoni, A. (2008), Bayesian Nonparametric Estimation of Asset Pricing
Functionals, mimeo.
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object of interest was the solution of an integral equation of first kind. Several estima-
tion problems in econometrics can be restated as problems of recovering the solution of a
functional equation (i.e. as an inverse problem) and there exist numerous techniques to
solve them, see Carrasco et al. (2007). Our contribution is the development of a Bayesian
approach that is new both as solution technique of inverse problem and as bayesian non-
parametric estimation method. The main Bayesian solution of a functional equation, that
we propose, is the regularized posterior distribution of the parameter of interest. It is
a regularized version of the ”classical” posterior distribution where the regularization is
performed through alternative techniques, like Tikhonov scheme or Hilbert Scale regular-
ization, and it is necessary in order to guarantee posterior consistency.
The application of these bayesian techniques to dynamic rational expectation models is
a first attempt to illustrate the usefulness in economics and econometrics of our new
Bayesian approach.

Dynamic rational expectation models have been extensively studied in economic and
econometric theory. In these models economic agents are supposed to face an intertem-
poral choice problem in which they have to determine their consumption and investment
plans through a maximization of an infinite horizon expected utility function under bud-
get and positivity constraints. The result is a model for general equilibrium assets pricing
where the assumption of rational expectations is fundamental. In fact, it is assumed that
the market clearing price, implied by consumer behavior, is the same as the price on which
consumer decisions are based.
This paper exploits the equilibrium characterization provided by such kind of models in
order to analyze the performance of the Bayesian nonparametric approach for estimating
the equilibrium asset pricing functional. In dynamic rational expectation models, such
a functional is characterized as the solution of a functional equation. The aim of this
paper is to recover the stochastic character of the price process {pt} of a financial asset.
Consumption-based asset pricing models assume that at each time t, the price of a finan-
cial asset is equal to a fixed function of the state of the economy Yt, namely ∀t, pt = p(Yt).
Our idea is to estimate both p(·) and the dynamic of the state of the economy in a non-
parametric way and to combine them for obtaining {pt}.
Having a nonparametric estimation of {pt} is useful for many reasons. First, it allow to
test parametric specifications on the price process. If we take as the state of the economy
the aggregate consumption, the price series that we obtain can be interpreted as a measure
of the market portfolio and this is very useful since usually we observe it only through
proxies. Moreover, {pt} can be used in order to empirically study the implications of the
consumption-based asset pricing model for explaining observed data on asset returns and
dividends, that is for trying to explain the equity premium puzzle. Lastly, we can use it
for analyzing if a financial asset is over- or under-priced.
The Bayesian approach is appropriate to analyze rational expectation models since the
way in which economic agents form rational expectations is driven by a Bayesian learning
process. The theory of rational expectations was introduced by Muth (1961) and applied
to the economy as a whole by Lucas during the 1970s, see Lucas (1976) and Lucas (1978).
This theory revolutionized macroeconomics and economic thinking. It is based on the
belief that economic agents make their economic choices by taking into account their pre-
vious experiences and their rational expectations of the result of those choices. So, as
Lucas (1978) points out, the hypothesis of rational expectation ”is not behavioral : it does
not describe the way agents think about their environment, how they learn...It is rather a
properly likely to be (approximately) possessed by the outcome of this unspecified process
of learning and adapting”.
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Furthermore, a bayesian analysis is interesting, from an econometric point of view, for
many other reasons. (i), in computing the estimator of the pricing functional, it allows
to exploit the prior information we could have. This is very important for nonparametric
estimation since it is difficult to estimate infinite dimensional objects with a finite number
of data and parameters that are identified from a mathematical point of view are usu-
ally partially identified by the data. Hence, any kind of prior information can helps in
restoring identification. In financial markets it is usual to possess this kind of information
and it is efficient to use it for improving forecasting. (ii), the Bayesian method that we
propose for recovering solution of integral equations broadens the nonparametric estima-
tion techniques in the background of the bayesian statisticians. In fact, we consider a
prior different than the Dirichlet process, or its transformations, that is the usual prior for
nonparametric estimation. In this paper we are able to stay completely nonparametric by
using a gaussian process prior. (iii), the fact that we get the whole posterior distribution
of the pricing functional represents a big advantage with respect to the classical estimation
procedure that provides only a punctual estimator. The posterior distribution has good
small sample properties and so it can be used for recovering every quantity linked to it
(as quantiles and confidence intervals) and for implementing testing procedures.

The econometric analysis of dynamic rational expectation models is widely developed.
Lucas (1976) and Hansen et al. (1980) observed that, instead of estimating the parameter
of agents’ decision rules, we should estimate the parameters of agents’ objective functions
and the random process they face as decision makers. This is enough for enabling the
econometricians to predict how agents’ decision rules change over time across alterations
in their stochastic environment.
Dynamic rational expectation models have been exploited by econometricians in order to
pursue two different aims. The first scope, that has motivated the literature on GMM, has
been to estimate parameters of economic agents’ preferences. The dynamic optimization
problem of economic agents provides a set of stochastic Euler equations that must be
satisfied in equilibrium. These Euler equations, in turn, imply a set of population orthog-
onality conditions that can be exploited to estimate the parameters of interest. Several
authors have proposed to use Euler equations to estimate parameters, see Hayashi (1980)
[44], Fair and Taylor (1980) [22], Hansen and Sargent (1980) [39], Hansen and Sargent
(1981) [40], Sargent (1981) [71], Hansen and Singleton (1982) [41].

An other branch of econometric literature concerning dynamic rational expectation
models, is interested in directly recovering the equilibrium asset pricing functional by
solving the Euler equation that characterize it. Our paper gets into this literature. In the
simple Lucas’ tree model (1978) [59], characterized by a one-good, pure exchange economy
with identical consumers, the equilibrium asset vector price is described as a functional
p(·), of the Markov state of the economy, solution of an integral equation of second kind.
The functional equation is of the form (I−K)p = d, where I and K are two operators (the
identity and an integral operator, respectively) onto an infinite dimensional Hilbert space
and d is a known element of this Hilbert space 2. Such characterization is particularly
useful since it allows to recover equilibrium asset prices without imposing any parametric
restriction on them and by using the theory of inverse problems. Only regularity and
smoothness conditions will be imposed.

2An integral equation of second kind is a particular type of inverse problem and it can be ill-posed
or well-posed according to the fact that the integral operator K in it has an eigenvalue equal to one or
not. Methods for treating integral equations of second kind are extensively treated in Kress (1999) and
Carrasco et al. (2007).
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Literature dealing with determination of equilibrium asset pricing functionals by solving
Euler equations can be split in three veins. (i) The literature that proposes an exact solu-
tion to the Euler equation. This requires strong parametric assumptions on the stochastic
discount factor and on the dynamic of the state of the economy. Not only a parametric
specification is necessary, but the methodology works uniquely for a specific parametric
form, see for instance Burnside (1998) [8], Tsionas (2003) [76], Bidarkota and McCul-
loch (2003) [6] and Calin et al. (2005) [9]. (ii) The literature proposing numerical solution
methods for the Euler equation, see Hussey and Tauchen (1991) [75] and Rust et al. (2002)
[70]. These methodologies require to specify a parametric form for both the stochastic dis-
count factor and the dynamic of the state of the economy, but they works for whatever
parametric specification. Hussey and Tauchen (1991) compute a discrete state space so-
lution method for the pricing functional based on numerical quadrature approximation of
the integral operator K. Rust et al. (2002) use the observation that operator K + r is a
quasi linear contraction and compute a pointwise ε-approximation of its fixed point. This
approximation is shown to converge at a rate close to T−1. (iii) The econometric methods
proposing to estimate the solution of the Euler equation, see Carrasco et al. (2007) [10].
In this literature whatever parametric specification for the stochastic discount factor is
required but the dynamic of the state of the economy does not need to be specified and it
is estimated nonparametrically. Henceforth, more flexibility is admitted.
Our methodology belongs to this third vein and it will be compared with the methodol-
ogy proposed by Carrasco et al. (2007). In the following, we refer to this methodology
as the classical approach since they propose a classical method for estimating the asset
price in Lucas’ model based on an estimation of d and K and on the simple inversion of
operator (I −K). The inverse problem is well-posed so that no regularization technique
is demanded for solving it.
A particular feature of the method that we propose in this chapter is that we stay non-
parametric also in the dynamic of the state of the economy. This choice is motivated by
the fact that we want to stay as general as possible and, in particular, by the result of
Bansal and Yaron (2004) that it is empirically ”difficult to distinguish an i.i.d. consump-
tion growth model and a long-run risk model.

The new approach that we propose to estimate the asset pricing functional is different
from the previous ones first of all because it is bayesian. Our approach restates the integral
equation in a larger space of probability distributions so that each quantity in it (p and d
in our case) are re-interpreted as random functions. Hence, from a Bayesian point of view,
the solution to an Euler equation is the posterior distribution of the quantity of interest
p.
Some element of the integral equation defining the asset pricing functional is unknown and
requires to be estimated, so that finally we obtain an Euler equation that is only approx-
imately true: d̂ ≈ (I − K̂)p. In particular, what is unknown is the transition density of
the Markov state of the economy and it is estimated nonparametrically. The asymptotic
properties of such estimator define the sampling probability associated to this functional
equation. In fact, the exact sampling distribution is not computable. Moreover, in order
to derive a suitable asymptotic distribution, the original model must be transformed as
K̂∗d̂ = K̂∗(I−K̂)p, where K̂∗ denotes the estimation of the adjoint of K. We end up with
an integral equation of first kind that is solvable through the technique we have proposed
in Chapter 2. Hence, even if both the classical and the bayesian approaches start with
the same functional equation, they finally solve two substantially different, though linked,
functional equations.
The infinite dimension of the pricing functional inverse problem makes the posterior dis-
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tribution not well defined due to lack of continuity of its mean function. Hence, the
posterior mean, and consequently the posterior distribution, is prevented from being con-
sistent in the frequentist sense. This is an interesting example of frequentist inconsistency
in Bayesian nonparametric estimation, see Diaconis and Freedman (1986) [16]. If p∗ de-
notes the true value of the pricing functional having generated the data, the posterior
distribution is said to be consistent in the frequentist sense if it degenerates, with respect
to the sampling distribution, towards a point mass in p∗ as more and more observations
are collected.
The strategy that we use consists in getting rid of the lack of continuity by applying a
regularization scheme in the computation of the posterior distribution. We propose two
alternative regularization schemes: a classical Tikhonov scheme and a Tikhonov regu-
larization in the Hilbert scale induced by the prior covariance operator. The posterior
distribution that we get is slightly modified and it is called Regularized Posterior distri-
bution to highlight the role played by the regularization scheme. We take as punctual
Bayesian estimator the mean of this distribution. Under some regularity condition on the
true pricing functional p∗, our bayesian estimator converges towards p∗ faster, in L2-norm
and in the sampling probability, than the classical estimator proposed in Carrasco et al.
(2007).
Finally, we study a particular prior distribution that is able by itself to introduce the reg-
ularization scheme necessary for making the posterior distribution consistent. This prior
is an extended version of the g-prior proposed by Zellner (1986).
The chapter is organized as follows. In Section 5.2 we briefly remind the rational expecta-
tion general equilibrium model of Lucas (1978) and we explicit the functional equation in
the equilibrium asset price as an integral equation of second kind. We properly define the
Hilbert space we are working in and the integral operator K. The Bayesian approach will
be explained and adapted to this particular inverse problem in Section 5.3. In this section
we compute the regularized posterior distribution by using the two alternative regulariza-
tion schemes. In Section 5.4, posterior consistency of the regularized posterior distribution
of the asset price p is proved. Section 5.5 presents the particular g-prior distribution for
the pricing functional that is able to regularize. We develop an extension of our model in
Section 5.6 where the variance parameter in the sampling covariance operator is unknown.
Section 5.7 concludes. All the proofs and some numerical simulation can be found in the
Appendix.

5.2 Rational Expectations Asset Pricing Model

Our Bayesian estimator does not require any particular assumption about preferences to be
satisfied in the asset pricing model. It is general and it can be applied to every asset pricing
model that characterizes the asset pricing functional as solution of the Euler Equation.
In order to stay as general as possible in this paper we take the asset pricing model of
Lucas (1978) since it represents the basis for all the subsequent models. Every extension to
more specific models with, for instance, non-separable utility functions, habit preferences
or Epstein and Zin (1991) utility function is possible with only minor modifications.

5.2.1 Lucas’ (1978) Model

Lucas (1978) [59] constructed the equilibrium in an exchange economy under the assump-
tion of rational expectations. The first-order conditions for attaining the optimum define
a functional equation in the vector of equilibrium prices of financial assets which is solved
for price as a function of the physical state of the economy.
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We consider a one-good pure exchange economy with a single consumer interpreted as
representative of a large number of identical consumers. The consumer faces the intertem-
poral choice problem between consumption and trading in financial assets and she/he
maximizes the expectation of a time-separable utility function:

Et

[ ∞∑

j=0

βjU(Ct+j)
]

(5.1)

where Et denotes the conditional expectation operator conditional on the information set
Ft available in t, β ∈ (0, 1) is the time discount factor, U(·) is a current period strictly
concave utility function and Ct+j is a stochastic process representing the consumption of
a single good at time t + j. Since expectations are supposed to be formed rationally, Et

denotes both the mathematical conditional expectation and the agents’ subjective expec-
tations at time t.
In this economy there exist n distinct productive units (denoted with i = 1, . . . , n) each
one producing a quantity Yit of the consumption good in period t. The production
Yt = (Y1t, . . . , Ynt) is assumed to be entirely exogenous and to follow a Markov pro-
cess defined by its transition distribution function F (yt+1|yt) = P{Yt+1 ≤ yt+1|Yt = yt}.
Moreover, since the produced output is perishable, feasible consumption levels are those
which satisfy 0 ≤ Ct ≤

∑n
i=1 Yit. Each productive unit has outstanding one perfectly

divisible equity share held by the representative consumer and traded at a competitively
determined price vector pt = (p1t, . . . , pnt). We denote with zt = (z1t, . . . , znt) the con-
sumer’s share holding at the beginning of period t, i.e. zit is the period t share holding in
the i-th productive unit.
Definition of the equilibrium of this economy requires to determine the equilibrium quan-
tities of consumption and asset holdings and the equilibrium price vector p. As Lucas
stresses, the equilibrium quantities of consumption and asset holdings are easily deter-
mined since all output will be consumed and all shares will be held, then

Ct =
n∑

i=1

Yit, zt = (1, . . . , 1), ∀t. (5.2)

The feasible equilibrium consumption and investment plans must satisfy, at each period
t, the budget constraint

Ct+1 + ptzt+1 ≤ Ytzt + ptzt, Ct ≥ 0 zt ≥ 0. (5.3)

The important economic variable whose equilibrium value remains to be determined is
the asset price. Equilibrium prices are set by the asset market by solving a problem of the
same form each period, so that it seems natural to express them as some fixed function
p(·) of the state of the economy: pt = p(Yt), where the i-th coordinate pi(Yt) is the price
of a share of unit i when the economy is in the state Yt.
The first order conditions for maximizing (5.1) subject to (5.3), once equilibrium conditions
(5.2) have been incorporated, gives a functional equation in the equilibrium price vector,
or equivalently, n functional equations:

pi(Yt) = β

∫
U ′(

∑
i Yi,t+1)

U ′(
∑

i Yi,t)
(Yi,t+1 + pi(Yt+1)) d F (Yt+1|Yt), (5.4)

for i = 1, . . . , n, where the conditional expectation Et in (5.1) has been explicited. This
equilibrium asset-pricing relation is the classical Euler equation that equates current price
of the i-th security to its expected discounted future payoff, discounted using the stochastic
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discount factor Mt+1(Yt, Yt+1) = β
U ′(

∑
i Yi,t+1)

U ′(
∑

i Yi,t)
. The stochastic discount factor is expressed

as a function of the vectorial Markov state {Yt} instead of consumption process {Ct}. In
the following of the paper, sometimes we shall denote it, at time t + 1, simply by Mt+1,
by neglecting its arguments.
Two remarks are in order. First, we choose to use the Lucas’ model and a separable
utility function because this represents the most general setting and it allows to explain
in a clear way our bayesian estimation approach. In any case, our bayesian procedure
does not require them and it perfectly works with every other specification of the utility
function (e.g. non-separable utility function over time and goods, habit utility function,
Epstein-Zin utility function, etc. . . ) or with a model in continuous time as Cox, Ingersoll
and Ross (1985). A different kind of utility function only affects the stochastic discount
factor Mt+1, but it does not change the characterization of the asset pricing functional p
as the solution of an integral equation.
Second, it is possible to note that the validity of equation (5.4) implies the validity of the
projected model

E[pi(Yt)|Ỹt+1] = E
[
Mt+1(Yt, Ỹt+1)E

(
Mt+1(Yt, Yt+1)(Yi,t+1 + pi(Yt+1))

∣∣∣Yt

)∣∣∣Ỹt+1

]
(5.5)

for i = 1, . . . , n, where we re-project the Euler equation through a conditional expectation
operator conditioned on the future state of the economy. This more complicated integral
equation will be required in order to compute the sampling distribution in the Bayesian
experiment. This is the price to pay for being bayesian.
The object of interest of this paper will be the determination of the vector of pricing
functionals p(·). Since equilibrium prices are a fixed function of the state of the economy,
once the transition function F (yt+1|yt) is known or estimated, this will be sufficient to
determine the stochastic process of prices pt.

5.2.2 Martingale Property

The equilibrium asset-pricing relation (5.4) says that pi(Yt) = E[Mt+1(Yi,t+1 + pi,t+1)|Yt].
Therefore, we can write:

Mt+1(Yi,t+1 + pi,t+1) = pi(Yt) + εt+1. (5.6)

The variable εt+1 is a noise satisfying the following assumption that will turn out use-
ful in determining the covariance operator of the sampling distribution in the Bayesian
experiment.

Assumption 19 {εt+1} is a weak white noise with variance σ2 that is constant for each
time t.

The fact that error terms are serially uncorrelated prevents problems of endogeneity of
the regressors.

Lucas (1978) [59] stresses that ”asset prices themselves do not possess the Martingale
property”, but that asset prices properly corrected for dividends and for the stochastic
discount factor β possess this property, how can be seen from equation (5.4). This obser-
vation confirms the finding of Leroy (1973) [56] that the martingale property is neither
a necessary nor sufficient condition for rationally determined asset prices. However, it
is possible to show that there exists a probability, known as risk-neutral probability (or
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equivalent martingale measure - EMM) under which the discounted price process corrected
for dividends is a martingale. To show this, note that relation (5.4), divided by the value
of the function pi(Yt), gives for a risk-free security

1 = (1 + rf )EF (Mt+1|Yt),

where rf denotes the risk-free rate compounded once in period [t, t + 1]. We make the
following assumption concerning the transition distribution function of the Markov state

Assumption 20 The transition distribution function F (yt+1|yt) is absolutely continu-
ous with respect to the Lebesgue measure and there exists a positive function f such that
dF (yt+1|yt)

dyt+1
= f(yt+1|yt).

Hence, under this hypothesis, we have ∀i = 1, . . . , n

pi(Yt) =
∫

Yi,t+1 + pi(Yi,t+1)
1 + rf

Mt+1(Yt, Yt+1)
E(Mt+1|Yt)

f(Yt+1|Yt)dYt+1

=
∫

Yi,t+1 + pi(Yi,t+1)
1 + rf

f∗(Yt+1|Yt)dYt+1,

where f∗(Yt+1|Yt) = Mt+1

E(Mt+1|Yt)
f(Yt+1|Yt) is the equivalent martingale measure. In the

following we denote with E∗ the expectation taken with respect to this probability.

5.2.3 Integral Equations of Second Kind and Characterization of the
Operator

In this subsection, we study mathematical properties of functional equations (5.4) and
(5.5), meant as a functional equations in pi(·), and we properly characterize all the elements
appearing in it. If Assumption 20 holds, we can restate equation (5.4) in a more general
form:

pi(Yt)−
∫

Mt+1(Yt, Yt+1)pi(Yt+1)f(Yt+1|Yt)dYt+1 =
∫

Mt+1(Yt, Yt+1)bi(Yt+1)f(Yt+1|Yt)dYt+1,

(5.7)
for i = 1, . . . , n. Function bi is the coordinate function associating vector Yt+1 to its i-th
component. {Yt} is an n-dimensional stationary stochastic process that satisfies Markov
property with stationary distribution Π, i.e. Π is the unique solution to

Π(Yt+1) =
∫

F (Yt+1|Yt)dΠ(Yt).

We denote with π the density function associated to Π.

Let X be the space of square integrable functions of one realization of {Yt} with respect
to the stationary distribution Π endowed with the scalar product < ·, · > inducing the
norm || · ||, i.e. X = L2

π(Y ). We assume that p ∈ X 3 and we define an operator K acting
on this space as:

∀φ ∈ X , Kφ(Yt) = EF (Mt+1(Yt, Yt+1)φ(Yt+1)|Yt),
3This assumption is simply an assumption on the distribution of the state of the economy Yt.
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where the conditional expectation is taken with respect to the transition distribution
F (Yt+1|Yt). Operator K is a contraction operator with norm strictly less then 1. The
contraction property can be easily proved by using Theorem 5 in Blackwell (1965) [7] or di-
rectly through the definition of contraction operator. In particular, ||K|| := supφ:||φ||≤1 ||Kφ|| ≤

1
1+rf

supφ:||φ||≤1 ||E∗(φ|Yt)|| < 1 since the conditional operator has norm equal to 1 and
1

1+rf
< 1.

The adjoint K∗ of this operator is defined through the equality < Kφ, ψ >=< φ, K∗ψ >,
∀φ, ψ ∈ X , so that K∗ψ = EF (Mt+1(Yt, Yt+1)ψ(Yt)|Yt+1) =

∫
β U ′(Yt+1)

U ′(yt)
ψ(yt)f(yt|yt+1)dyt

and it is the operator characterizing the projected model (5.5). Although F (Yt|Yt+1) =
F (Yt+1|Yt), the two operators K and K∗ are substantially different due to the fact that
Mt+1 is not symmetric in its arguments. Thus, Kφ coincides, up to a constant, with the
conditional expectation of the product of φ and the marginal utility function whereas K∗φ
is proportional to the conditional expectation of the ratio φ

U ′ .

We call di(Yt), or simply di, the right hand side of equation (5.7), so that we rewrite
the equilibrium model as

di(Yt) = (I −K)pi(Yt), i = 1, . . . , n (5.8)
di(Yt) := EF (Mt+1(Yt, Yt+1)bi(Yt+1)|Yt), i = 1, . . . , n

where I is the identity operator onto X . In the following we eliminate the subscript i in the
price, bi and di functions and it will be implied that the functional equation (I −K)p = d
refers to a single security.

We will now introduce an assumption, that is only a regularity assumption but that is
useful to guarantee compacity of operator K.

Assumption 21 The Equivalent Martingale Measure f∗(Yt+1|Yt) is dominated by the
marginal distribution of Yt+1 and its density is square integrable with respect to the product
of margins of Yt+1 and Yt.

Exploiting this assumption it is possible to show that K is an Hilbert-Schmidt operator.
Let k(Yt, Yt+1) = Mt+1

f(Yt+1|Yt)
π(Yt+1)

be the kernel characterizing operator K. K is an Hilbert-
Schmidt operator if the Hilbert-Schmidt norm || · ||HS is finite:

||K||2HS =
∫
|k(Yt, Yt+1)|2π(Yt)π(Yt+1)dYtdYt+1

≤ (1 + rf )2
∫

(Mt+1
f(Yt+1|Yt)
π(Yt+1)

)2π(Yt)π(Yt+1)dYtdYt+1

=
∫

(
Mt+1

E(Mt+1|Yt)
f(Yt+1|Yt)
π(Yt+1)

)2π(Yt)π(Yt+1)dYtdYt+1

=
∫

(g∗(Yt+1|Yt))2π(Yt)π(Yt+1)dYtdYt+1 < ∞

where the second line follows from the fact that (1 + rf )2 ≥ 1 and g∗ is the density of the
EMM f∗ with respect to π(Yt+1), i.e. dF ∗(Yt+1|Yt)

dΠ(Yt+1)
= g∗(Yt+1|Yt

).
Hilbert-Schmidt operators are compact; this is a very attractive property since every
compact operator is the limit of a sequence of operators with finite dimensional range.
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Hence, when operator K has to be estimated it can be approached by a sequence of finite
dimensional operators. Furthermore, a compact operator has peculiar spectral properties.
The eigenvectors of a self-adjoint compact operator can be orthonormalized, the set of
its eigenvalues {λ2

j} is at most countable and if there are infinitely many eigenvalues
they accumulate only at 0. For a compact operator that is non self-adjoint, like K, we
consider its singular values that are defined to be the square roots of the eigenvalues of the
nonnegative self-adjoint compact operator K∗K. Then, there exist orthonormal sequences
{ϕj} and {ψj} of X such that

Kϕj = λjψj , K∗ψj = λjϕj .

Assumption 21 also implies that r(Yt) ∈ X , R(K) ⊆ X and R(K∗) ⊆ X , then K :
X → X and K∗ : X → X .
Functional equation (5.7) is an integral equation of second kind and its properties are
well known in the literature (see Kress (1999) [50]). While K is compact, (I −K) is not
compact. Moreover, 1 is not an eigenvalue of K so that (I − K) is one-to-one and its
inverse is bounded. Therefore, the inverse problem defined by (5.7) is well-posed in the
sense that it satisfies Hadamard’s conditions, see Engl et al. [19]. Unfortunately, when
we consider the projected model (5.5) we loose the well-posed character of the inverse
problem. The projection operation transforms a well-posed inverse problem in an ill-
posed one since operator K∗(I −K) is compact and its inverse is not continuous on X , so
that the recovered pricing functional p is very sensitive to small measurement errors in r.

5.3 Bayesian Econometric Analysis

The aim moving our econometric analysis is the characterization and estimation of the
price process {pt}. The price process can be expressed at each period t as a fixed function
p(·) of the state of the economy: pt = p(Yt). Therefore, once function p(·) is known,
knowledge of the transition function F (yt+1|yt) is enough to determine the stochastic
character of the price process. While the transition function will be approximated in a
classical nonparametric way (e.g. with a kernel method) the whole pricing function p(·)
will be the object of a Bayesian analysis.
The rationalization for our estimation choice is that prices are economic variables that
economic agents have to take into consideration when they make their economic decisions
and on which they performs a Bayesian learning through a continuous updating of the
prior distribution. Hence, it seems natural to consider a similar learning process for the
econometrician. On the contrary, the transition probability of the state of the economy
is exogenous to the learning process of the economic agents and so it does not seem
suitable to treat it in a Bayesian way. Roughly speaking, we could consider F (yt+1|yt) as
a nuisance parameter. This approach has nothing of strange since it is the same as in the
classical linear model, where the parameters are estimated in a bayesian way while the
second moment of covariates and the second cross moment are estimated with a classical
procedure, see Zellner (1986) [82].
The stochastic discount factor Mt will be considered as known. In the case in which it is
unknown we can calibrate it.

5.3.1 Nonparametric Estimation of the Transition Density

The transition density function f(Yt+1|Yt) is usually unknown. In this subsection, it
will be briefly reviewed the construction and properties of the kernel density estimation
considered in Roussas (1967) [68].
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With abuse of notation, we use f to denote both the transition density and the two-
dimensional joint density of the Markov process {Yt} with respect to Lebeasgue measure.
It is assumed that π is strictly positive on R+. Then, the transition density of the process
is written as f(Yt,Yt+1)

π(Yt)
. We state the following assumption where small letters denote

realizations of the random variable Yt.

Assumption 22 We dispose of a (T +1) sample (y1, . . . , yT+1) from the weakly stationary
Markov process {Yt}.

As already stated we want to stay as general as possible, hence we follow the original setup
of Lucas (1978) [59] which assumes stationarity of dividends levels, so we take Yt as the
aggregate consumption process.
In some case, data may not confirm the hypothesis of stationarity of the consumption
process. When this is the case, it is sufficient to rewrite the basic asset pricing equation
(5.4) to express it in terms of consumption growth rates, which is shown to be stationary
and Markov by empirical evidence. Then, Yt will denote either the consumption growth
rate process or a stationary state variable whose the consumption growth rate is a trans-
formation, see Chen et al. (2008) [12]. The slightly modified asset pricing equation can
be rewritten as

vi(Yt) = E(m(Yt+1, Yt)[1 + vi(Yt+1)]
Yt+1

Yt
|Yt) (5.9)

where vi denotes the i-th asset’s price-dividend ratio, m(Yt+1, Yt) = β U ′(Ct+1)
U ′(Ct)

, under the

hypothesis of homogeneous utility function, and Yt+1

Yt
is the dividend growth variable.

In the following, this specification is not used and for clarity and simplicity of exposition
we consider the basic Lucas setting. All the results in the following can be trivially adapted
to the functional equation (5.9) with only minor modifications.

Let L : (Rn) → R be a measurable function satisfying properties:

|L(u)| ≤ M1(< ∞), u ∈ Rn;
∫
|K(u)|du < ∞,

||u||m|K(u)| → 0, as ||u|| → ∞;
∫

K(u)du = 1,

h = h(T ) be a function of T such that h → 0 as T → ∞ and Lh(u) stands for L( u
hT

).
Then, the kernel transition density estimation is obtained as the ratio of the kernel density
estimation of the joint f and of π, f̂(Yt+1|Yt) = f̂(Yt,Yt+1)

π̂(Yt)
:

f̂(Yt+1|Yt) =
1

Th2n

∑T
j=1 Lh(Yt − yj)Lh(Yt+1 − yj+1)

1
Thn

∑T
l=1 Lh(Yt − yl)

.

We plug this estimator in the operator K and in d:
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K̂p(Yt) = Ê(Mt+1(Yt, Yt+1)p(Yt+1)|Yt)

=
∫

Mt+1(Yt, Yt+1)p(Yt+1)f̂(Yt+1|Yt)dYt+1

=
1

Th2n

T∑

j=1

Lh(Yt − yj)
1

Thn

∑T
l=1 Lh(Yt − yl)

∫
Mt+1(Yt, Yt+1)p(Yt+1)Lh(Yt+1 − yj+1)dYt+1

d̂(Yt) = Ê(Mt+1(Yt, Yt+1)b(Yt+1)|Yt)

=
∫

Mt+1(Yt, Yt+1)b(Yt+1)f̂(Yt+1|Yt)dYt+1

=
1

Th2n

T∑

j=1

Lh(Yt − yj)
1

Thn

∑T
l=1 Lh(Yt − yl)

∫
Mt+1(Yt, Yt+1)b(Yt+1)Lh(Yt+1 − yj+1)dYt+1.

The expression for K̂∗ can be easily deduced from that one for K̂. We assume that K̂
and K̂∗ define operators from X into X and d̂ is an element of X . These assumptions are
actually integrability assumptions on the kernel function L. Hence, both K̂ and K̂∗ are
degenerate operators with range of dimension T , they are compact and have at most T
nonzero eigenvalues λ̂j that implies they have not continuous inverses.
For numerical simulations and asymptotic properties it is useful to approximate K̂ and d̂
through a change of variable Yt+1−yj+1

h = u and a Taylor expansion at the first order:

K̂p =
1

Th

∑T
j=1 Mt+1(Yt, yj+1)p(yj+1)Lh(Yt − yj)

1
Th

∑T
l=1 Lh(Yt − yl)

d̂ =
1

Th

∑T
j=1 Mt+1(Yt, yj+1)b(yj+1)Lh(Yt − yj)

1
Th

∑T
l=1 Lh(Yt − yl)

.

Asymptotic properties of this kernel estimator will affect the asymptotic properties of
the Bayesian estimator for p. Note that the use of these estimated quantities implies
that the Euler Equation defining the pricing functional is now only approximately true:
d̂ ≈ (I − K̂)p.

5.3.2 Construction of the Bayesian experiment

We concentrate in this paragraph on the characterization of the Bayesian experiment as-
sociated to (5.8). Given the reasons discussed at the beginning of Section 5.3, preference
parameters and β are assumed as known and the transition density is substituted with
the kernel estimator previously described.

Prior Distribution

The first step in order to well define the Bayesian experiment is the characterization of a
prior probability µ induced by the pricing functional p on the parameter space X 4. We
endow the parameter space with the σ-field E and we assume that µ is a gaussian measure.

4Note that the distribution µ has nothing to do with the stochastic character of pt. The latter only
depends on the state of the economy once a pricing functional has been drawn from µ
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Assumption 23 Let µ be a probability measure on (X , E) such that E(||p||2) < ∞, with
E the expectation taken with respect to µ. µ is a Gaussian measure that defines a mean
element p0 ∈ X and a covariance operator Ω0 : X → X .

µ is gaussian if the probability distribution on the Borel sets of R induced from µ by
every bounded linear functional on X is gaussian. More clearly, µ gaussian means that
∀B ∈ B(R)

P(B) = µ{p; < p, ϕ >∈ B}
is gaussian for all ϕ ∈ X , see Baker (1973) [3]. The mean element p0 in X is defined by

< p0, ϕ >=
∫

X
< p, ϕ > dµ(p)

and the operator Ω0 by

< Ω0ϕ1, ϕ2 >=
∫

X
< p− p0, ϕ1 >< p− p0, ϕ2 > dµ(p)

for every ϕ1, ϕ2 ∈ X . Let S(X ) denote the set of all linear, bounded, self-adjoint, positive
semi-definite and trace-class operators onto X . In particular, S(X ) is the set of all covari-
ance operators of Gaussian measure on X . On the basis of Assumption 23, Ω0 is correctly
specified as a covariance operator in the sense that it belongs to S(X ). A covariance oper-
ator needs to be trace-class in order the associated measure be able to generate trajectories
in the well suited space. Indeed, by Kolmogorov’s inequality a realization of the random
function p is in X if E(||p||2) is finite5. Since E(||p||2) =

∑
j λΩ0

j , this is guaranteed if Ω0

is trace-class, that is if
∑

j λΩ0
j < ∞, with {λΩ0

j } the eigenvalues associated to Ω0 and E(·)
the expectation taken with respect to µ.

Since the eigenvalues of Ω
1
2
0 are the square roots of the eigenvalues of Ω0 the fact to be

trace-class entails that Ω
1
2
0 is Hilbert-Schmidt. Hilbert-Schmidt operators are compact and

the adjoint is still Hilbert-Schmidt. Compacity of Ω
1
2
0 implies compacity of Ω0.

This specification for the prior measure is suitable in the sense that its support is the clo-
sure of the Reproducing Kernel Hilbert Space associated to Ω0, (H(Ω0) in the following),
that is dense in X if Ω0 is one to one. Let {λΩ0

j , ϕΩ0
j } be the eigensystem of Ω0. We define

the space H(Ω0) embedded in X as

H(Ω0) = {ϕ : ϕ ∈ X and
∞∑

j=1

| < ϕ, ϕΩ0
j > |2

λΩ0
j

< ∞} (5.10)

and, following Proposition 3.6 in Carrasco et al. (2007), we have the relation H(Ω0) =

R(Ω
1
2
0 ). It results evident how the choice of the covariance operator can modify the sup-

port of a gaussian measure. In particular, if Ω0 is injective then the support of µ is the
whole space X , otherwise, the support is any subset of X ; henceforth, a particular choice
of the covariance operator allows to incorporate in the prior distribution constraints on
the parameter of interest.
An other way to incorporate constraints on the functional form of p consists in specify-
ing a prior mean satisfying them. The trajectories drawn from the corresponding prior
distribution will almost surely satisfy the constraints. Let p∗ denote the true value of the
pricing functional having generated the data d̂, we assume that

5Namely, following Kolmogorov’s inequality P(||p|| > εn) ∼ Op(1) if and only if E(||p||2) is finite.
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Assumption 24 (p∗ − p0) ∈ H(Ω0), i.e. there exists δ∗ ∈ X such that (p∗ − p0) = Ω
1
2
0 δ∗.

In other words, we are supposing there exists a function δ∗ ∈ X such that the centered true

value of the pricing functional is the image of it through operator Ω
1
2
0 . This assumption is

only a regularity condition on p∗ and will be exploited for proving asymptotic results.

Sampling Distribution

In our model, both the parameter and the sample space coincide with X . We denote with
Qp the sampling probability on X , namely the conditional probability of the observations
given p, and it can be inferred from the conditional distribution of the measurement error
process d̂−(I−K̂)p given p. An exact conditional distribution of this process is impossible,
or at least too complicate, to compute due to nonparametric estimation. Hence, we need
to compute its asymptotic distribution. However, the nonparametric estimator used for
obtaining K̂ and d̂ prevents us to find convergence of d̂ − (I − K̂)p to a well defined
process with continuous trajectories,like a gaussian process. In fact, it converges towards
a process with trajectories that are discontinuous. In order to obtain weak convergence of
this process it is necessary to smooth its trajectories. For this, we consider the projected
model (5.5) instead of the original one (5.4) and we redefine p as the solution of the
estimated integral equation of type one

K̂∗d̂ = K̂∗(I − K̂)p + U (5.11)

that is the estimated counterpart of (5.5). We introduce the notation R̂ for denoting K̂∗d̂
and Ĥ for denoting K̂∗(I − K̂) so that

R̂ = Ĥp + U (5.12)

and Ĥ is the estimator of H = K∗(I−K) that is a compact operator onto X . Hereinafter
we denote with H∗ the adjoint of H and H∗ = (I−K∗)K. In this new model the estimated
operator Ĥ becomes the true operator defining the functional equation for p and p is now
solution of an integral equation of first kind. The compacity of H makes this inverse
problem ill-posed.
The error term process can be rewritten as U = K̂∗((d̂+K̂p)−(d+Kp)) and the following
theorem shows that it is asymptotically gaussian.

Theorem 19 Under Assumption 22, there exists a random element ϑ ∈ X such that√
TK̂∗((d̂ + K̂p)− (d + Kp)) is asymptotically equivalent to

√
T

T

∑

j

Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]
f(yj , Yt+1)

π(yj)π(Yt+1)
+ hρϑ.

Moreover,
√

TK̂∗((d̂ + K̂p) − (d + Kp)) ⇒ GP(0, σ2K∗K) (weak convergence in X ) and
K∗K is a trace-class operator.

It will be proved in the Appendix that the first term of the above equality and ϑ weakly
converge to a gaussian element in X , but that the second term becomes negligible after
having been scaled by h → 0.
Assumption 22, concerning the weakly stationarity of the sample, is necessary only for hav-
ing a speed of convergence of

√
T , but it does not matter for having weakly convergence
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towards a gaussian process. Our guess is that without the weakly stationarity assumption
we would get a slower speed of convergence equal to δ(T ), for some function δ(·).
The sampling distribution Qp of R̂ given p is characterized by the transition probability
P(·|p) that associates to each p a probability measure on (X ,F): Qp = P(R̂ ∈ B|p), for all
B ∈ F , where F is the σ-field associated to the sample space. This probability is deduced
from the above theorem, thus Qp is approximately gaussian with mean Ĥp and covariance
operator ΣT = σ2

T K∗K. Because K is unknown, operator ΣT is replaced by the estimator
Σ̂T = σ2

T K̂∗K̂ when we want to compute the posterior distribution (under the assumption
that σ2 is known, the case with σ2 unknown will be considered in Section 5.6).
Some remarks are in order. First, the fact that the sampling probability is only asymp-
totically gaussian does not affect properties of our estimator. Indeed, we need normality
only to construct the estimator of p and it is not used at all to prove consistency (that is
the argument that justifies the proposed estimator).
Second, in order to recover the sampling probability, we have considered the estimated
projected model (that is an ill-posed inverse problem) instead of the more natural one
d̂ = (I − K̂)p + U (that is a well-posed inverse problem). This is because such error term
does not weakly converge to any well-defined stochastic process since kernel estimation
produces an empirical process converging to a process with discontinuous trajectories.
Projecting the model through a further application of operator K∗ allows to smooth tra-
jectories and to increase the speed of convergence. We loose the well-posedness of the
initial inverse problem (5.4), but this is the price to pay in order to be bayesian.
Third, ΣT ∈ S(X ), thus it possesses all the properties that characterize a covariance op-
erator.
Fourth, the sampling model (5.12) is different than standard econometric models since
the sample is represented by only one variable of infinite dimension, that plays the role
of the observation, instead of by several finite dimensional observations as usual. The
variable R̂, playing the role of the sample, is a mathematical object obtained through a
transformation of a sample of finite dimensional observations. Therefore, its distribution
(in particular its covariance operator) depends on the way the data are generated.

Identification

In our estimation, we are interested in frequentist consistency of the posterior distribution,
i.e. convergence with respect to the sampling distribution. We will give in Section 5.4
the definition of frequentist consistency, also called posterior consistency or consistency
in the sampling sense. In order this type of consistency be verified we need the following
assumption for identification.

Assumption 25 The operator HΩ
1
2
0 := K∗(I −K)Ω

1
2
0 : X → X is one-to-one on X .

This assumption guarantees continuity of the regularized posterior mean that we shall
define below, so that posterior consistency is satisfied.
Some comments about this hypothesis are in order. If we use the classical model d =
(I −K)p and a classical (non bayesian) procedure to recover p then no further identifica-
tion condition would be required since operator (I−K) is one-to-one (due to the fact that 1
is not an eigenvalue of K). In reality, we are using the projected model K∗d = K∗(I−K)p,
so that, if a classical resolution method is used, the identification of p would require in-
jectivity of K∗(I − K) that is not guaranteed by injectivity of (I − K). If we compare

Assumption 25 to this last one, we see that it is weaker in the sense that if Ω
1
2
0 is one-to-one
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then K∗(I −K)Ω
1
2
0 injective does not imply K∗(I −K) injective while the reverse is true.

Joint Probability Distribution

With relevant space we refer to the product of the sample and parameter space, associated
to model (5.11), endowed with the associated σ-field E ⊗ F and with the joint measure
determined by recomposing the prior and sampling distributions. We define the product
space X × X as the set

X × X := {(φ, ψ);φ, ψ ∈ X}
with addition and scalar multiplication defined by (φ1, ψ1) + (φ2, ψ2) = (φ1 + φ2, ψ1 + ψ2)
and h(φ1, ψ1) = (hφ1, hψ1), ∀h ∈ R. X × X is a separable Hilbert space under the norm
induced by the scalar product defined as

< (φ1, ψ1), (φ2, ψ2) >:=< φ1, φ2 > + < (ψ1, ψ2) >, ∀(φi, ψi) ∈ X × X , i = 1, 2.

The joint probability measure on X×X , denoted with Λ, is constructed by recomposing
the prior µ and the sampling distribution Qp in the following way:

Λ(A×B) =
∫

A
Qp(B)µ(dp), A, B ∈ X .

After that, function Λ is extended to E ⊗F . Following discussion in Chapter 2, it is trivial
to prove that (R̂, p) are (asymptotically) jointly distributed as a gaussian process:

(
R̂
p

)
∼ GP

((
Ĥp0

p0

)
,
( ΣT + ĤΩ0Ĥ

∗ ĤΩ0

Ω0Ĥ
∗ Ω0

))
(5.13)

The marginal distribution induced by R̂ on X , denoted with Q, is gaussian with mean
Ĥp0 and covariance CT := ΣT + ĤΩ0Ĥ

∗ that is trace class. We shall denote with ĈT =
Σ̂T + ĤΩ0Ĥ

∗ the estimated marginal covariance operator. It should be noted that Ĥ and
H are compact operators since they are the product of a bounded and a compact operator,
see Theorem 2.16 in Kress [50]. While Ĥ has a finite number of non-zero singular values,
H has a countable number of singular values only accumulating at 0.
Summarizing, the bayesian experiment associated to model (5.5) can be written as

Ξ = (X × X , E ⊗ F , Λ = µ⊗Qp).

Bayesian inference consists in finding the inverse decomposition of Λ in the product of the
posterior distribution, denoted with µF , and the predictive measure Q.

5.3.3 Analysis of the Posterior Distribution

The infinite dimension of the Bayesian experiment makes application of Bayes theorem
not evident, so that in defining and computing the posterior distribution we should care
about three points: (i) existence of a regular version of the conditional probability on E
given F , (ii) the fact that it is a gaussian measure and (iii) its continuity. The conditional
probability µF , given R̂, is said regular if a transition probability characterizing it exists,
i.e. there exists a probability P(·|F) such that P(A|F) = µF (A), ∀A ∈ E . The next
theorem answers to the first two questions:
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Theorem 20
(i) Let (X ×X , E ⊗F ,Λ) be a probability space that is Polish 6, then there exists at least

one regular conditional probability P(·|F) such that P(A|F) = µF (A), ∀A ∈ E.
(ii) The probability µF is characterized by the characteristic function

E(ei<p,h>|Ŷ ) = ei<AR̂+b,h>− 1
2
<(Ω0−AĤΩ0)h,h>, h ∈ X ,

where i is the imaginary unit, A : X → X and b ∈ X . Then µF is gaussian with mean
AR̂ + b and covariance operator (Ω0 −AĤΩ0).

The first point of the theorem is an application of Jirina theorem, see Neveu (1965). We
find that the space X we are considering, defined as the space L2

π(Y ) of square integrable
functions with respect to π, is Polish, see Hiroshi et al. (1975). Concerning the second part
of the theorem, a proof of this part can be found in Mandelbaum [60]. The characteristic
function takes the form of the characteristic function of a gaussian random variable. The
posterior mean is AR̂ + b and the posterior variance is Ω0 − AĤΩ0. The deterministic
function b has the following form: b = (I −AĤ)p0 and operator A is determined through
the equality between the two expressions for the covariance operator:

∀φ, ψ ∈ X , Cov(< p, φ >, < R̂, ψ >) = Cov(< E(p|R̂), φ >, < R̂, ψ >)
= Cov(< AR̂, φ >, < R̂, ψ >)
= Cov(< R̂, A∗φ >, < R̂, ψ >)
= < (ΣT + ĤΩ0Ĥ

∗)A∗φ, ψ >),

where A∗ denotes the adjoint of A, and from (5.13)

Cov(< p, φ >,< R̂, ψ >) = < ĤΩ0φ, ψ > .

Therefore, by equating these two terms, A is defined as the solution of the functional
equation:

(ΣT + ĤΩ0Ĥ
∗)A∗φ = ĤΩ0φ ∀φ ∈ X . (5.14)

In reality, ΣT is unknown and replaced by its estimated version. Therefore, it is more
appropriate to define A as the solution of

(Σ̂T + ĤΩ0Ĥ
∗)A∗φ = ĤΩ0φ ∀φ ∈ X . (5.15)

With the transition distribution F replaced by the estimator F̂ , which is of finite rank, the
null set of operators Ĥ, Ĥ∗ and Σ̂T is not reduced to zero. Furthermore, Σ̂T , Ĥ and Ĥ∗ are
operators from X in X , so that they have an infinite number of eigenvalues equal to zero.
Hence, ĈT has not an inverse continuously defined on X and A∗ is unbounded. This causes
A to be unbounded and the posterior mean to be not continuous in R̂. This is a huge
problem because it entails that small measurement errors in R̂ will have a severe impact
on the posterior mean of p that consequently will be prevented from being a consistent
estimator (in the sampling sense). Then, the posterior distribution is not consistent in the
sampling sense when we are considering the whole space X . Nevertheless, the posterior
mean remain a consistent estimator in the Bayesian sense, i.e. with respect to the joint

6A Polish space is a separable completely metrizable topological space.
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distribution Λ.
In practice, the computation of the posterior distribution in infinite dimensional spaces
requires to solve the further inverse problem (5.15) that is ill-posed. Henceforth, the
degree of ill-posedness of the Bayesian problem is different than the degree of ill-posedness
of the classical problem. In the following two subsections we propose two solutions to deal
with this lack of consistency. These solutions are based on two different regularization
techniques of the inverse of operator (Σ̂T + ĤΩ0Ĥ

∗) in (5.15); the first one uses a classical
Tikhonov regularization scheme and the second one uses a Tikhonov regularization in the
Hilbert scale induced by the inverse of the prior covariance operator.

5.3.4 Tikhonov Regularized Posterior Distribution

We solve the problem of unboundedness of operator A in the posterior mean function by
applying a Tikhonov regularization scheme, see Kress (1999), to the inverse of operator
(Σ̂T + ĤΩ0Ĥ

∗). We define the regularized operator Aα as:

Aαφ = Ω0Ĥ
∗(αI + Σ̂T + ĤΩ0Ĥ

∗)−1φ (5.16)

where α > 0 is a regularization parameter that is function of the sample size T , α = α(T ),
and it is such that α → 0 as T → ∞. This parameter must be chosen in order to
balance the trade-off between the bias due to the regularization and the variance due
to the instability of the inversion. Operator (αI + Σ̂T + ĤΩ0Ĥ

∗) is surjective and then
injective and it has a bounded inverse.
The regularized operator Aα is used to construct a new posterior distribution that we
denote with µFα and that we guess is the solution of the projected Euler equation (5.12).
Asymptotic arguments will justify this choice as far as it is proved, in Section 5.4, that
µFα weakly converges, with respect to the sampling probability, to the Dirac measure
concentrated in p∗, where p∗ is the true value of the pricing functional.
The regularized posterior distribution µFα is a conditional gaussian measure on the σ-field
E given F , with mean and variance

Eα(p|R̂) = Aα(R̂− Ĥp0) + p0

Ωα,R = Ω0 −AαĤΩ0.

This probability measure is characterized by the estimated operator K̂, therefore it must
be meant as an estimation of the corresponding regularized posterior distribution with
true K. We select as punctual estimator of the equilibrium price function the regularized
posterior mean Eα(p|R̂), as it is suggested by a quadratic loss function. This estimator is
a continuous function of R̂ and then it is consistent.
Tikhonov regularization is a stabilization procedure and it is the equivalent, in inverse
problem theory, of shrinkage estimators in statistics and econometrics. These estimators
are defined through the addition of a bias in order to stabilize the inversion. One example
of shrinkage estimator is the well-known ridge regression. In particular, in finite dimen-
sional Bayesian inverse problem, for particular choices of the prior and sampling variance,
the posterior mean and the Tikhonov regularized solution coincides.
Tikhonov regularization is easy to implement but in certain situations the rate of conver-
gence of the regularized solution, toward the true value p∗, is not optimal. More properly,
when the true pricing functional p∗ is highly regular, Tikhonov regularization does not
permit to exploit all its regularity to reach a faster rate of convergence. This is what is
called saturation or qualification effect.
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5.3.5 Tikhonov regularization in the Prior Variance Hilbert scale

Different methods for better exploiting the regularity of function p∗ have been proposed in
literature. Among these, we find the iterative methods, as the iterated Tikhonov regular-
ization, and the Tikhonov regularization in Hilbert Scale, see Engl et al.(2000) for general
theory of regularization in Hilbert scale.
In this subsection, we recover A by applying a Tikhonov regularization in the Hilbert scale

induced by the inverse of the prior covariance operator. Let L = Ω
− 1

2
0 be a densely de-

fined, unbounded, self-adjoint, strictly positive operator in the Hilbert space X 7. The
norm || · ||s is defined as ||x||s := ||Lsx||. We define the Hilbert Scale Xs induced by L
as the completion of the domain of Ls, D(Ls), with respect to the norm || · ||s previously
defined; moreover Xs ⊆ Xs′ if s′ ≤ s, ∀s ∈ R. Usually, when a regularization scheme in
Hilbert Scale is adopted, the operator L, and consequently the Hilbert Scale, is created ad
hoc. The operator L is in general a differential operator. In the Bayesian case this regular-
ization scheme results to be very interesting since the Hilbert Scale is not created ad-hoc
but is suggested by the prior information we have and this represents a big difference
and advantage with respect to the standard methods. Hence, the regularization scheme
is strictly linked to the prior distribution. The following assumption is necessary in order
the theory of regularization in Hilbert scale works and gives suitable rates of convergence.

Assumption 26 (i) ||HΩ
1
2
0 x|| ∼ ||Ω

a
2
0 x||, ∀x ∈ X ;

(ii) (p∗ − p0) ∈ Xβ+1, i.e. ∃ ρ∗ ∈ X such that (p∗ − p0) = Ω
β+1

2
0 ρ∗

(iii) a, s, β ∈ R+ and a ≤ s ≤ β + 1 ≤ 2s + a.

This Assumption is the analogous of Assumption 5 in Chapter 2. Therefore, we refer to
section 2.3.2 for comments on this assumption.
Under such the regularized solution in Xs to equation (5.15) is:

As = Ω0Ĥ
∗(αL2s + Σ̂T + ĤΩ0Ĥ

∗)−1. (5.17)

The regularized posterior distribution is thus defined similarly as in Section 5.3.4 with Aα

substituted by As and is denoted with µFs . The regularized posterior mean and variance
are

Es(p|R̂) = AsR̂ + (I −AsĤ)p0 (5.18)
Ωs,R = Ω0 −AsĤΩ0.

A classical Tikhonov regularization method allows to obtain a rate of convergence to zero
of the regularization bias that is at most of order 2; on the contrary with a Tikhonov
scheme in an Hilbert Scale the smoother the function p∗ is, the faster the rate of conver-
gence to zero of the regularization bias will be.

5.4 Asymptotic Analysis

A very important result, due to Doob (1949), see Doob (1949) and Florens et al. (1990),
states that for any prior, the posterior distribution is consistent in the sense that it con-
verges to a point mass at the unknown parameter that is outside a set of prior mass zero.

7More clearly, L = Ω
− 1

2
0 is a closed operator in X satisfying: D(L) = D(L∗) is dense in X , < Lx, y >=<

x, Ly > for all x, y ∈ D(L), and there exists γ > 0 such that < Lx, x >≥ γ||x||2 for all x ∈ D(L).
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Actually, no one can be so certain about the prior, above all when the parameter is of
infinite dimension, and values of the parameter for which consistency is not verified may
be obtained. To move around this problem it is customary to use a frequentist notion of
consistency. The idea of this consistency lies in thinking the data as generated from a
distribution characterized by the true value of the parameter and in checking the accumu-
lation of the posterior distribution in a neighborhood of this true value.
This is the so-called ”classical bayesian” point of view and, in according to it, we assume
there exists a true value of the pricing functional, already denoted with p∗, and we check
that the regularized posterior distribution becomes more and more accurate and precise,
around p∗, as the number of observed data increases indefinitely. Thus, it is a convergence
in the sampling probability sense and it is known as consistency of the posterior distribu-
tion.
Following Diaconis et al. (1986) we give the following definition of posterior consistency
(or consistency in the sampling sense):

Definition 3 The pair (p, µF ) is consistent if µF converges weakly to δp as T →∞ under
Qp-probability or Qp-a.s., where δp is the Dirac measure in p.
The posterior probability µF is consistent if (p, µF ) is consistent for all p.

If (p, µF ) is consistent in the previous sense, the Bayes estimate for p, for instance the
posterior mean for a quadratic loss function, is consistent too.
The meaning of this definition is that, for any neighborhood U of the true parameter p∗,
the posterior probability of the complement of U converges toward zero when T → ∞:
µF (Uc) → 0 in Qp-probability, or Qp-a.s. Therefore, since distribution expresses one’s
knowledge about the parameter, consistency stands for convergence of knowledge towards
the perfect knowledge with increasing amount of data.
We refer to Section 2.4 of Chapter 2 for a discussion on this definition. We are persuaded
about the importance of studying posterior consistency and in this section we study this
concept of consistency for the regularized posterior distribution. By Chebyshev’s Inequality
in L2 spaces we have, for any sequence Mn →∞:

µFα {p : ||p− p∗|| ≥ Mnεn} ≤ Eα(||p− p∗||2|R̂)
(Mnεn)2

=
1

(Mnεn)2
[< Ωα,R1, 1 > +||Eα(p|R̂)− p∗||2]

≤ ||Ωα,R||+ ||Eα(p|R̂)− p∗||2
(Mnεn)2

. (5.19)

The same inequality is valid for µFs .

5.4.1 Speed of convergence with classical Tikhonov regularization

We begins by checking posterior consistency of the regularized posterior µFα computed
with the classical Tikhonov, namely we check accumulation of µFα to the point mass δp∗ .
The main results are contained in the following theorem.

Theorem 21 Let p∗ be the true value of the asset pricing functional and µFα a gaus-
sian measure on X with mean Aα(R̂ − Ĥp0) + p0 and covariance operator Ωα,R. Under
Assumptions 24 and 25, and if α → 0, α2T →∞,
(i) µFα weakly converges towards a point mass δp∗ in p∗;
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(ii) if moreover δ∗ ∈ R(Ω
1
2
0 H∗HΩ

1
2
0 )

β
2 for some β > 0, then for ρ ≥ 2

µFα {p : ||p− p∗|| ≥ εT } ∼ Op(α
β
2 +

1
αT T

+
1
α

( 1
T

+ h2ρ
) 1

2
α

β
2 +

1
α2T

1
α

( 1
Thn

+ h2ρ
) 1

2

+
1

α2T
α

(β+1)
2

∧1).

The parameter ρ is the minimum between the order of the kernel and the order of differ-
entiability of the density function f .
It should be noted that the condition for the second part of the theorem is only a regularity
condition that is necessary for having convergence at a certain speed. The condition that
really matters is the fact that the centered true parameter must belong to the Reproducing
Kernel Hilbert Space associated to Ω0, i.e. (p∗ − p0) ∈ H(Ω0).
The support of a centered gaussian process, taking its value in an Hilbert space X , is
the closure in X of the Reproducing Kernel Hilbert Space associated with the covariance
operator of this process, see VanDerVaart et al. (2000). Then, for p drawn from the prior
distribution µ, (p− p0) ∈ H(Ω0) with µ-probability 1, but with µ-probability 1, (p− p0) is
not in H(Ω0). Hence, the prior distribution is not able to generate trajectories that satisfy
Assumption 24 or, in other words, the true value of the price functional p∗ cannot be
generated by the prior µ specified in Assumption 23. This concept is known in literature
as prior inconsistency and it refers to a prior that is unable to generate the true parameter
having characterized the data generating process. This problem is present only for infinite
dimensional parameter sets and it is due to the fact that it is difficult to be sure about
a prior on an infinite dimensional parameter space so that it can happen that the true
value of the parameter is not in the support of the prior, see e.g. Freedman (1965) [34] or
Ghoshal (1998) [37].
Anyway, if Ω0 is one-to-one, H(Ω0) is dense in X and since the support of µ is the closure
H(Ω0), this measure is able to generate trajectories as close as possible to the true one.
The next corollary states consistency of the regularized posterior mean and convergence
to zero of the regularized posterior variance; it provides the necessary results for having
Theorem 21.

Corollary 4 Under Assumptions 24 and 25, and if α → 0, α2T →∞, ρ ≥ 2 then:

(i) ||Êα(p|R̂) − p∗|| → 0 in Qp∗-probability and if Ω
− 1

2
0 (p∗ − p0) ∈ R(Ω

1
2
0 H∗HΩ

1
2
0 )

β
2 for

some β > 0,

||Êα(p|R̂)− p∗||2 ∼ Op(αβ +
1

(α2T )2
α(β+1)∧2 +

1
αT

+

1
α2

( 1
T

+ h2ρ
)
αβ +

1
α2T

1
T

1
α2

( 1
Thn

+ h2ρ
)
).

(ii) ||Ωα,R|| → 0 in P p∗-probability and ∀φ ∈ X such that Ω
1
2
0 φ ∈ R(Ω

1
2
0 H∗HΩ

1
2
0 )

β
2 for

some β > 0,

||Ωα,Rφ||2 ∼ Op

(
αβ +

1
α2

( 1
T

+ h2ρ
)
αβ +

1
(α2T )2

1
α2

( 1
Thn

+ h2ρ
)

+
1

(α2T )2
α(β+1)∧2

)
.

The parameter β denotes the regularity of the true p∗ and, in the previous rate of conver-
gence, it must be meant as β ∧ 2 since 2 is the qualification for Tikhonov regularization.
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Then, the rate of convergence cannot exceed α2.
The rate of convergence to zero of the posterior variance is negligible with respect to the
rate in the bias, so that the optimal parameter of regularization will be chosen by taking
into account the rate of the squared norm of the bias. Concerning this rate, only the first
and third terms matter, being the other three terms negligible for particular choices of β
and of the bandwidth h. While the first rate αβ requires a regularization parameter α
going to zero as fast as possible, the third one requires an α going to zero as slow as pos-
sible. In choosing the regularization parameter we should take into account this trade-off,
so that the optimal regularization parameter α∗ will be obtained when the two rates are
made equal: αβ = 1

αT . This implies

α∗ ∝ T
− 1

β+1 .

The optimal rate of convergence of the squared norm of the regularized posterior mean
and variance is T

− β
β+1 , while the optimal rate of the regularized posterior distribution is

T
− β

2(β+1) since, when the optimal α is used, α
β
2 dominates all the other rates.

Let us analyze conditions on β and h to guarantee convergence to zero of the other rates in
the bias. A sufficient condition for 1

(α2T )2
α(β+1)∧2 converging to zero is that 1

(α2T )
∼ Op(1),

i.e. α2 ∼ Op

(
1
T

)
. With α replaced by its optimal value, this condition is met for β ≥ 1.

For 1
α2

T

(
1
T +h2ρ

)
αβ

T being negligible we have to choose h in such a way that h2ρ ∼ Op( 1
T ),

i.e.

h ∝
( 1

T

) 1
2ρ

To guarantee that the last rate 1
α4T 2 ( 1

Thn +h2ρ) converges to zero we simply have to check
that 1

α2Thn ∼ Op(1) since the second term is op(1) due to the choice of h and to the fact

that 1
(α2T )2

∼ op(1). Then, 1
α2

1
Thn = ( 1

T )−
2

β+1
+1− n

2ρ and it goes to zero if β > 2ρ+n
2ρ−n when

2ρ − n > 0 and if β < 2ρ+n
2ρ−n when 2ρ − n < 0. This constraint is binding with respect to

the constraint β ≥ 1, previously introduced, when 2ρ−n > 0. Summarizing, if 2ρ−n > 0
the only constraint is β > 2ρ+n

2ρ−n ; otherwise, we have two constraints: 1 ≤ β < 2ρ+n
2ρ−n .

Lastly, it should be noticed that the second, third and fourth rates of the squared norm
of the regularized variance operator goes to zero if conditions for ensuring convergence to
zero of the terms in the bias are satisfied.

5.4.2 Speed of convergence with Tikhonov regularization in the Prior
Variance Hilbert Scale

We compute in this subsection the speed of convergence for µFs . The speed obtained in
this case is faster than that one obtained with a simple Tikhonov regularization scheme.
In this section we suppose Assumption 26 holds, the attainable speed of convergence is
given in the following theorem, the proof of which can be found in Appendix 5.8.

Theorem 22 Let Es(x|Ŷ ) and Vs be as in (5.18). Under Assumptions 24, 25 and 26

||Es(p|R̂)− p∗||2 ∼ Op

(
α

β+1
a+s + α

1−a
a+s

1
T

+
1
α4

1
T 2

α
a+β+2s

a+s + α
β+1
a+s

1
α2

( 1
T

+ h2ρ
)

+
1
α3

1
T 2

)
.

Moreover, if the covariance operator Ωs,R is applied to any element ϕ ∈ X such that

Ω
1
2
0 ϕ ∈ R(Ω

β
2
0 ), then
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||Ωs,Rϕ||2 ∼ Op

(
α

β+1
a+s +

1
α4T 2

α
2s+a+β

a+s + α
β+1
a+s

1
α2

( 1
T

+ h2ρ
)

+
1

α3T 2

)
.

The optimal α is obtained by equating the first two rates of convergence of the posterior
mean: α

β+1
a+s = α

1−a
a+s 1

T and is proportional to

α∗ ∝
( 1

T

) a+s
a+β

.

The optimal bandwidth is determined in the same way as before, hence h = c1( 1
T )

1
2ρ , for

some given constant c1. With this optimal choice of the regularization parameter, in order
to guarantee the other rates in the bias and variance are of order op(1), we have to restrict
the values of β. In particular, if 2a + s > 1 then the regularity parameter must satisfy
2s+a−1

2 < β < 2s + a − 1; otherwise s−a
2 < β < 2s + a − 1. The corresponding optimal

speed of the squared bias and variance is proportional to ( 1
T )

β+1
a+β , while the regularized

posterior distribution µFs is of order Op(( 1
T )

β+1
2(a+β) ). It should be remarked that parame-

ter s characterizing the norm in the Hilbert scale does not play any role on the speed of
convergence.
An advantage of the Tikhonov regularization in Hilbert Scale is that we can even obtain a
rate of convergence for other norms, namely || · ||r for −a ≤ r ≤ β + 1 ≤ a + 2s. Actually,
the speed of convergence of these norms gives the speed of convergence of the estimate of
the r-th derivative of the parameter of interest p.

Tikhonov regularization in Hilbert scale improves the speed of convergence of the
regularized posterior distribution with respect to the classical Tikhonov regularization.
Let us call γ, instead of β, the regularity parameter of function (p∗ − p0) used in the

source condition of subsection 5.4.1, namely δ∗ ∈ R(Ω
1
2
0 H∗HΩ

1
2
0 )

γ
2 . This is for differen-

tiating with respect to the regularity parameter in the Hilbert scale regularization that
will continue to be denoted with β. If Assumption 26 (i) holds, it implies the equivalence

||(Ω
1
2
0 H∗HΩ

1
2
0 )

γ
2 v|| ∼ ||Ω

aγ
2

0 v||, for some v ∈ X . Then, equivalence of the source conditions

in the two regularized solutions implies ||Ω
β
2
0 v|| ∼ ||Ω

aγ
2

0 v|| that is verified if β = aγ. In
terms of γ, the optimal bayesian speed of convergence with an Hilbert scale regulariza-

tion is
(

1
T

) aγ+1
a(1+γ) that is fastest than the bayesian speed of convergence with a classical

Tikhonov:
(

1
T

) γ
γ+1 , ∀γ > 0.

5.4.3 Comparison with the classical estimation of the pricing functional

We develop in this paragraph a comparison between the bayesian method we have proposed
in this paper for recovering the asset pricing functional and the classical solution to the
integral equation (5.7) computed in Carrasco et al. (2007) [10]. The classical solution does
not require the use of any regularization scheme since the operator (I−K) is continuously
invertible. Since K is unknown it is substituted by K̂ as defined in subsection 5.3.1, the
estimated pricing functional p̂ is

p̂ = (I − K̂)−1d̂,

with d̂ defined in subsection 5.3.1. By applying Theorem 7.2 in Carrasco et al. [10], the
squared norm of the asymptotic bias is of order
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||p̂− p∗||2 ∼ Op

( 1
Thn

+ h2ρ
)
.

The optimal speed of convergence is obtained when 1
Thn = h2ρ, that is when h = c1( 1

T )
1

2ρ+n .
With this optimal choice of bandwidth the classical estimator p̂ converges at the rate of
( 1

T )
2ρ

2ρ+n : ||p̂− p∗||2 ∼ Op(( 1
T )

2ρ
2ρ+n ).

We compare this rate of convergence with the rate of the estimated regularized pos-
terior mean obtained when a classical Tikhonov scheme and the optimal α are used:
||Êα(p|R̂) − p∗||2 ∼ Op(( 1

T )
β

β+1 ). The comparison will be possible only in the subset

Φβ ∈ X of the pricing functionals p such that Ω
− 1

2
0 (p − p0) ∈ R(Ω

1
2
0 H∗HΩ

1
2
0 )

β
2 , since we

are able to compute the Bayesian speed of convergence for true value p∗ belonging to this
set. In this subspace, our solution converges faster if β > 2ρ

n . This condition is more likely
to be satisfied when the parameter ρ (that is a measure of regularity of the transition
density function) is small or equivalently, for a given value of ρ, when the dimension of Yt,
i.e. the number of conditioning variables in the transition probability, increases.
Anyway, with Tikhonov regularization the qualification matters, so that we can only ex-
ploit a regularity β of the function p that is less or equal than 2. Therefore, in order
condition β > 2ρ

n is satisfied, it must be 2ρ
n ≤ 2, that holds when ρ ≤ n.

Let us consider the regularized posterior mean obtained through a Tikhonov scheme in
Hilbert scale. In this case the comparison will be possible only on the subspace Xβ+1. With
the optimal regularization parameter α∗ the rate of convergence is ||Es(p|R̂) − p∗||2 ∼
Op(( 1

T )
β+1
a+β ) and it is faster than the rate of convergence with classical solution if β >

2ρ(a−1)
n − 1. When a > 2 and ρ < n

2(a−2) , this condition is less stringent than condition

β > 2ρ
n , demanded for Tikhonov regularized posterior mean converging faster than the

classical estimator p̂. When the degree of ill-posedness a is less than 2, then the condition
β > 2ρ(a−1)

n − 1 is less stringent than condition β > 2ρ
n if ρ > n

2(a−2) .
Summarizing, under some condition on the regularity of the function p∗, in particular if
the price function is highly smooth, or if n is high or ρ is small, our Bayesian estimator
converges faster than the classical one. The price to pay for having this fastest speed of
convergence is to impose a regularity assumption on the price functional that we do not
impose with the classical resolution method.

5.5 A g-prior with Regularizing Power

We have shown in preceding sections that, in general, the prior distribution does not
regularize and we need to artificially introduce a regularization scheme in order to obtain
consistency of the posterior distribution.
Nevertheless, there exists a particular specification of the prior distribution that has a
regularizing power in the sense that the prior-to-posterior transformation has the same
effect as the application of a regularization scheme so that the recovered posterior mean
is consistent. This type of prior distribution is suggested by the Zellner’ (1986) g-prior
but it extends the latter because it is linked to a slightly modified sampling mechanism.
More precisely, it is linked to the sampling mechanism of the non-projected model d̂ =
(I−K̂)p+error. This extended g-prior was introduced in Chapter 3 where its regularizing
power was shown.
Let suppose that the prior measure specified in 5.3.2 is replaced by the extended g-prior
with a covariance operator related to operator K in the sampling mechanism:
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p ∼ GP
(
p0,

σ2

g
(K∗K)s

)
, for some s > 0 (5.20)

with g = g(T ) a function of the sample size T such that g → ∞ with T . We use the
notation Ω0 = (K∗K)s. Let α = 1

T g be the parameter playing the role of regularization
parameter. For that, it must go to zero with T and it must be such that α2T →∞. These
conditions imply that g must go to infinity faster than

√
T and slower than T .

Equation (5.14) implies an operator A = (K∗K)sĤ∗(α(K∗K) + Ĥ(K∗K)sĤ∗)−1 that, as
T →∞, is well-defined if it is applied to (R̂− Ĥp0). The fact that (K∗K) multiplying α
can be factorized out allows to directly obtain a regularization of the inverse of the limit
of (K∗K)−

1
2 Ĥ(K∗K)sĤ∗(K∗K)

1
2 . Using equation (5.15) for defining A we have

A =
σ2

g
(K∗K)sĤ∗(Σ̂T +

σ2

g
Ĥ(K∗K)sĤ∗)−1

= ((K̂∗K̂)−
1
2 Ĥ(K∗K)s)∗(αI + (K̂∗K̂)−

1
2 Ĥ(K∗K)sĤ∗(K̂∗K̂)−

1
2 )−1(K̂∗K̂)−

1
2

that is a continuous operator. This is due to the fact that R(K∗K) ⊂ R(K) = D(K−1) ⊂
D((K∗K)−

1
2 ), so that (K∗K)−

1
2 H is well defined. The posterior mean and variance are

Eg(p|R̂) = A(R̂− Ĥp0) + p0 and V arg(p|R̂) = (K∗K)s −AĤ(K∗K)s. Because operators
K and K∗ are unknown, it follows that they must be substituted by their consistent esti-
mators in the prior covariance. We denote with Êg(p|R̂) and V̂ ar

g
(p|R̂) the corresponding

estimated mean and variance.
Study of asymptotic behavior of the posterior distribution is based on the decompositions:

Êg(p|R̂)− p∗ = [Êg(p|R̂)− Ẽg(p|R̂)] + [Ẽg(p|R̂)− Eg(p|R̂)] + [Eg(p|R̂)− p∗]

V̂ ar
g
(p|R̂) = [V̂ ar

g
(p|R̂)− Ṽ ar

g
(p|R̂)] + [Ṽ ar

g
(p|R̂)− V arg(p|R̂)] + V arg(p|R̂).

The only difference between Êg(p|R̂) and Ẽg(p|R̂) is that in the first one the prior covari-
ance operator is estimated while in the latter it is known. The same difference characterizes
V̂ ar

g
(p|R̂) and Ṽ ar

g
(p|R̂). Hence, the first square brackets term of both the two decom-

positions above is due to estimation of Ω0, the second error is due to estimation of all
the other operators and the last one is the bias and the variance, respectively, for known
operators.
We show in the following theorems that the posterior distribution corresponding to the g-
prior is consistent. This is guaranteed by convergence to zero of the bias and the posterior
variance.

Theorem 23 Let (5.20) be the prior distribution for the functional p in the sampling

equation (5.12). If, for some γ > 0, (K∗K)sγ is trace class and if (p∗−p0) ∈ R(Ω
β
2s
0 ) then

||Eg(p|R̂)− p∗||2 converges to zero with respect to the sampling probability at the speed

||Êg(p|R̂)− p∗||2 ∼ Op

(
α

β
s +

1
T

α−γ +
1
α2

( 1
Thn

+ h2ρ
)
(α

3s−β
β+s +

1
T

α−γ)

+
1
α2

( 1
T

+ h2ρ
) 1

T
α1−γ

)
.

Furthermore, if α = c1( 1
T )

s
(β+γs) , h = c2( 1

T )
1
2ρ for some constants c1 and c2,

T
β

β+γs ||E(p|R̂)− p∗||2 ∼ Op(1)

if s ≥ 2, n
2ρ ≤ β+γs−2s

β+γs , (2− γ)s ≤ β ≤ 3s.
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It should be remarked that the condition (p∗ − p0) ∈ R(Ω
β
2s
0 ) in the theorem implies

Assumption 24 if β ≥ 1.
The fastest speed of convergence of the posterior mean is of order T

− β
β+γs . It is faster than

the rate in the classical resolution method (illustrated in subsection 5.4.3) if β > 2ρ
n γs.

Theorem 24 Let (5.20) be the prior distribution for the functional p in the sampling
equation (5.12). If s ≥ 2 then ||V̂ ar

g
(p|R̂)||2 converges to zero with respect to the sampling

probability. Moreover, ∀φ ∈ X such that Ω
1
2
0 φ ∈ R(Ω

β−s
2s

0 ), the posterior variance converges
at the speed

||V̂ ar
g
(p|R̂)||2 ∼ Op

(
α

β
s +

1
α2

( 1
Thn

+ h2ρ
)
α

β
s

)
.

When α is set equal to the optimal one, i.e. α = c1( 1
T )

s
β+γs , the posterior variance

converges to zero if n
2ρ ≤ β+γs−2s

β+γs .

The value of g corresponding to the optimal α is: g = ( 1
T )−

β+γs−s
β+γs . It converges at infinite

faster than
√

T and slower than T if β > (2− γ)s. In particular, convergence at a slower
rate than T is always guaranteed.

5.6 Prior on the Variance Parameter

Until now we have considered the variance parameter σ2 in the covariance operator of
the sampling measure as known. This parameter is the variance of the white noise in the
regression model (5.6) defined by the Lucas’ equilibrium model. In reality this parameter
is often unknown and needs to be estimated. In this section, we redefine the Bayesian
experiment in order to incorporate the parameter space of definition of the variance pa-
rameter σ2: (R+,B, ν), with B the Borel σ-field and ν a measure on it.
There exist two possibilities to specify the probability measure on the parameter space.
The traditional approach calls for a conjugate model with a joint distributions on the
parameter space that is separable in a marginal on R+ and a conditional µσ, given B,
on X . New developments in Bayesian literature propose more and more models in which
the prior distribution on the parameter space is the product of two marginal independent
distributions. In this paper we only consider the traditional approach since in this case
it is possible to define a closed form for the marginal posterior distribution of both the
parameters without demanding the implementation of some MCMC procedure as a Gibbs
sampling.

5.6.1 Conjugate model

The modified Bayesian experiment is

Ξσ = (R+ ×X × X , B ⊗ E ⊗ F , Π = ν × µσ ×Qσ,p).

µσ represents the conditional prior distribution for p conditioned on σ2: µσ ∼ GP(p0, σ
2Ω0).

Qσ,p denotes the sampling distribution conditional on both the parameters and it is char-
acterized by the covariance operator σ2

T K̂∗K̂.
We take, as prior distribution for the variance parameter σ2, an Inverse Gamma distribu-
tion: σ2 ∼ Γ−1(v0, s

2
0), with v0 and s2

0 two known parameters.
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A conjugate model allows to easily integrate out p from the sampling distribution by using
the prior µσ so that we obtain a sampling measure Qσ depending only on σ2:

σ2 ∼ Γ−1(v0, s
2
0)

R̂|σ2 ∼ GP(Ĥp0, σ
2(

1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)).

Anyway, computation of the posterior of σ2 is not trivial due to the fact that, because R̂
is finite dimensional, we do not have a likelihood function. We make up for this lack by
using the projected observations R̂ projected by using the eigenfunctions associated to the
covariance operator ( 1

T K̂∗K̂ + ĤΩ0Ĥ
∗). Let {λ̂j , ϕ̂j}J

j=1 be the eigensystem associated
to this operator; this eigensystem is actually an estimation of the eigensystem associated
to the true covariance operator ( 1

T K∗K + HΩ0H
∗) that we would have if K was known.

Moreover, the convergence ||( 1
T K̂∗K̂ + ĤΩ0Ĥ

∗)− ( 1
T K∗K + HΩ0H

∗)|| → 0 implies that
the eigensystem {λ̂j , ϕ̂j} converges uniformly to the {λj , ϕj}. Thus, when the sample size
is finite, we only have a finite number of eigenvalues λ̂j different than 0. The projected
observation < R̂, ϕ̂j > is normally distributed with mean and variance

E(< R̂, ϕ̂j > |σ2) = < E(R̂|σ2), ϕ̂j >

= < Ĥp0, ϕ̂j >

V ar(< R̂, ϕ̂j > |σ2) = < V ar(R̂|σ2), ϕ̂j >

= σ2 < (
1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)ϕ̂j , ϕ̂j >

= σ2λ̂j ,

and < R̂, ϕ̂j > is independent of < R̂, ϕ̂i >, ∀j 6= i due to orthogonality between eigenfunc-
tions. It should be noted that if operator K was known we would know all its eigensystem
and then we would know the variance parameter σ2, in fact <R̂−Hp0,ϕj>2

λj
|σ2 ∼ σ2χ2

1 with

mean equal to σ2. Then, 1
J

∑J
j=1

<R̂−Hp0,ϕj>2

λj
→ σ2 and we know the limit since we know

all the eigenvalues.
From classical computations we obtain the posterior distribution νF of σ2 given the sample
< R̂, ϕ̂1 >, . . . , < R̂, ϕ̂J >:

ν(σ2|{< R̂, ϕ̂j >}J
j=1) ∝

( 1
σ2

) v0+J
2

+1
exp

{
− 1

2σ2
[s2

0 +
J∑

j=1

1

λ̂j

(< R̂− Ĥp0, ϕ̂j >)2]
}

then

σ2|{< R̂, ϕ̂j >}J
j=1 ∼ Γ−1(v∗, s2

∗),

v∗ = v0 + J, s2
∗ = s2

0 +
J∑

j=1

1

λ̂j

(< R̂− Ĥp0, ϕ̂j >)2

E(σ2|{< R̂, ϕ̂j >}J
j=1) =

s2∗
v0 + J − 2

, V ar(σ2|{< R̂, ϕ̂j >}J
j=1) =

s4∗
4

(v∗
2 − 1)2(v∗

2 − 2)
.

In order to compute the posterior distribution for p we first need to compute the con-
ditional posterior distribution of p given σ2, denoted with µF ,σ and then to integrate out
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σ2 by using its posterior distribution.
Also in this case, problems of continuity of µF ,σ require some technique of regularization.
For simplicity, we consider only a classical Tikhonov regularization scheme. Extension to
other regularization schemes is immediate. The regularized conditional posterior distribu-
tion, denoted with µF ,σ

α is a gaussian process with mean function and covariance operator
given by:

Eα(p|R̂, σ2) = Ω0Ĥ
∗(αI +

1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)−1(R̂− Ĥp0) + p0

V arα(p|R̂, σ2) = σ2[Ω0 − Ω0Ĥ
∗(αI +

1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)−1ĤΩ0],

where α still denotes the regularization parameter. While the regularized conditional
posterior mean does not depend on σ2, so that Eα(p|R̂, σ2) = Eα(p|R̂), the regularized
conditional posterior variance does and then we need to integrate out σ2 with respect to
νF . With analogy to the finite dimensional case, this integration transform the posterior
of p in a Student process. We refer to Chapter 4 for a definition of this process. Thus
the marginal regularized posterior distribution µFα for p is Student with parameters v∗,
Eα(p|R̂) and s2∗

v0+J [Ω0 −AαĤΩ0]:

p|R̂ ∼ StP(Eα(p|R̂),
s2∗
v∗

[Ω0 −AαĤΩ0], v∗)

Eα(p|R̂) = Ω0Ĥ
∗(αI +

1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)−1(R̂− Ĥp0) + p0

V arα(p|R̂) =
s2∗

v∗ − 2
[Ω0 − Ω0Ĥ

∗(αI +
1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)−1ĤΩ0].

Analysis of posterior consistency of the regularized posterior distribution for p is
equal to analysis performed in Section 5.4.1 and Corollary 4 holds with Ωα,R replaced
by V arα(p|R̂, σ2).
Concerning the posterior distribution of σ2, its posterior mean E(σ2|{< R̂, ϕ̂j >}J

j=1)
is asymptotically equivalent to 1

J

∑J
j=1

1
λ̂j

(< R̂ − Ĥp0, ϕ̂j >)2 and its posterior vari-

ance is asymptotically equivalent to 1
J ( s2∗

J )2. As T → ∞, K̂ → K and the number
J of eigenfunctions becomes large. Then, V ar(σ2|{< R̂, ϕ̂j >}J

j=1) converges to 0 and
1
J

∑J
j=1

1
λ̂j

(< R̂ − Ĥp0, ϕ̂j >)2 → E( 1
λ̂j

(< R̂ − Ĥp0, ϕ̂j >)2) = σ2 at the parametric rate.

Chebyshev’s inequality implies consistency of νF .
Computation of eigenvalues and eigenfunction is not an easy task but it can be consider-
ably simplified by noting that for computing posterior distribution we need to know the
quantities < R̂, ϕ̂j >, j = 1, . . . , J instead of the eigenfunctions {ϕ̂j}. Kernel estimation
provide us with the following approximations:

R̂ ≈
∑

i

∑

j

M(yi, Yt+1)M(yi, yj+1)yj+1
Lh(yi − yj)Lh(Yt+1 − yi+1)∑

l Lh(yi − yl)
∑

l Lh(Yt+1 − yl+1)

Ĥp0 ≈
∑

i

M(yi, Yt+1)p0(yi)
Lh(Yt+1 − yi+1)∑
l Lh(Yt+1 − yl+1)

−
∑

i

∑

j

M(yi, Yt+1)M(yi, yj+1)p0(yj+1)
Lh(yi − yj)Lh(Yt+1 − yi+1)∑

l Lh(yi − yl)
∑

l Lh(Yt+1 − yl+1)
,
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where, for simplicity, we have eliminated the index t + 1 in function M . Then,

< R̂− Ĥp0, ϕ̂j > =
∫

(R̂− Ĥp0)(Yt+1)ϕ̂j(Yt+1)π(Yt+1)dYt+1

≈
∑

i

∑

j

[M(yi, yj+1)(yj+1 + p0(yj+1))
Lh(yi − yj)∑
l Lh(yi − yl)

− p0(yi)]

∫
M(yi, Yt+1)

Lh(Yt+1 − yi+1)∑
l Lh(Yt+1 − yl+1)

ϕ̂j(Yt+1)π(Yt+1)dYt+1

=
∑

i

∑

j

φj(yi, yi+1)[M(yi, yj+1)(yj+1 + p0(yj+1))
Lh(yi − yj)∑
l Lh(yi − yl)

− p0(yi)]

with φj(yi, yi+1) =
∫

M(yi, Yt+1)
Lh(Yt+1−yi+1)∑
l Lh(Yt+1−yl+1)

ϕ̂j(Yt+1)π(Yt+1)dYt+1. Finally, by explic-
iting the stochastic discount function we get

φj(yi, yi+1) = β
1

U ′(yi)
φ̄j(yi+1),

with φ̄j(yi+1) =
∫

U ′(Yt+1)
Lh(Yt+1 − yi+1)∑
l Lh(Yt+1 − yl+1)

ϕ̂j(Yt+1)π(Yt+1)dYt+1.

Henceforth, we only need to compute (λj , φ̄j), j = 1, . . . , J that is an easier task. φ̄j is a
T dimensional vector and it is the jth eigenvector of the T × T matrix A with (k, t)-th
element

A(k, t) =
∑

i

β

U ′(yi)

[
T

∫
M(yi, Y )g(Y, yk+1)L(xi, xt, Y, yi+1)π(Y )dY +

∑

i′
(
∫

b̄(yi′ , Y, yi)g(Y, yk+1)L(yi, yt, Y, yi′+1)π(Y )dY ) +

∑

l

∑

l′

∫
c(yl′ , yl+1, Y )L̄(yl′ , yt, Y, yl′+1)g(Y, yk+1)π(Y )dY W (yi, yt, yi+1, yl+1)−

∑
m

∑

m′
b̄(ym′ , ym+1, yi)

Lh(yi − yt)∑
m Lh(yi − ym)

∫
M(ym′ , Y )g(Y, yk+1)L̄(ym′ , yt, Y, ym′+1)π(Y )dY −

T
∑

k′
W (yi, yt, yi+1, yk′+1)

∫
M(yk′+1, Y )g(Y, yk+1)

Lh(Y − yk′+1)∑
l Lh(Y − yl+1)

π(Y )dY
]
,

with b̄(yi′ , Y, yi) = M(yi′ , Y )ω(Y, yi), ω(·, ·) is the kernel of the prior covariance operator
Ω0, c(yl′ , yl+1, Y ) = M(yl′ , yl+1)M(yl′ , Y ), g(Y, yl) = U ′(Y ) Lh(Y−yl)∑

t Lh(Y−yt+1)
, L̄(yi, yt, Y, yi+1) =

Lh(yi−yt)Lh(Y−yi+1)∑
t Lh(yi−yt)

∑
t Lh(Y−yt+1)

and

W (yi, yt, yi+1, yl+1) =
∫

b̄(yi, Y, yl+1)L̄(yi, yt, Y, yi+1)π(Y )dY.

Proof for obtaining this matrix are provided in the Appendix.

5.7 Conclusions

In this paper we have proposed a new bayesian nonparametric approach for estimating the
solution of Euler equations. In particular, we consider the consumption-based asset pricing
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model in the style of the Lucas’(1978) tree model. The aim was to estimate the equilibrium
asset pricing functional and the dynamic of the state of the economy. Then, by combining
these estimations, it is possible to infer the stochastic character of the equilibrium price
process of a financial asset. The bayesian procedure is suitable since it offers a tractable
way to introduce structural economic constraints and prior information on the estimation
procedure by staying at the same time nonparametric. Moreover, it provides us with
the whole posterior distribution of the pricing function. This distribution has good finite
sample properties and then it can be used to construct whatever quantity, like quantiles,
confidence intervals and tests.
An asset pricing model provides a characterization of the pricing functional as the solution
of an integral equation of second kind that is well-posed. The bayesian approach allows
to exploit the prior information on the price that we have and allows to obtain faster
speed of convergence. The price to pay is the increasing of the degree of ill-posedness and
the necessity of applying a regularization scheme. Substantially, the bayesian technique
transforms a problem that is well-posed in a new one that is ill-posed. This is due to the
compacity of the prior covariance operator.
Nevertheless, we have shown that there exists a class of prior distribution, in particular,
a class of prior covariance operators, that preserves the well-posedness of the problem. In
this case no further regularization technique is required and the speed of convergence of
the posterior distribution towards the true value p∗ is faster if p∗ is highly smooth.
In order to be as general as possible, our study is based on the Lucas’(1978) model,
but it can be extended to other dynamic rational expectation models with some minor
modifications. Indeed, our bayesian methodology can easily treat every type of preferences
as Epstein-Zin or habit preferences.

5.8 Appendix A: Proofs

Proof of Theorem 19

Let T (F̂ ) denote the functional in the estimated transition distribution function F (yt+1|yt) of the
Markov process {Yt}:

T (F̂ ) =
∫

Mt+1(yt, Yt+1)[Mt+1(yt, yt+1)(b(yt+1) + p(yt+1))− p(yt)]dF̂ (yt+1|yt)dF̂ (yt|Yt+1).

Note that T (F̂ ) coincides with the error term U since r + Kp = p and that T (F ) = 0. We make a
first order Taylor expansion of T (F̂ ) around the true value F : T (F̂ )−T (F ) = d1T (F ; F̂−F )+R1T ,
where d1 denotes the Gâteaux differential of T at F in the direction of F̂ and R1T is the rest. Let
λ be a scalar and ξ(yt, yt+1, Yt+1) = Mt+1(yt, Yt+1)[Mt+1(yt, yt+1)(b(yt+1)+p(yt+1))−p(yt)], then

d1T (F ; F̂ − F ) =
d

dλ
T (F + λ(F̂ − F ))

∣∣∣
λ=0

=
∫

ξ(yt, yt+1, Yt+1)F̂ (dYt+1|Yt)F (dYt|yt+1) +
∫

ξ(yt, yt+1, Yt+1)F (dYt+1|Yt)F̂ (dYt|yt+1)

−2
∫

ξ(yt, yt+1, Yt+1)F (dYt+1|Yt)F (dYt|yt+1).

Since the last two terms are null and T (F ) = 0, we obtain that T (F̂ ), and then U , is asymptotically
equivalent to

∫
Mt+1(yt, Yt+1)

∫
[Mt+1(yt, yt+1)(b(yt+1)+p(yt+1))−p(yt)]f̂(yt+1|yt)dyt+1f(yt|Yt+1)dyt.

The central integral can be approximated through a first order Taylor expansion around the true
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value of F as: 1
π(yt)

[
∫

Mt+1(yt, yt+1)(b(yt+1) + p(yt+1))f̂(yt+1, yt)dyt+1 − p(yt)
∫

π̂(yt)dyt]. Then,

by substituting f̂ and π̂ with the expression for their kernel estimations we obtain:

U ≈
∫

Mt+1(yt, Yt+1)
1

Tht

T∑

j=1

[Mt+1(yt, yj+1)(b(yj+1) + p(yj+1))− p(yt)]Lh(yt − yj)
f(yt|Yt+1)

π(yt)
dyt

≈ 1
T

T∑

j=1

Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]
f(yj |Yt+1)

π(yj)
+

1
T

T∑

j=1

∫ ρ∑

i=1

[ ∂i

∂Y i
t

Mt+1(Yt, Yt+1)Mt+1(Yt, yj+1)
f(Yt|Yt+1)

π(Yt)

∣∣∣
Yt=yj

(b(yj+1) + p(yj+1))

− ∂i

∂Y i
t

Mt+1(Yt, Yt+1)p(Yt)
f(Yy|Yt+1)

π(Yt)

∣∣∣
Yt=yj

]
hiu.

The second equality is obtained by making the change of variable yt−yj

hT
= u and a Taylor expan-

sion at order ρ around yt, where ρ is the minimum among the order of the kernel, the order of
differentiability of the utility function, of the transition and of the stationary density. By denoting
with ϑ the second term in the previous expression, we get

√
TU(Yt+1) ≈

√
T

T

T∑

j=1

Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1)+p(yj+1))−p(yj)]
f(yj |Yt+1)

π(yj)
+hρ

T ϑ,

that is the expression in the theorem. Note that all the terms corresponding to hi, with i < ρ are
null since they integrate to 0. When T →∞, h → 0 then we can neglect the second term in

√
TU

and rewrite the scaled error term as
√

TU = T−
1
2

∑T
j=1 θj(Yt+1), with

θj(Yt+1) = Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]
f(yj |Yt+1)

π(yj)
.

where θj(Yt+1) is a sequence of stationary Hilbert random element such that ||θj(Yt+1)|| is bounded
with probability 1 since

E||θj(Yt+1)|| = σ2

∫
M2

t+1(yj , Yt+1)
f2(Yt+1|yj)
π2(Yt+1)

π(Yt+1)π(yj)dYt+1dyj < ∞.

This guarantees that
√

TU weakly converges toward a Gaussian process, see Theorem 2.46 in
Carrasco et al. (2007) [10]. Its expectation is equal to 0 since

√
TE(U(Yt+1)) =

∫
Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]

f(yj |Yt+1)
π(yj)

f(yj , yj+1)dyjdyj+1

=
∫

Mt+1(yj , Yt+1)E[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)|yj ]
f(yj |Yt+1)

d
yj

= 0

and the kernel $(Yt+1, Ỹt+1) of its covariance operator is computed as

$(Yt+1, Ỹt+1) =
1
T

Cov(
T∑

j=1

θj(Yt+1),
T∑

j=1

θj(Ỹt+1))

= Cov(θj(Yt+1), θj(Ỹt+1)) +
2
T

∑

l>j

Cov(θj(Yt+1), θl(Ỹt+1)).

By exploiting equality (5.7), the second term is null. Then,
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$(Yt+1, Ỹt+1) =
∫

Mt+1(yj , Yt+1)Mt+1(yj , Ỹt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]2

f(yj |Yt+1)f(yj |Ỹt+1)
π2(yj)

f(yj , yj+1)dyjdyj+1

=
∫

Mt+1(yj , Yt+1)Mt+1(yj , Ỹt+1)V ar[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)|yj ]

f(yj |Yt+1)f(yj |Ỹt+1)
π(yj)

f(yj , yj+1)dyj

= σ2

∫
Mt+1(yj , Yt+1)Mt+1(yj , Ỹt+1)

f(yj |Yt+1)f(yj |Ỹt+1)
π(yj)

f(yj , yj+1)dyj .

The factor scaled by σ2 is the kernel of the operator K∗K. Then, the asymptotic covariance
operator associated to

√
TU is asymptotically equal to σ2K∗K. Then,

√
TU ⇒ GP(0, σ2K∗K).

Proof of Corollary 4

The bias associated to µFα can be decomposed in two terms:

Êα(p|R̂)− p∗ = (Êα(p|R̂)− Eα(p|R̃)) + (Eα(p|R̃)− p∗),

where Eα(p|R̃) = Ω0H
∗(αT I + ΣT + HΩ0H

∗)−1(R̃ − Hp0) + p0 and R̃ = Hp∗ + U . The first
term represent the estimation error of the operators and the second one stands for the error due
to approximate the true value p∗ of the asset price with the regularized posterior mean. We begin
the analysis from the second term that we rewrite as:

Eα(p|R̃)− p∗ = −
I︷ ︸︸ ︷

[I − Ω0H
∗(αT I + ΣT + HΩ0H

∗)−1H](p∗ − p0)
+ Ω0H

∗(αT I + ΣT + HΩ0H
∗)−1U︸ ︷︷ ︸

II

.

The first term can still be decomposed into two terms, in order to isolate the effect of the covariance
operator ΣT :

I =

IA︷ ︸︸ ︷
[I − Ω0H

∗(αI + HΩ0H
∗)−1H](p∗ − p0)

+ [Ω0H
∗(αI + ΣT + HΩ0H

∗)−1H − Ω0H
∗(αI + HΩ0H

∗)−1H](p∗ − p0)︸ ︷︷ ︸
IB

and term IA looks very similar to the regularization bias of the solution of a functional equation.
More properly, to obtain such a kind of object we use the assumption that (p∗ − p0) ∈ H(Ω0),

i.e. there exists a δ∗ belonging to the domain of Ω
1
2
0 such that we can write (p∗ − p0) = Ω

1
2
0 δ∗.

Therefore,

IA = [I − Ω0H
∗(αI + HΩ0H

∗)−1H]Ω
1
2
0 δ∗

= [Ω
1
2
0 − Ω0H

∗(αI + HΩ0H
∗)−1HΩ

1
2
0 ]δ∗

= Ω
1
2
0 [I − Ω

1
2
0 H∗(αI + HΩ0H

∗)−1HΩ
1
2
0 ]δ∗,

where in the last equality we have used the fact that, since Ω0 is positive definite and self-adjoint,
it can be rewritten as Ω0 = Ω

1
2
0 Ω

1
2
0 . Let B = HΩ

1
2
0 we take the norm in X of IA and after

commutation of operators:
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||IA||2 ≤ ||Ω
1
2
0 ||2||(I − (αI + B∗B)−1B∗B)δ∗||2.

The second norm in the right hand side of the previous expression is equal to ||α(αI +B∗B)−1δ∗||2
and it appears as the regularization bias associated to the regularized solution of the ill-posed
inverse problem Bδ∗ = v computed using Tikhonov regularization scheme. It converges to zero
when the regularization parameter α goes to zero and therefore also ||IA||2 converges to zero. This

way to rewrite the above operator justifies the identification condition. Injectivity of HΩ
1
2
0 ensures

that the solution of Bδ∗ = v is identified and therefore, if Ω
1
2
0 is injective, that (p∗−p0) is identified

and that the convergence of the regularized posterior mean is towards the right true value.
The speed of convergence to zero of ||(I − (αI + B∗B)−1B∗B)||2 depends on the regularity of
δ∗, and consequently of (p∗ − p0). If the true solution δ∗ lies in the β-regularity space Φβ of the

operator B, i.e. δ∗ ∈ R(Ω
1
2
0 H∗HΩ

1
2
0 )

β
2 , the squared regularization bias is at most of order αβ and

then ||IA||2 = Op(αβ). We refer to Carrasco et al. (2007) [10] and Kress (1999) [50] for a proof of
it.
The larger β is, the smoother the function δ∗ ∈ Φβ will be and the faster the regularization bias
will converge to zero. However, since for Tikhonov regularization scheme, β cannot be grater than
2 we implicitly assume that δ∗ ∈ Φβ for β ≤ 2.
Now, let us consider term IB :

||IB||2 ≤ ||Ω0H
∗||2(αI + ΣT + HΩ0H

∗)−1||2||ΣT ||2||(αI + HΩ0H
∗)−1H(p∗ − p0)||2

∼ Op

( 1
α2
||ΣT ||2||(αI + HΩ0H

∗)−1H(p∗ − p0)||2
)
.

Since ΣT = σ2

T K∗K, its squared norm is ||ΣT ||2 ∼ Op( 1
T 2 ). Moreover, by using the regularity

condition δ∗ ∈ R((Ω
1
2
0 H∗HΩ

1
2
0 )

β
2 ) ≡ R((B∗B)

β
2 )

||(αI + HΩ0H
∗)−1H(p∗ − p0)||2 ∼ ||(αI + B∗B)−1Bδ∗||2

∼ ||(αI + B∗B)−1(B∗B)
β+1
2 ρ∗||2

∼ 1
α2
||α(αI + B∗B)−1(B∗B)

β+1
2 ρ∗||2

∼ Op

( 1
α2

α(β+1)∧2
)
,

since ||B|| = ||(B∗B)
1
2 ||. Thus ||IB||2 ∼ Op

(
1

α4T 2 α(β+1)∧2
)
.

To find speed of convergence of term II we decompose it in the following equivalent way:

II =

IIA︷ ︸︸ ︷
Ω

1
2
0 B∗(αI + BB∗)−1U

+Ω0H
∗[(αI + ΣT + HΩ0H

∗)−1 − (αI + HΩ0H
∗)−1]U︸ ︷︷ ︸

IIB

||IIA||2 ≤ ||Ω
1
2
0 ||2||(αI + B∗B)−1B∗||2||U ||2

||IIB||2 ≤ ||Ω
1
2
0 ||2||B∗(αI + BB∗)−1||2||ΣT ||2||(αI + ΣT + BB∗)−1||2||U ||2.

By Kolmogorov theorem, ||U ||2 is bounded in probability if E||U ||2 < ∞ and E||U ||2 = trΣT .
Then, ||IIA||2 ∼ Op( 1

α trΣT ) and ||IIB||2 ∼ Op( 1
α3 ||ΣT ||2trΣT ). Since trΣT ∼ Op( 1

T ) and
||ΣT ||2 ∼ Op( 1

T 2 ) we conclude that ||II||2 ∼ Op( 1
αT + 1

α3T 3 ) ∼ Op( 1
αT ) because the second rate is

negligible with respect to the first one.

Let consider now the term (Êα(p|R̂) − Eα(p|R̃)) due to the estimation error. We make a
decomposition similar to that done before:
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Êα(p|R̂)− Eα(p|R̃) =

A︷ ︸︸ ︷
Ω0[Ĥ∗(αI + ΣT + ĤΩ0Ĥ

∗)−1Ĥ −H∗(αI + ΣT + HΩ0H
∗)−1H](p∗ − p0)

+ Ω0[Ĥ∗(αI + ΣT + ĤΩ0Ĥ
∗)−1 −H∗(αI + ΣT + HΩ0H

∗)−1]U︸ ︷︷ ︸
B

,

A =

A1︷ ︸︸ ︷
Ω

1
2
0 [B̂∗(αI + B̂B̂∗)−1B̂ −B∗(αI + BB∗)−1B]δ∗

+Ω
1
2
0 [B̂∗(αI + ΣT + B̂B̂∗)−1B̂ − [B̂∗(αI + B̂B̂∗)−1B̂]δ∗︸ ︷︷ ︸

A2

−Ω
1
2
0 [B∗(αI + ΣT + BB∗)−1B −B∗(αI + BB∗)−1B]δ∗︸ ︷︷ ︸

A3

,

B = Ω
1
2
0 [B̂∗(αI + B̂B̂∗)−1 −B∗(αI + BB∗)−1]U

+Ω
1
2
0 [B̂∗(αI + ΣT + B̂B̂∗)−1 − [B̂∗(αI + B̂B̂∗)−1]U

−Ω
1
2
0 [B∗(αI + ΣT + BB∗)−1 −B∗(αI + BB∗)−1]U.

The norm ||A3||2 is equal to ||IB||2. Note that ||B̂∗B̂−B∗B||2 ∼ Op( 1
T +h2ρ) and ||B̂B̂∗−BB∗||2 ∼

Op( 1
Thn + h2ρ), see Darolles et al. (2007) [15]. By using methods similar to those one used before

and a Taylor expansion of (αI + B̂∗B̂) around the true operator B, we get

||A1||2 ∼ Op

(
(

1
α2

+
1
α4

( 1
T

+ h2ρ
)
)
( 1

T
+ h2ρ

)
αβ

)

||A2||2 ∼ Op

( 1
T 2α4

(1 +
1

α2(
(

1
Thn + h2ρ

)
)
)(α(β+1)∧2 +

( 1
Thn

+ h2ρ
)
)(1 +

1
α2

( 1
Thn

+ h2ρ
)
)
)
.

In a similar way we obtain

||B||2 ∼ Op(
1

α4T 3
(1+

1
α2

( 1
Thn

+h2ρ
)
)(1+

( 1
Thn

+h2ρ
)
)+

1
αT

( 1
Thn

+h2ρ
)
(
1
α

+
1
α3

( 1
Thn

+h2ρ
)
)+

1
α3T 3

).

Elimination of the negligible terms allows to conclude.
The procedure to obtain the rate of convergence of Ωα,R is equivalent, hence in this proof we only
show the fundamental decomposition that we have to perform:

Ωα,R = −Ω
1
2
0 [B̂∗(αI + Σ̂T + B̂B̂∗)−1B̂ −B∗(αI + ΣT + BB∗)−1B]Ω

1
2
0

−Ω
1
2
0 B∗(αI + ΣT + BB∗)−1B]Ω

1
2
0 .

Proof of Theorem 21

Point (i) follows from Chebyshev’s Inequality (5.19) and results in Corollary 4.
Point (ii) can be obtained by Chebishev’s Inequality (5.19) and by keeping the non negligible rates
in ||Êα(p|R̂)− p∗||2 and in ||Ωα,R||.

Proof of Theorem 22

Write the bias (Es(p|R̂)− p∗) as
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Es(p|R̂)− p∗ = (Es(p|R̂)− Es(p|R̃)) + (Es(p|R̃)− p∗),
Es(p|R̂)− Es(p|R̃) = [Ω0Ĥ

∗(αL2s + Σ̂T + ĤΩ0Ĥ
∗)−1Ĥ − Ω0H

∗(αL2s + Σ + HΩ0H
∗)−1H](p∗ − p0)

+[Ω0Ĥ
∗(αL2s + Σ̂T + ĤΩ0Ĥ

∗)−1 − Ω0H
∗(αL2s + Σ + HΩ0H

∗)−1]U,

Es(p|R̃)− p∗ = −[I − Ω0H
∗(αL2s + Σ + HΩ0H

∗)−1H](p∗ − p0)
+Ω0H

∗(αL2s + Σ + HΩ0H
∗)−1U.

We omit computation of the rate of convergence of (Es(p|R̃)− p∗) since it is given in the proof of
Theorem 4 in Chapter 2. The obtained rate is:

||Es(p|R̃)− p∗||2 ∼ Op(α
β+1
a+s + α

1−a
a+s trΣT +

1
α4
||ΣT ||2α

a+β+2s
a+s +

1
α2
||Σ||2α 1−a

a+s trΣT ).

Consider the estimation error (Es(p|R̂) − Es(p|R̃)), denote T = HΩ
1
2
0 , the first term in it can be

rewritten as:

A1︷ ︸︸ ︷
Ω

1
2
0

(
[T̂ ∗(αΩ−s

0 + T̂ T̂ ∗)−1T̂ − T ∗(αΩ−s
0 + TT ∗)−1T ]δ∗

+ [T̂ ∗(αΩ−s
0 + Σ̂T + T̂ T̂ ∗)−1T̂ − T̂ ∗(αΩ−s

0 + T̂ T̂ ∗)−1T̂ ]δ∗︸ ︷︷ ︸
A2

− [T ∗(αΩ−s
0 + ΣT + TT ∗)−1T − T ∗(αΩ−s

0 + TT ∗)−1T ]δ∗
)

︸ ︷︷ ︸
A3

.

Let B = TΩ
s
2
0 = HΩ

s+1
2

0 By commuting operators and factorizing Ω
s
2
0 we get

||A1|| = ||Ω
s+1
2

0 [(αI + B̂∗B̂)−1B̂∗B̂ − (αI + B∗B)−1B∗B]Ω
β−s

2
0 ρ∗||

= ||Ω
s+1
2

0

(
− [I − (αI + B̂∗B̂)−1B̂∗B̂] + [I − (αI + B∗B)−1B∗B]

)
Ω

β−s
2

0 ρ∗||

= ||Ω
s+1
2

0

(
− α(αI + B̂∗B̂)−1 + α(αI + B∗B)−1

)
Ω

β−s
2

0 ρ∗||

= ||Ω
s+1
2

0 α(αI + B̂∗B̂)−1(B̂∗B̂ −B∗B)(αI + B∗B)−1Ω
β−s

2
0 ρ∗||

≤ ||(αI + B̂∗B̂)−1||−(s+1)||B̂∗B̂ −B∗B)||||(αI + B∗B)−1Ω
β−s

2
0 ρ∗||.

The last norm is an Op(α
β−s

2(a+s) ); moreover (αI + B̂∗B̂)−1 = (αI +B∗B)−1− (αI +B∗B)−1(B̂∗B̂−
B∗B)(αI + B̂∗B̂)−1. Then, by using the Corollary 8.22 in Engl et al. (2000) [19]

||(αI + B̂∗B̂)−1||−(s+1) ≤ ||(B∗B)
s+1

2(a+s) (αI + B∗B)−1||+
||(B∗B)

s+1
2(a+s) (αI + B∗B)−1(B̂∗B̂ −B∗B)(αI + B̂∗B̂)−1||

∼ Op(α
1−2a−s
2(a+s) ).

since the second norm is negligible once multiplied by the remaining terms of ||A1||. It follows that
||A1||2 ∼ Op(α

β+1
a+s 1

α2 ||B̂∗B̂ −B∗B||2). Following the same logic, term A2 is rewritten as

Ω
1
2
0 B̂∗(αI + Ω

s
2
0 (Σ̂T + T̂ T̂ ∗)Ω

s
2
0 )−1ΣT (αI + B̂B̂∗)−1B̂]δ∗

that has norm of order Op( 1
α3 ||ΣT ||2). Lastly,
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||A3|| ≤ ||Ω
1
2
0 B∗(αI + Ω

s
2
0 (ΣT + TT ∗)Ω

s
2
0 )−1Ω

s
2
0 ||||ΣT ||||(αΩ−s

0 + TT ∗)−1Tδ∗||,
||(αΩ−s

0 + TT ∗)−1Tδ∗|| = ||T (αΩ−s
0 + T ∗T )−1Ω

β
2
0 ρ∗||

= ||TΩ
s
2
0 (αI + Ω

s
2
0 T ∗TΩ

s
2
0 )−1Ω

β+s
2

0 ρ∗||
= ||(B∗B)

1
2 (αI + B∗B)−1Ω

β+s
2

0 ρ∗||
= ||(B∗B)

1
2 (αI + B∗B)−1(B∗B)

β+s
2(a+s) v||

∼ Op(α
β−a

2(a+s) ),

for some v such that Ω
β+s
2

0 ρ∗ = (B∗B)
β+s

2(a+s) v. Such v exists since, under Assumption 26,R(Ωa+s
0 ) =

R(B∗B). Then, ||A3||2 ∼ Op( 1
α4 ||ΣT ||2α

a+β+2s
a+s ).

The second term of (Es(p|R̂)− Es(p|R̃)) is rewritten

A4︷ ︸︸ ︷
Ω

1
2
0

(
[T̂ ∗(αΩ−s

0 + T̂ T̂ ∗)−1 − T ∗(αΩ−s
0 + TT ∗)−1]U

+ [T̂ ∗(αΩ−s
0 + Σ̂T + T̂ T̂ ∗)−1 − T̂ ∗(αΩ−s

0 + T̂ T̂ ∗)−1]U︸ ︷︷ ︸
A5

− [T ∗(αΩ−s
0 + ΣT + TT ∗)−1 − T ∗(αΩ−s

0 + TT ∗)−1]U
)

︸ ︷︷ ︸
A6

.

Then,

||A4||2 = ||Ω
1
2
0 (αΩ−s

0 + T̂ ∗T̂ )−1T̂ ∗ − (αΩ−s
0 + T ∗T )−1T ∗]U ||2

≤ ||Ω
s+1
2

0 (αI + B∗B)−1||2
(
||B̂∗B̂ −B∗B||2||(αI + B̂∗B̂)−1B̂∗||2 + ||B̂∗ −B∗||2

)
||U ||2

∼ Op(α
1−2a−s
2(a+s) ||B̂∗B̂ −B∗B||2 1

α
trΣT + α

1−2a−s
2(a+s) ||B̂∗ −B∗||2trΣT )

||A5||2 ≤ ||Ω
1
2
0 ||2||(αI + B̂∗B̂)−1B̂∗Ω

s
2
0 ||2||Σ̂T ||2||Ω

s
2
0 (αI + Ω

s
2
0 (Σ̂T + T̂ T̂ ∗)Ω

s
2
0 )−1||2||U ||2

∼ (
1
α3
||Σ̂T ||2trΣT )

||A6||2 ≤ ||Ω
1
2
0 T ∗(αΩ−s

0 + TT ∗)||2||ΣT ||2||(αΩ−s
0 + ΣT + TT ∗)||||U ||2

∼ Op(
1
α2
||ΣT ||2trΣT α

1−a
a+s ).

Elimination of negligible terms allows to get the result.
The rate of convergence of ||Ωs,R||2 is based on specular methods and on the decomposition

Ωs,R = −Ω0[Ĥ∗(αL2s + Σ̂T + ĤΩ0Ĥ
∗)−1Ĥ −H∗(αI + ΣT + HΩ0H

∗)−1H]Ω0

−Ω0H
∗(αI + ΣT + HΩ0H

∗)−1H]Ω0.

Proof of Theorem 23

Consider the decomposition

Êg(p|R̂)− p∗ =

I︷ ︸︸ ︷
[Êg(p|R̂)− Ẽg(p|R̂)]+

II︷ ︸︸ ︷
[Ẽg(p|R̂)− Eg(p|R̂)]+

III︷ ︸︸ ︷
[Eg(p|R̂)− p∗] .

Let W = (K̂∗K̂)−
1
2 Ĥ(K∗K)

s
2 and Ŵ = (K̂∗K̂)−

1
2 Ĥ(K̂∗K̂)

s
2 . Then,
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||I||2 ≤
IA︷ ︸︸ ︷

||[(K̂∗K̂)
s
2 Ŵ ∗(αI + ŴŴ ∗)−1(K̂∗K̂)−

1
2 − (K∗K)

s
2 W ∗(αI + WW ∗)−1W (K̂∗K̂)−

1
2 ]Ĥ(p∗ − p0)||2

+ ||[(K̂∗K̂)
s
2 Ŵ ∗(αI + ŴŴ ∗)−1(K̂∗K̂)−

1
2 − (K∗K)

s
2 W ∗(αI + WW ∗)−1W (K̂∗K̂)−

1
2 ]U︸ ︷︷ ︸

IB

||IA||2 ≤ ||(K̂∗K̂)
s
2 (αI + ŴŴ ∗)−1||2

(
||α(Ŵ ∗ −W ∗)||2 + ||Ŵ∗||2||Ŵ −W ||2||W ∗||2

)

||W (αI + W ∗W )−1(K∗K)
β−s

2 ρ∗||2 + ||(K̂∗K̂)
s
2 − (K∗K)

s
2 ||2||W ∗(αI + WW ∗)−1W (K∗K)

β−s
2 ρ∗||2

∼ Op

(
(

1
Thn

+ h2ρ)(
1
α

α
2(s−β)

β+s +
1
α

α
4s
β + α

2(s−β)
β+s )

)

∼ Op

( 1
α2

(
1

Thn
+ h2ρ)α

3s−β
β+s

)
,

since the second and third rates are negligible with respect to the first one. To get this result we

have used the assumption (p∗ − p0) ∈ R(Ω
β
2s
0 ), i.e. ∃ρ∗ ∈ X such that (p∗ − p0) = (K∗K)

β
2 ρ∗.

||IB||2 ≤ ||(K̂∗K̂)
s
2 [Ŵ ∗(αI + ŴŴ ∗)−1 −W ∗(αI + WW ∗)−1](K∗K)−

1
2 U ||2

+||(K̂∗K̂)
s
2 − (K∗K)

s
2 ||2||W ∗(αI + WW ∗)−1(K̂∗K̂)−

1
2 U ||2

∼ Op

( 1
α2

(
1

Thn
+ h2ρ)

1
T

α−γ
)
.

Hence,

||[Êg(p|R̂)− Ẽg(p|R̂)]||2 ∼ Op

( 1
α2

(
1

Thn
+ h2ρ)(α

3s−β
β+s ) +

1
T

α−γ
)
.

Let B = (K∗K)−
1
2 H(K∗K)

s
2 and B̂ = (K̂∗K̂)−

1
2 H(K∗K)

s
2 , the second error is rewritten as:

||II||2 ≤
IIA︷ ︸︸ ︷

||(K∗K)
s
2 [B̂∗(αI + B̂B̂∗)−1B̂ −B∗(αI + BB∗)−1B](K∗K)

β−s
2 ρ∗||2

+ ||(K∗K)
s
2 [B̂∗(αI + B̂B̂∗)−1 −B∗(αI + BB∗)−1](K∗K)−

1
2 U ||2︸ ︷︷ ︸

IIB

||IIA||2 = ||(K∗K)
s
2 (αI + B̂∗B̂)−1(B̂B̂∗ −BB∗)α(αI + B∗B)−1(K∗K)

β−s
2 ρ∗||2

∼ Op(
1
α

(
1
T

+ h2ρ)α
2s
β ).

||IIB||2 ≤ ||(K∗K)
s
2 [B̂∗(αI + B̂B̂∗)−1 −B∗(αI + BB∗)−1](K̂∗K̂)−

1
2 U ||2

+||(K∗K)
s
2 B̂∗(αI + B̂B̂∗)−1[(K∗K)−

1
2 − (K̂∗K̂)−

1
2 ]U ||2

∼ Op

( 1
α

(
1
T

+ h2ρ)
1
T

α−γ +
1
T

α−γ +
1
T

)
.

Then, ||Ẽg(p|R̂) − Eg(p|R̂)||2 ∼ Op( 1
α2 ( 1

T + h2ρ)(α
2s+β

β + 1
T α1−γ)) that is of the same order as

Op( 1
α2 ( 1

T + h2ρ) 1
T α1−γ). Lastly,
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||Eg(p|R̂)− p∗||2 ≤
IIIA︷ ︸︸ ︷

||[I − (K∗K)sH∗(α(K∗K) + H(K∗K)sH∗)−1H(p∗ − p0)]||2
+ ||(K∗K)sH∗(α(K∗K) + H(K∗K)sH∗)−1U ||2︸ ︷︷ ︸

IIIB

||IIIA||2 =
(

sup
j

(λj −
λ2s+β

j (1− λj)2

α + (1− λj)(λ2s
j − λ2s+1

j )
)
)2

≤
(

sup
j

αλβ
j

α + λ2s
j

)2

∼ Op

(
α

β
s

)

||IIIB||2 ≤ tr(V ar((K∗K)sH∗(α(K∗K) + H(K∗K)sH∗)−1U))

=
σ2

T

∑

j

λ4s
j (1− λj)2

(α + (1− λj)2λ2s
j )2

=
σ2

T

∑

j

λ
2(2s−γs)
j

(α + (1− λj)2λ2s
j )2

λ2γs
j

≤ σ2

T

(
sup

j

λ
(2s−γs)
j

α + λ2s
j

)2 ∑

j

λ2γs
j

∼ Op

( 1
T

α−γ
)
.

The optimal α is obtaining by equating the two rates of ||Eg(p|R̂) − p∗||2. Then, α
β
s = 1

T α−γ if

α ∝ ( 1
T )

s
(β+γs) . The corresponding optimal speed of convergence is proportional to ( 1

T )
β

β+γs .
When α is set equal to the optimal one, the terms I and II go to zero if β < 3s, β ≥ (2− γ)s and
n
2ρ ≤ β+γs−2s

β+γs .

Moreover, ||(K̂∗K̂)
s
2 − (K∗K)

s
2 ||2 ∼ Op( 1

Thn+h2ρ ) if s ≥ 2.

Proof of Theorem 24

We consider the posterior variance applied to an element φ ∈ X and its decomposition

V̂ ar
g
(p|R̂)φ =

I︷ ︸︸ ︷
[V̂ ar

g
(p|R̂)− Ṽ ar

g
(p|R̂)]φ +

II︷ ︸︸ ︷
[Ṽ ar

g
(p|R̂)− V arg(p|R̂)]φ +

III︷ ︸︸ ︷
V arg(p|R̂)φ .

Let W = (K̂∗K̂)−
1
2 Ĥ(K∗K)

s
2 and Ŵ = (K̂∗K̂)−

1
2 Ĥ(K̂∗K̂)

s
2 . Then, for any v ∈ X such that

(K∗K)
s
2 φ = (K∗K)

β−s
2 v

||I||2 = ||(K̂∗K̂)sφ− (K̂∗K̂)
s
2 Ŵ ∗(αI + ŴŴ ∗)−1Ŵ (K̂∗K̂)

s
2 φ

−(K∗K)sφ + (K∗K)
s
2 W ∗(αi + WW ∗)−1W (K∗K)

β−s
2 v||2

= ||(K̂∗K̂)
s
2 [I − Ŵ ∗(αI + ŴŴ ∗)−1Ŵ ](K̂∗K̂)

s
2 φ

−(K∗K)
s
2 [I −W ∗(αI + WW ∗)−1W ](K∗K)

s
2 φ||2

≤ ||(K̂∗K̂)
s
2 α(αI + ŴŴ ∗)−1[(K̂∗K̂)

s
2 − (K∗K)

s
2 ]φ||2

+||(K̂∗K̂)
s
2 [α(αI + Ŵ ∗Ŵ )−1 − α(αI + W ∗W )−1](K∗K)

β−s
2 v||2

+||[(K̂∗K̂)
s
2 − (K∗K)

s
2 ]α(αI + W ∗W )−1(K∗K)

β−s
2 v||2

∼ Op

(
(

1
Thn

+ h2ρ)(1 + α
β−s
2s )

)

∼ Op

(
(

1
Th∗

+ h2ρ)(α
2s

2s+1 + α
2(β−2s−1)

2s+1 )
)
.
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Let B = (K∗K)−
1
2 H(K∗K)

s
2 and B̂ = (K̂∗K̂)−

1
2 H(K∗K)

s
2 , term II is:

||II||2 ≤ ||(K∗K)sφ− (K∗K)
s
2 B̂(αI + B̂B̂∗)−1B̂(K∗K)

s
2 φ||2

+||(K∗K)sφ− (K∗K)
s
2 B(αI + BB∗)−1B(K∗K)

s
2 φ||2

∼ Op

( 1
α

( 1
T

+ h2ρ
)
α

β−s
s

)
.

Lastly, ||III||2 = ||(K∗K)
s
2 α(αI + B∗B)−1(K∗K)

β−s
2 v||2 that is of order Op(α

β
s ).

Computation of the Eigensystem for Section 5.6

In this appendix we prove that the eigensystem {λj , φ̄j}, necessary for obtaining the poste-
rior distribution in Section 5.6, can be computed as the eigensystem associated to matrix A.
We start by explicitating the estimated elements of ( 1

T K̂K̂∗ + ĤΩ0Ĥ
∗). Note that K̂ϕ̂j ≈∫

M(yi, Y )ϕ̂j
f̂(yi,Y )
ˆπ(yi), ˆπ(Y )

π(Y )dY . By remembering the definition of φj , we have:

K̂ϕ̂j = T
∑

t

φj(yi, yt+1)
Lh(yi − yt)∑
t Lh(yi − yt)

K̂∗K̂ϕ̂j = T
∑

t

∑

i

M(yi, Y )φj(yi, yt+1)L̄(yi, yt, Y, yi+1)

ĤΩ0Ĥ
∗ = K̂∗Ω0K̂ + K̂∗K̂Ω0K̂

∗K̂ − K̂∗K̂Ω0K̂ − K̂∗Ω0K̂
∗K̂

K̂∗Ω0K̂ϕ̂j = T
∑

t

∑

i

∑

i′
M(yi′ , Y )ω(yi, Y )φj(yi, yt+1)L̄(yi, yt, Y, yi′+1)π(y)dy

K̂∗K̂Ω0K̂
∗K̂ =

∑
t

∑

i

∑

l

∑

l′
M(yl′ , yl+1)M(yl′ , Y )L̄(yl′ , yt, Y, yl′+1)φj(yi, yt+1)

∫
M(yi, y)ω(y, yl+1)L̄(yi, yt, y, yi+1)π(y)dy

K̂∗K̂Ω0K̂ =
∑

t

∑

i

∑
m

∑

m′
M(ym′ , ym+1)ω(ym+1, yi)

Lh(yi − yt)∑
m Lh(yi − ym)

M(ym′ , Y )

L̄(ym′ , yt, Y, ym′+1)φj(yi, yt+1)

K̂∗Ω0K̂
∗K̂ =

∑
t

∑

i

∑

k′
M(yk′+1, Y )

Lh(Y − yk′+1)∑
l Lh(Y − yl+1)

∫
M(yi, y)ω(y, yk′+1)

L̄(yi, yt, y, yi+1)π(y)dyφj(yi, yt+1).

Then, ( 1
T K̂K̂∗+ĤΩ0Ĥ

∗)ϕ̂j = λ̂jϕ̂j . By taking the integral
∫

U ′(Y ) Lh(Y−yk+1)∑
k Lh(Y−yk+1)

π(Y )dY on both

sides of this equality, and developing φj(yi, yy+1) = β 1
U ′(yi)

φ̄j(yt+1), we get Akϕj = λ̂j φ̄j(yk+1),
where Ak denotes the (k + 1)-th row of A, for k = 0, . . . , T − 1.

5.9 Appendix B: Numerical Implementation

We present in this subsection a numerical simulation able to show the good properties of our
estimator. For simplicity, we take n = 1, so that only 1 consumption good is present in the
economy. The law of motion for the relevant state variable Yt is

ln Yt = a + b ln Yt−1 + ε,

where ε is a normal random variable with variance 0.01. The agent’s per-period utility function

is of CRR type: U(Yt) = Y
(1−γ)

t

1−γ , with γ = 0.30. We chose the agent’s subjective discount factor
β = 0.97.
The true value of the pricing functional is taken as the function satisfying equation (5.8) and it is
obtained through the classical method described in subsection 5.4.3. This choice is motivated by
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the small dimension n. In this situation the classical solution is likely to converge faster than the
bayesian solution.
The transition density of the state variable is estimated through a kernel smoothing with a gaussian
kernel function and a bandwidth h = 0.1. The prior distribution is specified as a gaussian measure
with mean set alternatively equal to p0 = 525Y 2

t − 857.5Yt +373 or to p0 = 160Yt− 108. The prior
covariance operator is Ω0 =

∫
exp{−|Ỹ − ∧Yt|}π(Ỹ )dỸ . We show the results of the simulation in

Figure 5.1 for two values of the regularization parameter α: α = 0.3 and α = 1. The magenta
curve is the prior mean. The blue curve is the classical solution p̂ = (I − K̂)r̂, the red one is
the regularized posterior mean, regularized through the classical Tikhonov scheme. The difference
between this two curves gives a measure of how the bayesian method fit well.
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(d) α = 1, N = 1000

Figure 5.1: Asset Pricing functional estimation.

In Figure 5.2 we have used the extended g-prior distribution with g = Tα, T = 1000 and
different values of α are alternatively specified. The covariance operator is Ω0 = (K∗K)s, with
s = 1.
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(a) α = 0.3, N = 1000,
p0 = 525Y 2

t − 857.5Yt + 373
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Figure 5.2: Asset Pricing functional estimation with an extended g-prior specification.
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