
  

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 37

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE 
INFORMAZIONI

MONOCULAR DEPTH ESTIMATION BASED ON GROUND GEOMETRY

Presentata da: Huan Li

Supervisore

Stefano Mattoccia

Esame finale anno 2025

Coordinatore Dottorato

Ilaria Bartolini

Co-supervisore

Matteo Poggi



Abstract

Monocular depth estimation is typically regarded as an ill-posed problem due to the challenge of
scale ambiguity. Unlike other depth estimation approaches, such as stereo depth estimation and
LiDAR measurement, monocular depth estimation relies solely on the information presented in
a single image, leading to lack of multi-views consistency cues. Nevertheless, monocular depth
estimation does not depend on costly sensor equipment or complex calibration processes, mak-
ing it easily deployable across a variety of scenarios, including autonomous driving, robotics,
augmented reality, and scene understanding.

In recent years, significant advancements in deep learning have led researchers to explore
end-to-end training methods for depth prediction. These methods typically utilize extensive
depth annotations in conjunction with state-of-the-art neural networks, demonstrating strong
generalization capabilities across diverse scenes. However, high-quality labeled datasets are
time-consuming and expensive to create, resulting in increased training complexity. To alleviate
this issue, some researchers have proposed self-supervised monocular depth estimation that
only leverages natural video sequences, thereby reducing the reliance on large annotated depth
labels. Despite these advancements, self-supervised depth estimation methods typically assume
that all objects in the training scenes remain static. This assumption can result in numerous
failure cases when estimating the depth of dynamic objects.

Aimed to above limitations, we propose the integration of ground geometry information
into depth estimation processes. In static scenes, the ground normal vector predicted by people
probes offers accurate scale information about the 3D scenes, which not only allows to accu-
rately align predicted 3D scene with the real-world environment and also provide a reliable
scale factor to convert all relative depths to absolute distances. Our proposed method enables
to achieve metric depth estimation for any static scenes. Furthermore, in dynamic scenes, we
assume that the depth of all moving objects is consistent with the depth of their ground con-
tact points. Based on this geometric prior, we develop a ground propagation module for self-
supervised depth estimation which iteratively propagates ground features to dynamic objects in
the latent space of decoder, thereby facilitating depth calibration of dynamic objects. The final
experimental results demonstrate that our method can effectively improve the depth estimation
of moving targets and achieve superior generalization performance.

In summary, incorporating ground geometry information can significantly enhance the ac-
curacy of monocular depth estimation in both static and dynamic environments, making monoc-
ular depth estimation a more dependable solution for future various applications.

Keywords: Monocular depth estimation; Ground geometry; 3D vision
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Chapter 1

Introduction

Monocular depth estimation has become an active research area in computer vision, with sig-
nificant advancements achieved in recent years. This task focuses on predicting the distances of
objects within a 3D scene using only a single 2D image as input. Fig. 1.1 displays depth maps
across various scenes, where darker hues represent farther distances while lighter hues indicate
closer ones. As shown, depth maps reflect the relative distances of objects to the camera and
spatial structures of scenes, thereby can be applied in a wide range of real-world applications
such as autonomous driving, social distance measurement, and augmented reality.

Additionally, as the inverse of camera projection, depth estimation enables to lift 2D images
to 3D scenes, making it a foundational component of many computer vision tasks, including
3D object detection, scene flow prediction and 3D segmentation. Compared to other depth
estimation methods, such as LiDAR [134] or stereo depth estimation [131], monocular depth
estimation does not need costly sensors or complex calibration procedures, making it adoptable
to be deployed in any settings, from indoor environments to dynamic outdoor scenes.

To provide a comprehensive exploration of monocular depth estimation, the following sec-
tions are organized to discuss core geometric concepts, widely used datasets, evaluation metrics,
existing methodologies, and current challenges, presenting a structured overview and analysis
of this field. Building on these insights, we propose our improved approaches to monocular
depth estimation, which are introduced in Chapters 3 and 4 in detail.

farthercloser

Figure 1.1: The visualization of depth maps across different scenes. The darker hues indi-
cate farther distances while lighter hues means closer distances.
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Figure 1.2: The illustration of camera coordinate, image coordinate and world coordinate
systems.

1.1 Geometric Concepts

1.1.1 Coordinate Systems
In the concept of imaging geometry, there are three different coordinate systems.

World coordinate system is used to describe the absolute position and orientation of objects
in 3D space, with three orthogonal axes labeled as (U, V, W). The origin and orientation of these
axes can be set arbitrarily to best suit the scene.

Camera coordinate system is centered at the optical center of the camera, with the camera’s
lens pointing along the the optical axis Z-axis. The X- and Y-axis define the horizontal and
vertical planes of the camera’s field of view. The objects in this system are defined in terms of
their distance and direction relative to the camera’s position.

Image coordinate system represents points in a 2D image plane. Typically, the origin point
is defined at the top-left corner of the image. The x-axis increases to the right, and the y-axis
increases downward. The differences and relations between these three coordinates are shown
in Fig. 1.2.

1.1.2 Camera intrinsics and extrinsics
The camera intrinsic and extrinsic parameters determine how a camera captures a 3D scene and
projects it onto a 2D image.

Camera intrinsics includes parameters related to the camera’s internal characteristics, such
as focal length, distortion, principal point and scales, which are independent of the camera’s
position and orientation. The focal length f defines the distance between the camera’s lens and
the optical center, affecting magnification and field of view of the optical system. The camera
distortion refers to the optical imperfections introduced by the camera lens, which cause the
captured image to deviate from the real-world geometry. There are two main types of camera
distortion:

• Radial distortion: it occurs when light rays bend as they pass through the lens, causing
straight lines to appear curved in the image. The areas further away from the optical center



would suffer more severe distortion. Given the radial distortion coefficients k1, k2, k3, the
distorted image coordinates (x′, y′) and the correct coordinates (x, y) have the following
mathematical relationship, where r = x′2 + y′2:(

x
y

)
= (1 + k1r

2 + k2r
4 + k3r

6)

(
x′

y′

)
(1.1)

• Tangential distortion: it occurs when the lens is not perfectly aligned with the image
sensor. This causes the image to appear tilted or shifted, leading to slight inaccuracies
in how objects are positioned within the frame. Similarly, Eq.1.2 gives the conversion
formula between distorted coordinates and correct coordinates when tangential distortion
coefficients p1, p2 are known.(

x
y

)
=

(
2p1x

′y′ + p2(r
2 + 2x′2)

2p2x
′y′ + p1(r

2 + 2y′2)

)
(1.2)

The principal point is the offset of the image center from the up-left corner, typically represented
by pixel coordinates (cx,cy), as depicted in Fig.1.3

x

y

u
v

cx

cy
Image 
plane

Figure 1.3: The principal point (cx, cy)

The camera scales determine scale factor
to convert distances in the image plane from
pixels to real-world units. The scale factors
in the x-axis and y-axis are denoted as sx and
sy. Typically, the camera intrinsics can be ex-
pressed as a matrix K as follows, where fx
and fy are equal to f/sx, f/sy respectively.

K =

fx 0 cx
0 fy cy
0 0 1

 (1.3)

Camera extrinsics are parameters to de-
pict position and pose of the camera relative
to the world coordinate. It involves rotation
matrix R and translation vector T which will
be changed when the camera moves or rotate
in the 3D space. Given the camera extrinsic
parameters, the transformation between the

world and camera coordinate systems can be achieved through Eq. 1.4, where Pc is the point
in the camera coordinate system and Pw is the corresponding location in the world coordinate
system.

Pc = RPw + T (1.4)

1.1.3 Coordinate transformations
The coordinate transformations is aimed to build a mathematical model to describe how the
points in the 3D world get projected into 2D pixel coordinates. As formulated in Eq. 1.4,
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Figure 1.4: The perspective projection. The blue triangle is constructed by the projections
of P on the X and Y axis under the camera coordinate system, while the projections of p on
the x-axis and y-axis form red triangle. The two triangles are similar with proportion of Zc/f ,
where Zc is the depth of point P from the camera and f is the camera focus.

the location of the objects in the 3D scenes can be transformed into camera coordinate system
through camera extrinsics. The following explains how to convert camera coordinates into pixel
coordinates.

Perspective projection is a process to project points in the camera coordinate system into
2D image planes. As illustrated in Fig. 1.4, a point P with coordinates P (Xc, Yc, Zc) is projected
onto p on the image plane. The projections of P on the X-axis and Y-axis form a right triangle,
where the two bases represent the coordinates Xc and Yc respectively. Similarly, the projections
of point p on the image plane along the x-axis and y-axis form another right triangle, as depicted
by the red triangle in Fig. 1.4. Since these two triangles are similar, a proportional relationship
can be established through the Eq. 1.5, where f is the camera focus length.

x

Xc

=
y

Yc

=
f

Zc

(1.5)

Pixel coordinate transformation works for translating image coordinates into pixel loca-
tions on the image. The Fig. 1.3 has demonstrated that there is an offset (cx, cy) between image
coordinates and pixel coordinates, by incorporating Eq. 1.5, the pixel coordinates (u, v) can be
determined using Eq. 1.6. In addition, the Eq. 1.6 can be reformulated into matrix multiplica-
tion, as shown in Eq. 1.7, where P denotes the camera extrinsics matrix.

u =
Xc • f
Zc

+ cx, v =
Yc • f
Zc

+ cy (1.6)

Zc

u
v
1

 =

fx 0 cx
0 fy cy
0 0 1

(
R T
0 1

)
Xw

Yw

Zw

1

 = KPPw (1.7)



1.1.4 Camera calibration
The camera calibration is targeted to estimate all intrinsic and extrinsic parameters introduced
in the Sec. 1.1.2. The Zhang’s Camera Calibration [223], proposed in 1998, is a widely adopted
calibration method, providing a practical solution for this task. The Zhang’s camera calibration
employs a checkerboard board, as shown in Fig. 1.5, and captures the board from different
views. By fixing the world coordinate system on the checkerboard, the world coordinates of
each corner can be determined, as the distances between the black-white squares are known and
consistent. It allows the extraction of multiple pairs of image coordinates and corresponding
world coordinates, which are then used to solve Eq. 1.7 for camera calibration.

Figure 1.5: The checkerboard for camera calibration. The white and black squares are the
same size. When fixing the world coordinate system on the checkerboard, the spatial coordi-
nates of all corner points will be determined.

1.2 Datasets
The depth datasets are crucial for training and evaluating models of monocular depth estimation.
These datasets typically consist of RGB images and corresponding ground truth depth maps
which are generated using depth sensors like LiDAR, stereo cameras or simulation software.
The following lists introduce these datasets in detail.

KITTI Dataset [51]: The KITTI dataset is a widely used dataset in computer vision and
autonomous driving, developed by the Karlsruhe Institute of Technology (KIT) in collaboration
with Audi. It serves as a benchmark for evaluating perception algorithms used in self-driving
cars and covers a wide range of tasks, e.g. 3D Object detection, optical flow, semantic seg-
mentation, SLAM and depth estimation. The KITTI dataset contains approximately 6 hours of
driving data, with the following documents:

• The raw and synchronized/rectified binocular grayscale image sequences with the size of
1242×375.

• The raw and synchronized/rectified binocular RGB image sequences with the size of
1240×370



• The 3D Velodyne point clouds collected from LiDAR sensors, with 100k points per
frame, which provide accurate depth information.

• The 3D GPS/IMU data, used to track the vehicle’s position and orientation in real-time.

• The calibration documents, recording intrinsic and extrinsic parameters of camera.

NYU Depth v2 [127]: The NYU-Depth V2 dataset was released from New York University
in 2012. It consists of video sequences of various indoor scenes recorded by the RGB and depth
cameras of Microsoft Kinect. It features:

• 1449 densely labeled pairs of aligned RGB and depth images, with size of 640×480.

• 464 new scenes taken from 3 cities.

• For the indoor environments, it captures a wide variety of objects, furniture, and cluttered
scenes and provides an excellent testbed for algorithms dealing with occlusions, lighting
variations, and complex spatial layouts.

Make3D [145, 146]: The Make3D is another well-known 3D vision dataset. It was devel-
oped by researchers at Stanford University and provides ground truth depth maps along with
corresponding RGB images.

• It consists of 400 training images and 134 test images with the size of 2272×1704, each
paired with depth maps.

• The depth data in the Make3D dataset is generated using the Lidar scanner with the size
of 55×305.

Cityscapes [34]: The Cityscapes dataset is a large-scale dataset primarily designed for urban
scene understanding, with a diverse set of stereo video sequences recorded in street scenes from
50 different cities.The details of this dataset are as follows:

• The Cityscapes provides pixel-wise semantic labels and instance-level annotations. It
contains 5,000 finely annotated images and 20,000 coarsely annotated images, with the
size of 2048×1024.

• The dataset provides disparity maps(i.e the reverse of depth) precomputed through SGM
algorithm [63].

• It also gives intrinsic and extrinsic camera parameters for train, validation, and test sets.

Virtual KITTI [22]: In 2015, researchers at the Naver Labs Europe used the Unity game
engine [153] to simulate real-world videos from the raw KITTI autonomous driving benchmark
suite, leading to the creation of the Virtual KITTI dataset. This synthetic dataset was one of
the pioneering efforts in generating artificial training data specifically for autonomous driving
applications. Virtual KITTI reproduces five driving scenes under various weather and lighting
conditions, including fog, rain, and sunset. It provides comprehensive training data for several
key computer vision tasks, such as semantic segmentation, optical flow, depth estimation, and
scene flow analysis. In detail,



• The Virtual KITTI dataset contains 21,000 RGB images with the size of 1242×375.

• The depth images are dense and aligned with all the RGB images. They are encoded as
grayscale 16bit PNG files. To normalize depth maps into 0-1, the loaded depth map will
be divided by 65535.

MegaDepth [96]: The MegaDepth comprises 1 million images sourced from the internet,
making it one of the largest datasets available for depth estimation, which cover a variety of
scenes, from urban landscapes to natural environments and indoor settings. The key features
are as follows:

• It has totally 130,000 image-depth pairs with the size of .

• To achieve depth labels, the MegaDepth employed COLMAP [148, 150], a state-of-art
multi-view stereo method to generate depth maps. To eliminate outliers in the initial depth
maps, researchers adopted some refinement techniques, e.g. segmentation and median
filter to finally construct dense and plausible depth labels.

DrivingStereo [192]: The DrivingStereo dataset is a large-scale stereo dataset which is
developed for outdoor autonomous driving settings.

• The DrivingStereo dataset contains 182,188 RGB images, where the training set has
14,437 stereo pairs and the testing set has 7,751 pairs.

• The image size is 881×400

• High-quality disparity labels are produced by a model-guided filtering strategy from
multi-frame LiDAR [134] points.

These datasets enable the training of deep learning models for depth estimation, allowing
the models to learn the relationship between RGB image features and the corresponding depth
information.

1.3 Evaluation Metrics
To evaluate prediction accuracy of proposed methods in the task of monocular depth estimation,
it is essential to employ appropriate evaluation metrics. Different other vision tasks, depth
estimation typically encounters the issue of scale inconsistency that the predicted depth has
different scales with actual depth. To ensure a fair comparison between different methods, the
predicted depth values must be normalized to a uniform scale before calculating their numerical
differences with the ground truth. The commonly accepted evaluation metrics are listed in the
Tab. 1.1, where di represents predicted depth value at pixel i, d̂i denotes ground truth depth, N
is the number of pixels on the image.

These metrics effectively quantify depth evaluation errors, but each emphasizes different
depth ranges. For instance, The MAE metric treats all depth ranges equally, making them
more sensitive to errors in distant depth values compared to nearby ones. In contrast, AbsRel
mitigates the impact of large depth errors by normalizing them relative to the ground truth depth.



Table 1.1: The evaluation metrics for the depth estimation: In the formula column, the di

represents predicted depth value at pixel i, d̂i denotes ground truth depth, N is the number of
pixels on the image.The ↓ in the Better value column means the smaller the value better for this
metric while ↑ denotes the bigger value is better.

Metrics Name Formula Better value
MAE mean absolute error 1

N

∑N
i=1 |di − d̂i| ↓

MSE mean square error 1
N

∑N
i=1(di − d̂i)

2 ↓
RMSE root mean square error

√
1
N

∑N
i=1(di − d̂i)2 ↓

AbsRel absolute relative error 1
N

∑N
i=1 |

di−d̂i
d̂i

| ↓
SqRel square relative error 1

N

∑N
i=1(

di−d̂i
d̂i

)2 ↓

LogRMSE root mean square logarithmic error
√

1
N

∑N
i=1(log(di)− log(d̂i))2 ↓

δi threshold accuracy 1
N

∑N
i=1 max(di

d̂i
, d̂i
di
) < thre, thre = 1.25, 1.252, 1.253 ↑

Similarly, the RMSE reduces the influence of high-depth discrepancies through performing log
operation on the depth value. By evaluating depth through the above metrics simultaneously,
it is possible to acquire a more comprehensive evaluation result, thereby enabling a clearer
judgment of a model’s strengths and weaknesses.

1.4 Sensoring System and Multi-Views for Depth Estimation
Depth estimation methods can be broadly categorized into stereo vision, multi-view, monocular
and sensor-based approaches like LiDAR [134]. This section will presents a comprehensive
introduction of LiDAR distance measurement, stereo depth estimation, and multi-views depth
estimation subsequently, highlighting their principles, applications and limitations.

1.4.1 LiDAR distance measurement
LiDAR (Light Detection and Ranging) is a remote sensing technology that uses laser pulses to
measure distances between the sensor and objects in the environment. It is widely used for cre-
ating high-resolution 3D maps and is especially popular in autonomous vehicles, robotics, and
geospatial applications due to its high accuracy and ability to capture detailed depth information
in real-time.

The LiDAR system is composed of several components: a laser emitter that sends out laser
pulses, a receiver that detects the reflected signals, a rotating or scanning mechanism that allows
for 360-degree coverage or targeted scanning and a GPS and inertial measurement unit (IMU)
for accurately tracking the sensor’s position and orientation. It operates by emitting laser beams
and measuring the time it takes for the pulses to reflect off objects and return to the sensor. Since
the speed of light is constant, the sensor can calculate the distance between the LiDAR and the
object based on the time delay, also known as the time of flight (ToF). All of these components
work together to acquire accurate depth information, enabling the system to generate detailed
3D maps of the environment.

LiDAR data is typically stored in specialized file formats that preserve the detailed 3D point
cloud data. As the diversity of LiDAR systems(e.g Terrestrial LiDAR (TLS), Aerial LiDAR



(a) RGB image (b) 3D point cloud (c) Projected point cloud

Figure 1.6: The visualization of LiDAR point cloud: (a) is a 2D RGB image; (b) shows the
visualization of the point cloud in 3D space, where purple indicates points closer to the camera,
while green represents points farther from the camera; (c) is the result that 3D point cloud is
projected onto the 2D image where red indicates closer points while blue denotes farther points.

(ALS), and Bathymetric LiDAR), the document formats storing point cloud data are varying,
each having the specific characteristics and requirements of the respective system. These differ-
ent formats necessitate distinct methods for reading, processing, and interpreting the data. The
most commonly used formats involve LAS/LAZ, PLY, PTS and BIN where typically preserving
3D coordinates, intensities, timestamps and RGB information of point clouds. For the KITTI
dataset [51], the LiDAR data is saved in a BIN document. After reading the data document and
visualizing it, the Fig. 1.6 displays the 3D point cloud of the image in the KITTI dataset.

As a high-accuracy depth sensor, LiDAR excels in capturing detailed 3D spatial data over
large areas and being independent from ambient light, allowing it to work effectively in low-
light or nighttime conditions. Despite these advantages, the high cost of equipment and main-
tenance hinders its more widespread applications. Additionally, LiDAR faces challenges in
capturing data from objects with high reflectivity and in adverse weather conditions, such as
fog, rain, and snow. Furthermore, as shown in the Fig. 1.6, the accuracy and density of the
point cloud degrade with increasing distance from the LiDAR, making it difficult to detect fine
details at long ranges. Therefore, these limitations of LiDAR motivate the development of
machine learning-based depth estimation that tries to incorporate geometric principles into the
topic of image processing and machine learning.

1.4.2 Stereo depth estimation
Stereo depth estimation is another crucial method to estimate the depth of objects in a scene. By
analyzing two images captured by a paired cameras which positioned at slightly different view-
points, this technique leverages the disparity between corresponding points in the image pair
to compute depth information. Unlike the LiDAR relying on the expensive sensor equipment,
stereo depth estimation only employs a calibrated stereo camera, which significantly declining
the cost of depth measurement. As shown in Fig. 1.7, the point P in the 3D world can be pro-
jected onto 2D images with different viewpoints. According to the coordinate transformation
principle introduced in the section 1.1.3, when intrinsic and extrinsic parameters of cameras
are known, the transformation relationship between pixel coordinate p on the left camera plane
and corresponding coordinate p′ on the right can be established through Eq. 1.8, where Kr and
Kl represent intrinsic parameters of left camera and right camera respectively, Pl−>r denotes
pose transformation between two cameras which can be easily computed by camera extrinsic
parameters, Z is depth value of point P to the left camera.



P

p

p’

Q

q’

O

Z

L

OR

f

Figure 1.7: The projections from two different viewpoints. The rays OL − p and OR − p′

intersect at point P while OL− p and OR− q′ intersect at point Q in the 3D space, which means
that once the positions of the projection points on the left image and right image are known, the
depth of point can be determined.

p′ = KrPl−>rK
−1
l pZ (1.8)

Principle: To estimate depth Z for every pixel on the image, the crucial step is to identify
the projection pairs like p and p′ from stereo cameras according to the pixel appearance simi-
larity. However, performing a search for matching points across the entire image would make
the amount of computation increase exponentially, leading to a lot of computing consumption.
As shown in Fig. 1.8, stereo depth estimation can utilize the epipolar line constraint to limit the
search domain for corresponding points to a single row of pixels, significantly reducing compu-
tational complexity. Specifically, it requires the optical axes of the stereo cameras to be parallel,
the image planes to be aligned at the same height, and the cameras to have identical intrinsic
parameters. As depicted in Fig. 1.8, given XL, XR and B, the distance of L can be computed as
B +XR −XL. Therefore, utilizing similar triangle principle formulated on the left of Eq. 1.9,
the depth Z can be calculated based on the baseline B, focus length f and the disparity d which
is defined as d = XL − XR. For a calibrated stereo camera system, both B and f are known
constants, meaning the depth calculation depends solely on the disparity d.

B

B +XR −XL

=
Z

Z − f
⇒ Z =

B ∗ f
XL −XR

(1.9)

Basic steps: In practice, stereo depth estimation typically involves the following steps:

• Rectification: The rectification is a series of processes to align the image planes of two
cameras so that corresponding points in the stereo image pair lie on the epipolar line. As
introduced in the section 1.1.2, pictures captured by camera lens generally suffer from
distortions. To eliminate this effect, the first step of rectification is to remove distortions.
After performing camera calibration, the distortion parameters as well as other intrin-
sic parameters can be known, allowing de-distortion operation is accomplished through
Eq. 1.1 and 1.2. The next step of rectification is to apply homography transformation on
the images to ensure that the image planes are co-planar and corresponding epipolar lines
are horizontal. Practically, by performing the homography transformation, i.e. Eq. 1.10
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Figure 1.8: The epipolar line constraint of stereo cameras. The projections p on the left
image plane and p′ on the right plane are located on the same pixel row, marked in red, which is
referred to as the epipolar line. Let the x-coordinate of p on the (u, v) coordinate system be XL

and that of p′ be XR, the distance between the two camera optical centers is B, the depth value
Z of point P can be calculated according to the principle of similar triangles.

on the original image coordinates (u, v), new coordinates (u′, v′) can be established to
reconstruct rectified images through bilinear interpolation sampling, where λ

λ′ represent
scale factor, K,R indicate intrinsics and extrinsics of original camera respectively, K ′ is
the mean of the left and right camera intrinsic parameters, R′ is a rotation matrix dedi-
cated for rectification. u′

v′

1

 =
λ

λ′K
′R′−1RK

u
v
1

 (1.10)

• Stereo Correspondence: The stereo correspondence aims at looking for homologous
points in the epipolar lines of rectified image pairs, so that to estimate disparity according
to the Eq. 1.9. To do this, a matching cost function is used to measure how similar two
pixels are. The simplest matching algorithm is to compute pixel similarity one by one.
However, due to the effect of noises, occlusion and ambiguous regions, this method com-
monly generate disappointed disparity predictions. In the light of this, the window-based
matching costs [116, 163, 164] are proposed to find the best match by comparing small
patches around a pixel in the left image with patches in the right image. Apart from lo-
cal approaches, global approaches, e.g. graph cuts and dynamic programming, can also
optimize the stereo correspondence problem by minimizing an energy function over the
whole image.

• Post-processing: After establishing the correspondences for each pixel point, stereo depth
estimation requires some post-processing steps, e.g. filtering [119], to remove noise and
improve the quality of the final disparity map.

In summary, stereo depth estimation is able to estimate scene depth by using two cameras
with a fixed baseline distance. It does not require additional hardware, making it suitable for



various environments, and providing high-resolution depth maps. However, stereo depth esti-
mation faces challenges in textureless regions, occlusions, and repetitive patterns, which can
make matching difficult and lead to inaccuracies in the depth estimation. Additionally, it may
struggle in low-light conditions or with reflective surfaces. Regarding the above issues, another
depth estimation approach, i.e multi-view depth estimation, is proposed to improve prediction
accuracy.

1.4.3 Multi-view depth estimation
Multi-view depth estimation employs three or more cameras to capture images from different
viewpoints, offering a significant improvement over traditional stereo vision methods. By lever-
aging information from several viewpoints, multi-view systems can eliminate problems caused
by occlusions and textureless regions in the stereo settings, thus generating more accurate and
detailed 3D representations of a scene. The geometric principles of multi-views depth estima-
tion are based on the perspective projection and feature matching as stereo depth estimation
does, but as it involves multiple camera viewpoints, multi-view depth estimation includes many
additional processing steps.

The structure from motion (SfM) [149] is the most commonly utilized method for multi-
views depth estimation. The pipeline of SfM typically follows a series of steps as below:

• Feature detection and matching: The first step of multi-views depth estimation is to ex-
tract keypoints in each image using feature extraction algorithms, e.g. SIFT [101] and
SURF [11]. Then the correspondences between the detected keypoints in different im-
ages can be established through nearest neighbor search.

• Camera pose estimation: Once correspondences between two images are established, it
is mathematically solvable to calculate camera poses. Specifically, given correspondence
coordinates p1, p2 and intrinsic parameters K, the epipolar constraint can be formulated
as E.q 1.11, where [t]× represents the skew-symmetric matrix of the translation vector t
and R is the rotation matrix of camera pose.

pT2K
−T [t]×RK−1p1 = 0 (1.11)

Based on this equation, the Fundamental Matrix denoted as K−T [t]×RK−1 will be solved
when giving 8 known correspondences, which allows to decompose the translation vector
t and rotation matrix R of camera poses.

• Triangulation: When obtaining the relative position relationship between the two cam-
eras, the depth relative to the camera 2 can be calculated according the Eq. 1.12. Here, x1

and x2 are normalized coordinates of p1 and p2. Consequently, if d2 is known, the depth
relative camera 1 can also be determined.

d2[x1]×Rx2 + [x1]×t = 0 (1.12)

• Global Optimization: Through the previous steps, the three-dimensional space informa-
tion has been constructed. However, there are slight differences among 3D scenes recon-
structed from different cameras, multi-views depth estimation has to apply global opti-
mization techniques such as bundle adjustment [106] to refine the estimates of camera



poses and 3D points simultaneously. This step minimizes the reprojection error across all
images, enhancing the overall accuracy of the reconstruction.

By repeating above procedures on all the image pairs with different viewpoints, the three-
dimensional information of real world will be established gradually. Compared with stereo
depth estimation, the use of multiple camera views allows for a more accurate depth estima-
tion because it can avoid occlusion issues effectively. Nevertheless, it cannot be ignored that
multi-views approaches elevate computational complexity associated with processing multiple
images, thereby posing challenges for real-time applications. Furthermore, the requirement for
precise calibration and synchronization of multiple cameras also increase computational cost of
depth estimation.

1.5 Monocular Depth Estimation
Different from LiDAR, stereo or multi-views depth estimation which either requires complex
camera calibration or costly sensor equipment, monocular depth approaches only lie in a sin-
gle camera, making it more flexible and cost-effective to deploy in various reality environments.
Although monocular depth estimation has seen great development potentials in 3D vision appli-
cations, it is inherently an ill-posed problem due to depth ambiguity and scale inconsistency. As
illustrated in Fig. 1.7, if without a reference image from a second viewpoint, points at different
depths in the 3D space will be projected onto the same location on the image plane, which poses
challenges for monocular depth estimation to accurately differentiate depth information. Moti-
vated by the advantages of monocular depth estimation, there has been a lot of work attempting
to solve these problems. The following content will be divided into into three categories to
introduce existing methods from the principles, applications and limitations respectively.

1.5.1 Machine learning-based methods
In 2005, researchers [144] at Stanford University proposed a method that maps RGB images
to depth maps using a Markov Random Field(MRF) approach. Specifically, depth estimation
model can be defined as a continuous conditional random field like Eq. 1.13 where the posterior
probability P is composed of unary and pairwise potentials with parameters σ, θ. Given ground
truth depth d̂ and RGB image X , the parameters σ, θ will be solved to infer depth through
maximizing posterior probability P.

d̂ = max
d∈Ω

P (d|X, θ, σ) (1.13)

Inspired by the MRF-based monocular depth estimation, Ashutosh Saxena et al. [147] as-
sumed that environment is composed of multiple small planes, i.e superpixels. Under this as-
sumption, depth estimation can be achieved by inferring the location and orientation of each
plane. To further improve the accuracy of reconstructed 3D structures, the model incorporated
some additional visual clues, e.g. neighboring superpixels are more likely to be connected to
each other, long straight lines in the image plane are more likely to be straight lines in the 3D
model. These geometric priors serve as conditional constraints, facilitating more precise depth
estimation.
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Figure 1.9: The U-net structure for depth estimation. The translation from image to depth is
achieved by the end-to-end training paradigm where each layer of encoder will be concatenated
with corresponding decoder layer, enabling the preservation of essential features.

Instead of building up the explicit probability models(e.g. Gaussian model or Lagrangian
mode) to compute depth, Fayao Liu et al. [105] employed deep convolutional neural networks
to model the unary and pairwise potentials, allowing to resolve parameters directly using back
propagation.

While these techniques has seen some success in depth estimation, it encounters difficul-
ties in ensuring precision for complex scenarios, as hand-crafted parameter models often fail
to accurately capture real-world mapping relationships. With the rise of deep learning and its
widespread applications in computer vision, numerous innovative works have emerged, lever-
aging advanced neural networks to achieve depth regression more effectively.

1.5.2 Supervised methods
In 2014, Eigen et al. [42] first designed an end-to-end depth estimation model based on the
multi-scale Convolutional Neural Network (CNN) [88] which combined both coarse and fine-
level predictions to capture global scene structure and fine-grained details. To ignore the effect
of absolute scale among different images, Eigen et al. proposed the scale-invariant error to
better measure relationships between points in the scene. As remarkable abilities of neural
networks to extract hierarchical features from raw pixel inputs, the final results performed on
the NYU [127] and KITTI [51] datasets proved great improvement in accuracy of monocular
depth estimation.

Following this work, numerous methods have been proposed to further improve monocular
depth estimation. For example, Ibraheem et al. [4] utilized the U-net structure [141] to map
images into depth maps, which effectively mitigates information loss by incorporating skip
connections between the encoder and decoder layers. The network structure is illustrated in
Fig. 1.9 which has been regarded as the classical depth estimation network. In terms of training
loss of network, beyond minimizing the absolute error between predicted depth and ground
truth, they put forward the gradient smooth loss. This regularization term encourages smoother
depth predictions, particularly in regions with homogeneous texture, thereby enhancing the
overall depth map quality.

As the lack of long-range dependencies for the convolutional operations, CNN-based meth-



ods typically decline the performance in the global depth consistency. In contrast, models utiliz-
ing multi-head self-attention mechanisms, such as the Transformer [168], have proven highly ef-
fective in capturing long-range correlations, achieving significant success across various image
translation tasks. Building on this insight, Agarwal et al. [2] introduced a Transformer-based ar-
chitecture for monocular depth estimation to improve depth prediction for distant and small-size
objects. To maintain local depth consistency, they retained a CNN branch within the model. Ad-
ditionally, to facilitate effective fusion between CNN-derived features and Transformer-derived
features in the encoder, they introduced a cross-attention module, enabling efficient feature in-
teraction and integration for improved depth estimation accuracy.

Despite more complex network architectures have improved the generalization capabilities
of depth estimation models, achieving robust depth predictions still requires training on large
and diverse datasets. However, these datasets often exhibit biases in depth range, making it
challenging to effectively achieve cross-dataset transfer during training. To overcome this limi-
tation, Rene Ranftl et al. [138] proposed a method that aligns ground truth and predicted depths
using a least squares approach before calculating their absolute errors, ensuring both scale and
shift invariance. By employing this scale-invariant loss, the network can be trained jointly on
five datasets involving various scenes, which demonstrates powerful generalization performance
on unseen environments.

Compared with target-driven discriminative models, generative models tend to focus on the
overall distribution of data, thereby being expected to have stronger generalization performance.
In 2020, Jonathan et al. [64] proposed generative diffusion model, which achieved remarkable
success in image synthesis and inspired significant interest in applying generative models to
various computer vision tasks. Building on this progress, Bingxin et al. [81] reformulated depth
estimation as a conditional generation task, where the generative network directly learns the
distribution of depth maps conditioned on RGB inputs. The experimental results demonstrated
that this method significantly outperformed Midas [138] and other depth-error-driven methods,
achieving superior performance in depth estimation.

Driven by advancements in deep network architectures and the use of diverse datasets, su-
pervised monocular depth estimation has achieved notable success in robustness and accuracy.
However, these methods heavily rely on large annotated depth labels, which are costly and time-
consuming to collect. Additionally, monocular depth estimation suffers from scale ambiguity
due to the lack of metric information in single images, making it difficult to predict absolute
depth from relative depth. This limitation reduces its reliability compared to methods like Li-
DAR or stereo depth estimation, which provide more accurate metric depth measurements.

1.5.3 Self-supervised methods
Compared to data-driven supervised methods, self-supervised monocular depth estimation en-
ables depth prediction from a single image without the need for annotated labels, significantly
reducing the dependency on labeled data and making the acquisition of depth information more
efficient and easier.

The principle of self-supervised monocular depth estimation is similar to stereo matching
that mainly depends on epipolar geometry as formulated in 1.8. However, while the epipolar
constraints in stereo vision are applied to stereo image pairs, in monocular depth estimation,
these constraints are applied to consecutive frames. Consequently, the epipolar constraint of
monocular depth estimation can be expressed as Eq. 1.14 where K represents the camera in-
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Figure 1.10: The pipeline of self-supervised monocular depth estimation. Both depth net-
work and pose network will be trained by the mean absolute loss between warped image I ′t and
target image It.

trinsics, Pt−>t−1 refers to camera pose from time t to t− 1, pt−1 and pt denotes coordinates of
image projection on t− 1 and t respectively, Z is the depth for the pt.

pt−1 = KPt−>t−1K
−1ptZ (1.14)

Inspired by this principle, Garg. et al. [227] first proposed a self-supervised monocular
depth estimation paradigm in 2017. This method designed two networks to predict depth and
camera pose separately which enable the projection of coordinates from current frame to the
previous or subsequent frame based on the constraints in Eq. 1.14. The current view will be
reconstructed by inverse warping from previous/next frame where each pixel is sampled ac-
cording to the reprojected coordinates pt−1/pt+1. The absolute error between target frame and
reconstructed frame will serve as objectives to train both depth network and pose network. The
overall pipeline of self-supervised monocular depth estimation is illustrated as Fig. 1.10.

Although this approach successfully predicted depth just from single video sequences and
established the standard paradigm for self-supervised monocular depth estimation, unreliable
reprojected losses caused by occlusion and dynamic objects will disturb network to fit actual
depth distribution, declining the prediction accuracy for the network. To further minimize the
gap between supervised methods and self-supervised approaches, Godard. et al. [55] introduced
a novel reconstruction loss in Monodepth2. Instead of averaging the photometric error over all
source images, the reconstructed error of each pixel will be determined by the minimum of
each warped frame on the corresponding location. This per-pixel minimum reprojection loss
is beneficial to exclude problematic pixels, such as out-of-view pixels and occluded pixels.
Besides,they applied the auto-masking algorithm to mask out stationary frames and dynamic
pixels when computing warped losses, where the pixel will be included only when reprojection
error of the warped image is lower than that of the original unwarped image. Furthermore, to



prevent the training objective getting stuck in local minima, they also adopted multi-scale depth
estimation where the network will output multi-scale disparities from each layer of decoder and
performing reprojected loss on each of them. Benefiting from these improvements, Monodepth2
significantly enhance the predicted accuracy of monocular depth.

Although traditional self-supervised monocular depth estimation like Monodepth2 has elim-
inated the issues of occlusion, they are limited by the use of previous or subsequent single frame
to compute reconstructed losses. These methods neglect much valuable temporal information.
In 2021, Watson1 et al. [185] proposed ManyDepth to make use of more historical frames to es-
timate depth. This work is inspired by multi-view stereo to build up a cost volume [195] which
will be fed into the decoder to predict depth. Compared to 2D features, 3D cost volume con-
structed by historical frames can contain more information, thus effectively improving accuracy
of depth estimation. Nevertheless, ManyDepth are more sensitive to the dynamic objects com-
pared with single-frame depth estimation, leading to significant declining results on the moving
areas, which makes it have to adopt additional monodepth branch to offset overfitting caused
by cost volume.

In summary, existing methods of self-supervised monocular depth estimation commonly
leverage view consistency principle, allowing to acquire actual scene scales compared to su-
pervised approaches. This characteristic facilitates to restore metric depth from the predicted
relative depth. Besides, as mentioned above, they do not require large amount of depth labels but
only need readily available video sequences, thus providing a more flexible and cost-efficient so-
lution for applications such as autonomous driving. However, self-supervised monocular depth
estimation typically depends on the assumption of static scenes where dynamic objects will be
regarded as ill-posed issues. Although several studies have attempted to improve prediction
robustness by replacing CNNs with Transformers [220, 226], these challenges are particularly
evident in the motion-dense scenarios where moving objects are frequently assigned extreme
depth values, either as infinitely distant or close.

Although monocular depth estimation faces many challenges, certain geometric cues within
visual scenes are often overlooked. These geometric features can play a crucial role in en-
hancing depth estimation and contribute to recover accurate depth scales. In light of this, the
present work leverages ground geometry information to propose two novel improvement strate-
gies based on monocular depth estimation, each designed specifically for dynamic scenes and
static scenes respectively. These methods are elaborated in detail in Chapters 1.6.

1.6 Monocular Depth Estimation Guided by Ground Geom-
etry

In 3D vison tasks, geometric constraints are crucial to retrieve 3D information. These geometric
conditions provide additional cues about the scene’s structure, compensating for the lack of
stereo image pairs or LiDAR data.

For example, vanishing points and horizon lines are crucial geometric elements that can
contribute significantly to many 3D vision tasks. Vanishing points represent the intersection of
parallel lines in the 3D world when projected onto a 2D image plane, while the horizon line
marks the boundary where the sky meets the ground in a scene. In particular, all vanishing
points will lie on the horizon line. These geometric cues are particularly useful in determining
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Figure 1.11: The illustration of some geometric cues: (a) Vanishing point: the point where
two parallel lines in the 3D converge; (b) Horizon line: the boundary where the sky and the
ground meet in the distance. It is the farthest visible boundary that an observer can see on the
surface of the earth; (c) Ground plane: the plane where most of objects are standing.

the 3D spatial structure of objects. For instance, vanishing point can aid in the estimation of the
object’s 3D bounding box as the edges of a cuboid in 3D space, being parallel, will converge at
the same vanishing point. Additionally, the horizon line, which represents the farthest visible
boundary in an image, provides a key geometric constraint: points located above the horizon
line can be considered at an infinite distance, resulting in their disparity values approaching zero.
This information is particularly valuable in constraining depth estimation in distant regions of
the scene.

Another important geometric cue is the planar surface, often employed in outdoor environ-
ments. The ground planes can help in determining relative depth and scale, particularly in the
environments with structured elements like roads or squares. Furthermore, the ground plane
can also present a strong geometric prior about depth estimation, because objects in the scene
are generally standing on the ground, indicating consistent depth between them.

In summary, geometric cues can effectively convey 3D scene information for monocular
tasks. This insight has inspired some researchers to leverage these cues to enhance the accuracy
of monocular depth estimation, such as GEDepth [199], Planedepth [177]. In this thesis, we
will further develop ground plane geometry to resolve existing challenges in monocular depth
estimation tasks.

1.6.1 Our Contributions
Zero-shot metric depth estimation for static scenes

The legal surveillance cameras in some public areas can help to provide security protections,
traffic monitoring and smart management. For instance, estimating crowd density within a
scene, monitoring interpersonal distances to ensure compliance with social distancing protocols,
or detecting collisions between vehicles are practical applications of video analysis. All of
these applications rely on depth estimation, making metric depth estimation in static scenes
particularly essential. The static scene refers an environment where a camera is installed at a
certain position with a fixed pose and height. In this setting, the background is stationary, while
people and vehicles are always moving.



Since the majority of surveillance cameras are monocular, obtaining scene depth from a
single captured image is highly required. However, as discussed in Sec. 1.5, estimating met-
ric depth from a single image is inherently an ill-posed problem due to the lack of triangula-
tion cues from multiple viewpoints. Recent advances in supervised monocular depth estima-
tion have enabled depth prediction for static scenes. These data-driven methods are trained on
large-scale datasets with precise depth annotations, such as LiDAR data, and employ advanced
network architectures, like Transformer [168], thereby achieving strong generalization capabil-
ities in diverse environments. These state-of-art pretrained depth models, such as Midas [138],
DPT [137], can provide dense depth maps for any static scene.

However, these models are still subject to failures in specific settings that are under-represented
in the training data, e.g., on ambiguous objects such as mirrors, or more commonly, when deal-
ing with images taken from a perspective rarely, or some moving objects that are less observed
in the training process. Therefore, directly applying existing depth models on the new scenes
will bring out some unexpected predictions, like inconsistent depth on the objects or infinite
distance on the moving targets. To address this issue, we propose an on-site adaption technique
which are based on a geometric assumption, i.e. most of objects in the scene stand on the ground
plane and depth of them should be consistent with their ground contact points. In practice, we
first identify all the agents including pedestrians and vehicles by using instance segmentation
networks, e.g. Mask R-CNN [1], and then replace depth of each agent with that of ground
contact point. In this way, depth predictions can be updated and will serve as pseudo labels to
fine-tune depth networks. The experimental results demonstrate that this one-site adaption tech-
nique is able to adjust depth for all the agents, allowing to provide more reliable initial dense
depth maps for any unseen environments.

Although state-of-the-art depth estimation models can present plausible initial depth pre-
dictions, determining the actual scene scale remains ambiguous, which is crucial for converting
relative depth to metric depth. Drawing inspiration from the ability of the ground plane to
provide essential scale information, we leverage this feature to facilitate scale alignment. A
critical step in this process involves aligning the actual ground plane with the predicted ground
plane. According to the linear geometric principle, assuming a planar ground surface, the actual
ground normal can be estimated by solving a linear equation based on multiple sets(more than
three sets) of standing 2D coordinates and the corresponding 2D height of the same agent. In
practice, when an individual moves within the monitored field of view, his varying standing
coordinates and height in the image can be recorded. The moving individual serves as a geo-
metric probe for computing the actual ground normal. To derive the predicted ground normal,
we can mask out the ground area for the image and project them onto a 3D plane using initial
depth predictions. This projection enables the calculation of the ground normal through the
least squares method. Once the predicted planes are rotated to be aligned with actual ground,
the predicted depth will have the same scale as the actual scene depth.

Due to the scale of predicted depth has been aligned with actual scenes, the final step to
predict physical distances to the camera is estimating a scaling factor that can convert all relative
depths to absolute depths. To achieve this goal, we only use the estimated actual ground normal
and the camera’s height from the ground to calculate minimum absolute depth which is located
in the middle-bottom point of the image. In this way, the scale factor will be known through
dividing the absolute depth of this point by the relative depth.

In summary, the proposed method leverages human probes to detect scene scales without
reliance on prior information, thereby enhancing the practicality of reconstructing 3D structures



for static scenes. Furthermore, all modules within this framework are designed to be efficient
and lightweight, ensuring high adaptability across various unseen environments.

Self-supervised depth estimation for moving objects with ground propagation

Self-supervised depth estimation is aimed to eliminate the need for labeled depth data by train-
ing models to predict depth using geometric consistency between video frames. Instead of
relying on a large number of ground truth depth labels, self-supervised depth estimation learns
to minimize reconstruction errors by comparing the original image with a warped or synthesized
view generated from the predicted depth. This approach significantly reduces the dependency
on expensive labeled datasets and acquires actual 3D structures of scenes, enabling the model
easier to restore the metric distances from predictions, thereby it is especially useful for real-
world applications and dynamic environments.

However, self-supervised depth estimation heavily relies on the assumption of photometric
consistency, which requires all the objects in the scenes should remain static to ensure pixel ap-
pearances unchanged between consequent frames. Therefore, dynamic objects, e.g pedestrians
and vehicle, present significant challenges on the self-supervised depth estimation as moving
speed and directions of dynamic objects are always unpredictable.

Recently, various methods have been developed to address this ill-posed problem in depth
estimation. One effective technique involves masking dynamic objects during training, which
allows the model to ignore errors from these objects when calculating the loss function. How-
ever, this approach can significantly reduce the network’s generalization ability due to fewer dy-
namic features being learned. Another approach introduces additional perceptual information
into depth estimation. For instance, SC-DepthV3 [156] refines the depth estimation of mov-
ing objects by incorporating pseudo-depth labels, generated by existing depth models [206], as
supplementary supervision. Similarly, Klingner et al. proposed a dual-semantic network that
uses semantic segmentation to guide depth estimation. While these auxiliary perceptual infor-
mation can improve accuracy as they share the similar context with depth, they often require
additional computational resources, which may not always be accessible. Another intuitive
solution is to implement multi-task estimation alongside depth, such as optical flow [160] or
scene flow estimation [121]. Since these tasks explicitly capture dynamic object motion, they
can help build a complete 3D structure of the scene and mitigate the ill-posed challenges in-
troduced by moving objects. For example, Yihong Sun et al. [157] proposed to learn optical
flow, depth and dynamic masks through jointly training three independent networks. However,
multi-task estimation inevitably introduces auxiliary network structure, typically including 2-3
encoder-decoder networks, which increases memory usage and the training complexity.

To enhance depth prediction for dynamic objects in self-supervised monocular depth esti-
mation, we introduce a geometric assumption: the depth of an object should match that of its
ground contact point, ensuring depth consistency. Based on this principle, we propose a novel
ground propagation module, designed to integrate smoothly into any state-of-the-art monocu-
lar depth network, such as Monodepth2 [55] or Lite-Mono [220], without requiring additional
parameters or specialized training procedures. The concept behind ground propagation draws
inspiration from the intrinsic properties of latent spaces within decoder networks, where feature
activations can be categorized into depth-aware and detail-aware features. Depth-aware fea-
tures are responsible for reconstructing the global depth structure, capturing the general depth
distribution across the scene, while detail-aware features focus on refining depth edges and pre-



serving finer details. Therefore, by refining the depth-aware feature maps, the accuracy of the
final depth predictions can be significantly enhanced.

The first step of ground propagation involves identifying depth-aware feature maps from
the decoder outputs. To achieve this, we construct pseudo depth or disparity maps and then
evaluate cosine similarity between feature activations and the pseudo depth. Feature maps with
higher similarity scores will be identified as depth-related. Subsequently, within the depth-
aware feature maps, ground features of each dynamic object will be propagated upward in
an iterative way while keeping other features and background areas remained. This process
replaces the outlier depths of moving objects with the depth values of their ground contact
points, enabling consistent and more accurate depth calibration for dynamic objects. Since
ground propagation is applied exclusively to depth-aware feature maps, depth details can be
preserved in the final predictions. Compared to other ground-based monocular depth estimation
methods [124], our approach supports end-to-end training and flexibly handles objects with
surfaces that are not perpendicular to the ground. Finally, we propose that the final feature map
should be a weighted sum of the original and updated features, effectively preserving features of
objects that already meet the multi-view consistency principle. To accomplish this, we introduce
clipping normalization, which calculates the weight based on the differences between the two
sets of features, ensuring more reliable updates.

To conclude, our approach effectively address challenges faced by existing self-supervised
monocular depth estimation, allowing to improve accuracy for dynamic objects. More impor-
tantly, our proposed ground propagation module is light-weight and free parameters, making it
possible to be integrated into any existing baseline methods.



Chapter 2

Related Work

Depth estimation has been a significant area of research within computer vision, particularly
due to its vital role in understanding 3D scene structure from 2D images. This section outlines
key contributions in the field, divided into multi-views and stereo depth estimation, supervised
and self-supervised monocular methods, alongside the integration of geometric priors.

2.1 Stereo and Multi-view Depth Estimation
Stereo depth estimation involves the extraction of depth information from two stereo images by
computing the disparity between corresponding points. Early methods focused on traditional
computer vision techniques, which rely heavily on the carefully designed stages of cost com-
putation, aggregation, optimization, and refinement. For example, Birchfield and Tomasi [20]
improved cost computation by introducing a gradient-based matching cost, which became more
robust to intensity changes between stereo images. In 2002, Birchfield and Tomasi [21] further
proposed a measure of dissimilarity by using the linearly interpolated intensity functions sur-
rounding the pixels, which is insensitive to sampling. After computing the matching cost, Yoon
and Kweon [210] introduced an adaptive support-weight approach, where support regions are
determined based on color and spatial proximity. A highly influential method is Semi-Global
Matching (SGM) [63]. SGM aggregates matching costs by considering multiple paths across
the image, which greatly enhances accuracy in both textured and textureless regions, and has
become a benchmark in stereo estimation. As for cost volume optimization, techniques like
graph cuts [87, 111, 170] and belief propagation [44, 155, 159] became popular for their ability
to enforce smoothness while preserving depth discontinuities. To allow disparity maps obtained
from initial optimization more accurate, Yang et al. [198] introduced constant-space belief prop-
agation to improve disparity map accuracy with a faster computation time. Bilateral filtering
techniques [162] have also been used for post-processing to refine depth maps by smoothing
them while preserving sharp edges.

With rapid development of deep networks, they have provided powerful alternatives for
stereo depth estimation by learning to extract dense correspondence and depth from stereo
pairs. In 2016, Zbontar and LeCun [217] proposed MC-CNN, which leveraged a convolutional
neural network (CNN) [88] to compute matching costs between stereo image patches. Luo
et al. [111] introduced a faster architecture by simplifying the CNN into a dot-product-based
approach, making the network more computationally efficient. Moreover, there are also some
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work attempting to improve optimization or refinement procedures of the SGM [63] pipeline.
For example, Chang and Chen [44] introduced PSMNet, a pyramid spatial pooling module to
capture global context, to allow for a more accurate disparity prediction. Shaked and Wolf [159]
designed the Global Disparity Network (GDN) to locally optimize cost volume. Yang et al. [13]
proposed to combine semantic segmentation and stereo matching into a unified framework to
incorporate high-level semantic information for depth estimation.

Furthermore, several works began developing end-to-end stereo matching networks [39, 73,
161, 186, 204, 212]. DispNet [117] by Mayer et al. used an encoder-decoder structure with
skip connections to predict dense disparity maps directly from stereo image pairs. Kendall
et al. [82] advanced this field with GC-Net, which integrated a 3D cost volume and a differen-
tiable soft argmin layer to aggregate matching costs end-to-end. Similarly, Chang and Chen [27]
introduced PSMNet, leveraging a spatial pyramid pooling module and stacked hourglass archi-
tecture to improve disparity estimation. Pang et al. [129] developed a cascade residual learning
framework that enhanced disparity prediction by reducing errors iteratively. Following this,
Cheng et al. [33] proposed to use neural architecture search to optimize network architecture,
balancing performance with computational cost. Tonioni et al. [165] focused on online adap-
tation techniques that allowed stereo networks to adapt to new environments without retrain-
ing, improving real-time application. To pursue fast inference, Liang et al. [97] presented an
efficient architecture using hierarchical cost volumes. In contrast, Yao et al. [203] proposed
MVSNet, a multi-view stereo approach that extended disparity prediction to multiple images,
further improving depth estimation for 3D reconstruction. More recently, Zhang et al. [222]
applied guided aggregation networks to enhance matching accuracy by learning better feature
aggregation strategies.

Multi-view depth estimation extends stereo by incorporating images from multiple view-
points, often used in more complex 3D reconstruction systems. Traditional approaches often
rely on geometric methods such as Structure from Motion (SfM) [149] and Multi-view Stereo
(MVS) [47]. Based on this insight, PatchMatch-based MVS introduced by Schönberger et
al. [151] provides a more efficient way to perform dense stereo matching, particularly improv-
ing speed and accuracy in unstructured image collections.

Recently, deep learning-based methods also revolutionize multi-view depth estimation [48,
154, 171, 194, 201, 224]. A pivotal contribution is MVSNet [203], which established an end-to-
end learning framework using a cost volume for depth inference. Following this, DeepMVS [66]
introduced a multi-scale approach, effectively combining features from different layers to im-
prove depth estimation. Another important work, DSN [193], utilized a dual-stage network
to refine depth predictions through a cascaded learning process. Moreover, MVSNet+ [36]
built upon MVSNet by implementing multi-view feature aggregation, resulting in better depth
predictions by leveraging diverse viewpoint features. Additionally, Zhou et al. developed a
self-supervised framework for multi-view depth estimation, allowing for depth learning with-
out ground truth labels [228].

More advanced methods such as Neural Radiance Fields (NeRF) [31, 122], proposed to
synthesize novel views of complex scenes by modeling the volumetric scene as a continuous
function of 3D coordinates. Building on this, PlenOctrees [46] combined NeRF with octree
structures for faster rendering, thus improving depth estimation in real-time applications. An-
other significant contribution is KiloNeRF [140], which extended NeRF to handle large-scale
scenes, demonstrating that high-quality depth can be inferred from vast datasets. Lastly, Deep-
Voxels [182] integrated NeRF with voxel-based representations, achieving high-quality depth



estimations while preserving details in complex scenes.
Despite advancements, stereo and multi-view depth estimation still faces challenges, includ-

ing sensitivity to occlusions, reliance on complex camera calibration, and challenges in handling
dynamic scenes. These limitations sparks the research about monocular depth estimation.

2.2 Supervised Monocular Depth Estimation
Conventional monocular depth estimation is mainly based on the machine learning process with
parameter [65] or non-parameter [79] and explicitly extracted hand-crafted features from single
image [80, 144, 147]. These methods struggle to effectively manage more complex real-world
scenarios, resulting in deep learning-based monocular depth estimation becoming the prevailing
focus of current research [50, 74, 77, 89, 115].

The first work about supervised monocular depth estimation was released by Eigen et
al. [54], they utilized multi-scale convolutional neural networks (CNNs) [88] to predict dense
depth map, demonstrating the potential of deep learning in this area. Inspired by this work,
some researchers extended this idea by introducing deep convolutional neural fields that com-
bine CNNs with conditional random fields(CRFs) [158] to enforce spatial coherence in the
predicted depth maps [26, 68, 173, 221]. For instance, Bo Li et al. [92] achieved this by incor-
porating CRFs into a post-processing step, refining the depth estimation across different sce-
narios. Beyond basic CNN model, there are also some different variants, such as VGG [152],
ResNet [62] and DenseNet [69], to be applied to improve accuracy of depth estimation. Laina
et al. [90] introduced residual connections to solve the gradient vanishing problem in deep net-
works, allowing deeper networks to be trained more stably. Shen et al. [5] proposed to predict
depth based on DenseNet, enabling to capture more details in complex scenes. Liu et al. [103]
combined the VGG network with conditional random fields for monocular depth estimation.
The VGG network used in this model captures global and local information and generates a
preliminary depth map, which was then further refined by CRFs.

To improve the accuracy and robustness of depth estimation, multi-task learning (MTL)
frameworks has become another trend. It leverages shared representations across distinct vision
tasks, allowing the model to enhance performance by learning richer features. The first branch
is the combination of semantic segmentation and depth estimation. Due to semantic segmen-
tation and depth estimation typically assign the same value on the small object, many previous
works have focused on solving these two tasks in a joint manner [76, 102, 109, 175]. For ex-
ample, Mahyoub et al. [114] jointly trained two U-Net [141] like networks to predict semantic
segmentation and depth maps which shared the same encoder but have different task-specific
decoders. Chen et al. [32] further proposed the self–calibration fusion structure to more ef-
fectively fuse these two features. In contrast, Pierluigi et al. [136] put forward cross-domain
discontinuity loss to enforce feature fusion between depth and semantic domains. Apart from
semantic information, monocular depth estimation can also meet significant improvement when
combined with other vision clues, such as optical flow [160] and surface normal [180]. Wang
et al. proposed TartanVO [179] which is a learning-based visual odometry (VO) system that
estimates both optical flow and depth maps simultaneously. It focuses on real-time, efficient
performance by combining depth and flow estimation to support visual odometry tasks. Built
on state-of-art optical estimation network RAFT [160], Zachary et al. further combined depth
and optical flow estimation to understand comprehensive motion representation, i.e 3D scene



flow [121]. In 2018, Fu et al. [133] proposed GeoNet to simultaneously estimates depth, sur-
face normals, and optical flow from monocular videos. The main contribution of this work is to
introduce a geometry-based loss function that enforces consistency between depth and surface
normals. Similarly, Yan et al. [190] present a multi-task CNN to jointly learn surface normal
and depth maps but introduced CRFs [158] to refine the superpixel-wise predictions.

With the availability of various large-scale datasets [51, 96, 172] and advancements in state-
of-the-art deep networks with strong generalization capabilities [10, 70, 107, 168], an increasing
number of studies are focusing on zero-shot monocular depth prediction. One notable contri-
bution in this area is MiDaS [138], which employs a scale-invariant loss to enable training
across multiple cross-domain datasets. This approach allows the model to capture richer scene
information, resulting in improved accuracy and generalization performance across diverse en-
vironments. In 2020, Yin et al. [205] devoted a novel synthesis dateset, Diverse Scene Depth,
and proposed a multi-curriculum learning method to enhance generalization performance. Sim-
ilarly, Eftekhar et al. [40] offered a diverse collection of high-quality, synthetic, and real-world
images with ground truth annotations for 3D tasks and integrated multiple 3D vision tasks to
improve 3D reconstruction. Although scale-invariant loss enables networks to be trained on
the multiple datasets with different ranges, it tends to ignore the scale information of specific
scene, posing challenge to reconstruct real scenes. To solve this problem, Yin et al. [206, 207]
proposed the dual networks which separately learn depth information and scale factor. Another
influential work is inspired by Transformers /citevaswani2023attentionneed, which proposed a
dense image prediction frame and reached to state-of-art results in many vision prediction tasks,
including monocular depth estimation. Moreover, DepthAnything [196, 197] proposed by Li
et al. also achieved awesome generalization performance by predicting depth for unlabeled
datasets through a teacher network, and then fine-tuning a student network both on the pseudo
labels and real labels. The above work can be reviewed to perform a discriminate task, they
heavily depend on the need of large-scale datasets. In contrast, generative models [57, 84, 128]
are typically featured by high generalization performance in many tasks. In 2023, by exploiting
existing state-of-art generative models, i.e. Stable Diffusion Model [125], Ke et al. proposed
Marigold [81] to predict depth, which typically consider depth labels as known distribution.

While monocular depth estimation significantly lowers the cost of depth sensing and is ap-
plicable across a wide range of scenarios, it heavily relies on the availability of large-scale
training datasets and struggles to recover the actual scale of scenes. These challenges can be ef-
fectively addressed by self-supervised monocular depth estimation methods, which alleviate the
need for ground-truth depth data and enable the model to learn depth by leveraging geometric
and photometric consistency from unlabeled video sequences.

2.3 Self-supervised Monocular Depth Estimation
In recent years, self-supervised monocular depth estimation has emerged as a promising alter-
native to supervised depth estimation methods. The early work in self-supervised monocular
depth estimation was proposed by Garg et al. [49], which introduced a photometric consistency
loss for training depth estimation networks using stereo image pairs. To enhance robustness of
depth prediction, Godard et al. [53] imposed the left-right geometric consistency loss on the
training objective, demonstrating superior performance compared to previous work. Following
this, Zhou et al. [54] extended this approach to work with monocular video sequences rather



than stereo pairs. They designed the monocular self-supervised framework, where the network
simultaneously learns depth and camera pose estimation from consecutive frames, allowing it
to predict depth just from consecutive video sequences in an unsupervised way. However, view
synthesis loss generally suffer challenges when dealing with repetitive patterns or moving ob-
jects. To address this issue, some researchers worked on improving the loss function [55, 219].
Yang et al. [202] proposed smoothness regularization term to force depth consistency on the
objects. Mahjourian et al. [113] assumed approximate geometry based matching loss to encour-
age temporal depth consistency. Godard et al. [53] incorporated an SSIM [184] loss to compute
reconstructed differences between target image and warped image. Taking advantages of these
improvements, Godard et al. proposed Monodepth2 [55] in 2019. The Monodepth2 improves
upon prior approaches by incorporating an auto-masking technique to handle moving objects
and occlusions, and introducing the minimum reprojection loss to choose the most photometri-
cally consistent pixels during training. These enhancements allow the model to produce more
accurate and robust depth maps, even in challenging real-world scenarios.

In addition, many researchers have also tried to improve accuracy by improving the net-
work structure. For instance, Lyu et al. [112] re-designed bridge connections of U-Net[141],
allowing to fuse more high-frequency information, thereby achieving depth estimation of high-
resolution images. To acquire more precise and sharper depth maps, Yan et al. [191] introduced
channel-wise attention into the decoder, assigning more attention for those highly correlated
channels with depth prediction. Moreover, replacing CNNs [88] with Transformers [137] can
also benefit improving prediction accuracy, as achieved by [9, 226]. To decrease memory oc-
cupation of network, Zhang et al. [220] designed a novel encoder-decoder structure based on
self-attention execution and deployment [169] and dilated convolution [211], ensuring precision
of prediction as well as lightweight.

Despite self-supervised monocular depth estimation has seen great success, it still faces
challenges for dynamic objects as they break the assumption of static scenes, especially when
dealing with motion-intensive scenes. To solve this problem, some methods proposed to mask
out dynamic objects when computing reconstructed photometric losses. Jiang et al. [75] con-
sidered the occluded or dynamic pixels as statistical outliers in the photometric error map and
introduced an efficient weighted scheme to reduce the artifacts caused by moving objects. An-
other solution utilizes a geometric prior, i.e. the appearances of static objects projected to the
next frame should remain unchanged. Based on this geometric condition, some approaches
identify moving objects by distinguishing if there is consistency between projected instance
appearance and original one. For instance, Saunders et al. [143] filtered out objects with small
instance overlap rate. Yue et al. [215] proposed minimum instance photometric residual and
independently performed moving instance loss on moving object.

Besides, a more intuitive approach is to model motion model for each moving object. Insta-
DM [91] exploited camera ego-motion network to predict object motion and established re-
projected loss for objects independently. Alternatively, optical flow can also be utilized to
predict object motion. Sun et al. [157] established an additional network to estimate optical
flow. To regularize the learning of optical flow, they posed the background mask to ensure
optical flow of background approaching to zero.

Similar to supervised monocular depth estimation, multi-task estimation also plays a crucial
role in improving accuracy for self-supervised depth estimation [120, 120, 135, 208, 230], es-
pecially on the dynamic objects. Klingner et al. [86] designed a dual network to estimate depth
maps and semantic segmentation which can effectively guide the process of depth prediction.



Zhao et al. [225] jointly trained the depth network and optical flow network which can generate
dynamic mask by forward-backward consistency check of the optical flow.

The aforementioned methods utilize scene information from only the preceding and subse-
quent frames. In contrast, multi-frame monocular depth estimation can substantially improve
depth estimation by adopting more historical frames in the prediction process [8, 45, 181]. As
the first work in this field, ManyDepth [185], proposed by Jamie Watson et al., is inspired
by the principles of stereo geometry to construct a cost volume from video sequences, which
serves to predict depth through 3D convolution operations [166] subsequently. Motivated by
ManyDepth, Guizilini et al. [59] incorporated attention mechanism into the computation of cost
volume, specifically involving cross-attention and self-attention operations. Although multi-
frame methods have advantages in static regions, they generally encounter challenges in the
dynamic areas as the dynamic objects cause corrupted values in the cost volume. To address
this problem, Rui Li et al. [95] proposed the cross-cue fusion (CCF) module to integrate clues
from single and multiple views, making up for the weakness of multi-frame methods in dy-
namic targets. However, the complex network structures and redundant training processes in
multi-frame approaches limit their scalability and further development.

Overall, while self-supervised monocular depth estimation significantly enhances the flex-
ibility of depth acquisition, making it suitable for deployment in various autonomous envi-
ronments, a notable gap remains compared to supervised methods in terms of generalization
performance and the restoration of high-frequency details.

2.4 Geometric Priors in 3D Vision
In the monocular depth estimation, some known scene geometric priors can effectively assist
the process of depth estimation. As a valuable scene scale probe, ground prior has been widely
employed in many 3D vision tasks [35, 142, 178, 213, 229]. In 2023, Xiaodong et al. [200]
proposed to improve depth estimation by embedding ground depth which is computed according
to the camera intrinsic parameter. The integration process is guided by the ground attention
which indicates the possibility of the point belonging to the ground area. Similarly, Aurélien et
al. [25] explicitly fused ground depth into self-supervised monocular depth estimation through
ground attention. Following in this, Moon et al. [124] put forward the ground smoothness loss
to enforce depth consistent between objects and their ground contact points. Cheng et al. [61]
replaced the CNNs with Cumulative Convolution to enlarge receptive fields of objects to the
whole ground area below them.

In addition, some research has also attempted to adopt vanishing points clues in some of 3D
vision task [28, 78, 100, 174]. For instance, Wang et al. [176] proposed to refine the surface
normal prediction by fusing with vanishing points. Junsu et al. [83] designed the cross attention
guided by vanishing points to solve imbalance issue in the monocular 3D semantic occupancy
prediction. Hatem et al. [71] established vanishing point regression model, which are then com-
bined with semantic segmentation results to predict depth according to the hand-crafted rules.
Johannes et al. [58] incorporated vanishing points estimation into monocular visual odometry,
allowing to solve the issue of scale shift.

Moreover, various other forms of geometric knowledge have been explored to enhance vi-
sion tasks. Naderi et al. [126] investigated the potential of constraining models by exploiting the
geometric similarity between RGB images and corresponding depth maps, particularly along



the edges of 3D scenes, which resulted in more precise depth estimation. Similarly, Genki et
al. [85] addressed the issue of metric ambiguity in self-supervised monocular depth estimation
by incorporating camera height as a constraint. These geometric knowledge plays the key role
in various 3D vision tasks, which are promising to further improve monocular depth estimation
in the further.

Building on prior research, the subsequent sections of this article will provide a comprehen-
sive analysis of integrating ground geometry information with monocular depth estimation. We
will systematically explore how ground geometry is employed across both dynamic and static
scenes, examining the specific methodologies, experiments and constraints applicable to each
scenario.



Chapter 3

Zero-shot Metric Depth Estimation for
Static Scenes

3.1 Introduction
Surveillance video systems have become essential tools in various sectors, providing significant
value in enhancing security, safety, and operational efficiency. One of the primary applications
is in public safety, where surveillance cameras are used to monitor public spaces, detect crim-
inal activities, and assist law enforcement agencies in responding to incidents in real-time. In
addition to crime prevention, these systems help with crowd management by tracking people
density [37, 43], ensuring compliance with safety regulations in high-traffic areas, and even
monitoring social distancing in health-related scenarios. Surveillance video also plays a critical
role in traffic management [6, 14], where cameras are used to monitor road conditions, detect
accidents, and manage congestion. The Fig. 3.1 displays various monitoring scenarios involving
traffic and crowd.

With the rapid development of artificial intelligence, intelligent surveillance systems rep-
resent a significant advancement in modern security technologies by utilizing multiple vision
perceptual techniques, such as object detection [23, 52, 98, 99, 139], semantic segmentation [1,
7, 30, 108, 141, 188] and depth estimation [2, 54, 55, 138], to enhance the capabilities of tra-
ditional monitoring. Among them, depth estimation is significantly valuable because it allows
surveillance cameras, which are typically monocular, to generate 3D representations of a scene
from captured 2D images. With depth estimation, it becomes possible to detect and track ob-
jects more accurately [213, 218], assess crowd density [123], and even monitor social distancing
with higher precision [3]. In addition, depth information aids in identifying objects’ sizes and
movements, improving the system’s ability to detect anomalies, such as unauthorized access
or potential hazards. Furthermore, the use of depth data can significantly enhance video ana-
lytics for tasks like collision detection, or object counting [37], making surveillance systems
smarter and more responsive to real-world dynamics. Therefore, monocular depth estimation
for monitoring scenes is highly required and valuable, they can offer a richer, more detailed un-
derstanding of monitored environments, improving security, safety, and operational efficiency.

However, estimating depth from a single image has long posed a significant challenge in
computer vision due to the lack of triangulation cues available from multiple views, which
introduces inherent scale ambiguity. However, unlike methods that rely on cumbersome and
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Figure 3.1: Multiple static surveillance scenes

costly active sensors, such as LiDAR [12], multiple, synchronized cameras [132] / a single,
moving one [147], monocular approaches require only a single static camera which simplicity
makes monocular depth estimation more practical and accessible for various monitoring envi-
ronments.

The advent of deep learning has enabled the development of the first-ever solutions making it
possible to face such a problem [90, 104, 138]. These advancements have been driven by the in-
creasing availability of large-scale datasets annotated with depth labels [51, 96, 127], which are
crucial for training, as well as the introduction of alternative self-supervised learning paradigms
that replace explicit annotations with synchronized stereo image pairs [49, 54] or monocular
video sequences [55, 185]. By leveraging Convolutional Neural Networks (CNNs) [88] and,
more recently, Transformers [168], these methods are able to learn depth estimation from visual
cues in the scene, such as shadows, perspective distortions, and vanishing lines. Notably, the
sensitivity of these models to visual cues is evident from experiments where altering elements
like the horizon height or simulating camera tilts relative to the ground plane can lead to signif-
icant changes in the estimated depth for the same scene. This demonstrates the crucial role that
these visual cues play in inferring depth from monocular images.

Despite some data-driven monocular depth networks [81, 137, 138] have seen significant
progress in cross-dataset generalization, these models still meet failures in specific settings that
are under-represented in the training data, especially for some less-observed objects or images
taken from a perspective rarely. The Fig. 3.2 shows some of outlier cases when employing
state-of-art depth model DPT [137] to predict depth for these monitoring scenarios which are
very common surveillance setting, with the camera positioned high over the ground and slanted
with respect to it. However, as denoted by the red circles, DPT still yields inaccurate depth
predictions, e.g. inconsistent depth on moving objects, missing objects in the far distances or
infinite depth estimation. These abnormal predictions make scene depth estimation less reliable,
thus affecting subsequent absolute depth estimation.

To overcome this issue, we propose an adaptation technique to attenuate prediction errors
associated with agents. This methodology is grounded in the geometric assumption that all
agents within the scene are in contact with the ground. Leveraging this assumption, we can
derive a depth prior, i.e. the depth of each agent should be consistent with that of ground contact
point. The process for achieving adaptive depth adjustment begins with the implementation of
an instance segmentation network [187] to effectively mask each agent within the scene, e.g.
vehicles and pedestrians. Subsequently, we replace the depth values of each agent with those
corresponding to their ground contact points, thereby updating the estimated depth maps. These



In
pu

t
   

   
 D

PT

Figure 3.2: Failure cases of monocular depth estimation: all of depth maps are predicted by
DPT [137] which is the state-of-art monocular depth network. The red circles emphasize wrong
estimations, involving depth inconsistency, infinite values and et al.

Figure 3.3: The 3D projections of predicted versus actual ground: The red point cloud
indicates predicted ground plane while blue represents actual ground. There is a non-linear
mapping between them

revised depth maps will serve as pseudo labels to fine-tune the DPT [137]. This adaptation
technique allows the fine-tuned DPT to improve its accuracy on the agents at deployment time,
without any additional depth labels or scale information.

Despite adaptation technique contributes significant improvement in the depth distribution
of static scenes, particularly on the agents, the inherent scale ambiguities of monocular net-
works continues to result in substantial discrepancies between the predicted and actual scene
depths. As illustrated in Fig 3.3, when the predicted ground depth and the actual ground depth
are projected into 3D space, a clear gap emerges between the two planes, highlighting the mis-
alignment in depth estimation. It implies that a simple scale factor is inadequate for aligning
the two sets of point clouds. Consequently, without achieving proper scale alignment, accu-
rately predicting absolute distances based on the outputs of monocular depth networks remains
a challenging task.

Inspired by [183], we exploit the ground normal vector to restore the actual spatial scale.
In specific, letting a person move around in the surveillance scene and recording his standing
position coordinates and the corresponding height in the image, the actual ground normal can



be estimated. Accordingly, when predicted ground normal and actual ground normal are both
known, scale alignment is promising to achieve by rotating two planes.

Once the predicted depth is aligned with the actual scale, a straightforward scale factor can
be applied to transform all relative depth values into accurate physical distances. To estimate
this scale factor, we only have access to a simple prior related to the camera setup, i.e. the height
of the camera over the ground. This prior allows us to recover the metric scale for depth maps
generated by the monocular network.

To validate our proposal, we run experiments on a subset of the KITTI [51] dataset featur-
ing static camera sequences, as well as two novel datasets composed of both synthetic frames
(rendered through CARLA [38]) and real images. In the latter case, the dataset frames indoor
and outdoor scenes. The final experimental results indicate our proposed method can effectively
improve accuracy of metric depth compared to the baseline method DPT [137].

In conclusion, there are mainly two contributions in this work.

• A novel on-site adaptation framework for monocular depth estimation networks in fixed-
camera setups, comprising three key components: (1) a lightweight fine-tuning procedure
designed to correct depth estimation errors associated with agents, (2) a scene alignment
step facilitated by leveraging the motion of agents to identify the ground plane, and (3)
metric scale recovery achieved through the simple prior knowledge of the camera height
relative to the ground. Notably, this approach does not require any complex camera cali-
bration procedures or the use of expensive LiDAR depth sensors. As a result, it enables
fast and efficient metric depth estimation in static monitoring scenarios. The simplicity
and cost-effectiveness of this method make it highly suitable for practical applications.

• Two novel datasets with dense, ground-truth depth labels used to validate the effectiveness
of our proposal.

3.2 Proposed Methods
Directly applying monocular depth estimation methods, such as those proposed in [137, 138], to
real-world scenarios presents several significant challenges. First, these methods often produce
incorrect or blurred depth predictions for dynamic objects within the scene, such as pedestrians,
vehicles, or other moving entities. This limitation arises because monocular approaches typi-
cally rely on static scene assumptions, which fail to account for the motion of objects. Second,
the scales inferred by these methods is frequently misaligned with the actual scene, leading
to inaccuracies in depth estimation. This misalignment can result in distorted spatial repre-
sentations, making it difficult to interpret the scene’s true layout. Third, the depth predictions
generated by monocular methods are inherently scale-ambiguous, meaning they are accurate
only up to an unknown scale factor. This ambiguity complicates the task of estimating pre-
cise physical distances between objects, which is critical for applications such as autonomous
navigation, robotics, and augmented reality.

To overcome these limitations, we introduce a comprehensive adaptation strategy designed
to enhance the robustness and accuracy of monocular depth estimation in real-world environ-
ments. Our approach is structured into multiple steps, each addressing a specific challenge
within the overall pipeline. As illustrated in Fig. 3.4, our strategy begins with a preprocessing
stage that identifies and segments moving objects to minimize their impact on depth prediction.
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Figure 3.4: Overview of our adaptation scheme: First, (a) we rectify depth for agents in the
scene by producing pseudo labels and running a lightweight fine-tuning of the original depth
model; then, (b) the ground plane is extracted according to agents’ motion, and used to align
the overall structure of the depth maps predicted by the model. Eventually, (c) metric scale can
be recovered from ground normal vectors by knowing camera height.

Next, we incorporate geometric alignment techniques to ensure that the inferred depth maps are
consistent with the real-world scene structure. Finally, we introduce a scale recovery module
that leverages additional scene priors to resolve the scale ambiguity, enabling precise distance
measurements. By integrating these steps, our method significantly improves the reliability
of monocular depth estimation, making it more suitable for practical applications in complex
environments.

3.2.1 Lightweight fine-tuning with pseudo network
Although modern monocular depth estimation networks demonstrate strong generalization abil-
ities [81, 138], they sometimes fail when used in ever-seen environments. This issue is particu-
larly evident in fixed-camera installations where the camera viewpoint differs substantially from
those seen during the network’s training phase. In such cases, the network may miss the pres-
ence of agents in the scene, such as pedestrians or vehicles, leading to erroneous or inconsistent
depth predictions. To address this limitation, we design a lightweight fine-tuning procedure to
improve the perception of such agents by the monocular network by relying on pseudo labels
obtained in two steps.

Pseudo labels initialization: We utilize the state-of-the-art monocular deep network, DPT [137],
to generate an initial dense depth map. Subsequently, the semantic segmentation network, De-
tectron2 [187], is employed to perform instance segmentation on the surveillance images, al-
lowing for the identification of possibly moving agents in the scene. Then, by assuming each
agent is standing or moving over the ground plane, we generate pseudo labels by replacing the
depth of each instance with the depth value of the lowest pixel in the instance itself – i.e., the
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Figure 3.5: The process of pseudo labels initialization: Segment out possibly moving agents
in the scene through Detectron2 [187] and then replace the depth of each instance with the depth
value of the lowest pixel in the instance itself under assumption that each agent is standing or
moving over the ground plane.

Table 3.1: The network fine-tuning parameters

Parameters Value
Network name dpt_large_384

Optimizer Adam
Epoch number 20

Batch size 4
Learning Rate 10-5

Loss MAE error

contact point with the ground. For complex agents, such as bicycles or motorcycles, we ap-
proximate the riders’ depth to that of the vehicles. While for bags and hand-held items, e.g.
umbrellas, the depth will match that of the closest pedestrian. The process of pseudo labels
initialization is illustrated by Fig.3.5.

Agents rectification and fine-tuning: Although pseudo-depth labels can be generated us-
ing the aforementioned step, the depths of occluded agents may not correspond to their ground
contact points, which can lead to inaccuracies in the pseudo label dataset. To ensure the pre-
cision of network regulation, we manually remove such unreliable labels, retaining a total of
4,516 pseudo labels in the training dataset. Since the range of pseudo-depth labels is consis-
tent with the DPT predictions, no normalization of the depth labels is required during training.
Instead, we directly apply the mean absolute loss between the network outputs and the pseudo
labels. Details of the fine-tuning process are provided in Tab. 3.1. Upon completion of the
fine-tuning of the DPT network [137], we can obtain more accurate initial dense depth predic-
tions. Figure 3.6 qualitatively compares the results of the original DPT predictions with those
of the fine-tuned DPT, demonstrating the effectiveness of our proposed lightweight fine-tuning
technique.
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Figure 3.6: Monocular depth estimation before and after adaptation: On fixed-camera
settings, state-of-the-art depth estimation models [137] might fail in unseen environments or
camera settings. Our adaptation scheme allows us to improve their reliability.

3.2.2 Ground plane estimation and scene alignment
Even after adjusting the depth values for agents within the scene, there are still noticeable dis-
crepancies between the reconstructed scene structures generated by the fine-tuned depth model
and the actual physical environment. This misalignment likely arises from the significant differ-
ences in camera viewpoints between the training images and the current scene, which leads to
a degradation in the network’s ability to predict relative depths accurately and perform proper
scale recovery when feasible. The problem is particularly pronounced in fixed-camera setups,
where viewpoint variation is often limited during training but substantial in deployment. To
resolve this issue, we aim to estimate the real ground plane within the sensed environment and
incorporate it into the predicted depth map. As actual ground planes embody real scene scales,
it is promising to restore geometric structure of the scene guided by the ground normal. By
achieve this, we will perform ground normal estimation and scene alignment subsequently.

Ground plane estimation : In many monitoring environments, such as indoor and outdoor,
it is common to present a ground surface in the field of view. If assuming the ground is a planar
surface, it can be mathematically represented as Eq. 3.1 in 3D space, where (A, B, C) indicates
the ground normal of plane, D is the distance from plane to the camera origin while (X, Y, Z)
denotes the 3D coordinates of the points on the ground plane.

AX +BY + CZ = D (3.1)

According to the perspective principle introduced in Section. 1.1.2, the 3D coordinates (X,
Y, Z) of the plane are proportionally related with the projected image coordinates (x, y). Be-
sides, the object height H in the 3D space and the projected height h on the image also have
the same proportional coefficient. The proportional equation is formulated in Eq. 3.2 where f
represents the camera focus length.

x = X
f

Z
, y = Y

f

Z
, h = H

f

Z
(3.2)

By substituting Eq.3.2 into Eq.3.1, we get:

H(Ax+By + Cf) = Dh (3.3)
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Figure 3.7: People probe for calculation of ground normal: Let a person stand on the dif-
ferent positions of ground and record corresponding image coordinates (x, y) and height h, the
ground normal can be estimated by least square method.

The Eq. 3.3 indicates that there is a linear relationship between image coordinates (x, y) and
ground plane parameters (A, B, C, D). If height H is assumed as a constant, the (A, B, C, D)
can be estimated by solving linear equations when providing three or more sets of non-collinear
points (x, y, h). Inspired by the work [183], we adopt people as probe to infer ground normal.
In practice, by detecting a single agent in more than four frames, we record their corresponding
pixel height h and standing point coordinates (x, y). Due to the sparsity of the standing points,
we employ a relatively simple least squares method to compute coefficients (A, B, C, D), with
the actual height H of the agent regarded as constant. For synthetic dataset, we can use built-
in function to place the same agent at multiple locations at once and record their heights and
coordinates as shown in Fig. 3.7. The ground coefficient calculated by the people probe can
provide reliable scale information for subsequent spatial alignment.

Ground projection: As discussed in the beginning, there is generally a gap between the
actual ground in real space and the ground represented by the predicted depth map. To effec-
tively align the predicted scene with the real-world environment, it is essential to estimate not
only the actual ground normal but also the predicted ground normal. Actually, when predicted
depth map is given, the predicted ground normal is easy to known. Specifically, we project all
ground points in the image onto 3D coordinates (X, Y, Z) based on the predicted depth values Z,
then build the Eq. 3.4 to solve the ground normal (A’, B’, C’, D’) where Ag represents ground
areas of scene. It is important to highlight that, in a monitoring scene, the background remains
static over time, and the ground region consistently occupies a fixed area. Therefore, for any
monitoring scene, we just manually define the ground area at the beginning of deployment, with
no need for repeated delineation in subsequent frames, enabling accessible estimation for any
scene.

X(A′, B′, C ′)T =


X1 Y1 Z1

X2 Y2 Z2
...

...
...

Xn Yn Zn


A′

B′

C ′

 = D′ · I3×1, (X, Y, Z) ∈ Ag (3.4)

The ground normal is determined using the least squares method. Equation 3.5 presents the
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Figure 3.8: The illustration of ground projection: By manually identifying ground areas,
the ground normal (denoted as yellow) can be estimated through predicted depth. Then all of
3D points (colored by red) will be projected onto the estimated plane along the camera plane,
which are represented as (Xg, Yg, Z)(green color).

matrix formulation for solving the ground normal, where 1n represents a vector of ones with
dimension n. {

(A′, B′, C ′)T = (XTX)−1XT1n
D′ = median(X × (A′, B′, C ′)T )

(3.5)

After obtaining the predicted ground normal vector, we proceed to project all 3D points
onto the predicted ground plane along the camera plane. This ground projection is carried out
in such a way that each 3D point is moved along a line parallel to the camera plane, ensuring that
the depths of the projected points remain consistent with their original depths in the predicted
depth map. However, the spatial coordinates of these points are adjusted so that they lie on the
predicted ground plane.

The primary objective of this ground projection process is to align the predicted 3D scene
structure with the actual physical environment. By projecting all points onto the predicted
plane, their spatial positions will be adjusted to lie on the same plane, while the depth values
are remained. In this way, it allows for accurate scene alignment just by aligning the projection
plane with actual ground plane, ensuring scale consistency between the predicted and real-world
scenes. The Fig. 3.8 displays the visualization of how the 3D points (X, Y, Z) are projected on
the corresponding ground points (Xg, Yg, Z).

To acquire the projected ground coordinates (Xg, Yg, Z) for each point, we should first
establish two geometric priors: 1) all of projected ground points satisfy plane formula with
ground normal (A’, B’, C’, D’). 2) the vector connecting the 3D point and the ground point is
orthogonal to both optical axis and ground plane. For the second condition, given the optical
axis of camera (0, 0, 1) and ground normal (A’, B’, C’), the intersection vector of the camera
plane and the ground can be denoted as (-B’, A’, 0) which is orthogonal to projected vector
(X −Xg, Y − Yg, 0). Accordingly, these two geometric priors can be formulated as Eq. 3.6.{

−B′(X −Xg) + A(Y − Yg) = 0
A′Xg +B′Yg + C ′Z = D′ (3.6)

Through simplifying the above formula, we can get the mathematical functions about Xg, Yg, Zg



(x,  y)

(x’, y’)

Z

Predicted depth D Ground depth

Eq.3.8

Abs(D - D’ )

(x,  y)

Resampling depth D‘

high

low

Figure 3.9: The ground depth resampling: For the point (x, y), it will be projected on the
corresponding ground location (x′, y′) through Eq. 3.7. By sampling on the ground depth for
(x′, y′), the predicted depth will be updated to be aligned with actual scene. The absolute
difference map between DPT depth prediction and resampling depth is shown at the bottom
picture.

as follows. Based on the Eq. 3.7, all of 3D points can be projected onto the predicted ground
plane. 

Xg =
A′D′−A′C′Z−A′B′Y+B′2X

A′2+B′2

Yg =
B′D′−B′C′Z−A′B′X+A′2Y

A′2+B′2

Zg = Z

(3.7)

Ground depth resampling: the crucial step to achieve scene alignment is to make depths
of ground contact points consistent with actual values. To accomplish this, the initial step is
to project the ground points back to the image plane. This operation provides 2D coordinates
(x′, y′) that represent the ground contact point for each 3D point. By substituting the right-hand
side of Eq. 3.3 with the term associated with depth Z, we can derive Eq. 3.8, which provides a
practical formulation for estimating the depth Z of each ground point using the actual ground
normal vector (A, B, C, D). The original depth will be updated by re-sampling on the ground
depth. The overall process of ground depth resampling is depicted in Fig. 3.9, which illustrates
the scale of predicted depth has been changed through ground resampling operation.

Ax′ +By′ + Cf =
Df

Z
(3.8)

To further visualize the effectiveness of scene alignment, we take the scene on the left of



(a) Plane Estimation(people probes)

(b) Plane normal comparison (c) Visulization of ground normal

Ground normal a b c

GT plane -0.0002 0.7752 0.6316

DPT normal -0.0041 0.8910 0.4540

Estimated normal -0.0266 0.7321 0.6807

Figure 3.10: Structural misalignment between predicted depth and real scene: For a single
scene with pedestrians walking around (a), we report ground normals (a,b,c) obtained from
predicted depth (red), our ground plane estimation method (blue), and ground truth (green). On
the right, we visualize the misalignment between predicted and real planes and better alignment
for plane after performing our proposed scene alignment technique.

Fig. 3.10 as an example. By projecting ground area to the 3D space based on different depths,
the green plane in the right figure presents the actual ground plane, the red plane indicates
predicted ground from original DPT [137] depth estimation while blue plane reflects adjusted
ground through our proposed scene alignment technique. It can clearly demonstrate the plane
after scene alignment is closer to the real scene. The Table(b) also prove that, compared to
the ground normal predicted by DPT [137], the aligned ground normal exhibits a smaller angle
relative to the actual ground normal.

In summary, scene alignment involves ground normal estimation, ground projection and
ground depth resampling. All of them only depend on the predicted depth map and actual
ground normal which is calculated through people probe, allowing for a practical and feasible
way to mitigate scale misalignment between predicted 3D scenes and actual scenes.

3.2.3 Absolute scale recovery
Scale alignment makes the predicted 3D scenes have an approximate linear relationship with
the real scenes, making it possible to transform relative depths to absolute depths just by a scale
factor. To estimate this scale factor, it is necessary to acquire the corresponding metric depth at
any position of depth map. However, in static environments where only a monocular camera is
deployed—without the assistance of LiDAR or other physical depth sensing devices—acquiring
this scale factor becomes challenging. To achieve true zero-shot metric estimation, we estimate
the minimum absolute depth of the scene which is typically located at the middle-bottom posi-
tion of the image. Actually, previous research [118, 189] have tried to estimate missing scale
factor by utilizing camera height over the ground. Unfortunately, they rely on the assumption
that the Z-axis of the camera is roughly parallel to the ground plane, a condition not always met
in practice.

To deal with arbitrarily oriented cameras, we design a custom method to estimate minimum
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Figure 3.11: Minimum depth estimation: when the camera is positioned at pose O1, the
minimum depth Dmin is determined just by camera height and focus length. Then the more
common pose O2 can be obtained by multiplying by rotation matrix which is estimated through
current ground normal and N(0, 1, 0). With the rotation matrix, the coordinate of point P” in
the O2 system can be calculated, allowing to infer the minimum depth for pose O2 according to
the projection of P” on the Z-axis. The whole mathematical transformation process is listed on
the right side of image.

depth of the image, relying solely on the known camera height. Before addressing more general
cases, we initially assume that the camera’s optical axis is parallel to the ground plane, as
illustrated in the coordinate system O1 of Fig. 3.11. This scenario represents a special case
discussed in previous works [118, 189]. In the O1 system, point P on the ground plane is
projected onto point p′, which is located at the center-bottom of the image. Since the camera
height Hc, the image height hi/2, the focus length f and the depth Dmin of point P constitute two
similar triangles, Dmin can be computed according to Eq. 3.9. In the O1 system, the coordinate
of point P can be written as (0,−Hc, Dmin).

Dmin =
2fHc

hi

(3.9)

Then by rotating the camera coordinate system from O1 to O2 (as shown in the lower-
left corner of Fig. 3.11), we can acquire the most common camera pose in the monitoring
environments. In the O1 system, the ground normal will be viewed as (0, 1, 0), whereas in the
O2 system, the ground normal transforms to (A, B, C) which can be estimated through people
probes introduced in the Section 3.2.2. Therefore, the rotation matrix between coordinate
systems O1 and O2 can be derived by aligning the vectors (0, 1, 0) and (A,B,C), representing
the ground normals in the respective systems. In specific, given rotation angle θ and rotated



axis n between two vectors, the rotation matrix can be established according to the Rodrigues’
rotation formula [56] as below:

R = cos θI + (1− cos θ)nnT + sin θ[n]× (3.10)

In the process of rotating normal vectors, the rotation angle θ is given by θ = arccos B√
A2+B2+C2 ,

and the rotation axis n is computed as the normalized cross product of the two vectors, math-
ematically expressed as (− C

A2+C2 , 0,
A

A2+C2 ). The skew-symmetric matrix representation of n,
denoted as [n]×, is defined as follows:

[n]× =

 0 −A
A2+C2 0

A
A2+C2 0 C

A2+C2

0 −C
A2+C2 0

 (3.11)

Once the rotation matrix R is obtained, the point P can be transformed to a new position P’
through matrix multiplication R × (0,−Hc, D

T
min), where Hc is the camera height and Dmin

represents the minimum depth. Importantly, the new coordinates of P’ are still in the coordinate
system O1. However, as illustrated in Fig. 3.10, the point P’ will not lie on the ground plane
after this rotation. Thus, it is necessary to calculate the intersection point P” between the ground
plane and the ray extending from the new camera position O2 through P’. The coordinate of P”
can be determined with the use of assumed ground normal N(0, 1, 0), as formulated in Eq. 3.12
where the P” still takes O1 as coordinate system.

P ′′ =
−HcP

′

N • P ′ (3.12)

To calculate minimum depth in the O2 system, the coordinate of P” should be transformed
to O2 system by multiplying inverse rotation matrix R−1. Finally, the projected minimum depth
under O2 camera coordinate system will be acquired by retrieving projection of P” on the Z-
axis. The overall process of transformation is demonstrated in Fig. 3.11.

Once the minimum depth within the scene has been estimated—a value that typically corre-
sponds to the bottom-center region of the image, as this area often represents the closest point
to the camera in many real-world scenarios—the scale factor can be derived. This is achieved
by dividing the measured actual minimum depth by the predicted relative depth at the bottom-
center position. Since only one absolute depth value can be obtained through the camera height,
the conversion from relative depth to metric depth utilizes only a scale factor without consider-
ing the offset. The resulting scale factor serves as a critical calibration parameter, enabling the
conversion of all relative depth values across the entire image into precise physical distances.
This transformation process effectively bridges the gap between relative depth predictions and
metric depth estimation, facilitating zero-shot metric depth estimation without the need for ad-
ditional training or fine-tuning on the target dataset. By leveraging this approach, the system can
generalize to new environments and provide accurate depth measurements, even in the absence
of prior knowledge about the scene’s scale.

3.3 Experimental Results
In this section, we validate the effectiveness of our proposal. We first introduce datasets, metrics
and implementation details involved in our evaluation. Then, the effectiveness of the proposed



lightweight fine-tuning, scene alignment and absolute scale recovery techniques in enhancing
the depth estimation results will be validated through ablation experiments respectively. Be-
sides, we demonstrates the advancements through a qualitative comparison between the predic-
tions generated by the original DPT [137] model and those obtained after applying our proposal.
Finally, we compare MonoDepth2 trained with stereo self-supervision and our method on met-
ric depth estimation, proving our proposed monocular method yield close performance with
stereo methods in metric recovery.

3.3.1 Datasets
We run our experiments on a mixture of synthetic and real datasets, with a static camera
mounted over the scene pointing toward roads, sidewalks, or pedestrian areas. There are a
total of seven sequences used– Fig. 3.12 shows an example for each. They are grouped into
three categories, i.e. Carla static sequences(C1, C2, C3), KITTI static sequences(K1, K2) and
Real sequences(R1, R2).

C1 C2 C3

K1 K2

R1 (Indoor) R2 (Outdoor)

Figure 3.12: Evaluation dataset: We show a sample for each of the seven scenes from CARLA
(green), KITTI (blue), or our acquisitions (red) used in our experiments.

Synthetic data (CARLA): In order to obtain video sequences about outdoor vehicle moni-
toring, we employ the Carla simulator [38] to generate the synthetic dataset.

The CARLA simulator [38] is a game simulator designed to render the real autonomous
driving environments. It allows to generate a variety of complex urban and suburban scenes,
and users can flexibly customize elements in the simulation environment, such as road layout,
traffic signals, buildings, weather conditions (sunny, rainy, foggy, etc.) and lighting changes
(such as day and night). Moreover, CARLA provides the built-in sensors to retrieve data for
autonomous vehicles. In our experiments, we mainly leverage RGB camera, depth camera and
semantic segmentation camera. The following codes introduce how to install and listen these
cameras step-by-step by built-in functions of CARLA.

import carla
# Deploy the virtual environment
client = carla.Client(’localhost’, 2000)
world = client.get_world()
spectator = world.get_spectator()
# Get the view of spectator
transform = spectator.get_transform()
# Acquire built-in library containing a variety of sensors
blueprint_library = world.get_blueprint_library()



# Setting cameras
# RGB camera
camera_rgb = blueprint_library.find(’sensor.camera.rgb’)
camera_rgb_l.set_attribute(’image_size_x’, str(img_w))
camera_rgb_l.set_attribute(’image_size_y’, str(img_h))
# Semantic segmentaion camera
camera_semseg = blueprint_library.find(’sensor.camera.semantic_segmentation

’)
camera_semseg.set_attribute(’image_size_x’, str(img_w))
camera_semseg.set_attribute(’image_size_y’, str(img_h))
# Depth camera
camera_depth = blueprint_library.find(’sensor.camera.depth’)
camera_depth.set_attribute(’image_size_x’, str(img_w))
camera_depth.set_attribute(’image_size_y’, str(img_h))

# Spawning cameras at spectator view
camera_rgb = world.spawn_actor(camera_rgb, transform)
amera_semseg = world.spawn_actor(camera_semseg, transform)
camera_depth = world.spawn_actor(camera_depth, transform)

# Listening
# retrieve_data_X will be called each time a new image is generated by the
# camera
camera_rgb.listen(lambda data: retrieve_data_rgb(data))
camera_semseg.listen(lambda data: retrieve_data_semseg(data))
camera_depth.listen(lambda data: retrieve_data_depth(data))

By listening for camera events over a period of time, we can obtain video sequences for
different scenes to simulate a realistic traffic environment, where pedestrians and vehicles move
around, and urban infrastructures are standing, such as trees and buildings. These data not only
contain RGB images, and also the corresponding depth and semantic segmentation maps. In
this way, we generate three sequences, each consisting of 800 frames at 800 × 400 resolution,
dubbed C1, C2, and C3.

KITTI static sequences: The KITTI [51] dataset is a widely used autonomous driving
dataset. Among the many samples provided by the KITTI raw dataset, a small amount of
short, static sequences, mainly concentrated in the Campus category, are suitable for our exper-
iments. We obtain two main sequences by grouping frames from 2011_09_28_drive_0016 +
2011_09_28_drive_0021 and 2011_09_28_drive_0039 + 2011_09_28_drive_0043, dubbed K1
and K2, and counting 395 and 506 samples.

Real sequences(R1, R2): To further stress the flexibility of our approach, we collect two
real sequences in indoor and outdoor environments, dubbed R1 and R2, counting 3024 and 2952
images. For both, we mounted a camera tilted toward the ground plane at about five meters
over it. We collect images with a 27cm baseline stereo camera and use CREStereo [94] to
estimate disparity maps and triangulate them into depth to obtain ground truth labels. Although
imperfect, we consider these annotations accurate enough for our purposes.

The Tab. 3.2 lists the details of all the data sequences, including image resolution and num-
bers.



Table 3.2: The details of experimental datasets

Data name Sequence Number Resolution

CARLA Data
C1 800 800×400
C2 800 800×400
C3 800 800×400

KITTI Data
K1 395 1224×370
K2 506 1224×370

Real Data
R1 3027 1024×768
R2 2952 1024×768

3.3.2 Implementation details and metrics
To implement DPT [137] as the baseline monocular depth estimation network in our exper-
iments, all evaluations were conducted on a single NVIDIA 3090 GPU. The network was
adapted to each of the seven sequences using the previously detailed pipeline, which involves
lightweight fine-tuning and scene alignment. For the fine-tuning process, we selected the first
342, 463, and 406 frames from three synthetic sequences, the first 273 and 107 frames from
the KITTI sequences, and the first 684 and 679 frames from real-world scenes. Pseudo depth
labels were generated for each of these frames, and DPT was fine-tuned over 20 epochs. This
simulates an on-site adaptation process in which the first frames captured after the camera in-
stallation are used for initial fine-tuning.

Following the fine-tuning phase, we evaluated the effectiveness of our proposed pipeline
on the remaining frames of each sequence, where we also applied test-time scene alignment to
further enhance the depth prediction accuracy. For a comprehensive assessment, we employed
several widely-used metrics in the monocular depth estimation field, including Scale-invariant
Logarithmic Error (SiLog), Root Mean Squared Error (RMSE), Absolute Relative Error (Abs
Rel), and Squared Relative Error (Sq Rel). The evaluation was performed under two scenar-
ios: one using ground truth depth to rescale the predictions as a baseline [137], and the other
employing our novel scale restoration technique to recover absolute depth without reliance on
external depth sensors. This dual evaluation approach allows us to demonstrate the robustness
and accuracy of our method in recovering metric-scale depth information in real-world moni-
toring scenes.

3.3.3 Experimental evaluation of on-site adaptation
We start our evaluation by examining the effectiveness of the first two components of our
pipeline: lightweight fine-tuning and scene alignment. Table 3.3 displays the performance of
the original DPT model [137] and results obtained after the application of these techniques. To
avoid influences of estimated scale factor, we use median rescaling [54], a widely used method
for converting relative depth predictions into metric values, to fairly compare their results in
this experiment.

For the model fine-tuned using pseudo labels without scene alignment technique, we denote
it as DPT-ft, the goal of it is to enhance depth prediction accuracy by addressing errors that pri-
marily occur in regions where moving agents. From the Table 3.3, we can notice the lightweight
fine-tuning can effectively improve the accuracy compared to the original model.



In addition to fine-tuning, we evaluate the impact of applying scene alignment, referred
to as DPT-align. Scene alignment corrects the overall scene structure by adjusting the depth
predictions to align with the physical environment, specifically through ground plane estima-
tion. As shown in Table 3.3, applying alignment alone leads to a more substantial reduction
in overall depth error compared to fine-tuning, particularly in scenes where the ground plane
dominates the frame, as it ensures that predicted depth maps better reflect the true geometry of
the environment.

By combining both techniques—fine-tuning and scene alignment, we can acquire the best
results, denoted as DPT-ft-align. This model demonstrates consistent improvement across the
majority of sequences. The fine-tuning process corrects errors related to moving agents, while
scene alignment ensures that the overall scene structure is coherent with the real-world layout.
The combined model shows a significant reduction in errors across most test cases, confirming
that these two methods complement each other in terms of handling dynamic agents and static
background elements simultaneously.

However, it is worth noting that in specific sequences, such as C1 and R1, where the ground
plane occupies a large portion of the scene, the impact of fine-tuning is less pronounced. In these
cases, the ground plane dominates the pixel count, meaning that alignment has a more substan-
tial influence on the overall depth accuracy. The alignment step, by correcting the ground plane,
plays a more significant role than fine-tuning, which mainly addresses the smaller, moving com-
ponents of the scene.

3.3.4 Experimental evaluation of absolute scale recovery
In this experiment, we assess the effectiveness of our scale recovery strategy, comparing it with
alternative methods that also utilize camera height but make the assumption that the camera is
parallel to the ground plane [118, 189]. To carry out this evaluation, we compute the depth value
of anchor point(middle-bottom point of the image) for each sequence using different methods
and compare the predicted depths to the corresponding ground truth values. The results are
presented in Table 3.4, which includes both the estimated depths and the associated errors
relative to the ground truth.

For the KITTI dataset, where ground truth is sparse, we replace the anchor point with the
closest available pixel that has a similar ground truth depth. The results show that our approach
consistently restores the absolute scale more accurately than the alternative techniques. While
the two methods perform similarly on the KITTI dataset—where the camera’s optical axis is
almost parallel to the ground plane—the advantages of our approach become more apparent
when applied to real-world datasets that feature a significant camera tilt. In these scenarios,
our method delivers superior accuracy by correctly accounting for the camera’s orientation and
restoring the true metric scale.

This experiment demonstrates the robustness of our scale recovery method, particularly in
challenging cases where the camera’s optical axis is not parallel to the ground, thereby validat-
ing its applicability in diverse monitoring environments.

3.3.5 Metric depth comparison with stereo method
We conducted a comprehensive comparison between the depth maps predicted by the DPT
model [137] after applying our proposed scale recovery technique and those generated by a



Scene Method SiLog↓ RMSE↓ Abs rel↓ Sq rel↓

C1
DPT [137] 0.051 4.098 0.184 0.707
DPT-ft 0.044 4.012 0.171 0.656
DPT-align 0.018 3.421 0.103 0.399
DPT-ft-align 0.026 3.677 0.131 0.512

C2
DPT [137] 0.061 5.164 0.221 1.183
DPT-ft 0.029 3.476 0.144 0.591
DPT-align 0.011 2.301 0.041 0.307
DPT-ft-align 0.009 2.201 0.036 0.288

C3
DPT [137] 0.056 2.355 0.214 0.521
DPT-ft 0.042 2.052 0.183 0.391
DPT-align 0.018 1.282 0.112 0.154
DPT-ft-align 0.014 1.103 0.098 0.115

K1
DPT [137] 0.069 5.705 0.219 1.274
DPT-ft 0.024 3.824 0.121 0.541
DPT-align 0.026 4.537 0.105 0.767
DPT-ft-align 0.019 3.666 0.101 0.483

K2
DPT [137] 0.149 4.718 0.337 2.289
DPT-ft 0.048 2.948 0.158 0.658
DPT-align 0.057 3.686 0.235 1.441
DPT-ft-align 0.045 2.876 0.152 0.552

R1 (Indoor)
DPT [137] 0.052 1.626 0.151 0.546
DPT-ft 0.049 1.579 0.148 0.507
DPT-align 0.033 0.999 0.098 0.293
DPT-ft-align 0.036 1.075 0.107 0.337

R2 (Outdoor)
DPT [137] 0.054 3.786 0.198 0.748
DPT-ft 0.052 3.654 0.189 0.723
DPT-align 0.051 3.604 0.167 0.671
DPT-ft-align 0.041 3.136 0.159 0.542

Table 3.3: Quantitative results – on-site adaptation. We report error metrics on the seven
sequences, for original DPT [137], DPT after lightweight fine-tuning (DPT-ft) and with test-
time scene alignment (DPT-ft-align). We highlight first , second , and third best results.

model that was trained on-site with direct supervision from a stereo camera. In this stereo-
supervised setup, the model has access to the true metric scale of the scene, which provides
an upper bound on the performance a monocular depth estimation network could theoretically
achieve when given perfect scale information during training. For this experiment, we utilized
the widely adopted MonoDepth2 model [55] as the baseline for stereo-supervised learning.
The results, summarized in Table 3.5, show that our improved DPT model, once fine-tuned
and aligned with scale recovery (DPT-ft-align), consistently performs close to the accuracy of
MonoDepth2 in terms of depth estimation. In some cases, DPT-ft-align even surpasses the
performance of MonoDepth2, underscoring the strength of our scale recovery approach. This
demonstrates that by accurately recovering the metric scale, our method allows a monocular
network to achieve performance levels comparable to a stereo-based approach, effectively nar-
rowing the gap between unsupervised monocular depth estimation and supervised stereo-based
models. These findings provide strong evidence for the effectiveness of our method in real-
world applications where accurate metric depth is critical.

3.3.6 Qualitative results
To conclude, Fig. 3.13 shows how our whole frame work dramatically reduces the error being
the primary source of failure– i.e., in the presence of agents such as pedestrians and cars, or in



C1 C2 C3 K1 K2 R1 R2
Ground truth Depth 6.281 9.799 5.256 5.992 5.895 6.125 6.675

[118, 189]
Depth 10.751 19.431 10.686 6.439 6.439 24.065 25.651
Error (m) 4.470 9.632 5.430 0.447 0.544 17.940 18.976

Ours
Depth 6.102 9.789 5.105 5.772 5.285 6.304 6.421
Error (m) 0.179 0.010 0.151 0.220 0.610 0.179 0.254

Table 3.4: Scale recovery evaluation – anchor point. From top to bottom: ground truth depth
for the anchor point, average depth and its error according to [118, 189] and our method.

Scene Method Rescale SiLog RMSE Abs rel Sq rel

C1
Monodepth2 (S) [55] Stereo 0.014 4.376 0.065 0.304
DPT-ft-align Ours 0.038 5.628 0.124 0.727

C2
Monodepth2 (S) [55] Stereo 0.011 8.231 0.051 0.383
DPT-ft-align Ours 0.021 8.426 0.096 0.651

C3
Monodepth2 (S) [55] Stereo 0.031 2.653 0.077 0.256
DPT-ft-align Ours 0.012 2.101 0.068 0.095

K1
Monodepth2 (S) [55] Stereo 0.005 2.307 0.042 0.163
DPT-ft-align Ours 0.019 3.901 0.085 0.504

K2
Monodepth2 (S) [55] Stereo 0.081 3.181 0.116 0.511
DPT-ft-align Ours 0.042 3.026 0.139 0.553

R1 (Indoor)
Monodepth2 (S) [55] Stereo 0.041 1.233 0.101 0.381
DPT-ft-align Ours 0.028 1.102 0.106 0.265

R2 (Outdoor)
Monodepth2 (S) [55] Stereo 0.032 3.112 0.104 0.461
DPT-ft-align Ours 0.081 5.076 0.141 1.112

Table 3.5: Metric depth evaluation – comparison with stereo self-supervision. We report
error metrics by MonoDepth2 trained with stereo self-supervision and our method.

the farthest parts of the scene, where the ground plane misalignment between predicted and real
depth becomes more prominent. After processing, the error remains slightly higher on objects
farther from the ground plane– e.g., structures on the sidewalk (left) or the obstacle in the very
foreground (center)– where no optimization is performed by our method.

3.4 Conclusion
In this work, we introduce an innovative pipeline aimed at facilitating the on-site adaptation
of a monocular depth estimation network, specifically tailored for applications involving fixed-
camera installations. Our proposed method incorporates a lightweight fine-tuning process, en-
abling the model to be adapted to specific environments effectively. Additionally, it employs
test-time scene alignment of the predicted depth maps by utilizing the presence of freely moving
agents within the scene. Furthermore, our approach successfully recovers the metric scale of
the environment with minimal information, requiring only knowledge of the camera’s mount-
ing height. Experimental results demonstrate that a limited number of images collected imme-
diately following deployment can significantly enhance the performance of the DPT network,
validating the efficacy of our solution.
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Figure 3.13: Qualitative results of error maps. : We show error maps by DPT and DPT-ft-
align.



Chapter 4

Self-supervised Depth Estimation for
Moving Objects with Ground Propagation

4.1 Introduction
Monocular depth estimation has become a crucial task in computer vision due to its abilities to
reconstruct 3D structures from a single image. The challenge of monocular depth estimation lies
in recovering depth information without scale information, making this problem inherently ill-
posed. Recently, with advances in deep learning, significant progress has been made in this area.
For example, neural networks, particularly convolutional [54, 138] and transformer-based [137,
226] models, have demonstrated remarkable success in accurately predicting depth from single
images. Some data-driven approaches [81, 196, 197] have set new benchmarks in terms of
accuracy and generalization, utilizing large-scale datasets and diverse forms of supervision to
train models that can infer depth from visual cues alone.

Traditionally, these methods rely on supervised learning techniques, where models are
trained on using ground-truth depth labels obtained from multi-view stereo cameras [94, 216],
LiDAR sensors [12], or synthetic datasets [22, 38]. The process to collect these depth labels
is both time-consuming and expensive, as it often requires specialized equipment and com-
plex camera calibration procedures. Moreover, the training scenes are usually captured by
monocular cameras with different intrinsic parameters, resulting in depth estimation ambigu-
ity. For instance, as illustrated in Fig. 4.1, two chairs in the images have visually similar ap-
pearances, suggesting they would be assigned the same depth value during monocular depth
estimation. However, they actually have distinct depths, as these images are taken by cam-
eras with varying focal lengths. This depth ambiguity arising from inconsistent camera focal
lengths significantly constrains the accuracy of the predictions. Although there have been some
attempts [60, 93, 130] to incorporate camera intrinsic parameters into the monocular depth esti-
mation to enhance precision, existing training datasets cannot involve all real-world scenarios,
making it still challenging to recover accurate scale information for unseen environments.

To address the limitations associated with supervised learning, self-supervised monocular
depth estimation [54, 55, 185, 220] has emerged as as a promising alternative. This approach
eliminates the necessity for explicit depth labels but only depends on arbitrary video sequences
by leveraging a training loss based on image reprojection errors. Specifically, self-supervised
methods employ view synthesis principle, where images from different viewpoints are gener-
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Figure 4.1: The chairs captured by cameras with different focal lengths: The left and right
chairs were photographed by cameras with focal lengths of 52mm and 26mm, respectively.
Although they have similar visual appearances, their distances from the cameras are 2m and
1m respectively.

ated by utilizing the predicted depth map and camera pose. During the optimization process, the
objective is to minimize the discrepancies between the original image and the reprojected im-
age, making the estimated depth to be an intermediate representation. This enables the network
to effectively learn depth estimation without the need for direct supervision from ground-truth
labels. Furthermore, self-supervised monocular depth estimation estimates the relative motion
of the camera between consecutive frames while simultaneously predicting the depth map for
each frame. This approach is particularly appealing because it enables training on arbitrary
video sequences, making it more scalable and adaptable to a wide range of environments and
tasks. By utilizing the principle of view consistency, the 3D scenes reconstructed from depth
estimated by self-supervised monocular methods more accurately present the actual geometric
structures of the environment compared to those generated by supervised methods.

Despite the advancements achieved by self-supervised monocular depth estimation, it still
faces some challenges, especially when dealing with dynamic scenes of scenes. This issue
arises because dynamic objects violate the multi-view consistency assumption, which requires
that objects must remain static across frames to ensure their positions in the world coordinate
system unchanged. When this assumption is broken, self-supervised methods will introduce
inconsistencies that can mislead the depth estimation process, leading to errors in the recon-
structed scene. The Fig. 4.2 illustrates several examples about failure cases on the dynamic
objects, e.g. vehicles, which indicates the network will assign error values to these moving
objects.

To solve this ill-posed problem, there have been some methods attempting to address this
by masking out moving objects during training. For example, in the work of Monodepth2 [55],
they masked potentially dynamic objects if reprojected error of the warped image is higher than
that of the original unwarped image. Alternatively, Casser et al. [24]tried to independently
model object motion and ignore moving objects if the results of inverse warping are not aligned
with original object appearances. Similarly, Kieran et al. [143] filtered moving objects whose
warped masks do not match the original masks. However, due to these networks receive insuf-
ficient training samples on dynamic objects, they may lead to poor generalization.

Additionally, some approaches aim to address dynamic objects by integrating auxiliary tasks
like 2D optical flow or scene flow estimation. In 2018, Zhichao et al. [209] introduced Res-
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Figure 4.2: Failure cases in self-supervised monocular depth estimation: we employ the
existing state-of-art monocular depth estimation network, i.e. LiteMono [220], to predict depth
for autonomous driving scenes. It shows unexpected estimation results for moving vehicles.

FlowNet [72] to decompose scene flows from rigid structure reconstructor, facilitating to reason
about static and dynamic scene parts separately. Besides, Chenxu et al. [110] adopted Motion-
Net, DepthNet and OptFlowNet, which are used to predict camera rigid motion, dense depth
map and optical flow respectively, to estimate 3D geometric scenes more accurately. By fed-
ding these three information into a holistic 3D motion parser, the rigid background and moving
objects can be disentangled. Moreover, Seokju Lee et al. [91] proposed to model indepen-
dently for every object motion which share the same structure with camera pose network. The
whole network follows an end-to-end training paradigm where reprojection loss is composed
by rigid background and potentially-moving objects. To address the challenge of jointly pre-
dicting depth, scene flow, and motion masks without relying on prior information such as object
segmentation, Yihong et al. [157] introduced a novel motion initialization technique combined
with regularization strategies, enabling to correct error predictions on dynamic objects.

Another line of research exploits additional perceptual contents, such as semantic segmen-
tation or pseudo depth labels. For example, Marvin et al. [86](SGDepth) leveraged semantic
priors to guide the depth learning of dynamic objects by introducing multi-task learning frame-
work, which has been demonstrated to acquire superior performance on the monocular depth
estimation. In 2020, based on the previous works [18, 19], Libo et al. [156] proposed SC-
DepthV3, which utilized pseudo depth labels generated by pre-trained monocular depth net-
work [206] to guide the estimation results and incorporated two novel losses to further fuse
this additional perceptual information. Notably, while these techniques can improve perfor-
mance, they introduce additional complexity and training challenges due to the larger network
architectures.

To decrease the complexity of the network and training process, some research also at-
tempts to utilize the geometric assumption that depth for dynamic objects is generally consis-
tent with the distance of their ground contact points from the camera. Leveraging this idea,
some works [61, 124, 199] improved object depth estimation by applying ground consistency
loss functions or ground cumulative convolution. However, these approaches may struggle
when estimating depth for objects closer to the camera, where surfaces vary vertically, as the
ground consistency assumption becomes less reliable. Consequently, they rely on depth labels
for supervision or require a supplementary fine-tuning stage to refine results, which precludes
end-to-end training.

Building on the idea of using ground information for dynamic object depth estimation, we
propose a novel approach that addresses the limitations of previous methods while allowing



for end-to-end training. Our method is based on the observation that in the decoder of a depth
network, the activated feature maps across different channels can be categorized into depth-
aware and detail-aware feature maps: the former provides information concerning the depth
distribution in the scene and its smooth behavior, the latter highlights discontinuities and high-
frequency details.

We argue that selectively enhancing depth-aware feature maps by propagating depth infor-
mation from ground regions to moving objects, enables the model to predict depth of objects
that remains consistent with the their ground contact points. To implement this strategy, we first
identify the depth-aware feature maps that are most relevant to the final depth map’s distribution.
This is done by computing the cosine similarity between the feature maps and depth pseudo-
labels generated from the ground planes. By focusing propagation on the highest-scoring fea-
ture maps, we can effectively transfer ground depth information to moving objects, addressing
depth ambiguities typically introduced by dynamic scenes. This propagation process is repeated
multiple times to ensure ground feature being propagated to the whole objects even when large
moving objects are present.

Our approach offers a simple and effective solution to solve the long-standing challenge in
dynamic objects depth estimation of monocular settings. Furthermore, the proposed module
enables to be seamlessly integrated into any state-of-the-art monocular depth estimation model
without introducing any additional network structures and computational complexity. The final
experimental results demonstrate that our method achieves state-of-the-art performance when
estimating depth for dynamic objects and attains superior generalization compared to existing
approaches. In summary, our main contributions in this work are:

• We propose ground propagation, a novel method for dealing with moving objects when
training self-supervised monocular depth estimation models.

• Our method is compatible with existing models and requires no additional network pa-
rameters.

• Experiments on KITTI [51] and DrivingStereo [192] datasets highlight that our strategy
improves the accuracy of any baseline model and achieves state-of-the-art results for dy-
namic objects.

4.2 Proposed Method
Beyond the multi-view consistency principle, which forms the foundation of self-supervised
monocular depth estimation, we propose an additional geometric constraint: the depth of an ob-
ject should be consistent with its ground contact point. This constraint applies to both stationary
and moving objects within a scene, making it particularly useful for handling dynamic objects
that disrupt the multi-view consistency assumption. To leverage this insight, we introduce a
three-step strategy: 1) depth-aware feature selection, 2) iterative ground feature propagation,
and 3) clipping normalization. The following contents will introduce the structures of network
framework and implementation details about ground propagation process.



4.2.1 Network structures
The self-supervised monocular depth estimation typically follows encoder-decoder training
paradigm containing bridge connections which takes RGB images as inputs and outputs depth
maps. In our proposal, we employs two state-of-art monocular depth networks, i.e. Mon-
odepth2 [55] and Lite-mono [220], to achieve depth estimation. These two networks adopt the
same decoder structure but leverage different encoder variants, as listed in Tab. 4.1 where Mon-
odepth2 totally yields 4 activations with different sizes to concatenate with downstream decoder
layers while Lite-mono just outputs 3 activations. In the Tab. 4.1, the ResBlock, CDCBlock,
and LGFI are distinct combinations of convolutional operations. Each is designed to enhance
feature extraction efficiency, with varying techniques aimed at capturing different aspects of the
input data. These blocks incorporate diverse convolution strategies to improve the model’s abil-
ity to identify and represent key patterns, ultimately boosting overall performance. The Fig. 4.3
depicts the structure details of Resblock, CDCBlock, LIGF and decoder. By inputting the image
into the complete networks, the decoder of Monodepth2 and Lite-mono can output multi-scale
disparity maps.

In addition to the depth estimation network, a pose estimation network plays a crucial role in
enabling self-supervised depth estimation. The pose network predicts the relative camera mo-
tion between consecutive frames by taking adjacent images as input. This is crucial for monoc-
ular depth estimation because the camera’s movement provides the geometric cues needed to
infer depth from single images. The pose network typically learns a transformation matrix
that describes the six degrees of freedom (6-DoF) motion between frames, which includes both
translation and rotation. In the frameworks used in our work, i.e. Monodepth2 [55] and Lite-
Mono [220], the pose network adopts an encoder-decoder architecture, similar to the depth
estimation network. Both frameworks utilize ResNet-18 [62] as the encoder and produce 6-
DoF motion predictions through convolutional downsampling layers. By jointly training of the
depth and pose networks, it enables depth estimation in a self-supervised manner, allowing the
depth network to more accurately capture the geometric structure of the scene.

4.2.2 Depth-aware features selection
In the latent space of monocular depth estimation networks, different feature maps are respon-
sible for extracting distinct types of information. Some feature maps capture high-frequency
details, such as texture and sharp object boundaries, while others focus on low-frequency, task-
specific information. For the task of monocular depth estimation, we classify all the feature
activations of decoder as depth-aware feature maps and detail-related feature maps, which cor-
responds to low-frequency features and high-frequency features respectively. Among them,
depth-aware feature maps are sensitive to the global depth structures that contribute signifi-
cantly to the final depth predictions. As a result, depth-aware maps can be considered more
closely aligned with the perceptual contents of depth estimation while detail-aware features
more focus on depth edges or object textures.

Based on this insight, we hypothesize that by selectively manipulating these depth-aware
feature maps, we can fine-tune the final depth estimation. Therefore, by propagating depth
information from the ground contact points to dynamic objects within the scene, it is promising
to recalibrate depth for moving objects which often pose challenges on the monocular depth
estimation due to their motion and violation of multi-view consistency assumptions.



Table 4.1: The encoder variants for Monodepth2 [55] and Lite-mono [220]: The ConvNxN
represents convolutional operations with kernel size of n × n and symbol [] × n denotes this
block operation will be repeated n times. The Feature column indicates activation of this layer
will be concatenated with corresponding layers of decoder. In our experiment, the input image
is a three-channel RGB image with resolution of 192×640.

Encoder Layer Input Size Output Size Features

Monodepth2 [54]

Conv7X7 3× 192× 640 64× 96× 320
BatchNorm 64× 96× 320 64× 96× 320

ReLU 64× 96× 320 64× 96× 320
MaxPool 64× 96× 320 64× 48× 160
ResBlock 64× 48× 160 64× 48× 160 feature1
ResBlock 64× 48× 160 128× 24× 80 feature2
ResBlock 128× 24× 80 256× 12× 40 feature3
ResBlock 256× 12× 40 512× 6× 20 feature4

Lite-Mono [220]

Conv3X3 3× 192× 640 48× 96× 320
[Conv3X3]×2 48× 96× 320 48× 96× 320

Conv3X3 48× 96× 320 48× 48× 160
[CDCBlock]×3 48× 48× 160 48× 48× 160

LGFI 48× 48× 160 48× 48× 160 feature1
[Conv3X3]×2 48× 48× 160 48× 48× 160

Conv3X3 48× 48× 160 80× 24× 80
[CDCBlock]×3 80× 24× 80 80× 24× 80

LGFI 80× 24× 80 80× 24× 80 feature2
Conv3X3 80× 24× 80 128× 12× 40

[CDCBlock]×9 128× 12× 40 128× 12× 40
LGFI 128× 12× 40 128× 12× 40 feature3

To identify these depth-aware feature maps from decoder, we perform inference and extract
feature channels from the specific layer in the network, such as the 5th layer in the decoder of
the MonoDepth2 or Lite-mono. Specifically, we generate a pseudo depth and disparity maps
through Eq. 4.1 where y represents y−axis coordinates of image and H denotes image height,
that reflects the depth distribution along the ground plane. Next, we compute the cosine sim-
ilarity between this pseudo depth/disparity map and the feature maps of specific layer. The
feature maps exhibiting the highest cosine similarity scores are considered depth-aware since
they closely correspond to the depth structure of the scene.

pseudo_disparity =

{
y − H

2
, y > H

2

0, y ≤ H
2

(4.1a)

pseudo_depth =

{
1− y + H

2
, y > H

2

1, y ≤ H
2

(4.1b)

This process is illustrated as Fig. 4.4, where the feature maps are extracted by the 5th layer
in the decoder in MonoDepth2 [55]. It can be noticed that feature maps with higher cosine-
similarity scores are visually closer to the final depth/disparity predictions while that assigned
to lower scores are more like related to depth edges, which allows us to propagate cues on the
former from ground contact points to dynamic objects.
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Figure 4.3: Structures of decoder and different convolution blocks in the table4.1: The Res-
Block is used in the encoder of Monodepth2[55], CDCBlock and LIGF are for Lite-mono[220]
encoder. The Monodepth2 and Lite-mono share the same decoder structure which can output
multi-scale disparity maps.

4.2.3 Iterative ground propagation
To adjust the predictions for moving objects, we iteratively propagate ground features to dy-
namic targets within depth-aware feature maps, making them consistent with the ground contact
points. This methodology ensures that the depth information is aligned with the corresponding
ground contact points of the objects. Initially, we leverage Mask R-CNN [1] to identify and
segment all potential moving objects within the scene, specifically focusing on categories such
as vehicles and pedestrians. Following this segmentation, we iteratively propagate the ground
feature values across the entirety of each detected object, facilitating a comprehensive update
of their depth representations. This iterative process is mathematically formalized in Eq. 4.2:

f r
i,j = Mi,j ∗ f r−1

i,j+1 + (1−Mi,j) ∗ f 0
i,j, r = 1, 2, 3, . . . , n (4.2)

where f r
i,j denotes feature values located at pixel (i, j) during the r-th iteration, and M

represents an objects mask obtained from an off-the-shelf semantic segmentation network. The
Mi,j will be set as 1 if the pixel belongs to moving object. The Eq. 4.2 clearly illustrates that
at each iteration, the feature values associated with moving objects are effectively replaced by
the features of the pixels located directly beneath them. As a result, after multiple iterations,
the feature values of dynamic objects are gradually calibrated by the ground features, while the
features of static objects remain unaffected throughout this process.

Furthermore, Figure 4.5 visually illustrates the impact of this ground feature propagation
mechanism. As the number of iterations increases, the ground features gradually propagate
to the entire moving objects, thereby enforcing a consistency between ground depth/dispar-
ity and object depth/disparity. This iterative approach not only rectifies any initial erroneous
disparity/depth predictions but also ensures that the depth estimations for dynamic objects are
considerably more accurate. Importantly, this iterative ground feature propagation is executed
exclusively on the depth-aware feature maps, which allows the method to effectively preserve
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Figure 4.4: Feature maps ranking: We construct pseudo depth/disparity maps to rank the fea-
ture maps and identify depth-related maps, according to the cosine similarity with the former.
Pseudo depths/disparities are generated to recall the depth/disparity distribution in correspon-
dence with the ground plane.

depth details in scenarios where the surfaces of moving objects are not perfectly perpendicular
to the ground, such as in the case of vehicles approaching the camera.

4.2.4 Clipping normalization
We argue that nal̈ively overwriting object features with ground features may be an overly ag-
gressive approach, especially in cases where the objects are not moving. Therefore, proposed
ground propagation operation is truly necessary only when there is a substantial disparity be-
tween the ground and object features — typically in scenarios involving moving objects.

To mitigate this, we maintain crucial information from the original feature set f 0 by updating
the final features fn using a weighted sum that balances the original and modified features,
ensuring a more refined adjustment. This weight is determined by assessing the difference
between the calibrated feature values and the original values. When the gap between these
values is small, the model is more inclined to retain the original feature values. Conversely,
when the gap is larger, the final prediction shifts more significantly towards the values derived
after ground feature propagation. As for mathematical expression, the weight is computed
through normalized absolute differences between f 0 and fn as follow:

w =
d−min(d)

max(d)−min(d)
, d =

∣∣fn
i,j − f 0

i,j

∣∣ (4.3)

The final feature fn is the weighted sum of original features and that after performing ground
propagation:
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Figure 4.5: Ground Propagation in action: We iteratively perform ground propagation on the
feature map of the 5th layer of the depth decoder for 30 steps. The corresponding outputs of
reverse depth are shown in the rightmost image column

fn = min(w, 1) ∗ fn + (1−min(w, 1)) ∗ f 0 (4.4)

However, due to the strong generalization capabilities of the current networks, the propor-
tion of incorrectly estimated targets in a scene is significantly smaller than that of correctly
estimated ones. This imbalance causes the weight distribution to be skewed towards retaining
the original values, resulting in insufficient adjustments by the ground propagation mechanism.
Consequently, the depth predictions for the few mis-estimated objects are not effectively cor-
rected, limiting the system’s ability to refine predictions in those specific cases.

To address this issue, we introduce clipping normalization to adjust the weight evaluation
process, ensuring that objects with inaccurately estimated depth receive higher weight values.
As formulated in Eq. 4.5, the weight w is calculated by dividing the absolute difference between
the two features by the C -percentile of its maximum value. This ensures that the relative
difference is normalized in proportion to the range of observed differences, making it more
sensitive to larger discrepancies and allowing the propagation mechanism to adjust accordingly.

wi,j =

∣∣fn
i,j − f 0

i,j

∣∣
max(|fn − f 0|) ∗ C

, 0 < C ≤ 1 (4.5)

Accordingly, by performing clipping normalization on the weight computation, we preserve
the reliable features learned according to the multi-view consistency principle and correct only
the outlier values according to ground depth consistency.

4.2.5 Training loss
Based on the view consistency principle, the depth network and pose network are jointly trained
by minimizing the photometric error between the original and reconstructed images, using the
predicted depth D and estimated camera pose Tt→s to reproject pixels ps through Eq. 4.6 where
K denotes camera intrinsic parameters and pt is the pixel coordinate of target image.



ps ∼ KTt→sDt(pt)K
−1pt (4.6)

This formula indicates that warped image will be sampled on the source image(i.e. temporal
previous frame It−1 or next frame It+1) according to reprojected coordinates ps. The total loss
for the network is composed of three components: the photometric loss, the structural similarity
(SSIM) loss [184], and the smoothness loss.

Photometric Loss: It measures the pixel-wise difference between a target image It and
reprojected image I ′t, generated by warping a source image Is. The photometric loss is typically
defined as a combination of L1 loss and SSIM [184]:

Lp(I
′
t) = α

1− SSIM(It, I
′
t)

2
+ (1− α)|It − I ′t| (4.7)

where SSIM (Structural Similarity Index) captures perceptual differences in luminance, con-
trast, and structure, and α is a weight parameter balancing the contributions of SSIM and L1
loss, typically set as 0.85.

To mitigate the impact of occlusions and stationary frames on depth estimation, we utilize a
minimum per-pixel loss to calculate the photometric loss, as outlined in Monodepth2 [55]. This
technique evaluates the photometric loss for each pixel by selecting the minimum value from
the photometric losses associated with four items listed in the Eq. 4.8 where I ′t−1→t and I ′t+1→t

represent the reprojected image warped from It−1 and It+1 respectively.

Lp = min(Lp(I
′
t+1→t),Lp(I

′
t−1→t),Lp(It+1),Lp(It−1)) (4.8)

This formulation ensures that the photometric loss reflects the best possible alignment for
each pixel, thereby enhancing the robustness of the depth estimation process. By focusing on
the minimum loss, we effectively reduce the influence of occluded areas and improve the quality
of depth predictions.

Smoothness Loss: The smoothness term ensures that the predicted depth map is smooth in
regions with low image gradients while allowing for discontinuities at object boundaries. The
smoothness loss is defined as:

Ls = |∂xDt|e−∂xIt + |∂yDt|e−∂yIt (4.9)

where It is the target RGB image and Dt represents corresponding predicted depth map.
The exponential terms e−∂xIt and e−∂yIt allow the depth map to remain smooth within objects
while preserving depth transitions at edges which are indicated by image intensities, ensuring
that the depth predictions accurately capture object boundaries without unnecessary smoothing
across them.

Due to the limitation of deep neural networks, continuous upsampling operations can hardly
preserve high-frequency information captured by the encoder, leading to blurry of depth estima-
tion. To address this issue, monocular depth estimation networks typically employ multi-scale
disparity prediction, as illustrated in Fig. 4.3. This approach allows each layer in the decoder to
predict disparities, then these multi-resolution disparities are incorporated into the overall loss
calculation:

L =
1

N

N∑
i=1

(Li
p + 2i ∗ λ ∗ Li

s) (4.10)



where λ is generally set as 1e-3 to control smoothness confidence and N multi-scale dis-
parities are used to compute the photometric loss Li

pand the smoothness loss Li
s respectively.

The overall network loss is computed as the average sum of the disparity losses across multiple
scales.

4.3 Experimental Results
In this section, we collect the outcome of our experiments to support the effectiveness of our
proposed ground propagation strategy with respect to existing solutions.

4.3.1 Implementation details and metrics
We apply our strategy to two self-supervised monocular depth estimation frameworks: Mon-
odepth2 [55] and Lite-Mono [220]. We implement the two variants of our framework in Pytorch,
starting from the existing codebases of both models and training them following the original
training schedules. Specifically, MonoDepth2 and Lite-Mono variants are trained respectively
for 20 and 35 epochs on the KITTI dataset with batch size set to 12. For the remaining train-
ing hyper-parameters, losses, and optimizer, we adhered to the original settings detailed in the
respective papers [55, 220]. In our experiments, we use a single RTX 3090 GPU and process
images at 640 × 192 resolution. Overall, the network training requires about 15 hours and
we adopt the same data augmentation detailed by [55]. Regarding ground propagation, the
Monodepth2 variant applies it on the 2nd, 3rd, 4th, and 5th decoder layers for 4, 8, 16, and
32 iterations respectively. The Lite-Mono variant implements ground propagation on the 1st,
2nd, and 3rd decoder layers, using 8, 16, and 32 iterations. Given any layer, we run ground
propagation on the 1

8
and 1

16
feature maps having the highest cosine similarity with respect to

the predicted depth map, for the Monodepth2 and Lite-Mono variants respectively. We set the
clipping normalization rate to 0.3 for both. This process occurs during both training and testing
phases.

For evaluation, we compute the seven standard metrics (Abs Rel, Sq Rel, RMSE, RMSE log,
δ1 < 1.25, δ2 < 1.252, δ3 < 1.253) proposed by Eigen and Fergus [41] and used by most works
in the literature. In each table, we highlight with bold or underline the best and second-best
results respectively.

4.3.2 Datasets
We conduct our experiments on two popular driving datasets.

KITTI [51]. The KITTI stereo dataset contains 61 scenes, with a typical image size of
1242 × 375, captured using a stereo rig mounted on a moving car equipped with a LiDAR
sensor. Following previous works in this field [55, 220], we use the image split of Eigen et
al. [41], which consists of 39810 monocular triplets for training and 4424 for validation. To
compare with the existing solutions, we evaluate the depth performance on the test split of [41]
either using raw LiDAR (697 images) or improved ground truth labels [167] (652 images).

DrivingStereo [192]. It is a large-scale stereo dataset depicting autonomous driving scenar-
ios. Among several sequences, we use the four image splits made available on the website, each
made of 500 frames collected under different weather conditions, respectively foggy, cloudy,



rainy and sunny. We use this dataset to evaluate the generalization capacity of existing solu-
tions and ours.

4.3.3 Depth evaluation
We start by evaluating the overall accuracy of depth maps predicted by our model and existing
ones. For all evaluations, we apply median scaling [54] relative to the ground truth to recover
the metric scale, which is typically lost in self-supervised training on monocular videos.

Results on KITTI. We evaluate our models on the established KITTI Eigen split [41],
comprising 697 images paired with raw LiDAR scans. Although these scans produce sev-
eral outliers when projected on the image plane, we use them to allow a fair comparison with
existing works, before moving to more accurate experiments with the improved ground truth
[167]. Table 4.2 collects the outcome of this evaluation, involving several existing frameworks
for self-supervised monocular depth estimation, including those specifically designed to handle
dynamic objects, such as Dynamo-Depth [157] and From-Ground-To-Objects (FGTO). These
latter are grouped at the bottom of the table, depending on the backbone they deploy – either
MonoDepth2 or Lite-Mono. In each block, our solution consistently outperforms the original
model and achieves more accurate results compared to both Dynamo-Depth and FGTO. No-
tably, Dynamo-Depth fails to improve the overall accuracy of MonoDepth2 and Lite-Mono,
despite enhancing results for dynamic objects, as we will appreciate in the remainder. FGTO,
conversely, succeeds in this regard but introduces a two-stage training protocol. Eventually, our
strategy further improves the results while maintaining a single-stage training paradigm.

Method M.N Data Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Geo-Net [209] ✓ K 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Struct2Depth [24] ✓ K 0.141 1.026 5.290 0.215 0.816 0.945 0.979
SC-DepthV3 [156] K 0.118 0.756 4.709 0.188 0.864 0.960 0.984
Dyna-DM [143] ✓ C+K 0.115 0.785 4.698 0.192 0.871 0.959 0.982
SGDepth [86] ✓ C+K 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Insta-DM [91] ✓ K 0.112 0.777 4.772 0.191 0.872 0.959 0.982
Monodepth2 [55] K 0.115 0.917 4.880 0.193 0.877 0.959 0.981
Dynamo-Depth (Monodepth2) [157] ✓ K 0.120 0.864 4.850 0.195 0.858 0.956 0.982
FGTO (Monodepth2) [124] K 0.112 0.866 4.766 0.190 0.879 0.960 0.982
Ours (Monodepth2) K 0.111 0.797 4.682 0.188 0.880 0.961 0.982
Lite-Mono [220] K 0.107 0.765 4.561 0.183 0.886 0.963 0.983
Dynamo-Depth (Lite-Mono) ✓ K 0.112 0.758 4.505 0.183 0.873 0.959 0.984
Ours (Lite-Mono) K 0.106 0.761 4.529 0.181 0.888 0.964 0.983

Table 4.2: Results on KITTI Eigen split [41] – raw LiDAR as ground truth. Any network
processes 192× 640 images (except Dyna-DM, SC-Depthv3, and Insta-DM, processing 256×
892 images). For each method, we report the use of additional motion networks to deal with
dynamic objects (M.N).

Results on KITTI – Improved Ground Truth. We repeat the same evaluation using the
improved ground truth labels provided by [167], which reduces the number of testing images to
652. Table 4.3 summarizes the results from this evaluation. In general, we can observe lower
errors compared to the previous experiments, thanks to the absence of outliers in these improved
ground truth labels. In particular, we highlight once again the comparison between the two
baseline models, MonoDepth2 and Lite-Mono, the Dynamo-Depth variants and ours. We can



observe a trend similar to the one observed in the raw LiDAR evaluation, with Dynamo-Depth
being not capable of improving over the baseline models, whereas our models consistently do.

Method M.N Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Insta-DM ✓ 0.091 0.506 3.997 0.141 0.907 0.981 0.995
SC-DepthV3 0.099 0.523 4.094 0.144 0.897 0.979 0.995
Dyna-DM ✓ 0.092 0.494 3.898 0.140 0.907 0.980 0.995
SGDepth ✓ 0.085 0.491 3.755 0.130 0.921 0.984 0.996
Monodepth2 0.090 0.545 3.942 0.137 0.914 0.983 0.995
Dynamo-Depth (Monodepth2) ✓ 0.096 0.552 4.075 0.145 0.901 0.979 0.995
Ours (Monodepth2) 0.089 0.494 3.843 0.136 0.914 0.983 0.995
Lite-Mono 0.083 0.455 3.689 0.128 0.923 0.985 0.996
Dynamo-Depth (Lite-Mono) ✓ 0.088 0.463 3.692 0.131 0.917 0.984 0.996
Ours (Lite-Mono) 0.081 0.458 3.603 0.124 0.928 0.986 0.996

Table 4.3: Results on KITTI Eigen split [41] – improved ground truth [167]. Any network
processes 192× 640 images (except Dyna-DM, SC-Depthv3, and Insta-DM, processing 256×
892 images). For each method, we report the use of additional motion networks to deal with
dynamic objects (M.N).

Results on DrivingStereo. Finally, to assess the generalization capability of the models, we
evaluate under four different weather conditions, including foggy, cloudy, rainy and sunny, from
the DrivingStereo [192] dataset. Table 4.4 collects the outcome of this evaluation, conducted by
applying KITTI-trained models to DrivingStereo without fine-tuning. This experiment reveals a
more significant performance gap between existing methods – such as Insta-DM, SC-DepthV3,
Dyna-DM, SGDepth, and Dynamo-Depth – and our solution. Notably, our Lite-Mono vari-
ant achieves a substantial improvement over both these methods and the original Lite-Mono
backbone.

Method M.N Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Insta-DM ✓ 0.217 3.961 12.156 0.296 0.694 0.885 0.950
SC-DepthV3 0.198 2.589 9.685 0.259 4.708 0.914 0.971
Dyna-DM ✓ 0.214 4.068 11.766 0.277 0.720 0.898 0.957
SGDepth ✓ 0.166 2.231 9.590 0.237 0.770 0.928 0.972
Monodepth2 0.173 2.582 9.753 0.239 0.771 0.929 0.973
Dynamo-Depth (Monodepth2) ✓ 0.181 2.966 10.364 0.245 0.766 0.923 0.971
Ours (Monodepth2) 0.169 2.503 9.645 0.234 0.777 0.932 0.975
Lite-Mono 0.160 2.318 9.338 0.225 0.794 0.937 0.976
Dynamo-Depth (Lite-Mono) ✓ 0.179 3.169 10.562 0.236 0.778 0.926 0.973
Ours (Lite-Mono) 0.156 2.165 9.043 0.221 0.801 0.941 0.978

Table 4.4: Results on DrivingStereo [192] dataset. Any network processes 192 × 640 im-
ages (except Dyna-DM, SC-Depthv3, and Insta-DM, processing 256 × 892 images). For each
method, we report the use of additional motion networks to deal with dynamic objects (M.N).

4.3.4 Depth evaluation for dynamic objects
We now focus on dynamic objects, by measuring the accuracy of existing solutions and ours
at estimating their depth. Purposely, we use a pre-trained semantic segmentation network [29]
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Figure 4.6: Handling dynamic objects with ground propagation.: Our solution effectively
boosts the performance of existing self-supervised models such as Monodepth2 [55] and Lite-
Mono [220].

to segment cars in the testing images and compute the error metrics only over them during
evaluation.

Results on KITTI – Improved Ground Truth. We start this additional evaluation on the
KITTI dataset, using the improved ground truth [167]. Table 4.5 presents the results obtained
by evaluating only pixels corresponding to cars. We can observe significantly higher error
metrics and lower accuracy compared to those in Table 4.4, confirming that the moving objects
pose a major challenge to self-supervised monocular depth estimation frameworks. We can
appreciate how many of the existing solutions, such as Insta-DM and Dyna-DM, are indeed
more effective than MonoDepth2 and Lite-Mono on dynamic objects. Dynamo-Depth improves
over the MonoDepth2 baseline but struggles when applied to the Lite-Mono backbone. In
contrast, our strategy is effective when applied to both and achieves the best overall results.
To further verify the effectiveness of the ground propagation module on the two monocular
networks, we apply the improved models to test two dynamic scenes, as shown in the Fig. 4.6.
Compared with the original depth estimation networks, our proposed method can effectively
correct the depth of dynamic objects.

Method M.N Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Insta-DM ✓ 0.130 1.088 5.242 0.179 0.818 0.949 0.987
SC-DepthV3 0.157 1.381 5.553 0.186 0.791 0.949 0.989
Dyna-DM ✓ 0.123 0.935 4.797 0.162 0.845 0.966 0.992
SGDepth ✓ 0.146 1.642 5.743 0.185 0.814 0.950 0.983
Monodepth2 0.147 1.731 6.003 0.188 0.815 0.951 0.981
Dynamo-Depth (Monodepth2) ✓ 0.158 1.583 5.916 0.199 0.783 0.941 0.984
Ours (Monodepth2) 0.125 1.082 5.276 0.177 0.834 0.955 0.988
Lite-Mono 0.133 1.207 5.263 0.175 0.828 0.956 0.987
Dynamo-Depth (Lite-Mono) ✓ 0.147 1.280 5.283 0.184 0.808 0.947 0.985
Ours (Lite-Mono) 0.117 0.912 4.734 0.161 0.862 0.964 0.989

Table 4.5: Dynamic Objects Evaluation: results on KITTI Eigen split [41] – improved
ground truth [167]. Any network processes 192×640 images (except Dyna-DM, SC-Depthv3,
and Insta-DM, processing 256× 892 images). For each method, we report the use of additional
motion networks to deal with dynamic objects (M.N).

Results on DrivingStereo. We also evaluate the accuracy of estimated depth over dynamic



objects on the DrivingStereo dataset. Table 4.6 reports the outcome of this experiment, con-
firming once again that our models achieve the best results over dynamic objects. The superior
accuracy achieved by our method in this setting can also be perceived qualitatively, as in Fig-
ure 4.7. Here, we can appreciate how Monodepth2 fails at predicting the correct depth for
moving objects in five examples from the DrivingStereo dataset. While DynamoDepth and In-
staDM occasionally compensate for these errors, they cannot fully resolve the issue. In contrast,
our approach consistently produces satisfactory depth predictions.

Method M.N Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Insta-DM ✓ 0.245 5.578 13.097 0.286 0.620 0.861 0.944
SC-DepthV3 0.268 5.045 12.655 0.279 0.575 0.857 0.958
Dyna-DM ✓ 0.244 5.769 12.696 0.271 0.655 0.884 0.951
SGDepth ✓ 0.210 4.102 12.703 0.278 0.627 0.850 0.943
Monodepth2 0.208 4.143 12.266 0.262 0.664 0.881 0.957
Dynamo-Depth (Monodepth2) ✓ 0.245 5.341 12.771 0.280 0.628 0.864 0.950
Ours (Monodepth2) 0.185 3.376 11.854 0.252 0.676 0.878 0.959
Lite-Mono 0.197 3.483 11.366 0.244 0.680 0.897 0.968
Dynamo-Depth (Lite-Mono) ✓ 0.214 3.959 11.261 0.241 0.683 0.911 0.972
Ours (Lite-Mono) 0.173 2.713 10.578 0.227 0.710 0.911 0.974

Table 4.6: Dynamic Objects Evaluation: results on DrivingStereo [192] dataset. Any net-
work processes 192 × 640 images (except Dyna-DM, SC-Depthv3, and Insta-DM, processing
256 × 892 images). For each method, we report the use of additional motion networks to deal
with dynamic objects (M.N).

4.3.5 Ablation study
We conclude our experiments with ablation studies. Table 4.7 reports, from top to bottom,
analyses of (a) the number of features selected for ground propagation and (b) the clipping rate.
By focusing on the former aspect (a), we can observe that the most favorable outcomes are
achieved when selecting the top 1
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of the features map, whereas increasing or decreasing this

selection yields drops in accuracy.
Concerning the latter (b), we apply different clipping rate values to determine if retaining

part of the original features can further improve the results. We found that setting the clip
rate to 0.3 consistently enhances the performance, with other values showing no significant
improvements.

4.4 Conclusions
In this thesis, we introduced a novel technique for handling dynamic objects in self-supervised
monocular depth estimation. Our approach focuses on propagating feature information from
ground contact points up to dynamic objects, allowing for the recalibration of depth-aware
features. This enables the decoder to predict consistent depths across both static and dynamic
regions of the scene. Unlike prior methods that often rely on masking or require additional
prediction networks, our strategy maintains an efficient end-to-end training framework without
adding any new network parameters. Extensive experiments on benchmark datasets such as
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Figure 4.7: Qualitative Results – DrivingStereo dataset [192]. While existing approaches
often fail at properly perceiving moving objects, ours predicts consistent depth maps also in the
presence of these latter.

KITTI and DrivingStereo validated the effectiveness of our method. The results demonstrated
a clear improvement in accuracy over existing approaches, particularly in scenes with complex
dynamic objects, while preserving the efficiency of the network. This advancement represents
a significant step forward in monocular depth estimation, ensuring reliable depth predictions
across various scenarios.



Method Selected Features Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Ours (Monodepth2)

All 0.115 0.810 4.766 0.196 0.874 0.960 0.980
1
2

0.116 0.829 4.820 0.195 0.872 0.959 0.980
1
8

0.112 0.787 4.699 0.189 0.878 0.961 0.982
1
16

0.112 0.826 4.779 0.190 0.879 0.961 0.982
(a)

Method Clipping rate Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Ours (Monodepth2)

0.8 0.113 0.808 4.752 0.191 0.876 0.960 0.981
0.5 0.112 0.819 4.720 0.190 0.880 0.960 0.981
0.3 0.111 0.797 4.682 0.188 0.880 0.961 0.982
0.1 0.113 0.824 4.744 0.190 0.879 0.960 0.982

(b)

Table 4.7: Ablation Studies on KITTI Eigen split [41] – raw LiDAR as ground truth.
We evaluate the contributions by (a) Ground Propagation and (b) Clipping Normalization with
Monodepth2 as the baseline.



Chapter 5

Conclusion

5.1 Summary of Thesis Achievements
In this thesis, we first provide a comprehensive introduction of foundational geometric con-
cepts and theories related to 3D vision, covering essential concepts such as 3D coordinate sys-
tem, camera calibration parameters, and perspective transformations. These theoretical aspects
establish the groundwork for understanding and advancing depth estimation. Following this,
we discuss the core research objectives associated with depth estimation, reviewing prominent
datasets and standard evaluation metrics that enable comparative analysis of various approaches.

Subsequently, we present an in-depth review of state-of-the-art methodologies in depth es-
timation, evaluating each approach in terms of accuracy, computational cost, and suitability for
real-world applications. Through this analysis, we highlight the strengths and limitations of
existing methods, establishing a foundation for our primary research focus: monocular depth
estimation. Monocular depth estimation remains a particularly challenging task, as it requires
deriving depth information from a single RGB image without the aid of stereo or LiDAR data.
Despite this research field has seen significant advancements, it still face several challenges,
such as scale ambiguity, dynamic targets processing and more. To solve these problem, we
propose to incorporate ground geometry constraints into monocular depth estimation.

We address both dynamic and static scenes by developing distinct strategies for each context.
In static scenes, we begin by estimating the ground normal vector using pedestrian probes to
achieve scene alignment. The estimated ground normal is subsequently employed to calculate
a scale factor, which is able to convert predicted relative depths into metric distances. The
proposed method allows to estimate dense absolute depths for static scenes without any complex
camera calibration or depth labels, which is promising to measure social distances and vehicle
monitoring in any real-world applications.

For dynamic scenes, we designed a ground propagation module within existing state-of-
art self-supervised monocular depth estimation networks. This module iteratively propagates
ground features to dynamic targets, ensuring that object depths remain consistent with the
depths at their ground contact points. Moreover, since the ground propagation module is applied
exclusively to depth-aware features, it effectively preserves high-frequency details in depth es-
timation. This approach operates within an end-to-end training framework without requiring
additional training stages or parameters, thereby maintaining computational efficiency while
enhancing depth accuracy in dynamic scenes.
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In conclusion, the ground geometry plays a crucial role in enhancing depth estimation accu-
racy. By providing valuable scene context, it is beneficial to identify actual spatial relationships
within a scene. The incorporation of ground geometry can mitigate common challenges such
as scale ambiguity and improve the consistency of depth predictions across varying environ-
ments. Furthermore, leveraging ground geometry facilitates the alignment of depth information
with real-world coordinates, leading to more accurate 3D reconstructions. Overall, integrat-
ing ground geometry into depth estimation frameworks not only enhances precision but also
contributes to a more robust understanding of complex scenes.

5.2 Future Work
While self-supervised monocular depth estimation has demonstrated commendable accuracy
as an alternative approach, self-supervised approaches still show limitations in generalization
and high-frequency detail representation compared to supervised methods. Although some re-
cent research [15, 16, 214] have attempted to explore zero-shot metric depth estimation, they
heavily depend on extensive datasets, typically millions of images, resulting in unaffordable
training costs. Moreover, existing pre-trained models often struggle to adapt to the rapidly
growing number of novel scenarios. In contrast, self-supervised monocular depth estimation
offers a more cost-effective solution, requiring only tens of thousands of images to predict met-
ric depth, thereby significantly reducing training expenses. However, as discussed in Section 3,
this approach is constrained by the pixel projection loss, which hampers its ability to accurately
estimate depth in weakly textured regions such as the sky or walls. Additionally, the inherent
limitations of the mean absolute error estimation often result in the loss of high-frequency de-
tails, leading to blurred depth predictions. Furthermore, self-supervised methods tend to fail in
estimating the depth of moving objects. While self-supervised methods can provide valuable
scale information, their overall prediction quality generally underperform when compared to
state-of-the-art data-driven approaches, such as DepthAnything [197]. To minimize the train-
ing costs associated with metric depth estimation, our future work will focus on developing a
novel depth refinement framework. This framework will utilize metric depth provided by self-
supervised methods as conditional inputs and is expected to produce refined depth predictions
with enhanced accuracy for moving objects and improved high-frequency details. The Fig. 5.1
illustrates the original metric depth and refined depth result, where metric depth has accurate
metric information but presents blurry edges while our refined depth inherits scale from metric
depth and also optimize depth edges and inaccurate predictions.

In future work, our proposed depth refinement network has the potential to significantly
enhance depth estimation accuracy while requiring only a minimal number of training samples.

To achieve depth refinement, we will employ a diffusion model [125] as the core of our depth
refinement framework. The rationale behind choosing a generative model over discriminative
models, such as DPT [137], lies in the diffusion model’s superior generalization capabilities.
This advantage enables the optimization of networks even when trained on limited data samples,
making it particularly suitable for scenarios with fewer training data.

In summarize, our future work will focus on designing a novel depth refinement network
based on the diffusion model. This framework will take existing scale-aware depth predictions
as conditional inputs, including predictions from self-supervised depth estimation methods and
other metric depth estimation methods, such as ZoeDepth [17] and Metric3Dv2 [67]. The pro-
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Figure 5.1: A comparison between the original metric depth and the refined depth gener-
ated by our refinement network: The left image, estimated using Monodepth2 [55], exhibits
accurate scale information but suffers from blurred details. The right image, refined by our pro-
posed method, not only preserves the scale information of metric depth inputs and also achieves
significantly sharper object boundaries.

posed network is expected to generate higher-quality depth images that not only retain accurate
scale information but also recover more precise depth contours and finer details. By leveraging
the generative capabilities of the diffusion model, this approach aims to address the limitations
of current methods, particularly in handling weakly textured regions and moving objects, while
maintaining computational efficiency and reducing reliance on large-scale training datasets.
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