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Abstract

The spread of new technologies led to a crucial role for the modeling of 3D objects, in
particular for shape modeling, in a variety of applications, such as architecture, cultural
heritage, industrial design, computer graphics, 3D radar scanning and others. Every task
demands tailored surface processing of 3D geometric models, which defines the objects’
shape and features. We tackled certain surface processing tasks using differential and
variational models. The quality of the numerical solution depends on the integrity of
the given data, possibly suffering from damage or noise, and on the desired geometric
properties to be preserved.

Differential models rely on physics-inspired Partial Differential Equations (PDEs) to
process surface data such as position, curvature and normal vectors. They are able to
provide smooth, continuous representations of geometric structures and to exploit well-
known physics equations. On the other hand, variational models compute the desired
surface as the minimum of a suitable energy functional. They are built to encode initial
surface features, through a data-fidelity term, and an a priori knowledge about the
geometry of the desired result, through regularization or deformation terms. For the
numerical solution of the proposed linear and nonlinear PDE models, we applied explicit,
implicit or semi-implicit evolutive finite differences schemes. The numerical optimization
methods used to solve the proposed variational models range from the gradient descent
method on manifolds to the Alternate Direction Method of Multipliers.

A fundamental role in both mathematical approaches is played by the shape de-
scriptors, i.e. the type of representation used for geometric models, based on Euclidean
coordinates or on intrinsic representations, like the Differential Coordinates.

The proposed differential and variational models are applied to tackle challenging
problems in shape analysis, such as removing noise from surfaces, filling in missing parts
of surfaces, transferring textures between surfaces, and segmenting surfaces into mean-
ingful regions.

Keywords: Variational models, Numerical optimization, Partial Differential Equa-
tions, Mesh processing, Shape analysis, Differential coordinates.
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Introduction

In recent years, advances in computational geometry have led to powerful tools for an-
alyzing, restoring and modifying 3D surfaces, as digital representations of 3D objects.
Such tools play a critical role in applications across various fields, such as cultural her-
itage preservation, computer graphics, animation, industrial design, just to name a few.

A primary challenge when investigating these data processing problems is determining
the most effective representation for surfaces. The two primary approaches for describing
a smooth surface in R3 are parametric and implicit representations. However, for prac-
tical surface processing, continuous surfaces must be approximated by a finite number
of simple geometric elements, such as polygonal meshes. In this discrete setting, the
geometrical properties of a surface are encoded in shape descriptor functions, such as the
straight-forward Euclidean coordinates or the intrinsic differential coordinates. These
geometric encoders exhibit different properties, making them more or less suitable for
specific surface processing tasks.

Surface processing tasks are concerned with the analysis and modification of geomet-
ric models. The mathematical formulation of these tasks is typically formulated using
either a differential or a variational approach. Differential models consist in physics-
inspired Partial Differential Equations, whose form produces specific modifications or
evolution of the geometric model. Their numerical solution can be achieved by applying
suitable finite difference schemes, leading for example to explicit, implicit or semi-implicit
iterative evolution algorithms. Variational models, on the other hand, interpret the de-
sired solution as the minimum of a suitable energy functional, composed by a fidelity
term, depending on the initial data, and by one or more regularization/penalty terms,
that favor solution with a-priori knowledge on the geometric properties. The mathe-
matical properties inherent to the functional dictate the optimal optimization method
for solving the minimization problem. In both approaches, the models are constructed
by employing differential operators defined on the surface, designed to quantify specific
geometric properties, such as smoothness, sharpness, curvature, and flatness.

In this thesis, we develop novel differential and variational frameworks for a wide
class of surface processing tasks, exploiting both Euclidean and Differential coordinate
descriptors of a surface. Specifically, the proposed differential and variational models are
applied to address several challenging problems in shape analysis, including the removal
of noise from surfaces, the filling of missing parts of surfaces, the transfer of textures
between surfaces, and the segmentation of surfaces into meaningful regions.
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2 Contents

Contribution and Outline

This thesis is organized into seven chapters.
In the first chapter, we introduce basic theory on surface processing, starting from

surface representation models, setting the main notations for the rest of the thesis. Then,
we report the definitions of differential operators on surfaces, both in the continuous
domain and in the discrete mesh approximation, and of shape descriptors able to encode
the local geometric details of a surface. We proceed with a mathematical formalization
of geometric processing tasks, such as denoising, hole-filling, spectral analysis, cloning
and geometric texture transferring and we conclude with an overview of differential and
variational models, highlighting how they can be applied to solving such tasks.

The next two chapters focus on two variational frameworks for specific mesh process-
ing tasks, exploiting shape descriptors as Euclidean coordinates or Differential coordi-
nates. In particular:

� In Chapter 2, we deal with tasks such as denoising, hole filling and completion,
useful for the creation and/or correction of virtual twins of 3D scanned objects,
whose utility has increased in the last years. We describe a unified variational model
that acts directly on the Euclidean coordinates of the mesh vertices and is able to
recover an accurate mesh representation of the object, starting from damaged or
noisy data. The non-convex optimization problem involves a quadratic fidelity term
and two regularization terms: a discrete approximation of the Willmore energy
forcing local sphericity and suited for the recovery of rounded features, and a non-
convex approximation of the ℓ1 penalty favoring sparsity in the normal variation.
The resolution efficiently exploits the Alternating Direction Method of Multipliers
(ADMM), avoiding any domain parameterization or implicit function approaches.
The restoration results are precise, even with high noise or large areas with missing
data.

� In Chapter 3, we analyze Differential coordinates, namely Laplacian coordinates,
Normal Controlled Coordinates and Mean Value Encoding. These descriptors en-
code the underlying local geometry of an object by describing the relative position
of a vertex with respect to its neighbors with different levels of invariance to rigid
transformations and uniform scaling. This makes them a useful alternative to the
classic Euclidean coordinates. We use them for Geometric Texture Transfer, a
task whose goal is to transfer the fine-grained details of a textured surface into a
base surface. We propose a variational model involving two terms: the first one
recovers vertex positions from differential coordinates, the second one is a soft-
constraint that preserves the original underlying shape of the surface. Without
strong assumptions of equivalence in local connectivity between the two meshes,
our approach requires just boundary matching and is solved via non-linear least
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squares numerical methods. Results highlight the better quality of the mean value
encoding, due to their good invariance properties.

In Chapters 4-7 we investigate properties and applications in surface processing of
two differential equations, namely the p-Laplacian eigenvalue problem and the osmosis
model.

� In Chapter 4, we study the p-Laplacian eigenproblem on graphs, which has applica-
tions in data clustering, spectral graph theory, dimensionality reduction and other
problems. Since the p-Laplacian is a non-linear generalization of the Laplace op-
erator, its eigenfunctions better capture the underlying geometry of the data. The
problem of computing multiple eigenpairs is approached incrementally through a
sequence of variational models that involve a generalization of the graph Rayleigh
quotient, with a non-linear constraint of p-orthogonality. A simple reformulation
allows us to take advantage of linear constraints. To solve the variational prob-
lem, we propose two different optimization algorithms: project gradient descent
on manifold and Alternate Direction Method of Multipliers. We demonstrate the
effectiveness and accuracy of the proposed algorithms and compare them in terms
of efficiency. Finally, we show how p-eigenfunctions can be used for mesh segmen-
tation tasks.

� In Chapter 5, we recall the definition of the linear second-order diffusion-transport
Osmosis PDE model, reporting how it can be applied for image editing tasks. Then
we define a non-local version of the Osmosis PDE model, where each differential
operator is replaced by an integral operator depending on kernel functions, that
weights the long-range interactions between points in the domain. We study well-
posedness of both local and non-local problems and regularity of their solutions.
Then, we observe that, upon suitable rescaling of the kernel, the non-local oper-
ators are good approximations of the corresponding differential operators, as the
kernel support shrinks. Consequently, we conjecture that a succession of non-local
solutions converges to the local solution. Finally, we use the non-local formulation
to derive a graph discretization of the model, observing that it can be applied as an
editing tool for data functions defined on meshes, without changing the underlying
geometry.

� In Chapter 6, we present a non-linear variant of the osmosis model, involving a
scalar diffusivity function with suitable properties, which allows to balance the
diffusion intensity over different regions of the image while preventing smoothing
artifacts. We show that this generalization respects conservation properties already
proven in the linear case and it can be paired with a variational formulation. Condi-
tional or unconditional stability and convergence results are proven for explicit and
semi-implicit iterative schemes, respectively, given a proper spatial discretization
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of the differential operators. The model efficiently provides good results for image
editing tasks such as shadow/light removal and compact data representation.

� Finally, in Chapter 7, the Osmosis PDE model is used to alter the geometry of
surfaces and perform mesh cloning and inpainting.

The first task consists in replacing a region of a surface with a different patch, with
both approximated as meshes. A pre-processing step builds a mixed triangulation
that acts as the common domain where osmosis is defined. The osmosis evolution,
guided by the Euclidean coordinates of the two meshes, converges to the Euclidean
coordinates of the desired surface.

For the second task, osmosis is applied on the Normal Controlled Coordinates of a
surface with a damaged, obtaining a shape representation of the repaired surface.

In both cases, the unconditional stability of the implicit osmosis evolution scheme
provides fast convergence, with a low computational cost.

Related Publications

Chapter 2 refers to:

[61] M. Huska, S. Morigi, G.A. Recupero, Sparsity-aided variational mesh restoration,
International Conference on Scale Space and Variational Methods in Computer
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framework for feature-aware denoising, hole filling and context-aware completion,
Journal of Mathematical Imaging and Vision, 65 (2023).

Chapters 3-7 refer respectively to:

[62] M. Huska, S. Morigi, and G. A. Recupero, Geometric texture transfer via local
geometric descriptors, Applied Mathematics and Computation, 451 (2023)

[69] A. Lanza, S. Morigi, G.A. Recupero, Variational graph p-Laplacian eigendecom-
position under p-orthogonality constraints, Computational Optimization and Ap-
plications (2024)

[26] L. Calatroni, S. Morigi, S. Parisotto, and G. A. Recupero, Fast and stable schemes
for non-linear osmosis filtering, Computers & Mathematics with Applications, 133
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Chapter 1

Geometric models and surface
processing

Surface processing consists in applying algorithms to geometric models of 3D objects.
A fundamental role in surface processing is played by the shape descriptors, i.e. the
type of representation used for geometric models, which can be based on Euclidean
coordinates or alternately on intrinsic representations, like the Differential Coordinates.
The representation of 3D objects is a widely explored research field and the different
possible approaches present strengths and weaknesses. We deal with the representation
of boundary surfaces of a non-degenerate 3D object, i.e. an object with an interior
and an exterior, without any infinitely thin features. Mathematically, a surface S is an
orientable continuous 2D manifold embedded in R3, with or without boundary.

We mainly distinguish two surface representation models: explicit (parametric) and
implicit, and we will exploit the triangular meshes to describe the corresponding approx-
imations.

1.1 Surface Representation Models

1.1.1 Parametric representation

A surface S can be represented through the couple pΩ, Xq, with Ω � R2 a compact
parametric domain and X : Ω Ñ R3 a continuous parametric vector function. The
surface S consists in the set XpΩq � R3, defined by the parameters pt, sq P Ω and by the
coordinates functions xpt, sq, ypt, sq, zpt, sq as follows:

S : Xpt, sq �
�� xpt, sq

ypt, sq
zpt, sq

�
. (1.1)

Parametric surfaces can capture even fine details and are easy to sample, simply
by sampling the 2D parametric domain Ω. Similarly, geodesic neighborhoods are eas-

7



8 1. Geometric models and surface processing

ily found. Moreover, a deformed version of a surface can be represented as a simple
composition between the parametric function X and a deformation function.

A weakness consists in the difficult computation of spatial properties, such as the
point membership classification problem.

In Computer Aided Design (CAD), the standard parametric shape representation is
given by spline / NURBs parametric surfaces. Surface patches are described as tensor
product and represented by linear combinations of spline basis functions Nn

i p�q : I�J Ñ
R3, with I, J intervals in R, which are non-negative, with compact support [101]. Spline
surfaces allow a natural shape representation and provide easy geometric modeling of
the represented shape. A deformation of the surface, in fact, follows from an intuitive
adjustment of the control points.

This approach has the strong topological limitation of producing rectangular-shaped
patches, making it necessary to use a composition of a large number of patches to rep-
resent arbitrary topology shapes.

A possible generalization of spline surfaces is given by subdivision surfaces. They de-
pend on a coarse control mesh, repeatedly refined, with the addition of vertex adjustment
steps based on local averaging rules.

In general, an arbitrary mesh may not be representable as the result of subsequent
refinement. In such cases, regardless of topological properties, a pre-processing remeshing
step may be needed, with the risk of having artifacts or loss of information.

1.1.2 Implicit representation

A surface S can be implicitly represented as the level set c P R of a scalar function
F : R3 Ñ R

S � tpx, y, zq P R3 | F px, y, zq � cu. (1.2)

Implicit surfaces can be open or closed, depending on the nature of the function F .
In case of closed surface, the level c is conventionally set to 0, in order to identify internal
and external points as the ones where F assumes negative or positive values, respectively.
In general, several implicit scalar functions with the same zero-level set can represent
the same surface. Such surfaces cannot present self-intersection and, if F is continuous,
they do not have any holes.

Many surface processing applications implicitly define the geometric models by means
of the signed distance d : R3 Ñ R which reads as

dpx, y, zq �

$'&'%
mint }px̄, ȳ, z̄q � px, y, zq}2, with px̄, ȳ, z̄q P Su if px, y, zq is outside S;
�mint }px̄, ȳ, z̄q � px, y, zq}2, with px̄, ȳ, z̄q P Su if px, y, zq is inside S;
0 if px, y, zq P S.

(1.3)



1.1 Surface Representation Models 9

These minima exist since the norm is a continuous function and S is a compact set in
R3. The signed distance function is smooth and allows to easily find the iso-surface at a
distance c from S, as the set tpx, y, zq P R3 | dpx, y, zq � cu.

Implicit representation is particularly useful for surface processing tasks that involve
boolean operations, such as union, intersection or difference of surfaces, since the result-
ing implicit function is a combination of min and max operators applied to the implicit
functions. This allows to easily represent surfaces with different topologies or even to
change topology during a deformation process, since it only implies a change in scalar
values of the implicit function.

However, it is difficult to find geodesic neighborhoods, compute a parametrization
and even visualize the surface.

1.1.3 Shape approximation via polygonal mesh

To apply surface processing tasks to given geometric models, it is necessary first to
convert continuous, smooth surfaces to discrete, computationally manageable represen-
tations, such as the polygonal meshes, consisting of a collection of simple geometric
elements.

The process that approximates parametric and implicit surfaces is called surface
meshing and discretizes S as a polygonal mesh M defined as follows:

Definition 1.1.1. A mesh M � pV,E, T q consists in a set of vertices V , a set of
undirected edges E and a set of triangular faces T

V � tviunV
i�1 P RnV �3, E � tei,j, pi, jq P Eu P NnE�2, T � tτiunT

i�1 P NnT�3. (1.4)

Two connected vertices vi, vj identify an edge ei,j and an edge ej,i, while a face τ �
pi, j, kq is defined by its three vertices vi, vj, vk. Conventionally, faces are consistently
oriented in the whole mesh, in clockwise or counter-clockwise order, such that every edge
pi, jq belonging to two faces τ1 and τ2 is counted in both directions, as τ1 � pi, j, k1q,
τ2 � pj, i, k2q.

We assume the mesh to be a 2-dimensional manifold, i.e. :

� it does not contain self-intersection;

� it does not contain non-manifold edges (one edge belongs to two faces, or to one
face if it is on the surface boundary);

� it does not contain non-manifold vertices (one vertex is incident to just one fan of
triangles).
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We introduce the concepts of first disk and first ring that identify, for a given vertex
vi, its face neighbors and vertex neighbors, respectively:

First disk: Dpviq � tτm | vi P τmu, (1.5)

First ring: N pviq � tvj | pvi, vjq P Eu. (1.6)

With abuse of notation, we denote as N piq the set of indices of the vertices in N pviq.
For meshes having the topology of the disk, possibly with boundaries, it is possible

to define a parametrization Ω onto the plane. Mesh parametrization of 3D models is
an important component in various computer graphics and geometry processing applica-
tions. It involves computing a bijective mapping between a piecewise-linear triangulated
surface (mesh) and a suitable parameter domain. Details on the mesh parametrization
process are given in Section 1.1.4.

A mesh M with associated parametrization Ω onto the plane can be interpreted as
a parametric surface pΩ̃, X̃q, where Ω̃ is the convex hull of the set of parametric points,
while X̃ is a piecewise linear approximation of X. A generic parametric point pt, sq P Ω̃
belonging to the triangle ppti, siq, ptj, sjq, ptk, skqq, with barycentric coordinates pα, β, γq
s.t.

pt, sq � αpti, siq � βptj, sjq � γptk, skq (1.7)

is mapped into the point

X̃pt, sq � v̄ � αvi � βvj � γvk (1.8)

belonging to the face pvi, vj, vkq of the mesh M.
The so-called tesselation process produces a polygonal mesh from a parametric surface

S � pΩ, Xq, and it simply consists of the following steps:

� discretize the parametric domain Ω into a grid set of points pti, siqnV
i�1,

� connect the points through edges to form a 2-dimensional planar triangulation,
obtaining the sets E and T (for example via Delaunay triangulation);

� compute the vertex coordinates as vi � Xpti, siq.
The approximation error occurring when representing a smooth surface as a triangu-

lated mesh is of order Oph2q, with h the maximum edge length. To reduce this error, the
common strategy is to refine the mesh, uniformly or adaptively increasing the resolution
in regions of high curvature to better capture the surface geometry.

On the other hand, if S is an implicit surface S � tF px, y, zq � 0u, the most popular
method to obtain its mesh approximation is the so-called Marching Cubes algorithm [80]
which briefly proceeds as follows:
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� the bounding box of the surface is sampled through a 3D grid of points pxi, yj, zkq,
which forms a set of cubes, called voxels;

� on each voxel, examine the values of the implicit function F at the corners, search-
ing for a sign change;

� interpolate along the edges connecting two points with opposite signs, obtaining a
point with zero value, that represents a vertex of the desired mesh;

� create the triangulation, connecting vertices in the same voxel, depending on their
position.

Memory consumption of this process is high and grows cubically as the edge length
decreases. A more efficient alternative is given by adopting adaptive data structures,
where a hierarchical process leads to a voxel sampling whose granularity depends on
surface curvature and distance from the surface.

1.1.4 Mesh parametrization

A parametrization of a parametric surface S is a function putting this surface in one-to-
one correspondence with a 2D parametric domain Ω.

The parametrization can be hard to compute. In fact, it needs topological and metric
coherence between Ω and S. A change in the shape of S may require a correction in the
parametrization to preserve a consistent metric and avoid stretching effects.

Computing a parametrization pΩ, Xq corresponding to a surface S, approximated by
a mesh M � pV,E, T q requires to univocally determine the inverse mapping X�1, which
maps the vertex coordinates vi, i � 1, . . . , nV to the position of the parameter points
pti, siqni�1 P Ω.

All the most widely used methods for constructing a parametrization of a triangulated
surface relies on Tutte’s barycentric mapping theorem [121], from graph theory, which
states:

Theorem 1.1.1. Given a triangulated surface homeomorphic to a disk, if the pt, sq co-
ordinates at the boundary vertices lie on a convex polygon, and if the coordinates of the
internal vertices are a convex combination of their neighbors, then the pt, sq coordinates
form a valid parametrization (without self-intersections).

Denoting by tv̄i, i � 1, . . . , nbu the boundary vertices of the mesh, which map to
the convex polygonal boundary of the domain Ω formed by the points pti, siqnb

i�1, the
parametrization of all the inner vertices are determined by solving the two following
linear systems with n� nb unknowns ptj, sjqnj�nb�1:
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ņ

j�nb�1

wijtj � �
nb̧

j�1

wijtj,

ņ

j�nb�1

wijsj � �
nb̧

j�1

wijsj, (1.9)

where the weights wij ensure the convex combination condition, respecting the con-
straints $'&'%

wij ¡ 0 if pv̄i, v̄jq P E
wii � �°

j�iwij

wij � 0 otherwise

Chosen the appropriate weights, the linear systems in (1.9) can be interpreted as
Lwt � 0 and Lws � 0, plus constraint on boundary points, which ensures that the
position of the internal points pti, siqni�nb�1 is uniquely defined.

1.2 Differential operators for surface processing

In general, all mesh processing tasks consist in properly modifying vertices, edges and
faces, according to the desired goal. To this aim, some tools for manipulating surfaces
represented by meshes rely on appropriately discretized differential operators, able to
describe geometric properties and perform physics-inspired evolutive processes.

We analyze differential operators for a parametric surface S embedded in R3, first in
the continuous setting, then, analogously, in the discrete setting, where the parametric
representation of the surface is approximated by a polygonal mesh.

1.2.1 On continuous settings

Let S � pΩ, Xq be a parametric surface, with x, y, z differentiable coordinate functions.
Then the partial derivatives of the parametric function X with respect to the parameters
pu, vq P Ω are defined as follows.

Definition 1.2.1. The partial derivatives Xtpt0, s0q and Xspt0, s0q at the point pt0, s0q
are the tangent vectors to the iso-parameter curves Ctpτq � Xpt0 � τ, s0q and Cvpτq �
Xpt0, s0 � τq, respectively,

Xt �
�� Btxpt0, s0q

Btypt0, s0q
Btzpt0, s0q

�
, Xs �
�� Bsxpt0, s0q

Bsypt0, s0q
Bszpt0, s0q

�
.
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Assuming a regular parametrization, i.e. Xt�Xs � 0, then the differential coordinates
define the tangent plane and the normal vector.

The tangent plane to S at the point Xpt0, s0q is TXpt0,s0qS � span tXt, Xsu.
The normal vector to S at the point Xpt0, s0q is

n � Xt �Xs

}Xt �Xs} .

The direction of the normal depends on the orientation of the parametrization. Con-
ventionally, for closed surfaces the parametrization is chosen such that the normal points
outward the surface, while for open surfaces there is no natural orientation.

The Jacobian matrix of X, defined as J � rXt, Xss, encodes the metrics of the
surface, describing how distances, angles and areas are transformed passing from the
parametric domain to the surface. The directional derivative of X at a point pt0, s0q in
a direction w̄ � ptw, swq is then given by w � Jw̄.

It follows easily that, given two unit direction vectors w̄1, w̄2 P R2, the scalar product
between the corresponding tangent vectors w1, w2 P R3 is

wT1 w2 � pJw̄1qT pJw̄2q � w̄1
T
�
JTJ

�
w̄2.

The above equivalence defines an inner product on the tangent space of S, relying on
JTJ , which consists in the first fundamental form or metric tensor of the parametrization
X, as detailed in the following definition.

Definition 1.2.2. The first fundamental form or metric tensor of X is the matrix
I � pgijqi,j�1,2 defined as

I � JTJ �
�
XT
t Xt XT

t Xs

XT
t Xs XT

s Xs

�
. (1.10)

The length of a tangent vector w is therefore }w} �
?
w̄T Iw̄. Moreover, given a curve

γ̄ : ra, bs Ñ Ω in the parameter space, the length of the corresponding curve γ � X � γ̄
on the surface S is

lpa, bq �
» b

a

a
ptτ , sτ qIptτ , sτ qTdτ.

Analogously, the surface area A of a region XpDq, with D � Ω parameter region, is

A �
» »

D

a
detpIqdt ds.

These are intrinsic properties, because they depend only on first-order properties of
the surface and are invariant under isometries. To get insights on the curvature of the
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surface, we consider a tangent vector ξ � tτXt � sτXs at a point p P S, with parametric
counterpart ξ̄ � ptτ , sτ q.

The normal curvature κnpξ̄q at p is given by

κnpξ̄q � ξ̄T II ξ̄

ξ̄T I ξ̄

where II represents the second fundamental form, defined as

II �
�
XT
ttn XT

tsn
XT
tsn XT

ssn

�
, (1.11)

where n is the normal versor.
Considering all the possible directions of ξ̄ P R2, we are able to identify two orthogonal

principal directions ξ1 and ξ2, with unitary norm, which achieve maximum and
minimum curvature κ1 and κ2, respectively. Consequently, two useful measures of
curvature can be defined.

The Mean curvature H is defined as the average of the principal curvatures:

H � pκ1 � κ2q{2.
The Gaussian curvature K is defined as the product of the principal curvatures

K � κ1κ2.

Gaussian curvature is an intrinsic property, because it depends only on the first funda-
mental form. These provide insights into the geometric properties of the surface S.

Now, we consider differential operators that act on functions defined on the surface
S. In particular, we consider a scalar function f : S Ñ R and a vector field ϕ : S Ñ R3.

The classical Euclidean gradient and divergence operator have corresponding analogs
that consider the specific geometry of the surface S, encoded into the metric tensor I.
Exterior calculus tools provide the following definitions, expressed in local coordinates:

∇Sf : S Ñ R3, p∇Sfqi �
¸
j

gijBjf (1.12)

divSϕ : S Ñ R, divSϕ � 1a
detpIq

¸
i

Bi
�a

detpIqϕi
	

(1.13)

where gij are the components of the inverse of the metric tensor I.
The Laplace-Beltrami operator generalizes the Laplace operator ∆ � div � ∇ to

scalar functions f defined on surfaces. In local coordinates, it is defined as

∆Sf �
¸
i

1a
detpIq Bi

�a
detpIq

¸
j

gij Bjf
�
. (1.14)
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Laplace-Beltrami operator differs from classical Euclidean Laplacian because of the met-
ric tensor I, which encodes the underlying geometry.

When applied to the three coordinates of the parametric function X � px, y, zq, the
Laplace-Beltrami operator relates to the mean curvature H. In fact, it holds

∆SX � �2Hn

where n is the normal vector, considered in the outward direction. This motivates the
use of the Laplace-Beltrami operator on geometric models as surface curvature indicator.

Finally, we introduce the p-Laplacian operator, a non-linear generalization of the
classical Laplace operator.

Definition 1.2.3. The p-Laplacian operator, for p P p1,�8q, is defined for smooth
function f : Rn Ñ R, as

∆pf :� div
�}∇f}p�2∇f

�
, (1.15)

with ∇ and div denoting the gradient and divergence operators, respectively, and with

}∇f}p�2 � �}∇f}2� pp�2q
2 �

�
ņ

i�1

� Bf
Bxi


2
� pp�2q

2

. (1.16)

It is immediate to verify that (1.15) reduces to the definition of the linear Laplace
operator for p � 2, whereas for p � 2 the operator ∆p is non-linear, as we have

∆ppcfq � div
� }∇pcfq}p�2∇pcfq � � |c|p�2 c∆ppfq � c∆ppfq @ c P Rzt0,�1u .

(1.17)
Besides being of mathematical interest, the p-Laplacian operator appears in many

physical models, for example in non-Newtonian fluid dynamics [122], in phase-field mod-
els [2] or in game theory [98].

1.2.2 On the discrete settings

The emerging field of Discrete Differential geometry studies discrete analogs of smooth
geometric objects, providing an essential link between analytic descriptors and compu-
tation.

The goal is to define the approximation of these operators, relying on discrete local-
ization on vertices, edges or faces. For a mesh M, we define the sets of scalar real-valued
functions f and g with domains the discrete sets of vertices and edges, respectively

FV :� tf : V Ñ Ru, FE :� tg : E Ñ Ru. (1.18)

The sets FV and FE are clearly homeomorphic to the sets RnV and RnE and we can
think to functions f P FV and g P FE as nV -dimensional and nE-dimensional vectors,
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respectively - i.e., f � tfiui�1,...,nV
and g � tgi,jupi,jqPE. We endow FV and FE with the

standard scalar products
〈
f p1q, f p2q

〉 � °nV

i�1 f
p1q
i f

p2q
i ,

〈
gp1q, gp2q

〉 � °
pi,jqPE g

p1q
i,j g

p2q
i,j and

norms }f}2 � ⟨f, f⟩, }g}2 � ⟨g, g⟩, respectively.
First, we deal with the discretization of the normal field. Noting that every face τ of

a mesh has an intuitive notion of a normal vector, we consider the following normal field
definition.

Definition 1.2.4. Given a mesh M � pV,E, T q, the discrete normal field is the
piecewise-constant function N : RnV �3 Ñ RnT�3, whose value on a face τ � pi, j, kq is

Nτ � pvj � viq � pvk � viq
}pvj � viq � pvk � viq} . (1.19)

As in the continuous setting, normals do not have a naturally prescribed direction.
However, meshes are usually defined with a consistent face orientation, such that the
normal vectors do not flip passing by two neighbor triangles. In case of closed mesh,
externally oriented normals are preferred.

One can extend the normal field definition to a vertex vi, by averaging the value of
the face normals of its first disk:

nvi �
°
τPDpviq ατNτ

}°τPDpviq ατNτ} .

The weights ατ can be defined as constants equal to 1, efficient but imprecise for irregular
meshes, or as the triangle area, more expensive but more robust.

The discrete approximation Lw : FV Ñ RnV of the Laplace-Beltrami operator acts
on functions f P FV , locally taking the difference between its value at a vertex vi and a
weighted average of its values at the first-order neighbor vertices:

pLwpfqqi � fi �
¸

jPN piq

wijfj �
¸

jPN piq

wijpfi � fjq, (1.20)

where wij ¡ 0 are the weights normalized as wij � w̄ij{
°
jPN pviq

w̄ij, so that°
jPN pviq

wij � 1.

The linearity of the operator allows to represent it as a matrix Lw P RnV �nV , with

Lijw �

$'&'%
wij if j P N piq
�°

kPN piqwik if i � j

0 otherwise.

(1.21)

Denoting as W the symmetric weight matrix and D the degree matrix, diagonal with
values Dii �

°
j wij, we have Lw � D �W .
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Many definitions are proposed for the weights wij. The uniform formulation

wij � 1{|N pviq| (1.22)

depends only on the valence di � |N pviq| of each vertex and does not explicitly encode
geometric information. The associated L is called umbrella operator.

The scale-dependent umbrella operator uses instead w̄ij � 1{}eij}2, where
}eij}2 � }vi � vj}2 is the length of the edge connecting vertices vi and vj, so that
the weights decrease for distant vertices, as expected. A whole class of weights wij �
ϕp}vi � vj}2q has been proposed, depending on the chosen function ϕ. A common defi-
nition in spectral graph theory applications [89] is the heat kernel ϕpxq � expp�x2{σ2q,
with σ ¡ 0 as a scaling parameter.

The choice of weights that more faithfully represent the discretization of the Laplace-
Beltrami operator from Riemannian geometry consists in the cotangent formulation
[86]

wij � pcot αij � cot βijq{p2Aiq (1.23)

where Ai is the area of a local averaging domain around the vertex vi (for example
a barycentric cell or a Voronoi cell), and αij and βij are the angles opposite to the
edge e � pi, jq. This definition is not intrinsic, because it may give different results for
isometric surfaces with different triangulation.

Other different definitions of the discrete Laplace-Beltrami Operator are described in
literature, see [102] for comparison. For example, mean value weights are introduced
in [48] as

wij � 1

2Ai
ptanpαij{2q � tanpβij{2qq. (1.24)

If f is singly replaced by the three coordinate functions, then the Laplacian on a
vertex vi is the vector that connects the vertex vi to the average of its neighbors vj. The
uniform formulation, despite being efficient and intrinsic, has the weakness of returning
non-zero vectors even for planar configuration of vertices, if they are not uniformly
distributed. Since the Laplacian is related to the mean curvature, this would mean that
a flat mesh has at least one direction with non-zero curvature, that is non-consistent.
This is why cotangent expression is often preferred.

In general, the discrete Laplace-Beltrami Operator provides an estimation of the
mean curvature at vertex vi as

Hpviq � 1

2
}∆vi} (1.25)

encoding useful information about the shape and the texture details of the mesh. These
properties allow to define isometric-invariant shape descriptors, used in many mesh pro-
cessing tasks, such as smoothing and surface parametrization, as detailed in the following
sections, but also in shape analysis and surface matching.



18 1. Geometric models and surface processing

Finally, we consider the discretization of the p-Laplacian operator on a mesh domain,
defined as

p∆pfqi �
¸

jPN piq

w
p{2
i,j ψppfj � fiq , i � 1, . . . , n , (1.26)

with function ψp : RÑ R being

ψppxq :� 1

p
p|x|pq1 :� |x|p�1signpxq � |x|p�2x . (1.27)

The function ψp is the duality map for the Lp Banach space. In fact, if f P LppΩq,
with Ω open bounded subset of Rd, then ψppfq P pLppΩqq� � LqpΩq, where q is the Hölder
conjugate of p (i.e. 1{p� 1{q � 1). The duality map ψp has a key role in Banach space
regularization [107], as a way to transform a primal optimization problem, involving
regularization and/or data-fidelity terms in Lp norm, in an equivalent dual problem with
simpler constraints and more efficient resolution.

The generalization (1.26) of the Laplacian operator for different p values also holds
in graph context, where the operator attracted attention from the machine learning
community, e.g., the authors in [22] proved the relationship between graph p-Laplacian
and Cheeger cuts, while the case of p P p2,8q arises in semi-supervised learning [113].

The p-Laplacian also appears in signal processing and variational filtering strategies
which involve the p-norm of the gradient of an objective function. Moreover, it has
been used to build regularization terms of variational models for scene recognition [77]
and human activity recognition [78], showing notable improvements when using different
values of p with respect to the classical Laplacian operator.

1.2.3 Differential Coordinates

We have described differential operators, highlighting how they encode geometric prop-
erties of the surface. This ability allows to represent a mesh not only via the Euclidean
coordinates of its vertices, but also via different kinds of so-called Differential Coordi-
nates.

Many geometry processing tasks, like editing, morphing, deformation, blending, and
Geometric Texture Transferring, benefit enormously from using such alternative intrinsic
mesh representations, because they are easier to adapt to the considered tasks.

We briefly resume the three main alternative local shape descriptors, how they can be
computed on a given mesh M, which is denoted as the direct problem, and how to solve
the ill-posed shape-from-operator inverse problem, i.e. how to recover information about
the mesh structures, in particular the vertices, from the operators and the descriptors.
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(i) The simplest form of differential coordinates is represented by the Laplacian Co-
ordinates, here named LAP, which rely on the discretization Lw of the continuous
linear Laplacian operator at vertex vi, as defined in (1.21). The Laplacian Coordinates
δL P RnV �3 are computed as

δL � LwV . (1.28)

As seen in Fig. 1.1(a), the vector δ
piq
L represents the displacement from the vertex vi

and a weighted average of its neighbors. Independently by the choice of uniform or
cotangent weights, the matrix has column sums zero. Therefore, if we consider the set
of piecewise-constant functions with value 1 on one of the K connected components of
the mesh and 0 on the others, applying the matrix Lw to such functions returns a null
vector. This means that Lw has rank nV �K. It follows that the matrix Lw is not full
rank even for an open connected mesh (where K � 1), and, consequently, the operator
is never invertible. Therefore, given the δL coordinates, the inverse process recovers the
set of vertices V by solving for V the linear system (1.28), with Dirichlet constraint on
one vertex, in the least square sense:

V � P argminV }Lw V � δL}22. (1.29)

(ii) A generalization of the Laplacian coordinates consists in the Normal-Controlled
Coordinates (NCC), introduced in [127]. Fig. 1.1(b) illustrates the construction of
these coordinates. The normal to the vertex vi defines an orthogonal plane where the
neighbor vertices are projected, see Fig. 1.1(b), bottom part. Then the local parametriza-
tion of a vertex vi P V is defined with respect to the projected vertices v1j with associated
weights

w̄ij � tanpγij{2q � tanpδij{2q
}vi � v1j}

, (1.30)

where the angles γij and δij are shown on Fig.1.1(b). The weights in (1.30), called mean-
value coordinates [48], involve the angles formed by the edges of the first ring of the
vertex, in the local projected plane. Then, for each vertex vi the associated NCC is a
vector in R3, describing the local geometry feature at vi, which is always parallel to the
vertex normal, independently by its definition.

Given the Euclidean coordinates V � pV pxq, V pyq, V pzqq P RnV �3, the associated NCC

denoted by δN � pδpxqN , δ
pyq
N , δ

pzq
N q P RnV �3 are obtained by the linear mapping

δN � NwV, (1.31)

where the weight matrix Nw P RnV �nV is sparse, non-symmetric with elements:

pNwqij �
$&%

1 if i � j
�wij if pi, jq P E
0 otherwise,

(1.32)
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and wij are the normalized weights wij � w̄ij{
°
jPN pviq

w̄ij.
As for Lw, also Nw has column sums zero and rank nV � K. Therefore, given the

δN coordinates, the inverse process recovers a set of coordinates V by solving the linear
system (1.31), with Dirichlet constrain on one vertex, in the least square sense:

V � P argminV }Nw V � δN}22. (1.33)

(iii) Finally, we consider the Mean Value Encoding (MVE) coordinates, introduced
for planar triangulation in [48] and then generalized in R3 [67], as an evolution of Pyramid
Coordinates [111]. The construction of the MVE coordinates is illustrated in Fig. 1.1(c).
For each vertex vi P V , an approximated normal ni is computed as

ni �
°|N pviq|
j�1 pvj � lq � pvj�1 � lq

}°|N pviq|
j�1 pvj � lq � pvj�1 � lq}

, l � 1

|N pviq|
¸

jPN piq

vj. (1.34)

Then the associated MVE representation is uniquely obtained by first computing the set
of coefficients pwij, bijq, j P N piq, defined for each half-edge wij � wji, bij � bji as follows

wij � w̄ij{
¸

jPN pviq

w̄ij, w̄ij � tanpγij{2q�tanpδij{2q

}v1i�v
1
j}

(1.35)

bij � cijb
1� c2ij

, cij � pvi�vjq�ni

}vi�vj}
. (1.36)

Given the Euclidean coordinates V � pV pxq, V pyq, V pzqq, the associated MVE-coords δM �
pδpxqM , δ

pyq
M , δ

pzq
M q are obtained by the following non-linear mapping

δM � pV1pV q,V2pV qV3pV qq with VipV q �
¸

jPN piq

wijp}v1i�v1j}bij�pvj�v1jq�niqni. (1.37)

Note that δM represents the displacement of vi from v1i, its projection onto the local
projection plane orthogonal to ni.

Given the δM coordinates, the inverse process recovers the Euclidean Coordinates of
vi P V by the following closed-form expression as a function of the rest of the neighbor-
hood vertices

vi � v1i � δM � FipV ;w, bq �
¸

jPN piq

wij

��vj � }Ni

¸
kPN piq

wikpvk � vjq}bijni

�
, (1.38)

with Ni � I3 � nini
T . Note that FipV ;w, bq has no direct dependence on vi, but only

on the first-ring vertices of vi and on the normal vector ni at vi. As mentioned in [67],
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MVE coordinates depend continuously on the data, thus small variations of vertices in
N pviq result in a small variation of vi.

Given the MVE coordinates, the inverse process recovers V by solving the non-linear
least squares minimization problem:

V � P argminV }V � F pV q}22 �
¸
i

}vi � FipV ;w, bq}22 (1.39)

with the non-linear function FipV q defined in (1.38), and the components of the vectors
w and b defined in (1.35) and (1.36), respectively.

(a) (b) (c)

Figure 1.1: Local shape descriptors construction: (a) LAP: δiL, (b) NCC: δiN , with
projection plane, (c) MVE: δiM , with cotangent bij.

In the following Sections, we describe how some of these Differential Coordinates
inspired methods for solving different mesh processing tasks.

Furthermore, in Chapter 3 we propose a variational model for Geometric Tex-
ture Transferring, using LAP, NCC and MVE encodings. After analyzing invari-
ance/equivariance properties of LAP, NCC and MVE with respect to affine transforma-
tions, we describe the construction of the models, explore different resolution methods
and finally compare the obtained results.

1.3 Surface processing tasks

Surface processing includes a wide variety of tasks which range from the acquisition to the
reconstruction, analysis and editing of surfaces. In this Section, we present some of the
main surface processing problems that apply to surfaces approximated with triangular
meshes. Figures 1.2-1.3 report a visualization of the analyzed tasks.

1.3.1 Repairing

A geometric model can be acquired from a real 3D object through a scanning process.
The result may be affected by artifacts that make it unsuitable for successive processing.
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Figure 1.2: Mesh processing tasks. First row: hole-filling/inpainting. Second row: com-
pletion. Third row: denoising.
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Figure 1.3: Mesh processing tasks. First row: spectral analysis. Second row: cloning.
Third row: Geometric Texture Transfer.
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In such cases, it is necessary to apply algorithms that repair the model in its problematic
regions while keeping its shape and features in the others.

Many kinds of artifacts may occur in a mesh, like inconsistent face orientation, non-
manifold vertices, non-manifold edges, gaps, overlaps, self-intersections. For each type,
there exists a variety of possible correction methods, that we can categorize as (i) volu-
metric and (ii) surface-oriented.

(i) Volumetric algorithms convert the input model into a volumetric representation,
partitioning the embedding space into blocks classified as inside the surface, outside
the surface or intersected by the surface, similarly to an implicit representation. For
their nature, such methods eliminate these kinds of artifacts, in an automatic and quite
robust way. On the negative aspects, they require a resampling of the model, losing
information about the original connectivity structure and with the risk of deleting or
modifying features of the object. Moreover, to achieve good precision it is required to
have a fine partitioning, returning an object with many triangles, with consequent high
memory cost.

(ii) Surface-oriented algorithms act directly on the original mesh by
adding/removing/modifying only a few triangles around the region affected by
the artifacts, preserving the information in the furthest areas. However, identifying
where the artifacts are located is not trivial and it often requires a user interaction
with a manual pre-processing. In some pathological cases, gaps or face intersections are
impossible to be removed.

A further type of artifacts we consider consists of holes, intuitively recognizable as
regions SD of the surface S that have not been captured by the scanning process or that
were missing even in the original 3D object.

In the first case, the local lack of data derives from occlusions, surface reflection and
scanner placement constraints that are not avoidable, despite the remarkable progress
achieved in the fields of 3D scanning. The second case is common in the context of
digital restoration of cultural heritage art-works, where the scanned object itself (e.g.,
the archaeological findings) may be incomplete and damaged due to the fact that some
of its (missing) parts have been ruined over time due to wear and tear. In both scenarios,
to facilitate the downstream processing of its digital content, the object shape needs to
be repaired.

We distinguish two types of hole-filling tasks, depending on the known information
about the missing region:

� Smooth hole filling/Inpainting: as shown in Fig.1.2 (first row) inpainting is the
process of recovering a missing or damaged region in the surface by filling it in a
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plausible way using available information. The result of a surface-inpainting oper-
ation depends on the specific application considered. In digital cultural heritage
restoration, for instance, surface inpainting is understood as the recovery of the
holes in the data or the removal of the scratches/cracks possibly present in the
scanned objects. In prototype manufacturing, the goal is shifted towards a water-
proof virtual reconstruction, so that the related operation is rather interpreted as a
smooth hole filling. In either case, all damaged areas should be filled in a seamless
way that is minimally distinguishable from their surrounding regions.

� Context-aware completion: when a priori knowledge on the missing/damaged parts
of the scanned model is known, it is desirable that the completion of the damaged
areas occurs by pasting known data - such as template patches - automatically
or semi-automatically under user guidance. This allows, for example, to repair
a damaged part of an artifact by filling the region of interest with a patch taken
from a valid/undamaged region of the model itself or even from other 3D geometric
models. The completion process is shown in Fig.1.2 (second row).

Notable volumetric approaches tackle the problem using an implicit representation
of the surface, via signed distance functions [38, 5], Radial Basis Functions implicit
interpolations [29] or Moving Least Squares [125].

On the other hand, in surface-oriented approaches S is approximated as a mesh M0

and the hole-filling problem can be formulated as follows.
Given a mesh M0 � pV0, E0, T0q with a damaged region SD, identified by the set b0 of

its boundary vertices in M, the hole-filling algorithm has the goal of defining a repaired
mesh

M� � pV �, E�, T �q, with V � � V0 Y VP (1.40)

where VP is the set of vertices of a patch P that closes the hole in SD.

The union operation in (1.40) is well-defined, only with the compatibility assumption
that the boundary bP of the patch and boundary b0 of the damaged region have the
same number of vertices. If this is not the case, a suitable subdivision process can be
preliminarily applied. The patch is then deformed such that the vertices in b0 and bP
are in the same position and the hole is properly closed.

Among such methods, it is worth citing [74], where new triangles are created opti-
mizing a quality function depending on angles and areas of the filling patch, then refined
to make the triangulation uniform as in the surrounding part of the mesh, and finally
smoothed.

In Chapter 2, we propose an algorithm that tackles the hole-filling task, but also
context-aware completion, enclosing the hole with a patch and finally applying smoothing
on the common boundary through a variational approach.
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1.3.2 Smoothing

Smoothing is a geometry processing task that consists of removing high-frequency details
of a surface, returning a smoother version of the same object. We distinguish two types
of smoothing: (i) denoising and (ii) fairing.

(i) Denoising, as shown in Fig.1.2 (third row), consists in removing the undesired noise
that corrupts a surface, while preserving original features, including edges, creases and
corners. Noise is an unavoidable consequence of the acquisition errors that occur when
scanning a 3D object.

The mesh denoising problem aims at recovery a mesh M� � pV �, E0, T0q, as accu-
rate as possible to an unperturbed (and unknown) original mesh MGT � pVGT , E0, T0q,
starting from a perturbed mesh M0 � pV0, E0, T0q corrupted by additive noise.

While the connectivity encoded in E0 and T0 remains the same, the vertices degra-
dation model reads as follows:

V0 � VGT � ε , (1.41)

where ε P RnV �3 is a random noise vector under a Gaussian distribution.
Such degradation modifies the surface locally increasing its roughness, mathemati-

cally interpretable as its normal deviation or curvature, in particular in smooth regions.
For this reason, many denoising models aim at reducing the curvature, with the crucial
point of distinguishing which high-frequency details represent noise and which represent
features of the underlying original surface.

(ii) Fairing, on the other hand, returns as-smooth-as-possible surface patches, exploit-
ing the concept of curvature or higher-order derivatives. While denoising methods focus
on the high-frequency details, surface fairing follows the principle of simplest shape, re-
moving all kinds of details in a selected Region of Interest (ROI) of the surface S, while
fixing its boundary and preserving the low-frequency global shape.

1.3.3 Spectral Analysis

Spectral methods exploit differential properties of meshes to analyze their geometry
in the frequency domain, providing insights into shape details and enabling advanced
processing techniques.

In 1D signal processing, the signal frequency spectrum is commonly analyzed through
the Fourier transform, which decomposes data f , sampled in n points, into a linear
combination of basis functions pϕiq, that are eigenfunctions of the Laplacian operator.
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Ordering the basis by increasing frequencies, i.e. increasing eigenvalues, we get the
decomposition

f �
ņ

i�1

xf, ϕiy ϕi . (1.42)

The same scheme is valid also in surface processing, using as data the x, y, z coordi-
nates of the surface S and as basis the eigenfunctions of the Laplace-Beltrami operator
defined in (1.14). The first basis functions encode low-frequency information about the
global shape of the object, while the last ones describe the high-frequency details.

The eigendecomposition problem for a mesh M approximating a surface S consists
in computing the Manifold Harmonic Basis constituted by the set of the nV normalized
eigenfunctions B � te1, . . . , enV

u of the discrete Laplacian Lw, solving for ϕ P RnV the
equation

Lw ϕ � λϕ.

The decomposition acts on the vertex coordinates V P RnV �3 as

V �
nV̧

i�1

xei, V y ei. (1.43)

A visualization of the eigenfunctions is reported in Fig.1.3 (first row), while methods for
their computation are discussed in Section 1.4.

This spectral decomposition allows for a low-dimensional approximation of the mesh,
obtained by truncating at k   nV the sum in (1.43). In fact, cutting the sum in (1.43)
to the first k   nV terms excludes high-frequency information, usually corresponding to
noise, achieving a denoised mesh. The same principle applies also in compression, since
the surface can be well-represented by the nV � k low-frequency eigenpairs [63].

Another application is segmentation/classification [89, 60]. The values of the first
k   nV eigenfunctions on each vertex of a mesh represent a new coordinate system in
the embedding space Rk. On this new system, one can apply any clustering algorithm
(for example K-means), returning a segmentation into k regions [30]. Alternatively, one
can consider a Principal Component Analysis interpretation of the Laplacian eigenvectors
of the mesh.

1.3.4 Deformation

Surface deformation includes different kinds of operations that act on one or more meshes,
returning an output surface mesh that can be intuitively viewed as a composition or
modification of their geometric features and shape.
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For example, morphing is the (continuous) deformation that transforms a source
surface into a target surface, while preserving geometric or topological constraints. It
is commonly used in animations to interpolate between different 3D models. When the
two surfaces S0,S1 are represented by two parametrizations X0, X1 on the same domain
Ω, the intermediate surfaces at time τ P r0, 1s are

Sτ � Xτ pt, sq :� fptqX0pt, sq � p1� fpτqqX1pt, sq

with f : r0, 1s Ñ r0, 1s a smooth blending function, that may be linear or non-linear (see
for example cubic interpolation, harmonic interpolation or spherical linear interpolation).

A similar concept is shape editing, where the target mesh is derived from the source
mesh through a transformation (such as bending, stretching, or twisting) that alters its
global shape while preserving the original local geometric details. It is used to create
new shapes while maintaining certain aesthetic or functional properties. For polygonal
meshes, the deformation is thought as the application of displacement vectors pd1, . . . , dnq
to the vertices pv01, . . . , v0nq of the original mesh:

V 1 � V 0 � d. (1.44)

Given a source mesh M0 � pV 0, E0, T 0q, with fixed vertices tv0i , i P F u and displaced
handle vertices tv1i � v0i � di, i P Hu, the shape editing task consists in deriving the dis-
placement vectors tdi, i R F YHu such that the resulting target mesh M1 � pV 1, E0, T 0q
has different global shape but preserved local details.

A heuristic approach to mesh deformation consists of a simple transformation prop-
agation [11, 97]. The transformation that moves the handles into the new positions gets
extended to the free vertices, but its effect decreases linearly with respect to a distance
function depending on the handles and the fixed region. This method is simple and
computationally efficient, but may lead to not-intuitive results.

Among the class of model modifiers, which combines two or more surfaces into a
novel one, we distinguish boolean operations, such as union, intersection or difference,
cloning/blending and geometric texture transfer.

Boolean operations are easily defined between implicit surfaces, via an appropriate
application of max and min operators to the respective implicit functions. For example, if
S1 � tf1 � 0u and S2 � tf2 � 0u, with S1,S2 closed and f1, f2 signed distance functions
as defined in (1.3) we have:

S1 X S2 � tmaxpf1, f2q � 0u, S1 Y S2 � tminpf1, f2q � 0u,
S1 z S2 � tmaxpf1,�f2q � 0u, S2 z S1 � tmaxp�f1, f2q � 0u.
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A slightly different task is cloning/blending, visualized in Fig.1.3 (second row). It
refers to the process of replacing a region of interest ROI of a given surface S1 with
a patch P extracted from another surface S2, thus creating a new 3D object S� with
seamless transition on the boundary between the two shapes, without noticeable sharp
edges or discontinuities.

When the surfaces are approximated as meshes, the cloning process is formalized as
follows:

Given two meshes M1, M2 and two sub-meshes ROI �M1, P �M2, the cloning
task consists in computing a mesh

M� � pM1zROIq YROI� (1.45)

where ROI� has the same geometric shape and detail of the patch P , with smooth tran-
sition on the boundary bROI�.

Finally, we consider the Geometric Texture Transfer (GTT) modifier, for which we
propose a model in Chapter 3. This is a fundamental task in computer graphics and
geometric modeling, and it consists in making the macrostructure of an object (base
surface) appear wrinkled, wavy and embossed.

In computer graphics for example, the bump mapping technique [15] produces this
effect as an apparent variation of the local geometry due to a variation of the normal in a
point, which is used in the local lighting model that produces a variation in shading and
thus rendering of the surface. The geometric normal of the object remains unchanged
and so does the geometry of the object.

Instead, in many engineering and industrial design applications an effective surface
deformation is required. In these contexts, GTT extracts a fine detail pattern (geometric
texture) from a source surface, and transfers it to a target surface. This process, as shown
in Fig.1.3 (third row), alters the local geometry by applying small-scale features, often
for enhancing visual details, without changing the overall shape.

The GTT problem can be formalized similarly to the cloning task.

Given a base mesh MI , with a patch P � MI , and a geometric texture MS, the
desired textured mesh is computed as

MT � pMIzP q Y P � (1.46)

where P � has the global shape of the original patch P and the local texture of MS.

The unknown P � can have a completely new connectivity, or be a deformation of the
initial P , with the same underlying triangulation.
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In the latter case, many proposed methods rely on a consistent surface parametriza-
tion between source and target shape. In this context, following the theory of classi-
cal displacement mapping [37], surface texturing is a 3-dimensional extension of tradi-
tional image-based texture mapping [43]. Let us denote the mesostructure surface ST
by the parametric form XT pt, sq : R � R Ñ R3, the macrostructure base surface SI by
XIpt, sq : R� RÑ R3, and the displacement (geometric texture) by a height map func-
tion XSpt, sq : R � R Ñ R. The height map is a grayscale texture image in the texture
coordinates t, s P r0, 1s2. Displacement mapping allows to obtain a mesostructure ST by
mapping on a macrostructure base surface SI a geometric texture SS in the direction
of the macrostructure normal vector NIpt, sq. Assuming that both SI and SS share a
common parametrization domain, the displacement mapping reads as

XT pt, sq � XIpt, sq �NIpt, sqXSpt, sq. (1.47)

A natural extension from the texture image was presented in [42] where the displace-
ment map is described via trivariate functions over a volume parametric form. A further
surface normals perturbation is proposed in [15], using a wrinkle function to address
specific computer graphics visualization purposes.

In Chapter 3, we propose a model for GTT that works also on surfaces with arbitrary
topology, without requiring a bijective relation between the base surface and the texture.

1.4 Differential Models for Shape Analysis

Differential methods are widely used in the fields of geometry and mesh processing,
offering powerful tools for analyzing, representing, and manipulating the geometry of
surfaces. These techniques exploit differential geometry concepts described in Section
1.2 for their ability to encode information about shape and details of a surface. The core
advantage is to provide smooth, continuous representations of geometric structures and
to act on these structures in an interpretative way for solving various 3D modeling tasks.

In general, differential approaches consist in Partial Differential Equations derived
from physical principles (e.g. heat equation) or geometric properties (e.g. mean curvature
flow). The desired result can be obtained as the solution of the PDE or as the steady-
state of an evolutive scheme, following a time-discretization step.

Differential methods usually act on scalar or vector fields defined over the surface,
represented continuously, as in parametric surfaces, or discretely, as a mesh. Such fields
may be the parametric representation, the 3D vertex coordinate, or geometric properties
of the surface such as curvature and normal vectors.

In the following, we provide a comprehensive overview of the differential models of
interest. These models, characterized by their specific PDE expressions and the types of
variables involved, offer effective solutions to the processing tasks enumerated in Section
1.3.
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One of the most widely used PDEs in image and surface processing is the anisotropic
second-order non-linear diffusion equation,#

Bfpx,tq
Bt

� divpDpx, tq∇fpx, tqq @ px, tq P Ω� r0, T s
fpx, 0q � f0pxq @ x P Ω

(1.48)

with Ω an open subset of Rn and f0 initial data, and suitable Dirichlet or Neumann
boundary constraints on BΩ. The diffusion tensor D P Rn�n is a symmetric positive
definite matrix, which varies on x P Ω � Rn and t P r0, T s. The tensor D guides the
diffusion in time of the data f along specific directions. Its value may depend on px, tq
directly, as in the linear case, or through the data itself, as D � Dpfpx, tqq, in the
non-linear case. Specific definitions of the tensor generate different diffusion models.

An example of isotropic diffusion is the Perona-Malik diffusion [100] model

Bfpx, tq
Bt � divpcp|∇fpx, tq|q∇fpx, tqq (1.49)

where the tensor in (1.48) is replaced by a scalar function c : R Ñ R�, Dpx, tq �
cp|∇fpx, tq|q. Setting c as a decreasing function, such as the originally proposed

cptq � exp p�pc{Kq2q or cptq � 1

1� pc{Kq2

the model produces an edge-stopping diffusion effect, because the diffusion is controlled
by local information on f in the different regions of the domain.

This PDE model is non-linear since the diffusion intensity depends on the gradient
of the function f .

In the simple case of a constant diffusion coefficient cpx, tq � c ¡ 0, the generic
diffusion PDE (1.48) reduces to the linear diffusion flow

Bfpx, tq
Bt � c∆fpx, tq. (1.50)

The isotropic diffusion effect of the model (1.50) can be exploited for surface smooth-
ing. In fact, if f represents a smooth surface in 3-dimensional Euclidean space, and
∆ is the Laplace-Beltrami operator (see (1.25) for the mean curvature), then (1.50) is

the non-linear parabolic PDE so-called mean curvature flow and Bfpx,tq
Bt

stands for the
normal velocity of the surface. In the field of differential geometry, mean curvature flow
is an example of a geometric flow of hypersurfaces in a Riemannian manifold. Intuitively,
a family of surfaces evolves under mean curvature flow if the normal component of the
velocity at which a point on the surface moves is given by the mean curvature of the
surface.
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While the conventional diffusion equation is a linear parabolic partial differential
equation and does not develop singularities (when applied forward in time), mean cur-
vature flow may develop singularities because it is a non-linear parabolic equation. To
mitigate this issue, additional constraints must be imposed on the surface to ensure
regularity under mean curvature flow.

This simple PDE model, although powerful, may cause shrinkage effects. This is
avoided by Taubin smoothing [120], which alternates smoothing steps with inflating
steps, characterized by a negative coefficient c2   0.

These isotropic models act on the surface uniformly, with the risk of smoothing
important features like edges, corners or creases. On the other hand, applying the
Perona-Malik model (1.49), diffusion is enhanced in smooth regions, where the gradient
is small, while it is reduced in regions with high-gradient magnitudes. This method
outperforms mean curvature flow, but the price to pay is a more challenging resolution
due to its non-linearity.

Due to their smoothing effect, mean curvature flow, Taubin smoothing and Perona-
Malik model are exploited for mesh denoising, with an appropriate tuning of the diffu-
sivity function cpx, tq and of the stopping time T .

Rather than analyzing the time-dependent diffusion equation, one may focus on the
corresponding steady-state solution. In the linear case, the Laplace equation ∆f � 0,
whose solutions are the harmonic functions, is usually coupled with boundary conditions
as follows #

∆f � 0 on Ω

f � f0 on BΩ (1.51)

Because of the smoothing effect of the Laplacian ∆, the solution is the smoothest possible
function of a given boundary. In surface processing, interpreting f as the Euclidean
coordinates, the equation describes the minimal surface fairing model. To the aim
of finding the surface with zero mean curvature, the minimal surface fairing method
consists in computing the surface with minimal mean curvature, given a fixed boundary
position.

Drawing inspiration from these models and techniques borrowed from image process-
ing, a variety of non-linear and anisotropic approaches [119, 82, 88] have been developed
in recent years to address the challenges of mesh denoising and fairing. For example,
while the ∆ operator indicates local smoothness or stretching of the data f , the bi-
harmonic operator ∆2, which involves the fourth-order partial derivatives, measures the
smoothness of the curvature, which we can think of as bending. The equation

�κs∆f � κb∆
2f � 0 (1.52)

with additional boundary constraints, minimizes stretching and bending effects, tuned by
corresponding stiffness parameters κs and κb. This equation is used for mesh deformation,
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to derive the optimal displacement vectors d, defined in (1.44), given their fixed values
on a region F and on handles H.

While the differential models in (1.51-1.52) aim at minimizing certain smoothness
characteristics of the function f , by setting to zero the value of the involved differential
operators, Poisson models exploit the known information given by a guiding vector field
ϕ as follows:

∆f � divpϕq . (1.53)

Compared to the Laplace equation ∆f � 0, Poisson models describe equilibrium states
influenced by internal sources, described by the field ϕ.

Poisson models have been widely used in mesh processing. For example, in [65], the
vector field ϕ is computed from a discrete sampling of points of an unknown surface S
and then used through (1.53) to derive the corresponding implicit function f . In [137],
the authors perform mesh editing, starting from a mesh with vertices V0, setting ϕ as a
modification of ∇V0 and interpreting f as the edited vertices V �.

An analog approach characterizes the Laplacian coordinates inverse reconstruction
problem, discussed in Sec.1.2.3. In [114], the deformation consists in solving for V 1 the
linear system

LwV
1 � T pV 1qδL

where T is a transformation linearly dependent from the original positions V and the
unknown deformed V 1.
Normal-Controlled Coordinates are instead used in [127], solving the system

NwV
1 � δ1N

where δ1N are the NCC of the deformed mesh. Since they are unknown, an iterative
algorithm is proposed, where at each step k the vertex coordinates V pkq are computed
from δ

1pk�1q
N , while the updated δ

1pkq
N derives from the new vertex normals.

A further example of time-independent PDE involving the Laplace operator is rep-
resented by the eigendecomposition problem

∆f � λf . (1.54)

We have described in Sec.1.3.3 how, in the mesh processing context, solving this equation
for the discrete Laplace-Beltrami operator Lw allows to perform a spectral decomposition
of the mesh.

In general, solving the problem Lf � λf is highly expensive for any discrete linear
operator L. In the case L � Lw, the sparsity of the matrix allows to have a reasonable cost
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of OpnV q, but when nV is large the computational methods become numerically unstable,
due to adjacent eigenvalues becoming too close. However, the matrix is symmetric and
positive semi-definite and therefore the basis B is orthogonal.

Moreover, as seen is Sec.1.2.3, the matrix Lw in (1.20) has column sums zero and, for
meshes with a single component, rank nV � 1. Therefore, the first eigenvalue is 0, with
corresponding constant eigenfunction.

Since in many applications we are interested only in the first m eigenfunctions, an
alternative resolution approach computes them one after the other. First, we notice that
ϕ is an eigenfunction if and only if it is a critical value of the Rayleigh quotient

Rpfq � fTLf

fTf

with corresponding eigenvalue Rpϕq. Therefore, exploiting the known orthogonality, we
solve the m� 1 optimization problems

ϕk�1 � argminfRpfq s.t. xf, ϕiy � 0 @i � 1, . . . , k (1.55)

where the first eigenfunction ϕ1 is the trivial constant.

Many authors have tried to extend the analysis of Laplacian properties to the non-
linear case of the p-Laplacian operator. For example, the p-Laplacian flow, defined as

Bf
Bt px, tq � ∆pfpx, tq (1.56)

has been successfully applied to mesh decimation [87], and to the construction of Graph
Neural Networks [50].

At the same time, spectral analysis of the p-Laplacian operator is one of the many non-
linear eigenproblems that have gained in popularity over the last years with applications
in data clustering, spectral graph theory, dimensionality reduction and machine learning
problems [36, 81, 27, 22, 113, 96].

The p-Laplacian eigendecomposition problem, which is one of the most classical ex-
amples of non-linear eigenvalue problem, has been studied both in the continuous and
discrete setting [64, 41, 51]. However, there are few results related to the spectrum of
such non-linear operator, even on its dimensionality. For the p-Laplacian, countability
or finiteness of its spectrum are open problems [140]. In the discrete setting the number
of eigenvalues of the p-Laplacian can also exceed the dimension of the space, as shown
in [1, 39] with some simple examples.

Although for the special case p � 2 analytic solutions exist, there are no general
analytic solutions for the non-linear p-Laplacian eigenproblem when p P p1, 2q or p P
p2,�8q.
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The eigenpair computation is hard to perform, because non-linearity adds several dif-
ficulties, such as the loss of orthogonality. In Chapter 4 we briefly describe some methods
presented in literature and we propose a novel model, computing p-Laplacian eigenpairs
using an approach similar to (1.55), exploiting a generalization of the notions of Rayleigh
quotient and orthogonality to the case p � 2. Furthermore, we show spectral cluster-
ing results on different meshes and for different values of p, proving that p-Laplacian is
better than its linear counterpart in providing valuable information about curvature and
topology of the different regions of the object, facilitating mesh segmentation.

The PDE models described up to this point involve only a diffusion term, in various
forms (linear, non-linear, isotropic, anisotropic) and in various settings (time-evolutive
or as steady-states).

Notable importance have PDE models where the diffusion term is accompanied by
a transport term, combining the effects of spreading (diffusion) and directed movement
(transport). The general form of such transport-diffusion PDEs reads as#

Bfpx,tq
Bt

� divpDpx, tq∇fpx, tqq � divpdpx, tq fpx, tqq @ px, tq P Ω� r0, T s
fpx, 0q � f0pxq @ x P Ω

(1.57)

to which it must be added a boundary condition on BΩ. The novel function d : Ω �
r0, T s Ñ Rn, called drift, is a velocity vector field guiding the transport effect.

In Chapters 5 and 6, we focus on a specific diffusion-transport PDE, called osmosis,
originally defined in [129] as

Bfpx, tq
Bt � ∆fpx, tq � divpdpxq fpx, tqq (1.58)

This PDE is a particular case of (1.57), with Dpx, tq � In, and d constant in time. As
many other diffusion-transport PDEs, it allows to describe many physical, biological,
and chemical processes where substances are both dispersed and carried by a flow. For
example, in biology [18] osmosis indicates a transport process where molecules pass
through a semipermeable membrane in such a way that, at its steady state, the liquid
concentration on each side of the membrane may differ. Due to its non-trivial (i.e. non-
constant) steady states, defined by the drift vector field, such a process can be seen
indeed as the non-symmetric counterpart of standard diffusion processes in the sense
that, during evolution, the probability of moving from inside to outside the cell through
the membrane is not equal to the probability of performing the reverse process [53].
Although being defined through a guiding vector field as in Poisson models [99], the
osmosis model is invariant under multiplicative changes.

In Chapter 5 we report the definition of the linear osmosis model, obtained from
(1.57) setting Dpx, tq � In, its conservation properties and how it was applied to solve
different image processing tasks [129].
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Furthermore, we analyze its theoretical properties in terms of wellposedness, and,
most importantly, we derive a non-local version where the differential operators have
been replaced by corresponding integral operators. After studying the wellposedness
and regularity of the non-local solutions, we study their convergence to solutions of the
local model. From the non-local model, we derive an appropriate discretization of the
PDE model into graph domains, reporting the same properties and applications already
shown in the image context.

In Chapter 6, we present a non-linear version of the osmosis model, involving a non-
linear diffusivity function promoting isotropic edge-stopping diffusion. It respects the
same conservation properties, both in the continuous and in the image domain. Finally,
we validate our model on exemplar image processing tasks, such as shadow/light-spot
removal and compact data representation, observing that the novel diffusivity function
avoids the appearance of smoothing artifacts resulting in the linear model.

To our knowledge, the osmosis model has not been previously applied to surface
processing tasks. In Chapter 7 we propose a framework that employs the osmosis model
for tasks such as mesh cloning and inpainting, showing its potential accuracy.

1.5 Variational Models for Shape Analysis

In numerical analysis, variational models aim to represent the desired result of a given
task as a minimizer or maximizer of an appropriate energy function, defined to favor
solutions that verify specific properties.

In mesh processing, each task has the goal of producing a surface with particular
geometric shapes or details, starting from an initial surface S0. Many variational models
act directly on the mesh approximationM0 of the surface looking for the resulting vertex
set V � as solutions of a minimization problem:

V � P argminV tJ pV ;λq � FpV ;V0q � λRpV qu, (1.59)

where

� the data fidelity term FpV ;V0q measures the distance from the vertices V0 of the
initial mesh, usually defined as FpV ;V0q � }V � V 0}22;

� one or more penalty/regularization terms RpV q promote surfaces that satisfy the
desired geometrical properties, exploiting this a priori knowledge;

� the regularization parameter λ ¡ 0, balancing the effects of the two terms.
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The definition of the data term and the penalty term is a critical aspect of problem
formulation. As we will demonstrate, each task necessitates specific choices for these
terms. Once the model is defined, the optimization problem is solved using an appro-
priate minimization method, taking into account the functional properties of the model,
such as continuity, differentiability, convexity, and linearity.

Denoising In mesh denoising, the goal is to solve the inverse problem corresponding to
the noise degradation model defined in (1.41). The noise corruption in surface scanning
processes is usually represented by realizations of Gaussian distributions with zero mean
and variance σ2. Maximum likelihood estimation suggests defining the fidelity term as
the corresponding log-likelihood function, that is

FpV ;V 0q � }V � V 0}22
2σ2

. (1.60)

To define the penalty function we first observe that noise affects the surface locally
enhancing its roughness, which can be identified as its curvature or normal deviation.
For this reason, common penalty functions acts on }∇N }, with N the triangle normals
of Def. 1.2.4. Since N P RnT�3 is constant on each triangle τ , ∇N has non-zero values
only on edges, locally estimating normal deviation.

The ideal penalty function consists in the sparsity-inducing ℓ0 pseudo norm, applied
for example in [55, 118]:

RpV q � }∇N }ℓ0 with }px1, . . . , xnq}ℓ0 :� # ti � 1, . . . , n s.t. xi � 0u.
However, its combinatorial nature makes the computation inefficient and results may
have spurious overshoots and fold-backs.

A convex relaxation of the ℓ0 pseudo-norm is the ℓ1-norm penalty, firstly used in
signal processing methods and then applied to mesh denoising (see [6]):

RpV q � }∇N }ℓ1 with }px1, . . . , xnq}ℓ1 :�
ņ

i�1

|xi|.

It overcomes computational challenges, but it may produce undesired shrinkage or stair-
case effect, in particular in the presence of high-level noise.

Recent works have analyzed classes of sparsity-promoting parametrized nonconvex
regularizers, proving their useful theoretical properties and providing excellent results
[90, 70, 116].

In Chapter 2, we propose a mesh processing method that, among other goals, tackles
denoising using one of such regularizers, namely the Minimax Concave Penalty [59],
which approximates the ℓ0 pseudo-norm and is able to control sparsity more accurately
than the ℓ1 norm, avoiding artifacts and removing noise.
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Fairing When we deal with fairing, the penalty function must be chosen in order
to enforce local sphericity. A commonly adopted fairness prior relies on the Laplace-
Beltrami operator and is defined as }∆V }22, proposed for smooth hole filling with the
so-called least squares meshes, see [115]. An alternative penalty function is the Willmore
energy, which favors smoothness, but through a non-linear curvature measure, leading
to a more rounded shape filling. In the continuous domain, it is defined as

EW pSq � 1

2

»
S

ph2 � κqdA (1.61)

where h and κ are mean and Gaussian curvature, and it measures how far is the surface
from being a sphere. In contrast to mean curvature flow, it is scale-invariant.

Numerical approximations of the Willmore energy in digital geometry processing and
geometric modeling are mainly based either on finite element discretization and numerical
quadrature [34, 54], or on discrete differential geometry approaches. Discrete isometric
bending models, derived from an axiomatic treatment of discrete Laplace operators [12],
the discrete conformal vertex-based energy well-defined for simplicial surfaces using cir-
cumcircles of their faces [16, 17], and the integer linear programming approach [106] all
fall into the latter class.

The method introduced in Chapter 2 involves a fairing-promoting penalty function,
defined as an alternative edge-based discrete approximation of the Willmore energy
(1.61).

Deformation In the previous models, the data-fidelity term acts on the entire set of
vertices, in order to preserve the global shape of the object, allowing only small local
movements. In deformation tasks, conversely, we aim at changing the global shape, while
preserving local details.

Consequently, the fidelity term can be defined through the differential coordinates
introduced in 1.2.3, such as Laplacian Coordinates, Normal-Controlled Coordinates and
Mean Value Encoding, thanks to their ability to encode local features. In these three
cases, the fidelity terms are defined as follows

F1pV ; δLq � 1

2
}LwV � δL}22, (1.62)

F2pV ; δNq � 1

2
}NwV � δN}22, (1.63)

F3pV ;w, bq � 1

2
}V � F pV ;w, bq}22. (1.64)

where δL, δN , pw, bq are, respectively, the LAP, NCC, MVE coordinates of the initial
mesh.
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The global shape is modified by selecting a few vertices in a subset H � t1, . . . , nV u,
to be moved into the new desired positions tv̄i, i P Hu. This condition can be imposed as
a hard constraint, searching the minimum of F1,F2,F3 only on the set of vertices that
satisfy this prescription, or as a soft constraint, solving an unconstrained minimization
problem that involves an additional penalty term

RpV ; V̄ q �
¸
iPH

}vi � v̄i}22. (1.65)

In Chapter 3, we exploit these variational model formulations to solve the specific
deformation task of Geometric Texture Transferring. The use of geometric descriptors
and shared parametrization for the transferring of geometric details has been prelimi-
narily presented in [114] using the Laplacian coordinates and more recently in [94] via
mean curvature details. In contrast to the previous approaches we avoid the use of a
global parametrization pt, s, atlasq, and we do not require any mesh refinement of the
base surface and texture to adapt one to the other. Even if we mainly handle height-field
geometric textures, we detail and showcase the extension to generic 3D texture sample
meshes, which is a well-known critical issue in the case of GTT with mesh representation.
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Chapter 2

Variational recovery in Euclidean
coordinates

In this Chapter, we propose a framework able to tackle the problems of hole-filling
(including both inpainting and completion) and denoising, as defined in Sec.1.3.1-1.3.2.

An example of the three surface geometry tasks processed by the proposed variational
framework is illustrated in Fig.2.1. The original noisy and incomplete scanned angelmesh
(see Fig.2.1(left)) is denoised while keeping all the holes, see Fig.2.1(center, first row).
Then the inpainting tool filled the holes smoothly, as shown in Fig.2.1(center, second
row) driven by the inpainting mask illustrated on the left. The large damaged region on
the head is recovered by replacing a hair curl patch selected from a different, undamaged,
mesh, see the recovered mesh in Fig.2.1(center, third row). Finally, the completion of
the damaged part, as well as hole filling is performed and illustrated in Fig.2.1(right).

Following the principles described in Sec. 1.5, we solve these challenging geometric
tasks by proposing a unified variational approach encoding a priori knowledge of the
particular problem (i.e. the mask operators) directly in the cost functional.

Here, we use the setting described in Sec.1.3.1 for the hole-filling problem, assuming
that a corrupted surface S embedded into R3 is represented by a triangulated mesh
M0 � pV0, E0, T0q and possibly characterized by the presence of a damaged (incomplete)
region SD � S.

The reconstructed triangular meshM� � pV �, E�, T �q is obtained as in (1.40), closing
the hole SD with a patch P , with boundary bP . In case of surface completion, the
template patch P is already given as known data coming from another object, otherwise
it must be defined in a pre-processing step.

As explained in the following, the aforementioned three geometry processing tasks are
addressed through the following unified variational formulation, which includes a fidelity
and two penalty functions,

V � P argmin
V

J pV ;MEq, (2.1)

J pV ;MEq :� FpV ;V0, λχSzSD
q �R1pV ;MEq � R2pV ;M c

Eq,

41
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Figure 2.1: Applications of the proposed surface geometry framework: incomplete and
noisy surface input M0 (left); denoised surface M� (center, first row), inpainting mask
MV and inpainting result M� (center, second row), context-aware completion of the
curly hair detail without inpainting (center, third row); context-aware completion result
M� with preliminary inpainting (right). The SD region is represented in blue in the
masks.

where χSzSD
: S Ñ t0, 1u denotes the characteristic function of the subset SzSD, while

the binary mask operators ME P t0, 1unE and M c
E � 1nE

�ME, characterize the specific
surface geometry considered. As a result of the discretization on the triangulated mesh,
the role of the characteristic function is played by a mask operator MV P t0, 1unV whose
zero values identify the region SD.

The set of vertices V � solution of the unconstrained optimization problem (2.1) defines
a restored triangulated surface M� � pV �, E�, T �q which provides a solution of the three
surface geometry tasks, depending on the particular setup considered.

The proposed approach does not need any global or even local 2D parameterization,
nor any sophisticated octree data structures to efficiently solve implicit volumetric com-
putations [110, 95]. The data are explicitly treated as connected samples of a surface
embedded in R3.

The functional J pV ;MEq in (2.1) is characterized by the presence of the sum of
two regularization terms: the sparsity-promoting term R1pV ;MEq and the sphericity-
inducing penalty R2pV ;M c

Eq. Furthermore, a fidelity term F pV ;V0q, weighted by the
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scalar parameter λ ¥ 0 is used to control the trade-off between fidelity to the observations
and regularity in the solution V � of (2.1).

The regularizer R1 favors solutions with piece-wise constant normal map and sharp
discontinuities. Instead of using the ℓ0 pseudo-norm or the convex ℓ1 norm, analyzed
in Sec. 1.5, we then rather consider as regularizer R1pV ;MEq a sparsity-promoting
parametrized non-convex term, whose form provides effective control on the sparsity of
the normal deviation magnitudes being more accurate than the ℓ1 norm, while mitigating
the strong effect and the numerical difficulties of ℓ0 pseudo-norm. Numerical experiments
will show its efficiency in handling high levels of noise, producing good-shaped triangles,
and faithfully recovering straight and smoothly curved edges.

As far as the R2 regularization term is concerned, we choose it to encode a geomet-
ric energy, aimed to force local sphericity in correspondence of rounded regions. We
considered here the Willmore energy EwpSq, defined in (1.61), which is non-negative,
and vanishes if and only if S is a sphere [17]. For compact and closed surfaces, and
surfaces whose boundary is fixed up to first order, i.e. positions and normals are pre-
scribed, finding the minima of (1.61) is equivalent to minimize the Willmore bending
energy EhpSq � 1

2

³
S
h2dA since the two functionals differ only by a constant (the Euler

characteristic of the surface S),[131]. Here we present a discrete Willmore energy, which,
in contrast to traditional approaches, follows an edge-based discrete formulation.

From an algorithmic point of view, we solve the (non-convex) problem (2.1) employ-
ing an Alternating Direction Method of Multipliers (ADMM) scheme. This allows us
to split the minimization problem into three more tractable sub-problems. Closed-form
solutions for two of these problems can be found, while for the third, non-convex, one
different optimization solvers can be used. For this substep, we compare standard gradi-
ent descent, with heavy ball and Broyden–Fletcher–Goldfarb–Shanno (BFGS) schemes,
endowed with suitable backtracking strategy applied to guarantee the convergence to
stationary points of the sub-problem considered.

Numerical experiments will demonstrate the effectiveness of the proposed method for
the solution of several exemplar mesh denoising, inpainting and completion problems.

In the following, we present the proposed geometric variational model (Sec. 2.1),
describe its numerical optimization by means of the ADMM-based scheme (Sec. 2.2),
explain how to tackle the three task through the optimization problem (Sec. 2.3) and
finally observe experimental results (Sec. 2.4).

2.1 Variational Recovery Model

Solving the variational problem (2.1) on surfaces requires the definition of the discrete
manifold representing the underlying object of interest as well as the discrete approxi-
mation of the first-order differential operators involved.

We thus assume M :� pV,E, T q to be a triangulated mesh of arbitrary topology
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approximating a 2-manifold S embedded in R3, with vertices, edges and faces denoted
as in (1.4).

Let N : RnV �3 Ñ RnT�3 be the mapping computing from the vertex positions V the
piecewise-constant normal field N pV q over the triangles of the mesh, where the m-th
element NmpV q is the outward unit normal at face τm � pvi, vj, vkq (see Def.1.2.4).

Notice that the normal vector’s sign depends on the orientation of the face. The desire
for consistently oriented normals is that adjacent faces have consistent orientation.

We now introduce the discretization of the gradient operator of the normal field
on a 3D mesh. Since the normal field is piecewise-constant over the mesh triangles,
the gradient operator vanishes to zero everywhere but the mesh edges along which it
is constant. Therefore, the gradient operator discretization is represented by a sparse
matrix D P RnE�nT defined by

Dij �
$&%

li if τj
�
τk � ei , k ¡ j,

�li if τj
�
τk � ei , k   j,

0 otherwise ,
(2.2)

where li � }ei}2, i � 1, . . . , nE is the length of i-th edge.
The matrix D can be decomposed as D � LD̄, with L � diagtl1, l2, . . . , lnE

u being
the diagonal matrix of edge lengths, whose values may be updated during the iteration
scheme considered, and D̄ P RnE�nT an edge-length independent sparse matrix.

Key ingredients of the proposed formulation (2.1) are the two operator masks MV

and ME. The role of the mask ME is to adapt the recovery according to the surface
morphology, whileMV selects the region to be preserved in the inpainting and completion
tasks. ME is a sharp detection mask represented by a binary vectorME P t0, 1unE which
has 1s in correspondence with sharp edges. Recalling that the dihedral angle associated
with the edge ei is the angle between normals to the adjacent triangle faces τℓ and τs
which share ei, we classify ei as a sharp edge if the dihedral angle θℓs P r0, 360q is greater
than a given threshold th. In formulas

pMEqi �
"

1 if pθℓs ¡ thq
0 otherwise .

(2.3)

Given ME, its complementary mask is the vector M c
E � 1nE

�ME. Fig.2.2 shows ME

for three different surface meshes, where we empirically set th � 30, which typically
produces good results.

The influence of the choice of the mask ME in realizing the denoising task is shown
in Fig.2.3. The perturbed sharp sphere is illustrated in Fig.2.3 on the left panel, and the
denoised meshes on the right panel, obtained by applying the proposed method under
the choice ME � 0nE

, ME � 1nE
, in Fig.2.3(b) and Fig.2.3(e), respectively. The space-

variant maskME obtained with th � 30, and illustrated in Fig.2.3(c) is applied to obtain
the denoised mesh in Fig.2.3(d).
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Figure 2.2: Examples ofME mask for three different meshes: blue colors represent values
1, while red colors represent 0 values.

(a) (b) (c) (d) (e)

Figure 2.3: Effect of the maskME on the denoising task: original noisy mesh (a); setting
ME � 0nE

(b); using a space-variant ME mask (c)-(d); setting ME � 1nE
(e). The

perturbed sharp sphere on the left panel has been corrupted according to (1.41) with
γ � 0.15.

Stemming from the consideration by which a general scanned surface is characterized
by sharp as well as rounded features, we specify the form of problem (2.1) to determine
solutions V � which are close to the given data V0 according to the observation model,

V � P arg min
V PRnV �3

J pV ;ME, λ, aq

J pV ;ME, λ, aq :�λ
2

nV̧

i�1

ppMV qipVi � pV0qiqq2 � (2.4)

�
nȨ

j�1

!
pMEqjϕ

����pDN pV qqj
���
2
; a
	
� pM c

Eqj}pDN pV qqj}22
)
,

where } � }2 denotes the Frobenius norm. The functional in (2.4) involves three terms
designed to meet three different and competing requirements that arise quite naturally
from the intuitive concept of surface recovery:

1. fidelity to the known data, in ℓ2 norm, with mask MV , optimal in case of Gaussian
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noise distribution, as discussed in Sec. 1.5;

2. a discontinuity-preserving smoothing function, with mask ME, depending on a
parameter a P R�, favoring piece-wise constant normals;

3. smooth connection between parts and inside unknown regions, with mask MC
E .

The functional J in (2.4) is composed of the sum of smooth convex (quadratic) terms
and a non-smooth non-convex regularization term, all non-negative, thus J is bounded
from below by zero, non-smooth and can be convex or non-convex depending on the
values of ME and a.

2.1.1 Sparsity-inducing penalty

We aim at constructing a parameterized sparsity-promoting regularizer characterized by
a tunable degree of non-convexity a P R� inducing sparsity on the vector of components
}pDN qi}2, i � 1, . . . , nE, which represent the normal variation between adjacent triangles
sharing the i-th edge.

Among the class of sparsity-promoting parametrized non-convex regularizers cited in
Sec. 1.5, we consider here the Minimax Concave (MC) penalty ϕp�; aq : r 0,�8q Ñ R,
introduced in [139] and used previously in [59] applied to }pDN qi}2 in the context of
mesh editing, defined by:

ϕpt; aq �
#
�a
2
t2 �

?
2a t for t P � 0,a2{a � ,

1 for t P �a2{a,�8 � (2.5)

which, for any value of the parameter a, satisfies the following assumptions:

� ϕpt; aq P C1pRq X C2
�
Rzta2{au

	
� ϕ1 pt; aq ¥ 0 ,

� ϕ2pt; aq ¤ 0, @ t P r0,8q z ta2{au
� ϕp0; aq � 0, inf

t
ϕ2pt; aq � �a.

We denoted by ϕ1pt; aq and ϕ2pt; aq the first-order and second-order derivatives of ϕ with
respect to the variable t, respectively.

The parameter a allows tuning the degree of non-convexity, such that ϕp� ; aq mimics
the asymptotically constant behavior of the ℓ0 pseudo-norm for a Ñ 8, while behaves
as an ℓ1 regularization term, for values a approaching to zero, since the quadratic term
vanishes more than the linear one. For values of a in between, the MC penalty function
in (2.5) is a sparsity-inducing penalty that preserves sharp features in normal variations
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better than ℓ0-pseudo-norm regularizer, and more accurate than ℓ1 regularizer which
tends to produce shrinkage effects.

This motivated us to use it in the construction of the regularizer R1pV ;MEq.

2.1.2 Edge-based discretization of the Willmore energy

We consider an edge-based discrete approximation of the Willmore energy (1.61) for
open triangulated surfaces M represented by polygonal meshes. This energy is a sum of
contributions from individual edges

EpMq � 1

2

nȨ

j�1

}ej}2}pDN qj}2, (2.6)

where pDN qj measures how the surface “curves” near ej. To derive the continuum limit
of (2.6) in the limit of vanishing triangle size, we consider S as a 2-dimensional manifold
of arbitrary topology embedded in R3 and use the following notation:

� pΩ, Xq, with Ω � R2 an open reference domain, is a parametrization of S;

� pt, sq are the local coordinates in Ω;

� the tangent space TxS at x P Ω is spanned by
!
r1 :� BXpxq

Bt
, r2 :� BXpxq

Bs

)
;

� the induced metric is given by the first fundamental form I, with entries gij � ri �rj,
its inverse is denoted by gij, and its determinant is defined as

detpgq � |g| � 1

2
ϵikϵjlgijgkl � 1

2
pgijgkl � gikgjlq,

using Levi-Civita symbol εij and Einstein summation notation;

� The second fundamental form II : TxS � TxS Ñ R is the symmetric bilinear form
represented by the coefficients Lij � �ri � Bjn, 1 ¤ i, j ¤ 2.

When the grid size of the triangulation M is sent to 0, the energy (2.6) approximates
the Willmore energy as stated by the following proposition.

Proposition 2.1.1. Let S � R3 be a 2-dimensional manifold, M an underlying flat
triangulated approximation of S. Let Mj be regular flat triangulated surfaces Mj �
R3 with sizepMjq Ñ 0 and Mj Ñ S for j Ñ 8. Then, the discrete energy (2.6)
approximates the Willmore energy of S, i.e.

lim
jÑ8

EpMjq � 1

2

»
S

ph2 � kqdS. (2.7)
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Proof. Let us first consider the integrand of (1.61) in the continuum, with h � κ1�κ2 �
trpLikq being the mean curvature and k � 1

2
κ1κ2 � detpLikq the Gaussian curvature

where κ1, κ2 represent the principal curvatures. The second fundamental form with
components Lij relates with the linear map Lki with respect to the basis of TxS, according
to the matrix equation: rgijsrLijs � rLijs, and we denote Lij �

°
k gikL

k
j , 1 ¤ i, j ¤ 2.

Following notations in [109], we use the identity

gijgkl � gikgjl � ϵilϵmng
mjgnk

in the integrand of (1.61) as

h2 � k � pLiiq2 � ϵilϵmnL
m
l L

n
i � pgikLikq2 � ϵilϵmnpgmjLjlqpgnkLkiq � gijgklLikLjl. (2.8)

Substituting in (2.8) the Weingarten equations Bin � Lki rk and Lki , i � 1, 2, we have

gijgklLikLjl � LjkL
k
j g

kjgjk � LjkrjL
k
j rkg

kj � Bkn � Bjn gkj (2.9)

which is the gradient of the normal vector field. Therefore, replacing (2.8-2.9) in (1.61),
we get »

S

Bkn � Bjn gkj dS. (2.10)

For sufficiently fine, non-degenerate tessellations Mj approximating S, we consider a
partition of the undeformed surface S into the disjoint union of diamond-shaped tiles, T̄ ,
associated with each mesh edge e. Following Meyer et al.[86], one can use the barycenter
of each triangle to define these regions or, alternatively, the circumcenters. Over such a
diamond partition, the integral (2.10) is defined as the sum over all the diamond tiles,
which reads »

S

Bkn � Bjn gkj dS �
nȨ

i�1

»
pT̄ qi

|Bin|2 dT̄ . (2.11)

If the triangles do not degenerate, we can approximate the area of the diamond related
to the edge ei in Mj by }ei}2, i.e. dT̄ � }ei}2, which implies that

³
pT̄ qi

|Bin|2 dT̄ �
}pDN qi}2}ei}2.

The result of the limiting process depends on the triangulations considered. In par-
ticular, we assume the triangulations of S consist of almost equilateral triangles. For
our purposes, the discrete Willmore energy will be used based on the observation that
(1.61) is invariant under rigid motions and uniform scaling of the surface, which implies
that EpSq itself is a conformal invariant of the surface S, see [17].

Remark 1. Even if the introduced discrete formulation is very simple when compared
with the ones introduced in [105, 17], it practically produces good results. In order to
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validate the effective applicability of the proposed discrete Willmore energy, we eval-
uated EpMq in (2.6) on a uniformly tessellated sphere, for decreasing average edge-
size h � t0.1208, 0.0308, 0.0076u. The achieved energy values EpMh1q � 0.1182,
EpMh2q � 0.0075, EpMh3q � 0.00047, tend to zero, as theoretically expected from
(1.61), which is zero for continuous sphere.

2.2 Numerical solution of the optimization problem

In this section, we illustrate the ADMM-based iterative algorithm used to compute the
numerical solution of (2.4).

In order to define the ADMM iteration on triangular mesh surfaces, we first consider
a matrix variable N P RnT�3 with row components defined as in (1.19), and resort to
the variable splitting technique by defining t P RnE�3 as t :� DN , where D is defined in
(2.2). The optimization problem (2.4) can be thus reformulated as

tV �, N�, t�u P

arg min
V,N,t

#
λ

2

nV̧

i�1

ppMV qipVi � pV0qiqq2 �
nȨ

j�1

�pMEqjϕ p}tj}2; aq � pM c
Eqj}tj}22

� +
,

s.t. t � DN, N � N pV q . (2.12)

We define the augmented Lagrangian functional associated with problem (2.12) as

LpV,N, t, ρ1, ρ2;λ, β1, β2, aq :� λ

2

nV̧

i�1

ppMV qipVi � pV0qiqq2 �

�
nȨ

j�1

�
pMEqjϕ

�}tj}2 ; a�� pM c
Eqj}tj}22 �

〈
ρ1j , tj � pDNqj

〉� β1
2
}tj � pDNqj}22

�
�

�
nŢ

m�1

�
� ⟨ρ2m , Nm �NmpV q⟩� β2

2
}Nm �NmpV q}22

�
, (2.13)

where β1, β2 ¡ 0 are scalar penalty parameters, and ρ1 P RnE�3, ρ2 P RnT�3 represent
the matrices of Lagrange multipliers associated with the constraints. We now consider
the following saddle-point problem:

Find pV �, N�, t�, ρ�1 , ρ
�
2q P RnV �3� RnT�3� RnE�3� RnE�3� RnT�3

s.t. LpV �, N�, t�, ρ1, ρ2q ¤ L pV �, N�, t�, ρ�1 , ρ
�
2q ¤ L pV,N, t, ρ�1 , ρ�2q,

@pV,N, t, ρ1, ρ2q P RnV �3� RnT�3� RnE�3� RnE�3� RnT�3. (2.14)

An ADMM-based iterative scheme can now be applied to approximate the solution
of the saddle-point problem (2.13)–(2.14). Initializing to zeros both the dual variables
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ρ
p0q
1 , ρ

p0q
2 and setting N

p0q
m � NmpV p0qq , m � 1, . . . , nT , the k-th iteration of the proposed

alternating iterative scheme reads:

tpk�1q � arg min
tPRnE�3

LpV pkq, N pkq, t; ρ
pkq
1 , ρ

pkq
2 q , (2.15)

N pk�1q � arg min
NPRnT�3,
}Nτ }�1

LpV pkq, N, tpk�1q; ρ
pkq
1 , ρ

pkq
2 q , (2.16)

V pk�1q � arg min
V PRnV �3

LpV,N pk�1q, tpk�1q; ρ
pkq
1 , ρ

pkq
2 q , (2.17)

ρ
pk�1q
1 � ρ

pkq
1 � β1

�
tpk�1q �DN pk�1q

�
, (2.18)

ρ
pk�1q
2 � ρ

pkq
2 � β2

�
N pk�1q �N

�
V pk�1q

��
. (2.19)

The updates of Lagrangian multipliers ρ1 and ρ2 have closed form. In the following, we
show in detail how to solve the three minimization sub-problems (2.15),(2.16) and (2.17)
for the primal variables t, N and V , respectively.

Sub-problem for t.
The minimization sub-problem for t in (2.15) can be explicitly rewritten as:

tpk�1q � arg min
tPRnE�3

nȨ

j�1

�pMEqjϕ
�}tj}2 ; a�� pM c

Eqj}tj}22 �
〈
ρ1j , tj � pDNqj

〉�
�β1

2
}tj � pDNqj}22

�
, (2.20)

where we omitted the constant terms in (2.13). Due to the separability property of
ϕp�; aq, problem (2.20) is equivalent to nE independent, three-dimensional problems for
each tj, j � 1, . . . , nE in the form

t
pk�1q
j � arg min

tjPR3

!
ϕ
�}tj}2 ; a�� α

2
}tj � r

pk�1q
j }22

)
, (2.21)

with

r
pk�1q
j :� 1

β1 � 2pM c
Eqj

�
β1

�
DN pkq

�
j
�
�
ρ
pkq
1

	
j



and α � β1�2pMc

Eqj
pMEqj

, where we conventionally set x
0
� 0.

Necessary and sufficient conditions for strong convexity of the cost functions in (2.21)
are demonstrated in [58]. In particular, problems (2.21) are strongly convex if and only
if the following condition holds:

β1 � 2pM c
Eqj

pMEqj ¡ a, @j � 1, . . . , nE ùñ β1 � εmax
j
tpMEqja� 2pM c

Eqju , for ε ¡ 1.

(2.22)
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We noticed that the sub-problem is always convex when tj has associated pMEqj � 0, as
it eliminates ϕp�; aq from the sub-problem.

Whenever (2.22) holds, the unique minimizers of (2.21) can be obtained by direct
computation in closed form as

t
pk�1q
j � minpmaxpν � ζ{}rj}2, 0q, 1q rj ,

where ν � α

α � a
and ζ �

?
2a

α � a
.

We remark that the condition on β1 in (2.13) only ensures the convexity conditions
(2.22) of t-subproblem (2.21), but does not guarantee convergence of the overall ADMM
scheme.

Sub-problem for N . The minimization sub-problem (2.16) for N can be reformulated
as:

N pk�1q � arg min
NPRnT�3,
}Nτ }�1

"
β1
2
}tpk�1q �DN}22 �

〈
ρ
pkq
1 , DN

〉
�
〈
ρ
pkq
2 , N

〉
� β2

2

��N �N
�
V pkq

���2
2

*
.

The first optimality conditions lead to the following three linear systems, one for each
spatial coordinate of N P RnT�3

�
DTD � β2

β1
I



N � β2

β1
N

�
V pkq

�� ρ
pkq
2

β1
�DT

�
tpk�1q � 1

β1
ρ
pkq
1



. (2.23)

Since β1, β2 ¡ 0, the linear system coefficient matrix is sparse, symmetric, positive
definite and identical for all three coordinate vectors. The systems can thus be solved
efficiently by applying, e.g., a unique Cholesky decomposition. At each iteration, the
edge lengths diagonal matrix L in D � LD̄, defined in (2.2), needs to be updated as
the vertices V move to their updated position. For large meshes, an iterative solver
warm-started with the solution of the last ADMM iteration, is rather preferred. A
normalization is finally applied as N represents a normal field.

The reconstructed normal map N� obtained by solving (2.12) via the proposed
ADMM, satisfies the orientation consistency, as proved in [61], thus reducing the foldovers
issue. This property is not trivially satisfied by most of the two-stage mesh denoising
algorithms (normal smoothing and vertex update). They present the normal orientation
ambiguity problem in the vertex updating stage, which provokes ambiguous shifts of the
vertex position due to direction inconsistency of the normal vectors [143, 117]. In [79],
this issue is solved by an orientation-aware vertex updating scheme.

Sub-problem for V . Omitting the constant terms in (2.13), the sub-problem for V
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reads

V pk�1q � arg min
V PRnV �3

JV pV q (2.24)

JV pV q :�λ
2

nV̧

i�1

ppMV qipVi � pV0qiqq2 �
nŢ

m�1

�〈
ρ
pkq
2m ,NmpV q

〉
� β2

2

��N pk�1q
m �NmpV q

��2
2

�
.

The functional JV pV q is proper, smooth, non-convex and bounded from below by
zero. A minimum can be obtained by applying the gradient descent (GD) algorithm with
backtracking satisfying the Armijo condition or using the BFGS algorithm. In order to
balance between the slow convergence properties of GD and the high computational costs
required to compute the operators involved in the BFGS method, we also considered a
heavy-ball type rule, following [138], and its extension with backtracking (covering also
non-smooth problems) given in [91]. In particular, the heavy-ball method is a multi-step

extension of gradient descent, which, starting from V
p0q � V pkq, iterates over V as follows

V
pj�1q � V

pjq � αj ∇JpV pjqq � δjpV pjq � V
pj�1qq, j � 1, 2, . . . (2.25)

where αj ¡ 0 is a step-size parameter and δj P r0, 1q sets the inertial contribution. Note
that for δj � 0, (2.25) reduces to the gradient descent method. In [91], the convergence
of the scheme above to stationary points is proved in the context of non-convex cost
functions as the one in (2.24), with an extension also to non-smooth scenarios.

All the numerical optimization methods here considered rely on an easily computable
formula for the gradient of the functional JV in (2.24), which is derived in the following.

Proposition 2.2.1. Let sτm :� }pvj � viq � pvk � viq}2{2 be the area of the triangle
τm � pvi, vj, vkq with updated vertices in V , and NmpV q � ppvj � viq � pvk � viqq{p2sτmq.
For all triangles m � 1, . . . , nT ,

∇viJV pV q � λpMV qipvi � v0i q� (2.26)

¸
τmPDpviq

��
ρ
pkq
2m � β2N
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pkq
2m � β2N

pk�1q
m ,NmpV q

〉
NmpV q

�
2sτm

� pvk � vjq.

Proof. The gradient of JV pV q in (2.24) w.r.t vertex vi P V , i � 1, . . . , nV is non-zero
only over the triangles sharing vi which are contained in the first disk Dpviq. Therefore
the sum in (2.24) is reduced to

∇viJV pV q � λpMV qipvi � v0i q �
¸

τmPDpviq
τm�pvi,vj ,vkq

∇vi

�����
〈
z

q
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〉
looooooooooooooomooooooooooooooon

gi

����
,
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where z � ρ
pkq
2m � β2N

pk�1q
m , q � }pvj � viq � pvk � viq}2, and the third term in (2.24)

reduces to the scalar product gi since both N
pk�1q
m and NmpV q have unitary norm. In

order to compute ∇vipgiq, we resort to the following two properties, which hold for every
constant vectors w, u P R3 and can be easily proved:

1. ∇vi

�xw, pvj � viq � pvk � viqy
� � w � pvk � vjq ;

2. ∇vi

�〈
w

}pvj�viq�pvk�viq}2
, u
〉	

� �xw, uy pvj�viq�pvk�viq�pvk�vjq
}pvj�viq�pvk�viq}

3
2

.

To evaluate the product rule derivative, we apply property 1, with w � z{}pvj�viq�
pvk � viq}2 for the left-side term constant, while property 2 is applied with w � z and
u � pvj � viq � pvk � viq for a right-side term kept constant. Combining the results leads
to the explicit formula for ∇vigi:

∇vigipV q �

�
ρ
pkq
2m � β2N

pk�1q
m

	
� pvk � vjq

}pvj � viq � pvk � viq}2

�
〈
ρ
pkq
2m � β2N

pk�1q
m , pvj � viq � pvk � viq

〉
rpvj � viq � pvk � viq � pvk � vjqs

}pvj � viq � pvk � viq}32
, (2.27)

which reduces to (2.26).

In Figure 2.4 (first and second rows) we report the graphs showing both the energy
decay and the gradient norm decay for the three different algorithms used, i.e. GD
(with and without backtracking), BFGS and heavy-ball with backtracking. The plots are
related to the meshes twelve (first column) and block (second column) as representative
of the entire set of meshes analyzed in the experimental section, furtherly consisting
of the meshes fandisk, foot, cube-hole, sharp-sphere, twelve, trim-star, hand,
mannequin, julius, bunny, igea, minerva, lion, shard, max, mech.

We remark that the use of the Armijo-type backtracking rule is justified by the
difficult expression (2.26), which makes the accurate estimation of the Lipschitz constant
LJV

of ∇JV pV q quite challenging. In the proposed strategy, a (typically) initially large
step-size α0 is then reduced depending on whether the following inequality is verified:

JV pV pj�1qq ¤ JV pV pjqq � c1 α }∇JV pV pjqq}22 (2.28)

with c1 P p0, 1q and where V
pjq

denotes the j-th update of V given by (2.25).
From the convergence plots, we notice that upon a manual selection of a sufficiently

small constant step-size α the convergence of plain GD without backtracking is as good
as the one of the heavy-ball algorithm combined with backtracking. However, the former
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Figure 2.4: First and second rows: plots of the energy JV (first row) and gradient norm
(second row) decay for sub-problem (2.24) with GD (with and without backtracking),
heavy-ball update with backtracking and BFGS. Third row: energy decay for GD with
backtracking and heavy-ball with backtracking, for three different initializations V p0q.
First column mesh twelve and second column mesh block corrupted by noise level
γ � 0.2.



2.3 A practical use of the geometry repair framework 55

choice is problem-dependent, hence a backtracking strategy automatically adjusting the
value of α to an appropriate size is preferred.

The graphs in Figure 2.4 (third row) show the robustness of the initialization V
p0q

and show that both GD and heavy-ball with backtracking are consistent, regardless of

the chosen initialization. However, the natural and most efficient choice for V
p0q

is a
warm start given by the matrix V pkq obtained as a solution of the problem (2.24) in the
previous ADMM iteration.

The rigorous analysis of the convergence properties of our proposed three-block
ADMM scheme following, e.g., [128] is not easy to derive. However, we will provide
some evidence of the numerical convergence in Section 2.4.

2.3 A practical use of the geometry repair frame-

work

In the following, we provide some details for the practical use of the geometric framework
introduced above, adapted to the specific task of denoising, inpainting and completion,
as described in Sec.1.3.2 and Sec.1.3.1.

Feature-aware mesh denoising. We aim at removing noise and returning a re-
stored surface, which is a 3D mesh that represents as faithfully as possible a piecewise
smooth surface, where edges appear as discontinuities in the normal field. To achieve this
goal, the natural choice is to set in (2.4) MV � 1nV

and define ME as in (2.3), so as to
distinguish salient edges from smooth regions. In case of severe noise, when the estimate
of the mask ME may be affected by false edge detections, we suggest recomputing the
edge mask ME along the ADMM iterations.

Smooth hole filling/inpainting. In contrast to techniques for image inpainting,
which make use of the given spatial structure of the data (the regular grid of an image),
surfaces lack a natural underlying spatial domain, which brings an additional degree of
freedom in the setting of the problem. At the same time, vertices’ positions encode both
function values and the domain of the function to be reconstructed. The initial mesh,
M0 � pV0, T0q thus has to be set as the original (possibly noisy) incomplete mesh with
trivially enclosed and labeled disconnected holes - region SD - marked as zeros in MV .
On the other hand, the mask ME can still be defined as in (2.3), by additionally forcing
zero values on the edges in SD. The proposed geometric repair algorithm then performs
simultaneously denoising, outside the holes, and smooth filling in the internal part of the
holes, through the regularizer R2.

Context-aware completion. In some applications smooth filling of holes is not
sufficient: this is the case in archaeology and in general cultural heritage applications
where the main goal is the reconstruction of a digital twin of a cultural heritage object.
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Some parts of the original 3D model can be damaged or missing but can be completed by
means of characteristic parts taken from the object under consideration or from others.
Given the original incomplete mesh M0 with a region of interest bounded by a curve b0
and characterized by vertices V̄ � V0 and triangles T̄ � T0, together with a template
patch P � pVP , TP q, bounded by a curve bP , we build a repaired mesh M� by replacing
pV̄ , T̄ q by pVP , TP q and blending the two parts through the proposed variational model.

Note that, in case the region of interest on M0 that has to be completed is a hole,
then trivially pV̄ , T̄ q are empty sets.

We assume that the template patch P is properly aligned in the correct position
and that both polygonals b0 and bP are approximants of oriented, closed, simple curves
in R3 with the same same number of vertices. The correct positioning can thus be
performed either automatically (by rigid body transformation algorithms) or through
user interaction. A narrow band around b0, named strippb0q, containing at least 2-disk
of triangle neighbors adjacent to b0, plays the role of SD. Hence MV is the characteristic
function of M0zstrippb0q, i.e. is zeros only on strippb0q.

The operator mask ME has values one for each sharp edge in both M0zstrippb0q and
P . According to the user desiderata, the blending can be performed in three different
ways: edges in strippb0q all zeros in ME to force a smooth joint with the template;
edges in strippb0q all ones, to keep a sharp connection; edges in strippb0q defined by the
spatially adaptive ME in (2.3) to maintain geometric continuity G0{G1 over the blended
region.

The vertices V � of the completed surface M� are obtained by minimizing (2.4),
properly initialized with V p0q � pV0zV̄ qYVP , while maintaining the connectivity defined
by T � � pT0zT̄ q Y TP . The connectivity T � is automatically achieved as we imposed
b0 � bP .

We refer the reader to Fig. 2.1 for a visual representation of the three different tasks
performed. Moreover, Section 2.4 offers additional insights.

2.4 Numerical Examples

We validate the proposed geometric framework both qualitatively and quantitatively on
a variety of benchmark triangulated surfaces characterized by different sharpness and
smoothness features and on some real datasets.

At the aim of a quantitive validation, meshes M0 � pV0, T0q have been synthetically
corrupted, to mimic common noise effects described in (1.41). The noisy vertices in V0
correspond to underlying noise-free vertices VGT by the following additive degradation
model

V0 � VGT � η d , (2.29)

where the product η d accounts for the noise perturbations. Namely, η P RnV is assumed
to be at each vertex independently and identically distributed as a zero-mean Gaussian
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Figure 2.5: Empirical convergence of ADMM algorithm for some reconstructed meshes.

random variable, i.e. ηi � Gaussp0, σ2q, i � 1, . . . , nV , with known variance σ2, and d P
RnV �3 is a vector field of noise directions with elements di P R3, }di} � 1, i � 1, . . . , nV ,
which can be either random directions or the normals to the vertices. The perturbations
are thus characterized by a noise level γ P R� defined by σ � γl̄, with l̄ representing the
average edge length.

Quantitative evaluation is done in terms of the following error metrics, which measure
the discrepancy of the computed V �, N� w.r.t. the noise-free mesh VGT , NGT :

� Mean squared angular error MSAE � Er=pNGT , N
�q2s ,

� L2 vertex to vertex error EV � }V � � VGT }F {nV .

For all the tests, the iterations of the ADMM algorithm are stopped as soon as either
of the two following conditions is fulfilled:

k ¡ 200 ,
��V pk�1q � V pkq

��
2
{ ��V pkq

��
2
  10�6. (2.30)

Fig. 2.5 shows the energy decay curve versus the number of iterations for some of the
meshes reported in this section. We observe that for all meshes considered the energy
converges to a stationary value. This represents an empirical validation of the numerical
convergence of the proposed ADMM-based minimization scheme. Having performed a
comparative analysis between inner solvers in Section 2.2, we used the GD algorithm with
backtracking for solving the subproblem for V , with a warm start strategy allowing us
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to restrict to a few numbers (three in our experiments) of GD iterations while achieving
good relative accuracy.

With respect to the comparisons shown with competing approaches for mesh repair-
ing, we remark that most of them are based on hierarchical data structures and combined
with various heuristic algorithms. On the contrary, the results presented in the following
are directly derived from the solution of the proposed unified mathematical optimization
problem and do not require any heuristic post-processing procedure.

All the meshes are rendered in a flat shading model and visualized using ParaView
software.

Example 1: feature-aware denoising. To evaluate the performance of the
proposed method for mesh denoising, we compared the results with other state-
of-the-art variational methods for mesh denoising, namely the methods introduced
in [117, 143, 55, 142], which have been kindly provided by authors of [142] at
https://github.com/bldeng/GuidedDenoising, and a learning-based approach, pre-
sented in [126]. For each method, we show the best results achieved by tuning the
corresponding set of parameters.

Fig. 2.6 shows the denoised meshes colored by their mean curvature scalar map,
with fixed range, together with zoomed details on mesh edges. From a visual inspec-
tion, we notice remarkable overlaps in the denoised meshes obtained from the other
compared methods, and severe perturbations of the triangle shapes in the reconstructed
meshes. To further demonstrate how robust our approach is w.r.t. to increasing noise
perturbation, in Fig. 2.7 we reported qualitative and quantitative results for noise levels
γ � t0.2, 0.2, 0.3, 0.4, 0.5, 0.6u - from top to bottom. In the last row, the mesh has been
corrupted by arbitrary perturbations on the noise directions (di) in (1.41). Below each
recovered surface, we report the quantitative evaluations according to the two error met-
rics (MSAE � 102, EV � 106). Both quantitatively and qualitatively the results confirm
the effectiveness of the proposed variational model in preserving sharp features while
smoothly recovering rounded parts. Finally, we can comment on the efficiency of our
algorithm whose computational time is, on average, one order less than the ℓ2 � ℓ0 de-
noising method [118] which is the slowest, while it is comparable to the other compared
methods.

To improve the estimation of mask ME for severe noise, we dynamically updated the
edge mask ME every three ADMM iterations.

Example 2: hole filling/inpainting. We applied our geometric framework for the
recovery of various meshes M0 which exhibit holes or damaged parts. Fig.2.2 illustrates
the basic workflow for the inpainting task on angel mesh which takes as input the
original eventually noisy mesh M0 (Fig.2.2, left) and the inpainting mask MV , which
can be of arbitrary topology, in the figure the holes to be filled are marked as 0 in MV

and blue colored. The recovery of angel mesh using smooth hole filling is illustrated in
Fig.2.2(second row).



2.4 Numerical Examples 59

ours

[117]

[143]

[55]

[142]

[126]

Figure 2.6: Examples of denoising: results of noisy-free input meshes (first row) corrupted
by noise levels γ � t0.15, 0.3, 0.3, 0.2, 0.2u, from left to right.
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γ � 0.2 (0.62;3.84) (2.11;8.96) (0.79;4.24) (1.37;5.53) (1.02;4.92)

γ � 0.2 (0.93;130) (2.40;170) (1.52;160) (2.99;210) (3.70;230)

γ � 0.3 (2.15;6.42) (3.05;7.15) (2.19;6.37) (4.82;14) (2.25;6.56)

γ � 0.4 (3.98;51.3) (13.56;72.6) (10.55;54.3) (7.97;93.7) (9.79;62.4)

γ � 0.5 (2.85;41.7) (9.84;74.4) (6.18;43.4) (10.7;71) (8.33;69.2)

γ � 0.6 (3.17;88.0) (10.6;144) (11.8;150) (5.93;180) (6.45;143)

γ � 0.2 (2.5;5.9) (4.51;6.33) (6.16;6.87) (4.2;6.53) (5.34;6.56)

input V 0 ours [117] [143] [55] [142]

Figure 2.7: Examples of denoising: comparison of our denoising framework with related
works on meshes synthetically corrupted by noise levels γ. Reported metrics: (MSAE�
10�2; EV � 10�6)
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Fig.2.8 (first row), shows the challenging Igea mesh which presents a deep groove
on the left side of the mouth and a shallower one on the right cheek. Our geometric
framework was able to inpaint the shallower hole perfectly, while the deep one was filled
in a satisfactory, even if not complete, way. This is justified by the different contribution
of Willmore vs sparsity-inducing penalties. The latter acts more strongly with respect
to the former, especially for high levels of noise. Hence, adding suitable weights to the
two penalties could overcome this disparity.

The data set minerva shown in Fig.2.8 (second row, first column) presents a few
holes caused by the scanner acquisition, in the head and under the nose. Moreover, a
vertical strip has been intentionally added to the inpainting region SD in order to remove
the groove provoked by the gluing of the two parts of the minerva’s face. This dataset
has been provided by ENEA, Bologna, Italy, and acquired by a VIVID laser scanner.
The dataset presents inherent noise due to the optical acquisition system. The result of
repairing the damaged geometry and filling surface holes is illustrated in Fig.2.8(c).

In Fig.2.8 (third row) the inpainting framework has been applied to repair a shard
from neolithic pottery received by the CEPAM laboratory (CNRS France), obtained by
fusion of more fragments. The inpainting region, shown in Fig.2.8 (third row, second
column) has been intentionally imposed to eliminate obvious fractures between joined
fragments.

Example 3: context-aware completion. We finally applied context-aware comple-
tion as an editing tool for seamless object fusion. Completion results for the meshes
lion, screwdriver, and igea are illustrated in Fig.2.9-2.10. The templates P smoothly
complete the original surfaces.

A critical aspect in context-aware completion is the continuity imposed in the joint
region, which we denoted by strippb0q. Conditions for geometric continuity between
parametric surfaces are well assessed, while for meshes a rigorous treatment on this topic
is still missing. In our framework, according to the user’s desiderata, the template P
can be joined to M0, both smoothly, by setting MEpstrippb0qq � 0, in a sharp manner
by setting MEpstrippb0qq � 1, or in a blended fashion by simply using the ME mask of
one of the two meshes (or even a combination of them). Therefore, imposing different
continuity conditions for strippb0q means defining in a different way the mask ME in
correspondence to the strippb0q.

A typical example is shown in Fig.2.11(left panel) where a synthetically created hole
on the fandisk mesh M0 is filled with a similar corner patch - template P cyan colored.
In the right panel, we report details onto the completion area M0YP (a), output M� for
MEpstrippb0qq � 0 (b), M� for MEpstrippb0qq � 1 (c), M� for MEpstrippb0qq estimated
from dihedral angles (d). Note that the initial boundary bP was larger than b0 and
slightly shifted. Nevertheless, the feature-adaptive regularization perfectly respects the
continuity of strippb0q, as illustrated in Fig.2.11(d), while a smooth mask - Fig.2.11(b) -
destroys the sharp edges, and a non-smooth joint - Fig.2.11(c) - creates artifact features.
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(a) (b) (c)

Figure 2.8: Examples of surface inpainting: (a) original damaged object; (b) inpainting
mask MV ; (c) inpainted surface.
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Figure 2.9: Examples of context-aware completion: M0 with template patch P , output
M� for two different incomplete meshes.

Figure 2.10: Example of context-aware completion: M0 with template patch P (left);
mask MV (middle); output M� from two different camera points of view (right).
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(a) (b)

(c) (d)

Figure 2.11: Examples of different continuity conditions for strippb0q in ME for context-
aware completion: M0 with a hole bounded by b0 and template P (left). Right, zoom
onto the completion area M0 Y P , i.e. V p0q (a), output M� for MEpstrippb0qq � 0 (b),
M� for MEpstrippb0qq � 1 (c), M� for MEpstrippb0qq estimated from dihedral angles
(d).



Chapter 3

Variational recovery in differential
coordinates

In this Chapter, we focus on a specific mesh deformation task, called Geometric Texture
Transfer (GTT), formalized in (1.46).

As seen in Sec.1.3.4, the task has a natural formulation when the base surface and
the texture surface are defined as parametric surfaces on the same domain. In this case,
the displacement mapping technique allows to define the textured mesh as in (1.47).

However, in most real applications, 3D shapes are commonly represented as arbitrary
topology, irregular, triangular meshes, which demand texture atlases generation and
charts parametrization, before applying the direct formulation (1.47). For example, in
[68], both the base surface and the texture patch are preliminarily mapped onto geometry
images.

To avoid the critical parametrization issue, a different strategy consists in using im-
plicit surface representation. For example, in [45] the authors combine the implicit
representation of the underlying smooth surface with so-called detail particles, i.e. parti-
cle sets containing the offset vectors from the detailed surface. The texture transfer task
consists in level-set evolution driven by speed function derived from the detail particles.

Alternatively, spectral shape representation allows to apply a multi-scale empirical
mode decomposition (EMD) to the source object, performing the GTT task by adding
selected modes to the EMD of the target surface, (see [141]). A similar spectral-based
idea is presented in [84] where the geometric texture from the source object is encoded
via spectral decomposition of Laplacian, then combined with the spectral decomposition
of the target.

With the rapid development of machine learning approaches, new neural implicit
representations for 3D geometry have been introduced. In [56, 136] the authors applied
a convolutional neural network to synthesize a geometric texture from a sample object
and to transfer it over the whole target object. GTT using neural representations is
memory/computation demanding and still very challenging in transferring texture on a
specific bounded patch of a surface.

In this Chapter, we propose a Geometric Texture Transfer method that does not

65
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require a bijective relation between the base surface and the texture. With respect to
GTT using implicit representations, the proposed GTT approaches avoid the timing
and accuracy shortcomings of the level-set modeling. Finally, unlike the multi-block
procedures proposed in computer graphics literature to deal with the GTT task, we face
the problem from a numerical point of view, offering a simple, compact mathematical
variational formulation with efficient solutions.

To make the transfer of geometric details as effective as possible, it is first of all essen-
tial to represent them at their best. The Euclidean coordinates have been a ubiquitous
choice in geometry processing due to their intuitive properties of representing the spatial
embedding of a shape. However, they fail to capture the geometric features relevant for
many shape analysis tasks [25].

Alternate descriptors as the Differential Coordinates introduced in Sec. 1.2.3 have
been effectively used for deformation tasks (see Sec. 1.5), for their ability to encode
aspects of extrinsic geometry, and therefore they are potentially suitable also for the
GTT task. In this Chapter, we present a further analysis of the properties of invariance
and equivariance of Laplacian Coordinates, Normal-Controlled Coordinates and Mean
Value Encoding, under affine transformations and free deformations. This represents
indeed a key aspect of their use in the context of the GTT task.

Contrarily to the displacement mapping described in 1.2 that acts on parametric
surfaces, in our GTT proposal the macrostructure base surface is a Riemannian manifold
of arbitrary topology embedded in R3 represented by an irregular base mesh MI , defined
by its vertices, edges and triangular faces pVI , EI , TIq, respectively, and the displacement
/ geometric texture is an open mesh MS � pVS, ES, TSq with boundary bS :� BMS

defined by a geometry image. We assume that the underlying base mesh is coarse
relative to the fine scale of details in the texture. We aim at building a new textured
mesh MT � pVT , ET , TT q, which corresponds to the base mesh MI everywhere except
in a bounded patch P � MI where the geometric texture is mapped on the base mesh,
while preserving as much as possible the underlying original shape ofMI , i.e. VT |MI�P �
VI |MI�P , and VT |P is displaced by transferring the level of details of VS.

The geometric transfer process is illustrated in Fig.3.1 where a column of stones is
modeled by mapping on half of a cylindrical shape a geometric textured surface built
from a gray-scale image. The involved underlying meshes are represented in Fig.3.1,
bottom row.

The Chapter is divided as follows. In Section 3.1 we investigate properties of Lapla-
cian, Normal-Controlled and Mean Value coordinates under 3D transformations; in Sec-
tion 3.2, associated with the three considered geometric descriptors, we formulate and
analyze three variational models for the solution of the GTT problem which involve two
terms: one for the inverse reconstruction problem and one for shape preserving interpola-
tion. In Section 3.3 we design a nonlinear optimization algorithm to efficiently solve the
GTT models. In Section 3.4 we compare the results of transferring geometric textures
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MS MI MT

Figure 3.1: The geometric transfer process. First column: geometric textureMS, derived
from the texture image; second column: base mesh MI , with the patch P �MI colored
in green; third column: textured mesh MT .

both qualitatively and quantitatively on a wide range of examples.

3.1 Invariance of shape descriptors

Let G be the affine transformation group (containing translations, rotations, shearing
and scaling). A n-dimensional real representation of a group G is a map Tg : GÑ Rn�n,
assigning to each g P G an invertible matrix Tg. We are interested in transformations in
homogeneous space Tg P R4�4 represented as

Tg �

����
a1 b1 c1 tx
a2 b2 c2 ty
a3 b3 c3 tz
0 0 0 1

���� , (3.1)

where the principal three-by-three sub-matrix represents linear transformations such as
scaling and rotation, while t � rtx, ty, tzsT denotes the translation vector. To characterize
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the invariance properties of the shape descriptors, we introduce the following concepts
of invariance with respect to transformations g P G.

Let Ω be the domain underlying our data, and XpΩq the space of functions on Ω. A
function f : XpΩq Ñ Y is G-invariant if

fpTgxq � fpxq (3.2)

for all g P G, and x P XpΩq, i.e., its output is unaffected by the group action on the
input.

A function f : XpΩq Ñ XpΩq is G-equivariant if
fpTgxq � Tgfpxq, (3.3)

for all g P G, i.e., group action on the input affects the output in the same way.
We focus now on the main transformations involved in the geometric transfer task,

such as translation, rotation along an axis, and isotropic scaling, represented as Tg by
(3.1). In Fig. 3.2, left, and Fig. 3.3, left, we summarize the properties of G-invariance
and G-equivariance of the shape descriptors presented in Section 1.2.3, i.e. Laplacian
Coordinates, Normal-Controlled Coordinates and Mean Value Encoding; with the symbol
✓ we denote satisfied, and by X not satisfied. The difference between the two concepts
of G-invariance and G-equivariance maps is illustrated in the right panels of Fig. 3.2
and Fig. 3.3.

Tg Lw δL Nw δN w b δM

Translation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Rotation ✓ X ✓ X ✓ ✓ X

Isotropic Scaling ✓ X ✓ X ✓ ✓ X

Figure 3.2: Geometric descriptor G-invariance fpTgxq � fpxq. Left: table for all descrip-
tors. Right: Illustration of G-invariance map f .

Laplacian coordinates. A transformation Tg changes the geometry of the mesh, leaving
unchanged its local connectivity, thus the uniform weights wij in (1.22) remain invariant
and not equivariant. In case the cotangent weights wij in (1.23) are used, they remain
invariant since the angles in the local neighborhood are neither modified by rigid trans-
formation, nor by isotropic scaling. Therefore, the Laplacian Lw is an intrinsic linear
operator that remains invariant under isometric transformations - such as translations
and rotations in R3 - which do not change the metric. A different behavior is expected
for the LAP coordinates, as shown in Prop. 3.1.1.
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Tg δL δN δM

Translation X X X
Rotation ✓ ✓ ✓

Isotropic Scaling ✓ ✓ ✓

Figure 3.3: Geometric descriptor G-equivariance fpTgxq � Tgfpxq. Left: table for all
descriptors. Right: Illustration of G-equivariance map f .

Proposition 3.1.1. Let δL be the map defined in (1.28) and consider the transformation
Tg of (3.1). Then δL is G-invariant for Tg translation, and G-equivariant for Tg being a
rotation along an axis or an isotropic scaling.

Proof. Let δL be the vector of LAP coords of the mesh δL � LwpV q and δ1L the vector
of the LAP coords of the transformed mesh δ

1

L � LwpTgV q. If Tg � T , with T the
translation matrix obtained by replacing in Tg of (3.1) the principal submatrix with the
I3 identity matrix, then

pδ1Lqi � pLwpTV qqi �
¸

wijpvi � t� vj � tq � pLwpV qqi � pδLqi.

If Tg � S, with S the diagonal matrix obtained by setting a1 � b2 � c3 � s P R and
tx � ty � tz � 0 in (3.1), which represents the isotropic scaling of a factor s, then, due
to the linearity of Lw,

pδ1Lqi � pLwpSV qqi �
¸

wijpsvi � svjq � psLwpV qqi � pSδLqi.

If Tg � R, with R an orthogonal rotation matrix, and tx � ty � tz � 0, then

pδ1Lqi � pLwpRV qqi � Rvi �
¸

wijRvj � R
�
vi �

¸
wijvj

	
� RpLwpV qqi � pRδLqi.

Normal-controlled coordinates. Similarly to the Laplacian matrix Lw, the weights wij
of Nw in (1.30) remain unchanged under translation and rotation, which do not affect
the shape of the projected neighborhood. Isotropic scaling does not alter γij and δij in
(1.30), while affects lij. Nonetheless, the weight normalization wi,j from w̄i,j in (1.30)
allows to preserve the invariance under isotropic scaling. Following the same arguments
of Prop. 3.1.1, one can show that the map δN defined in (1.31) is invariant for translation
and equivariant for rotation and scaling.
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Mean Value Encoding. The weights wij, defined in (1.35), differ from NCC weights
only for the choice of the local projection plane. Thus the wij are invariant under all
the affine transformations. The components bij, as illustrated in Fig. 1.1(c), define the
angle between the edge eij and the vertex normal ni, which remains preserved both for
rigid transformation and isotropic scaling. The coordinates δM combine non-linearly the
invariant weights wij, bij with the normal vector ni, thus the invariance/equivariance of
δM is less trivial to verify.

Proposition 3.1.2. Let δM be the map defined in (1.37). Then δM is G-invariant for
Tg translation, and G-equivariant for Tg being a rotation along an axis or an isotropic
scaling. Let F be the map defined in (1.38). Then F is G-invariant for Tg translation,
rotation and uniform scaling.

Proof. Let us define the average distance from origin as

dpviq :� � 1

|N piq|
¸

jPN piq

xni, vjy .

For Tg defining translation, for each vertex we have Tgvi � vi� t for t � rtx, ty, tzsT P R3

and dpvi � tq � dpviq � xni, ty . Then

pvi � tq1 � vi � t� pdpviq � xni, ty � xvi � t, niyqni � v1i � t. (3.4)

By applying (3.4), we get

VpTgviq � Vpvi � tq �
¸

jPN piq

wijp}ppvi � tq1 � pvj � tq1q}bij � pvj � t� pvj � tq1q � niqni �

�
¸

jPN piq

wijp}pv1i � v1jq}bij � pvj � v1jq � niqni � Vpviq � δM .

For Tg being rotation, due to the orthogonality of Tg and the fact that nipTgviq � Tgni,
we have

dpTgviq � � 1

|N piq|
¸

jPN piq

xTgni, Tgvjy � � 1

|N piq|
¸

jPN piq

nTi T
T
g Tgvj � dpviq

and the projection of the rotated vertices is given by

pTgviq1 � Tgvi � pdpviq � xTgvi, TgniyqTgni � Tgpvi � pdpviq � xvi, niyqni � Tgv
1
i.
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Then

VpTgviq �
¸

jPN piq

wij
�}Tgv1i � Tgv

1
j}bij �

@
Tgvj � Tgv

1
j, Tgni

D�
Tgni �

�
¸

jPN piq

wij
�}Tgpv1i � v1jq}bij �

@
Tgpvj � v1jq, Tgni

〉�
Tgni �

� Tg

�� ¸
jPN piq

wij
�}v1i � v1j}bij �

@
vj � v1j, ni

D�
ni

�
� Tg Vpviq.

The isotropic scaling can be expressed as Tg � sI3, where s � a1 � b2 � c3 P R in
Tg, and it affects the normal vector ni. However,

dpTgviq � � 1

|N piq|
¸

jPN piq

xni, Tgvjy � � 1

|N piq|
¸

jPN piq

nTi psI3qvj � sdpviq

and

pTgviq1 � Tgvi � psdpviq � xTgvi, niyqni � Tgpvi � pdpviq � xvi, niyqni � Tgv
1
i.

Therefore

VpTgviq �
¸

jPN piq

wij
�}Tgpv1i � v1jq}bij �

@
Tgpvj � v1jq, ni

〉�
ni �

�
¸

jPN piq

wij
�
s}v1i � v1j}bij � s

@
vj � v1j, ni

D�
ni

� Tg

�� ¸
jPN piq

wij
�}v1i � v1j}bij �

@
vj � v1j, ni

D�
ni

�
� Tg Vpviq.

In a general geometric processing setup, the transformations Tg that have acted on
an object are not known. Hence descriptors that are G-invariant are trivially preferable
to G-equivariant geometric descriptors which rely on the knowledge of the Tg applied
in order to be used on the transformed mesh. This highlights one of the advantages of
the MVE coordinates over the LAP and NCC. In particular, for the investigated task of
GTT, the benefit of using MVE coordinates in the form of the non-linear map F , which
allows to exploit the G-invariance property, is illustrated in Fig. 3.4 where a chocolate
tablet geometric texture MS is applied to a face P of a cube object MI . The placing
of MS with respect to P requires a rotation in the first row and an isotropic scaling
in the second row of Fig. 3.4. The use of LAP and NCC, being not invariant under
rotation and scaling, introduces visible artifacts when the deformation contains rotation
or scaling, while the use of MVE allows to preserve the orientation and the dimension of
the structural details.
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MI with P

MS LAP NCC MVE

Figure 3.4: Invariance w.r.t geometric texture transfer task. The use of LAP and NCC
coordinates, being not invariant under rotation and scaling, introduces visible artifacts
when the deformation contains rotation (first row) or scaling (second row).

3.1.1 Inexact invariance under free-form deformation

The invariance properties introduced capture a geometry processing context where the
texture-transferring task only requires affine transformations. In more realistic GTT we
are more interested in a far larger set of transformations where global, exact invariance is
replaced by a local, inexact one. We need in fact to deal with 3D geometry textures that
undergo non-rigid deformations when applied to free-form objects. Such deformations
can be modeled as transformations that preserve as much as possible the intrinsic struc-
ture of the underlying (Riemannian) manifold, while transferring at best the descriptors
captured by the geometric texture.

Let D denote the space of Riemannian manifolds, and MS,MI P D. Then the
deformation of MS onto MI is a family of smooth and invertible maps η : D Ñ D that
is modelled by the combination of an affine-transformation Tg that ‘aligns’ the domains in
a way that the corresponding structures are best preserved, and a non-rigid deformation
Tτ to mold MS on the structure of MI :

η � Tτ � Tg. (3.5)

We can now extend the previous definitions of exact invariance and equivariance under
group actions with a ‘softer’ notion of deformation stability (or inexact invariance):

}fpTηxq � fpxq} ¤ Ccpτq}x}, @x P D (3.6)

where C is some constant independent of x, and the cost measure cpτq is such that
cpτq � 0 whenever τ is an affine transformation, that is τ P G, thus generalising the G-
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invariance property. A function f satisfying the above equation is said to be geometrically
stable. Although cpτq is difficult to measure, we will incorporate (3.6) in the variational
formulation proposed for the GTT solution in Section 3.2.

In the context of geometric texture transfer, a practical deformation cost can be
computed when a reference ground truth textured surface MGT is available (for example
as the result of displacement mapping onto a parametric surface), as the distance to
the generated GTT textured surface MT . In general, a quantitative evaluation of the
discrepancy between a manifold Ω P D and another manifold Ω̄ P D is the Hausdorff
distance dHpΩ, Ω̄q between the two meshes, defined as

dHpΩ, Ω̄q � max

#
sup
xPΩ

inf
yPΩ̄

dpx, yq, sup
yPΩ̄

inf
xPΩ

dpy, xq
+
, (3.7)

with dpx, yq being the Euclidean distance between vertices x and y.

Let MT be generated by GTT exploiting the geometric descriptors f , named GTT-f,
then GTT-f is stable if dHpMGT ,MT q is small, being dHpMGT ,MT q � 0 when the two
manifolds are isometric.

3.2 Variational models for Geometric Texture

Transfer

The geometric texture transfer is obtained by replacing the coarse patch P � MI with
the finer mesh MS whose nS vertices must be appropriately deformed into new positions
V � by an unknown deformation η defined in (3.5), thus preserving the shape of MI

while adding the geometric textured details of MS. The resulting textured mesh MT

has vertices VT � pVIzP q Y V �. We propose to place the vertex positions V � through a
variational approach, taking inspiration from the deformation models (1.62,1.65) defined
in Sec.1.5. In particular, we minimize the sum of a reconstruction term RpV q that aims
at preserving the details of the texture, with a soft constraint term gpV q that forces V �

to recover the global shape of the patch P , which reads as

V � � argminV tRpV q � gpV ;λCqu, (3.8)

where λC :� λ�1CpV q, 1CpV q is the indicator function of a subset C of vertices of VS with
value 1 at points of C and 0 at points of VSzC, λ P R, is a positive parameter. The set
V � has the same number of vertices nS as MS and inherits its topological structure, and
thus it represents the details with the appropriate fine mesh resolution. The term RpV q
depends on the particular geometric descriptor involved, then RpV q can be formulated
as the inverse reconstruction problems (1.29), (1.33) or (1.39), depending on whether the
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transfer is obtained via LAP, NCC or MVE descriptors, respectively. This choice leads
to the following three alternative variational problems

V � � arg min
V PRnS�3

t J1pV q :� 1

2
}LwV � δL}22 � gpV ;λCqu (3.9)

V � � arg min
V PRnS�3

t J2pV q :� 1

2
}NwV � δN}22 � gpV ;λCqu (3.10)

V � � arg min
V PRnS�3

t J3pV q :� 1

2
}V � F pV ;w, bq}22 � gpV ;λCqu; (3.11)

where w, b refer to the source mesh MS. The three variational models (3.9),(3.10), and
(3.11) share the same soft constraint term gpV q, and Dirichlet boundary conditions in
order to correctly align with the boundary bP of the replaced patch P and to obtain a
unique set of vertices V �.
Details on boundary setting are given in Section 3.2.1, the discussion on the soft con-
straints will be given in Section 3.2.2, the overall geometric texture transfer algorithm
will be finally described in Section 3.3.4.

3.2.1 Boundary setting

The boundary setting involves both the boundary alignment between the boundary bS
of the geometric texture MS and the boundary bP of the patch P , and the boundary
conditions for the operators in (3.8). The mild assumption formulated for a correct GTT
is that bP and bS are polygonal approximants of counterclockwise oriented, closed, simple
curves in R3 with the same number of vertices. If this is not the case, a simple refinement
pre-processing is applied by adding nbS � nbP new vertices to bP , uniformly distributed
among its edges. Hence a bijection between bP and bS is easily established by imposing
the correspondence of a couple of adjacent vertices between bS and bP , either by user
interaction - in case the geometric texture must pursue a predetermined orientation - or
automatically, via random assignment. This allows to define the starting point between
the two polygonals, since they already follow a common orientation.

The common shared boundary is then imposed as Dirichlet boundary conditions in
V to obtain full-rank matrices Lw in (1.29) and Nw in (1.33), and a unique solution for
(1.39).

Moreover, in order to avoid artifacts due to a different proportional ratio between
the geometric texture MS and the target patch P , we uniformly scale MS by the factor
|bP |{|bS|, with |bP | and |bS| the length of the boundaries.

3.2.2 Soft Constraints

The reconstruction process in (3.9),(3.10), and (3.11) is driven by soft constraints on the
internal vertices of MS to recover at best the underlying shape of the original patch P .
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At this aim, a conformal parametrization is applied to both the patch P �MI and the
mesh MS onto a common circular parametric domain Ω bounded by bS � bP .

Given a rate r P p0, 100q, eventually definable by a potential user, we aim to establish
a bijection between m � tnP � r{100u    nV vertices of P , randomly chosen, and m
vertices of MS. Let

C � tpki, jiq : ki is vertex index of P, ji is vertex index of MS, i � 1, . . . ,mu

be the subset of indices of vertices of P and associated vertices of MS closest to them in
the parametric domain Ω. Each vji P MS is associated with a vertical displacement ϵji .
Then, for each selected vertex pki P P , with associated normal ñki , the position of v̄ji is
given by

v̄ji � pki � ϵjiñki . (3.12)

The set of the new handles V̄ � tv̄jiumi�1 defines the soft constraint term gpV ;λCq
which aims to preserve the shape of P while adding the texture displacement.

The role of the indicator function λC in (3.9), (3.10), and (3.11) is played upon
discretization by a mask matrix Λ P t0, λum�ns non-zeros only in correspondence to
constraints C, explicitly defined as

Λij �
#
λ if j � ji

0 otherwise.
(3.13)

The displacement energy term thus reads as follows:

λCgpV q �
m̧

i�1

λpvji � v̄jiq2 � }ΛpV � V̄ q}22, (3.14)

which forces the vertices vji P MS towards the positions of the corresponding vertices
pki of the patch P , with a displacement in its normal direction ñki of value ϵji .

Whenever the geometric texture MS is a 3D mesh that cannot be expressed as a
height field, to compute the handle vertices in V̄ in the soft constraints (3.14), formula
(3.12) is replaced by the following

v̄ji � pki � djix tki � djiy bki � djiz ñki (3.15)

where dji � pdjix , djiy , djiz q is the local displacement vector on MS, and ptki , bki , ñkiq is the
local frame at pki on the patch P .

We refer the reader to the example in Fig.3.5 and Tab.3.1 which validates the shape-
preserving reconstruction property of the variational models (3.10) and (3.11) when
applied to the solution of the GTT task with varying r factors. For the overall considered
examples a very low r value proved to be sufficient for a good GTT.
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3.3 Numerical optimization of the variational GTT

models

In this section, we illustrate in detail efficient optimization algorithms used to numerically
solve the Laplacian Model (3.9), the NCC Model (3.10), and the MVE Model (3.11).
Finally in Section 3.3.4 we outline the main steps of the GTT algorithm.

3.3.1 Solution of the Laplacian model (3.9)

The optimization problem (3.9) can be rewritten as a linear least squares problem

V � P argminVJ1pV q � 1

2
}AV �B}22 (3.16)

with

A :�
�
Lw
Λ

�
P RpnS�mq�nS , B :�

�
δL
ΛV̄

�
P RpnS�mq�3, (3.17)

Lw P RnS�nS defined in (1.21), and Λ is defined in (3.13). In matrix B, δL P RnS�3

contains the Laplacian coordinates of the geometric textureMS and V̄ P Rm�3 represents
the constraints positions set defined in (3.12) or (3.15).

Under the Dirichlet boundary conditions on bS, matrix A is full column rank, ATA
is non-singular, and thus the unique minimizer of (3.9) can be computed by solving the
standard normal equations ATAV � ATB.

The computational cost for the solution of (3.16)-(3.17) corresponds to the solution of
three linear systems for each coordinate vector V � pVx, Vy, Vzq, with the same coefficient
matrix and right-hand-side defined by the corresponding three columns of B.

3.3.2 Solution of the NCC model (3.10)

The solution of the NCC-based variational problem (3.10) is analogous to the solution
for (3.9) by rewriting the linear least squares problem as

V � P argminVJ2pV q � 1

2
}AV �B}22, A �

�
Nw

Λ

�
, B �

�
δN
ΛV̄

�
(3.18)

with A P RpnS�mq�nS and B P RpnS�mq�3, δN are the NCC coordinates of the geometric
texture MS and Nw is the sparse NCC matrix defined in (1.32). Under Dirichlet bound-
ary conditions on bS, the matrix A is full column rank, then the unique minimizer is
obtained by solving the system of normal equations ATAV � ATB.

Although the use of Laplacian (differential) LAP or NCC descriptors forces local
detail preserving, the shape of such details appears, in general, deformed since these de-
scriptors are not invariant with respect to rotation and scaling. At this aim, in [75] the
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authors proposed a rotated Laplacian reconstruction approach which relies on the esti-
mate of the local frame rotations matrix R in order to exploit the equivariance property
proved in Prop. 3.1.1:

NwpRpV qq � RpNwpV qq.
A simpler but effective idea was proposed in [127] where an iterative approach alter-

nates the solution of the normal equations (3.18) with an update of the NCC coordinates
(and, therefore, of the matrix B). In particular, starting from δp0q � δN , by recalling
that the coordinates NCC are parallel to the normals to the vertices, V pkq and δpkq are
updated through the following iterative scheme:#

Solve ATAV � ATBpkq for V pk�1q;

δ
pk�1q
i � sgnppδNqiq}pδNqi}ni, with ni normal to the vertex v

pk�1q
i , @i. (3.19)

This correction to the naive reconstruction method makes the final result less depen-
dent on the original orientation of the source mesh MS.

The computational cost of one iteration of the NCC updating scheme (3.19) consists
of the solution of three linear systems, the estimation of the vertex normal and the
update of the directions δpk�1q; all of which depend on the number of vertices nS.

3.3.3 Solution of the MVE model (3.11)

The vertex set V � of the target meshMT , corresponding to the region of interest P PMI ,
is obtained as solution of a non-linear least squares (NLLS) problem. In particular, let
n � nS � |bS|, be the cardinality of the sought vertex set V �, we define the differentiable
nonlinear residual vector function r : R3n Ñ R3n as rpV q � V �F pV q, with components

ripV q P R3, ripV q � prpxqi pV q, rpyqi pV q, rpzqi pV qqT the nonlinear residual at vertex vi, defined
as

ripV q :� vi � FipV q, i � 1, . . . , n. (3.20)

We want to solve the NLLS minimization problem

V � � argminV PR3n J3pV q � 1

2
}rpV q}22 � λC}V � V̄ }22. (3.21)

For the purpose of developing a numerical solution of the NNLS problem, we define
the Jacobian of the residual vector function rpV q as the 3� 3 block matrix

JpV q �

�����������

BrpxqpV q
BV pxq

BrpxqpV q
BV pyq

BrpxqpV q
BV pzq

BrpyqpV q
BV pxq

BrpyqpV q
BV pyq

BrpyqpV q
BV pzq

BrpzqpV q
BV pxq

BrpzqpV q
BV pyq

BrpzqpV q
BV pzq

�����������
P R3n�3n (3.22)
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with blocks rJpV qskl P Rn�n, k, l � 1, 2, 3, and we summarize the main properties of
JpV q.

Proposition 3.3.1. The square matrix JpV q P R3n�3n in (3.22) is full rank, positive
definite and it is highly sparse having at each row corresponding to i-th vertex at most
3|N piq|�1 non-zero elements. The elements pi, jq, i, j � 1, . . . , n for all blocks rJpV qskl,
k, l P t1, 2, 3u, are defined as

rJpV qskli,i �
�
BripV q
Bvi

�kl
� I3,

rJpV qskli,j �
�
BripV q
Bvj

�kl
� �wijI3 � wijbij

}z �Q1vj}2 ni
�
QT

1 pz �Q1vjq
�T �

� °
k�j

wikbik
}Q2vj � z �Nivk}2 ni

�
QT

2 pQ2vj � z �Nivkq
�T
,

(3.23)

where

Q1 � p1� wijqNi , Q2 � wijNi , z � Ni

¸
l�j

wilvl .

Proof. To derive an explicit expression for JpV q, we first observe that BripV q
Bvj

P R3�3, and
BripV q
Bvj

� 0 for j R N piq. Next, we can rewrite ripV q by separating the neighbor vj from

the other neighbors vk P N pviq, as

ripV q � vi�wij pvj � }z �Q1vj}2bijniq �
¸
k�j

wik pvk � }Q2vj � z �Nivk}2bikniq , (3.24)

Then, by applying in (3.24) the chain rule B
Bx
}Ax � b}2 � AT pAx�bq

}Ax�b}2
for x � vj, we get

(3.23).

An approximate solution for the minimization problem (3.21) can be obtained by
imposing the first-order optimality conditions:

JT pV qrpV q � 2λCpV � V̄ q � 0, (3.25)

and then using a traditional optimization method, such as the Newton-Raphson method
to solve (3.25). Alternatively, a well-assessed numerical approach for addressing directly
the minimization problem (3.21) is the Gauss-Newton method, which does not require the
computation of second-order derivatives. Essentially, it is based on the approximation of
the Hessian matrix of J3pV q in (3.21) with ∇2J3pV q � JpV qTJpV q � 2λC , by ignoring
all the second order terms from ∇2J3pV q. Gauss-Newton method iterates from an initial
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guess V p0q and performs a line search along the direction p
pkq
GN determined by solving the

following linear system

pJT pV pkqqJpV pkqq � 2λCqpGN � �JT pV pkqqrpV pkqq � 2λCpV pkq � V̄ q, (GN)

The coefficient matrix has size 3n � 3n and is symmetric positive definite. The new
vertex positions is then updated as

V pk�1q � V pkq � αpkqpGN . (3.26)

with an adaptive step-size αpkq obtained via line search with backtracking, satisfying
Armijo condition:

J3

�
V pkq � αpGN

�� J3

�
V pkq

� ¤ �2β α ppGNqT ∇J3

�
V pkq

�
(3.27)

with β P r0, 1q fixed parameter.

Due to the nonlinear nature of this model, an initial guess V p0q sufficiently close to
the sought solution would allow for a fast convergence in a few iterations. Nevertheless,
in our experiments, we noticed that the scheme is robust and converges towards the
expected solution even for V p0q being located far away, e.g. V p0q being MS in its original
position. Favourable choices for V p0q can be either the minimal surface fit for given
boundary bP or the least squares solution of the GTT-NCC model (3.10), due to the
similarity between weights in MVE and in NCC.

Assuming the contribution of derivatives by non-matching coordinates is negligible,
i.e. rJpV qskl � 0, if k � l, k, l � 1, 2, 3, we can further simplify JpV q into a block-
diagonal matrix by neglecting the non-diagonal blocks, thus making the Jacobian matrix
separable for each spatial coordinate. This gives rise to the solution of three highly sparse
linear systems of the form (3.26), eventually parallelizable. The experiments support the
above assumption.

3.3.4 Algorithm GTT

We synthesize in Algorithm 1 the main steps of the GTT procedure for the three different
variational models proposed, which will be named GTT-LAP, GTT-NCC and GTT-MVE
according to the respective choice of descriptors.

For height-map geometric texture, the mesh MS is generated from an image by
setting the vertices in VS to be pixel-centered.

The influence of parameters r and λ on the GTT results is discussed in the examples
on shape preserving ability and parameter estimation, respectively, which suggest satis-
factory results can be achieved by selecting λ � 10 for GTT-LAP and GTT-NCC and
λ � 1 for GTT-MVE, while setting the rate r � 20.
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Algorithm 1 Geometric Texture Transferring

Input: � base mesh MI � pVI , EI , TIq, with patch P �MI ,
� geometric texture mesh MS � pVS, ES, TSq.

Output: � textured mesh MT � pVT , ET , TT q with VT � pVIzP q Y V �.
Parameters: � r P p0, 100q rate of vertices chosen as soft constraints;

� λ ¡ 0 soft-constraint parameter;
� corresponding vertices in bS and bP , if manual alignment is required.

Preliminary set up:

� Dirichlet boundary conditions: refinement of bP (if needed), bijection between
bS and bP (manually or automatically);

� soft constraint term gpV q: parametrization of P and MS, random choice of
tnP � r{100u vertices of P , correspondence with vertices of MS, definition of V̄
through (3.15) or (3.12);

� reconstruction term RpV q: computation of the descriptors LAP, NCC or MVE
from the source mesh MS, to define three different formulas for RpV q and three
models: (3.9),(3.10),(3.11).

Variational Models Solution:

GTT-LAP (3.9) Construction of matrices A and B in (3.17)
solve normal equation ATAV � ATB.

GTT-NCC (3.10) Construction of matrices A and B in (3.18);
Until stopping criterion in (3.28) is satisfied
� solve normal equations ATAV � ATB
� update δN and B as in (3.19);

GTT-MVE (3.11) Set an initial guess V p0q � VS
Until stopping criterion in (3.28) is satisfied
� compute pGN from (GN);
� compute step-size αpkq via line-search as in (3.27)
(or use a constant α);

� update V as in (3.26)
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We terminate the iterations of the GTT algorithm, in case iterative procedures are
used for GTT-NCC and GTT-MVE, as soon as either of the two following stopping
criteria is satisfied��V pkq � V pk�1q

��
2��V pkq

��
2

  10�4 ,

��J pV pkqq � J pV pk�1qq��
2��J pV pkqq��

2

  10�4 . (3.28)

3.4 Numerical GTT examples

In this section, we illustrate examples of GTT that validate the overall procedure sketched
in Algorithm 1 and we compare the performance of the GTT-LAP, GTT-NCC and GTT-
MVE variational models. The naive implementation of the algorithms has been written
in MatLab R2021a and executed on a laptop with a 2.10 GHz AMD Ryzen 5 quad-core
processor and 16 GB 2.4 MHz RAM.

GTT-NCC dHpMI ,MT q
r% cylinder+flat sphere+flat free-form+flat

1 5.83� 10�3 1.59� 10�2 1.03� 10�1

5 1.42� 10�3 4.67� 10�3 4.36� 10�2

20 6.45� 10�4 2.09� 10�3 2.14� 10�2

50 3.87� 10�4 1.25� 10�3 8.25� 10�3

80 3.23� 10�4 1.06� 10�3 5.40� 10�3

95 2.93� 10�4 1.01� 10�3 4.59� 10�3

99 2.93� 10�4 1.01� 10�3 4.47� 10�3

GTT-MVE dHpMI ,MT q
r% cylinder+flat sphere+flat free-form+flat

1 5.89� 10�3 1.59� 10�2 9.73� 10�2

5 1.49� 10�3 4.67� 10�3 2.46� 10�2

20 6.27� 10�4 2.09� 10�3 1.55� 10�2

50 2.81� 10�4 1.25� 10�3 3.28� 10�3

80 2.43� 10�4 1.07� 10�3 2.64� 10�3

95 2.05� 10�4 1.07� 10�3 2.02� 10�3

99 1.99� 10�4 1.07� 10�3 2.02� 10�3

Table 3.1: Example 1: Hausdorff distances to ground truth patch P using planar geo-
metric texture MS defined on a uniform grid of dimensions 150� 150 vertices.

Shape preserving GTT.
To validate the shape-preserving property of the proposed variational models, we

investigate qualitatively and quantitatively the effect of transferring a flat geometric
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�
MS

MI MI and MT

Figure 3.5: Example 1: shape preservation via GTT, using flat geometric texture MS for
patch P �MI in green (middle column), with rate 20%. The resulting MT overlapped
with base mesh MI (right column).

texture MS. The expected result is a mesh MT with the exact same shape as the
base mesh MI , but with a different resolution in the patch region P , inherited from the
geometric texture MS. From a qualitative point of view in Fig. 3.5 we show the results
for three different meshes MI , and a set C of soft constraints gpV q obtained with a rate
r � 20% of vertices.

In Table 3.1 we reported the Hausdorff distances dHpMI ,MT q, defined in (3.7), for
different values of the rate r of randomly chosen vertices in C. Although for sphere
and cylinder shapes the results for GTT-NCC and GTT-MVE are quite similar, the
measured distances for GTT-NCC double in the case of free-form surface MI as the one
in Fig. 3.5, third row. As expected, in general, when the percentage r increases also
the corresponding accuracy increases, or better, the Hausdorff distance decreases so that
the accuracy of the models is reasonably high for high rates. However, the shape of the
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patch P is well preserved even for low rates r of vertices in the soft constraints term
gpV q.

Influence of the λ parameter.
The second example analyses how the value of the soft constraint parameter λ in

(3.8), where λC � λ1C , affects the final GTT results obtained from the three variational
models. The rate r is fixed to 20% in accordance with the results shown in Example
1. At this aim an example of a geometric texture MS transferred to a dolphin mesh
MI is illustrated in Fig. 3.6, first row. In the second and fourth rows (top of panels),
the cross-section curves from GTT-LAP (in green, with �), GTT-NCC (in blue, △) and
GTT-MVE (in red, �) results are shown for increasing values of λ, from left to right.
Finally, in Fig. 3.6, third and fifth row (bottom of panels), we reported the corresponding
plots of the terms RpV q and λCgpV q in (3.8), for the two iterative algorithms GTT-NCC
and GTT-MVE in red and blue color, respectively.

For small λ values both GTT-LAP (3.9) and GTT-NCC (3.10) models perform
poorly in reproducing the shape of the underlying patch P . This behavior, in particu-
lar for GTT-NCC, is confirmed by the blue-colored plots of its related terms RpV q and
λCgpV q: RpV q value indicates perfect reconstruction, nevertheless the shape-preserving
term λCgpV q remains at high values. As λ value increases, the results of GTT-LAP and
GTT-NCC, illustrated by the green and blue cross-sections, respectively, in Fig. 3.6,
improve.

However, only at a high value λ � 103, the GTT-NCC model (3.10) is forced to follow
the shape of P as gpV q attains lower value with respect to RpV q. Nevertheless, under
close inspection of the cross-sections, the high penalization to satisfy soft constraints
restraints the reconstruction term, which results in a reconstruction that does not repro-
duce the original oscillations, as instead in the case of GTT-MVE reconstruction.

For what concerns the GTT-MVE (3.11) model, it proved to be extremely robust
to variations of λ value, providing good reconstructions even for low λ values. This
is qualitatively shown by the red cross-section in Fig. 3.6, and quantitatively by the
convergence plots in the third row of Fig. 3.6 where the term λCgpV q attains always
lower values with respect to the reconstruction term RpV q.

Comparison with parametric displacement mapping
It is quite easy to qualitatively assess whether the result of a GTT meets our expec-

tations.
However, it is not entirely obvious what should be an ideal result on a free-form

base surface. This may depend on subjective evaluations or on the context of the ap-
plication. For the quantitative evaluation of the GTT results obtained by the three
variational models, we considered three parametric surfaces as base meshes, in order
to be able to perform an exact GTT, in terms of the standard displacement mapping
formula (1.47), named GTT-DM in the following. This allowed us to evaluate a mea-
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λ � 10�3 λ � 10�1

λ � 101 λ � 103

Figure 3.6: Example 2: influence of the λ parameter. First row: a GTT example with
MS, MI and MT . Second and third rows: cross-sections of the P patch (in black), of
GTT-LAP (in green, marked �), of GTT-NCC (in blue, marked △), and of GTT-MVE
(in red, marked �) and plots of the reconstruction term RpV q and the constraint term
λCgpV q (related to GTT-NCC and GTT-MVE), for increasing values of λ.
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GTT-DM

GTT-LAP
dHpMGT ,MT q � 4.05� 10�2 1.73� 10�2 1.71� 10�2

GTT-NCC
dHpMGT ,MT q � 4.10� 10�2 1.48� 10�2 1.28� 10�2

GTT-MVE
dHpMGT ,MT q � 4.09� 10�2 1.72� 10�2 1.73� 10�2

Figure 3.7: Example 3: Comparison with displacement mapping (DM) on parametric
surfaces (sphere, cylinder, torus). In the last row, the corresponding slices: DM in dotted
black, LAP in green, NCC in blue, MVE in red.
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sure of discrepancy between the exact result MDT and MT by estimating the Hausdorff
distance dHpMDT ,MT q.

Figure 3.7 illustrates the results obtained via displacement mapping (GTT-DM) and
with the three models GTT-LAP (3.9), GTT-NCC (3.10), GTT-MVE (3.11) for the
base surfaces MI sphere, cylinder and torus. We notice that the displacement mapping
approach requires a bijective correspondence for all the parametric values of the height
map that represents the geometric texture. In contrast, the proposed GTT models return
the mesostructureMT computing only a relatively small number of corresponding points.

Resulting Hausdorff values dHpMDT ,MT q, reported below each result in Fig.3.7,
confirm an overall good accuracy of the GTT-models GTT-LAP (3.9), GTT-NCC (3.10),
GTT-MVE (3.11). However, in general, an exact GTT-DM cannot be applied to non-
parametric surfaces, thus making it impossible to evaluate the GTT results quantitatively
for arbitrary meshes.

GTT performance
We finally evaluate GTT performance when applied to objects and geometric tex-

tures with several different shapes to qualitatively evaluate the adaptability of the GTT
algorithm to different geometric features and details.

We first show in Fig. 3.9 the comparison results obtained by the GTT algorithms
GTT-LAP, GTT-NCC and GTT-MVE which solve the variational problems in (3.9),
(3.10) and (3.11), respectively. It is quite evident as the GTT-LAP - see the third
column in Fig. 3.9 - produces the worst quality geometric transfer results for any kind
of surface and geometric texture. The non-linear GTT-MVE optimization model (3.11)
provides the best local detail-preservation and it avoids possible self-intersections, see
the fifth column of Fig. 3.9. On the other hand, the GTT-NCC gives overall good
results, but it is more prone to producing artifacts, see the teddy bear face and skull
textures, in the third and the fourth row of Fig. 3.9, respectively. In the sixth row of
Fig. 3.9, the GTT results have been produced using a 3D geometric texture MS, not
representable by a height map. In this case, the soft constraints gpV q have been defined
following (3.15). Even in this case, the GTT-MVE results preserve well the individual
texture shape, while GTT-NCC fails to recover a few of the “petal” shapes located close
as well as far left from the reader’s point of view.

Additional results are reported in Fig. 3.10 which illustrates the behavior of the
GTT-MVE algorithm applied to various patches P �MI , for various geometric textures
MS. Each GTT result is accompanied by the average execution time in seconds and the
number of iterations of the Gauss-Newton method to emphasize its fast convergence for
good-quality results. We observe column-wise in Fig. 3.10 that the efficiency depends
strongly on the MS resolution, reported below each geometric texture, and on the level
of detail contained in MS, while the shape of the path P , row-wise in Fig. 3.10, has
much less influence on the execution time.

Certainly, there is room for improvement in efficiency by adopting code optimization
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strategies, rather than the naive MATLAB implementation used.

Figure 3.8: Numerical convergence of J3pV q, related to the MVE model (3.11), when
minimized by the Gauss-Newton algorithm for the solution of some examples in Fig.
3.10.

We further investigated the empirical convergence of the Gauss-Newton iterative
method for the GTT-MVE model (3.11). To that aim, we run the optimization algorithm
with initial guess V p0q set to be the original position of the texture mesh MS and we
stopped the algorithm as soon as one of the stopping criterion in (3.28) is satisfied under
the tolerance 10�8. We can observe the fast decreasing of the energy function J3pV q in
Fig. 3.8 for every GTT example shown in Fig. 3.10.
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MS MI GTT-LAP GTT-NCC GTT-MVE

Figure 3.9: Example 4: comparison among GTT-LAP (3.9), GTT-NCC (3.10) and GTT-
MVE (3.11) algorithms applied to different meshes and different geometric textures.
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140x140 150x150 106x116 140x140 150x150

(18.28, 5) (16.63, 4) (14.71, 7) (6.68, 6) (31.52, 8)

(18.01, 4) (15.89, 4) (10.75, 5) (5.53, 5) (24.73, 6)

(24.68, 5) (23.65, 6) (14.69, 7) (5.55, 5) (20.37, 5)

(17.94, 4) (15.80, 4) (10.53, 5) (4.51, 4) (30.29, 7)

(17.8, 4) (19.78, 5) (12.65, 6) (5.53, 5) (52.74, 13)

(18.49, 4) (16.21, 4) (18.26, 6) (5.57, 5) (39.35, 9)

Average (19.2, 4) (17.99, 4) (13.59, 5) (5.56, 5) (33.16, 8)

Figure 3.10: Example 4: GTT-MVE results for meshes MI in rows, geometric textures
MS in columns. In parenthesis, the average execution time in seconds and the number
of iterations for each texture.
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Chapter 4

Variational eigendecomposition of
the graph p-Laplacian

In this Chapter we address a variational approach to the p-Laplacian eigendecomposition,
a generalization of the classical Laplacian spectral analysis. An application to spectral
mesh segmentation is finally presented.

In the continuous setting (see [83]), the value of p influences the regularity of the
solutions. In fact, as p Ñ 8 eigenfunctions have wider support and become smoother,
tending to piecewise linear functions. On the other hand, for low values p P p1, 2q the
term |∇f |p�2 becomes singular as |∇f | Ñ 0, leading to singularities or discontinuities
and producing sharper eigenfunctions, with concentrated support.

This behavior appears also in variational regularization models, where the Lp norm
of the penalty term favors sparse solutions (for small p, as in Total Variation [31]) or
smoother solutions without outliers (for large p).

In this Chapter, the main goal is to investigate the discrete counterpart of the non-
linear p-eigendecomposition problem and propose numerical approximations of the p-
eigenpairs via a variational approach to this problem on graphs and meshes.

In many real-world problems where the data in practice is discrete, graphs constitute a
natural structure suited to their representation. Each vertex of the graph corresponds to
a datum, and the edges encode the pairwise relationships or similarities among the data.
For the case of unorganized data such as point clouds, a graph can also be built by mod-
eling neighborhood relationships between the data elements. Structured/unstructured
meshes, which naturally approximate 2-manifold embedded in R3, have a graph rep-
resentation where the edges represent geometric connections and nodes correspond to
function evaluations on the mesh vertices.

Using this framework, the p-eigendecomposition problem is directly expressed and
solved in a discrete setting. The problem has been faced in [35, 36], observing that
eigenfunctions are steady-states of the p-flow which is the gradient flow with respect
to the p-Dirichlet energy. However, their solutions apply to a simplified nonlinear p-
Laplacian eigenvalue problem. Gradient flow extinction is also computed in [23] and

91
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applied for p � 1 to spectral clustering. To calculate the first eigenpair of the p-Laplacian
operator, the authors in [14] propose an inverse power algorithm, whereas in [73] an
adaptive finite element method is presented. A modified local minimax algorithm is
proposed in [135] to find the critical points of a weighted p-Rayleigh quotient.

On the other hand, in [81], the authors build a sequence of variational models similar
to (1.55), exploiting a non-linear generalization of the Rayleigh quotient, but keeping
the linear orthogonality constraint.

In our proposal, we formulate the problem of estimating multiple eigenvectors of the
graph p-Laplacian as a non-convex constrained optimization problem with cost func-
tion the p-Rayleigh quotient of the graph p-Laplacian, and constraints that force the
p-orthogonality of the eigenvectors. The request for p-orthogonality renders the opti-
mization problem extremely challenging.

To the best of our knowledge, there are no other numerical results in literature for
the computation of more than two eigenpairs of the p-Laplacian which satisfy the orig-
inal nonlinear eigendecomposition problem, i.e. the p-orthogonality constraint on the
eigenfunctions.

In the following, we propose two different optimization algorithms to solve the
p-eigendecomposition variational problem, while preserving the p-orthogonality con-
straints.

The key idea of our proposal is a preliminary reformulation of the challenging original
variational problem into a simpler equivalent one by a suitable p-dependent change of
variable which, for any p, transforms the p-orthogonality constraint into a simple linear
constraint. We propose two numerical approaches for the solution of the reformulated
problem which incrementally estimate a new eigenfunction, p-orthogonal to an already
computed set of eigenfunctions. In particular, we present a simple projected gradient
method on linear constraints as well as a second approach which, by leveraging scale
invariance of the p-Rayleigh quotient, relies on an Alternating Direction Method of Mul-
tipliers (ADMM)-based algorithm with simple manifold constraints. Moreover, for each
eigenfunction computed by one of the two algorithms, we propose a practical numer-
ical estimate of the associated eigenvalue, which relies on the definition of the graph
p-Rayleigh quotient and is based on the orthogonal least square fitting.

The rest of this chapter is organized as follows. In Section 4.1 we start by recalling
some basic notations and some important preliminary notions on p-Laplacian eigende-
composition and the discretization of the p-Laplacian problem on graphs and meshes.
Section 4.2 introduces the incremental optimization model with p-orthogonality con-
straints and Section 4.3 introduces the reformulation of the problem and details the two
proposed algorithmic frameworks. In particular, Section 4.3.2 is devoted to the projected
gradient descent approach, while in Section 4.3.3 we propose an ADMM-based optimiza-
tion method on manifold. Finally, Section 4.4 illustrates with some experimental results
the performance of the two algorithms.
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4.1 Notations and Preliminaries

First, in Section 4.1.1 we briefly recall some essential definitions and results from the
theory of nonlinear p-Laplacian eigendecomposition in the continuous setting, then in
Section 4.1.2 we introduce the discrete counterpart on graphs and meshes. In the paper,
we denote by R� and R�

� the sets of non-negative and positive real numbers, respectively,
by 0n and 1n the n-dimensional vectors of all zeros and all ones, respectively.

4.1.1 The continuous setting: p-Laplacian eigenproblem

The p-Laplacian operator ∆p, introduced in (1.15), with p P p1,�8q, is a nonlinear
generalization of the linear Laplace operator ∆2 and is defined for smooth functions f
on a bounded domain Ω � Rd, d P N, as

∆pf :� div
� |∇f |p�2∇f

�
, (4.1)

Definition 4.1.1 (p-Laplacian eigenproblem). For any p P p1,�8q, a function f :
Ω Ñ R is said to be a p-eigenfunction of the p-Laplacian operator ∆p defined in (4.1)-
(1.16) if and only if there exists a real number λ P R, called the associated p-eigenvalue,
such that

p�∆pfq pxq � λ |fpxq|p�2fpxq , @x P Ω . (4.2)

Remark 2. We use the convention of studying the eigenpair of the negative p-Laplacian
�∆p in order to consider non-negative eigenvalues.

Eq. (4.2) formalizes the continuous nonlinear p-Laplacian eigendcomposition prob-
lem, with p P p1,�8q, and should be complemented with suitable boundary conditions,
yielding different eigenpairs. A classical assumption is that Ω � Rd is a bounded do-
main and that boundary conditions of Dirichlet or Neumann type are imposed on the
boundary BΩ of Ω - see, e.g., [83] for a detailed review of the most popular boundary
conditions.

We remark that, according to definition (4.2), if f is a p-eigenfunction with associated
eigenvalue λ, then every rescaling cf , with c P Rzt0u, is also a p-eigenfunction with the
same associated eigenvalue. In fact, it follows from (1.17) and (4.2) that

p�∆ppcfqq pxq � λ |cfpxq|p�2cfpxq ðñ �
�
���|c|p�2c ∆ppfq � λ

�
���|c|p�2c |fpxq|p�2fpxq @x P Ω.

It is well-known [51] that the p-Laplace equation ∆pf � 0 is the Euler-Lagrange
equation for the so-called p-Dirichlet energy functional Iprf s, defined in terms of the
p-norm of the gradient field ∇f as

Iprf s :� 1

p
}∇f}pp �

1

p

»
Ω

|∇f |pdΩ . (4.3)
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After defining the functional Nprf s in terms of the p-norm of f as

Nprf s :� 1

p
}f}pp �

1

p

»
Ω

|f |pdΩ , (4.4)

it is also easy to demonstrate that

BfIprf s � λ BfNprf s ðñ pλ, fq is a p-eigenpair . (4.5)

Generalizing the notion of Rayleigh quotient for the Laplace operator, the p-Rayleigh
quotient for the p-Laplacian operator is naturally defined by

Rprf s :� Iprf s
Nprf s �

}∇f}pp
}f}pp . (4.6)

It follows easily from (4.5) and (4.6) the important property that

BfRprf s � 0 ðñ BfIprf s � Iprf s
Nprf s BfNprf s ùñ pλ � Rprf s, fq is a p-eigenpair ,

(4.7)
that is, all stationary points f� of the p-Rayleigh quotient functional Rprf s in (4.6) are
p-eigenfunctions with associated p-eigenvalue λ equal to Rprf�s.

Since Rprf s in (4.6) is clearly scale-invariant - in fact, Rprcf s � Rprf s
for any c P Rzt0u - if f� is a stationary point of Rprf s and, hence, a p-eigenfunction
with associated λ � Rprf�s, then any scaled function cf� is also a p-eigenfunction with
the same associated λ. The p-eigenpairs can thus be equivalently sought among the
stationary points of the numerator Iprf s of the p-Rayleigh quotient Rprf s in (4.6) under
the constraint

f P Sp :�  
f : }f}pp � 1

(
.

It follows that the sufficient condition in (4.7) for pλ, fq being a p-eigenpair can be
equivalently written as

p BfIprf s � 0 q ^ p f P Sp q ùñ pλ � Iprf s, fq is a p-eigenpair .
In the following section, we extend the above theory, defined for Euclidean domains

Ω, to discrete domains such as graphs and manifold meshes.

4.1.2 The discrete setting: graph p-Laplacian eigenproblem

In this section, we define the graph p-Laplacian eigenproblem, which represents the
discrete counterpart of the continuous p-Laplacian eigenproblem (4.2) on graphs.

A graph G can be thought as a generalization of a mesh M, defined in (1.4), where
the notion of faces has been lost, while edges eij are now equipped with positive weights
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wij P R�
�. In formulas, a weighted undirected graph is denoted as G � pV,E,W q, with

V set of vertices, E set of edges with corresponding weights W .
In this chapter, we denote the cardinalities of the three sets as given by n :� |V | and

m :� |E| � |W | ¤ n2.
Functions acting on a graph G are defined as in (1.18), denoting as FV and FE the

sets of scalar real-valued functions f and g with domains the discrete sets of vertices and
edges, respectively, with the corresponding standard scalar products.

In the following Defs. 4.1.2-4.1.4 we recall the standard definitions of graph gradient,
graph divergence and graph p-Laplacian operators. In particular, we note that the graph
p-Laplacian expression introduced in Def. 4.1.4 naturally follows from the definition (4.1)
of the p-Laplacian operator in the continuous setting.

Definition 4.1.2 (graph gradient). The graph gradient is the operator ∇ : FV Ñ FE

defined component-wise by

p∇fqi,j :� ?
wi,j pfj � fiq , pi, jq P E . (4.8)

Definition 4.1.3 (graph divergence). The graph divergence is the operator div : FE Ñ
FV which satisfies x∇f, gyFE

� xf, divgyFV
for all f P FV , g P FE, defined component-

wise by

pdivgqi :� 1

2

¸
jPN piq

?
wi,j pgi,j � gj,iq , i P 1, . . . , n , (4.9)

From the latest expression, we can easily observe that the divergence of a symmetric
function g (i.e. gi,j � gj,i for all i, j) is zero.

Combining graph gradient and divergence expressions, we derive the definition of
graph p-Laplacian operator.

Definition 4.1.4 (graph p-Laplacian). The graph p-Laplacian is the operator ∆p :
FV Ñ FV defined by

∆pf :� div
�}∇f}p�2∇f

�
, (4.10)

which, in component-wise form, reads

p∆pfqi �
¸

jPN piq

w
p{2
i,j ψppfj � fiq , i P 1, . . . , n , (4.11)

with function ψp : RÑ R defined by

ψppxq :� 1

p
p|x|pq1 :� |x|p�1signpxq � |x|p�2x . (4.12)
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We note that (4.11) follows easily by replacing in (4.10) the expressions of the discrete
operators∇ and div given in (4.8) and (4.9), respectively, for a generic vertex i � 1, . . . , n:

p∆pfqi �
¸

jPN piq

?
wi,j

��?wi,j pfj � fiq
��p�2?

wi,j pfj � fiq , i � 1, . . . , n .

Analogously to the continuous case, since ψ2 is just the identity operator, the graph
p-Laplacian in (4.10), (4.11) reduces to the standard linear graph Laplacian for p � 2,
whereas for p � 2 the operator ∆p is nonlinear, as we have

∆ppcfq � |c|p�2 c∆pf .

The p-Laplacian eigenproblem formalized in the continuous setting in Def. 4.1.1 has
a natural counterpart in the discrete graph context, expressed in the following Def. 4.1.5.

Definition 4.1.5 (graph p-Laplacian eigenproblem). For any p P p1,�8q, a func-
tion f P FV is said to be a p-eigenvector of the graph p-Laplacian operator ∆p de-
fined in (4.10) if and only if there exists a real number λ P R, called the associated
p-eigenvalue, such that

p�∆pfqi � λψppfiq , @ i � 1, . . . , n , (4.13)

with function ψp defined in (4.12). Any pair pλ, fq P R�Rn satisfying (4.13) is called a
p-eigenpair of the operator ∆p.

Eq. (4.13) formalizes the discrete nonlinear graph p-Laplacian eigendcomposition
problem, with p P p1,�8q. In this discrete setting, we assume Dirichlet boundary con-
ditions for graphs/meshes with boundary, whereas no boundary conditions are required
for graphs/meshes without boundary.

For graphs and meshes, the multiplicity of the first eigenvalue λp1q � 0 of the p-
Laplacian is equal to the number of connected components of the graph [40]. Moreover,
any eigenvector f P Rn associated with a non-zero eigenvalue, called non-zero eigenvector,
satisfies the following property [22]:¸

i�1,...,n

|fi|p�2fi �
¸

i�1,...,n

ψppfiq � 0 .

Analogously to the definitions (4.3), (4.4), (4.6) of functionals Iprf s, Nprf s, Rprf s
introduced in Section 4.1.1 for the continuous setting, we introduce here the discrete
counterparts on graphs, namely the graph p-Dirichlet energy function Ippfq, the function
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Nppfq and the graph p-Rayleigh quotient function Rppfq:

Ippfq :� 1

p
}∇f}pp �

1

p

¸
pi,jqPE

1

2

��?wi,j pfj � fiq
��p � 1

2p

¸
pi,jqPE

w
p{2
i,j |fj � fi|p , (4.14)

Nppfq :� 1

p
}f}pp �

1

p

ņ

i�1

|fi|p , (4.15)

Rppfq :� Ippfq
Nppfq �

1

2

¸
pi,jqPE

w
p{2
i,j |fj � fi|p

ņ

i�1

|fi|p
. (4.16)

We note that ∆ppfq, Ippfq, Nppfq, Rppfq defined in (4.11), (4.14), (4.15), (4.16),
respectively, which strictly speaking are operators acting on functions f P FV , can all
be regarded as functions from Rn to R once we (equivalently) identify functions f P FV

with the vectors f P Rn of their values at the mesh vertices.
In the following Lemma 4.1.1 and Proposition 4.1.1 we highlight some important

properties of function ψp and, then, of functions ∆ppfq, Ippfq, Nppfq, Rppfq. These
properties will be useful in the subsequent Proposition 4.1.2, where we state and prove
the discrete counterpart of the crucial sufficient condition such that a pair pλ, fq is a
p-eigenpair, previously formalized in (4.7) for the continuous setting. Results outlined
in Proposition 4.1.1 will also be used in Section 4.2 - namely, in Proposition 4.2.1 - for
the analysis of the two proposed variational eigendecomposition approaches. We do not
give the proof of Lemma 4.1.1 as it is a matter of simple calculus, whereas we report the
proof of Proposition 4.1.2 for its importance and for completeness of presentation, even
if an analogous proof can be found, e.g., in [22].

Lemma 4.1.1. The function ψp : RÑ R defined in (4.12), with p P p1,�8q, satisfies

ψp P C8pRzt0uq X CspRq , with s �
" 8 if p P N
tp� 1u if p R N , (4.17)

with derivatives reading

ψpzq
p �

�
z¹
i�1

pp� iq
�
|x|p�1�z psignpxqqz�1 , z � 1, 2, 3, . . . .

Proposition 4.1.1. For any p P p1,�8q, the functions ∆p, Ip, Np, Rp defined in (4.11),
(4.14), (4.15), (4.16) satisfy

Ip PCs�1pRnq X C8pRnzZ1q , �∆p�∇Ip P CspRnq X C8pRnzZ1q ,
NpPCs�1pRnq X C8pRnzZ2q , Rp PCs�1pRnzt0nuq X C8pRnzpZ1 Y Z2qq ,

(4.18)
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with s defined in (4.17) and with sets Z1,Z2 � Rn given by

Z1 � tf P Rn: D pi, jq P E : fi � fju , Z2 � tf P Rn: D i � 1, . . . , n : fi � 0u .

After defining with a little abuse of notation ψppfq :� �
ψppf1q, . . . , ψppfnq

�T
, we also

have

∇Ippfq � �∆pf , ∇Nppfq � ψppfq , ∇Rppfq � 1

Nppfq p�∆pf �Rppfqψppfqq .
(4.19)

Proof. Starting from the definitions of functions Ippfq, Nppfq, Rppfq in (4.14), (4.15),
(4.16), using the symmetry of wi,j and recalling from definition (4.12) that p|x|pq1 �
pψppxq, the partial derivatives of Ippfq, Nppfq, Rppfq with respect to the i-th independent
variable fi read

B
Bfi Ippfq �

1

2p

B
Bfi

�� ¸
jPN piq

�
w
p{2
i,j |fi � fj|p � w

p{2
j,i |fj � fi|p

	�

�

¸
jPN piq

�
w
p{2
i,j ϕppfi � fjq

	
� � p∆pfqi , @ i � 1, . . . , n , (4.20)

B
BfiNppfq � 1

p

B
Bfi

�}f}pp� � 1

p

B
Bfi

�
ņ

i�1

|fi|p
�
� ψppfiq , @ i � 1, . . . , n , (4.21)

B
BfiRppfq � B

Bfi

�
Ippfq
Nppfq



�

�
B
Bfi
Ippfq

	
Nppfq � Ippfq

�
B
Bfi
Nppfq

	
N2
p pfq

� p�∆pfqi �Rppfqψppfiq
Nppfq , @ i � 1, . . . , n . (4.22)

where the last equality in (4.20) comes immediately from the definition in (4.11). The
gradient expressions in (4.19) follow from the partial derivative expressions in (4.20)-
(4.22). The smoothness properties in (4.18) are easy to prove starting from the definitions
of functions Ip, Np, Rp in (4.14), (4.15), (4.16) and recalling the smoothness property of
function ψp reported in (4.17). The smoothness of function ∆p follows from that of the
function Ip, as we proved that �∆p � ∇Ip.

Proposition 4.1.2. For any p P p1,�8q, if a function f P FV is a critical (i.e. station-
ary) point of the graph p-Rayleigh quotient Rp in (4.16), then f is a p-eigenvector of the
graph p-Laplacian ∆p in (4.11) and the associated p-eigenvalue is given by λ � Rppfq.
Proof. It follows immediately from the expression of the gradient of Rp given in (4.19)
that

∇Rppfq � 0n ðñ �∆pf � Rppfqψppfq .
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Hence, any critical point f of the graph p-Rayleigh quotient Rp satisfies the graph p-
Laplacian eigendecomposition equation in (4.13) with eigenvalue λ � Rppfq.

Being the Rayleigh quotient Rppfq scale-invariant, namely

Rppαfq � Rppfq, @f P Rn, α P R � 0, (4.23)

then we can restrict the study of its critical points to the special case of }f}pp � 1 in (4.16).
Moreover, as in the linear eigendecomposition, also the eigenvectors are scale-invariant,
i.e. if f is a p-eigenvector, then, for all c P R, cf is a p-eigenvector, [81].

For the standard linear Laplace operator, it is well-known that the eigenvectors form
an orthogonal basis. Unfortunately, this property is lost when we consider the nonlinear
p-Laplacian eigendecomposition. However, it is possible to generalize the orthogonality
property, starting from the following definition.

Definition 4.1.6 (p-orthogonality). Two functions f, g P FV are p-orthogonal if

ņ

i�1

ψppfiqψppgiq �
ņ

i�1

� |fi|p�2 fi |gi|p�2 gi
� �

ņ

i�1

�
fi gi |fi gi|p�2

� � 0 . (4.24)

With a little abuse of notation, by indicating as ψppfq the component-wise application
of function ψp in (4.12) to vector f , Eq. (4.24) can be rewritten in compact form as

xψppfq , ψppgqy � ψppfqTψppgq � 0 . (4.25)

We notice that, for p � 2, the p-orthogonality condition in (4.24) or (4.25) reduces to
the standard orthogonality condition, since ψ2pfq � f .

Finally, we recall an interesting result given in [81] on p-orthogonality of the eigen-
vectors of the graph p-Laplacian operator.

Theorem 4.1.1 (Theorem 3 from [81]). Let p P p1,�8q and let f and g be two p-
eigenvectors of the graph p-Laplacian operator with associated eigenvalues λf � λg.
Then, f and g are p-orthogonal up to the second order Taylor expansion.

After having introduced a rigorous definition of p-eigenpairs, in the next section we
focus on how to compute them numerically.

4.2 The variational p-eigendecomposition model,

with p-orthogonality constraint

In this section, we address the problem of computing the graph p-Laplacian eigenpairs,
i.e. the solutions of the nonlinear p-eigenproblem (4.13) by variational approaches.
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Proposition 4.1.2 states the relationship between critical points of the p-Rayleigh
quotient Rppfq in (4.16) and p-eigenpairs of the graph p-Laplacian operator ∆p: critical
points are always eigenfunctions and critical values of Rppfq are their eigenvalues, but the
converse is not true in general. Then, a variational approach to compute a p-eigenpairs
pλ�, f�q P R� Rn is through finding a local (minimum,minimizer) of Rppfq, by solving

f� P arg min
fPRn

Rppfq . (4.26)

The scale invariance property (4.23) allows us to reformulate the optimization prob-
lem (4.26) as the following constrained minimization

f� P arg min
fPRn

Ippfq subject to }f}pp � 1.

By introducing the Lagrangian

Lpf ;λq � ⟨|∇f |p, 1⟩� λ
�}f}pp � 1

�
,

with λ P R the Lagrange multiplier, equating the derivative of Lagrangian to zero gives

Rn Q BLBf � �p∆ppfq � λpψppfq � 0n

which corresponds to the p-eigendecomposition problem defined in (4.13), and by defi-
nition, f is an eigenvector of ∆p.

Solving the optimization problem (4.26) allows to find only a single p-eigenfunction
of the graph p-Laplacian. In particular, since Rppfq ¥ 0 for all f , with Rppfq � 0
for constant functions, the first candidate for critical points is the trivial solution
f p1q � p1{nq1{p 1n. To determine non-trivial solutions, we can exploit the p-orthogonality
property of the eigenfunctions.

The problem of simultaneously estimating multiple eigenvectors f p1q, . . . , f pkq of the
graph p-Laplacian can be formulated as an optimization problem under nonlinear p-
orthogonality constraints, defining a matrix Φpkq P Rn�k whose columns are estimates of
the first k eigenfunctions f plq, l � 1, . . . , k, associated with the k smallest eigenvalues of
the graph p-Laplacian operator ∆p; in formula,

Φpkq � �
f p1q ; f p2q ; . . . ; f pkq

�
. (4.27)

Then, the problem is defined as follows:

Φpkq P arg min
ΦPRn�k

RppΦq �
ķ

i�1

Ippf piqq
}f piq}pp s.t.

〈
ψppf piqq, ψppf pjqq

〉 � 0 @i, j � 1, . . . , k, i � j

(4.28)



4.2 The variational p-eigendecomposition model, with p-orthogonality constraint 101

It is worth noting that, in the case p � 2, the constraint in (4.28) reduces to Φpkq P
O2, the standard linear orthogonal manifold which corresponds to imposing standard
orthogonality between all computed eigenfunctions in the domain.

The numerical difficulty of solving (4.28) can be partially reduced by an incremental
scheme which computes a new eigenfunction f pk�1q - i.e., add a new, pk�1q-th column to
matrix Φpkq - given a set of already computed p-orthogonal eigenfunctions f p1q, . . . , f pkq

- i.e., given matrix Φpkq. Starting from the first, known constant eigenfunction f p1q �
p1{nq1{p 1n, problem (4.28) is thus transformed into the following sequence of simpler
problems:

f pk�1q P arg min
fPRn

Rppfq subject to f P Opkq
p , k � 1, 2, . . . , (4.29)

with Opkq
p :�  

f P FV :
〈
ψppfq, ψppf plqq

〉 � 0 , @ l � 1, . . . , k
(
, (4.30)

where the manifold constraint represents the k-th p-orthogonality constraint manifold.
Applying the scaling invariance property (4.23) we can reformulate problem (4.29)-

(4.30) as follows

f pk�1q P arg min
fPRn

Ippfq subject to f P Opkq
p X Sp , k � 1, 2, . . . , (4.31)

with Sp :�
 
f P FV : }f}pp � 1

(
, (4.32)

and Opkq
p defined in (4.30). We notice that the cost function Ip in (4.31) is the numerator

of the graph p-Rayleigh quotient in (4.16) and the manifold Sp in (4.32) represents the
p-hypersphere with center the origin and unitary radius.

In the following Proposition 4.2.1, partly relying on the results derived in Proposition
4.1.1, we analyze the two proposed (incremental) optimization problems (4.29)-(4.30) and
(4.31)-(4.32).

Proposition 4.2.1. For any p P p1,�8q and any k P t1, 2, . . .u, both the optimization
problems in (4.29)-(4.30) and (4.31)-(4.32) admit solutions. However, due to the non-
convexity of the cost functions and/or of the constraints, the uniqueness of the solution is
not guaranteed and even non-connected sets of global constrained minimizers may exist.

Proof. For any p P p1,�8q the cost functions Rp in (4.29) and Ip in (4.31) are both
bounded below by zero and non-coercive, Ip is convex (not strictly convex) and at least
C1pRnq, Rp is not defined in f � 0n, non-convex and at least C1pRnzt0nuq. The constraint
set Opkq

p of the first optimization problem in (4.29)-(4.30) is an unbounded manifold of

dimension n� k, whereas the constraint set Opkq
p X Sp of the second optimization prob-

lem in (4.31)-(4.32) is compact, as it is the intersection of Opkq
p and the p-hypersphere

Sp in (4.32), which is compact. It follows that the second problem (4.31)-(4.32) admits
solutions, but convexity of the cost function Ip is not sufficient to guarantee the unique-
ness of the solution, as the constraint set is a nonlinear manifold, hence a nonconvex
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set. The cost function Rp of the first problem is noncoercive and nonconvex, but it is a
radial function - i.e., Rppc fq � Rppfq for any f P Rnzt0nu and any c P Rzt0u. It follows
that, even if the constraint set is unbounded, Rp can not admit a global infimizer for
}f}2 tending to �8 without admitting a global minimizer for some f P Rn. Hence, also
the first optimization problem admits solutions but, like the second one, uniqueness is
not guaranteed.

4.3 Iterative optimization to solve the p-

eigendecomposition problem

In this section, we address the numerical solution of the two (incremental) optimization
problems (4.29)-(4.30) and (4.31)-(4.32). The most complicated ingredient to deal with
numerically in both the two problems is the nonlinear p-orthogonality manifold constraint
defined in (4.30). To tackle this issue, first in Section 4.3.1 we reformulate the two
problems into equivalent ones by a suitable p-dependent change of variable which, for any
p P p0,�8q, transforms the p-orthogonality constraint into a simple, linear constraint,
independently of p. Then, in Section 4.3.2 and Section 4.3.3 we propose two numerical
approaches for the solution of the reformulated versions of problems (4.29)-(4.30) and
(4.31)-(4.32), respectively. Thanks to the reformulation, the first approach can estimate
each new eigenfunction f pk�1q through a simple gradient descent method projected on
linear constraints, while the second approach relies on an ADMM-based algorithm with
simple manifold constraints. We would like to stress that both the two algorithmic
approaches, referred to as M-PGD and M-ADMM, respectively, guarantee to provide
output eigenfunctions that satisfy exactly the p-orthogonality constraints, with p P p1, 2q.

For both approaches, once a set of estimated eigenfunctions f p2q, . . . , f pkq has been
obtained, we want to estimate also the set of associated eigenvalues λp2q, . . . , λpkq - note
that the first constant eigenfunction f p1q � p1{nq1{p 1n has associated eigenvalue λp1q � 0.
The first method to compute estimates of the eigenvalues is based on Proposition 4.1.2
which states that, if an estimated eigenfunction f pkq is an unconstrained stationary point
of the p-Rayleigh quotient Rp, then the associated eigenvalue is given by

λ
pkq
Rp

:� Rp

�
f pkq

�
, k � 1, 2, . . . . (4.33)

However, Prop. 4.1.2 do not ensure that the eigenvalues are local maximal/minimal
values of the p-Rayleigh quotient on the linear subspaces spanned by the corresponding
eigenfunction, but only the vice-versa.

For this reason, we propose a second method which estimates λpkq directly from the
original nonlinear eigenvalue equation (4.13), based on noting that the eigenvalue λ asso-
ciated to any true eigenfunction f is (clearly) the angular coefficient of the homogeneous
line y � λx passing through the n points pxi, yiq P R2, i � 1, . . . , n, with xi � pψppfqqi
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and yi � p�∆ppfqqi. Hence, by introducing for any computed eigenfunction f pkq the n
points�

x
pkq
i , y

pkq
i

	
, x

pkq
i � �

ψp
�
f pkq

��
i
, y

pkq
i � ��∆p

�
f pkq

��
i
, i � 1, , . . . , n , (4.34)

we estimate the associated eigenvalue λ
pkq
OLS by Orthogonal Least-Squares (OLS) [103]

fitting of data in (4.34) by line y � λx. It is well-known that such a fitting admits the
explicit solution

λ
pkq
OLS �

S
pkq
yy � S

pkq
xx �

c�
S
pkq
yy � S

pkq
xx

	2

� 4
�
S
pkq
xy

	2

2S
pkq
xy

, (4.35)

with data second-order moments defined by

S pkq
xx �

ņ

i�1

�
x
pkq
i

	2

, S pkq
yy �

ņ

i�1

�
y
pkq
i

	2

, S pkq
xy �

ņ

i�1

x
pkq
i y

pkq
i . (4.36)

We chose OLS fitting - and not, e.g., ordinary (vertical) LS - since both the x
pkq
i and y

pkq
i

data are computed as functions of the estimated f pkq and, hence, can both be affected by
errors. We did not use a more general (and, potentially, more accurate) total LS fitting
as we have no information about the characteristics (covariance matrix) of the errors.

4.3.1 Optimization problems reformulation by change of vari-
able

The key ingredient shared by the two optimization approaches is the following prelimi-
nary one-to-one (invertible), p-dependent, component-wise change of variable,

rf � ψppfq � |f |p�1 signpfq ðñ f � ψ�1
p p rfq � | rf |rsignp rfq , r � 1

p� 1
P p1,�8q ,

(4.37)
where all functions are intended component-wise and where the expression of the in-
verse ψ�1

p comes easily from that of ψp. In the top row of Figure 4.1 we show the

component-wise change of variable and its inverse (i.e., f, rf P R, ψp, ψ�1
p : R Ñ R)

for p P t 2 , 1.8 , 1.5 , 1.2 u. This change of variable is mainly aimed to transform the

complicated p-orthogonality manifold constraints f P Opkq
p � Rn present in both the pro-

posed (incremental) optimization problems (4.29)-(4.30) and (4.31)-(4.32) into (equiva-
lent) very simple, linear ones. In fact, it is immediate to verify that the effect of change

of variable (4.37) on the manifold constraints f P Opkq
p defined in (4.30) is as follows

f P Opkq
p ðñ rf P rOpkq

p �
" rf P FV :

�rΦpkq
	T rf � 0k

*
� Opkq

2 , (4.38)
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where, analogously to Φpkq in (4.27), the introduced matrix rΦpkq P Rn�k contains (in its
columns) the first k estimated eigenfunctions in the transformed domain; in formula,

rΦpkq �
� rf p1q ; rf p2q ; . . . ; rf pkq	 � �

ψp
�
f p1q

�
; ψp

�
f p2q

�
; . . . ; ψp

�
f pkq

��
.

We remark that the transformed p-orthogonality manifold in (4.38), which we have called

Opkq
2 , is not only linear, but also corresponds to imposing standard orthogonality between

all computed eigenfunctions in the transformed domain (like for the case p � 2 of stan-
dard Laplace operator), independently of the original value of p. To get a visual insight
into geometry of the p-orthogonality constraints, in the bottom row of Figure 4.1 we
show the original p-orthogonality constraint manifold Op1q

p and its transformed rOp1q
p in

R3 (that is, n � 3 and the manifolds are surfaces) for p P t 2 , 1.8 , 1.5 , 1.2 u, in the par-

ticular case of a first eigenfunction given by f p1q � f
p1q{ }f p1q}p, with f p1q � p1; 2; 1.5q.

It can be seen how, already starting from a value of p � 1.5 the original manifold Opkq
p

(in blue) is rather complicated, to the point of becoming almost intractable (in the sense
of calculating the orthogonal projection of a vector onto it) for p � 1.2.

For what concerns the manifold constraint f P Sp (which is present only in the latter
problem), we have

f P Sp ðñ rf P rSp � ! rf P FV :
�� rf��q

q
� 1

)
� Sq , q � p

p� 1
. (4.39)

That is, the original p-hypersphere Sp is transformed into a q-hypersphere Sq, with p, q
Hölder conjugates, p P p1, 2q, q P p2,8q. The transformed constrained problem is not
numerically harder to solve than the original, because in both case we have non-linear
unitary-norm constraints.

Finally, the cost function Ippfq in the second model (4.31)-(4.32) turns into the new

function rIpp rfq given by

rIpp rfq � Ip

�
ϕ�1
p p rfq	 � 1

2

ņ

i,j�1

w
p{2
i,j Hp

� rfi, rfj	 , (4.40)

with function Hp : R2 Ñ R� defined by

Hppx1, x2q �
��ψ�1
p px1q � ψ�1

p px2q
��p ,

whereas the cost function Rppfq in the first model (4.29)-(4.30) is transformed into rRpp rfq
reading

rRpp rfq � Rp

�
ψ�1
p p rfq	 �

Ip

�
ψ�1
p p rfq	���ψ�1

p p rfq���p
p

�
rIpp rfq�� rf ��q

q

. (4.41)
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p � 1.8 p � 1.5 p � 1.2

Figure 4.1: Visual analysis of the one-to-one change of variable introduced in (4.37)
for p P t 2 , 1.8 , 1.5 , 1.2 u. Blue and red colors indicate - independently of p - quanti-
ties in the original and transformed domains, respectively, whereas the black color is
associated with the particular case p � 2, for which original and transformed quantities
coincide. Top row: direct rf � ψppfq and inverse f � ψ�1

p p rfq scalar change of variable;

middle row: unitary p-norm constraint manifold Sp and its transformed rSp in R2; bot-

tom row: p-orthogonality constraint manifold Op1q
p and its transformed rOp1q

p in R3 for

f p1q � f
p1q{ }f p1q}p, with f p1q � p1; 2; 1.5q.
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Therefore, the two original optimization problems (4.29)-(4.30) and (4.31)-(4.32) are
transformed by (4.37) into the equivalent ones:

rf pk�1q P arg min
rfPRn

rRp

� rf� subject to rf P Opkq
2 , k � 1, 2, . . . , (4.42)

rf pk�1q P arg min
rfPRn

rIp� rf� subject to rf P Opkq
2 X Sq , k � 1, 2, . . . , (4.43)

respectively, with rRp defined in (4.41), Opkq
2 in (4.38), rIp in (4.40) and Sq in (4.39). For

both approaches, the last step is to compute the eigenfunctions in the original domain
by simply applying the inverse change of variable, that is

f pkq � ψ�1
p

� rf pkq	 �
��� rf pkq��� 1

p�1
sign

� rf pkq	 , k � 2, 3, . . . ,

with all operations intended component-wise.

Finally, since both the two optimization problems in (4.42) and (4.43) include the

linear constraint rf P Opkq
2 , in Proposition 4.3.1 below we recall a well-known result (no

proof is given, [104]) concerning orthogonal projection onto linear subspaces, which will
be used in the next sections.

Proposition 4.3.1. Let z P Rn and let Z P Rn�k be a tall matrix (k   n) with full
column rank. Then, the orthogonal projection z̄ of z onto the linear subspace ZT x � 0
is given by

z̄ � projZTz�0pzq � P z , with P � In � Z
�
ZT Z

��1
ZT P Rn�n . (4.44)

If all columns Zi P Rn, i � 1, . . . , k, of Z are mutually orthogonal, (4.44) simplifies to

z̄ � P z , with P � In �ΨΨT P Rn�n , Ψ �
�

Z1

}Z1}2 , . . . ,
Zk
}Zk}2



P Rn�k ,

so that, denoting by Ψi P Rn the i-th column of matrix Ψ, z̄ is efficiently computed by

z̄ � projZTz�0pzq � z �
ķ

i�1

Ψi

�
ΨT
i z

	
. (4.45)
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4.3.2 Solving (4.42) via Projected Gradient Descent method on
Manifold (M-PGD)

We compute approximate solutions to any k-th transformed optimization problem in
(4.42) by means of the M-PGD iterative algorithm with constraint manifold Opkq

2 defined
in (4.38). Generalizing the projected gradient descent method from Euclidean spaces to
Riemannian manifolds requires us to use the Riemannian gradient as the search direction
and the projection to move between points on the manifold.

For any p P p1, 2q, the function rRp in (4.41) is continuously differentiable on Rn and
bounded below by zero, and its gradient reads

∇ rRpp rfq � 1

}ψ�1
p p rfq}pp

�
p∆ppψ�1

p p rfqq � p rf
}ψ�1

p p rfq}pp Ippψ�1
p p rfqq� | rf | 2�p

p�1

p� 1
. (4.46)

In fact, we recall that rRpp rfq � Rppψ�1
p p rfqq. Recovering from equation (4.19) the expres-

sion for ∇Rppfq and observing that

pψ�1
p q1pxq � |x| 2�p

p�1

p� 1
,

we can apply the chain rule and get the expression

∇Rppψ�1
p p rfqq � 1

}ψ�1
p p rfq}pp

�
p∆ppψ�1

p p rfqq � pψppψ�1
p p rfqq

}ψ�1
p p rfq}pp Ippψ�1

p p rfqq� | rf | 2�p
p�1

p� 1
,

from which we derive (4.46).
The M-PGD algorithm is trivial. We denote by ℓ � 0, 1, . . . the index of the M-

PGD iterations, which we refer as inner iterations of the overall incremental approach
proposed in (4.42) to distinguish them from the outer ones, with index k � 1, 2, . . . , over
the different eigenfunctions to compute. For any k � 1, 2, . . ., we compute the pk � 1q-
th eigenfunction rf pk�1q by applying the M-PGD algorithm to the solution of problem
(4.42). At each l-th M-PGD iteration, first we compute the gradient gplq P Rn of the

cost function rRp by means of the formula in (4.46). Then, we compute the orthogonal

projection of vector gpℓq onto the linear subspaceOpkq
2 defined in (4.38), indicated by dplq �

projOpkq
2
pgpℓqq. Since the columns of matrix rΦpkq in (4.38) are orthogonal by construction

(note, however, that their Euclidean norm is not unitary), by applying Prop. 4.3.1, in
particular formula (4.45), we have

dpℓq � projOpkq
2
pgpℓqq � gpℓq �

ķ

i�1

rΨpkq
i

��rΨpkq
i

	T

gpℓq


, (4.47)
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Algorithm 2 M-PGD algorithm solving any k-th optimization problem in (4.42)

1. Input: rf p1q, . . . , rf pkq P Rn computed (orthogonal) eigenfunctions, step-size
α ¡ 0

2. Output: rf pk�1q new (orthogonal) eigenfunction, approximate solution to (4.42)

3. Initialize: ℓ � 0, tp0q � t0, compute rΨpkq
i P Rn, i � 1, . . . , k, by (4.48)

4. While the stopping criterion is not satisfied

5. 
 compute the gradient gpℓq by (4.46)
6. 
 project the gradient dpℓq � projOpkq

2
pgpℓqq by (4.47)

7. 
 update tpℓ�1q � tpℓq � αdpℓq

8. 
 update ℓ � ℓ� 1
9. end while

10. rf pk�1q � tpℓq

with column vectors rΨpkq
i P Rn given by

rΨpkq
i �

rf piq�� rf piq��
2

, i � 1, 2, . . . , k . (4.48)

We note that all vectors rΨpkq
i in (4.48) do not change along the M-PGD iterations,

hence they can be computed once for all before starting to iterate. It follows that,
thanks to the change of variable introduced in Section 4.3.1, the orthogonal projection
of any vector in Rn on the transformed, linear p-orthogonality manifold constraint O

pkq
2

in (4.38) not only admits an explicit solution, but costs only 2npk � 1q FLOPS - or,
in other terms, has computational complexity Opknq, where commonly k    n. We
highlight how, without the change of variable, calculating the orthogonal projection
onto the nonlinear p-orthogonality manifold constraint Opkq

p in (4.30) would certainly
require using an iterative method with an incomparable computational cost - see also
the visual representations of the non-linear manifold Opkq

p in the bottom row of Figure
4.1, in blue.

The main computational steps of the M-PGD approach are summarized in Algorithm
2. The M-PGD iterations are stopped as soon as one of the two following conditions is
fulfilled:

}tpℓ�1q � tpℓq}2
}tpℓq}2   Tol, ℓ ¡ Nits . (4.49)

Being the cost function rRp continuously differentiable and lower bounded, the conver-
gence of the M-PGD algorithm to critical points of the problem is guaranteed by standard
arguments when α belongs to a range of step-sizes that lead to sufficient decrease [19].
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4.3.3 Solving (4.43) via ADMM on Manifold (M-ADMM)

We solve any k-th transformed optimization problem in (4.43) by means of a two-block
Manifold ADMM approach [66]. Like for M-PGD, we use ℓ � 0, 1, . . . to denote the index
of the M-ADMM iterations and t P Rn to indicate the inner M-ADMM optimization
variable corresponding to the variable rf in (4.43).

First, we introduce the auxiliary variable g P Rn�2m defined by

g �
�
g1
g2



, g1 � t P Rn , g2 � S t P R2m, (4.50)

where S P R2m�n is a binary matrix which selects, in the order, the t-values in corre-
spondence of the first and second vertices of all the m ¤ n2 graph edges with associated
positive weights, that we indicate by w1, . . . , wm P R�

�. Matrix S is clearly very sparse
(1 non-zero entry on each row) and satisfies

STS � diag pv1, v2, . . . , vnq , (4.51)

with vi P N denoting the valence (number of incident edges) of vertex i in the graph. It
is then easy to verify that, based on (4.50), the optimization problem in (4.43) can be
equivalently re-written as! rf pk�1q, gpk�1q

)
P argmin

t,g
tF ptq �Gpgq u subject to A t� B g � 0n�2m , (4.52)

where the two cost functions F : Rn Ñ R and G : Rn�2m Ñ R are defined by

F ptq � ιOpkq
2
ptq, (4.53)

Gpgq � ιSqpg1qloomoon
G1pg1q

�
m̧

i

w
p{2
i

��� |g2,i|rsignpg2,iq � |g2,i�m|rsignpg2,i�mq
���ploooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

G2pg2q

, (4.54)

and the two matrices A P Rpn�2mq�n and B P Rpn�2mq�pn�2mq read

A �
�
In
S



, B � � In�2m . (4.55)

The augmented Lagrangian function associated to the reformulated problem (4.52)-
(4.55) reads

Lβpt, g, ρq � F ptq �Gpgq � xρ,At�Bgy � β

2
}At�Bg}22 , (4.56)

where ρ � pρ1; ρ2q P Rn�2m, ρ1 P Rn, ρ2 P R2m, is the vector of Lagrange multipliers
associated to the linear constraint in (4.52) and β P R�

� is the ADMM penalty parameter.
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Solving problem (4.52) amounts to seek the saddle point(s) of the augmented La-
grangian function Lβ in (4.56), namely points which are simultaneously minimizers in
the primal (joint) variable pt, gq and maximizers in the dual variable ρ. According to
the standard two-blocks ADMM approach, saddle points of Lβ can be computed as limit
points of the following iterative procedure:

tpℓ�1q P arg min
t PRn

Lβ
�
t, gpℓq, ρpℓq

�
, (4.57)

gpℓ�1q P arg min
g PRn�2m

Lβ
�
tpℓ�1q, g, ρpℓq

�
, (4.58)

ρpℓ�1q � ρpℓq � β
�
Atpℓ�1q � B gpℓ�1q

�
. (4.59)

In the following Subsections 4.3.3.1, 4.3.3.2 and 4.3.3.3 we detail how to solve the sub-
problem for variable t in (4.57) and, separately, the subproblems for variables g1 and
g2 in (4.58), respectively. In fact, as it will be shown at the beginning of Subsection
4.3.3.2, the optimization problem for variable g � pg1; g2q in (4.58) is separable in the
sub-variables g1 and g2.

4.3.3.1 Solving ADMM subproblem for primal variable t

Recalling definition (4.56) of the augmented Lagrangian function Lβ and definitions of
function F in (4.53) and of matrix B in (4.55), after dropping constant terms the t-
subproblem in (4.57) reads

tpℓ�1q � argmin
tPRn

#
ιOpkq

2
ptq � β

2

����A t� �
Bgpℓq � 1

β
ρpℓq


����2
2

+

� arg min
tPOpkq

2

#
fTATA t � 2 tTAT

�
gpℓq � 1

β
ρpℓq



loooooooomoooooooon

qpℓq

+
. (4.60)

Then, recalling the definition of matrix A in (4.55), we have

D :� ATA � In � STS � diag p1� v1, 1� v2, . . . , 1� vnq ,
where the last equality follows easily from property (4.51) of the binary selection matrix
S. Matrix D is diagonal and positive definite, hence any power Dp with p P R is diagonal
and positive definite. Problem (4.60) is thus equivalent to

tpℓ�1q � arg min
tPOpkq

2

#
tTD t � 2 tTD1{2

zpℓqhkkkkkkkikkkkkkkj�
D�1{2ATqpℓq

� +
(4.61)

� arg min
tPOpkq

2

��D1{2t� zpℓq
��2
2
. (4.62)
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We now introduce the one-to-one change of variable

u � D1{2t ðñ t � D�1{2u ,

so that problem (4.62) can be equivalently re-written as

tpℓ�1q � D�1{2upℓ�1q , with upℓ�1q � arg min
uPUpkq

��u� zpℓq
��2
2
, (4.63)

where the transformed version U pkq (i.e., for the new variable u) of the linear orthogo-

nality constraint manifold Opkq
2 is also linear and reads

U pkq �
!
u P FV :

�
Zpkq

�T
u � 0 , Zpkq � D�1{2 rΦpkq

)
. (4.64)

Hence, solution vector upℓ�1q in (4.63) is nothing other than the orthogonal projection
of vector zpℓq onto the linear set in (4.64). Recalling Proposition 4.3.1, in particular
equation (4.44), we have

upℓ�1q � projUpkq
�
zplq

� � Ppkqzplq �
�
In � Zpkq

��
Zpkq

�T
Zpkq

	�1 �
Zpkq

�T

zplq .

Finally, recalling that tpℓ�1q � D�1{2upℓ�1q and the definition of vector zpℓq in (4.61), we
have

tpℓ�1q � D�1{2

�
In � Zpkq

��
Zpkq

�T
Zpkq

	�1 �
Zpkq

�T

D�1{2 hplq

�

�n � 2npk�1q� k�khkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

D�1

#

�nhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

hplq �

�n�khkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkj
rΦpkq

�
� k�khkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

��
Zpkq

	T
Zpkq


�1 � n�khkkkkkikkkkkj�rΦpkq
	T
hplq


 � +
, (4.65)

with vector hplq given by

hplq � D1{2 zplq � ATqpℓq � g
pℓq
1 � 1

β
ρ
pℓq
1 � ST

�
g
pℓq
2 � 1

β
ρ
pℓq
2



. (4.66)

In (4.65) we have inserted curly brackets in order to better highlight the sequence of
macro-operations to be performed, from right to left, to calculate the solution tpl�1q
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as efficiently as possible. Moreover, above the horizontal braces we reported the num-
ber of elementary floating point operations (FLOPS) necessary to execute each macro-
operation. Therefore, as written above the last curly bracket, thanks to the change of
variable introduced in Section 4.3.1, the orthogonal projection of any vector in Rn on
the transformed, linear p-orthogonality manifold constraint rOpkq

2 in (4.38) not only ad-
mits an explicit solution, but costs only 2npk � 1q � k2 FLOPS - or, in other terms, has
computational complexity Opknq, where commonly k    n.

In the particular but not rare case of a regular valence graph, for which the valence
of all vertices is the same v̄ � vi @ i � 1, . . . , n, the explicit solution formula in (4.65)
simplifies considerably. In fact, we have

D � pv̄�1q In ùñ Zpkq � 1?
v̄ � 1

rΦpkq ùñ �
Zpkq

�T
Zpkq � 1

v̄ � 1
diag

�
} rf p1q}22, . . . , } rf pkq}22 	 ,

which leads (after some simple manipulations) to the solution formula

tpℓ�1q �

�n � 2npk�1qhkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkj

1

v̄ � 1

�
�nhkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

hplq �
�

�n�khkkkkkkkkkkkikkkkkkkkkkkj
Ψpkq

� n�khkkkkkikkkkkj�
Ψpkq

�T
hplq

	 	 

, (4.67)

with vector hplq defined in (4.66) and matrix Ψpkq P Rn�k defined by

Ψpkq � rΦpkq diag
��� rf p1q}�1

2 , . . . ,
�� rf pkq���1

2

	
�

� rf p1q�� rf p1q��
2

; . . . ;
rf pkq�� rf pkq��

2

�
.

Like all matrices in the general projection formula (4.65), also matrix Ψpkq in (4.67) can
be calculated before starting the ADMM iterations. Hence, the computational cost of
the simplified projection in (4.67) amounts to 2npk � 1q FLOPS.
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Figure 4.2: 2D representation of g1-subproblem in (4.70), for q � 3 (left) and q � 6
(right). In each figure, the problem is visualized simultaneously for vector qplq placed
inside and outside the q-hypersphere.

4.3.3.2 Solving ADMM subproblem for the primal variable g1

Recalling the definition of Lβ in (4.56), dropping the constant terms and carrying out
some simple algebraic manipulations, the subproblem for variable g in (4.58) reads

gpℓ�1q P arg min
gPRn�2m

#
Gpgq � β

2

����B g � �
A tpℓ�1q � 1

β
ρpℓq


����2
2

+

� arg min
gPRn�2m

#
G1pg1q � β

2

���� g1 � �
tpℓ�1q � 1

β
ρ
pℓq
1


����2
2

(4.68)

� G2pg2q � β

2

���� g2 � �
S tpℓ�1q � 1

β
ρ
pℓq
2


����2
2

+
, (4.69)

with functions G1 and G2 defined in (4.54). It follows from (4.68)-(4.69) that the sub-
problem for variable g is separable into two independent subproblems for g1 and g2. In
the remaining part of this section, we deal with the g1 subproblem, while in the next
section with the g2 subproblem.

Starting from (4.68), the g1 subproblem can be compactly written as the projection

g
pℓ�1q
1 P arg min

g1PSq

1

2

�� g1 � qpℓq
��2
2
, with qpℓq � tpℓ�1q � 1

β
ρ
pℓq
1 . (4.70)

Being p, q Hölder conjugates, with q � p{pp�1q, if p P p1, 2s, then q ¥ 2. When q � 2,
problem (4.70) reduces to the standard Euclidean projection onto the 2-hypersphere,

which admits explicit solution g
pℓ�1q
1 � qpℓq{}qpℓq}2 [123]. For q ¡ 2, the problem consists
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Algorithm 3 Proposed Sq-GPM algorithm for solving (4.70) by projecting on Sq
1. Input: qplq P Rn vector to project, step-size α ¡ 0

2. Output: g
pℓ�1q
1 P Rn approximate solution to (4.70)

3. Initialize: κ � 0, yp0q � qpℓq{}qpℓq}q P Sq
4. While the stopping criterion is not satisfied

5. 
 compute gradient gpκq � ∇
�

1
2

��y � qpℓq
��2
2

	
pypκqq � ypκq � qpℓq P Rn

6. 
 project dpκq � projT
ypκq

Sq

�
gpκq

� � �
In � ψppypκqqψppypκqqT

}ψppypκqq}22

	
gpκq P TypκqSq

7. 
 descend ypκ�1{2q � ypκq � α dpκq P TypκqSq
8. 
 retract ypκ�1q � Retrypκq

�
ypκ�1{2q

� � ypκ�1{2q{ ��ypκ�1{2q}q P Sq
9. 
 update κ � κ� 1

10. end while

11. g
pℓ�1q
1 � ypκq

of a projection onto a generic q-hypersphere, as shown in Fig. 4.2 by means of a simplified
2D representation. In [132] the projection is found by solving a nonlinear equation, but
the method is limited to the case }qpℓq}q ¡ 1 (the vector to project is outside the q-
hypersphere).

For the general case q ¡ 2 with generic vector qplq P Rn, we propose to find an
approximate solution g

pℓ�1q
1 of (4.70) by applying a Projected Gradient Method on the

q-hypersphere manifold Sq, that we refer as Sq-PGM algorithm, as outlined in Algorithm
3 (note that the iteration index of the algorithm is indicated by κ, to distinguish it from
the ADMM iteration index ℓ, and the iterated variable is ypκq). This method requires
only suitable definitions of the projection operator onto the tangent space TypκqSq and
the retraction operator onto Sq, both detailed in Algorithm 3. We highlight that the
explicit formula of the projection operator in line 6 of Alg. 2 relies on the fact that the
normal vector to Sq at the point y is simply given by ψppyq. The algorithm iterates until
one of the two following conditions is met:

}ypκ�1q � ypκq}2
}ypκq}2   Tol, κ ¡ Nits.

Results on the linear convergence of the GPM are proved for arbitrary closed sets in [8].
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4.3.3.3 Solving ADMM subproblem for the primal variable g2

Recalling (4.68)-(4.69) and the definition of function G2 in (4.54), the subproblem for g2
reads

g
pℓ�1q
2 P arg min

g2PR2m

#
m̧

i

w
p{2
i

��� |g2,i|rsignpg2,iq � |g2,i�m|rsignpg2,i�mq
���p� β

2

���� g2 � spℓq
����2
2

+
,

� arg min
g2PR2m

m̧

i

#
w
p{2
i

��� |g2,i|rsignpg2,iq � |g2,i�m|rsignpg2,i�mq
���p

�β
2

��
g2,i � s

pℓq
i

	2

�
�
g2,i�m � s

pℓq
i�m

	2
� +

, (4.71)

with

p P p1, 2q , r � 1

p� 1
P p2,�8q , spℓq � S tpℓ�1q � 1

β
ρ
pℓq
2 P R2m . (4.72)

The 2m-dimensional optimization problem (4.71)-(4.72) is clearly equivalent to m inde-
pendent 2-dimensional problems all having the same structure and reading

!
g
pℓ�1q
2,i , g

pℓ�1q
2,i�m

)
P arg min

px1,x2qPR2

" Hppx1,x2qhkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj��� |x1|rsignpx1q � |x2|rsignpx2q
���p (4.73)

�γi
2

��
x1 � s

pℓq
i

	2

�
�
x2 � s

pℓq
i�m

	2
�*

� proxγiHp

�
s
pℓq
i , s

pℓq
i�m

	
, γi � β

w
p{2
i

, i � 1, . . . ,m , (4.74)

where proxγiHp
denotes the bivariate proximal operator of function Hp with proximity

parameter γ. To start analyzing the solution to a generic bivariate problem in (4.74),
first we introduce the following partition of R2,

R2 � O Y �Y8
i�1hi

� Y �Y8
i�1Hi

�
,

with O the origin, h1, . . . , h8 the 8 open half-lines with origin O delimiting the 8 open half-
quadrants H1, . . . ,H8, as represented in Figure 4.3(a). We also introduce the projection

T : R2 Ñ H81 , T pvq �

$''&''%
v for v P H81 :� O Y h8 Y h1 Y h2 YH8 YH1

�v for v P rH45 :� h4 Y h5 Y h6 YH4 YH5

B2v for v P H23 :� h3 YH2 YH3

�B2v for v P H67 :� h7 YH6 YH7

,

(4.75)
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(a) (b)

(c) (d) (e) (f)

Figure 4.3: Useful partition of R2 (a) and the four subsets considered by the projection
T in (4.75) (b). Closed subsets H81 X Λprvq (red-bordered) to which the proximal values
must belong depending only on the position of the vector rv to proximate (c)-(f), which
corresponds to the center of the depicted circles.

with B2 P R2�2 the permutation (backward identity) matrix exchanging the entries of v

and where the four subsetsH81,H23, rH45,H67 are visualized with different colors in Figure
4.3(b). It is easy to verify that, thanks to symmetries of function Hp - in particular, Hp

is symmetric with respect to the origin and to the two bisectors of the quadrants - the

solution to a problem in (4.74) can be restricted to the case
�
s
pℓq
i s

pℓq
i�m

	
P H81.

In the following Proposition 4.3.2 we show that, after preliminarily applying the
projection in (4.75), the solution(s) of the proximal map in (4.74) must belong to well-
defined 1-dimensional arcs belonging to the subset H81.

Proposition 4.3.2. Let p P p1, 2q and let Hp : R2 Ñ R� be the function defined in
(4.73). Then, the proximity operator of function Hp with proximity parameter γ P R�

�

calculated at vector v P R2 is the (possibly) set-valued function proxγHp
: R2 Ñ R2 defined

by

pz pv; p, γq P proxγHp
pvq :� argmin

zPR2

!
Eγ
p pz; vq :� Hppzq � γ

2
}z � v}22

)
. (4.76)
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Problem (4.76) admits solution(s) given by

pz pv; p, γq � T ppz prv; p, γqq , rv � Tpvq P H18 , (4.77)

with the map T : R2 Ñ R2 and the closed set H18 � R2 defined in (4.75) and with

pz prv; p, γq P arg min
zPApprvq

Eγ
p prz; p, γq ,

where

Ap prvq �
$&%

rv if rv P O Y h2
Orv if rv P h8
H81 X Λ prvq X Cpprvq if rv P H81z pO Y h2 Y h8q

,

with

Λ prvq �  
z P R2 : }z � rv}2 ¤ d prv, h1q ^ rv2 ¤ z2 ¤ rv1 � rv2 � z1

(
, (4.78)

Cp prvq �  
z P R2 : zr�1

1 pz2 � rv2q � |z2|r�1 prv1 � z1q
(
. (4.79)

Proof. The function Hp in (4.73) is clearly symmetric with respect to the origin and to
both the bisectors of the quadrants, in formula,

Hp pzq � Hp p�zq � Hp pB2zq � Hp p�B2zq , @ z P R2 , (4.80)

with B2 P R2�2 the backward identity matrix.
Then, it follows easily from its definition in (4.76) that, for any p P p1, 2q, any γ P R�

�

and any v P R2, the function Eγ
p is continuous on R, bounded below by zero and also

coercive since it is the sum of the bounded below function Hp and a quadratic coercive
function. Hence, Eγ

p admits global minimizers and the proximity operator in (4.76) is
always defined. Moreover, based on symmetries in (4.80), function Eγ

p also satisfies

Eγ
p pz; vq � Eγ

p p�z;�vq � Eγ
p pB2z; B2vq � Eγ

p p�B2z;�B2vq , @ z, v P R2 .

The last three equalities imply as many properties of the proximity operator in (4.76),

pz pv; p, γq � � pz p�v; p, γq � B2 pz pB2v; p, γq � � B2 pz p�B2v; p, γq , @ z, v P R2 .

It follows from the last expression that the proximal map in (4.76) can be equivalently
re-written in terms of an analogous proximal map but with input vector v � rv suitably
restricted to the set H81, closure of the union of half-quadrants 1 and 8 (see Figure
4.3(b)), as formalized in (4.77).

Then, it is quite easy to demonstrate (we omit the proof for shortness) that, for any
vector rv P H81, the corresponding proximal value(s) pz prv; p, γq must belong to the closed
set H81 X Λprvq, given by the intersection between H81 and the eighth of a closed circle
Λprvq defined in (4.78). The circle has its center in rv and is tangent to the bisector of
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the first quadrant h1. This intersection set is shown in Figure 4.3(c)-(f) for four different
positions of vector rv (red-bordered regions).

In order to reduce the candidate solutions set from dimension 2 to dimension 1 or 0
- i.e., to curves/arcs or points - we analyze the gradient of the cost function Eγ

p pz; rvq in
(4.76) for z P H81. First, we note that for z P H81 - where z1 ¡ 0 and |z2|   z1 - the
function Hppzq in (4.73) simplifies to

Hp pzq �
�
zr1 � z2 |z2|r�1

�p
.

Then, the gradient of Eγ
p clearly reads

∇Eγ
p pz; rvq � ∇Hppzq � γ pz � rvq , (4.81)

with

∇Hppzq �

����
BHppzq
Bz1

BHppzq
Bz2

���� � p r
�
zr1 � z2 |z2|r�1

�p�1

�
zr�1
1

� |z2|r�1

�
.

The two components of ∇Hp are both continuous (note that r � 1 ¡ 0 and p � 1 ¡ 0)
for any z P H81, hence ∇Eγ

p in (4.81) is also continuous. It follows that a necessary
condition for a point z P H81 to be a proximal value of rz P H81 is that it is a stationary
point of Eγ

p , that is

∇Eγ
p pz; rvq � 02 ðñ

#
δ
�
zr1 � z2 |z2|r�1

�p�1
zr�1
1 � rv1 � z1

δ
�
zr1 � z2 |z2|r�1

�p�1 |z2|r�1 � z2 � rv2 , δ � p r

γ
. (4.82)

After noting that, for rv P H81 ùñ rv1 ¡ 0, the first equation in (4.82) can not be satisfied
for z1 � 0, we can divide the equation by z1 and then substitute the left-hand side into
the second equation:$&% δ

�
zr1 � z2 |z2|r�1

�p�1 � rv1 � z1

zr�1
1

δ
�
zr1 � z2 |z2|r�1

�p�1 |z2|r�1 � z2 � rv2 ùñ zr�1
1 pz2 � rv2q � |z2|r�1 prv1 � z1q ,

which corresponds to the curve Cpprvq in (4.79). This concludes the proof.

Finally, in order to compute the proximal values, we suitably parameterize the arc
Apprvq and, then, we solve iteratively the associated 1-dimensional optimization problem.

The main computational steps of the proposed M-ADMM approach are summarized
in Algorithm 4. The M-ADMM iterations are stopped in the same way as the M-PGD
algorithm, i.e., as soon as one of the two criteria in (4.49) is satisfied. We observe
experimentally that the method converges globally independently of the initialization.
However, the theoretical rate of convergence for M-ADMM algorithms is a problem that
has yet to be addressed.
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Algorithm 4 M-ADMM algorithm for solving any k-th optimization problem in (4.43)

1. Input: rf p1q, . . . , rf pkq P Rn computed (orthogonal) eigenfunctions, penalty β ¡ 0

2. Output: rf pk�1q new (orthogonal) eigenfunction, approximate solution to (4.43)

3. Initialize: ℓ � 0, tp0q � t0, compute rΨpkq
i P Rn, i � 1, . . . , k, by (4.48)

4. While the stopping criterion is not satisfied

5. 
 compute tpℓ�1q by (4.65)-(4.66) or (4.66)-(4.67)

6. 
 compute g
pℓ�1q
1 by Algorithm 3

7. 
 compute g
pℓ�1q
2 by solving (4.74), based on Proposition 4.3.2

8. 
 compute ρpℓ�1q by (4.59)

9. 
 update ℓ � ℓ� 1

10. end while

11. rf pk�1q � tpℓq

square sphere horse hand dolphin

|V | � 225 |V | � 258 |V | � 152 |V | � 200 |V | � 153
(a) (b) (c) (d) (e)

Figure 4.4: Test meshes and associated number of vertices n � |V |.

4.4 Numerical Results

In this section, we numerically test the performance of the proposed algorithms M-PGD
and M-ADMM for the computation of a few eigenpairs of the graph p-Laplacian, with
the main focus on the case p P p1, 2s. We address both the case where the domain is a
regular triangulated grid in R2, as illustrated in Fig.4.4(a), and the case involving more
irregular mesh domains in R3, such as those depicted in Fig.4.4(b)-(e).

To the best of our knowledge, there are no other numerical algorithms in literature
for the computation of more than two eigenpairs of the p-Laplacian which satisfy the
original nonlinear eigendecomposition problem (4.13), i.e. the p-orthogonality constraint
on the eigenfunctions. This motivated us, in the first example described in Section 4.4.1,
to restrict the computation to the 2-Laplacian eigendecomposition in order to validate
both the goodness of the proposed algorithms, and the computation of the estimated
eigenfunctions f pkq, k � 2, 3, . . .. This allowed us to compare the obtained results with
those obtained by standard eigendecomposition linear algebra methods. The second
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example, illustrated in Section 4.4.2, extends the validation of the p-Laplacian eigen-
decomposition to different p values and compares the performance of the two proposed
approaches. The third example in Section 4.4.3 is devoted to a possible application of
the p-Laplacian eigendecomposition which aims to cluster a 3D mesh into meaningful
parts.

For all the reported tests, given the computed eigenfunction f pkq, the estimation
of the associated eigenvalue λ

pkq
OLS is determined by the procedure of orthogonal linear

regression explicitly derived in (4.35)-(4.36). Therefore, the validation of the goodness in
eigenvalue computation can be evaluated by the Root Mean Square Residual (RMSR),
which represents a goodness-of-fit measure, and reads as follows

RMSRpkq :�
gffe 1

n

S
pkq
xx pλpkqOLSq 2 � 2S

pkq
xy λ

pkq
OLS � S

pkq
yy

pλpkqOLSq 2 � 1
,

where S
pkq
xx , S

pkq
yy , S

pkq
xy are defined as in (4.36). Low values of RMSR indicate that the

linear relationship is verified with a good approximation, that is pf pkq,λpkqOLSq is an actual
eigenpair of the p-Laplacian.

We will denote by λ
pkq
Rp

the estimation of the eigenvalue associated to a computed

eigenfunction f pkq according to the definition of Rayleigh quotient λRp � Rppf pkqq, see
Prop. 4.1.2 and (4.33).

In order to measure how much, at each step k of our approaches, corresponding to
the eigenfunction f pkq, the p-orthogonality constraint is satisfied globally by the first k
estimated eigenfunctions f p1q, . . . , f pkq, we introduce and compute the following scalar
measure of p-orthogonality,

pOrthpkq :� max
i,j�1,...,k,j i

��〈ψppf piqq, ψppf pjqq〉�� .
In the implementation of the M-PGD method we set the step-length in the range α P

r10�4, 10�1s, manually tuned according to the problem, in order to achieve convergence.
The maximum number of iterations is set to be Nits � 5 � 105. As the numerical
convergence has been always satisfied, we avoided the backtracking line search. In the
M-ADMM algorithm, we set β � 5 and Nits� 104.

4.4.1 Example 1: computing 2-Laplacian eigenpairs

The two proposed algorithmic frameworks for the p-Laplacian eigendecomposition are
subject to a preliminary sanity test to ensure that the proposed algorithms work as
expected. This is carried out on the computation of the first eight eigenpairs of the
2-Laplacian on the grid domain square (see Fig.4.4(a)), by comparing the results from
M-PGD and M-ADMM with the eigenpairs obtained by the standard Lancsoz bidiago-
nalization iterative method [72] - using the MatLab eigs function.
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f p2q f p3q f p4q f p5q f p6q f p7q f p8q

INIT.

GT

OUR

λGT 0.0463 0.1114 0.1143 0.2361 0.3067 0.3294 0.4410

M
-P
G
D

λRp 0.0463 0.1114 0.1143 0.2361 0.3067 0.3294 0.4410
λOLS 0.0463 0.1114 0.1143 0.2361 0.3067 0.3294 0.4410
RMSR 0 1.51e-10 1.23e-10 2.41e-10 0 0 0
pOrth 6.84e-16 4.54e-16 3.83e-16 8.67e-17 1.26e-16 3.68e-16 1.57e-16

M
-A

D
M
M λRp 0.0463 0.1114 0.1143 0.2361 0.3067 0.3294 0.4410

λOLS 0.0463 0.1114 0.1143 0.2361 0.3067 0.3294 0.4410
RMSR 0 0 0 1.70e-10 3.35e-10 5.27e-10 7.18e-10
pOrth 1.79e-16 1.00e-16 4.67e-14 6.15e-17 1.27e-16 1.22e-16 8.53e-16

Figure 4.5: Example 1 - 2-Laplacian eigenpairs. Top: random initializations (INIT.),
Ground truth eigenfunctions (GT), and our results (OUR). Middle: eigenvalues associ-
ated with the computed eigenfunctions using M-PGD and M-ADMM, and error metrics.
Bottom: plot of ℓ2-norm error for ℓ iterations of the M-PGD (left) and M-ADMM (right)
approaches.
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In Fig. 4.5, column-wise, we show the random initializations, the expected ground
truth (GT) eigenfunctions, and our results (OUR). We reported only the M-PGD eigen-
functions as the M-ADMM results are indistinguishable. Visually, we note that, as ex-
pected, these eigenfunctions behaves like the Laplacian eigenfunctions in the continuous
setting, i.e. like trigonometric functions, with regular and increasing number of obscilla-
tions. The bottom part of Fig. 4.5 reports the plots of the ℓ2-norm error }f pkq � f

pkq
GT }2

of the eigenfunctions on the n vertices of the domain, for M-PGD (left) and M-ADMM
(right). The rapid decay of the error along the iterations ℓ confirms that the models
correctly compute the eigenfunctions. This is further confirmed by observing the results
reported in the middle part in Fig. 4.5. The computed eigenvalues λRp , λOLS perfectly
match the ground truth λGT value, computed via the eig function. Moreover, the two
metrics RMSR and p-ortogonality pOrth, both vanishing for all the eigenfunctions and
for both methods. As expected, p-orthogonality is satisfied and the tests validated both
the proposed M-PGD and M-ADMM which correctly find the known eigenpairs of the
2-Laplacian.

4.4.2 Example 2: computing p-Laplacian eigenpairs

In the second example, we demonstrate how the proposed algorithms perform in com-
puting eigenpairs of p-Laplacian with p P t1.8, 1.5, 1.2u.

In Fig. 4.6 (top) we show the eigenfunctions of the p-Laplacian on the planar square
domain obtained via M-PGD (indistinguishable results are obtained using M-ADMM).
As p decreases, the shape of the eigenfunctions tends to be sharper with piecewise-
constant regions, while reducing the transition parts. Similar behavior is visually ob-
servable in Fig. 4.7 for the sphere domain. As p decreases, the eigenfunctions more
clearly partition the domain into constant regions. This behavior resembles the effects of
Total Variation regularization (which involves an L1 penalization term), providing sparse
restoration and piecewise-constant functions.

To get a quantitative insight into the ability of the two methods to achieve their
results efficiently, in Fig. 4.6(bottom) we plot the evolution along the iterations of the
RMSRpkq metric associated with the three eigenfunctions computed. We recall that low
values of RMSRpkq indicate good satisfaction of the eigenvalue equation. Note that the
scale of the horizontal (iterations) axis is quite different in the two graphs, and the
M-PGD algorithm, as expected, requires more iterations to get a stationary evolution
(and, hence, to fulfill the common stopping criterion). It can be seen from the plots that
M-ADMM not only is able to reach lower RMSR values, but also a smaller number of
iterations is required to achieve a given level of the RMSR metric.

These visual/qualitative observations are confirmed by the quantitative results shown
in Table 4.1(top) for the square domain and, analogously, in Table 4.2(top) for the
sphere domain, concerning the behavior of the two methods at convergence (according
to the corresponding stopping criteria). In particular, in these sub-tables we report, for
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f p2q f p3q f p4q

p � 1.8

p � 1.5

p � 1.2

M-PGD M-ADMM

Figure 4.6: Example 2 - square domain. Top: visualization of three p-Laplacian eigen-
fuctions, for p � t1.8, 1.5, 1.2u. Bottom: evolution of the RMSR values for p � 1.2,
applying the two methods, in terms of the number ℓ of iterations.
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M-PGD M-ADMM

f p2q f p3q f p4q f p2q f p3q f p4q

p � 1.8
λOLS 0.0702935 0.152202 0.15915 0.0706232 0.152895 0.159909
λRp 0.0707049 0.153215 0.160195 0.0706232 0.152901 0.159909

RMSR 4.62e-4 1.04e-3 1.11e-3 8.27e-8 7.89e-5 1.12e-6
pOrth 8.86e-16 2.04e-16 9.33e-17 1.45e-16 1.86e-15 1.92e-09
ℓ 1e5 1e5 1e5 1571 1447 1374

p � 1.5
λOLS 0.125676 0.232494 0.250887 0.129046 0.238016 0.321386
λRp 0.129981 0.241249 0.261726 0.129046 0.238181 0.272558

RMSR 3.57e-3 6.39e-3 1.02e-2 1.31e-4 5.50e-6 9.46e-4
pOrth 9.37e-17 1.47e-16 5.16e-17 1.84e-16 1.60e-11 1.84e-07
ℓ 1e5 1e5 30681 1398 5e3 1802

p � 1.2
λOLS 0.214728 0.351384 0.375077 0.220319 0.34469 0.396112
λRp 0.220989 0.359384 0.398689 0.220311 0.356279 0.393743

RMSR 3.73e-2 6.42e-2 4.47e-2 2.28e-3 3.94e-2 2.62e-2
pOrth 1.02e-15 4.31e-16 1.75e-16 2.44e-16 2.23e-11 1.17e-08
ℓ 5e5 5e5 5e5 1793 5e3 5e3

M
-P
G
D

M
-A

D
M
M

Table 4.1: Example 2 - square domain. Top: results for different p values with M-PGD
and M-ADMM. Bottom: orthogonal regression fitting line (solid blue) and data points
(red circles) defined in (4.34), for p � 1.5.
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f p2q f p6q f p8q

p � 2

p � 1.8

p � 1.5

p � 1.2

Figure 4.7: Example 2 - sphere domain. Visualization of three p-Laplacian eigenfuctions,
for p � t2, 1.8, 1.5, 1.2u.

each eigenpair computed, from top to bottom, the two estimates of the eigenvalues λ
pkq
OLS

and λ
pkq
Rp
, the RMSRpkq values - in boldface the lowest among the two values - and the

pOrthpkq values (in the table we drop the pkq superscript for shortness of notation). First,

we note that the two estimates λ
pkq
OLS and λ

pkq
Rp

provide very similar results and that the

p-orthogonality metric pOrthpkq is always very small, namely less than 10�6 and often
in the order of 10�15 � 10�16. Then, the RMSRpkq values seem to indicate clearly that
the M-ADMM approach has the potential to provide higher-quality estimates of the
p-eigenfunctions, quite uniformly with respect to the value of p.

Finally, in the plots reported in Table 4.1(bottom) for the square domain and, anal-
ogously, in Table 4.2(bottom) for the sphere domain, we visualize, for both approaches
and for the case p � 1.5, the Orthogonal Least Squares fitting line (solid blue line) to-
gether with the associated data points pψppf pkqq,∆ppf pkqqq (red circles) for the same three
eigenfunctions considered in the top part of the tables (namely, k � 2, 3, 4 for square,
k � 2, 6, 8 for the sphere domain). Note that the angular coefficients of the fitting lines

shown coincide with the values λ
pkq
OLS reported in the top part of the tables for p � 1.5.

The better fit obtained by M-ADMM with respect to the M-PGD is thus well assessed
not only from the RMSR values in the top tables but also from these line-fitting graphs
in the bottom tables.
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M-PGD M-ADMM

f p2q f p6q f p8q f p2q f p6q f p8q

p � 1.8
λOLS 0.215205 0.565198 0.625266 0.215883 0.567494 0.627531
λRp 0.21605 0.567618 0.62815 0.215879 0.567275 0.62683

RMSR 1.38e-3 3.74e-3 4.28e-3 4.22e-4 2.24e-3 2.87e-3
pOrth 1.77e-15 1.54e-15 1.66e-15 3.88e-16 2.91e-7 5.21e-7
p � 1.5
λOLS 0.311952 0.736322 0.790814 0.315339 0.718229 0.785175
λRp 0.317441 0.734007 0.802354 0.315302 0.716472 0.784318

RMSR 1.46e-2 4.14e-2 3.21e-2 1.59e-3 6.89e-3 6.52e-3
pOrth 1.16e-15 2.34e-15 3.13e-15 2.77e-16 2.72e-7 6.10e-7
p � 1.2
λOLS 0.415395 0.903748 1.05252 0.41965 0.848454 0.955792
λRp 0.420532 0.860773 0.950283 0.41854 0.844079 0.922103

RMSR 5.11e-2 1.32e-1 1.62e-1 2.77e-2 4.88e-2 8.67e-2
pOrth 1.83e-15 8.59e-16 1.36e-15 6.10e-16 6.64e-7 6.79e-7

M
-P
G
D

M
-A

D
M
M

Table 4.2: Example 2 - sphere domain. Top: results for different p values with M-
PGD (after 5e5 iterations) and M-ADMM (after 1e3 iterations). Bottom: orthogonal
regression fitting line (solid blue) and data points (red circles) defined in (4.34), for
p � 1.5.
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4.4.3 Example 3: approach to the spectral clustering

As the proposed method does not depend on the discretization of the domain, it can
be easily adapted to free-form domains, as the 3D meshes horse, dolphin and hand,
see Fig.4.4(c)-(e). We demonstrate it with the following eigendecomposition examples,
computing the p-Laplacian eigenpairs, in the classical case p � 2, in the case p �
1.2 (as a partial approach to the limit case p � 1) and in the opposite direction of
p � 3. Some eigenfunctions, among the first 14, are depicted in Fig.4.8; for each 3D
mesh, the three rows report, from top to bottom, the eigenfunctions of the graph p-
Laplacian for p � 3, p � 2 and p � 1.2. From left to right, the eigenfunctions are
associated with eigenvalues of increasing magnitude. In analogy with the behavior of
the 2-eigenvalues which represent graph frequencies, small values are associated with
low frequencies and large values with higher frequencies. Low frequencies correspond to
smooth and slowly varying functions and represent macroscopic shape information; while
the high frequencies correspond to eigenfunctions with rapid oscillations, and generally
describe microscopic (details) behavior. These preliminary results highlight how the non-
linearity with p P p1, 2q, in particular p near 1, better captures the underlying geometry of
the data. In particular, eigenfunctions not only emphasize the different curvatures areas,
but also they divide them (see the legs of the horse mesh in Fig.4.8). This deserves a
more in-depth analysis in a future work.

A possible application of the computed p-Laplacian eigendecomposition comes nat-
urally from the visual analysis of the geometric properties of these eigenfunctions: each
should correspond to object parts and protrusions [30, 60]. This could easily be ex-
ploited for spectral clustering or mesh segmentation algorithms based on the Principal
Component Analysis interpretation of the p-Laplacian eigenvectors of the mesh.
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f p2q f p3q f p4q f p5q f p6q f p7q

f p2q f p5q f p7q f p8q f p10q f p14q

f p2q f p4q f p5q f p6q f p7q f p11q

Figure 4.8: Example 3 - Selected p-Laplacian eigenfunctions on 3D meshes horse,
dolphin, hand. Rows 1,4,7: p � 3. Rows 2,5,8: p � 2. Rows 3,6,9: p � 1.2.



Chapter 5

Linear PDE models for graph
osmotic flow

The osmotic flow, introduced in Sec.1.4, can be formulated as the following linear
isotropic diffusion-transport PDE

Btupx, tq � ∆upx, tq � divpdpxqupx, tqq. (5.1)

Starting from initial data u0, the evolution of a point x P Ω driven by the model in Eq.
(5.1), depends mainly on the local differential properties of the data near the point. This
behavior is not always accurate enough to model physical phenomena or to perform data
processing tasks.

For this reason, we are interested in defining and studying a non-local version of the
osmosis model. Non-local models capture interactions or dependencies that occur over
larger distances and are better suited to describe phenomena in fields such as material
science, geophysics and network analysis. For example, in diffusion processes happen-
ing in biology or population dynamics, changes at one point can quickly affect others
non-locally. Furthermore, non-local models are often more robust when dealing with
discontinuities or singularities and numerically more stable.

A natural way to consider long-range interactions in the model definition consists
in replacing the (local) differential operators with corresponding (non-local) integral
operators, integrating over a wider domain, specified by a kernel function W . Such
kernel functions identify not only the ’active’ region that affects function behavior on
a point x, but also the specific weight or influence of its points y. For this reason, the
kernel W is often defined in terms of the distance }x � y}22 between the two points, for
example as a Gaussian kernel W pdq � exp pd2{σ2q with σ ¡ 0 a positive parameter.

As the kernel support decreases, it is expected that the data evolution using the
non-local model gets similar to the one obtained via the local formulation. This can
only happen if the integral operators are accurately defined as approximations of the
differential operators.

For a detailed overview and analysis of non-local diffusion problems, we refer to [3],

129
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where the authors consider models such as the diffusion flow (1.50) or the p-Laplacian
flow (1.56), in Rn as a Cauchy problem or in bounded domain Ω � Rn with Dirichlet or
Neumann boundary condition. Furthermore, they study a particular case of the osmosis
equation (5.1), with d constant in space.

The definition of the non-local model provides useful suggestions on how to derive
an appropriate discretization of the corresponding local PDE model on graph domains
G. In fact, the edge weights wij take the role of the kernel functions W , measuring the
influence of a neighbor vertex vj in the evolution of the data on the vertex vi.

In this Chapter, we provide a precise formalization of these observations. In partic-
ular, in Sec.5.1 we report the original definition of the osmosis model [129], along with
its main properties and discretization on image domains, used to perform a variety of
image editing tasks. In Sec.5.2, we analyze theoretically the linear local model, in terms
of wellposedness and regularity of the solutions. The same inquiry is described in Sec.5.3
for our proposed non-local model. In Sec.5.4, we report results and conjectures about the
non-local model consistency, i.e. the convergence of non-local solutions to local solutions.
Then, in Sec.5.5, we derive a graph discretization of the model, tested in Sec.5.6 to verify
the behavior of the model as an editing tool for color functions defined on meshes.

5.1 Linear model: properties and application in im-

age editing

The osmosis model was first studied in [129] for rectangular domains Ω � R2. The
original formulation, involving an initial data u0 and homogeneous Neumann boundary
condition, reads as follows:$'&'%

Btu � ∆u� divpduq on Ω� p0, T s,
⟨∇u� du,n⟩ � 0 on BΩ� p0, T s;
upx, 0q � u0pxq ¡ 0 on Ω,

(5.2)

with d : ΩÑ R2 and n is the outer normal vector to the image boundary BΩ.
In [129], the authors proved that the evolution process (5.2) preserves the average

intensity (grey value) of the image f as well as its non-negativity, thanks to its divergence
form. Moreover, if the drift d is defined in a canonical form, i.e. in terms of a given
reference image v : ΩÑ R�

� as:

d :� ∇ log v, (5.3)

then the steady-state solution w : Ω Ñ R� is a multiplicative rescaling of v, that
is w � cv, with c ¡ 0 [129]. Furthermore, analogous properties hold upon suitable
finite-difference discretization [124] or operator splitting [24]. The osmosis convergence
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(a) u0 (b) v (c) d (d) w

Figure 5.1: Evolution of the osmosis model (5.2). (a) (constant) initial image u0, (b)
reference image v, (c) vector representation of drift d (with zoom), (d) steady state w.

property is shown in Fig. 5.1, where the PDE model, defined by a drift term d expressed
in canonical form from a reference image v, evolves from a constant initial data u0 to
the steady-state w.

There is of course no clear interest in observing convergence to a rescaled version w
of an image which is needed in advance to define the drift d required for the modeling.
However, setting different definitions of d in a disjoint partition Ωin Y Ωout Y Ωb of Ω,
with Ωb suitably thick, osmosis can be applied to many different imaging tasks such as
shadow/light-spot removal, compact data representation and image cloning.

Shadow/light-spot removal. For shadow/light-spot removal problems, we assume
that the given image f0 is characterized by the presence of a region S � Ω with different
lighting, see Fig. 5.2(a). The mask M is thus associated with a preliminary detection
of an appropriate region boundary Ωb (for instance, by using [33, 7, 32]), see Fig.5.2(b).
Setting

dpxq :�
�
∇plog vq χΩC

b

	
pxq �

#
∇vpxq
vpxq

if x P Ωin Y Ωout,

0 if x P Ωb,
, (5.4)

with v � u0 as reference image and χD : Ω Ñ t0, 1u the characteristic function of the
subset D, the evolution described by the model (5.2) leads to the result in Fig.5.2(c).

Due to its intrinsic transport-diffusion properties, linear osmosis filtering does cor-
rectly perform shadow removal by balancing the intensity between the differently lid
regions of the image. However, due to the choice (5.4), the drift term d vanishes on Ωb,
where pure Laplace diffusion is enforced, possibly causing oversmoothing.

Compact image representation The task of compact image (or, generally, data)
representation consists in representing a given image with as little information as possible
using some limited, but significant, image content (see, e.g. [28], [85]). Osmosis is able
to reconstruct a greyscale image by initializing the model using the intensity values on
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(a) u0 � v (b) mask M (c) w

Figure 5.2: Shadow removal using linear (5.2) osmosis filtering.

(a) u0 � const (b) mask M (c) w (linear) (d) Reference v

Figure 5.3: Compact data representation using the linear osmosis model.

pre-detected edges which are encoded in the definition of the drift-term d so that:

d :�
�
∇v
v
χΩb



pxq �

#
∇vpxq
vpxq

if x P Ωb,

0 if x P ΩzΩb,
(5.5)

where Ωb denotes here the set of the edges. The task is thus a sort of interpolation process
where starting from u0 (Fig. 5.3(a)) and using only the data assigned on the mask M
(Fig. 5.3(b)) to define the drift term as in (5.5), the osmosis evolution produces the result
in Fig. 5.3(c). Fig. 5.3(d) is the ground-truth image, reported here for comparison.

Image cloning Given two reference images v1, v2 defined on the same domain Ω,
cloning consists in computing an image w that merges the information of the two images
in a seamless way, around a region S � Ω, as shown in Fig.5.4, where the result is
obtained through osmosis model, setting

d :�

$''&''%
∇v1pxq
v1pxq

if x P Ωout,
∇v1pxq
v1pxq

if x P Ωin,�
∇v1pxq
v1pxq

� ∇v2pxq
v2pxq

	
{ 2 if x P Ωb.

(5.6)
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(a) v1 (b) v2, with Ωb in
black

(c) u0 (d) w

Figure 5.4: Image cloning using linear osmosis model.

With respect to pure diffusion, the osmosis model can integrate mismatching image
data in a seamless way (see [92] for a variational osmosis-based model for image fusion
showing the advantage with respect to state-of-the-art methods).

5.2 Local osmosis model

The osmosis model equation ut � ∆u�divpduq is a particular case of the general second-
order parabolic equation. When parabolic equations are associated with homogeneous
boundary value constraints, results about existence, uniqueness and regularity properties
of weak solutions are well-known. In the following, we report from [44, Chapter 7] those
results and we observe how to apply them for the osmosis PDE.

Let T ¡ 0 and Ω � Rn open and bounded. We consider the problem$'&'%
Btu � ∆u� divpd uq, on Ω� r0, T s,
u � 0, on BΩ� r0, T s,
u � u0, on Ω� t0u.

(L-Osm)

The PDE can be seen as Btu � �Lu� h, with

Lu � �
ņ

i,j�1

aijpx, tquxixj �
ņ

i�1

bipx, tquxi � cpx, tqu (5.7)

with aijpx, tq � δij, bpx, tq � dpxq, cpx, tq � pdivdqpxq, h � 0 (5.8)

where the operator L does not change over time.
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The general parabolic equations theory imposes the following assumptions:$'&'%
aij, bi, c P L8pΩ� r0, T sq
h P L2pΩ� r0, T sq
u0 P L2pΩq

i.e., in our case,

#
d, divd P L8pΩq
u0 P L2pΩq (5.9)

We observe the existence and uniqueness of a weak solution.
Notation. Let W 1,2

0 pΩq be the closure of C8
0 pΩq onto the Sobolev space W 1,2pΩq

of locally summable functions with first derivatives (in the weak sense) in L2pΩq. Let
H�1pΩq be the dual space of W 1,2

0 pΩq. We denote as H2pΩq � tu P W 2,2pΩq, s.t. u1 P
W 1,2pΩqu.

Definition 5.2.1. A weak solution of (L-Osm) is a function u P L2p0, T ;W 1,2
0 pΩqq, with

u1 P L2p0, T ;W�1pΩqq such that

� ⟨u1, v⟩�Bru, v; ts � ph, vq for each v P W 1,2
0 pΩq and a.e. time t P r0, T s;

� up0q � u0.

with Bru, v; ts �
»
Ω

�
ņ

i,j�1

aijp�, tquxivxj �
ņ

i�1

bip�, tquxiv � cp�, tquv
�
dx.

In osmosis case, Bru, v; ts � ³
Ω
r°n

i�1 uxivxi �
°n
i�1 diuxiv � pdivdquv s dx.

Using Galerkin approximation as in Theorem 3 of [44, Chapter 7], we have:

Theorem 5.2.1. Given the assumptions in (5.9), there exists a unique weak solution of
(L-Osm).

Recapping, local osmosis PDE with homogeneous Dirichlet boundary conditions is
well-posed, if the initial data f P L2pΩq and if the drift term and its divergence are
bounded.

If we further assume that the drift term d and its divergence divd are smooth on
Ω and that Ω has a smooth boundary, then we have the following regularity results, as
derived from Theorem 5 and Theorem 7 in [44, Chapter 7]:

Theorem 5.2.2 (Improved regularity). Assume u0 P W 1,2
0 pΩq. If u P L2p0, T ;W 1,2

0 pΩqq,
with u1 P L2p0, T ;H�1pΩqq is the weak solution of (L-Osm), then#

u P L2p0, T ;H2pΩqq X L8p0, T ;W 1,2
0 pΩqq,

u1 P L2p0, T ;L2pΩqq (5.10)
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and we have the estimate

ess sup
tPr0,T s

}uptq}W 1,2
0 pΩq} � }u}L2p0,T,H2pΩqq � }u1}L2p0,T,L2pΩqq ¤ C}f}W 1,2

0 pΩq.

If, in addition, u0 P H2pΩq and u10 P L2p0, T ;L2pΩqq, then$'&'%
u P L8p0, T ;H2pΩqq,
u1 P L8p0, T ;L2pΩqq X L2p0, T ;W 1,2

0 pΩqq,
u2 P L2p0, T ;H�1pΩqq

(5.11)

and we have the estimate

ess sup
tPr0,T s

�}uptq}H2pΩq} � }u1ptq}L2pΩq

�� }u1}L2p0,T,W 1,2
0 pΩqq � }u2}L2p0,T,H�1pΩqq ¤ C}u0}H2pΩq.

Moreover, further regularity of the initial data leads to further regularity of the
solution, as in the following theorem.

Theorem 5.2.3. Assume u0 P C8pΩq and that for all m � 1, 2, . . . the m-th order
compatibility holds: $'&'%

f0 :� u0 P W 1,2
0 pΩq

f1 :� up0q � Lf0 P W 1,2
0 pΩq,

fm :� Bm�1u
Btm�1 p0q � Lfm�1 P W 1,2

0 pΩq

Then the problem (L-Osm) has a unique solution u P C8pΩ� r0, T sq.

5.3 Non-local osmosis model

To derive a non-local formulation of the osmosis model, first we need to which points of
the domain Ω influence the data evolution on a point x, defining a kernel function W .

Assumption 5.3.1. We consider W : RN Ñ R�Yt0u to be a symmetric, radial, smooth
kernel function, with compact support D. Furthermore, for all i, j � 1, . . . , N we assume»

RN

W 2pzqzizjdz � δij (5.12)

The integral condition in (5.12) ensures that W pzq is isotropic and that its contri-
butions balance properly in all directions, ensuring that the derived integral operators
correctly produce diffusion effects. Furthermore, in stochastic or probabilistic interpre-
tations of non-local operators, this condition can arise if W pzq is related to a covariance
function in a Gaussian process.
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Now we can define a non-local version of the gradient operator. While the local
gradient of a function u : RN Ñ R is a vector field ∇u : RN Ñ RN , in the non-local
setting the gradient is defined on a pair of points px, yq P RN � RN and represents a
weighted measure of the change of the function u between the two points. This concept
is formalized as follows:

Definition 5.3.1. The non-local gradient ∇NL with respect to a kernel function W
of a function u : RN Ñ R is the scalar function ∇NLu : RN � RN Ñ R defined as

p∇NLuqpx, yq � W px� yqpupyq � upxqq
From the non-local gradient we can derive the definition of the non-local divergence,

using the concepts of inner product between scalar functions and of the adjoint property.

Definition 5.3.2. Given two functions u, v : ΩÑ R, their inner product over the domain
Ω is

xu, vy �
»
Ω

upxqvpxq dx
In the local setting, the differential operators gradient ∇ and divergence div are

related by the adjoint property:

x∇u, gy � �xu, divgy
for any given scalar field u and vector field g. Interpreting this equivalence in non-local
sense, one can derive the following definition of non-local divergence for an antisymmetric
scalar function.

Definition 5.3.3. The non-local divergence divNL with respect to a kernel function W
of an antisymmetric function g : RN �RN Ñ R is the function divNLg : RN Ñ R defined
as

pdivNLgqpxq � 2 p.v.

»
RN

W px� yqgpx, yq dy
Finally, the Laplacian operator is the composition ∆ � div �∇, interpretable in local

or non-local sense.

Definition 5.3.4. The non-local Laplacian ∆NL of a function u : RN Ñ R is the
function ∆NLu : RN Ñ R defined as

∆NLupxq � 2

»
RN

W 2px� yqpupyq � upxqq dy

In order to define the non-local version of the osmosis PDE ut � ∆u�divpduq, we need
to understand what relation lies between the local vector field d : ΩÑ RN and its non-
local counterpart d. First, we observe that, as for the gradient, in the non-local setting
vector fields are transformed into scalar fields, defined over a pair px, yq. Furthermore,
d and d must have an integral relation that takes into account the interactions between
the two points x and y. This relation is expressed as follows:
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Definition 5.3.5. The non-local drift function d : RN � RN Ñ R corresponding to a
local drift d : RN Ñ RN is

dpx, yq � W px� yqd̄px, yq � W px� yq
» 1

0

⟨dpx� tpy � xqq, y � x⟩ dt (5.13)

The assumption d P L8pΩq implies d P L8pRN � RNq, since W P C8
0 pΩq. Fur-

thermore, the non-local drift is antisymmetric and therefore its non-local divergence is
well-defined.

In Sec.5.4, the reason behind this specific definition (5.13) will be more clear. For
the moment, we just observe that in the simple 1-dimensional case N � 1, if d
is the derivative of some function δ : R Ñ R, then the right-hand-side reduces to
W px� yqpδpyq � δpxqq, corresponding to its non-local derivative.

We now have all the ingredients to define the non-local version of the osmosis equa-
tion.

Definition 5.3.6. The non-local osmosis equation is#
Btu� pANL �BNLqu � 0 on Ω� r0, T s,
u � 0 on pRNzΩq � r0, T s, (NL-Osm)

with ANL � �∆NL and BNL representing the divergence term B : u ÞÑ divpduq �
divpdqu� ⟨d,∇u⟩ defined as

BNLu �
�
2

»
RN

W px� yqdpx, yq dy


upxq �

»
RN

W px� yqpupyq � upxqqdpx, yqdy �

�
»
RN

W px� yqdpx, yqpupyq � upxqq dy

In Sec.5.2, we have observed that the local model has weak solutions, with uptq P
W 1,2pΩq for all t P r0, T s. The non-local model involves integral operators and thus a
solution does not need to have weak derivatives in space. For this reason, we first observe
how the operators behave when applied to functions in the Hilbert space L2pΩq.
Proposition 5.3.1.

1. BNL P LpL2pΩqq, i.e. it is a linear bounded operator, therefore also a Lipschitz
operator;

2. ANL P LpL2pΩqq, i.e. it is a linear bounded operator, therefore also a Lipschitz
operator;

3. ANL is a maximally monotone operator.
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Proof. 1) Since W P C8
0 pRNq and d P L8pRN � RNq, for all u P L2pΩq we have:

}BNLu}L2pΩq ¤ }W }C8
0
2}d}L8 � }u}L2pΩq ¤ C}u}L2pΩq

i.e. BNL is bounded. Moreover, since it is clearly linear, it is a Lipschitz operator.
2) ANL is linear and since W P C8

0 pRNq, for all u P L2pΩq we have

}ANLu}L2pΩq ¤ }W }C8
0
2}u}L2pΩq ¤ C}u}L2pΩq

Therefore, it is also a Lipschitz operator.
3) Proven in [3, Th. 6.7] for the non-local p-Laplacian. The case p � 2 is straightforward.

These properties of the integral operators ANL and BNL are useful to prove the
wellposedness of the non-local osmosis model.

5.3.1 Well-posedness

To show the existence of a solution for the non-local osmosis, we exploit the properties
of the operators ANL � BNL, together with the Cauchy-Lipschitz-Picard theorem [21,
Theorem 7.3].

Proposition 5.3.2 (Existence and Uniqueness in C1). Let ANL, BNL defined as in
Def.5.3.6. Then, given u0 P L2pΩq, the problem (NL-Osm) has a unique solution u P
C1pr0,8q, L2pΩqq X Cpr0,8q, DpANL � BNLqq, where D is the domain of definition of
the operators.

Proof. We begin by proving the existence result, which amounts to finding some u P
Cpr0,8q, L2pΩqq satisfying the integral equation

uptq � u0 �
» t

0

FNLpupsqqds. (5.14)

with FNL � �ANL �BNL. Given k ¡ 0, to be fixed later, set

E �
"
u P Cpr0,�8q;L2pΩqq; sup

t¥0
e�kt}uptq}L2pΩq   8

*
.

It is easy to check that E is a Banach space for the norm

}u}E � sup
t¥0

e�kt}uptq}L2pΩq.

In fact, it suffices to establish that E is complete. To do so, let up P E be a Cauchy
sequence, in other words, for any ε ¡ 0, there exists an N P N such that for all p, q ¥ N ,

}up � uq}E � sup
t¥0

e�kt }upptq � uqptq}L2   ε.
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This implies that for each fixed t ¥ 0, the sequence tupptqu is a Cauchy sequence in L2,
since e�kt ¡ 0. Since L2 is a Banach space, any Cauchy sequence in L2 converges to a
limit in L2. Thus, for each fixed t ¥ 0, there exists uptq P L2 such that

}upptq � uptq}L2 Ñ 0 as nÑ 8.

For all t ¥ 0, for p, q ¥ N , we have

e�kt }upptq � uqptq}L2   ε.

Taking the limit as q Ñ 8, and using the pointwise convergence }uqptq � uptq}L2 Ñ 0,
we deduce

e�kt }upptq � uptq}L2 Ñ 0, @t ¥ 0.

Since }up � u}E � supt¥0 }upptq � uptq}L2 , the uniform convergence implies

}up � u}E Ñ 0 as pÑ 8.

The sequence up converges to u in the E-norm, and u P E. This confirms that E is a
Banach space.

Now, for every u P E, the function ϕu defined by

pϕuqptq � u0 �
» t

0

FNLpupsqqds

also belongs to E. Moreover, we have

}ϕu� ϕv}E � sup
t¥0

e�kt }ϕuptq � ϕvptq}L2pΩq

� sup
t¥0

e�kt
����» t

0

�
FNLpupsqq � FNLpvpsqq� ds����

L2pΩq

.

However, we have��FNLpuq � FNLpvq��
L2pΩq

¤ ���∆NLu�∆NLv
��
L2pΩq

� ��BNLu�BNLv
��
L2pΩq

¤ 2 }J}C8
0
}u� v}L2pΩq � 4 }W }C8

0
}d}L8 }u� v}L2pΩq

¤ L }u� v}L2pΩq ,

where L � 2 }J}C8
0
� 4 }W }C8

0
}d}L8 . Therefore, we have that

}ϕu� ϕv}E ¤
L

K
}u� v}E .

Fixing any K ¡ L, we find that ϕ has a fixed point u P E, which is a solution of (5.14).
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Now we turn to proving uniqueness. Let u and u two solutions of (NL-Osm) and set

φptq � }uptq � uptq}L2pΩq .

From (5.14), we deduce that

φptq �
����» t

0

FNLpupsqq � FNLpupsqqds
����
L2pΩq

¤
» t

0

��FNLpupsqq � FNLpupsqq��
L2pΩq

ds

¤ L

» t

0

}pupsqq � pupsqq}L2pΩq ds

¤ L

» t

0

φpsqds,

for all t ¥ 0 and consequently, using the Grönwall’s inequality, we get φptq ¤ 0. By the
definition of φptq as a non-negative function, it follows that φ � 0.

Now that we know that a unique solution exists, we want to prove that it respects
the same conservation properties valid in the local case.

Proposition 5.3.3 (Average preservation). Let upx, tq be a solution of the non-local
osmosis model. Then for all t P r0, T s we have»

Ω

upx, tqdx �
»
Ω

u0pxqdx

Proof. Using antisymmetry of dpx, yq and of pupyq � upxqq, the time derivative of the
average value is

B
Bt

»
Ω

upx, tqdx �
»
Ω

B
Btupx, tqdx � �

»
Ω

ppANL �BNLquqpx, tqdx � 0

5.3.2 Regularity in time

The proven continuity and differentiability in time of the solution allows to study its
evolution as t grows. An estimation is computed in the following Proposition.
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Proposition 5.3.4. Let ANL, BNL defined as in Def.5.3.6. If u and v are two solutions
of (NL-Osm) associated to initial data u0 and v0 respectively, then

}uptq � vptq}L2pΩq ¤ eKt
�}u0 � v0}L2pΩq

�
, @t P r0, T s,

where K � 4 }W }C8
0
}d}L8 is the Lipschtiz constant of BNL.

Proof. Since }uptq � vptq}2L2pΩq is absolutely continuous on every compact of s0, T r and
continuous on r0, T s we get, using the monotonicity of ∆NL that

1

2
Bt }uptq � vptq}2L2pΩq � x d

dt
uptq � d

dt
vptq, uptq � vptqy

� x∆NLuptq �∆NLvptq, uptq � vptqy�
� x�BNLuptq �BNLvptq, uptq � vptqy

¤ x�BNLuptq �BNLvptq, uptq � vptqy.
Now, we integrate over ss, tr and we obtain

1

2
}uptq � vptq}2L2pΩq �

1

2
}upsq � vpsq}2L2pΩq ¤

» t

s

x�BNLupτq �BNLvpτq, upτq � vpτqydτ.

We then deduce using [20, Lemma A.5]

}uptq � vptq}L2pΩq ¤ }upsq � vpsq}L2pΩq �
» t

s

��BNLupτq �BNLvpτq��
L2pΩq

dτ

¤ }upsq � vpsq}L2pΩq �K

» t

s

}upτq � vpτq}L2pΩq dτ

for all 0 ¤ s ¤ t ¤ T . Now using Grönwall’s inequality, we deduce that

}uptq � vptq}L2pΩq ¤ eKt }u0 � v0}L2pΩq .

5.4 Consistency

We have defined the integral operators ANL and BNL taking inspiration from the corre-
sponding differential operators A and B. In order to verify that our proposal is a correct
approximation of the osmosis model, we need to define a sequence of non-local models
and observe if they generate a sequence of solutions that converge to the local solution.

Since the integral operators are defined in terms of a kernelW whose support identifies
the region of influence for points y with respect to x, a natural way to study consistency
is to generate a sequence of kernels Wε, with ε ¡ 0, with decreasing support as εÑ 0.
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Definition 5.4.1. Let ε ¡ 0. Then we define a rescaled kernel function Wεpxq as

Wεpxq � W px{εq
εN{2�1

We note thatWε, being a simple rescaling, respects the same properties as the original
kernelW of Assumption 5.3.1, i.e. it is radial, symmetric, smooth, with compact support.
In particular, we observe that supppWεq � εsupppW q, converging monotonically to the
origin t0u.

The rescaled kernel function Wε defines new sequences of integral operators Aε, Bε

and drift terms dεpx, yq � Wεpx� yqd̄px, yq.
The resulting sequence of non-local osmosis models reads as

#
Btuε � pAε �Bεquε � 0

uεp0q � u0
(5.15)

and produces a corresponding sequence of solutions uε. As we have seen in Prop. 5.3.2,
for any ε ¡ 0, a function uε P C1pr0,8q, L2pΩqq X Cpr0,8q, DpANL �BNLqq.

Fixed a time t P r0, T s, our goal is to show that the sequence puεptqqε � L2pΩq
converges to a function vptq P W 1,2pΩq that is the unique solution of the local model.

Conjecture 5.4.1. Let u0 P L2pΩq. Let uε be the unique non-local solution of (5.15)
and v the unique local solution of (L-Osm). Then

lim
εÑ0

sup
tPr0,T s

}uεp�, tq � vp�, tq}L2pΩq � 0

In [3, Ch.4], the above convergence is proven in the particular case of a constant
vector field d, with zero divergence, exploiting the semigroup formulation of the two
solutions, involving the fundamental solutions Gt and Sεptq of the local and non-local
diffusion equation, respectively. In our case,

vpx, tq � G2
t � u0 �

» t

0

G2
t�s �Bvpsq ds (5.16)

uεptq � Sεptq � u0 �
» t

0

Sεpt� sq �Bεuεpsqds (5.17)
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Using triangular inequality, for all t P r0, T s we have:

}uεptq � vptq}L2pΩq ¤

¤ }Sεptq � u0 �Gptq2 � u0}L2pΩq �
����» t

0

Sεpt� sq �Bεuεpsqds�
» t

0

G2pt� sq �Bvpsqds
����
L2pΩq

�

� }Sεptq � u0 �Gptq2 � u0}L2pΩq�

�
����» t

0

Sεpt� sq � pBεpuεpsq � vpsqqqds�
» t

0

pSεpt� sq �Bεvpsq �G2pt� sq �Bvpsqqds
����
L2pΩq

¤

¤ }Sεptq � u0 �Gptq2 � u0}L2pΩqlooooooooooooooooomooooooooooooooooon
I0ptq

�
» t

0

}Sεpt� sq � pBεpuεpsq � vpsqqq}L2pΩq dsloooooooooooooooooooooooooomoooooooooooooooooooooooooon
I1ptq

�

�
» t

0

��pSεpt� sq �Bεvpsq �G2pt� sq �Bvpsqq��
L2pΩq

dsloooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
I2ptq

The truthfulness of the Conjecture is therefore related to the estimation of the terms
I0, I1, I2, involving the convergence of the non-local operators Aε, Bε to the corresponding
local operators A,B. In the following, we report partial results about this property.

We consider a sequence of functions uε P L2pΩq weakly converging in L2 norm to a
function v P W 1,2pΩq. With this assumption, we observe in the next two Propositions
that

pAε �Bεquε ÝÑ pA�Bqv weakly in L2pΩq

Proposition 5.4.1. Let uε be a sequence of functions in L2pΩq, converging to v P
W 1,2pΩq weakly in L2 norm. Then Aεuε Ñ Av weakly in L2 norm.

Proof. Let ξ P C8
0 pΩq be a smooth test function. We observe that»

RN

pAεuεqpxqξpxqdx � (via change of variables z � px� yq{ε q

�
»
RN

»
RN

2W 2pzq
ε2

rξpx� εzq � ξpxqs dz uεpxq dx

�
»
RN

»
RN

2W 2pzq
ε2

�
x∇ξpxq, εzy �

» 1

0

» 1

0

xD2ξpx� stεzqεz, sεzy dt ds
�
dz uεpxq dx

� 0�
»
RN

»
RN

2W 2pzq
�» 1

0

» 1

0

sxD2ξpx� stεzqz, zy dt ds
�
dz uεpxq dx

where we used the symmetry of W pzq and the regularity of ξ. Since ξ P C8
0 pΩq,
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uε P L2pΩq and W P C8
0 pΩq, we can pass to the limit as εÑ 0.»

RN

pAεuεqpxqξpxqdx ÝÑ
»
RN

»
RN

2W 2pzq
�» 1

0

» 1

0

sxD2ξpxqz, zy dt ds
�
dz vpxq dx �

�
»
RN

¸
ij

D2
ijξpxq

»
RN

W 2pzqzizj dz vpxqdx �

�
»
RN

∆ξpxqvpxqdx � �
»
RN

∆vpxqξpxqdx �
»
RN

Avpxqξpxqdx .

Proposition 5.4.2. Let uε be a sequence of functions L2pΩq, converging to v P W 1,2pΩq
weakly in L2 norm. Then Bεuε Ñ Bv weakly in L2 norm.

Proof. Let ξ P C8
0 pΩq be a smooth test function. We observe that»

RN

pBεuεqpxqξpxqdx � (via change of variables z � px� yq{ε q

� �
»
RN

¸
ij

»
RN

W 2pzqzizj
» 1

0

» 1

0

Biξpx� sεzqdjpx� tεzq ds dt dz uεpxq dx

Since ξ P C8
0 pΩq, d P L8pΩq and uε P L2pΩq, we can pass to the limit as εÑ 0 and get»

RN

pBεuεqpxqξpxqdx ÝÑ �
»
RN

¸
ij

»
RN

W 2pzqzizj Biξpxqdjpxq dz vpxq dx �

� �
»
RN

x∇ξpxq,dpxqy vpxq dx �

�
»
RN

divpdvqpxq ξpxq dx �
»
RN

pBvqpxqξpxq dx

To prove the Conjecture, it is therefore necessary to show that:

1. the non-local equation defines a converging sequence of solutions uε P L2pΩq,
2. the corresponding limit is a function v P W 1,2pΩq.

We expect these properties to be related to a space regularity of the non-local solu-
tions uε, stronger than uε P L2pΩq, but weaker than uε P W 1,2pΩq. The ongoing research
is focused on these relations.
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5.5 Graph discretization and applications

We consider a connected undirected weighted graph G � pV,E,W q with vertices
V � tviu, edges E � teiju and symmetric weights wij ¥ 0. Let FV and FE, as de-
fined in (1.18), the set of scalar functions acting on vertices and edges, respectively. We
aim to discretize on the graph G the osmosis PDE with positive initial value u0:#

ut � ∆u� divpduq
up0q � u0 ¡ 0

(5.18)

First, we focus on the spatial discretization of the right-hand-side of the equation, by
defining the differential operators gradient, divergence and Laplacian.

5.5.1 Space Discretization

The non-local model construction in Section 3 can easily be translated into the discrete
graph domain. In fact, the function u is sampled on the graph vertices, obtaining a
vector u � pu1, . . . , unV

q P FV , while the non-local drift dpx, yq in (5.13) is discretized as
a function d P FE, with value dri,js on the edge connecting vertices vi and vj. Finally,
the weights wij have the role of the kernel W

2pxq and, on a vertex vi, the kernel involves
only the vertices in the first ring N piq.

With this analogy, the definitions of graph gradient and divergence correspond to the
ones already given in Def. 4.1.2-4.1.3. Consequently, the graph Laplacian is defined as
follows:

Definition 5.5.1. The graph Laplacian is the operator ∆ : FV Ñ FV defined as
∆u :� div p∇uq. At vertex i, its value is:

p∆uqi � 2
¸

jPN piq

wij puj � uiq (5.19)

For the transport term, we use again the definitions of graph gradient and divergence
and compute divpduq � divpdqu� xd,∇uy, with u P FV and d P FE, as

divpduqi � 2
¸

jPN piq

?
wijdri,jsui �

¸
jPN piq

?
wijdri,jspuj � uiq �

¸
jPN piq

?
wijdri,jspui � ujq

(5.20)

Using (5.19) and (5.20), we get the final spatial discretization of the osmosis PDE

p∆u� divpduqqi �
¸

jPN piq

�
2wij puj � uiq � ?

wijpui � ujqdri,js
�

(5.21)
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Separating the terms related to ui and uj, we can express the differential operator ∆u�
divpduq as a matrix-vector product

∆u� divpduq � Au, with A P Rn,

Aik �
#
2wik �?

wikdri,ks if i � k;°
jPN piq

��2wij �?
wijdri,js

�
if i � k.

(5.22)

The matrix A respects some important properties, that we analyze in the following
proposition.

Proposition 5.5.1 (Properties of A). Consider A defined in (5.22). Then:

1. A is not symmetric;

2. A has column sums zero;

3. A is irreducible.

Proof. 1. A is not symmetric because d is antisymmetric.
2. Since wik � 0 if k R N piq, W is symmetric and d is antisymmetric, then we have

ņ

i�1

Aik �
¸
i�k

Aik � Akk �
¸

iPN pkq

�
2wik �?

wikdri,ks
�� ¸

jPN pkq

��2wkj �?
wkjdrk,js

� � 0

3. The digraph associated with A is simply the graph G, which is connected, and
therefore the matrix is irreducible (see [13, Ch.2]).

5.5.2 Time Discretization

In the previous section, we have discretized the right-hand-side of the PDE (5.18), ob-
taining ut � Au. For the time discretization on the left-hand-side, we define a time-step
τ ¡ 0 and denote as uk the value of the function u at time kτ . We consider two options:

� Explicit scheme:

uk�1 � uk

τ
� Auk ùñ uk�1 � pI � τAquk (EXP)

� Implicit scheme:

uk�1 � uk

τ
� Auk�1 ùñ uk�1 � pI � τAq�1uk (IMP)
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Both the evolution schemes can be written as uk�1 � Puk, with the appropriate
definition of P . In [124], the authors proved the following proposition, that analyzes the
evolution of u depending on some properties of A.

Proposition 5.5.2 (Prop.2 in [124]). Consider the process u1ptq � Auptq, starting from
up0q � u0 P Rn

�. Suppose that A P Rn�n satisfies the following properties:

P1) All column sums of A are 0;

P2) A has non-negative off-diagonal entries;

P3) A is irreducible;

Consider the schemes:

1. explicit: uk�1 � Puk � pI � τAquk, with τ   1{aii for all i � 1, . . . , n;

2. implicit: uk�1 � Puk � pI � τAq�1uk, with τ ¡ 0;

Then, in both cases, the following results hold:

a) the average grey value is preserved:

µpuq :� 1

n

ņ

i�1

uki �
1

n

ņ

i�1

pu0qki @ k ¡ 0

b) The evolution preserves positivity: uki ¡ 0 for all i � 1, . . . , n, k ¡ 0;

c) There exists a unique steady-state for k Ñ 8, which is the simple eigenvector
w P Rn

� of P to the eigenvalue 1. It has the same average grey value as u0.

As seen in Prop. 5.5.1, conditions P1 and P3 are verified by construction, while
condition P2 depends on the drift term d.

We consider a specific expression for d, defining the canonical drift term as follows:

Definition 5.5.2. Let v P Rn
� be a reference function defined on the vertices V of

the graph G. The canonical drift term is d � ∇ ln v � ∇v{v, discretized on each
half-edge ri, js as

dri,js �
2
?
wijpvj � viq
vj � vi

. (5.23)
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We can easily test that the definition of the non-local drift in (5.13) is coherent. In
fact, for d � ∇ ln v, we have

dpx, yq � Wεpx� yq
» 1

0

x∇ ln vpx� tpy � xqq, y � xydt � Wεpx� yq rln vpx� tpy � xqqs10 �
� Wεpx� yqpln vpyq � ln vpxqq � p∇NL ln vqpx, yq (5.24)

The next Proposition shows that such d fulfills condition P2 too and, furthermore,
allows to explicitly know the steady-state of the evolution process.

Proposition 5.5.3. Let v P Rn
� be a reference function defined on the vertices V of

the graph G. Consider d in canonical form (5.23). Then A defined in (5.22) verifies

condition P2. Moreover, the steady-state of the evolution process ut � Au is w � µpu0q
µpvq

v,

where µp�q is the average grey value of Prop. 5.5.2.

Proof. We just need to observe that dri,ks ¤ 2wri,ks.

dri,ks � 2wi,kpvk � viq
vk � vi

¤ 2wi,k ðñ pvk � viq
vk � vi

¤ 1

which is true since v is strictly positive. Hence, A verifies all the conditions P1, P2, P3
from Prop. 5.5.1. In order to find the steady-state eigenvector, we first observe from
simple computations that Av � 0. Therefore:

� in the explicit case, Pv � pI � τAqv � v;

� in the implicit case, P�1v � pI � τAqv � v ùñ Pv � v.

Hence, v is the simple eigenvector of P to the eigenvalue 1. Since the evolution preserves
the average grey value, the steady-state is w � c v, with c � µpu0q{µpvq.

5.6 Numerical results

We test the correctness of the proposed graph discretization of the osmosis model with
some simple examples 1 , using as G the graph structure inherited by the mesh approx-
imation of a surface S � R3 and as functions u0, u, v : V Ñ R3 color functions defined
on the vertices, acting on each RGB channel separately.

In the first test, depicted in Fig.5.5, we set v as reference function, d � ∇v{v the
canonical drift and u0 � µpvq a constant initial data. As expected, the osmosis drives
the process towards a steady-state w that corresponds to the reference function v.

Same result we obtain setting u0 � pµpvq{µpū0qqū0, with ū0 P Rn�3 generated on each
component by a random uniform distribution in r0, 1s.
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Figure 5.5: From the left: u0 constant, w � v result and reference, u0 random, w � v
result and reference.

Figure 5.6: Left: mask Vb. Centre: Initial data u0 � v � f , with shadowed region VS.
Right: result w.

A further example is inspired by the applications of the osmosis model in image
processing, described in Sec. 1.2. Given a function f representing colors on a mesh G,
with a shadow region S � S, identified by a corresponding subset of vertices VS. We set
both the initial data u0 and the reference data v to coincide with f . We identify a set
Vb of vertices around the boundary of VS and set the drift term as prescribed in (5.4),
which, in discrete graph setting, corresponds to

dri,js �
#

2wi,jpvj�viq

vj�vi
if vi, vj R Vb and j P N piq

0 else

Figure 5.6 shows that, as in the image context, the osmosis is able to balance the color
intensity outside and inside the shadowed region. However, around the shadow boundary
the diffusion effect produces oversmoothing, losing information about the color feature
of the surface.

1courtesy of Anass Nouri, Christophe Charrier, Olivier Lezoray - Greyc 3D Colored Mesh Database,
Technical report, 2017. https://nouri.users.greyc.fr/ColoredMeshDatabase.html.
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To avoid this problem, in Chapter 6 we propose a non-linear version of the osmosis
PDE model, able to vary the diffusion intensity in the different regions of the domain.
We analyze results only in the case of image shadow removal, but the discretization
provided in Sec.5.5.1 allows to extend the application to 3D surfaces.

With the same argument, we observe that the tasks of compact data representation
and image cloning are easily adapted in the case of color functions defined on a graph G
discretely representing a surface in R3.

Since osmosis can be applied to any kind of positive data defined on a graph, it is
potentially an extremely effective tool for surface processing tasks. In Chapter 7, we
propose preliminary work on the use for surface inpainting and cloning, where osmosis
acts directly on the Euclidean or differential coordinate functions defined on the mesh
vertices.



Chapter 6

Non-linear PDE models for image
osmotic flow

In Sec.5.1, we have observed how the linear osmosis model (5.2) can be employed in
image processing for applications such as shadow/light-spot removal, compact data rep-
resentation and cloning.

This formulation, despite correctly performing these data-integrating tasks, may suf-
fer from some reconstruction artifacts (typically, over-smoothing) due to the underlying
linear smoothing enforced by the diffusion terms. In particular, in shadow/light-spot
removal the drift term is defined as in (5.4), causing pure diffusion in the boundary be-
tween two differently lid regions of the image, with consequent possible loss of important
features.

This reason justifies the research for different non-linear variants of the models. For
example, in [93] the model is anisotropic, thanks to the use of a positive symmetric matrix
field D : Ω Ñ R2 encoding local directional information. It provides better results but
with a high computational cost due to the computation of D through a tensor voting
strategy.

In this Chapter we present a non-linear version of the osmosis PDE model that
exploits a scalar positive diffusivity function g : Ω Ñ R, thus promoting isotropic edge-
stopping diffusion.

Analytically, we prove that the proposed evolution model maintains the same con-
servation properties of the original linear model and that it can be interpreted as the
gradient flow of suitable non-smooth energy for specific choices of the drift term. We
then show that analogous properties hold also at a discrete level, whenever appropriate
finite-difference discretization stencils and explicit and semi-implicit schemes are used.
For those schemes, we prove conditional and unconditional stability, respectively. Uncon-
ditional stability is particularly interesting from a computational viewpoint as it allows
for the computation of the desired steady-state solution. The proposed model is fully au-
tomatic as no hyperparameters need to be tuned. The algorithm1 results are compared

1codes freely available at https://github.com/giusepperecupero/non-linear-osmosis.git
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with the ones obtained with the standard linear osmosis model, with the anisotropic
version [93] and with other state-of-the-art methods.

For example, a sophisticated approach has been proposed in [10] where a non-local
version of the osmosis operator along with an anisotropic regularization term has been
integrated into a variational formulation. This model achieves good performance in
shadow removal, at the price of a high computational cost. Alternative approaches
specific to the shadow removal task are described in [47, 46, 33, 52, 71], based, for
instance, on suitable mapping into appropriate color spaces and/or statistical learning.

The Chapter is structured as follows. In Section 6.1 the proposed continuous non-
linear osmosis model is described and its conservation and variational properties are
proved. In Section 6.2 spatial and temporal discretization schemes are studied, in partic-
ular from the point of view of consistency with the analogous properties in the continuous
setting and in terms of stability and convergence. In Section 6.3 several results for three
different imaging applications (shadow removal, light removal and compact data repre-
sentation) are shown, confirming that the use of the proposed non-linear model improves
upon linear and state-of-the-art methods.

Notation In Section 6.1 we will use the bold notation to denote vector fields in RN .
To avoid unnecessary heavy notation in the discretized setting introduced starting from
Section 6.2, we will use standard (unbold) notation to denote both vectors in RN and
matrices in RN�N . We analyze the model properties in the simple case of greyscale
images. In case of color images, the functions u � puR, uG, uBq, v � pvR, vG, vBq and
u0 � puR0 , uG0 , uB0 q have values in pR�

�q3 and the straightforward extension of the model
treats separately each R, G, B channel.

6.1 The continuous non-linear model

Given a rectangular image domain Ω � R2 with boundary BΩ and a finite time T ¡ 0,
let d : Ω Ñ R2 be a given drift vector field, u0 P L8pΩ;R�

�q a positive greyscale image
(the extension to the RGB case is straightforward) and g : Ω�p0, T s Ñ R�

� be a positive
(non-linear) diffusivity function driving the evolution process. The proposed non-linear
osmosis model is given by the following drift-diffusion PDEs:

Btupx, tq � div pgpx, tq p∇upx, tq � dpxqupx, tqqq for px, tq P Ω� p0, T s, (6.1)

which we endow with homogenous Neumann boundary conditions and initial condition#
⟨∇u� du,n⟩ � 0 on BΩ� p0, T s;
upx, 0q � u0pxq on Ω.

(6.2)
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with g defined as

gpx, tq :� gp|spx, tq|q :� 1

|spx, tq| , with spx, tq :� ∇upx, tq � dpxqupx, tq (6.3)

in order to normalize the argument of the divergence, balancing the osmosis flow evo-
lution, consisting of both diffusion and transport effects, in the different regions of the
domain.

The following result shows that, in general, for any positive diffusivity function g the
model (6.1) enjoys interesting conservation properties.

Proposition 6.1.1 (Conservation properties). Any solution u : Ω � p0, T s Ñ R of the
non-linear osmosis model (6.1) satisfies the following properties:

1. The average grey value is preserved:

1

|Ω|
»
Ω

upx, tqdx � 1

|Ω|
»
Ω

u0pxqdx �: µpu0q @t ¡ 0; (6.4)

2. The evolution preserves non-negativity:

upx, tq ¥ 0 @x P Ω, @t ¡ 0. (6.5)

Proof. 1) Define, for all t P p0, T s, mptq :� p³
Ω
upx, tqdxq{|Ω|. Then, by (6.1),

dm

dt
� 1

|Ω|
»
Ω

Btupx, tqdx � 1

|Ω|
»
Ω

div pgpx, tqp∇upx, tq � dpxqupx, tqqq dx �

� 1

|Ω|
»
BΩ

⟨gps, tqp∇ups, tq � dpsqups, tqq,npsq⟩ ds � 0, @t ¡ 0

thanks to the divergence theorem and by imposing Neumann boundary conditions.
2) Since upx, 0q � u0pxq ¡ 0 a.e., let now τ ¡ 0 be the smallest time such that

minx upx, tq � 0. Suppose that this minimum is obtained at a ξ P intpΩq. Then upξ, τq �
0 and ∇upξ, τq � 0. Computing the time derivative of u at point pξ, τq gives:
Btupξ, τq � pdivpgp�, �qp∇up�, �q � dp�qup�, �qqq pξ, τq �

� gpξ, τq∆upξ, τq � ⟨∇upξ, τq,∇gpξ, τq⟩� divpdp�qgp�, �qup�, �qqpξ, τq �
� gpξ, τq∆upξ, τq � pdiv dp�qqpξ, τqupξ, τqgpξ, τq � ⟨dp�q,∇ppguqp�, �qq⟩ pξ, τq �
� gpξ, τq∆upξ, τq � ⟨dp�q,∇up�, �q gp�, �q � up�, �q∇gp�, �q⟩ pξ, τq �
� gpξ, τq∆upξ, τq � gpξ, τq∆upξ, τq,

by standard properties of the divergence operator. Then, at pξ, τq the evolution behaves
as the diffusion equation ut � g∆u, where g is a positive function. Hence, the operator
L :� g∆ is elliptic so the standard minimum/maximum principle can be applied. This
tells us that for any t ¥ τ the solution of the non-linear model remains non-negative, as
desired.
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While the last results hold for any positive g, the specific formulation in (6.3) is used
to characterize the steady states of (6.1) as minimizers of a suitable energy functional.
To show that, we first need the following lemma.

Lemma 6.1.1. Let Ω be an open rectangular domain in R2 and w P C1pΩ,R2q X
C0pΩ,R2q. Then: »

BΩ

⟨w,n⟩ z ds�
»
Ω

divpwq z dx � 0 @ z P C0pΩq, (6.6)

if and only if #
⟨w,n⟩ � 0 on BΩ
divpwq � 0 on Ω.

(6.7)

Proof. First, we remark that the function z is the same for both the two integrals (oth-
erwise the Theorem would be trivial). Now, eq. (6.7) implies eq. (6.6), obviously. For
the inverse implication, consider the two alternative cases: either divpwqpxq � 0 for all
x P Ω, or there exists a point x0 P Ω s.t. divpwqpx0q � 0. We prove by contradiction
that the second case is not possible. Suppose that divpwqpx0q ¡ 0. Since w P C1pΩ;R2q,
then there exists a neighbourhood Bpx0, rq � Ω s.t. divpwqpxq ¡ 0 for all x P Bpx0, rq.
Now, let z P C0pΩq be a function satisfying (6.6). Now define

z� :� z � ΦpχBpx0,rqq P C0pΩq

where ΦpχBpx0,rqq is a non-negative smooth regularization of χBpx0,rq, with support in
Bpx0, rq. Then, we have»

BΩ

⟨w,n⟩ z� ds�
»
Ω

divpwq z� dx �

�
»
BΩ

⟨w,n⟩ z ds�
»
Ω

divpwq z dx�
»
Ω

divpwqΦpχBpx0,rqq dx �

� 0�
»
Ω

divpwqΦpχBpx0,rqq dx �

� �
»
Bpx0,rq

divpwqΦpχBpx0,rqq dx   0

because supppΦpχBpx0,rqqq � Bpx0, rq, Φpxq ¥ 0 and divpwq ¡ 0 in Bpx0, rq. We have
thus reached a contradiction, as for z� P C0pΩq equation (6.6) is not verified. Therefore,
it must be divpwqpxq � 0 for all x P Ω. We claim that this implies also that»

BΩ

⟨w,n⟩ z ds � 0 @ z P C0pΩ,Rq. (6.8)
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By contradiction, consider a point x1 P BΩ s.t. ⟨w,n⟩ px1q � 0 (suppose positive).
Since w P C0pΩ;R2q, there exists Bpx1, rq s.t. ⟨w,n⟩ pxq ¡ 0 for all x P Bpx1, rq X BΩ.
Let now z P C0pΩq be a function satisfying (6.8) and define z� :� z � Φ̃pχBpx1,rqq, where
Φ̃p�q is as a smooth regularisation of χBpx1,rq with support in Bpx1, rq. Then,»

BΩ

⟨w,n⟩ z� ds �
»
BΩ

⟨w,n⟩ z ds�
»
BΩ

⟨w,n⟩ ΦpχBpx1,rqq ds �

� 0�
»
BΩ

⟨w,n⟩ ΦpχBpx1,rqq ds �

�
»
Bpx1,rqXBΩ

⟨w,n⟩ ΦpχBpx1,rqq ds ¡ 0

because supppΦpχBpx1,rqqq X BΩ � Bpx1, rq X BΩ, Φpxq ¥ 0 and ⟨w,n⟩ pxq ¡ 0 in
Bpx1, rq X BΩ. We thus built a function z� that does not satisfy (6.8), which is of
course a contradiction. Therefore, ⟨w,n⟩ pxq � 0 for all x P BΩ.

Thanks to this lemma, we are now able to interpret the non-linear PDE model (6.1)
as the gradient flow of an energy functional Epuq in the special case when the diffusivity
function g is defined as in (6.3).

Proposition 6.1.2. Let v P H1pΩ;R�
�q be a given reference image, d � ∇plog vq the

canonical drift vector field associated to v, and g be defined as in (6.3). Then, a function
u� : Ω� p0, T s Ñ R� satisfies the steady state equation

div pgp|∇u� � du�|q p∇u� � du�qq � 0 (6.9)

with boundary condition (6.2) associated to the osmosis model (6.1) , if and only if u�

is a stationary point of the energy functional

Epuq :�
»
Ω

���∇�u
v

	
pxq

��� dx. (6.10)

Moreover, u� is a multiplicative rescaling of v where the rescaling constant is the ratio
between the average gray value of u0 � up�, 0q and v, i.e.:

u�pxq � µpu0q
µpvq vpxq, @x P Ω.

Proof. Conventionally, for x P Ω and t P p0, T s such that ∇upx, tq � dpxqupx, tq � 0, we
set

∇upx, tq � dpxqupx, tq
|∇upx, tq � dpxqupx, tq| � 0.
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Let us now consider any test function z P C8
c pΩ;R�

�q. We have�
d

dη
Epu� ηzq

�
��η�0

�
�»

Ω

d

dη

���∇�u� ηz

v

	��� dx
��η�0

�

�
�»

Ω

〈 ∇pu�ηz
v
q

|∇pu�ηz
v
q| ,∇

�z
v

	〉
dx


��η�0

�

�
»
Ω

〈 ∇pu
v
q

|∇pu
v
q| ,∇

�z
v

	〉
dx �

�
»
Ω

〈
∇u� du

|∇u� du| ,∇
�z
v

	〉
dx �

�
»
Ω

�
div

�
∇u� du

|∇u� du| �
z

v



� z

v
div

�
∇u� du

|∇u� du|

�

dx �

�
»
BΩ

〈
∇u� du

|∇u� du| �
z

v
,n

〉
ds�

»
Ω

z

v
div

�
∇u� du

|∇u� du|


dx �

�
»
BΩ

〈
gp|∇u� du|qp∇u� duq � z

v
,n

〉
ds�

»
Ω

z

v
div pgp|∇u� du|qp∇u� duqq dx

(6.11)

If a function u� satisfies the steady-state equation (6.9) and the homogeneous Neumann
boundary conditions (6.2), then the two integrals in (6.11) are zeros and u� is a stationary
point of the energy Epuq. The reverse holds thanks to Lemma 6.1.1.

To conclude the proof, we observe that every image u� � cv, with c P R�
�, is a

stationary point of the energy Ep�q. Hence, such functions are solutions of the steady-
state equation (6.9). Since the osmosis evolution preserves the average grey value by
Proposition 6.1.1, one can easily show that:

µpu0q � µpu�q � 1

|Ω|
»
Ω

cvpxqdx � cµpvq,

whence c � µpu0q{µpvq ¡ 0.

An analogous result can be proved as a corollary of the previous proposition by
allowing further dependence on a smoothing parameter p P r1, 2q. In Section 6.3, we test
a non-linear osmosis model for different values of p, evaluating the practical effects of its
choice on exemplar tests.

Corollary 6.1.1. Under the same assumptions of Proposition 6.1.2 and defining for
p P r1, 2q the diffusivity term gp as

gppx, tq :� gpp|spx, tq|q :� 1

|spx, tq|p , @px, tq P Ω� p0, T s, (6.12)
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then the steady-state of the energy functional

Eppuq :�
»
Ω

v1�p

2� p

���∇�u
v

	
pxq

���2�p dx (6.13)

satisfies:
div pgpp|∇u� � du�|q p∇u� � du�qq � 0. (6.14)

A possible direction of future work consists in investigating the p-osmosis model (6.14)
so as to extend the osmosis filtering to spatially adaptive filtering, as proposed for image
denoising, e.g., in [9].

6.2 Model discretisation using finite difference

schemes

In this section, we introduce fast and stable computational methods for model (6.1) by
rewriting it using the linearity of the divergence operator as follows

Btu � div pgp|∇u� du|q∇uq � div pgp|∇u� du|qduq , (6.15)

along with the boundary conditions and initial condition u0 P L8pΩ;R�
�q in (6.2).

We approximate the solution of (6.15) on a regular grid Ωh � Ω by approximating
the space domain Ω of the PDE, where h ¡ 0 denotes the spatial grid size along both
horizontal and vertical directions.

We first apply a semi-discretization in space on Ωh, and then a full discretization in
time on p0, T s using both explicit and semi-implicit strategies, with the final objective
of providing a numerical scheme enjoying stability to any fixed time-step discretization
parameter.

The image can be interpreted as a special type of graph, where the vertices coincide
with pixels, while edges connect two adjacent pixels and have constant weights equal to
1{h. In this setting, the semi-discretization in space of the PDE model is easily derived
from the graph gradient and divergence operator defined in 4.1.2-4.1.3.

However, we proceed maintaining the image setting, which provides an intuitive un-
derlying structure for the data, computing an analog discretization via Finite Difference
Method (FDM).

In the following, we thus assume u P Rmx�my to be a discretised image defined on Ωh

of size N :� mxmy and we denote by ui,j the value of u at pixel pi, jq for i � 1, . . . ,mx,
j � 1, . . . ,my. To avoid singularities appearing due to the special choice of the diffusivity
function g in (6.3), we use an ϵ-regularised version defined in terms of 0   ϵ ! 1 as
gpsq � 1{|s|ϵ with s � ∇u� du, with

|s|ϵ :�
a
psxq2 � psyq2 � ϵ
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where sx and sy denote the horizontal and vertical components of s, respectively. Con-
sidering the canonical drift term d � ∇ log v � ∇v{v, the value of g at pi, jq is ap-
proximated using central finite difference schemes for the discretization of the partial
first-order derivatives by

gi,j � gpsijq (6.16)

sij �
�
ui�1,j � ui�1,j

2h
� vi�1,j � vi�1,j

2h
� ui,j
vi,j

,
ui,j�1 � ui,j�1

2h
� vi,j�1 � vi,j�1

2h
� ui,j
vi,j



.

Figure 6.1: Finite difference stencil: the pixel neighborhood of pi, jq are denoted by south
(S), north (N), east (E), west (W).

6.2.1 Semi-discretisation in space

The spatial differential operators in (6.15), will be discretized by locating the values of
∇u, d � pdx, dyq, u and the ϵ-regularised diffusivity function g on the edges between two
adjacent pixels, following the stencil illustrated in Fig. 6.1. Hence, the semi-discretisation
in space of (6.15) at pi, jq applying second-order central finite differences reads:

pBtuqij � 1

h

� �
∇Nu � gNi,j

�∇Su � gSi,j
�∇Eu � gEi,j

�∇Wu � gWi,j

��
� �

dyN � gNi,j
� uNi,j

� dyS � gSi,j
� uSi,j

� dxE � gEi,j
� uEi,j

� dxW � gWi,j
� uEi,j

� �
(6.17)

where each term is defined as in Table 6.1.
Note that the discretization (6.17) also holds on boundary pixels, having preliminarily

set d � 0 on the boundary edges and mirroring the image therein in order to satisfy the
Neumann homogeneous boundary condition (6.1).
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∇Nu � ui�1,j�ui,j
h

, ∇Su � ui�1,j�ui,j
h

, ∇Eu � ui,j�1�ui,j
h

, ∇Wu � ui,j�1�ui,j
h

,

gN � gi�1,j�gi,j
2

, gS � gi�1,j�gi,j
2

, gE � gi,j�1�gi,j
2

, gW � gi,j�1�gi,j
2

,

uN � ui�1,j�ui,j
2

, uS � ui�1,j�ui,j
2

, uE � ui,j�1�ui,j
2

, uW � ui,j�1�ui,j
2

,

dyN � 2pvi�1,j�vi,jq

hpvi�1,j�vi,jq
, dyS � 2pvi�1,j�vi,jq

hpvi�1,j�vi,jq
, dxE � 2pvi,j�1�vi,jq

hpvi,j�1�vi,jq
, dxW � 2pvi,j�1�vi,jq

hpvi,j�1�vi,jq
.

Table 6.1: FD discretization schemes.

We thus rewrite (6.17) by incorporating the discretisations reported in Table 6.1 and
collecting the coefficients of the pixel pi, jq and its neighbours:

pBtuqi,j � ui�1,j
gS
h

�
1

h
� dyS

2



� ui�1,j

gN
h

�
1

h
� dyN

2



�

�ui,j�1
gW
h

�
1

h
� dxW

2



� ui,j�1

gE
h

�
1

h
� dxE

2



� (6.18)

�ui,j
�
gS
h

�
�1

h
� dyS

2



� gN

h

�
�1

h
� dyN

2



� gW

h

�
�1

h
� dxW

2



� gE

h

�
�1

h
� dxE

2


�
.

Note that, when d � 0 and g � 1, (6.18) reduces to the standard discretization of the
Laplacian, with stencil valued �4{h2 on the central pi, jq pixel and 1{h2 on its neighbors.

In order to represent (6.18) in matrix-vector form, we first rearrange into a single
vector uptq � pu1ptq, . . . , uNptqqT P RN the values of the evolving image upT q at each
pixel i � 1, . . . , N . Then, we write the semi-discretized model as the Cauchy problem:#

du
dt
� Apuquptq,

up0q � u0,
(6.19)

where Apuq P RN�N is a non-symmetric sparse matrix, with only five non-zero diagonals
and entries given by

aij :�

$'''''&'''''%

¸
kPN piq

gk � gi
2h2

�
�1� vk � vi

vk � vi



if i � j,

gj � gi
2h2

�
1� vj � vi

vj � vi



if i � j, j P N piq,

0 if i � j, j R N piq.

(6.20)
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where N piq represents the set of the neighbours in directions tN,E,O,W u of the pixel
i and gi is evaluated at pixel i according to formula (6.16).

The next proposition shows some useful properties of the matrix Apuq.

Proposition 6.2.1. For every vector u P RN , let Apuq P RN�N be the matrix defined by
(6.20). Then, the following properties hold:

1. Apuq has non-negative off-diagonals,

2. all column sums of Apuq are 0,

3. Apuq is irreducible,

4. Apuqv � 0.

Proof. 1) According to (6.20), if pixel i and pixel j are not adjacent, then the entry aij
is zero. On the other hand, as gi, gj, vi, vj ¡ 0, then aij ¡ 0, @i, j.

2) Considering an arbitrary column l of A, we have:

Ņ

i�1

ai,l � al,l �
¸

jPN plq

aj,l �

�
¸

jPN plq

gj � gl
2h2

�
�1� vj � vl

vj � vl



�

¸
jPN plq

gl � gj
2h2

�
1� vl � vj

vl � vj



� 0.

3) Since ai,j ¡ 0 for all adjacent i, j, so the directed graph GA associated to A is
strongly connected and A is irreducible.

4) The value of the ij coordinate of the vector Apuqv is obtained from the right hand
side of the expression (6.17), substituting u with v. Writing explicitly every term as
described in Table (6.1), it is easy to see that they cancel out. Therefore Apuqv � 0.

The properties shown in the lemma above are crucial for the following. Typically, they
are proved in the context of symmetric space-discretisation matrices (see, e.g., [130]), but
have been shown to hold also in the case of non-symmetric diffusion-transport operators
such as the osmosis one, see, e.g., [93, 124].

6.2.2 Time discretisation

We present two possible fully discretized approximations of (6.19), obtained by applying
Euler integration methods in time. Let τ ¡ 0 denote a constant time-step and for
k � 0, 1, . . . let uk be the approximation of u at discrete time kτ P p0, T s.
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� Explicit discretisation: We first consider the simplest space discretisation at the
kth discrete time step that leads to the following full explicit scheme

uk�1 � uk

τ
� Apukquk ùñ uk�1 � pI � τApukqquk. (E)

� Semi-implicit discretization: Alternatively, we can consider a semi-implicit
scheme where the non-linear terms of the equation are treated from the previ-
ous time step, while the linear ones are considered at the current time step; this
leads to the semi-implicit scheme

uk�1 � uk

τ
� Apukquk�1 ùñ uk�1 � pI � τApukqq�1uk. (S.I.)

In both cases, the time-stepping process approximating (6.19) can be represented in
terms of a matrix P P RN�N as #

uk�1 � P pukquk,
u0 � u0.

(6.21)

where
P � I � τA, in (E), P � pI � τAq�1 in (S.I.). (6.22)

We have already encountered the evolution process (6.21) in Sec. 5.5.2, for linear
osmosis. In that case, Prop. 5.5.2 shows preservation and convergence results for the
explicit and purely implicit schemes, using solely assumptions on the matrix A, namely:
zero column sums, non-negative off-diagonals entries and irreducibility.

As seen in Prop. 6.2.1, the matrix Apuq defined in (6.20) respects such conditions
for all u P Rn and thus we can directly apply Prop. 5.5.2 in our case, for explicit and
semi-implicit schemes, obtaining the following Theorem.

Theorem 6.2.1. Let f P pR�
�qN . Then, the solution uk computed at discrete time kτ with

g defined as in (6.16) preserves its mass and non-negativity for any k ¥ 1. Moreover, it
converges to the steady-state solution u� defined by

u� � µpu0q
µpvq v, (6.23)

if

1. 0   τ ¤ 1{maxt|a1,1|, ..., |aN,N |u, when the explicit scheme (E) is applied

2. τ ¡ 0, when the semi-implicit scheme (S.I.) is applied.

Numerically, the proposed semi-implicit scheme (S.I.) can be solved at each iteration
by means of any efficient (preconditioned) linear iterative solver suitable for sparse,
diagonally dominant M-matrices, such as e.g., SOR (successive over-relaxation) method.
Further inquiries on the asymptotic spectral distribution of the sequence of the P pukq
matrices may suggest how to construct effective preconditioners.
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6.3 Numerical results

As described in Section 1.4, upon the specific choice of the drift term d in (6.1), the non-
linear osmosis model can be applied to the shadow removal (see Section 6.3.1), light-spot
removal (see Section 6.3.2) and the compact image representation (see Section 6.3.3)
tasks. We will compare qualitatively and quantitatively the results of our approach
with the ones obtained by other osmosis-based methods as well as with state-of-the-art
approaches. Furthermore, some considerations on the computational efficiency of the
proposed models will be made. Reconstruction quality will be measured in terms of
the well-known Structural Similarity Index (SSIM P r0, 1s) function between the original
non-shadowed image and the reconstructed image, due to its intrinsic dependence on
luminance, contrast and structure features. Note that the explicit iterative scheme (E)
is practically unusable for most of the examples considered, due to the constraint τ ¤
1{maxt|a1,1|, ..., |aN,N |u which for the following examples forced constraints of the order
τ   10�8. On the contrary, the unconditional stability of the semi-implicit scheme (S.I.)
allows for the use of possibly large values of τ . In the examples, we used τ � 103,
which provides convergence and a good level of accuracy only in a few iterations. For
the processing of color images, the proposed model is run on each R, G, B channel
independently. All algorithms are tested on an AMD Ryzen 5 3450U processor (2.10GHz)
with 16GB RAM using MATLAB R2021a.

6.3.1 Shadow removal

Recalling the shadow removal problem described in Section 1.4, we test the model by
setting the starting point of the osmosis evolution and the reference image as u0 � v � u0,
the given image. We remember that for this problem, the drift term d is defined as in
(5.4). This choice corresponds to considering two different evolutions in the regions
composing the image domain which explicitly read$''''''&''''''%

Btu � div

�
∇u
|∇u|



on Ωb � p0, T s

Btu � div

�� ∇u� ∇u0
u0
u���∇u� ∇u0

u0
u
���
�
 on pΩin Y Ωoutq � p0, T s

(6.24)

with boundary conditions defined as in (6.2). Note that choosing d in a canonical form
according (5.4) allows preserving the image content outside Ωb, while diffusing non-
linearly, in the form of a Total Variation flow, on Ωb itself. The intensity balancing effect
in the regions Ωin and Ωout depends solely on the evolution equation on Ωb, the region
where the drift term is set to zero. Moreover, the diffusivity function g allows tuning
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the diffusion intensity on the pixels in Ωb depending on the value of ∇u. In particular,
g slows down the diffusion on the pixels with high gradient values, which correspond to
edges that need to be preserved.

We test the performance of the proposed non-linear shadow removal model both in
the case of hard shadows and for more realistic soft-edged shadows.

In the case of hard shadows, synthetic examples f can be easily generated by a
constant multiplicative rescaling of a ground-truth image f� only in correspondence of a
bounded region S � Ω. Denoting by c P p0, 1q the (unknown) constant loss of luminosity
on S, we can construct first the shadow image by setting:

s �
#
c on S

1 on ΩzS, (6.25)

and obtain a shadowed version f of f� by Hadamard (point-wise) multiplication

f �
#
f� d s (hard shadow)

f� d pGσ � sq (soft shadow)
(6.26)

where ‘�’ denotes the standard convolution product and Gσ is a Gaussian convolution
kernel with standard deviation σ ¥ 0. Such convolution allows to generate an area of
penumbra around shadow boundaries, which is often the case in real-world images where
the shadow edges can not be precisely distinguished.

Fig. 6.2 shows the results of the proposed non-linear osmosis model solved by means
of the semi-implicit scheme on two hard-shadowed (σ � 0) images. For such images, it
is easy to distinguish whether a pixel belongs to the shadowed or to the un-shadowed
region. Hence, we can use a thin (2-pixel wide) mask covering one pixel from each side
of the boundary between the two regions. This choice is sufficient to accurately remove
the shadow while preserving all features on the shadow boundary.

Fig. 6.3 shows the results obtained for the soft-edged shadow removal problem in
correspondence of two different masks (wide and thin) and three input images where
shadows are characterized by penumbra boundaries of increasing dimension (from left
to right) corresponding to different increasing values of σ P t0, 1, 2u in (6.26). As seen
before, the thin mask is a good choice for the case of hard shadows (i.e. σ � 0), but it
becomes less effective as σ increases, i.e. as the penumbra region becomes wider, as it
cannot cover appropriately the boundary between the two regions Ωin and Ωout. In these
cases, it is necessary to enlarge the shadow mask. Using a wider one, we observe that
the shadows are properly removed and features are well-preserved, in particular near the
pixels with limited intensity variation.

Note, however, that using a large mask may result in some drawbacks, as shown in Fig.
6.4, where a wide (6-pixel) mask is used. As this choice enlarges the region where non-
linear TV-type diffusion is induced, typical TV drawbacks are observed. For instance,
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(a) Input u0 � v (b) mask 2px (c) output

Figure 6.2: Hard-shadow removal.

we observe in Fig. 6.4(b) that some artifacts appear in the attempt to connect circular
structures (see the boundary between the yellow and the green region). Furthermore, as
it can be observed in Fig. 6.4(d), when the shadow mask is too large some undesired
connectivity effect is observed. As it is well-known, the use of TV as a regulariser in
inpainting problems forces the minimization of the length of level lines causing artifacts,
a property that can be seen through the use of the standard coarea formula [108].

A possible remedy for these two drawbacks consists in employing a different diffusivity
function g. As we remarked in Corollary 6.1.1, a slight variation of the non-linear model
depending on a diffusivity function gp defined in terms of a constant parameter p P r1, 2q
as in (6.12) can be considered. The use of higher values of p helps to better identify the
regions of the shadow boundary that are crossed by the underlying edges of the image. In
fact, since the edges represents regions with high gradient values, the diffusivity functions
gppuq � 1{|∇u|p slows down the diffusion effect, thus favoring edge preservation. On the
other hand, diffusion is accelerated in constant or smooth regions.

In Figure 6.5 we show some results with p � 1 (second row) and p � 1.9 (third row)
on the images of Fig. 6.4 and on two other examples. The use of a possible space-variant
strategy adapting the value of p to the local image content would mitigate the previously
observed drawbacks and, as such, is an interesting direction for future research.

We now compare qualitatively and quantitatively our results with the ones obtained
by means of the standard linear osmosis model (5.2) and its anisotropic variant proposed
in [93].

In Fig. 6.6, some examples of hard shadow removal are shown. We notice that the
linear model is effective in removing the shadow, but produces visible blurring on the
shadow boundary. The anisotropic model is able to connect well the underlying features
of the image, but does not well balance the image intensity between the inside and the
outside of the shadow. Our model works well for both tasks, achieving good SSIM values
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in comparison with the original ground truth images.
In Fig. 6.7 we compare the results obtained by the three different models on soft-

shadowed images and real images. We observe that around the mask region our model
performs as well as the anisotropic one. However, while the anisotropic model tends to
make the whole image slightly blurred (due to the smoothing kernels required to define
the diffusion tensor W), the non-linear model preserves the sharpness of the image
everywhere.

We now compare the computational efficiency required to compute the numerical
solution of the non-linear model by using the semi-implicit scheme (S.I.) with the linear
[129] (solved with a fully implicit scheme with τ � 103), and the anisotropic model [93]
(solved by exponential integration).

In this respect, we report in Table 6.2 the execution time (in seconds) and the number
of iterations (in brackets) for the three models when applied to the images of Figure 6.6

σ � 0 σ � 1 σ � 2

6px

2px

Figure 6.3: Shadow removal on input images f corrupted by a constant shadow convolved
with convolution kernel Gσ with increasing standard deviation σ. Masks have different
thicknesses, 6px and 2px.



166 6. Non-linear PDE models for image osmotic flow

(a) Input u0 � v (b) Output (c) Input u0 � v (d) Output

Figure 6.4: Drawbacks of soft-shadow removal using a too thick (6 pixels wide) mask.

and 6.7, using as stopping criteria a mean squared error w.r.t. to the ground truth smaller
than a given tolerance for artificially corrupted images (a,b,c,d), and a sufficiently small
(10�3) relative change for real-world images (e,f,g). From a visual inspection of Fig.
6.7, we can observe that the results obtained by the anisotropic model are qualitatively
comparable with the non-linear ones, although the former require a much more significant

Figure 6.5: Soft-shadow removal using the diffusivity function gp with p � 1 (second
row) and p � 1.9 (third row).
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Input u0 � v Linear [129] Anisotropic [93] Non-linear

(a) 0.9943 0.9966 0.9979

(b) 0.9624 0.9544 0.9951

Figure 6.6: Comparison between linear, anisotropic and non-linear osmosis models on
hard-shadowed images, with associated SSIM values.

computational effort, see Table 6.2. This is due to the more sophisticated nature of the
anisotropic model which requires the computation of the matrix field W and its possible
update at every iteration. Interestingly, the proposed non-linear model appears faster
than the linear model in reaching convergence. This is due to the action of the diffusivity
term g, which accelerates the osmosis process on Ωin Y Ωout.

Finally, we provide an extensive list of comparisons with alternative approaches pro-
posed for shadow removal, all relying on a separate treatment of the three color (R,G,B)
channels. Illuminant invariant approaches can be used (as, e.g., in [47, 46]) to extract
an ”intrinsic” image from the input image so that shadow removal is treated as a reinte-
gration problem using this image as a guide to derive gradient information or similarity
measures between shadowed and lighted regions. In the context of image decomposition,
a variational approach to shadow and spot-light removal has been proposed in [57]. Color
transfer techniques, such as [76, 112], make use of gradient information to recover the
shadow-free image by solving a Poisson equation. Other methods consist in scaling the
shadow region by a suitable factor, modeling the shadow as uniform [49] or even non-
uniform [4]. Another class of solvers treats the task as a matting problem, considering
the shadow pixels as foreground and the lit pixels as background [133, 134].

In Fig. 6.8 we report a comparison between the results obtained by the proposed non-
linear osmosis model and three of the most recent and successful methods for shadow
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Linear [129] Anisotropic [93] Non-linear
(a) 3.98 (7) 27.39 (4) 1.25 (3)
(b) 6.44 (19) 29.71 (5) 1.45 (4)
(c) 11.54 (20) 20.77 (2) 1.80 (3)
(d) 8.66 (26) 18.70 (3) 3.53 (8)
(e) 31.63 (9) 1307.06 (10) 10.37 (3)
(f) 105.55 (30) 2592.00 (18) 27.08 (7)
(g) 19.14 (9) 723.48 (10) 8.62 (4)

Table 6.2: Execution time (in seconds) and number of iterations till convergence (in
brackets) for results in Fig. 6.6 (a,b) and Fig. 6.7 (c,d,e,f,g).

removal2: a deep learning approach, [71], a region-based shadow detection and removal
[52] and, finally, a variational approach based on a non-local version of the osmosis
model, [10] followed by a further contrast correction step as described by the authors.
We observe that our method produces visually pleasant results compared to state-of-the-
art methods and more sophisticated variants of the standard osmosis model [10], which
further requires a post-processing contrast correction step. Quantitatively, it outperforms
all other approaches in terms of SSIM values.

6.3.2 Spot-light removal

Recalling Section 1.4, an analogous use of the osmosis model (6.24) can be done for
the spot-light removal problem. Here, a synthetic spot-lighted image f is obtained by
Hadamard product f� d pGσ � ℓq between a light- spot-free image f� and a light image
(within a bounded lighted region L � Ω ) ℓ defined as

ℓ �
#
c on L

1 on ΩzL, (6.27)

with c ¡ 1. Positive values of the standard deviation σ of the convolution kernel Gσ

produce soft-lighted images, which require a larger mask. Fig. 6.9 shows the results for
four increasing levels of σ. Analogous comments to the ones made in the case of shadow
removal applications can be done in this case, too.

6.3.3 Compact data representation

As recalled in Section 1.4, image osmosis can also be applied to the problem of compact
data representation, by means of a proper definition of the drift term. Given an image v

2The test images have been downloaded from the ISTD dataset, available at https://github.com/
DeepInsight-PCALab/ST-CGAN.

https://github.com/DeepInsight-PCALab/ST-CGAN
https://github.com/DeepInsight-PCALab/ST-CGAN
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with average grey value µv, we thus consider M � Ωb to be a pre-computed edge-mask
via standard segmentation algorithms (Canny, Sobel, . . . ) and define the drift term as
in (5.5). Explicitly, the two equations guiding the osmosis evolution in this case then
read: $'''&'''%

Btu � div
�

∇u
|∇u|

	
on pΩzΩbq � r0, T s

Btu � div

�
∇u�∇v

v
u

|∇u�∇v
v
u|



on Ωb � r0, T s
(6.28)

with initial and boundary conditions defined as in (6.2). By setting u0 � µv on Ω and
making use of the actual values of the reference image v only on Ωb to define the drift
term d therein, by evolving (6.28) the information is diffused on ΩzΩb, which can be
approximated as the union of piecewise-constant regions in the image. The process thus
converges to an approximation w of the reference image v.

Fig. 6.10 compares the results obtained via linear and non-linear osmosis. In general,
the reconstructed images seem to have a lower contrast than the original ones, but the
non-linear model favors a better approximation, as confirmed by the SSIM values, in
particular on strongly piecewise-constant images.
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Input u0 � v Linear [129] Anisotropic [93] Non-linear

(c) 0.9712 0.9937 0.9931

(d) 0.9412 0.9464 0.9538

(e)

(f)

(g)

Figure 6.7: Results of osmosis models on artificially soft-shadowed images (with associ-
ated SSIM computed from the ground-truth unshadowed image) and natural images.
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0.9172 0.9603 0.9667 0.9676

0.7816 0.9482 0.9557 0.9726

0.8288 0.9092 0.9350 0.9488

0.8335 0.9312 0.9265 0.9650

0.8106 0.9500 0.9531 0.9733

0.6657 0.8174 0.8134 0.9008
Original Input u0 � v [52] [71] [10] ours

Figure 6.8: Comparison between shadow removal approaches, with associated SSIM
values.
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σ � 0

σ � 2

σ � 5

σ � 8
(a) Input (b) Results (c) Input (d) Results

Figure 6.9: Spot-light removal results. Input images were obtained by convolving the
light-free image with a Gaussian kernel with variance σ, whose values are reported in
the left column.
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0.8581 0.8632

0.9432 0.9626

0.9058 0.9453

0.8827 0.9160

0.9671 0.9814
Input v Edge mask Linear [124] Non-linear

Figure 6.10: Compact data representation results with relative SSIM values. Edge mask
has been computed by standard Canny segmentation.
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Chapter 7

Linear PDE models for 3D mesh
osmotic flow

In Chapter 5, we have described how to apply osmotic PDE flow to process functions
defined on graphs G. The spatial domain (the graph G associated with a mesh M
representing a surface S � R3) does not vary during the evolution.

In this Chapter, instead, we aim at applying osmotic flow (5.18) directly to the
Euclidean or differential coordinate functions that encode the structure of the spatial
domain (the mesh). As a consequence of this, the shape of the mesh itself changes
during the evolution.

This effect can be exploited to perform mesh processing tasks. In particular, we
propose two frameworks exploiting osmotic flow for mesh cloning and inpainting tasks.

7.1 Cloning via osmosis in Euclidean coordinates

Cloning task has been introduced in 1.3.4, as the operation that replaces a region of a
given surface S1 with a region of another surface S2, with no visible discontinuities.

Starting from the given meshes M1 � pV1, E1, T1q and M2 � pV2, E2, T2q, the cloning
task is formulated in (1.45) and illustrated in Fig. 7.1.

We denote the region of interest ROI and the patch-to-be-cloned P respectively as

ROI �M1, ROI � pVROI , EROI , TROIq; P �M2, P � pVP , EP , TP q (7.1)

On the surface M1, see Fig. 7.1 (a), the region of interest ROI is highlighted in yellow
color. The surface M2 is reported in Fig. 7.1 (b), with the patch P yellow-colored. The
resulting mesh, illustrated in Fig. 7.1 (c), is defined as

M� � pM1zROIq YROI� (7.2)

where ROI� � pV �, E�, T �q is obtained by cloning the geometric information of P into
ROI.

175
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(a) (b) (c) (d) (e)

Figure 7.1: Osmosis process for mesh cloning. (a) M1 with ROI (in yellow); (b) M2

and P (in yellow); (c) cloned mesh M�; (d) Partitions ΩExt (green), ΩTr (blue) and ΩInt

(red) mapped onto ROI; (e) osmosis initialization u0.

Usually, for 2D cloning of images, the osmosis process acts between two intensity
functions defined on the same structured image domain, as described in 5.1.

Unlike the image case, which is based on a single 2D-regular grid domain, in the mesh
case the two distinct triangular meshes ROI and P are defined on different parametric
domains. In particular, the Euclidean coordinate functions representing ROI and P are

fROI : VROI Ñ R3, fROIpviq � vi @ vi P VROI ,
fP : VP Ñ R3, fP pviq � vi @ vi P VP . (7.3)

In order to perform the osmotic flow, we need to construct a common triangulation
that will serve as the initialization for the process. At this aim, we propose a three-
step procedure, consisting of: S1) the alignment of the meshes ROI and P ; S2) their
parametrization on the same domain; S3) the construction of the fused triangulation.

S1) ROI and P alignment and scaling. The cloning task requires that ROI and P
have similar sizes and respect a specific relative orientation. This repositioning
is mainly driven by the user’s desired result. Thus the patch P can be manually
rotated, translated and scaled by the user.

However, a semi-automatic repositioning and scaling procedure can facilitate the
process. First, the patch P is scaled by a factor |BROI|{|BP |, with | � | being the
length of the boundary. Then, the patch P is rotated to align two pairs of user-
selected adjacent vertices (vROI1 , vROI2 ), (vP1 , v

P
2 ), respectively on BROI and on BP

and finally translated to the center of mass of ROI.

S2) Construction of XROI and XP parametrizations. Both submeshes P and ROI are
conformally parameterized on the same parametric domain Ω � r0, 1s2,

XROI : ΩÑ VROI , XP : ΩÑ VP . (7.4)
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Vertices on the boundaries of BP and BROI are associated with corresponding
points on the boundary BΩ of the parametric domain. We denote the points on
the domain Ω, corresponding to the vertices of ROI and P , as the sets

V̄ROI � tv̄ROIi P Ω, i � 1, . . . , nROIu, V̄P � tv̄Pi P Ω, i � 1, . . . , nP u, (7.5)

respectively. The parametric points V̄ROI and V̄P define two planar meshes con-
tained in Ω:

ROIΩ � pV̄ROI , EROI , TROIq; PΩ � pV̄P , EP , TP q. (7.6)

S3) Construction of the common triangulation. The common triangulation ROI
Ω �

pV̄ , E, T q is built directly in R2 on the parametric domain Ω as an enrichment of
the triangulation PΩ with the new set of vertices V̄ROI , such that V̄ � V̄P Y V̄ROI .
The connectivity T is initialized with TP , and enriched as follows.

For each v̄ROIi P V̄ROI located in a triangle τ � pv̄Pj , v̄Pk , v̄Pℓ q P T , τ is replaced by
three triangles, each characterized by an edge of τ and the new vertex v̄ROIi .

Before applying the linear osmosis model (5.18), we need to define the initialization
function u0 and the drift vector field d. At this aim, we define the two reference functions
uROI and uP , which interpolate the Euclidean coordinates of the vertices V̄ .

In particular, uROI : V̄ � ΩÑ R3 is defined as

uROIpv̄q �
"
XROIpv̄q if v̄ P V̄ROI
α XROIpv̄ROIj q � β XROIpv̄ROIk q � γ XROIpv̄ROIℓ q if v̄ P V̄P (7.7)

where pα, β, γq are the barycentric coordinates of v̄ in ROIΩ. Analogously, we define
uP : V̄ � ΩÑ R3 as

uP pv̄q �
"
XP pv̄q if v̄ P V̄P
α XP pv̄Pj q � β XP pv̄Pk q � γ XP pv̄Pℓ q if v̄ P V̄ROI (7.8)

with pα, β, γq the barycentric coordinates of v̄ in PΩ.

In the image context, the drift term d is set differently in three distinct regions of the
domain, see (5.6). These regions identify the external part, where the original image is
preserved, the internal part, where the information is replaced, and a transition region,
where a smooth connection is expected. Following the same principle, the sub-mesh

ROI
Ω
can be partitioned into

ROI
Ω � ΩExt \ ΩTr \ ΩInt, (7.9)
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where ΩExt is the external part, ΩTr, the transition part and ΩInt, the internal part. The
partitioning can be obtained by considering from BΩ the first nExt inner triangle layers
to be included in ΩExt, the next nTr triangle layers in ΩTr and the remaining triangles
to be in ΩInt. The partition is illustrated in Fig. 7.1 (d), where the mapping of the
partitions in R3 is shown in green, blue and red colors for ΩExt, ΩTr, ΩInt respectively.

The reference functions uP and uROI , defined on the same domain ROI
Ω
, encode the

geometric information to be processed.
Since the osmosis model requires strict positivity of the involved data functions, if

uROI and uP are not positive, a simple translation by a constant offset vector m P R3 is
preliminarily applied, as

uROI Ð uROI �m, uP Ð uP �m, with m � min
V PR3

tVROI , VP u � ε, ε ¡ 0. (7.10)

The drift term is then defined for each distinct partition as

dri,js :�

$'''''''&'''''''%

p∇uROIqri,js
puROIqri,js

if v̄i ^ v̄j P ΩExt

p∇uP qri,js
puP qri,js

if v̄i ^ v̄j P ΩInt

�
p∇uROIqri,js
puROIqri,js

� p∇uP qri,js
puP qri,js

	L
2 if v̄i _ v̄j P ΩTr

, (7.11)

where puP qri,js � puP pv̄iq � uP pv̄jqq{2 and puROIqri,js � puROIpv̄iq � uROIpv̄jqq{2.
Denoting by χΩExt

the characteristic function of the set ΩExt, we define the initial
function u0 : V̄ Ñ R3 as

u0 � uROI χΩExt
� uP p1� χΩExt

q. (7.12)

The evolution of the osmotic flow converges to a vector steady-state function
u� : V̄ Ñ R3. Finally, the cloned submesh ROI� � pV �, E�, T �q which replaces the
initial ROI as in (1.45) is obtained by setting

V � :� u� �m, E� � E, T � � T. (7.13)

7.1.1 Numerical Results

In Algorithm 5, we summarize the proposed method for mesh cloning, which includes
the three-step pre-processing phase.

Two parameters tol ¡ 0 and kmax P N are used to stop the osmotic process as soon
as one of the two following conditions is met:

}uk�1 � uk}2
}uk}2   tol, k ¡ kmax (7.14)



7.2 Inpainting via osmosis in differential coordinates 179

Algorithm 5 Mesh Cloning via Euclidean Osmosis

Input: � mesh M1, patch ROI �M1,
� mesh M2, patch P �M2,

Output: � cloned mesh M�.
Parameters: � tol ¡ 0, kmax P N, τ ¡ 0
Preliminary set up:
S1) Alignment and scaling of ROI and P ,
S2) Construct XROI and XP for ROI and P on Ω � r0, 1s2
S3) Construct the triangulation ROI

Ω � pV̄ , E, T q
Osmotic flow between uROI and uP :
- Compute uROI and uP as in (7.7-7.8)

- Compute partition of ROI
Ω
as in (7.9)

- Compute and apply offset m, if necessary, as in (7.10)
- Set drift term d as in (7.11) and initialize u0 as in (7.12)
while stopping criterion in (7.14) is not satisfied

uk�1 ÐÝ Puk via (EXP) or (IMP) scheme
end
- Set ROI� � puk�1 �m,E, T q
- Set M� � pM1zROIq

�
ROI�

where uk�1 and uk are consecutive time steps of u in the explicit or implicit scheme.
The implicit scheme is superior thanks to its unconditional stability and convergence
properties, shown in Prop.5.5.2. The choice of a high value for the time-step τ ¡ 0 (the
third and last parameter) allows for fast convergence in a few time steps.

Figure 7.1 shows the cloning process applied to replace the face region of the igea

mesh (a) with a patch from a mannequin mesh (b). The cloned surface, shown in (c),
does not present any discontinuities or fractures, having smooth behavior in the transition
region ΩTr.

In the second example, illustrated in Fig.7.2, we show how the partition of ROI
Ω

defined in (7.9) affects the final result by selecting different widths of ΩExt (in green)
and ΩTr (in blue), see (c), (e). As expected, enlarging ΩExt allows to preserve geometric
information coming from ROI (f), while a larger ΩTr facilitates a smoother transition.

Another example of mesh cloning is shown in Fig. 7.3. The human torso (b) in
yellow is cloned onto the horse mesh (a) to obtain a centaur mesh (d), with a smooth
connection in the transition region in blue in (c).
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(a) (c) (e)

(b) (d) (f)

Figure 7.2: Mesh cloning. Influence of ΩExt and ΩTr width : (a) M1 with ROI (yellow);
(b) M2 with P (yellow); (c) initialization u0, with thin ΩExt (green) and ΩTr (blue) and
(d) final result M�; (e) initialization u0 with wide ΩExt (green) and ΩTr (blue) and (f)
final result M�.

(a) (b) (c) (d)

Figure 7.3: Mesh cloning: (a) M1 with ROI (yellow); (b) M2 with P (yellow); (c)
initialization u0, with ΩExt (green) and ΩTr (blue) and (d) final result M�
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(a) (b)

(c) (d) (e)

Figure 7.4: Inpainting osmotic process. (a) damaged mesh M1 ; (b) mesh M � M1,
with sub-mesh ROI in red; (c) starting NCC δN extracted fromM; (d) NCC δ�N resulting
from osmotic flow; (e) repaired mesh M�.

7.2 Inpainting via osmosis in differential coordinates

The mesh inpainting task, described in Sec.1.3.1, can be viewed as a specific case of
hole-filling/repairing task where the missing mesh part must be smoothly reconstructed
to seamlessly blend with the surrounding regions.

In Chapter 2 we have proposed an algorithm that modifies the shape of the surface
around the damaged areas by means of a variational model acting on the Euclidean
vertex coordinates, exploiting a smoothing-promoting penalization term.

In the following, we formulate the inpainting process as an osmotic flow exploiting
the Normal-Controlled Coordinates as descriptors of the mesh.
We denote by M1 the mesh which presents holes and/or fractures. Fig. 7.4(a) shows
an example of damaged mesh M1, and in Fig. 7.4(b) the damaged part (ROI) is red
colored. Normal-Controlled Coordinates are able to encode the local geometrical details
since they represent approximations of the normal curvature. In Fig. 7.4(c) the NCC
are shown as a red vector field, they are small (not visible) in the flattest regions of the
surface and large where the surface presents details and features, such as in the fracture
highlighted in Fig.7.4(b).
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The preliminary setup for the inpainting via NCC consists in the definition of an
initial mesh M and the computation of its NCC. Specifically:

S1) Generate the initial mesh M.

In case of hole filling, a coarse triangulated patch ROI is added to close the hole,
thus obtaining a mesh M � pV,E, T q with added vertices, edges and faces. In
case of mesh repairing, ROI is the existent part of the mesh M1 which appears
corrupted, and M coincides with M1.

S2) Compute the Normal Controlled Coordinates.

As described in Sec. 1.2.3, we compute the NCC coordinates of the mesh M as
the vector field δN � NwV , with Nw P RnV �nV being the weight matrix defined in
(1.31) and nV the number of vertices of M.

The goal of the linear osmotic flow (5.18), given an appropriate definition of the drift
term d, is to obtain a modified NCC vector field δ�N which differs from the initial one
δN only over the damaged part ROI, preserving the undamaged geometric features in
MzROI and smoothly changing in the transition regions.

Before applying the osmotic flow, we need to carefully set the initialization function
u0 and the drift vector field d, which both depend on the reference function uR simply
defined as

uR � δN �m, m � min
δNPR3

tδNu � ε, (7.15)

where the vector m P R3 and the small offset ε ¡ 0, similarly to Sec. 7.1, aim to
guarantee the strict positivity of the initial function.

The drift term d needs to distinguish between the damaged region ROI and the rest
of the mesh M, therefore, it is defined as

dri,js :�
#

p∇uRqri,js
puRqri,js

if vi ^ vj PMzROI,
0 otherwise

(7.16)

with puRqri,js � puRpviq � uRpvjqq{2. The definition of d in (7.16) allows to preserve
the NCC data outside ROI, while diffusing linearly in ROI, since the transport term
vanishes. The osmotic evolution process is then applied to the initial function

u0 :� uR (7.17)

and performs separately on each of the three channels using individual drift vector fields
d, according to either explicit (EXP) or implicit (IMP) discretization scheme. It con-
verges to a resulting function u�, from which the repaired NCC vector field δ�N is obtained
as

δ�N � u� �m. (7.18)
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Algorithm 6 Mesh Inpainting via NCC Osmosis

Input: � damaged mesh M1,
Output: � repaired mesh M� � pV �, E�, T �q

Parameters: � tol ¡ 0, kmax P N, τ ¡ 0
Preliminary set up:
S1) Generate M � pV,E, T q, with corrupted region ROI � M, closing holes in M1 (if
necessary)
S2) Compute δN , the NCC of the mesh M
Osmotic flow:
- Set reference function uR as in (7.15), with offset m if necessary
- Set the drift term d as in (7.16)
- Set the initial function u0 as in (7.17)
while p}uk�1 � uk}2{}uk}2 ¡ tolq and pk   kmax)

uk�1 ÐÝ Puk via (EXP) or (IMP) scheme;
end
- Set δ� as in (7.18)
- Solve (1.33) for V �

- Set M� � pV �, E, T q.

Figure 7.4 (d) shows the vector field δ�N obtained from the osmotic process. We
notice the underlying mesh has not yet been modified, however, the NCC vectors in the
ROI region are not visible anymore due to their small norm. This is a desired natural
consequence of the diffusion process over the ROI region.

The repaired mesh M� � pV �, E�, T �q, defined in (1.40), keeps the connectivity of
M, i.e. E� � E and T � � T , while its vertices V � are obtained from δ�N by solving the
inverse reconstruction problem (1.33).

The unique least square solution of (1.33) is computed via three linear, sparse, sym-
metric, semi-definite positive normal equations systems, with a Dirichlet constraint im-
posed onto a single vertex coordinates vk P V , with vk chosen away from ROI.

The resulting repaired mesh M� is shown in Fig.7.4 (e), it shows a perfect recon-
struction of the region ROI.

7.2.1 Numerical Results

The proposed inpainting algorithm via osmotic flow is summarized in Algorithm 6. As
in Sec.7.1, required parameters are tol ¡ 0 and kmax P N for the stopping criterion in
(7.14) and τ ¡ 0 as the time-step for the explicit or implicit resolution scheme, with the
former preferred for its fast convergence.

The computational cost can be further reduced, taking advantage of the requirement
that the resulting mesh M is to be preserved almost exactly in the regions far away
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from ROI. Therefore, the whole inpainting process can be applied to a smaller sub-
mesh MS � M, such that ROI � MS and MS includes a few triangle layers away
from ROI, thus reducing the number of variable vertices to n    nV . Then the final
mesh M� is defined as M� � �

MzMS

� YM�

S. The only needed modifications in the

inpainting process consist of adding the Dirichlet boundary conditions at BMS both in
the osmosis PDE (5.18) and in the reconstruction (1.33).

To validate the accuracy of the proposed repairing tool, we show in Fig.7.5 the results
of applying the inpainting osmotic flow to three different damaged meshes M1, shown in
Fig.7.5 (c,f,i). In particular, in Fig.7.5 (a,d,g) we report the damaged meshesM with the
ROI part in red, while the reconstruction is reported in Fig.7.5 (b,e,h). We notice that
in Fig.7.5 (d) not all the fractures in the damaged object are marked as ROI regions, to
highlight the effect of the inpainting on the repaired mesh reported in Fig.7.5 (e).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.5: Inpainting task: M with ROI in red (a,d,g); repaired mesh M� (b,e,h);
damaged mesh M1 (c,f,i).
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Conclusions

In this thesis, we addressed a variety of surface processing tasks, proposing novel ap-
proaches and frameworks, based on advanced mathematical formulations.

In particular, we principally focused on two types of tasks: repairing and deforming.
Repairing tasks consist in recovering a complete and precise 3D numerical approximation
of a possibly damaged 3D object, given a noisy or incomplete representation obtained, for
example, through a scanning process. Deforming tasks aim to obtain a new surface with
a particular global shape or specified local details, given one or more reference surfaces.

Solving these tasks requires representing the involved surfaces through the most adapt
shape descriptor function. We described and compared the classical Euclidean coordi-
nates, the Laplacian coordinates, the Normal Controlled Coordinates and the Mean
Value Encoding, analyzing their theoretical properties and their efficacy for each specific
task.

The proposed frameworks rely on two types of mathematical tools for data processing:
Partial Differential Equations and variational models. In both cases, the model definition
involves differential operators, because of their ability to encode information about the
geometrical properties and details of a surface.

For each task, we provide validation practically, through many numerical results.

The variational approach is used in Chapters 2 and 3.

In particular, in Chapter 2 we presented a novel geometric framework for denoising,
inpainting and context-based completion for the recovery of damaged and incomplete
meshes resulting from range scanning as well as for all modeling operations aiming at
replacing damaged or missing parts of the surface.

The framework is based on a single variational problem, parametrization-free and
normal consistent, which minimizes a functional that is spatially variant and character-
ized by a convex-non-convex structure: it varies spatially from being convex (due to the
presence of the Willmore energy) to non-convex (Minimax-Concave penalty) according
to a mask operator.

Future investigations will focus on the study of the theoretical convergence of the pro-
posed numerical algorithm, which nevertheless demonstrates empirical convergence and
very satisfying practical performance. The encouraging results can further be extended
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to the completion of missing parts of objects and template patches with boundaries of
different topologies in order to validate the process in more realistic cases. Finally, a
future direction will be to couple the proposed approach with image inpainting models
favoring the completion of texture-like regions.

In Chapter 3 we deal with Geometric Texture Transfer (GTT), aimed to equip a
region P of a base surface with finer details extracted from a textured surface MT .
We first investigate properties of local shape descriptors appropriated for this task, to
better capture the shape morphology, and then formulate the geometric texture transfer
task as constrained variational linear/nonlinear optimization problems based on these
descriptors. We analyzed suitable numerical algorithms and several critical aspects in
the solution of these minimization problems, such as the influence of the parameters or
the invariance/equivariance under affine and non-affine deformations.

The proposed GTT variational approaches provide consistent values across bound-
aries between P andMT under the mild assumption of the same number of vertices in the
common boundary. In case boundary subdivisions are required to satisfy this condition,
this may produce an unpleasant wrinkle along the boundary. A smoother joint can be
obtained by considering suitable boundary overlap strategies, and boundary remeshing,
which can be investigated in future work. Additional study direction represents inte-
grating this GTT framework with deep learning techniques for texture synthesis which
generate 3D geometric textures.

Chapters 4-7 involve differential models.

In Chapter 4, we investigated the eigenproblem for graph p-Laplacian identified by the
PDE ∆pf � λf . The resolution, based on a variational approach, iteratively computes
eigenfunctions through a sequence of minimization problems, involving a non-linear gen-
eralization of the Rayleigh quotient and of the orthogonality constraint, for cases p � 2.

We reformulated each nonlinear problem into an equivalent formulation by a suit-
able p-dependent change of variable, transforming the p-orthogonality constraint into a
simple linear constraint. Then, we proposed two resolution algorithms, based on the pro-
jected gradient descent method, called M-PGD, and an Alternating Direction Method
of Multipliers strategy, called M-ADMM.

As a further novelty, we also described a practical method based on orthogonal least
square fitting for the estimation of the associated eigenvalues, which returns also a metric
that measures whether the eigenpair equation is satisfied.

When using the M-ADMM approach we observed a faster convergence for arbitrary
p values, but the slower M-PGD algorithm can be sped up through standard precondi-
tioning and backtracking line search strategies. The consistency of the obtained results
is proven numerically and a visualization of eigenfunctions computed on meshes suggests
the potential usage for mesh segmentation tasks. A further possible application of the
method consists of graph clustering problems.
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In Chapters 5-6 we focus on the diffusion-transport osmosis PDE model.
In particular, in Chapter 5, after describing the formulation of the original linear

model and its applications to image editing tasks, we propose a non-local model, where
the differential operators are replaced by corresponding integral operators, in order to
formalize an evolution process that takes into account also long-range interactions be-
tween the points of the domain, weighted by a kernel function. The theoretical study of
wellposedness and regularity of the solutions of local and non-local models is followed by
a consistency analysis, where we conjecture the convergence of non-local solutions, given
an appropriate kernel rescaling.

In the graph domain, the non-local formulation translates into an accurate spatial
discretization and leads to the definition of implicit (unconditionally stable) and explicit
(conditionally stable) evolutive schemes. We observed that the model, applied for editing
color functions defined on meshes, without changing the underlying geometry, behaves
as in the image context, giving the possibility to extend all the editing tasks to any kind
of data localized on 3-dimensional domains.

In Chapter 6, we presented a non-linear extension of the linear osmosis model, in-
volving a diffusivity term that balances the diffusion intensity on different points of the
domain.

On image domains, defining the diffusivity as a function of the gradient of the data
allows to preserve the underlying features on the boundary (i.e., edges), thus preventing
smoothing artifacts. Suitable finite difference schemes return a spatial discretization
that can be viewed as a particular case of the one computed for graphs. Moreover, an
unconditionally stable semi-implicit scheme is used to deal with the non-linear term in
a computationally efficient way, obtaining fast convergence to the steady-state solution.

The efficiency and the numerical accuracy of the presented schemes are validated
through three imaging applications: shadow/spot-light removal and compact data repre-
sentation. The results are accurate, can be computed efficiently and outperform the ones
obtained by alternative osmosis models and state-of-the-art approaches both visually and
in terms of Structural Similarity Index. The approach only requires a preliminary seg-
mentation of the region of interest (shadow, light-spot, edge mask) without any other
tuning of the model hyperparameter, which makes it, essentially, fully automatic.

An interesting direction for future research is the study of a combined non-linear and
anisotropic osmosis model as well as the extension to higher-order differential models
so as to reduce the reconstruction drawbacks observed especially when large masks are
considered.

Finally, in Chapter 7, we use the osmosis model to modify the actual geometry of
surfaces. This is done by applying the osmotic evolution process to shape descriptors
as Euclidean coordinates or Normal Controlled Coordinates (NCC), and consequently
reconstruct the corresponding surface. In particular, we propose two frameworks for
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cloning and inpainting.

� For the cloning task, taking inspiration from image cloning, we define the osmosis
model through a drift term that depends on the Euclidean coordinates of the patch
and of the Region of Interest to be combined. A pre-processing step is needed in
advance to define these data functions on a single graph, constituted by a mixed
triangulation of the two surfaces, computed on a common parametrization domain.

Preliminary tests show the potentiality of the proposed method, whose main
strength is the reasonable computational cost, due to the use of a stable implicit
scheme for osmosis evolution. Furthermore, using a mixed triangulation avoids the
possible detail loss that may happen when resampling is applied. On the other
hand, the robustness of the method can be improved by a further analysis of the
alignment and parametrization steps.

� For the inpainting task, the osmosis model acts on the NCC extracted from the
original damaged mesh, imposing a null drift term on the corrupted region, where
the correct NCC field from the surroundings must be smoothly diffused.

The framework does not require any pre-processing step and is computationally
cheap, thanks to the implicit evolution scheme.
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[99] P. Pérez, M. Gangnet, and A. Blake, Poisson image editing, ACM Trans.
Graph., 22 (2003), p. pp. 313–318.

[100] P. Perona, T. Shiota, and J. Malik, Anisotropic Diffusion, Springer Nether-
lands, Dordrecht, 1994, pp. 73–92.

[101] L. Piegl and W. Tiller, The NURBS book, Springer Science & Business Media,
2012.

[102] M. Reuter, S. Biasotti, D. Giorgi, G. Patanè, and M. Spagnuolo,
Discrete laplace–beltrami operators for shape analysis and segmentation, Comput-
ers & Graphics, 33 (2009), pp. 381–390. IEEE International Conference on Shape
Modelling and Applications 2009.

[103] S. A. B. S. CHEN and W. LUO, Orthogonal least squares methods and their
application to non-linear system identification, International Journal of Control,
50 (1989), pp. 1873–1896.

[104] Y. Saad, Iterative Methods for Sparse Linear Systems, Other Titles in Applied
Mathematics, Society for Industrial and Applied Mathematics, 2003.

[105] B. Schmidt and F. Fraternali, Universal formulae for the limiting elastic
energy of membrane networks, Journal of the Mechanics and Physics of Solids, 60
(2012), pp. 172–180.

[106] T. Schoenemann, S. Masnou, and D. Cremers, On a linear programming
approach to the discrete willmore boundary value problem and generalizations, in
Curves and Surfaces, J.-D. Boissonnat, P. Chenin, A. Cohen, C. Gout, T. Lyche,
M.-L. Mazure, and L. Schumaker, eds., Berlin, Heidelberg, 2012, Springer Berlin
Heidelberg, pp. 629–646.



200 Bibliography

[107] T. Schuster, B. Kaltenbacher, B. Hofmann, and K. S. Kazimierski,
Regularization Methods in Banach Spaces, De Gruyter, Berlin, Boston, 2012.

[108] C.-B. Schönlieb, Partial Differential Equation Methods for Image Inpainting,
Cambridge Monographs on Applied and Computational Mathematics, Cambridge
University Press, 2015.

[109] H. S. Seung and D. R. Nelson, Defects in flexible membranes with crystalline
order, Phys. Rev. A, 38 (1988), pp. 1005–1018.

[110] A. Sharf, M. Alexa, and D. Cohen-Or, Context-based surface completion,
ACM Trans. Graph., 23 (2004), p. 878–887.

[111] A. Sheffer and V. Kraevoy, Pyramid coordinates for morphing and
deformation, in Proceedings. 2nd International Symposium on 3D Data Processing,
Visualization and Transmission, 2004. 3DPVT 2004., 2004, pp. 68–75.

[112] Y. Shor and D. Lischinski, The shadow meets the mask: Pyramid-based
shadow removal, Comput. Graph. Forum, 27 (2008), pp. pp. 577–586.

[113] D. Slepcev and M. Thorpe, Analysis of p-laplacian regularization in
semisupervised learning, SIAM Journal on Mathematical Analysis, 51 (2019),
pp. 2085–2120.

[114] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P.
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