

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 37

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

BEHAVIOUR MATTERS: TOWARDS RELIABLE AND ADAPTABLE SYSTEMS

Presentata da: Lorenzo Bacchiani

Supervisore

Mario Bravetti

Esame finale anno 2025

Coordinatore Dottorato

Ilaria Bartolini

ii

Abstract

In today’s technologically driven society, the critical importance of ensuring a pre-
dictable behaviour in component-based systems cannot be overlooked. Modern
software engineering practices, e.g., application autoscaling and Continuous In-
tegration/Continuous Deployment (CICD), promote e!ective adaptation to time-
varying workloads, code quality and rapid deployment. Despite their e!ectiveness,
these practices cannot guarantee the absence of unexpected events within complex
systems. The consequences of misbehaviour, e.g., service unavailability, violation
of the Quality of Service, highlight the pressing need for enhanced practices.

In this Dissertation, we address these challenges through three primary ob-
jectives. First, we propose a new timed modelling/execution language to model
the behaviour and simulate the execution of component-based systems. Such lan-
guage enables the evaluation of system functioning early on in the software de-
velopment lifecycle, giving DevOps teams the possibility of assessing the impact
of their choices, e.g., deployment decisions and scaling policies, at the modelling
stage. Then, we present orchestration-based architectural reconfiguration tech-
niques targeted at ensuring the system reaches a given goal, e.g., service replica-
tion/migration. In particular, leveraging the knowledge of component properties,
e.g., functional dependencies, required resources, is crucial: starting from declar-
ative specifications of these properties, we can automatically synthesise correct-
by construction orchestrations that guarantee to instil the desired behaviour in
the system. Moreover, service replication techniques exploiting these orchestra-
tions overcome the drawbacks, i.e., the “domino e!ect” caused by uncoordinated
scaling, of existing service-level adaptation approaches, e.g., Kubernetes Horizon-
tal Pod Autoscaler. Finally, we devise a theoretical machinery for behavioural-
based analyses in object-oriented languages endowed with typestates, i.e., pro-
tocols attached to classes dictating order of method calls, and we implement it
in a typestate-based checker for Java. Our type checker can be easily integrated
in CICD pipelines, enhancing them with static analyses to proactively prevent
component misbehaviours.

iii

iv

Culture sets you free

v

vi

Acknowledgements

The day has come, this amazing adventure has come to an end. I could not be
happier to have embarked on the PhD journey three years ago. It gave me the
opportunity to grow, not only from an academic perspective, but also as a person.
I faced my limits, I felt the disappointment of failures and somehow I found a way
to overcome all these di”culties. Of course, I did not do all by myself, I had the
best people around me.

I first want to thank my parents, Barbara and Pietro, for teaching me how
precious culture is and for pushing me to work harder and harder to reach my
goals. I hope this small achievement I made could be an inspiration to my little
brother (not that little anymore), Alberto, to never settle and always strive for
something more.

I’d wish to dedicate this work to the family I have created along the path,
i.e., my girlfriend Laura, who shares with me all the joy and sorrow, as well as
all the successes and failures I have encountered along the way. This journey
would not be so wonderful without her, especially my period abroad. With her
perseverance, she was able to set up everything (I was about to give up the idea)
to come and spend three incredible months in Lisbon, the best of my life. I deeply
thank you Laura for all your love, Ti amo1.

From an academic perspective, I must begin by mentioning Professor Mario
Bravetti. These years, he has been an amazing mentor giving me insightful wis-
dom and suggestions on research and academic career development. He taught me
how to become a confident and independent researcher, providing me with numer-
ous opportunities along the way, for which I am truly grateful. If I were to pursue
another PhD, I would choose him as my supervisor again. During these three
amazing years I had the pleasure to work with great researchers like professors
Maurizio Gabbrielli, Gianluigi Zavattaro, Antonio Ravara and dr. Saverio Gial-
lorenzo. I owe them gratitude for the inspiring piece of advice they gave me along
my academic path. I also have to thank my colleagues Giuseppe De Palma and
João Mota, for the amazing cooperation during these years and the chats about
the glory and misery of a PhD life — other than, from time to time, research.

1I love you

vii

viii

Contents

Abstract iii

1 Introduction 1
1.1 Research Problem . 3
1.2 Outline of the Dissertation . 7

2 Background 9
2.1 Behavioural Types and Subtyping 10
2.2 Java Checker Framework . 15
2.3 The ABS Executable Specification Language 17
2.4 Microservices . 20
2.5 Technologies for Containerised Applications 22

3 A Modelling/Execution Language for Microservice Systems 27
3.1 Automated Deployment of Microservices 31
3.2 The AcmeAir Microservice System 33
3.3 SmartDeployer . 35
3.4 The Zephyrus Deployment Engine 37
3.5 Timed SmartDeployer . 40
3.6 Modelling the AcmeAir System . 41

3.6.1 Automated Deployment of the AcmeAir System 42
3.6.2 The Local Scaling Algorithm 44

3.7 Executing the AcmeAir System . 45
3.8 Related Work . 49
3.9 Discussion . 51

4 Orchestration-based Architectural Reconfiguration 53
4.1 A Smart Deployer for Kubernetes 56
4.2 Proactive-Reactive Global Scaling 61

4.2.1 A Proactive-Reactive Global Scaling Platform 62
4.2.2 The Email Message Analysis Pipeline 64

CONTENTS ix

CONTENTS

4.2.3 Microservice MF and MCL 65

4.2.4 Architectural Scaling of Microservices 67

4.2.5 Calculation of Scaling Configurations 69

4.2.6 Reactive Global Scaling Algorithm 70

4.2.7 Proactive Global Scaling . 73

4.2.8 Proactivity and Reactivity: A Mixing Algorithm 75

4.2.9 Executable Model and Real-World Implementation 78

4.2.10 Experimental Settings and Evaluation 81

4.3 Edge-Cloud Continuum Service Migration 99

4.3.1 The Industry 4.0 Use Case 100

4.3.2 Low Latency Edge-Cloud Continuum Architecture 102

4.3.3 Latency and Size-based Policies 104

4.3.4 Executable Model and Real-World Implementation 106

4.3.5 Experimental Settings and Evaluation 111

4.3.6 Refining System Simulation: Delayed Triggers 117

4.4 Related Work . 120

4.5 Discussion . 123

5 Typestate Trees for Statically Typed Languages 127

5.1 Typestates . 130

5.2 JaTyC: A Java Typestate Checker 133

5.3 Typestate Subtyping . 137

5.4 Enhancing JaTyC: Inheritance Support 139

5.5 Behavioural Up/Down Casting . 145

5.5.1 Subtyping Over Droppable States 150

5.5.2 Types and Subtyping . 152

5.5.3 Basic Operations on Types 154

5.5.4 Typestate Trees . 162

5.5.5 Typestate Trees Soundness 169

5.5.6 Typestate Trees Subtyping 171

5.6 Embedding Behavioural Casting in JaTyC 172

5.6.1 JaTyC Type System . 172

5.6.2 Application to Type Checking 175

5.7 Extending JaTyC Language: Linear Arrays 180

5.8 Use Cases . 181

5.9 Related work . 188

5.10 Discussion . 191

x CONTENTS

CONTENTS

6 A Formal Specification of the Java Type Checker 193
6.1 Core Language Syntax . 194
6.2 Type System . 199

6.2.1 Type Environment: Definition and Operators 205
6.2.2 Typing Program and Class Definitions 211
6.2.3 Typing Class Typestate Definitions 217
6.2.4 Typing Statements . 222
6.2.5 Typing Expressions . 232

6.3 Discussion . 244

7 Conclusion 245

Bibliography 253

CONTENTS xi

CONTENTS

xii CONTENTS

List of Figures

2.1 Typestates of Box type . 12
2.2 Communication with the mathematical server 13
2.3 Microservice architecture example 21

3.1 Modelling/execution language toolchain 30
3.2 AcmeAir microservice architecture [IPT23] 34
3.3 Simulated and measured user generation pattern comparison 48
3.4 Simulated AcmeAir throughput . 49
3.5 Simulated AcmeAir allocated cores 50

4.1 Architectural view of the proactive-reactive global scaling platform . 63
4.2 Microservice architecture of the Email Message Analysis Pipeline . 64
4.3 Implementation of the global scaling platform 79
4.4 Microservice communication via Redis Stream 81
4.5 Reactive global and local scaling: latency 84
4.6 Reactive global and local scaling: message loss 85
4.7 Reactive global and local scaling: deployed instances 86
4.8 Reactive global and oracle local scaling: latency comparison 88
4.9 Reactive global and oracle local scaling: message loss 89
4.10 Reactive global and oracle local scaling: deployed instances 90
4.11 Proactive and reactive global scaling: latency 92
4.12 Proactive and reactive global scaling: message loss 93
4.13 Proactive and reactive global scaling: deployed instances 94
4.14 Proactive and proactive-reactive global scaling: latency 96
4.15 Proactive and proactive-reactive global scaling: message loss 97
4.16 Proactive and proactive-reactive global scaling: deployed instances . 98
4.17 Bonfiglioli industrial automation architecture 101
4.18 Low latency edge-cloud continuum architecture 103
4.19 Transmission speed analysis [BPS+22a] 108
4.20 Latency-based policy performance 114
4.21 Size-based policy performance . 116

LIST OF FIGURES xiii

LIST OF FIGURES

4.22 Average performance of 25 independent runs of the real-world sys-
tem, under the size-based policy . 117

4.23 Probability of delayed trigger events 118
4.24 Average performance of 25 independent runs of the simulated sys-

tem, under the size-based policy . 120

5.1 Subtyping simulations starting from di!erent initial pair of states . 148

xiv LIST OF FIGURES

List of Listings

2.1 Java implementation of type Box 16
2.2 Asynchronous call and active behaviour example 19
2.3 Cost annotation example . 20
2.4 DataSize annotation example . 20
2.5 Example of pod definition . 25
3.1 QueryFlights implementation . 41
3.2 CancelBooking load balancer strong requirements 43
3.3 Instance requirement specification 43
3.4 HPA algorithm ABS implementation 44
3.5 AcmeAir workload generator . 46
3.6 ABS sin approximation . 47
4.1 System resources declarative specifications 57
4.2 Service declarative specification . 58
4.3 YAML orchestration example . 60
4.4 Python orchestration example . 61
4.5 Monitor code . 71
4.6 Global scaling: calculate configuration 71
4.7 Global scaling: apply # scales . 73
4.8 compute diff code . 76
4.9 compute weight code . 76
4.10 store weights code . 77
4.11 store distance code . 77
4.12 mix code . 77
4.13 Latency-based policy . 105
4.14 Size-based policy . 106
5.1 Example of protocol associated to a class 132
5.2 LineReader class . 134
5.3 LineReader protocol . 135
5.4 Wrong usage of LineReader . 136
5.5 Nullness checking . 137
5.6 RemovableIt protocol . 139

LIST OF LISTINGS xv

LIST OF LISTINGS

5.7 Synchronous subtyping algorithm for typestates 140
5.8 BaseIt implementation . 142
5.9 RemovableIt implementation . 143
5.10 Polymorphic code example . 144
5.11 Car and SUV protocols . 145
5.12 Upcast/downcast limitation . 147
5.13 Limitation of the subtyping algorithm application 147
5.14 Typestate tree motivation . 149
5.15 ClientCode class . 154
5.16 Direct upcast example . 165
5.17 EvolveTT example . 167
5.18 Type checking a linear array . 186
6.1 Resolution operator example . 207
6.2 Evolve operator . 208
6.3 Soudness of while loops . 226
6.4 Typing sequence of case blocks . 231
6.5 Equality check example . 235

xvi LIST OF LISTINGS

Chapter 1

Introduction

In the early days of software engineering, the monolith architectural style was the

traditional approach to software development, used by the most important com-

panies leading the information technology industry. As described in [DGL+17a], a

monolith is a software where functions are encapsulated into a single application,

whose modules cannot be executed independently. The most significant advan-

tage of the monolithic architecture lies in its simplicity: monolith architectures

are much easier to test, deploy, debug and monitor. All data are retained in one

database with no need for synchronisation and all internal communications are

done via intra-process mechanisms. Hence, they are fast and do not su!er from

problems common to inter-process communication, e.g., security issues, resource

management. The monolith architecture is a natural and first-choice approach to

build an application [BOP22]. However, such inherent monolithic structure renders

it challenging to be used in the context of distributed systems, without employ-

ing specific frameworks or ad hoc solutions, such as Network Objects [BNOW93],

Remote Method Invocation (RMI) [Gro02] or Common Object Request Broker Ar-

chitecture (CORBA) [OPR95]. Despite the adoption of these approaches, monolith

architectures still grapple with the general issues that plague monoliths, like: (i)

large-size monoliths are di”cult to maintain and evolve due to their complexity

and tracking down bugs requires long perusals through their code base; (ii) mono-

liths su!er from the “dependency hell” [Mer14], where adding or updating libraries

often leads systems not to compile/run or, worse, to misbehave; and (iii) monoliths

CHAPTER 1. INTRODUCTION 1

have limited scalability, since they require the whole application to be replicated,

in order to handle increments of inbound requests. However, it is possible that the

increased tra”c places a strain only on a subset of the modules, making the alloca-

tion of some of the newly provisioned resources redundant [DGL+17a, Lau19]. To

address the above limitations, companies started adopting Service-Oriented Archi-

tectures (SOAs). The reasons for choosing such architectural style are manifold:

SOAs structure software applications as highly modular and scalable composi-

tions of fine-grained and loosely-coupled services [DGL+17b, BZ09]. SOAs split

monoliths into smaller chunks, thus addressing its di”cult maintainability: the

code base now becomes smaller, reducing the time needed for evolution and main-

tenance. The development lifecycle of a SOA requires services to be designed

and implemented independently from each other. Therefore, in contrast with the

problem of “dependency hell”, complexities related to, e.g., the adoption of a new

library or updating an older one, are bounded to the scope of a single service.

In the context of scalability, by decoupling services, SOA promotes individual

and autonomous deployment of components, ensuring that only modules actually

becoming bottlenecks are involved in deployment operations. SOA modularity,

not only facilitates service-specific monitoring, enabling scaling decisions based on

real-time performance metrics, but also makes it possible to migrate services across

system districts, e.g., cloud, fog or edge levels. Service-specific monitoring elimi-

nates the waste associated with monolithic replication and optimises resource util-

isation, leading to improved scalability and cost-e!ectiveness. Service migration,

instead, brings performance improvement without the additional costs related to

service replication. These dynamic approaches ensure resources to be provisioned

precisely when and where they are needed, preventing over-provisioning and max-

imising resource e”ciency.

The above properties make SOAs well-suited for combining them with mod-

ern software engineering practices like automatic adaptation as well as Continu-

ous Integration and Continuous Deployment/Delivery (CICD) pipelines. Auto-

matic application adaptation, which dynamically scales or migrates resources on

demand, further enhances the adaptability of SOA architectures. By automat-

ically provisioning and deprovisioning resources, automatic adaptation ensures

that applications always have the necessary capacity to handle fluctuating de-

2 CHAPTER 1. INTRODUCTION

1.1. RESEARCH PROBLEM

mand, while minimising costs [Bar18]. CICD pipelines automate each stage of

the software development lifecycle, from development to system deployment, en-

suring that changes are made quickly and reliably. SOAs modularity and loose

coupling features facilitate this automation, enabling developers to deploy changes

to individual services, without disrupting the entire application [Mau15, HF10a].

Together, SOAs, CICD and automatic adaptation create a powerful combination

for developing and managing modern, scalable, elastic and resilient applications:

CICD pipelines automate the development and deployment process and automatic

adaptation ensures resources to be provisioned e”ciently.

1.1 Research Problem

Modern society is increasingly dependent on large-scale software systems that are

distributed, collaborative and communication-centred. Correctness and reliability

of such systems crucially depend on components behaving consistently to their in-

tended purpose. The consequences of unexpected events/misbehaviours are severe,

including security breaches and unavailability of essential services.

Leading tech companies like Amazon, Google and Microsoft have established

CICD as a core pillar of their software development strategies. These organisations

recognise the power of CICD to enhance agility, reduce development time and im-

prove the overall software quality. By automating manual tasks and implementing

automated testing, CICD enables developers to focus on innovation and creativity,

while ensuring that code changes are thoroughly vetted before deployment [HF10a].

While CICD practices have revolutionised the software development process, they

did not come without limitations: they excel at ensuring code quality and facilitat-

ing rapid deployment, but they are not well suited for producing these large-scale

component-based systems. As a matter of fact, a noticeable gap in these software

engineering practices lies in the absence of comprehensive frameworks or languages

specifically tailored to assess the holistic functioning of a component-based system

during its initial design phase. While there are various tools and methodologies

available for di!erent aspects of software development, such as testing frameworks

for code functionality or modelling tools for architectural design, there remains

a notable deficiency in tools that can e!ectively evaluate the overall system be-

CHAPTER 1. INTRODUCTION 3

1.1. RESEARCH PROBLEM

haviour early on, during the design phase. This absence poses significant challenges

for engineers and developers, striving to anticipate and mitigate potential issues

before they manifest in later stages of development or deployment. Addressing

this gap would, not only enhance the e”ciency and e!ectiveness of software devel-

opment processes, but also contribute to the creation of more robust and reliable

systems. A significant example, where a framework/language to assess the be-

haviour of the system as a whole is paramount, is automatic adaptation.

Automatic adaptation is a process entailing a set of component interactions

that enables systems, designed accordingly to SOA principles, to adapt and re-

spond to changes in the inbound workload. Automatic adaptation is a multifaceted

approach that encompasses two complementary strategies: application autoscaling

and service migration.

In the literature, there are two approaches to application autoscaling: vertical

and horizontal autoscaling. The former, also known as scaling up, refers to adding

more resources (CPU, memory and storage) to an existing machine. It is the

most straightforward approach, but it is limited by the most powerful hardware

available on the market [Wil12]. Given its limited nature, the vertical approach

to application autoscaling is not studied in the context of this Dissertation. In

contrast, horizontal autoscaling, also known as scaling out, refers to adding more

service replicas and distributing the workload among them. This approach can

be challenging because it has an influence on the application architecture, but

can o!er a virtually infinite amount scaling operations [Wil12]. The most popular

tool available on the market is the Kubernetes Horizontal Pod Autoscaler1 (HPA),

a default and ready to use autoscaling feature. It depends on manually setting

up some threshold values, e.g., target CPU utilisation, minimum and maximum

number of service replicas [AKR19].

Service migration usually exploits edge computing and moves a service from a

cloud-based environment to the edge-based one. Edge computing is a distributed

computing paradigm that brings computation closer to the edge of the network,

where data are generated and consumed. One of the most applied technique to

this approach to automatic adaptation is the data locality principle, i.e., moving

services towards the source of data they need is cheaper than moving data to

1https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

4 CHAPTER 1. INTRODUCTION

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

1.1. RESEARCH PROBLEM

services. Service migration can improve latency, responsiveness and security for

applications that require low latency or real-time data processing. As a matter

of fact, moving services to the edge significantly reduces latency as well as the

amount of data that need to be transferred to the cloud [SZL+22, YLH+18].

Nevertheless automatic adaptation is an extremely powerful tool, it hides sig-

nificant dangers. On the one hand, defining threshold values and scaling policies is

crucial for a correct resource provisioning and significantly influence both perfor-

mance and costs. Thus, the early evaluation and fine-tuning of the implemented

thresholds and policies become paramount to guarantee that the system behaves

as intended, e.g., it complies with a certain Quality of Service. On the other

hand, services may have intricate interdependencies that require meticulous man-

agement, involving the execution of a set of additional operations, when adding a

new replica or migrating an existing service. The management of such intricate

interdependencies requires DevOps teams to manually devise a program such that

its execution correctly deploys the service under consideration. However, DevOps

teams have no guarantees that such program terminates its execution without fail-

ures, leading to scenarios where adaptation actions are enacted without actually

reaching the expected outcome. Thus, it becomes crucial to devise reconfiguration

approaches leveraging correct-by construction orchestrations, i.e., orchestrations

successfully ending without failures, that guarantee to instil the intended goal

within the system. Moreover, having the guarantee that an orchestration success-

fully ends, makes it possible to devise more complex scaling approaches capable of

replicating the whole architecture simultaneously. Architectural reconfiguration,

as we will see, paves the way to new scaling approaches overcoming the state of

the art, i.e., the Kubernetes HPA algorithm. As a matter of fact, the mainstream

horizontal autoscaling approach (the one adopted by the HPA) su!ers from an in-

herent problem: as it primarily concentrates on replicas at the level of individual

services, it encounters the “domino e!ect” of uncoordinated scaling, i.e., individ-

ual services scaling one after the other (cascading slowdowns) due to localised

workload monitoring [HFG+19].

The scenario depicted so far is just one side of the coin: we only focused on in-

teraction among services. As a matter of fact, unexpected events can also occur at

a lower level, within interactions among the components of a single service. These

CHAPTER 1. INTRODUCTION 5

1.1. RESEARCH PROBLEM

unexpected events lead to uncaught misbehaviours caused by, e.g., dereferencing

null pointers [Hoa09] or using objects wrongly (reading from a closed file, closing

a socket that timed out 2, etc. . .). Despite CICD practices encompass a set of

testing framework for code functionality, they are inadequate at guaranteeing the

adherence to an expected behaviour. The reason lies in the lack of high-level struc-

turing abstractions for describing component behaviour, which, as we will see in

this Dissertation, are crucial to enhance static analyses and prevent misbehaviours.

As put by Dijkstra [Dij72]:

program testing can be used to show the presence of bugs, but never

to show their absence.

To corroborate Dijkstra’s statement, practical experience has shown that these

problems are, not only often subtle and di”cult to find, even with the aid of

automated testing procedures, but they can also have severe consequences. The

detection and resolution of these problems can be time-consuming and costly.

DevOps teams must spend valuable time analysing code, debugging problems and

re-executing CICD pipelines, disrupting service availability. To further exacerbate

the situation, such errors often manifest as system malfunctions, leaving behind

a trail of exposed sensitive data and potential security breaches that could have

devastating consequences for businesses, including financial losses, reputational

damage and legal liability.

Summarising what we depicted so far, we identify the following three challenges

as leading problems of our research.

• challenge C1 concerns the evaluation of system behaviour as a whole in the

early stages of software development, i.e., at modelling level, fostering a

development approach where DevOps teams can analyse the consequences

of their choices early on;

• challenge C2 aims at introducing architectural reconfiguration approaches,

leveraging correct-by construction orchestrations. Such orchestrations are

built upon declarative specifications of, e.g., component requirements and

deployment constraints. Moreover, the knowledge of components behaviours

2https://github.com/redis/jedis/issues/1747.

6 CHAPTER 1. INTRODUCTION

https://github.com/redis/jedis/issues/1747

1.2. OUTLINE OF THE DISSERTATION

is crucial to overcome the drawbacks of the state of the art of service-level

adaptation, i.e., the approach proposed by the HPA, avoiding the “domino

e!ect” of uncoordinated scaling;

• challenge C3 focuses on endowing CICD practices with the ability of catching

misbehaviours due to wrong internal service interactions, e.g., dereferencing

null pointers or using objects wrongly.

The obtained research results in this Dissertation could be used, not only in

the context of the challenges highlighted above, but also in other areas, e.g., IoT.

Goal of the thesis. This Dissertation addresses challenges C1, C2 and C3 by

employing high-level structuring abstractions for complex behaviour, enabling the

decoupling of desired behaviour from its implementation. To achieve this, we

leverage the formalisation of behavioural description of components, e.g., required

resources, dependencies, method invocation order, interactions and other relevant

aspects. As we will see, such formalisation makes it possible to, not only perform

automated analyses ensuring components behave as desired, but also improve the

state of the art of autoscaling approaches. In conclusion, the following consti-

tutes the thesis statement: elevating flat SOA component descriptions to formal

behavioural specifications is the first step towards reliable and e!cient systems.

Besides the above challenges per se, in the context of this Dissertation, we

also solved all the technical issues, making our solutions, as highlighted above,

applicable to a wider range of areas.

1.2 Outline of the Dissertation

The remainder of this Dissertation is divided into seven main Chapters, each ad-

dressing distinct motivations and issues that underpin our investigations, culmi-

nating in the presentation of our findings. These results, generated throughout the

course of the PhD studies, are now showcased in an expanded format to provide

comprehensive insights. The Dissertation is structured as follows:

• in Chapter 2, we lay a solid foundation for this Dissertation, introducing the

CHAPTER 1. INTRODUCTION 7

1.2. OUTLINE OF THE DISSERTATION

core concepts and frameworks that underpin our approach to ensuring reli-

able and secure component interactions in component-based architectures;

• in Chapter 3, we introduce a novel integrated timed modelling/execution

language tailored for microservice systems. This language enables the an-

ticipation of system functioning evaluation during the system design phase,

thereby fostering an approach that enhances system scalability, reliability

and performance. This novel integrated language addresses challenge C1;

• in Chapter 4, we introduce two novel orchestration-based architectural re-

configuration techniques. Our techniques follow di!erent approaches to ar-

chitectural reconfiguration: service migration and service autoscaling. In

particular, we leverage correct-by construction deployment orchestrations to

reconfigure an architecture. In particular, our technique for service autoscal-

ing overcomes the drawbacks of the state of the art of service-level adap-

tation. Straightforwardly, our orchestration-based architectural reconfigura-

tion techniques address the needs introduced by challenge C2;

• in Chapter 5, we present the current state of the art of typestate-based

type checking tools and theory. Here, we discuss our theoretical work to

overcome existing limitations, i.e., typestate-based analysis of polymorphic

code, support for arrays of typestate-endowed objects, and the implementa-

tion of these concepts in a typestate-based type checker for Java (JaTyC). In

particular, such theoretical work makes typestate-based analysis applicable

to real-world scenarios, e.g., CICD pipelines, thus addressing challenge C3;

• in Chapter 6, we formally define a subset of the Java programming language

combined with the typestate-based elements presented in Chapter 5. We

then present a formal representation of the type checking process entailed

by JaTyC (introduced in Chapter 5), designing all the type checking rules

required to analyse language constructs. Together with Chapter 5, this Chap-

ter addresses challenge C3, formally supporting the existing typestate-based

type checking process;

• in Chapter 7, we summarise the contributions and conclude the Dissertation.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This Chapter lays a solid foundation for the Dissertation, introducing the core

concepts and frameworks that underpin its approach to ensuring reliable and secure

interactions in component-based architectures.

We start exploring the concepts of behavioural types and subtyping, provid-

ing a comprehensive understanding of these mechanisms and their critical role in

capturing and reasoning about the dynamic behaviour of software components.

Building on this theoretical foundation, we turn our attention to the Checker

Framework [Con23], a robust and widely-used open-source tool, designed to aug-

ment the Java type system. By providing a suite of pluggable type checkers, the

Checker Framework empowers developers to define and enforce custom type rules

tailored to their application requirements.

The discussion moves toward an actor-based object-oriented language, suitable

for modelling complex distributed systems. In particular, we analyse in depth the

Abstract Behavioral Specification (ABS) language [JHS+12], a formal means to

precisely describe component behaviour for automated analysis, verification and

evaluation.

Then, our attention pivots toward microservice architectures within the broader

context of Service-Oriented Architectures (SOAs). Consequently, we explore the

unique characteristics of microservice architectures and their implications on com-

ponent interactions. To tackle the complexities of managing and orchestrating

microservices, we introduce foundational technologies tailored for containerised

CHAPTER 2. BACKGROUND 9

2.1. BEHAVIOURAL TYPES AND SUBTYPING

applications, e.g., Docker and Kubernetes. These tools furnish a robust platform

for deploying, scaling and managing microservice-based systems, thereby facilitat-

ing e”cient and dependable operations within cloud-native environments.

2.1 Behavioural Types and Subtyping

The design of programming languages demands meticulous attention to error pre-

vention. A set of prohibited errors, encompassing both untrapped and trapped

ones, forms the cornerstone of well-behaved programs. By meticulously eliminat-

ing these errors, programs, not only operate safely, but also reduce debugging time

and minimise the occurrence of unexpected behaviours. Traditionally, type sys-

tems have concentrated on validating computation results, ensuring they conform

to some predefined specifications. However, with the emergence of newer and more

complex systems, the need for a more comprehensive and structured approach, also

encompassing the behaviour of computations, has become paramount.

Behavioural contracts/types [LP07, BZ07, GH05, CDSY17, KDPG18] emerge

as a powerful solution to this challenge. They provide a formal framework for spec-

ifying and analysing the behaviour of components, transforming flat component

descriptions into a graph structure of invoke/receive actions. This formalisation

facilitates automated analyses, enabling the verification of component interactions

and the guarantee of critical properties, e.g., deadlock freedom and the absence

of null-pointer exceptions. In the context of service-oriented computing, where

components create an intricate and dynamic network of interactions, behavioural

contracts/types o!er unparalleled insights into the behaviour of these interactions.

They enable developers to reason about the behaviour of components, ensuring

that their interactions are consistent, predictable and safe. The adoption of be-

havioural contracts/types promotes a programming language design that gives

priority to, not only the correctness of computation results, but also the integrity

of component behaviour, paving the way for more reliable, secure and maintainable

software systems.

Typestates. To understand the notion of typestate, let us consider the following

scenario: a programmer defines a type, e.g., Box, that o!ers two operations: in,

10 CHAPTER 2. BACKGROUND

2.1. BEHAVIOURAL TYPES AND SUBTYPING

which sets the item inside the Box, and out, which extracts such item (and conse-

quently removes it). Notice that, the in operation never fails: in case the item is

already set, it just updates the item; the out operation, instead, fails, in case no

item is set. As the perceptive reader may notice, the Box type has an invariant

property: sequences of out operations are prohibited. If the programmer is not

careful enough and calls a sequence of out operations, the program compiles, but

it exhibits unexpected behaviours.

Following the definition of Strom et al. [SY86], the above program is defined as

nonsensical. The term “nonsensical programs” refers to syntactically well-formed

programs with a semantically undefined sequences of statements. Nonsensical

program executions pose one of the most insidious forms of software errors. Their

unpredictable consequences can wreak havoc, making them particularly challeng-

ing to identify and rectify. The underlying erroneous state can remain undetected

for extended periods, only to surface later in the behaviour of seemingly unrelated

programs, often far removed from the exact statement where the error initially

occurred. A compile time mechanism that proactively identifies and prevents non-

sensical program executions holds immense value. Beyond simply detecting errors,

such a mechanism e!ectively encapsulates their impact within the erroneous mod-

ule, minimising the potential for cascading failures and ensuring program integrity.

The typestate concept is the key to solve the problem.

Typestate is a notion of behavioural types, introduced as refinement of the

concept of type in programming languages. Typestates are associated to types

and capture the notion of an object of a given type being in an appropriate (or

inappropriate) state for the application of a particular operation. Each typestate

includes a set of operations that can be safely executed in that state. An object of

a given type is, at each point in a program, in an exactly single typestate among

the ones associated with its type [SY86]. Therefore, typestates can be considered

as finite-state automata, where the application of an operation may or may not

cause typestates to change. For example, typestates of the Box type, enforcing the

invariant property described above, can be modelled as in Figure 2.1: typestate

Empty only allows for the in operations (here, this operation causes the typestate

to change), while typestate NonEmpty allows for both in (here, this operation does

not cause the typestate to change) and out operations.

CHAPTER 2. BACKGROUND 11

2.1. BEHAVIOURAL TYPES AND SUBTYPING

Empty NonEmpty

in

out

in

Figure 2.1: Typestates of Box type

The concept of typestate paved the way for the typestate-oriented program-

ming [GTWA14], an extension to the object-oriented programming paradigm,

where objects are, not only modelled in terms of classes, but also in terms of chang-

ing states. In typestate-oriented programming languages, typestates are treated

as a primitive language concept making it possible to perform a supplementary

static analysis via typestate checkers. These checkers serve as an additional layer

of validation atop an existing programming language, e!ectively identifying and

preventing “nonsensical programs” from entering the codebase.

Session Types. To grasp the concept of session types, let us consider the follow-

ing scenario, taken from Gay and Hole [GH05]: a mathematical server and a client

communicating with it. The server o!ers two mathematical operations, using and

returning basic types, i.e., Int and Bool: (i) addition of two integer numbers; and

(ii) equality test between two integer numbers. The server runs in parallel with a

client, which selects among the o!ered operations. Let us suppose that Alice tries

to communicate with this mathematical server, following the protocol informally

described in Figure 2.2 1. As the keen reader may notice, something catastrophic

is going to happen: both Alice and the mathematical server go into deadlock, since

the former is waiting for the result of addition, while the latter is waiting for an-

other input, i.e., the second number. Deviations from intended communication

behaviour can lead to critical issues, such as the potential occurrence of deadlocks.

1In the communication protocol, we do not consider the connection step.

12 CHAPTER 2. BACKGROUND

2.1. BEHAVIOURAL TYPES AND SUBTYPING

Alice

1. Select addition.

2. Send an integer number.

3. Wait for the result.

Mathematical server

1. Wait for operation selection.

2. Wait for number.

3. Wait for number.

4. Send result.

Figure 2.2: Communication with the mathematical server

The above scenario highlights the urgent need for a mechanism to formally define

and verify these communication protocols, ensuring adherence to the specified se-

quences of actions and bolstering the reliability of distributed systems. The session

type concept is the key to solve the problem.

Binary session types2, here simply referred to as session types, is a typing disci-

pline for communications programming, based on connection-oriented interaction

sessions. In networking, a session is a logic unit of information exchange between

two or more communicating parties [HVK98, THK94]. The essential concern of a

session is to specify the topic of conversation as well as the sequence and direction

of the communicated messages [Dd09]. A session type can be considered a formal

specification of a two-party communication protocol from the perspective of one

party. Session types are defined as a sequence of input and output operations,

explicitly indicating the types of messages being transmitted. This structured

sequentiality of operations is what makes session types suitable to model com-

munication protocols. However, they o!er more flexibility than just performing

inputs and outputs [DGS17]: meta-communications for the coordination of branch-

ing (i.e., the o!ering of a set of alternatives), selection (i.e., the selection of one

of the possible options at hand) and repetition within a session. We represent the

mathematical server SInt and Alice (in its correct versions) session types as:

Alice : → {addition : !Int.!Int.?Int.end, equality : !Int.!Int.?Bool.end}

SInt : &{addition : ?Int.?Int.!Int.end, equality : ?Int.?Int.!Bool.end}

2For simplicity sake, multi-party session types are not considered in this Dissertation.

CHAPTER 2. BACKGROUND 13

2.1. BEHAVIOURAL TYPES AND SUBTYPING

Notice that, ? and ! represent session type input/output operations, indicating

the process is the receiver or the sender, respectively. Instead, & and → indicate

a branch of choices, i.e., a set of alternatives, and selection, of a specific choice,

i.e., the selection of one of the possible options at hand, respectively. In our specific

example, the protocol of Alice states that she can choose between addition and

equality, passing as input two integer numbers and receiving an integer number or a

boolean value, respectively. The server is prepared to handle addition and equality,

expecting as input two integer numbers and producing as output an integer number

or a boolean value, respectively.

Understanding the dynamics of communication protocols requires a mecha-

nism that captures the reciprocal roles of interacting participants. The ideas of

session types and co-types (session type duality) for interaction were first intro-

duced by Honda [Hon93]. Intuitively, session type duality captures the opposite

role or perspective in the communication: if there is a session type that defines

the expected behaviour of a sending participant in a communication, its dual cor-

responds to the expected behaviour of the receiving participant and vice versa.

Given the session types above, it is clear what duality means: whenever Alice

selects a choice, the server o!ers such choice. The type system uses the mecha-

nism of duality to ensure communication safety (error freedom) for a system of

session processes. Thus, it is possible to successfully check a program to guaran-

tee that certain kinds of error do not occur at run-time. The eliminated errors

range from disagreements between sender and receiver about the expected type of

a message [Mil93] to deadlocks [Kob98].

Subtyping. Subtyping plays a crucial role in the context of behavioural types:

it allows for flexible and modular protocol design, by introducing the concept of

compatibility. The idea of subtyping is that any value of a certain type can be

safely placed in a context expecting a value of some more general type [Dd09].

In the context of session types, if T is a subtype of T’, then any channel of type

T can be safely used in a context where a channel of type T → is expected. The

concept of subtyping has been extended to session types by Gay and Hole [GH05].

The input and output types are respectively contravariant and covariant in the

types of values they transmit; labelled branches and select types, in accordance

14 CHAPTER 2. BACKGROUND

2.2. JAVA CHECKER FRAMEWORK

with the I/O actions, are respectively covariant and contravariant in their label

sets. Suppose, now, the mathematical server is extended in two directions: (i) it

has a new negation service; and (ii) it extends the equality test to Real numbers.

The session type for the new server is:

SUp : &{addition : ?Int.?Int.!Int.end,

equality : ?Real.?Real.!Bool.end,

negation : ?Int.!Int.end}

Assuming that Int is a subtype of Real, it is clear that the system still works

without communication errors. When sending, the type of the actual message is

allowed to be a subtype of the message type specified by the channel, because it

is safe for the receiver to be given a value whose type is a subtype of the expected

one [GH05]. Moreover, the additional service negation does not interfere with the

communication with Alice, since it is never used in the communication. Thus, we

say that SUp ↑ SInt, since it is contravariant in output types and covariant in the

branch label set: SUp o!ers a superset of alternatives with respect to SInt. Subtyping

enhances expressivity of typing with session types since it allows: (i) refinement of

participants without invalidating type-correctness of the overall system; and (ii)

participants to follow di!erent protocols that are nevertheless compatible according

to the subtyping relation [Dd09].

2.2 Java Checker Framework

The Checker Framework represents a significant advancement in the landscape of

Java development, transcending the role of a traditional type system to actively

prevent errors rather than simply detecting them. By leveraging a modular archi-

tecture, the Checker Framework extends the language capabilities to identify and

eliminate a wide range of potential issues, including null pointer exceptions, unin-

tended side e!ects, SQL injections, concurrency errors and mistaken equality tests.

This proactive approach to code correctness empowers developers to write more

robust and reliable software. Furthermore, the Checker Framework allows devel-

opers to contribute to its own evolution by creating custom checkers [BBG+22b].

CHAPTER 2. BACKGROUND 15

2.2. JAVA CHECKER FRAMEWORK

Listing 2.1: Java implementation of type Box!
1 import org.checkerframework.checker.nullness.qual.Nullable;
2

3 public class Box {
4 private @Nullable Object item = null;
5

6 public void in(@Nullable Object obj) {
7 this.item = obj;
8 }
9

10 public boolean hasItem () {
11 return obj != null;
12 }
13

14 public Object out() {
15 Object to_return = obj;
16 obj = null;
17 return to_return;
18 }
19 }"# $

This feature allows developers to tailor error detection to the specific needs and

domains of their applications, e!ectively defining their own unique safety nets.

For instance, the widely adopted Nullness Checker exemplifies this customisabil-

ity, ensuring the absence of null pointer exceptions, by treating objects and null

as distinct types by default [Con23]. Developers have the flexibility to introduce

nullable variables using the Nullable annotation, as shown in Listing 2.1, allowing

for fine-grained control over potential null references. This example uses the Box

type described before, which may store a reference to another object or the null

value. The in method stores a new object and replaces the previous one; the out

method extracts the object: it returns the currently stored object and nullify the

Box reference to such object; the hasItem method checks if item is not null. The

Nullness Checker reports an error on line 17, indicating that the item variable may

possibly be null. It is a real error that could happen if either out is called before

calling in or a sequence of out operations is performed. Unfortunately, there is

no way to specify that we expect the nullness of item to be checked before with

hasItem, creating a scenario where we need to use a verbose defensive program-

ming style: always check that item is not null inside the out body. This gives an

example where detecting data-errors are not enough and motivates the inclusion

of behavioural information in types: this would enforce that methods are called

16 CHAPTER 2. BACKGROUND

2.3. THE ABS EXECUTABLE SPECIFICATION LANGUAGE

in the correct order and would avoid false positives as in Listing 2.1, by pruning

execution paths that do certainly not occur.

2.3 The ABS Executable Specification Language

The Abstract Behavioral Specification (ABS) language, introduced by Johnsen et

al. [JHS+10], serves as an actor-based framework for crafting executable models of

distributed object-oriented systems. Designed to align closely with programmers

thought processes, ABS maintains a syntax reminiscent of Java and a control flow

akin to real-world implementations. One notable feature is its capability to com-

pile models into various languages such as Erlang, Java and Haskell. Moreover,

ABS boasts a formally defined semantics, following the style of foundational lan-

guages, empowering developers to abstract away many implementation intricacies,

undesired at the modelling level. These may include the concrete representation

of internal data structures, method activation scheduling and communication en-

vironment properties. ABS operates at the concurrent object level, providing a

comprehensive framework to model concurrent control flow and communication

within models. This integration seamlessly merges functional expressions, impera-

tive object-based programming and Concurrent Object Groups (COGs) with coop-

erative scheduling. In this scheduling approach, processes inside actors voluntarily

yield CPU control at predefined execution points, promoting e”cient resource util-

isation and enabling e!ective coordination among concurrent activities. Conceptu-

ally, each COG is associated with a processor, fostering a distributed environment

characterised by asynchronous and unordered communications. Objects commu-

nicate through asynchronous method calls, facilitating the initiation of activities

in other objects, without disrupting the flow of execution. ABS further enriches

communication capabilities by treating futures as first-class citizens, thereby en-

abling flexible and e”cient asynchronous communication patterns. Asynchronous

method calls play a pivotal role in triggering concurrent activities, initiating new

method activations (referred to as processes) within the recipient object. This ap-

proach allows for the seamless integration of active and passive behaviours within

ABS models. Active behaviour, typically defined by an optional run method asyn-

chronously called after object initialisation, complements passive behaviour trig-

CHAPTER 2. BACKGROUND 17

2.3. THE ABS EXECUTABLE SPECIFICATION LANGUAGE

gered by synchronous or asynchronous method calls. Consequently, each object

maintains a dynamic collection of processes awaiting execution, stemming from

method activations. Among these, only one process per COG is active at any

given time, with the remaining processes suspended within a process pool. Pro-

cess scheduling is nondeterministic yet cooperative, regulated by processor release

points. Hence, the degree of concurrency correlates directly with the number of

COGs introduced in the model [JHS+10]. Consider the following code snippet (see

Listing 2.2) as an illustrative example. In this scenario, a Server class listens for

requests from clients. If no requests are pending, it waits for new ones (line 10);

otherwise, it proceeds to serve the first arrived request (line 11). Subsequently,

the server dispatches the received command to an executor (line 15) and awaits its

result (line 16) before forwarding the response to the client (line 18). Additionally,

the server includes a method to enqueue new requests following a first-in-first-

out (FIFO) policy. It is worth noting that, for simplicity, the implementations

of Client and Executor classes are abstracted away. The Server class uses asyn-

chronous method calls (line 15), denoted by o!m(), to serve requests, allowing

objects of this class to interleave the execution of the run method with the request

method. Furthermore, the Server class exemplifies an active behaviour, as the run

method is asynchronously executed upon object instantiation, without requiring

explicit invocation.

Timed ABS. Timed ABS is an extension of the ABS core language that in-

troduces a notion of abstract discrete time, expressing the amount of time units

elapsed since system start. Such an extension makes it possible to evaluate time-

related behaviour of distributed systems, by compiling Timed ABS programs into,

e.g., Erlang, and executes them. Timed ABS has also probabilistic features that al-

low modellers to create uniform distributions. Timed ABS introduces the notion of

Deployment Component as a location where a COG can be deployed. Deployment

Components are first-class citizens of Timed ABS. They may be passed around as

arguments to method calls and they support a number of methods. Deployment

Components may be created dynamically, depending on control flow or statically

in the main block of the model. Thus, Timed ABS is expressive enough to model

that, e.g., new Deployment Components are created by a provider, Deployment

18 CHAPTER 2. BACKGROUND

2.3. THE ABS EXECUTABLE SPECIFICATION LANGUAGE

Listing 2.2: Asynchronous call and active behaviour example!
1 type Request = Pair <Client , String >;
2

3 class Node(Executor executor) implements Server {
4 List <Request > requestQueue = list [];
5

6 Unit request(Request req) {requestQueue = appendright(requestQueue , req);}
7

8 Unit run() {
9 while(True) {

10 await !isEmpty(requestQueue);
11 Request req = head(requestQueue);
12 requestQueue = tail(requestQueue);
13 Client c = fst(req); // first element of the pair
14 String command = snd(req); // second element of the pair
15 Fut <String > futRes = executor!execute(command);
16 await futRes ?;
17 String res = futRes.get;
18 c.response(res);
19 }
20 }
21 }"# $

Components are requested from a provider by a resource-aware and scalable ap-

plication. As stated by Johnsen et al. [JSTT15], a Deployment Component is

“an abstraction from the number and speed of the physical processors available to

the underlying ABS program by a notion of concurrent resource”. Simply put, a

Deployment Component corresponds to a single virtual machine, which executes

ABS code. As virtual machines, ABS Deployment Components are associated

with several kinds of resources:

• the Speed resource type models execution speed: it models the amount of

computational resource per time unit a Deployment Component can supply

to the hosted COGs. Intuitively, a Deployment Component with twice the

number of Speed resources execute twice as fast. Speed resources are con-

sumed when execution in the current process reaches a statement that is

annotated with a Cost annotation. In the example presented in Listing 2.3,

the skip statement consumes 5 Speed units from the Deployment Compo-

nent where the COG executing such statement was deployed. If not enough

computational resource is left in the current time unit, then the instruction

terminates its execution in the next one;

• the Bandwidth resource expresses a measure of transmission speed, consumed

CHAPTER 2. BACKGROUND 19

2.4. MICROSERVICES

Listing 2.3: Cost annotation example!
1 Time t1 = now();
2 [Cost: 5] skip;
3 Time t2 = now();"# $

during method invocation and return statements. Notice that, no Bandwidth

is consumed if sender and receiver are deployed on the same Deployment

Component. As can be seen in Listing 2.4, similarly to Speed, Bandwidth con-

sumption is expressed via the DataSize annotation, thus executing o!process

consumes 2 * length(datalist) Bandwidth units;

Listing 2.4: DataSize annotation example!
1 Time t1 = now();
2 [DataSize: 2 * length(datalist)] o!process(datalist);
3 Time t2 = now();"# $

• the Memory resource type serves as a proxy for deployment complexity, in-

dicating the capacity for creating and managing COGs within a component.

Unlike Bandwidth and Speed, Memory does not directly impact the ABS

model simulated timing behaviour;

• the Cores resource type expresses the number of CPU cores available on a

Deployment Component. Used for static deployment decisions, it has no

direct impact on the timing behaviour of simulations.

Technically, all untimed ABS models are valid in timed ABS: an ABS model

that contains no time-influencing statements will run without influencing the clock

and finish at time zero.

2.4 Microservices

As for SOAs, microservices preach for the same advantages, such as dynamism,

modularity, distributed development and integration of heterogeneous systems.

20 CHAPTER 2. BACKGROUND

2.4. MICROSERVICES

However, SOAs are built on the idea of fostering reuse, i.e., a share-as-much-as-

possible architecture style, whereas microservice architectures seconds the idea of

a share-as-little-as-possible architecture style [BDD+20]: the focus is on replace-

ability, autonomy, self-management and lightweightness [New15]. Microservices

are independently and conceptually deployable components providing a physi-

cal module boundary, even allowing for di!erent microservices to be written in

distinct programming languages and be managed by various teams. As defined

in [DGL+17a, BDD+20], a microservice is a cohesive, independent process that

supports interoperability, by communicating through lightweight messages (often

HTTP APIs). The term “cohesive” indicates that a service implements only func-

tionalities strongly related to the concern that it is meant to model, following the

Single Resposibility Principle: there should never be more than one reason for a

microservice to change. The share-as-little-as-possible and independent deploya-

bility properties of microservices make them a single business capability that is

delivered and updated independently and on its own schedule. Thus, changes do

not have any impact on other microservices and on their release schedule. How-

ever, to truly harness the power of independent deployment, one must utilise very

e”cient integration and delivery mechanisms [DGL+17a]. As a matter of fact, by

using automated continuous delivery pipelines and modern containerisation tools,

it is possible to deploy an updated version of a service to production in a mat-

ter of seconds, which proves to be very beneficial in an open, dynamic and ever

changing business environment. To give an example of a microservice architec-

Alice

User Input
Dispatcher Equality

Addition

Negation

Figure 2.3: Microservice architecture example

ture, let us consider the mathematical server described in Section 2.1. Following

the Single Responsibility Principle, as the mathematical server o!ers 3 functions

CHAPTER 2. BACKGROUND 21

2.5. TECHNOLOGIES FOR CONTAINERISED APPLICATIONS

(i.e., addition, equation and negation), developers can consider decomposing it into

3 microservices, each handling a single function. As can be seen in Figure 2.3,

there is an additional microservice to complete the architecture: the Dispatcher.

Such a service implements the logic to check the user input well-formedness and

routes requests to the proper microservice. The developers of the architecture

above can focus separately on implementing the basic microservice functionalities.

In the context of a microservice architecture, there are two approaches to es-

tablishing complex and elaborate communication behaviour among microservices:

orchestration and choreography. Orchestration refers to the coordination and man-

agement of multiple microservices to achieve a specific business function or work-

flow. It involves defining the sequence of actions or tasks that need to be executed

across di!erent microservices to fulfill a particular request or process, e.g., au-

toscaling. Orchestration typically involves a central orchestrator component that

controls the flow of communication and data between the microservices, ensuring

that they work together harmoniously to achieve the desired outcome. Chore-

ography, instead, refers to a communication style where individual services work

independently and coordinate with each other through events. Each service in a

choreography understands the overall workflow and responds to relevant events

published by others.

2.5 Technologies for Containerised Applications

In the rapidly evolving landscape of modern software development, containerisa-

tion has emerged as a foundational technology, revolutionising the way applica-

tions are developed, deployed and managed. At the heart of this transformation

lie two key technologies: Docker and Kubernetes (K8s). In the following Section,

we explore the inner workings of these technologies, exploring their core concepts,

architecture and capabilities in detail. We examine how Docker simplifies the

process of containerisation, enabling developers to package and distribute applica-

tions with ease. Likewise, we explore how Kubernetes empowers organisations to

harness the full potential of containerisation, providing powerful tools for orches-

trating and managing containerised workloads in dynamic, cloud-native environ-

ments. Through a comprehensive understanding of these technologies, developers

22 CHAPTER 2. BACKGROUND

2.5. TECHNOLOGIES FOR CONTAINERISED APPLICATIONS

and organisations alike can unlock new opportunities for innovation, agility, and

scalability in the ever-evolving landscape of modern software development.

Docker. Docker is an open source container technology with the powerful ability

to build, ship and run distributed applications. Although container technologies,

e.g., [SPF+07, Fur14, Iva17], have been around for a long time, Docker is currently

one of the most successful tool for application containerisation, since it comes with

new powerful abilities that earlier technologies did not possess. As a matter of

fact, Docker provides interfaces to simply create and control containers, where

applications can be run without modification, no matter the underlying hardware.

Moreover, Docker cooperates well with orchestration tools, e.g., Kubernetes, which

provide an abstract layer of resources management and scheduling over Docker.

The underlying virtualisation solution, called Docker engine, is a lightweight

and portable packaging tool. At its core lies the Docker Daemon, a background pro-

cess responsible for overseeing Docker objects such as containers, images, volumes

and networks. Integral to the Docker Engine is the container runtime component,

which executes containers, providing the necessary environment for applications

to run, independently of the host system. Docker Images, immutable templates

containing application code, dependencies and configurations, serve as the building

blocks for containers, fostering portability and consistency across di!erent environ-

ments. Additionally, Docker Engine encompasses networking and storage drivers,

facilitating communication between containers and external resources, as well as

ensuring the persistence of container data.

In addition to the foundational components described above, Docker Com-

pose [ISH21] and Docker Swarm [SK16] are integral parts of the Docker ecosys-

tem, extending its capabilities for orchestrating and managing containerised ap-

plications at scale. Docker Compose simplifies the management of multi-container

Docker applications, allowing users to define complex, multi-service applications

in a single YAML file. With Docker Compose, developers can specify the services,

networks and volumes required for their application along with their configurations

and dependencies. This declarative approach streamlines the deployment process,

enabling users to define and launch their entire application stack with a single com-

mand. Docker Compose facilitates collaboration and reproducibility, as developers

CHAPTER 2. BACKGROUND 23

2.5. TECHNOLOGIES FOR CONTAINERISED APPLICATIONS

can share their application configurations in version-controlled YAML files, ensur-

ing consistency across development, testing and production environments. Docker

Swarm, instead, provides native clustering capabilities for Docker, allowing users

to orchestrate and manage a cluster of Docker hosts as a single virtual system.

Docker Swarm simplifies the deployment and scaling of containerised applications

across multiple hosts, providing built-in features for load balancing, service discov-

ery and high availability. With Docker Swarm, users can deploy their applications

seamlessly, leveraging on its integrated scheduling and orchestration capabilities

to distribute containers across the cluster, based on resource availability and con-

straints. Docker Swarm fosters resilience and scalability, enabling users to scale

their applications horizontally, adding or removing nodes dynamically.

Kubernetes. Kubernetes is a powerful container orchestration platform that

simplifies the deployment, scaling and management of containerised applications.

At its core, Kubernetes leverages container technologies, such as Docker, to encap-

sulate applications and their dependencies, ensuring consistency across di!erent

environments. These containers are organised into pods, the fundamental units of

deployment in Kubernetes. Pods are the smallest, most basic deployable objects

in the ecosystem, encapsulating one or more tightly coupled containers that share

storage and networking. They represent the fundamental units of deployment, en-

abling developers to create modular and scalable application architectures. A pod

can consist of multiple containers that work together to perform a specific task,

e.g., a main application container and one or more helper containers (sidecars for

logging or monitoring). Each pod in Kubernetes has its own unique IP address,

which allows containers within the pod to communicate with each other. Pods are

managed using YAML files as the one presented in Listing 2.5. In particular, the

description in Listing 2.5 defines a Kubernetes pod, named example-pod, running

a Nginx instance. The pod specification includes resource requests and limits for

the pod, ensuring e”cient resource allocation and management within the Ku-

bernetes cluster. Specifically, the pod requests 64MB of memory and 250m (milli

CPUs, i.e., a fraction of a CPU core, where 1000 milli CPUs correspond to one

full CPU core), with limits set to 128MB of memory and 500m CPUs. This config-

uration ensures that the pod has the necessary resources to run e!ectively, while

24 CHAPTER 2. BACKGROUND

2.5. TECHNOLOGIES FOR CONTAINERISED APPLICATIONS

Listing 2.5: Example of pod definition!
1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: my -pod
5 spec:
6 containers:
7 - name: nginx -container
8 image: nginx:latest
9 resources:

10 requests:
11 memory: "64Mi"
12 cpu: "250m"
13 limits:
14 memory: "128Mi"
15 cpu: "500m""# $

preventing it from consuming excessive resources, contributing to the stability and

performance of the environment.

Pods are scheduled onto nodes within a cluster, which can include both physical

and/or virtual machines, where they share resources and execute application code.

The cluster, comprising a control plane (master) and worker nodes, orchestrates

the deployment and management of pods across the infrastructure. Within the

control plane, the Kubernetes Scheduler plays a pivotal role in orchestrating the

deployment of pods onto nodes of the cluster. This component is responsible for

evaluating resource requirements, node availability and a”nity rules to make in-

telligent scheduling decisions. It operates through a multi-step process, beginning

with filtering nodes based on their capacity to meet the resource requirements of

the pod under examination. Following this, it assigns a priority score to each node,

based on factors like resource availability and a”nity/anti-a”nity rules, to control

how pods are placed onto nodes based on node properties and constraints. The

scheduler, then, selects the node with the highest priority score and binds the pod

to it, taking into account considerations such as node locality and fault tolerance.

Throughout this process, the scheduler continuously monitors the cluster state and

adjusts pod placements as necessary to maintain optimal resource utilisation and

application availability [HBB17].

Complementing the Kubernetes Scheduler is the Horizontal Pod Autoscaler

(HPA), a feature that enables automatic scaling of single pods based on observed

CHAPTER 2. BACKGROUND 25

2.5. TECHNOLOGIES FOR CONTAINERISED APPLICATIONS

CPU utilisation or other custom metrics. The HPA dynamically adjusts the num-

ber of pod replicas to match the desired user-defined target, ensuring that the

application can handle varying levels of tra”c and workload. The HPA calculates

the desired number of pods according to this formula:

desiredReplicas =

⌈
currentReplicas · currentMetricV alue

desiredMetricV alue

⌉

By automatically scaling pods in response to changes in demand, the HPA im-

proves resource utilisation, maintains application performance and reduces op-

erational overhead. This capability empowers organisations to achieve e”cient

resource management and cost optimisation in dynamic and rapidly evolving en-

vironments, ultimately enhancing the agility and scalability of containerised ap-

plications deployed on Kubernetes.

26 CHAPTER 2. BACKGROUND

Chapter 3

A Modelling/Execution Language

for Microservice Systems

This Chapter contains contributions from the following work of ours: [BBG+24b]

Drawing inspiration from service-oriented computing, the microservices architec-

ture revolutionises software systems, facilitating highly modular and scalable com-

positions of fine-grained, loosely-coupled communicating components [DGL+17b].

These properties align with modern software engineering practices like continuous

delivery/deployment [HF10b] and autoscaling [Amaa]. In particular, autoscaling,

the ability to dynamically modify the system architecture during execution, is cru-

cially important for addressing adaptation needs, e.g., fluctuating peaks of user

requests. This process, composed by a set of actions, instills a precise behaviour

within the system. Thus, ensuring that the system behaves as expected, becomes

paramount. As these systems comprise numerous interconnected services, even

a minor glitch or malfunction in one component can disrupt the entire applica-

tion. Particularly, in these non-trivial microservice systems, the challenge lies in

ensuring, not only correctness of the deployment process, i.e., the deployment of

microservices finishes without errors, but also cost-optimal and resource-e”cient

distribution of components across available virtual machines (VMs). The autoscal-

ing process, if not devised carefully, can become extremely dangerous: (i) if scaling

policies are not correctly tuned and meticulously evaluated, the system will deploy

an incorrect amount of resources, causing either a waste of resources (in case of

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

27

overestimations) or a system overloading (in case of underestimations); and (ii)

if the deployment process encounters errors, services are not replicated and the

system will, eventually, be overloaded. Thus, it is crucial to evaluate system func-

tioning early on at the design phase, fostering a safer and more e”cient system de-

velopment process. In the context of this Dissertation and, more precisely, within

this Chapter, we introduce a novel integrated timed architectural modelling/ex-

ecution language [BBG+24b] based on a timed extension of the SmartDeployer

tool [BGM+19, BGM+20] for the Abstract Behavioral Specification (ABS) lan-

guage (refer to Section 2.3) [JHS+10].

ABS is an actor-based timed object-oriented language, suitable for designing,

verifying and evaluating concurrent/distributed systems. In particular, it allows

for modelling and simulation by exploiting its twofold nature: it is both a process

algebra (with probabilistic/timed formal semantics) and a programming language

(compiled and executed, e.g., via Erlang backend).

SmartDeployer exploits dedicated ABS code annotations expressing architec-

tural properties of: the modelled distributed system (global architectural invari-

ants and allowed reconfigurations), its VMs (their characteristics and resources,

expressed as properties of Deployment Components representing them) and its

software components/services (accounting for architectural dependencies and in-

variants). During compilation, SmartDeployer verifies the satisfiability of these

annotations against the desired target configuration requirements, modelled using

the Declarative Requirement Language (DRL) [dMZ19] and architectural invari-

ants. Once validated, SmartDeployer synthesises deployment orchestrations to

build the system architecture and its specified reconfigurations. Similarly, it gen-

erates undeployment orchestrations to revert these changes. SmartDeployer uses

ABS itself as an orchestration language, making deployment and undeployment

ABS code accessible as callable methods. Consequently, these methods can be

invoked by the ABS code of services, enabling simulated runtime adaptation. By

integrating modelling and execution capabilities within a unified language, we

proactively address performance concerns during the design phase. This proactive

approach enables early analysis of system behaviour, e.g., deployment and scaling

decisions, ensuring that potential issues are anticipated before implementation.

SmartDeployer performs checks during compilation to verify the feasibility of de-

28 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

ployment orchestrations, which are subsequently executed at runtime to guarantee

the system ability to achieve the specified reconfigurations outlined through DRL.

For instance, in scenarios with fluctuating workloads, such reconfigurations might

involve scaling computational resources through service replication. Thus, we en-

sure that the system remains adaptable to both positive and negative peaks in user

requests, while still meeting the defined Quality of Service requirements. Smart-

Deployer tackles the challenge of synthesizing deployment orchestrations based on

a declarative representation of reconfiguration requirements. This task, often re-

ferred to as the optimal deployment problem, has been demonstrated to be solvable

for microservices exclusively [BGM+19, BGM+20]. SmartDeployer provides an in-

terface with ABS, reading ABS annotations with DRL declarations and injecting

code of synthesised (un)deployment orchestrations into the initial annotated ABS

program. To do this, it relies on a pluggable external solver producing as output

the synthesised architectural configuration (cost-optimal distribution of compo-

nents over the available VMs), which is, then, translated by SmartDeployer into

(un)deployment orchestrations expressed as timed ABS code. Notice that, being

the solver pluggable, Zephyrus2 can be replaced with any other (not necessarily

constraint-based) solver, which takes as input a DRL declaration and produces an

architectural configuration.

However, when it comes to considering timing aspects, from a technical view-

point, SmartDeployer implicitly handles them by simply copying Deployment

Components (DC) properties from its annotations, i.e., statically assigning the

speed and startup time properties to each DC instance. As we will see later in this

Chapter, these static assignments cause SmartDeployer to synthesise deployment

orchestrations (ABS programs) that are incorrect from a timing viewpoint. To

overcome and correct this limitation, in the context of this Dissertation, we intro-

duce the Timed SmartDeployer tool [BBG+24a] that fully integrates, also correctly

accounting for time aspects, ABS with annotation-based specification of architec-

tural properties. In particular, Timed SmartDeployer, as can be seen in Figure 3.1,

generates timed deployment orchestrations that also explicitly manage time aspects

of the execution: they use ABS timed primitives to dynamically set DC speeds

(based on actually used CPU cores) and overall startup time for the architectural

reconfiguration. As we will see, the timed features of orchestrations are essential

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

29

11/03/24, 14:56

Pagina 1 di 1file:///Users/lorenzobacchiani/Downloads/framework.svg

[SmartDeploy:...]
[SmartDeployCloudProvider:...]

[SmartDeployCost:...]
class Microservice1 {...}

[SmartDeployCost:...]
class Microservice2 {...}
....
[SmartDeployCost:...]
class MicroserviceN {...}

ABS
Annotations Timed

SmartDeployer

Orchestration
synthesis

Class
TimedOrchestration

{...}

ABS code ABS injected orchestration code

ABS compiler

Executable Erlang program

Simulation by
Erlang Execution

Figure 3.1: Modelling/execution language toolchain

to model, in a throughput-consistent way, adaptation actions.

Finally, we prove the expressiveness of our modelling execution language and its

capacity to precisely reproduce the behaviour of real-world microservice systems.

In particular, we consider, as a running example, a well-known realistic microser-

vice application, i.e., the AcmeAir microservice system, taken from [TS21]. In

such an application scenario, we model the system, microservice properties and

workload, following the work done by Incerto et al. [IPT23]. We simulate the

system adaptability under a time-varying sinusoidal load [IPT23] and analyse its

behaviour. Concerning the AcmeAir microservice system itself, its model is built

by considering static aspects of the architecture (annotations) and ABS code mod-

elling the behaviour of services. The obtained code fully exploits the expressive

power of ABS, e.g., using both its timed and probabilistic features.

The Chapter is structured as follows. In Section 3.1, we briefly introduce the

approach of [BGM+19, BGM+20] to the automated deployment of microservice

applications, while in Section 3.2 we present the AcmeAir microservice architec-

ture that we use as a running example. In Sections 3.3 and 3.4, we describe the

SmartDeployer tool and the external solver it relies on, i.e., Zephyrus2. In Sec-

30 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.1. AUTOMATED DEPLOYMENT OF MICROSERVICES

tion 3.5, we present our new Timed SmartDeployer tool and how we use it to

consistently model service throughput. In Section 3.6, we present the expressive

power of our modelling/executable language, producing an algebraic model of the

AcmeAir microservice architecture. In Section 3.7, we prove the reliability and

precision in reproducing the behaviour of AcmeAir microservice architecture. Fi-

nally, in Sections 3.8 and 3.9 we, respectively, present some related literature and

conclude this Chapter.

3.1 Automated Deployment of Microservices

In [BGM+19, BGM+20], Bravetti et al. present a formal framework for component-

based software systems, addressing the challenge of automated deployment. They

define this process as the synthesis of deployment orchestrations, aimed at allo-

cating instances of software components on virtual machines (VMs) to achieve

a desired target system configuration. Central to their approach is the formal-

isation of the deployment life-cycle for each component type, represented as a

finite-state automaton. Within this model, each state corresponds to a distinct

deployment stage, characterised by a set of provided ports (connections exposed

by a component for use by others) and required ports (connections needed by a

component from others to function at that stage). More specifically, Bravetti et

al. [BGM+19, BGM+20] focus on microservices, a type of component with a de-

ployment life cycle comprising two primary phases. Firstly, the creation phase

involves the mandatory establishment of initial connections via strongly required

ports/strong dependencies with other available microservices. Subsequently, the

binding/unbinding phase encompasses the establishment of optional connections,

denoted as weakly required ports/weak dependencies, to other available microser-

vices. These two phases facilitate the management of circular dependencies among

microservices, o!ering a structured approach to their deployment.

The concepts of strongly and weakly required ports are, not exclusive to aca-

demic research, but also integral to contemporary deployment technologies like

Docker Compose [ISH21]. Docker Compose serves as a language for defining

multi-container deployments, allowing users to articulate various relations among

containers. For instance, users can employ directives such as depends on or exter-

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

31

3.1. AUTOMATED DEPLOYMENT OF MICROSERVICES

nal links to establish di!erent relations between containers. In Docker Compose,

these relations can either enforce a specific startup order among containers, akin to

strong dependencies, or they can allow for a more flexible startup sequence, resem-

bling weak dependencies. This parallels how the combination of strong or weak de-

pendencies influences the orchestration of microservice deployment, demonstrating

the practical relevance and applicability of these concepts in modern and realistic

deployment scenarios.

Furthermore, in their work, Bravetti et al. [BGM+19, BGM+20] extend their

consideration beyond the mere functionality of deployments to encompass resource

and cost awareness. This involves modelling memory and computational resources,

such as the allocation of virtual CPU cores (referred to as vCores in Azure or sim-

ply as virtual CPUs in platforms like Amazon EC2 and Kubernetes) [HBB17].

Specifically, the authors enhance both microservice specifications and virtual ma-

chine descriptions, incorporating details regarding the resources they require and

provide, respectively. By integrating these resource metrics into their deployment

framework, Bravetti et al. [BGM+19, BGM+20] enable a more nuanced and e”-

cient orchestration of deployments, taking into account factors beyond strong and

weak requirements.

A microservice deployment orchestration, formulated within an orchestration

language, embodies a structured program with primitives designed to handle two

primary operations: (i) the creation or removal of specific microservices along

with their strongly required bindings; and (ii) the addition or removal of weakly

required bindings between microservices. This orchestration process is pivotal for

transitioning from an initial microservice system configuration to the desired target

one. Given an initial microservice system, a set of available VMs and a new target

system configuration (corresponding to the set of microservices to be deployed),

the optimal deployment problem is the problem of finding the deployment orches-

tration that: (i) satisfies core and memory requirements; (ii) leads to a new system

configuration, where the target microservices are deployed; and (iii) chooses the

solution that optimises resource usage, if more than one is available. A typical

optimisation objective in this context is cost minimisation, wherein the goal is to

select the deployment orchestration that minimises the aggregate cost of the vir-

tual machines used for microservice deployment. By formulating and solving this

32 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.2. THE ACMEAIR MICROSERVICE SYSTEM

optimisation problem, stakeholders can e!ectively manage resource allocation and

operational expenses, while achieving the desired system configuration.

While Di Cosmo et al. [DCZZ12] demonstrated that permitting components

to have arbitrary deployment life cycles renders the optimal deployment problem

undecidable, Bravetti et al. [BGM+19, BGM+20] countered this complexity by

focusing on the simplified life cycle of microservices as described earlier, charac-

terised by the creation and binding/unbinding phases. By narrowing the scope

to these two distinct phases, the authors made significant strides in rendering the

problem decidable. Specifically, Bravetti et al. [BGM+19, BGM+20] introduced

a constraint-solving algorithm that e!ectively addresses the optimal deployment

problem within the context of microservices. This algorithm provides a solution

comprising the new system configuration, including the microservices earmarked

for deployment, their allocation across virtual machines and the necessary bindings

to be established among their strong and weak required and provided ports. This

approach o!ers a practical and computationally feasible method for orchestrating

microservice deployments, while accommodating the inherent complexities of the

system dynamics.

3.2 The AcmeAir Microservice System

In Figure 3.2, we present the AcmeAir microservice system, as outlined in [IPT23].

AcmeAir o!ers users access to nine distinct endpoints: Auth, ValidateId, ViewPro-

file, UpdateProfile, QueryFlights, BookFlights, UpdateMiles, GetRewardMiles and

CancelBooking. Following the modelling approach of Incerto et al. [IPT23], we

adopt the strategy of deploying AcmeAir with the utmost granularity, assigning

each endpoint to its dedicated microservice type and making them communicat-

ing via simulated synchronous HTTP requests. This granular deployment scheme

facilitates independent scaling of individual microservices, as necessitated by work-

load variations. Each service type is equipped with its dedicated load balancer,

which distributes inbound requests among the set of microservice instances, whose

number can change at runtime.

Before going into the details of the application of our approach for automated

deployment and scaling of microservice applications, as discussed in the subse-

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

33

3.2. THE ACMEAIR MICROSERVICE SYSTEM
05/09/24, 17:24

Pagina 1 di 1file:///Users/lorenzobacchiani/Downloads/Acmeair.drawio.svg

Actor

Auth ValidateId

ViewProfile

UpdateProfile

QueryFlights

BookFlights

CancelBooking

UpdateMiles

GetRewardMiles
Legend

Microservice

sync. communication

Figure 3.2: AcmeAir microservice architecture [IPT23]

quent Section (see Section 3.6), let us briefly introduce our representation of cloud

resources. We adopt a virtual CPU core-centric perspective, considering them

both as resources provided by machines and as requirements for microservices.

Specifically, in our scenario, we assume microservices to be deployed on Amazon

EC2 virtual machines, i.e., c4.large, c4.xlarge, c4.2xlarge and c4.4xlarge, each re-

spectively furnishing 2, 4, 8 and 16 virtual CPU cores, referred to as vCPUs in

Amazon EC2 (following the terminology of Azure vCores). It is noteworthy that,

in our modelling, computational resources supplied by VMs (and demanded by

microservices) are represented using virtual cores, each with a fixed speed deter-

34 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.3. SMARTDEPLOYER

mined by the cloud provider. This abstraction serves to decouple the underlying

hardware from what users interact with, enabling cloud providers to optimise the

utilisation of physical processors e”ciently. By delegating the mapping of virtual

cores and the scheduling of instructions to the runtime (the VM/OS), providers

can maximise hardware utilisation.

3.3 SmartDeployer

In this Section, we introduce the SmartDeployer tool [BGM+19, BGM+20]. This

tool operates during ABS compile time, statically addressing the optimal deploy-

ment problem outlined at the conclusion of Section 3.1. Its primary function is to

synthesise deployment orchestrations capable of achieving a specified target system

configuration. SmartDeployer derives its input from dedicated ABS annotations

embedded within the compiled ABS program. Subsequently, it generates its output

as ABS code, specifically executing deployment or undeployment actions. These

generated orchestrations are seamlessly integrated into the initial annotated ABS

program, enhancing its functionality and ensuring the attainment of the desired

system configuration.

SmartDeployer ABS annotations. The JSON based ABS annotations from

which SmartDeployer extracts its input are:

• [SmartDeployCost : JSONstring] class annotation. This annotation is associ-

ated with an ABS class that embodies a specific microservice type. Within

this annotation, various attributes are delineated, including the functional

dependencies such as provided ports, as well as weak and strongly required

ports. Additionally, it encompasses specifications regarding the computa-

tional resources required by the microservice, such as the number of cores

and the amount of memory needed for its operations;

• [SmartDeployCloudProvider : JSONstring] global annotation. The annotation

delineates essential properties related to virtual machines hosting microser-

vices, including, e.g., Cores, Bandwidth,Memory, Speed and StartupTime. Ad-

ditionally, it encapsulates information regarding the cost-per-hour associated

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

35

3.3. SMARTDEPLOYER

with the creation and utilisation of DCs within the orchestrated deployment

execution;

• [SmartDeploy : JSONstring] global annotation. It specifies the desired prop-

erties and constraints that should be adhered to within the deployment or-

chestration. These may include:

– the id property, which sets the name for the class that is going to include

the ABS code of the synthesised orchestration;

– the cloud provider DC availability property, which fixes the maximum

number of VMs the orchestration can allocate.

Some of these properties may be represented as JSON values, where the

content is a declarative specification. This specification typically comprises

a formula expressed in a language grounded in first-order logic. For instance:

– the specification property, which contains the declarative specification

of the desired configuration we want to reach, in DRL. A value for this

property (taken from our running example) can be:!
AuthLoadBalancer = 1 and Auth = 1 and

forall ?x in DC: (?x.AuthLoadBalancer > 0

impl (sum ?y in obj: ?x.?y) = 1)"# $
declaring that 1 instance of AuthLoadBalancer and Auth services must

be deployed and that, if a virtual machine hosts the AuthLoadBalancer

service, such service must be deployed alone, i.e., that virtual machine

does not host other services;

– the bind preferences property, which is used to specify preferences about

weak bindings among service instances (again, using the DRL language).

A value for this property (taken from our running example) can be:!
forall ?x of type Auth in ’.*’ :

forall ?y of type AuthLoadBalancer in ’.*’ :

?x used by ?y"# $
meaning that each instance (variable ?x) of the Auth service has to be

bound to each AuthLoadBalancer service instance (variable ?y). Given

36 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.4. THE ZEPHYRUS DEPLOYMENT ENGINE

that there exists only 1 instance of the AuthLoadBalancer service in the

system, this just means that each instance of the Auth service has to

be bound to its load balancer. More precisely, the in keyword is used

to set the scope for the considered services. In this case, the considered

ones are only those located inside the DCs whose names are declared

after in. Such a declaration can be made with a regular expression like
→.↓→ (meaning any string), i.e., the service can be located in any DC.

Synthesised (un)deployment orchestration. The SmartDeployer tool gen-

erates the desired (un)deployment orchestration as output, which is essentially an

ABS program. This program is injected into the initial annotated ABS codebase,

augmenting it with a set of instructions expressed in the orchestration language,

i.e., ABS itself. Upon execution, this newly synthesised timed orchestration drives

the system towards the deployment/undeployment of a configuration that satisfies

the specified properties and constraints. Notice that, being such an orchestra-

tion automatically synthesised via a constraint-solving technique, it is correct-by

construction and guarantees the correct deployment of the desired microservices.

Internal details. As elaborated earlier, SmartDeployer seamlessly integrates

with ABS by interfacing with ABS annotations containing DRL declarations and

incorporating the generated (un)deployment orchestration code into the original

annotated program. To achieve this functionality, SmartDeployer exploits a plug-

gable external solver, i.e., the Zephyrus2 constraint solver [ÁCJ+16], which facili-

tates the synthesis of deployment orchestrations based on the specified constraints

and requirements. The external solver produces as output the synthesised archi-

tectural configuration (cost-optimal distribution of components over the available

VMs), which is, then, translated by SmartDeployer into (un)deployment orches-

trations expressed as ABS code.

3.4 The Zephyrus Deployment Engine

In Section 3.3, we described how SmartDeployer extracts deployment information

from ABS code. This information encompasses two main categories. The class an-

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

37

3.4. THE ZEPHYRUS DEPLOYMENT ENGINE

notations, which articulate the requirements of objects representing the resources

and dependencies of microservice instances. These annotations elucidate the es-

sential characteristics necessary for the proper functioning of the microservice in-

stances. The global annotations, which outline the available computing resources

and the desired deployment properties. These properties serve as guidelines for the

deployment process, dictating the allocation of microservices across the available

computing resources. The deployment engine undertakes the processing of these

annotations, thereby automating the synthesis of a microservice architecture. This

synthesis involves strategically allocating various microservices onto the available

computing resources. Notice that, this allocation process is meticulously executed,

considering both local factors (such as individual microservice dependencies) and

global constraints (such as the minimisation of total allocated resources).

The deployment engine, which is currently used in SmartDeployer (and its

timed version), is Zephyrus2 [ÁCJ+16]. Zephyrus2 is a tool for the optimal de-

ployment of software components over virtual machines that exploits SMT (Satis-

fiability Modulo Theories) and CP (Constraint Programming) technologies. More

precisely, Zephyrus2 expects in input three di!erent kinds of deployment informa-

tion:

• a description of the components that can be deployed (which includes the

consumed computing/memory resources as well as the functionalities re-

quired/provided from/to other components);

• a description of the virtual machines where components can run (including

o!ered resources and other information, e.g., their cost);

• the specific requirements on the component-based software architecture to

be computed and deployed over the available virtual machines.

The last item could also include objective functions to optimise, e.g., the request

to minimise the total cost of the used virtual machines. Zephyrus2 produces as

output a description of the components to deploy, their allocation over the available

virtual machines and their bindings that reciprocally require/o!er functionalities.

The computed deployment configuration satisfies the constraints specified as input.

38 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.4. THE ZEPHYRUS DEPLOYMENT ENGINE

Zephyrus2 computes its output as a solution to an optimisation problem en-

coded in MiniZinc [NSB+07], a solver independent language for modelling con-

straint satisfaction and optimisation problems. The interested reader can find

in [ÁCJ+16] details about how Zephyrus2 produces the MiniZinc specification of

the deployment problem and how it exploits state of the art tools to solve such

problem. Here, we simply give an idea of how the translation of deployment re-

quirements into MiniZinc constraints work, presenting a couple of simple examples.

As a first example, we consider the allocation of memory to the components.

Let us consider the constraint

∧

v↑VM

∑

C↑CompTypes

inst(C, v) · C.mem ↑ v.mem

where VM denotes the set of all the available virtual machines, CompTypes the

possible component types, inst(C, v) the number of component instances of type C

on the virtual machine v, C.mem the memory consumed and v.mem the memory

available. This constraint ensures that we cannot allocate an amount of compo-

nents such that the memory required is more than the available one.

As an additional example, we show how it is possible to require the deployment

to minimise the total cost. The constraints enforcing that all virtual machines v

host at least one component (bounding used(v) to be true) is expressed as follows:

∧

v↑VM

(∑

C↑CompTypes

inst(C, v) > 0
)
↔ used(v)

To minimise the total cost, we can minimise the following objective function:

min
∑

v↑VM, used(v)

v.cost

where v.cost is the cost of the virtual machine v.

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

39

3.5. TIMED SMARTDEPLOYER

3.5 Timed SmartDeployer

Unlike SmartDeployer, its timed extension produces deployment orchestrations

that additionally encompass dynamic management of overall Deployment Compo-

nent (DC) speed and startup time (computational resources per time unit, see Sec-

tion 2.3), based on the number of DC virtual cores that are actually used by some

microservices, after enacting the synthesised deployment orchestration [BBG+24a].

As a matter of fact, the original SmartDeployer implicitly handles timing aspects

by simply copying DC properties from annotations, causing static assignments of

speed and startup time to each DC instance. The first causes microservices, de-

ployed in a DC with unused cores, to unrealistically proceed faster, as if they could

exploit the computational power of unused cores. The second causes the overall

startup time to be the sum of that of individual DCs (since in the orchestrations

DCs are sequentially created). In particular, the solution to the speed problem is

to dynamically evaluate, during the orchestration execution, the number of cores

actually being used and adjust the speed to: speed - core speed · unused cores. The

solution to the startup time problem is to dynamically set such a time to the maxi-

mum of DCs startup time. The above is realised automatically synthesizing timed

orchestrations, whose language, i.e., the ABS language, additionally includes (with

respect to untimed ones) two primitives explicitly managing timing aspects

• one to decrement the speed of a DC: decrementResources(. . .);

• one to set overall the startup time of created DCs: duration(. . .).

Solving the speed problem is fundamental: such dynamic management, based

on cores actually being used, guarantees that microservices will always access the

same amount of VM speed, no matter where it is deployed. To fully understand

the importance of accounting for timing aspects during orchestration synthesis, let

us consider the following scenario. We set the an ABS time unit to be 1 second

and VMs to supply 5 speed per core (encoded with speed per core()). According to

the empirical measurements of Incerto et al. [IPT23], the throughput of an actual

implementation of the QueryFlights service is 17.6 (encoded with query tput())

requests per second. In the ABS code, to model service throughput, we make use

of the Cost instruction tag (see Section 2.3). E.g., in the case of the QueryFlights,

40 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.6. MODELLING THE ACMEAIR SYSTEM

which requires 6.498 CPU cores (recall, 1 CPU core is equal to 1000 millicores,

thus 6.498 CPU cores corresponds to 6498 millicores) to be deployed, we obtain the

throughput of 17.6 req/s as presented in Listing 3.1, where the method request(. . .)

is executed at each request.

Listing 3.1: QueryFlights implementation!
1 class QueryFlights (...) implements QueryFlightsInterface {

2 Result request(Rat start) {

3 [Cost: speed_per_core () * time_unit_to_sec () * 6498 / query_tput ()] skip;

4 Rat stop = timeValue(now());

5 prometheus!push("latency", "QueryFlights", stop - start);

6 prometheus!push("completed", "QueryFlights", 1);

7 balancer!removeMessage ();

8 return Success;

9 }

10 }"# $
Due to our SmartDeployer timed extension, the amount of VM speed used by

QueryFlights is always 5 · 6.498 (speed per core · cores required), independently of

the VM where it is deployed, i.e., QueryFlights can use up to 5 · 6.498 computa-

tional resources per time unit. The Cost tag above causes each request to consume

speed per core · 6.498 · 1/throughput computational resources (recall 1 ABS time

unit corresponds to 1 second). Therefore, since throughput/1 is the QueryFlights

throughput expressed in requests per time unit, this realises the desired (deploy-

ment independent) service throughput.

3.6 Modelling the AcmeAir System

We employ our modelling and execution language to comprehensively analyse the

performance of the AcmeAir architecture, as illustrated in Figure 3.2. Our mod-

elling approach extends beyond merely capturing the static elements of the case

study architecture (modelled as ABS annotations). As a matter of fact, it also

incorporates dynamic facets, integrating automatic generation of deployment or-

chestrations (from static annotations), the code representing microservices and

their adaptive behaviour in response to varying inbound workloads. Regarding

microservices, we adopt a modelling approach where each type is represented as

an ABS class, with each object of that class functioning as a replica. In our

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

41

3.6. MODELLING THE ACMEAIR SYSTEM

Microservice Throughtput (req/s) CPU Cores
Auth 9.6 3.650
ValidateId 19.1 1.877
ViewProfile 10.7 3.582
UpdateProfile 8 2.734
QueryFlights 17.6 6.498
BookFlight 9.8 3.155
UpdateMiles 36.3 5.096
CancelBooking 13.7 2.032
GetRewardMiles 31.4 4.380

Table 3.1: AcmeAir microservice throughput

modelling schema:

• each class incorporates the Cost annotation (see Sections 2.3 and 3.5), which

is crucial to model the microservice throughputs detailed in Table 3.1;

• communication between microservices is modelled as simulated HTTP syn-

chronous requests, as in [IPT23].

The AcmeAir ABS algebraic model is publicly available at [Bac24c].

3.6.1 Automated Deployment of the AcmeAir System

Even if the AcmeAir system is composed by few microservices, they have a quite

complex network of dependencies, e.g., each load balancer strongly depends on

exactly one instance of the microservice type it handles, the BookFlights service

depends on the UpdateMiles and GetRewardMiles load balancers. Notice that, the

strong dependency from a load balancer to exactly one instance of the microservice

type it handles is needed to ensure that load balancers have always at least one

instance connected (consequently, our modelling schema avoid deploying useless

load balancers). To ensure the correct initial deployment and functioning of the

system, we use our Timed SmartDeployer tool to automatically synthesise a de-

ployment orchestration capable of ensuring the attainment of our goal. To this

purpose, we declaratively define the specification of the configuration we want to

42 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.6. MODELLING THE ACMEAIR SYSTEM

reach as follows. We first specify, for each load balancer, their strong dependen-

cies using the SmartDeployCost annotation presented in Section 3.3. An example

of strong requirements can be found in Listing 3.2: the declarative specification

states that the CancelBooking load balancer has strong dependencies towards an

instance of the microservice type it handles and the Prometheus service.

Listing 3.2: CancelBooking load balancer strong requirements!
1 sig : [

2 {kind : require , type : "PrometheusInterface"},

3 {kind : require , type : "CancelBookingInterface"}

4]"# $
Notice that, having load balancers with a strong dependency on exactly one in-

stance of the microservice type it handles together with the already existing ar-

chitectural strong dependencies (see Figure 3.2), e.g., BookFlights depending on

the UpdateMiles and GetRewardMiles load balancers, allow us to create a simpler

declarative specification (used by Timed SmartDeployer to synthesise the orches-

trations for the initial system deployment). As a matter of fact, as can be seen

in Listing 3.3, such specification does not explicitly include all the system com-

ponents, e.g., it misses the ValidateId, GetRewardMiles and UpdateMiles services,

but, instead, it just requires the specification of some load balancers. Nonetheless,

Listing 3.3: Instance requirement specification!
1 specification :
2 "BookFlightsLoadBalancer = 1 and QueryFlightsLoadBalancer = 1 and

CancelBookingLoadBalancer = 1 and
3 UpdateProfileLoadBalancer = 1 and AuthLoadBalancer = 1 and

ViewProfileLoadBalancer = 1""# $
starting from the declarative specification in Listing 3.3, the synthesised deploy-

ment orchestration installs all the services depicted in Figure 3.2 and their load

balancers. The reason is the following. All the load balancers have a strong de-

pendency towards an instance of the microservice type they handle. Thus, to

satisfy these requirements, Timed SmartDeployer deploys the load balancers and

additionally installs an instance of the microservice type they handle (even if not

explicitly specified). Given the architectural topology depicted in Figure 3.2 other

strong requirements come into play, e.g., the Auth strongly depends on the load

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

43

3.6. MODELLING THE ACMEAIR SYSTEM

balancer of the ValidateId service. Thus, again, to satisfy such requirement, Timed

SmartDeployer deploys the ValidateId load balancer, additionally installing an in-

stance of the ValidateId service (even if not explicitly specified).

Notice that, in case we deploy more than one instance per microservice type,

we need to ensure that each such instances are connected to their load balancers.

To this purpose, we leverage the weak requirements to model such connections,

expressing them as bind preferences (using the same logical expression as the one

presented in Section 3.3).

3.6.2 The Local Scaling Algorithm

To endow the AcmeAir system with the ability to adapt to time-varying workload,

we design, using our timed integrated modelling/execution language, the algorithm

used by the Kubernetes Horizontal Pod Autoscaler (see Section 2.5). In particu-

lar, each microservice (type) has a dedicated monitor and it is locally replicated,

creating new instances every time scaling needs are detected. The monitor code,

presented in Listing 3.4, works as follows. We use a scaling condition on monitored

Listing 3.4: HPA algorithm ABS implementation!
1 Rat total_req = await prometheus!getV("total request", serviceName);
2 Rat workload = total_req / monitoring_window ();
3 Rat base_throughput = lookupUnsafe(serviceThrougputs (), serviceName);
4 Rat instances = await prometheus!getV("instances", serviceName);
5 Rat supp = base_throughput * instances;
6 if ((workload + k_big()) - supp > k() || supp - (workload + k_big ()) > k()) {
7 Int target = ceil(float((workload+ k_big())/base_throughput));
8 if(target > instances) this!scaleUp(target - instances);
9 else if(target < instances) this!scaleDown(instances - target);

10 }"# $
inbound workload involving two constants1 called K, to leave a margin under the

guaranteed service throughput and k to prevent sequences of scale up and down

actions. The condition for scaling up is (inbound workload+K)↗throughput > k

and the one for scaling down is throughput ↗ (inbound workload +K) > k. The

algorithm first applies the above scaling conditions, with base throughput being the

microservice throughput and instances the number of deployed instances (initially

1In Listing 3.4, these constants are represented as functions returning a fixed value.

44 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.7. EXECUTING THE ACMEAIR SYSTEM

set to baseN, i.e., the initial number of deployed instances) and updated in case

of scaling needs. Following the Kubernetes mathematical calculation, we have

desiredReplicas =

⌈
currentReplicas · currentMetricValue

desiredMetricValue

⌉
.

In our algorithm, we set currentReplicas = instances, currentMetricValue =
workload+K

instances·base throughput and desiredMetricValue = 1 (meaning that the supported

workload is at least equal to the inbound one). Thus, simplifying the Kubernetes

formula, we get ⌈
workload+K

base throughput

⌉
,

which is implemented in Listing 3.4 (see line 7), where the function ↘x≃ (encoded

as ceil in Listing 3.4) denotes the ceil function, which yields the smallest integer

greater than or equal to x. Finally, the local scaling performs (un)deploy operations

to reach the target number of instances: if scale down occurs, the system keeps

installed at least baseN instances.

Notice that, base throughput takes the values specified in Table 3.1 (stored in

serviceThrougputs() and accessed via the lookupUnsafe ABS function); workload and

instances are retrieved via the prometheus object that emulates the functionalities

of the well-known monitoring system Prometheus [RV15], storing and providing

access to essential metrics, e.g., number of deployed instances and workload. The

wrapper object encapsulates the timed deployment orchestrations applied for ser-

vice replication. Finally, the scaleUp and scaleDown methods (for brevity not re-

ported in Listing 3.4) are used to deploy/undeploy the amount of replicas passed as

parameter, i.e., the target replicas number minus the current one (or vice versa).

3.7 Executing the AcmeAir System

We now show the capacity of our modelling/executing language to precisely re-

produce the behaviour of real-world systems, simulating our running example via

the Erlang backend. In our simulation, we set:

• the initial system configuration to deploy 1 instance for each microservice

type (as in [IPT23]);

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

45

3.7. EXECUTING THE ACMEAIR SYSTEM

• an ABS unit to be 1 second;

• the monitor to perform its check every 5 seconds;

• the number of users to be updated every 5 seconds;

• the simulation to last 2000 seconds (as in [IPT23]);

• users to periodically execute their behaviour in a uniformly distributed time

interval of [0, 3] seconds, where the interval includes natural numbers only;

• the StartupTime of Deployment Components to 0 as the virtual machine used

in [IPT23] are immediately ready to work.

To test the accuracy of our ABS model, we address the sinusoidal inbound

workload, described by [IPT23], by introducing a dedicated generating service,

presented in Listing 3.5.

Listing 3.5: AcmeAir workload generator!
1 class WorkloadGenerator (...) implements WorkloadGeneratorInterface {
2

3 Rat time = 0;
4 List <UserInterface > users = list [];
5 Int userID = 0;
6

7 Unit run() {
8 while(time <= simulation_duration ()) {
9 await duration(generation_window ());

10 Rat sin_shape = this.sin_taylor(time%period , sin_shape_accuracy ());
11 sin_shape = sin_shape * mod + shift;
12 Int u = round(sin_shape);
13 if(u > length(users)) this!addUsers(u - length(users));
14 else if(u < length(users)) this!removeUser(length(users) - u);
15 }
16 this!removeUser(length(users));
17 }
18 }"# $

In particular, the generating service we implement periodically, i.e., every gen-

eration window() time units (corresponding to 5 seconds), adds/removes users ac-

cording to the chosen sinusoidal load pattern. Notice that, such load pattern is

not directly implementable, since ABS lacks of a built-in sin function. Thus, to

accomodate this, we approximate the sin function using a Taylor series, with mod

and shift parameters (see Listing 3.5), borrowed from the methodology outlined

46 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.7. EXECUTING THE ACMEAIR SYSTEM

by Incerto et al. [IPT23], to fine-tune the workload. Users are implemented as an

Listing 3.6: ABS sin approximation!
1 Rat sin_taylor(Rat x, Rat terms) {
2 x = pi() * x / 100;
3 Rat result = 0;
4 Int power = 1;
5 Int sign = 1;
6 while(terms > 0) {
7 result = result + (sign * pow(x,power) / factorial(power));
8 power = power + 2;
9 sign = sign * -1;

10 terms = terms - 1;
11 }
12 return result;
13 }"# $

active class synchronously interacting with all AcmeAir endpoints in a sequential

manner. Notably, as detailed in [IPT23], certain microservices such as ViewProfile

and CancelBooking may experience more than one request during a single execu-

tion of user behaviour.

We now discuss the results obtained, simulating the execution of the AcmeAir

system using our timed integrated modelling/execution language. To obtain sta-

tistically significant results, we perform 30 independent runs of our simulation and

consider the average behaviour. As can be seen in Figure 3.3, the workload we

adopt in our simulation (see Figure 3.3a), as expected, precisely reproduces the

one used in [IPT23] (see Figure 3.3b): in both cases, the load follows a sinusoidal

pattern limited between 10 and 60 users with a period of 200 seconds. Notice

that, we are not modelling the autoscaling approach of Incerto et al. [IPT23],

as their scaling approach is not straightforwardly reproducible with our timed

modelling/execution language, thus we cannot directly compare with Incerto et

al. [IPT23]. As a matter of fact, our focus is on the behavioural pattern the sim-

ulated system follows. Given the workload in Figure 3.3, we can reason on the

pattern we expect our results to highlight. In particular, due to the sinusoidal na-

ture of the workload, if we were to consider the system throughput and allocated

resources trends, we would expect them to resemble such sinusoidal pattern.

Our reasoning is supported by the empirical results shown in Figure 3.4, where

we analyse the trend followed by the system throughput. As can be seen, the

simulated system behaves as we expect: whenever the number of users grows,

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

47

3.7. EXECUTING THE ACMEAIR SYSTEM

(a) Simulated sinusoidal load

(b) Measured sinusoidal load, from [IPT23]

Figure 3.3: Simulated and measured user generation pattern comparison

48 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.8. RELATED WORK

the local scaling algorithm starts working and enacts the required scaling actions

to manage such time-varying workload, thus increasing the maximum supported

throughput. Conversely, if the number of users decreases, the system removes use-

less resources, consequently, reducing the maximum supported throughput. The

Figure 3.4: Simulated AcmeAir throughput

sinusoidal pattern we discussed so far can be also found in Figure 3.5, where we

analyse the number of allocated cores. As can be seen, the graph clearly shows the

same trend as the one presented in the throughput experiment, witnessing, again,

the consistency of the simulated behaviour with the one we expect.

3.8 Related Work

We presented an integrated approach for the design, specification, automatic de-

ployment and simulation of microservice architectures, based on the ABS language.

Regarding the adoption of executable semantics for simulation, the work done

in [BdBdG17] diverges from ours, opting for a real-time Haskell backend. This

choice enables direct communication between the simulation and actual services,

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

49

3.8. RELATED WORK

Figure 3.5: Simulated AcmeAir allocated cores

thereby blending external execution with simulation in real-time. Conversely, our

methodology does not necessitate communication between the simulated system

and external components during simulation, thus avoiding the complexities asso-

ciated with synchronising real and simulated time.

Another line of work encompasses the integration of timed or stochastic process

algebras into the software development lifecycle. This approach aims at analysing

the performance of modelled systems, as shown in [BDMIS04, HHK02].

Finally, alternative proposals have surfaced, employing specialised models for

cloud deployment specification, such as TOSCA (Topology and Orchestration

Specification for Cloud Applications) [OAS] or AEOLUS [DMZZ14]. These models

serve to describe the components of a cloud service system and their deployment

orchestration process comprehensively. They document the organisational struc-

ture of these components and outline the orchestration process necessary for their

deployment. The interested reader can find a recent survey of the model-based

methodologies used to ensure the correctness of reconfigurations in component-

based systems at [CHLR23].

50 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

3.9. DISCUSSION

3.9 Discussion

In this Chapter, we presented an integrated approach for the design, specification,

automatic deployment and simulation of microservice architectures, based on the

ABS language. The basic ingredients of this approach are:

• the ABS language, used to specify the behaviour of microservices;

• deployment annotations added to the ABS code, carrying information like

the available computing resources and their costs, the resources consumed

by each microservice instance and constraints about the minimum number

of instances for each microservice;

• the use of a compile-time deployment engine, i.e., Timed SmartDeployer,

able to synthesise optimal deployment orchestrations starting from declara-

tive deployment annotations extracted from ABS code;

• compilation of timed ABS code into executable Erlang programs, capable of

simulating the specified system.

We showed the reliability, precision and expressiveness of our timed mod-

elling/execution language implementing a realistic microservice architecture and

testing its performance under a time-varying workload. The results show that our

approach closely reproduce a coherent behavioural pattern with the one expected

from a real-world system execution.

Concerning future work, we plan to expand the modelling/execution capa-

bilities of our language including failures (e.g., network partitioning, computing

hardware failures) to precisely evaluate their impact on the deployed system. To

this aim, we could evaluate the system following the practice of Chaos Engineer-

ing [CR20], simulating failures in ABS and ensuring that the available resources

are enough to guarantee a given level or robustness and resilience. Moreover, to

improve the portability of our approach, we also plan to base our system modelling

using a workflow language/notation that also includes data flow besides standard

control flow, such as BPMN [OMG11]. This will make it possible to automati-

cally calculate microservice throughput and its average number of invocation per

execution of user behaviour.

CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

51

3.9. DISCUSSION

52 CHAPTER 3. A MODELLING/EXECUTION LANGUAGE FOR
MICROSERVICE SYSTEMS

Chapter 4

Orchestration-based Architectural

Reconfiguration

This Chapter contains contributions from the following work of ours: [BBG+22a, BBG+25, BPS+22b, BPS+22a]

Orchestration-based architectural reconfiguration embodies a sophisticated ap-

proach to shaping the dynamics of complex systems, where orchestration serves as

the guiding force infusing a predefined behaviour. At its core, orchestration man-

ages the intricate interplay of various components and resources towards a singular

goal, weaving coherence and e”ciency into the fabric of the architecture. Through

meticulous coordination and alignment of disparate elements, orchestration, not

only streamlines processes, but it also imparts a sense of purpose, directing the

system actions towards predetermined outcomes. This method transcends mere

adaptation, as it imbues the system with an inherent understanding of its over-

arching purpose, driving it towards optimal performance and adaptability. By

instilling a given behaviour, orchestration catalyses responsiveness to changing

circumstances, fostering resilience and agility in the face of evolving challenges.

Furthermore, orchestration promotes autonomy within the system, empowering it

with the ability to self-regulate its operations in alignment with the established

objectives. In essence, orchestration-based architectural reconfiguration represents

a paradigm shift, where the system evolves from a passive entity to an active agent,

driven by purpose and guided by orchestrations towards continuous optimisation

and enhancement. While orchestration-based architectural reconfiguration tech-

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

53

niques hold significant advantages, their e”cacy hinges on meticulous design and

implementation. Without careful planning and execution, these techniques can

falter, leading to ine”ciencies, conflicts and even system failures. Let us suppose

we want to replicate some microservices to o$oad the existing instances. Again,

without careful implementation, our reconfiguration technique could perform an

uncoordinated set of actions, not correctly satisfying the interdependencies among

microservices. Thus, some of the newly deployed instances may not work prop-

erly. Another scenario could be the following. We now want to migrate some

services from cloud to edge, to reduce the overall system latency. Without careful

implementation, our reconfiguration technique might move such services to a Vir-

tual Machine (VM) on edge that has not enough available resources for the hosted

services, thus, the migration fail. Hence, there arises a critical need for reconfigura-

tion approaches leveraging correct-by construction orchestrations to mitigate risks

and ensure reliability, thus reducing the likelihood of human error and enhancing

consistency as well as improving performance.

In the context of this Dissertation, we present two di!erent architectural recon-

figuration strategies for service service autoscaling [BBLZ21, BBG+22a, BBG+25]

andmigration [BPS+22b, BPS+22a]. In particular, we first model and simulate our

reconfiguration strategies using the framework presented in Chapter 3 to evaluate

their performance at the design phase and subsequently, we provide a real-world

implementation to prove their e!ectiveness in a realistic environment. In both

cases, we exploit correct-by construction orchestrations to actually perform adap-

tation actions: in the simulated environment, we use the Timed SmartDeployer

tool (see Section 3.5), to automatically synthesise such orchestrations, while, in the

real-world one, we use our new Kubernetes SmartDeployer (K8sSD) tool [Bac24f],

inspired by Boreas [LMTY21] and SmartDeployer, that statically generates correct-

by construction orchestrations compatible with Kubernetes.

Concerning service autoscaling, we first propose a novel reactive scaling al-

gorithm [BBLZ21] for architecture-level dynamic adaptation, called global scaling,

that overcomes the drawbacks of the traditional scaling approach, i.e., the “domino

e!ect”, caused by uncoordinated scaling actions. Notice that, our novel algorithm

crucially leverages the microservice automated deployment methodology, described

in Section 3.1: strongly required port can be used to indicate the set of entities

54 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

a microservice communicate with, while weakly required ports the connection be-

tween a load balancer and the instances it manages. Such methodology is used to

automatically synthesise the deployment orchestrations that our algorithm applies

to perform architecture-level dynamic adaptation. We then endow our algorithm

with proactive capabilities using an o!-the-shelf machine learning module to fore-

cast the inbound workload, further improving performance. However, predictors

are weak against exceptional events, resulting in the application of inappropriate

deployment orchestrations (either wasting resources or degrading the Quality of

Service). Thus, we also propose a novel proactive-reactive [BBG+22a, BBG+25]

methodology for mixing the measured workload and the predicted one, in case the

predictor fails to correctly forecast the inbound workload. We evaluate the per-

formance of our algorithm on a realistic microservice system: an Email Message

Analysis Pipeline [BGM+19, BGM+20]. In particular, we perform system execu-

tion using inbound tra”c taken from the Enron dataset [KY04]. To highlight the

extent of the advantages of our global scaling with respect to the local one imple-

mented in Section 3.6.2 (traditionally used in the literature [Amab, Apa, Doc] and

by, e.g., Kubernetes [HBB17]), we empirically test the di!erences in performance:

our results show that our scaling algorithm overcomes the local scaling and avoids

cascading slowdowns. Moreover, to show the need for our proactive-reactive algo-

rithm with respect to a purely proactive one, we selectively pick outliers from the

Enron dataset and run benchmarks to evaluate its performance.

Concerning service migration [BPS+22b, BPS+22a], we propose an approach

to enable the dynamic orchestration of services across nodes of the edge-cloud

continuum. Thus, migrated services can be dynamically activated/deactivated on

di!erent edge/cloud nodes so that the overall latency is minimised, while main-

taining the edge node resource usage under control. We devise our architectural

reconfiguration approach, so that the execution of a given orchestration is per-

formed exploiting the data locality principle: maximising the e”ciency of data

access by moving computation towards data. By organising data and structur-

ing adaptation approaches in a way that minimises the distance between accessed

data elements, systems can significantly reduce latency and improve overall per-

formance. To this aim, we validate our platform on a use case proposed by an

industrial company (Bonfiglioli S.P.A.). The use case focuses on the seamless al-

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

55

4.1. A SMART DEPLOYER FOR KUBERNETES

location of a Data Processing service — in charge of preparing data coming from

a production line for a subsequent anomaly detection task — between edge and

cloud nodes. We evaluate di!erent policies for the Data Processing service alloca-

tion varying the amount of data generated by the production line and measuring

the corresponding latency to generate the alarm.

The Chapter is structured as follows. In Section 4.1, we introduce our novel

K8sSD, a tool to automatically synthesise deployment orchestrations compat-

ible with Kubernetes. In Section 4.2, we present our new scaling approach,

i.e., the proactive-reactive global scaling, presenting both a simulated (via our

modelling/execution language, see Chapter 3) and real-world implementation.

In Section 4.3, we introduce our novel orchestrator to perform edge-cloud contin-

uum service migration, evaluated via a simulated and real-world implementation.

In Section 4.4, we discuss some related literature, while in Section 4.5, we conclude

the Chapter.

4.1 A Smart Deployer for Kubernetes

In this Section, we present our new Kubernetes SmartDeployer (K8sSD) tool,

inspired to both Boreas [LMTY21] and SmartDeployer (see Section 3.3), to au-

tomatically synthesise correct-by construction orchestrations compatible with Ku-

bernetes. Such tool, whose code is publicly available at [Bac24f], is implemented

in Python and communicate with Zephyrus2 (see Section 3.4) via HTTP requests.

The Zephyrus2 tool was originally designed to minimise the cost of application

deployment to virtual machines (VMs). While conceptually there is not a big dif-

ference between that problem and the placement of service pods on nodes within a

Kubernetes cluster, i.e., the optimal deployment problem, in practice we need to

perform extensive adjustments and conversions of the data and constraints, before

Zephyrus2 can process the placement of Kubernetes pods. Similarly to SmartDe-

ployer, our tool takes as input declarative specifications of deployment constraints

and requirements and produces as output a deployment orchestration.

Input. Our tool input is formed by the following YAML specifications: (i) declar-

ative descriptions of nodes hosting services; (ii) deployment requirements already

56 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.1. A SMART DEPLOYER FOR KUBERNETES

Listing 4.1: System resources declarative specifications!
1 k8s -worker -1:
2 resources:
3 memory: "4G"
4 cpu: "900m"
5 k8s -worker -2:
6 resources:
7 memory: "4G"
8 cpu: "900m"
9 ---

10 services:
11 name:
12 - proxy"# $

satisfied (i.e., microservices representing strong dependencies already deployed);

and (iii) declarative descriptions of services to be deployed.

Concerning (i), node descriptions are encoded in YAML format, specifying, for

each node, the RAM and amount of CPU it supplies. An example can be seen

in Listing 4.1: our cluster includes 2 identical nodes supplying 4 gigabytes of RAM

and 0.9 CPU cores. Since Zephyrus2 does not support fractional CPU specification

(while Kubernetes allows millicores for pod consumption specification), the CPU

values must be rescaled of a factor of 1000.

Concerning (ii), since the synthesised deployment orchestrations can be used

in the context of, e.g., service replication, we also need to account for deployment

constraints already satisfied in previous deployment actions. To do that, as can

be seen in Listing 4.1, it is enough to declare in the YAML specification a field

services, containing all service app names (matching those specified in the de-

ployment Kubernetes YAML file metadata) representing the dependencies already

satisfied. This operation is crucial for the orchestration synthesis, to understand

why let us consider the following scenario. We already have a running instance of

a Proxy service and we now want to install a Backend instance (see Listing 4.2).

Since we are not deploying any instance of the Proxy service (because we do not

need to replicate such service), the Backend strong requirement towards the Proxy

service cannot be satisfied and, consequently, preventing Zephyrus2 from finding

a configuration satisfying the specified requirements.

Concerning (iii), K8sSD extracts the information to be preprocessed and sent

to Zephyrus2 from standard Kubernetes YAML files of kind Deployment. To account

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

57

4.1. A SMART DEPLOYER FOR KUBERNETES

Listing 4.2: Service declarative specification!
1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: backend
5 spec:
6 selector:
7 matchLabels:
8 app: backend
9 replicas: 3

10 template:
11 metadata:
12 labels:
13 app: backend
14 spec:
15 affinity:
16 podAffinity:
17 requiredDuringSchedulingIgnoredDuringExecution:
18 - labelSelector:
19 matchExpressions:
20 - key: app
21 operator: In
22 values:
23 - frontend
24 topologyKey: "kubernetes.io/hostname"
25 containers:
26 - name: backend -container
27 image: k8s.gcr.io/pause :2.0
28 resources:
29 requests:
30 cpu: "300m"
31 memory: "500M"
32 ports:
33 required:
34 strong:
35 - name: "proxy"
36 value: 1"# $

for strong dependencies (see Section 3.1), we extend the Kubernetes deployment

language. As can be seen in Listing 4.2 (lines 32-36), the required.strong field

indicates the strongly required services. Notice that, name must match the strong

dependency name specified under metadata, while value indicates the amount of

instances to strongly connect. i.e., To better understand how the tool works, let

us consider the example presented in Listing 4.2, where we declare the specifica-

tions of a pod running a Backend service. Here, the first constraint backend = 3

(see line 9) imposes Zephyrus2 to search for configurations with exactly 3 Backend

instances. Kubernetes allows to define two types of intra pod a”nities, i.e., “hard”

ones that specify rules that must be met for a pod to be scheduled and “soft” ones

58 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.1. A SMART DEPLOYER FOR KUBERNETES

that specify preferences that the scheduler will try to enforce, but will not guaran-

tee. Currently, we only consider the “hard” a”nities, since these are the ones that

cannot be violated and restrict the possible admissible configurations. An example

of pod a”nity can be found in Listing 4.2 (lines 16 ↗ 24), where we require the

backend service to be deployed in a node running an instance of the frontend

one. We also support pod anti-a”nity, where we require the specified service to

be deployed in a di!erent node with respect to the one the specification refers to.

Notice that, the keyword requiredDuringSchedulingIgnoredDuringExecution

states that the constraints are “hard” ones, meaning that they must be satisfied

during service placement. Following SmartDeployer (see Section 3.3), K8sSD en-

codes the a”nity requirement as (forall ?x in locations: (?x.backend >

0 impl ?x.frontend > 0)), while anti-a”nity as (forall ?x in locations:

(?x.backend <= 1)). In lines 32↗36, we specify strong dependencies: the Back-

end service strongly depends on a single instance of the Proxy one. This specifi-

cation produces a constraint to ensure a specific deployment order. As a matter

of fact, in the synthesised orchestrations, service deployments follow a topological

order, i.e., services with dependencies come after the ones they depend on.

Output. K8sSD produces as output: (i) a YAML file specifying, for each node,

the RAM and amount of CPU left, after executing the synthesised orchestration;

and (ii) an orchestration deploying the services specified as input, either in a

platform independent declarative language, i.e., YAML, or in a specific programming

language, i.e., the Python programming language.

The synthesised orchestrations are executed by means of Pulumi1, an Infras-

tructure as a Code (IaaC) platform that enables developers to define, deploy and

manage cloud infrastructures using common programming languages (e.g., Python)

and declarative notation, i.e., the YAML language. The advantage of using program-

ming languages over declarative notations is that it allows developers to choose a

language they are familiar with, making the synthesised orchestrations intuitive

and easy to read (their execution relies on the dedicated Pulumi client library for

that language). On the other hand, the YAML language is a declarative notation,

making it possible to model orchestrations in an abstract way, without including

1https://www.pulumi.com

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

59

4.1. A SMART DEPLOYER FOR KUBERNETES

execution details specific to some programming languages (these orchestrations are

executed via a dedicated deployment engine).

We first present an example of deployment orchestration using YAML as orches-

tration language. For brevity sake, we omit the properties field as it contains

the information specified in Kubernetes YAML files. The orchestration presented

in Listing 4.3 deploys two services, i.e., the Backend and Proxy. Thanks to the

dependsOn annotation, which models strong dependencies, such orchestration first

deploys the Proxy service, then the Backend one (the latter depends on the for-

mer). The peculiarity of defining orchestrations using the YAML language, is that

there is no reminiscence of programming languages: the produced orchestration

only contains details directly related to the deployment process. Moreover, the

synthesised orchestration contains, for each specified service, the target hosting

node (see the nodeName field), computed such that the resource usage is optimal,

i.e., minimise the amount of used virtual machines.

Listing 4.3: YAML orchestration example!
1 name: my-k8s -app
2 resources:
3 proxy -0-pod:
4 name: proxy -0-pod
5 options: {}
6 properties:
7 ...
8 nodeName: k3d -k3s -default -agent -0
9 type: kubernetes:core/v1:Pod

10 backend -0-pod:
11 name: backend -0-pod
12 options:
13 dependsOn:
14 - ${proxy -0-pod}
15 properties:
16 ...
17 nodeName: k3d -k3s -default -agent -1
18 type: kubernetes:core/v1:Pod
19 runtime: yaml"# $

We now present an example of deployment orchestration using Python as or-

chestration language. As can be seen in Listing 4.4, we use the dependsOn Pu-

lumi annotation to express strong dependencies. The pod backend 0 specifies as

value of the dependsOn annotation the service pod proxy 0, instructing the Pu-

lumi engine to wait for the pod proxy 0 service to be up and running, before

60 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

deploying pod backend 0. The topological ordering enacted by K8sSD is crucial:

if we were to switch the definition of the services in Listing 4.4, the orchestra-

tion would produce an error during execution. It is important to notice that, the

synthesised orchestration contains, for each specified service, the target hosting

node (see nodeName in line 5), computed such that the resource usage is optimal,

i.e., minimise the amount of used virtual machines.

Listing 4.4: Python orchestration example!
1 from pulumi import automation as auto
2 def pulumi_prog ():
3 pod_proxy_0 = k8s.core.v1.Pod("pod -proxy -0", metadata ={...} ,
4 spec={"containers": [...], "nodeName": "k3d -k3s -default -agent -0"})
5 pod_backend_0 = k8s.core.v1.Pod("pod -backend -0", metadata ={...} ,
6 spec={"containers": [...], "nodeName": "k3d -k3s -default -agent -1"},
7 opts=pulumi.ResourceOptions(depends_on =[pod_proxy_0]))
8 def deploy ():
9 stack = auto.create_or_select_stack(stack_name="dev -1",

10 project_name="example", program=pulumi_prog)
11 stack.up()"# $

4.2 Proactive-Reactive Global Scaling

Modern cloud architectures use microservices as their highly modular and scalable

components, which, in turn, enable e!ective practices such as continuous deploy-

ment and horizontal (auto)scaling. Although these practices are already bene-

ficial, they can be further improved by exploiting the interdependencies within

an architecture (interface functional dependencies), instead of focusing on a sin-

gle microservice. Architecture-level dynamic deployment orchestrations for service

replication bring significant advantages with respect to the traditional local scaling

technique: they eliminate the “domino e”ect” of unstructured scaling, i.e., single

services scaling one after the other (cascading slowdowns) due to local workload

monitoring, as done in, e.g., Kubernetes [HBB17].

In the context of this Dissertation, we first propose a novel technique for

architecture-level dynamic adaptation, called global scaling [BBLZ21], that over-

comes the drawbacks of the traditional scaling approach. The global scaling al-

gorithm leverages the knowledge of functional dependencies between microservice

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

61

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

requests and it reaches, via architecture-level reconfigurations, a target system

Maximum Computational Load (MCL), i.e., the maximum supported frequency

for inbound requests. The idea is that, in a reactive approach, i.e., by monitoring

at run-time the inbound workload, our algorithm causes the system to be always

in the reachable configuration, with the least amount of deployed microservice in-

stances, that better fits such workload. Global reconfigurations are targeted at

guaranteeing a given increment/decrement of the system MCL.

We then endow our approach with proactive capabilities using an o!-the-shelf

machine learning module to forecast the inbound workload, further improving per-

formance. However, predictors are weak against exceptional events, resulting in the

application of inappropriate deployment orchestrations. Thus, we also contribute

a novel proactive-reactive algorithm [BBG+22a, BBG+25] to mix the measured

workload with the predicted one. Our algorithm casts the comparison as the ca-

pacity of the system to deal with a given workload (i.e., system MCL), obtained

from its current system reconfiguration. Hence, we have a way to estimate both

over- and under-scaling of proactive global scaling, given by the distance with

respect to the system MCL induced by the actual tra”c.

4.2.1 A Proactive-Reactive Global Scaling Platform

In the context of this Dissertation, we introduce a novel platform that DevOps

can use to perform proactive and/or reactive global scaling. The platform de-

picted in Figure 4.1 includes an external microservice architecture (labelled with

G, M1,M2, M3) and internal elements (i.e., orange boxes) building the scaling ap-

proach used to adapt the system. Since the platform sees microservices as instance

parameters, we abstract away from their behaviour. In Figure 4.1, we distinguish

three flows: (i) ⇐ showing the inbound workload; (ii) ↭↭↫ modelling the run-

time execution of an adaptation process; and (iii) ⇒ indicating the synthesis of

deployment orchestrations. We now describe each element of the platform.

Deployment Orchestration Engine. This component receives deployment or-

chestrations and executes them to perform system reconfigurations. It is a loosely-

coupled component, taken from existing solutions, e.g., Kubernetes [HBB17].

62 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING 21/08/24, 22:05

Pagina 1 di 1file:///Users/lorenzobacchiani/Downloads/gs_platform.drawio.svg

G
M

M M

MRequests / Responses

Actuation
Module

Deployment
Orchestration

Engine

M M: 2x

M : 1CPU, 1M

Resources

2x

1x

Deployment
Constraints

M

M
Dependencies

...

...

...

DevOps

Predictive
Module

time
series

Monitor

Adaptation
Algorithm

Figure 4.1: Architectural view of the proactive-reactive global scaling platform

Adaptation Algorithm. The Adaptation Algorithm implements the strategy,

deciding the deployment orchestrations to apply, to cope with inbound workload.

Such module needs two inputs to work. The first input, depicted with ⇒, rep-

resents deployment orchestrations statically computed via, e.g., K8sSD (see Sec-

tion 4.1). These orchestrations are such that they satisfy the user (DevOps in

Figure 4.1) specifications, i.e., Resources, Dependencies and Deployment Con-

straints. The second input, represented by ↭↭↫ , is the workload the system has to

support after the adaptation process.

Monitor. The monitor tracks the tra”c flowing on the architecture within a

prefixed time window and checks the possible occurrence of a workload deviation,

i.e., the di!erence between the monitored workload and the globally supported

one. When such a condition occurs, the Monitor sends to the Actuation Module

the amount of measured workload.

Actuation Module. The Actuation Module plays a pivotal role in our platform:

it allows the seamless coexistence of the reactive modality with the proactive one.

In particular, the Actuation Module computes the amount of workload given as in-

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

63

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

put, i.e., the target workload, to the Adaptation Algorithm. We distinguish among

three modalities: (i) reactive mode, if the target workload is the one measured

by the monitor (the predicted one is discarded); (ii) proactive mode, if the target

workload is represented by the predictions from the Predictive Module (the mea-

sured one is discarded); and (iii) proactive-reactive mode, if the target workload

is computed combining signals from the Monitor and Predictive Module.

Predictive Module. The Predictive Module acts independently of the actual

inbound tra”c forwarding the prediction to the Actuation Module. For instance,

the Predictive Module can use a static model, e.g., forecasting tra”c peaks at

predetermined times or sophisticated techniques to have more accurate predictions

of tra”c fluctuations. In Figure 4.1, we represent the input of the Predictive

Module with the greyed-out arrow receiving information from the tra”c flow and

stores it into a time series dataset for further usage, e.g., training tasks.

4.2.2 The Email Message Analysis Pipeline

Figure 4.2: Microservice architecture of the Email Message Analysis Pipeline

We now present the specific microservice architecture we use in the proactive-

reactive global scaling platform to test its e!ectiveness. In particular, we use the

Email Message Analysis Pipeline [BGM+20, BGM+19] depicted in Figure 4.2. The

architecture separates and routes the components found within an email (headers,

links, text, attachments) into distinct, parallel sub-pipelines with specific tasks,

e.g., checks the format of the email, tags its content, detect malicious attachments.

64 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

The Message Receiver microservice is the entry point of the architecture and acts

as a proxy, receiving and triggering the analysis of incoming emails. The Message

Receiver forwards an inbound email to the Message Parser, which performs some

preliminary validity checks. If the message is well-formatted, such service first

stores a pending-analysis task under a unique identifier for the current email in

a companion database, i.e., the DB service. Notice that, the DB maintains the

status of all pending analyses in the system and it is an element external to the

architecture (represented by the faded part at the top of Figure 4.2). After storing

the pending task, the Message Parser: (i) splits the parsed email into four com-

ponents, i.e., header, links, text and attachments; (ii) tags them with the unique

identifier of the pending-analysis task; and (iii) sends the four components to their

corresponding sub-pipelines. From the top, the first and second sub-pipelines, re-

spectively, take into account the headers (i.e., Header Analyzer) and the links

(i.e., Link Analyzer) contained in the email. The third sub-pipeline includes a

Text Analyzer that tags the body of the message and performs a sentiment anal-

ysis. The last sub-pipeline handles attachments and it is the most complex in

the architecture. The first microservice in the attachment sub-pipeline is a Virus

Scanner, which checks each attachment for the presence of malicious software. If

an attachment results malicious, it is deleted and reported as dangerous to the

Message Analyzer, as described later. Safe attachments are forwarded to an At-

tachment Manager for further analyses. The Attachment Manager inspects each

attachment to identify its content type (e.g., image, audio, archive) and routes it

to the appropriate part of the sub-pipeline. Notice that, in Figure 4.2, we just

exemplify the concept with an Image Analyzer that tags the content of each image

and checks the absence of explicit content. All sub-pipelines forward the result

of their (asynchronous) analyses to the Message Analyzer, which collects them in

the DB. After all analyses belonging to the same pending task are completed, the

Message Analyzer combines them and reports the result of the analysis process.

4.2.3 Microservice MF and MCL

The MF of a microservice type is determined by the role it plays in the architecture,

e.g., in our running example, by the email part it receives. For example, assuming

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

65

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

an email has 2 attachments on average, the Virus Scanner microservice receives,

for each email entering the system (i.e., request to the initial Message Receiver

microservice), a mean of 2 requests. Thus, microservice MF is determined by the

established functional dependence between requests to such microservice type and

requests entering the system.

Therefore, concerning our running example, we base the calculation of the MF

of its microservice types, on the following average estimation of the structure of

emails entering the system: (i) a single header; (ii) a set of links (treated as a

whole); and (iii) Nattach = 2 attachments (individually sent to the attachment sub-

pipeline), each having an average size of sizeattach = 7MB and containing a virus

with probability PV = 0.25.

Given the emails average structure descrived above, MFs are calculated as

follows. Header Analyser, Link Analyzer and Text Analyzer have MF = 1 since

emails have a single header, a set of links treated as a whole and a single text body.

As attachments are individually sent, each one generates a specific request to the

Virus Scanner, therefore such service has MF = Nattach. The MF of microservices

following the Virus Scanner in the pipeline corresponds to the number of virus-free

attachments, computed as MF = Nattach · (1↗ PV). Finally, the MF of the Message

Analyzer is the sum of the email parts (1 header, 1 set of links, 1 text body and

Nattach attachments).

The MCL of a microservice type is the maximum number of requests an in-

stance of that type can handle in a second. It is computed as follows:

MCL = 1/(
sizereq

data rate
+ pf)

where: (i) sizereq is the average request size of microservices in MB; (ii) data rate

is the microservice rate in MB/s to manage requests, determined accounting for

microservice required cores (taken from server data in [Raw]); and (iii) pf is a

penalty factor expressing additional time microservices need to manage requests,

e.g., those performing computationally expensive tasks. We compute microservice

sizereq as follows. For microservices handling attachments, but Message Analyzer,

we have: sizereq = Nattach per req · sizeattach where Nattach per req = Nattach for microser-

vices receiving entire emails, while, for the others, Nattach per req = 1. For Header

66 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Analyser, Link Analyzer and Text Analyzer, we consider sizereq to be negligible,

thus (since pf = 0) their MCLs are infinite. Concerning Message Analyzer request

size, we compute the average size of the MF requests an email entering the system

generates (since we consider only attachments to have a non-negligible size), i.e.,

sizereq MA =
Nattach · (1↗ PV) · sizeattach

MF
.

As we will see, MCL and MF microservice type are important properties, since

they are used to calculate the minimum instance number of that type to guaran-

tee an overall system MCL, denoted by sys MCL. Formally, being ↘x≃ the ceiling

function taking as input a real number and returning the least integer greater

than/equal to x, we have

Ninstances =
⌈sys MCL ·MF

MCL

⌉

Notice that, the MF is implicitly modelled by the method call sequence required

to analyse an email (see Figure 4.2). The MCL is explicitly modelled in the ABS

code, as described in Section 3.5, using the Cost annotation. In the real-world

implementation there is no need to explicitly design the MCL of services, as it is

already modelled by, e.g., service implementation, available resources.

4.2.4 Architectural Scaling of Microservices

A common scenario where the automated deployment of microservices, described

in Section 3.1, can be straightforwardly used is autoscaling : strongly required ports

can be used to indicate the set of entities a microservice communicates with, while

weakly required ports the connection between a load balancer and the instances it

manages. One crucial prerequisite for configuring the deployment of a microservice

architecture is ensuring that each microservice is defined with a strongly required

port towards the subsequent microservices in the pipeline. For instance, let us

consider the Message Parser, which strongly requires connections with the Header

Analyzer, Text Analyzer and Link Analyzer, as depicted in Figure 4.2. These ports

should not be directly connected to instances of the respective microservices, but

rather to their corresponding load balancers. Subsequently, each load balancer fea-

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

67

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

tures a weakly required port, which must be connected to all available instances

of the corresponding microservice type, enabling the load balancer to e”ciently

distribute incoming requests among them. This design choice is underpinned by

several reasons. Firstly, by establishing strongly required connections to a mi-

croservice proxy, it becomes feasible to deploy load balancers of Header Analyzer,

Text Analyzer and Link Analyzer beforehand. Then, the instances of Message

Parser can be deployed subsequently, as they can readily connect to the load bal-

ancer they strongly require. Finally, the connection of the load balancers to their

instances can be established through the weakly required port, completing the

deployment setup. This approach ensures a streamlined and e”cient deployment

process, facilitating the orderly establishment of connections among microservices

within the architecture.

One of the key advantages of employing strongly and weakly required ports lies

in their ability to facilitate dynamic adaptation. This framework enables seam-

less incorporation of new microservice instances to address increased workload

demands. When encountering a surge in workload, for example, a new microser-

vice instance can be swiftly introduced by promptly connecting it to the strongly

required load balancer of the next microservice in the pipeline. Subsequently, the

corresponding load balancer establishes a binding with the newly created instance

via the weakly required port. Conversely, when removing a microservice instance,

the process unfolds in the reverse order. Initially, the binding between the load

balancer of the instance slated for removal is severed. Subsequently, the concerned

instance can be safely deallocated. This orchestrated approach ensures a smooth

and controlled adjustments to the deployment process, e!ectively accommodating

fluctuations in workload, while maintaining system integrity.

If we generalise the above process, from adding/removing one microservice to

an arbitrary amount, we can dynamically adjust the entire architecture to meet

resource demands e!ectively. Consider a scenario where increased workload ne-

cessitates the deployment of three new instances of Message Parser and two new

instances each of Header Analyzer, Text Analyzer and Link Analyzer to handle

the influx of tra”c e”ciently. When utilising autoscaling mechanisms [Amaa],

scaling in/out decisions are typically made locally by individual services. Conse-

quently, the scaling out process occurs sequentially: firstly, the Message Parser

68 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

service, positioned at the forefront of the pipeline and thus directly impacted by

the surge in tra”c, scales out. Subsequently, the Header Analyzer, Text Analyzer

and Link Analyzer services follow suit, as they start to experience increased in-

vocations triggered by the newly added instances of Message Parser. However,

with a holistic understanding of microservice dependencies, we can leverage the

insight that multiple services may require scaling out simultaneously. This enables

a global adaptation strategy, wherein services such as Message Parser, Header An-

alyzer, Text Analyzer and Link Analyzer can be scaled out concurrently, thereby

enhancing system elasticity and responsiveness to varying workload demands.

4.2.5 Calculation of Scaling Configurations

In this Section, we show the mathematical process we follow to build system con-

figurations, which the statically synthesised deployment orchestrations have to

reach. Notice that, such orchestrations are obtained via Timed SmartDeployer

in the case of the ABS simulation and using K8sSD (see Section 4.1) in the case

of the real-world implementation. We start with a base system configuration B,

which guarantees a system MCL of 60 emails/s. In Table 4.1, we present the num-

ber of instances for each microservice type, calculated according to the formula

in Section 4.2.3. We treat Header Analyser, Link Analyzer and Text Analyzer as

if they had an infinite MCL, thus they are never replicated. We also consider

four incremental configurations, each one adding a number of instances to each

microservice type (see Table 4.1) with respect to the base system configuration.

Those incremental configurations are used as target configurations for automatic

(un)deployment orchestration synthesis to perform run-time architecture-level re-

configuration. As shown in Table 4.2, # configurations are used, in turn, to

build (summing them up element-wise as arrays) the incremental configurations

Scale1, Scale2, Scale3 and Scale4 that guarantee an additional system MCLs.

The reason for not considering our Scales as monolithic blocks and defining

them as combinations of the # incremental configurations is the following. Let

us suppose the system is in a B+Scale1 configuration and the increase in incom-

ing workload requires the deployment of Scale2 and the undeployment of Scale1.

Without # configurations, we would need to perform an undeployment of Scale1

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

69

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Microservice B #1 #2 #3 #4
Message Receiver 1 +1 +0 +1 +1
Message Parser 1 +1 +0 +1 +1
Header Analyzer 1 +0 +0 +0 +0
Link Analyzer 1 +0 +0 +0 +0
Text Analyzer 1 +0 +0 +0 +0
Virus Scanner 1 +1 +2 +1 +2

Attachment Manager 1 +0 +1 +0 +1
Image Analyzer 1 +0 +1 +0 +1

Message Analyzer 1 +1 +2 +1 +2

Table 4.1: Base B (60 emails
s) and incremental # configurations

Scale 1 (+60 emails
sec) Scale 2 (+150 emails

sec) Scale 3 (+240 emails
sec) Scale 4 (+330 emails

sec)
#1 #1 +#2 #1 +#2 +#3 #1 +#2 +#3 +#4

Table 4.2: Incremental Scale configurations

followed by a deployment of Scale2. With # configurations, instead, we can simply

additionally deploy #2.

For each microservice type, the number of additional instances considered

in Tables 4.1 and 4.2 for each Scale configuration is calculated as follows. Given

the additional system MCL, the number Ndeployed of already deployed instances of

that microservice type, its MF and MCL, we have:

Ninstances =
⌈(base MCL+ additional MCL) ·MF

MCL
↗ Ndeployed

⌉

4.2.6 Reactive Global Scaling Algorithm

In the following Section, we thoroughly describe our reactive global scaling algo-

rithm and its implementation. For brevity sake, in the presentation process, we

only show its real-world Python implementation, nonetheless the ABS implemen-

tation is, as the reader expects, equivalent to the one reported here.

In the reactive global scaling algorithm, di!erently from Kubernetes [HBB17],

we have a single monitor that periodically executes the scaling algorithm. Such an

algorithm scales the system as a whole based on the overall workload and request

functional dependencies. As can be seen in Listing 4.5, we use the same scaling

70 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

condition presented in Section 3.6.2, but as workload we use the one entering the

system and as throughput the system MCL (i.e., mcl in the code).

Listing 4.5: Monitor code!
1 if workload - (mcl -self.k_big) > self.k or (mcl -self.k_big) - workload > self.k:

2 deltas = self.scaler.calculate_configuration(workload + self.k_big)

3 mcl , _ = self.scaler.process_request(deltas)"# $
The calculate configuration method is the heart of our algorithm: it computes

the system configuration to cope with the target workload passed as input. Such

configuration, i.e., deltas in Listing 4.5, is expressed in the form of a List, where

index i represents #i and the i-th element is the number of #i applications.

Listing 4.6: Global scaling: calculate configuration!
1 def calculate_configuration(self , target_workload):
2 config = self.base_config.copy()
3 deltas = np.zeros(len(self.scale_components))
4 mcl = self.estimate_mcl(self.base_config)
5 candidate_config = config
6 while not mcl - target_workload >= 0:
7 for i in range(len(self.scale_components)):
8 candidate_config = config + self.scale_components[i]
9 deltas[i] += 1

10 mcl = self.estimate_mcl(candidate_config)
11 if mcl - target_workload >= 0:
12 break
13 config = candidate_config
14 self.curr_config = config
15 return deltas"# $

The code presented in Listing 4.6 uses the constant scale components: it is

an array (in our case it contains 4 elements, those presented in Table 4.2) storing,

at each position, an array representing a Scale configuration (i.e., specifying,

for each microservice, the number of additional instances to deploy). The code

exploits the variable mcl, containing the current system MCL (assumed to be

initially set to the one of the B configuration, see Table 4.1). At first, the code

applies the scale up/down conditions described in Listing 4.5. Then it loops,

starting from the B configuration copied in variable config (an array that stores,

for each microservice, the number of instances we are currently considering) and

selects the Scale configurations to add to config until a configuration c such that

its system MCL satisfies mcl↗ K↗ target workload ⇑ 0 is found (notice that, the

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

71

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

target workload we pass as input is already increased by K, see Listing 4.5). The

system MCL of a configuration c is calculated via estimate mcl, which yields

min0↓i↓length(c)↔1 c[i] ·MCLi/MFi

with MCLi/MFi denoting those of the i-th microservice. The algorithm is com-

posed by two nested loops: the outermost while loop is in charge of keeping the

algorithm computing the target configuration, i.e., the one capable of coping with

the inbound workload incremented by K; the innermost for loop selects the first

Scale configuration that, added to candidate config, yields a candidate configu-

ration, whose system MCL satisfies the scaling condition above (see Listing 4.5).

If no configuration is found, the global scaling algorithm just selects the last (the

biggest) Scale configuration (Scale4 in our case), thus implementing the following

invariant: if N Scale reconfigurations are applied and increasingly sorted by system

MCL increment, they guarantee the produced system configuration is either B or

B+ (n · ScaleN) + scale, for some scale ⇓ {Scale1, Scale2, . . . , ScaleN} and n ⇑ 0.

The invariant property of our algorithm guarantees that multiple deployments

of the same Scale configuration are not allowed, except for ScaleN. The reason is

the following. The biggest configuration ScaleN should be devised such that the

workload rarely yields to additional scaling needs. Even if a sequence of ScaleN

occurs, the system would be su”ciently balanced. As a matter of fact, di!erently

from smaller Scale configurations, ScaleN is assumed to add, at least, an instance

for each microservice with finite MCL (as for Scale4 in our case). The invariant

property of our algorithm is fundamental to avoid the following scenario. Let us

suppose that the system is currently in a B+Scale1 configuration and the workload

grows such that it requires the deployment of another Scale1. If we naively apply

Scale1, some microservices are not replicated, e.g., Attachment Manager and Image

Analyzer. If the workload keeps growing at the same pace, such that the di!erence

between the supported and the measured ones keeps requiring the application

of Scale1, eventually the Attachment Manager and Image Analyzer become the

bottlenecks of the system (since they are never replicated by Scale1). Thus, the

system performance begins to degrade, despite scaling actions being executed.

Once the calculate configuration method has computed the # scales re-

72 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Listing 4.7: Global scaling: apply # scales!
1 def apply_scales(self , deltas):
2 increments_to_apply = deltas
3 if self.current_delta is not None:
4 increments_to_apply = deltas - self.current_delta
5 self.apply(increments_to_apply)
6 self.current_delta = deltas
7 self.mcl = self.estimate_mcl(self.curr_config)
8 return self.mcl , increments_to_apply"# $

quired to reach the target system configuration, we use the apply scales method

in Listing 4.7 to apply them. In particular, this method performs an element

wise di!erence between the previously computed # scales and those currently ap-

plied. If such di!erence is positive, the method apply commands Kubernetes to

asynchronously perform a deployment, otherwise an undeployment.

4.2.7 Proactive Global Scaling

A straightforward improvement of our global scaling approach is the adoption of

techniques to predict in advance workload peaks. As we will see, such techniques

can further soften the impact of such events, leading to better performance. Here,

we show the steps we follow to build our proactive global scaling implementation,

using a state of the art data analytics technique [KMND20]. We apply the data

analytics steps to the Enron dataset [KY04], made public by the Federal Energy

Regulatory Commission during investigations concerning the Enron corporation

(version of May the 7th, 2015). The dataset contains 517431 emails from 151

users, without attachments, distributed over a time window of about 10 years

(starting from 1995).

Descriptive and Diagnostic Analytics. We perform the cleaning procedure

of the Enron dataset for classification tasks and then we extract the attributes

to predict the number of incoming emails at a given time. First, we extract the

datetime attribute for each email in the dataset and then we sum the number of

emails in the desired monitored time unit, i.e., one hour, for each month of the

year, day of the month and day of the week. Thus, we generate five new attributes:

month, day, weekday, hour and counter, i.e., the prediction target, for each dataset

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

73

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

instance. This gives us a representation of the email flow in the system at a given

hour. The intuition for such a pre-processing is simple. The phenomena of increase

or decrease in the flow of emails that occur in a company depend on factors, such as

the specific time of the working day (e.g., peak in the early hours versus the night

hours), the month (e.g., monthly, bimonthly), the day of the month (e.g., salary)

or the day of the week (e.g., weekdays versus holidays).

Predictive Analytic. In this step, we use an o!-the-shelf machine learning

technique, specifically MLP (Multi-Layer Perceptron), which is capable, in con-

trast with purely linear models, e.g., linear regression, of exploring nonlinear pat-

terns and increase prediction performance, while containing complexity (about

7000 parameters) and resource usage (about 1ms inference time). We categorise

the numerical variables using the standard one-hot encoding technique to prevent

our model from attributing wrong semantics to these variables (e.g., month 12 is

“greater than” month 1), resulting in a data representation of 70 attributes plus

the counter, i.e., the prediction target.

Then, we followed the traditional training process for machine learning. We

partitioned the cleaned preprocessed data into three sets: one for training the

neural network model, one for validating its hyperparameters (the parameters of

the training process and network architecture) and one for testing the accuracy of

the model. We use this last set to compute the error rate of the model.

The neural network we use in the training process consists of three fully-

connected layers. We applied the Rectified Linear Unit (ReLU) nonlinear acti-

vation function to the output of each layer. Each level compresses the input into

a smaller representation, going from 70 to 64 attributes, in the first level and from

64 to 32 attributes, in the second level. Finally, the 32 attributes are linearly pro-

jected into a single value, corresponding to the target of the regression, i.e., the

counter attribute. To compute the error rate, we adopt the Mean Squared Error

(MSE) as loss function. To optimise the network parameters we use Adaptive

Moment Estimation (Adam). We performed the training process with a learning

rate of 0.1 and an exponential decay scheduler with gamma 0.9.

After the training, given a time slot, e.g., the tuple hour (0–24), the predictor

forecasts the number of emails incoming therein.

74 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Prescriptive Analytic. Since we are implementing a proactive scaling approach,

the prescriptive step is straightforward. The global scaling algorithm computes the

scale configurations to apply, instead of using monitor signals, as done in the re-

active version (see Section 4.2.6).

4.2.8 Proactivity and Reactivity: A Mixing Algorithm

Predictors are inherently weak against exceptional events and relying solely on

them for scaling decisions can lead to issues. For instance, if the predictions un-

derestimate the workload, the scaling algorithm will fail to adapt the target system

to the current workload, producing unacceptable performance. Conversely, if the

predictions overestimate the workload, the scaling algorithm will deploy unneces-

sary microservice instances, leading to a waste of money. To address these issues,

we design a proactive-reactive approach that mitigates the impact of inaccurate

predictions and prevents inappropriate scaling decisions. Specifically, in the con-

text of this Dissertation, we introduce a novel algorithm, based on a weighted sum,

to linearly combine the predicted and measured workloads (using reactive signals

from the monitor). For brevity sake, we only present the real-world Python im-

plementation of our algorithm, nonetheless the ABS one is fully equivalent.

Our algorithm is based on using the system MCL to cast the comparison as the

capacity of the system to deal with a given workload, defined by its current scaling

configuration. Hence, we have a way to detect both over- and under-estimations of

predictions, driven by the distance from the system MCL (of the scaling configu-

ration) induced by the measured tra”c. We do not directly compare the predicted

and measured workloads at a given monitoring window: the interaction between

message queues and scaling times makes it di”cult to reliably estimate the accu-

racy of the predicted scaling configuration with respect to tra”c fluctuations.

We consider statically-defined scores si for each architectural reconfiguration

#i, computed accounting for the increment in system MCL. For each #i, we have

a di!erential system MCL increment of: #MCL1 = 60 for #1 and #MCLi = 90

for #i with 2 ↑ i ↑ 4. Given #MCLi, we compute:

si =
#MCLi∑4
j=1 #MCLj

.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

75

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Notice that, this yields
∑4

i=1 si = 1.

At each monitoring window m, we proceed as follows. In step 1, as shown

in Listing 4.8, we compute, for each index i, the di!erence diffi between the #i,

needed to cope with the predicted workload at m↗ 1 and those for the measured

one at m (pred conf and actual conf below, respectively). Then, as can be

Listing 4.8: compute diff code!
1 def compute_diff(self , pred_conf , actual_conf):
2 diff = []
3 for i in range(len(pred_conf)):
4 diff.append(pred_conf[i] - actual_conf[i])
5 return diff"# $

seen in Listing 4.9, we compute w ⇓ [0, 1], used to linearly combine the predicted

and measured workloads to determine the target value that drives scaling actions.

Since |di!i| > 1 only happens in exceptional cases (e.g., the predicted workload

Listing 4.9: compute weight code!
1 def compute_weight(self , pred_conf , actual_conf):
2 curr_weight = 0.0
3 diffs = self.compute_diff(pred_conf , actual_conf)
4 for i in range(len(pred_conf)):
5 curr_weight += abs(diffs[i] * self.scores[i])
6 return min(curr_weight , 1)"# $

is so distant from the measured one that it induces a scale configuration with a

di!erence of Scale4), we compute:

w = min

(
4∑

i=1

si · |di!i|, 1
)
.

We keep track of w values computed in the last 3 monitoring windows with the

function h = {(1, wm↔2), (2, wm↔1), (3, wm)}: wm is the weight computed in the

current window and wm↔2, wm↔1 are the preceding ones. The pairs (1, wm↔2) and

(2, wm↔1) are added only if the system was already running at those times. This

mechanism is implemented in Listing 4.10, where we append the new weight passed

as parameter to errors (i.e., a List of weights), possibly removing the oldest one.

76 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Listing 4.10: store weights code!
1 def store_weights(self , weight):
2 self.errors.append(weight)
3 if len(self.errors) > self.error_limit:
4 self.errors.remove(self.errors [0])"# $

In step 2, we compute the distance

dist =

∑
(i,w)↑h w · i
∑

(i,)↑h i

between the measured and predicted workloads (where w ·i indicates that the most

recent w is the most influential one) at the monitoring window m. The closer the

distance (computed in Listing 4.11) is to 1, the less accurate the prediction is.

Listing 4.11: store distance code!
1 def compute_distance(self):
2 num = 0.0
3 den = 0.0
4 for i in range(len(self.errors)):
5 num += self.errors[i] * (i + 1)
6 den += i + 1
7 return num/den"# $

In step 3, in the mix method (see Listing 4.12), we linearly combine the pre-

dicted and measured workload (i.e., predicted and measured below) using the

result of compute distance to find the load the system has to cope with.

Listing 4.12: mix code!
1 def mix(self , measured , predicted , pred_conf , actual_conf):
2 curr_weight = self.compute_weights(pred_conf , actual_conf)
3 self.store_weight(curr_weight)
4 react_score = self.compute_distance ()
5 pred_score = 1 - react_score
6 target = (react_score * measured) + (pred_score * predicted)
7 return target"# $

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

77

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

4.2.9 Executable Model and Real-World Implementation

In this Section, we start introducing the ABS algebraic model of the proactive-

reactive global scaling platform (shown in Figure 4.1), designed using our inte-

grated timed modelling/execution language (detailed in Chapter 3). Following

this, we proceed to illustrate the concrete implementation of our platform, shed-

ding light on the underlying adopted technologies. Our main focus lies in first

evaluating the performance of our novel proactive-reactive global scaling platform

early on at design level, to determine if the e!ort to implement its real-world ver-

sion worth it; then we proceed to the evaluation of the real-world implementation.

The executable model of the global scaling platform is available at [Bac24e], while

the real-world implementation at [Bac24a, Bac24b].

Executable model. We now present, for each element of the platform depicted

in Figure 4.1, its ABS counterpart describing how we model it. As done in Sec-

tion 4.3.4, we adopt our modelling/execution language to design our global scal-

ing approach and test its performance early on. We first design and model the

Email Message Analysis Pipeline (see Section 4.2.2) as a set of ABS communi-

cating classes. Together with the code implementing the system behaviour, we

define the microservice characteristics, e.g., strong/weak ports and required re-

sources, via Timed SmartDeployer annotations. The deployment orchestration

engine, i.e., the component in charge of executing deployment orchestrations, is

implicitly represented by the Erlang backend we use to run ABS programs (recall,

our deployment orchestrations are ABS programs). The Adaptation Algorithm

and Actuation Module are modelled as ABS classes implementing the algorithms

described in Sections 4.2.6 and 4.2.8. Notice that, in our executable model, we use

our Timed SmartDeployer tool to automatically synthesise the deployment orches-

trations enacting the global reconfigurations (i.e., those defined in Section 4.2.5).

Thus, we need to define annotations expressing the characteristics of the VMs

used in our simulations and deployment constraints, e.g., number of instances

per microservice type (see Resources and Deployment Constraints in Figure 4.1).

The Monitor implements the scaling condition presented in Section 4.2.6 and it is

modelled as an active class (see Section 2.3) periodically executing its behaviour.

78 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Di!erently from the platform depicted in Figure 4.1, in our ABS executable

model, we do not have any counterpart modelling the predictive module presented

in Section 4.2.7. Instead, we statically inject in our simulations the predictions

(generated via our predictive module) related to the Enron corpus dataset. The

reason is the following. The predictions use physical time, while ABS simulations

logical time. Since there is no direct mapping among these time values, if we were

to mix them, we would generate simulations with inconsistent timing behaviour.
28/10/24, 14:33

Pagina 1 di 1file:///Users/lorenzobacchiani/Downloads/gs_plat_impl.drawio.svg

Service

Legend

Component

Microservice Microservice
Component

Synch.
Communication

Asynch.
Communication Dependency Communication

Channel

Gather
Inbound
Workload

Monitor

Global
Scaler

Predictive
Module

Time
Series

Offline
Training

Mixing
Algorithm

Inbound
Workload

Inbound
Workload

Target
Workload

Predictions

Deployment
Manifests

Pulumi
Engine

Orchestration

Gather
System
Data

Fetch
Data

Prometheus

Control
Plane

Service1

Service2

Entrypoint Apply
Configuration

Synthesis

Kubernetes
Smart

Deployer

Servicen

Redis

Declarative
Specifications

Orchestration
Execution

Figure 4.3: Implementation of the global scaling platform

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

79

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Real-world Implementation. As can be seen in Figure 4.3, the implementa-

tion of the proactive-reactive global scaling platform requires the adoption of a wide

range of technologies. We automatically build the Kubernetes cluster hosting the

platform and manage its deployment (together with the one of the Email Message

Analysis Pipeline, depicted within the cloud in Figure 4.3) via Terraform [Has],

an Infrastructure as a Code (IaaS) tool, defining and managing infrastructure re-

sources via declarative configuration files (see [Bac24b] for examples).

To record and monitor system metrics, we use the Prometheus tool [RV15].

Prometheus collects and stores metrics as time-series data, recording information

with a timestamp and optional key-value pairs called labels. It o!ers a powerful

query language for real-time data analysis, enabling users to create flexible queries.

As can be seen Figure 4.3, since the Monitor, Adaptation Algorithm (Global

Scaler in Figure 4.3), Actuation Module (Mixing Algorithm in Figure 4.3) and

Predictive Module are tightly coupled and communicate synchronously, we strate-

gically place them within the same Kubernetes pod as a single service, implemented

using the Python programming language. Notice that, this is just a design choice

to avoid both the creation of too many services and introduce an unnecessary net-

work communication overhead, but, if the user wants, it is possible to deploy them

separately. Periodically, the Monitor component fetches data from Prometheus,

forwards them to the mixing algorithm and stores them for future training oper-

ations of the Predictive Module. Once the Global Scaler has decided the Scales to

apply, it exploits the Pulumi engine to execute the corresponding orchestrations

(Pulumi, in turn, leverages Kubernetes to perform the actual changes to the sys-

tem configuration). Notably, in our real-world implementation to synthesise the

deployment orchestrations we use our novel K8sSD.

The Email Message Analysis Pipeline is implemented using Typescript [BAT14]

(i.e., a strongly typed version of JavaScript) and uses Redis [Red24], an in-memory

data store, as database to store crucial information, e.g., pending tasks, the result

of email analyses. Notice that, Redis also handles the communication among

services: we use its Stream feature, to manage communication among microservices

and model queues of fixed-length size. Redis Stream is a data structure that allows

users to manage and process streams of messages in a log-like manner, making it

well-suited for real-time data processing and building message queues. A key

80 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING
12/09/24, 17:45

Pagina 1 di 1file:///Users/lorenzobacchiani/Downloads/redis_stream_diagram.drawio.svg

{data, queueID}Message Parser

Virus Scanner

Message1

Message2

MessageN

... Virus Scanner

Virus Scanner

Virus Scannerdequeue

dequeue

dequeue

dequeue

Consumer Group

Figure 4.4: Microservice communication via Redis Stream

feature we crucially use in our implementation is the consumer groups: it allows

multiple consumers (i.e., several microservice instances) to process messages in

parallel. An example of how this mechanism works is depicted in Figure 4.4:

the Message Parser, acting as a producer, enqueues a message in a specific queue,

i.e., the Virus Scanner one. Redis ensures that each message is delivered to exactly

one consumer, i.e., Virus Scanner instances in Figure 4.4, in the group. Each

instance of the Virus Scanner reads messages independently allowing their parallel

processing and analysis. Unlike the ABS implementation, this setup does not

use dedicated load balancers for each microservice type. Redis acts as a single

global load balancer uniformly distributing messages among consumers of queues.

Being that all instances of a given type are idempotent (they consume messages

at the same rate), the real-world implementation behaves as the ABS one: all

microservice instances receive the same amount of requests.

4.2.10 Experimental Settings and Evaluation

In our benchmarks, to test the e!ectiveness of our proactive-reactive global scaling

algorithm, we employ the experimental configuration outlined in Table 4.3.

In both simulated and real-world environments, we deploy a cluster composed

by 10 virtual machines, each one equipped with 2 vCPUs and 4 GB of mem-

ory. In the real-world scenario, these virtual machines are provisioned by Digital

Ocean and we use Kubernetes as orchestration engine; in the simulated environ-

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

81

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Nodes 10
Node resources 2vcpu with 4 GB of RAM
Request window 1s

Monitoring window 10s
ABS time unit 1 time unit = 30ms

Dataset Enron Corpus dataset [KY04]

Table 4.3: Experimental settings

ment virtual machines are modelled as Deployment Components and the engine is

represented by the Erlang backend (in charge of executing the simulation and con-

sequently, the synthesised orchestrations). In both environments, we implement a

workload generator service evenly distributing requests, as specified in the Enron

dataset, at each second. Notice that, the Enron dataset uses, as time scale, hours,

while our workload generator uses seconds. Such a discrepancy is intentional: for

scalability testing, we treat emails within the Enron dataset as if they were emails

per second, to simulate high-load conditions and assess system performance under

stress. We apply the same reasoning to our predictor: it forecasts the amount of

emails expected in the next hour to ensure predictions to be consistent with the

dataset hourly time scale, but we treat them as emails per second.

To ensure that our benchmark results are statistically significant, we conduct

a total of 25 independent runs for each benchmark, with each run lasting approx-

imately 200 seconds. This approach helps us achieving a statistically significant

set of data that can be analysed to extract meaningful insights. Specifically, we

focus on several key performance metrics, including latency, message loss and the

number of deployed instances. We calculate the average values for these metrics

to evaluate benchmarks. The graphs resulting from our analysis may exhibit some

discrepancies in the workload used, however this is expected given the inherent

di!erences between simulated and real-world environments. Both the simulated

benchmarks and their real-world counterparts use the same workloads, which al-

lows for a direct comparison between the two. In the simulated environment, we

have the advantage of perfectly capturing the inbound workload, as the simulation

can be controlled with high precision (being that it runs as a single program). Con-

versely, in the real-world setup, the measurements are gathered via Prometheus,

82 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

a monitoring and alerting toolkit, subject to network uncertainties. These uncer-

tainties, e.g., varying network delays, can lead to variations in measurements.

Reactive global vs reactive local scaling. The first benchmark we run is

the comparison between the reactive version of the global (see Section 4.2.6) and

local scaling (see Section 3.6.2). For each benchmark and metric, we show the

results obtained from the simulated environment and the real-world one. In Fig-

ures 4.5a and 4.5b, we respectively evaluate the latency (considered as the average

time the system needs to completely analyse an incoming email) in the simulated

and real-world environments. As can be seen, in both environments, the extent of

improvement brought by our global scaling algorithm is significant, outperforming

the mainstream scaling approach. The reason is that our algorithm is capable of

adapting the whole architecture as soon as a workload burst is detected at the en-

trance of the system, avoiding the “domino e!ect”, which, instead, a!ects the local

scaling. The results in Figures 4.5a and 4.5b are also confirmed by the message

loss comparison: as can be seen in Figures 4.6a and 4.6b, our algorithm always

loses far fewer messages, than the local one, testifying its capacity to faster adapt

the system. Finally, the last benchmark of this group concerns the number of

deployed instances. This comparison is crucial to understand the reason why our

approach performs better with respect to the local one. As can be seen in Fig-

ures 4.7a and 4.7b, it is clear the local scaling su!ers from the “domino e!ect”:

whenever the inbound workload grows, the number of deployed microservice in-

stances grows linearly over time, causing a severe delay in the adaptation process,

due to local monitoring of workload. Hence, with respect to global adaptation,

where microservices in the target configuration are deployed together, the number

of instances grows slower and performance worsen.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

83

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.5: Reactive global and local scaling: latency

84 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.6: Reactive global and local scaling: message loss

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

85

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.7: Reactive global and local scaling: deployed instances

86 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Reactive global vs oracle local scaling. In the following benchmarks, we

compare the reactive global scaling against the local one endowed with an oracle,

i.e., a perfect predictor, capable of knowing in advance the exact amount of work-

load entering the microservices. Despite the local scaling knowing in advance the

exact number of requests in each microservice, our approach still performs better.

As can be seen in Figures 4.8a and 4.8b, our approach has significantly better per-

formance, always keeping latency under acceptable values. A similar trend is ob-

served when considering the message loss comparison (see Figures 4.9a and 4.9b).

Once again, our approach demonstrates a clear advantage over the mainstream

method, as it results in significantly fewer message loss, ultimately providing supe-

rior performance. The implications of reduced message loss are critical, especially

in systems where reliability and timely communication are essential for maintain-

ing performance and meeting performance expectations. The reason behind this

improvement is clear when we consider Figures 4.10a and 4.10b, which take into

account the number of deployed instances: despite proactivity (i.e., the capacity of

predicting workload peaks), the local scaling still su!ers from the “domino e!ect”.

Proactivity, as can be seen comparing Figures 4.10a and 4.10b with Figures 4.7a

and 4.7b, merely shifts the problem one monitoring window backward, instead of

completely eliminating it. While proactive approaches attempt to anticipate and

address issues before they arise. Such approaches, whenever applied to local scal-

ing, often fail to fundamentally resolve the underlying limitations, as evidenced

in the figures. This side-by-side comparison highlights that, although proactivity

may smooth the problem, it does not provide a long-term solution to the “domino

e!ect” drawback. On the other hand, the comparison further underscores the sig-

nificant advantages of exploiting functional dependencies: by leveraging them, we

can completely eliminate the adverse e!ects associated with the local scaling.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

87

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.8: Reactive global and oracle local scaling: latency comparison

88 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.9: Reactive global and oracle local scaling: message loss

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

89

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.10: Reactive global and oracle local scaling: deployed instances

90 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Proactive vs reactive global scaling. In the following experiment, we aim

to compare the e!ectiveness of our proactive global scaling algorithm with the

reactive one, assessing the magnitude of the improvements it o!ers. The proactive

global scaling algorithm, as detailed in Section 4.2.7, leverages a machine learning-

based workload predictor to anticipate scaling requirements before they arise. This

predictive capability enables the system to implement scaling actions in advance,

preparing it to accommodate peaks in workload before they occur. By contrast,

the reactive algorithm only responds to scaling needs after they have manifested,

which can lead to delays and ine”ciencies in managing system performance. The

results of this comparison, illustrated in Figures 4.11a and 4.11b and Figures 4.12a

and 4.12b, demonstrate the tangible benefits of proactive global scaling. Specifi-

cally, the proactive approach significantly reduces both latency and message loss,

thereby ensuring a higher and more consistent performance. The results show

a marked improvement in performance metrics, underscoring the e!ectiveness of

anticipating and addressing workload demands before they impact system opera-

tion. This proactive strategy, not only enhances system responsiveness, but also

contributes to a more reliable and robust service experience. The reason behind

such an improvement can be observed in Figures 4.13a and 4.13b: the proactive

approach always anticipates the reactive one in deploying the instances required

to handle the workload peaks.

Notice that, contrary to what the reader may think, anticipating workload

peaks does not consume more resources with respect to waiting for them to occur

(as in the reactive version). As a matter of fact, the anticipation of scaling actions

occur in both directions, i.e., adding and removing resources, thus the resources

used in the proactive approach are equivalent to those used in the reactive one.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

91

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.11: Proactive and reactive global scaling: latency

92 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.12: Proactive and reactive global scaling: message loss

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

93

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.13: Proactive and reactive global scaling: deployed instances

94 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

Proactive vs proactive-reactive global scaling. The last benchmark we run

concerns testing the performance of our proactive-reactive global scaling algorithm.

To do that, we selectively pick outliers from the Enron dataset, in order to have

a workload our predictor struggles to forecast. Here, we endow the global scaling

with an oracle, i.e., a perfect predictor, capable of perfectly predicting the inbound

workload at the entrance of the system, to serve as benchmark for optimal perfor-

mance (especially, concerning the number of deployed instances). Notice that, it

may happen that, even though the oracle knows in advance the exact amount of

workload entering the system, the latency and message loss are not always zero.

The reason is that the calculation of the scaling configurations, presented in Ta-

ble 4.2, assumes an average structure of emails, e.g., two attachments per email,

which does not always correspond to the actual one.

As can be seen in Figures 4.14a and 4.14b, our algorithm for mixing the mea-

sured and predicted workloads is crucial: while the proactive approach is not

capable of adapting to the initial undetected peak, the proactive-reactive one, as

soon as it detects a di!erence between the measured and predicted workloads, re-

sorts to the mixing algorithm to compute the adjusted workload the system has

to support. The same behaviour can be observed Figures 4.15a and 4.15b: the

proactive-reactive approach has a significant reduced message loss with respect to

the proactive one.

Dually, as shown in Figures 4.16a and 4.16b, our mixing algorithm is capable of

avoiding the waste of resources due to predictions overestimating the actual work-

load. As a matter of fact, as can be seen between 50-90s, the proactive-reactive

approach, after having detected the unexpected workload pit, it adjusts the num-

ber of deployed instances according to the newly computed target workload, also

accounting for the measured one. On the contrary, the proactive approach, by just

considering the workload predictions, installs unnecessary microservice instances,

producing a significant waste of resources.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

95

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.14: Proactive and proactive-reactive global scaling: latency

96 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.15: Proactive and proactive-reactive global scaling: message loss

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

97

4.2. PROACTIVE-REACTIVE GLOBAL SCALING

(a) Simulated execution

(b) Real-world execution

Figure 4.16: Proactive and proactive-reactive global scaling: deployed instances

98 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

4.3 Edge-Cloud Continuum Service Migration

In Industry 4.0 scenarios, the Internet of Things (IoT) and cloud computing are

considered key technological enablers of industrial process monitoring and automa-

tion [XYGG18]. Among the enabled applications, early fault detection of assembly

line machines plays a crucial role to minimise operation downtime and maximise

production e”ciency. Most of the reported deployments of industrial fault detec-

tion systems are based on a cloud-centric approach, i.e., the sensory data collected

from the line machines are transferred to cloud infrastructures, where they are

stored and analysed e.g., via machine learning tools. While this approach can en-

sure service scalability, it does not fit the requirements of emerging, time-critical

industrial applications that introduce strict Quality of Service (QoS) requirements

in terms of reliability and latency of the operations. This is the case, for in-

stance, of industrial robots or unmanned/guided vehicles used for transportation

of tools and products [FSZS18]. Supporting low latency operations in time-critical

Industry 4.0 scenarios is becoming a major research challenge and pushing the

adoption of novel solutions in two complementary domains. On the communica-

tion side, standards like Time Sensitive Networking (TSN) and the 5G [AMS+22]

are envisioned to minimise data acquisition latency, while ensuring deterministic

delivery of messages. On the processing side, edge computing solutions [QCZ+20]

have been largely investigated as a viable alternative to reduce the processing la-

tency and save bandwidth. Generally speaking, edge computing is a relatively new

paradigm that attempts to o$oad computational tasks to devices nearby IoT data

sources: example of edge devices may include micro-controllers (also referred to

as the extreme edge), micro-computers, Base Stations (BS) or servers, all shar-

ing the common feature of being geographically close to data sources. To do that,

edge computing solutions involve multiple components [XLL+20]: (i) edge caching,

i.e., techniques allowing to store portions of data on edge devices; (ii) edge intelli-

gence, i.e., techniques aimed at extracting knowledge from the cached data, often

adapting existing machine learning techniques to be executed on hardware con-

strained edge devices; and (iii) edge o#oad, i.e., assign tasks to other devices in

case a single edge node does not have enough resource to execute them. Regarding

the latter, recent work enlarges such concept through the emerging paradigm of

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

99

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

the edge-cloud continuum, which refers to the possibility of seamlessly allocating

resources and workloads to edge/fog/cloud nodes, based on resource utilisation or

QoS metrics [SWVDT21]. At the same time, while several components of the con-

tinuum, e.g., the task allocation policies, have been investigated, few work reports

real-world deployments in industrial scenarios.

In the context of this Dissertation, we attempt to fill such gap describing the

design and implementation of a software architecture for Industry 4.0 scenarios,

enabling edge-cloud continuum operations of machine monitoring and fault detec-

tion. The architecture has been deployed within the SEAmless loW lAtency cLoud

pLatforms (SEAWALL) project founded by the BIREX2 consortium, a competence

center for the Industry 4.0 recently established in Bologna, Italy. The project

involved academic researchers and companies, the latter being technical service

providers or end-users. The proposed architecture implements an orchestration-

based architectural reconfiguration technique to perform dynamic orchestration of

workloads among the nodes of the edge-cloud continuum, i.e., service migration,

and address time-aware data processing support. As done in Section 4.2.4, starting

from declarative descriptions of, e.g., component characteristics and deployment

requirements, we automatically synthesise the deployment orchestrations our tech-

nique needs to perform the architectural reconfiguration. Services to process Data

can be dynamically activated/deactivated on di!erent edge/cloud nodes to min-

imise the overall latency, while the edge servers are not overloaded. To this aim,

we validate our platform in a use case proposed by an industrial automation com-

pany (Bonfiglioli S.P.A.). The use case focuses on the seamless allocation of the

service in charge of preparing data coming from a production line for subsequent

anomaly detection tasks between edge and cloud nodes. We evaluate di!erent al-

location policies varying the amount of data generated by the production line and

measuring the corresponding latency to generate the alarm.

4.3.1 The Industry 4.0 Use Case

The SEAWALL platform is designed as a solution to a case study proposed by Bon-

figlioli S.P.A, a world leader manufacturer in industrial automation, mobile ma-

2https://bi-rex.it/en/

100 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

ON FIELD DATA

IIOT EDGE GATEWAY

Edge	Runtime	

Data	
Acquisition	

Data	flow	
service		

Feature	
engineering	

Data	
labeling	

Alert	
service	

CNC	

PLC	

CLOUD

Storage Training Model

Cloud
Runtime

1

2

3Real-time	

Model	update	

Manual	activity	

Batch	

Machine	Learning	

Data	flow	

 CONTEXT DATA

MES	

OPC UA MQTT

ML Feature
Extraction

ML Feature Data
Labelling

ML Model
Generation

Data
Ingestion Edge Buffering

Edge	Timeseries	
(Historian)	

IIoT Message Bus

DATA VISUALIZATION 4

Custom

Data
Contextualization

Dashed	arrows		

Solid	arrows		

Figure 4.17: Bonfiglioli industrial automation architecture

chinery and wind energy. It concerns, as can be seen in Figure 4.17, an edge-cloud

continuum system to control and perform anomaly detection over CNC (Com-

puter Numerical Control) or PLC (Programming Logic Controller) machines. Such

machines produce various kinds of data, transmitted following specific protocols,

e.g., OPC UA, describing their current working state. The data must be stored

to perform data analyses, including the production of anomaly detection models,

based on machine learning techniques. Due to the heavy amount of storage and

computational resources needed to store the data and train the machine learning

models, this part of the system is expected to be deployed in the cloud. The ma-

chine learning models are periodically re-trained also considering the most recent

data and then used in the context of a control loop that, due to low latency con-

straints, is expected to be deployed on the edge. The control loop is triggered by

an alerting service that periodically uses the machine learning model to classify

the most recent data acquired from the production line and communicates the

outcomes of the predictions to the operators. The use case cannot be considered

as a strict real-time IoT system like the robotic/unmanned vehicle applications

mentioned in Section 4.3, due to the usage of machine learning techniques (which

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

101

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

are generally delay-tolerant), best-e!ort networking solutions and because of the

nature of the system output, which is mainly informative and does not involve au-

tomatic actions. However, there is still the need of minimising the latency of the

data alerting process. The realisation of the system has been developed adopting

edge-cloud solutions o!ered and managed by a public cloud provider.

This system has been already successfully experimented on one machine. Nev-

ertheless, the company found out that the large scale adoption of the current

architecture is not possible for several limitations. We mention below some of

such limitations:

• a unique machine learning classifier deployed in the edge cannot manage

an intensive flow of data, possibly produced in parallel by several machines

connected to the same edge gateway;

• the implementation of several independent control loops (one for each ma-

chine or one for each flow of data possibly generated by di!erent sensors in

the same machine) cannot be managed due to the limited edge storage and

parallel computing resources;

• the current system does not support dynamic automatic scaling of the com-

puting resources at the edge level;

• the adoption of an edge-cloud solution managed by public cloud providers

imposes further limitations: it is not possible to dynamically migrate com-

ponents from edge to cloud and vice versa, depending on customer-defined

load-balancing rules.

In the next Sections, we will present the design, implementation and experimental

validation of an alternative architecture that attempts to overcome the serious

limitations of the existing deployment, exploiting our architectural reconfiguration

strategy [BPS+22a].

4.3.2 Low Latency Edge-Cloud Continuum Architecture

The microservice architecture proposed in Figure 4.18 includes two main layers,

i.e., the cloud and edge layers, with each macro-functionality mapped to a sin-

102 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

PRODUCTION LINE

POD

EDGE NODE

REQUEST

DATA

MEASUREMENTS

A
LE

R
TS

CLOUD NODE (WORKER)
CLOUD NODE (MASTER)

MODEL
TRAINING

ML MODEL
(Anomaly
Detection)

ML MODEL
(Anomaly
Detection)

CONTROL
PLANE

METRICS

POD
PLANS

CNC

PLC

R
EQ

U
ES

T

A
N

O
M

A
LY

?

(Y
ES

/N
O

)

MQTT
BROKER

STORAGE

ED
G

E
LA

YE
R

DATA
PROCESSOR

DATA
COLLECTOR

POD

WORKLOAD
ORCHESTRATOR

DATA
PROCESSOR

POD
REQUEST

ANOMALY?
(YES/NO)

POD

DATA
ALERTING

TASK
MIGRATION

C
LO

U
D

 L
AY

ER

DASHBOARD

Figure 4.18: Low latency edge-cloud continuum architecture

gle component. More in detail, at the edge layer we find all services in charge

of producing and collecting data. Data are generated by a production line that

can be considered as the extreme edge layer of the architecture and consists of a

set of industrial machineries equipped with heterogeneous sensors, monitoring the

working conditions of the machineries themselves. We mapped the entire produc-

tion line to a W3C Web Thing to take benefit of the new W3C Web of Things

(WoT) standard [KML+20] in terms of interoperability. As a result, we abstract

away from the specific machinery in use and from the sensor types, since new

kind of machineries can be easily added, by providing the WoT mapping interface.

An edge node, close to the data source, hosts two services: a static one, i.e., the

Data Collector, gathering data through the OPC UA protocol and a dynamic one,

i.e., the Data Processor, that, instead, is moved between the cloud and edge layers

depending on the specific needs. The Data Processor can be invoked to retrieve

the latest measurements from the Data Collector and executes anomaly detection

tasks to discover possible misbehaviours of the production line. The Data Proces-

sor is constituted by a pre-trained machine learning model. Notice that, we do not

propose any new machine learning technique for anomaly detection, since the focus

is on the dynamic allocation of the workload of the processing task. As a result,

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

103

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

the SEAWALL platform is general enough to support multiple anomaly detection

algorithms, assuming that the code for training and inference tasks is provided and

properly connected to the Data Processor interface. In the cloud layer, we find

the Data Alerting service, which is in charge of periodically triggering the Data

Processor, in order to get the response of the anomaly detection task. Further-

more, the cloud layer hosts: (i) a storage service that acts as data lake of alerts

and raw sensory data from the production line; (ii) an IoT dashboard showing the

current machineries conditions and triggered alarms; and (iii) a workload orches-

trator service, whose task is to migrate the Data Processor from cloud to edge and

vice versa, under certain conditions. The dotted lines in Figure 4.18 highlight the

possibility of re-training the machine learning model when new data are available

on the storage service and transferring back the updated parameters to the model.

Notice that, under normal conditions, the Data Processor is deployed in cloud,

given the higher availability of resources with respect to the edge node. However,

di!erent policies can be easily implemented in the workload orchestrator, in order

to adapt the entire system to the specific use case.

4.3.3 Latency and Size-based Policies

At the very core of our architectural reconfiguration technique for service migration

we find the migration policies implemented in our Workload Orchestrator. Notice

that, for brevity sake, we present only the real-world implementation (developed

using the JavaScript programming language) of such policies, nonetheless the ABS

(simulated) version is fully equivalent.

These policies can handle an arbitrary number of services and ensure that

exactly one service is deployed within the edge node at any time. As we will see in

the code excerpts below, migration operations are executed via the moveToCloud

and moveToEdge functions, which encapsulate the necessary logic to run migration

orchestrations, based on the provided service index. For each service to migrate,

both policies retrieve the perceived latency and received data size (referred to as

latencies and bytes in the code below). The policies then evaluate whether

to enact migration operations based on these metrics, by looking for, in the case

of the latency-based policy, the service with the highest latency or the highest

104 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

received data size, in the case of the size-based policy. The thresholds lat th edge,

lat th cloud and size th are used to guide these migration decisions. These

thresholds can be adjusted to accommodate the specific constraints of the system

under examination.

Concerning the latency-based policy, as can be seen in Listing 4.13, we look

for the service perceiving the greatest latency (stored in the max variable): if such

latency is greater than lat th edge, we migrate it to the edge. Notice that, to

ensure that exactly one service is deployed on the edge at any given time, we

make use of the zone array (i.e., an array keeping track of the position of each

service). If the orchestrator finds out that a service, di!erent from the one we are

currently migrating, is already deployed on edge, we first free the edge node and,

consequently, migrate the service under consideration (lines 1-12). If the service

Listing 4.13: Latency-based policy!
1 var max = Math.max (... latencies)
2 const index = latencies.indexOf(max)
3 if(max > lat_th_edge) {
4 if(zone.filter(z => z == "edge").length == 0) {
5 moveToEdge(index);
6 }
7 else {
8 const edge_index = zone.indexOf("edge");
9 if (edge_index != index) {

10 moveToCloud(edge_index);
11 moveToEdge(index);
12 }
13 }
14 }
15 else if(zone[index] == "edge" && max < lat_th_cloud) {
16 moveToCloud(index);
17 }"# $

with the highest latency is already on the edge side and such latency is less than

lat th cloud, the orchestrator moves such service back to the cloud.

Di!erently from the latency-based policy, in the size-based one (whose code can

be seen in Listing 4.14), we look for the service receiving the highest amount of

data and migrate it on the edge (if the edge node is free); otherwise we first move

the service currently on the edge back to the cloud and, consequently, deploy the

service under consideration on the edge. Again, this policy ensures that at most

one service is placed on edge at any time (see line 5-11).

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

105

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

Listing 4.14: Size-based policy!
1 var max = Math.max (... bytes)
2 const index = bytes.indexOf(max)
3 if (max > size_th) {
4 if (zone.filter(z => z == "edge").length == 0) {
5 moveToEdge(index);
6 }
7 else {
8 const edge_index = zone.indexOf("edge");
9 if (edge_index != index) {

10 moveToCloud(edge_index);
11 moveToEdge(index);
12 }
13 }
14 } else if (zone[index] == "edge" && bytes[index] < size_th) {
15 moveToCloud(index);
16 }"# $

4.3.4 Executable Model and Real-World Implementation

Within this Section, we start presenting the formal model of the architecture pre-

sented in Figure 4.18, crafted using our integrated timed modelling/execution lan-

guage (detailed in Chapter 3). Following this, we proceed to illustrate the con-

crete implementation of this platform, shedding light on the underlying adopted

technologies. Our main focus lies in first simulating and executing an operational

model akin to Figure 4.18, then validating the obtained results using our real-world

implementation.

Executable model. We leverage our integrated timed modelling/execution lan-

guage (see Chapter 3) to precisely capture the behaviour of the platform illustrated

in Figure 4.18. Through this modelling approach, we thoroughly analyse the per-

formance of our architectural reconfiguration technique under various migration

policies. For interested parties, both the SEAWALL algebraic model and the data

analysis code are openly accessible at [Bac24d].

In the process of implementing our ABS algebraic model, we proceed as fol-

lows: (i) we devise static aspects of the architecture (annotations) to be inputed

to Timed SmartDeployer (see Section 3.5), in order to automatically synthesise

deployment orchestrations for the initial system deployment and subsequent mi-

gration actions; and (ii) we implement, via ABS code, the behaviour of services.

During the modelling phase, we abstract away low-level details such as communi-

106 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

cation protocols and data generation. Instead, we focus solely on modelling the

services composing the architecture, including the Data Processor, Data Collector,

Data Alerting and the Workload Orchestrator. Unlike the ABS algebraic models

presented in Section 3.6 where reconfiguration is enacted via service replication

considering service throughput, here reconfiguration actions are represented by

service migration operations, based on network-related metrics, e.g., transmission

speed and data volume. Thus, we leverage the ABS DataSize annotation (refer-

enced in Section 2.3) to accurately model bandwidth usage, consistently marking

ABS instructions modelling network communication among services.

However, capturing a realistic communication behaviour with ABS concepts

like Deployment Component, Bandwidth and DataSize annotations, poses a chal-

lenge due to the uncertain nature of network communications. Achieving this re-

alism necessitates the analysis of real-world data representing transmission speeds

on both cloud and edge sides, without executing any migration actions. An in-

triguing observation arises when comparing transmission speeds of edge and cloud

virtual machines, as depicted in Figure 4.19. Despite both sides having equivalent

resources, the edge side exhibits faster transmission speeds. This discrepancy can

be attributed to the proximity between data and the node hosting the computa-

tion using such data. When both data and services reside within the same node,

the distance is e!ectively zero, resulting in expedited data reception. Notice that,

network communication within the same node uses a virtualised instance of the

Ethernet adapter, i.e., vEthernet, which is influenced by the underlying network

infrastructure. This explains why latency on the edge side is not zero.

In our communication modelling, we assume that the transmission speed at

the edge is solely determined by the available bandwidth provided by the host-

ing virtual machine, without being significantly impacted by other external factors,

e.g., the distance between nodes. To quantify the relationship between latency and

data sizes, we exploit the data presented in Figure 4.19 (taken from [BPS+22a]),

comprising 10 latency measurements for each data size. From this dataset, we

derive the actual bandwidth consumed on the edge side as the ratio of the i-th

data size and the corresponding average latency avg latedgei , observed over these

measurements on the edge side. This computation yields to a practical estima-

tion of the e!ective bandwidth utilisation for di!erent data sizes on the edge.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

107

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

Figure 4.19: Transmission speed analysis [BPS+22a]

In our simulation, to align the communication behaviour to the one highlighted

in Figure 4.19, we proceed as follows. We define btot as the total bandwidth a

Deployment Component can supply, si as the i-th size of transmitted data and

bedgei as the i-th edge bandwidth usage computed as

bedgei =
si

avg latedgei

.

We calculate the scaled data size values scaledi, inputed to the DataSize annota-

tion, as follows:

scaledi = si ·
btot

bedgei

.

This formula allows us to adjust the size values proportionally, ensuring that the

resulting transmission times accurately reflect the observed transmission speeds.

108 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

Notice that, the scaledi values are such that

scaledi
btot

=
si

bedgei

,

independently of the value assigned to btot: this is crucial to define a modelling

methodology that is independent from the total bandwidth supplied by the virtual

machines used in the real-world implementation, since it is di”cult to precisely

retrieve such information. Moreover, our modelling methodology is general enough

and applicable to any cloud vendors.

However, scaledi values do not take into account the cloud side slowness, caused

by factors such as distance from the data source. Thus, we need to enrich our

analysis with a slowdown factor computed as

facti =
bedgei

bcloudi

,

where bcloudi is computed following its edge counterpart methodology. Thus, given

facti, we compute avg latcloudi = facti · avg latedgei . To inject the previously computed

slowdown factor in our simulation, we proceed as follows. Considering that, for

the i-th data size, the DataSize annotation already produces a delay equal to

avg latedgei , we need to account for the remaining delay of (facti ↗ 1) · avg latedgei .

Thus, technically, we simulate such an additional delay as computing time, ex-

ploiting the Cost annotation, passing as input (facti ↗ 1) · avg latedgei · speed (where
speed is the Deployment Component speed).

Real-World Implementation. We present the primary technologies used in

the implementation of the architecture detailed in Section 4.3.2. The backbone

of our system, i.e., the production line, is encapsulated as a Thing Description

(TD), facilitating its exposure as a Web Thing. This integration is orchestrated

through the Data Collector service, which acts as a conduit between the digi-

tal and physical words. Leveraging the OPC UA protocol, the Data Collector

seamlessly interfaces with physical machinery, ensuring smooth data acquisition.

Noteworthy is its adaptability to diverse data acquisition sources, thanks to the

compliance with any WoT-compliant protocol. To achieve this versatility, we use

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

109

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

Node-wot3, a robust NodeJS framework designed explicitly for the Web of Things

(WoT). Node-wot empowers our system to consume and produce Web Things in

accordance with the W3C WoT Scripting API specifications 4, thereby ensuring

interoperability and seamless integration with the broader IoT ecosystem. Both

the Data Processor and Data Alerting services are developed in Typescript, lever-

aging the NodeJS runtime5. They expose REST APIs, facilitating seamless data

interaction. For message queuing, we rely on the open-source Eclipse Mosquitto

MQTT broker6. Data storage is handled by an InfluxDB instance7. Addition-

ally, the dashboard module is implemented as an Angular web application. To

ensure flexibility and scalability, the entire architecture is containerised. Each ser-

vice is encapsulated within a Docker container and managed by the Kubernetes

controller running on the master node. This containerisation strategy enhances

deployment e”ciency and facilitates orchestration in dynamic environments. We

maintain ongoing performance monitoring of the Data Alerting service with the

assistance of the Istio framework8. Our focus lies particularly on alert generation

latency, which encompasses both data retrieval from the Data Processor module

and the execution latency of the machine learning model. These metrics serve as

vital inputs for our custom Workload Orchestrator service, guiding resource allo-

cation decisions for the Data Processor, whether on the cloud or edge side. This

adaptive resource management ensures optimal performance and responsiveness of

the system in dynamic environments. Currently, our migration policy triggers the

o$oading of the Data Processor service to the edge node once certain thresholds

are hit. These thresholds are adjustable by the system administrator through a

straightforward dashboard interface. Importantly, our orchestrator is designed to

accommodate various migration policies with ease. For instance, it can seamlessly

implement o$oading strategies based on di!erent factors, e.g., the volume of data

received by the Data Processor service. The output of our Workload Orchestrator

is operationalised through the application of statically synthesised deployment or-

3https://github.com/eclipse/thingweb.node-wot
4https://www.w3.org/TR/wot-scripting-api/
5https://nestjs.com/
6https://mosquitto.org/
7https://www.influxdata.com/
8https://istio.io/

110 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

chestrations, automatically generated by the tool discussed in Section 4.1. These

orchestrations are then executed to dynamically manage the activation and deac-

tivation of pods across di!erent nodes. Notably, this orchestration process occurs

without the need for any active code migration (i.e., it occurs by deactivating

services on edge, activating them on cloud and vice versa), ensuring smooth and

e”cient resource allocation.

4.3.5 Experimental Settings and Evaluation

To test the e”cacy of our edge-cloud continuum approach, we employ the config-

uration outlined in Table 4.4. In both simulated and real-world environments, we

deploy a cluster comprising two nodes, each one equipped with 2 vCPUs and 4

GB of memory. In the real-world scenario, these nodes are provisioned by Digital

Ocean and we use Kubernetes as orchestration engine. In the simulated environ-

ment, these nodes are modelled as Deployment Component and the orchestration

engine is represented by the Erlang backend (in charge of executing the simulation

and the synthesised orchestrations). Specifically, one node is located in London,

serving as the representation of the cloud layer, while the other node is situated in

San Francisco, mimicking the edge layer. This geographical distribution ensures a

diverse and realistic testing environment, allowing us to assess the impact of our

reconfiguration technique across di!erent locations. Notice that, in the simulated

environment such geographical distribution is modelled following the communica-

tion behaviour analysis described in Section 4.3.4. In the real-world scenario, there

is an additional node, i.e., the master one, where we deploy the Kubernetes control

plane. To test the performance of our architecture, we deploy the Data Alerting

in the cloud layer, the Data Collector in the edge one and allow the placement of

the Data Processor on both.

The Data Alerting service operates with a request interval set to 3 seconds,

whereas Workload Orchestrator conducts its activities at intervals of 10 seconds.

To correctly model the timing behaviour in our ABS simulation, we first define an

ABS time unit to be equivalent to 50 milliseconds and then we convert the above

described time intervals from seconds to time units.

In a realistic industrial scenario, we confront the challenge of managing multiple

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

111

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

Nodes 3
Node locations London, San Francisco
Node resources 2vcpu with 4gb RAM
Request payload 3500 B
Request window 3s

Monitoring window 10s
ABS Time Unit 1 time unit = 50ms

Table 4.4: Experimental settings

independent pipelines. Deploying multiple services to the edge layer poses the

risk of overloading edge nodes. In contrast, cloud nodes o!er the advantage of

elasticity, allowing for easier scalability, by adding nodes to the cluster as needed.

In such a scenario, it becomes crucial to assess Workload Orchestrator policies that

strategically deploy only one selected Data Processor service to the edge, while

retaining the remainder in the cloud. This approach aims to mitigate the risk of

overburdening edge nodes, while taking advantage on the computational power

of the cloud. To gauge the adaptability of our architecture in handling multiple

pipelines, we deploy three independent pipelines. Each pipeline follows a distinct

profile for the inbound workload. In particular, the workload is computed as

sizei · sizei · req payload, where req payload is 3500B and sizei assumes the following

ordered sequences of values:

• [80, 60, 20, 140, 80, 60, 40, 120] for pipeline 1;

• [60, 40, 120, 80, 60, 20, 140, 80] for pipeline 2;

• [20, 140, 80, 60, 40, 120, 80, 60] for pipeline 3.

Notice that, even if we adopt the same workloads in the simulated and real-world

environment, the data size perceived by the Data Processor di!ers between the two

environments. The reason lies in the data optimisation/reduction occurring in the

real-world network communication: since data are originally in a text-based format

(i.e., JSON) and encoded into a binary format (e.g., Bu!ers or MessagePack), the

resulting binary data are smaller [VK22].

To each pipeline, we impose the constraint that at most one Data Processor

service can operate in the edge layer at any time. This constraint ensures a fair

112 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

assessment of the system performance under realistic conditions.

We start with the three Data Processor services in the cloud layer and, every

10 seconds, the latency and workload size are queried. We compare the two poli-

cies described in Section 4.3.3: the first moves to the edge layer the service with

the highest latency, meanwhile the second relocates the service with the highest

incoming workload size. Given that, according to the Bonfiglioli requirements, it

is acceptable to have a latency grater than 1s and strictly less than 2s, we design

our Workload Orchestrator to migrate the Data Processor service in the cloud un-

til specific conditions are met: (i) when the latency-based policy is applied, the

service remains in the cloud as long as the latency falls below a threshold of 2

seconds (thus, we set lat th edge to 2s), while remains in the edge as long as

the latency is greater than 1s (thus, we set lat th cloud to 1s); (ii) as can be

seen in Figure 4.19, since a 11 MB size corresponds to a latency of 2s, when the

size-based policy is applied, the service stays in the cloud as long as the request

size is below a 11 MB threshold (thus, we set size th to 11 MB).

Latency-based policy. In Figures 4.20a and 4.20b, we present the results re-

lated to both the ABS and real-world implementations of the latency-based policy.

Swapping points are highlighted with x and •, describing migration from cloud to

edge and vice versa, respectively. As expected, as soon as the latency related to

a service exceeds the defined threshold, the orchestrator immediately migrates it

to the edge, significantly reducing the time to receive data. This policy, as shown

in Figures 4.20a and 4.20b, incurs the problem of swapping Data Processor services

at each step. To understand the reason behind this problem, let us consider the

following example. Suppose there are two Data Processor services DPi and DPj

with a perceived latency of 4 and 3 seconds and a constant received data size of 13

and 14 MB, respectively. In the monitoring window mw, the DPi service is the one

with the highest latency and it is moved to edge. Consequently, thanks to the data

locality principle, DPi, in the monitoring window mw+1, is the one with the lowest

latency, while DPj still perceives a latency of 3 seconds. Thus, in the monitoring

window mw+2, DPj and DPi are swapped, returning back where we started and

so on in the subsequent windows. This behaviour can be seen in Figures 4.20a

and 4.20b, e.g., at t = 40s the orchestrator moves DP3 to the cloud despite the

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

113

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

(a) Simulated execution

(b) Real-world execution

Figure 4.20: Latency-based policy performance

114 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

fact that it has the highest request size (and consequently the highest latency if

kept there).

Size-based policy. In Figures 4.21a and 4.21b, we present the experimental re-

sults related to the size-based policy. As expected, once the size of the data being

transmitted to a particular service exceeds the predefined threshold, the orchestra-

tor promptly reacts, migrating the service to the edge and leading to a significant

reduction of the transmission latency. This demonstrates the e!ectiveness of the

policy in managing data flow e”ciently. The behaviour observed in this policy is

particularly noteworthy, as it exhibits greater stability and involves fewer migra-

tions compared to the other policy. This stability is primarily due to the fact that

the decision-making process is based on the workload size, which remains consis-

tent regardless of fluctuations in other factors. More specifically, while latency

may increase or decrease depending on whether the Data Processor is located on a

cloud node or an edge one, the perceived size of the workload remains una!ected

by the geographical location of the processing unit. This consistency in workload

size makes it an ideal metric to determine the optimal timing to trigger service

migration, ensuring the system remains stable and avoids unnecessary migration

actions. By using workload size as the main trigger, the policy e!ectively balances

system performance and the overhead costs associated with service migration.

When comparing the two policies (both in the ABS simulation and the real-

world deployment), as illustrated in Table 4.5, it becomes evident that the size-

based policy significantly reduces the number of swaps with respect to the alter-

native approach. This reduction is achieved by only initiating migrations when

there is a substantial increase in workload size within a pipeline. Consequently,

the system avoids reacting to minor fluctuations, which could otherwise lead to

unnecessary migrations, causing, e.g., network overhead. In both the ABS and

real-world implementations, the policies respond to spikes in latency, aiming to

optimise overall system performance. The comparable latency flows observed in

both the implemented policies suggest that leveraging the data locality principle

is a good strategy for service migration approaches.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

115

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

(a) Simulated execution

(b) Real-world execution

Figure 4.21: Size-based policy performance

116 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

Latency-based
(ABS)

Latency-based
(real-world)

Size-based
(ABS)

Size-based
(real-world)

Pipeline 1: swaps 11 11 5 4
Pipeline 1: avg latency 1.9s 1.8s 1.7s 1.8
Pipeline 2: swaps 10 10 4 3
Pipeline 2: avg latency 2s 1.8s 2s 1.8s
Pipeline 3: swaps 8 8 4 4
Pipeline 3: avg latency 2s 2s 2s 1.9s

Table 4.5: Comparative analysis of swaps

4.3.6 Refining System Simulation: Delayed Triggers

Figure 4.22: Average performance of 25 independent runs of the real-world system,
under the size-based policy

Despite having similar behavioural patterns (i.e., the simulation performs mi-

gration actions when the real-world implementation does), the reader may notice

a (not that) subtle di!erence: the real-world system execution is a!ected by unex-

pected delays, causing some triggers to be received in the wrong order. An example

is the following: according to the implementation of the low latency edge-cloud

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

117

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

Figure 4.23: Probability of delayed trigger events

continuum architecture [BPS+22a], the trigger to update the data size is fired by

the Workload Orchestrator every two monitoring windows. The reason behind this

choice concerns experimental reproducibility: the workload we use is controllably

updated by a single entity, thus making it reproducible across independent runs,

without the need of synchronisation mechanisms. Being that the data size changes

every two monitoring windows, we expect that the one perceived by the Data Pro-

cessor changes accordingly. However, as can be seen in Figure 4.22, which presents

the average performance of 25 independent runs of the real-world system under

the size-based policy, some plotted data sizes present an unexpected behaviour.

At time 30s-40s, the data sizes are expected to be the same, however, as can be

seen in Figure 4.22, the ones perceived in the pipeline 3 clearly diverges from one

to another. In the simulated environments no unexpected behaviours occur: code

statements not tagged with Cost and DataSize annotations (see Section 2.3) are

executed instantly, i.e., logical time does not advance.

To perform a realistic evaluation of our migration policies for architectural

reconfiguration within the simulated environment, we need to probabilistically

118 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.3. EDGE-CLOUD CONTINUUM SERVICE MIGRATION

model such delayed triggers. To this purpose, we first define a methodology to

recognise delayed triggers for data size updates. Given sizei and sizej data sizes,

such that we expect sizei = sizej, a delayed trigger occurs whenever,

min(sizei, sizej)

max(sizei, sizej)
< 0.75 ⇔ |sizei ↗ sizej| > 1.2,

i.e., the similarity between sizei and sizej is lower than 0.75 and the di!erence be-

tween the size values is greater than 1.2 MB. The similarity provides a normalised

measure of the smaller value with respect to the larger one, indicating how close the

smaller is to the larger in a scale-invariant way. The constraint on the di!erence

between the size values is needed to rule out delayed triggers that do not influence

the migration behaviour, i.e., delayed triggers that are not relevant. As can be

seen in Figure 4.19, the data size 1.2MB corresponds to a delay of 1.2s in cloud

nodes and 0.2s in the edge ones. If the Data Processor service is placed in an edge

node, a data size less than or equal to 1.2MB would anyway cause the migration

to cloud (delayed triggers causing data size values to be lower than 1.2MB do not

influence the behaviour). If the Data Processor service is placed in a cloud node,

a data size less than or equal to 1.2MB would not produce any migration action.

To probabilistically evaluate the occurrence of delayed triggers, we produce

a dataset containing all the instances for each data size (see Table 4.4) and the

corresponding amount of delayed triggers. In particular, we consider data from 85

independent runs of the real-world system, taken from [BPS+22a]. We compute

the probability of delayed trigger of i-th data size as

tot delayi
toti

,

producing the distribution presented in Figure 4.239.

After integrating the probabilistic behaviour, i.e., the possible occurrence of

delayed triggers, in our simulated environment, we perform 25 independent runs

to evaluate the average behaviour of the simulated system against the one pre-

sented in Figure 4.22. As can be seen in Figure 4.24, the produced average be-

9To generate such distribution, we use poly1d, see https://numpy.org/doc/stable/
reference/generated/numpy.poly1d.html.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

119

https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html
https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html

4.4. RELATED WORK

haviour closely follows the real-world one presented in Figure 4.22, showing both

the expressive power of our modelling/execution language and the precision of our

analyses.

Figure 4.24: Average performance of 25 independent runs of the simulated system,
under the size-based policy

4.4 Related Work

The main contribution of this Chapter regards the introduction of two di!erent

architectural reconfiguration strategies for service service autoscaling [BBLZ21,

BBG+22a, BBG+25] and migration [BPS+22b, BPS+22a]. In this section, we

review the current state of the art, starting with the approaches for autoscaling.

Service autoscaling. Local scaling focuses on adjusting the number of instances

at the level of a single microservice. These approaches can be reactive (triggered

by specific events) or proactive (aimed at preventing undesired events). Recent ex-

amples of reactive local scaling include Bayesian optimisation techniques [YCZ22]

120 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.4. RELATED WORK

and fuzzy logic [LBT18]. Proactive local scaling often involves prediction tech-

niques to create early scaling mechanisms, using probabilistic modelling frame-

works or time series analysis techniques, such as k-means [DGVV12] and neural

networks [MA20, PCLH21a]. Researchers have also proposed hybrid approaches

that mix reactive and proactive elements to improve system behaviour and man-

age unexpected tra”c fluctuations [QCB18, MA20, BLV+19]. Industry solutions

from major cloud vendors like Amazon and Google typically follow reactive scaling

approaches based on user-defined thresholds, with recent additions of predictive

capabilities exploiting historical data for automatic adaptation [Bar18, Mic, Goo].

Going towards global scaling, SmartHPA [ATWS24] is a Horizontal Pod Auto-

scaler for Kubernetes that adapts according to the resources available to the infras-

tructure. SmartHPA uses decentralised autoscaling under resource-rich infrastruc-

tures and a hierarchical approach under resource limitations so that the auto-scaler

allocates and deallocates microservice replicas based on their relative load. While

the hierarchical approach considers some aspects of the global state of the system

(e.g.,microservice replicas vs load), it does not perform a coordinated scaling of the

architecture, as found in global scaling. Global scaling involves coordinating the

scaling of multiple interacting microservices. Previous work in this area includes

decidability results for optimal deployment of microservices [BGM+19, BGM+20].

Other approaches, such as those proposed by [USC+08, GCW19], rely on perfor-

mance models, but su!er from limitations, e.g., delayed system capacity assess-

ments and restrictions to specific architectures. Recent studies highlight the poten-

tial of machine learning techniques combined with performance-aware approaches

in improving microservice autoscaling e”ciency. For example, GRAF uses a graph

neural network to proactively allocate resources, while minimising CPU usage and

meeting latency requirements, outperforming traditional autoscalers in resource

savings and latency convergence [PCLH21b, PCLH24]. Similarly, MS-RA, a self-

adaptive, requirements-driven solution, shows superior performance compared to

Kubernetes Horizontal Pod Autoscaler, achieving good performance with fewer

resources [NNSN24]. The Polaris framework introduces a performance-aware au-

toscaler that uses high-level latency requirements, showing advantages over low-

level CPU-based approaches [BBP+22]. Other contributions include Showar et

al. [BK21], who proposed a scheduling framework to optimise resource allocation

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

121

4.4. RELATED WORK

for microservices and Burstaware predictive autoscaling, which leverages burst

patterns in workloads to ensure high performance during demand spikes [AIB+22].

PBScaler addresses bottlenecks by adjusting resource allocations in real-time, pre-

venting performance degradation due to resource constraints [XWL+24].

In conclusion, the combination of proactive and reactive global scaling ap-

proaches can significantly enhance the scalability and e”ciency of microservice

architectures.

Edge-cloud continuum service migration. IoT applications are composed

of multiple, interacting components enabling the storage, processing and valorisa-

tion of sensory data as well as the actuation on the target environment. For this

reason, the microservice patterns have emerged as a viable approach to decompose

an IoT application into a set of loosely coupled services [SWVDT21]; the latter

can be containerised via virtualisation tools such as Docker (see Section 2.5) and

deployed at di!erent nodes of the compute continuum thanks to orchestration en-

gines such as Kubernetes (see Section 2.5). The question of how the continuum

can help meeting the QoS requests is a novel yet investigated topic for generic

microservice-based applications; at the same time, few studies refer to the IoT or

to Industry 4.0 scenarios. E”cient workload allocation is the major concern in

most of these papers. In [KHA19] the authors assume that an IoT application

can be modelled as a set of microservices (called processing elements) forming a

directed acyclic graph. Hence, they formulate the processing elements scheduling

problem where the goal is to minimise the latency of the whole workflow. Similarly,

the framework in [AGS+20] attempts to allocate Web Things (WTs) to nodes of

the continuum, taking into account the interdependencies among the WTs, so that

the in-network overhead is minimised. The placement of components must find the

optimal trade-o! between conflicting requirements in terms of QoS requests from

users/applications and unpaired resource and cost availability on edge and cloud

nodes. For these reasons, multi-objective workload allocation strategies have been

proposed [KMKP21], where the placement framework attempts to jointly minimise

the service completion time, communication energy consumption as well as storage

cost. Another recent study [TIRB22] raises the concern about the dynamic varia-

tion of metrics used for allocation policies, e.g., execution time or CPU utilisation,

122 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.5. DISCUSSION

which can vary significantly over time on di!erent nodes of the continuum and em-

ploys machine learning-based solutions to learn workload patterns. In the comput-

ing continuum environment proposed by Proietti et al. [MB21], each edge cluster

contains a scheduler service in charge of receiving requests from clients and taking

decisions whether to execute the task locally, on the cloud or to reject it. The

decision is based on a reinforcement learning approach, which receives a positive

reward for every task completed within a deadline. All the previous studies assume

a global centralised IoT workload balance. Vice versa, Zeinab et al. [NZDP21] pro-

poses a decentralised load-balancing system for IoT service placement, which aims

at reducing the cost of service execution, enabling each edge/cloud node to gen-

erate a predefined number of possible service placement plans. A further issue to

consider is how to implement the workload allocation. In allocation-only schemes,

containers are switched on/o! at di!erent nodes, but no software mobility occurs.

Vice versa, migration-based strategies enable container transfer among nodes of

the continuum, in a stateless or stateful way as discussed in [PVM20].

4.5 Discussion

In this Chapter, we introduce two distinct approaches to orchestration-based archi-

tectural reconfiguration: service migration and autoscaling. For each architectural

reconfiguration approach, we begin by implementing the systems under consider-

ation using our integrated timed modelling/execution language. This allows us to

evaluate the performance of our approaches early in the design phase. Then, after

having evaluated the e!ectiveness of our approaches, we develop the real-world

implementations to validate them in realistic scenarios. Both orchestration-based

architectural reconfiguration approaches leverage correct-by construction deploy-

ment orchestrations automatically synthesised starting from declarative specifica-

tions of, e.g., component characteristics, deployment constraints. These orches-

trations, being correct-by construction are guaranteed to successfully reach their

intended purpose, i.e., replicate/migrate services.

In addition to presenting and evaluating innovative orchestration-based archi-

tectural reconfiguration techniques, this Chapter also demonstrates the expressive-

ness and precision of our integrated timed modelling/execution language through

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

123

4.5. DISCUSSION

extensive modelling of real-world systems.

Proactive-reactive global scaling. We proposed an innovative global scaling

approach that leverages the functional interdependencies among microservices,

supported by a proactive-reactive scaling algorithm designed to optimise perfor-

mance. We testd our approach through a series of benchmarks, conducted in both

simulated and realistic environments. The simulations are carried out using our

integrated timed modelling/execution language, while the real-world benchmarks

requires the implementation of the novel global scaling platform described in Sec-

tion 4.2.1. Initially, we run benchmarks to evaluate the reactive version of our

global scaling approach against the conventional local scaling method. As proved,

our global approach, not only surpasses the performance of the reactive local scal-

ing, but it also outperformes an enhanced version of local scaling equipped with

an oracle, i.e., a perfect predictor. This demonstrates the inherent superiority of

our scaling approach in managing scaling decisions, even in scenarios where local

scaling has access to ideal forecasting capabilities. In the final set of benchmarks,

we assess the e!ectiveness of our proactive-reactive scaling algorithm in handling

workloads that are particularly challenging to predict. For this purpose, we se-

lectively extracted outliers from the Enron corpus dataset, which our workload

predictor struggled to forecast accurately. The results testify the e!ectiveness

of our approach, showing that it can maintain optimal performance even under

unpredictable conditions.

Looking ahead, several clear directions for future work present themselves,

including the enhancement of prediction techniques and the refinement of algo-

rithmic mixing strategies. For instance, natural language processing techniques

could be employed to extract additional features, such as the number of attach-

ments per email, to improve the representation of the regression target (in our

case, the inbound requests). This could lead to more accurate predictions and

better scaling decisions. To further bolster the resilience of our global scaling

technique against potential failures, we plan to introduce dedicated monitoring

mechanisms for each microservice type. These monitors would periodically verify

that the number of instances matches the expectations, set by the orchestrator

implementing our proactive-reactive global scaling algorithm. In the event that

124 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

4.5. DISCUSSION

the actual number of instances falls short of the expected count, indicating that

one or more failures have occurred, the orchestrator would automatically restore

the correct number of instances. This additional layer of monitoring ensures that

our system remains robust and reliable, even in the face of unforeseen disruptions.

Edge-cloud continuum service migration. We presented a microservice ar-

chitecture designed specifically for deployments across the edge-cloud continuum,

aimed at addressing the limitations of an Industry 4.0 application, provided by

one of the industrial partners of the SEAWALL project. Our innovative architec-

ture, developed using open standards and technologies, overcomes the most critical

shortcomings of the previous implementation. Our orchestrator enables flexible

customisation of policies for the dynamic mobility of workloads between the edge

and cloud layers, allowing for: (i) a significant reduction in communication latency

through optimised service placement; (ii) seamless resource sharing across multiple

independent data analysis pipelines; and (iii) the elimination of common challenges

found in IoT edge-cloud solutions from public cloud vendors, e.g., limited system

customisation and vendor lock-in. Additionally, it supports heterogeneous data

sources through the adoption of the W3C Web of Things (WoT) standard. Unlike

the previous system, which relied on a single classifier deployed at the edge, our

architecture can support multiple classifiers (and thus several independent control

loops) that can be deployed at either the edge or cloud layers.

We are currently preparing to transfer our architecture to the production line,

following its successful testing with synthetic data. Looking ahead, our future

work focus on two main areas of extension. First, we plan to enhance our testing

by incorporating various sources of synthetic data, potentially distributed across

di!erent nodes or regions. In this scenario, we will need to develop a topology-

aware workload orchestrator capable of optimally relocating services closer to their

respective data sources. Second, we aim to enrich the workload mobility policies

supported by our system by exploring the use of machine learning techniques to

predict increases or decreases in data generation, enabling us to proactively manage

the movement of services towards data sources.

CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

125

4.5. DISCUSSION

126 CHAPTER 4. ORCHESTRATION-BASED ARCHITECTURAL
RECONFIGURATION

Chapter 5

Typestate Trees for Statically

Typed Languages

This Chapter contains contributions from the following work of ours: [BBG+22b, BBG+24c]

Within object-oriented programming languages, e.g., Java, errors, ranging from

dereferencing null pointers to misusing resources (e.g., attempting to read from a

closed file), can lead to a plethora of issues within software systems. These issues

manifest as unexpected behaviours, program malfunctions or outright crashes, un-

dermining the reliability and robustness of the software. Hence, there exists a

pressing need to develop sophisticated tools aimed at aiding the software devel-

opment lifecycle, identifying and rectifying these errors as early as possible. This

proactive approach is essential, given the frequency of such bugs, a fact underscored

by Wetsman et al. [Wet20]. In programming languages, the detection of certain

common errors is facilitated by the presence of type systems integrated into type

checkers [Car96]. However, despite the advancements in this domain, the scope of

errors identified by current mainstream object-oriented languages remains some-

what limited. Notably, within these languages, there is a noticeable absence of

static assurances on programs behaving as expected. For instance, a very simple

example is the following. Consider the scenario where methods must be invoked in

a specific sequence, such as calling hasNext before next in an iterator. A real-world

example of a method being called out of order is a bug found1 in Jedis2, i.e., a Java

1https://github.com/redis/jedis/issues/1747
2https://github.com/xetorthio/jedis

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

127

client for Redis, an in-memory database that persists on disk. The error happened

when there was an attempt to close a socket that timed out, in other words, there

was an operation being available on a state that should not allow that. While

such protocols are often delineated in natural language within documentation,

they lack static enforcement mechanisms. Consequently, this void in static verifi-

cation serves as a breeding ground for a myriad of errors, such as attempting to

access a variable before it has been properly initialised [BKA11]. While some lan-

guage frameworks support a refined analysis, they require expert users to provide

complex specifications, for example, in separation logic [JSP+11, Rey02, IO01].

In this Chapter, we first introduce an existing tool to help filling this gap, i.e., a

Java Typestate Checker [MGR21] (JaTyC), which type checks programs where

objects are associated with protocols, i.e., typestates. Java classes are annotated

with typestates, which define the behaviour of class instances, in terms of available

methods and state transitions. JaTyC makes it possible to statically check:

• absence of “the billion dollar mistake” [Hoa09], i.e., null pointer ex-

ceptions;

• protocol compliance, i.e., objects are used according to their protocols;

• Protocol completion, i.e., protocols reaching the end state.

Ensuring these properties is crucial to avoid protocol bugs as in [Wet20], where

a mobile application tracing COVID-19 failed to perform a crucial step in the

protocol: notify users if they were in close contact with potentially infectious

patients, leaving the protocol uncompleted.

In the dynamic landscape of object-oriented programming languages, e!ective

static analysis tools must intricately navigate the complexities of inheritance to

truly fulfill their purpose. Inheritance, a fundamental concept in object-oriented

programming, enables classes to inherit properties and behaviours from parent

classes, fostering code reusability and hierarchical organisation. Therefore, a thor-

ough understanding and incorporation of inheritance and polymorphism are indis-

pensable for static analysis tools, aiming to e!ectively scrutinise object-oriented

programming codebases, ensuring, not only correctness, but also maintainability

128 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

and scalability in software development endeavors. This is challenging with types-

tates: since a class can inherit from another and be used as a type of the superclass

(i.e., upcast), it is crucial to ensure that the behaviour specified in the usage pro-

tocol of the superclass is also possible in its subclasses. Thus, we need a notion of

subtyping for protocols akin to the one for session types [HVK98, HLV+16].

In the context of this Dissertation, we extend JaTyC with support for inheri-

tance [BBG+22b], adapting the synchronous subtyping algorithm for session types,

inspired by the work of Gay and Hole [GH05], Lange and Yoshida [LY16] and Bac-

chiani et al. [BBLZ21]. Such algorithm is automatically invoked, starting from

the initial pair of states of the class protocols, whenever a class with a protocol

attached presents the keyword extends.

Despite the introduction of the subtyping algorithm among protocols, the sup-

port for polymorphism is still limited: casting operations are only allowed at the

beginning of the protocol (i.e., immediately after objects creation) or at the end of

the protocol [BBG+22b]. Thus, such support paves the way to new research chal-

lenges: since the typestates of the superclass and those of the subclass can possibily

be in a many-to-many subtyping relation, i.e., one typestate of the superclass can

have multiple subtypes in the subclass and vice versa, how can we compute the

result of a typestate up/downcast in the middle of a protocol? Moreover, as we

will see later in this Chapter, applying the subtyping algorithm only to the initial

pair of typestates of the protocols is not enough: some safe programs could poten-

tially be rejected, due to some uncaught pairs of typestates actually being in the

subtyping relation. It is crucial to overcome these limitations to make the types-

tate approach applicable to real-world scenarios since, as shown by Mastrangelo et

al. [MHN19], polymorphism and cast operations are widely used.

In the context of this Dissertation [BBG+24c], we provide a solution to these

problems, applying the subtyping algorithm starting from any pair of typestates

and introducing a theory based on a richer data structure, named typestate tree,

which supports upcast and downcast operations at any point of the protocol, lever-

aging union and intersection types. The theory is language agnostic and applicable

to object-oriented languages statically analysable through typestates, thus open-

ing new scenarios for acceptance of programs using inheritance and polymorphism.

All proofs of proofs of theorems, lemmas and corollaries presented in this Chapter

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

129

5.1. TYPESTATES

have been fully mechanised in Coq3.

In the next Sections, we adopt the following semantics for subscripts: those

in normal font represent variable elements (e.g., parameters), while those in bold

font are used to assign di!erent meanings to the same symbol.

In addition, in the context of this Dissertation, we enlarge the supported JaTyC

language with a new syntactical construct, by providing a preliminary support for

linear arrays, i.e., arrays of objects with protocol attached. Notice that, such new

syntactical construct, in order to be properly handled, requires a careful reasoning

on the impact such an extension has on the existing ecosystem. Thus, to perform

such analysis, we first formalise the JaTyC type system and define the subtyping

relations among the types JaTyC defines within its type system. Then, we intro-

duce the new type to handle linear arrays in the type system and, to allow users

to define linear arrays in programs, we extend the type checking process.

Wrapping up, in this Chapter, we formalise, in Section 5.1, the typestate lan-

guage used in this Dissertation. We present JaTyC in Section 5.2, describing

its main functionalities. Since JaTyC does not support inheritance (and conse-

quently polymorphism), we introduce first, in Section 5.3, the subtyping relation

for typestates, then, in Section 5.4, a JaTyC version enhanced with an imple-

mentation of the synchronous subtyping algorithm by Gay and Hole [GH05] for

typestates. In Section 5.5 we present our novel theoretical work to fully support

inheritance and polymorphism. In Section 5.6, we embed typestate trees within

JaTyC, thoroughly describing the type checking process for each supported syn-

tactical construct. In Section 5.7, we present our work to include arrays of linear

objects in JaTyC and, in Section 5.8, we test JaTyC against of a suite of realistic

examples. Finally, in Section 5.10 we conclude the Chapter.

5.1 Typestates

The syntax provided in Definition 2, which closely resembles the one introduced

by Bravetti et al. [BFG+20], defines the typestate language utilised within the

scope of this Dissertation. The meta-variable m ranges over the set of method

3The proofs Coq code is publicly available at https://zenodo.org/record/7712822/files/
behavioural-casting-coq.tar?download=1

130 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

https://zenodo.org/record/7712822/files/behavioural-casting-coq.tar?download=1
https://zenodo.org/record/7712822/files/behavioural-casting-coq.tar?download=1

5.1. TYPESTATES

identifiers MNames. The meta-variable l ranges over the set of output values

LNames. The meta-variable s ranges over the set of typestate names SNames.

Definition 1 (Typestate syntax). Typestate terms, ranged over by meta-variable

u, and states terms, ranged over by meta-variable w, are generated by the following

grammar.
u ::= d{⊋m : w} | s
w ::= u | ↖l̃ : u↙
d ::= ω | drop

Typestate terms u can be either input state terms d{⊋m : w} or typestate names

s. In turn, state terms w can be either typestate terms u or output state terms

↖l̃ : u↙. Input state terms, denoted by d{⊋m : w}, represent sets such as m1 :w1,

m2 :w2, . . . ,mn :wn, where n ⇑ 0 is a natural number and d is an optional droppable

flag. These states o!er callable methods, viewed as input actions or external

choices, followed by arbitrary states. The interpretation is that selecting a method

mi, the input state term transits to the state term wi. Output state terms, denoted

by ↖l̃ : u↙, represent sets such as ↖l1 : u1, l2 : u2, . . . , ln : un↙, where n is a positive

natural number. These states present all possible outcomes of a method call, with

values l1 to ln, viewed as output actions or internal choices li, followed by typestate

term ui. In our setting, only boolean and enum values are considered as outputs.

Concerning the optional droppable flag d: drop{⊋m : w} represents an input state

term where the protocol can be dropped. Droppable states are useful in scenarios

where it is not strictly necessary that an object completes its protocol, e.g., iterat-

ing over just a few elements of an iterator. Moreover, we make the assumption that

in an output state term ↖l̃ : u↙, there exists at least one output. In an input state

term d{⊋m : w}, instead, the absence of inputs is represented by drop{}, signifying
the termination state of the protocol, also denoted by end.

To deal with recursive behaviour, typestates use equational definitions over

typestate terms.

Definition 2 (Defining equation syntax). Defining equations, ranged over by

meta-variable E, are terms generated by the following grammar.

E ::= s = d{⊋m : w}

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

131

5.1. TYPESTATES

Typestates are denoted by uẼ, with Ẽ being a set of defining equations. Similarly,

states are denoted by wẼ, with Ẽ being a set of defining equations.

We expect that each typestate name s used in both w and the body of the

Ẽ equations has a unique defining equation in Ẽ. Notice that, in the body of an

equation E, we consider input state terms only, i.e., disregarding equations like

s = s→, so that typestate names s do not occur unguarded. In our formal setting,

therefore, a protocol is expressed by defining a typestate.

In the following, we denote the set of typestates uẼ as U and the set of states wẼ

as W . Hereafter, whenever the finite set of equations Ẽ is clear from the context,

we consider states w implicitly associated with Ẽ. We omit writing ω.

The grammar introduced in Definition 2 provides a formal specification for

protocols associated with classes. For clarity sake, we first informally introduce a

protocol example in the form parsed by JaTyC4. For instance, let us examine the

protocol defined in Listing 5.1. In this case, we define a protocol for an iterator,

Listing 5.1: Example of protocol associated to a class!
1 typestate BaseIt {
2 HasNext = {
3 boolean hasNext (): <true: Next , false: end >,
4 drop: end
5 }
6 Next = {
7 Object next(): HasNext
8 }
9 }"# $

attached to a class named BaseIt, comprising two states: HasNext, the initial state,

and Next. In the following, we assume, for simplicity sake, protocols to have the

same name as the class they belong (as a matter of fact, in JaTyC, protocols

can have di!erent names with respect to their classes). The usage of an iterator,

in compliance with this protocol, necessitates invoking the hasNext method prior

to calling next, ensuring that there are remaining items to retrieve. Failure to

adhere to this protocol results in an IndexOutOfBoundsException being thrown.

This iterator may be “dropped” at the HasNext state, as specified by the drop: end

4The protocol complete grammar is available at https://gist.github.com/jdmota/
85683e518c56676612e4ba63eaa9b3f2

132 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

https://gist.github.com/jdmota/85683e518c56676612e4ba63eaa9b3f2
https://gist.github.com/jdmota/85683e518c56676612e4ba63eaa9b3f2

5.2. JATYC: A JAVA TYPESTATE CHECKER

transition, defined in the HasNext state. This indicates that one may stop using

the iterator if it is in HasNext.

In our formal setting, a protocol is formally represented as uẼ, while in JaTyC

we make the following assumptions: (i) a protocol is defined as sẼ, so that we

always have the initial state name; and (ii) we adopt a restricted typestate syntax,

where w ::= s | ↖l̃ : s↙. Formally, the protocol presented in Listing 5.1 is defined as

HasNext
⊋EBaseIt with EBaseIt including:

HasNext = drop{hasNext : ↖ true : Next, false : end ↙}
Next = {next : HasNext}

5.2 JaTyC: A Java Typestate Checker

JaTyC is a tool to type check Java programs, where objects are associated with

protocols, i.e., typestates. JaTyC, a new implementation of Mungo [KDPG16],

incorporates critical features, while addressing known issues, e.g., prevention of

null pointer errors and analysis of the flow of execution. Notably, it rectifies an

issue of Mungo where the continue statement was assumed to jump at the begin-

ning of a loop body, potentially resulting in false negatives [MGR21]. JaTyC can

be accessed via its GitHub repository5. Implemented in Kotlin [JI17], it operates

as a plugin for the Checker Framework (refer to Section 2.2).

To underscore the need for JaTyC, let us consider the example of the LineReader

Java class, as presented in [MGR21]. This class is responsible for both opening

a file and reading it line by line, as illustrated in Listing 5.2. In this context,

Status is an enum featuring two possible values: OK, indicating the file has been

correctly opened, and ERROR, indicating something went wrong during the file-

handling process. The intended protocol is implicitly defined by the sequences of

method calls supported and the states reached through those calls. To utilise the

LineReader, users must invoke the open method, passing the file path. If the call

returns ERROR, it indicates that the file could not be opened. Conversely, if it

returns OK, users can proceed to read the file. Before invoking the read method,

the eof one must be called to confirm that the end of the file has not been reached.

5https://github.com/jdmota/java-typestate-checker

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

133

https://github.com/jdmota/java-typestate-checker

5.2. JATYC: A JAVA TYPESTATE CHECKER

Listing 5.2: LineReader class!
1 import java.io.*;
2 public class LineReader {
3 private FileReader file = null;
4 private int curr;
5

6 public Status open(String f) {
7 try {
8 file = new FileReader(f);
9 curr = file.read();

10 return Status.OK;
11 } catch(IOException e) {
12 return Status.ERROR;
13 }
14 }
15

16 public String read() throws IOException {
17 StringBuilder str = new StringBuilder ();
18 while(curr != 10 && curr != =1){
19 str.append ((char) curr);
20 curr = file.read();
21 }
22 if(curr == 10) curr = file.read();
23 return str.toString ();
24 }
25

26 public boolean eof() {
27 return curr == -1;
28 }
29

30 public void close () throws IOException {
31 file.close();
32 }
33 }"# $

Each read call yields a new line. Upon completing file reading, the close method

should be invoked to release resources and close the underlying stream.

Failure to adhere to this contract may result in errors or incorrect results.

Attempting to read before calling open will trigger a NullPointerException, since

the file field holds a null reference. Similarly, calling the readmethod after close will

raise an IOException since the stream is already closed. Furthermore, continuing

to read the file after eof returns true will cause read to return empty strings,

falsely suggesting that the file being read contains empty lines. The Java compiler

tolerates most of the erroneous behaviours described above, thus, we now illustrate

how to enhance Java programs with typestate annotations to identify and reject

programs containing such behavioural errors at compile-time.

To enforce a prescribed behaviour to a given Java class, the user must in-

134 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.2. JATYC: A JAVA TYPESTATE CHECKER

Listing 5.3: LineReader protocol!
1 typestate LineReaderProtocol {
2 Init = {
3 Status open(String): <OK: Open , ERROR: end >
4 }
5 Open = {
6 boolean eof(): <true: Close , false: Read >,
7 void close(): end
8 }
9 Read = {

10 String read(): Open ,
11 void close(): end
12 }
13 Close = {
14 void close(): end
15 }
16 }"# $

clude the Typestates(. . .) annotation, containing the (relative) path to the pro-

tocol file. For example, given the protocol presented in Listing 5.3, to attach

it to the LineReader class, the user must incorporate in the class code @Types-

tates(“LineReaderProtocol.protocol”), assuming that the protocol file is in the same

folder as the LineReader class and its file name is LineReaderProtocol. The pro-

tocol in Listing 5.3 defines four distinct states: Init, Open, Read, and Close, with

an implicit inclusion of the end state, representing the final state of the process.

In the initial Init state, only the open method is accessible (line 3). Transition

to the Open state occurs upon a successful return of OK from the open method;

otherwise, the state transitions to end, where further operations are prohibited.

Following file opening, the close method is callable at any point, except if the

file has already been closed (lines 7, 11 and 14). Within the Open state, the eof

method can be invoked (line 6). If the method returns true, the state transitions to

Close; otherwise, it transitions to Read. While in the Read state, the read method

is accessible and makes the state transitioning back to Open (line 10).

Protocol compliance and completion. JaTyC guarantees that Java class in-

stances adhering to a typestate, not only obey to the prescribed protocol, but they

also undergo protocol compliance and completion, ensuring that crucial method

calls are not overlooked and resources are properly released. This ensures robust-

ness and prevents resource leaks within the system. To illustrate an instance of an

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

135

5.2. JATYC: A JAVA TYPESTATE CHECKER

incorrect usage, let us examine the LineReader example provided in Listing 5.4,

sourced from [MGR21]. As specified in the protocol outlined in Listing 5.3, when-

ever the readmethod is invoked, the LineReader object should be in the Read state.

However, the reader object defined in Listing 5.4 is in the Close state once entered

the while loop. Thus, the only permissible method at this stage is close, rendering

read inaccessible. Furthermore, there is no invocation of the close method any-

where in the code. Consequently, the protocol fails to reach the end state, leaving

the resource handling incomplete with the possibility of encountering dangerous

scenarios.

Listing 5.4: Wrong usage of LineReader!
1 public class Main {

2 public static void main(String [] args) {

3 LineReader reader = new LineReader ();

4 if(reader.open() == Status.OK) {

5 while(reader.eof()) {

6 System.out.println(reader.read());

7 }

8 } else {

9 System.err.println("Could not open file");

10 }

11 }

12 }"# $
Nullness checking. Null pointer errors cause most of the runtime exceptions

in Java programs [BKA11]: being able to detect them at compile-time is therefore

crucial. Towards that direction, JaTyC o!ers the following guarantees: (i) types

are non-null by default (di!erently from the Java type system), thus method calls

and field accesses are performed on non-null types; and (ii) false positives (in

classes with protocols) are ruled out by taking into account that we invoke methods

in a specific order. To allow a type to be nullable, we use the @Nullable annotation.

To better understand how guarantee (i) works, i.e., method calls performed on

non-null types, let us consider the example in Listing 5.5, where we present two

scenarios with methods potentially called on null values. In method m1, JaTyC

reports an error since the read call could potentially be performed on a null type.

Instead, in method m2, no errors are reported, since JaTyC enforces a defensive

programming style, requiring the programmer to check the null equivalence first.

136 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.3. TYPESTATE SUBTYPING

Listing 5.5: Nullness checking!
1 public class Main {
2 void m1(@Nullable FileReader reader) {
3 System.out.println(file.read());
4 }
5

6 void m2(@Nullable FileReader reader) {
7 if(reader != null) {
8 System.out.println(file.read());
9 }

10 }
11 }"# $

Concerning guarantee (ii), i.e., ruling out false null types, let us suppose that a

user calls read before open (see Listing 5.2): a null pointer exception will certainly

occur, since the field file is obviously null. However, from Listing 5.3, we know that

the defined behaviour ensures that open is called before read, thus, file cannot be

null at the moment of the read method call and JaTyC does not raise errors. The

above behaviour is obtained tagging the field file with the @Nullable annotation,

making it possible to implement the method read without the need for defensive

programming, i.e., explicitly checking for nullness of file. While JaTyC makes

it possible to avoid the verbosity of defensive programming, i.e., checking that

item != null, many static analysis tools, e.g., the Nullness Checker of the Checker

Framework, force the programmer to include such explicit check.

5.3 Typestate Subtyping

State subtyping plays a pivotal role in supporting behavioural casting. In our

context, subtypes encompass a superset of methods compared to their super-

type counterparts (input contravariance), while o!ering a subset of the supertype

method outputs (output covariance). To define state subtyping, we closely adhere

to the framework established by Gay and Hole in their work on session types sub-

typing [GH05]. Consequently, we define the subtyping relation as a simulation,

recognising that protocols can manifest as, possibly, infinite state systems. Addi-

tionally, we present a sound and complete algorithm to verify if subtyping between

two states holds, i.e., the subtype simulates the supertype.

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

137

5.3. TYPESTATE SUBTYPING

To begin, we introduce the function unf (see Definition 3) to unfold types-

tate name definitions. Then, we define subtyping, following standard approaches

(see Definition 4).

Definition 3 (Names definition). The function unf : W ⇐ W \ SNames is such

that, given a state wẼ ⇓ W, if it is a typestate name, unf(wẼ) yields the body of

its defining equation; otherwise, unf(wẼ) yields the given state wẼ. Formally,

unf(wẼ) =





d{⊋m : w}Ẽ if wẼ = sẼ

→↗{s=d{⫅̸m:w}}

wẼ otherwise

Definition 4 (State simulation). A relation R ∝ W ′W is a state simulation, if

(w1
Ẽ1 , w2

Ẽ2) ⇓ R implies the following conditions:

1. If unf(w1
Ẽ1) = d1{⊋m1 : w1}

Ẽ1
then unf(w2

Ẽ2) = d2{⊋m2 : w2}
Ẽ2

and for each

m :w→
2 in ⊋m2 : w2, there is w→

1 such that m :w→
1 in ⊋m1 : w1 and (w→

1
Ẽ1 , w→

2
Ẽ2)

⇓ R.

2. If unf(w1
Ẽ1) = ↖⊋l1 : u1↙

Ẽ1

then unf(w2
Ẽ2) = ↖⊋l2 : u2↙

Ẽ2

and for each l : u1 in
⊋l1 : u1, there is u2 such that l : u2 in ⊋l2 : u2 and (u1

Ẽ1 , u2
Ẽ2) ⇓ R.

Definition 5 (Subtyping on typestates). Let w1
Ẽ1 and w2

Ẽ2 be states. We say

w1
Ẽ1 is a subtype of w2

Ẽ2, i.e., w1
Ẽ1 ↑S w2

Ẽ2, if and only if there exists a state

simulation R such that (w1
Ẽ1 , w2

Ẽ2) ⇓ R.

To better understand subtyping on typestates, let us consider an example with

two protocols. First, we consider the protocol presented in Listing 5.1 (related to

the BaseIt class), with the only di!erence being that here we assume that HasNext

has no drop: end transition. Additionally, we consider the protocol in Listing 5.6

(related to the RemovableIt class), modelling the behaviour of an iterator allowing

removal of elements. In our setting (recall, a protocol is represented by sẼ, with s

being the initial typestate name), we formally represent the BaseIt protocol as

HasNext = {hasNext : ↖ true : Next, false : end ↙}
Next = {next : HasNext}

138 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.4. ENHANCING JATYC: INHERITANCE SUPPORT

Listing 5.6: RemovableIt protocol!
1 typestate RemovableIt{
2 HasNext = {
3 boolean hasNext (): <true: Next , false: end >
4 }
5 Next = {
6 Object next(): Remove
7 }
8 Remove = {
9 boolean hasNext (): <true: Next , false: end >,

10 void remove (): HasNext
11 }
12 }"# $

and the RemovableIt protocol as

HasNext = {hasNext : ↖ true : Next, false : end ↙}
Next = {Next : Remove}

Remove = {hasNext : ↖ true : Next, false : end ↙, remove : HasNext}

Given the formal definition of the protocols presented above, leveraging Defini-

tion 5, an example of typestate simulation (recall Definition 4) follows, where

HasNext
⊋ERemovableIt ↑S HasNext

⊋EBaseIt :

{(HasNext ⊋ERemovableIt ,HasNext
⊋EBaseIt), (Next

⊋ERemovableIt ,Next
⊋EBaseIt),

(↖true : Next, false : end↙ ⊋ERemovableIt , ↖true : Next, false : HasNext↙⊋EBaseIt),

(Remove
⊋ERemovableIt ,HasNext

⊋EBaseIt)}

5.4 Enhancing JaTyC: Inheritance Support

Incorporating the support for inheritance into static analysis for object-oriented

programming languages is crucial. This becomes particularly challenging when

dealing with typestates, as the relation between classes can influence the be-

haviour specified in the usage protocols of the superclasses. In the context of this

Dissertation, we enhance JaTyC capabilities to handle inheritance with the inte-

gration of an adapted version of the synchronous subtyping algorithm for session

types [GH05, LY16, BBLZ21]. This algorithm serves to ensure that the proto-

col specified in subclasses aligns with that of their superclasses, thus maintaining

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

139

5.4. ENHANCING JATYC: INHERITANCE SUPPORT

consistency and adherence to the intended behaviour across the inheritance hier-

archy. In addition to implementing such algorithm, addressing method overriding

and casting becomes imperative. Method overriding necessitates careful considera-

tion to ensure that subclass methods appropriately substitute the superclass ones,

without violating the intended behaviour. Similarly, casting operations must be

handled accurately to maintain type safety and preserve the integrity of the inher-

itance hierarchy.

Synchronous subtyping algorithm. The algorithm presented in Listing 5.7

for supporting protocol subtyping draws inspiration from the synchronous subtyp-

ing algorithm used for session types [GH05, LY16, BBLZ21]. It is automatically

Listing 5.7: Synchronous subtyping algorithm for typestates!
1 typealias SP = Pair <AbstractState <*>, AbstractState <*>>
2

3 fun subty(g1: Graph , g2: Graph , currP: SP , marked: Set <SP > = emptySet ()) {
4 if (currP in marked) return
5 val derived = currP.first
6 val base = currP.second
7 when {
8 derived is State && base is State -> {
9 val t1 = derived.normalizedTransitions

10 val t2 = base.normalizedTransitions
11 // Input contravariance
12 if(t1.keys.containsAll(t2.keys)) {
13 t2.keys.forEach {
14 subty(g1 , g2, t1[it]!! to t2[it]!!, marked + currP)
15 }
16 }
17 }
18 derived is DecisionState && base is DecisionState -> {
19 val t1 = derived.normalizedTransitions
20 val t2 = base.normalizedTransitions
21 // Output covariance
22 if(t2.keys.containsAll(t1.keys)) {
23 t1.keys.forEach {
24 subty(g1 , g2, t1[it]!! to t2[it]!!, marked + currP)
25 }
26 }
27 }
28 }
29 }"# $

invoked whenever a class with a protocol attached presents the keyword extends.

It constructs graphs from the protocols provided as input (starting from the initial

pair of states) and traverses them by executing common input/output operations,

140 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.4. ENHANCING JATYC: INHERITANCE SUPPORT

marking each encountered pair of states. It is important to note that, in our con-

text, input operations are represented by method calls, while output operations

are indicated by the values returned by these calls. Pairs of states are marked

under the following conditions:

• both states are input states and satisfy the principle of input contravariance

(lines 8-17 in Listing 5.7), meaning the subtype can perform a set of input

operations greater than or equal to those of the supertype;

• both states are output states and satisfy the principle of output covariance

(lines 18-27 in Listing 5.7), indicating the supertype can perform a set of

output operations greater than or equal to those of the subtype;

• both states are end states (lines 8-17 in Listing 5.7), meaning the set of

available input transitions is empty.

The algorithm terminates when either all reachable pairs have been marked (indi-

cating subtyping holds) or a pair of states fails to satisfy any of the aforementioned

conditions (indicating subtyping does not hold).

Due to Java lack of support for inheritance in enums, all of their values are con-

sidered as returnable, necessitating their inclusion in the protocol. Consequently,

output covariance always holds, as in our setting, all outputs are invariant.

For example, let us consider the RemovableIt protocol in Listing 5.6. It extends

the BaseIt one (Listing 5.1 without drop: end), adding the typestate Remove with

the new method remove. The subtyping algorithm, ensures that the RemovableIt is

a subtype of BaseIt. In particular, the Remove typestate respects input contravari-

ance and output covariance with respect to the HasNext one in the supertype.

Method inheritance. Inheritance enables the reuse of methods from super-

classes, i.e., the ability to override some of them, or to add new ones. For instance,

let us consider the code snippet depicted in Listing 5.9: it showcases an imple-

mentation of an iterator along with the attached protocol outlined in Listing 5.1

(without the inclusion of drop: end). This implementation provides standard meth-

ods, e.g., hasNext, next, and remainingItems, which respectively allow one to check

if the next element is available, iterate one step forward and count the number of

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

141

5.4. ENHANCING JATYC: INHERITANCE SUPPORT

Listing 5.8: BaseIt implementation!
1 import java.util .*;
2 import jatyc.lib .*;
3

4 @Typestate("BaseIt")
5 public class BaseIt {
6 private String [] items;
7 protected int index;
8

9 public BaseIterator(String [] items) {
10 this.items = items;
11 this.index = 0;
12 }
13

14 public boolean hasNext () {
15 return this.index < this.items.length;
16 }
17

18 public Object next() {
19 return this.items[this.index ++];
20 }
21

22 public int remainingItems () {
23 return this.items.length - this.index;
24 }
25 }"# $

remaining elements. Notably, the RemovableIt implementation, presented in List-

ing 5.6, in contrast to the BaseIt one, utilises a list as its underlying data structure.

As a result, all methods must be overridden to access the collection e!ectively.

Furthermore, in accordance with its protocol, the class depicted in Listing 5.9

incorporates a new method, i.e., remove.

To correctly support inheritance, we need to deal with the following cases:

• a class without protocol extending a class without protocol;

• a class with protocol extending a class with protocol;

• a class without protocol extending a class with protocol;

• a class with protocol extending a class without protocol.

Handling the first and second scenarios is straightforward: the former requires

no inspection, since classes, by default, do not have protocols, while the latter is

verified using the subtyping algorithm presented in Listing 5.7. In the third case,

the subclass inherits the protocol: the usage of overridden methods adheres to the

142 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.4. ENHANCING JATYC: INHERITANCE SUPPORT

Listing 5.9: RemovableIt implementation!
1 import java.util .*;
2 import jatyc.lib .*;
3

4 @Typestate("RemovableIt")
5 public class RemovableIt extends BaseIt {
6 protected List <Object > items;
7

8 public RemovableIt(String [] items) {
9 super(items);

10 this.items = Util.toList(items);
11 }
12

13 public boolean hasNext () {
14 return this.index < this.items.size();
15 }
16

17 public @Nullable Object next() {
18 return this.items.get(this.index ++);
19 }
20

21 public void remove () {
22 this.items.remove(--this.index);
23 }
24

25 public int remainingItems () {
26 return this.items.size() - this.index;
27 }
28 }"# $

inherited protocol, while newly added methods are regarded as anytime methods,

i.e.,methods callable at any moment that do not appear in the protocol. Regarding

the fourth scenario, all methods in the superclass are considered as anytime and it

is mandatory that they remain as such in subclasses. Consequently, these methods

cannot be included in the protocols of subclasses. Notice that, any method not

included in the protocol is automatically marked as an anytime method, akin to

the remainingItems method in the BaseIt class. To ensure safety, anytime methods

are restricted to performing read operations or calling others anytime.

Casting. The support for inheritance enables polymorphism with the consequent

needs for casting operations management. Consider the scenario illustrated in

Listing 5.10. Here, we create a RemovableIt object and assign it to a variable of

type BaseIt, thus performing an upcast. Subsequently, we pass this object to the

iterate method, which iterates over all items and returns a BaseIt in the end state.

Finally, we perform a downcast and call the anytime method remainingItems, which

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

143

5.4. ENHANCING JATYC: INHERITANCE SUPPORT

Listing 5.10: Polymorphic code example!
1 import jatyc.lib .*;
2

3 public static void main(String [] args) {
4 BaseIt it = new RemovableIt(args);
5 RemovableIt rIt = (RemovableIt) iterate(it);
6 System.out.printf("Left:%d\n", rIt.remainingItems ());
7 }
8

9 public static BaseIt iterate(@Requires("HasNext") BaseIt it) {
10 while (it.hasNext ()) {
11 System.out.printf("Item:%s\n", it.next());
12 }
13 return it;
14 }"# $

correctly returns zero. Notably, the method iterate utilises the Requires annotation

from the jatyc.lib package to indicate the states the parameter is expected to be in.

Thanks to our subtyping algorithm, despite iterate expecting a BaseIt object in

the HasNext state and receiving a RemovableIt object in the same state, we ensure

a safe execution of the method. This is achieved by verifying, prior to executing

the method call (at line 5), that HasNext
⊋ERemovableIt ↑S HasNext

⊋EBaseIt . Thus, if the

code is safe with a BaseIt object, it remains safe with a RemovableIt object.

Limitations. We enhanced JaTyC with a limited support for polymorphism. In

particular, casting operations are currently only allowed at the beginning of the

protocol (before any method is called) or at its end. This limitation is caused by

the fact that states belonging to subclasses and superclasses could possibly be in

a many-to-many relation. For example, if we run the subtyping algorithm on the

HasNext typestate of the BaseIt (Listing 5.1 without drop: end), it turns out this

typestate is a supertype of both HasNext and Remove states of the RemovableIt

(Listing 5.6). Similarly, if we downcast from BaseIt to RemovableIt, we do not

know to which state we should cast to (either HasNext or Remove). In addition to

the uncertainty of typestate casting results, as we will see later in this Chapter,

applying the subtyping algorithm only to the initial typestates of the protocols is

not enough: some safe programs could potentially be rejected from JaTyC, due

to some uncaught pairs of typestates actually being in the subtyping relation. As

the keen reader may notice, droppable states are not considered in the subtyping

144 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

analysis. As we will see later in this Chapter, these states require relaxing the

subtyping algorithm and need a proper formalisation to correctly deal with them.

5.5 Behavioural Up/Down Casting

To emphasise the importance of supporting behavioural castings in the middle of

protocols, let us consider an analogy drawn from the automotive industry, where

driving dynamics control allows to customise the drive mode6; for SUVs, we con-

sider a Comfort and a Sport modalities, where each allows specific features: Eco-

Drive and FourWheelsDrive, respectively. Listing 5.11 describe the behaviours of

the controllers of a Car and a SUV, respectively, where class SUV extends Car.

Listing 5.11: Car and SUV protocols!
1 typestate Car {
2 OFF = {
3 boolean turnOn (): <true:ON,false:OFF >,
4 drop: end
5 }
6 ON = {
7 void turnOff (): OFF ,
8 void setSpeed(int): ON
9 }

10 }
11

12 typestate SUV {
13 OFF = {
14 boolean turnOn (): <true:COMF_ON ,false:OFF >,
15 drop: end
16 }
17 COMF_ON = {
18 void turnOff (): OFF ,
19 void setSpeed(int): COMF_ON ,
20 Mode switchMode (): <SPORT:SPORT_ON ,COMFORT:COMF_ON >,
21 void setEcoDrive(boolean): COMF_ON
22 }
23 SPORT_ON = {
24 void turnOff (): OFF ,
25 void setSpeed(int): SPORT_ON ,
26 Mode switchMode (): <SPORT:SPORT_ON ,COMFORT:COMF_ON >,
27 void setFourWheels(boolean): SPORT_ON
28 }
29 }"# $

Both vehicle types share two foundational states: OFF, signifying a powered-

6BMW drive Sport Mode vs Comfort Mode, https://www.bmwofstratham.com/
bmw-sport-mode-vs-comfort-mode-stratham-nh

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

145

https://www.bmwofstratham.com/bmw-sport-mode-vs-comfort-mode-stratham-nh
https://www.bmwofstratham.com/bmw-sport-mode-vs-comfort-mode-stratham-nh

5.5. BEHAVIOURAL UP/DOWN CASTING

o! state, and ON, representing an active state capable of executing actions like

setting a specific speed. In the OFF state, the car can be, via dedicated meth-

ods (i.e., turnOn), turned on, enabling access to functionalities such as setSpeed.

Conversely, in the ON state, the car can be turned o!. However, it is essential

to note that, the turnOn method might encounter technical obstacles, potentially

resulting in either a successful transition to the ON state or remaining in the OFF

state, depending on the returned value. SUVs, as defined in the protocol outlined

in Listing 5.11, undergo a distinct operational process. Upon successful activation

through the turnOn method, they enter Comfort mode (COMF ON), enabling ac-

cess to specialised functions, like setEcoDrive. This mode can be altered via the

switchMode action, whose outcome hinges on the current mode, either Comfort

(in that subject to potential failures, e.g., if the vehicle has not enough fuel) or

Sport (SPORT ON). Similarly, the Sport mode o!ers the flexibility of executing

switchMode alongside mode-specific functionalities, like setFourWheels, potentially

failing if, e.g., the speed exceeds limits. This dual-mode capability ensures that

SUVs can adapt their behaviour according to driving preferences and conditions.

The setSpeed method is overridden within the SUV class. Specifically, when eco-

drive is engaged, the speed must adhere to a predefined threshold, whereas without

eco-drive, the speed can be set to any value. As detailed in Section 5.6, our ver-

ification process ensures correctness in overridden methods, based on typestate

variance, thus guaranteeing the safe operation of dynamic dispatch.

By applying the subtyping algorithm outlined in [GH99, LY16, BBLZ21] to

the initial typestates, i.e., OFF in the Car protocol and OFF in the SUV one, we

ascertain that the SUV protocol constitutes a subtype of the Car one. This clas-

sification underscores the hierarchical relation between the protocols, elucidating

how the SUV protocol inherits and extends functionality from the parent Car one.

Key insight. Even in cases involving relatively straightforward classes and type-

states, such as Car and SUV, imposing restrictions on casts solely at the beginning

(i.e., immediately after object creation) or conclusion of protocols (i.e., after reach-

ing the end state), significantly constrains the scope of programs the typestate-

based analysis is capable of type checking. This limitation becomes evident when

considering client code that may necessitate casts at various junctures in the proto-

146 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

Listing 5.12: Upcast/downcast limitation!
1 public static void dispatch(@Requires("ON") Car c) { ... }
2 public static void providePoweredSUV(@Requires("OFF") SUV c) {
3 if (c.turnOn ()) dispatch(c); // Upcast rejected
4 }"# $

col. The underlying assumption that casts are only required at protocol initiation

(before any method calls) or termination, is frequently challenged by practical

scenarios, as exemplified in Listing 5.12. For instance, within an automotive sys-

tem, there might be a requirement to dispatch cars that are already powered on,

i.e., adhering to the typestate ON, regardless of whether they are SUVs or stan-

dard cars. Such operations, which appear reasonable and necessary in real-world

contexts, underscore the inadequacy of rigidly enforcing casting restrictions solely

at the protocol outset or conclusion.

Removing this limitation is challenging. The solution hinges on a pivotal con-

sideration: to e!ectively address this issue, the subtyping algorithm must, not only

consider the initial pair of typestates, but also evaluate all possible combinations of

typestates across both protocols. This comprehensive approach enables the iden-

tification of all typestate pairs that exhibit a subtyping relation. To illustrate, let

us consider the scenario depicted in Listing 5.13. In this example, the limitSpeed

Listing 5.13: Limitation of the subtyping algorithm application!
1 void limitSpeed(@Requires("ON") Car c, int speed) {
2 if (speed > 50) c.setSpeed (50);
3 else c.setSpeed(speed);
4 }"# $

method requires a parameter of type Car in the ON typestate. A client code that

passes an object of type SUV in the SPORT ON typestate to limitSpeed remains

type-safe since, as we will demonstrate, SPORT ON is indeed a subtype of ON.

However, if we were to execute the subtyping algorithm solely with the initial pair

of typestates, i.e., (OFF, OFF), the resulting simulation relation [BBLZ21, GH05]

would fail to encompass the pair (SPORT ON, ON). This limitation is illustrated

in the leftmost graph of Figure 5.1 (boxes represent input states, while diamonds

output ones), where blue denotes typestates of the SUV protocol and red repre-

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

147

5.5. BEHAVIOURAL UP/DOWN CASTING

Figure 5.1: Subtyping simulations starting from di!erent initial pair of states

sents those of the Car protocol. By contrast, when including the pair (SPORT ON,

ON) as input, it becomes clearly evident that this pair conforms to the typestate

subtyping relation, as depicted in the rightmost graph.

A theory of typestate upcast and downcast. Building upon this crucial

insight, we establish a mechanism for computing casting outcomes: when down-

casting, we look for the typestates (within the protocol of the target class, i.e., the

class we are downcasting to) that are subtypes of the current one; when upcasting,

instead, we look for the typestates (again, in the protocol of the target class) that

are supertypes of the current one. Given that multiple typestates may fulfill these

criteria, we require a structured notion of types to consolidate them e!ectively.

When downcasting, we combine the subtypes in a union type [BDCd95, PC01]

(modelling the fact that the actual type is unknown) so that a method call is

allowed only if it is permitted by all elements of the union. Union types are also

useful to allow branching code to be typed with di!erent types, so the program

continuation, e.g., after an if statement, is correct no matter which branch the pro-

gram takes at runtime. This is more flexible than some other approaches (e.g., the

session type one [Vas11]), which require both branches to have the same type.

When upcasting, we combine the supertypes in an intersection type so that a

method call is allowed if it is permitted by at least one element of the intersection.

However, the complexity of casting scenarios extends beyond the capabilities

148 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

of intersection and union types alone. To illustrate this challenge, let us consider a

hypothetical scenario involving an Electric Car (ECar) class that also extends the

base Car one, as depicted in Listing 5.14. After the execution of the if statement,

Listing 5.14: Typestate tree motivation!
1 public class ClientCode {
2 public static void example () {
3 Car c;
4 if (cond) c = new SUV();
5 else c = new ECar();
6 if (c.turnOn ()) {
7 if (c instanceof SUV) {
8 SUV s = (SUV) c;
9 s.setEcoDrive(true);

10 c = s;
11 }
12 c.turnOff ();
13 }
14 }
15 }"# $

it becomes ambiguous whether the variable c is an instance of SUV or ECar.

These uncertain situations necessitate a more comprehensive approach, i.e., one

that associates classes with distinct types and meticulously tracks all potential

scenarios. To address this need, we introduce the concept of typestate trees, which

closely mirror the class inheritance hierarchy. In this model, the typestate tree

originates from a root node representing the static class of the variable to which

a typestate tree is associated (e.g., Car in Listing 5.14), with child nodes branch-

ing out to encompass derived classes such as SUV and ECar. Each node within

the typestate tree corresponds to a specific class and encapsulates the type of

the object, acknowledging the possibility that the object is indeed an instance of

that class. Consequently, when contemplating a future downcast to either SUV

or ECar class, we can e!ortlessly focus on the corresponding subtree, with its

root node corresponding to the child node representing the targeted class. The

reader could wonder why we introduce typestate trees and if the complexity they

introduce is actually needed. Observe that a similar program to the one presented

in Listing 5.14 could be implemented using ECar instead of SUV. Thus, to seam-

lessly handle this variety of possible scenarios, trees represent a good choice and a

simple structure that naturally captures the class hierarchy. As a matter of fact,

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

149

5.5. BEHAVIOURAL UP/DOWN CASTING

this hierarchical organisation allows for a precise tracking of object types, ensuring

accurate handling of casting operations within our system.

The solution we devise is language agnostic, making it applicable across a

spectrum of statically typed object-oriented programming languages. To validate

its e”cacy and expressiveness, we applied it to Java, extending our typestate-based

type checker JaTyC to support casting operations at any points in protocols. This

advancement contributes significantly to the field of related work (referenced in

Section 5.9). Kouzapas et al. [KDPG16] mention in the future work Section that

handling protocol inheritance between classes merely requires “a subtyping relation

between their typestate specifications”. While this approach su”ces for extending

class inheritance, it proves inadequate for addressing casting and polymorphism,

commonplace features in programming scenarios. Our solution fills this crucial

gap providing a comprehensive mechanism to handle castings within protocols,

thereby enhancing the versatility and applicability of typestate-based systems.

Furthermore, we support, in our subtyping analysis, droppable typestates (see

typestate OFF in Listing 5.11), typestates where one can either safely stop using

the protocol or perform more actions (if there are any). A droppable typestate with

no actions is similar to the end state in session types. To ensure comprehensive

support for droppable typestates, we extend Gay and Hole session type subtyping

definition. The formal proofs of theorems, lemmas and corollaries, presented in this

Chapter, have been fully mechanised in Coq7, ensuring the integrity and reliability

of our approach.

5.5.1 Subtyping Over Droppable States

To include droppable typestates in our subtyping analysis, we extend Definition 4

as follows. Recall that, in our setting, end is considered as drop{}, i.e., a droppable

typestate without input transitions.

Definition 6 (Extended state simulation). A relation R ∝ W ′ W is a state

simulation, if (w1
Ẽ1 , w2

Ẽ2) ⇓ R implies the following conditions:

1. If unf(w1
Ẽ1) = d1{⊋m1 : w1}

Ẽ1
then unf(w2

Ẽ2) = d2{⊋m2 : w2}
Ẽ2

and:

7The Coq code containing these proofs is publicly accessible at https://zenodo.org/record/
7712822/files/behavioral-casting-coq.tar?download=1.

150 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

https://zenodo.org/record/7712822/files/behavioral-casting-coq.tar?download=1
https://zenodo.org/record/7712822/files/behavioral-casting-coq.tar?download=1

5.5. BEHAVIOURAL UP/DOWN CASTING

(a) for each m:w→
2 in ⊋m2 : w2, there is w→

1 such that m:w→
1 in ⊋m1 : w1 and

(w→
1
Ẽ1 , w→

2
Ẽ2) ⇓ R.

(b) if d2 = drop then d1 = drop.

2. If unf(w1
Ẽ1) = ↖⊋l1 : u1↙

Ẽ1

then unf(w2
Ẽ2) = ↖⊋l2 : u2↙

Ẽ2

and for each l:u1 in
⊋l1 : u1, there is u2 such that l:u2 in ⊋l2 : u2 and (u1

Ẽ1 , u2
Ẽ2) ⇓ R.

Notice that, the common rule for session type subtyping of the end state

(i.e., end ↑S end) is derivable from the previous definitions by just picking the

relation R = {(drop{}, drop{})} and observing that it is a state simulation (Defini-

tion 6), thus drop{} ↑S drop{} holds by Definition 5. In the same fashion, by picking

the relation R = {(drop{. . . }, drop{})} it holds that drop{. . . } ↑S drop{}.
As a sanity check, we show basic subtyping properties on states: reflexivity

and transitivity.

Lemma 1 (Reflexivity). For all wẼ, then wẼ ↑S wẼ.

Lemma 2 (Transitivity). For all w1
Ẽ1, w2

Ẽ2, w3
Ẽ3, if w1

Ẽ1 ↑S w2
Ẽ2 and w2

Ẽ2 ↑S

w3
Ẽ3, then also w1

Ẽ1 ↑S w3
Ẽ3 .

Defining an algorithm to verify state subtyping is indispensable, as it, not only

demonstrates the decidability of subtyping, but also serves as the foundation for

implementing a type checking procedure (Definition 7). To ensure termination,

we adopt a strategy that consistently applies the Assump rule whenever feasible.

Initially, our algorithm aims to establish the judgment ⫆̸ ∞ w1
Ẽ1 ↑Salg

w2
Ẽ2 . This

methodology mirrors the approach employed in the session type subtyping algo-

rithm introduced by Gay and Hole [GH05]. Furthermore, we establish, in Theo-

rems 1 and 2, that our subtyping algorithm maintains soundness and completeness

concerning the coinductive definition ↑S (Definition 5). This verification ensures

the reliability and accuracy of our algorithm in determining subtyping relations

between typestates.

Definition 7 (Algorithmic state subtyping). The following inference rules define

the judgement % ∞ w1
Ẽ1 ↑Salg

w2
Ẽ2, where % is a set of typestate pairs, containing

assumed instances of the subtyping relation.

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

151

5.5. BEHAVIOURAL UP/DOWN CASTING

(w1
Ẽ1 , w2

Ẽ2) ⇓ %

% ∞ w1
Ẽ1 ↑Salg

w2
Ẽ2

Assump

unf(w1
Ẽ1) = d1{⊋m : w}1

Ẽ1
unf(w2

Ẽ2) = d2{⊋m : w}2
Ẽ2

∈ m→:w→
2 ⇓ d2{⊋m : w}2

Ẽ2
. ∋ w→

1 . m
→:w→

1 ⇓ d1{⊋m : w}1
Ẽ1 ⇔

% △ (w1
Ẽ1 , w2

Ẽ2) ∞ w→
1
Ẽ1 ↑Salg

w→
2
Ẽ2 d2 = drop ▽ d1 = drop

% ∞ w1
Ẽ1 ↑Salg

w2
Ẽ2

Input

unf(w1
Ẽ1) = ↖l̃ : u↙1

Ẽ1

unf(w2
Ẽ2) = ↖l̃ : u↙2

Ẽ2 ∈ l→:u1 ⇓ ↖l̃ : u↙1
Ẽ1

. ∋ u2 . l
→:u2 ⇓ ↖l̃ : u↙2

Ẽ2 ⇔
% △ (w1

Ẽ1 , w2
Ẽ2) ∞ u1

Ẽ1 ↑Salg
u2

Ẽ2

% ∞ w1
Ẽ1 ↑Salg

w2
Ẽ2

Output

Theorem 1 (Algorithm completeness). If w1
Ẽ1 ↑S w2

Ẽ2 then ⫆̸ ∞ w1
Ẽ1 ↑Salg

w2
Ẽ2 .

Theorem 2 (Algorithm soundness). If ⫆̸ ∞ w1
Ẽ1 ↑Salg

w2
Ẽ2 then w1

Ẽ1 ↑S w2
Ẽ2 .

Corollary 1 (Algorithm soundness and completeness). ⫆̸ ∞ w1
Ẽ1 ↑Salg

w2
Ẽ2 if

and only if w1
Ẽ1 ↑S w2

Ẽ2 .

5.5.2 Types and Subtyping

To statically track the possible typestates an object might be in, we combine them

in union types. To describe combined behaviour from multiple typestates, we also

combine them in intersection types. Their usefulness will be made clearer when

we will see the result of upcasting a type. Our type hierarchy is a lattice, thus

supporting ̸t and ⊥t types: ̸t signals erroneous scenarios, while ⊥t imppossible

ones. Notice that, types do not include class information. Typestate trees will be

used for that (Section 5.5.4).

152 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

Definition 8 (Type syntax). We call types, ranged over by meta-variable t, the

terms generated by the following grammar. Recall that u refers to typestate terms

(Definition 2).

t ::= t △ t | t ∀ t | uẼ | ̸t | ⊥t

For example, the union type COMF ON
⊋ESUV △ SPORT ON

⊋ESUV describes an

object that might be in typestate COMF ON or SPORT ON.

Let T be the set of types produced by rule t. Now we need to define a subtyping

notion to apply to types. The setting is inspired in work by Muehlboeck and

Tate [MT18], in particular, their definition of reductive subtyping.

Definition 9 (Subtyping on types). Let ↑T ∝ T ′ T be the relation defined by

the following inductive rules.

t ↑T ̸t

TopT

⊥t ↑T t
BotT

u1
Ẽ1 ↑S u2

Ẽ2

u1
Ẽ1 ↑T u2

Ẽ2
Typestates

t ↑T ti

t ↑T t1 △ t2
Union R (i ⇓ {1, 2})

ti ↑T t

t1 ∀ t2 ↑T t
Intersection L (i ⇓ {1, 2})

t1 ↑T t t2 ↑T t

t1 △ t2 ↑T t
Union L

t ↑T t1 t ↑T t2

t ↑T t1 ∀ t2
Intersection R

As a sanity check, we show basic subtyping properties on types: reflexivity and

transitivity.

Lemma 3 (Reflexivity). For all t, then t ↑T t.

Lemma 4 (Transitivity). For all t, t→, t→→, if t ↑T t→ and t→ ↑T t→→, then t ↑T t→→.

An algorithm to check that two types are in a subtyping relation (i.e., t ↑T

t→) can be implemented by proof search on the inference rules in Definition 9.

For these, one can observe that the combined syntactic height of the two types

being tested, always decreases [MT18]. Therefore, every recursive search path

is guaranteed to always reach a point in which both types being compared are

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

153

5.5. BEHAVIOURAL UP/DOWN CASTING

typestates uẼ ⇓ U . Since the algorithm to test u1
Ẽ1 ↑S u2

Ẽ2 terminates, the overall

algorithm to check subtyping also terminates. For example, it is easy to check

that COMF ON
⊋ESUV ↑T COMF ON

⊋ESUV △ SPORT ON
⊋ESUV , using the UNION R

rule in Definition 9.

5.5.3 Basic Operations on Types

We begin outlining several foundational assumptions regarding the class hierarchy.

Subsequently, we discuss the core operations performed during the type checking

process: ucast, dcast, and evo. To illustrate these operations in action, we analyse

the code snippet provided in Listing 5.15. This snippet instantiates an object of

type SUV, invokes the turnOn method, switches the mode and eventually passes

the object to the setSpeed method (lines 4↗ 7).

Listing 5.15: ClientCode class!
1 public class ClientCode {

2 public static void example () {

3 SUV suv = new SUV();

4 while (!suv.turnOn ()) { System.out.println("turning on..."); }

5 suv.switchMode ();

6 setSpeed(suv);

7 }

8

9 private static void setSpeed(@jatyc.lib.Requires("ON") Car car) {

10 if (car instanceof SUV && ((SUV) car).switchMode () == Mode.SPORT) {

11 ((SUV) car).setFourWheels(true);

12 }

13 car.setSpeed (50);

14 car.turnOff ();

15 }

16 }"# $
The setSpeed method, as indicated by its signature and Requires annotation (line

9), receives a Car object in the ON typestate. Notice that, the functionalities asso-

ciated with the ON typestate are also accessible in the COMF ON and SPORT ON

typestates. Consequently, the method can be safely executed passing an object

of class Car in the ON state as well as a SUV object in either the COMF ON or

SPORT ON typestates, regardless of the specific mode. Upon receiving the car ob-

ject, the method first checks whether it is of type SUV and attempts to transition

it to the sport mode (line 10). If this transition is successful, the method proceeds

154 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

to engage the four-wheel drive feature (line 11). Subsequently, it sets the speed

to a predefined value (line 13) and concludes the protocol powering o! the car

(line 14). This approach ensures that the setSpeed method remains adaptable to

di!erent vehicle types and modes, enabling seamless integration within a diverse

range of scenarios.

Throughout this Dissertation, we denote the set of class names as C, with C

serving as a meta-variable ranging over its elements. Moreover, we operate under

the assumption that all classes belong to a single-inheritance hierarchy.

Definition 10 (Super relation on classes). super is a partial function such that,

given a class C, super(C) is the unique direct super class of C, if there is one.

Definition 11 (Subtyping relation on classes). The relation ↑ ∝ C ′ C is the

reflexive and transitive closure of the super relation.

With classes and their super relation, we now need a notion of reachable states

(see Definition 12).

Definition 12 (Reachable states). The immediate state reachability is a relation

over W ′W, defined as follows: w→Ẽ is immediately reachable from wẼ, if:

1. wẼ = d{⊋m : w}Ẽ and ∋ m→ . m→:w→ in ⊋m : w;

2. wẼ = ↖l̃ : u↙
Ẽ
and ∋ l→ . l→:w→ in l̃ : u;

3. wẼ = sẼ and Ẽ includes the equation s = w→Ẽ.

The state reachability relation is the reflexive transitive closure of immediate state

reachability.

Recall, each class C has an associated protocol sẼ, where s is its initial typestate

name. We enforce that for any classes C and C → such that super(C →) = C, their

protocols are subtypes

Definition 13 (Protocol input states). protIn(C) is the set of all input states uẼ

that are reachable from protocol sẼ of class C.

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

155

5.5. BEHAVIOURAL UP/DOWN CASTING

By only considering reachable input states from the initial typestate name of

the protocol, we perform an optimisation that avoids dealing with unnecessary

typestates, i.e., those unreachable.

To refer to the typestates occurring in a type, we introduce a dedicated auxiliary

function, presented in Definition 14.

Definition 14 (Typestates in a type). Function typestates : T ⇐ P(U) is such

that, given a type t ⇓ T , typestates(t) yields the set of typestates occurring in t.

Formally,

typestates(t) =






typestates(t1) △ typestates(t2) if t = t1 ∀ t2

typestates(t1) △ typestates(t2) if t = t1 △ t2

{uẼ} if t = uẼ

{} if t = ̸t ∃ t = ⊥t

Upcast. In the process of upcasting a typestate from class C to class C →, we

gather all typestates from the protocol of C → that are supertypes of the original

one. These supertypes are then combined into an intersection type, amalgamating

behaviour from various types. If no supertypes are found, the resulting “empty in-

tersection” yields ̸t, signalling an error. In principle, upcast operations are always

feasible, as they produce a supertype of the original type. However, the challenge

lies in the fact that no operations are safely permissible on ̸t. Consequently, while

an error might not be immediately flagged during upcasting, attempting to use

an object with a ̸t type will inevitably lead to an error in practice. By selecting

supertypes during upcasting, we construct a new type that is guaranteed to be

a supertype of the original one, as a”rmed by Theorem 3. Moreover, by inter-

secting these supertypes, we create the most “precise” type possible, comprising

typestates from C →, as ensured by Theorem 4.

Definition 15 (Upcast on types). Function ucast : T ′ C ′ C ⇐ T is such

that, given a type t, a class C whose protocol the typestates in t belong to and a

class C → we want to upcast to; ucast(t, C, C →) yields the type obtained by taking the

intersection of all supertypes (in the protocol of class C →) of typestates included

in t. The domain of ucast only includes triples (t, C, C →) such that typestates(t) ∝

156 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

protIn(C) and C ↑ C →. Formally,

ucast(t, C, C →) =






ucast(t1, C, C →) △ ucast(t2, C, C →) if t = t1 △ t2

ucast(t1, C, C →) ∀ ucast(t2, C, C →) if t = t1 ∀ t2

{u→Ẽ ⇓ protIn(C →) | t ↑T u→Ẽ} if t ⇓ U

t otherwise

To illustrate how the ucast function works, let us examine the setSpeed call

in Listing 5.15. After invoking switchMode, the type of suv becomes COMF ON △
SPORT ON, as we are uncertain about the actual typestate, due to ignoring the

output value of switchMode. To determine the type of the object passed as a

parameter, we employ the ucast function. We provide the following inputs: (i)

COMF ON △ SPORT ON as the type to upcast; (ii) SUV as the starting class;

and (iii) Car as the target class. Since the given type is a union type composed

of two elements, the ucast function unfolds it and generates one intersection for

each element (COMF ON and SPORT ON), containing all their supertypes. In this

scenario, there is only one supertype for each: ON. Therefore,

ucast(COMF ON △ SPORT ON, SUV,Car) = ON

As a sanity check, we show that ucast builds a type where the typestates

composing it belong to the class we upcast to. Recall, Definition 15 has con-

straints typestates(t) ∝ protIn(C) and C ↑ C → (the following results assume them).

To improve readability we omit stating the constraints explicitly and we simply

universally quantify types and classes.

Lemma 5 (Upcast preserves protocol membership). For all t, C and C →, then

typestates(ucast(t, C, C →)) ∝ protIn(C →).

To ensure ucast correctness, we show that the result: (i) is a supertype of the

given type (Theorem 3); (ii) is the “closest” type to the original one with typestates

in the protocol of the target class (Theorem 4); and (iii) preserves the subtyping

relation (Theorem 5), i.e., ucast on types in a subtyping relation produces types

that are still in such relation.

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

157

5.5. BEHAVIOURAL UP/DOWN CASTING

Theorem 3 (Upcast consistency). For all t, C and C →, we have

t ↑T ucast(t, C, C →).

Theorem 4 (Upcast least upper bound). For all t, t→, C and C →, such that

typestates(t→) ∝ protIn(C →) and t ↑T t→, we have ucast(t, C, C →) ↑T t→.

Theorem 5 (Upcast preserves subtyping). For all t, t→, C and C →, such that

t ↑T t→, we have ucast(t, C, C →) ↑T ucast(t→, C, C →).

Downcast. To perform a downcast of a typestate from class C to C →, we gather

all typestates from the protocol of C → that are subtypes of the original one and

combine them into a union type. We opt for a union type since we must accommo-

date all possible typestates that an object might inhabit. By selecting subtypes

during downcasting, we construct a new type that is guaranteed to be a subtype of

the original one, as formalised in Theorem 6. Furthermore, by forming the union of

these subtypes, we assemble the most inclusive type feasible, incorporating types-

tates from C → that are “closest” to the original type, as ensured by Theorem 7.

Definition 16 (Downcast on types). Function dcast : T ′C′C ⇐ T is such that,

given a type t, the class C whose protocol the typestates in t belong to and the class

C → we want to downcast to; dcast(t, C, C →) yields the type obtained by taking the

union of all subtypes (in the protocol of class C →) of typestates included in t. The

domain of dcast only includes triples (t, C, C →) such that typestates(t) ∝ protIn(C)

and C → ↑ C. Formally,

dcast(t, C, C →) =






dcast(t1, C, C →) △ dcast(t2, C, C →) if t = t1 △ t2

dcast(t1, C, C →) ∀ dcast(t2, C, C →) if t = t1 ∀ t2

{u→Ẽ ⇓ protIn(C →) | u→Ẽ ↑T t} if t ⇓ U

t otherwise

Notice that, dcast never fails (up to runtime downcasts not throwing excep-

tions). In no case sub-typestates in the protocol of C → are discovered, dcast returns

an empty union that is equivalent to ⊥t.

158 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

To see how dcast works, let us consider the downcast performed in Listing 5.15.

To compute the type of (SUV) car, we use the dcast function presented in Defini-

tion 16, passing as parameter: (i) ON as the type to downcast (given the Requires

annotation); (ii) Car as the starting class; and (iii) SUV as the target class. Since

the type passed as parameter is a simple typestate, the dcast function just creates

a union containing all the subtypes of ON. Concretely,

dcast(ON,Car, SUV) = COMF ON △ SPORT ON.

As a sanity check, we show that dcast builds a type whose typestates belong

to the class we downcast to. Recall, Definition 16 has constraints typestates(t) ∝
protIn(C) and C → ↑ C (the following results assume them). To improve readability,

the constraints are implicit and we universally quantify types and classes.

Lemma 6 (Downcast preserves protocol membership). For all t, C and C →, we

have typestates(dcast(t, C, C →)) ∝ protIn(C →).

To ensure dcast correctness, we show that the result: (i) is a subtype of the

given type (Theorem 6); (ii) is the “closest” type to the original with typestates

in the protocol of the target class (Theorem 7); and (iii) preserves the subtyping

relation i.e., dcast on types in a subtyping relation produces types that are still in

such relation (Theorem 8).

Theorem 6 (Downcast consistency). For all t, C and C →, we have

dcast(t, C, C →) ↑T t.

Theorem 7 (Downcast greatest lower bound). For all t, t→, C and C →, such that

typestates(t→) ∝ protIn(C →) and t→ ↑T t, we have t→ ↑T dcast(t, C, C →).

Theorem 8 (Downcast preserves subtyping). For all t, t→, C and C →, such that

t ↑T t→, we have dcast(t, C, C →) ↑T dcast(t→, C, C →).

Additionally, we relate the result of upcasting and then downcasting with the

original type as well as the result of downcasting and then upcasting. The first fol-

lows from Theorems 3 and 7, the second from Theorems 4 and 6. These corollaries

are also important to ensure the soundness of our approach (see Theorem 16).

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

159

5.5. BEHAVIOURAL UP/DOWN CASTING

Corollary 2 (Downcast reverses upcast). For all t, C and C →, we have

t ↑T dcast(ucast(t, C, C →), C →, C).

Corollary 3 (Upcast reverses downcast). For all t, C and C, we have

ucast(dcast(t, C, C →), C →, C) ↑T t.

Evolve. Whenever we call a method call on an object with a specific type, we

need to compute the resulting type, i.e., the possible typestates the object could

inhabit post-call. This computation, not only helps refining our understanding of

the object state, but also aids in identifying any potential violations of protocol

behaviour. To this aim, we introduce the evo function, which outputs ̸t when a

method is not callable within the given type context.

Definition 17 (Evolve). Function evo : T ′ MNames ′ LNames ⇐ T is

such that, given a type t, a method m, and an output l, evo(t,m, l) yields the

new type obtained by executing m on any object currently with type t, where l is

an output value potentially returned by m. Its definition relies on the auxiliary

function evoO : W ′ LNames ⇐ U . Formally,

evo(t,m, l)=






evo(t1,m, l) △ evo(t2,m, l) if t = t1 △ t2

evo(t1,m, l) ∀ evo(t2,m, l) if t = t1 ∀ t2

evoO(wẼ, l) if t = uẼ ⇔m :w ⇓ unf(uẼ)

t otherwise

evoO(wẼ, l)=






uẼ wẼ = ↖l : u l̃ : u↙
Ẽ

wẼ wẼ ⇓ U

⊥t otherwise

As evo operates deterministically, it is defined as a function rather than a

labelled transition system.

To understand how evo works, let us examine the switchMode call in List-

ing 5.15. To compute the type of car, we employ evo as defined in Definition 17,

with the following parameters: (i) the type COMF ON△SPORT ON resulting from

160 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

the dcast function; (ii) the method switchMode to drive the evolution; and (iii) the

expected output Mode.SPORT to trigger the if branch. Since the type passed as

parameter is a union type consisting of two elements, the evo function is invoked

recursively. Subsequently, the auxiliary function evoO is invoked for COMF ON

and SPORT ON. Specifically,

evo(COMF ON △ SPORT ON, switchMode,Mode.SPORT) = SPORT ON.

As a sanity check, we show that evo produces a type containing only typestates

belonging to the initial class.

Lemma 7 (Evolve preserves protocol membership). For all t, m, l, C,

typestates(t) ∝ protIn(C) implies typestates(evo(t,m, l)) ∝ protIn(C).

To ensure evo correctness, we show that evo on types in a subtyping relation

produces types that still are in such a relation.

Theorem 9 (Evolve preserves subtyping). For all t and t→ such that t ↑T t→, we

have that evo(t,m, l) ↑T evo(t→,m, l).

We further establish the relation between evo, ucast, and dcast by demonstrat-

ing that: (i) applying ucast after evo yields a subtype of the inverse sequence of

operations (Theorem 10); and (ii) applying dcast after evo yields a supertype of the

inverse sequence of operations (Theorem 11). These theorems play a pivotal role

in ensuring the soundness (Theorem 16) of our approach. To enhance readabil-

ity, we refrain from explicitly stating the constraints on the universally quantified

variables necessary for using ucast and dcast.

Theorem 10 (Evolve and upcast). For all t, m, l, C and C →, we have that

ucast(evo(t,m, l), C, C →) ↑T evo(ucast(t, C, C →),m, l).

Theorem 11 (Evolve and downcast). For all t, m, l, C and C →, we have that

evo(dcast(t, C, C →),m, l) ↑T dcast(evo(t,m, l), C, C →).

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

161

5.5. BEHAVIOURAL UP/DOWN CASTING

5.5.4 Typestate Trees

Here, we describe typestate trees, the data structure we introduce to solve the

problem of casting in the middle of a protocol. These trees associate class infor-

mation with types containing only typestates in the protocol of the class they are

associated to (i.e., typestates(t) ∝ protIn(C)). The tree root indicates the static

type of a variable and the corresponding type t in T at a given program point.

All other nodes describe what should be the type if we upcast/downcast to the

corresponding class. The type in the root is always a sound approximation of the

runtime execution. The types in other nodes are sound only if the object is an

instance of the corresponding class. This implies that type safety is guaranteed

up-to class downcasts being performed to a class of which an object is a subtype

of. Hereafter we define well-formed typestate trees and auxiliary functions. The

main operations on typestate trees are: ucastTT, dcastTT, evoTT, and mrgTT.

Definition 18 (Typestate trees). Recall that C ranges over classes (denoted by

C) and t ranges over types (denoted by T). Let T T be the smallest set of triples

satisfying the following rules:

(C, t, {}) ⇓ T T

n ⇑ 1 ∈ i, 1 ↑ i ↑ n . tti ⇓ T T

(C, t, {tti | 1 ↑ i ↑ n}) ⇓ T T

Notice that, triples in T T represent trees and are composed of: the class C,

the type t of the root and a set of subtrees (again triples in T T), one for each root

child. Such a set is empty (case n = 0) if the tree root has no children (i.e., the

tree simply represents a leaf). Throughout this Chapter, tt ranges over elements

of T T and tts ranges over sets of elements of T T .

We need functions to destroy an element of T T (which is a triple). Let

cl((C, t, tts)) = C, ty((C, t, tts)) = t, and children((C, t, tts)) = tts.

Definition 19 (No duplicate classes). The predicate nodup asserts that, given a

set tts ⇓ P(T T), no two typestates trees in tts have the same associated class.

Formally, nodup(tts) holds if: ∈ tt, tt→ ⇓ tts . cl(tt) = cl(tt→) ▽ tt = tt→.

Definition 20 (Well-formedness of typestate trees). The predicate ∞ over

162 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

T T asserts that, given a typestate tree (C, t, tts), it is well formed. Formally,

typestates(t) ∝ protIn(C) nodup(tts)

∈tt ⇓ tts . super(cl(tt)) = C ⇔ ucast(ty(tt), cl(tt), C) ↑T t ⇔ ∞ tt

∞ (C, t, tts)

A typestate tree (C, t, tts) is well-formed under the following conditions: (i) all

the typestates of type t belong to the protocol of class C; (ii) nodup holds; (iii) the

classes associated with each child tree are direct subclasses of C; (iv) if we upcast

a type of a child tree, we get a subtype of t; and (v) each child is also well-formed.

Condition (iv) ensures that the type of a child tree is never less “precise” than the

type of the parent. From now on, we only consider well-formed typestate trees.

To illustrate the concept, suppose that in Listing 5.15, instead of assigning the

created object to a SUV variable, we assign it to a Car one. Since the static

and actual type are di!erent, we need a typestate tree to handle future casts.

Given Definition 18, the resulting typestate tree is (Car,OFF, {(SUV,OFF, {})}).

Upcast. Upcasting a typestate tree to class C ensures that the resulting root

class is C, by recursively following the super relation and building up new tree

roots until the root class is C.

Definition 21 (Upcast on typestate trees). Function ucastTT : T T ′ C ⇐ T T
is such that ucastTT((C, t, tts), C →) performs an upcast on typestate tree (C, t, tts)

to class C →. The domain of ucastTT only includes pairs ((C, t, tts), C →) such that

C ↑ C →. Formally,

ucastTT((C, t, tts), C →) =





(C, t, tts) if C = C →

ucastTT((super(C), ucast(t, C, super(C)), {(C, t, tts)}), C →) otherwise

Notice that, under the assumption on the domain of the ucastTT, the function

terminates since the distance between C and C → decreases with each recursive step.

Theorem 12 (Upcast preserves typestate trees well-formedness). For all C →, tt,

such that ∞ tt and cl(tt) ↑ C →, it holds that ∞ ucastTT(tt, C →).

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

163

5.5. BEHAVIOURAL UP/DOWN CASTING

To see how the ucastTT function works, let us consider the setSpeed call in List-

ing 5.15. After calling switchMode, the object suv has the following typestate tree

(SUV,COMF ON △ SPORT ON, {}). When passing suv to setSpeed, we need to

upcast from SUV to Car. To do that, we use the ucastTT function passing as pa-

rameters: (i) (SUV,COMF ON △ SPORT ON, {}) as the typestate tree to upcast;

and (ii) Car as the target class. Thus,

ucastTT((SUV,COMF ON △ SPORT ON, {}),Car)

is equal to

(Car,ON, {(SUV,COMF ON △ SPORT ON, {})}).

To upcast a typestate tree, we must perform multiple upcasts, incrementally

building up new tree roots, not only to preserve the well-formedness property,

but also to ensure soundness. For readability sake, we show the problem with an

abstract, but simple example. We take classes A, B and C, such that super(C) = B,

super(B) = A and the protocol equations associated with each class are listed

below. Recall that end = drop{}.

A1 = { m1 : end }
B1 = { m1 : end, m2 : end }
C1 = { m1 : end, m2 : end, m3 : C2 }
C2 = { m1 : end, m4 : end }

Given the protocols above and according to Definition 5 we have:

C1 ↑S B1 ↑S A1 and C2 ↑S A1, but C2 ¬↑S B1.

C2 not being a subtype of B1 is not a problem per se, but it may be when

upcasting, if we define it to go directly to the root instead of going level-by-level,

as downcasting after upcasting should lead to the original state 8. To see that,

consider the code in Listing 5.16, which contains an unsafe method call, but would

be accepted. At first, we create an object c of class C and we call its method m3,

8Technically, downcasting after upcasting returns an over-approximation of the original state.

164 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

producing a new typestate, i.e., C2. Then, we assign c to variable a performing

an upcast from class C to A (and from typestate C2 to A1). We finally perform a

sequence of downcasts on a leading the object to class C (and to typestate C1).

Listing 5.16: Direct upcast example!
1 C c = new C(); // C1

2 c.m3(); // C2

3 A a = C; // A1: unsound upcast!

4 B b = (B) a; // B1: downcast level -by -level

5 C c = (C) b; // C1: incorrect! the state should be C2 (that of line 2)

6 c.m2(); // unsafe!"# $
The result of upcasting C2 directly to class A (see line 3) is A1, since it is the

only supertype of C2, i.e., C2 ↑S A1. To downcast A1 to typestates of class B,

we check all the typestates in the protocol of B subtypes of A1, i.e., B1 is the

downcast result (see line 4). Similarly, only C1 is a subtype of B1, thus it is the

result of downcasting from B1 to typestates of class C (see line 5). Notice how

a direct upcast to class A, followed by a downcast to B and then to C, result

in a di!erent typestate with respect to the initial one. This is unsound: C1 and

C2 are unrelated. The direct upcast to A makes us losing the information about

C1 not having supertypes among typestates in B. Since we first upcast C2 to B,

getting ̸t as result, we find out that C2 has no supertypes among typestates in

B. Additionally, since we use typestate trees, downcasting to C leads back to C2.

Downcast. When downcasting a given typestate tree tt to class C, we ensure

that the root class of the resulting tree is C. If we find a subtree in tt whose class is

C, we pick it9 as the result. Otherwise, we build a new tree downcasting from the

most “precise” type information in tt. To this aim, we define the auxiliary function

closestTT to look for the subtree whose class is hierarchically the “closest” to C.

The definition is below, followed by examples.

Definition 22 (Closest subtree). The function closestTT : T T ′ C ⇐ T T is

such that closestTT(tt, C) yields the subtree associated with the closest superclass

of C occurring in tt. The domain of closestTT only includes pairs (tt, C) such that

9By well-formedness, it is unique.

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

165

5.5. BEHAVIOURAL UP/DOWN CASTING

C ↑ cl(tt). Formally,

closestTT(tt, C) =





closestTT(tt→, C) if ∋ tt→ ⇓ children(tt) . C ↑D̃ cl(tt→)

tt otherwise

To illustrate the use of the closestTT function, consider classes A, B, and C,

where super(B) = A and super(C) = B. Let tt be (A, t, {(B, t→, {})}). Then the

following equalities hold: closestTT(tt, A) = tt; closestTT(tt, B) = (B, t→, {}); and
closestTT(tt, C) = (B, t→, {}). The first and second case are easy to understand: the

function yields the subtree whose class is precisely the one we are looking for. In the

third case, since there is no subtree in tt whose class is C, closestTT(tt, C) yields the

subtree corresponding to B, which is the “closest” superclass of C occurring in tt,

i.e., (B, t→, {}). Now, suppose instead that super(B) = A and super(C) = A (i.e., B

and C are “siblings”). Then closestTT(tt, C) would yield the entire tree tt whose

class is A, which is the “closest” superclass of C occurring in tt. Lemma 8 ensures

the correctness of closestTT and is useful for the soundness proof (Theorem 16).

Lemma 8 (Closest correctness). For all tt and C, if C ↑ cl(tt) then

C ↑ cl(closestTT(tt, C)).

Definition 23 (Downcast on typestate trees). Function dcastTT : T T ′C ⇐ T T
is such that dcastTT(tt, C) performs a downcast on typestate tree tt to class C.

The domain of dcastTT only includes pairs (tt, C) such that C ↑ cl(tt). Formally,

dcastTT(tt, C) =





tt→ if tt→ = closestTT(C, tt) ⇔ C = cl(tt→)

(C, dcast(ty(tt→), cl(tt→), C), {}) if tt→ = closestTT(C, tt) ⇔ C ¬= cl(tt→)

Theorem 13 (Downcast preserves typestate trees well-formedness). For all C, tt,

such that ∞ tt and C ↑ cl(tt), it holds that ∞ dcastTT(tt, C).

To see how dcastTT works, let us suppose that in Listing 5.15, in the setSpeed

method, we want to check the downcast (SUV) car. To compute its typestate tree,

we use dcastTT passing as parameter: (i) (Car,ON,{}) as the typestate tree to

166 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

downcast; (ii) SUV as the target class. Notice that, in the case the root is also a

leaf, we need to replace it with the result of dcastTT. Concretely,

dcastTT((Car,ON, {}), SUV)

is equal to

(SUV,COMF ON △ SPORT ON, {}).

Evolve. To compute the typestate tree of an object after a method call, we

define the evoTT function.

Definition 24 (Evolve on typestate trees). Function evoTT : T T ′MNames′
LNames ⇐ T T is such that evoTT(tt,m, l) yields a new typestate tree resulting

from applying evo(t,m, l) (Definition 17) to all the nodes of tt. Formally,

evoTT((C, t, tts),m, l) = (C, evo(t,m, l),


tt↑tts
evoTT(tt,m, l))

Notice that, whenever the set tts is empty, evoTT((C, t, tts),m, l) is equal to

(C, evo(t,m, l), {})

Theorem 14 (Evolve preserves typestate trees well-formedness). For all tt, m, l,

such that ∞ tt, it holds that ∞ evoTT(tt,m, l).

Listing 5.17: EvolveTT example!
1 Car c = new SUV();

2 if (c.turnOn ()) c.turnOff ();"# $
To see how evoTT works, consider the code presented in Listing 5.17. The

typestate tree of c is (Car,OFF, {(SUV,OFF, {})}). When the turnOn call occurs,

we need to “evolve” each node of the typestate tree. To compute the resulting

tree, we use evoTT passing as parameter: (i) the typestate tree of c; (ii) turnOn

as the method called; and (iii) true as the expected output to enter the if branch.

Concretely,

evoTT((Car,OFF, {(SUV,OFF, {})}), turnOn, true)

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

167

5.5. BEHAVIOURAL UP/DOWN CASTING

is equal to

(Car,ON, {(SUV,ON, {})}).

Notice that, every node of the typestate tree is “evolved” using the evo function.

Merge. In the case of branching code, one has to merge type information coming

from all di!erent branches, so that subsequent code can be analysed considering

all possibilities. To this end, we define the mrgTT function to merge two typestate

trees and its auxiliary functions.

Definition 25. Function height : P(T T) ⇐ N is such that height(tt) yields the

greatest number of nodes traversed in tt, from the root to one of the leaves (both

included).

Definition 26. Function clss : P(T T) ⇐ P(C) is such that clss(tts) yields the set

of classes associated with the typestate trees in tts. Formally, clss(tts) = {cl(tt) |
tt ⇓ tts}.

Definition 27. Function find : C ′ P(T T) ⇐ T T is such that, given a class C

and set of typestate trees tts with C ⇓ clss(tts) and nodup(tts), find(C, tts) yields

the unique typestate tree in set tts whose class is C.

Definition 28 (Merge). Function mrgTT : T T ′ T T ⇐ T T is such that, given

typestate trees tt and tt→, mrgTT(tt, tt→) yields the typestate tree obtained by merging

tt and tt→. The domain of mrgTT only includes pairs (tt, tt→) such that cl(tt) =

cl(tt→). Formally,

mrgTT((C, t, tts), (C, t→, tts→)) = (C, t △ t→, tts1 △ tts2 △ tts3)

where tts1 =


C→↑clss(tts)↘clss(tts→)

mrgTT(find(C →, tts), find(C →, tts→))

tts2 =


C→↑clss(tts)↔clss(tts→)

mrgTT(find(C →, tts), (C →, dcast(t→, C, C →), {}))

tts3 =


C→↑clss(tts→)↔clss(tts)

mrgTT((C →, dcast(t, C, C →), {}), find(C →, tts→))

Notice that, mrgTT terminates as height(tt) + height(tt→) decreases at each

recursive step. Moreover, it is symmetric, i.e., mrgTT(tt, tt→)= mrgTT(tt→, tt).

168 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

Theorem 15 (Merge preserves typestate tree well-formedness). For all tt, tt→,

such that cl(tt) = cl(tt→), ∞ tt, and ∞ tt→, it holds that ∞ mrgTT(tt, tt→).

To see how mrgTT works, consider the if statement in Listing 5.15 (lines 12-14).

Although the else branch is missing, to compute the typestate tree of car, we need

to consider it to be there (to account for all possible outputs returned by switch-

Mode). To compute such typestate tree, we use mrgTT passing as parameters: (i)

(SUV, SPORT ON, {}); and (ii) (SUV,COMF ON, {}). Since no parameters have

children nodes, it is enough to make the union of the root types. Concretely,

mrgTT((SUV, SPORT ON, {}), (SUV,COMF ON, {}))

is equal to

(SUV, SPORT ON △ COMF ON, {}).

Typestate trees and the functions to manage them are targeted at handling the

problem of upcasting and downcasting from and to multiple typestates. In the

following Section, we will explain how our approach is sound.

5.5.5 Typestate Trees Soundness

We now discuss why we consider type-safe a programming language equipped with

the subtypestate mechanism outlined here. This classification hinges on a pivotal

property we elucidate: when operating within a typestate tree that accurately

mirrors the current runtime type of an object, subsequent operations yield new

typestate trees that continue to accurately reflect the runtime type. This assertion

is contingent upon class downcasts being conducted to a class of which the object

is a subtype, i.e., downcast not throwing exceptions at runtime. Consequently, we

refrain from furnishing static assurances that class downcasts will be exempt from

throwing such exceptions at runtime.

Definition 29 (Sequence of upcasts on types). Function ucast≃ : T ′C′C ⇐ T is

such that ucast≃(t, C, C →) performs zero or more upcasts from C to C → step-by-step,

following the class hierarchy. The domain of ucast≃ only includes triples (t, C, C →)

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

169

5.5. BEHAVIOURAL UP/DOWN CASTING

such that typestates(t) ∝ protIn(C) and C ↑ C →. Formally,

ucast≃(t, C, C →) =





t if C = C →

ucast≃(ucast(t, C, super(C)), super(C), C →) otherwise

Since the distance between C and C → decreases with each recursive step, it is

obvious that ucast≃ terminates.

The subsequent relation delineates a typestate tree where type information is

sound with respect to class C → and type t→. In essence, if C → and t→ precisely represent

the runtime type of a given object, a sound typestate tree aptly approximates this

type. Notice that, the root must inherently be sound concerning runtime, while the

remaining nodes necessitate soundness only if the initialising class of the object is

a subclass of the one associated with that node. Thus, all non-root nodes describe

the type of the object if indeed the object is an instance of the corresponding class.

This implies that if we downcast, possibly turning a non-root node into the new

root, we preserve soundness only if the runtime downcast succeeds.

Definition 30 (Soundness of typestate trees). Given a well-formed typestate tree

tt, the predicate ∞C,t, with typestates(t) ∝ protIn(C), asserts that tt it is sound with

respect to class C and type t. Formally,

C ↑ C → ucast≃(t, C, C →) ↑T t→ ∈tt ⇓ tts . C ↑ cl(tt) ▽ ∞C,t tt

∞C,t (C
→, t→, tts)

The next theorem shows that soundness is preserved by typestate tree opera-

tions. Soundness after downcast is only preserved if it does not throw an exception

(i.e., the assumption C ↑ C → ↑ cl(tt) on the second item of Theorem 16).

Theorem 16 (Typestate tree soundness preservation). Soundness is preserved by:

upcast – for all C, t, C →, tt, such that ∞C,t tt and cl(tt) ↑ C →, it holds that

∞C,t ucastTT(tt, C →);

downcast – for all C, t, C →, tt, such that ∞C,t tt and C ↑ C → ↑ cl(tt), it

holds that ∞C,t dcastTT(tt, C →);

170 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.5. BEHAVIOURAL UP/DOWN CASTING

evolve – for all C, t, tt, m, l, such that ∞C,t tt, it holds that

∞C,evolve(t,m,l) evoTT(tt,m, l);

merge – for all C, t, tt1, tt2, such that ∞C,t tt1 or ∞C,t tt2, and cl(tt1) =

cl(tt2), it holds that ∞C,t mrgTT(tt1, tt2).

Having shown our approach to be sound, as we will see, Section 5.6 explains

how the functions defined in Section 5.5.4 are implemented in JaTyC and used

during the type checking process.

5.5.6 Typestate Trees Subtyping

While vertical subtyping (i.e., among nodes of the same typestate tree) is ensured

by the well-formedness property, we have no guarantee that the horizontal one

(i.e., among nodes with the same root class of di!erent typestate trees) holds.

Thus, in the context of this Dissertation, we establish a subtyping relation ↑TC∝
T T ′ T T among typestate trees (where TC stands for Type Checking, as such

subtyping relation is used in the type checking procedure). The intuition is that

to ensure that tt ↑TC tt→, we need to check such a relation for all existing nodes in

tt and tt→. However, it may happen that some nodes included in tt do not appear

in tt→ and vice versa. Thus, we need to to build those nodes, during the subtyping

check. We now define the notion of subtyping among typestate trees.

Definition 31 (Subtyping on typestate trees). Let ↑TC ∝ T T ′ T T be the

subtyping relation over typestate trees defined by the following inductive rules.

C ↑ C → (C, t, tts) ↑TC dcastTT((C →, t→, tts→), C)

(C, t, tts) ↑TC (C →, t→, tts→)
Tree

t ↑T t→

∈C → ⇓ clss(tts) ∀ clss(tts→) . find(C →, tts) ↑TC find(C →, tts→)

∈C → ⇓ clss(tts→)↗ clss(tts) . dcastTT((C, t, tts), C →) ↑TC find(C →, tts→)

(C, t, tts) ↑TC (C, t→, tts→)
Root

The intuintion behind these rules is the following. The Tree rule removes nodes

from the right-hand side typestate tree such that the root matches the left-hand

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

171

5.6. EMBEDDING BEHAVIOURAL CASTING IN JATYC

one, downcasting to the root class of the sub-typestate tree. Once the root classes

match, via the Root rule, we check subtyping node by node, building via dcastTT

the missing ones. If both typestate trees are leaves, the universal quantifiers are

vacuosly true, thus if t ↑T t→ holds, then the subtyping relation holds.

Since the relation ↑TC internally uses the ↑T and ↑ relations, it is straightfor-

ward to show that basic subtyping properties on typestate trees such as reflexivity

and transitivity hold.

Lemma 9 (Reflexivity). For all tt, then tt ↑TC tt.

Lemma 10 (Transitivity). For all tt, tt→, tt→→, if tt ↑TC tt→ and tt→ ↑TC tt→→, then

tt→ ↑TC tt→→.

Notice that, the Root rule does not explicitly require that the root children

whose class C appears only in the typestate tree on left-hand side of the relation to

be subtypes of those built via dcastTT (using C as target class). Such a constraint

is vacuosly true, as proved by Lemma 11.

Lemma 11 (Typestate tree subtyping preservation). Let tt and tt→ be such that

cl(tt) = cl(tt→) and ty(tt) ↑T ty(tt→). For all C → ⇓ clss(children(tt)) such that C → /⇓
clss(children(tt→)) holds that find(C →, children(tt)) ↑TC dcastTT(tt→, C →).

5.6 Embedding Behavioural Casting in JaTyC

The theoretical machinery we presented so far is notably broad and adaptable to

numerous statically typed object-oriented languages. In this Section, we embed

our theoretical work into a real-world type checker, implementing the presented

concepts within JaTyC. To this aim, we present the type system JaTyC implements

to track object states and thoroughly describe how JaTyC type embeds typestate

trees in the type checking procedure, using a common syntax as a reference point.

5.6.1 JaTyC Type System

Each variable or field declaration and each expression in the code is associated

with a Java type, which is statically known. To be able to track the possible

172 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.6. EMBEDDING BEHAVIOURAL CASTING IN JATYC

type (those defined in Definition 8) of each object, we need a parallel type system

with other types that encapsulates the information JaTyC needs to correctly type

check programs. To this aim, in Definition 35, we introduce Type Checking (TC)

types, as citizens of our type system. Notice that, to perform the type checking

procedure, the types in Definition 8 are not expressive enough, as we need to

account for, e.g., shared objects and null. Thus, we now present the extend version

of Definitions 8 and 9.

Definition 32 (Extended type syntax). We extend the types grammar (see Defi-

nition 8) with Shared and Null types.

t ::= . . . | Shared | Null

Whenever JaTyC assigns the Shared type to a typestate tree, it signals that

such variable points to a non-linear object, e.g., an aliased object or an object

without protocol. A client code can use these variables via anytime method calls

(see Section 5.4), because they do not own any protocol. This draws inspiration

from the ownership concept of the Rust language: if something takes ownership

of some data, such data are considered to be “moved” and the previous reference

cannot be used10. The ownership concept also avoids the need to nullify variables

after a value is read, as also proposed by Boyland [Boy01]. This ensures that

objects are used linearly. Whenever JaTyC assigns the Null type, it signals that

such object stores the null value. Having a specific type t encoding the null value,

di!erent from ̸t, is crucial to distinguish among errors (signalled by ̸t) and

expected scenarios, e.g., objects storing null, making our type checking procedure

more flexible and enlarging the set of correct programs we are able to type check.

During type checking, if we encounter these assignments, we need to relate the

right-hand side expression, i.e., the null value, with a dedicated typestate tree.

To this aim, we introduce Definition 33, a specific class for the null value (as we

already have a specific type, i.e., Null).

Definition 33 (Null class). The class ⊥C, used as dummy class for the value null

during type checking, is such that ⊥C ⇓ C and for all C ⇓ C, it holds that ⊥C ↑ C.

10https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

173

5.6. EMBEDDING BEHAVIOURAL CASTING IN JATYC

Notice that, we use C to range over both class names and ⊥C. Thus, during

type checking, whenever JaTyC encounter the null value, such value is typed with

the typestate tree (⊥C,Null, {}).
As shown in Definition 2, end denotes drop{}Ẽ, i.e., a typestate uẼ representing

termination. Recall, end is a supertype of a droppable state.

Definition 34. We extend the ↑T ∝ T ′ T relation (see Definition 9) with the

following rules.

Shared ↑T Shared
Shared

t ↑T end

t ↑T Shared
Linear

Null ↑T Null
Null 1

It is easy to show that reflexivity (Lemma 3) and transitivity (Lemma 4) still

hold. Concerning reflexity, the newly introduced types are subtypes of themselves;

concerning transitivity, since the newly introduced types only appears to the right-

hand side of the subtyping relation (besides being subtypes of themselves), they

do not invalidate transitivity, thus transitivity still holds.

The grammar in Definition 35 defines the types in the JaTyC type system.

Definition 35 (TC type syntax). TC (Type Checking) types, ranged over by meta-

variable tc, are terms generated by the following grammar.

tc ::= ⊥ | tt | b | void | L

In Definition 35, b is a Java primitive type, e.g., boolean, integer, float, L is

the Java type associated to an enum L, void is used to type methods with such

declared return type, ⊥ unreachable code, i.e., code after return statement and

tt is a typestate tree. Notice that, in the type checking informal description, we

disregard primitive and enum types as they are not relevant in the type checking

process. Thus, in Definition 36, we omit the subtyping rule for primitive types.

Let TCTypes be the set of TC types produced by rule tc.

Definition 36 (Subtyping on TC types). We extend the relation ↑TC ∝ T T ′T T
to TCTypes. Thus, let ↑TC ∝ TCTypes ′TCTypes be the subtyping relation

174 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.6. EMBEDDING BEHAVIOURAL CASTING IN JATYC

over TC types defined by the following inductive rules.

⊥ ↑TC tc
BotTC

void ↑TC void
Void

Notice that, the newly introduced rules do not invalidate reflexivity and tran-

sitivity properties.

5.6.2 Application to Type Checking

We now present the type checking process JaTyC performs, using a common syn-

tax as a reference point. We initiate our exploration taking into account the

analysis of declarations, proceeding to dissect expressions and culminating with a

breakdown of statements. Notice that, the triple (C, t, tts) indicates a typestate

tree. Throughout our discourse, we utilise the Kleene star to indicate sequences

that may be empty.

Class declarations and overriding. First, to ensure that the overall approach

is sound, it is crucial to guarantee that protocols are well-formed and the relation

with the corresponding class makes sense. For instance, one has to ensure that

all methods mentioned in the protocol are declared in the class. Similarly, one

has to ensure that all mentioned outputs are return values of the corresponding

method signatures. Additionally, we check typestate input contravariance and

output covariance in overridden methods since these may include Requires and

Ensures annotations in parameters and return types, respectively, which limit the

typestates received or returned. Notice that, to perform such an additional check

on the expected parameter/return TC type of the overridden method, we check

that the TC type returned by such method is a subtype of the one in the super class

(according to Definitions 31 and 36). Concerning the TC types of the parameters

in the overridden method, if they are linear objects, we require the Java class to

be the same as the one specified in the superclass and the type specified in the

Requires annotation to be a supertype of the corresponding one in the superclass.

In case such annotations are absent, it implies that the method expects/returns

an aliased reference. Finally, we need to make sure that the subclass protocol is a

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

175

5.6. EMBEDDING BEHAVIOURAL CASTING IN JATYC

subtype of the superclass protocol (i.e., the initial state of the former is a subtype

of the initial state of the latter according to Definition 5). Thanks to these checks,

dynamic dispatch works in a transparent manner: we are sure that if a method is

callable on a supertype, it is also callable on the subtype.

To type check a class, we start from the initial typestate of the protocol using

the initial values of the fields as starting type information. Then, to analyse

the other typestates, we follow the approach of Bravetti et al. [BFG+20]. In

particular, we first retrieve the field type information stemming from the analyses

of the stateful methods that (according to the protocol) are encountered along the

path to reach the typestate containing the method under examination. Then, we

use such information as the starting point to type check such method declaration.

Technically, type information is stored in a map from locations, e.g., fields of the

this object, to typestate trees (Definition 18). Notice that, we store the typestate

tree of expressions in this map since these may evaluate to typestated-objects,

which must be tracked. Moreover, type information associated with the class final

states are checked to ensure all fields either correspond to a terminated protocol or

are aliased (explained later), to ensure protocol completion of references in fields.

Method declarations: @Ensures(s) C m((@Requires(s) C’ x)*) {st}. To

examinine a method, we construct a control flow graph [All70] using the Checker

Framework [PAJ+08], outlining its execution pathway. Subsequently, we navigate

this graph, visiting each expression or statement, while propagating type infor-

mation. For every expression encountered, we utilise the type information derived

from the analysis of the preceding expression, generating updated information that

characterises the state of locations after the evaluation of that expression. Details

regarding expression and statement analyses will be provided later.

The initial type information, serving as the starting point for graph traversal,

consists of the types specified by the parameters, denoted with the Requires an-

notation. This information is augmented with details regarding fields, which are

gleaned from preceding method analyses, as previously discussed. In cases where

the Requires annotation is absent, it implies the expectation of a typestate tree

subtype of (C →, Shared, {}).
Return statements undergo analysis akin to assignments, with a critical focus

176 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.6. EMBEDDING BEHAVIOURAL CASTING IN JATYC

on ensuring that the type of the returned expression is a subtype of the one declared

via the Ensures annotation (checking classes and types subtyping). In methods

where no annotation is provided, we return an aliased reference. Upon reaching the

end of a method body, we enforce a condition where all variables and parameters

must either be aliased or in a final state, thus ensuring protocol completion.

Variable declarations with or without initialisation: C x [= exp]. To

handle variable (or field) declarations, we assign to the left-hand side a single

node typestate tree whose TC type is (C,Null, {}). Whenever variable (or field)

initialisation occurs, we distinguish among the following cases. If exp is evaluated

to (⊥C,Null, {}) (i.e., the typestate tree assigned to null), we do not change the

typestate tree assigned to variable x. If C is a class without protocol and exp

is evaluated to (C →, t, tts): (i) we ensure that C → ↑ C; (ii) we check that t is a

subtype of Shared; and (iii) we assign (C, Shared, {}) to variable x. Finally, if C

is a class with protocol and exp is evaluated to (C →, t, tts): (i) we call ucastTT on

(C →, t, tts), using C as target class; and (ii) we assign the result of ucastTT to x.

In all other cases, we report an error. Assignments may produce aliasing among

variables. Since an object state could be modified via multiple aliases, we restrict

aliasing to allow us to statically track object states. We enforce a linear discipline:

only one variable is “active”, while the others are marked as aliased (and cannot

call protocol methods). We also mark the right-hand side expression as aliased

when checking a variable declaration or assignment, i.e., we assign to exp a root

typestate tree with Shared as type.

Assignments: x = exp. To check an assignment, we first scrutinise the type-

state tree of the left-hand side: if the TC type assigned to the root is (C, t, tts)

(with C being the Java type of x), then it must hold t ↑T Shared, otherwise we

report an error. Then we proceed as described for variable intialisation. Again, to

enfornce a linear disicpline, we mark the right-hand side expression as aliased.

Method call expressions: exp.m(exp*). When examining a method call, our

first step is to verify that the receiver expression is not null. This check is possible

because of the Null type assigned to objects storing the null value. Subsequently, we

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

177

5.6. EMBEDDING BEHAVIOURAL CASTING IN JATYC

scrutinise each parameter assignment, applying the same rules elucidated earlier.

This ensures that calls such as obj.m(x,x) do not inadvertently create unintended

aliases. Furthermore, we ascertain that the root of the typestate trees associated

with the parameter expressions exp are subtypes of the expected ones in the method

signature (specified in the Requires annotation), via Definitions 31 and 36. Recall,

if no Requires annotations are provided for parameters, it implies the expectation

of an aliased reference and, consequently, we just check that the typestate tree

of exp is a subtype of (C, Shared, {}), where C is the Java class specified in the

method signature for a given parameter. Once these checks are completed, we

proceed to validate the call itself. We ensure that the receiver expression is a

non-aliased reference and utilise the evoTT function to compute the typestate

tree associated with the receiver after the call. This computation involves passing

the current typestate tree, the method name and any potentially returned output

(applicable if the method call appears within an if or switch statement). Notice

that, evoTT may be invoked multiple times to consider all possible outputs. If

the result of evoTT yields a typestate tree with ̸t as root type, meaning that the

method we are calling is unavailable in the current type t, we promptly report an

error. If the method signature presents the Ensures annotation, the method call

returns an object associated to a typestate tree composed by a single node, i.e., the

one defined in the annotation. If no annotation is provided, the typestate tree is

(C →, Shared, {}) (wich C → being the Java type specified in the method signature for

the returned value).

Cast expressions: (C) exp. When checking a cast, we know that the inner

expression was already checked, similarly to what happens to other expressions.

To check cast expressions, we must use either ucastTT or dcastTT, passing the

inner expression typestate tree and the target class. We test if we are upcasting

or downcasting comparing the inner expression static class with the target one.

The result is associated with the cast expression and the inner one is marked as

aliased.

One key detail about cast expressions is that if a cast expression is the receiver

object of a method call, after checking the call, the new type of the receiver object

is associated with the innermost expression, i.e., the type resulting from evoTT,

178 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.6. EMBEDDING BEHAVIOURAL CASTING IN JATYC

not with the cast expression itself. For example, if the receiver is (A) ((B) x), the

new type information is associated with x directly, not with (A) ((B) x), so that x

can be used again later (instead of being aliased). This will require an upcast to

the class of x, but no information is lost, thanks to typestate trees.

New expression: new C(exp*). The initialisation of a new object is analysed

similarly to a method call (since we are calling the constructor), except that it

returns a new object. So, we associate the expression with a typestate tree with

only a root: the class is the object type we are constructing, and the type is

the initial typestate of the protocol or (C, Shared, {}), if the object class has no

protocol. The parameters are analysed as explained in the method call analysis.

If statements: if (exp) { st } else { st’ }. For simplicity, up until

now we omitted an implementation detail crucial to type check if and switch state-

ments: during the control flow graph traversal, we do not simply propagate a map

from locations to typestate trees, but we also keep track of type information de-

pending on the values of other expressions. For instance, to analyse the condition

of an if statement, if it is a method call, we track the type information holding when

the call evaluates to true, separately from the one that holds when it evaluates to

false. Given this, to check an if statement, we just need to propagate the former to

the first branch, and the latter to the second branch. We also make sure to invali-

date such “conditional” type information once it is no longer relevant. Finally, the

typestate trees associated with each location after the if statement are the result

of merging type information from both branches, using mrgTT (Definition 28).

Switch statements: switch (exp) { (case val : st)* }. We approach

the analysis of a switch statement much like we do with an if statement. However,

a method call within the expression of a switch statement yields varying type

information for each case. Instead of boolean values, we consider enum values

that may be returned. Therefore, when examining a switch statement, our focus

is on propagating the relevant information corresponding to each matched case

to its associated branch. Similar to our handling of if statements, we promptly

invalidate this “conditional” type information when it ceases to be applicable.

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

179

5.7. EXTENDING JATYC LANGUAGE: LINEAR ARRAYS

While statements: while (exp) { st }. Concerning the analysis of the

while statement, we follow a similar approach to analysing if one, albeit with

a di!erent flow graph structure: upon executing the body, control returns to the

condition. Consequently, it is possible to traverse the same expression or statement

in the graph multiple times. In such cases, we check that the type information at

the end of the loop body is a subtype (according to Definition 36) of the one before

the while statement. Outside the loop body, we keep analysing the code using as

type information the one stemming from the analysis of the condition, considering

only the type information related to the false case.

5.7 Extending JaTyC Language: Linear Arrays

In the context of this Dissertation, we enlarge the supported JaTyC language with

a new syntactical construct, providing a preliminary support for linear arrays,

i.e., arrays of objects with protocol attached. Since arrays are covariant, i.e., an

array of a subclass can be passed where an array of a superclass is expected,

runtime exceptions can occur. Thus, we prohibit passing arrays as parameters.

The support for arrays of linear objects entails first the extension of the JaTyC

type system with a proper type storing a sequence of typestate trees (i.e., those

related to the objects stored inside the array):

↖tt0, tt1, . . . , ttn↔1↙.

In this context, ↖tt0, tt1, . . . , ttn↔1↙ represents an ordered sequence that can range

over indexes 0, 1, . . . , n↗ 1. Notice that, such sequence can also be emtpy, i.e., in

case of array declaration without initialisation.

We now present the type checking process JaTyC performs accounting for the

newly introduced syntactical construct, i.e., arrays of linear objects.

Array declarations with or without initialisation: C[] x [= exp]. To

handle array declarations, we assign to the left-hand side the TC type ↖ ε ↙ (i.e., the
empty array). Whenever array initialisation occurs, we check that the type of exp

is ↖tt0, tt1, . . . , ttn↔1↙. Notice that, the type of exp can also be an empty array. For

180 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.8. USE CASES

each tti, we call the ucastTT function on tti, using C as the target class, obtaining

tt→i. Finally, we compose each tt→i into ↖tt→0, tt→1, . . . , tt→n↔1↙ and assign it to x. To

enforce linearity, we mark all the elements of the right hand side linear arrays as

aliased.

New array with dimension expressions: new C[n]. The initialisation of a

new array is analysed similarly to a method call, except that it returns a new array

with the specified length. Therefore, we associate the expression with the TC type

↖tt0, tt1, . . . , ttn↔1↙, where each tti is (C,Null, {}).

New array with values expressions: {exp*}. To handle the creation of a new

array with values, we take the typestate tree tti assigned to each expi and compose

them in ↖tt0, tt1, . . . , ttn↔1↙, i.e., the type assigned to the new array with value

expression. Again, to enforce linearity, we mark all expressions expi as aliased.

Array element access expressions: x[i]. The access to an array element is

trivially handled: in the type checking process we just ensure that we can actually

access the element, i.e., we do not go over array boundaries. Subsequently, we

distinguish among three cases: (i) call a method on an array object; (ii) assign

an expression to the array element; and (iii) assign an array element. In the first

case, we proceed as described in method call expressions; in the second and third

case we proceed as outlined in variable declarations/assignments. In all cases, as

final step, we propagate the type information of the element we are accessing to

the array storing such element.

5.8 Use Cases

To demonstrate the practicality and versatility of our methodology, we commence

this Section providing a comprehensive breakdown of the type checking process

applied to the code snippet in Listing 5.15. Subsequently, we o!er a diverse array of

examples featuring polymorphic code, accessible via GitHub11, drawing inspiration

from cyber-physical system world. Through these examples, we illustrate two

11https://github.com/jdmota/java-typestate-checker/tree/master/examples

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

181

https://github.com/jdmota/java-typestate-checker/tree/master/examples

5.8. USE CASES

key points: (i) our tool is adept at identifying errors that evade detection by

the standard Java type checker; (ii) the adaptability and expressiveness of our

framework enable the modelling of complex and realistic scenarios.

Type checking Listing 5.15. To type check the ClientCode class (which has

no protocol), we check both static methods, example and setSpeed, independently.

This is so because static methods are never part of a class protocol. The list of

steps taken by the type checker to check the example method is the following:

• check the expression new SUV(), associating it with a leaf typestate tree with

class SUV and type OFF (i.e., (SUV,OFF, {}));

• check the assignment, associating the previous typestate tree with the vari-

able suv and marking the expression on the right as aliased;

• check the call suv.turnOn(), allowed in type OFF, generating “conditional”

type information: if true, suv has typestate tree (SUV,COMF ON, {}), oth-
erwise it has (SUV,OFF, {});

• check the negating expression which “inverts” the conditional information;

• inside the body of the while statement suv is associated with (SUV,OFF, {})
and after exiting the while, suv is associated with (SUV,COMF ON, {});

• check the call suv.switchMode(), which is allowed in type COMF ON, gen-

erating “conditional” type information: the variable suv has the typestate

tree (SUV, SPORT ON, {}) if the call returns Mode.SPORT and it returns

Mode.COMFORT, suv has (SUV,COMF ON, {}). Since the returned value

is not checked in a switch statement, we combine both typestate trees into

(SUV, SPORT ON △ COMF ON, {});

• check the parameter assignment of suv by upcasting from SUV to Car, gen-

erating the typestate tree (Car,ON, {(SUV, SPORT ON △ COMF ON, {})}).
Since the root type ON is a subtype of the one in the Requires annotation,

the parameter assignment is allowed. Additionally, variable suv is marked

as aliased: the setSpeed method is now the one responsible to complete the

protocol of the given instance;

182 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.8. USE CASES

• no further checks are necessary for the call expression on setSpeed since it is

a static method and methods are checked in a modular way;

• type checking the example method finishes by checking protocol completion.

Since all locations are marked as aliased at the end, no error about completion

is reported.

To finish the type checking process, we analyse setSpeed. The list of steps

taken follows:

• associate car with typestate tree (Car,ON, {}), according to the Requires

annotation;

• downcast from class Car to SUV, which results in the following typestate

tree, (SUV,COMF ON △ SPORT ON, {});

• check the method call ((SUV) car).switchMode(), which is allowed in type

COMF ON△ SPORT ON, generating “conditional” type information: (SUV)

car has the typestate tree (SUV, SPORT ON, {}), if the method call returns

Mode.SPORT and if it returns Mode.COMFORT, the expression (SUV) car

has (SUV,COMF ON, {});

• to make car usable again, upcast it to Car, associating the typestate tree

(Car,ON, (SUV, SPORT ON, {})) if the call returned Mode.SPORT; other-

wise (Car,ON, (SUV,COMF ON, {})) if the call returned Mode.COMFORT;

• check the if statement propagating the type information corresponding to

each branch;

• in the body of the if statement, downcast (again) from Car to SUV, resulting

in the typestate tree (SUV, SPORT ON, {});

• check the method call ((SUV) car).setFourWheels(true), which is allowed

in type SPORT ON, in a similar fashion as before, associating car with

(Car,ON, (SUV, SPORT ON, {}));

• merge type information from both branches, resulting in car being associated

with typestate tree (Car,ON, (SUV, SPORT ON △ COMF ON, {}));

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

183

5.8. USE CASES

• check the call car.setSpeed(50), which is allowed in type ON, leading to ON;

• check the call car.turnO!(), which is allowed in type ON, leading to OFF;

• finish by checking protocol completion. Since all locations are marked as

aliased or are in a final state (car is in the droppable typestate OFF), no

completion error is reported.

Type checking Listing 5.14. The list of steps taken by JaTyC to check the

example method is the following:

• check the if statement by propagating the type information corresponding

to each branch;

• in the if branch, perform an upcast and assign the type SUV to variable c,

associating it with the typestate tree (Car,OFF, {(SUV,OFF, {})});

• in the else branch, perform an upcast assigning the type Ecar to variable

c, associating it with the typestate tree (Car,OFF, {(ECar,OFF, {})}) (sup-
posing that the protocol of class ECar has type OFF as the initial one);

• merge type information from both branches, resulting in the following type-

state tree, (Car,OFF, {(SUV,OFF, {}), (ECar,OFF, {})});

• check the call c.turnOn(), allowed in the type of each node of the associated

typestate tree, generating “conditional” type information: if it returns true, c

has typestate tree (Car,ON, {(SUV,COMF ON, {}), (ECar,E ON, {})}) (as-
suming that E ON is the resulting type, in the protocol of ECar, in case the

turnOn method call successfully ends); otherwise the variable c is associated

to (Car,OFF, {(SUV,OFF, {}), (ECar,OFF, {})});

• in the if branch, downcast from Car to SUV, resulting in the typestate tree

(SUV, SPORT ON, {});

• check the call s.setEcoDrive(true), which is allowed in type COMF ON, leading

to COMF ON;

184 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.8. USE CASES

• assign s of type SUV to c, performing an upcast, resulting in the following

typestate tree (Car,ON, {(SUV,COMF ON, {})});

• check that the call car.turnO!() is allowed in the type of each nodes; such call

leads to the typestate tree (Car,OFF, {(SUV,OFF, {})}), if c is an instance

of SUV; (Car,OFF, {}) otherwise;

• type checking the example method finishes by checking protocol completion.

Since all locations are marked as aliased at the end, no error about completion

is reported.

By now, the reader that has thoroughly understood the concept of typestate trees

might realise that even if a typestate tree forgets all nodes except the root, the

type system would still be sound. Thus, the reader could now be puzzled about

the importance and the need for typestate trees, wondering if it is worth such an

heavy machinery to perform castings in the middle of a protocol. To clarify that,

let us consider the example in Listing 5.14 type checked above. Notice that, if we

just consider the root node the above program, even if, as shown, is correct, would

not compile. The reason is the following. If we just consider the root node, after

the if statement, the type of c is OFF (according to the protocol in Listing 5.11). If

the turnOn call successfully ends, the type becomes ON. After downcasting to SUV

the new type of c is the union type COMF ON △ SPORT ON (even if we know it

actually is COMF ON). In such type, the method calls allowed are only those that

are common to both typestates, i.e., setSpeed. Thus, even if the above program is

correct, it does not type check, since setEcoDrive is only allowed in the typestate

COMF ON. In conclusion, just considering the root node of a typestate tree is

indeed a sound approach, but it significantly reduces the set of correct programs

we are able to type check.

Type checking Listing 5.18: linear arrays. To type check the ClientCode

class, we check both static methods, example and setSpeed, independently. Notice

that, since the setSpeed is the same as in Listing 5.15, we avoid repeating its static

checking procedure. The list of steps taken by the type checker to analyse the

example method is the following:

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

185

5.8. USE CASES

Listing 5.18: Type checking a linear array!
1 public static void example () {
2 int x = 5;
3 SUV[] suvs = new SUV[x];
4 for (int i = 0; i < x; i++) {
5 suvs[i] = new SUV();
6 while (!suvs[i]. turnOn ()) { System.out.println("turning on..."); }
7 suvs[i]. switchMode ();
8 setSpeed(suvs[i]);
9 }

10 }"# $
• check the expression x = 5, associating it with an integer type, holding its

numerical value;

• check the expression new SUV[x], associating it with a leaf typestate tree with

class SUV[] and type ↖tt0, tt1, . . . , tt4↙, where each tti is (SUV ,Null, {});

• check the assignment, associating the previous typestate tree with the vari-

able suvs, and marking the expression on the right as aliased;

• check the expression i = 0, within the for loop, associating it with an integer

type, holding its numerical value;

• check the expression i < 5, within the for loop: if it holds we traverse the

loop body;

• check the loop body as done in the Listing 5.15. Since we are dealing with

arrays, here we additionally check that the array element access is legal,

i.e., the type of the variable used as index holds a value greater than or

equal to 0 and lower than the array length.

• check the expression i++, which is implicitly converted in i = i + 1, associ-

ating it with an integer type, holding the updated numerical value;

• check the expression i < 5 against the newly updated numerical value of i.

Examples suite. The most significant examples within our suite are succinctly

outlined in Table 5.1: the Directory column denotes the sub-directory housing

each example; Features encapsulates the primary aspects emphasised by each

186 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.8. USE CASES

example; Type checks signals whether our tool accepts or rejects the example;

and lastly, the Runtime column delineates any runtime errors manifested by the

example when executed. Notice that, all the examples are correct with respect to

the Java standard type checker, i.e., they are complied without errors.

Name Directory Features Type

checks

Runtime

Removable

Iterator (1)

removable-iterator Polymorphic safe code Y Ok

Removable

Iterator (2)

removable-iterator2 Wrong method call order N Index Out

Of Bounds

Alarms alarm-example Polymorphic safe code Y Ok

Cars (1) car-example Polymorphic safe code Y Ok

Cars (2) car-example2 Wrong method call order N Null pointer

exception

Drones (1) drone-example Typestated data structure

Simple objects interaction

Y Ok

Drones (2) drone-example2 Typestated data structure

Complex objects interaction

Y Ok

Drones (3) drone-example3 Typestated data structure

Complex objects interaction

Incorrect test for null value

N Null pointer

exception

Robots (1) robot-example Typestated data structure

Simple objects interaction

Y Ok

Robots (2) robot-example2 Wrong typestate upcast N Null pointer

exception

Table 5.1: Summary of examples

In Removable Iterator (1), Alarms, and Cars (1), the examples serve to assess

the behaviour of our approach with polymorphic code. As anticipated, the code

compiles seamlessly, without encountering any errors.

In Drones (1) and Robots (1), the examples advance in complexity introducing

a typestate-endowed data structure, enhancing the degree of flexibility. Here, the

quantity of linear objects, namely Drones and Robots, is arbitrary. The primary

feature highlighted is the interaction among these linear objects: upon utilisation,

each object must be extracted from the data structure and reinserted once its

task is completed. In Drones (2), the interaction between the data structure

and the objects becomes more intricate. We do not wait for an object to finish

its task, but, instead, we immediately place it back in the data structure and

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

187

5.9. RELATED WORK

proceed to the next one, simulating parallel task execution. In Drones (3), the

example is a modification of the previous one, with the key di!erence lying in an

incorrectly negated test for null within the return expression of an instance method.

This oversight leads to a null pointer error in subsequent calls. Our tool adeptly

propagates type information regarding the order in which methods must be called,

thereby statically identifying and capturing this issue. In Removable Iterator (2)

and Cars (2), we show two di!erent problematic scenarios: index out of bounds and

null pointer exceptions, respectively. The former is caused by repeatedly retrieving

the next element, without checking whether there are remaining elements or not.

The latter is caused due to a field usage before initialisation. We are able to

statically catch both cases, since they are caused by an illegal order of method

calls. Finally, in Robots (2), we show another null pointer exception. Here, the

exception is caused by a field being assigned to null in the subclass and used in

the superclass, after performing an upcast. Thanks to our machinery, we are able

to detect that, after assigning the field to null, the object is in a typestate with no

supertypes, thus we raise an error preventing such runtime problems.

5.9 Related work

This Chapter presents two main contributes: the extension of the language sup-

ported by JaTyC and the formalisation of its type system and the development of

a novel theory to safely perform behavioural up/down casts at any points in pro-

tocols together with its implementation in our typestate-based checker for Java.

While the language extension follows mainstream approaches, our novel theory on

behavioural casts at any points in protocols significantly advances the state of the

art on typestate-based analyses. Thus, in this Section, we review the literature in

the context of typestate-based programming and session types subtyping.

Fugue [DF04] provides a method for verifying typestates, conceptualised as

predicates over fields, annotating methods with pre- and post-conditions and then

checking invariants. It adeptly handles casting and subtyping, allowing subclasses

to introduce additional typestates relative to their superclasses. Similar to our ap-

proach, if an object ends up in a state unknown to its supertype, Fugue prohibits

upcasting. To manage inheritance, Fugue introduces the concept of frame types-

188 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.9. RELATED WORK

tates, where each frame represents a set of fields declared in a specific class, and

an object typestate is comprised of these frames. In contrast, our approach defines

protocols globally with automata (such as those depicted in Listing 5.11), rather

than relying on method contracts, which we consider more intuitive. Moreover,

instead of employing frames, we treat each class as a whole. This simplification is

viable because we interpret typestates as sequences of method calls, rather than

predicates or invariants over fields. This streamlined perspective facilitates han-

dling overriding and dynamic dispatch seamlessly.

Plural [BA07] performs static checks to ensure that clients adhere to usage

protocols based on typestates. It builds upon earlier work [BA05] that tackles the

challenge of subtype substitutability while ensuring behavioural subtyping in an

object-oriented language. Plural supports subtyping requiring the programmer to

explicitly specify which typestates “refine” (i.e., are substates of) others in the

superclass. In contrast, our approach eliminates the need for explicitly defining

subtyping relations. We define protocols in terms of state machines and automat-

ically identify all subtyping pairs, making the process easier for developers.

Obsidian [COE+20] is a programming language for smart contracts that pro-

vides strong compile-time features to prevent bugs. It is based on a type system

that uses typestate to statically ensure that objects are manipulated correctly

according to their current states. While Obsidian supports parametric polymor-

phism, it forbids casting to maintain robust static guarantees.

Kellogg et al. [KSSE22] define a subset of typestates termed accumulation type-

state specifications, which can be verified without requiring aliasing information.

Within this subset, enabled methods are incapable of being disabled. It is worth

noting that the formal language introduced in their work does not incorporate

modelling of inheritance.

The Shelley framework [dFCM23] implements typestates within a programming

language, specifically Python, with a focus on model checking pertaining to call

ordering constraints. Notably, their approach does not consider aspects such as

inheritance, subtyping or polymorphism.

The exploration of session types subtyping for synchronous communication was

initially pioneered by Gay and Hole [GH05]. Building upon this foundation, Lange

and Yoshida [LY16] devised two algorithms to determine if a session type serves as

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

189

5.9. RELATED WORK

a subtype of another, leveraging the work of Gay and Hole [GH05] and Kozen et

al. [KPS93]. Bacchiani et al. [BBLZ21] further contributed by developing a tool to

generate simulation graphs for synchronous session subtyping, drawing inspiration

from the advancements made by Lange and Yoshida [LY16].

Gay et al. [GVR+10], build upon prior research on session types for object-

oriented languages, introduce a protocol, represented as a session type, attached

to a class definition. Their work unifies communication channels with their session

types, distributed object-oriented programming and introduces a form of types-

tates supporting non-uniform objects. While their formal language incorporates

a subtyping relation on session types [GH05], it excludes class inheritance, as

subtyping is primarily applied to channel communication. This approach is man-

ifested in two implementations: Papaya [JRD21] and Mungo [KDPG16]. Papaya,

inspired by the protocols introduced by Gay et al. [GVR+10], employs Scala as

the target language. However, like its predecessor, it does not handle inheritance.

On the other hand, Mungo, also influenced by the protocols outlined by Gay et

al. [GVR+10], uses Java (as we do) as the target object-oriented language. Simi-

larly, inheritance is not supported in Mungo, except for classes lacking protocols,

thus no static guarantees are provided in polymorphic code.

The work done by Bravetti et al. [BFG+20] introduces a type system specifi-

cally tailored for a Java-like language, wherein objects are annotated with usages

and typestate-like specifications delineating the permissible sequences of method

calls. Through type-based analysis, their framework ensures adherence to proto-

cols, completeness, and memory safety, by preventing null pointer dereferencing.

Notably, their approach does not support subtyping, hence precluding protocol

inheritance and behaivoural casting, as well as their standard Java counterparts.

Bouma et al. [BdGJ23] introduce a tool designed to streamline the process

of generating Java classes that model APIs from a global type, representing the

behaviour of processes within a multiparty session typing framework [HYC16]. In

their approach, the state is represented by a state field and transitions are encoded

using methods annotated with preconditions and post-conditions. Verification of

client APIs is facilitated by the programmer, who annotates Java code with logical

formulas, all of which are statically checked by VerCors [BH14]. In contrast,

our approach di!ers significantly. Rather than dispersing annotations throughout

190 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

5.10. DISCUSSION

the codebase to specify or use protocols, we simply associate them directly with

classes. The type system then ensures memory safety, protocol compliance, and

completion—properties that developers would typically need to specify for each

program individually. This streamlined approach reduces the burden on developers

and promotes cleaner, more maintainable code.

5.10 Discussion

In this Chapter, we presented an extension of JaTyC that enables behavioural

casting at any juncture within protocols, accompanied by its thorough theoretical

foundation. Our approach, as shown in the study of Mastrangelo et al. [MHN19],

addresses a significant challenge hindering the widespread adoption of typestates

in the static analyses of object-oriented programs: the restricted flexibility in per-

forming cast operations at any point of a protocol. By introducing a novel theory

based on typestate trees, we overcome this obstacle. Our theory is equipped with

a comprehensive set of functions designed to manage the abstraction of typestate

trees. We establish the soundness of typestate trees through formal mechanisation

in the Coq proof system. We assert that typestate trees possess broad applicability

across various program analysers for object-oriented languages with inheritance.

This language-agnostic nature opens doors for the acceptance of programs and

features that were previously deemed unfeasible in such contexts. To support this

assertion, we developed a type checker for Java and evaluate the expressiveness

of our approach. The significance of our theory and its practical applications

is demonstrated through the typestate-based type checking of realistic Java code

within an automotive system equipped with driving dynamics control. This system

facilitates the customisation of drive modes for SUVs, showcasing the versatility

of our approach in real-world scenarios. To the best of our knowledge, existing

research has not addressed the issue of castings in the middle of protocols. Ad-

ditionally, the notion of droppable states, which indicate points in the protocol

where it can safely terminate, introduces another crucial concept. Therefore, our

work represents a significant advancement in the state of the art, o!ering thorough

support for inheritance and casting in object-oriented languages. This advance-

ment is achieved leveraging the principles of behavioural types [ABB+16, HLV+16],

CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

191

5.10. DISCUSSION

enhancing the expressiveness and practicality of our approach.

In addition, we extended the language JaTyC support, by introducing a new

syntactical construct to support linear arrays, i.e., arrays of objects with protocol.

Such an extension requires to carefully reason on the impact it has on the existing

ecosystem. Thus, we first formalise the JaTyC type system and the subtyping

relations among the existing types JaTyC defines. Then, we introduce the new

type to handle linear arrays in the type system and we extend the type checking

process, in order to account for linear arrays.

In future endeavors, we intend to formally establish the runtime soundness of

typestate trees. This involves devising a core object calculus incorporating inher-

itance, static typestate semantics and dynamic operational semantics. We aim to

mechanise a type safety result, ensuring that well-typed programs at runtime ad-

here to object protocols in terms of method call order and completion, while also

avoiding null pointer exceptions. Additionally, we plan to explore how these con-

cepts can be adapted to accommodate settings with multi-inheritance and generics,

further expanding the scope of our approach.

192 CHAPTER 5. TYPESTATE TREES FOR STATICALLY TYPED
LANGUAGES

Chapter 6

A Formal Specification of the

Java Type Checker

In Chapter 5, we introduced a theoretical framework that advances the current

state of the art in typestate-based analyses, fully supporting behavioural casting

at any point of the protocol, hence polymorphism. Polymorphism, being a key

feature in modern programming, enables more flexible and reusable code. By in-

tegrating it into typestate-based type checking analyses, we aim to enhance their

precision and applicability. To evaluate the e!ectiveness of our approach, we imple-

mented this theoretical foundation within JaTyC, a typestate-based type checker

for Java. However, the type checking procedure outlined in Section 5.6 has only

been described informally, lacking the rigor necessary for a comprehensive un-

derstanding of its functioning. Therefore, in this Chapter, we provide a detailed

and precise perspective of the type checking process. To this aim, we first design

a subset of the Java language, drawing inspiration from the work of Bravetti et

al. [BFG+20]: we include key features, e.g., primitive types, classes, inheritance

hierarchies, instance variables. In the context of this Dissertation, we further ex-

tend the language of Bravetti et al. [BFG+20] with additional elements including,

e.g., variable declarations. Moreover, in addition to these standard Java elements,

our approach extends the work of Bravetti et al. [BFG+20] incorporating alias-

ing, method signatures in protocols, droppable states (as defined in Definition 2),

protocol inheritance, polymorphism and typestate tree, enhancing both the ex-

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

193

6.1. CORE LANGUAGE SYNTAX

pressiveness and applicability of our type system. The integration of these new

elements in our extended language significantly enlarges the scope of programs a

user can define within the context of our core language.

Upon our core language, we formally define the type checking procedure en-

acted by JaTyC. In particular, for each syntactical construct (e.g., statements,

expressions), we define the corresponding set of rules required to properly handle

its type checking process. These rules serve as a framework to ensure that each

component of the language adheres to the expected type constraints. By ground-

ing the type checking procedure within a rigorous formal specification, we provide

a comprehensive and unambiguous representation of the internal operations of

JaTyC. This formalisation, not only clarifies the steps involved in type checking,

but also enhances the transparency and reliability of the tool, o!ering insights into

its behaviour and functionality at a deeper level.

Wrapping up, the Chapter is structured as follows. In Section 6.1, we formally

define the syntax of the core language adopted in this Chapter; in Section 6.2,

we introduce the type system as well as the type checking rules supporting and

clarifying the procedure described in Section 5.6, while in Section 6.3 we conclude

the Chapter.

6.1 Core Language Syntax

The grammar presented in Definition 39, which draws inspiration from the work

of Bravetti et al. [BFG+20], defines the user syntax for the subset of the Java lan-

guage explored in this Chapter. This syntax serves as the formal foundation upon

which the structure of programs in our language is constructed. By meticulously

outlining the syntactic rules, we provide a precise specification of how various lan-

guage constructs, e.g., expressions and statements, can be combined to form valid

programs. These rules, not only ensure clarity and consistency, but also facilitate

a deeper understanding of the language and its underlying principles.

In this Chapter, to model typestates e!ectively, we adhere to the formal frame-

work introduced in Section 5.1. However, we extend this syntax incorporating

the entire method Java signature (only considering Java types) into the protocol,

rather than relying solely on the method name. This extension is significant as it

194 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.1. CORE LANGUAGE SYNTAX

enables the inclusion of method overloading in our static analyses. By distinguish-

ing methods, not only by their names, but also by their parameter Java types

within the protocols, we enhance the precision and flexibility of our analytical

tools. This advancement allows for a more nuanced and accurate representation

of program behaviour, particularly in scenarios where method overloading plays a

critical role. Consequently, this enriched syntax provides a robust basis for further

exploration and analysis of typestates in the context of Java-like languages.

Definition 37 (Typestate syntax).

(defining equation) E ::= s = d{ ⊋jms : w}

(input state terms) u ::= d{ ⊋jms : w} | s

(state terms) w ::= u | ↖l̃ : u↙

(droppable) d ::= ω | drop

(Java method signature) jms ::= jtm(j̃t)

where in d{ ⊋jms : w} either d = drop or the sequence ⊋jms : w is not empty and, if

w = ↖l̃ : u↙, the type of l must be compatible with the returned one declared in jms.

Recall, end is an alias for drop{}, i.e., a droppable typestate uẼ without input

actions whose set is omitted as it is irrelevant in a terminated state.

We model annotation types by closely adhering to the syntax outlined in Sec-

tion 5.5.2. As a reminder, union types permit a method call only if it is allowed

by every element within the union. This ensures that the method adheres to the

constraints imposed by all constituent types, thereby maintaining type safety and

consistency. In the user syntax, we intentionally restrict the range of types that can

be explicitly defined, currently disregarding intersections and ̸t. This limitation is

deliberate, as these elements are introduced exclusively during the type-checking

phase and cannot be directly specified by the user within the program. Their

exclusion from the user syntax simplifies the language for the programmer while

still enabling the type system to handle more complex type relationships inter-

nally. Notice that, annotation types at encapsulate the information of Requires

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

195

6.1. CORE LANGUAGE SYNTAX

and Ensures annotations (see Section 5.2). These annotations play a crucial role

in specifying pre-conditions and post-conditions for methods.

Definition 38 (Annotation type syntax).

(annotation types) at ::= at △ at | uẼ

In our setting, a program D̃ is a set of enum, i.e., enum L {ĩd} (where id is a

generic identifier), and linear class declarations, i.e., classes with protocols, of the

forms class C {uẼ; F̃ ; B̃; M} or class C {uẼ; F̃ ; B̃; M} extends C → in case of class

inheritance, where uẼ is the class initial typestate, F̃ , B̃ and M are the sequence

of declared fields, class constructors and defined methods, respectively. We assume

programs D̃ to always include a special class for the null value, denoted by ⊥C.

A class constructorB is declared as C(⫅̸pt id){cbst} (possibly including super(ẽ)),
where C denotes the class owning the constructor and ⫅̸pt id denotes the sequence of

its arguments. It is important to note that, ⫅̸pt id is treated as an ordered sequence

of elements, with the order being determined by the method signature. This order

is crucial for ensuring that method invocations are correctly matched with their

parameters during the type checking process. Notice that, a parameter type (and

the return one for methods) of the form C[at] models the Requires and Ensures

annotations, presented in Chapter 5. These annotations provide a formal means

to express the required type, i.e., a typesatete uẼ or a union type, defining the

behaviour the object must adhere to in the method body and the one a possibly

returned object provides after the method completes. This mechanism is central to

our analysis, allowing the type checker to enforce correct usage patterns of objects

and prevent runtime errors, e.g., invoking a method on an uninitialised object.

A method M is declared as rtm(⫅̸pt id){bst}, where ⫅̸pt id the sequence of argu-

ments. Di!erently from constructors, methods additionally have a return type rt

that specifies the data type the method returns, which could be a primitive type

(such as int or bool), void or a class with its current type (i.e., C[at]).

The body of a constructor/method is defined as a sequence of statements bst
that can include e.g., while (e) st, if (e) st else st, switch (e) {cbl}, return and break,

variable declarations jt id = e, expressions e used as statements and compound

statements {bst} (i.e., a group of statements treated as a single unit).

196 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.1. CORE LANGUAGE SYNTAX

Expressions e include a variety of operations such as method calls of the form

eid.m(ẽ),m(ẽ), this.m(ẽ) and super.m(ẽ), where a method m is invoked on a ref-

erence id of the current class or its parent, on the this (which can be omitted)

or super objects. The sequence of expressions ẽ represent the arguments passed

to the method call. Other forms of expressions include accesses and assignments

of/to fields of the current class, fields inherited from superclasses and fields that

belong to the objects referenced by the current class fields, i.e., eid, eid.id, eid = e

and eid.id = e. The syntax also includes object creation expressions new C(ẽ),

which instantiate new objects of class C, allowing for dynamic memory allocation

and the creation of new instances at runtime. Explicit cast operations (jt) e are

used to convert an expression e to a di!erent Java type jt, enabling polymorphism

and type hierarchies to be navigated. Additionally, we include logical operators

(e.g., logical negation, equality and inequality operators) to provide more flexibil-

ity: expressions can be also used in composition with the logical negation operator

! e, with e == e→ and e != e→, useful, e.g., in the condition of if or while statements.

Expressions can also assume the form of values v, allowing methods to also oper-

ate on primitive values directly. Primitive values in the language include boolean

values of type bool, integer values of type int and double values of type double

(represented by intLit and doubleLit), which are the basic data types supported by

the system. Although only these primitive types are considered, extending the sys-

tem to handle others is straightforward, as the underlying theoretical framework is

general enough to accommodate additional types without significant modifications.

In Java, identifiers and values are not considered as statements. As a matter

of fact, following the Java philosophy of adding constraints to improve readability,

maintainability and avoid common programming errors, we disregard this aspect.

Definition 39 (User Syntax).

(class declaration) D ::= enum L {ĩd} | class C {uẼ; F̃ ; B̃; M} |

class C {uẼ; F̃ ; B̃; M} extends C →

(field declaration) F ::= jt id

(method declaration) M ::= rtm(p̃t id){bst}

(class constructor) B ::= C(p̃t id){cbst}

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

197

6.1. CORE LANGUAGE SYNTAX

(user value) v ::= null | intLit | doubleLit | l

(label) l ::= true | false | L.id

(basic type) b ::= bool | int | double

(java type) jt ::= b | C | L

(parameter type) pt ::= b | C[at] | L

(return type) rt ::= void | pt

(extended id) eid ::= id | this.id | super.id

(extended method call) emc ::= m(ẽ) | this.m(ẽ) | super.m(ẽ)

(expression) e ::= v | emc | eid.m(ẽ) | eid | eid.id |

eid = e | eid.id = e | new C(ẽ) |

(jt) e | ! e | e == e | e != e

(statement) st ::= if (e) st else st | {bst} | switch (e) {cbl} |

break | return e | while (e) st | e

(block statement) bst ::= jt id = e | st

(case block) cbl ::= case v : bst | default : bst

(constructor body) cbst ::= bst | super(ẽ) bst

During type checking, we need to ensure that all the classes considered are

defined in the context of a program D̃. Thus, for convenience, in Definition 40, we

define the set of classes and enums defined in a program D̃.

Definition 40 (Classes and Enums in a program). We define CD̃ and LD̃ as the

sets of classes and enums, respectively, declared in a program D̃. Formally,

CD̃
def
= {C | class C {uẼ; F̃ ; B̃; M} ⇓ D̃ ∃

class C {uẼ; F̃ ; B̃; M} extends C → ⇓ D̃ ∃ C = ⊥C}

LD̃
def
= {L | enum L {ĩd} ⇓ D̃}

According to the previous Chapter (see Section 5.5.3), ⊥t can only be produced

after a downcasting a super-typestate with no subtypes in the protocol of the

198 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

subclass. Notice that, this scenario can only occur when, in a given state, the super-

typestate has more choices than its subtypes (i.e., output covariance). However,

given that in Java there is no inheritance among enums, outputs are invariant and

⊥t can never occur. Consequently, for simplicity, in the next Sections, we devise

all our functions based on this assumption.

6.2 Type System

In this Section, we provide a detailed exposition of the type system that forms

the foundation of our core language, accompanied by the formal rules that govern

type assignments within programs. The type system is a critical component of

the language, serving as a rigorous framework to ensure that programs are well-

structured and comply with the specified semantic constraints. By defining how

types are assigned and validated, the type system plays a pivotal role in main-

taining the correctness and reliability of programs written in our language. We

describe the mechanics of the type system, elaborating on the systematic process

through which various language constructs are assigned their corresponding types.

This includes expressions, statements, variables and other syntactic elements, each

of which must adhere to the type rules to ensure consistency and coherence across

the program. The formal rules we present are designed to be both precise and

expressive. The defined type checking rules constitute a rigorous and precise repre-

sentation of JaTyC functioning informally described in Section 5.6. By examining

them, we can gain insights into how JaTyC ensures that data types are correctly

assigned and verified throughout programs, thereby enhancing its trustworthiness.

In the type checking rules, we adopt the following semantics for subscripts:

normal font represents variable elements (e.g., parameters of a relation), while

bold font is used to assign di!erent meanings to the same symbol.

Class/enum information. During type checking, we may need to use static

information about classes and enums, e.g., protocol, declared fields and methods:

in Definitions 41 and 42 we define the functions to retrieve such information.

Definition 41 (Class functions). Let class C be either class C {uẼ; F̃ ; B̃; M} or

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

199

6.2. TYPE SYSTEM

class C {uẼ; F̃ ; B̃; M} extends C →, we define the following functions.

C.protD̃
def
=uẼ C.fieldsD̃

def
= F̃

C.consD̃
def
=B̃ C.methsD̃

def
= M

C.supD̃
def
=


C → if class C {uẼ; F̃ ; B̃; M} extends C →

ω otherwise

Definition 42 (Enum values). Let L be enum L {ĩd}, we define the following

function.

L.valsD̃
def
= ĩd

Class inheritance enables seamless transfer of fields and methods from super-

classes and requires careful reasoning: (i) fields can be inherited and shadowed

(i.e., a subclass defines a field with the same identifier of a field defined in one of

its superclasses); and (ii) methods can be inherited and overridden (i.e., a sub-

class re-defines a method defined in one of its superclasses). During type checking,

whenever we encounter a class with some superclasses, we need to filter out all

the shadowed fields and overridden methods (see Definitions 45 and 46). While

for fields shadowing it is enough to compare their identifiers, to detect overridden

methods we need to compare Java signatures (without considering return types).

To this aim, we introduce in Definitions 43 and 44 the required functions.

Let RTTypes be the set of return types ranged over by meta-variable rt; let

J T be the set of Java types ranged over by meta-variable jt; recall, TCTypes is

the set of TC types ranged over by meta-variable tc.

Definition 43 (Extract Java type). The function toJT :TCTypes△RTTypes ⇐
J T is defined as follows.

toJT(tcrt) =






cl(tt) if tcrt = tt

C if tcrt = C[at]

tcrt otherwise

Whenever we use toJT on a sequence, we apply it to all its element.

200 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

Let M be the set of method definitions ranged over by meta-variable M ; let

MS be the set of method signatures ranged over by meta-variable ms.

Definition 44 (Method signature). Given a method definition M , the function

sig : M ⇐ MS is defined as follows.

sig(rtm(p̃t id){bst}) = rtm(p̃t)

Let IdNames be the set of identifiers ranged over by meta-variable id.

Definition 45 (All fields). Given a program D̃ and a class C ⇓ CD̃, the partial

function C.allFD̃ : IdNames ϑ CD̃ is defined as follows.

C.allFD̃ =


{id ∅⇐ C | jt id ⇓ C.fieldsD̃} △ fs if class C {uẼ; F̃ ; B̃; M} extends C →⇓D̃

{id ∅⇐ C | jt id ⇓ C.fieldsD̃} otherwise

where

fs = {id ∅⇐ C →→ ⇓ C →.allFD̃ | ¬ ∋ jt . jt id ⇓ C.fieldsD̃}

Definition 46 (All methods). Given a program D̃ and a class C ⇓ CD̃, the partial

function C.allMD̃ : MS ϑ CD̃ is defined as follows.

C.allMD̃ =


{sig(M) ∅⇐ C |M ⇓ C.methsD̃} △ms if class C {uẼ; F̃ ; B̃; M} extends C →⇓D̃

{sig(M) ∅⇐ C |M ⇓ C.methsD̃} otherwise

where

ms ={rtm(p̃t) ∅⇐ C →→ ⇓ C →.allMD̃ |

¬ ∋ rt→ m(⫅̸pt→ id→){bst}⇓C.methsD̃ . toJT(p̃t) = toJT(pt→)}

Subtyping relations. During type checking, we crucially use the subtyping

relations among Java types and TC types in Definitions 36, 47 and 48. Notice

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

201

6.2. TYPE SYSTEM

that, these relations are bound to a specific program D̃, since some of them may

hold in D̃ and may not in D→.

Let J T be the set of Java types ranged over by meta-variable jt.

Definition 47 (Subtyping on Java types). The reflexive and transitive relation

↑D̃ ∝ J T ′ J T is inductively defined as follows.

SubB

int ↑D̃ double
SubC

class C {uẼ; F̃ ; B̃; M} extends C → ⇓ D̃

C ↑D̃ C →

BotC

C ⇓ CD̃
⊥C ↑D̃ C

RefCL

jt ⇓ CD̃ △ LD̃

jt ↑D̃ jt

RefB

b ↑D̃ b
Trans

jt ↑D̃ jt→ jt→ ↑D̃ jt→→

jt ↑D̃ jt→→

During type checking, there are scenarios where having a notion of subtyping

among sequences of Java types is advantageous, e.g., in case of method overloading.

Thus, we extend the subtyping relation presented in Definition 48 to sequences.

Definition 48 (Subtyping on sequences of Java types). The reflexive and transi-

tive relation ↑D̃ ∝ J T n ′ J T m is defined as follows.

SeqSub

|jt→| = |j̃t| ∈ i , 1 ↑ i ↑ |j̃t| . jti ↑D̃ jt→i

j̃t ↑D̃
jt→

Upon subtyping among Java types, we build the notion of subtyping for TC

types. In the following, we use ↑TC,D̃ to indicate the subtyping relation defined

in Definitions 31 and 36 adopting ↑D̃ as subtyping relation among Java types.

Di!erently from the previous Chapter where we disregarded basic types and enums

as they were irrelevant for the type checking, we now consider them. Consequently,

we need to extend the subtyping relation presented in Definitions 31 and 36.

Definition 49 (Subtyping on basic TC types). We extend the ↑TC,D̃ subtyping

202 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

relation, to account for basic types and enums, as follows.

b ↑D̃ b→

b ↑TC,D̃ b→
Base

L ⇓ LD̃

L ↑TC,D̃ L
Enum

Reflexivity and transitivity still holds, as new relations are reflexive (i.e., Enum

rule) and rely on ↑D̃, which is reflexive and transitive (i.e., Base rule).

Terminability. In typestate-based analyses, it is crucial to ensure, at the end of

a program, protocol completion, i.e., all objects reaching the end state, to avoid

dangerous scenarios, e.g., resource leaks. To this aim, we define, in Definitions 50

and 51, a notion of terminable type and TC type.

Definition 50 (Terminable type). We define the predicate term on a type t as the

predicate to determine if t is terminable. Formally,

term(t)
def
= t ↑T Shared △ Null

Requiring t ↑T Shared △ Null implies that either t ↑T Shared or t ↑T Null (see

Union R in Definition 9). Given that, droppable states are subtypes of Shared,

t ↑T Shared captures t being a droppable state, Shared or a union/intersection

of droppable states and/or Shared; t ↑T Null captures t being either Null or a

union/intersection of Null only.

Since the building blocks of our type system are TC types, it is convenient to

establish a notion of terminable TC type (see Definition 51).

Definition 51 (Terminable TC type). A type tc is said to be terminable if it is a

typestate tree storing a terminable type. Formally,

term(tc)
def
= ∋ tt ⇓ T T . (tc = tt) ⇔ term(ty(tt))

Unresolved types/typestate trees. During type checking, it may happen that

a type t can temporarily be in an output state, e.g., after a method call. However,

the types presented in Definitions 8 and 32 are not flexible enough and do not

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

203

6.2. TYPE SYSTEM

account for such scenarios. Therefore, we need to introduce the notion of unresolved

type (Definition 52) and unresolved typestate tree (Definition 53).

Definition 52 (Unresolved type syntax). An unresolved type tunr is a type (see Def-

inition 8) possibly containing states of the form ↖l̃ : t↙. Formally,

tunr ::= tunr △ tunr | tunr ∀ tunr | uẼ | ↖l̃ : t↙ | ̸t

Definition 53 (Unresolved typestate tree). An unresolved typestate tree ttunr is

a typestate tree (see Definition 18) storing unresolved types tunr.

Unresolved typestate trees are crucial to keep track of conditional information

stemming from, e.g., a method call. Let us consider the following scenario: in the

context of an if statement, whose condition is a method call, we want to keep track

of the conditional type information (i.e., type information depending on the value

returned by the condition) to correctly propagate it to the corresponding branch.

In our example, the unresolved typestate tree, by containing states of the form

↖true : t→ false : t→→↙, makes it possible to use as starting information of the if branch

the one labelled with true and the one labelled with false for the else one.

Overloading: static binding. During type checking, we may encounter classes

defining multiple constructors and methods with the same name (but di!erent pa-

rameter types/number). Thus, we need to deal with the static binding process:

whenever a method or constructor call matches multiple candidates, the static

binder selects the one whose parameters are subtypes of the others. If no suit-

able candidate is found, the type checking halts. Concretely, we first look for

all candidates that can possibly work with the supplied sequence of parameters

(see Definitions 54 and 55) and then we retrieve the method/constructor whose

parameters are subtype of all the others (see Definitions 56 and 57).

Let BS be the set of constructor signatures C(p̃t), ranged over by meta-variable

bs; recall, MS is the set of method signatures ranged over by meta-variable ms.

Definition 54 (Compatible methods). Given a program D̃, a class C, a method

name m and a sequence of Java types j̃t, the function candsD̃ : CD̃ ′MNames′

204 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

JTypesn ⇐ P(MS) returns the set of methods compatible with j̃t.

candsD̃(C,m, j̃t) = {rtm(p̃t) | rtm(p̃t) ⇓ dom(C.allMD̃) ⇔ j̃t ↑D̃ toJT(p̃t)}

Definition 55 (Compatible constructors). Given a program D̃, a class C and a

sequence of Java types j̃t, the function candsD̃ : CD̃ ′ JTypesn ⇐ P(BS) returns
the set of constructors compatible with j̃t.

candsD̃(C, j̃t) = {C(p̃t) |C(p̃t id){bst}⇓C.consD̃ ⇔ j̃t ↑D̃ toJT(p̃t)}

Definition 56 (Minimummethod). The partial function minD̃ : P(MS) ϑ MS is

such that, given program D̃ and a set of method signatures, it returns the minimum

one with respect to the subtyping relation among parameter sequences of Java types

j̃t, in case it exists. Formally,

dom(minD̃) =

{MS⇓P(MS) | ∋ rtm(p̃t) ⇓ MS . ∈ rt→ m(pt→) ⇓ MS . toJT(p̃t) ↑D̃ toJT(pt→)},

and for MS ⇓ dom(minD̃), minD̃(MS) is the only rtm(p̃t) ⇓ MS such that

∈ rt→ m(pt→) ⇓ MS . toJT(p̃t) ↑D̃ toJT(pt→)

Definition 57 (Minimum constructor). The partial function minD̃ : P(BS) ϑ BS
is defined exactly as the one for methods in Definition 56 with BS/BS replacing

MS/MS, C replacing m and omitting the return types rt/rt→.

6.2.1 Type Environment: Definition and Operators

Definition. The notion of type environment (see Definition 58) is pivotal in our

type checking procedure, since we base all our reasoning on the information it

stores. Intuitively, a type environment is a mapping from identifiers to TC types.

In our type checking rules, we use several type environments specifically crafted for

di!erent purposes, e.g., keeping track of field types. As already anticipated, during

type checking, unresolved typestate trees may occur. Thus, in the definition of the

type environment, we need to account for that, i.e., including the possibility of

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

205

6.2. TYPE SYSTEM

having unresolved typestate trees in the co-domain of the type environments.

Let Tunr be the set of unresolved types ranged over by meta-variable tunr; let

T T unr be the set of unresolved typestate trees ranged over by meta-variable ttunr;

let CIdNames be the set of complex identifiers ranged over by meta-variable cid,

where

cid ::= C.id | id

Notice that, IdNames ∝ CIdNames, thus all identifiers of the form id are

included in CIdNames.

Definition 58 (Type environment). The type environment, used to store the type

information, is a partial function

T : CIdNames ϑ TCTypes △ T T unr

Complex identifiers are assigned to fields to handle shadowing : the class infor-

mation is used to access the field at the correct level of the class hierarchy.

We now define the notion of terminability (in Definition 59) for a type envi-

ronment: it is terminable if all elements are mapped to terminable TC types.

Definition 59 (Terminable type environment). A type environment T is said to

be terminable if all the stored elements are terminable. Formally,

term(T)
def
= ∈ cid ⇓ dom(T) . term(T (cid))

Operators. To facilitate the type checking procedure, we define a set of oper-

ators on type environments, targeted at dealing with specific scenarios occurring

during type checking. Operators play a vital role in our type checking as they en-

sure the correct management of type information throughout our static analysis.

The first operator we introduce is the resolution one, required to deal with

unnecessary conditional type information. More specifically, a method call might

generate an unresolved typestate tree, which is useful in the context of, e.g., if

statements. However, if conditional information is not needed, it prevents correct

program from compiling. To better understand its importance, we now consider

the example in Listing 6.1. Let us suppose that, after the method call m, the

206 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

Listing 6.1: Resolution operator example!
1 class Main {
2 void main() {
3 A a = new A();
4 a.m();
5 a.m1();
6 }
7 }"# $

object a is in a state of the form ↖l̃ : t↙. The subsequent call m1 always fails (even

if it turns out to be actually safe), as the state ↖l̃ : t↙ does not allow any operation.

Moreover, if the program terminates and an object is left in ↖l̃ : t↙, even if such

object is actually terminable, the program does not compile.

To this aim, in Definition 60, we formalise the resolution operator to discard

conditional type information.

Let TypeEnv the set of type environments ranged over by meta-variable T.

Definition 60 (Resolve type environment). Given a type environment T , the

operator T : TypeEnv ⇐ TypeEnv is defined as follows.

T def
={cid ∅⇐ resolveTT(T (cid)) | ∋ ttunr ⇓ T T unr . T (cid) = ttunr}△

{cid ∅⇐T (cid) | ¬ ∋ ttunr ⇓ T T unr . T (cid) = ttunr},

where cid ⇓ dom(T).

The resolution operator relies on resolveTT (see Definition 61) and resolve

(see Definition 62). In particular, the first iterates over all the nodes of the inputed

unresolved typestate tree, while the second actually performs the operation.

Definition 61 (Resolve typestate tree). Given an unresolved typestate tree ttunr,

the function resolveTT : T T unr ⇐ T T is defined as follows.

resolveTT((C, tunr, ttsunr)) = (C, resolve(tunr),


ttunr↑ttsunr

resolveTT(ttunr))

Definition 62 (Resolve type). Given an unresolved type tunr, the function resolve :

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

207

6.2. TYPE SYSTEM

Tunr ⇐ T is defined as follows.

resolve(tunr) =






resolve(t→unr) △ resolve(t→→unr) if tunr = t→unr △ t→→unr
resolve(t→unr) ∀ resolve(t→→unr) if tunr = t→unr ∀ t→→unr
{t | l : t ⇓ l̃ : t} if tunr = ↖l̃ : t↙

tunr otherwise

Conversely to scenarios where conditional type information must be discarded,

we might encounter language constructs that crucially depends on such informa-

tion, i.e., if, while and switch statements. Let us consider the example presented

in Listing 6.2. Suppose that, after calling the method m, the receiver object a is in

Listing 6.2: Evolve operator!
1 class Main {
2 A a;
3 void main() {
4 a = new A();
5 if (a.m()) {
6 a.m2();
7 }
8 else {
9 a.m3();

10 }
11 }
12 }"# $

the unresolved type ↖true : t→ false : t→→↙. If we discard conditional type information

and apply the resolution operator, the unresolved type of a is resolved into t→ △ t→→

and such information is then propagated to the branches. Despite this approach

being sound, it is too restrictive since union states only allow method calls that

are permitted in all elements of the union. Thus, if m2 and m3 are not allowed

in t→ and t→→, the program does not compile. However, at runtime, the program

executes only one of the branches, thus it is enough that m2 is allowed in t→ (the

type information labelled with true) and m3 in t→→ (the type information labelled

with false). To this aim, we formalise in Definition 63 the evolution operator to

compute the type information to use with branches.

Let LNames the set of labels ranged over by meta-variable l.

Definition 63 (Evolve type environment). Given a type environment T and a

208 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

label l, the operator
l

T : TypeEnv′ LNames ⇐ TypeEnv is defined as follows.

l

T def
={cid ∅⇐evoTTOunr(T (cid), l) | ∋ ttunr ⇓ T T unr . T (cid) = ttunr} △

{cid ∅⇐T (cid) | ¬ ∋ ttunr ⇓ T T unr . T (cid) = ttunr},

where cid ⇓ dom(T).

The evolution operator crucially relies on evoTTOunr (see Definition 64) and

evoOunr (see Definition 65), to correctly work: the former iterates over all the nodes

of the received unresolved tree, while the latter performs the evolution.

Definition 64 (Evolve unresolved typestate tree). Given an unresolved typestate

tree ttunr and a label l, the function evoTTOunr : T T unr ′ LNames ⇐ T T is

defined as follows.

evoTTOunr((C, tunr, ttsunr), l) = (C, evoOunr(tunr, l),


ttunr↑ttsunr

evoTTOunr(ttunr, l))

Definition 65 (Evolve unresolved type). Given an unresolved type tunr and a label

l, the function evoOunr : Tunr ′ LNames ⇐ T is defined as follows.

evoOunr(tunr, l) =






evoOunr(t→unr, l) △ evoOunr(t→→unr, l) if tunr = t→unr △ t→→unr

evoOunr(t→unr, l) ∀ evoOunr(t→→unr, l) if tunr = t→unr ∀ t→→unr

t if tunr = ↖l : t l̃ : t↙

tunr otherwise

As we dealt with code entering branches, we now need to devise a strategy to

compute the resulting type information for code exiting branches. Let us consider

the example presented in Listing 6.2; after the if statement, we need to calculate

the resulting type information to use for the remainder of the program. Intuitively,

since we cannot statically know which branch the code will embark at runtime,

we must ensure soundness regardless the executed branch. Thus, we need to

merge the information stemming from the branches. To this aim, we implement

in Definition 66 the merge operator.

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

209

6.2. TYPE SYSTEM

Definition 66 (Merge type environments). Given type environments T, T →, the

partial operator T ↬T → : TypeEnv′TypeEnv ϑ TypeEnv is defined as follows.

T ↬ T → def
={cid ∅⇐ mrgTC(T (cid), T →(cid))},

where cid ⇓ dom(T) and dom(T) = dom(T →).

As can be seen in Definition 66, the merge operator relies on mrgTC to perform

the merge process. Intuitively, mrgTC behaves as follows. It takes as parameter

two TC types and, if they are related by the subtyping relation, it keeps the most

general one (i.e., the supertype). Notice that, we cannot have basic types that do

not fit such subtyping relation in the context of mrgTC. By absurd, let us suppose

that such scenario occurs, it would mean that in one of the branches, we assigned

a value to a field, whose type is unrelated to the statically declared one (which, of

course, is not possible). Thus, whenever the subtyping relation does not hold, it

signals that the TC types to merge are typestate trees. The same logic for basic

types applies here. Given two typestate trees related to specific field/parameter/-

variable resulting from the analysis of code branches, it is guaranteed that the

root classes match. As a matter of fact, these typestate trees refer to the same

field/parameter/variable and, consequently, to the same statically declared class,

i.e., the trees root class. Therefore, we can safely apply the mrgTT function (which

assumes to receive as input typestate trees with the same root classes).

Definition 67 (Merge TC types). Given TC types tc and tc→, we define the func-

tion mrgTC : TCTypes′TCTypes ϑ TCTypes to merge tc and tc→ as follows.

mrgTC(tc, tc→) =






tc→ if tc ↑TC,D̃ tc→

tc if tc→ ↑TC,D̃ tc

mrgTT(tt, tt→) if tc = tt ⇔ tc→ = tt→

The last operator we introduce is required to perform an optimisation during

type checking. Let us suppose we have to type check the methods a class C that

extends C → and, in particular, we are in the verge of analysing the method m,

which has been inherited from C →. As we will see later, methods are type checked

accounting for the current state of fields (stored in a dedicate type environment).

210 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

Being that the method m belongs to class C →, it is obvious that it cannot access

fields of class C. Thus, it is useless to include these fields in the type environment

used to type check m. To this aim, we formalise in Definition 68 an operator to

filter out useless elements.

Definition 68 (Restrict type environment). Given a program D̃, a class C and

a type environment T , the operator T ⊜C,D̃: TypeEnv ⇐ TypeEnv is defined as

follows.

T⊜C,D̃
def
={C →.id ∅⇐ T (C →.id) | C ↑D̃ C →}

where C →.id ⇓ dom(T).

6.2.2 Typing Program and Class Definitions

The first element to type check is the program itself. In our setting, a program

is represented as a collection of class and enum definitions, denoted by D̃. Type

checking the program ensures that the code adheres to the rules and structures

defined by the type system, thereby statically preventing type-related errors. The

type checking process requires the definition of the initial environment contain-

ing type information of uninitialised fields, not only belonging to the class under

analysis, but also to its superclasses (if there are any). Thus, in Definition 69, we

define the initTCD̃ function that, given a class C, builds its field type environment.

Definition 69 (Initial types). The function initTCD̃ : CD̃ ⇐ TypeEnv is such that

given a program D̃ and a class C, it creates the corresponding type environment

mapping fields to their initial TC Types. Formally,

initTCD̃(C) =


C→↑ CD̃, C↓D̃C→

{C →.id ∅⇐ inittype(jt) | jt id ⇓ C →.fieldsD̃},

where,

inittype(bool)
def
= bool inittype(int)

def
= int inittype(L)

def
= L

inittype(double)
def
= double inittype(C)

def
= (C,Null, {})

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

211

6.2. TYPE SYSTEM

Recall, for fields we do not directly store their identifiers, but we extend them

with the class information (i.e., the class they belong to) to correctly deal with

field shadowing.

While type checking a program, we need to ensure that it has no classes and

enums with duplicate identifiers. To this aim, we formalise the dedicated predicates

in Definitions 70 and 71.

Definition 70 (No duplicate class/enum). Given a program D̃, the predicate

nodupD(D̃) holds if all classes and enums in D̃ have unique identifiers.

Definition 71 (No duplicate enum values). Given a program D̃ and an enum L,

the predicate nodupL,D̃(L) holds if all values in L.valsD̃ have unique identifiers.

Since we have a notion of subtyping among TC types that already includes

behavioural subtyping, it is convenient to convert parameter and return types

into TC ones. To this aim, we introduce in Definition 72 a function for such a

conversion. Notice that, the set of return types includes parameter types.

Let RTTypes be the set of return types ranged over by meta-variable rt.

Definition 72 (Convert RT type to TC type). Given a RT type rt, the function

toTC : RTTypes ⇐ TCTypes is defined as follows.

toTC(rt)
def
=


(C, at, {}) if rt = C[at]

rt otherwise

During the type checking of classes, it is crucial to assess some property related

to Java classes, enums, and protocols. To this aim, in Definitions 73 to 75, we

formalise dedicated predicates.

Definition 73 (Check class). Given a program D̃ and a class C ⇓ CD̃, the predicate
chkClssD̃(C) holds if:

• all the Java classes and enums referenced in C.fieldsD̃, C.consD̃ and C.methsD̃
are defined in D̃;

• all fields have unique identifiers and no two methods or constructors have the

same partial signature, i.e., no two methods or constructors have the same

name and parameter sequence j̃t of Java types;

212 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

• all annotations types are well formed, i.e., they only include typestates be-

longing to the referenced Java class.

Definition 74 (Check protocol). Given a program D̃ and a class C ⇓ CD̃, the

predicate chkProtD̃(C) holds if in C.protD̃:

• no input states contain duplicate method signatures, i.e., no two methods have

identical names and parameter types;

• all output states can only be reached after calling methods whose signatures

declare bool or enum types as the returned one;

• all output states must present as many choices as the possible values of the

returned type, i.e., in case of bool the values true and false; in case of an

enum L all values in L.valsD̃.

Definition 75 (Check overriding). Given a program D̃ and classes C,C → ⇓ CD̃,
the predicate chkOvrD̃ is defined as follows.

chkOvrD̃(C,C
→)

def
= ∈ rtm(p̃t id){bst}⇓C.methsD̃, rt

→ m(pt→)⇓dom(C →.allMD̃) .

toJT(p̃t) = toJT(pt→) ▽

toTC(rt) ↑TC,D̃ toTC(rt→) ⇔ ∈ i, 1 ↑ i ↑ |p̃t| .

toTC(pt→i) ↑TC,D̃ toTC(pti)


For each method definition M in the subclass C such that there is a method

definition in a superclass C → that expects the same sequence of Java types as

parameters, the predicate chkOvrD̃ ensures that: (i) if the parameters have an

annotation type at, such annotation type is a supertype of the corresponding one

in the superclass; and (ii) its return type is a subtype of the one in the superclass,

in terms of both Java type and annotation type (the latter if present). Since

we are devising a type checking procedure for a subset of the Java language,

we have to strictly adhere to its interpretation of method overriding, i.e., the

Java types of the parameter in methods of the subclass must be the same in

the corresponding methods in the superclass. However, we could have relaxed

the equality constraint on parameter Java types, asking for a supertype in the

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

213

6.2. TYPE SYSTEM

overridden methods (following the approach for annotation types) and the type

checking would be still sound, as done in, e.g., the Python programming language.

The judgement for programs is of the form ∞ D̃, while the one to type check

classes and enums is of the form ∞D̃ D . The rules, defining how these judgements

work in the context of our type checking, are presented in Definition 76.

Definition 76 (Typing rules for program and class definitions).

TProg

nodupD(D̃) ∈D⇓D̃ . ∞D̃ D

∞ D̃
TEnum

nodupL,D̃(L)

∞D̃ enum L {ĩd}

TClass1

|B̃| > 0 chkClssD̃(C) chkProtD̃(C)

∈i, 1 ↑ i ↑ |B̃| . initTCD̃(C) ∞D̃ Bi ≿ Tf ,i ⇔
ℜ;Tf ,i ∞D̃ C[uẼ] ≿ Tf ,i ⇔ term(Tf ,i)

∞D̃ class C {uẼ; F̃ ; B̃; M}

TClass2

∞D̃ class C {uẼ; F̃ ;C(){ }; M}

∞D̃ class C {uẼ; F̃ ; ω; M}

TExt

C → ⇓ CD̃ uẼ ↑Salg
C →.protD̃

chkOvrD̃(C,C
→) ∞D̃ class C {uẼ; F̃ ; B̃; M}

∞D̃ class C {uẼ; F̃ ; B̃; M} extends C →

By applying the TProg rule, we are able to type check all the classes and enums

defined in D̃. For simplicity, enums contain only constant values. In both TProg

and TEnum rules we ensure that nodupD and nodupL,D̃ hold.

We type check class definitions ensuring that the predicates chkClssD̃, chkProtD̃
and protocol completion hold. If constructors are available (see TClass1 rule), we

analyse each of them individually and use the field type environment stemming

from such analysis to type check the initial typestate of the protocol. Otherwise

(see TClass2 rule), we synthesize the default constructor and resort to TClass1.

If a class extends another, we apply the TExt rule, additionally checking that:

(i) the superclass is defined in the current program; (ii) the protocol of the subclass

214 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

is a subtype of the one attached to the superclass1; and (iii) the chkOvrD̃ predicate

holds. Finally, we resort to the rules to type check classes without supertypes.

To analyse constructors, we use a dedicated judgement of the form

Tf ∞D̃ B ≿ T →
f .

Intuitively, Tf and T →
f are the initial and final field type environments and B is the

constructor to analyse. The rules for constructors are presented in Definition 77.

Notice that, dom(T)⇐ signals an environment whose elements are mapped to ⊥.

Definition 77 (Typing rules for constructor definitions).

TCns

C.supD̃ = ω Tbf = Trf = dom(Tf)⇐

Ts = {id ∅⇐ toTC(pt) | pt id ⇓ p̃t id} Tbs = dom(Ts)⇐

Tf , Ts;Tbf , T bs;Trf ∞C,void,D̃
bst ≿ T →

f , T
→
s;Tbf , T bs;Trf term(T →

s)

Tf ∞D̃ C(p̃t id){bst} ≿ T →
f

TCnsExt1

C.supD̃ = C →

Tf , {id ∅⇐ toTC(pt) | pt id ⇓ p̃t id} ∞C→,D̃ super(ẽ) ≿ T →
f , T

→
s

Tbf = Trf = dom(T →
f)⇐ Tbs = dom(T →

s)⇐

T →
f , T

→
s;Tbf , T bs;Trf ∞C,void,D̃

bst ≿ T →→
f , T

→→
s ;Tbf , T bs;Trf term(T →→

s)

Tf ∞D̃ C(p̃t id){super(ẽ) bst} ≿ T →→
f

TCnsExt2

C.supD̃ = C → Tf ∞D̃ C(p̃t id){super() bst} ≿ T →
f

Tf ∞D̃ C(p̃t id){bst} ≿ T →
f

The rules introduced in Definition 77 make use of several type environments:

• Ts is used to store type information of variables and parameters;

• Tbf and Tbs, initially mapping their elements to ⊥, store type information

of fields (the former), variables and parameters (the latter) at the moment a

break statement is encountered;

1We use the algorithm in Definition 7, but checking partial method signatures, i.e., signatures
without return types, equality

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

215

6.2. TYPE SYSTEM

• Trf , initially mapping its elements to ⊥, stores type information of fields at

the moment a return statement is encountered.

Notice that, Tbf , T bs and Trf are only modified in case the code presents break

and return statements, respectively.

Parameters and variables type environment have their domain composed by

simple identifiers, id. Since parameters/variables cannot be shadowed: including

class information within identifiers is not required.

We ensure that Tbf , T bs and Trf remain consistent with their initial states.

Deviations indicate the presence of a break outside the scope of a while/switch or

return in the constructor body (here, constructors cannot have return).

The TCns rule type checks the constructors of a class that does not have su-

pertypes. We first create the necessary type environments: (i) Ts is initially built

from the parameters declared in the signature of the constructor under analysis

(i.e., ⫅̸pt id); and (ii) Tbf , T bs and Trf are built mapping the elements of the corre-

sponding domain to ⊥. Then, we analyse the constructor body bst, represented as

a sequence of statements, with the corresponding judgement. As a result, we get an

environment T →
f containing type information of fields at the end of the constructor

body and T →
s containing type information of parameters and variables at the end

of the body. Once we finished analysing the constructor, we ensure termination of

parameters and variables, additionally checking the termination of T →
s.

The TCnsExt1 rule type checks the constructors of a class extending another

with an explicit super call. We first analyse the super call with a dedicated judge-

ment, getting as result T →
f and T →

s. Then, we proceed as in TCns1: we build the

necessary environments, analyse the constructor body using as initial type envi-

ronments T →
f and T →

s and ensure that parameters and variables are terminated.

The TCnsExt2 rule type checks the constructors of a class extending another

without an explicit super constructor call: we add an explicit parameterless super

call to the superclass constructor and then use TCnsExt1 to analyse the constructor.

To type check super calls, we use a dedicated judgement of the form

Tf ∞C,D̃ super(ẽ) ≿ T →
f ,

where C is the class owning the constructor we are invoking with the super call.

216 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

The rules to type check the super constructor calls are presented in Definition 78.

Definition 78 (Typing rule for super constructor call).

TSup1

|C.consD̃| > 0 Tf , Ts ∞D̃ ẽ : tc ≿ Tf , T
→
s

C(p̃t id) = minD̃(candsD̃(C, t̃c))

∈i, 1 ↑ i ↑ |t̃c| . tci ↑TC,D̃ toTC(pti)

C(p̃t id){cbst} ⇓ C.consD̃ Tf⊜C,D̃ ∞D̃ C(p̃t id){cbst} ≿ T →
f

Tf , Ts ∞C,D̃ super(ẽ) ≿ (Tf↗Tf⊜C,D̃) △ T →
f , T

→
s

TSup2

|C.consD̃| = 0 Tf⊜C,D̃ ∞D̃ C(){ } ≿ T →
f

Tf , Ts ∞C,D̃ super() ≿ (Tf↗Tf⊜C,D̃) △ T →
f , Ts

The TSup1 rule analyses super calls to classes with constructors. We first anal-

yse the sequence of expressions ẽ passed as parameters (whose judgement will be

introduced later). Then, we statically bind the correct constructor and check that

the super calls receives correct parameters. Finally, we type check the constructor

we bound before, using the rules in Definition 77. Notice that, the starting field

type environment used to type check the super call is restricted to filter out fields

of the subclass that performed such super call (we cannot access those fields from

the superclass). Thus, we perform the union of the type environment containing

subclass fields only with T →
f (the restricted environment).

The TSup2 rule analyses super calls to classes without constructors: we syn-

thesize the default constructor and analyse it using the rules in Definition 77.

6.2.3 Typing Class Typestate Definitions

The rules in Definition 76 make use of the judgement to type check the initial

typestate of a class C, which ensures the correct usage of the class in the program.

The judgement, used to type check typestate definitions of a class C, is

&, Tf ∞D̃ C[wẼ] ≿ T →
f ,

where T →
f is the resulting field type environment after the typing computation and

& is an environment to deal with recursive behaviour of typestates.

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

217

6.2. TYPE SYSTEM

Let EVars be the set of defining equations ranged over by meta-variable E.

Definition 79 (Typestate variable environment). A typestate variable environ-

ment, mapping defining equations to type environments, is a partial function

& : EVars ϑ TypeEnv

The typestate variable environment stores field type information to deal with

recursive behaviour: if we encounter a typestate name s, which already is in

dom(&), we can use the stored type information to check s.

During the analysis of typestates { ⊋jms : w}
Ẽ
, we need to match each jms with

a corresponding method in class C, checking method signature equality. Since in

jms we only include Java types, while methods in C can possibily have annotation

types, in Definition 80 we present a function to convert a signature with annotation

types to one with only Java types. Notice that, we overload the function toJT.

Let JMS be the set of Java method signatures ranged over by meta-variable

jms; MS is the set of method signatures ranged over by meta-variable ms;

Definition 80 (Extract Java method signature). Given a method signature ms,

the function toJT :MS ⇐ JMS is defined as follows.

toJT(rtm(p̃t)) = toJT(rt)m(toJT(p̃t))

In Definition 81, we present the type checking rules for typestate definitions.

Definition 81 (Typing rules for typestate definitions).

TBr

∈i, 1 ↑ i ↑ | ⊋jms : w| . ∋T →
f ,ms, C → . ms ∅⇐ C → ⇓ C.allMD̃ ⇔

jmsi = toJT(ms) ⇔ ∋M ⇓ C →.methsD̃ . ms = sig(M) ⇔
Tf⊜C→,D̃ ∞C→,D̃ M ≿ T →

f ⇔&; (Tf↗ Tf⊜C→,D̃) △ T →
f ∞D̃ C[wẼ

i] ≿ T →→
f ,i

&;Tf ∞D̃ C[{ ⊋jms : w}
Ẽ
] ≿ ↬

1↓i↓|⫅̸m:w|
T →→
f ,i

TBrDrop

term(Tf) | ⊋jms : w| > 0 &;Tf ∞D̃ C[{ ⊋jms : w}
Ẽ
] ≿ T →

f

&;Tf ∞D̃ C[drop{ ⊋jms : w}
Ẽ
] ≿ T →

f

218 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

TCh

∈i, 1 ↑ i ↑ |l̃ : u| . &;
li
Tf ∞D̃ C[uẼ

i] ≿ T →
f ,i

&;Tf ∞D̃ C[↖l̃ : u↙
Ẽ
] ≿ ↬

1↓i↓|l̃:u|
T →
f ,i

TEnd

&;Tf ∞D̃ C[endẼ] ≿ Tf

TRec

&·{s ∅⇐ Tf};Tf ∞D̃ C[uẼ] ≿ T →
f

&;Tf ∞D̃ C[sẼ⇒{s=u}] ≿ T →
f

TVar

∈cid ⇓ dom(T →
f) . T

→
f (cid) ↑TC,D̃ Tf (cid)

&·{s ∅⇐ Tf};T →
f ∞D̃ C[sẼ] ≿ dom(Tf)⇐

For each Java method signature jms appearing in the current typestate, the

TBr rule looks for a method definition M in the current class or its superclasses

whose Java signature is equal to jms. Once we identified M , we type check it

using as starting field type environment the one stemming from previous analyses

(if we are type checking the initial state of the protocol, the field type environment

comes from the TClass1 rule). The type environment resulting from the analysis of

method M is then used as the starting one for the typestate reached after calling

M. Since a typestate can allow several method calls, we collect all the field type en-

vironments stemming from methods analyses and merge them (and in the TClass1

rule we ensure termination of the fields). During type checking, it may happen

that an unresolved typestate tree is propagated from one typestate to another,

i.e., if the expression in the return statement generates an unresolved tree. The

conditional information carried by such tree becomes necessary if the continuation,

i.e., the typestate reached after calling a given method, is of the form ↖l̃ : u↙
Ẽ
: the

type information to analyse each choice is computed by evolving the unresolved

tree with the proper label. However, since the TBr rule analyses typestate of the

form uẼ, we need to resolve the initial field type environment beforehand: we can-

not determine the label to use to resolve the unresolved typestate tree, thus, we

must ensure that the code compiles with respect to all the possible choices in the

unresolved tree. As for the type checking of the super constructor call, we apply

the restriction operator to avoid including fields that cannot be accessed.

The TBrDrop rule deals with droppable typestates. If the sequence ⊋jms : w is

not empty, we apply the TBr rule; otherwise, we use the TEnd rule as end is an

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

219

6.2. TYPE SYSTEM

alias for drop{}. Since an object in a droppable state can be stopped from further

use, we need to ensure that all the fields of such object are terminable.

Whenever we reach a state of the form ↖l̃ : u↙
Ẽ
, the TCh rule comes into play:

it ensures that such typestate is well typed if all choices are well typed. Di!erently

from the TBr rule, type information is crucial: the typestate reached after a state of

the form ↖l̃ : u↙
Ẽ
depends on the value returned by the method call that led to the

current state. Thus, the unresolved tree generated by such method call is evolved

beforehand using as labels those appearing in ↖l̃ : u↙
Ẽ
. This operation ensures that

subsequent typestates are analysed with correct and precise type information.

The TEnd rule is straightforward: the type checking of the end state does not

change the field type environment.

The rules TVar and TRec handle recursive behaviour of typestates. TVar states

that a variable s is well typed if the initial field type environment is a subtype of

the one stored in &, ensuring that all the operations doable when we first met s

are still available; TRec maps a variable s to the current field type environment

and type checks the typestate on the right-hand side, e.g., uẼ if s = uẼ. In the

TVar rule, we never need the resulting field type environment, as the recursion

brings us back to the typestate on the right-hand side of the equation. Thus, to

avoid non-determinism, we map the fields of the resulting type environment to ⊥.

The TBr rule exploits a dedicated judgement for method definitions of the form

Tf ∞C,D̃ rtm(⫅̸pt id){bst} ≿ T →
f ,

where Tf and T →
f are the type environments containing field information before and

after the analysis of the method and C is the class implementing the method under

analysis. For clarity sake, in Definition 82, we devise separate rules for methods

returning void (i.e., TMeth1) and those returning a di!erent type (i.e., TMeth2).

Definition 82 (Typing rules for method definitions).

TMeth1

Ts = {id ∅⇐ toTC(pt) | pt id ⇓ p̃t id}
Tbf = Trf = dom(Tf)⇐ Tbs = dom(Ts)⇐

Tf , Ts;Tbf , Ts;Trf ∞C,void,D̃
bst ≿ T →

f , T
→
s;Tbf , T bs;Trf term(T →

s)

Tf ∞C,D̃ voidm(p̃t id){bst} ≿ T →
f

220 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

TMeth2

rt ¬= void

Ts = {id ∅⇐ toTC(pt) | pt id ⇓ p̃t id}
Tbf = Trf = dom(Tf)⇐ Tbs = dom(Ts)⇐

Tf , Ts;Tbf , Ts;Trf ∞C,rt,D̃
bst ≿ dom(Tf)⇐, dom(Ts)⇐;Tbf , T bs;Tr

→
f

Tf ∞C,D̃ rtm(p̃t id){bst} ≿ Tr→f

The rules presented in Definition 82 work as those for constructors presented

in Definition 77: we first build the necessary type environments (i.e., Ts, T bf , T bs

and Trf) and then type check the method body. The important things to notice

here are the constraints we impose on some of the final environments. In particular,

we impose that Tbf , T bs remain unchanged: modifications to these environments

signal the presence of a break statement outisde the scope of while/switch statement.

In the TMeth1 rule, where we analyse methods returning void type, we impose

that Trf remains unchanged after the analysis of the method body. Changes in Trf

imply the presence of a return statement somewhere in the method body, which is,

again, an error (in our setting methods returning void cannot have return).

In the TMeth2 rule, where we analyse methods returning a pt type, we impose

that the resulting type environments of fields, parameters and variables map all

their domain elements to ⊥ after the analysis of the method body. In our type

checking procedure, whenever we encounter a return statement we update Trf with

the current types of the fields and map all elements of Tf and Ts to ⊥. The lat-

ter operation is crucial to check that all possible execution paths (i.e., branches

in the code) terminate with return. Recall, if the code presents branches, we use

the operator in Definition 66 to merge the type environments stemming from the

analyses of such branches. This operator is such that if we merge two TC types

related by the subtyping relation, it keeps the most general, i.e., the supertype.

Consequently, the result of merging two type environments T and T → is an environ-

ment mapping all its elements to ⊥ only if T and T → already map their elements

to ⊥ (since ⊥ is subtype of everything, the merge operator discards it unless it is

merged with itself). Thus, either all branches terminates with a return statement

and maps type environments to ⊥ or the resulting type environment after such

branches violates our constraint. Notice that, in the TMeth2 rule, we do not need

to ensure parameter termination as it is checked every time we encounter a return.

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

221

6.2. TYPE SYSTEM

6.2.4 Typing Statements

In this Section, we thoroughly present the type checking rules required to deal with

all statements. Throughout these rules, we use # and #b as shorthands for pair

of type environments: # represents Tf , Ts, i.e., the field and parameter/variable

type environments and #b denotes Tbf , T bs, i.e., the field and parameter/variable

type environments used to deal with the break statement. Whenever we apply an

operator to a pair of type environments, it operates on both elements of the pair,

e.g., # = T , T →. The merge operator, with pairs of type environments, works as

follows: being # = T, T → and #→ = T →→, T →→→, we have # ↬#→ = T ↬ T →→, T → ↬ T →→→.

First, we need to devise a mechanism to analyse the sequence of statements
bst. To analyse sequence of statements, we use a judgment of the form

#;#b;Trf ∞C,rt,D̃
bst ≿ #→;#→

b;Tr
→
f ,

where #,#b and Trf are the type environments before the analysis and #→,#→
b

and Tr→f are the resulting ones. In the judgement, we also keep track of the return

type rt of the method we are analysing and C the class implementing such method.

We now present, in Definition 83 the rules to type check a sequence of statements.

Definition 83 (Typing rules for sequence of statements).

TEmpty

#;#b;Trf ∞C,rt,D̃ ε ≿ #;#b;Trf

TSeqSt

#;#b;Trf ∞C,rt,D̃ bst ≿ #→;#→
b;Tr

→
f

#→ ¬= dom(#)⇐ #→;#→
b;Tr

→
f ∞C,rt,D̃

bst ≿ #→→;#→→
b;Tr

→→
f

#;#b;Trf ∞C,rt,D̃ bst bst ≿ #→→;#→→
b;Tr

→→
f

The TEmpty rule is straightforward: if the sequence is empty the type environ-

ments do not change.

The TSeqSt rule analyses the first element of the sequence and uses the re-

sulting environments to type check the remainder. This rule also ensures that

the type environments in #→ do not map their elements to ⊥. This is crucial to

reject unreachable code, i.e., code immediately after break or return. Since type

environments in #→ are set to ⊥ only if we encouter a break or return statements,

222 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

if we detect that, we halt the type checking process as the subsequent code is

unreachable.

Definition 84 (No duplicate cases). Given a sequence of case blocks cbl, the pred-

icate nodupS(cbl) holds if all cases have unique labels.

Definition 85 (Unused labels). Given a program D̃, an enum L ⇓ LD̃ and a

sequence of case blocks cbl, the function noCaseValsD̃(
cbl) returns the di”erence

between L.valsD̃ and cbl, i.e., the labels not appearing in cbl.

Definition 86 (Typing rules for statements).

TExp

∞C,D̃ e : tc ≿ #→ term(tc)

#;#b;Trf ∞C,rt,D̃ e ≿ #→;#b;Trf

TBlock

Tf , Ts;Tbf , T bs;Trf ∞C,rt,D̃
bst ≿ T →

f , T
→
s;Tb

→
f , T b

→
s;Tr

→
f

∈cid ⇓ dom(T →
s)↗ dom(Ts) . term(T →

s(cid))

∈cid ⇓ dom(Tb→s)↗ dom(Ts) . term(Tb→s(cid))

T →→
s = {cid ∅⇐ T →

s(cid) | cid ⇓ dom(Ts)}
Tb→→s = {cid ∅⇐ Tb→s(cid) | cid ⇓ dom(Ts)}

Tf ;Ts;Tbf , T bs;Trf ∞C,rt,D̃ {bst} ≿ T →
f , T

→→
s ;Tb

→
f , T b

→→
s ;Trf

TIf

∞C,D̃ e : bool ≿ #→

true

#→ ;#b;Trf ∞C,rt,D̃ st→ ≿ #T;#T
b;Tr

T
f

false

#→ ;#b;Trf ∞C,rt,D̃ st→→ ≿ #F;#F
b;Tr

F
f

#;#b;Trf ∞C,rt,D̃ if (e) st→ else st→→ ≿ #T ↬#F;#T
b ↬#F

b;Tr
T
f ↬ TrFf

TWhl

Tf , Ts ∞D̃ e : bool ≿ T →→
f , T

→→
s

true

T →→
f ,

true

T →→
s ; dom(#)⇐;Trf ∞C,rt,D̃ st ≿ T →

f , T
→
s;Tb

→
f , T b

→
s;Tr

→
f

∈cid ⇓ dom(Ts) . T
→
s(cid) ↑TC,D̃ Ts(cid)

∈cid ⇓ dom(Tf) . T
→
f (cid) ↑TC,D̃ Tf (cid)

Tf , Ts;#b;Trf ∞C,rt,D̃ while (e) st ≿
false

T →→
f ↬ Tb→f ,

false

T →→
s ↬ Tb→s;#b;Tr

→
f

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

223

6.2. TYPE SYSTEM

TRet

∞C,D̃ e : tc ≿ T →
f , T

→
s tc ↑TC,D̃ toTC(rt) term(T →

s)

#;#b;Trf ∞C,rt,D̃ return e ≿ dom(#)⇐;#b;Trf ↬ T →
f

TVDecl

jt ¬= C → id /⇓ dom(Ts) Tf , Ts ∞D̃ e : tc ≿ T →
f , T

→
s

toJT(tc) ↑D̃ jt T →→
s = T →

s △ {id ∅⇐ inittype(jt)}

Tf , Ts;#b;Trf ∞C,rt,D̃ jt id = e ≿ T →
f ,
T →→
s ;#b;Trf

TVDeclO

C → ⇓ CD̃ id /⇓ dom(Ts) Tf , Ts ∞D̃ e : tt ≿ T →
f , T

→
s

cl(tt) ↑D̃ C → tt→ = ucastTT(tt, C →) T →→
s = T →

s △ {id ∅⇐ tt→}

Tf , Ts;#b;Trf ∞C,rt,D̃ C → id = e ≿ T →
f , T

→→
s ;#b;Trf

TBreak

#;#b;Trf ∞C,rt,D̃ break ≿ dom(#)⇐;#b ↬#;Trf

TSwitchL

∞C,D̃ e :L ≿ #→→ L ⇓ LD̃ noDup(cbl)
ncvs = noCaseValsD̃(L,

cbl)
#→→; dom(#)⇐;Trf ∞C,rt,L,ncvs,D̃

cbl ≿ #→;#→
b;Tr

→
f

#;#b;Trf ∞C,rt,D̃ switch (e) {cbl} ≿ #→ ↬#→
b;#b;Tr

→
f

TSwitchI

∞C,D̃ e : int ≿ #→→ noDup(cbl)
#→→; dom(#)⇐;Trf ∞C,rt,int,⇑,D̃

cbl ≿ #→;#→
b;Tr

→
f

#;#b;Trf ∞C,rt,D̃ switch (e) {cbl} ≿ #→ ↬#→
b;#b;Tr

→
f

The TExp rule applies whenever an expression e is used as a statement. An

expression is well typed if it type checks with the judgment for expressions and the

resulting TC type is terminable. Notice that, using an expression as a statement

implies that all possible objects created/returned by expression e are left behind

and cannot complete their protocol. Therefore, ensuring that expression e is typed

with a terminable TC type is crucial to guarantee protocol completion. Whenever

we detect an expression used as a statement, we can safely discard conditional

information (i.e., transforming the unresolved typestate tree into a standard one),

as we are certainly not in the context of if, while or switch conditions (where

conditional information is, instead, required). Given that unresolved typestate

tree only stems from method calls (which are considered as expressions e) and we

224 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

discard conditional type information generated by expressions used as statements,

our type checking procedure has the following invariant property: at most one

unresolved typestate tree can occur in type environments at any time.

The TBlock rule is used to analyse compound statements, i.e., sequence of

statements enclosed within curly brackets. Besides analysing the sequence, the

rule also ensures that all the variables created within the scope of the compound

statement are terminable and remove them from type environments. As a matter

of fact, once we exited the scope of the compound statement, all the variables

it defines are out of scope, i.e., no longer accessible. Thus, ensuring termination

is crucial for protocol completion while removing them from type environments

allows the definition of new variables with the same identifier.

The TIf rule deals with if statements. It first analyses the expression e used as

condition, then it evolves the type environment stemming from the analysis of e,

i.e., #→, with labels true and false. The evolution of the type environments with the

proper label is crucial to convert the unresolved typestate tree possibly generated

by the analysis of e into a typestate tree suitable for type checking. The resulting

type environments after the analysis of the if statement are computed merging

those stemming from the analysis of the branches, using the dedicated operator.

Notice that, after the analysis of the if statement, the unresolved typestate tree

possibly generated by e is transformed into a standard one. Thus, the invariant

property of our type checking procedure, i.e., at most one unresolved typestate

tree can occur in type environments at any time, still holds.

The analysis of the condition and the construction of the type environments

to be used inside and outside the while loop body are the same as those described

for if statements. In particular, the unresolved typestate tree possibly generated

by the analysis of e is evolved with the proper label into a standard one. Thus,

again, the invariant property of our type checking procedure.

The type checking of while statements requires careful reasoning. Since such

syntactical construct has the ability to jump back to the beggining of the loop, we

need to ensure that the type information at the end of the loop body is a subtype

of the one before evaluating the condition. This is crucial to ensure soundness of

loops. To understand why, let us consider the example in Listing 6.3. We consider

classes A, B and C, with B ↑D̃ A, with the following protocols:

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

225

6.2. TYPE SYSTEM

Listing 6.3: Soudness of while loops!
1 class Main {
2 A a;
3 B b;
4 C c;
5 void main() {
6 a = new B();
7 c = new C();
8 while(cond) {
9 b = (B) a;

10 b.m1();
11 a = c.play(b);
12 }
13 }
14 }"# $

• A1EA={A1=drop{m:A1}}, for class A;

• B1EB={B1={drop{m:B1,m1:B2},B2=drop{m:B1,m2:B2}}}, for class B. Notice that, accord-

ing to Definition 7, we have B1EB ↑T A1EA and B2EB ↑T A1EA ;

• C1EC={C1=drop{play:C1}}, for class C.

For brevity sake, we do not present the implementation of these classes. The

only important implementation detail to know is that the method play of class

C takes as parameter an object of class B in state B1EB and returns an ob-

ject of class B in type B1EB △ B2EB . During the type checking, after object cre-

ation (line 6), we associate to field a the typestate tree resulting from ucastTT,

i.e., (A,A1EA , {(B,B1EB , {})}). Thus, the field type environment at the beginning

of the loop body is:

[a ∅⇐ (A,A1EA , {(B,B1EB , {})}), b ∅⇐ (B,Null, {})].

Inside loop body, we associate to field b the typestate tree (B,B1EB , {}), ap-
plying dcastTT (line 9). After calling m1 (line 10), the field b is associated to the

typestate tree (B,B2EB , {}). Since the method play takes as input an object of

class B in state B2, the method call is legal. As a result, the field a is associated

to (A,A1EA , {(B,B1EB △ B2EB , {})}) (obtained via ucastTT to the typestate tree

returned by play). Thus, the type environment at the end of the loop body is:

226 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

[a ∅⇐ (A,A1EA , {(B,B1EB △ B2EB , {})}), b ∅⇐ (B,Null, {})].

The subtyping among the initial and final type environments comes into play.

If we do not ensure such a relation, the loop body is not sound: given the final

type environment, if we were to execute the body again, the m1 method call would

not be safe, as it is not allowed by the typestate tree of b, which is (B,B1EB △
B2EB , {}) (in a union type a method call is allowed only if it is permitted by

all elements). Instead, ensuring the subtyping among the initial and final type

environments prevents unsound programs as the one in Listing 6.3 from compiling,

reducing the likelihood of potential errors. Once we type checked the loop body,

we need to carefully compute the resulting type environments. Those for fields,

parameters and variables are evolved with the label false and merged with the

type environments used to deal with the break. The first operation is required

as the evaluation of the loop condition may produce an unresolved typestate tree

(transformed into a typestate tree using false, i.e., the value that causes the control

flow to exit the loop). The second operation is required because the loop body

can have break statements, which cause the control flow to immediately exit the

loop. Merging the type environments of fields, parameters and variables with

those to deal with break statements ensures that the code outside the loop is safe

regardless of whether the loop prematurely terminates or reaches the end of its

body. Notice that, the initial and final type environments #b remain unchanged

after the analysis. This guarantees that break statements are confined within the

scope of the while statement to which they belong and enables the detection of their

misuse. Finally, the loop body can encounter a return statement: to account for

the possibility of prematurely exiting the method and ensure a safe type checking

process, we merge the field type environment for return, i.e., Tr→f , with the initial

one, i.e., Trf .

The TRet rule first ensures that the TC type assigned to expression e is a sub-

type of the statically declared one, i.e., the rt appearing in the judgement, and

ensures that all parameters are terminable. To perform such check, we need to

explicitly apply the resolution operator on the parameters/variables type environ-

ment, since it may happen that expression e is a method call (not type checkable

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

227

6.2. TYPE SYSTEM

with the TExp rule) and generates an unresolved typestate tree, which is not

recognised as terminable. Notice that, if such scenario occurs, we cannot discard

conditional type information: if the protocol continuation is a state ↖l̃ : u↙
Ẽ
, such

conditional information is needed. Instead, if the protocol continuation is a type-

state uẼ, we can safely discard the conditional type information (see TBr rule).

The TRet rule merges the current field type environment, i.e., T →
f with Trf and

assigns ⊥ to the resulting field and parameter type environments (see dom(#)⇐).

Updating Trf and mapping fields and parameters to ⊥ is crucial: it allows us

to statically detect and catch a variety of errors in the TBr rule. If the method

currently being analysed defines void as return type and includes a return statement

in its body, the Trf is updated and does not map fields to ⊥ anymore. If the

method has a return type di!erent from void and one or more execution path does

not end with the return statement, the field type environment at the end of its

body does not map all its elements to ⊥.

The TVDecl and TVDeclO rules handle variable declarion for basic types and

objects, respectively. The rules check that the variable we are declaring has not

been defined already and the Java type of the expression e on the right-hand side

is a subtype of the one assigned to the variable we are declaring. In case of basic

types, since the analysis of expression e might generate an unresolved typestate

tree, we have to resolve the type environments of fields, parameters and variables,

since conditional type information is not needed. In case of objects, we first upcast

the typestate tree stemming from the analysis of e. Notice that, we do not need

to resolve type environments since unresolved typestate trees are generated only

after method calls that return an enum or a bool type. Finally, in both rules, we

add the newly declared variable to both the type environment of parameters and

variables (mapped to its current TC type) and the type environment of parameters

and variables dealing with break statements (mapped to ⊥).

The TBreak rule is straightforward: whenever we encounter a break statement,

we update the type environments of fields, parameters and variables with their

current TC types and set all other environments but the one dealing with return

to ⊥. This mechanism prevents unreachable code from compiling and ensures that

the code after exiting the scope of the break statement is safe.

To analyse switch statements, we use TSwitchL and TSwitchI. Intuitively, the

228 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

former is used to analyse switch statements whose condition is asssigned to an

enum L, while the latter statements whose condition is typed with int. In the

TSwitchL rule, we ensure that the enum L assigned to the condition is defined in

the program D̃, we check that cases have no duplicate constant values and build

the set of unsed labels via noCaseValsD̃ (see Definition 85). Finally, we analyse

the sequence of case blocks with the dedicated judgment. Following the approach

of while statements, we compute the resulting type environments merging the one

stemming from the analysis of case blocks with the ones dealing with break and

impose that #b remains unchanged (following the reasoning for while statements).

In the TSwitchI rule, we check that cases have no duplicate constant values and

analyse the sequence of case blocks. As before, the resulting type environments is

computed following the reasoning for while statements.

To analyse the sequence of case blocks, we need to define dedicated judgements.

The first one deals with the sequence and it is of the form

#;#b;Trf ∞C,rt,tc,ncvs,D̃
cbl ≿ #→;#→

b;Tr
→
f ,

where tc is the type assigned to the expression in the condition of the switch

statement and ncvs is the set of unsused labels (necessary to type check the default

case). The second one explicitly analyses single case blocks and it is of the form

#;#b;Trf ∞C,rt,tc,ncvs,D̃ cbl ≿ #→;#→
b;Tr

→
f .

We present in Definition 87 the rules to analyse sequences of case blocks.

Definition 87 (Typing rules for sequence of case blocks).

TEmptyCB

#;#b;Trf ∞C,rt,tc,ncvs,D̃ ε ≿ #;#b;Trf

TSeqCB1

#;#b;Trf ∞C,rt,tc,ncvs,D̃ cbl ≿ #→;#→
b;Tr

→
f #→ ¬= dom(#)⇐

#→;#→
b;Tr

→
f ∞C,rt,tc,ncvs,D̃

cbl ≿ #→→;#→→
b;Tr

→→
f

#;#b;Trf ∞C,rt,tc,ncvs,D̃
cbl ≿ #→→→;#→→→

b ;Tr
→→→
f

#;#b;Trf ∞C,rt,tc,ncvs,D̃ cbl cbl ≿ #→→ ↬#→→→;#→→
b ↬#→→→

b ;Tr
→→
f ↬ Tr→→→f

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

229

6.2. TYPE SYSTEM

TSeqCB2

#;#b;Trf ∞C,rt,tc,ncvs,D̃ cbl ≿ dom(#)⇐;#
→
b;Tr

→
f

#;#b;Trf ∞C,rt,tc,ncvs,D̃
cbl ≿ #→→;#→→

b;Tr
→→
f

#;#b;Trf ∞C,rt,tc,ncvs,D̃ cbl cbl ≿ #→→;#→
b ↬#→→

b;Tr
→
f ↬ Tr→→f

The TEmptyCB rule is straightforward: it leaves type environments unchanged.

Whenever we analyse a switch statement, we cannot determine statically which

case will execute, as the entry point depends on the runtime value of the condition.

Therefore, in both TSeqCB1 and TSeqCB2 rules, we must analyse each element of

the sequence using the type environments obtained after evaluating the condition.

The TSeqCB1 rule analyses sequences whose first element does not have all

excution paths terminating with break or return, (checked with #→ ¬= dom(#)⇐).

Consequently, we also have to analyse each case block using as initial type envi-

ronment the one stemming from the analysis of the previous element, as we have

sequential execution of cases. Finally, the resulting type environments is computed

merging those from previous analyses.

The TSeqCB2 rule analyses sequences whose first element has all excution paths

terminating with break or return. Here, it is enough to proceed as described above:

we analyse each element of the sequence using the type environments obtained

after evaluating the expression used as the condition in the switch statement. The

resulting type environments dealing with break and return statements are computed

merging those stemming from the analyses of the elements of the sequence.

To better understand how the type checking of the sequence of case blocks

works, let us consider the example in Listing 6.4.

In the example, we assume that the method calls do not violate the protocol

and the return type of m is a value in L.valsD̃. To type check the sequence of case

blocks, we apply the TSeqCB1 rule as in the first element of the sequence break

does not occur. The rule first analyses the sequence propagating the resulting type

environments from one element to another (as the flow sequentially moves from the

first to the second case block). Next, the rule checks the remainder of the sequence

using the type environments we had after evaluating the condition of the switch.

This is necessary, since we cannot statically know the actual value returned by m

and, consequently, the entrypoint in the case block sequence. The remainder of the

sequence, i.e., the second and third case blocks, is type checked with TSeqCB2 as

230 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

Listing 6.4: Typing sequence of case blocks!
1 class Main {
2 A a;
3 void main() {
4 a = new A();
5 switch(a.m()) {
6 case L.l1:
7 a.m1();
8 case L.l2:
9 a.m2();

10 break;
11 case L.l3:
12 a.m3();
13 break;
14 }
15 }
16 }"# $

the first element terminates with break. Di!erently from the previous case block,

here, we do not need to analyse the remainder of the sequence, i.e., the last case

block, with the type environments stemming from the analysis of the first element,

as the break makes us exiting the switch scope.

In Definition 88, we present the rules to type check single case blocks.

Definition 88 (Typing rules for case blocks).

TCaseL

∞C,D̃ l :L ≿
l

#;#b;Trf ∞C,rt,D̃ {bst} ≿ #→;#→
b;Tr

→
f

#;#b;Trf ∞C,rt,L,ncvs,D̃ case l : bst ≿ #→;#→
b;Tr

→
f

TCaseI

#;#b;Trf ∞C,rt,D̃ {bst} ≿ #→;#→
b;Tr

→
f

#;#b;Trf ∞C,rt,tc,ncvs,D̃ case intLit : bst ≿ #→;#→
b;Tr

→
f

TDefL

ncvs ¬= ℜ (↬
l↑ncvs

l

#);#b;Trf ∞C,rt,D̃ {bst} ≿ #→;#→
b;Tr

→
f

#;#b;Trf ∞C,rt,L,ncvs,D̃ default : bst ≿ #→;#→
b;Tr

→
f

TDefI

#;#b;Trf ∞C,rt,D̃ {bst} ≿ #→;#→
b;Tr

→
f

#;#b;Trf ∞C,rt,int,⇑,D̃ default : bst ≿ #→;#→
b;Tr

→
f

The TCaseL rule analyses case blocks whose label is typed with an enum type

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

231

6.2. TYPE SYSTEM

and check that such enum is the same as the one in the switch condition (we keep

track of such information within the judgement). We evolve type environments

(as the switch condition may be a method call possibly generating an unresolved

typestate tree) and we analyse the case block body as a compound statement.

The TCaseI rule simply analyses case blocks, whose label is typed with int, as

a compound statement.

The TDefL rule type checks default case blocks belonging to a switch statement

whose condition is typed with an enum. Since this case block is executed whenever

no other cases match the value of the condition, the type environment to type check

this case block is computed as follows (recall, in the type environments for fields,

parameters and variables we may have an unresolved typestate tree): for each

label in ncvs, i.e., the set of unused labels in the other case blocks, we evolve the

unresolved tree using such label; then, we merge all the resulting type environments

with the corresponding operator. If ncvs is empty, the type checking process halts.

Finally, we analyse the body of the case block as a compound statement.

The TDefI rule simply analyses default case blocks, belonging to a switch state-

ment whose condition is typed with int, as a compound statement.

6.2.5 Typing Expressions

In this Section, we formalise and thoroughly present the type checking rules re-

quired to deal with all the possible expressions allowed in our language. Through-

out these rules, we use # as shorthand for pair of type environments. Recall, #

denotes Tf , Ts. Notice that, operators applied to pair of type environments behave

as explained in the previous Section. As shown in Definition 39, the parameters

of a method call are represented as an ordered sequence of expressions e. Thus, we

first need to devise a mechanism to type check such sequences. Similarly to the

rules dealing with other sequences of syntactical elements, we formalise, in Defini-

tion 89, dedicated rules that use of the following judgement

∞C,D̃ e ≿ #→.

232 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

Definition 89 (Typing rules for sequences of expressions).

TEmptyExp

∞C,D̃ ε ≿

TSeqExp

∞C,D̃ e : tc ≿ #→ #→ ∞C,D̃ e→ : tc→ ≿ #→→

∞C,D̃ e : tc ⫅̸e→ : tc→ ≿ #→→

The TEmptyExp rule is straightforward: type environments remain unchanged.

The TSeqExp rule type checks the first element of the sequence and, separately,

the remainder. Before analysing the remainder we resolve the type environments,

as it may happen that the first element generated an unresolved typestate tree.

As shown in the user syntax (see Definition 39), expressions can be method

calls, which modify the typestate tree of the receiver object. Thus, we define

in Definition 90 the function to modify all the nodes in a typestate tree and

in Definition 91 the function to modify the typestate based on the method called.

Recall, JMS is the set of Java method signatures ranged over by meta-variable

jms.

Definition 90 (Evolve typestate tree). Given a typestate tree tt and a Java method

signature jms, the function evoTTI : T T ′ JMS ⇐ T T unr is defined as follows.

evoTTI((C, t, tts), jms) = (C, evoI(t, jms),


tt↑tts
evoTTI(tt, jms))

Definition 91 (Evolve type). Given a type t and a Java method signature jms,

the function evoI : T ′ JMS ⇐ Tunr is defined as follows.

evoI(t, jms)=






evoI(t1, jms) △ evoI(t2, jms) if t = t1 △ t2

evoI(t1, jms) ∀ evoI(t2, jms) if t = t1 ∀ t2

wẼ if t = uẼ ⇔ ∋w . jms :w⇓unf(uẼ)

̸t otherwise

As methods can be marked as anytime, i.e., methods callable regardless of the

typestate of the receiver, we define in Definition 92 a predicate to recognise them.

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

233

6.2. TYPE SYSTEM

Definition 92 (Anytime methods predicate). Given a program D̃, a class C and

a Java method signature jms, the predicate anytimeD̃(C, jms) holds if:

• exists a method M in C or its superclasses such that its Java signature is

jms;

• M does not syntactically appear in the protocol of C in program D̃;

• M can only perform read operations;

• M can only invoke anytime methods.

Our language incudes the logical negation, i.e., ! e, whose analysis intuitively

requires the inversion of the choices in states of the form ↖true : t→ false : t→→↙.
Thus, for convenience, in Definition 93 we define a specific environment operator

to perform such inversion and its auxiliary functions (see Definitions 94 and 95).

Definition 93 (Invert type environment). Given a type environment T , the oper-

ator !T : TypeEnv ⇐ TypeEnv is defined as follows.

!T
def
={cid ∅⇐ invertTT(T (cid)) | ∋ ttunr ⇓ T T unr . T (cid) = ttunr} △

{cid ∅⇐ T (cid) | ¬ ∋ ttunr ⇓ T T unr . T (cid) = ttunr},

where cid ⇓ dom(T).

Definition 94 (Invert unresolved typestate tree). Given an unresolved typestate

tree ttunr, the function invertTT : T T unr ⇐ T T unr is defined as follows.

invertTT((C, tunr, ttsunr)) = (C, invert(tunr),


ttunr↑ttsunr

invertTT(ttunr))

Definition 95 (Invert unresolved type). Given an unresolved type tunr the function

invert : Tunr ⇐ Tunr is defined as follows.

invert(tunr) =






invert(t→unr) △ invert(t→→unr) if tunr = t→unr △ t→→unr

invert(t→unr) ∀ invert(t→→unr) if tunr = t→unr ∀ t→→unr

↖true : t→→ false : t→↙ if tunr = ↖true : t→ false : t→→↙

tunr otherwise

234 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

The language makes it possible to check equality among expressions, i.e., e ==

e→. This construct may have e or e→ being a method call and leave the receiver object

in an unresolved type state tree, whose stored types are ↖l̃ : t↙. Since the equality

check is typed to bool and may be used as condition of if or while statements, the

types ↖l̃ : t↙ might need to be mapped to ↖true : t false : t→↙. We now consider the

example in Listing 6.5 to better understand how the analysis of such construct

works. In our example, we assume method m to leave object a in ↖l̃ : t↙ and e to

be a generic expression.

Listing 6.5: Equality check example!
1 class Main {
2 void main() {
3 A a = new A();
4 if (a.m() == e) {
5 a.m1();
6 }
7 else {
8 a.m2();
9 }

10 }
11 }"# $

To compute the type information for the if statement, we proceed as follows.

If e is not a label, we use the resolution operator (see Definition 60) to compute

the type information for both branches. Otherwise, we map true to the evolution

of ↖l̃ : t↙ using the label on the right-hand side of the equality check and false to

the type resulting, merging those corresponding to the other labels. To manage

the second scenario, we devise a dedicated environment operator in Definition 96

and its helper functions in Definitions 97 and 98.

Recall, LNames is the set of labels ranged over by meta-variable l.

Definition 96 (Pairify type environment). Given a type environment T and a

label l, the operator
l⇓↔⇔
T : TypeEnv′LNames ⇐ TypeEnv is defined as follows.

l⇓↔⇔
T

def
={cid ∅⇐ toPairTT(T (cid), l) | ∋ ttunr ⇓ T T unr . T (cid) = ttunr} △

{cid ∅⇐T (cid) | ¬ ∋ ttunr ⇓ T T unr . T (cid) = ttunr},

where cid ⇓ dom(T).

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

235

6.2. TYPE SYSTEM

Definition 97 (Pairify unresolved typestate tree). Given an unresolved typestate

tree ttunr and a label l, the function toPairTT : T T unr ′ LNames ⇐ T T unr is

defined as follows.

toPairTT((C, tunr, ttsunr), l) = (C, toPair(tunr, l),


ttunr↑ttsunr

toPairTT(ttunr, l)).

Definition 98 (Pairify unresolved type). Given an unresolved type tunr and a label

l, the function toPair : Tunr ′ LNames ⇐ Tunr is defined as follows.

toPair(tunr, l) =






toPair(t→unr, l) △ toPair(t→→unr, l) if tunr = t→unr △ t→→unr
toPair(t→unr, l) ∀ toPair(t→→unr, l) if tunr = t→unr ∀ t→→unr
↖true : t false :


{t→ | l→ : t→ ⇓ l̃ : t}↙ if tunr = ↖l : t l̃ : t↙

tunr otherwise

Expressions can seamlessly occur on fields, parameters and variables. There-

fore, we define functions to read and write TC types mapped to a given identifier,

regardless of the nature of such identifier. Write operations are performed only for

objects, as their types can evolve. To this aim, we define in Definitions 99 and 100

functions to read and write TC types from type environments.

Recall, IdNames is the set of identifiers ranged over by meta-variable id.

Definition 99 (Read TC type). Given a field flag F (f or ω), a program D̃, class

C, an identifier id and a pair of type environments T, T →, the function lookupF,D̃ :

CD̃ ′ IdNames′ (TypeEnv′TypeEnv) ⇐ TCType is defined as follows.

lookupF,D̃(C, id, (T, T
→)) =






T (C.allFD̃(id).id) if id ⇓ dom(C.allFD̃) ⇔ F = f

T (C.allFD̃(id).id) if id ⇓ dom(C.allFD̃) ⇔ id /⇓ dom(T →) ⇔ f = ω

T →(id) if id ⇓ dom(T →) ⇔ F = ω

⊥ otherwise

In the updF,D̃ function, given a type environment T = T → △ {cid ∅⇐ tc}, the
shorthand notation T{tc→/cid} stands for the type environment T → △ {cid ∅⇐ tc→}.

Definition 100 (Write TC type). Given a field flag F (f or ω), a program D̃,

236 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

a class C, an identifier id, a typestate tree tt and a pair of type environments

T, T →, the function updF,D̃ : CD̃′IdNames′T T unr′ (TypeEnv′TypeEnv) ⇐
(TypeEnv′TypeEnv) is defined as follows.

updF,D̃(C, id, tt, (T, T
→)) =






(T{tt/C.allFD̃(id).id}, T →) if id ⇓ dom(C.allFD̃) ⇔ F = f

(T{tt/C.allFD̃(id).id}, T →) if id ⇓ dom(C.allFD̃) ⇔ id /⇓ dom(T →) ⇔ F = ω

(T, T →{tt/id}) if id ⇓ dom(T →) ⇔ F = ω

(dom(T)⇐, dom(T →)⇐) otherwise

If the inputed identifier corresponds to both a field and a variable/parameter,

we ignore the field version. Otherwise, we build its complex identifier, i.e., C.id,

retrieving the class information from allFD̃.

The field flag F is necessary to deal with accesses of fields via this and super

keywords. Specifically, it ensures that the inputed id must be a field, forcing the

lookupF,D̃ and updF,D̃ functions to read/write from/to the field type environment.

Finally, we have the alias function to mark a reference as Shared (i.e., it no

longer owns the protocol) and ensuring a linear discipline.

Definition 101 (Aliasing linear type). Given a TC type tc, we define the function

alias : TCTypes ⇐ TCTypes is defined as follows.

alias(tc) =


aliasTT (tt) if tc = tt

tc otherwise

Definition 102 (Aliasing typestate tree). Given a typestate tree tt, the function

aliasTT : T T ⇐ T T is defined as follows.

aliasTT ((C, t, tts)) =






(C, Shared, {}) if t ↑T Shared

(C, t, {}) if t ↑T Null

(C,̸t, {}) otherwise

To type check expressions, we use a judgement of the form

∞F
C,D̃

e : tc ≿ #→,

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

237

6.2. TYPE SYSTEM

where F is a field flag (either f or ω) and tc is the type assigned to e. The absence

of such flag from the judgement is a shorthand for F = ω. Notice that, in the rules

presented in Definition 89 we omitted F , as its value is always ω.

The type checking rules for expressions are presented in Definition 103.

Definition 103 (Typing rules for expressions).

TNew

C → ⇓ CD̃ # ∞C,D̃ ẽ : tc ≿ #→ C →(p̃t) = minD̃(candsD̃(C
→, t̃c))

∈i, 1 ↑ i ↑ |t̃c| . tci ↑TC,D̃ toTC(pti)

∞C,D̃ new C →(ẽ) :(C →, C →.protD̃, {}) ≿ #→

TUpdB

∞C,D̃ e : tc ≿ #→ tc ¬= tt tc ↑TC,D̃ lookupF,D̃(C, id,#
→)

∞F
C,D̃

id = e : tc ≿ #→

TUpdO

∞C,D̃ e : tt→ ≿ #→ tt = lookupF,D̃(C, id,#
→) term(tt)

cl(tt→) ↑D̃ cl(tt) tt→→ = ucastTT(tt→, cl(tt))

∞F
C,D̃

id = e : alias(tt→) ≿ updF,D̃(C, id, tt
→→,#→)

TUpdT

∞f

C,D̃
id = e : tc ≿ #→

∞C,D̃ this.id = e : tc ≿ #→

TUpdS

C.supD̃ = C → # ∞C→,D̃ this.id = e : tc ≿ #→

∞C,D̃ super.id = e : tc ≿ #→

TUpdExt

∞F
C,D̃

id.id→ : tc ≿ # # ∞C,D̃ e : tc→ ≿ #→ tc→ ↑TC,D̃ tc

∞F
C,D̃

id.id→ = e : tc→ ≿ #→

TUpdExtT

∞f

C,D̃
id.id→ = e : tc ≿ #→

∞C,D̃ this.id.id→ = e : tc ≿ #→

TUpdExtS

C.supD̃ = C → # ∞C→,D̃ this.id.id→ = e : tc ≿ #→

∞C,D̃ super.id.id→ = e : tc ≿ #→

238 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

TCastB

∞C,D̃ e : b→ ≿ #→ b ↑TC,D̃ b→ ∃ b→ ↑TC,D̃ b

∞C,D̃ (b) e : b ≿ #→

TUcastO

∞C,D̃ e : tt ≿ #→ cl(tt) ↑D̃ C

∞C,D̃ (C) e : ucastTT(tt, C) ≿ #→

TDcastO

∞C,D̃ e : tt ≿ #→ C ↑D̃ cl(tt)

∞C,D̃ (C) e : dcastTT(tt, C) ≿ #→

TCall

∞C,D̃ ẽ : tc ≿ #→ tt = lookupF,D̃(C, id,#)

rtm(p̃t) = minD̃(candsD̃(cl(tt),m, t̃c))

∈i, 1 ↑ i ↑ |t̃c| . tci ↑TC,D̃ toTC(pti)

ttunr = evoTTI(tt, toJT(rtm(p̃t))) ̸t ¬= ty(ttunr)

∞F,C,D̃ id.m(ẽ) : toTC(rt) ≿ updF,D̃(C, id, ttunr,#
→)

TAnyt

∞C,D̃ ẽ : tc ≿ #→ tt = lookupF,D̃(C, id,#)

rtm(p̃t) = minD̃(candsD̃(cl(tt),m, t̃c))

∈i, 1 ↑ i ↑ |t̃c| . tci ↑TC,D̃ toTC(pti)

anytimeD̃(cl(tt), toJT(rtm(p̃t))) ty(tt) ¬= Null

∞F
C,D̃

id.m(ẽ) : toTC(rt) ≿ #→

TCallT

∞f

C,D̃
id.m(ẽ) : tc ≿ #→

∞C,D̃ this.id.m(ẽ) : tc ≿ #→

TCallS

C.supD̃ = C → # ∞C→,D̃ this.id.m(ẽ) : tc ≿ #→

∞C,D̃ super.id.m(ẽ) : tc ≿ #→

TAnytM

∞C,D̃ ẽ : tc ≿ #→ rtm(p̃t) = minD̃(candsD̃(C,m, t̃c))

∈i, 1 ↑ i ↑ |t̃c| . tci ↑TC,D̃ toTC(pti) anytimeD̃(C, toJT(rtm(p̃t)))

∞C,D̃ m(ẽ) : toTC(rt) ≿ #→

TAnytMT

∞C,D̃ m(ẽ) : tc ≿ #→

∞C,D̃ this.m(ẽ) : tc ≿ #→

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

239

6.2. TYPE SYSTEM

TAnytMS

C.supD̃ = C → # ∞C→,D̃ this.m(ẽ) : tc ≿ #→

∞C,D̃ super.m(ẽ) : tc ≿ #→

TNot

∞C,D̃ e : bool ≿ #→

∞C,D̃ ! e : bool ≿ !#→

TEq

e ¬= l e→ ¬= l # ∞C,D̃ e : tc ≿ #→ #→ ∞C,D̃ e→ : tc→ ≿ #→→

toJT(tc) ↑D̃ toJT(tc→) ∃ toJT(tc→) ↑D̃ toJT(tc)

∞C,D̃ e == e→ : bool ≿ #→→

TEqL1

∞C,D̃ e : tc ≿ #→

#→ ∞C,D̃ l : tc ≿ #→

∞C,D̃ e == l : bool ≿
l⇓↔⇔
#→

TEqL2

∞C,D̃ l : tc ≿

∞C,D̃ e : tc ≿ #→

∞C,D̃ l == e : bool ≿
l⇓↔⇔
#→

The TNew rule checks that the class we are instantiating is defined in program

D̃ and analyses the expressions passed as parameter to the class constructor. Then,

given the types of the expressions passed as parameter, the rule looks for the correct

constructor to invoke and checks that the passed parameters are subtypes of the

expected ones. Finally, the rule is typed with a root typestate tree whose class is

the one we are instantiating and the type is the initial typestate of its protocol.

The TUpdB and TUpdO rules (the former for basic types, the latter for objects)

type check assignments. Both rules exploit the field flag to identify fields referenced

via this and super keywords. The TUpdB rule is straightforward: we just check that

the right-hand side is a subtype of the left-hand one. We type the assignment of

basic types with the TC type of the right-hand side. The TUpdO rule: (i) analyses

the expression on the right-hand side; (ii) retrieves the typestate tree associated

to the id on the left-hand side and ensures its terminability (otherwise we would

violate protocol completion); and (iii) checks that the Java class of the right-hand

side expression is a subtype of the left-hand side. Finally, to compute the type

associated to the assignment expression, we use the alias function.

The TUpdT and TUpdS rule handle assignments of fields referenced via this and

super, respectively. The TUpdT removes the this keyword, sets the field flag and

inductively resorts to either TUpdB or TUpdO. The TUpdS retrieves the superclass

240 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

information and resorts to the TUpdT rule.

The TUpdExt manages assignments of fields from external contexts, i.e., ac-

cessed with f.f →. The rule type checks the access to the external field we are ac-

cessing (via dedicated rules presented later), the expression we are assigning and

ensures the subtyping between the right-hand side type and the left-hand one.

The TUpdExtT and TUpdExtS rules manage assignments of fields from external

contexts via this and super keywords, respectively. The TUpdExtT rule sets the field

flag and resorts to the TUpdExt one; the TUpdExtS rule retrieves the superclass

information and resorts to the TUpdExtT one, passing such class information.

The TCastB, TUCastO and TDCastO rules manage upcasts and downcasts.

In case of basic types (TCastB), we just check the subtyping relation (in both

directions) among the type of the expression we are casting and the target one. If

the subtyping relation holds, the cast is legal and we assign to the expression the

basic type specified as the cast target. In case of objects, we check the subtyping

relation among the cast target and the Java class of the object we are casting.

To type check an upcast (TUCastO), we type the expression with the result of

ucastTT; otherwise, we type the expression with the result of dcastTT (TDCastO).

Notice that, if the cast target corresponds to the Java class of the typestate tree

root assigned to expression e, we can non deterministically apply either TUCastO

or TDCastO. However, the resulting TC type does change.

The TCall rule manages method calls. We type check the expressions passed

as parameter and retrieve the typestate tree associated to the receiver object. We

look for the correct method to call and ensure that: (i) the type of the expressions

passed as parameters are subtypes of the expected ones; and (ii) the current type

stored in the typestate tree allows for such method call. Finally, we type the

method call with the return type of the method we invoked.

The rule to type check anytime method calls, i.e., the TAnyt rule, behaves

exactly as the TCall one. However, instead of checking that the method call is

allowed in the the current type stored in the typestate tree of the receiver object,

it ensures that the method we are calling is anytime and that the receiver object

is not null.

The TCallT and TCallS rules manage method call whose receiver is referenced

via this and super keywords, respectively. The TCallT rule sets the field flag and

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

241

6.2. TYPE SYSTEM

resorts to either TCall or TAnyt; the TCallS rule retrieves the superclass information

and resorts to the TCallT one.

The TAnytM rule type checks method calls of the form m(ẽ). This rule performs

the same checks done by the TAnyt one, except for the one to ensure that the

receiver object is not null (as here the receiver object is implicitly this).

The TAnytMT and TAnytMS rules handle method calls of the form this.m(ẽ) and

super.m(ẽ), respectively. The first resorts to the TAnytM rule; the second retrieves

the superclass information and resorts to TAnytMT, passing such information.

The type checking of the logical negation operator is straightforward. In the

TNot rule, we ensure that expression e is typed with the bool type and we apply

the inversion operator.

The rules TEq, TEqL1 and TEqL2 analyse equality checks. The TEq rule analy-

ses checks where neither the left-hand side nor the right-hand one are labels. This

rule resolves the type environments stemming from the analysis of both expres-

sions (as they can be method calls possibly generating unresolved typestate trees)

and ensures that the types associated to the expressions are related by the cor-

responding subtyping relation. The TEqL1 and TEqL2 rules analyse check where

the left-hand side or the right-hand side expression is a label l. These rule ensure

that the tc types assigned to both sides of the equality check are equal and apply

the operator defined in Definition 96 to the resulting type environments.

As formalised in our syntax, expressions e can be identifiers, thus in Defini-

tion 104 we present the rules to type check their accesses.

Definition 104 (Typing rule for identifiers).

TId

tc = lookupF,D̃(C, id,#)

∞F
C,D̃

id : tc ≿ updF,D̃(C, id,#, alias(tc))
TIdT

∞f

C,D̃
id : tc ≿ #→

∞C,D̃ this.id : tc ≿ #→

TIdS

C.supD̃ = C → # ∞C→,D̃ this.id : tc ≿ #→

∞C,D̃ super.id : tc ≿ #→

TIdExt

tt = lookupF,D̃(C, id,#) ∋jt id→ ⇓ cl(tt).allFD̃(id
→).fieldsD̃ . jt ¬= C

∞F
C,D̃

id.id→ : inittype(jt) ≿ #

242 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

6.2. TYPE SYSTEM

TIdExtT

∞f

C,D̃
id.id→ : tc ≿ #

∞C,D̃ this.id.id→ : tc ≿

TIdExtS

C.supD̃ = C → # ∞C→,D̃ id.id→ : tc ≿ #

∞C,D̃ super.id.id→ : tc ≿

The TId rule deals with accesses of identifiers, i.e., read operations. The rule

retrieves the type of the identifier we are accessing via lookupF,D̃ and ensures that

such identifier is typed with the result of alias. The use of alias is crucial to ensure a

linear discipline, as it avoids that multiple references have the ability of modifying

the protocol of a given object.

The TIdT and TIdS rules deals with accesses of fields via this and super key-

words. The former sets the field flag and resorts to TId; the latter retrieves the

superclass information and resorts to TIdT passing such information.

The TIdExt rule type checks accesses to externale fields. This rule first ensures

that the id from which we access the external field is an object and then we retrieve

the Java type of the accessed external field id→ checking that such Java type is a

basic one. The latter check is crucial: if we allowed id→ to be an object, we could

not guarantee that its usage follows the protocol attached to the class of id→, since

we do not have access to the field type environment of the class id, thus, we can

neither know the current type assigned to id→ nor modify it.

The TIdExtT and TIdExtS rules handle accesses of external fields via this and

super. The former sets the field flag and resorts to TIdExt; the latter retrieves the

superclass information and resorts to TIdExtT passing such information.

The last syntactical element to analyse are values v (recall, labels are values as

well). Thus, in Definition 105, we introduce the typing rules for values.

Definition 105 (Typing rules for values).

TInt

v = intLit

∞C,D̃ v : int ≿
TDouble

v = doubleLit

∞C,D̃ v : double ≿

TBool

v ⇓ {true, false}

∞C,D̃ v : bool ≿
TNull

∞C,D̃ null :(⊥C,Null, {}) ≿

CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

243

6.3. DISCUSSION

TEnumVal

v = L.id L ⇓ LD̃ id ⇓ L.valsD̃

∞C,D̃ v :L ≿

6.3 Discussion

This Chapter provided a formal and detailed exploration of the type checking pro-

cedure JaTyC implements, grounded in the theoretical framework we discussed

so far. We defined our core language extending the work done by Bravetti et

al. [BFG+20] with critical features such as variable declarations, aliasing, poly-

morphism, protocol inheritance and our typestate trees. These enhancements sig-

nificantly broaden the range of programs expressible in our language and improve

the flexibility and precision of our approach. Building upon this foundation, we

systematically defined the rules governing the type checking for each syntactical

construct, ensuring adherence to the expected type constraints. For every syntactic

construct of our language, we provided a corresponding type checking rule. Each

rule is specifically designed to statically ensure type correctness, thus reducing

the likelihood of runtime errors. Moreover, our analysis, enhanced by typestates

and typestate trees, is capable, not only of preventing null pointer exceptions at

compile time, even in programs using polymorphism, but also of ensuring that a

progras adhere to a prescribed behaviour. This is achieved by carefully tracking

the flow of object typestates and their transitions throughout programs, enabling

the type checker to detect potential null dereferences and misbehaviours, before

they actually occur.

The objective of this Chapter is twofold. First, it seeks to precisely support

the informal description provided earlier in Section 5.6, with formal type checking

rules. This explanation goes beyond a superficial overview and goes into the in-

ternal workings of the checker, revealing the intricate process that occurs behind

the scenes. Second, this Chapter aims to establish a solid foundation that under-

pins our implementation. By grounding our work in formal definitions and type

checking rules, we, not only enhance the rigor of our approach, but also provide

a framework that can be extended and applied to other programming scenarios

involving typestate and protocol management.

244 CHAPTER 6. A FORMAL SPECIFICATION OF THE JAVA TYPE
CHECKER

Chapter 7

Conclusion

In conclusion, this Dissertation has tackled some of the inherent complexities of

modern large-scale software systems, which are distributed, collaborative, and

communication-centric by nature. As these systems form the backbone of critical

infrastructure, addressing the challenges identified in the context of this Disserta-

tion is paramount to maintaining the integrity of our digital world. The stakes are

high: even minor deviations or misbehaviours in system components can lead to

cascading failures, resulting in severe consequences e.g., security breaches, reputa-

tional damage. To address these challenges, this Dissertation aimed at improving

modern software engineering practices, such as Continuous Integration and Con-

tinuous Deployment/Delivery (CICD) and automatic adaptation. More precisely,

this Dissertation has sought to address these gaps focusing on three key challenges:

• challenge C1 concerns the evaluation of system behaviour as a whole at early

stages of software development, i.e., at modelling level, fostering a develop-

ment approach where DevOps teams can analyse the consequences of their

choices early on, e.g., during the system design phase;

• challenge C2 aims at introducing architectural reconfiguration approaches,

leveraging correct-by construction orchestrations. Such orchestrations are

built upon declarative specifications of, e.g., component requirements, de-

ployment constraints. Moreover, the knowledge of components behaviours is

crucial to overcome the drawbacks of the state of the art service-level adapta-

tion, i.e., the approach of the Kubernetes horizontal Pod Autoscaler (HPA),

CHAPTER 7. CONCLUSION 245

avoiding the “domino e!ect” of uncoordinated scaling;

• challenge C3 focuses on endowing CICD practices with the ability of catching

misbehaviours due to wrong internal service interactions, e.g., dereferencing

null pointers or using objects wrongly.

We addressed C1 in Chapter 3, presenting a timed integrated modelling/exe-

cution language capable of precisely simulating system behaviour early at design

phase, without the need for an actual implementation. The integration is fully

realised thanks to our Timed SmartDeployer that, starting from declarative an-

notations of microservice features (e.g., required resources, strong/weak ports),

virtual machine properties (e.g., provided resources) and deployment constraints

(e.g., microservice instances to deploy), it automatically synthesizes correct timed

deployment orchestrations. In particular, these deployment orchestrations explic-

itly manage startup time and speed dynamically setting their values (the previous

version of SmartDeployer statically assigns them to each DC instance, produc-

ing orchestrations with unexpected behaviours). To test the expressive power

of our timed integrated modelling/execution language, we modelled a real-world

microservice system, i.e., the AcmeAir system. In particular, we picked the work-

load from [IPT23] and tested that the simulated system behaves as we expect.

As we showed, our timed integrated modelling/execution language is capable of

precisely reproducing the behaviour of the real-world system, enabling DevOps

teams to analyse deployment strategies and their implications early in the soft-

ware development process, ensuring informed decision-making before starting the

actual implementation. Thus, the work done in Chapter 3 addresses challenge C1,

enabling early-stage evaluation of system behaviour at the modelling level.

We dealt with C2 in Chapter 4 introducing two approaches to architectural

reconfiguration based on deployment orchestrations. Our approaches leverage

correct-by construction deployment orchestrations automatically synthesized start-

ing from declarative specifications of, e.g., component characteristics, deployment

constraints. The first approach focuses on service autoscaling. In particular, we

proposed an innovative proactive-reactive scaling algorithm working in two phases:

(i) combines the signals coming from a predictive module (proactiveness) and the

system monitor (reactiveness) to compute the target workload the system has to

246 CHAPTER 7. CONCLUSION

handle; and (ii) replicates the microservice architecture under examination as a

whole. Our algorithm has been tested through a series of benchmarks, conducted

in both simulated and realistic environments. The first set of benchmarks showed

that our reactive global scaling algorithm (without proactive capabilities), not only

surpasses the performance of the reactive local one (the mainstream approach),

but it also outperforms an enhanced version of the local scaling equipped with

an oracle, i.e., a perfect predictor. In the final set of benchmarks, we assessed

the e!ectiveness of our proactive-reactive scaling algorithm in handling workloads

that are particularly challenging to predict. The results testified the e!ectiveness

of our approach, showing that it can maintain optimal performance even under

unpredictable conditions. The second approach focuses on edge-cloud continuum

service migration. In particular, we presented a microservice architecture designed

specifically for deployment across the edge-cloud continuum, targeted at reducing

communication latency. To do that, our architecture includes an orchestrator

to migrate services according to user-defined policies. We empirically showed,

via simulated and real-world execution, that our orchestrator is capable of sig-

nificantly reducing communication latency exploiting the data locality principle,

i.e., moving code towards data is cheaper than vice versa. Our orchestration-based

architectural reconfiguration approaches addresses challenge C2: they instill a tar-

get system behaviour, i.e., architectural reconfiguration, exploiting deployment

orchestrations built via declarative descriptions of component behaviour (e.g., re-

source requirements, strong/weak dependencies). These correct-by construction

orchestrations allow developers to focus only on the logic of the reconfiguration

technique, without worrying about dependency management. Thus, the develop-

ment of more complex approaches to architectural reconfiguration, possibly mixing

service autoscaling and migration, is easier and less error-prone (due to wrong de-

pendency management). Moreover, we showed that such knowledge, not only is

useful for orchestration synthesis, but it is also crucial to build scaling approaches

capable of overcoming the drawbacks of the state of the art service-level adapta-

tion, i.e., the “domino e!ect” of uncoordinated scaling.

Finally, we tackled C3 in Chapter 5, extending and enhancing our Java Types-

tate Checker (JaTyC). Specifically, our e!orts are directed in two main areas: (i)

we extended the state of the art of the typestate-based analysis to safely support

CHAPTER 7. CONCLUSION 247

polymorphism; (ii) we enlarged JaTyC supported language with a new syntacti-

cal construct, i.e., arrays of linear objects. To fully support polymorphism, we

introduced the typestate tree data structure and a comprehensive set of functions

designed to manage it (see Section 5.5), i.e., ucastTT, dcastTT, evoTT and mrgTT.

The theoretical work we devised is language agnostic, making it applicable across

a spectrum of object-oriented programming languages. To validate its e”cacy and

expressiveness, we implemented it in Java, extending JaTyC to support casting

operations at any points in protocols. In addition to the integration of polymor-

phism in typestate-based analyses, we extended the language JaTyC supports with

arrays of linear (i.e., typestate-endowed) objects. To realise such integration, we

first extended its type system with a type specifically tailored for such arrays,

then we completed the integration enhancing the type checking process, to in-

clude the new syntactical construct. In addition to the work done in Chapter 5,

in Chapter 6 we complemented the JaTyC type checking process with formally

defined type checking rules. To this aim, we defined a subset of the Java pro-

gramming language serving as the syntactic basis for our analysis. This subset,

inspired by Bravetti et al. [BFG+20], extends it with critical features such as vari-

able declarations, aliasing, polymorphism, protocol inheritance and our new data

structure for typestates, i.e., typestate trees. These enhancements significantly ex-

pand the range of programs expressible in our language with respect to Bravetti et

al. [BFG+20], o!ering greater flexibility and precision in addressing diverse pro-

gramming challenges. By introducing these features, we created a foundation that

allows developers to express complex constructs with clarity, while statically guar-

anteeing absence of null pointer exceptions. Building upon this solid foundation,

we systematically defined a comprehensive set of rules governing the type checking

process for every syntactical construct in the language. Each rule is meticulously

designed to ensure that type constraints are adhered to, enabling the static verifi-

cation of type correctness. This approach, not only reinforces the integrity of the

code, but also minimises the potential for runtime errors, contributing to the re-

liability of applications built using our framework. For each syntactical construct

within our language, we provided a corresponding type checking rule tailored to

its specific requirements. These rules are instrumental in enforcing correctness at

compile time, ensuring that violations are detected and resolved early in the devel-

248 CHAPTER 7. CONCLUSION

opment process. The static nature of these checks significantly reduces the risk of

runtime errors, creating a more predictable and secure development environment.

Moreover, our analysis extends beyond traditional type systems by incorporating

advanced concepts like typestates and typestate trees. These mechanisms enable

the detection and prevention of null pointer exceptions at compile time, even in

scenarios involving polymorphism. Developers are empowered to write code that

is both expressive and secure, benefiting from a language that actively supports

the prevention of common yet critical errors. The objective of formally describing

the type checking process performed by JaTyC is to o!er a more thorough and

detailed understanding of what JaTyC does during the type checking procedure.

This explanation goes beyond a superficial overview and thoroughly presents the

internal workings of the checker, revealing the intricate process that occurs behind

the scenes. Second, this Chapter aims to establish a solid theoretical foundation

that underpins our implementation. By grounding our work in formal definitions

and type checking rules, we, not only enhanced the rigor of our approach, but also

provided a framework that can be easily extended and applied to other program-

ming scenarios involving typestate and protocol management. We proved that our

theoretical machinery, applicable to any statically typed object oriented language,

can be implemented in JaTyC capable of analysing an expressive subset of Java.

Notice that, our tool can be easily integrated within CICD pipelines, thus these

Chapters addressed challenge C3.

Without any claim to be complete in any of the discussed matters, we believe

that elevating flat component behavioural descriptions to a more structured abstrac-

tion can foster the development of more reliable, e!cient and robust systems.

CHAPTER 7. CONCLUSION 249

250 CHAPTER 7. CONCLUSION

CHAPTER 7. CONCLUSION 251

Bibliography

[ABB+16] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos,

Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Ges-

bert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco

Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova,

Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko

Yoshida. Behavioral types in programming languages. Found. Trends

Program. Lang., 3(2-3):95–230, 2016.

[ÁCJ+16] Erika Ábrahám, Florian Corzilius, Einar Broch Johnsen, Gereon Kre-

mer, and Jacopo Mauro. Zephyrus2: On the fly deployment optimiza-

tion using SMT and CP technologies. In Martin Fränzle, Deepak

Kapur, and Naijun Zhan, editors, Dependable Software Engineering:

Theories, Tools, and Applications - Second International Symposium,

SETTA 2016, Beijing, China, November 9-11, 2016, Proceedings,

volume 9984 of Lecture Notes in Computer Science, pages 229–245,

2016.

[AGS+20] Cristiano Aguzzi, Lorenzo Gigli, Luca Sciullo, Angelo Trotta, and

Marco Di Felice. From cloud to edge: Seamless software migration

at the era of the web of things. IEEE Access, 8:228118–228135, 2020.

[AIB+22] Muhammad Abdullah, Waheed Iqbal, Josep Lluis Berral, Jorda Polo,

and David Carrera. Burst-aware predictive autoscaling for con-

tainerized microservices. IEEE Transactions on Services Computing,

15(3):1448–1460, 2022.

BIBLIOGRAPHY 253

BIBLIOGRAPHY

[AKR19] Abeer Abdel Khaleq and Ilkyeun Ra. Agnostic approach for microser-

vices autoscaling in cloud applications. In 2019 International Con-

ference on Computational Science and Computational Intelligence

(CSCI), pages 1411–1415, 2019.

[All70] Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–

19, 1970.

[Amaa] Amazon. AWS auto scaling. https://aws.amazon.com/

autoscaling/.

[Amab] Amazon. Aws cloudwatch. https://aws.amazon.com/it/

cloudwatch/.

[AMS+22] Mahin K. Atiq, Raheeb Muza!ar, Óscar Seijo, Iñaki Val, and Hans-

Peter Bernhard. When ieee 802.11 and 5g meet time-sensitive net-

working. IEEE Open Journal of the Industrial Electronics Society,

3:14–36, 2022.

[Apa] Apache. Apache mesos. https://mesos.apache.org.

[ATWS24] Hussain Ahmad, Christoph Treude, Markus Wagner, and Claudia

Szabo. Smart HPA: A resource-e”cient horizontal pod auto-scaler

for microservice architectures. CoRR, abs/2403.07909, 2024.

[BA05] Kevin Bierho! and Jonathan Aldrich. Lightweight object specifica-

tion with typestates. In Proceedings of the 10th European Software

Engineering Conference held jointly with 13th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, 2005,

pages 217–226, Portugal, 2005. ACM.

[BA07] Kevin Bierho! and Jonathan Aldrich. Modular typestate checking

of aliased objects. In Proceedings of the 22nd Annual ACM SIG-

PLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA 2007, pages 301–320, Canada,

2007. ACM.

254 BIBLIOGRAPHY

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/it/cloudwatch/
https://aws.amazon.com/it/cloudwatch/
https://mesos.apache.org

BIBLIOGRAPHY

[Bac24a] Antonioni Giovanni Bacchiani, Lorenzo. Global scaler. https://

github.com/giovaz94/global-scaler, 2024.

[Bac24b] Antonioni Giovanni Bacchiani, Lorenzo. Global scaling platform.

https://github.com/giovaz94/custom-pipeline, 2024.

[Bac24c] Lorenzo Bacchiani. ABS AcmeAir - Simulation code for the AcmeAir

microservices architecture. https://github.com/LBacchiani/

acmeair_abs.git, 2024.

[Bac24d] Lorenzo Bacchiani. ABS Migration Simulation - Simulation code

fo the SEAWALL platform. https://github.com/LBacchiani/

migration-simulation.git, 2024.

[Bac24e] Lorenzo Bacchiani. Global scaling platform executable model.

https://github.com/LBacchiani/global-scaling, 2024.

[Bac24f] Lorenzo Bacchiani. Kubernetes smart deployer. https://github.

com/LBacchiani/k8s_smart_deployer, 2024.

[Bar18] Je! Barr. AWS auto scaling. https://aws.amazon.com/autoscaling/,

2018.

[BAT14] Gavin Bierman, Mart́ın Abadi, and Mads Torgersen. Understanding

typescript. In European Conference on Object-Oriented Program-

ming, pages 257–281. Springer, 2014.

[BBG+22a] Lorenzo Bacchiani, Mario Bravetti, Maurizio Gabbrielli, Saverio Gi-

allorenzo, Gianluigi Zavattaro, and Stefano Pio Zingaro. Proactive-

reactive global scaling, with analytics. In Javier Troya, Brahim

Medjahed, Mario Piattini, Lina Yao, Pablo Fernández, and Anto-

nio Ruiz-Cortés, editors, Service-Oriented Computing - 20th Inter-

national Conference, ICSOC 2022, Seville, Spain, November 29 -

December 2, 2022, Proceedings, volume 13740 of Lecture Notes in

Computer Science, pages 237–254. Springer, 2022.

BIBLIOGRAPHY 255

https://github.com/giovaz94/global-scaler
https://github.com/giovaz94/global-scaler
https://github.com/giovaz94/custom-pipeline
https://github.com/LBacchiani/acmeair_abs.git
https://github.com/LBacchiani/acmeair_abs.git
https://github.com/LBacchiani/migration-simulation.git
https://github.com/LBacchiani/migration-simulation.git
https://github.com/LBacchiani/global-scaling
https://github.com/LBacchiani/k8s_smart_deployer
https://github.com/LBacchiani/k8s_smart_deployer

BIBLIOGRAPHY

[BBG+22b] Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and

António Ravara. A java typestate checker supporting inheritance.

Sci. Comput. Program., 221:102844, 2022.

[BBG+24a] Lorenzo Bacchiani, Mario Bravetti, Saverio Giallorenzo, Jacopo

Mauro, Iacopo Talevi, and Gianluigi Zavattaro. Timed Smart-

Deployer source code. https://github.com/jacopoMauro/abs_

deployer, 2024.

[BBG+24b] Lorenzo Bacchiani, Mario Bravetti, Saverio Giallorenzo, Jacopo

Mauro, and Gianluigi Zavattaro. Integrated timed architectural mod-

eling/execution language. In Frank S. de Boer, Ferruccio Dami-

ani, Reiner Hähnle, Einar Broch Johnsen, and Eduard Kambur-

jan, editors, Active Object Languages: Current Research Trends, vol-

ume 14360 of Lecture Notes in Computer Science, pages 169–198.

Springer, 2024.

[BBG+24c] Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and

António Ravara. Behavioural Up/down Casting For Statically Typed

Languages. In Jonathan Aldrich and Guido Salvaneschi, editors, 38th

European Conference on Object-Oriented Programming (ECOOP

2024), volume 313 of Leibniz International Proceedings in Infor-

matics (LIPIcs), pages 5:1–5:28, Dagstuhl, Germany, 2024. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik.

[BBG+25] Lorenzo Bacchiani, Mario Bravetti, Saverio Giallorenzo, Maurizio

Gabbrielli, Gianluigi Zavattaro, and Stefano Pio Zingaro. Proactive-

reactive microservice architecture global scaling. J. Syst. Softw.,

220:112262, 2025.

[BBLZ21] Lorenzo Bacchiani, Mario Bravetti, Julien Lange, and Gianluigi Za-

vattaro. A session subtyping tool. In Ferruccio Damiani and Ornela

Dardha, editors, Coordination Models and Languages - 23rd IFIP

WG 6.1 International Conference, COORDINATION 2021, Held as

Part of the 16th International Federated Conference on Distributed

256 BIBLIOGRAPHY

https://github.com/jacopoMauro/abs_deployer
https://github.com/jacopoMauro/abs_deployer

BIBLIOGRAPHY

Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-

18, 2021, Proceedings, volume 12717 of Lecture Notes in Computer

Science, pages 90–105. Springer, 2021.

[BBP+22] Nicolò Bartelucci, Paolo Bellavista, Thomas W. Pusztai, Andrea

Morichetta, and Schahram Dustdar. High-level metrics for service

level objective-aware autoscaling in polaris: a performance evalu-

ation. 2022 IEEE 6th International Conference on Fog and Edge

Computing (ICFEC), pages 73–77, 2022.

[BdBdG17] Nikolaos Bezirgiannis, Frank S. de Boer, and Stijn de Gouw. Human-

in-the-Loop Simulation of Cloud Services. In ESOCC, volume 10465

of LNCS, pages 143–158. Springer, 2017.

[BDCd95] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo

de’Liguoro. Intersection and union types: Syntax and semantics.

Information and Computation, 119:202–230, 1995.

[BDD+20] Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Patricia

Lago, Manuel Mazzara, Victor Rivera, and Andrey Sadovykh, edi-

tors. Microservices, Science and Engineering. Springer, 2020.

[BdGJ23] Jelle Bouma, Stijn de Gouw, and Sung-Shik Jongmans. Multiparty

session typing in java, deductively. In Sriram Sankaranarayanan

and Natasha Sharygina, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems - 29th International Conference,

TACAS 2023, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2022, Proceedings, Part II,

volume 13994 of Lecture Notes in Computer Science, pages 19–27,

France, 2023. Springer.

[BDMIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta

Simeoni. Model-based performance prediction in software devel-

opment: A survey. IEEE Transactions on Software Engineering,

30(5):295–310, 2004.

BIBLIOGRAPHY 257

BIBLIOGRAPHY

[BFG+20] Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans

Hüttel, Mathias Jakobsen, Mikkel Kettunen, and António Ravara.

Behavioural Types for Memory and Method Safety in a Core Object-

Oriented Language. In Asian Symposium on Programming Languages

and Systems, volume 12470 of Lecture Notes in Computer Science,

pages 105–124, Japan, 2020. Springer.

[BGM+19] Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi,

and Gianluigi Zavattaro. Optimal and automated deployment for

microservices. In Reiner Hähnle and Wil M. P. van der Aalst, ed-

itors, Fundamental Approaches to Software Engineering - 22nd In-

ternational Conference, FASE 2019, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2019,

Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11424

of Lecture Notes in Computer Science, pages 351–368. Springer, 2019.

[BGM+20] Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi,

and Gianluigi Zavattaro. A formal approach to microservice architec-

ture deployment. In Microservices, Science and Engineering, pages

183–208. Springer, 2020.

[BH14] Stefan Blom and Marieke Huisman. The vercors tool for verification

of concurrent programs. In Cli! B. Jones, Pekka Pihlajasaari, and

Jun Sun, editors, FM 2014: Formal Methods - 19th International

Symposium. Proceedings, volume 8442 of Lecture Notes in Computer

Science, pages 127–131, Singapore, 2014. Springer.

[BK21] Ataollah Fatahi Baarzi and George Kesidis. Showar: Right-sizing

and e”cient scheduling of microservices. In Proceedings of the ACM

Symposium on Cloud Computing, SoCC ’21, pages 427–441, New

York, NY, USA, 2021. Association for Computing Machinery.

[BKA11] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An empirical

study of object protocols in the wild. In Mira Mezini, editor, ECOOP

2011 - Object-Oriented Programming - 25th European Conference,

258 BIBLIOGRAPHY

BIBLIOGRAPHY

Lancaster, UK, July 25-29, 2011 Proceedings, volume 6813 of Lecture

Notes in Computer Science, pages 2–26. Springer, 2011.

[BLV+19] André Bauer, Veronika Lesch, Laurens Versluis, Alexey Ilyushkin,

Nikolas Herbst, and Samuel Kounev. Chamulteon: Coordinated

auto-scaling of micro-services. In 39th IEEE International Confer-

ence on Distributed Computing Systems, ICDCS 2019, Dallas, TX,

USA, July 7-10, 2019, pages 2015–2025. IEEE, 2019.

[BNOW93] Andrew Birrell, Greg Nelson, Susan S. Owicki, and Edward Wobber.

Network objects. In Andrew P. Black and Barbara Liskov, editors,

Proceedings of the Fourteenth ACM Symposium on Operating Sys-

tem Principles, SOSP 1993, The Grove Park Inn and Country Club,

Asheville, North Carolina, USA, December 5-8, 1993, pages 217–230.

ACM, 1993.

[BOP22] Grzegorz J. Blinowski, Anna Ojdowska, and Adam Przybylek. Mono-

lithic vs. microservice architecture: A performance and scalability

evaluation. IEEE Access, 10:20357–20374, 2022.

[Boy01] John Boyland. Alias burying: Unique variables without destructive

reads. Softw. Pract. Exp., 31(6):533–553, 2001.

[BPS+22a] Lorenzo Bacchiani, Giuseppe De Palma, Luca Sciullo, Mario

Bravetti, Marco Di Felice, Maurizio Gabbrielli, Gianluigi Zavat-

taro, and Roberto Della Penna. Low-latency anomaly detection on

the edge-cloud continuum for industry 4.0 applications: the SEA-

WALL case study. IEEE Internet Things Mag., 5(3):32–37, 2022.

[BPS+22b] Lorenzo Bacchiani, Giuseppe De Palma, Luca Sciullo, Mario

Bravetti, Marco Di Felice, Maurizio Gabbrielli, Gianluigi Zavat-

taro, Roberto Della Penna, Corrado Iorizzo, Andrea Livaldi, Luca

Magnotta, and Mirko Orsini. SEAWALL: seamless low latency cloud

platforms for the industry 4.0. In 5th Conference on Cloud and Inter-

net of Things, CIoT 2022, Marrakech, Morocco, March 28-30, 2022,

pages 90–91. IEEE, 2022.

BIBLIOGRAPHY 259

BIBLIOGRAPHY

[BZ07] M. Bravetti and G. Zavattaro. Towards a unifying theory for chore-

ography conformance and contract compliance. In Proc. of 6th Int.

Symposium Software Composition, SC’07, volume 4829 of Lecture

Notes in Computer Science, pages 34–50. Springer, 2007.

[BZ09] Mario Bravetti and Gianluigi Zavattaro. On the expressive power of

process interruption and compensation. Mathematical Structures in

Computer Science, 19(3):565–599, 2009.

[Car96] Luca Cardelli. Type systems. ACM Comput. Surv., 28(1):263–264,

1996.

[CDSY17] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas,

and Nobuko Yoshida. On the preciseness of subtyping in session

types. Logical Methods in Computer Science, 13(2), 2017.

[CHLR23] Héléne Coullon, Ludovic Henrio, Frédéric Loulergue, and Simon

Robillard. Component-based distributed software reconfiguration:a

verification-oriented survey. ACM Comput. Surv., 56(1), aug 2023.

[COE+20] Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronke-

vich, Miles Baker, Yannick Bloem, Brad A. Myers, Joshua Sun-

shine, and Jonathan Aldrich. Obsidian: Typestate and assets for

safer blockchain programming. ACM Trans. Program. Lang. Syst.,

42(3):14:1–14:82, 2020.

[Con23] Checker Framework Contributors. The Checker Framework, 2023.

[CR20] Nora Jones Casey Rosenthal. Chaos Engineering. O’Reilly Media,

Inc., 1 edition, 2020.

[DCZZ12] Roberto Di Cosmo, Stefano Zacchiroli, and Gianluigi Zavattaro. To-

wards a Formal Component Model for the Cloud. In SEFM 2012,

volume 7504 of LNCS, pages 156–171. Springer, 2012.

[Dd09] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and

session types: An overview. In Cosimo Laneve and Jianwen Su, edi-

tors,Web Services and Formal Methods, 6th International Workshop,

260 BIBLIOGRAPHY

BIBLIOGRAPHY

WS-FM 2009, Bologna, Italy, September 4-5, 2009, Revised Selected

Papers, volume 6194 of Lecture Notes in Computer Science, pages

1–28. Springer, 2009.

[DF04] Robert DeLine and Manuel Fähndrich. Typestates for objects. In

Martin Odersky, editor, ECOOP 2004 - Object-Oriented Program-

ming, 18th European Conference, Oslo, Norway, June 14-18, 2004,

Proceedings, volume 3086 of Lecture Notes in Computer Science,

pages 465–490. Springer, 2004.

[dFCM23] Carlos Mão de Ferro, Tiago Cogumbreiro, and Francisco Martins.

Shelley: A Framework for Model Checking Call Ordering on Hier-

archical Systems. In Proceedings of the 18th International Federated

Conference on Distributed Computing Techniques (DisCoTec 2023),

COORDINATION 2023, volume 13908 of Lecture Notes in Computer

Science, pages 93–114, Portugal, 2023. Springer.

[DGL+17a] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel

Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Mi-

croservices: Yesterday, today, and tomorrow. In Manuel Mazzara and

Bertrand Meyer, editors, Present and Ulterior Software Engineering,

pages 195–216. Springer, 2017.

[DGL+17b] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel

Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Mi-

croservices: Yesterday, today, and tomorrow. In PAUSE, pages 195–

216. Springer, 2017.

[DGS17] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types

revisited. Inf. Comput., 256:253–286, 2017.

[DGVV12] Sourav Dutta, Sankalp Gera, Akshat Verma, and Balaji

Viswanathan. Smartscale: Automatic application scaling in enter-

prise clouds. In Rong Chang, editor, 2012 IEEE Fifth International

Conference on Cloud Computing, Honolulu, HI, USA, June 24-29,

2012, pages 221–228. IEEE Computer Society, 2012.

BIBLIOGRAPHY 261

BIBLIOGRAPHY

[Dij72] Edsger W. Dijkstra. The humble programmer, 1972. ACM Turing

Award acceptance speech.

[dMZ19] Stijn de Gouw, Jacopo Mauro, and Gianluigi Zavattaro. On the

modeling of optimal and automatized cloud application deployment.

Journal of Logical and Algebraic Methods in Programming, 107:108

– 135, 2019.

[DMZZ14] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi

Zavattaro. Aeolus: A component model for the cloud. Inf. Comput.,

239:100–121, 2014.

[Doc] Docker. Docker swarm. https://docs.docker.com/engine/

swarm/.

[FSZS18] Amina Fellan, Christian Schellenberger, Marc Zimmermann, and

Hans D. Schotten. Enabling communication technologies for auto-

mated unmanned vehicles in industry 4.0. In 2018 International

Conference on Information and Communication Technology Conver-

gence (ICTC), pages 171–176, 2018.

[Fur14] Mark Furman. OpenVZ essentials. Packt Publishing Ltd, 2014.

[GCW19] Alim Ul Gias, Giuliano Casale, and C. Murray Woodside. ATOM:

model-driven autoscaling for microservices. In 39th IEEE Interna-

tional Conference on Distributed Computing Systems, ICDCS 2019,

Dallas, TX, USA, July 7-10, 2019, pages 1994–2004. IEEE, 2019.

[GH99] Simon J. Gay and Malcolm Hole. Types and Subtypes for Client-

Server Interactions. In Proc. of Programming Languages and Systems

(ESOP), volume 1576 of Lecture Notes in Computer Science, pages

74–90. Springer, 1999.

[GH05] Simon J. Gay and Malcolm Hole. Subtyping for session types in the

pi calculus. Acta Inf., 42(2-3):191–225, 2005.

[Goo] Google. Scaling based on predictions. https://cloud.google.com/

compute/docs/autoscaler/predictive-autoscaling?hl=it.

262 BIBLIOGRAPHY

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://cloud.google.com/compute/docs/autoscaler/predictive-autoscaling?hl=it
https://cloud.google.com/compute/docs/autoscaler/predictive-autoscaling?hl=it

BIBLIOGRAPHY

[Gro02] W. Grosso. Java RMI. O’Reilly Media, 2002.

[GTWA14] Ronald Garcia, Éric Tanter, Roger Wol!, and Jonathan Aldrich.

Foundations of typestate-oriented programming. ACM Trans. Pro-

gram. Lang. Syst., 36(4):12:1–12:44, 2014.

[GVR+10] Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils

Gesbert, and Alexandre Z. Caldeira. Modular session types for dis-

tributed object-oriented programming. In Proceedings of the 37th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2010, pages 299–312, Spain, 2010. ACM.

[Has] HashiCorp. Automate infrastructure on any cloud with Terraform.

https://www.terraform.io.

[HBB17] Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: Up

and Running Dive into the Future of Infrastructure. O’Reilly Media,

Inc., 1st edition, 2017.

[HF10a] Jez Humble and David Farley. Continuous Delivery: Reliable Soft-

ware Releases Through Build, Test, and Deployment Automation.

Addison-Wesley Professional, 2010.

[HF10b] Jez Humble and David Farley. Continuous Delivery: Reliable Soft-

ware Releases Through Build, Test, and Deployment Automation.

Addison-Wesley Professional, 2010.

[HFG+19] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann

Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang

Wu. Serverless computing: One step forward, two steps back. In 9th

Biennial Conference on Innovative Data Systems Research, CIDR

2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.

www.cidrdb.org, 2019.

[HHK02] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process

algebra for performance evaluation. Theoretical computer science,

274(1-2):43–87, 2002.

BIBLIOGRAPHY 263

https://www.terraform.io

BIBLIOGRAPHY

[HLV+16] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Lúıs Caires, Marco

Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani,

António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi

Zavattaro. Foundations of session types and behavioural contracts.

ACM Comput. Surv., 49(1):3:1–3:36, 2016.

[Hoa09] Tony Hoare. Null References: The Billion Dollar Mistake, 2009.

Presentation at QCon London.

[Hon93] Kohei Honda. Types for dyadic interaction. In Eike Best, editor,

CONCUR ’93, 4th International Conference on Concurrency Theory,

Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715

of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.

[HVK98] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language

primitives and type discipline for structured communication-based

programming. In Chris Hankin, editor, Programming Languages and

Systems, pages 122–138, Berlin, Heidelberg, 1998. Springer Berlin

Heidelberg.

[HYC16] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty

asynchronous session types. J. ACM, 63(1):9:1–9:67, 2016.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language

for mutable data structures. In Chris Hankin and Dave Schmidt, ed-

itors, Conference Record of POPL 2001: The 28th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, Lon-

don, UK, January 17-19, 2001, pages 14–26. ACM, 2001.

[IPT23] Emilio Incerto, Roberto Pizziol, and Mirco Tribastone. µopt: An e”-

cient optimal autoscaler for microservice applications. In IEEE Inter-

national Conference on Autonomic Computing and Self-Organizing

Systems, ACSOS 2023, Toronto, ON, Canada, September 25-29,

2023, pages 67–76. IEEE, 2023.

264 BIBLIOGRAPHY

BIBLIOGRAPHY

[ISH21] Md Hasan Ibrahim, Mohammed Sayagh, and Ahmed E Hassan. A

study of how docker compose is used to compose multi-component

systems. Empirical Software Engineering, 26:1–27, 2021.

[Iva17] Konstantin Ivanov. Containerization with LXC. Packt Publishing

Ltd, 2017.

[JHS+10] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte,

and Martin Ste!en. ABS: A core language for abstract behavioral

specification. In Bernhard K. Aichernig, Frank S. de Boer, and Mar-

cello M. Bonsangue, editors, Formal Methods for Components and

Objects - 9th International Symposium, FMCO 2010, Graz, Austria,

November 29 - December 1, 2010. Revised Papers, volume 6957 of

Lecture Notes in Computer Science, pages 142–164. Springer, 2010.

[JHS+12] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte,

and Martin Ste!en. ABS: A Core Language for Abstract Behavioral

Specification. In Formal Methods for Components and Objects - 9th

International Symposium, FMCO 2010, Graz, Austria, November 29

- December 1, 2010. Revised Papers, volume 6957 of Lecture Notes

in Computer Science, pages 142–164. Springer, 2012.

[JI17] Dmitry Jemerov and Svetlana Isakova. Kotlin in action. Manning

Publications Company, 2017.

[JRD21] Mathias Jakobsen, Alice Ravier, and Ornela Dardha. Papaya: Global

Typestate Analysis of Aliased Objects. In Proceedings of the 23rd

International Symposium on Principles and Practice of Declarative

Programming (PPDP’21), pages 19:1–19:13, Estonia, 2021. ACM.

[JSP+11] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem

Penninckx, and Frank Piessens. Verifast: A powerful, sound, pre-

dictable, fast verifier for C and java. In Mihaela Gheorghiu Bo-

baru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, edi-

tors, NASA Formal Methods - Third International Symposium, NFM

2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, volume

BIBLIOGRAPHY 265

BIBLIOGRAPHY

6617 of Lecture Notes in Computer Science, pages 41–55. Springer,

2011.

[JSTT15] Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa.

Integrating deployment architectures and resource consumption in

timed object-oriented models. J. Log. Algebraic Methods Program.,

84(1):67–91, 2015.

[KDPG16] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J Gay.

Typechecking protocols with Mungo and StMungo. In Proc. of Prin-

ciples and Practice of Declarative Programming (PPDP), pages 146–

159. ACM, 2016.

[KDPG18] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay.

Typechecking protocols with Mungo and StMungo: A session type

toolchain for Java. Science of Computer Programming, 155:52 – 75,

2018. Selected and Extended papers from the International Sympo-

sium on Principles and Practice of Declarative Programming 2016.

[KHA19] Amir Karamoozian, Abdelhakim Hafid, and El Mostapha Aboul-

hamid. On the fog-cloud cooperation: How fog computing can ad-

dress latency concerns of iot applications. In 2019 Fourth Inter-

national Conference on Fog and Mobile Edge Computing (FMEC),

pages 166–172, 2019.

[KMKP21] Dragi Kimovski, Narges Mehran, Christopher Emanuel Kerth, and

Radu Prodan. Mobility-aware iot applications placement in the cloud

edge continuum. IEEE Transactions on Services Computing, pages

1–1, 2021.

[KML+20] Matthias Kovatsch, Ryuichi Matsukura, Michael Lagally, Toru

Kawaguchi, Kunihiko Toumura, and Kazuo Kajimoto. Web of

Things (WoT) Architecture. W3C recommendation, April 2020.

https://www.w3.org/TR/wot-architecture/.

266 BIBLIOGRAPHY

BIBLIOGRAPHY

[KMND20] John D Kelleher, Brian Mac Namee, and Aoife D’arcy. Fundamentals

of machine learning for predictive data analytics: algorithms, worked

examples, and case studies. MIT press, 2020.

[Kob98] Naoki Kobayashi. A partially deadlock-free typed process calculus.

ACM Trans. Program. Lang. Syst., 20(2):436–482, 1998.

[KPS93] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. E”-

cient Recursive Subtyping. In Mary S. Van Deusen and Bernard

Lang, editors, Conference Record of the Twentieth Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, USA, January 1993, pages 419–428. ACM Press, 1993.

[KSSE22] Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D.

Ernst. Accumulation analysis. In Karim Ali and Jan Vitek, ed-

itors, 36th European Conference on Object-Oriented Programming,

ECOOP 2022, volume 222 of LIPIcs, pages 10:1–10:30, Germany,

2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[KY04] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for

email classification research. InMachine Learning: ECML 2004, 15th

European Conference on Machine Learning, Pisa, Italy, September

20-24, 2004, Proc, volume 3201 of Lecture Notes in Computer Sci-

ence, pages 217–226. Springer, 2004.

[Lau19] Lorenzo De Lauretis. From monolithic architecture to microservices

architecture. In Katinka Wolter, Ina Schieferdecker, Barbara Gal-

lina, Michel Cukier, Roberto Natella, Naghmeh Ramezani Ivaki, and

Nuno Laranjeiro, editors, IEEE International Symposium on Soft-

ware Reliability Engineering Workshops, ISSRE Workshops 2019,

Berlin, Germany, October 27-30, 2019, pages 93–96. IEEE, 2019.

[LBT18] Bingfeng Liu, Rajkumar Buyya, and Adel Nadjaran Toosi. A fuzzy-

based auto-scaler for web applications in cloud computing environ-

ments. In Claus Pahl, Maja Vukovic, Jianwei Yin, and Qi Yu, ed-

itors, Service-Oriented Computing - 16th International Conference,

BIBLIOGRAPHY 267

BIBLIOGRAPHY

ICSOC 2018, Hangzhou, China, November 12-15, 2018, Proceedings,

volume 11236 of Lecture Notes in Computer Science, pages 797–811.

Springer, 2018.

[LMTY21] Torgeir Lebesbye, Jacopo Mauro, Gianluca Turin, and Ingrid Chieh

Yu. Boreas - A service scheduler for optimal kubernetes deployment.

In Hakim Hacid, Odej Kao, Massimo Mecella, Naouel Moha, and

Hye-young Paik, editors, Service-Oriented Computing - 19th Inter-

national Conference, ICSOC 2021, Virtual Event, November 22-25,

2021, Proceedings, volume 13121 of Lecture Notes in Computer Sci-

ence, pages 221–237. Springer, 2021.

[LP07] Cosimo Laneve and Luca Padovani. The Must preorder revisited.

In Proc. of 18th Int. Conference Concurrency Theory, CONCUR’07,

volume 4703 of Lecture Notes in Computer Science, pages 212–225.

Springer, 2007.

[LY16] Julien Lange and Nobuko Yoshida. Characteristic formulae for ses-

sion types. In Marsha Chechik and Jean-François Raskin, editors,

Tools and Algorithms for the Construction and Analysis of Systems

- 22nd International Conference, TACAS 2016, Held as Part of the

European Joint Conferences on Theory and Practice of Software,

ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Pro-

ceedings, volume 9636 of Lecture Notes in Computer Science, pages

833–850. Springer, 2016.

[MA20] Nicolas Marie-Magdelaine and Toufik Ahmed. Proactive autoscaling

for cloud-native applications using machine learning. In IEEE Global

Communications Conference, GLOBECOM 2020, Virtual Event,

Taiwan, December 7-11, 2020, pages 1–7. IEEE, 2020.

[Mau15] Tony Mauro. Adopting microservices at netflix: Lessons for

team and process design. https://www.nginx.com/blog/adopting-

microservices-at-netflix-lessons-for-team-and-process-design/, 2015.

268 BIBLIOGRAPHY

BIBLIOGRAPHY

[MB21] Gabriele Proietti Mattia and Roberto Beraldi. Leveraging reinforce-

ment learning for online scheduling of real-time tasks in the edge/fog-

to-cloud computing continuum. In 2021 IEEE 20th International

Symposium on Network Computing and Applications (NCA), pages

1–9, 2021.

[Mer14] Dirk Merkel. Docker: lightweight linux containers for consistent de-

velopment and deployment. Linux J., 2014(239), mar 2014.

[MGR21] João Mota, Marco Giunti, and António Ravara. Java typestate

checker. In Ferruccio Damiani and Ornela Dardha, editors, Coor-

dination Models and Languages - 23rd IFIP WG 6.1 International

Conference, COORDINATION 2021, Held as Part of the 16th Inter-

national Federated Conference on Distributed Computing Techniques,

DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings, vol-

ume 12717 of Lecture Notes in Computer Science, pages 121–133.

Springer, 2021.

[MHN19] Luis Mastrangelo, Matthias Hauswirth, and Nathaniel Nystrom.

Casting about in the dark: an empirical study of cast operations

in java programs. Proc. ACM Program. Lang., 3(OOPSLA):158:1–

158:31, 2019.

[Mic] Microsoft. Overview of autoscale in Azure. https://learn.

microsoft.com/en-us/azure/azure-monitor/autoscale/

autoscale-overview.

[Mil93] Robin Milner. The polyadic ϖ-calculus: a tutorial. In Friedrich L.

Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic

and Algebra of Specification, pages 203–246, Berlin, Heidelberg, 1993.

Springer Berlin Heidelberg.

[MT18] Fabian Muehlboeck and Ross Tate. Empowering union and intersec-

tion types with integrated subtyping. Proc. ACM Program. Lang.,

2(OOPSLA):112:1–112:29, 2018.

BIBLIOGRAPHY 269

https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview

BIBLIOGRAPHY

[New15] Sam Newman. Building microservices - designing fine-grained sys-

tems, 1st Edition. O’Reilly, 2015.

[NNSN24] Joao Paulo Karol Santos Nunes, Shiva Nejati, Mehrdad Sabet-

zadeh, and Elisa Yumi Nakagawa. Self-adaptive, requirements-driven

autoscaling of microservices. 2024 IEEE/ACM 19th Symposium

on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), pages 168–174, 2024.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian

Brand, Gregory J. Duck, and Guido Tack. Minizinc: Towards a stan-

dard CP modelling language. In Christian Bessiere, editor, Principles

and Practice of Constraint Programming - CP 2007, 13th Interna-

tional Conference, CP 2007, Providence, RI, USA, September 23-27,

2007, Proceedings, volume 4741 of Lecture Notes in Computer Sci-

ence, pages 529–543. Springer, 2007.

[NZDP21] Zeinab Nezami, Kamran Zamanifar, Karim Djemame, and Evange-

los Pournaras. Decentralized edge-to-cloud load balancing: Service

placement for the internet of things. IEEE Access, 9:64983–65000,

2021.

[OAS] OASIS. Topology and Orchestration Specification for Cloud Applica-

tions (TOSCA) Version 1.0. http://docs.oasis-open.org/tosca/

TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html. Accessed on May, 2020.

[OMG11] OMG. Business Process Model and Notation (BPMN), Version 2.0.

http://www.omg.org/spec/BPMN/2.0, January 2011.

[OPR95] Randy Otte, Paul Patrick, and Mark Roy. Understanding CORBA

(Common Object Request Broker Architecture). Prentice-Hall, Inc.,

USA, 1995.

[PAJ+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Je! H.

Perkins, and Michael D. Ernst. Practical pluggable types for java.

In Barbara G. Ryder and Andreas Zeller, editors, Proceedings of the

270 BIBLIOGRAPHY

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://www.omg.org/spec/BPMN/2.0

BIBLIOGRAPHY

ACM/SIGSOFT International Symposium on Software Testing and

Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008, pages

201–212. ACM, 2008.

[PC01] Jens Palsberg and Pavlopoulou Chirstina. From polyvariant flow

information to intersection and union types. Journal of Functional

Programming, 11(3):263–317, 2001.

[PCLH21a] Jinwoo Park, Byungkwon Choi, Chunghan Lee, and Dongsu Han.

GRAF: a graph neural network based proactive resource allocation

framework for slo-oriented microservices. In Georg Carle and Jörg

Ott, editors, CoNEXT ’21: The 17th International Conference on

emerging Networking EXperiments and Technologies, Virtual Event,

Munich, Germany, December 7 - 10, 2021, pages 154–167. ACM,

2021.

[PCLH21b] Jinwoo Park, Byungkwon Choi, Chunghan Lee, and Dongsu Han.

Graf: a graph neural network based proactive resource allocation

framework for slo-oriented microservices. Proceedings of the 17th

International Conference on emerging Networking EXperiments and

Technologies, 2021.

[PCLH24] Jinwoo Park, Byungkwon Choi, Chunghan Lee, and Dongsu Han.

Graph neural network-based slo-aware proactive resource autoscaling

framework for microservices. IEEE/ACM Transactions on Network-

ing, 2024.

[PVM20] Carlo Puliafito, Antonio Virdis, and Enzo Mingozzi. Migration of

multi-container services in the fog to support things mobility. In

2020 IEEE International Conference on Smart Computing (SMART-

COMP), pages 259–261, 2020.

[QCB18] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. Auto-

scaling web applications in clouds: A taxonomy and survey. ACM

Comput. Surv., 51(4):73:1–73:33, 2018.

BIBLIOGRAPHY 271

BIBLIOGRAPHY

[QCZ+20] Tie Qiu, Jiancheng Chi, Xiaobo Zhou, Zhaolong Ning, Mohammed

Atiquzzaman, and Dapeng Oliver Wu. Edge computing in indus-

trial internet of things: Architecture, advances and challenges. IEEE

Communications Surveys Tutorials, 22(4):2462–2488, 2020.

[Raw] Amir Rawdat. Testing the performance of nginx and nginx plus web

servers. http://tinyurl.com/a9n2n8wv.

[Red24] Redis. Redis: In-memory data structure store. https://redis.io,

2024. Accessed: 2024-08-22.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data

structures. In 17th IEEE Symposium on Logic in Computer Science

(LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings,

pages 55–74. IEEE Computer Society, 2002.

[RV15] Björn Rabenstein and Julius Volz. Prometheus: A Next-Generation

monitoring system (talk). Dublin, May 2015. USENIX Association.

[SK16] Fabrizio Soppelsa and Chanwit Kaewkasi. Native docker clustering

with swarm. Packt Publishing Ltd, 2016.

[SPF+07] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy C. Bavier,

and Larry L. Peterson. Container-based operating system virtual-

ization: a scalable, high-performance alternative to hypervisors. In

Paulo Ferreira, Thomas R. Gross, and Lúıs Veiga, editors, Proceed-

ings of the 2007 EuroSys Conference, Lisbon, Portugal, March 21-23,

2007, pages 275–287. ACM, 2007.

[SWVDT21] José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. To-

wards low-latency service delivery in a continuum of virtual resources:

State-of-the-art and research directions. IEEE Communications Sur-

veys Tutorials, 23(4):2557–2589, 2021.

[SY86] Robert E. Strom and Shaula Yemini. Typestate: A programming

language concept for enhancing software reliability. IEEE Trans.

Software Eng., 12(1):157–171, 1986.

272 BIBLIOGRAPHY

http://tinyurl.com/a9n2n8wv
https://redis.io

BIBLIOGRAPHY

[SZL+22] Jie Sun, Yi Zhang, Feng Liu, Huandong Wang, Xiaojian Xu, and

Yong Li. A survey on the placement of virtual network functions.

Journal of Network and Computer Applications, 202:103361, 2022.

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-

based language and its typing system. In Constantine Halatsis, Dim-

itris G. Maritsas, George Philokyprou, and Sergios Theodoridis, edi-

tors, PARLE ’94: Parallel Architectures and Languages Europe, 6th

International PARLE Conference, Athens, Greece, July 4-8, 1994,

Proceedings, volume 817 of Lecture Notes in Computer Science, pages

398–413. Springer, 1994.

[TIRB22] Shreshth Tuli, Shashikant Ilager, Kotagiri Ramamohanarao, and Ra-

jkumar Buyya. Dynamic scheduling for stochastic edge-cloud com-

puting environments using a3c learning and residual recurrent neu-

ral networks. IEEE Transactions on Mobile Computing, 21:940–954,

2022.

[TS21] Doug. Tollefson and Andrew Spyker. Acme air sample and bench-

mark. https://github.com/acmeair/acmeair, 2021.

[USC+08] Bhuvan Urgaonkar, Prashant J. Shenoy, Abhishek Chandra, Pawan

Goyal, and Timothy Wood. Agile dynamic provisioning of multi-tier

internet applications. ACM Trans. Auton. Adapt. Syst., 3(1):1:1–

1:39, 2008.

[Vas11] Vasco T. Vasconcelos. Sessions, from types to programming lan-

guages. Bull. EATCS, 103:53–73, 2011.

[VK22] Juan Cruz Viotti and Mital Kinderkhedia. A benchmark

of json-compatible binary serialization specifications. CoRR,

abs/2201.03051, 2022.

[Wet20] Nicole Wetsman. Contact tracing app for england and wales failed

to flag people exposed to covid-19. The Verge, 2020.

BIBLIOGRAPHY 273

https://github.com/acmeair/acmeair

BIBLIOGRAPHY

[Wil12] B. Wilder. Cloud Architecture Patterns: Using Microsoft Azure.

O’Reilly Media, 2012.

[XLL+20] Dianlei Xu, Tong Li, Yong Li, Xiang Su, Sasu Tarkoma, Tao Jiang,

Jon Crowcroft, and Pan Hui. Edge intelligence: Architectures, chal-

lenges, and applications. arXiv: Networking and Internet Architec-

ture, 2020.

[XWL+24] Shuaiyu Xie, Jian Wang, Bing Li, Zekun Zhang, Duantengchuan Li,

and Patrick C. K. Hung. Pbscaler: A bottleneck-aware autoscaling

framework for microservice-based applications. IEEE Transactions

on Services Computing, 17(2):604–616, 2024.

[XYGG18] Hansong Xu, Wei Yu, David Gri”th, and Nada Golmie. A survey on

industrial internet of things: A cyber-physical systems perspective.

IEEE Access, 6:78238–78259, 2018.

[YCZ22] Guangba Yu, Pengfei Chen, and Zibin Zheng. Microscaler: Cost-

e!ective scaling for microservice applications in the cloud with an

online learning approach. IEEE Trans. Cloud Comput., 10(2):1100–

1116, 2022.

[YLH+18] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu,

Jie Lin, and Xinyu Yang. A survey on the edge computing for the

internet of things. IEEE Access, 6:6900–6919, 2018.

274 BIBLIOGRAPHY

	Abstract
	Introduction
	Research Problem
	Outline of the Dissertation

	Background
	Behavioural Types and Subtyping
	Java Checker Framework
	The ABS Executable Speciﬁcation Language
	Microservices
	Technologies for Containerised Applications

	A Modelling/Execution Language for Microservice Systems
	Automated Deployment of Microservices
	The AcmeAir Microservice System
	SmartDeployer
	The Zephyrus Deployment Engine
	Timed SmartDeployer
	Modelling the AcmeAir System
	Automated Deployment of the AcmeAir System
	The Local Scaling Algorithm

	Executing the AcmeAir System
	Related Work
	Discussion

	Orchestration-based Architectural Reconfiguration
	A Smart Deployer for Kubernetes
	Proactive-Reactive Global Scaling
	A Proactive-Reactive Global Scaling Platform
	The Email Message Analysis Pipeline
	Microservice MF and MCL
	Architectural Scaling of Microservices
	Calculation of Scaling Configurations
	Reactive Global Scaling Algorithm
	Proactive Global Scaling
	Proactivity and Reactivity: A Mixing Algorithm
	Executable Model and Real-World Implementation
	Experimental Settings and Evaluation

	Edge-Cloud Continuum Service Migration
	The Industry 4.0 Use Case
	Low Latency Edge-Cloud Continuum Architecture
	Latency and Size-based Policies
	Executable Model and Real-World Implementation
	Experimental Settings and Evaluation
	Refining System Simulation: Delayed Triggers

	Related Work
	Discussion

	Typestate Trees for Statically Typed Languages
	Typestates
	JaTyC: A Java Typestate Checker
	Typestate Subtyping
	Enhancing JaTyC: Inheritance Support
	Behavioural Up/Down Casting
	Subtyping Over Droppable States
	Types and Subtyping
	Basic Operations on Types
	Typestate Trees
	Typestate Trees Soundness
	Typestate Trees Subtyping

	Embedding Behavioural Casting in JaTyC
	JaTyC Type System
	Application to Type Checking

	Extending JaTyC Language: Linear Arrays
	Use Cases
	Related work
	Discussion

	A Formal Specification of the Java Type Checker
	Core Language Syntax
	Type System
	Type Environment: Definition and Operators
	Typing Program and Class Definitions
	Typing Class Typestate Definitions
	Typing Statements
	Typing Expressions

	Discussion

	Conclusion
	Bibliography

