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Abstract

Detecting correlations is crucial in several Machine Learning tasks, such as the
identification of patterns or the enforcement of certain relational constraints. In the
realm of algorithmic fairness, correlations are particularly significant, as indicators
typically quantify the degree of dependence between a sensitive input attribute
and a target variable. Nonetheless, traditional measures have been focusing solely
on categorical protected attributes due to technical limitations, thus neglecting
continuous sensitive information like age, income, degree of disability, or other
aggregated numerical variables. To overcome these limitations, recent research
has suggested using the Hirschfeld–Gebelein–Rényi (HGR) correlation coefficient
as a measure of fairness. HGR is an extension of Pearson’s coefficient able to
detect non-linear correlations by employing two mapping functions called copula
transformations; in this dissertation, we present a novel computational approach
for estimating it by means of user-defined kernel functions parameterized through
a vector of mixing coefficients. Our approach is deterministic, offers increased
robustness, improves interpretability compared to existing methods, and features
other advantageous properties that make it more trustworthy for practical ap-
plications. We demonstrate its benefits over other computational techniques in
both synthetic data and real-world benchmarks; then, following a minor variation
of the HGR semantics, we introduce the Generalized Disparate Impact (GeDI)
indicator, which broadens the legal notion of disparate impact to continuous input
variables. Empirical findings confirm that this indicator can effectively reduce
unfairness across three benchmark datasets, as well as in a practical use case
involving long-term fairness in ranking systems; moreover, we show how both
measures can be brought into a unified framework, and are equivalent up to a
data-dependent scaling factor. To conclude, we discuss ongoing and future works
regarding both methodological extensions of our Kernel-Based HGR method and
potential applications in intersectional fairness and causal discovery. All our theoret-
ical claims are supported by mathematical proofs and empirical evaluations, whose
code can be accessed under the MIT License at the following public repository:
https://github.com/giuluck/non-linear-correlations.
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Chapter 1

Introduction

The influence of Artificial Intelligence (AI) on society has been widely acknowledged

during the last decades. As data-driven technologies increasingly assume prominent

roles in several social arenas, questions about their behavior began to be raised. The

European Commission has already outlined principles for the development of ethical

and human-centered applications [High-Level Expert Group on AI, 2019], which

paved the way for the first legislative action on Artificial Intelligence, known as the

AI Act [Madiega, 2021]. A major focus is placed on the trustworthiness of these

systems, which encompasses not only safety requirements but also cross-cutting

considerations such as adherence to anti-discrimination policies, interpretability of

the yielded results, and system robustness against failures and external attacks.

A recurring task in data-driven applications is correlation discovery. Machine

Learning (ML) algorithms, along with their even more opaque Deep Learning and

Generative AI counterparts, primarily focus on recognizing and replicating common

patterns by detecting correlations in the input data. However, these correlations

do not consistently yield expected outcomes due to potential confounding factors,

as well as historical and sampling biases in the data selection process. Without

the integration of specific constraints, the sole reliance on detected patterns can

be particularly precarious, especially in domains subject to legal and social stan-

dards where learning models have been shown to absorb and perpetuate systemic

discrimination against marginalized groups [Angwin et al., 2022].

From a mathematical perspective, analyzing fairness characteristics in Machine

1
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Learning is a challenging task that requires dealing with statistical distributions and

subsymbolic non-linear models [Srivastava et al., 2019]. Despite this complexity,

various strategies have been developed to assess and ensure alignment with fairness

principles, thereby preventing trained models from discriminating against minority

groups or individuals [Mehrabi et al., 2021]. These methodologies rely primarily

on quantitative indicators that assess the level of correlation between a “protected

attribute” and the outcome of the task. Although these metrics are arguably the

most practical means for addressing fairness concerns, their support is innately

limited to discrimination defined over categories, since assessing correlations on

continuous variables involves more significant computational challenges. In fact,

the most recognized correlation indicators suitable for numerical data are confined

to particular forms of correlation, such as linear with Pearson’s coefficient or

monotonic with Spearman’s or Kendall’s rank, and are therefore inadequate to

provide guarantees when dealing with non-categorical protected attributes.

An interesting exception is the Hirschfeld–Gebelein–Rényi (HGR) correlation

coefficient [Rényi, 1959], which extends Pearson’s coefficient by incorporating non-

linear effects via two mapping functions, referred to as copula transformations.

Various computational methods have been proposed over time to estimate HGR,

given its theoretically uncomputable nature, all of which require a careful balance

between bias and variance in estimation models in order to achieve a reliable

approximation; moreover, recent research [Mary et al., 2019, Grari et al., 2020]

has examined ways to employ HGR as a measure of unfairness when the protected

attribute is continuous. However, the proposed methods face several limitations

that might limit their applicability in real-world scenarios, as they can suffer from

sampling noise, lack deterministic definitions, and their interpretation is often

challenging for human evaluators. Therefore, driven by the necessity to enhance

the robustness of measuring and enforcing non-linear correlations, particularly in

the fairness domain, we explored this issue and propose several solutions that rely

on deterministic and interpretable algorithms.

The result of our research additionally led to the development of a Python

package aimed at facilitating the practical application of non-linear correlation

indicators, which contains the implementation of our proposed solutions along with
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various existing methods. The code is available under the MIT license and can be

accessed at: https://github.com/giuluck/maxcorr, or installed via any package

manager for Python. The remainder of this dissertation is structured as follows:

Chapter 2 provides the essential background needed to grasp both the technical

and the social aspects referenced throughout the text. Specifically, we begin

with an overview of fundamental Machine Learning concepts and methods

for integrating external constraints into learning processes. We then proceed

to examine the key elements of correlation and the available indicators to

measure it. Finally, we introduce the readers to the topic of algorithmic

fairness, examining its societal roots along with the various types of metrics

and algorithms employed to ensure it.

Chapter 3 focuses on the Hirschfeld–Gebelein–Rényi (HGR) indicator, an ex-

tension of Pearson’s coefficient that can intercept non-linear dependencies.

We initially review existing algorithmic approaches from the literature to

estimate its value, showing both their strengths and limitations. Later, we

present two novel computational techniques for estimating HGR. We highlight

their properties and show how they can address the shortcomings of existing

state-of-the-art methods, confirming such hypotheses through formal proofs

and experiments on synthetic datasets. The theoretical and empirical findings

outlined in this chapter have been derived and refined from a research paper

that is currently under review at a renowned Artificial Intelligence journal.

Chapter 4 addresses the role of correlation measures in promoting fairness when

dealing with continuous protected attributes. First, we demonstrate how

our method for HGR estimation can function as a loss regularizer within

a constrained machine learning setting, a contribution that is drawn from

the abovementioned research paper currently under review. Next, after

identifying certain semantic limitations, we propose a new fairness metric

termed Generalized Disparate Impact (GeDI), which extends the legal concept

of disparate impact to encompass continuous variables. We validate its

effectiveness with two additional experimental studies on three benchmark

datasets, adapting results from [Giuliani et al., 2023] with minor alterations in

https://github.com/giuluck/maxcorr
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order to encompass new insights gained after the paper submission, although

the conclusions remain consistent with our initial publication. Moreover, we

show a practical case study on long-term fairness enforcement for ranking

tasks in the education domain, as discussed in [Giuliani et al., 2024]. We

conclude by discussing the similarities and differences between HGR and

GeDI, showing how a unified formulation can link the two indicators up to a

data-dependent scaling factor.

Chapter 5 outlines a series of potential future research directions, all of which are

currently being explored, despite the lack of any definitive conclusion. Initially,

we initially focus on the technical challenge of selecting an appropriate family

of kernel expansions, as a way to mitigate numerical instability and semantic

incompatibilities. Next, we present a multi-variate extension of HGR, which

could be applied in the field of fairness to ensure intersectionality or within

the domain of causal discovery to enhance the reliability of conditional

independence tests. Lastly, building upon the theoretical insights from our

paper [Maggio et al., 2023], we propose a new approach to redefine fairness

through a causal perspective, employing HGR to decorrelate each input

feature from the sensitive attribute.

Chapter 6 reports some conclusive remarks, summarizing the findings of this

dissertation and presenting our future goals on how this research might

stimulate new investigations in the domain of trustworthy machine learning.



Chapter 2

Background

This chapter aims to ensure a foundational understanding of the key concepts

that will be referenced throughout this dissertation. Specifically, in Section 2.1 we

present the evolution of Machine Learning, from its statistical foundations to the

latest hybrid methods that incorporate knowledge and constraints into data-driven

learning. Section 2.2 discusses the theoretical principles of correlation along with

the most important indicators used for its measurement. Lastly, we investigate the

field of algorithmic fairness in Section 2.3, covering both its social and technical

implications, up to the ongoing research challenges.

2.1 Machine Learning

Machine Learning is a branch of Artificial Intelligence that includes algorithms

that are not explicitly programmed for a specific task, but rather fed with a set of

data points from which patterns are extrapolated. Unlike conventional rule-based

systems, which execute cognitive tasks using high-level procedures within a logical

framework, machine learning algorithms are defined as subsymbolic since they

employ statistical and optimization techniques to autonomously refine their internal

state to model the distribution of the input data – see Figure 2.1(a). The recent

growth of deep neural networks has stimulated a popularity rise of the field, which

not only led to successful applications across various domains, but also opened new

research directions aimed at addressing the inherent limitations of these models.

5



2.1. MACHINE LEARNING 6

(a) Artificial Intelligence Taxonomy (b) Machine Learning Paradigms

Figure 2.1: Overview of the Artificial Intelligence and Machine Learning fields.
From:
(a) https://medium.com/swlh/artificial-intelligence-machine-learning-and-deep-learning-whats-the-real-difference-94fe7e528097

(b) https://resources.experfy.com/ai-ml/coding-deep-learning-for-beginners-types-of-machine-learning

Among all, we mention the interpretability of the results and the robustness against

noisy data and intentional data pollution as two of the major concerns.

2.1.1 Learning Tasks & Algorithms

The most prevalent task in machine learning is Supervised Learning. Within this

paradigm, we have access to a dataset D = {Xi, yi}ni=1, where X represents a

matrix of input features and y is the vector of true output labels, also known as

“ground truths”. The goal is to train a machine learning modelM, parametrized

over a vector of learnable coefficients θ, so to minimize a task-specific loss func-

tion L(y,M(X; θ)). Once the training phase has finished, the obtained optimal

parameters θ∗ can be used to estimate the output ŷn+1 for a new data point Xn+1.

A common approach to solving this task involves likelihood maximization or

iterative gradient-based techniques. There exist several supervised learning models,

ranging from basic ones like Linear and Logistic Regression to more advanced

ones such as Neural Networks. Another interesting category is that of ensemble

models, such as Random Forests and Gradient Boosting, where the outputs of many

independent smaller models are combined together. Throughout this dissertation,

we will use some of them in our learning tasks, with appropriate modifications to

https://medium.com/swlh/artificial-intelligence-machine-learning-and-deep-learning-whats-the-real-difference-94fe7e528097
https://resources.experfy.com/ai-ml/coding-deep-learning-for-beginners-types-of-machine-learning


2.1. MACHINE LEARNING 7

suit our specific use cases. We assume that the reader is already familiar with the

fundamental concepts of such models; if not, we refer them to [James et al., 2023]

or any other introductory text on statistical learning.

It is also worth noting that supervised learning is just one approach within the

broader field of machine learning – see Figure 2.1(b). Other notable paradigms

include Unsupervised Learning and Reinforcement Learning, where the ground

truth vector y is not provided with the dataset. Specifically, unsupervised learning

aims to organize the data into clusters of similar samples, whereas reinforcement

learning updates the model parameters through a reward mechanism defined via

the interaction between an agent and the environment. There exist some learning

models which are specialized to these approaches; others, instead, cut across

multiple paradigms. For instance, beyond their application in supervised learning,

neural networks are prevalent both in deep reinforcement learning algorithms and

in certain unsupervised learning tasks like anomaly detection, where autoencoder

architectures are largely employed. Nonetheless, our research focuses exclusively on

supervised learning, particularly within the framework of constrained supervised

learning through loss regularizers for neural networks or projection-based declarative

methods for gradient-free models. For this reason, we will not delve into these two

or any other learning paradigms.

2.1.2 Supervised Learning as Optimization

From a statistical viewpoint, supervised learning algorithms are designed to learn

the distribution of the process that generated the target data y, conditioned on the

inputs X. This task is typically formulated as a maximum likelihood estimation
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or, equivalently, as minimizing the log-likelihood. Namely, we want to solve:

argmax
θ

P (y | X, θ) = argmin
θ
− logP (y | X, θ)

= argmin
θ
− log

[
n∏

i=1

P (yi | Xi, θ)

]

= argmin
θ
−

n∑
i=1

log [P (yi | Xi, θ)]

= argmin
θ
−

n∑
i=1

log [P (yi | M(Xi; θ))]

(2.1)

where the probability is eventually conditioned on the representations returned by

the parametric learning modelM(X; θ).

When the target vector is categorical, specifically y ∈ {1, . . . , k}n, we label the

problem as a classification task and employ the crossentropy loss as follows:

argmax
θ

P (y | X, θ) = argmin
θ
−

n∑
i=1

log [P (yi | M(Xi; θ))]

= argmin
θ
−

n∑
i=1

k∑
c=1

log [P (yi = c | M(Xi; θ))]

= argmin
θ
−

n∑
i=1

k∑
c=1

log [M(Xi; θ)] if yi = c

0 otherwise

= argmin
θ
−

n∑
i=1

k∑
c=1

I(yi = c) · log [M(Xi; θ)]

(2.2)

where I(π) represents the indicator function, yielding 1 if the condition π is satisfied

and 0 otherwise. In contrast, when y ∈ Rn, we define it as a regression task and
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obtain the following sum of squared error loss:

argmax
θ

P (y | X, θ) = argmin
θ
−

n∑
i=1

log [P (yi | M(Xi; θ))]

= argmin
θ
−

n∑
i=1

log

[
1

σM
√
2π
e
−
(

yi−µM
σM

)2
]

= argmin
θ
−

n∑
i=1

[
log

[
1

σM
√
2π

]
−
(
yi − µM

σM

)2
]

= argmin
θ
−

n∑
i=1

log

[
1√
2π

]
+

n∑
i=1

(yi − µM)2

= argmin
θ

n∑
i=1

(yi −M(Xi; θ))
2

(2.3)

by assuming a normal distribution with mean µM = µ(M(X; θ)) =M(X; θ) and

standard deviation σM = σ(M(X; θ)) = 1.

The key takeaway here is that supervised learning tasks can be cast as optimiza-

tion problems. Specifically, they represent unconstrained optimization problems,

whose solutions are typically reached through iterative processes focused on mini-

mizing the loss functions L described in Equations (2.2) and (2.3), or a surrogate

thereof. As a result, if any additional constraint needs to be included, it cannot

be accommodated within this framework unless it is inherently embedded into the

structure of the learning modelM. Nevertheless, since incorporating non-trivial

constraints is often unfeasible, this aspect significantly limits the plain application

of machine learning in a wide range of real-world applications.

2.1.3 Constrained Supervised Learning

In contrast to subsymbolic approaches, there are symbolic ones. This category

includes various algorithms that, despite their diversity, have the shared character-

istic of lacking a hidden state. In fact, they leverage explicit high-level operations

to find a solution to certain problem instances, relying on methodologies that come

from the operational research area – such as constraint programming, mathematical

programming, and global optimization – or from the domains of logic and inference.
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A well-recognized benefit of symbolic methods is their ability to incorporate

constraints inherently within the problem definition, conversely to machine learning

techniques where linking the semantics of the constraints to the internal subsymbolic

representation is generally impractical. Nonetheless, ensuring the reliability of

the outputs yielded by a machine learning model is a valuable feature in various

application domains. For example, one could use logical constraints to model the

domain knowledge of an expert about, e.g., the taxonomy of the categories to be

classified. Similarly, when learning models are used to predict attributes related to

physical processes, we might want them to adhere to the relevant laws of physics,

chemistry, or biology. Lastly, as in our use cases, when working in areas governed

by specific anti-discrimination laws, it is crucial to enforce fairness constraints on

the given outputs to guarantee that the system has an appropriate behavior toward

minorities and other disadvantaged social groups.

In this regard, over the past decade there has been a significant increase

in hybrid approaches that combine symbolic and subsymbolic methods. This

integration serves various tasks and objectives. For example, the field of informed

machine learning focuses on enhancing subsymbolic models by embedding external

knowledge, thereby improving their accuracy and ability to generalize to unseen

regions of the space – check [Von Rueden et al., 2021] for a more complete survey.

In this dissertation, however, we will concentrate on the area of constrained

machine learning, which prioritizes the satisfaction of a set of given constraints

before focusing on accuracy. Practically, given a task loss L and a machine learning

modelM, the objective is to solve the following constrained optimization problem:

argmin
θ
L(y,M(X; θ)) s.t. M(X; θ) ∈ C (2.4)

where C represents the feasible region of the space. We will now provide a concise

overview of the main types of approach, along with examples for each category.

Regularization-based Methods

The most straightforward way to integrate constraints into a learning process is

through loss regularizers. This involves including an additional term in the loss
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function that measures “how much” the desired property is being enforced. Some

typical examples of regularization are the L1 and L2 norm regularizers in linear

regression. To enforce the constraintM(X; θ) ∈ C shown in Equation (2.4), we

can simply substitute the norms with a more complex function R(y,M(X; θ))

measuring the deviation from compliance. Eventually, by associating it to a

multiplier λ that governs its relative importance with respect to the task loss, we

can reformulate the problem as:

argmin
θ
L(y,M(X; θ)) + λ · R(y,M(X; θ)) (2.5)

Here, the regularizer – sometimes referred to as a “penalizer” since it represents a

penalty for not adhering to the constraint – can also be a vector that considers

multiple distinct constraints, each associated with an individual multiplier λi.

This major benefit of these methods lies in their simplicity. However, it is not

always straightforward to modify the loss function for certain machine learning

models, which is why regularization techniques are mainly employed in iterative,

gradient-based algorithms such as linear regression or neural networks. An inter-

esting work on this topic is [Diligenti et al., 2017], which introduces a framework

known as Semantic-based Regularization that translates constraints into fuzzy logic

formulas to express prior general knowledge about the environment. Similarly,

[Goh et al., 2016] embeds constraints into the learning process to approximately

solve a series of non-convex constrained optimization problem. Finally, we mention

[Fioretto et al., 2021], who introduces a framework that leverages the theory of

Lagrangian duality to develop an iterative method to automatically adjust the λ

multipliers during the training of neural networks.

Apart from the benefits, these methods also come with several drawbacks.

Firstly, although loss regularizers are theoretically proven to converge after enough

iterations, in practice they might fail to enforce constraints even on the training

data due to time limitations. Additionally, when dealing with relational constraints,

they might limit the application of mini-batch training, since they are typically

defined over the entire dataset rather than individual samples. Lastly, in gradient-

based learning algorithms, regularizers are required to be differentiable; this might

be infeasible sometimes depending on the type of constraints, thus mandating the
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use of approximation or surrogate functions which can affect performances due

to inaccurate estimates or numerical instability. For a comprehensive discussion

of the advantages and disadvantages of regularization-based methods, refer to

[Lombardi et al., 2021].

Projection-based Methods

Another group of techniques involves projecting data into the feasible space either

before, after, or even during the training process. In the realm of fairness constraints,

[Kamiran and Calders, 2011] suggests three distinct pre-processing techniques to

achieve feasibility within the training data, which is eventually fed to a machine

learning model trained in a plain unconstrained fashion. Nevertheless, although

this approach demonstrates reduced unfairness in the downstream task, it can

still provide no guarantee that the constraints will be fulfilled during inference, as

the model itself can inherently introduce biases during the learning phase. In a

similar vein, [Detassis et al., 2021] expands this concept by presenting a framework

called Moving Targets, which repeatedly projects data and learns from these

refined projections. Although it cannot guarantee constraint satisfaction like the

previous approach, this one yields greater consistency, enhancing both task accuracy

and compliance. Alternatively, [Zemel et al., 2013] introduces a framework that

projects the input variables into an unbiased latent space, and then uses these data

for the learning task; while [Cotter et al., 2019], in a different direction, proposes

a “proxy-lagrangian” formulation for tackling non-convex optimization problems,

which can be addressed using methods such as projected gradient descent.

Typically, these approaches can be applied to a variety of tasks, especially since

they can better handle relational constraints thanks to their efficient managing of

projections that can consider the dataset as a whole. Moreover, if the constraints

are defined on individual samples, a projection mechanism can be integrated at

the end of the learning process to ensure full compliance with the requirements.

Nonetheless, projection-based methods often demand more computational resources

than regularization-based ones, and generally fail to offer theoretical guarantees for

relational constraints that rely on statistical definitions.
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Model-based Methods

A final category of approaches addresses constraints by directly incorporating them

into the definition of the model. That is, instead of trainingM, they leverage a

custom modelMC that ensures constraint satisfaction by design. In this regard,

we can reformulate Equation (2.4) as:

argmin
θ
L(y,MC(X; θ)) s.t. MC(X; θ) ∈ C,∀(X, θ) (2.6)

Some of these methods rely on logical frameworks in which the data-driven

component is incorporated to derive an explicit model formulation that can

be easily constrained with minimal effort. For instance, Logic Tensor Net-

works [Badreddine et al., 2022] aim to apply Real Logic within a neural network

setup, whereas Deep-ProbLog [Manhaeve et al., 2018] leverages neural networks

to provide probabilistic outputs which are then integrated into a first-order

logic program to allow for symbolic reasoning. A different, yet notable class

of models within that inherently manages constraints by design are Lattice

Models [Garcia and Gupta, 2009]. Lattice models can be used to enforce partial

monotonicities and other kinds of shape constraints, and have also been adapted

for integration with deep neural networks as described in [You et al., 2017].

On the one hand, model-based methods prove very useful in certain settings due

to their theoretical guarantees of constraint satisfaction, with applications in physics-

informed machine learning and deontological fairness [Wang and Gupta, 2020]. On

the other hand, their specificity confines their utility to a limited range of tasks,

making them mostly inapplicable when relational constraints are involved. For this

reason, we will not incorporate any model-based approach in our experiments.

2.2 The Role of Correlation

Correlation plays a crucial role in statistics and machine learning. Several tasks

are based on the identification of correlations within multivariate datasets. For

example, algorithms for data preprocessing such as feature importance and di-

mensionality reduction strongly depend on correlation measures, respectively to
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quantify the mutual impact of input variables and to guide their projection onto

lower-dimensional spaces. Likewise, learning models often leverage correlations

between features to make predictions, as these patterns and relationships allow

generalization to new data.

2.2.1 Correlations vs. Causation

A core element in understanding correlation is how it relates to the concept of

causation. Although the latter always implies the former, the opposite does not

necessarily hold. This means that the correlation between two or more variables

can result from mediation effects, confounding effects, or even sampling noise – in

which case we talk about spurious correlations.

Such implications have a strong effect on machine learning algorithms. In

fact, a model can exploit the correlations found in the training set that do not

represent causal connections. For instance, if two features are correlated due to

a hidden confounder, the model could make precise predictions on the training

data but perform poorly on new samples for which the confounding relationship

is absent. This effect becomes even more pronounced as the input data shows

interdependencies between pairs of features. Many machine learning algorithms,

in fact, assume that the input data is independently and identically distributed,

meaning that each input feature is generated by an independent phenomenon. This

assumption is obviously incorrect in most real-world applications, and as a result

many models are overspecified, i.e., they have infinite globally optimal solutions

due to symmetries. Likewise, the existence of spurious correlations can lead to

overfitting and lack of robustness, causing the model to capture noise instead of

the actual underlying patterns.

That being said, it is crucial to acknowledge that correlation is nevertheless a

strong hint of causality, and under specific assumptions it might be used to enforce

certain causal structures. Similarly, independence tests – and, by extension, the

assessment of correlations – are foundational elements in most algorithms designed

for causal inference and discovery. For a more detailed discussion on this subject,

readers are referred to [Nogueira et al., 2022].
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2.2.2 Measuring Correlations

Formally, correlation quantifies the degree to which two random variables A ∈
A, B ∈ B are interdependent. The most popular measure of correlation is the

Mutual Information, which is defined as:

I(A,B) = E
[
log

P (A,B)

P (A) · P (B)

]
(2.7)

Although the mutual information has remarkable capacity to capture the relation-

ship between variables, it also has practical limitations that complicate its usage.

For instance, while it is straightforward to estimate and optimize it in the discrete

case, computing the mutual information on continuous data requires either binning

it into discrete intervals – which introduces quantization errors and does not scale

well with higher dimensions – or relying on some form of parametric estimation

– e.g., variational methods, which in most cases encounter instability issues. In

addition to that, mutual information is inherently lacking interpretability, as even

its most reliable estimate cannot reveal how the variables depend on each other.

Another significant problem with mutual information is that it is defined only

for data distributions. In most contexts, however, we do not have access to the

original distributions but rather to a set of data points sampled from it. In these

cases, computing the mutual information would require a density estimation step,

possibly introducing additional errors to the process. To address these limitations,

the correlation can be calculated directly from the dataset (a, b) = {ai, bi}ni=1, where

each pair of elements (ai, bi) ∼ P (A,B) is independently sampled from the joint

distribution of the corresponding random variables. In this case, we refer to the

measure as sample correlation, and typically associate it with a level of significance.

2.2.3 Correlation Coefficients

The most commonly used sample correlation coefficient is Pearson’s ρ. It is defined

as the covariance between the two vectors a = {ai}ni=1 and b = {bi}ni=1, normalized
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Figure 2.2: Correlations computed on different sets of bivariate data.
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by the product of their standard deviations, i.e.:

ρ(a, b) =

∑n
i=1(ai − a) · (bi − b)√∑n

i=1(ai − a)2 ·
√∑n

i=1(bi − b)2
(2.8)

where a and b denote the vector averages. On the one hand, Pearson’s coefficient is

straightforward to compute, as it requires just one pass through the data, and its

simplicity becomes a further strength when it comes to interpreting the result. On

the other hand, it has the same drawback as many other correlation coefficients,

namely it is selective for a specific type of correlation only. In particular, it can

only detect linear correlations, thus making it ineffective in capturing the full

spectrum of nonlinear relationships between variables, and potentially irrelevant

when dealing with categorical values. Figure 2.2 highlights the differences between

Pearson’s coefficient and Mutual Information. As observed, the latter reports high

correlations even with data exhibiting strong non-linearities (last row), whereas

Pearson’s has the advantage of higher interpretability, especially since its values

are bounded within the interval [−1, 1].
Various other indicators designed to assess different types of correlations exist

as well. A notable category among them is the rank coefficients, which are

based on the concept of rank and are selective to monotonic correlations. The

rank of a point xi within a vector x represents its (ordinal) position after x has

been sorted; consequently, the rank R of the entire vector can be obtained by

replacing each element xi with its corresponding rank – e.g., given the vector

x =
[
2.4 3.1 2.7 0.8

]
, its rank R[x] would be

[
2 4 3 1

]
. The most renowned

rank correlation coefficient is Spearman’s ρ, which is defined as the Pearson’s

correlation applied to the rank vectors. Another well-known one, Kendall’s τ , is

computed as the normalized difference between the total number of concordant

and discordant pairs, where a pair [(xi, yi); (xj, yj)] is defined as concordant if

either xi < xj and yi < yj, or xi > xj and yi > yj. Moreover, Spearman’s

and Kendall’s rank correlations can be seen as specific instances of a broader

indicator [Kendall, 1948]. Given two antisymmetric bivariate functions ϕ and ψ,
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we can build two matrices A,B ∈ Rn×n such that:

Aij = ϕ(ai, aj) = −ϕ(aj, ai) = −Aji (2.9)

Bij = ψ(bi, bj) = −ψ(bj, bi) = −Bji (2.10)

for all (i, j) ∈ {1, . . . , n}2. The General Correlation Coefficient is then defined as:

Γ(a, b) =
⟨A,B⟩F

∥A∥F · ∥B∥F
=

∑n
i=1

∑n
j=1Aij ·Bij√∑n

i=1

∑n
j=1A

2
ij ·

√∑n
i=1

∑n
j=1B

2
ij

(2.11)

where ⟨·, ·⟩F denotes the Frobenius inner product and ∥·∥F is the Frobenius norm.

Specifically, we can derive Spearman’s ρ using ϕ(xi, xj) = ψ(xi, xj) = R[x]i−R[x]j ,

whereas Kendall’s τ involves ϕ(xi, xj) = ψ(xi, xj) = sign(R[x]i − R[x]j). Even

Pearson’s correlation can be conceptualized within this framework by simply

employing the same functions utilized for Spearman’s correlation, with the omission

of the rank operator, resulting in ϕ(xi, xj) = ψ(xi, xj) = xi − xj.
Although Γ generalizes all sample-based correlation coefficients, it relies on

predetermined mapping functions. This limits its ability to capture a wide range

of correlation types, thus failing to meet the specific characteristic of Mutual

Information for which a null correlation implies complete independence between

the variables. To address this limitation, the Hirschfeld–Gebelein–Rényi (HGR)

correlation coefficient was introduced [Rényi, 1959]. Also known as the maximal

correlation coefficient, HGR is a non-linear extension of Pearson’s obtained via

two copula transformations, f and g, which map the input data into a space that

maximizes their co-linearity. Formally, it is defined as:

HGR(a, b) = max
f,g

ρ(f(a), g(b)) = max
f,g

cov(f(a), g(b))

std(f(a)) · std(g(b))
(2.12)

Unlike the General Correlation Coefficient, HGR optimizes the transformations

rather than taking them as fixed. This allows to capture any form of dependency,

ensuring complete independence between the two variables when the correlation is

zero, although it makes its computation theoretically intractable – see Chapter 3 for

a more detailed exploration, as it will focus on a new methodology to estimate HGR
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in a configurable and robust manner. We also underline that HGR is potentially

able to reduce to Spearman’s ρ, since the copula transformations can approximately

recreate the rank function R by converting the elements of vectors a and b into

their ranks R[a] and R[b]. Nonetheless, this is the only rank correlation indicator

that can be generalized using HGR, as we can derive HGR under the lens of the

General Correlation Coefficient by setting the functions ϕ(xi, xj) = f(xi)− f(xj)
and ψ(xi, xj) = g(xi)−g(xj). The univariate nature of f and g, though, hinders the

consideration of pairs of data points, except when they can be linearly decomposed

as in Spearman’s coefficient. Nothing prevents from further extending the HGR

to include bivariate copula transformations f, g : R2 7→ R, but such an analysis

exceeds the scope of this dissertation, and we state that no similar formulation has

been recorded in the literature to the best of our knowledge.

2.3 Fairness in Machine Learning

The field of algorithmic fairness encompasses a wide range of applications and is

aimed at removing forms of social inequities and other discriminatory practices

that are acquired and perpetrated by subsymbolic models. The emergence of

large neural-based models has introduced new challenges, with significant biases

related to gender and race emerging in areas such as machine translation and facial

recognition, up to newer tasks such as text and image generation from prompts.

Nonetheless, unfair behaviors of artificial intelligence systems were and are still

present in many other domains, with notable examples such as the COMPAS

software, a decision support tool used to assess the likelihood of recidivism that has

been shown to incorporate and sustain historical racial biases [Angwin et al., 2022].

The foundations of algorithmic fairness extend back before the rise of artificial

intelligence, as it has to be sought in the identification of unfair practices across

various fields such as healthcare [Ueda et al., 2024], hiring [Fabris et al., 2023], and

education [Kizilcec and Lee, 2022]. Several studies have indicated that extensive

social and legal interventions must be combined with research efforts in order

to be effective [Morley et al., 2021]; for this reason, research on algorithmic fair-

ness remains active and applies to both technical and academic papers. For a
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more comprehensive overview of the subject, refer to [D’Alessandro et al., 2017],

[Hutchinson and Mitchell, 2019], and [Caton and Haas, 2020].

2.3.1 Social and Statistical Background

Unfair practices existed long before the rise of automated decision-making systems.

Particularly in sectors like insurance and banking, human decision-makers have

executed numerous forms of indirect or unintentional discrimination. Among the

most well-known and researched is “redlining” [Locke et al., 2021], which refers

to the discriminatory act of arbitrarily refusing or restricting services to certain

marginalized groups, such as people of color or those with lower income, based

on their belonging to a certain residential neighborhood. Other kinds of indirect

discrimination include: (i) “discrimination on redundant encodings”, where an

individual with protected attribute Z is rejected based on a theoretically non-

discriminatory proxy attribute S, which is correlated to Z but irrelevant to the

outcome; (ii) “self-fulfilling prophecy”, where the intentional selection of unsuitable

candidates from the discriminated group results in a bad track record, later employed

to support the dismissal of similar candidates; and (iii) “reverse tokenism”, which

involves rejecting a qualified applicant from the privileged group to justify the

exclusion of other applicants from the discriminated group [Dwork et al., 2012].

Since machine learning models often learn from biased track records, they not

only acquire these biases but can also amplify and automate them. Moreover,

traditional methods such as “fairness through unawareness”, which involve excluding

protected attributes from input data, have proven ineffective as these discriminations

tend to be perpetrated through proxies [Dwork et al., 2012]. This has led to the

development of various indicators that measure the impact of decisions on protected

groups, legally referred to as disparate impact [Feldman et al., 2015]. This term

became well-known following the American court case of Griggs v. Duke Power Co.1,

where the examiners consistently rejected black applicants based on intelligence

test results and the requirement of a high school diploma, both features that were

specifically tailored for white people. Just as human evaluators were forbidden

from practicing indirect discrimination, it is similarly necessary that any machine

1https://supreme.justia.com/cases/federal/us/401/424/

https://supreme.justia.com/cases/federal/us/401/424/
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learning model employed in real-world applications ensures an equitable distribution

of both favorable and unfavorable outcomes across all social groups.

Mathematically, this concept can be translated as the degree of statistical

independence between the protected attribute Z – e.g., gender, ethnicity, etc. – and

the predicted outcome Ŷ . This is commonly measured using quantitative indicators

associated with the protected attribute; however, since ethical issues can hardly be

implemented into simple formulas, a wide range of metrics have been introduced,

whose selection is often delegated to domain experts and depends on the specific

context. Notable metrics include Demographic Parity (DP) and Equalized Odds

(EO), designed for binary protected attributes and outcomes and defined as follows:

DP(Z, Y, Ŷ ) =
∣∣∣P (Ŷ = +, Z = p) − P (Ŷ = +, Z = m)

∣∣∣ (2.13)

EO(Z, Y, Ŷ ) =
∣∣∣P (Ŷ = +, Y = +, Z = p)− P (Ŷ = +, Y = +, Z = m)

∣∣∣ (2.14)

where + denotes the positive output class, and p,m represent the privileged and

marginalized group, respectively. Demographic Parity essentially attempts to

quantify the correlation between predictions Ŷ and the protected attribute Z, as it

achieves Ŷ ⊥⊥ Z when its value is zero; conversely, Equalized Odds also takes into

account the ground truth vector Y , leading to conditional independence Ŷ ⊥⊥ Z | Y
when its result is null. Besides these, numerous other metrics evaluate various

dimensions of fairness in learning systems, one of which is the Disparate Impact

Discrimination Index (DIDI) [Aghaei et al., 2019], which we will explore in both

our theoretical and empirical studies. The DIDI assesses the degree of disparate

impact in regression tasks using a categorical (not necessarily binary) protected

attribute. Mathematically, it is formulated as:

DIDI(Z, Ŷ ) =
∑
z∈Z

∣∣∣∣∣
∑n

i=1 Ŷi · I(Zi = z)∑n
i=1 I(Zi = z)

− 1

n

n∑
i=1

Ŷi

∣∣∣∣∣ (2.15)

where Z is the support of Z, and I is the indicator function. A similar expression

is also provided for multi-class classification contexts.
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2.3.2 Fairness Enforcement Algorithms

While the assessment of fairness simply involves the application of a chosen indicator,

enforcing fairness properties in machine learning models is significantly more

complex. In particular, fairness constraints fall under the category of relational

constraints, namely those imposed on a group of data points rather than on

individual samples [Hardt et al., 2016, Fish et al., 2016]. This makes it difficult to

handle them since they require access to the entire distribution and might demand

the development of specialized algorithms. In certain applications such as fair

ranking, there exists a specific taxonomy of these algorithms [Zehlike et al., 2022a,

Zehlike et al., 2022b]; generally speaking, however, fairness enforcement methods

are categorized into three primary groups based on the timing of the debiasing

intervention [Mehrabi et al., 2021] .

Pre-processing Techniques

Pre-processing methods involve the modification of the input data before the start

of the training process. Such modification is aimed at minimizing discrimination

while maintaining the closest distance towards the original dataset in order to

minimize information loss. A key advantage of pre-processing methods is their

applicability, as they can be used whenever it is possible to change training data

without altering the learning procedure. Nonetheless, the strongest drawback is

that these methods cannot address potential bias introduced by the algorithms

themselves during the learning phase.

An example of this category is presented in [Luong et al., 2011], where the

authors employ a K-Nearest Neighbor model to identify significant treatment

disparities among neighbors with different protected attributes, later using this

information to adjust the sample label so that it better fits the surrounding

neighborhood. Similarly, [Kamiran and Calders, 2011] proposes three methods

to artificially equilibrate input data using resampling or reweighting techniques

to adhere to the given fairness criteria, whereas [Calmon et al., 2017] solves a

comparable task by introducing a convex optimization problem aimed at reducing

the level of discrimination while minimizing distortions on individual samples.

Finally, [Celis et al., 2020] shifts the input data distributions by applying the
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principle of maximum entropy, selecting the one that most closely matches the

given prior in terms of KL-divergence among all the unbiased distributions.

Post-processing Techniques

In contrast to the previous class, post-processing methods adjust the outputs of

the model after the training is complete. Similarly to pre-processing methods,

their implementation is relatively straightforward, but they can also consider the

bias introduced during the training process, hence generally providing stronger

guarantees. A significant limitation of these algorithms, though, is that they

typically require processing data in batches because fairness metrics are computed

across a group of samples rather than on individual data points; consequently, they

carry a higher risk of overfitting, as promising candidates might be penalized when

grouped with other optimal individuals, and vice versa.

A representative case of these techniques is presented in [Hardt et al., 2016],

where the outputs of a classifier are locally adjusted to meet the fairness criteria by

means of a linear program; likewise, [Xian et al., 2023] employs a linear program to

derive a fair classifier by demonstrating that the minimization of classification error

with respect to a desired distribution is equivalent to solving an optimal transport

problem. Moreover, post-processing methods are frequently used for ranking tasks.

For instance, [Zehlike et al., 2017] modifies the positions of the candidates in the

final ranking to satisfy certain lower and upper bound requirements on the presence

of subgroup members in the top-k ranking. Similarly, [Singh and Joachims, 2018]

proposes a linear program that addresses visibility bias, as studies have shown

that candidate exposure diminishes geometrically with their position in the rank.

Ultimately, [Biega et al., 2018] considers ordered rankings as well and applies a

strategy that dynamically adjusts the results for the same query to ensure equitable

attention over time, thus integrating long-term effects into their approach in order

to promote more balanced outcomes in the long run.

In-processing Techniques

Finally, in-processing techniques are those that integrate the fairness criteria

throughout the training phase. These methods are the most challenging to develop
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because they usually require modifying the core training process of the machine

learning model, employing either loss regularizers or other constraint-imposing

approaches. Nonetheless, they are extensively researched in the academic literature

since they generally offer the best trade-off between meeting fairness constraints

and maintaining task accuracy, despite their increased computational burden.

Many techniques for in-processing fairness enforcement involve minor alterations

of standard algorithms, either to ensure certain properties or to guide the learning

process toward fair outcomes. For example, [Woodworth et al., 2017] highlights

the theoretical limitations of post-processing approaches and develops a simplified

algorithm for creating unbiased binary predictors based on second-order moments.

In [Kamiran et al., 2010], the authors propose a strategy to adjust the splitting

criteria of Decision Trees to mitigate biases in the data, and similar methods

are suggested in [Calders and Verwer, 2010] for Naive Bayes classifiers. Likewise,

[Zafar et al., 2017] introduces a framework for training fair classifiers using a Disci-

plined Convex-Concave Program, which is efficiently solvable with known heuristics,

while [Komiyama et al., 2018] presents a nonconvex approach that addresses unfair-

ness across multiple protected attributes simultaneously, demonstrating that it can

be reduced to exactly solvable convex optimizations. Again, [Donini et al., 2018]

introduces the Fair Empirical Risk Minimization framework, extending Support

Vector Machines with an extra regularization term to decrease unfairness; similarly,

[Padala and Gujar, 2020] integrates a regularization term in the learning process

of Neural Networks, demonstrating that they can handle non-convex constraints

even with mini-batches, provided that the size of the batch is accurately tuned to

avoid generalization issues.

On a final note, we mention some additional techniques that use specific learning

models or paradigms to provide outcomes with stronger theoretical guarantees in

relation to different criteria. For example, [Wang and Gupta, 2020] uses lattice

models to enforce deontological fairness requirements in the form of monotonicity

shape constraints, while [Greco et al., 2023] incorporates fairness by expressing

constraints within the framework of logic tensor networks. Instead, [Ge et al., 2021]

and [Yin et al., 2024] reformulate fairness requirements within the reinforcement

learning paradigm, allowing them to better handle the dynamic nature of incoming
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data and yield results that are more fair and stable over time.

2.3.3 Categorical vs. Continuous Protected Attributes

All the indicators mentioned in Section 2.3.1 are defined with respect to either

binary or, at most, categorical protected attributes. This is due to two primary

reasons. On the one hand, fairness definitions have traditionally been associated

with social groups defined by categorical attributes such as gender, ethnicity, sexual

orientation, religious belief, etc. Even when numerical targets can be considered,

as illustrated by the DIDI definition which is applicable to regression tasks, they

still require the sensitive information to be framed through categories. On the

other hand, fairness is typically quantified using correlation measures, which are

significantly easier to compute with categorical rather than continuous variables.

As a result, inherently numerical features such as income, age, weight, or even

aggregate data like the share of marginalized individuals in a population have

consequently been excluded from any fairness application.

Theoretically, continuous protected attributes can be managed through dis-

cretization. Nonetheless, this method faces challenges in practical scenarios, as

altering the number of bins or even just their boundaries can lead to unpre-

dictable fluctuations in the results, making the approach less reliable and sus-

ceptible to manipulation. [Mary et al., 2019] was the first to suggest using the

Hirschfeld–Gebelein–Rényi (HGR) Coefficient as an alternative solution to measure

fairness under continuous protected attributes. As discussed in Section 2.2.3, HGR

can virtually assess any form of correlation, but its exact calculation has been proven

intractable. For this reason, the authors employ Kernel Density Estimation tech-

niques to approximate the distributions which generated the data, and eventually

compute an estimate of HGR using a theoretical approximation known as Witsen-

hausen’s characterization [Witsenhausen, 1975]. A similar methodology leveraging

Witsenhausen’s characterization was later introduced in [Baharlouei et al., 2019],

where the authors restrict their experiments to categorical protected attributes to

avoid estimating the underlying distribution but, interestingly, propose a method

to tackle fair clustering besides fair classification. Subsequently, the work by

Mary et al. was expanded in [Grari et al., 2020], which introduced a new method
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to calculate the indicator leveraging two neural networks to model the copula

transformations of HGR. Alternatively, [Jiang et al., 2022] used similar techniques

– i.e., discretization and Kernel Density Estimation – to extend the definition of

Demographic Parity to the continuous case, rather than employing HGR as a

measure of fairness.

We position our research precisely within this specialized area of study, where

we aim to advance understanding through various contributions. Initially, we

present a novel algorithm for estimating HGR, featuring notable properties and

enhanced robustness. Furthermore, we demonstrate that the applicability of HGR

when used as a fairness metric might be limited due to specific properties of the

indicator which might conflict with certain requirements and tasks. To address

this, we slightly alter the semantics of HGR in order to introduce and evaluate a

new indicator that extends the notion of disparate impact to the continuous case.



Chapter 3

Non-Linear Correlations

This chapter is dedicated to introducing a novel algorithm for computing the

Hirschfeld–Gebelein–Rényi (HGR) correlation coefficient [Rényi, 1959]. The coeffi-

cient is initially presented in Section 3.1, highlighting both its advantages and major

drawbacks. Next, Section 3.2 examines the current computational approaches for

estimating the value of HGR, distinguishing between methods that provide gradient

information and those that do not. In Section 3.3, we present our approach based

on polynomial expansions, while Section 3.4 shows how to derive an approximation

to our method which can ensure faster results and a more stable gradient at the

expense of a limitation in the expressive power. In Section 3.5, we delve deeper into

the characteristics of our indicator, enumerating all its properties and explaining

why they make it more robust and trustworthy than other state-of-the-art methods.

Lastly, Section 3.6 showcase an empirical evaluation designed to validate the bene-

fits offered by our method in terms of robustness and explainability. All the proofs,

results, and discussions presented in this chapter are drawn from and reworked

based on a research paper which is currently under review at a prestigious Artificial

Intelligence journal. Certain material has been modified or extended to better fit

the thesis format, although the conclusions remain unchanged.

27
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3.1 The Hirschfeld–Gebelein–Rényi Coefficient

The HGR coefficient, also referred to as the maximal correlation coefficient, is a

natural yet less known extension of the Pearson coefficient. It is defined as the

maximal correlation that can be achieved by transforming random variables into

non-linear domains through copula transformations. Formally, given two jointly

distributed random variables A ∈ A, B ∈ B, we have:

HGR(A,B) = sup
f :A7→R,g:B7→R

ρ(f(A), g(B)) (3.1)

where ρ(·, ·) denotes the Pearson coefficient, and f and g are the copula transfor-

mations belonging to the Hilbert space of all possible mapping functions.

Practically, HGR seeks to determine the optimal pair of functions f and g that

project the initial variables into a new space where their co-linearity is maximized.

For instance, if the relationship between A and B is circular, then the copula

transformations will be of the type f : a 7→ a2 and g : b 7→ b2 in order to capture

the quadratic interaction from both sides that is typical of circumferences. Similarly,

if the relationship is B = sin(A), we obtain f : a 7→ sin(a) and g : b 7→ b, resulting

in a final correlation of ρ(f(A), g(B)) = ρ(sin(A), sin(A)) = 1.

Given Equation (3.1), there are infinite viable copula transformations for this

problem. Indeed, as the Pearson correlation is invariant to both translation and

scaling, any possible solution which retains the same shape is equally valid. In

order to break these symmetries, we can impose additional conditions on the copula

transformations and arrive at a unique1 solution. More specifically, we require

zero-centered copula transformations with unitary standard deviation, obtaining:

HGR(A,B) = sup
f :A7→R,g:B7→R

E[f(A)]=E[g(B)]=0

E[f2(A)]=E[g2(B)]=1

E [f(A) · g(B)] (3.2)

1To be more precise, two distinct solutions exist. In fact, given the optimal functions f∗

and g∗, one can always define the functions f ′(x) = −f∗(x) and g′(x) = −g∗(x), which produce
identical outcomes since the Pearson correlation feature a product at the numerator. However,
introducing a constraint to disrupt this symmetry is challenging and often does not offer further
insight or computational benefit, since the two solutions are entirely equivalent, hence we will
consider this approach as the most suitable one.
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where the Pearson correlation can be replaced by the mean of the product, as both

the mean and standard deviation terms no longer have an influence.

Notably, the definition of HGR allows to derive three important properties:

HGR(A,B) ∈ [0, 1]

HGR(A,B) = 1 ⇐⇒ ∃f, g | P (f(A) = g(B)) = 1

HGR(A,B) = 0 ⇐⇒ A ⊥⊥ B

(3.3)

That is, the domain of HGR is bounded between 0 and 1. This makes it different

from other known correlation metrics that are defined in [−1, 1] as it is unable

to determine the direction of the correlations, hence limiting to its strength in

absolute value. Within this domain, higher values denote a stronger degree of

dependence, while lower values reflect weaker dependence. In particular, HGR

reaches its maximum value only when there exist two deterministic functions f

and g making the random variables identical, while it reaches its minimum value

only when A and B are independent. This last property is especially significant, as

other measures of sample correlation do not guarantee it; for example, two variables

might be dependent on each other even if their Pearson’s correlation is zero, as

their relationship might be exclusively non-linear.

3.1.1 The Issue of Uncomputability

As previously discussed, HGR is an effective tool for measuring the dependence

between two variables. However, its calculation poses difficulties, as it requires to

optimize over an infinite set of infinite-dimensional elements – that is, all potential

f and g functions. Among the well-founded methods proposed to estimate this

coefficient, one notable approach is by Witsenhausen [Witsenhausen, 1975], which

uses the second singular value σ2 of a carefully selected matrix:

Q =
P (A,B)√

P (A) ·
√
P (B)

(3.4)

where P (A,B) represents the joint distribution and P (A), P (B) the marginal

distributions, respectively.
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Figure 3.1: Example of overfitting in the computation of sample HGR.

It should be mentioned, however, that the exact value of σ2(Q) is theoretically

uncomputable. An approximation for the lower bound based on the χ2 value has

been suggested by [Mary et al., 2019]. Nonetheless, in addition to the fundamental

theoretical error, their method also requires to estimate the distributions of A and

B from the available samples, thereby introducing a further layer of inaccuracy to

the whole process.

3.1.2 Distribution vs. Samples

In principle, a sample version of HGR can be readily derived by substituting the

theoretical value of the Pearson correlation in Equation (3.2) with its sample-based

counterpart. The two copula transformations f and g need to be redefined to act

on vectors as well, specifically:

f(a) = {f(ai)}ni=1 g(b) = {g(bi)}ni=1 (3.5)

However, this characteristic makes the indicator prone to overfitting on any given

sample (a, b) ∼ P (A,B), where the pairs can be seen as deterministic specifications

of either a a 7→ b or b 7→ a. For instance, consider the dataset presented in Figure 3.1,

where the a points are equidistant and the b points are sampled randomly from a

uniform distribution. Since it is possible to define the new transformations f and

g based only on their values at the sampled points, an unrestricted model could

return two copula transformations such as f : ai 7→ bi and g : bi 7→ bi, resulting
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in a maximal correlation HGR(a, b) = ρ(f(a), g(b)) = ρ({bi}ni=1 , {bi}
n
i=1) = 1, even

though b is generated from a distribution independent of A.

In Figure 3.1, we show how this task can be easily accomplished using a piecewise-

linear function that precisely fits the data, but we underline that this concept

applies to any model capable of exact interpolation on a dataset, ranging from

piecewise-constant to polynomial or spline interpolations. In real-world scenarios,

tackling these issues requires the use of suboptimal computational methods that

can balance the trade-off between bias and variance.

3.2 Computational Methods for HGR

In this section, we will present several algorithms that have been suggested for

approximating HGR using samples. Various theoretical relaxations, computational

approximations, and semantic modifications have been introduced for this task.

The common thread in this comprehensive body of work is the combination of the

expressive power provided by non-linear kernel methods with the well-established

theoretical and practical benefits of linear algebra.

The major difference between these algorithms lies in their ability to provide

gradient information at the end of the procedure. Although this feature is often not

essential for applications where correlation measurement is sufficient, it becomes

highly beneficial whenever such correlation must be constrained up to certain

values using regularization-based methods – see Section 2.1.3 for a more thorough

examination of this subject.

3.2.1 Gradient-Free Algorithms

The first approach proposed to estimate HGR was the Alternating Conditional

Expectations (ACE) algorithm [Breiman and Friedman, 1985]. Although it can

be generally used as a method for finding optimal transformations between the

target and input variables in regression tasks, in the context of bivariate datasets

it grounds to the computation of HGR. The aim of the algorithm is to identify the

best pair of zero-centered transformations f and g which minimize the fraction of
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Figure 3.2: Pipeline of the Randomized Dependence Coefficient.
From: The Randomized Dependence Coefficient [Lopez-Paz et al., 2013]

unexplained variance, i.e.:

argmin
f :A7→R,g:B7→R

E[f(A)]=E[g(B)]=0

E [f(A)− g(B)]2

E [g2(B)]
(3.6)

This process involves alternately fixing f and g while iteratively resolving the

following subproblems until the fraction of unexplained variance converges within

a specified tolerance:

g(B) = E [f(A) | B] (3.7)

f(A) = E [g(B) | A] (3.8)

Similar to other algorithms, ACE necessitates access to distributions P (A), P (B),

and P (A,B), which further restricts its applicability in practical scenarios.

Other interesting gradient-free techniques for the computation of a generalized

correlation coefficient have been suggested over time. Noteworthy examples include

the Distance and Brownian Correlation [Székely and Rizzo, 2009], Kernel Indepen-

dent Component Analysis [Bach and Jordan, 2003], Kernel Canonical Correlation

Analysis [Hardoon and Shawe-Taylor, 2008], and Hilbert-Schmidt Independence

Criterion [Gretton et al., 2005, Póczos et al., 2012].

As a final mention, we reference the Randomized Dependence Coefficient

(RDC) [Lopez-Paz et al., 2013]. The RDC estimates HGR by choosing the pair

which yields the highest correlation among randomly-calibrated sinusoidal projec-
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tions of the input variables. Specifically, as displayed in Figure 3.2, the algorithm

utilizes k different sinusoidal functions obtained using a random scaling term ω, and

eventually employs Canonical Correlation Analysis (CCA) to identify the pair with

maximal correlation. This method is similar to ours but has two main shortcomings:

(i) it relies on random projections, which limits its robustness and interpretability,

and (ii) its procedure does not provide gradient information, making it unsuitable

for enforcement scenarios. Nonetheless, due to these similarities, we opted to use it

as a baseline in some of our experiments.

3.2.2 Kernel-Density Estimation

[Mary et al., 2019] was the first paper to devise a novel computational approach for

HGR that ensures differentiability. In their approach, the authors use Kernel Density

Estimation (KDE) techniques to approximate the input and output distributions,

later using them to compute the χ2-divergence, which they prove to be a reliable

upper bound of the Witsenhausen’s characterization of HGR [Witsenhausen, 1975].

Given that the χ2-divergence provides a smooth approximation, it can be effectively

used as a loss regularizer during the neural network training process. Remarkably,

the paper also empirically demonstrates how this approach is effective when applied

to mini-batches, making it suitable for deployment in deep learning frameworks.

Despite its distinct advantages, the proposed HGR-KDE method also has

several limitations. Firstly, akin to our previous discussion on Mutual Information,

correlation metrics based on kernel-density estimation methods tend to be largely

uninterpretable, as they model distributions but offer no substantial insight into

the structure of the copula transformations. Secondly, although the authors assert

their approach is non-parametric, we acknowledge that KDE algorithms require a

configuration that can significantly influence the quality of the resulting solution.

Furthermore, this configuration is often opaque and challenging to determine a

priori, as it lacks a direct correlation with observable outcomes.
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3.2.3 Neural Networks

Another gradient-based method to calculate HGR is proposed in [Grari et al., 2020].

This is achieved through an adversarial framework where two neural networks are

used to estimate copula transformations. A primary model (f) attempts to predict

the protected variable mapping while a secondary one (g) predicts the output target

one. Eventually, the system is trained to maximize the resulting correlation.

Compared to the KDE method, this HGR-NN approach is slower but signifi-

cantly more effective. Moreover, the neural-based copula transformations offer a

greater level of interpretability compared to kernel-density ones, as they enable vi-

sualization of the response function by scanning the input space, although this level

of interpretability cannot be framed in closed-form due to the inherent complexity

of neural networks. When it comes to configurability, neural networks require as

well the definition of certain specifications, such as the hyperparameters of the

layers and the optimizer. Nevertheless, the effects of these specifications are more

predictable in advance since they are more directly correlated with the trade-off

between bias and variance, hence allowing for a more straightforward calibration.

A major drawback of neural networks is their intrinsic non-determinism, which

can be particularly problematic in fairness applications where specific guarantees

might be necessary. Finally, we mention that this method has been shown as well

to work properly with mini-batches, and in particular it can be more efficient when

applied to data sampled from the same process, as it is possible to apply fine-tuning

techniques to the pre-trained transformations.

3.3 Kernel-Based HGR

The core idea of our approach is to represent f and g by means of finite-degree

polynomials. Formally, let us consider two vectors (a, b) sampled from the joint

distribution of A and B. Our finite variance models are expressed as weighted

polynomial expansions Pd
x · ω, where x refers to the input vector, d denotes the

degree of the polynomial kernel, and ω is a d-dimensional vector of coefficients
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assigned to each polynomial degree. Specifically:

Pd
x · ω =


x1 x21 . . . xd1

x2 x22 . . . xd2
...

...
. . .

...

xn x2n . . . xdn

 ·

ω1

ω2

...

ωd

 (3.9)

Accordingly, our kernel-based HGR variant is defined as:

HGR-KB(a, b;h, k) = max
α,β

ρ(Ph
a · α,Pk

b · β) (3.10)

where the copula transformations f(a) and g(b) are replaced with Ph
a ·α and Pk

b · β,
respectively. Here, h and k are two positive integers that represent the order

of polynomial expansions for both variables. As their specification is designated

to the user, these hyperparameters provide a way to adjust the flexibility of the

indicator, balancing both the trade-off between bias and variance as well as its

expressiveness against computational complexity. The remainder of this section

addresses the technical aspects concerning the calculation of the indicator, followed

by a discussion on its properties and practical advantages.

3.3.1 Optimization Problem Formulation

Addressing Equation (3.10) poses a challenge due to the presence of several non-

linearities in the definition of Pearson’s coefficient. Nevertheless, we can observe

that the sample Pearson correlation ρ(a, b) can be obtained as follows by finding

the unique solution of an unconstrained least-square optimization problem:

argmin
r

1

n

∥∥∥∥a− µ(a)σ(a)
· r − b− µ(b)

σ(b)

∥∥∥∥2

2

(3.11)

where µ and σ denote the mean and standard deviation operators, respectively –

see proof in Appendix B.1. By substituting this into Equation (3.1), we get to the
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subsequent bi-level optimization problem:

max
f,g

argmin
r

1

n

∥∥∥∥f(a)− µ(f(a))σ(f(a))
· r − g(b)− µ(g(b))

σ(g(b))

∥∥∥∥2

2

(3.12)

Given that the copula transformations exhibit finite and strictly positive variance,

this represents an alternative yet equivalent sample version of HGR, from which the

correlation coefficient can be obtained as the optimal value r∗, which is guaranteed

unique thanks to the strict convexity of the underlying problem.

Nonetheless, having a bi-level optimization problem is cumbersome to handle

from a computational viewpoint. Therefore, in Appendix B.2 we prove that the

objectives of the outer and inner optimization problems are aligned, thus making

it possible to simplify the formulation to:

argmin
f,g,r

1

n

∥∥∥∥f(a)− µ(f(a))σ(f(a))
· r − g(b)− µ(g(b))

σ(g(b))

∥∥∥∥2

2

(3.13)

3.3.2 Plugging Polynomial Kernels

Let us substitute our polynomial models in Equation (3.13). What we get is:

argmin
α,β,r

∥∥∥∥Ph
a · α− µ(Ph

a · α)
σ(Ph

a · α)
· r − Pk

b · β − µ(Pk
a · β)

σ(Pk
a · β)

∥∥∥∥2

2

(3.14)

where the scaling factor 1/n can be omitted without altering the solution.

Looking at this equation, we can notice that the µ(·) terms may be easily

removed since the mean operator is invariant to translation. Consequently, we can

precompute the zero-centered the polynomial kernels P̃h
a and P̃k

b and use them in

place of the numerators, leading to:

argmin
α,β,r

∥∥∥∥∥ P̃h
a · α

σ(Ph
a · α)

· r − P̃k
b · β

σ(Pk
a · β)

∥∥∥∥∥
2

2

(3.15)

The same reasoning cannot be applied to the standard deviation operator,

as its value is more complex to compute. Nonetheless, since r appears as the

multiplicative factor of a scale-invariant term, we can eliminate the denominator
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σ(Ph
a · α) by incorporating it into the coefficient vector along with r as follows:

α̃ =
α

σ(Ph
a · α)

· r (3.16)

Finally, the only method to eliminate σ(Pk
a · β) is to impose a constraint that

sets its value to 1, resulting in the following optimization problem:

argmin
α̃,β

∥∥∥P̃h
a · α̃− P̃k

b · β
∥∥∥2

2
s.t. σ(P̃k

b · β)2 = 1 (3.17)

Specifically, we impose the constraint on the variance instead of the standard

deviation and replace Pk
b with its zero-centered counterpart P̃k

b . This approach

retains the same solution, but simplifies its computational modeling by eliminating

the need to calculate square-root terms and allowing the use of a single matrix.

3.3.3 Solution of the Problem

Although the quadratic objective may appear straightforward, finding the optimal

solutions α̃∗ and β∗ of Equation (3.17) is challenging due to the equality constraint

imposed on the quadratic function σ(P̃k
b · β)2. This prevents from the application

of the Quadratically Constrained Quadratic Program (QCQP) framework, as it can

only handle negative inequalities when dealing with positive-semidefinite problems

like ours. However, in Appendix B.3 we show that the problem admits a convex

formulation, thus ensuring the existence of a globally optimal solution. This allows

the application of any global optimization method despite the lack of a closed-

form solution and, specifically, we rely on the implementation of the Trust Region

Method from [Conn et al., 2000] provided by the scipy.optimize package.

We underline that α̃∗ does not ensure a unitary standard deviation for the

copula transformation, as it inherently embeds the term r∗ and the standard

deviation σ(P̃h
a ·α). This prevents us from directly employing the product mean as

in Equation (3.2) to compute the final correlation. However, in Appendix B.4 we

demonstrate that the standard deviation of P̃h
a · α̃∗ corresponds exactly the optimal
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correlation r∗, thus allowing us to determine the value of HGR-KB as:

HGR-KB(a, b;h, k) = σ(P̃h
a · α̃∗) (3.18)

once the optimization problem has been solved. Otherwise, an alternative approach

would be to directly compute the Pearson correlation. Given its invariance to both

translation and scaling, additional transformations are unnecessary and we get:

HGR-KB(a, b;h, k) = ρ(P̃h
a · α̃∗, P̃k

b · β∗) (3.19)

3.4 Single-Kernel HGR

Suppose that we only aim to measure a type of functional dependency as described

in a
f7−→ b, rather than allowing the algorithm to consider codependencies. In order

to achieve this, it is sufficient to eliminate the copula transformation g, which in

our scenario means selecting a first-order polynomial for the second kernel.

Our formulation simplifies to:

argmin
α̃,β

∥∥∥P̃h
a · α̃− β(b− µ(b))

∥∥∥2

2
s.t. σ(βb)2 = 1 (3.20)

where the constraint fully determines the value of β, making it equal to 1/σ(b).

Therefore, we can rewrite Equation (3.20) as:

argmin
α̃

∥∥∥∥P̃h
a · α̃−

b− µ(b)
σ(b)

∥∥∥∥2

2

(3.21)

which allows for more efficient solutions based on a wide range of ad-hoc algorithms

as it represents an unconstrained least-squares problem.

3.4.1 A Further Approximation

Despite this setup being limited to quantifying correlations in functional form,

its computational benefits are significant enough that we decided to use it as the

basis for a simplified version of our indicator, which we called Single-Kernel HGR.
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Figure 3.3: Time required to compute HGR-SK using Least-Square vs. Global
Optimization algorithms.

HGR-SK is obtained by evaluating HGR-KB with orders (d, 1) and (1, d), then

selecting the maximal outcome:

HGR-SK(a, b; d) = max {HGR-KB(a, b; d, 1),HGR-KB(a, b; 1, d)} (3.22)

In this variation, d controls the degree of both polynomial expansions, allowing the

indicator to capture functional dependencies only, although in both directions.

In particular, we can address the optimization problems using Equation (3.21),

and eventually compute the optimal value using the definition of Pearson’s coefficient

as in Equation (3.19), leading to:

HGR-SK(a, b; d) = max
{
ρ(P̃d

a ·α̃∗, b), ρ(a, P̃d
b ·β̃∗)

}
α̃∗ ∈ argmin

α̃

∥∥∥∥P̃d
a · α̃−

b− µ(b)
σ(b)

∥∥∥∥2

2

β̃∗ ∈ argmin
β̃

∥∥∥∥P̃d
b · β̃ −

a− µ(a)
σ(a)

∥∥∥∥2

2

(3.23)

or, alternatively, using Equation (3.18) instead of Pearson’s correlation.

3.4.2 Advantages and Disadvantages

The primary strength of the Single-Kernel formulation lies in its speed. Solving

an unconstrained least-square problem is a well-understood task in linear algebra,
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with highly-optimized computational routines available. Figure 3.3 demonstrates

that employing least-square solvers offers an improvement of nearly two orders of

magnitude over global optimization using trust region methods. Similar conclusions

can be drawn from the experiments shown in Section 3.6. Furthermore, while

one might argue that solving a least-square problem does not scale efficiently as

data size increases, it must be considered that constraint enforcement through

regularization techniques could be effective on mini-batches as well, hence the

dimensionality of the data can be arbitrarily chosen to balance speed and accuracy

during training.

Another interesting feature of HGR-SK is that its procedure is completely

differentiable. Notably, automatic differentiation frameworks support a differ-

entiable least-squares operator, such as tf.linalg.lstsq in TensorFlow and

torch.linalg.lstsq in PyTorch. Consequently, the Single-Kernel variant has a

well-defined gradient and, in addition to that, it can potentially allow for precise

constraints on individual elements of the coefficient vectors α̃∗ and β̃∗ – refer to

Section 4.3.3 for a more detailed discussion on fine-grained constraints within the

context of Generalized Disparate Impact.

In terms of limitations, the primary issue with HGR-SK stems from its inability

to detect strong non-linear dependencies between the two vectors. An empirical

example of this is presented in Section 3.6, particularly in the circular dataset which

features a quadratic relationship between both vectors. However, experiments on

real-world data shown in Section 4.1 indicate that this limitation has minimal

effects on highly complex data.

3.5 Properties of Kernel-Based Methods

We claim that our indicator HGR-KB, along with its Single-Kernel variant, has

several properties that make it significantly more suitable for practical implementa-

tions than other options. Table 3.1 provides a summarization of these properties,

which are further examined in the following subsections.
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Method HGR-KB HGR-SK HGR-NN HGR-KDE RDC

Expressivity f , g f or g f , g f , g (distributions) f , g
Interpretability ✓ ✓ visualization only × ✓
Configurability ✓ ✓ architecture only × ×
Differentiability ✓ ✓ ✓ ✓ ×
Determinism ✓ ✓ × ✓ ×

Table 3.1: Properties of HGR-KB and HGR-SK compared to three alternative
techniques for computing HGR.

3.5.1 Expressivity

Regarding expressivity, both our method and the adversarial approach can be

considered universal approximators. Theoretically, polynomial expansions are

known for their higher numerical instability compared to Neural Networks; however,

in practice, extremely expressive models may lead to overfitting, as demonstrated

by our experiments, hence low degrees are usually more reliable and preferable.

Conversely, the kernel-density estimation method depends on a bound, complicating

the expressivity analysis, whereas the Randomized Dependence Coefficient makes

use of a single sinusoidal function, thus being inherently limited in expressivity.

3.5.2 Interpretability

The use of polynomial kernels guarantees an easier interpretability of our method,

on par with the Randomized Dependency Coefficient. Figure 3.4 shows an example

of how the optimized kernels can be both displayed and analytically examined based

on their interpretable coefficients. The original data, shown on the left, exhibit

almost no (linear) correlation; in the central figures, we plot the learned copula

transformations along with the corresponding coefficients for the polynomial terms;

finally, the projected data on the right demonstrate a much stronger correlation.

Notably, our method correlates the magnitude of each component with its respective

degree, allowing in fact a mathematical examination of the outcome on top of the

visual one. For instance, in the depicted scenario, the quadratic relationship between

variables is made evident by the stronger magnitude of the second coefficient with

respect to the first one, both in α and in β. This characteristic is missing in the
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Figure 3.4: Example of kernel computation using HGR-KB.

KDE approach, while the adversarial method HGR-NN can only offer visualization

due to the inherent sub-symbolic nature of Neural Networks.

3.5.3 Configurability

A specific property which results from the definition of our method, is that HGR-KB

increases monotonically with respect to the degrees of the kernel; i.e.:

HGR-KB(a, b; p, q) ≥ HGR-KB(a, b;h, k),∀p ≥ h, q ≥ k (3.24)

This property, which is proven in Appendix B.5, improves the understand-

ing of the balance between bias and variance and between expressiveness and

computational costs by analyzing the potential improvements brought by higher

degrees. An empirical analysis of this property is presented in Figure 3.5, where

the correlation between a protected attribute (z) and the target (y) is measured

across three different benchmark datasets. Specifically, we used 2015 US Census,

Communities & Crimes, and Adult Census Income, with the protected attributes

and targets mentioned in Appendix A.2. In the figure, darker shades represent a

higher correlation, thereby demonstrating the monotonically increasing trend of
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Figure 3.5: Computation of HGR-KB(a, b;h, k) with varying h and k on three
benchmark datasets.

the results in both directions, as the color becomes darker towards higher degrees

– i.e., the upper right corner. Interestingly, we also observe that the correlation

computed in the Adult Census Income dataset remains stable with respect to the

increments in the k degree, since the target variable is binary and, therefore, not

affected by polynomial expansions.

The possibility of selecting the degrees of the kernel offers a clear and well-

understood mathematical approach to manage the bias-variance trade-off, which is

essential for the robustness of the method. Specifically, considering the mentioned

monotonicity property, it is evident that lower degrees are often adequate to capture

most non-linear correlations, and that in general we could locate the “optimal”

configuration (h, k) using a procedure similar to the elbow method. For example, by

visually inspecting the three grids in Figure 3.5, the points (2, 3), (3, 2), and (2, 1)

emerge as those beyond which there is little or no improvement in the obtained

correlation value for each respective dataset. This conclusion is drawn from the

observation that the colors no longer darken after those coordinates, indicating

that greater degrees fail to capture more significant dependencies2. In contrast, the

effects of the KDE parameters are less predictable, while only loose guidance can

be provided to the RDC coefficient due to its inherent randomness. Conversely,

2In this context, we must also underline that the optimal value for measurement might not
be the same when enforcing. In fact, when using any HGR measure to enforce a constraint at
training time, the model might learn to move the correlations in a space where the algorithm
cannot detect them rather than actually cancelling them. In our case, this corresponds to moving
the correlations to higher degrees; for this reason we will use h = k = 5 throughout all our
experiments at the cost of introducing a slight computational overload.
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the adversarial approach offers substantial control, but through a less transparent

mechanism because of the complexity of neural networks.

3.5.4 Differentiability

As mentioned in Section 2.1.3, several approaches for imposing constraints in

machine learning leverage loss regularizers. In particular, in our scenario we

would like to compute the correlation between a protected attribute vector z and

a prediction vector ŷ(θ), which can be naturally differentiated with respect to

the parameter vector θ of the selected machine learning model. Eventually, this

correlation should be limited within a specific threshold τ , i.e.:

HGR(z, ŷ(θ)) ≤ τ (3.25)

When used in conjunction with Gradient Descent, this constraint can be incor-

porated into the task objective, resulting in the following custom loss:

L(y, ŷ(θ)) + λ ·max{0,HGR(z, ŷ(θ))− τ} (3.26)

where L represents the task loss, y denotes the ground truths, and λ is a Lagrangian

multiplier that can be either set to a fixed value or adjusted automatically.

However, this method requires the constraint to be differentiable in order to

work properly. Unfortunately, for HGR-KB we cannot fully ensure this, since the

derivation of α̃∗ and β∗ from Equation (3.17) depends on a numerical optimization

process, which inherently provides no gradient information. Nevertheless, both

Equation (3.18) and Equation (3.19) are differentiable, thus we can use them to

obtain a valid subgradient of HGR-KB(z, ŷ(θ);h, k). In the real-world experiments

described in Section 4.1, we empirically demonstrate that this subgradient is useful

and can effectively guide the learning process towards regions where the constraint

is met. Moreover, as mentioned in Section 3.4.2, the computation procedure for

HGR-SK(a, b; d) is based on an unconstrained least-square problem, therefore it

has a well-defined gradient since automatic differentiation frameworks support a

differentiable least-squares operator.

Regarding alternative approaches, HGR-KDE is based on an inherently differ-
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Figure 3.6: Effects of algorithm stochasticity in three different techniques to
estimate HGR.

entiable process, which allows for a straightforward regularization. HGR-NN relies

instead on a subgradient, although empirical evaluations by [Grari et al., 2020]

have demonstrated its efficacy. In contrast, the computational method of RDC

does not provide any gradient information.

3.5.5 Determinism

We also remark that the use of exact optimization techniques ensures that our

indicator remains completely deterministic once the kernel degrees are fixed. This

characteristic is common with the KDE method but not with the RDC and NN

methods, which rely on inherently random operations and/or local optimization

mechanisms, such as random sinusoidal functions and Stochastic Gradient Descent.

Figure 3.6 reports the impact of algorithmic stochasticity across three distinct

HGR computation techniques, where the blue dashed lines represent single runs

while the black solid line is the average. As we can observe, our method produces

consistent results for each of the 30 seeds tested, whereas the outcomes of HGR-NN

exhibit strong fluctuations while those of RDC exhibit few irregular peaks along with

constant minor fluctuations. We reinforce that non-determinism can be a significant

disadvantage in real-world applications, as it may either lead to confusion among

decision-makers or require multiple evaluations to achieve a reliable measurement,

thus impacting the computational complexity.
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3.6 Empirical Evaluation

In this section, we will compare our method with the alternative approaches

mentioned above in order to highlight its advantages and shortcomings when

used to measure correlations. For these experiments, we will use synthetic data

generated from known deterministic functions, optionally complemented with

additive Gaussian noise. We denote our methods as HGR-KB and HGR-SK, with

their respective hyperparameters set to h = k = 5 and d = 5 unless otherwise

indicated. The comparative baselines include the adversarial technique (HGR-NN),

the kernel density approach (HGR-KDE), the Randomized Dependence Coefficient

(RDC), and the linear Pearson’s correlation (PEARS). Further specifics regarding

the implementation of both our approach and the baseline methods are available in

Appendix A.4, while details about our hardware and software setup can be found

in Appendix A.1.

3.6.1 Synthetic Data Generation

All datasets were synthetically generated based on a deterministic function f .

Whenever the relationship is a function of one variable, we select 1001 equally

spaced points from the interval [−1, 1] and assign them to the independent variable.

Subsequently, we determine the respective values of the dependent variable accord-

ing to f . We consider six polynomial relationships along with five other non-linear

functional forms. The polynomial functions include y = x, y = x2, y = x3, x = y2,

x = y3, and x2+y2 = 1 – this last one is also referred to as the circular relationship.

In terms of the others, instead, we test y = max(0, x), y = sign(x), y = tanh(x),

y = sin(x), and y = sin(x2).

In all scenarios, noise is drawn from a Gaussian distribution N (0, σ2) and added

solely to the dependent variable after adjusting it proportionally to its standard

deviation in order to ensure consistent results across datasets. For example, for

the relationship f : x 7→ x2, we compute y = f(x) + σ(f(x)) · N (0, σ2), where

σ(·) represents the standard deviation operator and σ is the noise level shown in

Figures 3.7 and 3.8. We emphasize that, in the relationships x = y2 and x = y3,

the independent variable is y, thus the noise is added to x. The only exception to
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this process regards the circular relationship, where the variables are co-dependent.

More specifically, we draw 501 samples of x from the standard interval [−1, 1],
after which we duplicate the sample size to 1002 data points. The vector y is then

calculated as y = ±
√
1− x2, applying a positive sign to the first half of the dataset

and a negative sign to its duplicated counterpart. Given the absence of functional

dependency between the two variables, proportional noise is incorporated into both

variables. We assert that this distinct method of managing noise is what contributes

more to the faster decline in computed correlation compared to other functions.

3.6.2 Measurement Experiments

As an initial experiment, we compute correlations using each discussed indicator,

along with an ORACLE approach representing the Pearson correlation determined

using optimal copula transformations – e.g., f(a) = a2 and g(b) = −b2 for circular

data. For each deterministic relationship, we test sixteen distinct noise levels σ,

ranging linearly from 0.0 to 3.0 in increments of 0.2. Next, we create ten different

datasets by sampling the noise vector with a respective noise seed ns, and we

perform the evaluation ten times using different algorithm seeds as to account

for stochasticity in both the method and the data. The total number of runs is

123200 = 6+1 (indicators)×11 (functions)×16 (noise levels)×10 (noise seeds)×
10 (algorithm seeds).

The results are presented in Figure 3.7. The shaded bands around each line plot

represent the standard deviation of the outcomes, stemming from both randomness

in noise sampling and, only for HGR-NN and RDC, stochasticity in the solving

process. Average execution times across all datasets, noises, and seeds are reported

in the upper-left subplot, accompanied by a bar indicating the standard deviation.

The first thing we can observe is that HGR-SK is the fastest approach, although

it fails to provide a good estimate of the correlation for certain relationships due to

its inherent limitations to functional dependencies, especially in the circular dataset

as it features a strong non-linear co-dependency of the variables. Concerning RDC,

its results are comparable to HGR-KB and HGR-NN, with execution times that are

one to two orders of magnitude lower. However, as previously shown, this approach

exhibits significantly higher variability due to the presence of random kernels. In
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Figure 3.7: Execution times and correlations calculated using various HGR indica-
tors across different deterministic relationships.
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conclusion, we observe that HGR-KDE consistently yields lower correlation values

even without noise, while HGR-NN, on the contrary, tends to generate higher

estimates, sometimes even outperforming the ORACLE solution as in the case of

circular relationships. We suggest that this is due to overfitting in the adversarial

training procedure and support our hypothesis with additional experiments.

3.6.3 Test Distribution Experiments

To further examine the impact of overfitting in HGR-NN, we conduct an additional

experiment using test distributions. Specifically, we initially collect the learned

copula transformations from previous “training” runs and later create nine unique

“test” datasets by sampling points from the same relationship with different noise

seeds within the range of {0, . . . , 9}, excluding the ns seed used to generate the

“training” data. Finally, we calculate the correlation on these “test” datasets by

applying the gathered copula transformations without undergoing further train-

ing. During this process, we exclude HGR-KDE and RDC as they either lack

accessible transformations or do not allow easy access, thus obtaining a total of

792000 = 4+1 (indicators)×11 (functions)×16 (noise levels)×10 (noise seeds)×
10 (algorithm seeds)× 9 (test seeds) test cases.

The results of this experiment are reported in Figure 3.8. Its goal is to emphasize

that the ability of HGR-NN to capture higher correlations in training data is likely

a consequence of overfitting, since the outcomes on test distributions are similar

to the other indicators, with the exception of y = sin(x2) where it still provides a

better estimate although in a smaller proportion with respect to “training” data.

To further support this claim, Figure 3.9 shows that the mappings produced

by HGR-NN are significantly more unstable than those generated by our kernel-

based methods. More specifically, we consider the circular dependency with noise

σ = 1.0 and examine the copula transformations generated by: (i) our method

HGR-KB with default hyperparameters h = k = 5, (ii) a variant of our method

HGR-KB (2) with hyperparameters h = k = 2, and (iii) the adversarial method

HGR-NN. Looking at the left (f) and right (g) plots, we observe how the neural

transformations significantly overfit in certain regions, whereas our method tends

to produce instability almost only at the borders. Additionally, since our method



3.6. EMPIRICAL EVALUATION 50

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

y = x

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

y = x2

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

y = x3

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

x = y2

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

x = y3

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

x2 + y2 = 1

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

y = max(0, x)

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

y = sign(x)

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

y = tanh(x)

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

y = sin(x)

0 1 2 3
Noise Level 

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

y = sin(x2)

ORACLE
HGR-KB
HGR-SK
HGR-NN
PEARS

Figure 3.8: Test correlations computed for HGR indicators providing explicit access
to the copula transformations.
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Figure 3.9: Kernel inspection of three HGR indicators on circular dataset.

allows to reduce the complexity of the transformations based on domain knowledge

or experimental analysis, we could find that polynomial kernels of order 2 yield an

even more stable result for this particular dataset, something that aligns in fact

with the underlying deterministic relationship. The effects of this instability are

also evident in the computed “test” correlation, shown in the central plot. Here,

we can see that the seemingly optimal performance of HGR-NN in the training

data does not translate to optimal performances in the test split, where all the

methods provide similar results.

3.6.4 Scalability Experiments

As our last experiment, we examine the computational efficiency of each estimation

algorithm. We have already assessed in Figure 3.3 the advantages of a least-

square formulation compared to a global optimization strategy, which is accordingly

reflected in the gap between the execution times of our kernel-based and single-

kernel methods, as reported in Figure 3.7. Here, we aim at expanding such

comparison by measuring the runtime of all the algorithms that we previously

tested, respectively to a progressive increment in the input cardinalities. For each

indicator, we compute the correlation on two distinct datasets across three noise

levels – 0.0, 1.0, and 3.0, as shown in Figures 3.10(a) to 3.10(c). Each computation

is repeated five times using different noise seeds, and timed over 11 data sizes

ranging geometrically from 11 to 1000001, for a total of 6 (indicators)×11 (sizes)×
2 (functions)× 3 (noise levels)× 5 (noise seeds) = 1980 runs.
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Figure 3.10: Average time required to estimate HGR using different algorithms in
two synthetic datasets with growing cardinalities.
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Figure 3.10 reports execution times averaged over the five seeds. We decided

not to include variances in order to favor the interpretability of the plots, but these

results are sufficient to support the partial observations obtained in Figures 3.3

and 3.7. HGR-NN confirms itself as the slowest approach, while the Randomized

Dependence Coefficient is the quickest, following closely after Pearson’s correlation

straightforward calculation. Notably, HGR-KDE is the most affected by the growth

in data size, becoming slower than HGR-KB in certain scenarios, but there is a

general tendency of all the baselines to start demanding increased computational

resources between 1000 and 10000 samples. Among all, our two methods are the

least regular regarding execution times; this can be attributed to their reliance on

optimization processes, which are highly sensitive to the structures of the input

data. Specifically, since HGR-KB is based on iterative global optimization routines,

it is able to converge faster when the relationship is directly representable by the

kernel and relatively unaffected by noise. This also explains the greater variance in

the times reported in Figure 3.7 for HGR-KB and HGR-SK, which is a consequence

of their ability to respond more rapidly in simpler situations.

3.7 Final Discussion

In this chapter, we introduced a novel methodology for calculating the Hirschfeld-

Gebelein-Rényi (HGR) correlation coefficient using two polynomial kernels as

copula transformations. In addition to that, we also presented a less expressive but

significantly faster approximation that is fully-differentiable and relies on the more

established and well-studied least-square problem. Our technique offers distinct

advantages in terms of robustness, explainability, and determinism, making it a

more viable choice for real-world scenarios compared to existing techniques. We

validated our claims using synthetic data generated from known deterministic

functions, which demonstrated these benefits and highlighted the strengths of

our approach. The findings validated our theoretical analysis of the indicator’s

properties, demonstrating its enhanced robustness against under- and overfitting.

Additionally, it proved that our approximation is significantly more efficient, being

two orders of magnitude faster than the most competitive baseline.



Chapter 4

Fairness with Continuous

Protected Attributes

In this chapter, we will explore the application of fairness measures in learning

tasks involving continuous protected attributes, where all traditional indicators

are inapplicable. We start by introducing in Section 4.1 the use of HGR as a

fairness metric, a concept that has already been examined in the literature, and

conduct an empirical evaluation to show the advantages provided by our two

implementations, HGR-KB and HGR-SK. Subsequently, in Section 4.2, we outline

some limitations that may render HGR unsuitable as a fairness metric in certain

contexts. We then propose a remedy in Section 4.3, presenting a novel indicator

named Generalized Disparate Impact (GeDI) which extends the concept of Disparate

Impact to continuous attributes, accompanied by our experimental analysis in

Section 4.4 where this indicator is applied as a fairness constraint. In Section 4.5, we

demonstrate a practical application of GeDI within an algorithm aimed at ensuring

long-term fairness in ranking applications, and eventually conclude this chapter

with a discussion about similarities and differences between GeDI and HGR in

Section 4.6 which culminates into the definition of a unified formulation applicable

to all non-linear correlation indicators. As for the previous chapter, all the proofs,

results, and discussions reported here are adapted from [Giuliani et al., 2023],

[Giuliani et al., 2024], and from another research paper currently under review

at a prestigious Artificial Intelligence journal. Some content has been altered or
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expanded to guarantee a more straightforward exposition in this thesis, but this

does not modify the conclusions we obtained.

4.1 HGR as a Fairness Measure

As highlighted in Section 3.2, [Mary et al., 2019] was the first to propose the intro-

duction of HGR as a measure of fairness, particularly with their estimation method

HGR-KDE. Further advances in this domain were made by [Grari et al., 2020],

who suggested the HGR-NN indicator for a similar purpose. In our work detailed

in Chapter 3, our focus was restricted to evaluating correlation using our methods

HGR-KB and HGR-SK and benchmarking them against the existing standards.

Nevertheless, we did not explore neither theoretical nor experimental implications

of employing them either as constraints or as fairness metrics.

Our next experiment aims to fill this gap by examining the effectiveness of our

HGR estimation techniques in addressing unfair penalization under continuous

protected attributes. For this analysis, we replicate the experimental procedure

of both [Mary et al., 2019] and [Grari et al., 2020], thus performing evaluations on

three widely-recognized benchmark datasets, namely the US 2015 Census (Census),

Communities & Crimes (Communities), and Adult Census Income (Adult). We

restrict our fairness regularizers to the methods HGR-KB, HGR-SK, and HGR-NN,

and adopt the Lagrangian dual approach from [Fioretto et al., 2021] to ensure that

the measured correlation remains below a custom threshold τ which we define for

each dataset. More details on the datasets, on the learning algorithms we use, and

on our implementation can be found in Appendix A.

4.1.1 Identifying Protected Attributes

Before starting our learning experiments, we identify one continuous protected

attribute in each of our benchmark datasets. To achieve this, we use HGR-KB to

measure the level of correlation between the target variable y and all the input

variables in the dataset. As a result, we pinpoint the protected attribute z as the

most correlated continuous feature that can be considered a potential source of

unfairness. For the Census dataset, this attribute is Income; for Communities, it
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is pctWhite; and for Adult, it is age.

The left column of Figure 4.1 reports the outcomes of this feature importance

step. Specifically, the x-axis denotes the level of correlation, while the y-axis lists

the feature names. The selected feature is not always at the top either because

it does not represent any sensitive information or because it is not continuous.

For example, the attribute pctKids2Par in the Communities dataset denotes

the proportion of children in family housing with two parents, which we did not

classify as sensitive information. Conversely, the Married-civ-spouse attribute

in the Adult dataset is binary, hence it was deemed not useful for our experimental

analysis, despite its potential for discriminatory implications. Nonetheless, we can

notice that measuring correlations can suggest potential unfair causes as expected,

since income, ethnicity, and age – together with gender, which also appears in the

analysis of the Adult dataset – are typically identified as the primary sources of

discrimination in these benchmarks.

Subsequently, we repeat the procedure to assess the correlation between the

protected attribute and each remaining input variable, again using HGR-KB as a

metric. Our goal is to identify a surrogate protected attribute s that: (i) shows a

high correlation with the continuous protected attribute z, (ii) represents different

sensitive information, and (iii) is binary. This strategy allows us to pair the

continuous protected attribute with a binary surrogate to observe how constraints

on the former affect the latter. More specifically, since HGR is not widely studied

as a fairness metric, our objective is to investigate whether the decrease in the

correlation between the target y and the protected attribute z is mirrored in the

surrogate s. The surrogate is deliberately chosen to be binary to enable the use of a

more established fairness metric such as the Disparate Impact Discrimination Index

(DIDI). The results of this second feature importance analysis are illustrated in the

right column of Figure 4.1. The identified surrogate attributes are Unemployment

for the Census dataset1, race for the Communities one, and Never-married for

Adult. Once again, the chosen surrogates might not be the most correlated since

1The Census dataset contains continuous attributes only, so we first identified Unemployment

as the most correlated surrogate and then binarized it using its mean value as a threshold. The
binarization process results in some loss of information, which explains why the White feature,
though unselected, ranks slightly higher.
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Figure 4.1: Top 10 highly correlated features with respect to output target (left) and
continuous protected attribute (right) computed on the three benchmark datasets
using HGR-KB.
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they do not respect our experimental criteria; however, it is evident that both the

continuous protected attribute and the surrogate are interlinked not only from a

statistical but also from a semantic viewpoint, as they represent similar categories

and discriminated features.

4.1.2 Training Details

With our salient features selected, we can now proceed to define our training task.

In particular, we want to solve the following learning problem:

argmin
θ
L(y, ŷ(θ)) s.t. HGR(z, ŷ(θ)) ≤ τ, τ ∈ R+ (4.1)

where ŷ(θ) denotes the model’s predictions, y stands for the ground truths, z is

the continuous protected attribute, L represents the original task loss, and τ is

a non-negative threshold which serves as an upper bound for our desired level of

correlation. Specifically, we employ Mean-Squared Error (MSE) as loss for regression

tasks and Binary Crossentropy (BCE) for classification tasks. Furthermore, we

link each dataset to a corresponding score function, i.e., the R2 score and the Area

Under Curve (AUC), respectively for regression and classification tasks.

Theoretically, one can address Equation (4.1) employing either declarative

projection methods or loss regularization techniques. However, the constraints

required for computing HGR-KB and HGR-SK make it infeasible to process the

computation in a reasonable time frame, while alternative methods for HGR

estimation lack any declarative structure. For this reason, our experiments will be

conducted using a custom training loss defined as:

L(y, ŷ(θ)) + λ ·max{0,HGR(z, ŷ(θ))− τ} (4.2)

In order to enhance efficiency and offer a more fair comparison of results,

we decided to take advantage of the Lagrangian dual framework proposed

in [Fioretto et al., 2021] to satisfy the regularization term included in Equa-

tion (4.2), as it dynamically adjusts the multiplier λ ∈ R+ through a gradient

ascent step. This removes the need for a separate tuning phase for λ, thus allowing
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Dataset Census Communities Adult

Output Target ChildPoverty violentPerPop income

Protected Attribute Income pctWhite age

Surrogate Attribute Unemployement race Never-married

Loss Function MSE MSE BCE
Score Function R2 R2 AUC

Hidden Units [32] [256, 256] [32, 32]
Batch Size 2048 Full-Batch 2048

Steps 500 500 500

τ 0.4 0.3 0.2

Table 4.1: Description of salient input and output features, along with network
hyperparameters and penalty threshold for the three benchmarks.

our training mechanism to penalize any correlation that exceeds a predefined

threshold τ without the need to specify further hyperparameters – for additional

details, see Appendix A.4.2. We manually select a custom threshold for each

benchmark, based on the initial correlation levels between y and z as reported

in Figure 4.1. Having different thresholds also serves the dual purpose of testing

different experimental setups and emulating real-world scenarios where fairness

constraints might need to be adjusted based on external requirements or conflicts

with predictive accuracy. Finally, concerning our neural model architectures, we

undergo a hyperparameter tuning phase which is further detailed in Appendix A.3.

We report the optimal configuration of the learning models for each dataset in

Table 4.1, paired with a summary of the key input and output features along with

the selected thresholds τ .

4.1.3 Experimental Results

We conduct our experiments by splitting each dataset into 5 folds. For each of

them, we train a neural network with the configuration discussed above and use

HGR-KB, HGR-SK, and HGR-NN methods to calculate the correlation between

the predictions ŷ(θ) and the protected attribute z as described in Equation (4.2).

Furthermore, we train an unconstrained model, denoted as //, where we ignore the
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Figure 4.2: Training histories on all the benchmark datasets for neural networks
with HGR-based loss regularizers.
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Regularizer Score (×102) Constraintz(×102) DIDIs(×102) Time (s)
train val train val train val

CENSUS (τ = 40)

// 70 ± 00 69 ± 00 // // 19 ± 00 19 ± 00 32 ± 00
HGR-KB 21 ± 03 20 ± 02 36 ± 03 36 ± 03 10 ± 01 10 ± 01 70 ± 03
HGR-SK 23 ± 02 22 ± 01 36 ± 02 36 ± 02 11 ± 00 11 ± 01 38 ± 00
HGR-NN 19 ± 04 19 ± 04 35 ± 05 35 ± 04 10 ± 01 10 ± 01 88 ± 00

COMMUNITIES (τ = 30)

// 100 ± 00 52 ± 02 // // 26 ± 01 26 ± 03 06 ± 00
HGR-KB 74 ± 04 27 ± 05 28 ± 03 37 ± 07 10 ± 01 08 ± 02 39 ± 04
HGR-SK 74 ± 05 27 ± 06 29 ± 02 36 ± 10 10 ± 02 08 ± 04 12 ± 00
HGR-NN 72 ± 05 28 ± 07 30 ± 03 46 ± 07 10 ± 02 08 ± 04 60 ± 01

ADULT (τ = 20)

// 92 ± 00 91 ± 00 // // 29 ± 01 29 ± 01 15 ± 00
HGR-KB 88 ± 00 88 ± 01 19 ± 01 19 ± 01 23 ± 01 23 ± 01 57 ± 01
HGR-SK 88 ± 00 87 ± 01 20 ± 01 20 ± 01 23 ± 01 23 ± 01 22 ± 00
HGR-NN 88 ± 00 88 ± 00 19 ± 00 20 ± 00 23 ± 00 23 ± 01 73 ± 01

Table 4.2: Results of HGR learning experiments conducted on the three benchmarks.

regularizer result, thus addressing only the task loss.

The entire training history is depicted in Figure 4.2. For each combination of

model and regularizer, we present the score at each training step alongside the

correlation computed on the full split. We use HGR-SK(z, ŷ(θ); 5) as the correlation

measure for every combination, since calculating both HGR-KB and HGR-NN

from scratch and without using mini-batches for each training step would introduce

a strong computational overhead. Furthermore, we report the DIDI score between

the predictions ŷ(θ) and the surrogate s – we use the subscripts z and s to underline

that the metric is computed with respect to the continuous protected attribute

z; or with respect to the binary surrogate s. Moreover, we show the evolution of

the multiplier λ as it gets automatically calibrated throughout the training steps.

As we can see, its increment works as expected until the constraint is adequately

satisfied, thus validating our algorithm choice, especially given that the thresholds

are mostly satisfied across all training instances.

In addition to the training history, Table 4.2 shows the final results of our training

procedures. Here, under the “Constraintz” column, we report the correlation

measure as calculated by the same indicator tested; that is, if the regularizer is

based on the semantics of HGR-KB, then the correlation for the entire batch of
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predictions is also calculated using HGR-KB. Again, the z subscript highlights the

fact that we are computing the correlation with respect to the continuous protected

attribute. We also underline that, since constraint satisfaction is assessed using

the selected regularizer, a direct comparison between methods is not possible. In

fact, to have a such comparison, we would need an oracle that can provide the

true correlation between the continuous protected input and the output target and

which is not available due to the limitations of HGR.

Nonetheless, we can assess the extent to which each indicator offers informative

gradient information by examining the final constraint value and checking if it

respects our threshold. We report the respective threshold multiplied by 102 for

easier comparison alongside each dataset, and we can see that on average the

constraints are always satisfied in the training data. The values that are closer to

threshold level occur in the Adult dataset, which could be due to either the strictest

threshold assigned to the task or to potential inherent issues with classification

tasks. Indeed, when computing inference-time correlation, we can easily transition

from predicted probabilities ŷ ∈ [0, 1] to predicted classes ŷ ∈ {0, 1}; however, this
is not feasible during training, as binarizing continuous values by rounding results

in null gradients, rendering the regularization term ineffective. We emphasize that

this problem is intrinsic to the task and the learning methodology itself, and will

thus be present in any HGR-based indicator. However, a reduction in unfairness is

consistently observed in the validation data in all cases, with minimal increases

due to generalization issues.

We also report the R2 or AUC values in the “Score” column, while the “DIDIs”

column contains the absolute value of the disparate impact calculated on the

surrogate binary attribute s. For better visualization, values are multiplied by 100,

and the first row of each dataset is highlighted for comparison, as it represents

the unconstrained model. We can notice that the accuracies are consistent across

all tested regularizers, with HGR-NN slightly underperforming, possibly due to

its tendency to overestimate the true correlation, whereas HGR-KB shows greater

stability, as indicated by the lowest standard deviations in the measured correlations

across both training and validation data. Finally, the “Time” column displays the

overall training time in seconds, highlighting HGR-SK as the fastest among the



4.2. LIMITATION OF HGR SEMANTICS 63

a

b

Data Points
Average

(a) Non-functional Dependencies

a

b

Original Data
Scaled Data

(b) Invariance to Scale

Figure 4.3: Two examples of potential limitations of HGR when used as a fairness
measure.

regularizers, with minimal computational overhead introduced in comparison to

the unconstrained model.

On a conclusive note, we emphasize that the reduction in correlation between

the continuous protected attribute z and the predictions ŷ(θ) consistently results

in lower unfairness with respect to the binary protected surrogate, as measured

by the Disparate Impact Discrimination Index. This happens for all the tested

regularizers, thereby supporting the application of HGR as a fairness metric, as

demonstrated by its link to a more established indicator.

4.2 Limitation of HGR Semantics

The HGR indicator has several notable properties and, as demonstrated in the

preceding section, it can serve as a well-defined measure of fairness. However, there

could be cases where its inherent semantics entails some undesired characteristics.

Before presenting our solution, we highlight two such instances.

4.2.1 Support for Non-Functional Dependencies

Firstly, the use of unrestricted copula transformations allows HGR to capture very

broad forms of dependency between a and b. This includes scenarios like the one

shown in Figure 4.3(a), where divergent target values can be intercepted by the

great expressivity of HGR. Nonetheless, there are instances where discrimination
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arises only when the expected value of the target is altered, meaning it relates to the

strength of the functional dependency E[b | a]. For example, in the case depicted,

the divergence might be caused by a third confounding variable correlated with a.

In such a case, the confounder might not pose an ethical concern, but the HGR

metric would not be able to exclusively measure the functional dependency.

4.2.2 Invariance to Scale

Secondly, the HGR indicator satisfies all the Rényi properties [Rényi, 1959] as it

uses the Pearson’s correlation coefficient. However, this entails the inability of

the method to consider scale effects on fairness. For instance, assume that the

target values are linearly correlated with the continuous protected attributes. In

some practical scenarios, an affine transformation applied to the targets could

reduce discrimination in a similar way as illustrated in Figure 4.3(b). Still, the

HGR indicator fails to capture this effect due to the scale-invariance of Pearson’s

correlation, hence reporting an identical level of unfairness.

4.3 Generalized Disparate Impact

Motivated by the limitations mentioned above, this section introduces a new

fairness indicator along with an explanation of its semantics. The objective here is

to enhance, rather than replace, the HGR approach by offering additional options

for continuous protected attributes. To achieve this, we designed the new indicator,

named Generalized Disparate Impact, so that it behaves in a manner that is

similar to and, under specific circumstances, identical to the Disparate Impact

Discrimination Index (DIDI) [Aghaei et al., 2019].

4.3.1 Definition of GeDI

Let us recall the definition of HGR using polynomial models as for Equation (3.14):

argmin
α,β,r

∥∥∥∥Ph
a · α− µ(Ph

a · α)
σ(Ph

a · α)2
· r − Pk

b · β − µ(Pk
a · β)

σ(Pk
a · β)2

∥∥∥∥2

2

(4.3)
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Its main insight is that the HGR computation can be seen as a process akin

to least-square fitting. Building on this concept, we formulate the GeDI indicator

with two significant modifications aimed at addressing the limitations discussed in

Section 4.2. Firstly, we remove the copula transformation on the b variable – i.e., the

g function. This ensures that our indicators can exclusively measure the strength of

the functional dependency E[b | a], thus considering situations like the one depicted

in Figure 4.3(a) completely fair. Secondly, we eliminate the standardization terms

in the denominators. This prevents the indicators from fulfilling certain Rényi

properties, which are applicable only to scale-invariant measures, but allows to

effectively yield lower values of unfairness when the target data is scaled as in

Figure 4.3(b). The optimization problem presented in Equation (4.3) is therefore

reformulated as follows:

argmin
α,r

∥∥(Ph
a · α− µ(Ph

a · α)) · r − (y − µ(y))
∥∥2

2
s.t. σ(Ph

a · α) = σ(a) (4.4)

where the constraint on σ(P · α) is necessary to prevent unbounded solutions that

could arise due to the scale-independence of GeDI.

Eventually, we define the indicator as the absolute value of the solution r∗, and

demonstrate in Appendix C.1 that it can be expressed in the following closed form:

GeDI(a, b;h) = |r∗| =
∣∣∣∣cov(Ph

a · α∗, b)

var(Ph
a · α∗)

∣∣∣∣ (4.5)

with α∗ being the optimal coefficient obtained from Equation (4.4).

We recall that the GeDI indicator is not intended to replace HGR, but rather to

enhance and expand the existing range of options. In doing so, our aim is to correlate

its value with the established DIDI metric; for this reason, we demonstrate in

Appendix C.2 that, for any binary input vector a ∈ {0, 1}n, the DIDI for regression
problems can be calculated as follows:

DIDI(a, b) =

∣∣∣∣cov(a, b)var(a)

∣∣∣∣ (4.6)

and that a proportional value, multiplied by a factor of 2, is yielded in binary

classification scenarios where b ∈ {0, 1}n as well. In this regard, the constraint on
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σ(P · α) is specifically designed to match σ(a) in order to ensure that GeDI yields

the exact DIDI value when handling binary vectors. In fact, when using a degree

h = 1, our indicator reduces to:

GeDI(a, b; 1) =

∣∣∣∣cov(α∗ · a, b)
var(α∗ · a)

∣∣∣∣ = ∣∣∣∣cov(a, b)var(a)

∣∣∣∣ = DIDI(a, b) (4.7)

where α∗ = 1 is implied by the constraint σ(α∗ · a) = σ(a). Moreover, since the

polynomial expansion of a binary value merely equals the value itself, this result

can be extended to any degree h ∈ N, proving that the GeDI indicator can be

viewed as a generalization of the (binary) DIDI to continuous protected attributes.

Reworked Formulation

Before detailing the procedure to calculate the GeDI indicator, it is worth highlight-

ing that the definition provided in Equation (4.4) slightly differs from the original

one proposed in [Giuliani et al., 2023]. Specifically, in that version we imposed a

constraint ∥α∥1 = 1 instead of the one on the standard deviation σ(Ph
a · α). Both

conditions allow to equate the DIDI value for binary vectors, as both require the

optimal value α̃∗ to be 1 in case of unitary degree. Nonetheless, while the constraint

on the norm-1 appears somewhat arbitrary and implementation-specific, that on

the standard deviation grants three important advantages:

1. It can be seen as a mechanism for adjusting the distribution of data points

without altering their sparsity. Although this aspect has no effect in HGR

due to the irrelevance of the scale, limiting the sparsity of projected data is

crucial in GeDI to prevent solutions from being unbounded. A constraint on

the standard deviation therefore offers a clearer and more comprehensible

approach to addressing this need.

2. It is applied to the data rather than the model parameters, hence having the

potential to be generalized to other learning approaches. For instance, using

the constraint on norm-1 it would not be possible to apply the GeDI semantics

while using a neural-based copula transformation, while no problems would

arise in case of the constraint on the standard deviation.
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3. It allows to replace the denominator in Equation (4.12) with the constant

term var(a). Consequently, the indicator would grow solely based on the

numerator cov(Ph
a · α∗, b), thereby assuring monotonicity with respect to

the degree h, akin to HGR. With the norm-1 constraint, this property is

compromised, as the denominator may vary and potentially make the optimal

solution for GeDI(a, b;h′) lower than that for GeDI(a, b;h) even with h′ > h.

For a deeper examination of why the reworked formulation enables to extend the

semantics of GeDI to other computational algorithm, and how it allows to correlate

the values of HGR and GeDI up to a data-dependent scaling factor, we refer the

reader to Section 4.6.2.

4.3.2 Computation of GeDI

Here, we discuss how to derive an unconstrained version of the GeDI formulation

using substitutions analogous to those applied in Section 3.3.2. More specifically,

starting from the following substitutions:

P̃h
a = Ph

a − µ(Ph
a) ỹ = y − µ(y) α̃ = α · r (4.8)

we can reduce Equation (4.4) to a classical minimal Least Squares formulation:

argmin
α̃

∥P̃h
a · α̃− ỹ∥22 (4.9)

The substitutions involve no loss of generality, as we can pre-calculate the

zero-centered polynomial kernel P̃h
a and vector ỹ, and the combination of r and α

into a single variable admits a solution for any α̃ ∈ Rh. Once the optimal vector of

coefficients α̃∗ is obtained as the solution of an unconstrained least-square problem,

we can rely on its definition from Equation (4.8) to derive the actual value of

GeDI. Particularly, by multiplying both sides with Pd
a and calculating the standard

deviation, we have:

σ(Ph
a · α̃∗) = σ(Ph

a · α∗ · r∗) (4.10)
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which simplifies to:

σ(Ph
a · α̃∗) = r∗ · σ(Ph

a · α∗) = r∗ · σ(a) (4.11)

given the constraint on the standard deviation outlined in Equation (4.4).

Eventually, since we defined GeDI as |r∗| in Equation (4.5), we can derive a

closed-form expression as:

GeDI(a, b;h) =
σ(Ph

a · α̃∗)

σ(a)
(4.12)

without the need of using the absolute value, as the standard deviation operator is

inherently non-negative.

4.3.3 Enforcing GeDI

Beyond assessing fairness, GeDI indicators can be used to enforce constraints

on a protected attribute z. In this framework, the purpose would be to adjust

the predictions ŷ either to steer the training of a machine learning model or to

modify the data itself when using pre- or post-processing constraint enforcement

algorithms. Similar to our discussion in Section 4.1.2, we strive to address the

following problem:

argmin
ŷ
L(y, ŷ) s.t. GeDI(z, ŷ;h) ≤ τ, τ ∈ R+ (4.13)

where, again, τ is a non-negative threshold that acts as an upper bound for the

permitted level of unfairness; L represent the original task loss; and ŷ, y, and z

denote the predicted outcomes, the vector of ground truths, and the continuous

protected attribute, respectively.

Similar to the approach used for HGR, a straightforward solution to the problem

involves the use of a Lagrangian term (i.e., a regularizer) expressed as:

λ ·max{0,GeDI(z, ŷ;h)− τ} (4.14)

where λ ∈ R+ represent the weight of the regularizer. Using the value of GeDI as
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specified in Equation (4.12), this expression can be recast as:

λ ·max{0, σ(P
h
z · α̃∗)

σ(z)
− τ} (4.15)

Nevertheless, differently from both HGR-KB and HGR-SK, the definition of the

GeDI indicator exclusively contains linear constraints. Specifically, the least-square

problem outlined in Equation (4.9) can be expressed using a set of piecewise linear

relations as follows:

P̃T
z · P̃z · α̃ = P̃T

z · ỹ (4.16)

where we removed the superscripts h and ∗ from P̃z and α̃ and the hat from ŷ to

enhance readability. Furthermore, the constraint described in Equation (4.13) can

be reformulated as:

σ(Pz · α̃) ≤ σ(z) · τ ⇒ var(Pz · α̃) ≤ var(z) · τ 2 (4.17)

with both sides squared in order to eliminate the need for calculating the square

root within the standard deviation operator.

By combining these two equations together, we arrive at:

P̃T
z · P̃z · α̃ = P̃T

z · ỹ
1

n
· α̃T · P̃T

z · P̃z · α̃ ≤
1

n
· z̃T · z̃ · τ 2

(4.18)

where we replaced var(Pz · α̃) and var(z) with their respective dot-product expres-

sions using zero-centered matrices/vectors. This problem involves a set of linear

equalities featuring a positive semi-definite matrix P̃T
z · P̃z on their left-hand side,

along with a single lower-than-equal constraint involving squared terms. Conse-

quently, if paired with an objective function that is no more complex than quadratic,

this formulation fits in the Quadratically Constrained Quadratic Program (QCQP)

framework, allowing it to be solved in a potentially efficient manner.

As a demonstration of this, we implement an optimization problem that satisfies

Equation (4.18) and yields the optimal projections ŷ by minimizing the Mean

Squared Error relative to the original targets y – i.e., we project the targets using
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- - /2 0 /2
z

4
0
4
8

12
16

y

(c) GeDI(z, ŷ; 2) = 0
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Figure 4.4: Example of GeDI enforcement using the declarative formulation with
increasing degrees.

the Euclidean distance into a region of the space where these constraints are

fulfilled. Figure 4.4 shows how the projections vary as we apply the constraint

GeDI(z, ŷ;h) ≤ 0 with increasing degrees, exhibiting how higher values of h respond

to distinct dependencies and therefore perform different adjustments in order to

remove unfairness. In particular, Figure 4.4(a) displays the original data sampled

from y = f(z) = 4 sin(z) + z2 + ϵ, where ϵ ∼ N (0, 1.5) and a ∼ U(−π, π). This

reveals a linear correlation, as no constraint is imposed, which is promptly removed

in Figure 4.4(b) where we apply the constraint using a degree h = 1. Nonetheless,

GeDI(z, ŷ; 1) fails to capture most correlations due to the absence of linear terms,

so it merely rotates the data to eliminate linear correlations without significantly

altering the structure. In contrast, by employing a degree h = 2, the data in

Figure 4.4(c) gets successfully deprived of the squared term in f(z), retaining only

the sinusoidal component. Finally, Figure 4.4(d) illustrates how the use of degree

h = 3 effectively removes almost all dependencies, since the sinusoidal function

can be approximated as z − 1
6
z3 according to the Taylor expansion and therefore

only o(z5) plus noise is left. Overall, together with the analysis of the monotonic

behavior of the indicator, this serves as an additional pre-processing step to help

in selecting a degree that avoids both overfitting and numerical issues.

4.3.4 Fine-Grained Constraint Formulation

Within our polynomial expansion model, each column of the kernel matrix captures

different functional dependencies and is associated with a coefficient α̃i indicating

the strength of that dependency. By setting a threshold τ = 0 as shown in Figure 4.4,
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all coefficients are naturally constrained to zero; nonetheless, using less restrictive

thresholds enables the algorithm to redistribute dependencies between columns by

altering the values of α̃, thereby meeting the overall constraint requirements.

Suppose, instead, that we would like to impose limitations on certain terms

of the copula transformation. In practice, this involves replacing the aggregate

constraint on GeDI with h separate constraints on the absolute values of the

α̃i coefficients. Each constraint can be paired with a user-determined threshold

τi ∈ R+, so that:

|α̃i| ≤ τi, ∀i ∈ {1, . . . , h} (4.19)

By utilizing vector notation, with τ =
[
τ1, . . . , τh

]
∈ R+h, we can modify

Equation (4.18) to incorporate these fine-grained constraints as follows:

P̃T
z · P̃z · α̃ = P̃T

z · ỹ

− τ ≤ α̃ ≤ τ
(4.20)

where the absolute value has been recast into a pair of linear inequalities.

Given the vector of thresholds τ , it is also possible to determine in advance the

upper bound of GeDI(z, ŷ;h). Specifically, we observe that:

σ(Ph
z · α̃∗)

σ(z)
=
σ(
∑h

i=1 α̃
∗
i · zi)

σ(z)
=

∑h
i=1

∑h
j=1 α̃

∗
i · α̃∗

j · cov(zi, zj)
σ(z)

(4.21)

thus, using Equation (4.12), we get:

GeDI(z, ŷ;h) =
σ(Ph

z · α̃∗)

σ(z)
≤

∑h
i=1

∑h
j=1 τi · τj · |cov(zi, zj)|

σ(z)
(4.22)

Optimized Fine-Grained Formulation

An interesting use of this feature is to enable a single, easily explainable dependency

while explicitly prohibiting others. Specifically, when referring to the “Fine-Grained

Formulation” in our experiments, we will restrict any higher-order dependencies,

hence limiting all permissible unfairness to the linear form. This enforcement can
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be alternatively seen as:

GeDI(z, ŷ;h) = GeDI(z, ŷ; 1) ≤ τ (4.23)

where τ ∈ R+ is a positive scalar.

Starting from the declarative formulation described in Equation (4.20), the

problem can be rewritten as:

P̃T
z · P̃z ·


α̃1

0
...

0

 = P̃T
z · ỹ

−τ ≤ α̃1 ≤ τ

(4.24)

where the two known terms in the linear system from Equation (4.24) evaluate to:

P̃T
z · P̃z =


var(z) cov(z, z2) . . . cov(z, zh)

cov(z2, z) var(z2) . . . cov(z2, zh)
...

...
. . .

...

cov(zh, z) cov(zh, z2) . . . var(zh)

 (4.25)

P̃T
z · ỹ =


cov(z, ŷ)

cov(z2, ŷ)
...

cov(zh, ŷ)

 (4.26)

given that both P̃z and ỹ are zero-centered.

The outcome is the following system of k equations under a single variable α̃1:

var(z) · α̃1 = cov(z, ŷ) (4.27)

cov(zi, z) · α̃1 = cov(zi, ŷ), ∀i ∈ {2, . . . , h} (4.28)
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From Equation (4.27), we obtain the solution:

α̃1 =
cov(z, y)

var(z)
(4.29)

whose result is in line with the value of GeDI(z, ŷ; 1). As regards the remaining

h− 1 equations outlined in Equation (4.28), they represent constraints that must

be satisfied by the projection vector ŷ. Specifically, by substituting the value of α̃1,

we can obtain a closed-form expression:

cov(zi, z) · cov(z, ŷ)
var(z)

= cov(zi, ŷ) (4.30)

Eventually, we can move the denominators of both the definition of α̃1 and

the additional constraints to the right-hand side. This leads us to the following

optimized formulation, where we bypass the need to solve any least-square problem:

− τ · var(z) ≤ cov(z, ŷ) ≤ τ · var(z)

cov(zi, z) · cov(z, ŷ) = cov(zi, ŷ) · var(z), ∀i ∈ {2, . . . , h}
(4.31)

4.4 Experimental Analysis

After presenting the formulation of the GeDI indicator, we conduct two experimental

analyses aimed at comparing the advantages and shortcomings of its different

implementations and establishing its applicability in practical scenarios. In the first

experiment, we evaluate the differences between the coarse- and the fine-grained

formulation, and what is their link with the DIDI metric. Instead, the second

experiment involves the use of various machine learning models and constraint

enforcement algorithms to determine whether GeDI can serve as a constraint in

either its declarative or regularizer form. Both experiments use the same datasets

previously discussed in Section 4.1, specifically, the US 2015 Census (Census),

Communities & Crimes (Communities), and Adult Census Income (Adult). Further

information on datasets and algorithms is available in Appendix A.
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4.4.1 Projections Experiments

In this experiment, we employ the declarative formulations of GeDI to directly

project the target data into the feasible region, without any training involved. In

practice, we tackle a version of Equation (4.13) which is modified as follows:

argmin
ŷ
L(y, ŷ) s.t. GeDI(z, ŷ;h) ≤ τ% ·GeDI(z, y; 1), τ% ∈ [0, 1] (4.32)

The difference lies in the application of a relative constraint with a threshold of

τ%, indicating our intention to limit the GeDI(z, ŷ;h) value to a percentage of the

unfairness calculated on the original dataset. This approach yields results that are

more easily comparable across different datasets since, unlike HGR, GeDI lacks a

theoretical upper limit. Furthermore, we evaluate the reference unfairness using

the indicator with unitary degree GeDI(z, y; 1); again, this favors more comparable

results across different kernel degrees h.

To solve the problem outlined in Equation (4.32), we use the APIs provided

by the gurobipy package. For the coarse-grained constraint, we implement the

formulation from Equation (4.18), whereas for the fine-grained we adopt the

optimized strategy detailed in Equation (4.31). In both scenarios, we employ Mean

Squared Error – i.e., Euclidean Distance – as the loss function L for regression tasks

(Census and Communities) and Hamming Distance for classification ones (Adult).

Upon obtaining the projections ŷ, we compute a binned version of the DIDI metric

by employing a quantile-based discretization into n bins prior to calculating the

indicator. Specifically, given the continuous protected attribute z, we initially split

it into n equally-sized bins, and subsequently compute the DIDI metric on the

resulting vector zn. Eventually, we report the percentage of unfairness relative to

the original targets, i.e.:

%DIDIn =
DIDI(zn, ŷ)

DIDI(zn, y)
(4.33)

Figure 4.5 presents the results on the three datasets using a relative threshold of

τ% = 0.2. The plots on the left are obtained using the coarse-grained formulation,

while the central ones leverage the fine-grained approach. On the x-axis we denote

the number of bins n for the %DIDIn metric, whose value is eventually reported on
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Figure 4.5: Percentage Binned DIDI (%DIDIn) computed on the target projections
of the three benchmark datasets using both the Coarse-Grained and Fine-Grained
GeDI formulation with varying degrees h and relative threshold τ% = 0.2.
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the y-axis. For every setup, we apply five varying polynomial degrees h, indicated

by different colors, to enforce the constraint on GeDI(z, ŷ;h).

Given that this process does not involve training any machine learning model,

and that GeDI constraints are inherently satisfied as we use an exact solver,

variations in behavior are solely due to changes in the semantics determined

by the chosen degree h. Notably, no consistent differences appear between the

coarse- and fine-grained approaches, as both methods yield comparable values of

disparate impact across all discretizations. Nonetheless, we observe that increasing

the polynomial degree effectively diminishes the disparate impact across all the

numbers of bins in both formulations and, in certain instances, we also notice

that the relative threshold for applying GeDI is maintained when evaluating the

Binned DIDI – this is particularly evident in the Communities dataset and also

noticeable in the Census dataset, provided that h is adequately high. These

observations reinforce the insight that a higher kernel order enhances the ability of

our indicator to assess more complex dependencies, as well as strengthening the

connection between the two metrics – despite it being important to emphasize that

the equivalence discussed in Section 4.3.2 does not strictly apply to the datasets

examined, as the protected attribute is not inherently categorical here. Additionally,

in the few cases where %DIDI3 and %DIDI5 worsen with increasing polynomial

degrees, we can hypothesize that this is a result of how the bin boundaries “cut”

the shapes introduced by the polynomial kernel, hence indicating discretization

noise as a possible cause.

Lastly, in the plots on the right, we present the time required to solve the

optimization problem in Equation (4.32) by each formulation for each degree.

Overall, there is a minimal difference in the time needed by the coarse-grained

versus the fine-grained formulation, with the former generally being somewhat

more efficient because of fewer constraints. Still, the fine-grained approach might

be favored in certain applications in order to have more interpretable outcomes or

for excluding specific undesired dependencies.
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4.4.2 Learning Experiments

This second experiment mirrors the structure of that in Section 4.1, with the main

difference of using several learning models. Indeed, in addition to Neural Networks

(NN), we test Linear/Logistic Regression Models (LM), Random Forests (RF), and

Gradient Boosting (GB). For each of them, in order to evaluate the effectiveness of

the declarative formulation of GeDI, we enforce both the coarse- and fine-grained

constraints using Moving Targets; moreover, we also test the regularizer form using

the Lagrangian Dual framework when employing Neural Networks.

The experiments are conducted using a 5-fold cross-validation procedure on

the entire dataset. In line with previous HGR experiments, we select h = 5 for

the polynomial degree when calculating and enforcing the GeDI indicator, as it

offers a balanced compromise between computational demands and generalization

potential. For each dataset, we determine an absolute threshold τ , which is defined

as 20% of the GeDI value calculated on the entire data using a unitary polynomial

degree. This yields the following thresholds:

τCensus = 0.025 τCommunities = 0.017 τAdult = 0.021

The protected, target, and surrogate binary attributes are identical to those

outlined in Table 4.1, with the neural models configured using the same hyper-

parameters described. Similarly to what is shown in Table 4.2, we also report

the DIDI metric computed on the surrogate binary attribute to reinforce the

relationship between GeDI and DIDI. For a complete list of our hardware and

software setup, refer to Appendix A.1; instead, for an expanded explanation of

the implementation details related to both the learning models and the constraint

enforcement algorithms, see Appendix A.4.2.

Table 4.3 reports the outcomes of these experiments. We provide average values

and standard deviations for the train and validation splits concerning the “Score”

metric, the “GeDI” computed on the continuous protected attribute z, and the

“DIDI” calculated on the surrogate binary attribute s; additionally, the last column

lists training times. Unlike in Table 4.2, where the comparisons on the constraints

were not entirely fair due to differences in the semantics of the indicators, here all
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Algorithm Score (×102) GeDIz(×103) DIDIs(×102) Time (s)
train val train val train val

CENSUS (τ = 25)

LM 62 ± 00 62 ± 00 135 ± 01 135 ± 00 19 ± 00 19 ± 00 98 ± 000
+MT Fine 21 ± 00 21 ± 00 25 ± 00 25 ± 00 04 ± 00 04 ± 00 154 ± 008
+MT Coarse 24 ± 00 24 ± 00 25 ± 00 25 ± 00 06 ± 00 06 ± 00 182 ± 008

RF 96 ± 00 70 ± 00 153 ± 01 153 ± 01 18 ± 00 18 ± 00 281 ± 001
+MT Fine 31 ± 00 21 ± 00 25 ± 00 25 ± 00 05 ± 00 05 ± 00 1701 ± 040
+MT Coarse 35 ± 00 25 ± 00 25 ± 00 26 ± 01 05 ± 00 05 ± 00 1941 ± 382

GB 72 ± 00 71 ± 00 153 ± 01 153 ± 01 19 ± 00 19 ± 00 34 ± 000
+MT Fine 20 ± 00 20 ± 00 25 ± 00 25 ± 00 05 ± 00 05 ± 00 400 ± 003
+MT Coarse 24 ± 00 24 ± 00 25 ± 00 25 ± 00 05 ± 00 05 ± 00 406 ± 007

NN 70 ± 00 69 ± 00 152 ± 01 152 ± 01 19 ± 00 19 ± 00 24 ± 000
+MT Fine 24 ± 00 22 ± 00 25 ± 01 25 ± 01 05 ± 00 05 ± 00 117 ± 029
+MT Coarse 28 ± 00 26 ± 00 25 ± 01 25 ± 01 06 ± 00 06 ± 00 172 ± 008
+LD Fine 25 ± 02 24 ± 01 38 ± 01 38 ± 02 06 ± 00 06 ± 00 112 ± 000
+LD Coarse 29 ± 04 28 ± 04 31 ± 06 31 ± 06 06 ± 01 06 ± 01 140 ± 000

COMMUNITIES (τ = 17)

LM 68 ± 02 57 ± 07 86 ± 02 86 ± 07 27 ± 01 25 ± 02 00 ± 000
+MT Fine 38 ± 02 28 ± 08 17 ± 00 20 ± 08 08 ± 01 07 ± 02 02 ± 000
+MT Coarse 38 ± 02 28 ± 09 17 ± 00 20 ± 07 07 ± 01 06 ± 02 02 ± 000

RF 95 ± 00 63 ± 02 85 ± 02 83 ± 05 27 ± 01 27 ± 02 07 ± 000
+MT Fine 46 ± 01 34 ± 05 18 ± 00 20 ± 05 08 ± 00 08 ± 02 78 ± 001
+MT Coarse 46 ± 01 33 ± 05 18 ± 00 20 ± 05 08 ± 00 08 ± 02 78 ± 001

GB 87 ± 01 63 ± 02 85 ± 02 83 ± 05 27 ± 01 27 ± 02 04 ± 000
+MT Fine 44 ± 01 34 ± 06 17 ± 00 19 ± 06 08 ± 00 08 ± 02 37 ± 000
+MT Coarse 44 ± 01 34 ± 07 17 ± 00 19 ± 06 08 ± 00 08 ± 02 37 ± 000

NN 100 ± 01 52 ± 02 85 ± 04 84 ± 07 26 ± 01 25 ± 04 04 ± 000
+MT Fine 70 ± 01 26 ± 05 17 ± 00 20 ± 08 07 ± 01 05 ± 01 32 ± 000
+MT Coarse 70 ± 01 26 ± 04 17 ± 00 19 ± 08 06 ± 01 05 ± 02 33 ± 000
+LD Fine 76 ± 02 38 ± 05 40 ± 04 35 ± 10 18 ± 01 16 ± 04 07 ± 000
+LD Coarse 70 ± 05 25 ± 05 18 ± 05 21 ± 10 07 ± 02 06 ± 01 08 ± 000

ADULT (τ = 21)

LM 91 ± 00 90 ± 00 117 ± 01 117 ± 03 28 ± 00 28 ± 01 02 ± 000
+MT Fine 77 ± 01 77 ± 01 44 ± 05 44 ± 03 10 ± 02 10 ± 01 437 ± 055
+MT Coarse 76 ± 01 76 ± 01 34 ± 04 34 ± 03 09 ± 01 09 ± 01 28 ± 002

RF 100 ± 00 90 ± 00 139 ± 00 134 ± 02 30 ± 00 28 ± 01 11 ± 000
+MT Fine 92 ± 00 83 ± 01 21 ± 00 30 ± 02 12 ± 00 09 ± 02 70 ± 010
+MT Coarse 93 ± 00 83 ± 01 21 ± 00 31 ± 02 13 ± 00 09 ± 02 55 ± 001

GB 92 ± 00 92 ± 00 125 ± 01 125 ± 04 26 ± 00 26 ± 01 19 ± 000
+MT Fine 80 ± 01 79 ± 00 21 ± 02 24 ± 04 12 ± 01 12 ± 01 293 ± 095
+MT Coarse 77 ± 04 77 ± 03 34 ± 04 37 ± 06 14 ± 02 14 ± 02 73 ± 009

NN 92 ± 00 91 ± 00 141 ± 03 140 ± 06 29 ± 01 29 ± 02 48 ± 002
+MT Fine 72 ± 01 71 ± 02 36 ± 06 36 ± 08 19 ± 01 19 ± 01 495 ± 046
+MT Coarse 72 ± 01 71 ± 01 37 ± 06 39 ± 07 19 ± 01 19 ± 02 133 ± 004
+LD Fine 90 ± 00 89 ± 00 81 ± 06 83 ± 05 23 ± 02 23 ± 01 97 ± 000
+LD Coarse 91 ± 00 91 ± 00 101 ± 02 101 ± 03 25 ± 01 25 ± 00 109 ± 000

Table 4.3: Results of GeDI learning experiments conducted on the three benchmarks.
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models use the same constraint, thus a fair comparison is ensured. Nonetheless, the

objective of this experiment is not to determine which model performs best, but

rather to confirm that any combination of constraint enforcement algorithm and

indicator implementation yields accurate results, and that the availability of various

combinations is a beneficial aspect of the GeDI indicator which is, in contrast,

absent in any HGR implementation. For this reason, we simply emphasize the

unconstrained models using bold fonts to favor a comparison against them.

Overall, it appears that both accuracy and constraint satisfaction exhibit fairly

consistent behaviors, as reflected by the low standard deviations across nearly all

approaches. Threshold levels are generally met in most constrained approaches,

except for the classification task in the Adult dataset where many models fail to

meet the desired bound even in the training split. Additionally, constraints enforced

through the regularizer form often fall short of the required threshold. This might

be attributed to less informative gradients provided by the GeDI indicator, or it

may suggest that a greater number of steps is necessary for convergence.

In all cases, a reduction of the unfairness on the continuous protected attribute

correlates with a decrease in the DIDI respective to the binary surrogate, thereby

restating the alignment between our indicator and the well-established metric.

Concerning execution times, instead, Moving Targets consistently demands a

notably higher computational effort compared to the Lagrangian Dual framework,

particularly when handling fine-grained constraints. Nonetheless, it remains a

viable choice as it offers the flexibility to use various learning models, thus enabling

the user to find a balance between the necessary computational time, the degree of

constraint satisfaction, and the accuracy relative to the task score.

4.5 Long-Term Fairness in Ranking

Before concluding this chapter, we present a practical application of our GeDI

indicator that we introduced in [Giuliani et al., 2024]. In this study, we leveraged

real-world sociodemographic data collected by the Canarian Agency for Quality

Assessment and Accreditation2 from students over four academic years (2015-2019),

2The original dataset can be accessed at: https://zenodo.org/records/11171863.

https://zenodo.org/records/11171863
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and ultimately used it to rank students based on their predicted academic score in

mathematics in order to foresee potential risks of dropout.

The given dataset contains multiple sensitive information; for this reason, we

selected the ESCS indicator [Avvisati, 2020] as our protected attribute, given

that it aggregates various Economic, Social, and Cultural factors into a single

variable. Furthermore, in order to achieve high accuracy and fairness while avoiding

detrimental effects on the academic development of students, we opted for the

FAiRDAS [Misino et al., 2023] framework to enforce constraints. This choice was

based on its ability to model long-term fairness as a dynamic system, as it focuses

on keeping fairness and task metrics stable under user-defined limits in ranking

tasks over time rather than in individual batches. FAiRDAS falls into the class of

post-processing methods for fairness enforcement, and requires the grounding of its

three core components in order to be applied to a specific use case, namely:

1. the chosen metrics for fairness and task score, with their respective thresholds;

2. a set of actions aimed at adjusting predictions to optimize the balance between

fairness and score;

3. a distance function and an optimization method to solve the dynamic system

governing the progression of the algorithm.

In our research, we explored two distinct groundings of FAiRDAS. The first one,

inspired by [Misino et al., 2023], implements a set of discrete actions that require

the discretization of the protected attribute; conversely, the second instance relies

on continuous actions, thus eliminating the need for discretization. Nonetheless, it is

important to note that the discretization is solely related to the actions, hence we use

the GeDI indicator as a fairness measure in both cases since the protected attribute

is still continuous at that stage. Moreover, we underline that the discussed paper

was authored before the preparation of this dissertation; therefore, the formulation

of GeDI used in the numerical experiments aligns with [Giuliani et al., 2023] rather

than incorporating the differences outlined in Section 4.3.1.

Figure 4.6 illustrates the action vectors produced by FAiRDAS for both the

discrete and the continuous grounding over 100 consecutive batches using thresholds

{0.2, 0.2}. In the discrete grounding, each part of the action vectors impacts students
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(a) Discrete Grounding (b) Continuous Grounding

Figure 4.6: Actions returned by FAiRDAS using thresholds ({0.2, 0.2}).
From: Long-Term Fairness Strategies in Ranking with Continuous Sensitive Attributes [Giuliani et al., 2024]

from the respective ESCS bin, from lower (θ4) to upper levels (θ1). Higher values

are represented by lighter colors and signify greater penalization, which might in

turn affect the ranking of the student; values closer to zero, instead, indicate that

the student’s score remains unaffected. We can observe that FAiRDAS displays a

moderate and balanced behavior, with the action vectors evolving smoothly during

the experiment, as indicated by the gradual color shifts along the x-axis, and similar

penalties applied across groups, as indicated by uniform color along the y-axis.

Similarly, within the continuous grounding, we use a learnable polynomial function

to represent the penalty of each student based on the value of their ESCS across

its domain [0, 1]. Here, each vertical line in the plot represents the penalty function

obtained for a given batch, and FAiRDAS shows again a moderated and balanced

approach, with polynomial functions transitioning smoothly across the batches and

a more steady penalization across varying ESCS values.

4.6 GeDI and HGR Comparison

When we presented the GeDI indicator, we highlighted that it is designed to

complement HGR instead of replacing it. In fact, both indicators share common

features, starting from the non-linear copula transformations and going through

the lower-level details of their implementation. However, they also have significant
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Figure 4.7: Comparison between computed values of GeDI and HGR-KB during
the learning experiments on the three benchmark datasets.

differences that partially change their semantics and the yielded results.

Using the results obtained from the learning experiment discussed in the previous

section, Figure 4.7 empirically examines the relationship between the GeDI and

HGR indicators. For each vector of predictions ŷ(θ) yielded by both constrained

and unconstrained models across the three datasets, we compute GeDI(z, ŷ(θ); 5)

and HGR-KB(z, ŷ(θ); 5, 5) and report their values on the x and y axes, respectively.

As expected, unconstrained models typically exhibit a higher disparate impact

than constrained models, but more interestingly this aspect is correlated with an

increase in the HGR value. The black line in the figure shows the amount of the

(linear) correlation between the values returned by the indicators; as we can see, the

fitting is not perfect but rather shows some irregularity, particularly in the datasets

related to regression tasks. This emphasizes that both GeDI and HGR can serve as

valid fairness metrics; they correlate with one another, yet each captures distinct

aspects depending on to their ability to capture non-functional dependencies and

to address scaling effects, from which the noisy behavior shown in Figure 4.7 stems.

Since fairness measures are strongly application-specific, neither indicator is better,

but rather their utility is tied to the unique scenario taken into consideration.

4.6.1 A Broader Spectrum of Indicators

In Table 4.4, we report the main similarities and differences between GeDI and

(Kernel-Based) HGR. This serves to illustrate that both indicators could be part
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GeDI HGR-KB HGR-SK

Transformations f f and g f or g

Dependencies
Functional ✓ ✓ ✓
Non-Functional × ✓ ✓
Scale-Dependent ✓ ✓ ✓
Scale-Independent ✓ × ×

Constraints
Regularizer ✓ ✓ ✓
Declarative ✓ × ×
Coarse-Grained ✓ ✓ ✓
Fine-Grained ✓ × ×

Properties
Configurability ✓ ✓ ✓
Determinism ✓ ✓ ✓
Monotonicity ✓ ✓ ✓
Least-Square ✓ × ✓

Table 4.4: Characteristics of the GeDI indicator when compared to HGR.

of a broader spectrum, with additional metrics filling the gap between these two.

For instance, although both declarative and fine-grained models are theoretically

feasible even for HGR indicators, their practical implementation is hindered by

computational constraints, which make them impractical due to prohibitive com-

putational times. As a solution to that, we could introduce a functional form of

HGR, expressed as:

HGR-FN(a, b;h) = max
α

cov(Ph
a · α, b)

σ(Ph
a · α) · σ(b)

(4.34)

This formulation aligns more closely with the current functional definition of

GeDI, enabling the application of similar methods for achieving both declarative and

fine-grained constraints. Likewise, despite having defined GeDI to account solely

for functional dependencies, we could relax this condition by applying a copula

transformation to the target vector and imposing a standard deviation constraint

similar to that of the input. This would lead to an intermediate indicator, which
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is sensitive to scale fluctuations but can account for non-functional dependencies.

Formally, it would be defined as:

GeDI-KB(a, b;h, k) = max
α,β

cov(Ph
a · α,Pk

b · β)
var(Ph

a · α)

s.t. σ(Ph
a · α) = σ(a), σ(Pk

b · β) = σ(b)

(4.35)

and can be seen as a generalization of our original GeDI definition for k > 1.

Moreover, by employing the same approximations used in HGR-SK, we could

build a respective GeDI-SK indicator, hence closing both the semantic and the

computational distance between the two metrics.

4.6.2 Unified Formulation for Non-Linear Indicators

The theoretical contribution of narrowing the semantic gap between GeDI and

HGR should not be limited to our kernel-based methodology only. As discussed in

Section 4.3.1, the reworked formulation of GeDI could allow its estimation even

with alternative algorithmic approaches that do not rely on mixing coefficients. Let

us take Equation (4.35) into account; by replacing our kernel-based transformations

with more general functions f and g, we get:

GeDI(a, b) = max
f,g

cov(fa, gb)

var(a)
s.t. σ(fa) = σ(a), σ(gb) = σ(b) (4.36)

where fa and gb are aliases of f(a) and g(b), and var(fa) has been replaced by

var(a) in line with the respective constraint on the standard deviation.

Recalling the original definition of Kernel-Based HGR, and given the scale

invariance of the metric, we can impose constraints on the standard deviation of

the projected vectors without affecting the optimal solution. Specifically, rather

than constraining unitary standard deviations as in Equation (3.2), we reformulate

it in its sample variation using the same constraints of Equation (4.36), i.e.:

HGR(a, b) = max
f,g

cov(fa, gb)

σ(a) · σ(b)
s.t. σ(fa) = σ(a), σ(gb) = σ(b) (4.37)

accordingly substituting σ(fa) with σ(a) and σ(gb) with σ(b) in the denominator.
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Equations (4.36) and (4.37) illustrate how discovering a unified framework

between HGR and GeDI is straightforward and does not rely on the choice of the

estimation algorithm. Notably, with constant denominators in both equations, and

since the numerators are the same, we deduce that the optimal copula transfor-

mations for both scenarios are identical and that the two measures are equivalent

except for a scaling factor, or rather:

GeDI(a, b) = HGR(a, b) · σ(a)
σ(b)

(4.38)

Within this dissertation, we decided not to evaluate these alternative indicators,

as they merely represent variations of the two primary ones, lacking any additional

insights. Nonetheless, for practical use, some indicators may be more appropriate

than others. To address this, we developed a Python package named maxcorr,

which implements both GeDI and HGR semantics, allowing for the use of two

different copula transformations to address non-functional dependencies or a single

transformation to focus solely on functional dependencies. Additionally, we included

a third semantics, called Non-Linear Covariance (NLC), which simply extends the

covariance operator into the non-linear domain as follows:

NLC(a, b) = max
f,g

cov(fa, gb) s.t. σ(fa) = σ(a), σ(gb) = σ(b)

= HGR(a, b) · σ(a) · σ(b)
(4.39)

We remark that such formulations offer the advantage of being algorithm-

independent. For this reason, the package includes six distinct computational

algorithms: (i) our Kernel-Based formulation; (ii) our Single-Kernel approximation;

(iii) the Neural-Based algorithm from [Grari et al., 2020] and (iv) a variation of it

using Lattice Models instead of Neural Networks; (v) the Kernel-Density approach

by [Mary et al., 2019]; and (vi) the Randomized Dependence Coefficient described

in [Lopez-Paz et al., 2013]. The source code of maxcorr is publicly available under

MIT License and can be accessed at https://github.com/giuluck/maxcorr, or

it may be installed via any Python package manager.

https://github.com/giuluck/maxcorr
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4.7 Final Discussion

We started this chapter by showing that our HGR formulations can be applied to

the task of fair learning, proving that their computation is differentiable and yields

informative gradients that can guide the learning procedure towards fair regions of

the space. Following this, we explored certain drawbacks of the HGR coefficient

when used as a fairness metric: we highlighted that its semantics could pose issues

due to its measurement of non-functional dependencies and its invariance to scale

and, in order to address this, we introduced a new indicator, termed Generalized

Disparate Impact (GeDI), which slightly alters the semantics of HGR to align more

closely with the legal notion of disparate impact even in the presence of continuous

protected attributes. We further elaborated on the definition of GeDI and the

method to compute it, as well as discussing several strategies to constraint its

value below a certain threshold by means of different interpretations and solution

approaches. Subsequently, we conducted an empirical evaluation that confirmed

the connection between GeDI and disparate impact, as measured by the more

conventional DIDI indicator which is only applicable to categorical data, and

demonstrated the versatility of GeDI in the context of fairness enforcement. In

conclusion, we examined another study where we applied GeDI to a real-world

scenario about fair ranking of student performances, and finally discussed the

similarities and differences between HGR and GeDI. Specifically, we noted that a

spectrum of other indicators could potentially bridge the gap between the two, and

thereby introduced a unified formulation for all the non-linear correlation indicators,

showing how they are all equivalent except for a data-dependent scaling factor.



Chapter 5

Future Directions

Before proceeding with our concluding remarks, we will briefly outline some research

paths that we are interested in exploring or have begun examining without definite

conclusions yet. Specifically, Section 5.1 will discuss the use of different kernels to

compute HGR in a more efficient and effective manner. Section 5.2 will investigate

potential methods to extend the definition of HGR to encompass multivariate

correlations, along with scenarios where this can be of interest. Lastly, in Section 5.3,

we will present a proof of concept on the use of HGR to remove biases from datasets

based on a causal, rather than statistical, definition of fairness.

5.1 Different Kernel Expansions

For both our HGR and GeDI indicators, we used polynomial expansions to compute

correlations. This is just one approach among many, as various other types of kernel

can be employed. Let us consider two functions F : R 7→ Rh and G : R 7→ Rk, we

could formulate the HGR indicator as:

HGR-KB(a, b;F,G) = max
α,β

ρ(F (a) · α,G(b) · β) (5.1)

where F (a) =
[
F1(a) . . . Fh(a)

]
and G(b) =

[
G1(b) . . . Gk(b)

]
, and each Fi

and Gi represents an independent and univariate mapping function.

With respect to Equation (5.1), the indicator discussed in Chapter 3 is just one

87
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of its possible instances where we set F (a) = Ph
a and G(b) = Pk

b . Nonetheless, if

certain background knowledge or system requirement can be expressed through a

particular relationship, this could easily be incorporated into the kernel as one of

the mapping functions. Conversely, if we lack prior information and we wish to

preserve the flexibility of polynomials, alternative universal approximations can

be employed. Of these, sinusoidal functions and one-hot encoding are noteworthy

options for modeling continuous and categorical variables, respectively.

Sinusoidal Kernels

One significant drawback of polynomials is that their computations rely on the

Vandermonde matrix
[
x x2 . . . xh

]
, which is known for its numerical instability.

Although our experiments confirmed that low kernel degrees are often sufficient

to identify the majority of patterns in the data, having a more stable alternative

could be advantageous in certain scenarios. Sinusoidal functions may provide such

an option, as they offer greater stability and are less prone to numerical errors.

Furthermore, while polynomial kernels can approximate any dependency through

their association with the Taylor series, sinusoidal functions are closely linked

with Fourier expansions, thereby offering the same capability. Selecting which

sinusoidal component to incorporate into the kernel is a challenge, nevertheless. The

Randomized Dependence Coefficient employs randomly selected scaling coefficients

ω, but we have already demonstrated that this approach is problematic due to the

intrinsic lack of determinism, therefore a more reliable solution would be preferable.

Additionally, it is worth noting that polynomials are generally more interpretable for

human evaluators compared to sinusoidal functions, as the latter require reasoning

within the frequency domain to understand the outcomes.

One-Hot Kernels

An additional challenge with polynomial kernels is that they are ineffective or

ill-defined when applied to categorical data. Indeed, binary variables are invariant

to polynomial expansions, while multi-class ones can benefit from projections

into higher dimensions, although in a scarcely interpretable way. A potential

remedy could be to use one-hot encoding for categorical variables. Given a variable
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Figure 5.1: Coefficients of the one-hot kernel on a categorical variable, with three
distinct ways to handle overspecification.

a ∈ {1, . . . , c}n, the generated kernel takes the form:

F (a) =


I(a1 = 1) I(a1 = 2) . . . I(a1 = c)

I(a2 = 1) I(a2 = 2) . . . I(a2 = c)
...

...
. . .

...

I(an = 1) I(an = 2) . . . I(an = c)

 (5.2)

An issue with this type of kernel is the intrinsic lack of linear independence

among columns, as any column Fi can be represented as 1−
∑

j ̸=i Fj . Figure 5.1(a)

illustrates this problem on a synthetic dataset by reporting the coefficients of the

one-hot kernel applied to a variable a ∈ {1, 2, 3, 4}n. To build the dataset, we

uniformly sampled 1000 values for a and constructed a target variable b as follows:

bi =



0 if ai = 1

−1 if ai = 2

1 if ai = 3

5 if ai = 4

+ ϵ (5.3)

with ϵ ∼ N (0, 1) representing additive Gaussian noise. For the b variable, we apply

a linear kernel, hence the coefficients α̃ related to the kernel F (a) can be obtained

by solving a least-square problem. We can notice that the coefficients illustrated in
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Figure 5.1(a) do not match the weights defined in Equation (5.3); this is because

the least-square method finds one of the many possible equivalently valid solutions.

In contrast, Figure 5.1(b) does not suffer from this issue because we removed the

first column from the kernel, thus ensuring linearly independent columns. Here,

the returned coefficients are proportional to the original weights
[
0 −1 1 5

]
,

but we underline that this is just a coincidence, as the choice of which column to

omit is arbitrary; indeed, excluding the fourth column instead of the first results in

entirely different coefficients, as depicted in Figure 5.1(c). We also highlight that

the correlation ρ reported is identical in all three scenarios, indicating that this is

strictly an interpretability problem and not an evaluation one.

5.2 Multi-Variate & Conditional Correlation

The indicators discussed in Chapters 3 and 4 are limited to computing correlations

on bivariate datasets only. However, the possibility to take multiple variables into

account is not only advantageous, but also essential for a broad array of tasks that

require assessing correlations. Among all, we mention two interesting scenarios: in

the first, the objective is to evaluate the correlation between multiple protected

input attributes and the output target in order to evaluate or enforce intersectional

fairness; in the second, conditional correlation between two variables has to be

measured in order to extract causal knowledge from data.

Intersectional Fairness

The concept of “intersectionality” was first introduced in [Crenshaw, 2013] to

identify unfair policies that result in discrimination against individuals who are part

of multiple disadvantage groups. Crenshaw referred to the DeGraffenreid v. General

Motors1 American court case as an example, where African-American women

claimed to be systematically excluded from employment due to discrimination.

However, the court did not find any discriminatory practice in this case, as the

company met its quotas for black and female workers by exclusively hiring black

men for warehouse roles and white women for secretarial positions.

1https://supreme.justia.com/cases/federal/us/401/424/

https://supreme.justia.com/cases/federal/us/401/424/
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Let us consider a scenario involving m protected attributes Z1, . . . , Zm. From a

statistical perspective, addressing intersectionality requires not only to guarantee

independence Zi ⊥⊥ Ŷ ,∀i ∈ {1, . . . ,m}, but also to ensure the independence of

the combined distribution of all protected attributes: Z1, . . . , Zm ⊥⊥ Ŷ . As noted

in [Gohar and Cheng, 2023], most approaches for achieving intersectional fairness

in machine learning simply create a joint protected attribute Z = Z1 ⊗ . . . ⊗
Zm including every possible combination of values from each Zi. This method,

however, is highly impractical as the combinatorial explosion could potentially

result in subgroups too small to yield meaningful results. Furthermore, if continuous

attributes need to be involved as well, the complexity would increase dramatically,

making it even more challenging to effectively bin the data.

A potential solution to this could be to broaden the definition of HGR (and

similarly, GeDI) in order to incorporate multiple input variables. Practically, this

involves applying a copula transformation f : Rm → R, resulting in:

HGR(z1, . . . , zm, ŷ) = max
f,g

ρ(f(z1, . . . , zm), g(ŷ)) (5.4)

We underline that our polynomial expansion method may be impractical here, as

the number of columns would significantly increase to account for all multiplicative

effects among input variables; similarly, using one-hot kernels for categorical

variables would lead to the same combinatorial complexity described above. Instead,

neural models may offer a better capability to synthesize information in this scenario,

or even lattice models could be considered as an alternative, given that they are

less susceptible to overfitting due to their higher smoothness.

Causal Discovery

The task of discovering causal relationships among variables is gaining prominence

in the literature, as evident from the increasing number of surveys on the sub-

ject [Nogueira et al., 2022]. The connection between statistical dependence and

causality can be summarized by Reichenbach’s Principle of the Common Cause,

stating that if two variables X and Y are statistically dependent, then there must

be a variable Z that accounts for the entire dependency by causally affecting
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both. In particular, Z might be either identical to X or Y – thus indicating a

direct causal link between the two – or it can be a third variable, referred to

as “confounder”, which leads to the causal structure X ← Z → Y and implies

conditional independence between X and Y given Z [Schölkopf et al., 2021].

Several algorithms for causal discovery have been developed in the past decades.

Among them, the most famous is the PC Algorithm [Spirtes and Glymour, 1991].

Starting from a dense graph containing connections between all variables, the

algorithm employs conditional independence tests to determine if two variables X

and Y are independent when conditioned on a set S = {Z1, . . . , Zm}. As noted

in Section 3.1, a significant advantage of HGR over other correlation metrics is

its sufficiency to guarantee independence, which makes it a good candidate for

independence tests. However, its semantics do not inherently account for the

conditioning set, thus requiring ad hoc modifications. The HGR-KDE technique

from [Mary et al., 2019] is already equipped for this, as it estimates probability

distributions; specifically, when experimenting with HGR as a proxy for Equalized

Odds, the authors use the formulation HGR-KDE(Z | Y = y, Ŷ | Y = y), which

requires conditional independence with respect to the ground truths Y . Nevertheless,

extending this concept to functional approaches such as ours or the neural-based

one presents additional challenges.

We also claim that HGR offers another notable advantage in the realm of

causal discovery. Besides graph representations, causal structures can be also

expressed in terms of functions: this implies that if there exists a causal link

X 7→ Y , then there must be a function f such that Y = f(X, . . .), where the

ellipsis suggests the presence of potential additional factors. With its dual copula

transformations, HGR facilitates the estimation of these functional effects while

testing for causal dependencies. Specifically, for a given kernel degree d, we can

evaluate the difference between HGR(X, Y ; d, 1) and HGR(X, Y ; 1, d) and assess

which variable more effectively predicts the other through a non-linear transforma-

tion. Furthermore, we can compare these metrics to both linear (Pearson’s) and

non-linear (HGR) correlations to determine how much the discrepancy between the

functional dependencies can be attributed to the variables themselves or to external

confounders. Figure 5.2 provides an example of this approach, where we analyze the
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Figure 5.2: Analysis of causal relationships in bivariate datasets using HGR.
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differences between linear and non-linear relationships on the continuous protected

attribute z and the output target y across the three benchmark datasets used in

our study. For each dataset, we calculated: the linear correlation HGR(z, y; 1, 1),

the “direct” correlation HGR(z, y; 5, 1), the “inverse” correlation HGR(z, y; 1, 5),

and the full non-linear correlation HGR(z, y; 5, 5). For instance, in the Census and

Adult datasets, we can notice that nearly all non-linear correlations are captured by

the “direct” dependency, while for Communities, the minor differences in computed

correlations indicate either a strong co-dependency between the variables or an

underlying confounding factor. It is important to note that a functional relationship

is not sufficient to establish or determine causal direction, but it can still provide a

substantial hint in ambiguous situations.

5.3 Redefining Fairness

In Chapter 4, we explored how to use correlation measures to enforce fairness

constraints in machine learning models. However, this approach is purely statistical

and solely depends on the available data, making it susceptible to noise and compli-

cating the selection of the threshold τ . In our earlier research [Maggio et al., 2023],

we demonstrated that task accuracy might not be a reliable indicator for fairness-

related applications, as historical biases in datasets cause distribution shifts that

could make ground truths particularly unreliable in certain instances. Our future

proposal involves the construction of alternative versions of all inputs so that they

are equally informative but independent of the protected attribute. This approach

can also be considered as a way to fully anonymize the sensitive information.

Latent Independent Variables

Let us consider a scenario involving two variables, x and y. Suppose that our goal

is to anonymize x while maintaining predictive capabilities with respect to y. To

accomplish this, we might construct a latent variable w, obtained as:

argmin
w
{H(y, w) | H(x,w) = max

w′
H(x,w′)} (5.5)
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In this context, H represents the entropy, and our objective is to construct w in

such a way that it carries no information about x while simultaneously minimizing

uncertainty with respect to y. We start by observing that the entropy reaches its

peak when x ⊥⊥ w, and achieves its lowest value when the correlation between y

and w is at its maximum. Using HGR as both a measure of correlation and a test

of independence up to a threshold ε, we can reformulate Equation (5.5) as:

argmax
w
{HGR(y, w) | HGR(x,w) ≤ ε} (5.6)

Fairness Through Decorrelation

Equation (5.6) is particularly challenging to resolve. However, assuming that we

can achieve a solution within a feasible time, we could apply it to the dataset

D = {X, z, y} to fully remove the correlation between the inputs xi ∈ X and the

protected attribute z. Practically, our goal is to build the decorrelated variables:

x′i ∈ argmax
w
{HGR(xi, w) | HGR(z, w) ≤ ε} (5.7)

and eventually train our model on a transformed dataset D′ = {X ′, y}, where X ′

is the matrix with all the x′i columns. We also mention that computing these new

variables alone is not sufficient, as it would prevent from executing similar operations

on the test data. To address this issue, instead of retrieving x′i through projections,

we would rather calculate them using a learning modelM(·; θi). Consequently, we
reformulate Equation (5.7) as:

x′i =M(xi, θ
∗
i ) s.t.

θ∗i ∈ argmax
θi

{HGR(xi,M(xi; θi)) | HGR(z,M(xi; θi)) ≤ ε} (5.8)

Although this concept may offer a new definition of fairness, more rooted into

a causal framework rather than merely based on statistical independence from the

attribute, we recognize the significant challenge it presents and have yet to conduct

experiments to determine its practical applicability.



Chapter 6

Conclusions

In this dissertation, we introduced a novel computational approach for identifying

non-linear correlations in bivariate datasets. Our technique is based on polynomial

kernel functions parametrized by a vector of mixing coefficients. Since polynomials

are universal approximators, our method can theoretically capture any form of

dependency, and it also distinguishes itself from existing methodologies proposed in

the literature thanks to its stronger robustness, interpretability, and configurability.

We applied our methodology to the task of estimating the Hirschfeld–Gebelein–

Rényi (HGR) coefficient, a theoretical extension of Pearson’s correlation capable of

detecting non-linear relationships as well. Our experiments validated the effective-

ness of the approach, as well as showing that an approximation can be used to gain

two orders of magnitude in computational time at the cost of lower expressivity.

Next, we tested the behavior of our Kernel-Based HGR indicator when used

as a fairness measure. We imposed constraints on three benchmark datasets for

fair machine learning, dealing with continuous rather than categorical protected

attributes. Although the computation of our method is not entirely differentiable,

it still demonstrated the ability to guide the learning process towards fair solutions

thanks to the information embedded in its sub-gradient.

In discussing fairness with continuous protected attributes, we also noted

some limitations in the semantics of HGR, which led to the development of the

Generalized Disparate Impact (GeDI), a novel indicator extending the legal notion

of disparate impact to the continuous domain. We proposed an implementation of

96
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this indicator using the same kernel-based strategy adopted for HGR, and eventually

performed further empirical evaluations to determine if its enforcement could yield

the expected results. In particular, we used it to inject fairness constraints both

via loss regularizers and in a declarative fashion using a projection-based algorithm

for constrained machine learning. Finally, we also reported the results of another

empirical study that we conducted on a real-world dataset about child education.

To conclude, we discussed that HGR and GeDI represent the two ends of a wider

spectrum of fairness indicators, which can be derived with minor variations in their

semantics. Moreover, as our objective is to continue exploring this computational

method and the indicators it can generate, we highlighted some open research

areas that have been partially explored but have not yet produced definitive results.

Among these, we mentioned the application of different kernels, such as using

one-hot encodings for categorical data or sinusoidal expansions for continuous data,

as well as the application of lattice models to achieve a better balance between

computational cost and expressiveness when addressing multivariate correlations in

tasks like intersectional fairness or causal discovery; finally, we introduced a proof-

of-concept for a new approach to eliminating undesirable biases in data by removing

unwanted correlations. We hope that our work will inspire further research in this

field, leading to more reliable and trustworthy data-driven applications.
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Appendix A

Shared Experimental Details

In this appendix, we provide a detailed examination of the common elements of all

our experiments. The codebase used to run these experiments is publicly available

under the MIT license and can be accessed at https://github.com/giuluck/non

-linear-correlations. Unless noted otherwise, we used the official code for the

baseline approaches without changing the default parameters, and we incorporated

them into our project to ensure the reproducibility of the results.

A.1 Hardware & Software Setup

We implemented our code using Python 3.12 and leveraged the following packages:

gurobipy==11.0.3

lightning==2.3.3

matplotlib==3.9.0

moving_targets==0.4.0

numpy==2.0.1

pandas==2.2.2

scikit-learn==1.5.1

scipy==1.14.0

seaborn==0.13.2

torch==2.4.0

tqdm==4.66.5
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We ran all our experiments on a MacBook Pro equipped with an Apple M3 Pro

processor and 36GB RAM. We did not use Graphics Processing Units (GPUs) in

our experiments. Prior to each execution, our code automatically initializes specific

seeds for all random number operations using the seed everything method from

Pytorch Lightning and use the deterministic=True training option to ensure the

complete reproducibility of our results and enforce deterministic outcomes even in

neural network training and inference.

Unless an external source is specified, every figure in this document is generated

by a respective script available in our code repository. To facilitate the execution

process, we also provided a custom Docker image along with a configuration file

(docker.yaml) that leverages Docker Compose to set up a service for each script.

Additional details on how to run the code are provided in the README.md file.

A.2 Benchmark Datasets

Throughout our experiments with real-world datasets, we leverage data from three

well-established benchmarks in fair machine learning:

Census The US 2015 Census dataset1 contains records from the 2015 American

Community Survey 5-year Estimates. Among the two available files, we

only used acs2015 census tract data.csv, which comprises data for each

census tract in the United States, namely areas designated by the bureau to

have a more uniform size – typically around 5000 residents. The predictive

variables include aggregated socioeconomic information about residents of

the census track, and the primary objective is to forecast the ChildPoverty

rate within each of them, which is represented by a continuous variable.

Communities The Communities & Crime dataset2 integrates socio-economic

and survey law enforcement data with FBI crime statistics from the 1990s.

As before, the predictive variables range from demographic segmentation in

social groups to other economic indicators aggregated over the population of

1https://www.kaggle.com/datasets/muonneutrino/us-census-demographic-data
2https://archive.ics.uci.edu/dataset/183/communities+and+crime

https://www.kaggle.com/datasets/muonneutrino/us-census-demographic-data
https://archive.ics.uci.edu/dataset/183/communities+and+crime
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Dataset Census Communities Adult

Output Target ChildPoverty violentPerPop income

Protected Attribute Income pctWhite age

Surrogate Attribute Unemployement race Never-married

Table A.1: Salient input and output features of the three benchmarks.

the whole neighborhood. The aim is to determine the incidence rate of violent

crimes per capita, hence the target variable ViolentPerPop is continuous.

Adult The Adult Census Income dataset3 derives from the 1994 US Census

database. Unlike the previous ones, each entry here represents a single

individual, with their status defined by economic indicators and association

to certain social categories. Since the goal is to predict whether an individual

earns more than 50K annually, the target variable Income is binary.

For each dataset, we preprocess the data using standard data cleaning procedures.

In particular, we eliminate duplicate features – e.g., selecting either Men or Women

in the Census dataset – and we remove highly correlated demographic features

that should not be present during testing – e.g., Poverty, which correlates with

the target variable ChildPoverty in Census. Subsequently, we:

1. Normalize the target variable within the interval [0, 1].

2. One-hot encode all the multi-class categorical inputs.

3. Standardize all the continuous input variables.

Finally, both the continuous protected attributes z and their binary surrogate

s are selected according to the procedure described in Section 4.1.1. An overview

of them, which will be used during training experiments, is presented in Table A.1.

A.3 Unconstrained Neural Network Calibration

Given that all our experiments use neural networks as learning models, we also

perform a calibration phase to identify the optimal hyperparameters configuration.

3https://archive.ics.uci.edu/dataset/2/adult

https://archive.ics.uci.edu/dataset/2/adult


A.3. UNCONSTRAINED NEURAL NETWORK CALIBRATION 111

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Batch Size: 512 - Units: [32]

Train
Val

Batch Size: 512 - Units: [256]

Train
Val

Batch Size: 512 - Units: [32, 32]

Train
Val

Batch Size: 512 - Units: [256, 256]

Train
Val

Batch Size: 512 - Units: [32, 32, 32]

Train
Val

Batch Size: 512 - Units: [256, 256, 256]

Train
Val

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Batch Size: 4096 - Units: [32]

Train
Val

Batch Size: 4096 - Units: [256]

Train
Val

Batch Size: 4096 - Units: [32, 32]

Train
Val

Batch Size: 4096 - Units: [256, 256]

Train
Val

Batch Size: 4096 - Units: [32, 32, 32]

Train
Val

Batch Size: 4096 - Units: [256, 256, 256]

Train
Val

0 250 500 750 1000
step

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Batch Size: Full - Units: [32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [32, 32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256, 256]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [32, 32, 32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256, 256, 256]

Train
Val

(a) Census

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Batch Size: 512 - Units: [32]

Train
Val

Batch Size: 512 - Units: [256]

Train
Val

Batch Size: 512 - Units: [32, 32]

Train
Val

Batch Size: 512 - Units: [256, 256]

Train
Val

Batch Size: 512 - Units: [32, 32, 32]

Train
Val

Batch Size: 512 - Units: [256, 256, 256]

Train
Val

0 250 500 750 1000
step

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Batch Size: Full - Units: [32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [32, 32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256, 256]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [32, 32, 32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256, 256, 256]

Train
Val

(b) Communities

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

Batch Size: 512 - Units: [32]

Train
Val

Batch Size: 512 - Units: [256]

Train
Val

Batch Size: 512 - Units: [32, 32]

Train
Val

Batch Size: 512 - Units: [256, 256]

Train
Val

Batch Size: 512 - Units: [32, 32, 32]

Train
Val

Batch Size: 512 - Units: [256, 256, 256]

Train
Val

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

Batch Size: 4096 - Units: [32]

Train
Val

Batch Size: 4096 - Units: [256]

Train
Val

Batch Size: 4096 - Units: [32, 32]

Train
Val

Batch Size: 4096 - Units: [256, 256]

Train
Val

Batch Size: 4096 - Units: [32, 32, 32]

Train
Val

Batch Size: 4096 - Units: [256, 256, 256]

Train
Val

0 250 500 750 1000
step

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

Batch Size: Full - Units: [32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [32, 32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256, 256]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [32, 32, 32]

Train
Val

0 250 500 750 1000
step

Batch Size: Full - Units: [256, 256, 256]

Train
Val

(c) Adult

Figure A.1: Neural networks scores across the three benchmarks.
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Dataset Census Communities Adult

Loss Function MSE MSE BCE
Score Function R2 R2 AUC

Hidden Units [32] [256, 256] [32, 32]
Batch Size 2048 Full-Batch 2048

Steps 500 500 500

Table A.2: Hyperparameter configuration of the baseline neural networks.

The results obtained in this phase are meant to validate the selection of architectures

for the benchmark experiments discussed in Chapter 4. We train several neural

networks using a default task loss – Mean Squared Error (MSE) for regression

tasks, Binary Crossentropy (BCE) for classification ones. For each dataset, we use

a 5-fold cross-validation procedure and test the following set of parameters using a

plain grid search methodology:

Batch Size 512, 4096, or Full-Batch.

Number of Layers 1, 2, or 3.

Units per Layer 32 or 256.

For each configuration, we use the Adam optimizer with a fixed learning rate

lr = 10−3, and set ReLU activations in all hidden layers while the output layer

uses either linear or sigmoid activation depending on the task loss. To ensure

comparable results and consistent training times across different batch sizes, we

use training steps instead of training epochs.

Training histories are reported in Figure A.1. We report elapsed time, loss

function, and score function after every training step on both the training and

validation splits. More precisely, score functions are chosen as R2 score and Area

Under Curve (AUC), respectively for regression and classification tasks. Each

network undergoes 1000 training steps and, ultimately, we select the lightest

configuration among those achieving the best validation accuracies. Finally, we

determine the optimal value at the point where the validation accuracy converges

to a consistent result. We summarize our choices in Table A.2 and pair them with

the respective loss and score functions of the datasets.



A.4. IMPLEMENTATION DETAILS 113

A.4 Implementation Details

This section provides an in-depth explanation of the implementation details for the

metrics we developed, the baselines we tested, and the techniques we employed to

inject constraints into machine learning models.

A.4.1 Correlation Metrics

In this section, we detail the fundamental configuration of all the methods discussed

in Chapter 3 to estimate the Hirschfeld–Gebelein–Rényi Coefficient, as well as

those for calculating the Generalized Disparate Impact introduced in Section 4.3.

Where needed, we also provide additional information about tailor-made choices

aimed at enhancing efficiency in the context of constrained machine learning.

HGR-KB

The implementation of HGR-KB leverages the trust-constr optimization method

available in the scipy.optimize.minimize package. We provide a symbolic

representation of the objective function and the non-linear constraint, together

with their gradients and Hessian matrices. The initial values are assigned to

α0 = 1h · σ(Ph
a · 1h)

−1 and β0 = 1k · σ(Pk
b · 1k)

−1 so that the constraint is satisfied

by default, and we use 10−2 as the general tolerance for the algorithm. All other

hyperparameters remain unchanged, thus letting the optimization method run for

up to 1000 iterations.

Before running the optimization routine, we try to remove linearly dependent

columns in the concatenated matrix
[
Ph

a | Pk
b

]
using the QR matrix factorization

algorithm. Once the factorization values rii belonging to the diagonal of the matrix

R are obtained, we eliminate all the columns associated to a factorization value

smaller than the threshold 10−2. This step aims to limit the overspecification of

copula transformations, as our method theoretically requires linear independence

between the kernel columns.

Finally, when using HGR-KB as a regularizer in the context of constrained

machine learning, we “warm start” the optimization routine at iteration i+ 1 by

passing the optimal coefficients α∗
i and β

∗
i obtained from the previous step i as initial
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guesses. Given that distribution should not deviate much across different epochs

or mini-batches, this strategy facilitates quicker and more accurate convergence.

HGR-SK

Regarding HGR-SK, optimal results are computed using the least-square problem

implementation of numpy when there are no gradients required. Instead, when the

metric is used as a loss regularized, the torch.linalg.lstsq implementation is

employed as it offers both gradient information and optimal outcomes. For the

latter, we also specify the gelsd drivers to ensure more precise and reproducible

results, albeit with a higher computational overhead. Unlike HGR-KB, here no

initial guesses or supplementary hyperparameters are required.

HGR-NN

In order to implement the baseline adversarial approach, we rely on the source

code4 of [Grari et al., 2020]. We preserve the original code without altering its

internal functions and incorporate it into our own codebase for ease of execution.

Practically, when computing HGR-NN, we make use of two distinct networks

featuring linear layers of units [15, 15, 15, 1] – some with ReLU and some others

with tanh activations –, and a final layer of batch normalization. The overall system

is trained full-batch for 1000 epochs.

When this method is used as a loss regularizer, we follow the speed-up strategy

described in the original paper. Specifically, during the first learning step we

train the adversarial networks for 1000 epochs, while in the following phases we

simply fine-tune them for 50 epochs using the pre-trained models from the previous

iteration. Similarly to HGR-KB, this approach accelerates convergence at no

performance cost, assuming that there are no significant distributional changes

between epochs or mini-batches.

4https://github.com/fairml-research/HGR_NN/

https://github.com/fairml-research/HGR_NN/
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HGR-KDE

For HGR-KDE, we lean on the code5 provided in the original paper, keeping the

default hyperparameters and employing the torch library for its implementation, as

did the original authors. We integrated all components into our codebase while min-

imizing alterations to their original code; nevertheless, we recognize that the results

presented in Figure 3.7 differ from those reported in their paper [Mary et al., 2019].

Given that we did not conduct experiments with HGR-KDE in the realm of

constrained machine learning, there are no further strategies to report.

RDC

We could not find the original code from [Lopez-Paz et al., 2013]. However, since

there was an implementation available in the codebase of [Grari et al., 2020], we

used it as a substitute. Similarly to the other baselines, we integrated the functions

into our codebase without modifying the source code.

GeDI

Finally, to implement the GeDI indicator, we adopt a methodology similar to

that of HGR-SK. Specifically, we obtain the optimal coefficients α̃∗ by solving the

least-square problem using numpy and subsequently compute the indicator value

following Equation (4.12). Instead, when using the indicator to impose constraints,

we can leverage either the declarative approach or the loss regularizer, and either

the coarse-grained or the fine-grained formulation:

Loss Regularizer We rely on torch.linalg.lstsq to calculate the α̃∗ coeffi-

cients in a differentiable manner, adopting the gelsd drivers to achieve more

accurate and consistent results as in HGR-SK. For the coarse-grained formula-

tion, we enforce the constraint on the overall GeDI value computed according

to Equation (4.12). Instead, for the fine-grained formulation we return the

regularization vector
[
|α̃1| − τ |α̃2| . . . |α̃h|

]
, which is subsequently paired

with a vector of Lagrangian multipliers λ ∈ R+k.

5https://github.com/criteo-research/continuous-fairness/

https://github.com/criteo-research/continuous-fairness/
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Declarative Method We use gurobipy to implement our optimization problems.

For the coarse-grained formulation, we generate a vector of variables for the

targets v and one for the coefficients α̃; then we impose the linear constraints

representing the least-square problem and the constraint on the GeDI value

as detailed in Equation (4.18). For the fine-grained formulation, instead, we

simply build the vector of variables v and take advantage of the optimized

formulation described in Section 4.3.4 to avoid the explicit introduction of

variables for α̃.

The loss regularizer method is applied when training a neural model, similar to

other HGR-based regularizers; while for the declarative method, we use Moving

Targets as the constraint enforcement algorithm, using various machine learning

models as learners.

A.4.2 Constrained Machine Learning Methods

In this section, we will briefly outline the implementation details of two methodolo-

gies we employ to enforce our constraint across various ML models. Both techniques

are intended to solve the following constrained optimization problem:

argmin
θ
L(y, ŷ(θ)) s.t. ŷ(θ) ∈ C (A.1)

where ŷ(θ) = M(x; θ) denotes the predictions yielded by the machine learning

modelM using the learned parameters θ. Here, C represents the feasible region

and L is a loss function specific to the task. For both approaches, the original

papers are referenced for further details.

Lagrangian Dual Framework

The Lagrangian Dual framework [Fioretto et al., 2021] improves the use of loss regu-

larization techniques in gradient-based learning by enabling the automatic tuning of

Lagrangian multipliers λ ∈ R+k. Consider a regularization vector R(y, ŷ(θ)) ∈ R+k

that encapsulates violations for k distinct constraints, namely the “distance” from

ŷ(θ) ∈ C for each constraint in C. We can incorporate these violations into the loss
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function L(y, ŷ(θ)) ∈ R+ of our neural network by scaling each violation with its

corresponding multiplier λi, obtaining the following regularized loss:

L(y, ŷ(θ)) + λT · R(y, ŷ(θ)) (A.2)

Traditionally, a major drawback of this method is the need to fine-tune the

multiplier vector λ according to the specific task. The proposed framework addresses

this issue by solving a bilevel optimization problem where, first, the loss function

is minimized using gradient descent with constant multipliers, and second, the loss

function is maximized using gradient ascent with a fixed network configuration.

Practically speaking, this process involves the following sequential steps:

θi ∈ argmin
θ

{
L(y, ŷ(θ)) + λTi−1 · R(y, ŷ(θ))

}
(A.3)

λi ∈ argmin
λ

{
L(y, ŷ(θi)) + λT · R(y, ŷ(θi)

}
(A.4)

where the subscript i denotes the ith training step, and λ0 is the null vector 0k.

Regarding our experiments, the regularizer vector R(y, ŷ(θ)) is a scalar value

that quantifies the correlation using the specified indicator I, be it any HGR

method or the coarse-grained formulation of GeDI, discounted by the threshold

value and clipped to a zero lower bound. In practice, we have:

R(y; ŷ(θ)) = max{0, I(y, ŷ(θ))− τ} (A.5)

The only exception arises for the fine-grained GeDI formulation, where the regu-

larizer consists of a vector with h different components, one per coefficient α̃∗
i ; all

these components quantify a violation proportional to their absolute values, apart

from the first term which is discounted by the threshold, and eventually clipped to

zero. This results in:

R(y; ŷ(θ)) = max{0k,
[
|α̃∗

1(θ)| − τ, |α̃∗
2(θ)|, . . . , |α̃∗

h(θ)|
]
} (A.6)

In both cases, we include an additional Adam optimizer to control the progression

of the multiplier vector λ, consistently setting its learning rate as lr = 10−3.
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On a final note, we must highlight a minor yet significant limitation of loss

regularization methods in classification tasks. The operators “argmax” and “round”

are incompatible with gradient-based learning algorithms, as their gradients are

null at every point. This requires relying on predicted probabilities rather than

predicted class targets when computing our constraints for classification tasks.

However, we use class targets when measuring correlations in the predicted data at

the end of the training process, thus leading to potential differences between the

expected threshold value and the actual reported value, even within the training

data. The impact of this limitation can be observed in Table 4.2 as well as in

Table 4.3 – although only with respect to the Lagrangian Dual entries, as the

Moving Targets method does not encounter the same issue.

Moving Targets

Moving Targets [Detassis et al., 2021] is a framework aimed at solving constrained

machine learning tasks using bilevel decomposition. It operates by iteratively

alternating between a “learner step”, responsible for training the learning model,

and a “master step”, which adjusts the predicted targets to fit into the feasible space

while minimizing the discrepancy between both the predictions themselves and the

original targets. Practically, it addresses the problem outlined in Equation (A.1)

by switching between these two sub-problems:

vi ∈ argmin
v
∇L(v, ŷ(θi−1)) + γi · ∥v − y∥22 s.t. v ∈ C (A.7)

θi ∈ argmin
θ
L(vi, ŷ(θ)) (A.8)

where the subscript i refers to the ith iteration, γi is a coefficient used to balance

the distance between the original targets y and the predictions ŷ in the master

step, and the initial parameters θ0 are acquired by pre-training the learning model.

This algorithm is ideal for our needs for three main reasons. First, it is model-

independent, enabling us to examine how our constraints operate across various

learning models, each characterized by its own unique biases and limitations. Second,

it is designed to handle declarative group-indicators such as GeDI, allowing to use

mini-batch training in the learning if necessary, while considering the constraint as
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a whole during the projection phase. Third, it can seamlessly manage classification

tasks without requiring the transformation of class targets into class probabilities,

which was instead a problem for the Lagrangian Dual approach.

In our experiments, we apply the formulation presented in Equations (A.7)

and (A.8). This has been refined over the years, hence it differs from the original

one proposed in [Detassis et al., 2021]. Nevertheless, this is the official approach

implemented in the moving-targets package, which we are currently developing

and maintaining. More specifically, to address Equation (A.8), we employ four

unconstrained machine learning models. For the Linear/Logistic Regression (LM),

Random Forest (RF), and Gradient Boosting (GB) models, we utilize the implemen-

tations provided by scikit-learn, keeping the default hyperparameters except for

Logistic Regression, where we adjust max iter to 10000. For the Neural Network

(NN), we leverage torch and apply the identical hyperparameters determined in

the calibration experiment outlined in Table A.2.

With respect to Equation (A.7), this is instead formulated as an optimization

problem where our adjusted projections are represented by a vector of variables

v. For the coarse-grained GeDI approach, we introduce an extra vector of h

variables for the coefficients α̃, whose value is obtained by enforcing both the least-

square definition and the constraint on the indicator, as shown in Equation (4.31);

regarding the fine-grained constraint, instead, we utilize the optimized formulation

where all higher-order terms are nullified, as detailed in Equation (4.20). In both

scenarios, the ith value of the balancing term γi is assigned to the corresponding

element of the harmonic series – i.e., γi = 1/i – and the loss function L is either

set to MSE or Hamming Distance, depending on whether the task is regression

or classification. The solution of the optimization problem is delegated to the

Gurobi solver using the Python APIs provided by the gurobipy package, with the

WorkLimit parameter configured to 60 to restrict hardware usage rather than time

to ensure reproducible results.



Appendix B

Proofs of Chapter 3

This appendix contains the proofs of theorems and properties presented in

Chapter 3. These demonstrations have been taken and partially revised from

[Giuliani et al., 2023] and from another research paper that is currently being

reviewed at a prestigious Artificial Intelligence conference.

B.1 Pearson’s Correlation as Least Squares

Let us start from the following least-square problem over standardized variables:

argmin
r

1

n

∥∥∥∥a− µa

σa
· r − b− µb

σb

∥∥∥∥2

2

(B.1)

with µa, µb and σa, σb being the mean and standard deviations of vectors a and b,

respectively. We know that the problem is convex, as it simply features a vector

product between the inputs and the variable r. This means that the optimal

solution can be achieved by setting the gradient with respect to r to zero, i.e.:

2

n

(
a− µa

σa
· r − b− µb

σb

)T
a− µa

σa
= 0 (B.2)

which, after algebraic manipulation, can be rewritten as:

1

n

(a− µa)
T (a− µa)

σ2
a

· r = 1

n

(a− µa)
T (b− µb)

σa · σb
(B.3)
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With further observations, we can notice that the term 1
n
(a − µa)

T (a − µa)

denotes the variance σ2
a. We can therefore simplify the left side, thus arriving at:

r =
1

n

(a− µa)
T (b− µb)

σa · σb
(B.4)

which corresponds in fact to the sample Pearson correlation coefficient.

B.2 Simplification to a Single-Level Problem

Consider the definition of HGR given in Equation (3.12). We can fix zero mean and

unitary standard deviation without loss of generality as explained in Section 3.1,

hence obtaining:

max
f,g

E[fa]=E[gb]=0

E[f2
a ]=E[g2b ]=1

argmin
r

1

n
∥r · fa − gb∥22 (B.5)

where fa = f(a) and gb = g(b) are used as aliases to improve clarity.

We introduce two additional copula transformations pa = p(a) and qb = q(b),

along with their related correlation coefficient w. Assume, without loss of generality,

that one transformation pair results in a lower Mean Squared Error, i.e.:

1

n
∥r · fa − gb∥22 <

1

n
∥w · pa − qb∥22 (B.6)

we can further expand these terms as follows:

fT
a fa
n

r2 − 2
fT
a gb
n

r +
gTb gb
n

<
pTa pa
n

w2 − 2
pTa qb
n

w +
qTb qb
n

(B.7)

Given our zero-mean assumption, all quadratic terms such as fT
a fa/n represent

sample variances E [f 2
a ]. Consequently, since under the same assumptions variances

are unitary, we can simplify this inequality as:

r2 − 2
fT
a gb
n

r + 1 < w2 − 2
pTa qb
n

w + 1 (B.8)

We can further reduce this inequality by noting that fT
a gb/n and w = pTa qb/n
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represent the correlation coefficients r and w, respectively. We obtain:

r2 − 2r2 + 1 < w2 − 2w2 + 1 (B.9)

which leads to:

r2 > w2 (B.10)

Given that all transformations are invertible, we can conclude that:

r2 > w2 ⇔ 1

n
∥r · fa − gb∥22 <

1

n
∥w · pa − qb∥22 (B.11)

and, following the same reasoning, the statement is valid as well for both the

equality and the opposite inequality. In essence, maximizing the square of the

sample HGR equates to minimizing the Mean Squared Error. To maximize r2, one

needs to either maximize r or minimize −r. Given the flexible nature of copula

transformations, the sign of r can be altered by changing the sign of either f or g.

Thus, maximizing r is ultimately equivalent to maximizing r2 in this context.

B.3 Convexity of Kernel-Based HGR

Let us take the formulation of HGR using polynomial kernels as in Equation (3.17).

We can include the constraint in the objective function as a penalty term, obtaining:

argmin
α̃,β

∥∥∥P̃h
a · α̃− P̃k

b · β
∥∥∥2

2
+ λ ·

∣∣∣σ(P̃k
b · β)2 − 1

∣∣∣ s.t. λ > M ∈ R (B.12)

To prove that the problem is convex, we need to demonstrate that the regularizer∣∣∣σ(P̃k
b · β)2 − 1

∣∣∣ approaches zero as λ becomes sufficiently large. This requires

proving that the gradient of the regularization term can exceed that of the objective

function. We recall that µ(P̃k
b · β) = 0, which allows us to calculate variances and

covariances using straightforward vector products. Consequently, let us start by
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dividing Equation (B.12) into two distinct functions:

f(α̃, β) =
∥∥∥P̃h

a · α̃− P̃k
b · β

∥∥∥2

2
(B.13)

h(α̃, β) =
∣∣∣σ(P̃k

b · β)2 − 1
∣∣∣ = ∣∣∣∣∣(P̃k

b · β)T · (P̃k
b · β)

n
− 1

∣∣∣∣∣ (B.14)

with n being the number of samples in the data.

Our aim is to demonstrate that:

∃λ ∈ R s.t.
[
∆α̃T ∆βT

]
· ∇h(α̃, β) · λ ≥

[
∆α̃T ∆βT

]
· ∇f(α̃, β) (B.15)

where ∆α̃ = α̃′ − α̃ and ∆β = β′ − β represent infinitesimal differences. Without

loss of generality, we can restrict ourselves to the equality case, resulting in:[
∆α̃T ∆βT

]
· ∇h(α̃, β) · λ =

[
∆α̃T ∆βT

]
· ∇f(α̃, β) (B.16)

from which we can compute λ as:

λ =

[
∆α̃T ∆βT

]
· ∇f(α̃, β)[

∆α̃T ∆βT
]
· ∇h(α̃, β)

(B.17)

Next, let us calculate the gradients of Equations (B.13) and (B.14) as follows:

∇f(α̃, β) = 2 ·
[
P̃a −P̃b

]T
·
(
P̃a · α̃− P̃b · β

)
(B.18)

∇h(α̃, β) = 2 ·

[
0h

sign(σ(Pb·β)2−1)
n

· P̃T
b · P̃b · β

]
(B.19)

where the superscripts h and k have been omitted from the polynomial expansions
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for improved readability. We can incorporate them into Equation (B.17) to get:

λ =
2 ·

[
∆α̃T ∆βT

]
·
[
P̃a −P̃b

]T
·
(
P̃a · α̃− P̃b · β

)
2 ·

[
∆α̃T ∆βT

]
·
[
0h

sign(σ(Pb·β)2−1)
n

· P̃T
b · P̃b · β

]T
=

n

sign
(
σ(P̃b · β)2 − 1

) ·
(
∆α̃T · P̃T

a −∆βT · P̃T
b

)
·
(
P̃a · α̃− P̃b · β

)
∆βT · P̃T

b · P̃b · β

≈ ∆α̃T · P̃T
a · P̃a · α̃

∆βT · P̃T
b · P̃b · β

− ∆α̃T · P̃T
a · P̃b · β̃

∆βT · P̃T
b · P̃b · β

− ∆βT · P̃T
b · P̃a · α̃

∆βT · P̃T
b · P̃b · β

+ 1

where the sign operator has been omitted assuming that σ(P̃b · β)2 ̸= 1.

As we approach ∆α̃,∆β
lim−→ 0, the equation converges to a real number, as both

the numerators and the denominators have the same degree. This indicates that

there exists a real value λ that can guide the solution process towards satisfying

the constraint, since an undefined value only appears when the constraint is met.

B.4 Relationship between α̃∗ and r∗

Let us recall the definition of α̃ from Equation (3.16):

α̃ =
α

σ(Ph
a · α)

· r (B.20)

By multiplying both sides for P̃h
a and applying standard deviation, we obtain:

σ(Ph
a · α̃) = σ(Ph

a ·
α

σ(Ph
a · α)

· r) (B.21)

Since r and σ(Ph
a · α) are constants, they can be extracted from the standard

deviation operator, leading to:

σ(Ph
a · α̃) =

σ(Ph
a · α)

σ(Ph
a · α)

· r = r (B.22)
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B.5 Monotonicity of Kernel-Based HGR

Let α∗ and β∗ be the optimal coefficients obtained from the calculation of

HGR-KB(a, b;h, k). We want to demonstrate that, for any pair of integers p ≥ h

and q ≥ k, the correlation computed using degrees (p, q) is always greater than or

equal to that computed using (h, k).

Since HGR-KB is defined as the maximal Pearson correlation obtained using

two optimal coefficients ϕ∗ and ψ∗, this boils down to demonstrating that:

∃ϕ, ψ s.t. ρ(Pp
a · ϕ,P

q
b · ψ) ≥ ρ(Ph

a · α∗,Pk
b · β∗), ∀a, b ∈ Rn (B.23)

or rather, that it is always possible to find a pair of coefficients ϕ ∈ Rp and ψ ∈ Rq

that, despite potentially being suboptimal, return a greater or equal Pearson’s

correlation calculated on the polynomial expansion matrices Pp
a and Pq

b.

This can be easily demonstrated by choosing the vectors ϕ =
[
α∗ 0p−h

]
and

ψ =
[
β∗ 0q−k

]
, which are formed by appending zeros to the end of the optimal

coefficients α∗ and β∗. Using these coefficients, we neutralize the effect of higher

orders, thus obtaining:

Pp
a · ϕ =

p∑
i=1

ai · ϕi =
h∑

i=1

ai · α∗
i +

p∑
i=h+1

ai · 0 = Ph
a · α∗ (B.24)

Pq
a · ψ =

q∑
i=1

bi · ψi =
k∑

i=1

ai · β∗
i +

q∑
i=k+1

bi · 0 = Pk
b · β∗ (B.25)

which results in ρ(Pp
a · ϕ,P

q
b · ψ) = ρ(Ph

a · α∗,Pk
b · β∗). Considering that ϕ and ψ

are potentially suboptimal, we determine that:

ρ(Pp
a · ϕ∗,Pq

b · ψ
∗) ≥ ρ(Pp

a · ϕ,P
q
b · ψ) = ρ(Ph

a · α∗,Pk
b · β∗) (B.26)



Appendix C

Proofs of Chapter 4

This appendix presents the demonstrations of theorems and properties discussed

in Chapter 4. The same content, with minor edits, is available in the technical

appendix of [Giuliani et al., 2023].

C.1 Closed-form Computation of GeDI

We start by considering the definition of GeDI as outlined in Equation (4.4):

argmin
α,r

∥∥(Ph
a · α− µ(Ph

a · α)) · r − (b− µ(b))
∥∥2

2
s.t. σ(Ph

a · α) = σ(a) (C.1)

As usual, we can substitute the polynomial kernel and the target vector with

their zero-centered versions P̃h
a and b̃. Then, we employ a Langrangian multiplier

λ to incorporate the constraint into the objective function C(r, α, λ), yielding:

argmin
r,α,λ

C(r, α, λ) :=
∥∥∥P̃h

a · α · r − b̃
∥∥∥2

2
+ λ

[
σ(Ph

a · α)− σ(a)
]

(C.2)

To determine the optimal solution of the objective function, we need its gradient

to be zero. This implies that having a null derivative with respect to r is a necessary

condition for optimality, hence we can determine the value of r∗ by calculating the
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derivative of C(r, α, λ) in terms of r:

∂C(r, α, λ)

∂r
= 2 · (P̃h

a · α)T · (P̃h
a · α · r − b̃) (C.3)

and posing it to zero in order to obtain the following equivalence:

2 · (P̃h
a · α)T · (P̃h

a · α) · r = 2 · (P̃h
a · α)T · b̃ (C.4)

The scalar values (P̃h
a · α)T · (P̃h

a · α) and (P̃h
a · α)T · b̃ represent, respectively,

the variance of the vector Ph
a · α∗ and the covariance between Ph

a · α∗ and b, both

multiplied by a constant n. Therefore, Equation (C.4) can be rewritten as:

2n · var(Ph
a · α) · r = 2n · cov(Ph

a · α, b) (C.5)

from which we can derive the explicit expression for r∗ as:

r∗ =
cov(Ph

a · α∗, b)

var(Ph
a · α∗)

(C.6)

As a final step, we can leverage the constraint on the standard deviation outlined

in Equation (4.4) to replace var(Ph
a · α∗) with var(a), given that variance is defined

as the square of the standard deviation. Ultimately, since the GeDI indicator was

defined in Equation (4.5) as the absolute value of r∗, we arrive at:

GeDI(a, b;h) =

∣∣∣∣cov(Ph
a · α∗, b)

var(a)

∣∣∣∣ (C.7)

C.2 Equivalence Between GeDI and DIDI

Let us consider a categorical attribute a ∈ A and a continuous attribute b ∈ B.
The definition of DIDI in regression tasks as outlined by [Aghaei et al., 2019] is:

DIDI(a, b) =
∑
v∈A

∣∣∣∣∣
∑n

i=1 bi · I(ai = v)∑n
i=1 I(ai = v)

− 1

n

n∑
i=1

bi

∣∣∣∣∣ (C.8)
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where I(π) represents the indicator function that returns 1 if the proposition π

holds true and 0 otherwise.

We restrict our proof to scenarios where a takes binary values, meaning that

A = {0, 1}. We assume that there is at least one element of each group, i.e.,

∃i, j ∈ {1, . . . , n} | ai = 0 ∧ aj = 1; then, based on the value of v, we can replace

the indicator function I(ai = v) with 1− ai or ai, resulting in:

DIDI(a, b) =

∣∣∣∣∣
∑n

i=1 bi · (1− ai)∑n
i=1(1− ai)

− 1

n

n∑
i=1

bi

∣∣∣∣∣+
∣∣∣∣∣
∑n

i=1 bi · ai∑n
i=1 ai

− 1

n

n∑
i=1

bi

∣∣∣∣∣ (C.9)

By factorizing the multiplications and dividing numerator and denominator of

each fractional term by a constant factor n, we can reformulate Equation (C.9) as:

DIDI(a, b) =

∣∣∣∣∣ 1
n

∑n
i=1 bi ·

1
n

∑n
i=1 aibi

1
n

∑n
i=1 1−

1
n

∑n
i=1 ai

− 1

n

n∑
i=1

bi

∣∣∣∣∣+
∣∣∣∣∣ 1
n

∑n
i=1 aibi

1
n

∑n
i=1 ai

− 1

n

n∑
i=1

bi

∣∣∣∣∣ (C.10)
At this stage, we carry out the following substitutions:

1

n

n∑
i=1

1 = 1
1

n

n∑
i=1

ai = µa
1

n

n∑
i=1

bi = µb
1

n

n∑
i=1

aibi = µab (C.11)

where µa, µb, and µab denote the mean values of vectors a, b, and a⊙ b, respectively.
Using these replacements in Equation (C.10), we get:

DIDI(a, b) =

∣∣∣∣µb − µab

1− µa

− µb

∣∣∣∣+ ∣∣∣∣µab

µa

− µb

∣∣∣∣ (C.12)

=

∣∣∣∣µb − µab − µb · (1− µa)

1− µa

∣∣∣∣+ ∣∣∣∣µab − µb · µa

µa

∣∣∣∣ (C.13)

=

∣∣∣∣µaµb − µab

1− µa

∣∣∣∣+ ∣∣∣∣µab − µaµb

µa

∣∣∣∣ (C.14)

In this context, we can observe that µab−µaµb denotes the covariance between a

and b. Moreover, by multiplying and dividing both terms by the other’s denominator,
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we adjust them to the same value and obtain:

DIDI(a, b) =

∣∣∣∣µa

µa

· cov(a, b)
1− µa

∣∣∣∣+ ∣∣∣∣1− µa

1− µa

· cov(a, b)
µa

∣∣∣∣ (C.15)

=

∣∣∣∣µa · cov(a, b)
µa · (1− µa)

∣∣∣∣+ ∣∣∣∣(1− µa) · cov(a, b)
(1− µa) · µa

∣∣∣∣ (C.16)

=

∣∣∣∣µa · cov(a, b)
µa − µ2

a

∣∣∣∣+ ∣∣∣∣cov(a, b)− µa · cov(a, b)
µa − µ2

a

∣∣∣∣ (C.17)

Given that a is a binary vector, it follows that 0 ≤ µa ≤ 1, implying that the

numerators have opposite signs as they entirely depend on cov(a, b). Consequently,

the absolute values can be combined into a single entity, resulting in:

DIDI(a, b) =

∣∣∣∣µa · cov(a, b) + cov(a, b)− µa · cov(a, b)
µa − µ2

a

∣∣∣∣ = ∣∣∣∣cov(a, b)µa − µ2
a

∣∣∣∣ (C.18)

Finally, we can observe that the vector a is invariant to the power operator due

to its binary nature. Consequently, µa = µa2 and, as a result, the denominator in

Equation (C.18) simplifies to the variance of a. Therefore:

DIDI(a, b) =

∣∣∣∣cov(a, b)var(a)

∣∣∣∣ (C.19)

This is precisely the value of GeDI(a, b; 1) as outlined in Section 4.3 and

demonstrated in Appendix C.1. Therefore, such a proof shows that our indicator

enhances the expressiveness of the DIDI without altering its semantics when dealing

with binary input vectors, thus strengthening the link with this established metric.

The same logic applies when both a and b are binary. In this situation,

[Aghaei et al., 2019] employs a slightly modified version of DIDI for classification

tasks, denoted as DIDIc, which is:

DIDIc(a, b) =
∑
v∈A

∑
w∈B

∣∣∣∣∣
∑n

i=1 I(ai = v ∧ bi = w)∑n
i=1 I(ai = v)

− 1

n

n∑
i=1

I(bi = w)

∣∣∣∣∣ (C.20)

Once more, the indicator function I(ai = v) can be substituted with either
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1− ai or ai, based on the value of v. Likewise, we substitute I(bi = w) with 1− wi

and wi, and replace I(ai = v ∧ bi = w) with the corresponding product between

the previous terms. Ultimately, this yields:

DIDIc(a, b) =

∣∣∣∣∣
∑n

i=1(1− ai)(1− bi)∑n
i=1(1− ai)

− 1

n

n∑
i=1

(1− bi)

∣∣∣∣∣+∣∣∣∣∣
∑n

i=1 ai(1− bi)∑n
i=1 ai

− 1

n

n∑
i=1

(1− bi)

∣∣∣∣∣+∣∣∣∣∣
∑n

i=1(1− ai)bi∑n
i=1(1− ai)

− 1

n

n∑
i=1

bi

∣∣∣∣∣+∣∣∣∣∣
∑n

i=1 aibi∑n
i=1 ai

− 1

n

n∑
i=1

bi

∣∣∣∣∣

(C.21)

By using the same notation presented in Equation (4.8) and performing similar

mathematical operations as those previously described, we arrive at:

DIDIc(a, b) =

∣∣∣∣µaµb − µab

1− µa

∣∣∣∣+ ∣∣∣∣µab − µaµb

µa

∣∣∣∣+ ∣∣∣∣µaµb − µab

1− µa

∣∣∣∣+ ∣∣∣∣µab − µaµb

µa

∣∣∣∣ (C.22)

This value is twice what is presented in Equation (C.14), which means that

DIDIc is twice our indicator GeDI(a, b; 1). Hence, the two values are distinguished

solely by a constant scaling factor, which is frequently cancelled out on its own, since

we usually constrain the DIDI indicator up to a relative threshold that depends on

the original level of discrimination.
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