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Gabriel Matias Lorenz

Abstract

To understand brain functions, it is necessary to characterize how neural systems en-
code, process, and transmit information. Information theory provides multivariate anal-
ysis tools to address these questions by analyzing activity recordings from real brains or
neural network models. These tools are model-independent and can be applied to any
recording modality and across different scales. In this thesis, we improved and used
information-theoretic tools to study the brain in several ways.

We developed the Multivariate Information in Neuroscience Toolbox (MINT), de-
signed for analyzing neural information. MINT includes tools such as Shannon entropy,
mutual information, transfer entropy, and Partial Information Decomposition (PID). It
enables researchers to quantify how neural populations encode and transmit behaviorally
relevant information across brain regions, enhancing investigations into neural compu-
tation. By integrating dimensionality reduction techniques and bias-correction methods,
MINT allows precise analysis of high-dimensional neural datasets.

A significant limitation in computing PID components from neural data is sampling
bias, particularly in synergy, which increases quadratically with the number of possi-
ble neural responses, leading to overestimations. To address this, we developed bias-
correction methods that enhance PID estimation accuracy. We applied these methods to
data from the auditory cortex, posterior parietal cortex, and hippocampus of mice engaged
in cognitive tasks, deriving accurate estimates of how synergy and redundancy vary across
regions.

Additionally, we used MINT to analyze simulated spiking neural network models to
explore contributions of different cortical interneurons to information encoding. Previous
models with a single interneuron type revealed redundant encoding in the gamma fre-
quency range. In contrast, our extended models showed distinct gamma frequencies carry
synergistic information about sensory inputs, suggesting interneuron diversity enhances
information encoding. Together, our methodological work and network model findings
highlight the potential of information theory for advancing understanding of neural en-
coding and information transmission.
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Chapter 1

Introduction

1.1 The brain as an information processing center

The brain is a complex organ responsible for an extraordinary array of tasks essential to
survival, cognition, and adaptation. It is made by a vast network of neural cells that en-
ables not only the regulation of basic bodily functions, such as breathing and heartbeat,
but also the execution of complex motor actions and the processing of sensory informa-
tion. Its incredible processing power allows the brain to react swiftly to external stimuli,
aiding in the avoidance of dangers and in the pursuit of basic needs, like food and shelter.
Beyond reacting to its environment, the brain can also learn from experiences, adapt based
on prior outcomes, and store information, forming memories that contribute to decision-
making and behavior regulation [1]].

Sensory information from the surrounding environment reaches the brain through a
process of detection, encoding, and transmission. This process begins at specialized sen-
sory receptors located in the periphery—such as photoreceptors in the eyes and mechanore-
ceptors in the skin—which convert physical stimuli into electrochemical signals. Each
receptor encodes specific stimulus features through unique patterns of action potentials
[1]]. These signals travel through the nervous system, reaching the brain stem and moving
up to the thalamus. The thalamus functions as a critical relay station, distributing this
sensory data to relevant sensory processing areas in the cerebral cortex, the outermost
layer of the brain and a primary site for advanced cognitive functions cortex, where sen-
sory information undergoes detailed processing to create coherent and actionable internal
representations of the external world. Through a coordinated interplay between sensory
and integrative cortical areas, the brain can synthesize input from multiple senses, al-
lowing it to interpret, remember, and learn from the incoming data. The formation of
these representations facilitates the brain’s ability to predict and respond appropriately to
environmental stimuli.

When sensory information necessitates an immediate behavioral response, such as
fleeing from a threat or reaching for an object, the brain translates perception into action.
Decision-making centers within the cortex communicate the need for movement to motor
areas. This information is then relayed down through the brain stem and out to the spinal
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cord, where it ultimately reaches the muscles, activating precise contractions that lead
to coordinated movement. From perception to behavior, the brain operates as a sophis-
ticated information-processing center that seamlessly integrates external stimuli, internal
representations, and motor responses.

1.2 Multiscale processes in the brain

The myriad of tasks managed by the brain would be impossible without the synchronized
actions of numerous processes occurring simultaneously across different levels of orga-
nization. These processes span from the activity of individual neurons to computations
carried out by large brain regions and occur on timescales ranging from milliseconds to
decades, reflecting both rapid responses to immediate stimuli and the gradual adaptations
seen in long-term learning and memory formation [2]].

At the most fundamental level, neurons serve as the primary information-processing
units of the brain. Each neuron is capable of encoding, transmitting, and even perform-
ing basic computations on incoming information. For example, neurons in the retina can
capture elementary visual features such as contrast, motion, and edges within specific
regions of the visual field, known as receptive fields [3|]. These neurons then relay this
information in the form of action potentials, enabling the brain to construct visual repre-
sentations from basic sensory input. Single neurons in the human medial temporal lobe
encode numerosity and abstract numerals [4] and neurons in the superior temporal gyrus
encode speech sound cues such as relative vocal pitch and onsets [5].

While single neurons are capable by themselves to encode and process information,
this does not give us an accurate description of how neuronal populations compute. Single
cell analysis is often done through trial averaging as a way to compensate neural variabil-
ity but the brain needs to process information from single events, which means interpret-
ing single cell variability in the context of the general population activity [6, |7]. When
neurons work as a population, they form interconnected circuits that can detect complex
patterns, support the integration of sensory information across modalities, and guide be-
havior [8]]. The precise temporal correlation between neurons in the lateral geniculate
nucleus improve considerably the information that can be extracted about visual stimuli
[9]]. The recording on the average electrical activity that is produced extracellularly, shows
the presence of electrical waves that participate in the encoding of information [[10-12].

These neural populations often operate in parallel, performing distinct computations
within specialized areas, yet they are interconnected through networks that enable inte-
grated processing [2, 13]. Populations communicate through white matter allowing the
brain to merge separate streams of sensory information, integrate memory, and adjust
motor responses accordingly. This network connectivity is critical for creating a cohesive
experience and adapting behavior based on past knowledge, ongoing sensory input, and
future predictions.
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1.3 Recording techniques in the brain

As we have seen, the brain hosts a multitude of processes that operate across a wide range
of temporal and spatial scales. To better understand these intricate activities, researchers
have developed a variety of tools and techniques that enable us to inspect brain function
at different levels. These methods include both invasive techniques, which require the
implantation of instruments within the brain, and non-invasive approaches that allow for
observation from outside the body.

One of the most powerful techniques for examining localized neuronal activity is elec-
trophysiological recording. This method involves inserting microelectrodes into specific
areas of the brain, where they can detect extracellular currents and identify individual
neuronal spikes by filtering out lower-frequency signals [[14]. Recent advancements in
technology have made it possible to utilize multiple electrodes simultaneously, facilitat-
ing the recording of a larger number of neurons at once. This capability not only increases
the volume of data collected but also allows for the estimation of the spatial location of
neurons through triangulation methods, enhancing our understanding of their spatial or-
ganization.

In addition to capturing action potentials, electrophysiological recordings can also
measure extracellular activity across lower frequency ranges, which is crucial for under-
standing broader brain dynamics. The Local Field Potential (LFP) represents the lower
frequency component of the electrical signals recorded by the electrodes [10]. It provides
an indirect measure of the collective activity patterns of neuronal populations, reflect-
ing the overall state of brain activity and synchronization among different brain regions.
Its analysis allows more information to be extracted from sensory populations [15} |16].
Despite their advantages, electrophysiological methods come with significant drawbacks.
The insertion of electrodes into the brain inevitably causes tissue damage, which can af-
fect the health and functionality of the surrounding neural tissue. Furthermore, the number
of neurons that can be recorded is inherently limited by the number of electrodes used.
Increasing the number of electrodes to capture more neurons further compounds the risk
of additional damage, posing challenges for long-term studies of brain function.

Calcium imaging is a powerful non-invasive technique for recording the activity of
neuronal ensembles without directly disrupting brain tissue [[17]. This method operates
by tracking changes in intracellular calcium concentration, utilizing fluorescent calcium
indicators that respond to fluctuations in calcium levels associated with neuronal activ-
ity. Calcium plays a vital role in numerous cellular processes, and elevated levels in the
soma can serve as indicators of action potential firing. When combined with genetic tools,
fluorescent indicators can be targeted to specific neuronal populations, allowing for de-
tailed investigations of their activity. However, while calcium imaging is beneficial for
observing large groups of neurons, it lacks the temporal precision of electrophysiological
recordings, meaning it cannot reliably capture every action potential within a population.

Even though calcium imaging minimizes direct interference with brain tissue, it still
requires the creation of an opening in the skull to allow the optical probe to access the
brain. Fortunately, there are also non-invasive methods that rely on the electromagnetic
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activity produced by the brain and can be measured externally. Techniques such as elec-
troencephalography (EEG) and magnetoencephalography (MEG) record brain activity by
detecting the electrical and magnetic fields generated by the neuronal currents [2]. These
methods provide valuable insights into the brain’s overall activity patterns without the
need for surgical intervention, making them particularly useful for studies involving hu-
man subjects or long-term monitoring of brain function [[18-20]].

Together, these diverse recording techniques offer complementary insights into the
brain’s complex information processing and neural dynamics, advancing our understand-
ing of how the brain operates across different scales and contexts.

1.4 Information theory in Neuroscience

As we have seen, the concept of information is integral to understand the the functional
workings in the brain, regardless of which scale or section we are studying. Also, the
diverse range of recording types allows us to observe brain activity at different scopes.
Information theory offers a solid mathematical foundation to work quantitatively with the
processes of encoding, processing and transmission of information [21]. It can be applied
to any data type or combination of them, it can detect non-linear relationships between
the variables without the need to first build a model that relates the studied variables [22]].
Below we will describe briefly the key concepts in the field that will be discussed through
the whole work.

To understand what information means mathematically, we first need to establish a
precise definition. We can define the level of uncertainty regarding an outcome through
the probabilities of each possible outcome, leading us to the definition of entropy H:

— Y p(r)logy(p(r)). (1.1)

reR

Here, H(R) quantifies the uncertainty associated with a random variable R [23]]. The core
idea is that the greater the uncertainty, the higher the entropy.

In relation to information, we can express the concept of mutual information between
two variables. The information gained about one variable after knowing the state of an-
other variable can be mathematically represented as:

I(R:S) = H(R) — H(R]S), (1.2)

where H(R|S) is the conditional entropy, representing the remaining uncertainty about
the variable R given the knowledge of S. This formulation allows us to quantify how
much uncertainty is reduced in R when we have additional information from S.

In the context of brain dynamics, we can further extend these concepts to explore the
interactions between different regions. Transfer entropy (TE) is a measure that quantifies
the amount of information that a ‘sender’ variable provides about a ‘receiver’ variable
that cannot be explained solely by the past activity of the receiver [24]. This measure al-
lows us to capture the directional influence one neural population may exert over another,
providing insights into the flow of information within neural circuits.
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These two quantities—mutual information and transfer entropy—serve as powerful
tools to enhance our understanding of brain function. For instance, we can apply these
concepts to study the encoding performance of neural populations[6} 25-29].

How can we measure the gain in encoding efficiency that groups of neurons exhibit
compared to their individual contributions? Additionally, what role do interconnections
among neurons play in either enhancing or inhibiting this encoding? We may also explore
the extent to which various stimulus features are represented uniformly across different
neurons versus those that are uniquely encoded by specific cells.

One framework that addresses these questions is Partial Information Decomposition
(PID) [30, [(31]. PID allows us to break down the total information of a collection of
sources into more elemental components, with each component representing the infor-
mation contributed by a specific combination of shared and unique information among
the sources. This method offers insights into the functional structure of a population’s
encoding.

However, while PID is valuable for analyzing two sources, its interpretation can be-
come complex when dealing with multiple sources, often lacking direct mechanistic ex-
planations. Another useful framework for evaluating the encoding of neuron populations
is the Information Breakdown [32-34]. This framework expresses the total information a
population encodes about a stimulus as a sum of positive and negative components, repre-
senting encoding enhancements and inhibitions that arise from measured correlations in
neuronal activity.

It is possible that only a small portion, or even none, of the information encoded is
actually used to guide behavior. Intersection Information (II) measures how much of the
sensory information encoded in neural population activity is read out to inform behavior,
and is computed with PID as the component of neural information that is both about
stimulus and choice [35-37].

Measures like Feature-specific Information Transfer (FIT) provide a precise analysis
of information transmission between neural populations [38]]. FIT quantifies the fraction
of overall information transfer—essentially transfer entropy—attributable to the informa-
tion encoded by the sender population regarding a specific stimulus S. Since there can
be multiple pathways for information transmission to a receiver population, a conditional
variant of this measure, known as conditional FIT (cFIT) [38]], can help clarify whether
the information about the stimulus is genuinely being transmitted from the sender popu-
lation or is instead coming from a third, confounding population.

By employing these advanced measures and frameworks, researchers can gain deeper
insights into the encoding mechanisms of neural populations and the dynamic interac-
tions that characterize information processing in the brain. This multifaceted approach
enhances our understanding of how neural circuits operate, revealing the complex in-
terplay between individual neurons, population dynamics, and information transmission
across the brain.

In chapter 2] we provide a toolbox with computational resources for information anal-
ysis. The toolbox contains functions to implement all the measures described above plus
preprocessing pipelines with binning and correction algorithms.



6 CHAPTER 1. INTRODUCTION

1.5 Challenges of information analysis in neuroscience

Information theory serves as a powerful tool for neuroscientists seeking to understand the
functions of neural networks. However, while this analytical framework offers valuable
insights, it also comes with certain caveats that researchers must navigate. One signifi-
cant challenge is that these measures rely heavily on the accurate estimation of the joint
probability distribution of neural responses and the associated stimuli. Consequently, re-
searchers must provide datasets that truly reflect these distributions, a task that becomes
increasingly daunting as the size of the neural population under investigation grows. This
is primarily due to the exponential increase in the number of potential response combina-
tions that must be sampled to achieve an accurate representation.

This challenge has a direct impact on the estimation of information. When the distri-
bution is undersampled, the resulting entropy estimation is overestimated [39, 40]]. Specif-
ically, because the conditional entropy is typically the least sampled term in the mutual
information equation, underestimating this component leads to a positive bias in the esti-
mation of mutual information itself. As illustrated in equation [I.2] this bias can skew our
understanding of the true informational dynamics at play within neural populations.

The issue of undersampling is not new; it has been extensively studied within the
field. Various bias correction methods have been developed to mitigate the effects of
undersampling when it is impractical to increase the number of trials in a dataset [39-43].
Many of these techniques have been specifically designed to address the estimation of
mutual information, and have undergone testing to validate their effectiveness.

Another possible method is to reduce the impact of high-dimensionality is to apply a
dimensionality reduction technique on the recording of population [44]] and later use the
reduced activity in the information analysis.

In addition to mutual information, efforts have also been made to apply bias correction
to the components of information breakdown. However, despite these advancements,
there has yet to be a systematic exploration of the biases affecting Partial Information
Decomposition (PID) measures. Current research in this area has primarily focused on
Gaussian variables [45]], leaving a significant gap in our understanding of how PID might
be influenced by undersampling in more complex or non-Gaussian distributions.

This highlights the need for further investigation into the systemic biases inherent in
PID measures and the development of appropriate correction methods. By addressing
these limitations, researchers can enhance the reliability of information-theoretic analy-
ses in neuroscience, leading to a more accurate understanding of neural encoding and
information processing in the brain. Ultimately, a robust framework for estimating infor-
mation content is essential for advancing our comprehension of neural network dynamics
and their implications for behavior and cognition.

In chapter [2, we provide tools of bias correction of all the information measures de-
scribed in the section above. We also show how the comparison of different dimension-
ality reduction techniques leads to conclusions on the nature of population coding. In
chapter[3] we perform a study on the bias produced by undersampling on the components
of a two-source PID analysis.
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1.6 Information theory in network modeling

So far, the methods discussed have primarily focused on analyzing recorded neural data
through the framework of information theory. However, while one of the main strengths
of information theory is the lack of necessity to assume a model, it also means that its
results do not give us an idea of the mechanisms behind the information encoding of
a system. Nevertheless, information-theoretic approaches can also be effectively com-
bined with modeling techniques. By representing the dynamics of observed measure-
ments through selected models that simplify the conditions of the studied system, we can
leverage the information values derived from these models to gain insights into the encod-
ing performance of the phenomena being modeled. This approach allows us to minimize
the interference of confounding processes that might occur in real neural systems.

For instance, if we consider that the activity of a neural population exhibits minimal
sensitivity to trial-to-trial fluctuations in the specific spike patterns generated by individ-
ual neurons, we can construct a model where each neuron’s response is described by its
average firing rate [3]. This firing rate model simplifies our understanding of how pop-
ulations of neurons encode information by focusing on the mean activity rather than the
details of spike timing.

However, while firing rate models offer a straightforward framework for analysis,
they may not sufficiently capture the dynamics of a real neural population under certain
conditions. For example, in networks that exhibit synchronous firing, the precise timing
of spikes becomes crucial for understanding the underlying neural computations. In such
cases, relying solely on average firing rates can obscure important information about the
temporal structure of neuronal activity.

To address these limitations, researchers often turn to spiking network models, which
are designed to capture the dynamics between individual neurons more accurately. These
models account for the detailed interactions among neurons and can represent the precise
timing of spikes, allowing for a more comprehensive understanding of network behavior
(3l 46]. The complexity of a spiking network model will depend on the sophistication of
the individual neuron model it employs.

For example, simpler representations can treat neurons as point objects, where the
model focuses exclusively on an average representation of the entire cell’s dynamics. This
approach is often exemplified by models such as the integrate-and-fire model, which sim-
plifies the neuron’s behavior to key dynamics without delving into the biophysical details
[46]. Conversely, more complex models, like the Hodgkin-Huxley model, incorporate
detailed biophysical properties, including ion channel dynamics and membrane potential
changes, to simulate the realistic behavior of neurons [46]].

By employing these spiking network models, researchers can better capture phenom-
ena such as synchronous firing and oscillatory patterns, which are critical for understand-
ing various cognitive processes and behaviors. These models allow for an investigation
of how the timing of spikes contributes to information processing and encoding within
neural circuits. Ultimately, the integration of information theory with sophisticated mod-
eling techniques enriches our understanding of neural dynamics and enhances our ability
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to analyze the encoding performance of neuronal populations in a more nuanced manner.

As an example, to study the generation and role of gamma oscillation oscillations
(40—100Hz) in the cortical network measured through LFP [[15,|16]]. Previous theoretical
and computational studies of gamma oscillations typically included excitatory neurons
and a single type of inhibitory neurons [11, 47-51]. The model of this inhibitory neu-
ron did not specify or differentiate the type of inhibitory being modeled, but that was
loosely matched to the properties of fast-spiking parvalbumin neurons, the most common
inhibitory neuron in many cortical regions. These models could explain the generation of
gamma oscillations exhibiting realistic spectral features, and could also explain the privi-
leged encoding of information from the sensory periphery by the power of activity in the
gamma band.

In chapters [2| and [3| we use rate models to provide ground truth dynamics that we
use to test the reliability of the information measures and the bias corrections. In chapter
we model the local field potential activity of a cortical network by using a recurrent
spiking network that outputs an aggregate measure of electrical activity. The activity
simulated from this network is later analyzed with information theoretic tools to analyze
the presence of synergy across frequency bands.

1.7 Overview of the chapters

In this work, we will work on the development and application of information-theoretic
tools designed to improve the research on multivariate neural activity.

In chapter [2, we present a computational toolbox built with many long-standing and
state-of-the-art information measures. We also provide preprocessing pipelines that are
suited to any data type, and tools for afterward processing and analysis. We showcase
the toolbox capabilities by applying not only to simulated scenarios to verify the analyses
coincide with the designed ground-truth, but we also apply to real datasets from different
experimental setups to showcase its usefulness and versatility.

In chapter 3] we focus on the problem of the limited sampling bias in partial informa-
tion decomposition. We conduct an explorative analysis to characterize the bias influence
in different scenarios. We apply on these terms correction procedures that were designed
originally for mutual information and we test their efficacy. We then apply these validated
procedures onto the analysis of real neuron pairs from different published experiments
and we showcase the impact of these corrections on the correct interpretation of the PID
results.

In chapter [ we apply some of the tools developed on the toolbox for an analysis
through simulated models. We implement a model of a recurrent cortical population that
accounts for the cellular diversity in inhibitory neurons and we analyze how these results
compare with previous models with no inhibitory neuron diversity.



Chapter 2

MINT: a toolbox for multivariate neural
data analysis

The content of this chapter was submitted for publication, and is currently under submis-
sion and being revised [52]. The analyses presented here correspond to those presented
in the first submitted version of the paper prior to being revised.

2.1 Introduction

Brain functions are based on the ability of groups of neurons or brain areas to encode,
process and transmit information [53, 54]. Consequently, information theory [21]], the
mathematical theory of communication, has deeply influenced the conceptualization of
brain operations. It has become a method of choice to analyze neural activity because of
its many advantages [6, [25-28]]. It provides single-trial measures of how neural activity
encodes variables important for cognitive functions such as sensory stimuli, and it is thus
more relevant for single-trial behavior than trial-averaged measures. It captures contribu-
tions of both linear and non-linear interactions between variables at all orders, and thus
allows hypotheses-free measures of information encoding that place upper bounds to the
performance of any decoder. Because of its generality, it can be applied to any type of
brain activity recordings. Also, it facilitates direct comparisons between the predictions
of normative neural theories and real neural data [26, [29].

Earlier work using information theory to analyze empirical neural data has focused on
low-dimensional measures of neural activity such as single neurons, small neural popula-
tions or aggregate measures (LFPs, M/EEG, fMRI). These studies have considered only
how information is encoded in neural activity, regardless of how it may be used down-
stream. Such seminal studies have demonstrated e.g. how the temporal structure of neural
activity (from single-neuron spike timing to network oscillations [[55H61[]) contributes to
sensory encoding, or how neural mechanisms such as adaptation contribute to brain in-
formation processing [28} 62].
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Figure 2.1: Overview of MINT. A: A: List of main MINT functions. B: MINT provides mul-
tivariate information theoretic functions to quantify the amount of information that single neu-
rons or neural populations carry about task-relevant variables (e.g. sensory stimuli or behavioral
choices). These methods are based on either direct-method calculation of information from the
discretized probabilities (ideal for small neural populations but not scalable with population size),
estimation through other techniques such as Kernel-based methods that can operate on real-valued
data, or by using supervised or unsupervised dimensionality-reductions techniques to approximate
high-dimensional neural population response probabilities with probabilities in lower-dimensional
spaces (scalable with population size). It also provides tools to quantify how much of the infor-
mation encoded by neural activity is used to inform behavior. C: MINT has multiple functions to
compute, in small or large populations, how interactions between the activity of different neurons
shape information encoding and create synergy or redundancy. D: MINT has tools to compute
transfer of information from one neural population or brain region to another. It can compute both
the total or stimulus-specific information transmitted between two nodes, with the option of con-
ditioning over the activity of other nodes. E: MINT has tools to correct for the limited-sampling
bias, an essential tool for analysis of empirical neuroscience data. F: MINT has a set of hierar-
chical permutation algorithms that provide null hypothesis testing for significance of information
encoding and information transmission and for the impact of correlations across neurons or time.
Mouse sketch is modified from doi.org/10.5281/zenodo.3925917|and brain sketch is modi-
fied from doi.org/10.5281/zenodo.3925989.

Over the last decade, neuroscience has seen major progress in the ability to record si-
multaneously the activity of many neurons and/or brain areas. These advances have driven
the development of novel information theoretic analytical tools to investigate how infor-
mation processing emerges from the interaction and communication among neurons or
areas. Studies have provided multivariate information tools to individuate when synergy
and redundancy arise in small populations, or to understand the mechanisms for generat-
ing redundancy and synergy, for example to characterize how correlations between the ac-
tivity of different neurons shape information processing[32-34, |53}, 163, 64]. Recent work
has also coupled information theory with dimensionality-reduction techniques to study
how information is encoded in populations of tens to hundreds of cells[35,|65H72]]. Other
studies have developed multivariate information theory to quantify transmission, rather
than encoding, of information across neurons or areas [24, 38, 73-81]. These methods
measure the overall or stimulus-specific information exchanged between simultaneously
recorded neurons and areas and determine whether transmission relies on synergistic in-
tegration of information across nodes. Another major direction of progress has been in
recording neural activity during behavior [82]. To support the growing interest on how
neural computations shape behavior, information theory has produced tools to charac-
terize the multivariate simultaneous relationship between sensory stimuli, neural activity
and behavioral output to enable quantifying the impact on behavior of the information
encoded in a certain area or population [35-37, 83].

While the use and dissemination of information theoretic algorithms has been aided
by software toolboxes [22, |84-101]], no toolbox yet provides a comprehensive imple-
mentation of tools to compute both information encoding and transmission, to break
down information into components reflecting the effect of interactions and to quantify
behavioral or downstream relevance of the encoded information (see Table [A.T)). To fill
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these gaps and address the need to collect organically these tools in a format that al-
lows immediately multiple analyses, here we introduce a new Multivariate Information in
Neuroscience Toolbox (MINT). MINT provides a comprehensive set of information theo-
retic functions (including Shannon Entropy and Mutual Information, directed information
transmission measures, information decompositions) and estimators (binned probability
estimators, limited-sampling bias corrections). The implemented information-theoretic
functions are detailed in [Al What they compute, and how they can be used in neuro-
science is summarized in Table 1. The accuracy and applicability of these algorithms has
been validated and demonstrated extensively with both discrete neural variables, such as
spikes in electrophysiological recordings [28} 58| |59, [102, [103]], and continuous neural
variables, e.g. LFP, M/EEG, fMRI and calcium traces [35} 72, 104-106].

Importantly, as we demonstrate with examples, combining these multivariate tools en-
ables addressing questions that cannot be addressed with a single tool. For example, com-
bining tools to identify the specific contribution of correlations to population encoding or
the amount of encoded information that informs behavior with dimensionality-reduction
techniques allows understanding how large neural populations influence behaviors. Com-
bining information encoding tools with content-specific information transmission tools
can reverse engineer information flow in neural networks with unprecedented understand-
ing. We thus anticipate that MINT will lead to uncover numerous new insights into neural
information processing.

2.2 Design and Implementation

MINT is written in MATLAB (version 2018b or newer) and depends on the Statistics and
Machine Learning, Optimization, Parallel Computing and Signal Processing Toolboxes.
MINT takes as input neural data (array of neural activity recorded in each trial) and task
variables (sensory stimuli or behavioral responses presented or produced in each trial).
It outputs information values and their null-hypothesis values for computing statistical
significance. illustrates MINT functions, options, and core routines.

MINT computes Entropy (H.m), which measures neural variability; Mutual Informa-
tion (MI.m), which measures information encoding (Fig. 2.1B). It computes the Informa-
tion Breakdown of Shannon Information into contributions due to correlations between
neurons [32, |33 |63} 107, [108]. It also computes Partial Information Decompositions
(PID) [30, [109]] of the information about a target variable carried by two or more source
variables into unique, synergistic and redundant information (Fig. [2.1[C). Computation of
PID requires specifying a redundancy measure, which can be selected by the user among
options [30, 31}, 91} | 110] with complementary advantages [[110, 111]. (Redundancy of
[91] requires either a MATLAB-compatible C compiler or pre-compiled files made avail-
able by us for Windows 11, macOS, and Linux Debian). MINT computes additional
functions of neuroscientific value: Intersection Information (II, function IL.m; Fig. 2.1B
see [37]), the amount of stimulus information in neural activity that is used to inform be-
havior; Transfer Entropy (TE, see [112]) and Feature-Specific Information Transfer (FIT,
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Function

What is Computed

What it is Used for

Entropy (H)

Variability of random variable X

Assess variability of neural activity

Mutual Information (MI)

How well an ideal observer can predict X
from single-trial observations of Y

How well activity of population of neurons
encodes info about task variables
(e.g. stimuli)

Information Breakdown

MI about X carried by a multivariate Y,
broken down into contributions arising
from correlations between different
dimensions of Y

How correlations between multivariate neural
activity (e.g. activity of populations of neurons)
contribute to population-level encoding

of task variables (e.g. sensory stimuli)

Partial Information
Decomposition (PID)

Decomposes MI carried by a multivariate Y
about X into unique info about X carried by
each element of Y, synergistic info found
only in the interactions between elements
of Y, and redundant info shared

among elements of Y

Whether groups of neurons or brain areas
carry synergistic or redundant info

about task variables (e.g. stimuli) or about
activity of other neurons or brain areas

Redundancy-Synergy
Index (RSI)

Quantifies whether the effect on encoding
info about X of interactions between
different variables within a multidim. Y
is predominantly redundant or synergistic

Whether groups of neurons or brain areas carry
predominantly synergistic or redundant info

Intersection Information
(ID)

Info about X carried by Y which is
used to inform Z about X

How much of the info about a task variable
(e.g. sensory stimulus) encoded in neural
activity is used to inform behavioral
reports (e.g. choices)

Transfer Entropy (TE)

MI about the past activity of sender X
found in present activity of receiver Y,
conditioned on past activity of Y

Measures overall transmission of info
between nodes of a neural network

Feature Specific
Information Transfer
(FIT)

MI about feature S presently encoded by
Y redundant with MI about S previously
encoded by X and unique with respect to
MI about S previously encoded by Y

Measures transmission between nodes of
a neural network of info about a specific
feature of task variables (e.g. sensory stimuli)

Conditional TE (cTE)
and Conditional FIT
(cFIT)

Versions of TE and FIT with info flow
conditioned or unique with respect
to another variable

Measure overall or feature specific transmission
of info between network nodes discounting
info possibly passing through other nodes

Supervised dimensionality
reduction (decoding)

Project data onto lower-dimensional space
using labeled data to optimize decoding

Intermediate step for info calculations
with large neural populations

Unsupervised
dimensionality
reduction

Project data onto lower-dimensional space
using unlabeled data to optimize data
explainability

Intermediate step for info calculations
with large neural populations

Limited-sampling
bias correction

Produces unbiased info estimates
unaffected by the limited-sampling bias

Needed to obtain more accurate info
estimates in all practical situations

Hierarchical Data
shuffling

Random permutations of data used to
create null distribution for statistical
testing for assessing the role of certain
data features in info encoding

Needed for statistical testing in all applications.
Useful to assess the role of spike timing or
correlation between neurons by comparing
info values obtained with these features
preserved or shuffled

Table 2.1: Glossary of Main Information Theoretic Functions. This table reports a short expla-
nation of what the implemented information theoretic quantities compute and for what type of
applications they may be used. X, Y, Z denote random variables.
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see [38]]), which measure overall and stimulus-feature-specific information transmission
between nodes of neural networks (TE.m, FIT.m and cFIT.m; Fig. 2.1D).

The information quantities depend on the probabilities of task variables (e.g. pre-
sented sensory stimuli) and neural responses. MINT implements the direct method [41,
59| estimator based on discretizing neural responses and task variable values and com-
puting the empirical occurrences across experimental trials of the discrete or binned re-
sponses. These estimators have been widely used in neuroscience information theoretic
studies, because neural spiking activity is intrinsically discrete and is usually quanti-
fied as the number of spikes emitted in one- or multiple-time windows of interest [41),
59]. The direct method captures the information carried by spike counts very precisely
(Fig.[A.3]in[A]). Because they are simple and do not make assumptions about the probabil-
ity distributions, discretized estimators have been used to compute information also from
continuous-valued aggregate measures of neural activity such as LFP, M/EEG, fMRI [56,
104, 105, |113]] or continuous-valued behavioral variables [114]]. If the scientific question
at hand needs PID in addition to Shannon information and the data are not Gaussian, then
discrete or discretized approaches are advised (as non-discrete non-parametric estimators
are available only for Shannon information and entropy). MINT provides binning func-
tions to discretize analogue data (equi-spaced or equi-populated binning, binning with
user-defined bin edges, and possibly automated determination of bin numbers [115,/116]).

Any real experiment only yields a finite number of trials from which probabilities must
be estimated. Finite sampling when using direct methods leads to a systematic error (bias)
in information estimates (Fig. [2.1E), which can be as big as the true information values.
Thus, bias corrections methods are essential for practical neuroscience applications, and
six such well-established methods are included in MINT [39, 40, 42| 143|117, /118]]. These
methods, along with binning, parallelization options and other features are user-specified
in an input structure (opts). Information (function MI.m) is computed by default with the
direct method, as it preserves all information available in the discretized neural activity.
We recommend its use for small-dimensional (up to N = 3 or 3) neural response (e.g.
responses of populations of up to 2-3 neurons) as its estimates from datasets of realistic
sizes can be still effectively corrected for the limited-sampling bias (Fig. [A.3]in[A).

Alternatively, probability estimators suited for real-valued data [119-121], such as
nearest-neighbors or kernel methods, can be used to estimate information and are avail-
able in MINT by specification in the input structure (opts). These methods also work
well for low-dimensional data.

Neither these estimators nor the direct method, however, work on their own when
considering high-dimensional neuronal responses (such as the activity of populations of
many neurons), as the curse of dimensionality prevents the direct sampling of the joint
response probabilities from high dimensional data (Fig. in[A). We thus provide ad-
ditional pipelines, recommended for high-dimensional neural responses such as the ac-
tivity of large neural populations, that compute information from the empirical neural
response probabilities but after reducing the dimensionality of neural population activ-
ity [35]. These dimensionality-reduction pipelines include supervised methods (Support
Vector Machines, SVMs and Generalized Linear Models, GLMs) which reduce the di-
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mensionality by providing decoding or posterior probabilities of the task variables given
the single-trial neural population activity (Fig.[2.1]A) and allow reliable estimations with
small datasets (Fig. in [A)). We also provide unsupervised methods (Non-negative
Matrix Factorization, NMF [122]]; Principal Component Analysis, PCA) which reduce
dimensionality individuating small numbers of dimensions with the highest explanation
power of neural activity. Supervised dimensionality-reduction algorithms that individuate
the directions in neural activity space with most discriminability of the task variable (e.g.
SVM) may be in general better suited than unsupervised algorithms individuating dimen-
sions that target best reconstruction of the spike trains (e.g. PCA, NMF) when the most
information is not encoded in the direction with most variations in neural activity space
(Fig.[A.3]in[A).

MINT provides all these dimensionality-reduction techniques with native MATLAB
functions, but it also allows easy interfacing with external libraries (e.g. libsvm [123]]
and glmnet [[124]) (Fig.[A.2]in[A). Importantly, these dimensionality-reduction tools can
be coupled with MINT’s Hierarchical Shuffling tool (hShuffle.m) which can disrupt, by
trial shuffling, specific features of population activity (such as response timing or correla-
tions between neurons) to probe their contribution to information processing [35, |125].

When deciding which estimator to apply to a given dataset, we recommend users to
test different algorithms on synthetic data that match essential features of the experiments
(e.g. discrete spike counts or continuous signals, number of trials and data dimensional-
ity, information levels) and chose what suits best. MINT provides a simulator of neural
population spike train activity (Poisson/non-Poisson both correlated or uncorrelated) that
can be used for this purpose.

2.3 Results

We illustrate how to use MINT to address highly topical neuroscientific questions, em-
phasizing the utility of using synergistically multiple algorithms, allowed by MINT. In all
examples, we use the limited-sampling bias corrections and hierarchical data shuffles of
MINT, as they are essential for empirical data analyses.

2.3.1 Computing the role of interactions between neurons in
information encoding

An important question in neuroscience is whether and how the functional interactions
(measured as activity correlations) between neurons enhance or limit information encod-
ing in neural populations [8, 53]]. Several information theoretic methods have been de-
veloped to address complementary aspects of this question [30, 32434/ |63} |64, 107, [125,
126]. Here we illustrate what we gain from their combined use enabled by MINT.

We consider how a population of N neurons encodes information about a stimulus
variable S. For neuron pairs (N = 2), we computed the population information (Mutual
Information between stimulus and the joint neural population response) with the direct
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method that estimates information directly form the empirical discretized response prob-
abilities (see Design and implementation). The overall effect of interactions between
neurons is expressed by the Redundancy-Synergy Index (RSI), the difference between the
population information and the sum of single-neuron stimulus information [64, |127]]. Pos-
itive (negative) RSI indicates predominantly synergistic (redundant) interactions. Contri-
butions of synergy and redundancy can be separated using PID [109, 128]]. The Infor-
mation Breakdown [32-34] shows how RSI arises from interactions between neurons, by
breaking down RSI into components g_sim (contribution of the similarity across neu-
rons of trial-averaged responses to different stimuli, see also [64]), I oring (contribution
of the interplay between the signs of signal similarity and of noise correlations, defined
as correlations between neurons in trials to the same stimulus), and of I.or.qep (quantify-
ing information added by the stimulus-modulation of noise correlations, or, equivalently,
bounding the information lost when using decoders trained without considering correla-
tions [63, [108]]).

These small-population direct information calculations have the advantage of not
making assumptions about decoding mechanisms, but do not scale up to large popula-
tions because of the curse of dimensionality [40]. Population information can be obtained
by estimating probabilities in the reduced space of the stimuli decoded from single-trial
neural activity. These estimates scale well with population size and can be computed
robustly with small datasets (Fig. in [A). However, specific decoders may severely
underestimate total information in neural activity (see Fig.[A.3]in[A)), especially when the
decoder does not operate on the features of neural activity that carry most information.
We illustrate below how MINT allows determining the role of correlations in population
coding by comparing decoders that do or do not use information in correlated activity
and by leaving intact or removing information in correlated activity using hierarchical
shuffling tools [35, 53] [125].

We illustrate these methods first by simulating the activity of N = 20 neurons re-
sponding to two stimuli. In the first simulated scenario (Fig. [2.2]A), only correlations
between activity of different neurons, but not the single-neuron activities, are stimulus-
modulated and thus encode stimulus information. The single cell information is zero, but
the pairwise population information is not. Positive RSI arises because of large synergy
with negligible redundancy. The Information Breakdown reveals that all the synergistic
information is due to stimulus-dependent correlations. Population decoding with SVM
of theN = 20 neurons reveals that large-population information can be accessed exclu-
sively with a non-linear decoder, and that shuffling correlations destroys all information,
confirming it is exclusively encoded by correlations.

In the second simulated scenario (Fig. ), information is encoded by single cells,
correlations are only weakly stimulus-modulated, all neurons have equal stimulus tun-
ing (responding more strongly to stimulus 2), and noise correlations are positive. In this
configuration, redundancy is created (all neurons have the same trial-averaged response
profiles to the stimuli) and correlations reduce information (they are elongated along the
axis separating the mean firing rates of individual neurons and thus increase the overlap
between the stimulus-specific distributions of neural activity) [[32]. Negative RSI arises
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because of larger redundancy (created by so called signal similarity expressing the sim-
ilarity of tuning to stimuli of individual neurons) than synergy (created by the small but
present stimulus-modulation of correlations). Information Breakdown analysis reveals
that indeed information is more redundant because the signal-noise similarity (captured
by Lsig-sim and Icor-ing) 18 larger than the small stimulus-dependent correlations Icor-dep- In
the large N = 20 population most information can be accessed with a linear SVM, with
the non-linear SVM adding relatively little, and noise correlations reduce information
(shuffling them away increases information).
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Figure 2.2: Assessing the role of correlations among neurons in neural population encoding. In
each column, we consider analysis of a different dataset. A: simulated population of N = 20
neurons which carry information only by stimulus-dependent correlations, with no stimulus in-
formation provided by single-neuron firing rate modulation. B: simulated population of N = 20
neurons which carry information by single neuron firing modulations and which have information-
reducing correlations. C: CA1 recordings of N = 43 — 104 neurons over n = 11 sessions during
spatial navigation of a linear track in virtual reality. D: Al recordings ofN = 20 neurons over
n = 12 sessions during tone presentation. In each row, we plot from top to bottom: direct calcu-
lation of information for neuron pairs and of sum of single neuron information; direct calculation
of redundancy-synergy index (RSI), of synergy and redundancy separately and of the Informa-
tion Breakdown components for neuron pairs; calculation of encoded information of the whole
population using the information in the confusion matrix of an SVM decoder (linear or RBF),
computed either on the real population responses (which contain correlations between neurons) or
pseudo-population “shuffled” response obtained collecting randomly permuted trials to the same
stimulus (shuffling removes correlations at fixed stimulus). In columns A-B we compute Shannon
Information between neural activity and the identity of the two simulated stimuli. In column C-D
we compute Shannon Information between neural activity and the identity of the presented tone
(S = 2 different tones) or the spatial location of the mouse (binning locations into S = 12 equi-
distant spatial bins), respectively. In column C, direct measures of pairwise information were ob-
tained with R = 2 equi-populated bins (appropriate for this dataset consisting of non-deconvolved
calcium fluorescent traces). In column D, direct measures of pairwise information were obtained
with R = 3 bins, done by capping to 2 spike counts (appropriate for this dataset consisting of
calcium signals deconvolved to estimate firing rates and activity counted in short windows). In
each panel we plot mean and SEM (for simulated data in panel A-B: over n = 190 neural pairs
and n = 10 simulation repetitions for the direct information calculations; over n=5 different data
folds and n = 10 simulation repeats for the decoding information values; for CA1 data in Panel C:
over n = 10750 simultaneously recorded neuron pairs for the direct information calculations, and
over n = 11 recording sessions and n = 5 trial folds for the decoding information values; for Al
data in Panel D: over n = 2280 simultaneously recorded neuron pairs for the direct information
calculations, and over n = 12 recording sessions and n = 2 trial folds for the decoding information
values). Symbols *, ** *** denote two-tailed p < 0.05, p < 0.01, p < 0.001 respectively, com-
puted with paired t-tests. See[A.6.1] [A.7.2]and [A.7.3]in[A] for details of simulations and real data
analysis. Mouse sketch in Panel D is modified from doi.org/10.5281/zenodo.3925985.

We then applied the same analyses to two real neural datasets. We first analyze encod-
ing of the mouse position (within a linear track) by populations of 43-104 simultaneously
recorded neurons from the CA1 region of the mouse hippocampus [69] (Fig. [2.2]C). With
the pairwise analysis, PID shows that both synergy and redundancy are present, but syn-
ergy is larger and the Information Breakdown shows that this is due to modulation of the
noise correlations strength with the position (Icor-gep ~ 10% of the pairwise information).
Using a nonlinear decoder of the whole population increases information by ~ 80% over
what could be achieved with linear decoders, and shuffling data to destroy correlations
decreases the nonlinearly decoded information by ~ 80%, revealing a large effect of hip-
pocampal noise correlations in position encoding by large neural populations, whose size
could not be inferred by neuron pairs analysis.

We then analyzed encoding of sound intensity by populations of 20 neurons simultane-
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ously recorded from the mouse auditory cortex (A1) during pure-tone sound presentation
(Fig. 2.2D). These networks were selected, among all recorded neurons, based on their
encoding of task-relevant information in [129]. With the pairwise analysis, PID shows
that both synergy and redundancy are present, but redundancy is larger. Information
Breakdown analysis shows that this is due to negative Io.sim (neuron pairs have simi-
lar tuning to the stimuli) and /.or.ing (Most neural pairs have also positive correlations),
with Icor-gep contributing much less. Decoding whole-population activity with a nonlinear
SVM did not increase the information decoded with a linear SVM (stimulus-dependent
correlations were weak), and shuffling away noise correlations increases information sub-
stantially (thus correlations strongly reduced information).

Together, these results illustrate the power of combining MINT tools to understand
deeply how interaction between neurons shape neural population coding.

2.3.2 Computing the Impact of Stimulus Information in Neural
Activity for Behavioral Discrimination

Traditional approaches to neural information encoding of sensory stimuli have focused
solely, as in the above examples, on how neurons or populations encode information about
these stimuli. However, it could be that little or none of the information they encoded is
actually utilized to inform behavior. It is thus important to have instruments to understand
how much information in neural activity contributes to behavior.
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Figure 2.3: Stimulus, choice, and Intersection information coding in populations of cortical au-
ditory neurons during a tone discrimination task. A: Stimulus information and Intersection Infor-
mation encoded in neural activity recorded during a sound tone discrimination task. Left: single
cell estimates using the direct method. Right: estimates of the information quantities using a RBF
SVM (2-fold cross validation) as function of the population size. We plot the mean and SEM over
all n = 12 Field of Views and over all folds and over all subpopulations used. For population sizes
N = 1—18, more than 100 independent subpopulations can be obtained, we shortened computa-
tion time using only n = 100 randomly sampled subpopulations. For population size N = 1 and
19, we used all the n = 20 different subpopulations available. For the direct information calcula-
tion, we used 3 bins for 0 spikes, 1 spike and any value above 1. For all information analyses, we
used the shuffle subtraction to correct for the limited-sampling bias. The dashed horizontal line
plots the averaged information needed to explain behavioral discrimination accuracy (computed
as the information between stimulus and choice). Full lines show log-polynomial fits to the de-
pendence of stimulus and intersection information on population size. The population size with
information sufficient to explain behavioral discrimination accuracy is the x-axis intercept of the
point at which the fit lines cross. B: Schematic of the behavioral task in mice used when recording
the data analyzed in this figure. C: Stimulus and choice boundary computed with MINT in the
space of paired neural activity for one example neural pair in the dataset. The value of the angle
between the two axes is reported in the inset. Right: distribution of the absolute value of the angle
between the stimulus and choice boundaries for the n = 2280 neural pairs in this dataset. See
[A.6.1] and [A.7.3)n [A] for details of simulations and real data analysis. Mouse sketch is modified
from doi.org/10.5281/zenodo.3925985,

Intersection Information (II) measures how much of the sensory information encoded
in neural population activity is read out to inform behavior (Fig. [2.3]A), and is com-
puted with PID (using the tri-variate probabilities of stimuli, neural activity and behav-
ioral choices) as the component of neural information that is both about stimulus and
choice [35-37]. To demonstrate its use, we applied it to analyze the activity of popu-
lations of neurons recorded with 2-photon calcium imaging in mice in auditory cortex
during pure-tone perceptual discrimination [129] (Fig. 2.3B).

We first considered information encoded by single neurons, computed with the direct
method. If the readout of the stimulus information in neural activity was optimal (respec-
tively, completely suboptimal), II would equal the stimulus information, (respectively, be
zero). We found that for single neurons, IT was ~ 90% of the total single-neuron stimulus
information, showing that information encoded by these neurons is not read out optimally
but still efficiently.

For sampling reasons explained above, the direct calculation of II can be done for
small (N = 1 — 3), but not for large populations. How can we use II to address how infor-
mation relevant to behavior scales with population size? Specifically, how large must a
population be to account for perceptual discrimination ability? To answer this, in MINT
we combined II with dimensionality-reduction techniques. In this application, we used
an SVM to compress neural activity (using svm_wrapper .m before II.m). This compres-
sion loses some information (the information values obtained with the direct method are
~ 20% higher than the single cell values obtained with SVM decoders; Fig. [2.3A). How-
ever, Il population information computed with SVM decoders are scalable and data-robust
(Fig.[A.3]in[A)). Computing how information scales with population size (Fig.[2.3]A) shows
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that as population size increases, the gap between stimulus information and II widened.
This means that behaviorally-relevant information is more redundant across neurons com-
pared to information that is not used to inform behavior, confirming the usefulness of
redundancy for behavioral readout [[130]. Had we considered only stimulus information,
we would have incorrectly concluded that ~ 23 such neurons are sufficient to account for
the mouse discrimination performance (Fig.[2.3]A). However, taking intersection informa-
tion into account reveals that ~ 34 such neurons are instead needed to fully account for
the perceptual discrimination ability, as not all stimulus information encoded in neural
populations is read out (Fig. 2.3]A).

We endowed MINT with instruments to characterize neural mechanisms of readout.
Suboptimality may arise because of a misalignment between how information is encoded
and how the brain reads it out to inform choices [36]. MINT returns the axes in neural
activity space trained to discriminate between stimuli and the axes trained to discriminate
different choices (using svm_wrapper .m, see Fig. [A.4]in [A] for examples on simulated
data). Computing decoding angles of pairs of Al neurons (Fig. [2.3]C) shows that most
pairs had a small but non-zero mis-alignment between stimulus and choice decoders,
which explains the efficient but sub-optimal readout.

In sum, combining Intersection Information and dimensionality reduction can give
precise insights about the behavioral relevance of information encoded by neural popula-
tions.

2.3.3 Mapping Content-Specific Encoding and Transmission of
Information Within a Network
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Figure 2.4: Reverse engineering information flow using stimulus-encoding and stimulus-transfer
estimation algorithms. Panels A-D test MINT on simulated network data. A: Schematic of the
simulation. The network comprises four neural nodes (black circles) Xi,...,X4, each containing
two subpopulations (ellipses within the circles) encoding two independent binary stimulus fea-
tures S1,5,. The ground-truth stimulus specific information communication is plotted in Panel
A, with grey color used to indicate no stimulus selectivity, and green and brown colors used
to indicate information selectivity to S and S, respectively. B: Maximum Mutual Information
across time between each neural population X; and the stimuli S| and S;. C: Transfer entropy
(TE) between nodes. D: FIT about S; and S, between nodes. In panels C-D, only significant
(p < 0.01, permutation test) links are plotted, with thickness proportional to the computed value.
In each panel we plot the average information values across n = 10 simulation repeats. Panels
E-F test MINT on real human EEG data. E: Schematic of the putative information flow inter-
hemispheric information flow. LOT (ROT) denote Left (Right) occipito-temporal regions. LE
(respectively RE) denote the Left (respectively Right) Eye face visibility feature. F: Maximum
Mutual Information across time about the left or right eye visibility present in left of right OT
region. G Significant transfer entropy between LOT and ROT brain regions. H: Significant
FIT between LOT and ROT brain regions. In panels G-H, only significant (p < 0.01, permu-
tation test) links are plotted, with thickness proportional to the computed value. In each panel
we plot the average information values across n = 15 experimental subjects. See [A.6.3] and
in |A| for details of simulations and real data analysis. Human face sketch is modified from
svgrepo.com/svg/493087/men-in-their-20s-and-30s-face|and brain sketch is modified
from svgrepo.com/svg/83465/brain.

MINT provides both algorithms to study information encoding in individual network
nodes and information transmission across nodes. We here illustrate how to combine them
for reverse-engineering the information flow within neural networks.

We first simulated a network with four nodes Xi,...,Xs each modeling the aggre-
gate activity of a brain area (as e.g. measured by aggregate neural signals such as LFPs,
M/EEG or fMRI, see SM 6.3 in . This network has a well-defined ground-truth flow of
information about two independent stimulus features S; and S, (Fig. [2.4A). Information
about S is received from the outside by nodes X; and X4 in a short time window (3-12 ms
from simulation start for X; and 15-24 ms for X), and is then sent from X; to X, and X3
with a 5 ms delay. Information about S, is received (in the 3-12 ms window) from the
outside by X» which then sends it to X; with a 5 ms delay. Nodes X3 and X, exchange
information (also with a 5 ms delay) which is not about Sy or S,. To disentangle the
information flow, we computed (using the direct method) information encoded or trans-
mitted at each time (in Fig. 2.4 we plot for each node and link the maximal information
values over time, but we show in Fig. [A.5]in [A] that time-resolved analysis reconstructs
correctly the ground-truth information encoding windows and communication delays),
and we used MINT’s non-parametric permutations tests to identify significant encoding
or transmission. Using Mutual Information between individual stimulus features and in-
dividual node activity reveals correctly that all nodes have information about S; and that
only X; and X, have information about S, (Fig. [2.4B). To study how this information is
exchanged within the network, we first computed overall information transfer with Trans-
fer Entropy, finding correctly significant transfer from X; to X, and X3, from X, to X1, and
from X3 to X, (Fig. [2.4[C). To reveal the information content of this exchange we com-
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puted Feature Specific Information Transfer (FIT), revealing correctly that the informa-
tion transferred from X; is about S but not about S,, and that the information transferred
from X; is about S, (Fig.[2.4D). FIT finds no information transfer from X3 to X4 about
S1 or Sy, thus determining correctly that the overall information transfer from X3 to Xy
detected with TE is not about any of the two stimulus features. Finally, the finding that X;
and X4 encode information about §; while they do not receive it from other network nodes
implies that X; and X4 receive external S| information. Similarly, because X, encodes in-
formation about S, while not receiving within-network S, information demonstrates that
X, receive external S information. Thus, combining encoding with transmission analyses
could correctly reverse engineer the within-network specific information flow.

We next tested how MINT reverse-engineers information flow in real brain networks
by applying it to an existing EEG dataset recorded from human participants detecting
the presence of either a face or a random texture from images covered by random bub-
ble masks [131]]. Prior work [38} 131} 132] revealed that the visibility of the eye region
(proportion of visible pixels in the eye area) is critical for successful face discrimination
and that the Occipito-Temporal (OT) EEG electrodes are those encoding most Mutual
Information about both left and right eye visibility (Fig. [2.4E,F). To understand if some
of this information was exchanged across the OT regions in different hemispheres, we
used TE and FIT to analyze transmission of left or right eye visibility information across
OTs. TE across hemispheres was found in both directions (right-to-left and left-right),
suggesting a bi-directional inter-hemispheric communication (Fig. [2.4G). However, spe-
cific information transfer was precisely directional: FIT about the left eye was only from
right-to-left and FIT about the right eye was only from left-to-right (Fig. [2.4H). Thus, us-
ing MINT allowed establishing encoding and directional transfer of different eye features
across hemispheres with high specificity. These analyses could also temporally localize
both encoding and inter-hemispheric transfer (Fig.[A.6]in[A).

Together, these results illustrate the power of combining MINT tools to reverse-engineer
encoding and flow of specific information across brain networks.

2.4 Availability and Future Directions

MINT is downloadable in source code (github.com/panzerilab/MINT with DOI 10.
5281/zenodo.13998526), including a Dockerfile, and is licensed under GNU GPLv3.
It contains documentation on using it and on building and installing it from source, unit
tests, use examples, and replication of paper figures (github.com/panzerilab/MINT_
figures).

The modularity of MINT allows it to be used alongside any other MATLAB function
or toolbox. As exemplified above, we already provide pipelines for interfacing with de-
coding toolboxes. We plan to add plugins to generate neural and behavioral data from data
acquisition and preprocessing toolboxes (e.g. [133]) with MINT’s input-data format re-
quirements, and to generate MINT s outputs suitable to be fed directly into toolboxes for
further advanced analyses, e.g. for network analysis of information-transfer outputs [[134].
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We plan to further extend the range of information-theoretic methodology imple-
mented in MINT. MINT’s current version emphasizes discretized maximum likelihood
estimators. However, we provide only a handful of data-discretization techniques that go
with it. We plan to endow them with optimal discretization algorithms based on model
selection techniques (Akaike and Bayesian information criterions). While MINT already
implements a number of probability estimators for real-valued data we plan to extended
them to include other binless and kernel-based estimators [[135,|136]], and parametric prob-
ability models (Gaussian, Poisson) proposed in the neuroscience literature. Although we
provide several tools for assessing the role of correlated activity, we plan to implement
currently missing Maximum Entropy estimators [103]. Finally, the derivation of new
neuroscience-related information quantities with PID is highly active [109, |137] and the
open source and modularity of MINT will allow rapid integration of new developments.

A limitation that may restrict MINT’s usage is that it is developed only in MATLAB
at this stage. We are thus developing a translated python version of MINT to widen usage.
However, we verified that MINT is usable from Python using the MATLAB Engine API
for Python and we provide instructions in[A.2]in [A]



Chapter 3

Sampling bias corrections on
redundant, unique, and synergistic
information

The content of this chapter was submitted for publication, and is currently under submis-
sion and being revised [[138]]. The analyses presented here correspond to those presented
in the first submitted version of the paper prior to being revised.

3.1 Introduction

It is widely believed that the brain is a complex system and that behavior emerges from the
organized pattern of the interactions between the brain’s computing elements - the neurons
[139]]. Because of this, the study of how interactions between neurons shape information
processing has fascinated computational and empirical neuroscientists for decades [8}, 153,
64, 107, |140]. Information theory has been a prominent tool in this research as it is
uniquely positioned and is a natural choice for investigating neural information processing
(6L 25 26]. Shannon information captures all ways in which systems carry information,
it is highly general and applicable regardless of the type of noise and statistics, and is
thus equally applicable across species and recording modalities and to real data and in
silico models. While earlier work has concentrated on understanding whether correlations
between the activity of different neurons increase or decrease information [9) [33) 64,
107]], recent advances in information theory based on Partial Information Decomposition
(PID) [30]] have enabled neuroscientists to formulate more precise questions [137] about
the unique information carried by each individual neuron, the synergistic information
generated by neural interactions (that is, new information that emerges specifically from
and is found only in the interactions between neurons) or redundant information present
when different neurons share the same information.

Earlier applications of Information Theory to neuroscience have recognized that Shan-
non Information measures from neural activity suffer from a prominent limited sampling
bias [42, 43, |121]]. This bias does not only affect the precision of the estimate, but can

25
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also skew comparisons between the information carried by simpler (less biased) and more
complex (more biased) neural representations. The information theoretic neuroscience lit-
erature has provided effective tools for correcting for the Shannon information sampling
bias [40]. However, to date the problem of whether synergy, redundancy and unique
information components of PID are biased has not been studied systematically. To our
knowledge, only one study investigated PID sampling bias [45]. This method was valid
only for Gaussian distributions, which do not apply easily to the discrete spiking activity
of neurons. Here, we study the sampling bias of discrete PID estimators suitable to study
the spiking activity of neurons. We found that the PID components are unevenly biased,
with synergy far more biased than any other component. We study and provide an under-
standing of the origin and properties of the bias, and based on this we provide methods
to reduce this problem effectively that provide more accurate measures than the state of
the art. Finally, we test and apply our method to 53117 pairs of neurons simultaneously
recorded from the mouse cortex and the hippocampus.

3.2 Background: short introduction to PID

For completeness, we first summarize the concepts of PID that we use. PID decomposes
the information jointly carried by a set of source variables (for us, a set of simultaneously
recorded neurons) about a target S (for us, a sensory stimulus) into non-negative compo-
nents that capture information about the target that is either redundantly encoded across
sources, uniquely encoded by a single source or synergistically encoded by the combina-
tion of sources. In this paper, we will focus on the case of two source variables, which has
received the most attention in the PID literature and in real data applications, and which
has the most established theoretical foundations [31, 45, (78, |110, {129, (141} |142[]]. We
focus our presentation on the information about sensory stimuli carried by neurons, but
this framework straightforwardly extends to information carried by neurons about other
quantities, such as cognitive or motor variables or the activity of other neurons. We con-
sider the Shannon information /(S;R|,R;) about an external stimulus S carried jointly
by the neural spiking activity R; and R, of two simultaneously recorded neurons and
the Shannon information I(S;R;) that each of the two neurons (i = 1,2) carries about S.
I(S;R1,Ry) and I(S;R;) are computed from the probability distributions p(S,R,R,) and
p(S,R;) (i =1,2) [21,|143], as follows:

p(s,ri)
I(S;R;) = p(s,ri)log———~ (3.1)
ses,zr:’eR,- p(s)p(r:)
I(S;R1,Ry) = Z p(s,rl,rz)logM (3.2)
s€S,r1ER,1mERy p(s)p(rl ) rZ)

PID decomposes the joint and single-neuron information into four non-negative compo-
nents that satisfy the following linear relationships [30]:

I(S;R1,R2) =RI(S:Ry;Ry)+UI(S: R\ R2) +UI(S:Ry\Ry)+SI(S:Ri;R2) (3.3)
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I(S;Rl):RI(S:R1;R2)+UI(S:R|\R2) (3.4)
[(S;Rz):RI(SZRl;Rz)—I—UI(SiRz\R]) 3.5

where in the above equations RI(S : R|;R») is the redundant (or shared) information that
both Ry and R, encode about S; UI(S : Ry \ Ry) and UI(S : Ry \ R) are the unique in-
formation about S provided by one neuron but not by the other; and SI(S : R;R;) is the
synergistic information about S encoded by the combination of R; and R,. (We will some-
times shorthand these components as RI, Ulg,, Ulg,, and SI.) Eq. mean that all
4 components contribute to the joint information, whereas only the information that a
source carries uniquely and the information that is redundantly carried by both contribute
to single-neuron information. Because the 4 PID components satisfy 3 linear constraints
(Egs. [3.313.5), determining one component is sufficient to compute the other three. We
provide explicit equations of all components as function of synergy in Eqs (B.5).

Several definitions of PID components have been proposed [ 144, |1435]], satisfying de-
sired properties including non-negativity of each component and symmetry of R/ and SI
under permutation of Ry, R,. We will mostly use the BROJA definition [31], as it satisfies
many desirable properties including additivity of R/, SI, and U/ for independent systems
of sources and targets [[111, |145] and has been extensively applied to neural data [77,
129,142, |146]]. The BROJA defines the Union information, that is the target information
in the joint source space that cannot be possibly attributed to synergistic interactions, or
equivalently the total target information that can be extracted from a single source, as:

Union(S : R1;Ry) = min I,(S;R,R7) (3.6)
qeAp

where Ap is the set of all joint probability distributions ¢(S,R},R;) that have the same
pairwise marginals ¢(S,R;) = p(S,R;) and ¢(S,R2) = p(S,R) as the original distri-
bution p(S,R1,R2), and I,(S;R1,R>) is the joint information computed for distribution
q(S;R1,Ry). Then, the synergy is defined as the difference between the joint and the
union information:

SI(S: R\;Ry) = I(S:Ry,R2) — Union(S : R1:Ry) (3.7)

Other PID definitions, which were also successfully applied to neuroscience [38, 76, 78]
but do not satisfy additivity include the originally proposed I,,;,;, [30] and the minimum
mutual information Iy [110]]. 1, quantifies R/ as the similarity between R and R; in
discriminating individual values of S, while Ij;3s; quantifies R/ as the minimum between
the mutual information individually carried by Ry and R», thus capturing only the amount
but not the content of information carried by each neuron [145].

3.3 Background: discrete estimators of information and
PID in neuroscience

Neural spiking activity is an intrinsically discrete variable. Thus, in most information
theoretic studies of neural spiking activity, the responses have been treated as discrete
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variables. When focusing on spike count codes, the neural response is described by the
number of spikes emitted by the neuron in the time window of interest [[102, 103} |126|
1474150]. When investigating if the timing of spikes encodes additional information
above and beyond that present in the spike counts, then the most established approach
(41, |55, 59, |151} |152]] is to discretize the neural response time window of interest into a
number of small time bins and then turn the spike train into a binary word. Importantly,
often neural responses are sparse and information is encoded by relatively low spike num-
bers [61,(148]. In such cases, as we show in Fig. the Gaussian approximation to the
information is highly inaccurate. Because it is simple and does not require assumptions on
the probability distributions, discretization of neural responses for computing information
has been used to compute information also from continuous-valued non-spiking aggregate
measures of neural activity such as LFP, EEG, or fMRI [56} 57, |104} [105]. In addition,
often only a discrete number of different stimulus conditions is presented in an experi-
ment, and thus the stimulus S is typically a discrete variable. Under such conditions, the
information theoretic quantities can be computed by simply estimating the probabilities
by the empirical occurrences across experimental trials (maximum likelihood estimators)
and plugging them into the information equations. This discrete information approach,
which we call the plugin approach, has been extensively used in neuroscience for both
Shannon information [34, 35, 41, 59,69, 77,102, (103, ({107, {126, [149-151, /153, [154] and
PID [35] 38}, 57, (7678, (129, 146, 155-158|]. This discrete PID approach has also been
used extensively across fields of biology and applied sciences [[159-162].

3.4 Numerical investigation of the bias of individual PID
components for discrete estimators

Calculation of information requires accurate estimation of the stimulus-response proba-
bilities. With an infinite amount of data, the true stimulus-response probabilities could be
measured exactly. However, any real experiment only yields a finite number of trials from
which probabilities must be estimated. The estimated probabilities have finite sampling
fluctuations around their true values (Fig. [B.2)) which lead to both systematic error (bias)
and statistical error (variance) in estimates of information (Fig. [B.2] and Supplemental
Material, SM Section [B.3)). While variance can be reduced by averaging (e.g. across
experimental subjects or groups of neurons), the bias cannot.

The sampling bias properties of discrete estimators have been extensively studied for
Shannon information [40, 42, 43]], but not to our knowledge for discrete PID estimators.
To document them for PID, we simulated spike count responses of a pair of individual
neurons in response to a set of S = 4 different stimuli. We studied how the estimate of
each PID component depends on the number of available trials. We focus the presentation
on the BROJA PID decomposition [31]], but we confirm in Fig. [B.6| [B.7] [B.10} [B.1T] that
similar results apply to 1,;, and minimum mutual information Iysy;.

We developed three different scenarios with varying degrees of synergy and redun-
dancy. In each case, the spike count r; (i = 1,2) of each of the two simulated neurons
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for each stimulus was the sum of two Poisson processes. One Poisson process, that was
independently drawn for each neuron, expressed the variability of responses “’private” to
each neuron. Another Poisson process was shared between the two neurons and gave
rise to across-neuron correlations. Within each scenario, we also varied the overall level
of information, because previous studies showed that the bias of Shannon information
depends on it [40]. In our simulations, the parameter B expressed the baseline level of
activity; parameter o regulated the strength of stimulus tuning of each neuron (increasing
o increased single-neuron information); parameter 3 regulated the dissimilarity of tuning
between neurons (smaller B meaning more independent tuning); a parameter y regulated
the strength of the shared process. The overall information level was increased by in-
creasing o or Y or reducing B. Redundancy was increased by increasing 3. Synergy was
increased by increasing 7.

In Fig. we plot the values of the plugin estimates of joint information and of
the PID terms as function of the simulated number of trials per stimulus, averaged over
all n = 96 repetitions of the simulations with the considered number of trials. In these
simulations we discretized the spike counts of each neuron into 4 equipopulated bins
(leading to 16 possible discrete joint responses).

The limited sampling bias in the information estimates can be visualized by comparing
the average value of information obtained with a given number of trials with the asymp-
totic value obtained with the largest number of trials. In all scenarios, the plugin estimate
of the joint Shannon information was biased upward and the bias decreased with the num-
ber of trials, as reported previously [40, 41]]. Here, we focus on the bias of the estimates
of the PID quantities. We found several highly consistent and important results. First, as
for Shannon joint information, PID quantities were biased upward, with the bias decreas-
ing smoothly with the number of trials. Second, for the tens of trials usually available
in real experiments, the bias could be as large, or even larger, than the target informa-
tion quantities, meaning that the bias must be corrected for real data analyses. Third, and
unlike what was assumed in previous studies [45], the bias is highly uneven across PID
components. The synergy was by far the PID component with the largest upward bias. Its
bias was lower than but comparable to that of the joint information. Unique information
was also biased upward, albeit much less so than the synergy. Redundancy was almost
unbiased. This is important because it shows that conclusions taken from limited em-
pirical data without considering the bias will produce estimates artificially biased toward
synergy. For example, in simulations with ground-truth values of redundancy larger than
synergy, we would have incorrectly estimated synergy larger than redundancy for lower
number of trials due to the sampling bias. Fourth, the bias was larger, both proportionally
and in absolute terms, for lower information levels.

In SM Section B.8 we report analytical approximations to the sampling bias that allow
an intuitive understanding and support the generality of these findings. The main take-
home message from these calculations is as follows. For large enough numbers of trials,
the bias can be expanded in inverse powers of the number of trials N, accounting for the
smoothly decreasing bias with the number of simulated trials. The spurious levels (up-
ward bias) of information is due to the fact that random fluctuations in probabilities make
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Figure 3.1: Joint information and PID quantities as a function of the number of simulated trials
used to compute them. Top, central and bottom rows plot the simulated scenarios with no interac-
tion, high redundancy and high synergy, respectively (see SM Section[B.3). Left, center and right
columns represent simulations with higher information (o = 10), lower information (@ = 7) and
with shuffled low-information data. “Syn”: synergy. “Red”: redundancy. “U1+U2”: sum of the
two unique information of each neuron. Here we used the plugin method without bias corrections.
We used R = 4 discretization bins for each neuron (Table [B-I)). Each panel plots mean + 2 SEM
over n = 96 simulations.

the probabilities more different across stimuli than they actually are. At fixed numbers
of trials, the bias induced by these fluctuations depends only on the number of possible
responses and the bias is larger for larger number of discretized possible responses. The
main term for the synergy bias is due, like for the joint information, to fluctuations in the
joint probability P(ry,r2,s), which is more undersampled than the marginal probabilities.
The main bias term for the unique information originates from and is explained by fluctu-
ations in the marginal probabilities, which are smaller because the marginal probabilities
are defined in a smaller single-neuron space and are easier to sample. As a result, the
bias of the joint information and of the synergy increases quadratically with the number
of single-neuron discrete responses, whereas the bias of the unique and redundant in-
formation increase linearly or sublinearly (as found numerically, compare Fig. 3.1} B.4]
[B.5). Low information levels typically correspond to stimulus-specific distributions with
a larger number of possible responses.



3.5. CORRECTING FOR THE PID LIMITED-SAMPLING BIAS 31

3.5 Correcting for the PID limited-sampling bias

Having documented and understood the properties of the bias of the PID, we now use this
knowledge to propose and evaluate methods for bias correction.

Because the PID bias decreases smoothly with the number of trials, and because ana-
lytical calculations show that when the number of trials is sufficiently large, the bias de-
pends polynomially on the inverse of the number of trials 1/N, we extend the Quadratic
Extrapolation (QE) procedure originally proposed in Ref [41] for Shannon information to
correct for the bias of each PID term. We recomputed plugin PID terms using half and a
quarter of the available data, we fitted these information values to a polynomial in 1 /N and
we used the best-fit coefficient to estimate and remove the bias. The QE bias correction
substantially improved the estimates of all PID quantities. While plugin bias-uncorrected
estimates of synergy needed large numbers of trials per stimulus (Ny ~ 512 — 1024 trials
for 16 joint response bins (Fig. [3.1)), corresponding to 32-64 trials per stimulus and joint
response bin when R is varied, (Fig. ), the QE reached accurate estimates with
small residual bias with almost an order of magnitude less trials (N; ~ 64 — 128 trials
for 16 joint response bins, corresponding to 4-8 trials per stimulus and joint response bin
(Fig. 3.2l 3.3] B.9)). The QE-corrected PID values are relatively accurate but not
conservative because they have an upward residual bias (because information bias terms
of higher order in 1/N, not fitted in the QE, are all positive [[163]).

We then introduced a second PID bias correction (“shuffle-subtraction” bias correc-
tion) that subtracts from the plugin value of each term the value of the same term obtained
after randomly shuffling the stimulus-response association. In the shuffled data, all infor-
mation about the target (the stimulus) is destroyed. Thus, the plugin shuffled PID values
can be taken as a bias estimate because they should be zero for infinite trials. Using this
correction also increased the precision of the estimates compared to the plugin values
(Fig. [B.8). Importantly, and as supported by the analytical bias expansion (B.8),
because lower information levels have larger upward bias, we observed a higher bias in
the shuffled data than in the corresponding unshuffled data (Fig. [3.1). Thus, the shuffle-
subtraction correction provides conservative estimates and can be used to lower-bound
the PID estimates.

Given that the QE and shuffle-subtraction provide positive and negative residual PID
bias respectively, we introduced a third bias correction procedure (“QE with shuffle-
subtraction”) which combines the two operations. This procedure gave highly accurate
results over the entire range of trials tested. Because the shuffle-subtraction provides con-
servative estimates, this third procedure was more conservative than the pure QE and it
gave most often (though not always) negative residual bias.

Importantly, when there were enough trials for the bias corrections to work well
(Ng =~ 64 — 128 trials for a joint distribution for 16 response bins, corresponding to 4-
8 trials per stimulus and joint response bin when R is varied, see Fig. [3.2] 3.3 B.9),
the QE and the QE with shuffle-subtraction gave nearly identical estimates and the pure
shuffle-subtraction gave only slightly conservative and accurate estimates, suggesting that
comparing on real data several bias correction methods on the same data may be beneficial
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for gaining confidence on the accuracy of the estimates.
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Figure 3.2: Performance of bias corrections with 4 discretization bins for each neuron. Joint in-
formation and PID quantities as a function of the number of simulated trials used to compute them.
Top, central and bottom rows plot the simulated scenario with no interaction, high redundancy and
high synergy, respectively (see SM Section [B.5)). Left to right columns report results of the QE,
shuffle-subtraction, QE with shuffle-subtraction, and Venkatesh procedures, respectively. In each
panel we plot the mean + 2 SEM over n = 96 simulations.

The only bias correction which was proposed so far for PID was the one we term
Venkatesh correction proposed in Ref [45]]. It assumes that the Union information has the
same bias as the joint information. Then it rescales all PID accordingly and implements
post-hoc rectifications to make sure the PID terms are non-negative and still respect the
PID properties of Eq. (3.3}3.5). Because, as we demonstrated above, the union infor-
mation is much less biased upward than the joint information, this procedure leads to a
major underestimation of union information, which then leads to major overestimations
of synergy and redundancy that are present also for relatively large numbers of trials. We
thus do not consider this correction further.

There are other bias corrections in the neural literature of discrete estimation of Shan-
non information [42, |43], (121}, [ 164]]. We did not consider them here because their deriva-
tion has not been extended to PID and because they performed worse than or equal to the
QE with discrete estimators of Shannon information when tested on realistic simulations
of neural population activity [40]].

Although in the above we simulated S as a sensory stimulus, in many neuroscience
applications S is the activity of other neurons. Our asymptotic expansions and consider-
ations are valid as long as § is a discrete variable. In SM Section and Fig.
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we show that the bias exists also when the target variable § is the discretized activity of
another neuron and we show that the bias corrections are effective also in that case.
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Figure 3.3: Performance of bias corrections using Ny = 64 trials per stimulus with 4 discretization
bins for each neuron. In each panel we plot (rather than the information component value itself)
the information component bias (computed as the information component estimated with the con-
sidered number of simulated trials minus the asymptotic information component estimated using
the largest available number of simulated trials, that is 2048 trials per stimulus) as a function of the
parameter & increasing single-neuron information in the simulated data. Top, central and bottom
rows plot the simulated scenario with no interaction, high redundancy and high synergy, respec-
tively (see SM Section [B.5). Left to right columns report results with plugin estimators and with
the QE, shuffle-subtraction, QE with shuffle-subtraction, and Venkatesh procedures, respectively.
In each panel we plot mean + 2 SEM over n = 96 simulations.

3.6 Evaluation of bias correction procedures on real
neural data

We evaluated the utility of the PID bias correction using 3 datasets from previously pub-
lished studies recording simultaneously with two-photon calcium imaging the activity of
many neurons from the brain of mice performing cognitive tasks.

The first dataset consisted of n = 6209 pairs of neurons simultaneously recorded from
auditory cortex during a sound intensity discrimination task [129]. We computed the
information that the neurons carry about the sound intensity (a binary S = 2 stimulus
set consisting of high vs low tone intensity). The activity of each neuron was first de-
convolved to estimate the time-localized spiking activity from the calcium fluorescence
signal imaged from each neuron. To compute the neural response variables r; and r, that
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enter the information calculations, for each neuron we summed the deconvolved activity
within a 333-ms time window centered around the time of maximal information, and we
discretized this signal into R = 3 bins (see SM Section for full details).

The second dataset [35] consisted of n = 10750 pairs of neurons simultaneously
recorded from posterior parietal cortex (PPC) during a sound localization task in which
mice reported perceptual decisions about the location (left or right of the midline) of an
auditory stimulus while navigating through a visual virtual reality T-maze (Fig. [3.4B).
Because PPC is an area involved in converting sensory information into perceptual deci-
sions, we computed the information that the neurons carry about whether the sound came
from left or right of the midline (S = 2 stimuli), corresponding to the sound location cate-
gorization that the mouse had to perform to turn toward the reward location. To compute
the neural response variables r; and r, used for information calculations, for each neu-
ron we summed the deconvolved activity within 320 ms time windows centered around
the time of maximal information and we discretized this signal into R = 3 bins (see SM

Section B.10).

The third dataset consisted of n = 36158 pairs of neurons simultaneously recorded
from the CA1 region of the hippocampus [[69] while mice navigated a linear track in vir-
tual reality (Fig. [3.4B). Because the hippocampus encodes position in space, we computed
the information that the neurons carry about the spatial location along the linear track (the
location was discretized in § = 12 spatial bins). The neural response variables r; and r,
used to compute information were the activity of the neurons in one imaging frame (333
ms) when the mouse was in a given position. As the slow kinetics of the calcium indicator
and the slower imaging frame rate made it difficult to deconvolve the calcium fluorescence
traces to estimate spiking activity, following Ref. [69] we discretized the § F /F calcium
traces into R = 2 equipopulated bins (low and high activity) (see SM Section |B.10)).

We computed the joint information between the above-defined activity ry, r, of simul-
taneously recorded pairs of neurons and the above defined stimulus s. We broke up this
information into PID components using BROJA PID [31} [91]. We computed all 4 PID
terms in Eq. (3.3). However, we focus the analysis and the neuroscientific interpreta-
tion on the differences between synergy and redundancy, to understand how these two
emergent properties shape neural population coding in different brain regions. To test
and exemplify the use of the bias-corrected PID algorithms, we compared (Fig. the
plugin estimates of PID with those obtained after applying the 3 bias corrections that we
developed.

As shown by the reduced values obtained after applying the bias corrections, the plu-
gin joint information and synergy were biased upward (consistent with simulations and
theory). Despite the good number of trials available in these experiments, the synergy
bias was substantial. Using the uncorrected plugin estimator would have led to a consid-
erable overestimation of the bias and to a qualitative change of results in two datasets. In
the auditory dataset (Fig. [3.4)A), because of the large synergy bias, the uncorrected plu-
gin estimator could not detect a significant difference between synergy and redundancy,
whereas all 3 bias-corrected estimates consistently detected with high significance that
redundancy was higher than synergy. In the hippocampal dataset (Fig. [3.4B), both the
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plugin and the 3 bias-corrected estimates reported a higher level of synergy than redun-
dancy. However, the use of the plugin bias-uncorrected method would have overestimated
by 211% the amount of synergy with respect to what was consistently found with the bias
corrections. The PPC data (Fig. [3.4B) gave consistent values of higher redundancy than
synergy with all methods.

Another important result is that, reassuringly, we found highly consistent estimates
of both redundancy and synergy across bias correction methods. Redundancy was essen-
tially identical across methods for each dataset. Synergy estimates obtained with QE and
QE with shuffle subtraction were within 3% of each other in each dataset, suggesting that
these estimates on real data are precise and unbiased.

The more conservative shuffle subtraction underestimated (only slightly for the au-
ditory and hippocampal dataset, and a little more for the PPC dataset) the less conser-
vative synergy values obtained with QE or QE with shuffle subtraction. However, and
importantly, the fact that the synergy obtained with the conservative shuffle subtraction is
positive proves that there is genuine synergy that cannot be due to finite sampling artifacts.
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Figure 3.4: PID bias corrections on real neural data. Each panel plots mean + 2 SEM over all
analyzed simultaneously recorded neural pairs (n = 6209, 10750,36158 for auditory cortex (top
row), posterior parietal cortex (middle) and hippocampus (bottom) of joint information, synergy
and Redundancy . Mean number N; of available trials per stimulus per dataset was 70, 100, and
72, respectively. Columns from left to right plot: schematic of each task; results with plugin, QE,
shuffle-subtraction, QE with shuffle subtraction respectively. Comparisons between synergy and
redundancy were performed with a two-tailed paired t-test (*** : p < 0.001, n.s.: p > 0.05).
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3.7 Discussion

We found that PID components suffer from a considerably limited sampling bias. Un-
der simulated conditions relevant to neuroscience experiments, the bias was as large as
the information quantities to be estimated, and thus cannot be neglected in neuroscience
applications. Importantly, our work highlights and explains the presence of a major and
previously neglected difference across PID terms in the sampling bias, which inflates syn-
ergy disproportionately. Neural synergy has been widely reported in recent years and has
led neuroscientists to rethink how the brain integrates information. Our discovery calls
for a careful re-evaluation of these reports with bias-corrected estimator.

We provided an analytical understanding of the properties and origin of the bias in
terms of simple properties of experimental design (number of trials) and of analysis set-
ting (number of discrete or discretized responses). Thus, our work helps informing exper-
imental design.

Importantly, we provide generally applicable algorithms that correct for the bias and
greatly improve information estimates with respect to state-of-the-art neural measures,
which either neglected the bias problem (using uncorrected estimators) or correct for the
bias using the incorrect assumptions that the bias is even across components. Importantly,
the algorithms we develop not only improve in a major way the estimates, but some
of these algorithms present positive and some other present negative residual estimation
errors, allowing to empirically bound estimates with reasonable confidence.

From the neuroscientific point of view, applications of our method to simultaneous
recordings with cellular resolution, confirmed the usefulness of the method to obtain re-
liable conclusions, highlight a widespread presence at the cellular level of synergy and
redundancy in neuron-to-neuron interactions, and of region-to-region variations of the re-
lationship between synergy and redundancy which were previously reported only at the
level of aggregate signals without cellular resolution [76,|137]].

We tested the bias of BROJA, I,,;,;, and Iysps; PID definitions. It would be important
to test others. The bias correction procedures are heuristic, although we confirm and sup-
port them by providing an analytical expansion of the bias derived in the large N limit.
However, our derivation is partly heuristic and we did not provide theoretical guarantees
of sign of residual errors of different bias correction procedures. We tested information
between pairs of neurons and stimuli but we have not tested large populations. The direct
calculation of information is very precise for small populations and is largely assumption-
free but it does not scale up well with population size unless dimensionality reduction
methods are used with it. However, neuroscience literature has consistently shown the
power and value of considering pairwise or small-group interactions between larger net-
works to get insights into whole networks [[76} |137]. We support the feasibility of this
approach simulating discovery of interactions from pairwise-source to single-neuron tar-
gets within a 6-neuron network using bias corrections (Fig. [B.13). We show that using
out bias corrections allows discovering the true pairs of neurons that transmit synergisti-
cally information even with small numbers of trials, whereas PID without bias corrections
would find widespread artificial synergy due to bias.



Chapter 4

Contribution of interneuron diversity to
recurrent network oscillation
generation and information coding

The content of this chapter was published at the 15th International Conference on Brain
Informatics, held in Hoboken and New Jersey, USA, in August 1-3 2023 [165]].

4.1 Introduction

Oscillations are a ubiquitous feature of neural activity, which are thought to serve several
important brain functions [10, 12, |16, 49, 166]. One of the functions that have been im-
puted to oscillations is the participation in the encoding of information from the sensory
environment. Several experimental studies have demonstrated that cortical oscillations,
especially in sensory areas, encode sensory information by modulating their power as a
function of the sensory stimuli [15,|16, 56L167]]. Especially in visual cortices, the most in-
formation is carried by the power of gamma-band (40—100Hz) oscillations. Experimen-
tal evidence [[168]] shows that the generation of these oscillations within recurrent circuits
mainly relies on fast-spiking parvalbumin-expressing (PV) inhibitory neurons and their
interaction with excitatory pyramidal neurons. Previous theoretical and computational
studies of gamma oscillations typically included excitatory neurons and a single type of
inhibitory neurons. The model of this inhibitory neuron did not specify or differentiate
the type of interneuron being modeled, but that was loosely matched to the properties of
fast-spiking PV neurons. These models could explain the generation of gamma oscilla-
tions exhibiting realistic spectral features, and could also explain the privileged encoding
of information from the sensory periphery by the power of activity in the gamma band
[11,47-51].

Despite its success, recurrent network modeling based on a single undifferentiated
interneuron type ignores the contribution of individual interneuron cell types to corti-
cal oscillations and information coding. Besides the fast-spiking PV neurons considered

37
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above, these interneuron types include somatostatin-expressing (SOM) and vasoinstesti-
nal peptide-expressing (VIP) neurons [[169].

In this work, we address these questions about the role of different interneuron types
in network-level oscillatory information coding by extending previous modeling work on
information encoding by recurrent networks [S1, |170]. Specifically, we develop a re-
current network model containing excitatory neurons and SOM and VIP, as well as PV
interneurons. We then analyze the behavior of this model to understand how the interac-
tion between these types of neurons affects oscillations and their encoding of information.
Using a conductance-based spiking neural network model adapted from [[171]], we com-
puted the local field potential (LFP) and measured the mutual information between the
external stimuli and the power generated by the network at each frequency.

Lateral
input

Feedforward
input

Figure 4.1: The network is composed of 500 neurons (400 excitatory neurons, S0 PV neurons,
25 SOM neurons, and 25 VIP neurons). There are two types of input that we change across
simulations: a feed-forward excitatory input to E and PV neurons and a lateral one only targeting
SOM neurons. There is also a background input that is kept constant across simulations

4.2 Methods

4.2.1 Network model

We implemented a spiking network of a recurrent cortical circuit that follows the char-
acteristics of mouse visual cortex V1 [171, [172]. Besides the excitatory pyramidal pop-
ulation (E), we included three distinct inhibitory neurons. Parvalbumin-expressing neu-
rons (PV) have strong recurrent connections within themselves and excitatory neurons.
Somatostatin-expressing (SOM) neurons inhibit all neuron types except themselves, are
preferentially excited by horizontal cortical connections [173] and have a causal role
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in feedback- and horizontal-mediated suppression [173-176]. Vasointestinal peptide-
expressing (VIP) neurons form the third largest population of inhibitory cell subtypes
and preferentially inhibit SOM neurons.

Besides the inputs from recurrent connectivity, neurons in the network receive also an
external stimulus signal S mimicking the effect of feedforward sensory inputs from the
thalamus that targets E and PV neurons. We also include a lateral input rate that only tar-
gets SOM neurons [172,173]]. Both the stimulus and the lateral input were implemented
as a Poisson process (240 Poisson sources) with a time-independent rate. The spike rate
of the feed-forward input varied from 2 to 8 Hz/cell with steps of 2Hz/cell and the lateral
input was set to either to 2 or 4Hz/cell.

The neurons were simulated using an adaptive exponential integrate-and-fire (aEIF)
neuron model. This model is a relatively simple one, yet it reproduces the experimental
qualitative properties of gamma oscillations and the different firing patterns of cortical dy-
namics [48,177]. The following equation defines the evolution of the membrane potential
i A% V)~V

C%:I<t>_W(t)_gL'<V(t)_EL>+gL'AT‘e Ao (4.1)
We took the parameter values from [[171} |177]. The resting membrane potential £; was
set to —60mV. The membrane capacitance C was set to 180pF in excitatory neurons
and 80pF in inhibitory neurons. The leak conductance g; is set as 6.25nS in excitatory
neurons and 5nS in inhibitory neurons. The slope parameter A7 was set to 0.25mV for PV
neurons and 1 mV otherwise. The threshold potential V;;, was set to —45mV in excitatory
neurons and —40mV in all three types of inhibitory neurons.

The adaptation variable w(t) evolved according to the following equation

dw

W T

where T, was set to 150ms, and a to 4nS [[177]. Whenever the membrane potential

reached 20mV, a spike event was detected, the membrane potential was set to the reset

voltage Veser = —70mV and the neuron did not spike for a refractory period of 7, r = 2ms.

The spike event also increases w by an amount » = 80pA [[177]]. In the case of PV neurons,

the adaptation w is set to zero [178].

The synaptic currents were modeled as Iyy, = gsyn(t) - (V(t) — Egyn), Where ggyn(2) is

the synaptic conductance and Ejy, is the reversal potential. The conductance g, (f) was
modeled as a double exponential (beta synapses) [179]:

g() = -2 (e‘;dl—e"?fl), 43)

T -1

a(V(t)—EL) —w(r), 4.2)

where 7; is the latency time, set to 1 ms. The time constants 7, and 7, are the rise and decay
times of the post-synaptic conductance. For connections from pyramidal and PV neurons,
T, is set to 0.5ms, and 1 ms otherwise. The decay time 7; was set to 2ms for connections
from pyramidal neurons, 3 ms for PV neurons, and 4 ms otherwise. The values of gg were
chosen to match the post-synaptic current amplitudes in the visual cortex [171,172] and
are reported in Table
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Table 4.1: Table of the conductance values for each connection between two populations. The
values are set in nS and the columns indicate the population of the presynaptic neuron and the
rows, the post-synaptic one.

| E PV SOM VIP

E 1.66 1364 68.2 0
PV 50 1364 455 0
SOM || 0.83 0 0 136.4

VIP || 1.66 273 113.6 0

Table 4.2: Table of the connection probability for any pair of neurons between two populations.
The columns indicate the population of the presynaptic neuron and the rows, the post-synaptic
one.

| E PV SOM VIP

E 0.1 0.6 0.6 0
PV |06 06 0.6 0
SOM || 0.6 O 0 0.4
VIP || 06 0.1 0.6 0

The network model was adapted from [171]], removing for simplicity the orientation
tuning and synaptic plasticity. It comprises 500 neurons: 400 pyramidal, 50 PV neurons,
25 SOM neurons, and 25 VIP neurons. The probability of connection between neurons
belonging to different population classes is shown in Table 4.2} chosen in accordance with
connectivity measurements in visual cortex [[171}172].

The neurons in the network receive a third type of input that we named background
input. The background input targets all neurons in the network model and sets the network
in a regime of minimal spiking and gamma band oscillations, made by a constant input
rate plus noise. The constant input rates are set as
(roe,rop,ros,rov) = (2.0,0.33,0.66,0.25) Hz/cell. The noise was set as a slow-varying
Ornstein-Uhlenbeck process, whose power spectrum is constant until 10 Hz, after which
it decays.

For all three types of inputs, the random Poisson sources generating the stochastic in-
put made excitatory synapses to the network’s neurons with the same synaptic parameters
that we used for the excitatory recurrent synapses.

For each combination of feed-forward and lateral stimulus values, we generated 50
simulations of 2.5 s with a time step of 0.1 ms using the NEST simulator module in Python
[180]. The first half second of the simulations was discarded to ensure stationary dynam-
ics.

Cortical oscillations are usually measured with Local Field Potentials (LFPs) [50].
However, LFPs are generated mostly by dendrosomatic dipoles whose computation can-
not be obtained by our point-like neurons because generating these dipoles would require
spatially extended neurons. However, we have demonstrated in previous work that the
LFP generated by a network can be approximated simply and with high accuracy (ap-
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proximately 90% of variance) by the sum of the absolute values of the synaptic current
of all types of neurons, both excitatory and inhibitory [51}, 166]. This proxy is based
on the geometrical arrangement of the pyramidal neurons in the cortex [10, 11,51, 166,
181]]. We thus computed LFPs from our simulated network of point-like neurons using
this proxy.

4.2.2 Information-theoretic and spectral analysis of simulated
network activity

For each simulation, we computed the power spectral density (PSD) of the LFP signal
with the multitaper method using the Chronux package [[182].

We used mutual information [21} 23]] to measure the information about the stimulus
carried by the LFP power at each frequency f. Mutual information between a stimulus
feature S and the LFP power at a given frequency Ry is defined as follows:

) 4.4)

SRf ZZP rf,s lngp((ii)

srf

where P(ry,s) is the joint probability of presenting stimulus s and observing response 7y,
and P(ry), P(s) are the marginal probabilities. For the numerical evaluation, following
our previous work [166], we binned computed probabilities by binning the responses in 3
equi-populated bins [[85], and by using a Panzeri-Treves bias correction [40, 42] to remove
the sampling bias. To study how different frequency bands complemented each other for
information coding, we also computed (in similar ways) the information I(S;Rs,,Ry,)
that was jointly encoded by the observation of the power at two different frequencies f;
and f>. To understand if power at different bands carried similar or different information
about the stimulus, we also calculated their information synergy, defined as the difference
between the information jointly carried by two frequencies and the sum of the information
carried by the different frequencies, as follows [32, 33, |64]:

Syn(Rfl,sz) = I(S;Rfl,Rf2> —I(S;Rf1> —I(S;sz). (45)

Note that this quantity is also termed Co-Information |30, 31]]. Unlike more sophisticated
quantities based on the Partial Information Decomposition [30, 31]], it computes the total
effect or synergy vs redundancy without further tearing apart the two. If Syn(Ry,,Ry,) is
negative, then the responses at frequencies f; and f> are carrying predominantly redun-
dant information. If instead Syn(Ry,,Ry,) is positive, the information carried by the two
frequencies is predominantly synergistic and it would mean that the frequency pair has a
fraction of information on the stimulus that cannot be accessed by each frequency value
separately. Both the joint and synergistic information were computed with the shuffling
technique from [40] which provides a conservative estimation of synergy.



42 CHAPTER 4. CONTRIBUTION OF INTERNEURON DIVERSITY TO ...

184 17.5
\ FF rates FF rates
[Hz/cell] [Hz/cell]
2 17.0 2
% 4 4
Q 174 — 6 16.54 =\6
i a8 — 8
< N
g \-\3. 16.0
/ Lat. input rate 2 Hz/cell ) Lat. input rate 4 Hz/cell
16 15.54
0 40 80 120 0 10 80 120

Frequency [Hz] Frequency [Hz]

Figure 4.2: LFP spectra for different values of the feed-forward (S) input rates. Left: Spectra
computed with a lateral input value of 2Hz/cell. Right: Spectra computed with a lateral input
value of 4Hz/cell.

4.3 Results

As an intuitive demonstration of how the network responds to the feed-forward stimulus,
Figure 4.2 shows the power spectrum of the local field potential (LFP) changes for differ-
ent values of the feed-forward (S) input rates. All spectra show two local peaks. The first
peak is at approximately 30Hz (in the high-beta/low-gamma frequency band), and the
second peak lies between 60 and 80 Hz in the gamma frequency band. The feed-forward
input strength modulates mostly the frequencies in the gamma range. The power in the
gamma range appeared to be more consistently modulated by the feedforward stimulus
than the beta band power, across different values of the lateral input. This suggests that
power in the gamma range may carry information about the feed-forward stimulus, as
found in real data in visual cortices [[15]] and in earlier models with just one inhibitory
class [51]]. Importantly, the power at frequencies below the gamma peak frequency was
modulated in different ways than the power of the frequencies above the gamma peak fre-
quency. This suggests that power at different frequencies in the gamma range may carry
some complementary information about the feed-forward stimulus.

To quantify this intuition in rigorous terms, we next computed and determined the
mutual information carried by the LFP about the feed-forward stimulus. We express this
as a function of frequency by calculating the mutual information /(S;Rs) between the
feed-forward § stimulus rates and the power Ry at the frequency f of the LFP spectrum.
Information was higher in the gamma frequency range. The information had two peaks,
one at approximately 55 Hz, just below the peak of the gamma power, and one at approx-
imately 90Hz, just above the peak of the gamma power. This is different from earlier
recurrent network models, which had only one peak of gamma information which was lo-
cated in approximate correspondence with the peak of the gamma power [51, 170, 181].
The values of the information peaks were slightly modulated by the strength of the lateral
input, but similar structures were observed across changes in the lateral input (Figure 4.3

The presence of two information peaks at different frequencies and the fact that the
feed-forward stimulus modulates differently the LFP power above and below the peak
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Figure 4.3: The mutual information /(S;R/) that the power of the LFP carries about the strength
S of the feed-forward stimulus. Left: values of I(S;R¢) when using as the value of the lateral input
rate 2Hz/cell. Right: values of I(S;Ry) when the lateral input has a rate of 4Hz/cell.
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Figure 4.4: The joint information I(S;Ry,,Ry,) that the LFP power of each pair of frequencies
carries about the feed-forward stimulus S. Left: values of I(S;Ry,,R,) when the lateral input rate
has strength 2Hz/cell. Right, the values of I(S;Ry,,Ry,) when the lateral input rate has a value of
4Hz/cell.

power frequency prompted us to study how much information could be gained by ob-
serving simultaneously in the same trial the power at two different frequencies. To in-
vestigate this, in Figure {4.4] we report for each pair of frequencies fi, f» the joint in-
formation I(S;Ry, Ry,) that they carry about the feed-forward stimulus S. Interestingly,
we found that the highest joint information value was reached when considering one fre-
quency around the first gamma-band information peak and a frequency around the second
gamma-band information peak. This suggests that the power of frequencies above or
below the frequency with the highest gamma power carries complementary information
about the stimuli.

To quantify this, in Figure4.5|we report for each pair of frequencies fi, f> the synergy
Syn(Ry, Ry,) of the information of the two frequencies about the feed-forward stimulus.
We found that, while the pairs of frequencies around the same information peak car-
ried largely redundant information (negative values of synergy), pairs with one frequency
around one information peak and one frequency around the other information peak car-
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Figure 4.5: The amount of synergistic information Syn(Ry,,Ry,) that each pair of LFP powers
at different frequencies f| and f, carries about the feed-forward stimulus S. Left: values of
Syn(Ry,,Ry,) when using a lateral input rate of 2Hz/cell. Right: values of synergy when us-
ing a lateral input rate of 4Hz/cell.

ried synergistic information (positive synergy values; joint information larger than the
sum of the two information values). The two regions with high redundancy along the di-
agonal have different sizes as expected from the different widths of the information peaks
at the single frequency level, see Figure 4.3] Importantly, these patterns of synergy were
not found in earlier modeling work with just one class of interneurons [51]], in which we
found only redundant information shared across frequencies in the gamma range.

4.4 Discussion

We used computer simulations of the dynamics of recurrent networks of spiking neurons
to study if interneuron diversity affects network-level information coding. Several previ-
ous studies investigated how different interneuron subpopulations affect network dynam-
ics [[171, 175, 1176]. However, none of these studies examined the effect of interneuron
types on information encoding in single frequencies or in multiple frequencies. While a
straightforward prediction would be that adding cell diversity may enrich the information
processing capabilities of the network, it would be more difficult to predict from intuition
only without the support of systematic simulations exactly how information coding at
each frequency is affected, and how the patterns of information synergy and redundancy
across bands are affected. Our main result was that a network with diverse types of in-
terneurons has different and richer information encoding dynamics than a network with
only one interneuron type, with patterns of synergy of encoding across frequencies that
were not observed in less diverse networks.

One main result that we confirmed from previous studies of simpler networks is that
we found was that, as reported in some previous experimental studies [16], the frequencies
with the highest power were not necessarily those with the highest information or input
modulation. Indeed, the frequencies that had the highest information were those above or
below the frequency of the peak of the gamma power.
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However, the main difference with respect to previous models was that oscillations in
different frequency ranges (below or above the frequency with the peak gamma power)
within the gamma band were differentially modulated by the strength of the feed-forward
input to the network. In the model of [51] that includes only one un-differentiated in-
terneuron type, the spectrum of network oscillations is modulated redundantly by the
feedforward input at frequencies above 40 Hz, with no combination of frequencies in the
power spectrum contributing synergistically to encode the input firing rate. This com-
parison leads us to attribute the formation of across-frequency synergistic information
patterns to interneuron diversity.

In future work, it will be interesting to analyze datasets with field potential responses
to different kinds of stimuli and see the extent to which the synergy of information across
frequencies is realized, and which behavioral function it may serve. The differential
and synergistic modulation by the feed-forward input of different frequencies within the
gamma range suggests that different types of interactions between interneuron types con-
trol and modulate each part of the spectrum. Another relevant direction is to further study
systematically in our model how each type of interaction between neuron classes regu-
lates each part of the oscillation spectrum. Also, since the co-information expresses a net
effect of synergy/redundancy, examining information encoding with partial information
decompositions [30] would help us characterize whether overall redundancy or synergy
of information encoding across two specific frequencies results from the simultaneous
presence of different degrees of redundancy and synergy, or whether it results exclusively
from the presence of synergy or redundancy.






Chapter 5

Conclusions

5.1 A new resource for neural information analysis

We showed here the Multivariate Information in Neuroscience Toolbox (MINT), a toolbox
designed to provide a unified suite of information-theoretic tools for neural data analysis.
Unlike previous toolboxes, which often focused solely on either information encoding or
transmission, MINT integrates a comprehensive range of functions, including Shannon
entropy, mutual information, directed transmission measures, and information decom-
positions. MINT also incorporates tools, such as limited sampling bias corrections and
dimensionality reduction pipelines, that enhance accuracy for high-dimensional neural
data.

MINT’s utility is demonstrated on both real and simulated datasets, where it enables
complex multivariate analyses that go beyond single-tool applications. Additionally, in-
tegrating encoding and transmission tools helps decode neural network information flow,
offering a more detailed understanding of neural computation. This capability positions
MINT as a resource for advancing discoveries in neuroscience.

5.2 Better estimates of PID

We examined and addressed sampling bias in Partial Information Decomposition (PID)
under realistic experimental conditions relevant to neuroscience. We found that this bias
can reach magnitudes comparable to the actual information quantities, particularly inflat-
ing synergy, a component critical to understanding how the brain integrates information.
This inflation suggests that reports of neural synergy may need careful re-evaluation with
bias-corrected methods.

To address this, we developed and validated algorithms to correct for the bias, provid-
ing significant improvements over current neural measures that either overlook or incor-
rectly assume uniform bias across PID components. Our algorithms not only yield more
accurate estimates but also present bounded errors, offering a more reliable way to inter-
pret information decomposition results. Additionally, our analysis reveals that PID bias
is tied to basic properties of experimental design, such as trial numbers and the number

47



48 CHAPTER 5. CONCLUSIONS

of discrete responses, which can inform more precise experimental planning. Applying
these bias-corrected methods to real, high-resolution neuronal recordings, we confirmed
the value of these corrections.

While promising, our work has limitations. We focused on specific PID definitions
(BROIJA, I, and Ijr) and have yet to test other formulations. Our bias-correction
procedures are heuristic and lack full theoretical guarantees, particularly regarding error
signs. Although we validated PID on neuron pairs, scaling up to large populations remains
challenging without dimensionality reduction, as direct computation becomes inefficient.
Nonetheless, evidence from smaller network models supports the utility of pairwise anal-
ysis in revealing network-level interactions.

5.3 Interneuron diversity and encoding

We used simulations of recurrent spiking neuron networks to investigate how interneuron
diversity influences network-level information coding, focusing on encoding dynamics
across different frequency bands. While previous studies examined interneuron diversity’s
impact on network dynamics, they did not address its role in information encoding at
single or multiple frequencies. Our findings reveal that networks with diverse interneuron
types show richer information encoding patterns than those with only one interneuron
type, displaying unique synergy across frequency bands.

In line with past studies, we observed that the highest-power frequencies do not always
carry the most information; in our simulations, frequencies above or below the gamma
power peak encoded more input information. However, unlike previous models that as-
sume a single interneuron type, our model shows that oscillations in different gamma
sub-bands respond uniquely to feed-forward input strength, suggesting that interneuron
diversity enables synergistic encoding patterns across frequencies.

This work suggests that interneuron diversity may create nuanced modulation within
the gamma band, with distinct neuron interactions controlling specific spectral parts. Fu-
ture work could explore real neural data to confirm these synergy patterns across fre-
quencies and assess their behavioral relevance. Additionally, further analysis with partial
information decomposition may clarify whether the observed synergy across frequencies
results from a balance of redundancy and synergy or from purely synergistic encoding.
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Appendix A

Supplementary information of Chapter
2

The analyses presented here correspond to those presented as supplementary information
in the second submitted version of the paper [52]] while in a peer-review process.

A.1 Comparison with Other Toolboxes

Table[A.2]provides a synthetic comparison of main features of different currently available
toolboxes.

A.2 Description of installation and testing of MINT, and
of information theoretic tools implemented in MINT

MINT can be downloaded at the public repository github.com/panzerilab/MINT.

Documentation on building and installing the software from source is provided as a
README file that specifies the installation requirements, as well as a build file (buildMINT .m)
designed to automate the software’s compilation process. Instructions on how a user can
test the software on supplied simulated test data are provided in a folder How_to_use MINT
in MINT’s public repository, containing detailed instructions for testing it on simulated
data. We also provide an additional repository github.com/panzerilab/MINT _figures
containing the code that replicates all analyses in all figures, on both real neural data and
simulated data. The dataset with CA1 neural data is provided as an attachment in Sup-
plemental Material, and the dataset with Al neural data is provided by the public link
doi.org/10.13016/m2yt-mfxk.
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For users who prefer conducting their analysis workflows in Python, it is possible to
use MINT by setting up the MATLAB Engine API for Python. This requires installing the
MATLAB engine library via pip (a package manager for Python), ensuring that the library
version matches the installed version of MATLAB on the system. Detailed installation
instructions can be found on the MathWorks website: mathworks.com/help/matlab/
matlab_external/install-the-matlab-engine-for-python.html. To prepare in-
put data, the user can convert Numpy arrays to MATLAB-compatible format using the
matlab.double conversion function. Optional arguments can be structured as Python
dictionaries and used directly. Additionally, the How_to_use_MINT folder includes exam-
ple Python scripts demonstrating how to initialize the MATLAB engine, format input data
and organize the options structure in Python.

MINT provides information theoretic tools to give quantitative answers to questions
about information processing when applied to single neurons, population of neurons, or to
aggregate neural signals recorded across multiple areas (including LFPs, M/EEG, fMRI).
The information processed by the considered neural activity can be about a specific task
variable, such as a sensory stimulus, a behavioral output, or about the activity of other
neurons or neural populations.

All the information theoretic quantities are functions of the joint probability, sampled
across experimental trials, of observing a given value for a set of task variables (e.g. sen-
sory stimuli, movement parameters, behavioral choices) s € S and of neural responses
(r1,...,rn) € Ry Rry- Each of the variables is indicated with bold font because it can be
a multidimensional vector. Importantly, each dimension in the task and neural response
variables is assumed to have discrete values, so that the probabilities can be estimated by
empirical occurrences. In many cases, neural data will be already discrete in nature (for
example, spike counts) and the same applies to some categories of task variables like be-
havioral choices or identity of the presented stimulus (which experimentally usually fall
into a number of discrete categories). In other cases, either task variables or neural re-
sponses will be continuous data (e.g. LFPs, etc.). These input data will be automatically
discretized by MINT to perform the information calculations by specifying discretized
into a finite number of bins by defining the number of bins ny;,s (by default, 3 bins) and
the binning strategy bin_method (including equi-spaced binning, equi-populated binning,
and binning with user-defined bin edges; by default, no binning) as fields within the op-
tions input structure opts. MINT allows the use of these discretization procedures for
all its information theoretic measures, and direct probability distribution sampling after
discretization was used for all results in the paper. In addition to binning, MINT offers
the option to compress the multi-dimensional neural activity space (ry,...,rn) € Ry, Ry
into a dimensionality reduced representation, obtained with either supervised decoding
methods or unsupervised data reduction methods, which can also be discretized and used
for information calculations with the direct probability distribution sampling (see Sec-
tion[A.5] Fig.[A.2).

The functions to compute the information quantities in MINT follow a consistent
structure (Fig. [A.I). The first input is the data in the form of a cell array. Optionally,
the user can input a cell array of strings specifying the requested (called outputs in our
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examples in the tutorials) quantities to compute, as well as a structure opts that contains
optional arguments for the computation. The inputs are organized with the following
format: {A, B, C, ... }. Outputs are specified as functions of these input variables.

The outputs of the functions are also implemented in a consistent structure. The
first output variable contains cells with the requested information quantities given in the
outputs cell array (in the same order as specified). The second output variable contains
cells with the plugin information quantities (i.e., no limited-sampling bias correction)
and the last output variable contains the null distribution for each specified information
quantity, if the opts field computeNulldist is set to true. For instance, to compute the
limited-sampling bias corrected and the plugin Mutual Information between two popula-
tions X1 and X2 (two-dimensional arrays with neurons in the first dimension and trials in
the second dimension), the MI function is called as follows: :

[MI_corr, MI_plugin}] = MI({X1, X2}, {‘I(A;B)’}, opts)

|cTE.mH TEm |» |cMI.m H ML.m H H.m | |PID.mH Il.m | r{FlT.m HcFIT.m|

none
i () Inputdata
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Figure A.1: The flowchart illustrates the structure and workflow of the MI module of the Toolbox,
highlighting the steps involved in computing information values.
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If the input data for H.m, MI .m, cMI.m, PID.mor II.mis given as a time series (three-
dimensional array, with neuron or brain area ID in the first dimension, time points in
the second dimension, and trials in the third dimension), these functions compute the
information quantities for each time point and output them as time series.

In the following, we list and synthetically describe the information quantities imple-
mented in MINT.

A.2.1 Shannon Information

The MI.m function computes Shannon mutual information between a population of N
neurons {Ry,...,RNn} and a task variable S (such as a sensory stimulus). It is a non-
parametric measure that quantifies the full single-trial relationship between {Ry,...,Rn}
and S. It is defined as [21]:

p(s,l’l,...,rN)
MI(S;Ry,...,RN) = p(s,ry,...,rx)log < ) (A.1)
SarI;J'N 2 p(s)p(ry,...,rN)

where p(s,ry,...,ry) is the joint probability, sampled across experimental trials, of
observing stimulus value s € S and the neural responses (ry,...,ry) € {Ry,...,Ry}, and
p(s) and p(ry,...,ry) are the marginal probabilities of observing s and (ry,...,ry), re-
spectively. The sum in Eq. (1) spans all possible events. MI(S;Ry,...,Ry) is non-
negative and is zero if and only if {Rj,...,Ry} and S are independent. To compute
the Shannon Mutual Information of two variables, the string to put in the outputs cell
array is ‘I(A;B)’. Moreover, MINT also allows to compute the mutual information be-

tween S and {Ry,...,Ry} conditioned on the activity of another population of M neurons
{R],...,R],} or another stimulus feature S’ (function cMI .m).
SRC
| svm_wr‘apper.m | | glm_wr;pper.m |

Figure A.2: Example flowchart of the pipeline module used with the MI and II functions.

S

reduce_dim.m | |
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A.2.2 Information Breakdown

The MI.m function can also compute measures that quantify how interactions between
neurons contribute to the encoding of S. The desired quantities can be passed to the func-
tion as specific strings within the outputs cell array input. These quantities include the
co-information col, the difference between the population information and the sum of
single-neuron stimulus information quantifying the overall contribution of interactions to
population encoding. Additionally, the function can return information breakdown terms
[33]] quantifying how pairwise correlations contribute to redundancy-synergy index [[132].
These terms can also be specified in outputs and include the signal-similarity ;e s, (OUt-
put name ‘Iss(A)’) (contribution of the similarity across neurons of trial-averaged re-
sponses to different stimuli), the stimulus-independent correlations /.,,_;,; (contribution
of the interplay between the signs of signal similarity and of noise correlations, output
name ‘Ici(A;B)’), and the stimulus-dependent correlations I.,,—4¢p (quantifying how
much information is gained by the stimulus-modulation of noise correlations, output name
‘Icd(A;B)?).

A.2.3 Partial Information Decomposition (PID)

The PID.m function computes PID components. PID decomposes the information jointly
carried by a set of source variables (for us, a set of simultaneously recorded neurons; the
first N variables in the inputs cell array) about a target S (for us, a sensory stimulus or
a behavioral choice; the last variable in the inputs cell array) into non-negative compo-
nents that capture information about the target that is either redundantly encoded across
sources, uniquely encoded by a single source, or synergistically encoded by the combina-
tion of sources. For more than two source variables, such components can also represent
combinations of redundancy, synergy, and unique information.

In the case of two source variables, once the individual Mutual Information between
the target and each source, the joint Mutual Information between the target and the two
sources, and one of the PID components (e.g., redundancy) are all computed, algebraic
linear relationships (derived from PID “lattices”) allow for the computation of all re-
maining PID components. Thus, a PID with two sources is defined by the choice of a
specific redundancy measure. The desired PID components can be passed to the function
as strings within the outputs cell array input (‘Red’ for redundancy, ‘Syn’ for synergy,
‘Unql’ and ‘Ung2’ for the unique information carried by the first or the second input
source, respectively).

For more than two variables, defining a redundancy measure is enough to compute
each PID component as a linear combination of redundancy terms (the output name
‘PID_atoms’ provides all PID components). Therefore, different methods to decompose
information differ and are defined by the measure of redundancy they use (which can be
specified as the redundancy_measure field in the opts structure). In MINT, we imple-
mented three possible measures of PID redundancy, which are very popular and respect
the so-called pairwise marginal property (redundancy is invariant for distributions pre-
serving the pairwise marginals between each source and the target)[145].
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A231 Iy

We implemented Williams and Beer’s PID original redundancy measure called 7,,,;;,. This
measure quantifies the information redundantly encoded about S across N source variables
{Ry,...,Rn} as:

Red(S:Ry;Ry; .. ;s RN) =1uin (S: R1;Ry; .. .. RN) = S min MI (S =5;R;
(S:Ri;Ry N) = Inin (S : R1;Ry N) Sez‘ép( )R,-e{Rl,Rz,...,RN} (S=s:R;)
()

where I (S = s;R;) represents the specific information that source variable R; provides
about a specific value s of the target variable S. I,,;, captures redundancy as the similarity
across the source variables R; in distinguishing individual values of S.

A.2.3.2 Minimum Mutual Information (/1))

MINT also implements the PID based on the redundancy measure introduced in [110],
called Iyzps;. This measure quantifies the information redundantly encoded about S across
N source variables {Ry,...,Rn} as:

Red(S:RI;RZ;...;RN) :IMMI(S:RI;RZ;---;RN) = min MI(S;Ri) (3)

Therefore, Iy captures redundancy as the minimum amount of information encoded
about S by any of the source variables.

A.2.3.3 BROJA

Finally, MINT implements the PID based on the redundancy measure termed BROJA
[31], which defines redundancy about S between two source variables Ry and Rj as the
result of a constrained optimization problem:

Red (S : R1;R2) = IgroJa (S : R1;R2) = MI(S;Rl) +MI (S;Rz) — min (Mlq (S;Rl,Rz))

gE€AP

(A.2)

where Ap is the space of distributions preserving pairwise marginals between indi-

vidual source variables and the target variable. BROJA’s advantage is that it is additive

for independent systems of sources and targets [[111]], however it is only defined for two

source variables. The numerical calculation of Eq. is performed by MINT through

the conic optimization Embedded Conic Solver (ECOS) algorithm. The use of ECOS re-

quires the installation of a C library, which can be implemented by either compiling the C

source code with a MATLAB-compatible C Compiler (using MINT’s BuildAndTest .m

function) or copying locally the precompiled binaries that MINT provides for Linux, Win-
dows, and macOS.
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A.2.4 Information Transmission Measures

MINT provides a number of measures to quantify the overall or feature-specific directed
information transmitted from a putative sender region X to a receiver region Y from which
neural activity was simultaneously recorded. These measures are all based on the Wiener-
Granger causality principle, which states that a region X causally influences a region Y if
the past state of X predicts the present state of Y at time ¢ beyond what can be predicted
by the past state of Y.

A.2.5 Transfer Entropy (TE)

Transfer Entropy from X to Y, denoted as TE (X — Y)[112], measures the overall in-
formation transmitted from region X to region Y and can be computed using the TE.m
function in the toolbox. TE (X —Y) is defined as the conditional Mutual Information
between the past activity of the sender region X,,a5¢ and the present activity of the receiver
region Ypres given the past of the receiver Yp,s. Moreover, MINT also allows for the
computation of TE from X to Y conditioned on the activity of a third node Z (function
cTE.m; Z can, in principle, also be the multivariate activity of a set of regions).

Although in the example computations of TE provided in Figs. and [A.6|we
computed the present of Y at a single time point ¢ and the past of X and of Y at individual
time points lagged by a delay Az, MINT also allows for computing information transfer
measures for present and/or past activity as multidimensional variables, potentially span-
ning several time points. The past-time embedding is specified by the parameters opts
((“tpres’)) and opts (‘tau’). The parameter (‘tpres’) specifies the present timepoint in the
calculation. The parameter (‘tau’) defines the delay (or an arbitrary set of delay numbers
if more past points are to be considered) relative to (‘tpres’), expressed as an integer num-
ber indicating how many timepoints back the past timepoint is set. These parameters can
be specified individually for X and Y, allowing the function to use different timepoints
for the present and past for each of X and Y. This allows easy implementation of various
embedding techniques such as those described in [73]]. Because of the problem of data
dimensionality (the bias can be corrected well if the product of the number of bins for the
past of X and the present of X and Y is several times smaller than the number of time
samples), many studies (e.g. [75]]) use only one time point compute the past of X and Y.
Some studies [73} [81] have proposed to use a delay of one time-step for the past of the
putative receiver Y, to be as conservative as possible when conditioning away the infor-
mation of the putative receiver Y. Our own recommendation is to consider and plot a wide
range of delays, as we do in our analyses (see e.g. Fig. F panel B), to get a better feeling
of the robustness of the results as a function of these parameters.

The string to define in reqOutputs to compute Transfer Entropy from the data in the
first to the data in the second element of the input cell is ‘TE(A->B)’. In addition, a
second output can be requested with ‘TE(B->A) ’, in order to reduce computational effort
and explore data more efficiently by calculating both directions of Transfer Entropy with
a single function call.
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A.2.6 Feature-specific information transfer (FIT)

Feature-specific information transfer from X to Y about a stimulus feature S, denoted
as FIT (S — X — Y), measures the information transmitted from X to Y about a specific
feature S and can be computed using the FIT.m function in the toolbox. FIT (S — X — Y)
is defined as the minimum between two PID terms with similar but slightly different in-
terpretations. The first term is the information about S that is redundant between X
and Ypres, and is unique to any information encoded by Yp,s. The second term is the in-
formation about the present activity of the receiver Ypes that is redundant between X
and S, and is unique to any information encoded by Y pas.

To guarantee the nonnegativity of FIT, both terms are computed using the I,;, mea-
sure. Minimizing between the two terms ensures key FIT properties, including that it is
upper bounded by the feature information encoded by the past of region X, / (S;Xpast),
the information encoded by the present of region Y, [/ (S;Ypres) , and by the overall
information transmitted from X to Y, TE (X — Y). Moreover, MINT allows for the
computation of conditional FIT (cFIT, using the cFIT.m function), to remove from
FIT (S — X —Y) the component potentially routed through the past activity of a third
recorded region Z (where Z can, in principle, also be the multivariate activity of a set of
regions). cFIT (S — X — Y|Z) is defined as FIT (S — X — Y) minus a term capturing
feature information transmitted from X to Y that is also redundantly encoded by the past
of Z[38].

Similar to TE, the past-time embedding is specified by the parameters opts (‘tpres’)
and opts (‘tau’) to specify the timepoints taken as present and past for the computation.
Our own recommendation is to consider and plot a wide range of delays, as we do in our
analyses (see e.g. Fig. F panel B), to get a better feeling of the robustness of the results
as a function of these parameters.

Similar to the TE function, the FIT function can compute bidirectional information
transfer about a target by specifying ‘FIT(A->B;S)’ and ‘FIT(B->A;S)’ in the outputs
cell array. The same applies to ¢FIT in cFit.m (specifying ‘cFIT(A->B;S|C)’ and
‘cFIT(B->A;S|C)’ in the outputs cell array).

A.2.7 Intersection Information (II)

MINT implements also Intersection Information (II, computed using the IT.m function),
a measure quantifying the amount of sensory information encoded by neural activity that
is used to inform behavioral choices. Intersection Information quantifies the part of in-
formation in neural responses that is common to both stimulus and choice information.
Intersection Information is computed as the minimum between two PID terms with sim-
ilar but slightly different interpretations. The first term is the information about choice C
redundant between stimulus S and neural response R. The second term is the information
about stimulus S redundant between choice C and neural response R. By default, these
terms are computed using the BROJA redundancy measure. Minimizing between the two
terms ensures that Intersection Information satisfies key properties that would be expected
from a measure with this interpretation, including that independent S and R imply null in-
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tersection information, that II satisfies the data processing inequality, and that Intersection
Information is upper bounded by both MI(R;S) and MI(R;C).

The name to put in the outputs cell array to compute Intersection Information is
‘II(A,B,C)’, which computes the amount of information of input A encoded in input
data B and that is also present in input data C.

A.3 Information estimators and limited-sampling bias
corrections

MINT implements several types of information estimations. Methods based on estimating
probabilities of discrete data or through data discretization include the plug-in method and
its bias corrections (Shuffle, QE, Shuffle QE, Panzeri-Treves, Ish and BUB). Methods
not requiring discretization of data to estimate probabilities include the NBS and KSG
methods.

MINT implements several limited-sampling bias corrections of information theoretic
quantities. For Shannon Entropy, Mutual Information, and for the Information Break-
down terms, bias-corrected estimates are computed separately for each quantity. For the
PID calculation, bias-corrected estimates can be obtained either by correcting each PID
atom individually, or alternatively by correcting for the bias first for the individual and
joint mutual information term and one of the PID terms (e.g., redundancy or synergy),
and then by correcting for the bias of the other PID components by using algebraic re-
lationships derived from PID “lattices” (see [A.3.7). By default, no bias correction is
computed (uncorrected, or naive, information quantities).

A.3.1 Shuffle Limited-sampling bias correction

When this bias correction option is called (setting the bias field in the options structure
opts to ‘shuffSub’), the bias is estimated by computing the information values after
destroying all genuine stimulus information by randomly permuting the stimulus-neural
response association in each trial[39, 40], and then it is subtracted out from the original
estimate to provide the bias-corrected estimate. MINT allows subtracting these bias es-
timates from all implemented information theoretic quantities. A non-zero integer in the
field shuff of the options structure opts specifies the number of shuffles to be performed
and averaged over to obtain this estimate (by default, 20 shuffles).

A.3.2 QE correction

The Quadratic Extrapolation (QE) procedure [40, |41] (setting the bias field in the options
structure opts to ‘qe’) assumes that the estimation is performed in a regime with large
numbers of trials and approximates the bias of the information quantities as a second-
order expansion in the inverse of the number of available trials [42]]. This procedure first
re-computes the information from fractions (halves and quarters) of the data available
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and then fits the dependence of information estimates on the inverse number of trials
to a quadratic function. This quadratic fit is then used to estimate the bias-corrected
information value as the value that would be obtained with the quadratic scaling law
if an infinite number of trials were available (i.e., the intercept term of the fit). MINT
allows the use of this bias correction with all its information theoretic measures. Field
xtrp in the options structure opts specifies the number of repetitions of the extrapolation
procedure. The function performs the specified number of extrapolations and calculates
the final corrected value as the mean of the estimates (by default, 10). Note that MINT
allows the option to perform a linear (rather than quadratic) extrapolation, which uses only
halves and not quarters of the data. This may be convenient when very small datasets are
available and the division into quarters is problematic.

A.3.3 Shuffle-QE correction

MINT also implements a bias correction combining both Shuffle and QE (setting the bias
field in the options structure opts to ‘qe_shuffSub’). This procedure first computes
both the original and the shuffled values, performs QE on both as explained above, and
then computes the unbiased estimate by subtracting the QE-corrected shuffled value from
the QE-corrected non-shuffled value. The parameters shuff and xtrp can be set in the
options opts structure as mentioned above.

A.3.4 Panzeri-Treves correction

This correction technique analytically approximates the linear term of the bias expansion
in the inverse of the number of available trials, which is then subtracted from the mea-
sured information to obtain bias-corrected information values [42]]. The estimation of the
bias depends only on the number of response bins with a non-zero probability of being
observed, which is estimated using a Bayes approach. It is available only for Shannon
Entropy and Mutual Information (setting the bias field in the options structure opts to
‘pt’) but not for PID-based quantities.

A.3.5 Ish bias reduction procedure for multi-dimensional data

The Ish procedure is relevant for the reduction of the bias of the information about a
task variable (say stimulus S) carried by the joint observation of a multivariate neural
response with dimension N (e.g., the activity of N neurons). It adds and subtracts to the
definition of mutual information two entropy terms which have equal asymptotic value
(in the case of exact sampling of the probabilities with an asymptotically large number of
trials). For a limited number of trials, the difference between these two terms provides a
negative contribution to the mutual information bias. Thus, Ish has a considerably smaller
bias (though larger variance) than the direct estimate of mutual information from Eq.
(1). Another interesting property of Ish is that it typically has a negative bias, whereas
direct estimates of mutual information typically have a positive bias. Thus, the joint
calculation of mutual information from Eq. (1) and /g, allows the estimation of upper and
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lower bounds to the real information values. This procedure can be applied to the mutual
information and to the information breakdown (where it allows computation of upper
and lower bounds of some terms) (setting the bias field in the options structure opts to
‘shuffCorr’). It can be combined with the QE and the shuffle-subtraction corrections.

A.3.6 Best Universal Bound procedure

This method developed by [43] expresses the information estimation as a polynomial
approximation problem, allowing the computation of ‘Best Universal Bounds’ on the in-
formation bias and variance (setting the bias field in the options structure opts to ‘bub’).
Its results depend on the selection of a parameter kmax (which is related to degrees of
freedom).

A.3.7 Options for PID bias

For QE, shuffle subtraction, and shuffle-QE subtraction applied to PID with two source
variables, two bias-correction options are available. The first option is to correct for the
bias, with the chosen bias correction procedure, each PID term individually. The second
option is to correct for the bias in a way that respects the linear relationships between the
PID terms and Shannon information quantities derived from the so-called PID lattices.
This is done by correcting for the bias of the individual and joint mutual information
term and one PID component of choice, and then correcting for the bias of the other
PID components by using the algebraic relationships derived from PID “lattices”. The
chosen PID atom can be specified with the field chosen_atom in the options structure
opts (by default, synergy). This option is implemented by default (setting the opts field
‘pidConstrained‘ to true). If one chooses not to, each PID atom is corrected individually.

A.3.8 Estimators not requiring discrete or discretized data

SM 3.2.1 Kraskov-Stogbauer-Grassberger (KSG) estimator The KSG estimator uses the
Kozachenko-Leonenko kth-nearest-neighbor entropy estimator to find structures in the
underlying probability distribution [119]. The estimator is included in the toolbox using
scripts from the improved version of KSG implemented in [120], which was shown to
work very well for real-valued data with am most a handful of dimensions. By varying the
parameter k which determines the nearest-neighbor statistics scale, one can also change
the scale in which the algorithm looks for the underlying structure. The method can be
used by setting the bias field in the options structure opts to ‘ksg’ and the parameter k
(by default, 6) can be changed by specifying the k_ksg field of the opts structure.

SM 3.2.2 Nemenman-Shafee-Bialek (NSB) estimator The NSB estimator is a Bayesian
entropy estimator that is designed to work on prior distributions of the stimulus-response
distributions that are almost uniform in their expected entropies [121]. This means that
the entropy estimate is not strongly biased by the prior assumptions. The method does
not require free parameters to be inputted and can be used by setting the bias field in the
options structure opts to ‘nsb’.
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A.4 Hierarchical Permutations for Statistical Testing

A.4.1 Data Shuffling

Shuffling neural data is a useful tool to test hypotheses and gain insights into the infor-
mation encoding structure of neural populations and how information is transferred. The
hShuffle.m function provides a range of hierarchical data shuffling methods, allowing
for the disruption of neural correlations, temporal patterns, or stimulus information. Each
data feature (a neural activity dimension or a task variable) can be shuffled either uncon-
ditionally on any other variable or conditionally on the values of other variables.

For example, neural responses can be shuffled unconditionally on any other variable
to destroy the information they carry about the stimulus (e.g., to shuffle the first two
input variables across trials, the output name is ‘AB‘ and the opts field ‘dim_shuffle’
is set to ‘Trials®). Alternatively, neural responses of different neurons can be shuffled
conditionally on the stimulus values to provide surrogate data that preserve single-neuron
stimulus information but destroy noise correlations (correlations at fixed stimulus between
different neurons). Shuffling the neural responses across trials with the same stimulus
while keeping the position of each timepoint fixed provides surrogate data that retain
time-resolved stimulus information of single neurons but disrupt across-time correlations.
For example, to shuffle the first input variable conditioned on the second and third input
variables, the outputs cell is ‘A_BC* (the variable(s) to condition the shuffling on are
specified after the underscore), and the opts field ‘dim_shuffle® is set to ‘Trials‘.

Shuffled data are either used within a given function (e.g., MI.m or FIT.m) to output
null hypothesis values or to be separately provided as input to any function in MINT
to construct user-defined non-parametric null distributions to empirically estimate the p-
value of measures computed from the original data.

Furthermore, MINT enables efficient computation of group-level averaged shuffled
quantities by recombining shuffled information values across experiment repetitions using
the create nullDist_groupLevel function. This function accepts measures calculated
from M independent data shuffles across N experiment repetitions and outputs K distinct
realizations of the permuted group average.

A.4.2 Cluster Permutation for Multiple Comparison Correction

It is often important to detect significant information encoded or transmitted across data
points that are correlated due to physical proximity (e.g., in space and time, or time and
communication delay). MINT implements the rigorous detection of clusters of adjacent
significant information values via cluster permutation tests [87, 183] (the clusterStatistics.m
function). The clusterStatistics.m function takes as input a matrix of information
values computed from the original data across adjacent space and time points and a set
of M analogous matrices obtained from shuffled data. The function computes a cluster-
forming threshold as a specified percentile clusterPercentilThreshold (provided as
input) of the shuffled information values. This threshold is calculated either by pooling
shuffled values across all samples (when the input pool parameter is set to 1) or indepen-
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dently for each sample (when pool is set to 0). The latter option provides less statistical
power but is recommended when shuffled information is non-stationary over space and
time.

The procedure then identifies clusters in both the original and shuffled data by con-
necting adjacent information values that surpass the cluster-forming threshold and com-
putes the mass of each cluster as the sum of its information values. A cluster-level null
distribution is created by taking the maximum cluster mass from each shuffled dataset. Fi-
nally, clusters in the original dataset that exceed a specified percentile significanceThreshold
(provided as input) of this null distribution are classed as significant.

A.5 Interfacing with Dimensionality Reduction Methods

To allow information analysis on datasets with a high number of dimensions, we offer
several possibles wrappers that integrate tools or dimensionality reduction in a way that
permits the calculation of information measures on processed variables with less dimen-
sionality.

A.5.0.1 Interfacing Information Calculation with Supervised
Dimensionality-Reduction Method

Here we describe which supervised dimensionality reduction algorithm we implemented
in MINT and we interfaced then with the information theoretic algorithms.

Our routines take input data in the form of a cell array with neural responses {ry,...,ry} €
RN across all trials in the first element and the task variables s € S (e.g., sensory stimuli,
movement parameters, behavioral choices) across all trials in the second element. It re-
turns an array across all trials of dimensionality reduced representation T of {ry,...,ry}.
The dimensionality-reduced representation R is computed by cross-validated decoding
of the behavioral variables s given the neural data, so that the representation T for each
trial is computed from trials held out from the decoder’s training process. The reduced
neural representation data are then fed as neural data input to the information calculation
routines.

The representation R obtained through the supervised decoding method can be under-
stood as a representation of the neural activity data that is lower dimensional (typically,
one dimensional) but that still captures efficiently the information about s provided by
the joint neural responses. The representation R can take the form of the value of the
behavioral variable decoded as most likely from neural activity (which can be directly
fed to the information calculation routines, an approach that is equivalent to computing
information from the confusion matrix of the decoder [6]]), or the posterior probability of
the task variable value given the considered neural activity (which can then be binned and
fed to the information calculation routines).

Supervised models implemented in MINT are:
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A.5.0.2 Support Vector Machines (SVM)

Support vector machines (SVM) are supervised machine learning methods that find the
optimal hyperplane(s) in the data space (in our case, neural data {ry,...,ry}) to classify
the labels (in our case, s). MINT provides a function svm_wrapper.m that trains and
tests the SVM with either linear or RBF kernel, using either fitcsvm.m (Statistics and
Machine Learning Toolbox in MATLAB) or the libsvm toolbox [123]] as the underlying
SVM implementation. The first element of the output cell array is the lower dimensional
representation R as a list of the cross-validated predicted labels across trials. The second
element of the output cell array is the representation R as a list of cross-validated posterior
probabilities of s given the neural responses in that trial. The function can also output the
weights of the decoding model for the linear SVM (which can be used, e.g., to calculate
the angle between boundaries as in Fig.[A.4)) or the trained hyperparameters, in case they
were optimized.

A.5.0.3 Generalized Linear Model (GLM)

Generalized linear models are an extension of linear models that can incorporate non-
Gaussian-distributed data (including discrete data). In MINT, the glm_wrapper .m func-
tion trains and tests GLM models using lasso, ridge, or elastic net regularization and either
lassoglm.m (Statistics and Machine Learning Toolbox in MATLAB) or the glmnet tool-
box [124]]. This function allows for the training and testing of GLM models with optional
regularization methods, including lasso, ridge, or elastic net. It provides flexibility in
choosing regularization types and additional options for k-fold cross-validation. Depend-
ing on the output list option chosen, it outputs as R a list (for each trial of the test set) of
the predicted labels, or the posterior probabilities of s given the neural data in that trial.

A.5.0.4 Interfacing Information Calculation with Unsupervised
Dimensionality-Reduction Method

Unsupervised methods transform neural data into a lower dimensional output R that still
approximates the data well. Our routines take input data in the form of a list across all

trials of neural responses {ry,...,ry} € RV, as well as the desired dimensionality of the
reduced representation. It returns a list across test-set trials of dimensionality reduced
representation T of {ry,...,ry}. The reduced neural representation data are then fed as

neural data input to the information routines for information calculation. Unsupervised
models implemented in MINT are:

A.5.0.5 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionality reduction technique that projects
the data onto a lower dimensional space with maximal variance (REF). MINT’s function
pca_wrapper.m outputs in each trial the coefficients of the data along the selected num-
ber of principal components. It offers the option to perform both cross-validated and
non-cross-validated principal component analysis.
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A.5.0.6 Non-negative Matrix Factorization (NMF)

Non-negative Matrix Factorization (NMF) is another technique of dimensionality reduc-
tion that projects the data onto a lower-dimensional space that still describes the data well.
Unlike PCA, it does not require different components to be orthogonal, but requires that
the decomposition is performed with nonnegative coefficients and basis functions (which
is recommended for reducing the dimensionality of inherently nonnegative data, such as
spike counts). MINT’s function nmf_wrapper.m outputs in each trial the non-negative
coefficients of the data along the selected number of principal components. It offers the
option to perform both cross-validated and non-cross-validated principal component anal-
ysis.

A.6 Details of Simulations

A.6.1 Simulation of Neural Populations Information Encoding

This section presents a detailed description of the simulation and the analysis of informa-
tion encoding in neural populations presented in Fig.[2.2]

We simulated two scenarios which capture two main ways in which correlations have
been reported to influence population coding [53]]. For each scenario, we simulated cor-
related spike trains of a neural population of N = 20 neurons responding to two simulated
stimuli (200 trials per stimulus, 10 simulation repetitions).

The strength of correlations between neurons was modulated by generating responses
to each stimulus as the sum of an independent Poisson process (independent outcome for
each neuron) and a shared Poisson process (same outcome across neurons), adjusting the
pairwise Pearson noise correlation for each stimulus by varying the contribution of the
shared and independent processes to the spike trains. Thus, the spike count of neuron i
(i =1,2) was generated as:

ri($) = ri—individual () + T'shared (5) (6)

where 7;_individual (§) and rghared (s) are the output of 3 independent Poisson processes
for each stimulus, with mean count parameter indicated by the corresponding name.

The first scenario (Fig. [2.2]A) was implemented with strong stimulus modulation of
the correlation strength, resulting in information-enhancing noise correlations (pairwise
Pearson noise correlation 1 for stimulus 1 and O for stimulus 2). The individual and
shared processes were created such that the resulting total firing rate of each of the neu-
rons is constant across stimulus values, so only the firing correlation is informative about
the stimulus. The parameters were 7;_individual(s = 1) = 1 Sp/S, Fsharea(s = 1) = 1 sp/s,
Fi—individual (§ = 2) = 2 SP/S, Tshared (s = 2) = 0 sp/s.

For the second scenario (Fig. [2.2B), we simulated information-limiting noise correla-
tion. Namely, we simulated a population of neurons all with the same stimulus selectivity
(lower spiking rate to the first stimulus and a higher spiking rate to the second stimu-
lus, thus positive signal correlations) and with positive noise correlations that were only
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weakly stimulus-dependent (pairwise Pearson noise correlation 0.2 for stimulus 1 and 0.1
for stimulus 2). The parameters were r;_individual (S = 1) = 0.8 sp/s, rharea(s = 1) = 0.2
SP/S, Ti—individual (§ = 2) = 1.9 SP/S, Tshared (s = 2) = 0.1 sp/s.
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Figure A.3: A. Schematic illustration of the limited-sampling bias problem. Two uninformative
neurons, responding on each trial with a uniform distribution of spike counts ranging from 1
to 4, regardless of which 2 stimulus values were presented. The empirical response probability
heatmaps sampled from 50 trials per stimulus are shown in the left and middle columns (responses
to stimuli 1 and 2, respectively). Side heatmaps indicate the marginal probability values. Because
of limited sampling, the neural response probabilities look different across stimuli (even if they are
not), and much more so for the joint probability than for the marginal response probabilities. Right:
distribution (over 5,000 simulations) of the plugin information values obtained with 50 trials per
stimulus. Although the information should be zero, it is > 0 because of the random sampling
variations illustrated in panel A, left. The bias is the (non-zero) average value of this distribution,
as the true asymptotic value should be zero. The bias is larger for the joint information (when
neural activity is 2-D) than for the single neuron information (when neural activity is 1-D). B.
Mean £ SEM over 25 simulations, each performed with the number of trials per stimulus shown
on the x axis, of Mutual Information MI(R;S) between a binary stimulus S and a neural response
R made of N Poisson uncorrelated neurons, with N varying from N=1 to N=4 from left to right.
(see SI Section SM6.4). Spike counts of each neuron are discretized into R =5 bins (0, 1, 2, 3,
> 3 spike counts), and then information is computed with four different estimators (plugin, QE,
shuffle-subtracted, KSG). We also plot the ground-truth value of information computed from the
analytical form of the probability distributions of the Poisson spike counts either unbinned (full
line, representing the exact value of information in the simulated process) or binned as described
above (dashed line). The QE bias correction was done with 10 repetitions (xtrp=10). The shuffle-
subtraction was done with 30 shuffles (shuff= 30). Application of QE or shuffle-subtraction bias
correction to the plugin estimators provides an effective elimination of the limited-sampling bias
for realistic number of trials < 100) for N=1,2 but not for N > 2. The KSG method does not
converge to the ground-truth information value even for large trial numbers, with a data-processing
bias that grows with N. C. Mean + SEM over 25 simulations, each performed with the number of
trials per stimulus shown on the x axis, of Mutual Information MI(R;S) between a binary stimulus
S and a neural response R made of the spike counts of N=20 correlated neurons, simulated as
in Fig. (see Section SM6.1). In this simulation, information is carried by design by the
difference across stimuli in spike counts of individual neurons. The activity of the 20 neurons is
reduced to one dimension using the svm_wrapper .m cross-validated with 2 folds when using the
linear or RBF SVM or the pca_wrapper.m when considering PCA. The averaged information
values do not depend much on the sample size and are almost identical between corrected and
uncorrected (plugin) estimates, suggesting that the dimensionality reduction has little bias and that
calculation of information from a population of 20 neurons can be performed robustly with limited
data sizes when using dimensionality reduction. D. Same as panel C, but for a population of N=20
neurons carrying information only by correlations without spike count modulations, simulated as
in Fig.[2.2]A. Here the information can be recovered only with a complex non-linear decoder (RBF
SVM) for any considered number of trials. Limited sampling bias appears small but the increase
of RBF SVM suggests that more complex supervised decoders benefit from more training data to
reduce the data processing bias.

A third scenario was used for the simulations of the bias in Fig. panel B and
is described next. We simulated a population of Poisson neurons whose mean rate was
stimulus-selective similar to the previous stimulation (lower spiking rate to the first stimu-
lus and a higher spiking rate to the second stimulus). The parameters were r(i —individual )(s=
1) = Lsps, rshared(s = 1) = Osps, ri—individual ) (s = 2) = 2sps, rshared(s =2) = Osps.



82 APPENDIX A. SUPPLEMENTARY INFORMATION OF CHAPTER 2

Since we did not add any shared process, the neurons were independent from each other
at fixed stimulus and there was no noise correlation. This facilitate the numerical compu-
tation of the ground-truth values of information for this process, which were used in the
study of the bias properties.

The generated spike counts were binned into 5 bins, by leaving spike counts < 4 un-
touched and setting to 4 all spike count values > 5 (this was done by setting in input
options opts of MI.m the binning method field to ‘userEdges’, which allows bin-
ning the data with user-defined bin edges). All MI and PID values were corrected for
the limited-sampling bias by using the shuffle-subtraction procedure implemented in the
toolbox (averaged over 30 shuffles).

We used the svm_wrapper .m function of the toolbox to predict the stimulus based on
the population activity by fitting a cross-validated Support Vector Machine (SVM) with
5 folds. Two distinct kernel functions were employed to fit the SVM on the data: linear
and radial basis function (RBF). We performed hyperparameter optimization, tuning the
parameters C for linear SVM and C and y for SVM RBF using 5-fold cross-validation. We
used Bayesian optimization across a logarithmic range between 1 x 1072 and 1 x 10° and
a maximum number of iterations of 30. To evaluate the role of correlations in information
encoding, we computed the mutual information of the predicted and the true stimuli. To
eliminate noise correlations, pseudo-responses were generated by shuffling the simulated
response conditionally on the stimulus value, so they have the same single-cell properties
as the original data but no noise correlations (using the shuffle.m function with output
‘A_B’). We computed the Mutual Information using the MI.m function of the toolbox
between the actual stimulus and the one predicted from all above-described decoders
(linear and RBF kernel SVM for simulated response and pseudo-response) and compared
them to gain insights into the effects of noise correlation on the population information.

A.6.2 Simulation of Encoding and Readout of Information in Pairs
of Neurons

This section presents a detailed description of the simulation and analysis of information
encoding and readout from pairs of neurons presented in Fig.

We simulated a pair of neurons, independently encoding a binary stimulus S = {—1,1}
across 1000 trials. The single-trial firing rate of each neuron i € {1,2} was determined by
a Poisson process r;(S) ~ Poisson(4;(S)), with the intensity parameter A;(S) depending on
the stimulus as 4;(S) = A9+ A- Wene ;i - S. Here, Ay determined the mean firing rate of each
neuron across trials, A was the separation in the mean firing rates across the two stimuli,
and Weyc; was the element i of the 2-dimensional encoding vector Wenc determining the
tuning of each neuron to the stimulus. In our simulations, we set g =4, A =1, and
Wene = (1,1), so that both neurons had lower firing rates for § = —1 and higher firing
rates for § = 1.

On each trial, we simulated a choice variable C by taking the dot product between the
population firing rates and a decoding vector Wge, such that
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C:I_’-Wdec

and binarized C using equi-populated binning. We obtained the decoding vector Wge
by applying the standard two-dimensional rotation matrix R,(6) to the encoding vector

Wenc as follows:

Wdec = RZ(G) 'Wenc-

We used the svm_wrapper .m function of the toolbox to train a cross-validated (5 folds)
soft-margin linear SVM (hyperparameter C = 1) to decode the stimulus S and the choice
C from the neural population activity. We computed stimulus, choice, and intersection
information as 1(S,3), 1(C,C), and II (S, [S,C],C) respectively, using the MI.m and II.m
functions of the toolbox (with no bias correction).

We simulated two different scenarios, one with a small (8 = 20°) and one with a large
(6 =70°) angle between the encoding and the decoding vectors. We computed the angle
between the decision boundaries of the SVMs trained to decode the stimulus Wy and the
one to decode the choice Wp as

. W - W
6 =arccos [ ———=— @)
[[Wel[ - [[Well

where the prime symbol (') indicates the transpose operation, and ||W || indicates the
norm of vector W. A total of 5 simulations were conducted for each scenario, and infor-
mation and angle values were averaged across simulations.
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Figure A.4: Real and decoded stimulus and choice boundaries for a population of 2 neurons
with a small (A) and a large (B) angle between the stimulus and choice boundaries. The X
and Y axes represent the firing rate. Stimulus information Stim. Info = MI(S;S) is the same for
the two scenarios, but the intersection information /7(S; [S,C‘};C) is much larger for the case with
a small angle.
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A.6.3 Simulation of Aggregate Activity in Interacting Nodes

This section presents a detailed description of the simulation and analysis of aggregate
signal activity in a network of interacting nodes (Fig. [2.4] and Fig.[A.5).

The network implemented content-specific encoding and transmission of information
across four nodes, Xj, Xo, X3, and X4, each of them divided into two subnodes Xy ; and
Xn 2. A total of 10 simulations were conducted, each including 200 trials with a length of
30 ms. We simulated a stimulus that included two binary features S; and S, whose values
were drawn independently in each trial. The value of S| () was set equal to the value of
s1 € [—1,1], while the value of S,(7) was set equal to the value of s, € [—1, 1] within a
defined stimulus-active time window. Outside this window, the value was set to zero.

Subnodes X ; and X4 | received input regarding Sy, while subnode X5 » received input
regarding S>. The stimulus-active time window for X; ; and X, was defined as (3,12]
ms, while X | received the input with a delay Az, of 12 ms (stimulus-active time window
[15,24] ms). In addition, all subpopulations received stimulus-feature unrelated activ-
ity at any time point as zero-mean Gaussian noise &y () = N(0, Opoise) With standard
deviation Gjpise = 0.5.

To simulate the transfer of feature-related and unrelated activity from one subnode
to another, a delay Af; of 5 ms was defined. With that time delay Az, subnode X; ;
transmitted its activity to X1 and X3, subnode X, to X, and X3, transmitted its
activity to Xy 2. The aggregated activity of each node was defined as the summed activity
of the two subnodes. The activity of the four nodes at each time point is defined as:

X (l‘) =X171(l‘) +X172(l) = ((X-Sl(l‘> —|—(§171(l‘)) +X272(l —All) —f—éiz(l‘) (8)
Xz(t) :Xz’l(l‘) +X272(I) :X171<Z‘ —Al‘l) +Cg>2,1(l‘) +OC-SQ(I) +(g)2,2(t) 9

X3(t) :X371(l) +X372(t) :X171(t —An) +éa371(l‘) +@@3,2(l‘) (10)

X4(t) :X471(Z‘) +X472(t) = (OC~Sl(t —Al‘z) +éa471(l‘)) —|—X372(t —Atl) +5472(t) (11)

For all subsequent analyses, we binned the activity of each node into three equipopu-
lated bins and corrected for the limiting sampling bias of information with the QE proce-
dure implemented in the toolbox.

First, we computed the mutual information between each node and the stimulus fea-
tures at all time points (see Fig. for the information time course), using the MI.m
function of the toolbox.

Consistent with the implemented stimulus input and information transfer, X; exhibited
information about S; from 4 to 11 ms, while X; and X3 displayed a 5 ms delayed stimulus-
feature informative window. The simulated activity of X; contained information regarding
S1 from 11 to 20 ms, consistent with the implemented input delay of 7 ms compared to
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X). Information about S, was only present in X; ([9,16] ms) and X ([4,11] ms), in line
with the implemented input of S, and delayed transfer from X, to Xj.

To gain insight into the information transfer within the network, we computed the
transfer entropy between all pairs of simulated nodes, using the TE.m function provided
by the toolbox. Based on the established ground truth, the temporal parameters to com-
pute transfer entropy were defined as t = 12 ms and Ar = 5 ms. Consistent with the im-
plemented network interactions, we found significant transmission of information from
X to X3 and X3, from X to X;, and from X3 to X4 (see heatmap in Fig. [A ).

In the context of real data analysis, the optimal temporal parameters are typically
not known. Therefore, we will demonstrate in the next step how one can assess these
parameters by computing the time-delay maps of information transmission. To compute
the content of information flow, we measured FIT with the FIT.m function implemented
in the toolbox. To obtain the temporal profile of content-specific information transmission
and to reconstruct the delay of information transmission, we first computed FIT at each
time step of the simulation with all possible delays (Ar = [0,29] ms) for X; — X, related
to S1, X1 — X related to Sy, and for X, — X related to S, (see Fig. [A.5B). Consistent
with the implemented ground truth, significant transfer of information was found with a
delay of 5 ms from X; to X; related to S and from X; to X related to S5.

By computing FIT for all pairs of nodes (f = 12 ms, At = 5 ms), we found signifi-
cant information transfer related to S| from X to X, and X3, and significant information
transfer related to S, from X5 to X; (see Fig.[2.4D and Fig.[A.5)C).

To test for significance in the information theoretic quantities averaged across the
N = 10 simulations, we used non-parametric permutation tests. For each simulation, we
first conducted two different shuffling procedures M = 20 times and recomputed TE and
FIT from the shuffled data (+ = 12 ms, At = 5 ms). First, we conditionally shuffled the
sender activity at a fixed value of the stimulus to preserve stimulus-induced covariations
between the sender and the receiver and destroy single-trial correlations contributed by
real communication. Second, we shuffled S for FIT to break any relationship between
the stimulus and variables X and Y, and we shuffled X for the TE analysis to break
any relationship between X and Y. We then took the pairwise maximum between the
information values obtained from the two shuffling procedures to obtain a single, con-
servative null distribution [38]. Using the create nullDist_groupLevel.m function
of the toolbox, we generated K = 500 samples of the null distribution of the permuted
average across simulations and estimated TE and FIT p-values empirically. To estimate
the significance of FIT in the time-delay domain (Fig.[A.5IC), we implemented the same
procedure outlined above, computing FIT at each time step of the simulation with all pos-
sible delays. We then used cluster permutation (with the pool option set to 0), setting both
clusterPercentilThreshold and significanceThreshold to the 99th percentile to
individuate significant FIT clusters.
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Figure A.5: TE and FIT heatmap, temporal profiles of stimulus-feature information and
time delay stimulus-feature FIT maps for X; and X,. A. TE heatmap for all nodes (left), FIT
about S; for all nodes (middle), and FIT about S, for all nodes (right) for time point # = 12 ms
with a delay of 5 ms. Significant values (p < 0.01) are marked with *. B. Mutual information
time courses between the nodes X and stimulus features Sy and S,. C. Analysis on specific node
pairs: X; to X, about S; (left), X; to X, about S, (middle), and X, to X; about Sy (right). Top.
Mutual information time course between the sender neural nodes and stimulus features. Middle.
FIT values across post-stimulus time ¢ and delay time A¢ from sender to receiver nodes about the
stimulus feature. Only the time region with significant (p < 0.01) stimulus information, according
to a cluster permutation test with 500 null distribution samples, is plotted. Bottom. Mutual infor-
mation between the receiver and stimulus feature. Plots show the mean across 10 simulations.
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A.6.4 Simulation study of the limited sampling bias with various
estimators and bias correction methods

This section presents a detailed description of the results of simulations of the activity of

populations of neurons to illustrate and study the limited-sampling bias on the calculation
of mutual information (Fig. [A.3)).

We first illustrated (Fig. Panel A, ‘Sketch of bias for a zero-information process’)
the meaning and origin of the limited-sampling bias using a simple simulated example
of two uninformative neurons. These neurons respond on each trial with a uniform dis-
tribution of spike counts ranging from 1 to 4, regardless of which stimulus values were
presented. The colorplots in Fig. left side of Panel A show the joint and marginal
probability distributions sampled from 50 simulated trials per stimulus in a single simu-
lation. Despite the underlying distributions are completely uniform with respect to the
stimulus or response value, the stimulus-specific probability distributions of the joint
neural-pair or marginal single-neuron responses empirically sampled from a limited num-
ber of trials differ across stimuli because of the limited sampling. A naive interpretation
of this difference would make one conclude that since the response distribution changes
for each stimulus, the neural response carries some information about the stimulus. When
computing many (50000) repeated simulations of this uninformative process with 50 tri-
als per stimulus each, the distribution of plugin information values computed with the
direct-method (Fig. right side of panel A) did not have a mean equal to ground-
truth information value of zero, but a different, positive mean. The bias is the difference
between the ground-truth value of information and the one obtained on average across
different random instantiations of a dataset with a given limited number of trials. In this
case, the bias is 0.022 bits for the single neuron information and 0.12 bits for the joint
information in the activity of the neuron pair. The reason why the limited-sampling bias
is larger for the neuron pair than the single neuron can be appreciated by considering
the example single instantiation of the empirical probability Fig. Panel A, left. The
random fluctuations that generate spurious information are larger for the joint probabil-
ity (the few trials are spread over a larger set of possible responses R = 16) than for the
marginal probabilities (the few trials are spread over a smaller set of responses R =4). As
a result of these spurious differences between stimulus-specific response distributions, the
values of information computed from individual simulations with the limited number of
trials (right panel) would not be distributed around the true value of zero bits, but around
a spurious non-zero value (the bias). Since the fluctuations are larger in the joint prob-
ability estimation than for the marginal distributions, the bias values would be bigger in
this case in comparison to the information computed from the single neuron information
distributions.

To further illustrate how the limited-sampling bias scales with the number of available
trials, in Fig.[A.3|Panel B (‘Bias for a stimulus-informative Poisson process’) we studied
the performance of the estimation algorithms considering Poisson spike counts of pop-
ulations of neurons ranging from N=1 to N=4, and carrying information about a binary
stimulus. We used Poisson neurons because for this process we could evaluate numeri-
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cally with high precision the ground-truth value of the information carried by the popu-
lation. This ground truth value can be computed by inserting the analytical probabilities
of the Poisson process into the Shannon formula and stopping the sum over responses at
some value of spike counts much higher than the average mean spike count of the Poisson
process (probabilities converge to zero for such very high spike counts and thus the sum
over responses can be stopped at some point with negligible loss of numerical accuracy).
To simulate what we could do in real data, we binned spike counts of each neuron into R
=5 bins (0, 1, 2, 3, ;3 spike counts). We then used the direct-method calculation without
bias corrections (plugin) and with two bias-correction methods (QE, shuffle-subtracted).
For comparison, we also computed the information estimated through a method popu-
lar for the analysis of real-valued data (KSG), which is also available in MINT. We also
plotted the ground-truth value of information computed from the analytical form of the
probability distributions of the Poisson spike counts after binning the data. The QE bias
correction was done with 10 repetitions (xtrp=10). The shuffle-subtraction was done with
30 shuffles (shuff=30).

As documented in previous studies [36], the limited-sampling bias of the bias-uncorrected,
plugin, estimator is very high for low numbers of trials and then smoothly decreases with
the number of trials. The bias also grows very rapidly with the population size. Appli-
cation of QE or shuffle-subtraction bias correction to the plugin estimators provides an
effective elimination of the limited-sampling bias for number of trials that are realistic
with a neuroscience experiment ( 100) for N=1,2 but not for N;2. The KSG method, not
being designed for discrete spike count processes, does not converge to the ground-truth
information value even for large trial numbers, with a data-processing bias that grows
with N.

The above simulations indicate a distinction between two types of bias. The first is
the (usually upward) limited-sampling bias, which is the difference between the value of
information obtained with the considered estimation method (e.g. response binning, KSG,
etc.) when considering a finite number of trials vs when considering an infinite number
of trials. The second is the data-processing bias, which reflects the possible inability
of the estimation method to process or represent the probability distributions of the data
correctly. The data-processing bias can be computed as the difference between the ground
truth value of information and the one obtained with the considered estimation method
if the data were infinite. For example, when discretizing neural responses into a more
limited number of possible discrete responses than the ones that could actually happen
(for example, binarizing as all/none the output of a Poisson count), the data estimation
bias would be negative.

When using the direct-method discrete estimators with binned responses, we found
that the direct method had a negligible data-processing bias. The direct-method discrete
information estimator without bias correction is however upward biased for large numbers
of trials. The bias corrections algorithms QE and shuffle-subtract worked well and made
the estimate convergence close to the ground truth value even for a relatively small number
of trials. In contrast, the KSG has a relatively small limited sampling bias but at a cost
of a large downward data-processing bias, which reflects the fact that its assumption does
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not suit discrete data as well as real valued data. We thus would not use the KSG for
computing information from neural spike counts.

We next investigated (Fig.[A.3] panels C and D) the interplay between data dimension-
ality reduction and limited sampling bias. We simulated the two scenarios of correlated
neural population activity that were used in Figure[2.2]A,B and that are detailed in Section
SM6.1. We then implemented different dimensionality reduction algorithms to reduce the
20-dimensional neural data to 1 dimension. The activity of the 20 neurons was reduced to
one dimension using either svm_wrapper.m for linear or RBF SVM or pca_wrapper.m
for PCA. All dimensionality reduction methods were crossvalidated using 2 folds.

We first considered a case in which correlations between activity of neurons are
present but are not much informative and the information about the stimulus is by and
large specified by differences in average spike counts of individual neurons across stim-
uli. This case is equal to the one presented in Fig. [2.2B and the results of the simulations
are reported in Fig. [A.3] Panel C (‘Dimensionality reduction with information in single
neurons spike counts’). The information estimates from the reduced 1-dimensional rep-
resentation show little dependence on the sample size and are almost identical between
corrected and uncorrected (plugin) estimates, suggesting that the dimensionality reduc-
tion has little bias and that calculation of information from a population of 20 neurons
can be performed robustly with limited data sizes when using dimensionality reduction.
All dimensionality reduction methods perform similarly, because it is very easy for all
methods to find the dimension in neural activity space with maximal information (which
is simply the vector of the averaged differences in spike counts between the two stimuli)
in a case in which the information is encoded in major differences in spike counts across
stimuli.

We finally considered a case in which spike counts of individual cells did not carry
information (average spike counts were constant across stimuli) but all information was
encoded in the stimulus variations of the strength of correlations between activity of dif-
ferent neurons. This case is equal to the one presented in Fig. [2.2JA and the results of the
simulations are reported in Fig. [A.3] Panel D (‘Dimensionality reduction with informa-
tion in correlations’). In this case, and also shown in Fig. @A, the information can be
recovered only with a complex non-linear decoder (RBF SVM) for any considered num-
ber of trials. Limited sampling bias appears small but the increase of RBF SVM suggests
that more complex supervised decoders benefit from more training data to reduce the data
processing bias.

In conclusion, for tens of neurons the limited sampling bias can be well controlled
for using dimensionality reduction methods. Most algorithms extract similar amounts
of information even with little training data when information is encoded in very easily
detectable features of neural activity (e.g. clear spike count separations) while more so-
phisticated algorithms (e.g. non-linear supervised decoders) and more training data are
needed when information is hidden only in more subtle features of neural activity such as
the correlations between their activity.
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A.7 Supplemental Analysis of Real Neural Data

A.7.1 Analysis of EEG Data

/

We analyzed a publicly available EEG dataset [[131] (available at datadryad. org/stash;,
dataset/doi:10.5061/dryad.8m2g3). Full details are reported in the original publi-
cation. Here we summarize them briefly. The EEG data were recorded while participants
(n = 16) performed a face detection task. Participants were presented with an image hid-
den behind a bubble mask that was randomly generated in each trial. The presented image
was an image of a face in half of the trials and a random texture in the other half of the
trials. Participants were instructed to report whether a face was present or not. In our anal-
yses, we only considered trials where the face was correctly detected by the participants
(approximately 1000 trials per subject). Following the recommendations of the original
publications analyzing these data [131, 132], we excluded one participant from the anal-
ysis. All analyses in our paper are based on the n = 15 selected participants. EEGs were
recorded by fitting participants with a Biosemi head cap comprising 128 EEG electrodes.
EEG data were re-referenced offline to an average reference, band-pass filtered between 1
Hz and 30 Hz using a fourth order Butterworth filter, down-sampled to 500 Hz sampling
rate, and baseline corrected using the average activity between 300 ms pre-stimulus and
stimulus presentation. I[CA was performed to reduce blink and eye movement artifacts, as
implemented in the infomax algorithm from EEGLAB [184].

For the analyses of TE and FIT, we selected the EEG electrodes in the left and the
right Occipito-Temporal regions that had the highest Mutual Information about the visi-
bility of the contra-lateral eye, exactly as done in previous papers [38,132]. We computed
the first derivatives of the EEG signal for both Occipito-Temporal sensors and used both
their absolute values and first derivatives to compute the information quantities, for con-
sistency with analyses performed in previous studies [38], [132]. As stimulus feature for
the computation of Mutual Information and FIT, we used the visibility of an eye (de-
fined as the fraction of pixels within the eye region that were not hidden by the bubble
mask). Both neural and stimulus features were discretized using 2 equi-populated bins.
We computed the information quantities for all combinations of directionality of flow
across hemispheres (left to right, right to left) and eye identity (left or right eye). As done
in previous papers [38]], to compute a single TE and FIT value for each participant we
selected a rectangular region in the time-delay domain centered around the contra-lateral
FIT peaks (time ranging from 140 ms to 240 ms peri-stimulus presentation, delay rang-
ing from 20 ms to 90 ms; same for both eyes, as they were significant in very similar
time-delay regions). We computed the average over delays and then picked the maximum
over time within this region. We used the same procedure described in Section [A.6.3|to
compute the significance of the across-participants averaged FIT and TE (Fig. 2.4G-H),
generating 500 null samples from 10 shuffles within each participant.

Files that reproduce the analysis of these data are found in|github. com/panzerilab/
MINT_figures, subfolders ‘Figure4’.


datadryad.org/stash/dataset/doi:10.5061/dryad.8m2g3
datadryad.org/stash/dataset/doi:10.5061/dryad.8m2g3
github.com/panzerilab/MINT_figures
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A.7.2 Analysis of CA1 Data

We reanalyzed a previously published dataset [[69]] in which the activity of several tens to
a few hundreds of neurons was recorded simultaneously using in-vivo two-photon cal-
cium imaging from CAl neurons in head-fixed transgenic mice during virtual reality
navigation of a linear track. This dataset is provided as Supplemental Information file
‘CAl _data.mat’.

We analyzed neurons recorded from ngpgy = 11 Fields of View (FOV) from ny =7
animals. For consistency with the previous study reporting the original data [69], the
spatial position of the linear track was computed by binning the space along the track
into § = 12 equi-populated bins. Also, the neural activity r; of each neuron was quan-
tified by binning the calcium traces into R = 2 equi-populated bins (only raw calcium
traces and not deconvolved signals were available from [69]). For the PID analysis, we
used all the n = 870 individual neurons present in the dataset, leading to np,s = 36158
pairs of simultaneously recorded neurons used for the pairwise direct information analy-
ses and ngessions = 11 sessions for the population vector analyses. The neural responses
dimensionality was reduced using linear and nonlinear (RBF) SVM to predict the po-
sition categories using 5-fold cross-validation and hyperparameter optimization (2-fold
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Figure A.6: A. Schematic of the putative information flow. LOT (ROT) denote Left (Right)
occipito-temporal regions. LE (RE) denotes the Left (Right) Eye visibility feature. B. FIT values
computed across post-stimulus time ¢ and delay time from sender region to receiver region about
the stimulus feature. The region of the time-delay maps used to calculate the final FIT values for
Fig.[2.4H are delimited in both heatmaps. Top. Mutual Information (lines) carried by the EEG in
each region, and FIT (image plot) about LE contra-lateral transfer. Bottom. Same as Top for RE.
C. Transfer entropy between ROT and LOT in both possible directions. D. FIT values computed
for each stimulus (LE or RE) and direction. In this plot, ROT and LOT are written as R and
L, respectively. Dots and image plots represent averages, and error bars represent SEM across
participants (N = 15). Human face sketch is modified from svgrepo.com/svg/493087/men-in-
their-20s-and-30s-face, and head sketch is modified from doi.org/10.5281/zenodo.3926093.
All resources are under license CC BY 4.0 (creativecommons.org/licenses/by/4.0).
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cross-validation, Bayesian optimization across a logarithmic range between 1 x 1073 and
1 x 10? for C and y with a maximum number of iterations equal to 30), and later the
predicted labels were used jointly to replace the full neural response.

Files that reproduce the analysis of these data, as well as the neural data themselves,
are found github.com/panzerilab/MINT_figures, subfolder ‘Figure2’.

A.7.3 Analysis of A1 Data

We reanalyzed a previously published dataset [[129]] in which the activity of several tens
to a few hundreds of neurons was recorded simultaneously using in vivo two-photon cal-
cium imaging from A1l L2/3 neurons in head-fixed transgenic mice during a pure-tone
discrimination task. Data are publicly available at doi.org/10.13016/m2yt-mfxk.

The experimental task was structured as follows. After a pre-stimulus interval of 1
s, head-fixed mice were exposed to either a low-frequency (7 or 9.9 kHz) or a high-
frequency (14 or 19.8 kHz) tone for a period of 1 s. Mice were trained to report their
perception of the sound stimulus by their behavioral choice, which consisted of licking a
waterspout in the post-stimulus interval (0.5-3 s from stimulus onset) after hearing a low-
frequency tone (target tones) and holding still after hearing high-frequency tones (non-
target tones). Two-photon calcium imaging was used to acquire the calcium fluorescence
signals from individual A1 L2/3 neurons during the task with an imaging frame rate of 30
Hz. We pre-processed these data as follows to match the pre-processing used by the au-
thors in the original publication [129]. We smoothed the raw calcium fluorescence traces
using a zero-phase (MATLAB filtfilt.m function) order-2 low-pass Butterworth filter
(MATLAB butter.m function) with low-pass cutoff frequency of 30 Hz (equal to the
original sampling frequency of the calcium imaging data). As in the original publication
[129]], the resulting traces were deconvolved with a first-order autoregressive model.

We analyzed neurons recorded from n = 12 Fields of View (FOV) from n = 12 an-
imals. For consistency with the previously published work [129]], we only considered
individual neurons that carried significant intersection information as described in [[129].
This led to selecting n = 375 individual neurons (out of the 2792 recorded neurons), lead-
ing to n = 6209 pairs of simultaneously recorded neurons used for the pairwise direct
information analysis and n = 12 sessions for the population analyses. For the information
analysis of these data, we identified for each neuron the imaging time frame within the
trial of maximal intersection information, exactly as in the original publication [129]]. We
then considered for each neuron a time frame of n = 10 imaging frames (corresponding
to a window of 333 ms) around the peak intersection information time frame (we call this
the peak time window for the neuron). Then we discretized activity for each neuron into
R = 3 bins according to whether it detected O, 1, or > 1 spikes in the peak time window
(this was done by setting the binning method field in the input options opts of MI.m to
‘userEdges’, which allows binning the data with user-defined bin edges). The stimu-
lus set used for the stimulus encoding analysis was binary, dividing the presented sound
tones into the low- and high-frequency categories. The choice set used for the intersec-
tion information analysis was also binary (lick vs no lick). For Figure we used the
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svm_wrapper .m function of the toolbox to train a cross-validated (2 folds) soft-margin
linear SVM (hyperparameter C = 1) to decode the stimulus S and the choice C from the
neural population activity. We computed stimulus and intersection information as Mutual
Information /7 (S, S) between presented and decoded stimulus and /7 as the Intersection
Information 77 (S, [S,C],C) between the presented stimuli, the mouse choices, and the
stimulus and choice decoded from neural activity using the MI.m and II.m functions of
the toolbox. The bias was corrected by applying the shuffle subtraction procedure, setting
the shuff field of the opts structure to 30. Figure illustrates the pipeline of dimen-
sionality reduction and information measurement used to generate Fig. The fitting
was performed using a second-order polynomial on the logarithm of the population size.

Files that reproduce the analysis of these data are found in github. com/panzerilab/
MINT_figures), subfolders ‘Figure2’ and ‘Figure3’.
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Appendix B

Supplementary information of Chapter
3

The analyses presented here correspond to those presented as supplementary information
in the first submitted version of the paper [[138]] prior to being revised.

B.1 Definitions of Shannon Information quantities and
further relationships with PID components

As described in the main text, once a definition of any of the four PID components is
provided, the other three can be obtained as linear combinations between Shannon Infor-
mation quantities and the defined PID component. To facilitate implementation by users,
in the following we report the equations to compute R/ and U! as the linear combination
of Shannon Information quantities and SI (for which we provided a definition in the main

text Eq. (3.7)).
By subtracting Eq. (3.4) from Eq. (3.3) we obtain:

I(S;Rl,R2> —I(S;R1> :I(S;Rzle) = UI(S : RQ\RI)—I—SI(S : Rl;Rz) (B.1)

where I(S : Rz|R;) is the conditional mutual information about S provided by R, given
R, defined as the joint information carried by Ry and R, minus the information carried
individually by R [[143]]. Analogously, by subtracting Eq. (3.5) from Eq. (3.3)) we obtain:

I(S;Rl,Rg) —I(S;Rz) = I(S;R1|R2) = UI(S . R1 \Rz) —|—SI(S . Rl;Rz) (B.Z)
Finally, by subtracting Eq. from Eq. (3.3)) we obtain:
I(S;R1,Ry) —1(S;Ry) —I(S;R2) = SI(S: Ri;R2) —RI(S : Ri3Ry) (B.3)

where the quantity on the LHS of Eq. (B.3)) is known as the co-information Col(S;R;;R>)
of §, R; and R»:

Col(S;R1;Ry) = I(S;R1,R2) —I(S;Ry) — I(S;Ry) (B.4)

95



96 APPENDIX B. SUPPLEMENTARY INFORMATION OF CHAPTER 3

Linear relationships between the four PID components and Shannon information quan-
tities are depicted in Fig. While Eq. (B.IHB.3) do not impose any independent
constraint on the four PID components additionally to the ones in Eq. (3.3}3.5), they ex-
press explicitly R/ and U as combinations of Shannon information quantities and S/, as
follows:
RI(S:Ri;Ry) =SI(S:Ri;Ry) — I(S;R1,R2) +1(S;R1) +1(S;R2)
UI(S:RI\Rz):I(S;Rl‘Rz)—SI(StRl;RQ) (B.5)
UI(S:Ry\Ry) =I(S;Rz2|R1) —SI(S: Ry;Ry)

I(S;R,R,)

UI(S:R\R,) UI(S:R\R,)
7 D
78. QP
..,? \@ﬁ
RI(S:R;;R,)

Figure B.1: PID decomposes the joint information that the sources R; and R, carry about S
into four components: the redundancy RI(S : Ry;R;), the unique information UI(S : R} \ Rz) and
UI(S: R\ Ry), and the synergy SI(S : R|;R;). The colored outlines represent the four linear Eq.
@-@ and (B.1}B.2)) that relate the four PID components to Shannon information quantities.

Expressions similar to the ones of Eq. can be easily obtained to write any three
of the PID components as an explicit function of the fourth one. For example, we could
have written Ulg,, UlR,, and SI as a function of RI.

B.2 Definitions and properties of different PIDs

In this section we first provide a mathematical definition of the three measures of PID
components used in this paper. Then, we detail important properties of PID of two source
variables that are relevant to this study, and discuss which properties these three measures
do or do not satisfy. For extensive reviews on available PID measures and their properties,
we refer 144, 145].
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B.2.1 Different measures of PID components and their properties
B.2.1.1 I,

In the work introducing PID, Williams and Beer proposed a measure of redundant infor-
mation about S, called /,,,;,, that for two source variables R; and R is defined as follows:

I1(S:R1;Ry) p(s) min I(S=s;R; (B.6)
s;_'g Ric{R1 R} ( )

where I(S = s;R;) is the specific information that source R; carries about a specific value
of the target variable s € §, and is defined as:

I(S=s;R Z p(rils) [log PESM)] (B.7)

riER; ( )

Intuitively, the redundant information computed as in Eq. quantifies redundancy as
the similarity between R and R; in discriminating individual values of the target S.

B.2.1.2 Iy

Minimum mutual information Iys; was introduced in [[110]]. This measure is important
since both 7,;, and BROJA measures reduce to Ijsys; for Gaussian systems with an univari-
ate target. This is probably the simplest PID measure, defining the redundant information
that Ry and R, carry about § as follows:

RI(S: R\;Ry) = min{I(S;R,),I(S;R2)} (B.8)

Iy quantifies redundant information by directly comparing the amount of information
encoded individually by each source, and results in at least one component of unique
information always being null.

B.2.1.3 Iproja

The BROJA measure [31] is defined as an optimization problem, minimizing Shannon
information quantities that depend on the probability distributions p(S,R;,R;) defined
in the probability space Ap of distributions ¢(S,R;,R,) having pairwise marginals be-
tween each source and the target equal to the original ones, i.e. ¢(S,R;) = p(S,R;) and
q(S,R2) = p(S,R;). The rationale of this approach is that the synergy can be conceptual-
ized as the information about the target in the joint space of the two sources that cannot
be possibly recovered by observing one source at a time (thus from the marginal proba-
bilities), thus it can be defined operationally as the difference between the original joint
information and the minimal joint information about the target that can be found in the
space Ap of distributions that preserve the marginals (which is the union information, Eq.
3.0):

SI(S:Ri;Ry) =I(S;R1,Ry) — min I,(S; Ry, R7) (B.9)

qEAP
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Redundancy and unique information components can then be computed from the synergy
and the Shannon information values using the linear constraints as explained above (see
Eq. (B.5)). Among several advantages of the BROJA PID, we note that this definition
insures that the redundancy and the unique information values will have the same value
for all the distributions in the space Ap of distributions that preserve the marginals (the so
called pairwise marginals property of PIDs).

B.2.2 Key properties of PID components for two source variables

In their paper introducing PID for the first time, Williams and Beer [30] proposed a set
of properties that a measure of R/ should satisfy. In the following years, other authors
introduced new properties which they thought to be important for measures of PID com-
ponents [111},|141}145].

Three particularly important properties of PID measures with two source variables
are: non-negativity, symmetry and additivity [45]].

* Non-negativity: each PID component should be non-negative, i.e. RI >0, Ulg, > 0,
Ulg, > 0 and ST > 0. This property is important since it allows interpreting PID
components as fractions of the joint mutual information about the target S encoded
by the source variables (i.e., the average reduction of the entropy of S obtained
when measuring the two sources simultaneously). All three BROJA, 1, and Iys;
measures satisfy non-negativity [30, 31, 110].

e Symmetry: RI and ST are symmetric under reordering of source variables, i.e.
RI(S : R|;Ry) = RI(S : Ry;Ry) and SI(S : R1;Ry) = SI(S : Ry;R;). This property
is important since also Shannon information quantities which can be decomposed
in terms of R/ and SI (including the joint information and the co-information) are
symmetric under reordering of Ry and R;. All three BROJA, I,,,;, and 7347 measures
satisfy symmetry [30,|31,|110].

* Additivity: given two independent systems of random variables (S1,X;,Y;) and
(Sz,Xz,Yz), then

RI((S1,82) : (X1,X2);(Y1,Y2)) =RI(S : X1;11) +RI(S2 : X2;Y2)

S[((S],Sz) : (X],Xz) ( 2)) = SI(S] 1X1;Y1) —|—SI(SZ 1X2;Y2) (B.10)
UI((S1,82) : (Xl,X2>\(Y1,Y2)> UIS, : X1 \1)+UI(S:: X2\ Ya)
UI((Sl,Sz) : (Yl,Yz)\(Xl,Xz)) UI(S1 1 \Xl) —i—UI(Sz : Yz\Xz)

This property is important since it guarantees that PID components of two indepen-
dent systems can be computed independently and then summed together. BROJA
satisfies additivity, while 7,,,;, and Ijspsr do not [[111]].

An additional property satisfied by all three measures is the pairwise marginals prop-
erty [[145]], 1.e. RI, Ulg, and Ulg, only depend on pairwise marginal distributions between
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the sources and the target p(S,R;) and p(S,R;). This implies that all dependencies be-
tween the target S and the sources (Rj,R) that go beyond the dependency between the
individual sources and the target are quantified as synergy. Even though the pairwise
marginals is a fundamental property of the three PID measures, it has been questioned
whether PID measures should always satisfy it [[145]|185].

B.3 Illustration of bias and details of implementation of
the bias correction procedures

B.3.1 Illustration of the origin of the bias

In this section we illustrate the effect of limited sampling on information calculation (both
joint and single neuron information). We simulated two completely stimulus uninfor-
mative neurons, responding on each trial with a uniform marginal distribution of spike
counts ranging from 1 to 4, regardless of which of 2 stimuli was presented. The neurons
are also uncorrelated, so that their joint distribution is uniform across all possible 16 joint
responses, and equal between the two stimuli.

Stimulus 1 Stimulus 2 0.3
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Figure B.2: Schematic of the limited sampling bias problem. Two uninformative neurons, re-
sponding on each trial with a uniform distribution of spike counts ranging from 1 to 4, regardless
of which of 2 stimuli was presented. Examples of empirical response probability heatmaps sam-
pled from 50 and 200 trials per stimulus (top and bottom rows, respectively) are shown in the left
and middle columns (responses to stimuli 1 and 2, respectively). Each of the heatmaps has two
more heatmaps indicating the marginal probability values. Right: distribution (over 5,000 simula-
tions) of the plugin information values obtained with 50 (top) and 200 (bottom) trials per stimulus
respectively.
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Examples of marginal and joint stimulus-conditional neural response empirical re-
sponse probability histograms sampled from a finite number of trials (50 trials per stim-
ulus in the top row and 200 trials per stimulus in the bottom row respectively) are shown
in the left and middle columns (responses to stimuli 1 and 2, respectively). Despite all
the true response distributions being uniform across response bins and stimuli, a single
instantiation of the probabilities from simulated data will have differences across stimuli
that are not real but just due to random fluctuations. With smaller numbers of trials, we
can appreciate that the random fluctuations that generate spurious information are larger
for the joint probability (the few trials are spread over a larger set of possible responses
R = 16) than for the marginal probabilities (the few trials are spread over a smaller set
of responses R = 4). As a result of these spurious differences between stimulus-specific
response distributions, the values of information computed from individual simulations
with the limited number of trials (right panel) would not be distributed around the true
value of zero bits, but around a spurious non-zero value (the bias). The bias is smaller for
the single-neuron information values obtained from the marginal probabilities (unique in-
formation and single neuron information) than for the information obtained from the joint
distribution. With larger number of trials (bottom row), these random fluctuations get
smaller (the single instantiation in the bottom row looks more the same across stimuli),
but much more so for the marginal than for the joint distribution, and thus the bias reduces
more for the quantities obtained from the joint distribution (unique, single neuron) than
for the joint information and the synergy.

B.3.2 Quadratic Extrapolation (QE)

The Quadratic Extrapolation (QE) procedure [41] assumes we are in the asymptotic sam-
pling regime, so that the bias of the entropies and information can be accurately approxi-
mated as second order expansions in 1 /N [42]. That is, we assume that

a b
Iplugin(S;RhRZ) = lmbiased(S;RlvR2> + =+ (B.11)

N ' N2

where a and b are free parameters estimated from the data. This is done by re-computing
the information from fractions (N/2 and N /4) of the data available and then fitting (using
a least-square-error procedure) the plugin information values obtained with fractions of
data to the preceding quadratic function of 1/N. This provides the best-fit estimates of the
parameters a and b and consequently the estimate of I,pia504(S; R1,R2). In the numerical
implementation of QE, we allowed for a user-selected number K of data partitions into
halves and quarters. We performed a separate extrapolation for each partition and then
we averaged the resulting estimates of I,piaseq (S; R1,R2) to obtain our final estimate of
Linbiasea(S;R1,R2). The procedure is explained in the above for the joint information but
we applied it to each and every PID term.
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B.3.3 Shuffling-subtraction bias correction

To estimate the level of the bias, we computed PID after randomly permuting the stimulus
values across trials. In this way, all information about the stimulus is lost and all PID terms
should be zero, but for finite sampling effect. Thus, the resulting PID terms can be taken
as an estimation of their bias, which we subtracted from their plugin estimates. In our
implementation, we allowed the user to perform a number V of random permutations and
then we took as a measure of the bias (to be subtracted from the plugin estimate to obtain
the unbiased estimates) the average of the PID term computed over all random realizations
of the permutation.

In simulations in the main text and supplement, we used V = 20 and K = 20. In the
analyses of real data, we used V =1 and K = 1.

B.4 Details of the binning procedures used to compute
the PID

For all simulated data, we estimated the PID components based on the following binning
approach. First, in each simulation, we generated a large number (n = 2048) of trials per
stimulus for each set of model parameters. Then, we discretized the probability distri-
bution of spike counts for each neuron in the chosen number of bins. We computed the
bin edges that made the partition of trials as equally populated as possible, following the
procedure of Ref. [85]. These bin edges were then used for all simulations computing
PID as a function of the number of trials per stimulus. We chose to fix the bin edges for
each simulation to ensure that differences across trial numbers in the estimated values of
the PID components were due only to trial numerosity and not to other reasons. This was
important to study the properties of the information estimates as a function of the number
of available trials.

For real data, the binning procedure is specified in the SM section describing their
information analysis (see SM Section |B.10).

A table with all the number of bins used to discretize single neuron activity in each
figure is reported in the Table below.
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Number of bins 2 3 4 8
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Table B.1: Number of bins used to discretize neural activity for information-theoretic analyses of
simulated and real data, for both the main text and SM figure

B.5 Details of simulations used to test the bias
properties and further results of these simulations

B.5.1 Details of simulations

To test the bias of the PID algorithms, we developed a simulation of the spiking activity of
two neurons responding to a set of stimuli, as follows. The spike count r; and r, of each
of the two simulated neurons for each of the four stimulus values was the sum of two
Poisson processes, one Poisson process that was independently drawn for each neuron
expressing the variability of responses that is private” to each neuron, and a second
Poisson process that is shared between the two simulated neurons and which gives rise to
noise correlations.
The equations for the mean rates (that is, mean spike counts) of each Poisson process
were as follows:
ratespared =Y
rateingividual—1 = B+ ofsy +a(l—B)s: (B.12)
rateindividual—2 = B+ 0(1 = B)s1 + afisy
In the above mean rate equation used for our simulations of the spike counts of pairs of
neurons in response to the stimulus, we had the following free parameters, which were
varied across simulations. We had (i) a parameter o regulating the strength of stimulus
tuning of the spike counts of the individual neurons or in other words the separation in
response strength between least and most effective stimuli (higher values of o leading
to higher values of individual neuron information and thus to higher values of joint in-
formation); (ii) a baseline parameter B expressing the overall baseline level of activity
common to all stimuli (higher values of B in general decreased information of individual
neurons and thus the joint information because they increased the standard deviation of
responses at fixed stimulus and thus made the rate separation o between most and least
effective stimuli smaller in standard deviation units); (iii) a parameter 8 which increased
the amount of redundancy because it regulated the dissimilarity of tuning of the spike
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count of each individual neurons to the two stimulus features (8 close to zero means in-
dependent tuning, i.e. each neuron encodes a different feature; higher values of f close
to B = 0.5 indicate that both neurons encode the features similarly and redundantly, i.e.
the two neurons encode the same linear combination of features); (iv) and a parameter y
regulating the strength of the shared process and thus the strength of correlated firing (in-
creasing Y increased synergy because it made the two neurons more strongly correlated,
and the fact that the proportion of shared spikes differed between stimuli that were more
or less effective for each individual neuron made the overall correlation strength stimulus
dependent thereby increasing the amount of synergistic information about the stimulus
that can be gained only measuring the joint responses of the two neurons [33]]).

For the three scenario presented in the top, middle and bottom rows of Fig. (3.1, [3.2]
B.3] B.4] B.5] B.6| B.7] [B.8] [B.10} B.11) the simulations parameters were as follows.
For all scenarios, o was set to 7 for the lower information case and to 10 for the higher
information case, and B was set to 5. For the uncorrelated scenario (top row), we set y =0
and 8 = 0. For the high redundancy scenario (middle rows), we set y=2 and 8 = 0.4. For
the low redundancy scenario (bottom rows), we set ¥ = 20 and 8 = 0.1. For the figures
with the parameter sweeps (Fig[3.3]B.9), we used the same B, o, 3 values as above for the
three scenarios but we varied o from 1 to 15 in steps of 1.

B.5.2 Further results of simulations

Here we present and collect all additional analyses of simulated data reporting the bias
properties of the PID.
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Figure B.3: Joint information and PID quantities as a function of the number of simulated trials
used to compute them. Here we used the plugin method. In each panel we plot (rather than the
information value itself) the information component bias, computed as the information component
estimated with the considered number of simulated trials minus the asymptotic information com-
ponent estimated with the largest number of simulated trials, that is 2048 trials per stimulus). Top,
central and bottom row plot the simulated scenarios with no interaction, high redundancy and high
synergy, respectively (see SM Section [B.3). Left, center and right columns represent simulations
with higher information (@ = 10), lower information (@ = 7) and with shuffled low-information
data. “Syn”: synergy. “Red”: redundancy. “U1+U2”: sum of the two unique information of each
neuron. We used R = 4 discretization bins for each neuron (Table [B.I). Each panel plots mean +

2 SEM over n = 96 simulations.
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Figure B.4: Joint information and PID quantities using BROJA as the redundancy measure as a
function of the number of simulated trials used to compute them. Plotting conventions are exactly
as in Fig. [3.1] We used R = 2 discretization bins per each neuron (see Table [B-I). Results in each
panel are plotted as mean + 2 SEM over n = 96 simulations.
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as in Fig. [3.1] We used R = 8 discretization bins per each neuron (see Table[B.I). Results in each
panel are plotted as mean + 2 SEM over n = 96 simulations.
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Figure B.6: Joint information and PID quantities using I,,;, as the redundancy measure as a func-
tion of the number of simulated trials used to compute them. Plotting conventions are exactly as
in Fig. [3.I] We used R = 4 discretization bins per each neuron (see Table [B.I). Results in each
panel are plotted as mean + 2 SEM over n = 96 simulations.
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Figure B.7: Joint information and PID quantities using Iy as the redundancy measure as a
function of the number of simulated trials used to compute them. Plotting conventions are exactly
as in Fig. [3.1] We used R = 4 discretization bins per each neuron (see Table[B.I)). Results in each
panel are plotted as mean + 2 SEM over n = 96 simulations.
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In this subsection we collate figures reporting additional results of the PID bias correction
methods on simulated data.
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Figure B.8: Bias corrections for the case of high information. Joint information and PID quantities
as a function of the number of simulated trials used to compute them. Plotting conventions are
exactly as in Fig. 3.2} We used 4 discretization bins for each neuron (see Table [B.I). Results in
each panel are plotted as mean + 2 SEM over n = 96 simulations.
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sure. Joint information and PID quantities as a function of the number of simulated trials used to
compute them. Plotting conventions are exactly as in Fig. [3.2] We used R = 4 discretization bins
per each neuron (see Table B.T). Results in each panel are plotted as mean + 2 SEM over n = 96
simulations.
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Figure B.11: Bias corrections for the case of high information using Iy as the redundancy
measure. Joint information and PID quantities as a function of the number of simulated trials used
to compute them. Plotting conventions are exactly as in Fig. 3.2} We used R = 4 discretization
bins per each neuron (see Table [BI). Results in each panel are plotted as mean + 2 SEM over
n = 96 simulations.
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B.7 Simulation showing that the Gaussian
approximation for Shannon information fails for
neural spike rates with realistically low numbers of
spikes

In this subsection, we use simulations of neural activity to exemplify why the Gaussian
approximations for information, often used in PID, are not suitable for computing infor-
mation about stimuli carried by neurons.

We consider here the mutual information about a stimulus s carried by the response
of one neuron r;, which can be quantified as the difference between the entropy H(R;)
of the distribution p(r;) of responses r; across of stimuli, called response entropy in the
neural literature, and the conditional entropy H (R;|S) of the stimulus-specific distributions
P(ri|s) referred to as noise entropy in the neural literature:

I(S:R) = Y p(s,ri)log% (B.13)
sES,riER; l
= — Y plr)logp(r)+ Y, p(s)p(rils)log p(rils) (B.14)
riER; sES,rER;
= H(R)—H(R;|S) (B.15)

It is well documented that the number of spikes emitted by a neuron in response to dif-
ferent stimuli follows approximately a Poisson distribution [147]. Moreover, the time
windows in which neurons process and transmit information are usually short of the order
of tens to hundreds of milliseconds [55]]. Given that the firing rate of cortical neurons
ranges from one or few spikes per second (when considering the less effective stimuli)
to several tens of spikes per second (when considering the most effective stimuli), fir-
ing rate distributions relevant for neural information processing can be conceptualized as
near-Poisson with relatively small average mean spike counts. Under these conditions,
probability of neural responses conditional to the stimuli are not well approximated by
Gaussian distributions, as often assumed by implementations of PID [45] 76, |110} [186].
As aresult, the noise entropy will be overestimated (remember that the Gaussian distribu-
tion is the one with the highest entropy across all distributions with a given variance). If
the different stimuli presented are few in number (that is, S is small) the probability p(r)
of response r across all stimuli will be very far from a Gaussian, and as a consequence
the response entropy will be overestimated even more than the noise entropy, and as a
result the information will be overestimated substantially. Hence, Gaussian PIDs cannot
be used to estimate information reliably in typical experiments involving the recording of
neural activity, and estimation methods that respect the discrete nature of neural activity
will be better suited.

To illustrate this, we simulated spike count responses of an individual neuron in re-
sponse to a set of S = 4 different stimuli defined by two independently-drawn binary
features s1,s2. We simulated stimulus-specific neural spike counts in response to a stim-
ulus defined by the two feature values (s1,s2) as a Poisson process with average count r,
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as follows:
r=as;+as,+B (B.16)

The parameter B represents the baseline firing and the parameter o represent the sepa-
ration of the mean responses between the least effective and most effective stimuli. The
parameter o increases the information (as it increases the separation between least and
more effective stimuli), whereas the parameter B decreases the information (it increases
of standard deviations of stimulus-specific responses, which in turn decreases the separa-
tion between responses to different stimuli in units of these standard deviations). We used
three approaches to compute information. In the first, we computed the ground-truth in-
formation by computing the probabilities of each single possible spike count value, which
captures perfectly the information expressed by the above Poisson process; the informa-
tion computed by discretizing the responses into R = 4 equipopulated bins (at it could
be done reliably also in experiments with more limited numbers of trials) and using the
Gaussian approximation (the latter is computed using the information that would be ob-
tained if all probabilities P(r|s) and P(r) were Gaussian with the standard deviation ¢
and o, of measured empirically from the empirical P(r;) and P(r;|s), as done in Gaussian
PID [45,[76,|186]:

Loauss (S; Ri) = %logs(27t62) - % Y log,(27oy) (B.17)
ses

In Fig. we plot the values of information obtained with these 3 approaches
simulating neural responses across values of the parameters o and B (o and B were varied
between 2 and 14 in steps of 1). We computed information using a large number (10000)
of simulated trials per stimulus to avoid bias issues. The Gaussian information presented a
large overestimation of information with respect to the ground truth information encoded
by the Poisson process. On average across all simulated cases, the values of Gaussian
information overestimated the ground truth values by 21%.

In contrast, a simple discretization into R = 4 equipopulated bins of the neural re-
sponses led to a very precise estimation of the ground truth information. On average
across all simulated cases, the values of the R = 4 discretization underestimated the
ground truth values by only 2% (the slight underestimation due to a coarser discretiza-
tion of discrete data is due to the data processing inequality).

B.8 Asymptotic expansion of the bias of the PID
components in the limit of large numbers of
experimental trials

To derive analytical approximations to the bias, we make the assumption of a large N limit
(where N is the total number of experimental trials available to compute the probabilities),
defined formally as the case when NyP(ry,r;|s) > 1 for each stimulus s and joint response
r1,r, where N; is the number of trials for each stimulus used to compute the stimulus-
specific neural response probabilities. (If this is satisfied then it is also satisfied that
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Figure B.12: Comparison between discrete and Gaussian computations of the stimulus informa-
tion carried by an individual Poisson neuron. We report the information values obtained when
evaluating the stimulus information carried by a Poisson neuron simulated with mean spike count
set Eq. (B.I6) as a function of the parameters B and or. We simulated 10000 trials for each of the 4
stimuli. Left: ground truth information of the Poisson neuron obtained with discrete probabilities
considering the probabilities of all possible spike count values. Middle: information computed
with the discretized approach by binning the possible spike counts into 4 equipopulated bins.
Right: information values computed with the Gaussian approximation of the distributions of spike
counts. The Gaussian approach strongly overestimates the ground-truth values of information (by
21% on average across all simulated parameters), whereas the discrete approach using the coarse
binning is far more precise (within 2% on average across all simulated parameters)

NP(ry,rp) > 1 for each joint response ry,r,, and that the same applies to all the marginal
single-neuron probabilities, e.g. NyP(ri|s) > 1). While it is unrealistic that this large N
limit case will be formally satisfied in practical experiments, this type of derivation has
proven very useful to understand the properties of the bias and to design strategies to cope
with it 163].

Suppose we have M trials (for us, M will be either Ny or N depending on whether we
will consider noise or response entropy) and we want to compute the entropy in a certain
discrete space X (for us, this space will be the joint space of pairwise neural activity
or the space of marginal distributions of individual neural activity). The entropy of the
probability distribution is defined as

H(X) =Y —p(x)log,(p(x)) (B.18)

X
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where it is important to bear in mind that the sum over possible values of x for the discrete
entropy includes only values of x with probability larger than zero.

The values of the probabilities are not known a priori in experimental situations. They
could be perfectly computed from the data if we had infinite amounts of experimental
trials, but we assume that we have only a finite amount of trials M. If we compute the
probabilities from the empirical occurrences pys(x) from the M available trials, we have
the value of the entropy Hjs obtained with a finite number of trials M:

2: pu(x)logy(pu(x)) (B.19)

We would like to compute the finite sampling bias of the entropy, defined as the difference
between the average value (Hys) s of Hyy (over many instantiations with M trials) and the
true value H obtained when the true distributions are known. In what follows, we will
compute an approximation to the bias in the large M limit, following the procedure of [42].
However, other methods lead exactly to the same result for the leading approximation to
the bias in the large M limit [43,|163]]. To compute analytical approximations to the bias
of the entropy, we will make use of the logarithm expansion:

(1—pu(x))!

I & (11—
~loga(pu(¥)) = 15 X (B.20)
]:

This is convergent for any value of 0 < pys(x) < 1 (note that values of pys(x) = 0 provide
a vanishing contribution (thus do not enter) the above sum and if py(x) = 1 for one
response then the entropy is trivially zero). This allows to rewrite the entropy computed
from M samples as a sum over powers of the probabilities:

)/ o J o (_1Vk /:
mzZZPM %25;22( ) <,J<)pM(x)k“ (B.21)

From the above equation, it follows that averages over all instantiations with M trials of
the entropy computed with M trials can be obtained from the averages of the powers of
the probabilities over instantiations with M trials. Because we use a discrete computation,
we assume without loss of generality that the neural response and the stimulus-specific
response probabilities follow a multinomial probability with arbitrary parameters. The
value of the probability p(x) computed from the empirical occurrences pys(x) using M
trials on average overall all possible outcomes is unbiased, as its value (pys(x)) coincides
with the true value p(x)that would be estimated with an infinite number of trials:

(pm(x))p — p(x) =0 (B.22)

When computing with M trials the power k (for k > 1) of a discrete probability p(x), on
average over all possible outcomes the power of the empirical probability has instead a
bias. Under the assumptions that the number of trials M is so large that M p(x) > 1 for all
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x, the bias of the power k of the probability has the following asymptotic expression [42,
187]:

1 [k _ 1
(oo =t = 5 (5) P M- pl o (3] 29

Higher orders terms of the bias of the probability powers can be computed analytically
and are available in Ref. [[I187]. By inserting the above expansion of the average proba-
bility with M trials into the expansion of the entropy one can obtain by some algebra an
expansion of the bias of the entropy in inverse powers of 1/M

<HM>M—H:——|———|—-'~ (B.24)

with the leading term 1/M in the bias being

G (Re—1)
M 2M1In2

(B.25)

where R, denotes the number of relevant events (responses) for the considered distribu-
tion, defined as the number of responses x with probability p(x) > 0. Thus, although the
bias is not the same for all probability distributions, in the asymptotic sampling regime,
its leading term depends on some remarkably simple details of the response distribution
(the number of trials and the number of relevant responses). This makes it possible to
derive simple rules of thumb for estimating the bias magnitude and compare the relative
bias in different situations. As we will discuss now, this equation can predict very effec-
tively how bias properties of PID terms differ between them within a simulated scenario
and how they change across different simulated scenarios.

The leading bias terms of the joint information can be computed by writing it as the
difference between joint response entropy and joint noise entropy,

I(S;Rl,Rz) = H(Rl,Rz)—H(Rl,R2|S) (B.26)
= — Y p(ri,r)logp(ri,rn)+ Y p(s)p(ri,r2ls)log p(r1,r2ls)
ri,r2ER sES,r €R,mER,

and using the equations above with M equal to N; for the noise entropy and to N for the
response entropy. In this way we obtain

(IN(S;R1,R2))N —I(S5R1,R2) = m Y (Rjs—1)—(R;—1) (B.27)

The above bias of I(S;R},R;) originates from finite sampling fluctuations of the joint
probabilities and thus is function of R;_, the number of relevant bins of the joint stimulus-
specific distribution in the joint ry,r, space, R; is the number of relevant bins of the joint
stimulus-unconditional distribution in the joint ry,r, space, and N the total number of
trials available across all stimuli.

Consider the bias of the single cell entropies (Eq. above). They depend on
the marginal distribution p(r;|s) and p(r;). Thus this bias depends on the finite sampling
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fluctuations of the marginal probabilities, which will be smaller than those for the joint
probability because the available trials are concentrated in a smaller space (Fig. [B.2).
Thus, the bias of the single cells will be much smaller than that of the joint information
and its leading term is as follows:

1

(IN(S;Ri))Nn —1(S;R;) = 2N1n(2)

Y (Riy—1)—(Ri—1) (B.28)
N

In the above R;_; and R; are the number of bins relevant for the marginal stimulus condi-
tional and stimulus-unconditional probabilities. These bin numbers will be less than the
corresponding ones for the joint probabilities R;_g and R;. For example, if we discretized
responses into 5 bins per neurons, we expect the joint response bins R;_; and R; to be 25
or less, and we expect R;_; and R; to be 5 or less. Thus we expect in this case a factor of
5 difference between the joint and individual information bias. In general we can expect
the bias of the individual neuron information to be considerably smaller than that of the
joint information, with the difference between the two biases getting larger when more
bins are used to discretize the activity of each neuron.

Having understood the bias of Shannon information measures relevant for PID, we
now use this knowledge to evaluate the bias of the PID terms. We focus first on the bias
of the synergy SI as defined in BROJA. We remind that the synergy equation is defined
as a difference between the joint and the Union information, with the Union information
defined as follows:

SI(S: Ri;Ry) = I(S;R1,R>) — Union (B.29)
Union = min I,(S;R1,R>) (B.30)
gE€AP

where Ap is the set of all joint probability distributions ¢(S,R],R;) that have the same
pairwise marginals ¢(S,R;) = p(S,R;) and ¢(S,R2) = p(S,R;) as the original distri-
bution p(S,R1,R>), and I,(S;R1,R>) is the joint information computed for distribution
q(S;R1,R;). Consider now the Union information. When applied to limited data M, the
minimization within the Ap space when applied to finite sampling data will tend to select a
minimum information within the space set by the marginals pys(r1,s) and pys(r2,s) com-
puted with M trials. It will thus select probability distributions with a low finite sampling
information value. Because this bias is by and large positive, the minimization procedure
will tend to select probabilities with lower bias. Among the probabilities with low bias
in the Ap space we have the probability p;,q(ry,r2s) defined directly from the marginals
such that the neurons would have the same single cell probabilities but no interactions at
fixed stimulus (noise correlations)

Pind(r1,12]8) = p(ri|s)p(r2]s) (B.31)

We call the [, computed on g = p;,4 the conditionally-independent information 7,4 (S; R1,R2),
defined as the joint mutual information with stimulus-conditional probabilities p;uq(r1,r2|s)
and stimulus unconditional probabilities p,q(ri,r2) = Y5 Pina(r1,r2|s)p(s). (The infor-
mation is the information carried by the population about the stimulus if the single neu-
ron responses were the same as the original data but there were no noise correlations
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(no stimulus conditional interactions between the neurons), and it has been used as a
reference distribution for understanding whether noise correlations increase or decrease
information, see 33, 64].) Importantly for our PID bias understanding, we can use the
above bias expansion to compute that in the large N limit 7;,,;(S; R, R;) has a low bias,
very close to the one of the sum of the biases of individual information:

1
Lina—N(S; R\, R2))N — Iina (S;R1, R) = o
{Tina—N (SR, R2))N — Lina (S; Ry, R2) 2NIn(2) Z.

S 1

2
(Ri—s - 1) - Rind (B32)
=1
where R;_ is the number of bins relevant for the marginal stimulus conditional and R;,;
is the one relevant for the stimulus-unconditional independent probabilities of the i-th
individual neuron (i = 1,2). This will be smaller than the corresponding one for the joint
information. For example, if we discretize responses into 5 bins per individual neuron, we
would expect 25 bins or less relevant for the joint information and 10 or less (5 for neuron
1 and 5 for neuron 2). In other words, the bias of the joint information grows quadratically
with the number of responses of the individual neurons, whereas the bias of 1;,,4(S; R, R7)
grows linearly. Because the minimal set of finite sampling variations in the Ap space is set
by the finite sampling fluctuations of the marginals, we expect and make the assumption
that the minimization in the Union calculation will select distributions roughly with the
same bias as [;,4(S; Ry, Ry). To test this, we performed our simulations of pairs of neurons.
We found (see Fig. [B.3)) across all conditions and trial numbers that the bias of the Union
information is very similar to the bias of I;,4(S; R1,R2). It is actually slightly less which is
compatible with the understanding that the minimum selects a similar bias and of course
smaller statistical fluctuations.

The synergy is the difference between the joint and the union information. Because
the former has a large positive bias (growing quadratically with the number of single-
neuron discrete responses) and the latter has a smaller positive bias (growing linearly
with the number of single-neuron discrete responses), the synergy is expected to have a
relatively large positive bias, smaller than that of the joint information but still large. This

prediction is confirmed in all numerical simulations (Fig. [B.3][B.4,[B.5][B.6,[B.7]
[B.8,[B.10} [B.11]).

The redundancy is the difference between the sum of single neuron information and
the Union information. In the asymptotic regime, the leading term of the bias of the
Union is equal to the sum of the leading term of the biases of single neuron information
(see Eq. (B.32) above). Thus the redundancy is expected to have relatively small bias.
This prediction is also confirmed in all numerical simulations (Fig.
[B.5/[B.6,[B.7,[B.8] [B.10} [B.TT).

The unique information is the difference between the single neuron information and
the redundancy. Given that the redundancy has little bias the unique information should
be biased like the single cell information, which grows linearly with the number of dis-
crete single cell responses. Thus the bias of the sum of the unique information should be
similar to that of the Union and grow linearly with the number of single neuron responses.
Thus, the unique information should have an intermediate bias between synergy and re-




116 APPENDIX B. SUPPLEMENTARY INFORMATION OF CHAPTER 3

dundancy. Once again, these predictions are too confirmed in all numerical simulations
(Fig. (-1, 52 B3} B4} B3} B-6, [B-7, B8} 10, B-11).

In sum, the above explains why synergy is more biased than the other terms and gives
an idea about the bias of the unique information and of the redundancy, suggesting that the
bias of synergy is positive, the largest and grows quadratically with the number of single
cell responses, the bias of the unique information is positive, the second largest and grows
linearly with the number of single cell responses, and redundancy has the smallest bias
which grows sub-linearly. It explains why the bias of synergy and joint get proportionally
bigger for large numbers of possible discretized single cell responses.

Importantly, the analytical expression also can explain why the synergy bias of the
shuffled data (and in general of the bias with lower information levels) are larger than
the bias of the original distribution and give an idea of the situations in which they are
expected to be tight. Take for example the joint information for which the bias is mostly
dictated by the number of relevant response bins R;_ of the stimulus-specific joint re-
sponse distribution. Informative cases will have stimulus-specific distributions that are
restricted to a fewer number of relevant bins than the total number of bins (because in-
formative cases have less variability at fixed stimulus so more restricted and entropic
stimulus-specific distributions) and also the bins that are relevant for a specific stimulus
would not all be relevant for other stimulus-specific distributions (because informative
cases will also show diversity of response distributions to different stimuli). When we
randomly shuffle the trials combining trials to different stimuli, the shuffling operation
will mix up responses and thus create larger stimulus-specific distributions (larger num-
bers of stimulus-specific relevant bins) which will then increase the bias, as found in our
simulations. This prediction is confirmed by all our simulations. This result is important
because it implies that bias corrections based on subtracting shuffled estimators lead a
residual downward bias, which is useful to produce lower bounded or conservative esti-
mates. It also implies that the shuffled-subtracted bias corrected estimates will be precise
and not too conservative when the information level in the original data is low (because in
this case the number of relevant bins of the shuffled and original data will be similar) and
it will be too conservative when the information levels in the data are high (because in
this case the number of relevant bins of the shuffled distribution will be much larger than
the corresponding one for the original distribution). This leads to the design of tighter
downward biased estimators of synergy that may be helpful to draw conservative yet suf-
ficiently accurate conclusions.

While we derived these bias properties for the BROJA PID, we expect that the same
conclusions would hold across PIDs. In particular, we would expect them to hold for
the two other PIDs that we implemented, that is the 1,,;, and the Ips3;;. We verified with
simulations that these predictions indeed hold with 1,,;, and the Iy (Fig.
[B.11). In fact in both these decompositions the Union information depends on
the two marginal probabilities p(ry,s) and p(r,s) (because they satisfy the so called
pairwise marginals property). Thus all the considerations we made for the bias size of the
BROJA Union are expected to hold also for the Union of these other definitions, because
Union information definitions that satisfy the pairwise marginals property should have
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bias determined by the size of the finite size fluctuations of the marginals. The properties
discussed for the BROJA held also for these other PIDs. If anything, we found that the
bias of the synergy was even closer to the one of the joint information as the /,,;, and the
Iyyr have the well documented problem of producing small values of unique information
(110, /141].

B.9 Venkatesh et al NeurIPS 2023 procedure for PID
bias correction reformulated the discrete case

We tested the effectiveness in correcting for the bias of the PID bias correction procedures
developed by Venkatesh and colleagues [45]. The procedure was formulated for Gaussian
PID. We report it here for completeness, describing also the straightforward adaption of it
that we did to use it in the discrete PID. In the following we use the subscript N to indicate
the information values obtained by plugin of the empirical probabilities estimated from N
trials s without using any bias correction, and (following Ref. [45]) we use the subscript
bias — corr to indicate the information quantities corrected for the bias with the considered
specific procedure.

The Venkatesh bias correction procedure [45] focuses first on the bias of the Union
information. We consider union information Union(S : R;R;) which is related to the
other PID quantities from the following equation

Union(S: R ;RZ)plugin =UI(S:R; \R2>plugin +UI(S:R; \Rl)plugin +RI(S: R ;RZ)plugin

(B.33)
and is computed in the BROJA definition from Eq (3.6). In the following, we will indicate
union information by omitting their dependency on source and target variables, as Union,
for brevity. The Venkatesh procedure corrects for the bias by first computing the bias-
corrected union information (see Eq. (17) and the rectification formulae Eq. (106, 107)
of [45]]) by computing the bias of the joint information with any of the method available
for Shannon information (e.g. QE), then making the assumptions that it has the same bias
as the joint information and rescaling it accordingly (Eq. (17) in [45]):

I(S;Rl 7R2)bias—corr
I(S;Rl aRZ)plugin

Union gy = Union pjgin (B.34)

Note that, to follow precisely what was done by Venkatesh and colleagues [45], when
applying the Venkatesh procedure if a Shannon information quantity had a negative value
after the bias correction procedure, we set it to zero. Eq. assumes that the frac-
tion of bias of the union information is the same as the one of joint information. As we
found in our analytical calculations and simulations (Fig. [B.3), this assumption is incor-
rect, as union information is much less biased than joint information. Thus this first step
will in most cases and for low trial numbers lead to a severe underestimation of union
information. Then, to make sure all PID quantities after bias correction are non-negative
and satisfy the PID linear constraints, the Venkatesh procedure applies a double post-hoc
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rectification of the bias-corrected value of the union information:

Ul’liOl’l(l) = maX{Union(O)7I(S;Rl)biasfcorral(S;RZ)biasfcorr} (B.35)
Uni(m(z) = min{Union(l)ul(S;Rl )bias—corr + I(S;RZ)bias—corruI(S;R17R2>bias—corr}
(B.36)

The resulting Union y) is the value we take in the following for bias corrected union
Unionpizs—corr- From this the Venkatesh procedure computes the 4 bias-corrected PID
terms using the bias-corrected union information and the bias corrected joint and individ-
ual information using the 4 linear PID constraints:

RI(S : R1;R2) pias—corr = 1(S5R1) bias—corr +1(S; R2 ) bias—corr — Unionpias—corr
UI(S : Ry \ R2)pias—corr = Unionpias—corr — 1(S3R2) bias—corr
UI(S : R2\ R1)bias—corr = Unionpias—corr — 1(S; R1 ) bias—corr
SI(S : R1:R2) bias—corr = 1(S:R1,R2) pias—corr — Unionpigs_corr

(B.37)

The problems of the Venkatesh procedure can be readily understood by considering
scenarios in which both ground truth unique information components are larger than zero.
Then, the major underestimation of Union g in Eq. @ due to the incorrect assumption
that the upward bias of the union information scales like the bias of the joint information
(whereas in reality, as demonstrated in the previous section and in Fig.
the former is small and scales linearly with the number of discretized single-
neuron responses and the latter is large and scales quadratically) will lead to very low
values of Union ). Then the first rectification in Eq. @ would take Union ) as the
maximum between the information carried individually by the two sources, when in real-
ity the unbiased union information should be larger than both single-source information,
since both unique info are larger than zero. This would ultimately lead to a grossly under-
estimated Unionpizs—corr,» Which would result, from Eq. into an underestimation of
the bias corrected unique information components (for which Uniony;,s_ .., has a positive
sign in Eq. (B.37)) and an overestimation of the redundant and synergistic components
(for which Unionp;,s_corr has a negative sign in Eq. ). The major overestimation
of synergy and redundancy and the major underestimation of unique information of the
Venkatesh procedure have been consistently confirmed by our simulations (Fig.

B.8.[B.9, [B.10, B.T1).

B.10 Details of experimental procedures for real neural
data recorded from the mouse brain

B.10.1 Details of experimental procedures of mouse auditory cortex
data recorded during a sound discrimination task
We reanalysed a previously published dataset [[129]] in which the activity of several tens

to a few hundreds of neurons was recorded simultaneously using in vivo two photon cal-
cium imaging from A1l L2/3 neurons in head-fixed transgenic mice during a pure-tone
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discrimination task (Fig. [3.4A). The experimental task was structured as follows. After
a pre-stimulus interval of 1 s, head-fixed mice were exposed to either a low-frequency
(7 or 9.9 kHz) or a high-frequency (14 or 19.8 kHz) tone for a period of 1 s. Mice
were trained to report their perception of the sound stimulus by their behavioural choice,
which consisted of licking a waterspout in the post-stimulus interval (0.5-3 s from stim-
ulus onset) after hearing a low-frequency tone (target tones) and holding still after hear-
ing high-frequency tones (non-target tones). Two-photon calcium imaging was used to
continuously acquire the calcium fluorescence signals from individual A1 L2/3 neurons
during the task with an imaging frame rate of 30 Hz. Calcium fluorescence traces were
deconvolved as reported in [129] to estimate spike rates in each imaging frame. Full de-
tails of the experimental procedures and details of the ethical approval are reported in full
in the original publication [[129].

We analysed neurons recorded from n = 12 Fields of View (FOV) from n = 12 an-
imals. For consistency with the previously published work [129] for the PID analysis
reported in this paper (Fig. [3.4) we only considered individual neurons that carried sig-
nificant intersection information [|156]], that is information about the stimuli that is used
to inform the behavioral discrimination, according to the statistical permutation tests de-
scribed in [[129]. This led to selecting for PID analysis n = 375 individual neurons (out of
the 2792 recorded neurons) leading to n = 6209 pairs of simultaneously recorded neurons
used for the PID analysis.

For the PID analysis of these data, we identified for each neuron the imaging time
frame within the trial of maximal intersection information [37] exactly as described in
[129]]. We then considered for each neuron a time frame of n = 10 imaging frames (cor-
responding to a window of 333 ms) around the peak intersection information time frame
(we call this the peak time window for the neuron). Then we discretized activity for each
neuron into R = 3 bins according to whether it was detected 0, 1 or > 1 spikes in the
peak time window. The stimulus set used for this analysis was binary (S = 2), dividing
the presented sound tones into the low- (s = 0) and high-frequency (s = 1) categories.
For consistency with the original experimental publication [129], which analyzed joint
stimulus information carried by pairs of neurons without breaking it up with the PID,
we estimated the total stimulus information that was jointly carried by pairs of neurons
following a time-lagged approach. Namely, we computed the time-lagged stimulus infor-
mation carried jointly by the activity of each pair of neurons using Eq. and using as
responses ry or r, the discretized responses of each neuron measured as detailed above in
their respective peak time windows.

B.10.2 Details of experimental procedures of mouse posterior
parietal cortex data recorded during a decision-making task
requiring sound localization

We analyzed previously published [35] neural recordings from a sound localization task

in which mice reported perceptual decisions about the location of an auditory stimulus
by navigating through a visual virtual reality T-maze (Fig. [3.4C). As mice ran down the
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T-stem, a sound cue was played from one of eight possible locations in head-centered co-
ordinates. Mice reported whether the sound originated from their left or right by turning in
that direction at the T-intersection. During each session, the activity of approximately 50
(range 37-69) layer 2/3 neurons was imaged simultaneously using two photon microscopy
and the GCamp6f indicator. Calcium fluorescence traces were deconvolved as described
in Ref. [35]] to estimate spike rates in each imaging frame.

We computed the mutual information between the joint activity of two simultaneously
recorded neurons r| and r, and the stimulus category of the sound location (S = 2; in other
words we computed information about whether the sound came from left or right of the
midline, which is what the mice were asked to categorize in their task). This information
is relevant for posterior parietal cortex, because this is an area that has been described
as a sensory-motor interface that converts sensory information into signals relevant for
decision-making. For the PID analysis of these data, for consistency with the above re-
ported analysis of auditory cortex data, we identified for each neuron the imaging time
frame within the trial of maximal stimulus information. We then considered for each
neuron a time frame of n = 5 imaging frames (corresponding to a window of 320 ms)
around the peak information time frame (we call this the peak time window for the neu-
ron). Then we discretized activity for each neuron into R = 3 bins according to whether
it was detected O, 1 or > 1 spikes in the peak time window. Again, for consistency with
the auditory cortex analysis, we estimated the total stimulus information that was jointly
carried by pairs of neurons following a time-lagged approach. Namely, we computed the
time-lagged stimulus information carried jointly by the activity of each pair of neurons
using Eq. and using as responses r or r, the discretized responses of each neuron
measured as detailed above in their respective peak time windows.

We analyzed neurons recorded from n = 11 Fields of View (FOV) from n = 11 an-
imals. For consistency with the original publication reporting these data, we did not
perform any selection of these neurons and we used all n = 713 neurons available in the
published database, which allowed us to use n = 10750 pairs of simultaneously recorded
neurons for the PID analysis.

B.10.3 Details of experimental procedures of mouse hippocampus
data recorded during spatial navigation in a virtual
environment

We reanalysed a previously published dataset [[69] in which the activity of several tens to a
few hundreds of neurons was recorded simultaneously using in-vivo two-photon calcium
imaging from CAI1 neurons in head-fixed transgenic mice during virtual reality naviga-
tion of a linear track (Fig. [3.4)A). Calcium fluorescence signals were obtained using the
jRCaMP1a calcium indicator and an imaging frame rate of 0.333s. Full details of the ex-
perimental procedures and details of the ethical approval are reported in full in the original
publication [69].

We analyzed neurons recorded from n = 11 Fields of View (FOV) from n = 7 ani-
mals. Because hippocampal neurons encode position in space, we computed the mutual
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information between the spatial position § in which the animal was located in the linear
track and the joint activity of two simultaneously recorded neurons r and r,. For consis-
tency with the previous study reporting the original data [69], published study, the spatial
position s along the linear track was computed by binning the space along the track into
S = 12 equipopulated bins. For consistency with the previous study [69]], to quantify the
neural activity r; of each neuron, we took the calcium traces and binned them into R = 2
equipopulated bins (only raw calcium traces and not deconvolved signals were available
from Ref. [69]]). For the PID analysis, we used all the n = 870 individual neurons present
in the dataset leading to n = 36158 pairs of simultaneously recorded neurons used for the
PID analysis.

B.11 Simulated example of application of PID to
within-network synergistic information transfer
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Figure B.13: Example of using PID to describe triplet interactions in a network. On the left is
shown a schematic of the network, where only neuron 6 is influenced by other neurons (neurons 4
and 5). On the right, the values obtained by setting neuron 6 as the PID target and going through
all other possible cell pairs as sources. On the top row, the values are shown for the mean of 5
trials and on the bottom row, the mean across 50 trials. The left panels show the synergy values
obtained naively without any bias correction. On the right panels, the corrected values using QE
are shown. A red square points to the cell pair that has a true influence on cell 6.

To illustrate and test the usefulness of using PID to map information transfer within a
network [[78,|137], we simulated a small network of neurons and computed the PID using
the activity of another neuron (and not a sensory stimulus (S) as a target variable). We
compared results using or not using sampling bias corrections.

We simulated a network (Fig. [B.13] of 6 nodes (to be conceptualized as different
neurons or brain regions). Each node was modeled as Gaussian processes across time
(100 timesteps). Nodes 1 to 5 are independent of each other with mean zero and unit
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standard deviation, while the activity of neuron 6 at time ¢ is defined as the sum of the
activities of neurons 4 and 5 at time # — 1 plus noise. Thus, the ground truth in this
simulated dataset is that nodes 4 and 5 exert a synergistic information transmission on
neuron 1, and there is no transmission of information between any other set of nodes.
Thus, if we select neuron 6 as a target for our PID analysis, only the cell pair 4-5 should
have significant synergy values [110].

The PID analysis was done using the BROJA redundancy measure [31], binning the
neural activities with 4 equipopulated bins. The target was the activity of neuron 6 from
time 2 to 100 and the sources were taken from the other cells from time 1 to 99 to account
for the time-lagged nature of the interactions. The first row shows the result of running
5 trials of the same network and averaging its values. The second row shows the mean
results of 50 trials.

The top left heatmap on Fig. shows the synergy values for each possible cell pair
targeting neuron 6 averaged across 5 trials. All the cell pairs have comparable, positive
synergy values, which are significant according to a one-tailed t-test. When applying
a QE correction of one instantiation of the simulation, only the pair corresponding to
the real connections is still significantly above zero (one-tailed t-test p < 0.01). When
increasing the number of simulations to 50, the plugin PID is still unable to assign a
significant synergy value only to the real source neurons (Fig. bottom left, all pairs
have significant values with p < 0.001). After the QE correction, only the real cell pair
remains significantly above zero (one-tailed t-test p < 0.001).

Together, these results show that the bias corrections are useful also to obtain better
estimates of information about target variables being the activity of other neurons (as
often done in neuroscience [78, [137]) and that the bias corrections are useful to identify
patterns of synergy within larger networks.

B.12 Data and code availability

Code for simulating and analysis is available from the corresponding author upon rea-
sonable request. The real neural data used here in Fig. [3.4] were published before.
Data of [129] were released with the original publication and can be found at https:
//doi.org/10.1101/2021.08.31.458395. Data of [35] were republished in [130] and
can be found at https://doi.org/10.12751/g-node. tqgbad8. Data of [69] are avail-
able from the corresponding author upon reasonable request.
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