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Abstract  

 

Landslides in complex geological settings are a widespread and dangerous natural hazard that, 

in the context of climate change, poses significant challenges for modern society. Despite 

knowledge about triggering mechanisms and monitoring techniques, conducting 

comprehensive studies of landslide susceptibility and emergency management in regions like 

Emilia-Romagna, Italy, often entails significant obstacles. This PhD project analyzes the 

multifaceted aspects of landslide prediction and management in this geologically complex 

region. 

The research initially focused on improving rainfall thresholds for forecasting, comparing 

empirical-statistical approaches with machine learning (ML) techniques such as XGBoost, 

Random Forest, and neural networks. Results demonstrated that ML models outperformed 

traditional methods, achieving higher predictive accuracy and reducing false positives. While 

these techniques proved effective, challenges such as data quality and interpretability were 

highlighted, particularly in operational contexts. A key innovation was the development of a 

unified platform integrating ML-based rainfall thresholds into operational early warning 

systems, providing real-time risk assessments. 

The catastrophic rainfall events of May 2023 in Emilia-Romagna posed a significant challenge 

to our research, necessitating an unprecedented rapid response. These occurrences triggered 

thousands of landslides, underscoring the importance of swift and precise mapping for effective 

emergency management. Considering this urgent need, a multi-institutional collaboration was 

quickly established, leading to a comprehensive landslide inventory documenting 80,000 

polygons using high-resolution aerial imagery. While invaluable for immediate recovery 

planning and future risk assessment, the time-consuming nature of manual mapping 

underscored the pressing need for faster, automated solutions. Our research pivoted to explore 

rapid automated mapping techniques, starting with trials using the U-Net neural network in 

severely affected municipalities like Casola Valsenio. More advanced algorithms, such as 

SegFormer, were subsequently employed across diverse settings including Modigliana, 

Predappio, and Brisighella. These methods demonstrated their ability to rapidly process large 

datasets, achieving high levels of accuracy in identifying landslide-affected areas. This urgent 

application of our research offered valuable insights into the practical challenges of rapid 

landslide response, informing innovations for future methodologies. 

In conclusion, this research demonstrates the transformative potential of integrating machine 

learning with traditional approaches in landslide prediction and management. Practical lessons 

learned include the importance of high-quality data, balancing interpretability with accuracy, 

and combining automated methods with expert validation for effective deployment in 

emergency contexts.  The improved prediction models, early warning platform, comprehensive 
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landslide inventory, and rapid mapping techniques collectively contribute to building resilient 

communities capable of effectively responding to and mitigating the impacts of landslides in 

the face of increasing climate-related risks.  
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Chapter 1  

Introduction 

 

1.1 Preface 

This chapter provides an overview of the primary themes and methodologies addressed in this 

PhD research. The study investigates the application of Machine Learning (ML) methods for 

landslide risk mitigation and explores how ML can improve disaster response efficiency, 

particularly during emergency situations. 

Firstly, an introduction to the fundamental concepts of machine learning will be presented, 

including key definitions, algorithms, and learning approaches (section 1.21). This will be 

followed by an overview of the current state-of-the-art technologies in the field, with particular 

attention to deep learning, convolutional neural networks (CNNs), and their practical 

applications in civil protection (section 1.3). 

Section 1.3 delves into the real-world applications of ML for landslide prediction and mapping. 

Special focus will be given to the integration of ML algorithms in predicting rainfall-induced 

landslides and automated mapping during emergencies, which are essential for early warning 

systems and damage assessment (section 1.3.1). 

Finally, section 1.4 presents the research questions that guided the development of this thesis 

and outlines the structure of the following chapters, providing a roadmap for the reader through 

the subsequent analysis and findings. 

 

  



7 

 

1.2 Machine Learning: A Comprehensive Introduction 

1.2.1 Defining Machine Learning  

Machine Learning (ML) has become a revolutionary force in computer science, reshaping how 

we approach problem-solving and data-driven decision-making. Defined by Arthur Samuel in 

1959 as "the field of study that gives computers the ability to learn without being explicitly 

programmed," ML has evolved dramatically. It allows systems to learn and improve from vast 

amounts of data, bypassing the need for manually coded instructions. This paradigm shift, 

particularly the introduction of neural networks, has fundamentally changed our ability to tackle 

complex problems. As Jordan (1996) observed, neural networks have unlocked new capacities 

for machines to process data in ways previously unimaginable, drawing on past experiences to 

improve over time. 

ML’s ability to adapt to new data is especially crucial in areas where traditional rule-based 

programming struggles. For instance, in fields like spam detection, where manually crafted 

rules can quickly become outdated, ML models can continuously adjust their strategies by 

learning from new data, leading to more effective results (Bhowmick & Hazarika, 2018). This 

adaptability has shown significant benefits in domains that rely on large datasets, such as 

medicine and astrophysics, where ML is used to predict patient outcomes or analyze vast 

amounts of astronomical data, identifying patterns that would otherwise go unnoticed (Ball & 

Brunner, 2010). These breakthroughs highlight ML's capacity to process high-dimensional data 

and extract valuable insights, making it a critical tool in a range of scientific and commercial 

applications. 

Despite the increasing success of ML in industries such as finance, e-commerce, and healthcare, 

its application in fields like civil protection, territorial management, and disaster response has 

been slower. This measured adoption reflects the complexity of integrating ML into real-world 

emergency management scenarios. While ML has the potential to improve how we manage and 

respond to natural disasters, particularly by processing real-time data and providing more 

accurate forecasts, it is important to recognize that these improvements may be context-specific. 

In some cases, ML models can assist in predicting events like landslides or floods, optimizing 

resource allocation, and enhancing early warning systems. These contributions could play a role 

in minimizing the impact of such events, but they are not a universal solution (Sun et al., 2019). 

The successful application of ML in these areas also depends on overcoming significant 

challenges, particularly related to the quality and availability of data. In disaster scenarios, data 

is often incomplete or biased, which can limit the performance of ML systems. Ensuring that 

datasets are diverse, representative, and up-to-date is crucial to making informed decisions and 

avoiding the risk of exacerbating inequalities during emergencies (Gebru et al., 2018). 

In contrast, the private sector has quickly embraced ML, using it to streamline operations, foster 

innovation, and enhance customer experiences. Industries like finance and technology rely on 
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ML to analyze large datasets and make data-driven decisions, which has given these sectors a 

significant competitive edge (Brynjolfsson & McAfee, 2017). However, the public sector faces 

distinct challenges in implementing ML, including budgetary constraints, regulatory 

frameworks, and the necessity to ensure equitable service delivery. Unlike private companies 

that can focus on profitability, public institutions must prioritize fairness, transparency, and 

accountability in the use of ML (Sun et al., 2019; Mikhaylov et al., 2018). 

Nonetheless, ML holds great potential for improving disaster management. By analyzing real-

time data, ML could improve the accuracy of forecasts and optimize resource deployment 

during emergencies. To fully realize this potential, public sector organizations must address 

barriers related to data quality, computational resources, and ethical considerations. 

Overcoming these challenges will be essential for integrating ML into emergency response 

systems, helping to build more resilient societies that are better equipped to anticipate and 

mitigate the impacts of natural disasters. 

In conclusion, ML represents a fundamental shift from explicit programming to adaptable, data-

driven learning. Its ability to analyze complex datasets and uncover valuable insights has 

already transformed industries worldwide. However, its untapped potential in fields like civil 

protection and disaster management presents a significant opportunity. With the right 

frameworks and careful attention to data quality and ethical use, ML could become an essential 

tool for improving how societies respond to and mitigate the impacts of natural disasters, 

enhancing both preparedness and resilience. 

 

1.2.2 Machine Learning Timeline 

Machine Learning (ML) has evolved through decades of research, innovation, and practical 

application. This journey, spanning over seven decades, has been characterized by conceptual 

breakthroughs, technological leaps, and paradigm shifts. This timeline not only charts the 

technical milestones but also reflects the changing relationship between human cognition and 

machine capability, offering crucial insights into the future trajectory of AI (Figure 1.1). 
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Figure 1.1. Important Machine Learning milestones timeline (modified from Medium). 

 

1.2.2.1 Early Foundations (1950s-1960s) 

The concept of machine learning began to take shape in the 1950s, a period that also marked 

the dawn of artificial intelligence. During this time, foundational ideas were introduced that 

would profoundly influence the development of the field. In 1950, the now-famous Turing Test 

was proposed as a method for assessing a machine's ability to exhibit intelligent behavior 

indistinguishable from that of a human (Turing, 1950). This idea laid the groundwork for 

exploring how machines could emulate human thought processes. 

A few years later, a groundbreaking checkers-playing program was developed that could 

improve its performance through self-play, representing an early demonstration of what would 

later be known as reinforcement learning (Samuel, 1959). This work was one of the first 

instances of machine learning from experience, an essential concept in the field today. 

The late 1950s also saw significant advancements in both neural network theory and statistical 

learning. In 1957, the perceptron was introduced (Figure 1.1), a simple type of neural network 

that became the foundation for more complex deep learning models developed decades later 

(Rosenblatt, 1958). That same year, a fundamental method for clustering data known as K-

means was proposed, though it wasn't formally published until 1982 (Lloyd, 1982). 

Additionally, in 1958, Logistic Regression was introduced, further expanding the range of 

statistical tools available for machine learning applications (Cox, 1958). These early 

contributions set the stage for the rapid evolution of machine learning, laying the theoretical 

and practical foundations that continue to underpin the field. 

https://medium.com/@marizombie/important-dates-in-history-of-machine-learning-d52d7f24b797
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1.2.2.2 A.I. Winter (1970s-1980s) 

The initial enthusiasm for artificial intelligence was followed by a period of diminished interest 

and reduced funding, often referred to as the "AI Winter." Despite this challenging environment, 

significant theoretical advancements occurred during this time. In 1975, the concept of 

backpropagation was introduced (Figure 1.1), which became an essential algorithm for training 

neural networks (Werbos, 1974). The 1980s also saw the emergence of decision trees and other 

statistical learning methods, with pioneering work in decision tree algorithms having a lasting 

impact on the field (Quinlan, 1986). These contributions laid the groundwork for future 

breakthroughs in AI, despite the broader stagnation experienced during this period. 

 

1.2.2.3 Advancements in Machine Learning Algorithms (1990s-2010s)  

The evolution of machine learning in the 1990s marked a significant shift as researchers began 

to embrace statistical methods and introduce innovative algorithms. Among the key 

breakthroughs of this period was the development of the Random Forests algorithm in 1995, 

which revolutionized classification and regression tasks by utilizing an ensemble of decision 

trees (Ho, 1995). Around the same time, the introduction of Support Vector Machines (SVMs) 

by (Figure 1.1) provided a powerful new framework for tackling classification problems, 

offering a robust method that could handle both linear and non-linear data (Cortes & Vapnik, 

1995). 

As the field advanced into the late 1990s and early 2000s, there was a notable resurgence of 

interest in neural networks, largely fueled by significant improvements in existing techniques. 

The backpropagation algorithm, which had been conceptualized in the 1970s, was refined and 

became central to the effective training of neural networks, thanks in part to the influential work 

of LeCun et al. (1998). This period also saw the introduction of boosting techniques, such as 

AdaBoost, which addressed key limitations of earlier models by improving their accuracy and 

reducing bias (Freund & Schapire, 1997). 

The late 1990s also witnessed the development of Long Short-Term Memory (LSTM) networks 

in 1997, a breakthrough that overcame the vanishing gradient problem that had hindered the 

effectiveness of earlier recurrent neural networks (Hochreiter & Schmidhuber, 1997). In 1998, 

the potential of convolutional neural networks (CNNs) was demonstrated (Figure 1.1), who 

showcased their efficacy in image recognition tasks, setting the stage for the deep learning 

revolution that was to come (LeCun et al., 1998). This momentum continued to build into the 

2000s, introduction of deep belief networks in 2006, marking a pivotal moment that reignited 

widespread interest in deep learning and solidified its role in modern AI (Hinton et al., 2006). 
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1.2.2.4 The Deep Learning Revolution (2010s-Present) 

The last decade has witnessed unprecedented advancements in ML, particularly in deep 

learning. A pivotal moment came in 2012 when AlexNet, won the ImageNet competition, 

marking a turning point in computer vision (Krizhevsky et al., 2012). Two years later, the 

introduction of Generative Adversarial Networks (GANs), opened new possibilities in 

generative modeling (Goodfellow et al., 2014). 

The field of natural language processing was revolutionized in 2017 with the introduction of 

the transformer architecture (Vaswani et al., 2017). This paved the way for large language 

models like BERT and GPT, which demonstrated remarkable capabilities in various language 

tasks between 2018 and 2020 (Devlin et al., 2019; Brown et al., 2020). 

Recent years have seen the mainstream adoption of large language models, exemplified by 

ChatGPT in 2022. The focus has also intensified on few-shot and zero-shot learning, with 

models demonstrating improved performance with minimal task-specific data (Brown et al., 

2020). Concurrently, the importance of Explainable AI has grown, with new techniques being 

developed to interpret complex deep learning models (Samek et al., 2023). 

The narrative of Machine Learning is far from a linear progression; it is a complex interplay of 

theoretical advances, technological innovations, and societal needs. Each breakthrough has 

expanded the boundaries of what machines can learn and accomplish, often in ways unforeseen 

by their creators. As ML continues to evolve, it not only pushes the frontiers of artificial 

intelligence but also challenges our fundamental conceptions of intelligence, creativity, and the 

human-machine relationship. The future of ML promises not just technological advancement, 

but a profound reimagining of our cognitive landscape. 
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1.2.3 Learning Approaches 

Machine Learning (ML) encompasses a diverse set of techniques that enable computers to learn 

from data and make informed decisions. These techniques can be broadly categorized into 

several key approaches: supervised learning, unsupervised learning, semi-supervised learning, 

reinforcement learning, and transfer learning (Figure 1.2). Each approach has its unique 

characteristics, strengths, and ideal use cases, depending on the nature of the data and the 

problem at hand. Understanding these different learning paradigms is essential for selecting the 

appropriate method for a given task and for developing robust ML models that can effectively 

address a wide range of real-world challenges. The following sections provide an overview of 

these fundamental learning approaches, highlighting their core principles and applications. 

 

Figure 1.2. Conceptual scheme of various machine learning approaches and relative 

algorithms. (Karthikeyan et al., 2022, modified). 
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1.2.3.1 Supervised Learning 

Supervised learning is perhaps the most common and well-understood approach in ML. In this 

paradigm, the algorithm learns from labeled data, where both input features and corresponding 

target variables are provided. The goal is to learn a function that maps inputs to correct outputs, 

enabling the model to make predictions on new, unseen data (Figure 1.3). Supervised learning 

is further divided into classification tasks, where the output is a discrete category (such as spam 

detection or image classification), and regression tasks, where the output is a continuous value 

(like price prediction or age estimation) (Murphy, 2012). Common algorithms in this category 

include linear regression, logistic regression, decision trees, support vector machines, and many 

neural network architectures (Hastie et al., 2009). The strength of supervised learning lies in its 

ability to make accurate predictions when provided with high-quality labeled data, making it 

invaluable in applications ranging from medical diagnosis to financial forecasting (Bishop, 

2006). 

 

Figure 1.3. Conceptual scheme of supervised learning workflow (modified from Enjoy 

Algorithms). 

 

1.2.3.2 Unsupervised Learning 

Unsupervised learning deals with unlabeled data, seeking to uncover hidden patterns or 

structures within the data without predefined target variables (Figure 1.4). This approach is 

particularly useful when we don't know what patterns to look for in advance (Hastie et al., 

2009). Common tasks in unsupervised learning include clustering (grouping similar data 

points), dimensionality reduction (reducing the number of features while preserving important 

information), and anomaly detection (identifying unusual data points). Algorithms like K-

means clustering, principal component analysis (PCA), and autoencoders fall under this 

category (Murphy, 2012). Unsupervised learning is crucial in exploratory data analysis, 

https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
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customer segmentation, and feature learning, providing insights that can guide further analysis 

or inform decision-making processes (Bishop, 2006). 

 

Figure 1.4. Conceptual unsupervised learning workflow scheme (modified from Enjoy 

Algorithms). 

 

1.2.3.3 Semi-Supervised Learning 

Semi-supervised learning bridges the gap between supervised and unsupervised learning, 

utilizing a small amount of labeled data along with a larger amount of unlabeled data (Figure 

1.5). This approach is particularly valuable when obtaining labeled data is expensive, time-

consuming, or requires expert knowledge (Zhu & Goldberg, 2009). By leveraging the structure 

in the unlabeled data, semi-supervised learning can often achieve better performance than using 

the labeled data alone. This makes it especially useful in domains like web content 

classification, speech analysis, and protein sequence classification, where vast amounts of 

unlabeled data are available, but labeling is resource-intensive (Chapelle et al., 2006). 

 

Figure 1.5. Conceptual semi-supervised learning scheme (modified from Enjoy Algorithms). 

 

https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
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1.2.3.4 Reinforcement Learning 

Reinforcement learning (RL) involves an agent learning to make decisions by interacting with 

an environment (Figure 1.6). Unlike supervised learning, there are no labeled examples of 

correct behavior. Instead, the agent learns to take actions that maximize a cumulative reward 

signal (Sutton & Barto, 2018). This approach involves a delicate balance between exploration 

(trying new actions to gather information) and exploitation (using known information to 

maximize reward). RL has gained significant attention due to its success in complex decision-

making tasks, such as game playing (e.g., AlphaGo beating world champions in Go) and 

robotics (Silver et al., 2016). It's particularly suited to problems where long-term strategy is 

important and the optimal sequence of decisions is not immediately apparent (Sutton & Barto, 

2018). 

 

Figure 1.6. Conceptual reinforcement learning scheme (modified from Enjoy Algorithms). 

 

1.2.3.5 Transfer Learning 

Transfer learning is a valuable technique in machine learning that enables models to apply 

knowledge gained from one task to improve performance on another related task. As illustrated 

in Figure 1.7, a convolutional neural network (CNN) might first be trained from scratch on a 

large dataset of images, such as those of cars, trucks, and bicycles, where it learns important 

features. Once this pre-trained model is established, it can be adapted for a new task, such as 

classifying vehicles. Instead of starting from scratch, the model uses the knowledge it has 

already acquired, allowing it to be fine-tuned with a smaller dataset of vehicle images. This 

process not only saves time and computational resources but also enhances accuracy, as the 

model can achieve better results with fewer examples. Essentially, transfer learning makes it 

easier to develop effective models, especially in situations where collecting large amounts of 

data for the new task is challenging (Pan & Yang, 2010; Goodfellow et al., 2016). 

https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
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Figure 1.7. Conceptual examples on different workflows between a CNN and a transfer 

learning algorithm, (modified from Sky Engine). 

 

1.2.4 Foundational Algorithms 

This section delves into the fundamental algorithms and techniques that form the bedrock of 

machine learning. These methods, while sometimes considered "classical" in the rapidly 

evolving field of ML, remain crucial for understanding more advanced concepts and are still 

widely used in practice. 

 

1.2.4.1 Linear Regression 

Linear regression is one of the oldest and most interpretable algorithms in machine learning. It 

models the relationship between input variables (features) and a continuous output variable by 

fitting a linear equation to observed data (Seber & Lee, 2012). 

The basic form of linear regression can be expressed as: 

 y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ + ε [1.1] 

Where y is the target variable, x₁, x₂, ..., xₙ are the input features, β₀ is the intercept, β₁, β₂, ..., βₙ 

are the coefficients, and ε is the error term (Draper & Smith, 1998). 

The algorithm aims to find the values of β that minimize the sum of squared residuals. This is 

typically done using methods like ordinary least squares or gradient descent (Murphy, 2012). 

https://skyengine.ai/se/skyengine-blog/128-what-is-transfer-learning
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Linear regression's strengths lie in its simplicity, interpretability, and computational efficiency. 

It's widely used in economics for trend analysis, in finance for portfolio management, and in 

various scientific fields for understanding relationships between variables (Kutner et al., 2004). 

However, it assumes a linear relationship between variables and is sensitive to outliers (Figure 

1.8). It may underperform on complex, non-linear relationships in data (Hastie et al., 2009). 

 

Figure 1.8. Simple linear regression example (modified from Six Sigma). 

 

1.2.4.2 Logistic Regression 

Despite its name, logistic regression is primarily used for binary classification tasks. It predicts 

the probability of an instance belonging to a particular class by applying the logistic function 

to a linear combination of features (Figure 1.9) (Hosmer et al., 2013). 

The logistic function (sigmoid) is defined as: 

 𝜎(𝑧)  =  
1

(1 + 𝑒(−𝑧))
 [1.2] 

Where z is the linear combination of features: z = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ 

Logistic regression seeks to determine the optimal values of 𝛽 to maximize the likelihood of 

the observed data, typically achieved through maximum likelihood estimation or gradient 

descent algorithms (Murphy, 2012). Its ability to provide probabilistic outputs makes it 

particularly valuable in applications like risk assessment in credit scoring, medical diagnosis, 

https://sixsigmadsi.com/glossary/simple-linear-regression/
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and customer behavior prediction in marketing (Menard, 2002). However, a key limitation of 

logistic regression is its assumption of linearity in the log-odds space, which may not accurately 

capture complex relationships within the data (Bishop, 2006). 

 

Figure 1.9. Scheme showing differences between Linear Regression and Logistic Regression 

logistic regression example (modified from Ejable). 

 

1.2.4.3 Decision Trees 

Decision trees are versatile machine learning algorithms used for both classification and 

regression tasks. They create a predictive model by learning simple decision rules from data 

features (Quinlan, 1986). The structure of a decision tree resembles a flowchart, starting from 

a root node and branching out based on feature-specific questions. This process continues until 

reaching leaf nodes that provide final predictions. For example, a tree predicting whether to 

play tennis might first ask about rain, then temperature, and so on (Figure 1.10). 

Tree construction follows a top-down approach, recursively selecting the best feature to split 

the data by maximizing information gain or minimizing impurity (Breiman et al., 1984). This 

process continues until a stopping criterion is met, such as maximum tree depth. Decision trees 

offer several advantages: they are highly interpretable, handle both numerical and categorical 

data, and perform automatic feature selection. They effectively capture non-linear relationships 

and feature interactions (Loh, 2011). However, they can overfit if grown too deep, which can 

be mitigated by techniques like pruning or ensemble methods such as Random Forests 

(Breiman, 2001). 

https://www.ejable.com/tech-corner/ai-machine-learning-and-deep-learning/logistic-and-linear-regression/
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Figure 1.10. An understandable visualization of a decision tree scheme for playing tennis, 

(modified from Hacker Earth). 

 

1.2.4.4 Support Vector Machines (SVM) 

Support Vector Machines (SVM) are effective algorithms used primarily for classification and 

regression tasks. SVMs are known for their robust performance and strong theoretical 

foundation (Cortes and Vapnik, 1995). The core concept behind SVMs is to find the optimal 

hyperplane that best separates different classes in a high-dimensional space. For linearly 

separable data, SVM identifies the hyperplane that maximizes the margin between classes, 

which is defined as the distance from the hyperplane to the nearest data points of each class, 

known as support vectors (Figure 1.11). 

In situations where data cannot be separated linearly, SVM uses the "kernel trick" to map the 

data into a higher-dimensional space where it becomes linearly separable. Common kernel 

functions include linear, polynomial, and radial basis function (RBF) (Schölkopf and Smola, 

2002). The decision function for SVM classification can be expressed as: 

 𝑓(𝑥)  =  𝑠𝑖𝑔𝑛(𝛴ᵢ 𝛼ᵢ𝑦ᵢ𝐾(𝑥, 𝑥ᵢ)  +  𝑏)  [1.3] 

Where αᵢ are the Lagrange multipliers, yᵢ are the class labels, K is the kernel function, xᵢ are the 

support vectors, and b is the bias term. 

SVMs are particularly effective in high-dimensional spaces, especially when the number of 

features exceeds the number of samples. They offer a clear margin of separation, which often 

leads to better generalization on unseen data. SVMs are widely used in applications like text 

classification, image recognition, and bioinformatics (Ben-Hur et al., 2008). However, SVMs 

have limitations, such as not providing probability estimates directly and being sensitive to the 

https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/ml-decision-tree/tutorial/
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choice of kernel and hyperparameters. Additionally, training can be computationally expensive 

for very large datasets. 

 

Figure 1.11. SMV conceptual scheme (modified from Spot Intelligence). 

 

1.2.4.5 K-Means Clustering 

K-means clustering is a fundamental algorithm used for unsupervised learning, particularly for 

data partitioning and pattern recognition. It partitions n observations into k clusters, with each 

observation assigned to the cluster with the nearest mean, or centroid (MacQueen, 1967). 

The algorithm operates iteratively: it starts by initializing k centroids randomly, assigns each 

data point to the nearest centroid, recalculates the centroids based on the assigned points, and 

repeats these steps until convergence or a maximum number of iterations is reached (Figure 

1.12). This process minimizes the within-cluster sum of squares (WCSS), defined as (Hartigan 

and Wong, 1979): 

 WCSS = Σᵢ Σₓ ||x – μᵢ||² [1.4] 

Where x is a data point and μᵢ is the centroid of cluster i. 

K-means is popular across various domains for its simplicity and scalability, finding 

applications in customer segmentation, image compression, and anomaly detection (Jain, 

2010). Its efficiency with large datasets makes it particularly valuable in the age of big data. 

However, K-means has limitations: it requires the number of clusters k to be specified in 

advance, which can be difficult when the data structure is unknown. The algorithm is also 

sensitive to initial centroid placement and assumes spherical clusters, which may not always 

match the data distribution (Arthur and Vassilvitskii, 2007). Despite these drawbacks, K-means 

https://spotintelligence.com/2024/05/06/support-vector-machines-svm/
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remains a powerful tool in machine learning, providing a foundation for more complex 

clustering methods and continuing to be widely used in data analysis. 

 

Figure 1.12. K-means scheme showing cluster labelling. 

 

1.2.5 Deep Learning: A Paradigm Shift 

Deep Learning has revolutionized the field of Machine Learning, driving substantial progress 

in diverse areas such as computer vision, natural language processing, and speech recognition. 

This paradigm shift is characterized by the use of neural networks with multiple layers, capable 

of learning hierarchical representations from data (LeCun et al., 2015). 

The core of deep learning comprises several key architectures: Neural Networks (NNs), the 

fundamental building blocks; Convolutional Neural Networks (CNNs), specialized for 

processing grid-like data such as images; Recurrent Neural Networks (RNNs), designed for 

sequential data; and Long Short-Term Memory (LSTM) networks, which address the long-term 

dependency problems in standard RNNs. 

The success of deep learning can be attributed to three main factors: the availability of large 

datasets, increased computational power, and algorithmic innovations. These elements have 

synergistically enabled the training of complex models that often surpass human-level 

performance on specific tasks (Goodfellow et al., 2016). 

 

1.2.5.1 Neural Networks (NNs) 

Neural Networks (NNs) form the foundation of deep learning, inspired by the neural structure 

of the human brain. These networks consist of interconnected layers of nodes, or neurons, that 

process and transmit information (Rosenblatt, 1958). 

The simplest form of a neural network is the feedforward network, where data flows 

unidirectionally from input to output through one or more hidden layers. Each neuron applies a 
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non-linear activation function to its inputs, with popular choices including the Rectified Linear 

Unit (ReLU) for its ability to mitigate the vanishing gradient problem (Nair and Hinton, 2010). 

Training a neural network involves adjusting the weights of connections between neurons to 

minimize the error between predicted and actual outputs (LeCun et al., 1998) (Figure 1.13). 

This is typically achieved through backpropagation, a method that efficiently computes 

gradients in neural networks by propagating the error backwards from the output to the input 

layers (Rumelhart et al., 1986). The refinement of this algorithm (LeCun et al. 1998) played a 

crucial role in reigniting interest in neural networks. Additionally, the introduction of boosting 

algorithms, particularly AdaBoost (Freund & Schapire, 1997), which iteratively combines weak 

learners to create a strong predictor by focusing on misclassified examples, further advanced 

the field of machine learning and complemented neural network approaches. The strength of 

neural networks lies in their ability to approximate complex functions (Cybenko, 1989; Hornik, 

1991). 

 

Figure 1.13. NNs conceptual workflow scheme (modified from Medium). 

 

1.2.5.2 Recurrent Neural Networks (RNNs)  

Recurrent Neural Networks (RNNs) are specialized neural networks designed to process 

sequential data, making them particularly suitable for tasks involving time series, speech, and 

natural language (Elman, 1990). The key feature of RNNs is their ability to maintain a hidden 

state that captures information from previous time steps, enabling them to model temporal 

dependencies in data (Figure 1.14). 

https://medium.com/data-science-365/overview-of-a-neural-networks-learning-process-61690a502fa
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In RNNs, the hidden state is updated at each time step based on the current input and the 

previous hidden state. This recurrent structure allows the network to retain a form of memory, 

making it well-suited for tasks where the order of data is crucial (Mikolov et al., 2010). 

However, traditional RNNs face challenges with long-term dependencies due to the vanishing 

and exploding gradient problems, which can make training difficult for long sequences (Bengio 

et al., 1994). These limitations led to the development of more advanced RNN architectures, 

most notably the Long Short-Term Memory (LSTM) networks. 

 

Figure 1.14. RNN conceptual workflow scheme. 

 

1.2.5.3 Long Short-Term Memory (LSTM) Networks 

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural 

Networks (RNNs) designed to overcome the limitations of traditional RNNs in capturing long-

term dependencies. Introduced in 1997, LSTMs have become essential for sequence modeling 

tasks that require retaining information over extended periods (Hochreiter & Schmidhuber, 

1997). 

The key innovation of LSTMs is the memory cell, which maintains its state over time. This cell 

is managed by three gates: the input gate controls what new information to store, the forget gate 

decides what information to discard, and the output gate determines what information should 

be output. This gating mechanism allows LSTMs to selectively remember or forget information, 

making them effective at capturing long-term dependencies in sequential data. 

LSTMs have achieved significant success in various applications. In natural language 

processing, they have advanced machine translation, text generation, and sentiment analysis 

(Sutskever et al., 2014). In time series analysis, they excel in tasks such as stock price prediction 

and weather forecasting (Graves, 2012). 
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Despite their effectiveness, LSTMs come with challenges. They can be computationally 

expensive to train, particularly on long sequences, and often require large amounts of data to 

perform optimally. While they help mitigate the vanishing gradient problem, they can still 

struggle with very long-term dependencies. 

As research in deep learning progresses, variants like Gated Recurrent Units (GRUs) have been 

proposed to address some limitations while retaining the core benefits of the LSTM architecture 

(Cho et al., 2014). 

 

1.2.5.4 Convolutional Neural Networks (CNNs)  

Convolutional Neural Networks (CNNs) are specialized neural networks designed for 

processing grid-like data, particularly images. Inspired by the organization of the animal visual 

cortex, CNNs have transformed computer vision by automatically learning hierarchical features 

from raw image data (LeCun et al., 1998). The training process of a CNN consists of two main 

phases: feedforward and backpropagation, as illustrated in Figure 1.15. 

During the feedforward phase, input data is processed through multiple layers, including 

convolutional layers that apply learnable filters (or kernels) to detect local patterns like edges 

and textures. This generates feature maps that highlight specific characteristics at various spatial 

locations (Krizhevsky et al., 2012). Following convolution, pooling layers, typically max 

pooling, reduce the spatial dimensions of these feature maps. This downsampling retains 

essential information while decreasing computational complexity, allowing CNNs to 

progressively learn more abstract features as the network deepens (Zeiler and Fergus, 2014). 

The backpropagation phase follows, where the model’s predictions are compared to actual 

target values, and the loss is calculated. This loss guides the adjustment of weights in the 

network, refining the model's ability to make accurate predictions. The final layers of a CNN, 

usually fully connected layers, perform high-level reasoning based on the extracted features, 

combining them in optimal ways for specific tasks such as classification, detection, or 

segmentation. 

CNNs have shown remarkable success across various computer vision tasks, consistently 

outperforming traditional methods. Architectures like AlexNet, VGGNet, and ResNet have 

achieved significant results on challenging datasets like ImageNet (He et al., 2016). Beyond 

image classification, CNNs are widely applied in object detection (e.g., YOLO, SSD) and image 

segmentation (e.g., U-Net), with applications spanning medical image analysis, autonomous 

driving, and satellite imagery interpretation. Their influence extends to video analysis, face 

recognition, and non-visual domains such as speech recognition and natural language 

processing. As CNNs continue to evolve, researchers explore ways to enhance their efficiency 



25 

 

and interpretability, addressing challenges like computational complexity and improving 

generalization to out-of-distribution samples. 

 

Figure 1.15. Conceptual scheme of a Convolutional Neural Network (CNN) training loop, 

illustrating the feedforward and backpropagation processes (modified from Analog). 

 

1.2.6 Current State of the Art in Machine Learning 

1.2.6.1 Transformers 

Transformer models have transformed natural language processing (NLP) and have 

significantly influenced other fields. Transformers change how machine learning models handle 

sequences of data. Unlike Recurrent Neural Networks (RNNs) and Convolutional Neural 

Networks (CNNs), transformers can process entire data sequences at once due to their self-

attention mechanism (Vaswani et al., 2017). This capability helps them effectively capture long-

range dependencies, making them especially useful for tasks like understanding and generating 

language (Vaswani et al., 2017). 

The self-attention mechanism is the heart of transformers. It analyzes relationships between 

different parts of an input sequence using three components: Query (Q), Key (K), and Value 

(V). This approach allows the model to determine the importance of each element in the 

sequence, regardless of its position. Additionally, multi-head attention lets transformers identify 

multiple relationships within the data simultaneously, enhancing their ability to process 

complex inputs (Figure 1.16). 

The transformer architecture consists of an encoder and decoder, each made up of identical 

layers that incorporate self-attention and fully connected feed-forward networks. This design 

allows the model to focus on relevant parts of the input when generating output, making it 

effective for various sequential tasks. 

https://www.analog.com/en/resources/analog-dialogue/articles/training-convolutional-neural-networks-what-is-machine-learning-part-2.html
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Their impact has led to innovations in various domains: Several transformer-based models have 

significantly advanced NLP. BERT (Bidirectional Encoder Representations from Transformers) 

excels in tasks like question answering and sentiment analysis by understanding word context 

in both directions (Devlin et al., 2019). GPT (Generative Pre-trained Transformer), developed 

by OpenAI, focuses on language generation and has shown impressive abilities in translation, 

text completion, and creative writing. The latest versions, like GPT-3, demonstrate few-shot 

learning capabilities, allowing them to perform well with minimal task-specific fine-tuning 

(Radford et al., 2018; Brown et al., 2020). 

While initially developed for NLP, transformers have applications beyond text processing: 

▪ Computer Vision: Vision Transformers (ViTs) have been applied to image classification, 

object detection, and segmentation tasks (Dosovitskiy et al., 2021). Treating image patches 

as tokens enables effective visual data processing, with models like SegFormer achieving 

state-of-the-art results in semantic segmentation (Xie et al., 2021). 

▪ Reinforcement Learning: Transformers are utilized in reinforcement learning tasks, 

helping agents learn from sequences of actions and states in environments like games and 

robotics (Chen et al., 2021). 

The rise of transformer models marks a paradigm shift in machine learning, initially 

transforming NLP and inspiring advancements across multiple fields. The transformer 

architecture has proven to be a powerful framework for processing various types of sequential 

and structured data, setting new benchmarks in language tasks and inspiring similar applications 

in other domains. 

 

Figure 1.16 Transformer Architecture explained and simplified (modified from Medium). 

 

https://medium.com/@tech-gumptions/transformer-architecture-simplified-3fb501d461c8
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1.2.6.2 Generative Adversarial Networks (GANs)  

Generative Adversarial Networks (GANs), represent another significant advancement in 

machine learning, particularly in the domain of generative modeling (Goodfellow et al., 2014). 

GANs consist of two neural networks, a generator and a discriminator, that are trained 

simultaneously through an adversarial process, where the generator attempts to create data (e.g., 

images) that resemble the training set, while the discriminator tries to distinguish between real 

and generated data. This adversarial training leads to the generator producing increasingly 

realistic outputs as it learns to fool the discriminator (Fig. 1.17). Architecture’s ability to 

generate highly realistic synthetic data has made GANs a powerful tool in various domains 

(Goodfellow et al., 2014; Radford et al., 2016). 

GANs have found wide-ranging applications across various domains: 

▪ Image Generation: Creating realistic images, including faces, artwork, and scene 

completions. 

▪ Image-to-Image Translation: Converting images from one domain to another (e.g., 

sketches to photos, summer to winter scenes). 

▪ Super-Resolution: Enhancing the resolution and quality of images. 

▪ Data Augmentation: Generating synthetic data to enhance training datasets in fields like 

medical imaging. 

▪ Video Generation: Creating realistic video sequences from static images or textual 

descriptions. 

Despite challenges such as training instability and mode collapse, GANs continue to be at the 

forefront of generative modeling. Their ability to produce highly realistic synthetic data has 

opened up new possibilities in artificial data generation and manipulation, making them a 

crucial tool in modern machine learning applications. 

 

Figure 1.17. Simple scheme of GANs workflow (modified from IBM Developer). 

https://developer.ibm.com/articles/generative-adversarial-networks-explained/
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1.2.7 Cutting-Edge Technologies in Machine Learning 

The field of Machine Learning (ML) continues to advance rapidly, with cutting-edge 

technologies and research areas pushing the boundaries of what is possible. This section 

examines some of the most exciting and influential areas in contemporary ML, including few-

shot and zero-shot learning, generative models, explainable AI, and federated learning. 

 

1.2.7.1 Few-Shot and Zero-Shot Learning 

Traditional machine learning models typically require large amounts of labeled data to achieve 

high performance. However, few-shot and zero-shot learning approaches aim to overcome this 

limitation by enabling models to generalize from very limited examples or even to perform 

tasks they have never explicitly been trained on (Figure 1.18). 

Few-shot learning involves training models to recognize new classes or tasks with only a few 

examples. Techniques such as meta-learning, where the model learns to learn by using its 

training experience across many tasks, have been particularly effective (Finn et al., 2017).  

Zero-shot learning takes this concept a step further, enabling models to perform tasks without 

any direct examples from those tasks. This is often achieved by leveraging semantic information 

from other tasks or domains. For instance, a model might use word embeddings to infer 

relationships between known and unknown classes, allowing it to generalize knowledge from 

seen to unseen classes (Xian et al., 2018). 

These approaches are particularly useful in scenarios where data collection is expensive or 

impractical, such as rare disease diagnosis or real-time personalization in recommendation 

systems. The potential of few-shot and zero-shot learning to dramatically reduce the amount of 

labeled data required for effective model training could make ML more accessible and 

applicable in a wider range of scenarios. 

 

Figure 1.18. Few-shot learning compared with Zero-shot learning simplified (modified from 

Medium). 

 

https://medium.com/@lfoster49203/few-shot-and-zero-shot-learning-from-meta-learning-to-semantic-embeddings-ae12dc450025


29 

 

1.2.7.2 Explainable AI (XAI) 

As machine learning (ML) models become more complex and widespread, the need for 

explainability and interpretability has grown significantly. Explainable AI (XAI) aims to make 

the decision-making processes of ML models transparent and understandable (Gunning & Aha, 

2019). 

Several methods have been developed to enhance explainability: 

▪ Model-agnostic techniques, like LIME (Local Interpretable Model-agnostic Explanations) 

and SHAP (SHapley Additive exPlanations), provide individual predictions by 

approximating complex models with simpler, interpretable ones (Ribeiro et al., 2016; 

Lundberg & Lee, 2017). 

▪ Efforts to create interpretable versions of complex models, such as neural networks, strive 

to maintain performance while offering clearer insights into their decision-making (Rudin, 

2019). 

▪ Visualization tools, including saliency maps and attention visualizations, highlight 

significant parts of input data in a model's predictions, providing intuitive insights into 

model behavior (Simonyan et al., 2013). 

XAI is essential for building trust in ML systems, particularly in critical fields. As ML systems 

increasingly influence important decisions, the ability to explain and interpret these systems 

will be vital for their acceptance and adoption (Adadi & Berrada, 2018). The XAI field is 

evolving to tackle current technical and ethical challenges, promoting responsible and inclusive 

use of ML technologies (Figure 1.19). By enhancing transparency and accountability, XAI 

techniques are shaping the future of AI and its societal impact (Arrieta et al., 2020). 

 

Figure 1.19. Explainable Artificial Intelligence (XAI) conceptual example (modified from 

Geeks for geeks). 

 

https://www.geeksforgeeks.org/explainable-artificial-intelligencexai/
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1.3 Machine Learning Real Use Cases for Civil Protection 

1.3.1 Prediction of Rainfall-Induced Landslides with Deep Learning 

The prediction of rainfall-induced landslides is a critical aspect of disaster management, 

particularly in regions prone to heavy rainfall and complex topography. Traditional methods for 

landslide prediction often rely on empirical rainfall thresholds or physically-based models that 

require detailed environmental data (Guzzetti et al., 2008; Segoni et al., 2018). However, the 

advent of machine learning (ML) techniques has opened new avenues for more accurate and 

scalable prediction models. These models can handle large datasets, learn complex patterns in 

the data, and provide timely predictions, which are essential for early warning systems and 

disaster mitigation (Piciullo et al., 2018). 

Deep learning models, especially deep learning approaches, offer significant advantages in 

predicting landslides triggered by rainfall. These models can analyze vast amounts of historical 

rainfall and landslide data to identify patterns that precede landslide events. By learning from 

past events, they can provide real-time predictions, even in diverse and complex terrains 

(Mondini et al., 2023). Moreover, the ability to integrate various data sources, such as satellite 

rainfall estimates, ground-based observations, and topographical information, further improves 

their predictive capabilities (Kirschbaum and Stanley, 2018). 

▪ Zhao et al. (2022) developed an AI-based rainfall prediction model for debris flows, 

focusing on a high-frequency debris flow catchment in central China. The model uses 

continuous rainfall data from five rain gauges, covering 367 rainfall events between 2012 

and 2015, with 46 events triggering debris flows and 321 events without debris flows. A 

total of 17 machine learning algorithms were tested, and 141 rainfall features were 

extracted for the model training. The Extra Trees (ETs) model performed best, predicting 

debris flow events with high accuracy. During testing with simulated real-time rainfall 

data, the model showed no false alarms or missing alarms, predicting debris flows up to 

35 minutes in advance. While promising, the results are based on simulations, highlighting 

the model's potential for early warning, though further real-world testing is needed for full 

validation. 

▪ Mondini et al. (2023) developed a deep learning system to forecast rainfall-induced 

shallow landslides in Italy. The model uses hourly rainfall data from 2,096 gauges and 

information on 2,486 landslides (from 2002 to 2020). In total, the dataset includes 780,766 

rainfall events (Fig. 1.20), of which 2,472 were associated with landslides, while the 

remaining 778,294 did not trigger any landslides. The system employs an ensemble of 

2,400 neural network models to predict landslide occurrence based solely on rainfall 

history, without needing detailed terrain data. The model generates probabilistic forecasts 

for 1 to 24 hourly lag periods, providing a sharp dichotomous (landslide/no landslide) 

prediction for each hour. The model demonstrated high predictive accuracy (AUC 0.87–
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0.91), proving effective for landslide forecasting and well-suited for integration into 

operational early warning systems across large regions. 

 

Figure 1.20. The figure shows the density of 2,472 rainfall events (in violet) from February 

2002 to December 2020 that triggered at least one landslide, compared to 778,294 rainfall 

events (in blue) that did not result in any known landslides. The upper and right plots display 

the marginal distributions of duration (D) and cumulative rainfall (E), with violet and blue areas 

representing landslide-triggering and non-landslide-triggering events, respectively. The 

corresponding empirical cumulative distribution functions (ECDF) are normalized to the total 

number of rainfall events with and without landslides. Mondini et al. (2023). 

 

▪ Guzzetti et al. (2024) present a deep-learning system to forecast rainfall-induced 

landslides across Italy, using an ensemble of 2,400 neural network models. The system 

incorporates rainfall data from 2,096 rain gauges and 2,486 landslides recorded between 

2002 and 2020, with the CTRL-T software calculating key rainfall variables for each 

event. Forecasts are generated for 24 hourly lag periods, and a voting scheme classifies 

whether a landslide is likely based on the majority of predictions. The system 

demonstrated strong performance, particularly for events involving multiple landslides in 

the same area, achieving an 82.6% success rate in predicting landslide-related hourly 

records. Despite some challenges with more complex events like rockfalls, the authors 
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conclude that the system offers a valuable tool for short-term operational forecasting of 

rainfall-induced landslides, significantly enhancing emergency response efforts in Italy. 

Despite the promising advancements in ML-based landslide prediction, a significant challenge 

remains in the collection and quality of input data. Landslide prediction models often require 

extensive, long-term datasets with relatively low uncertainty. However, in the field of landslide 

research, obtaining such data can be problematic for several reasons. Firstly, the collection of 

high-quality landslide data typically requires on-site instrumentation that can gather 

information over extended periods, often spanning years or decades (Angeli et al., 2000; Petley 

et al., 2005). This long-term data collection is both resource-intensive and logistically 

challenging, especially in remote or hazardous areas. Secondly, landslide triggering 

mechanisms are subject to a degree of interpretability and can involve complex, varied 

mechanical and kinematic processes (Iverson, 2000; Sidle and Ochiai, 2006). This inherent 

variability introduces uncertainty into the data, which can affect the performance of prediction 

models. Furthermore, the heterogeneity of landslide types and their local geological and 

hydrological contexts means that data collected in one area may not be fully applicable to 

another, limiting the generalizability of models (Crosta and Frattini, 2003; Guzzetti et al., 2007). 

While ML methods have shown great potential in improving landslide prediction accuracy, their 

effectiveness is ultimately constrained by the quantity, quality, and representativeness of the 

available data. Addressing these data-related challenges remains a crucial area for advancement 

in the field of landslide prediction and early warning systems (Baum and Godt, 2010; Guzzetti 

et al., 2020). 

 

1.3.2 Landslide Mapping with Convolutional Neural Networks (CNNs)  

The rapid and accurate mapping of landslides over large areas has long been a challenging task 

in the field of geology and disaster management. Traditional methods, relying on manual 

interpretation of satellite or aerial imagery, are time-consuming and often impractical in 

emergency scenarios. The advent of deep learning techniques, particularly Convolutional 

Neural Networks (CNNs), is revolutionizing the field, offering promising solutions for 

automated landslide detection and mapping. 

In recent years, CNNs have achieved remarkable results in various fields of computer vision 

and image processing. Their success spans across a wide range of applications, including image 

classification (Dosovitskiy et al., 2021), object detection (Redmon et al., 2016), and semantic 

segmentation (Chen et al., 2017). Despite their widespread adoption in many domains, the 

application of CNNs to post-event landslide mapping has been relatively limited, with 

significant developments only emerging in the past few years. 

▪ Ding et al. (2016) proposed an automatic landslide recognition method using 

Convolutional Neural Networks (CNNs) and texture change detection in Shenzhen, China. 
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They utilized GF-1 satellite images taken on December 25, 2013 (pre-landslide) and 

December 29, 2015 (post-landslide), with four spectral bands at an 8-meter resolution. 

The landslide areas were manually mapped to create a ground truth dataset. Their method 

involved three steps: removing irrelevant areas using spectral indices, extracting features 

with a CNN pre-trained on the SAT-6 dataset, and confirming landslide areas through 

texture change analysis. This approach demonstrated the effectiveness of integrating 

CNNs with traditional methods for improved landslide detection accuracy. 

▪ Ghorbanzadeh et al. (2019) evaluated various methods for landslide detection in the 

Rasuwa district of Nepal. They used optical data from the RapidEye satellitewith a spatial 

resolution of 5 meters, alongside topographic factors. The dataset consisted of 3,500 

original samples, which were augmented to approximately 7,000 image sample patches 

for training. They employed multiple machine learning techniques (ANN, SVM, RF), 

alongside CNNs with varying input window sizes and layer depths. The best results were 

achieved with a small window size CNN, yielding a mean intersection-over-union (mIOU) 

of 78.26%. The study revealing that while CNNs show promise, their performance is 

highly dependent on design choices and training strategies. 

 

Figure 1.23. Comparison of landslide detection results between the automated mapping method 

and ground-truth data in the study area (Ghorbanzadeh et al. 2019, modified). The figure 

illustrates the performance of the algorithm in identifying landslides, showing both true 

positives (correctly identified landslides), false positives (areas incorrectly marked as 

landslides), and false negatives (missed landslide areas). 
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▪ Meena et al. (2021) proposed a deep learning approach for rapidly mapping landslides 

triggered by the 2018 monsoon rains in Karnataka, India. They utilized PlanetScope 

satellite imagery, which provides high-resolution data, and incorporated slope topographic 

data to create a robust training dataset. A total of 343 landslide polygons were manually 

delineated to establish ground truth. The study employed a fourfold cross-validation 

strategy to divide the data into training (75%) and testing (25%) sets, enhancing the 

model's robustness. Their structured CNN model, implemented in Trimble’s eCognition 

software, used convolutional layers with kernel sizes varying from 5 × 5 to 3 × 3, 

combined with max pooling layers (2 × 2 kernel size). This configuration was optimized 

using a statistical gradient descent function, with a batch size of 50, learning rate of 0.0001, 

and 3000 epochs. The input window size of 32 × 32 pixels was chosen to capture the 

diverse shapes and sizes of landslides in the study area. Their CNN model showed an 

accuracy of 78% when including slope data, compared to 65.5% with optical data alone. 

This methodology effectively demonstrated the advantages of combining topographic 

features with deep learning for improved landslide detection (Fig. 1.24). 

▪  

Figure 1.24. (a) Landslide areas cataloged through both CNN analysis and manual delineation. 

(b) Areas classified as true positives (TP), false positives (FP), and false negatives (FN) based 

on the spatial overlap analysis of the polygons identified in (a) (adapted from Meena et al. 2021, 

modified). 

 

▪ Ghorbanzadeh et al. (2022) investigated landslide detection using an integration of deep 

learning and object-based image analysis (OBIA) within a study area affected by the 

Typhoon Morakot in Western Taiwan, which triggered nearly 22,700 landslides, manually 

mapped, across 274 km², manually mapped. They utilized Sentinel-2 satellite imagery, 
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with a spatial resolution of 10 meters. The methodology involved training a Residual U-

Net (ResU-Net) model on five stacked layers of Sentinel-2 imagery, combined with a 

slope layer derived from ALOS. The ResU-Net's outputs were then refined using a simple 

rule-based OBIA approach. The study achieved significant improvements in landslide 

detection, highlighting the effectiveness of combining deep learning techniques with 

object-based analysis. 

▪ Nava et al. (2022) focused on rapid landslide mapping in the eastern Iburi sub-prefecture 

of Hokkaido, Japan, following the Mw 6.6 earthquake that triggered around 7,837 co-

seismic landslides, manually mapped from PlanetScope imagery. They utilized Sentinel-

1 SAR amplitude imagery with a spatial resolution of 10 meters, applying a modified 

Attention U-Net model for pixel-based classification. The dataset was divided into training 

(70%) and testing (30%) sets to validate the model's performance. The best results were 

achieved using tri-temporal SAR data, yielding an F1-score of 61%. 

▪ Meena et al. (2023) introduced the High-Resolution Global Landslide Detector Database 

(HR-GLDD), utilizing PlanetScope satellite imagery with a spatial resolution of 3 meters 

for landslide mapping across ten geographically diverse study sites affected by 

earthquake- and rainfall-triggered landslides. The dataset includes various landslide 

events and was systematically divided into training (60%), validation (20%), and testing 

(20%) sets, generating a total of 10,000 image patches. The models were evaluated using 

five advanced U-Net-like architectures. Their findings demonstrate the robustness and 

transferability of the dataset in detecting landslides across different topographies, 

including recent events in Haiti (2021), Indonesia (2022), and the Democratic Republic of 

the Congo (2020). This dataset marks a significant advancement in developing scalable 

and accurate models for rapid landslide detection worldwide. 

▪ Wu et al. (2024) developed the SCDUNet++ model for landslide mapping, focusing on 

the Jiuzhaigou and Luding areas in China, which were impacted by the 2017 Sichuan 

earthquake. They utilized Sentinel-2 multispectral imagery with a spatial resolution of 10 

meters, incorporating 13 bands along with four spectral indices (SIFs) and six topographic 

features (TFs). The dataset comprised a total of 1,840 images, split into training (60%), 

validation (20%), and testing (20%) sets. The model was validated using a combination of 

deep learning techniques, particularly CNNs, and demonstrated a notable performance 

with an F1-score of 85.68%. This study highlights the effectiveness of using advanced 

deep learning architectures for rapid landslide mapping under varying conditions. 

These studies collectively showcase the evolving landscape of landslide mapping techniques 

using CNNs. Key advantages of these approaches include improved accuracy in complex 

terrains, rapid processing of large datasets, reduced false positives through advanced feature 

learning, and the potential for near-real-time mapping in post-disaster scenarios. While these 
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methodologies show great promise for enhancing our understanding of landslide dynamics and 

improving risk assessment, their practical application in emergency scenarios remains a 

challenge. The reliance on extensive manual mapping and pre-existing datasets can hinder their 

effectiveness during critical response efforts. As ongoing research focuses on developing CNN-

based methods tailored for emergency situations, there is a growing need to balance academic 

advancements with the real-world applicability of these models, ensuring they can be 

effectively utilized in urgent disaster management contexts. 

 

1.3.3 Early Warning Systems with Deep Learning 

In the realm of landslide risk management, two main approaches leveraging machine learning 

techniques have emerged for practical application in emergency scenarios: local-scale and 

regional-scale predictions. Local-scale approaches focus on monitoring and predicting the 

behavior of specific, often slow-moving landslides, while regional-scale methods aim to assess 

landslide risk across larger areas. Despite the proliferation of studies in this field, it's important 

to note that many research efforts primarily focus on improving methodological aspects or 

performance metrics. Unfortunately, the translation of these academic advancements into 

operational emergency management systems remains limited. This gap between research and 

practice underscores the need for more emphasis on developing models that can be effectively 

integrated into real-world early warning systems and decision-making processes. Nevertheless, 

recent studies have made significant strides in both local and regional approaches, 

demonstrating the potential of machine learning in enhancing landslide risk assessment and 

prediction. 

 

Local-Scale Predictions: Monitoring Slow-Moving Landslides  

Landslide displacement prediction, particularly for slow-moving, is crucial for effective early 

warning systems. These landslides, marked by periods of stability and sudden acceleration, 

challenge traditional prediction methods due to the complex interactions between precipitation, 

reservoir water levels, and geological factors. Machine learning has become a valuable tool in 

this context, offering the ability to model the nonlinear relationships among these variables. 

However, traditional approaches often struggle with prediction instability and inaccuracy 

during critical periods of rapid deformation. 

▪ Zhou et al. (2018) applied a hybrid model combining wavelet transform (WT) and Particle 

Swarm Optimization-Kernel Extreme Learning Machine (PSO-KELM) to predict the 

displacement of the Baishuihe landslide (Fig. 1.21a), located in the Three Gorges 

Reservoir Area (TGRA), China. This landslide was monitored over the period from 2003 

to 2014, with detailed monthly displacement data. The study aimed to predict both the 
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trend and periodic displacement caused by internal geological factors and external triggers 

such as reservoir water levels and rainfall. The wavelet transform was used to denoise the 

data, and PSO was employed to optimize the KELM model. The model provided accurate 

forecasts with low error rates, making it suitable for use in landslide early warning 

systems. 

▪ Yang et al. (2019) aimed to predict the displacement of slow-moving landslides in the 

Three Gorges Reservoir Area (TGRA) using a dynamic approach combining time series 

analysis and Long Short-Term Memory (LSTM) neural networks. The authors modeled 

landslide displacement by decomposing the time series data into a trend term and a 

periodic term (predicted using LSTM). The input data included monthly measurements of 

displacement and influencing factors like rainfall and reservoir water levels, focusing on 

two landslides, Baishuihe (Fig. 1.21bc) and Bazimen, over the period from 2004 to 2013. 

Importantly, their goal was to predict the displacement behavior, not landslide failure. The 

LSTM model provided more accurate predictions than traditional methods like SVM, 

particularly in capturing the dynamic movement of these step-wise landslides, 

highlighting its potential for improving early warning systems. 

 

 

 

Figure 1.21. The topographical map in (a) provides an overview of the Baishuihe landslide area 

(modified from Zhou et al., 2018). (b) Schematic geological cross-section illustrates the internal 

structure of the Baishuihe landslide. (c) Displays the lateral displacement data versus depth, 

measured by inclinometer QZK1 (modified from Yang et al., 2019). 

 

Both approaches have shown significant improvements over traditional methods, particularly 

in managing the nonlinearity and complexity of landslide behavior. Their accuracy during 

periods of rapid deformation is highly relevant for early warning systems, where timely 

predictions are critical for public safety. However, while these models hold great promise for 
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enhancing early warning capabilities, direct implementation in operational systems remains a 

challenge, requiring further research and development. 

These advancements highlight the potential of combining sophisticated algorithms with a deep 

understanding of landslide dynamics. Yet, they also expose ongoing challenges, such as the 

need for extensive, high-quality monitoring data and the difficulty of generalizing models 

across varied geological settings. Future research may focus on reducing data dependency or 

integrating multiple data sources to provide a more comprehensive representation of landslide 

behavior. 

 

Regional-Scale Predictions: Early Warning over Large Areas 

At the regional scale, machine learning models are increasingly being employed to assess 

landslide risk across extensive areas, providing valuable tools for large-scale disaster prevention 

and planning (see Chapter 2).  

▪ Osanai et al. (2010) introduced a nationwide early-warning system in Japan for predicting 

debris flows and slope failures using rainfall indices. The system, operational since 2007, 

employs a Radial Basis Function Network (RBFN) to set thresholds for disaster 

occurrences based on short-term (60-minute cumulative rainfall) and long-term (soil-

water index) rainfall indices. The dataset used to develop the system includes non-

occurrence rainfall data, allowing the model to predict landslide risks across a 5-km grid 

mesh covering Japan. The model's key feature is its ability to set critical lines (CL) 

separating high and low-risk areas, providing local governments with advanced warnings 

to issue evacuation orders. The system, which was operationally validated in 2009, 

demonstrated its effectiveness in reducing the impacts of landslide disasters through 

timely alerts broadcasted via TV, radio, and the internet. However, while the system has 

proven valuable in operational settings, the authors acknowledge that accurately 

forecasting rainfall, especially in mountainous regions, remains a limitation. 
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Figure 1.22. The format used by local governments to disseminate early warning information 

(left). The colors represent different danger levels, with corresponding recommended actions 

indicated below (Osanai et al., 2010). 

 

▪ Magrì et al. (2024) developed a machine learning model to assess rainfall-induced 

landslide risk at a regional scale, focusing on the Liguria region in Italy. The study utilized 

a Polynomial Kernel Regularized Least Squares (KRLS) regression model to predict the 

daily occurrence of shallow landslides, based on critical hydrological factors such as soil 

moisture, 12-hour accumulated rainfall, and 3-hour rainfall peaks. The dataset, covering 

2014 to 2019, included 2,191 recorded landslides across five Alert Zones (AZs), with data 

sourced from rainfall gauges and reports from the Liguria Civil Protection Department. 

The model was trained using only rainfall events that triggered landslides, focusing on 

critical conditions. The model's outputs were aligned with the operational early warning 

system used by the Liguria Civil Protection, offering a practical application for disaster 

risk management. 

These larger-scale approaches demonstrate how machine learning can bridge the gap between 

scientific research and practical landslide risk management. These methods show promise for 

enhancing early warning systems and improving landslide risk mitigation across large areas, 

though continued refinement and validation across diverse geological contexts remain 

important areas for future work. 

In conclusion, while both local and regional-scale approaches show significant promise in 

improving landslide prediction and risk assessment, their practical implementation in 

emergency scenarios remains an ongoing challenge. Future research should focus not only on 

improving model performance but also on developing frameworks that facilitate the integration 

of these advanced techniques into operational emergency management systems. 

 

1.3.4 Emergency Response and Risk Assessment with CNN 

These studies collectively showcase the evolving landscape of landslide mapping techniques 

using CNNs. Key advantages of these approaches include improved accuracy in complex 

terrains, rapid processing of large datasets, reduced false positives through advanced feature 

learning, and the potential for near-real-time mapping in post-disaster scenarios. However, 

challenges remain, such as the need for large, diverse training datasets and the computational 

resources required for processing high-resolution imagery. Additionally, some studies rely on 

pre-existing datasets and a 70-30 split between training and testing data, which, while important 

academically, poses practical challenges in emergency situations. In such cases, the model 
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would require pre-mapping 70% of the affected area to accurately map the remaining 30%, 

which is impractical when immediate mapping is essential for supporting rapid response efforts. 

In light of these challenges, our focus has been on developing CNN-based methodologies 

specifically designed for emergency scenarios, where rapid and efficient mapping is crucial for 

disaster response and mitigation efforts. These advancements aim to enhance the practical 

applicability of landslide detection models in real-world situations, ensuring that they can be 

effectively utilized during critical times. To address these challenges in emergency scenarios, 

various strategies can be employed based on different approaches: 

▪ Create a Local Training Dataset (Supervised Learning): This approach (explained in 

section 1.2.3 and used in Chapter 3 and Chapter 5) involves manually mapping a portion 

of the affected area to create a training dataset. Meena et al. (2022) focused on automated 

landslide detection in the Rasuwa District of Nepal, which was affected by the 2015 

Gorkha earthquake, triggering a total of 239 manually mapped landslide polygons. They 

utilized RapidEye satellite imagery with a spatial resolution of 5 meters, captured on 

November 4, 2016, and divided the dataset into training (23% or 55 polygons) and testing 

(77%) zones. Within the training polygons, 117 sampling points were selected from 

landslide areas and 57 from non-landslide regions, resulting in a total of 174 sampling 

points. The U-Net model achieved an F1-score of 71.12%, demonstrating its effectiveness 

in landslide segmentation while addressing the challenges of small training datasets. 

▪ Utilize Pre-trained Models: This approach leverages models pre-trained on large, diverse 

datasets, adapting them for specific tasks like landslide detection. Prakash and Manconi 

(2021) applied this method using Sentinel-2 imagery to rapidly map landslides triggered 

by Storm Alex in October 2020. Their study utilized a generalized Convolutional Neural 

Network (CNN) trained on multiple landslide inventories, enabling quick mapping of 

1,249 landslides. The advantage of this pre-trained model lies in its exposure to a vast 

amount of data, enhancing its ability to generalize across various scenarios. However, a 

significant limitation is that many pre-trained models are primarily trained on RGB 

imagery, which may restrict their effectiveness in detecting landslides in diverse 

environments. Additionally, while landslide-specific datasets are not very common, there 

has been a recent increase in their availability. Resources like Papers with Code show that 

more landslide datasets are emerging, yet the scarcity of comprehensive pre-trained 

models remains a challenge for effective application in this domain. 

https://paperswithcode.com/search?q_meta=&q_type=&q=landslides
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Figure 1.25. Landslide mapping results using generalized CNN. (B) and (C) display changes 

observed in Sentinel-2 images before and after the triggering event, with landslides identified 

by the CNN marked as red polygons in the post-event images. These examples highlight the 

effectiveness of CNN in detecting landslides, with (C) showing a typical detection scenario 

(Prakash and Manconi, 2021, modified). 

 

▪ Semi-supervised Learning: Combining small amounts of labeled data with large amounts 

of unlabeled data, semi-supervised learning can enhance model performance when labeled 

training data is limited. This approach can be particularly effective in integrating newly 

acquired post-disaster images with existing datasets to improve mapping accuracy (see 

section 1.2.3). 

▪ Unsupervised Learning: Shahabi et al. (2022) explored an unsupervised deep learning 

approach for rapid landslide detection using Sentinel-2 data. Their method combined a 

Convolutional Auto-encoder (CAE) with Mini Batch K-means clustering, achieving a 

mean Intersection over Union (mIOU) of 70% without requiring labeled training data. The 

advantage of this approach lies in its ability to utilize vast amounts of unlabeled data, 

making it particularly valuable in scenarios where obtaining labeled data is challenging or 

time-consuming (see section 1.2.3). However, the model's accuracy may vary based on 

the quality of the input data, and the absence of labeled datasets for validation can limit 

the assessment of its performance. This study demonstrates the potential of unsupervised 

methods for rapid landslide mapping in emergency situations, highlighting the need for 

further exploration in this area. 
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▪ Few-shot and Zero-shot Learning: These approaches aim to generalize from few examples 

or identify new classes without prior exposure. (section 1.2.7). While their application in 

landslide mapping is still limited, these methods have shown promising results in various 

fields of semantic segmentation. Notably, the study by Xi et al. (2024) presents the SAM-

CFFNet model, which employs a cross-feature fusion network for the intelligent 

identification of landslides. This approach demonstrates the potential of zero-shot learning 

by effectively identifying landslides without requiring extensive labeled datasets. The 

model's ability to generalize from minimal examples offers a significant advantage in 

rapidly adapting to new types of landslides or different geographical areas. However, 

challenges remain in ensuring the model's accuracy and robustness in unfamiliar contexts 

where it has not been trained. 

By developing and refining these methodologies, future research can ensure that CNN-based 

landslide detection models are not only academically robust but also practically applicable in 

real-world emergency scenarios, ultimately enhancing disaster response and mitigation efforts. 

 

1.4 Research questions and outline  

In the previous sections, the application of machine learning (ML) in landslide prediction and 

emergency management has been discussed as a promising yet challenging approach. Despite 

advancements in ML techniques and the increasing availability of high-resolution data, 

effectively applying these methods in real-world scenarios—where geological, meteorological, 

and topographical conditions are highly variable—remains a significant challenge. Key issues 

include identifying reliable rainfall thresholds for landslide initiation, integrating ML models 

into operational early warning systems, and utilizing automated mapping techniques in time-

sensitive emergency situations. These challenges form the core of the research questions 

addressed in this PhD project. 

The Emilia-Romagna region serves as a critical context for this research, known for its complex 

geological structure and frequent landslides, particularly exacerbated by extreme weather 

events. The significant landslide event in May 2023 underscored the urgent need for efficient 

landslide prediction and rapid response mapping, especially in light of climate change and its 

influence on precipitation patterns. This research project aims to explore how machine learning 

can improve our ability to predict and manage landslide risks in such complex environments, 

thus addressing the previously mentioned challenges. The following chapters will delve into 

the specific research questions, using case studies from the Emilia-Romagna region to illustrate 

the application of these methodologies in real-world scenarios. 
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Three main research questions have guided this project: 

Question 1: How can we effectively apply ML methods in complex geological conditions? 

This question will be addressed in Chapter 2, which focuses on the application of ML models 

to define rainfall thresholds for landslides in the Emilia-Romagna region. This chapter 

compares traditional statistical methods with ML approaches, assessing their effectiveness in 

improving landslide prediction under challenging geological conditions. 

Question 2: Is it truly effective to use ML methods for mapping during emergency situations? 

This will be explored in Chapter 3 and Chapter 5, where the application of deep learning models 

(e.g., U-Net and SegFormer) for rapid landslide detection during the 2023 emergency is 

discussed. These chapters examine the potential and limitations of automated mapping methods 

in real-time disaster response. 

Question 3: How can ML models be integrated into operational early warning and emergency 

response systems? 

This question is addressed by developing an integrated interface for the Emilia-Romagna 

Region's early warning system, which combines machine learning (ML) models with existing 

frameworks (Chapter 6). By augmenting conventional methods with ML insights, we aim to 

enhance decision-making processes and improve the overall effectiveness of emergency 

response strategies. Chapter 6 further concludes by synthesizing these findings and outlining 

future research directions. 
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Chapter 2  

Comparative analysis of conventional and machine learning techniques for rainfall 

threshold evaluation under complex geological conditions 

 

2.1 Preface 

This chapter focuses on a crucial aspect of hydrogeological risk management: the definition of 

reliable rainfall thresholds for predicting rain-induced landslides in complex geological 

contexts. The presented work represents a significant step in my doctoral research, which aims 

to improve early warning systems for landslide phenomena in the Emilia-Romagna region. 

The research centered on comparing conventional methods with machine learning techniques 

for evaluating rainfall thresholds, using the Emilia-Romagna region as a case study. This area 

is known for its complex geological structure and the prevalence of weak rocks prone to large-

scale landslides. Despite the availability of an extensive historical dataset on landslides and 

precipitation, defining reliable rainfall thresholds in this context proved to be a significant 

challenge, requiring a multidisciplinary approach and the application of advanced analytical 

techniques. 

This chapter presents the results of this comparative analysis, offering insights not only into the 

relative effectiveness of different methods but also into future directions for improving rain-

induced landslide prediction. The conclusions reached have implications for the development 

of more effective warning systems and for understanding the key factors influencing landslide 

triggering in complex geological contexts (Chapter 6). 

 

The chapter is based on the article published in Landslides journal:  

Dal Seno N.1, Evangelista D.2, Piccolomini E.2, Berti M.1, 2024. Comparative analysis of 

conventional and machine learning techniques for rainfall threshold evaluation under complex 

geological conditions, https://doi.org/10.1007/s10346-024-02336-3. 

 

[1] Department of Biological, Geological, and Environmental Sciences (BiGeA), University of 

 Bologna, Bologna, Italy 

[2] Department of Informatics: Science and Engineering (DISI), University of Bologna, 

 Bologna, Italy 

  

https://doi.org/10.1007/s10346-024-02336-3


55 

 

2.2 Abstract 

This research focuses on the essential task of defining rainfall thresholds in regions with 

complex geological features, specifically at a regional scale. It examines a variety of 

methodologies, from traditional empirical-statistical methods to cutting-edge machine learning 

(ML) techniques, for establishing these thresholds. The Emilia-Romagna region in Italy, known 

for its intricate geological structure and prevalence of weak rocks that often lead to large and 

deep-seated landslides, serves as the study area. The region's complex interplay between rainfall 

and landslide incidences poses a significant challenge in accurately determining rainfall 

thresholds. The effectiveness of ML methods is compared against conventional empirical-

statistical approaches, evaluating factors such as prediction accuracy, model complexity, and 

the interpretability of results for use by regional landslide warning system operators. The 

findings indicate that machine learning techniques have an edge over traditional methods, 

yielding higher performance scores and fewer false positives. Nevertheless, these 

advancements are modest when considering the increased complexity of ML methods and the 

incorporation of additional rainfall parameters. This underlines the continued need for 

improvements in data quality and volume. The study stresses the importance of enhancing data 

collection and analysis techniques, especially in an era where advanced AI tools are 

increasingly available, to improve the accuracy of predicting rainfall thresholds for effective 

landslide warning systems. 

 

2.3 Introduction 

The definition of rainfall thresholds is critical for developing effective landslide warning 

systems, both regionally and locally (De Vita et al. 1998; Aleotti et al. 1999; Wieczorek and 

Glade 2007; Guzzetti et al. 2007a, 2008). Rainfall is the primary trigger of landslides worldwide 

(Caine 1980) and identifying the critical rainfall conditions that trigger landslides is crucial for 

predicting their occurrence (Terlien, 1998; Calvello & Piciullo, 2016). Various methods exist 

for setting these thresholds, including empirical-statistical and physically-based approaches 

(Segoni et al., 2018; Guzzetti et al., 2007b). Empirical-statistical methods, which analyze 

historical landslide and rainfall data to establish a relationship, are widely used due to their 

simplicity and robustness (Berti et al., 2012; Aleotti 2004; Glade et al., 2000). They account for 

complex interactions affecting slope stability but are often specific to certain locations and may 

not hold up under changing climatic conditions (Crosta & Frattini, 2022; Gariano & Guzzetti, 

2016).  

Machine learning (ML) techniques have brought significant advancements to this field. These 

algorithms learn from existing data to identify patterns and predict future events, offering 

adaptability and versatility in analyzing various variables (Alpaydin, 2010; Bishop, 2006). 

Recent studies have demonstrated the effectiveness of machine learning in improving landslide 
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warning systems by integrating various data types, including soil moisture and rainfall, to 

predict hydrologic responses and landslide occurrences (Orland et al., 2020, Liu et al. 2021, 

Mondini et al. 2022). These techniques represent a promising direction for enhancing the 

accuracy and applicability of rainfall thresholds in landslide prediction. 

This study assesses the use of machine learning techniques for determining rainfall thresholds 

in Emilia-Romagna, Northern Italy, a region characterized by complex geology and weak rocks 

that lead to frequent, large landslides. The research focuses on evaluating the effectiveness of 

machine learning approaches in comparison with traditional empirical-statistical methods. Key 

aspects of this evaluation include prediction accuracy, model complexity, and the ease of 

interpreting and communicating findings to regional warning system staff, considering the 

intricate relationship between rainfall and landslides in the area. 

 

2.4 Study area 

The Emilia-Romagna region in Italy (Fig. 2.1) is highly prone to landslides due to several 

factors. The region's rocks are mostly weak and susceptible to weathering, and there is ongoing 

geological uplift, constantly reshaping the landscape. The lengthy rainy and snowy seasons 

further contribute to slope instability. Over 32,000 landslides have been identified in the area 

(Bertolini et al., 2005), with earthflows being the most prevalent type, especially in regions with 

clay rocks (Ligurian-Subligurian Domain, Fig. 2.1). These earthflows and slides typically move 

slowly, but can accelerate dramatically during heavy rain or snowmelt, sometimes reaching 

high speeds. Rockslides, another common type, are frequent in the flysch units (Tuscan-

Romagna Domain, Fig. 2.1) and can form large, dangerous slides, especially when strata dip 

out of the slope. While less common than earthflows, rockslides pose a greater risk due to their 

higher speeds. Rockfalls occur in competent sandstone and limestone rocks (Epiligurian 

Domain, Fig. 2.1) but represent less than 1% of landslides in the region. Figure 2.2 provides 

illustrative examples of these types of landslides. 

The Civil Protection Agency of Emilia-Romagna is responsible for managing the region's 

hydrogeological risk alert system. Since 1995, the agency has established and continuously 

improved the alert system, which comprises of a prediction and monitoring phase. The 

prediction phase relies on meteorological forecasts for the subsequent 72 hours and an 

evaluation of their corresponding effects. A team of specialized experts performs this crucial 

step, considering various rainfall threshold models and the current territory conditions. The 

technical group's assessment is reported in a daily Alert Bulletin that identifies three possible 

alert levels (ordinary, moderate, elevate) based on the expected number and extent of landslides. 

Such indications enable the implementation of preparation plans at the municipality level. The 

forecasts cover eight alert areas (Fig. 2.1), which are territorial units characterized by 

homogenous meteo-climatic response and comparable hydrographic and orographic features. 
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Alert areas are considerable in size (from 660 to 1900 km2) and exhibit significant geological 

variability within their boundaries, with different types of landslide phenomena. Nonetheless, 

the regional alert system aims to prepare municipalities for potential landslides on a large scale, 

rather than providing forecast at the local level. 

 

Figure 2.1. Geographic overview of the Emilia-Romagna region (Italy) segmented into alert 

zones. Illustrative geological map of the region. 

 

 

Figure 1.2. Examples of landslide types in the Emilia-Romagna Region. (a) Earthflows and (b) 

earth slides, commonly found in the clay rocks of the Ligurian Domain. (c) A typical rockslide 

observed in the flysch rocks of the Tuscan-Romagna Domain. (d) Rockfall characteristic of the 

sandstone rocks in the Epiligurian Domain. 
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2.5 Methods 

2.5.1 Data 

The analysis in this study was based on data from two primary sources: a historical catalogue 

of landslide events and precipitation records. A similar dataset was previously used by Berti et 

al. (2012) to determine probabilistic rainfall thresholds for Emilia-Romagna using a Bayesian 

approach. This current study differs in three key aspects: i) it includes updated data on 

landslides from 2009 to 2022; ii) it adopts a more representative approach for averaging rainfall 

over alert areas; iii) it evaluates various traditional and machine learning algorithms for defining 

rainfall thresholds. 

 

Landslide catalogue 

The Emilia-Romagna Geological Survey has a register of past landslides occurred in the 

regional territory (https://ambiente.regione.emilia-romagna.it/en/geologia/cartography/). The 

register is constantly updated and includes data from national archives, local press, and 

technical reports. Although the catalogue is not entirely comprehensive, since minor events that 

occurred in remote areas may have gone unnoticed, it can be regarded as statistically complete 

from approximately 1951 (Rossi et al., 2010). The catalogue stores the location, date of 

occurrence, characteristics, and consequences of each landslide with varying degrees of 

accuracy. The date occurrence is the most important parameter for our analysis since each 

landslide must be linked to a specific triggering precipitation event. To ensure accuracy, only 

landslides with a certain date of occurrence (daily accuracy) or with a maximum uncertainty of 

1-7 days were considered. 

 

Rainfall data 

The Emilia-Romagna region features a rainfall network with over 200 tipping-bucket rain 

gauges spread uniformly across the area. Up to 2001, rainfall data was collected manually on a 

daily basis, but since then, automatic gauges have been used to record data every 30 minutes. 

In the civil protection system, rainfall measurements from an entire alert area (as shown in Fig. 

2.1) are spatially interpolated and averaged to provide a single value for the whole area, due to 

the variability of precipitation over short distances. The averaging of daily rainfall data also 

matches with weather forecasts, which predict precipitation levels for each alert zone over 24, 

48, and 72 hours. The alert zones vary in size, from 660 km² (Zone A1) to 1900 km² (Zone C2), 

with each rain gauge monitoring an area of approximately 60 km². 
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Manual identification of triggering rainfall events 

Assigning a specific rainfall event to each historical landslide proved to be a challenging task. 

The complexity of rainfall, which can consist of multiple episodes with varying intensities and 

durations, along with the impact of snowmelt not included in rainfall data, contributed 

significantly to this difficulty. The uncertainty surrounding the date of the landslide occurrence 

further complicated the procedure, making it impossible to utilize an automatic algorithm for 

identifying the triggering rainfall event. Therefore, a manual identification process was 

employed, requiring careful analysis of each single case. This process was complex, time-

consuming, and involved the continuous re-analysis of more than 4000 historical records. 

To address the subjectivity inherent in expert judgment, each rainfall event was classified based 

on its uncertainty level (refer to Fig. 2.3 for examples): 

▪ Type 1) Low uncertainty. The triggering rainfall can be identified with a minimal degree 

of subjectivity as there is a distinct rainfall episode that occurred during or, at most, 1-3 

days prior to the landslide, with a clearly defined beginning and end (Fig. 2.3a-c). 

▪ Type 2) Moderate uncertainty. At the time of the landslide there is a heavy rainfall episode, 

but determining the exact beginning of the event is somewhat subjective due to the 

presence of multiple rainfall pulses with comparable duration and intensity (Fig. 2.3d-f). 

▪ Type 3) High uncertainty. Determining the triggering rainfall with sufficient accuracy is 

not possible due to several reasons, such as: a) the landslide occurred at the beginning of 

a rainfall event (Fig. 2.3g); b) the landslide occurred during a dry period, or after a light 

rainfall with minimal duration and intensity (Fig. 2.3h); c) the landslide occurred after or 

during an extended period characterized by multiple rainfall events with similar duration 

and intensity (Fig. 2.3i). These records may indicate landslides with an incorrect date of 

occurrence, landslides triggered by snowmelt or rain-on-snow events, or situations where 

the relationship between rainfall and the landslide is particularly intricate because of the 

effect of antecedent rainfall. 

For analytical purposes, Type 1 and Type 2 events are considered appropriate, while Type 3 

events are excluded due to the high uncertainty about the duration and intensity of the triggering 

rainfall.  

Regarding rockfalls, they were not explicitly excluded from our analysis; however, any events 

not clearly triggered by rainfall were categorized as Type 3 'High uncertainty' during the manual 

identification process and were consequently excluded from further analysis. 
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Figure 2.3. Classification of Rainfall Events by Uncertainty in Expert Assessment. (a-c) Type 

1 - Low Uncertainty: The triggering rainfall is clearly identified with minimal subjectivity, 

evident from a distinct rainfall episode occurring 1-3 days before the landslide. (d-f) Type 2 - 

Moderate Uncertainty: Heavy rainfall coincides with the landslide, but discerning the precise 

start is uncertain due to multiple similar-duration and intensity rainfall pulses. (g-i) Type 3 - 

High Uncertainty: Pinpointing the triggering rainfall is challenging; the landslide could occur 

at the onset of a rainfall event (g), during a dry period (h), or after an extended period with 

several similar rainfall events (i). 

 

Automated definition of rainfall events from precipitation data 

To define rainfall thresholds via statistical techniques (discussed in the following section), it's 

essential to categorize both critical and non-critical rainfall events. Given the extensive span of 

the precipitation data, an automated process is necessary for isolating non-significant rainfall 

events within the dataset. A common approach in literature is to set a threshold of duration (

minD ) and precipitation amount ( minP ) which serves to determine the start and end of a rainfall 
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event (Corominas 2000, Saito et al. 2010). The values of minD  and minP  depend on the specific 

site conditions: short inter-event periods are typically used for shallow landslides and debris 

flows, that promptly react to rainfall, while longer periods are employed for deep-seated 

landslides in fine-grained materials (Wang et al. 2003). Regardless of the criteria used, it is 

essential to ensure consistency between the automated algorithm and the expert identification 

of critical rainfall. The algorithm, in fact, must be developed based on the same criteria and 

thresholds used by the experts to guarantee consistency between the datasets of critical and non-

critical rainfall. 

During the manual identification of the triggering rainfall, various combination of minD and minP  

were tested to determine which one was most effective in replicating expert judgment. 

Ultimately, the best combination was determined to be minD =3 days and minP =5 mm (D3P5 

algorithm hereafter). This means that a rainfall event is defined as continuous period of 

precipitation that ends when the precipitation drops below 5 mm over 3 days. Berti et al. (2012) 

arrived at the same definition using a reduced version of the current dataset spanning the period 

1939-2000. The D3P5 criterion was applied to the precipitation time series of the eight alert 

areas to extract all rainfall events in the period 1939-2022. Figure 2.4 shows an example of a 

rainfall time series (Alert Area A1, period February-September 1978) where rainfall events 

have been identified through the automatic recognition algorithm. The red polygon highlights 

a rainfall event that triggered landslides. 

 

Figure 2.4. Demonstration of automatic rainfall event identification in the rainfall time series 

for Alert Area A1 (February-September 1978). The rainfall events within this period were 

identified using an automated recognition algorithm. An event that resulted in landslides is 

emphasized with a red polygon. 
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Dataset for analysis 

The final dataset used for the analysis is organized into eight tables, each corresponding to a 

specific alert area. Every table row represents a distinct rainfall event, with various columns 

detailing key aspects of the event. These aspects include the duration of the event (in days), 

total precipitation (in millimeters), average daily rainfall intensity (mm/day), antecedent rainfall 

over preceding intervals of 7, 14, 30, and 60 days (in millimeters), and the day of the year 

(numbered 1-365, serving as an indicator of seasonal variation). Additionally, each row notes 

the number of landslides triggered in the alert area by the rainfall event, where a zero indicates 

a non-critical event that did not result in any landslides.  

While all events are geolocated and theoretically geological data could be included in the 

analysis, the traditional threshold methods used in this study are typically based only on two 

parameters—rainfall duration and intensity/cumulative. Including geological data would 

necessitate subdividing the dataset into geologically homogeneous areas, which would 

significantly reduce its statistical robustness. For machine learning methods, although feasible, 

we chose not to include geological factors to maintain a direct comparison with traditional 

methods, ensuring a more straightforward evaluation framework. 

The dataset's primary focus is to investigate the link between rainfall characteristics and the 

occurrence of landslides on a larger scale, rather than delving into the broader environmental 

factors that may influence landslide risk. Hence, the analysis omits spatial details like 

geological makeup, slope gradients, and land use patterns, which are generally pivotal for 

understanding landslide genesis on a more localized, slope-specific scale. 

 

2.5.2 Algorithms 

In our study, we compared four traditional rainfall threshold determination methods (BART, 

Frequentist, Percentile, LDA) with seven advanced Machine Learning (ML) techniques (NN, 

LR, MLDA, MQDA, RF, XGBoost, TPOT), detailed in Table 2.1. This distinction highlights 

the shift from traditional methods, which rely on basic parameters like rainfall duration and 

intensity, to more complex, multiparametric ML techniques, as listed in Table 2.1. While 

traditional methods are straightforward, ML techniques, evolving from statistical principles of 

traditional methods, offer greater analytical depth but are more complex to learn and apply. 

 

2.5.2.1 Conventional methods  

The traditional techniques considered in our analysis comprise four various Bayesian methods: 

BART, Frequentist, Percentile, and LDA.  
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BART  

BART (Bayesian Analysis of Rainfall Thresholds) is a probabilistic method for defining rainfall 

thresholds (Berti et al., 2012, 2015). It calculates the probability of a landslide occurring in 

response to specific rainfall duration and intensity using a simplified application of Bayes' 

theorem as proposed by Berti et al. (2012): 

 𝑃(𝐴|𝐵) ≈  
𝑁(𝐵│𝐴)

𝑁𝐵
 [2.1] 

where N(B|A) is the number of rainfall events of magnitude B that resulted in landslides, and 

NB is the number of rainfall events of magnitude B. This approximation simplifies the 

computation, making it practical for implementation while maintaining the necessary accuracy 

for our analysis. Detailed derivations can be found in Berti et al. (2012). 

 

Frequentist 

The Frequentist method, developed by Brunetti et al. (2010) and based on Fisher's principles 

from 1936, analyzes the frequency of rainfall conditions historically leading to landslides, as 

shown in Figure 2.5c-d. It involves plotting triggering rainfalls on a logarithmic scale (Fig. 

2.5c), using the least squares method to find a fitting line (depicted in blue), and applying Kernel 

Density Estimation, as per Silverman (1986), to calculate the probability density function of 

regression residuals with a Gaussian model. The final step is setting a rainfall threshold for a 

specific exceedance probability. This optimal exceedance probability was identified on the 

training dataset by testing all intercepts corresponding to the Gaussian distribution of rainfall 

events that resulted in landslides, while maintaining the slope of the best-fit line (blue line in 

Fig. 2.5c) which corresponds to 50% of the distribution. Based on the optimal linear residual 

(delta) score, the T20 line (red line in Fig. 2.5d), which represents 20% of the distribution, 

demonstrated superior performance on the training dataset and was subsequently employed 

during the testing phase. 

 

Percentile 

Guzzetti et al. (2007) employed a percentile method to determine the alert threshold for 

landslide occurrences in Central and Southern Europe. The percentile is a statistical technique 

used to determine the value below which a certain percentage of observations in a dataset fall 

(Moore and McCabe, 1993). To perform the analysis, the rainfall events that resulted in 

landslides are plotted in the ID chart and the duration axis is divided into bins (Fig. 2.5e). The 

data falling within each bin are then sorted in ascending order based on rainfall intensity, and 

the point corresponding to a given percentile (e.g., 5%) is calculated. The rainfall threshold is 
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finally obtained by linearly fitting the ID points of the considered percentile (Fig. 2.5f). For our 

study, after evaluating different percentiles, the 25th percentile was identified as the most 

effective threshold based on the optimal delta score.  

 

Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA), a dimensionality reduction and feature selection 

technique, aims to find a linear combination of features that effectively separates different 

classes (Fisher, 1936; Brown, 1998; Venables and Ripley, 2002). Originally proposed by 

Fisher, LDA uses sample mean vectors and class variances to identify the optimal direction for 

class separation. It achieves this by maximizing between-class variance (SB) and minimizing 

within-class variance (SW), a process visualized in Fig. 2.5g-h. The separation is optimized 

through solving a generalized eigenvalue problem, with the formula:  

 𝐽(𝑊) =  
𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊
 [2.2] 

where W represents the projection vector. In our study, the best projection vector on W 

differentiates critical from non-critical rainfall, serving as the rainfall threshold in the ID plot. 
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Figure 2.5. Conceptual examples of conventional methods for rainfall thresholds evaluation. 

BART: a) scatter plot of rainfall events that did and did not result in landslides; b) conditional 

probability plot of landslides for nine different combinations of intensity and duration, with the 

red line indicating the threshold with probability > 0.40. Frequentist: c) rainfall events that 

resulted in landslides plotted with the best-fit line (blue); d) rainfall threshold defined by 

shifting the regression line to the 20% exceedance probability (red line). Percentile: e) 

percentile plot of rainfall events showing the 5th percentile for each bin; f) rainfall threshold 

(T5) obtained from the best fit of the5th percentile points (outlined in red). LDA: g) mean 

vectors of critical and non-critical rainfall (red and green crosses) connected by the vector W 

(blue line); h) optimized projection vector W (blue line) for best class separation. 
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2.5.2.2 Machine Learning techniques 

The four conventional methods were evaluated against seven algorithms from Machine 

Learning, using different numbers of input variables (Table 2.1).  

 

Table 2.1. Overview of the methods used to define rainfall thresholds. Parameters: I=rainfall 

intensity (mm/day); D=rainfall duration (days); dY=day of the year (1 t o365); C=total 

precipitation (mm); A7, A14, A30, A60= antecedent rainfall in the previous 7, 14, 30 and 60 

days (mm); Ac=Alert area. 

 

 

Neural Networks (NNs) 

Neural Networks (NN), machine learning methods inspired by the human brain, are adept at 

solving complex problems (Goodfellow et al. 2016; Schmidhuber 2014). They consist of layers 

of interconnected neurons, learning through weight adjustments for each input (Lecun et al., 

2015). In the context of landslide prediction from rainfall data, NNs assign weights to factors 

such as duration and intensity, using them in a prediction process that involves normalization, 

weight combination, and activation functions like sigmoid, to output a probability indicating 

landslide likelihood (Fig 2.6a). 

For our analysis, we implemented three NN architectures using the Keras Python library. The 

‘shallow neural network’ had four layers with 32, 16, 8, and 1 neuron; the ‘medium neural 
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network' comprised five layers with 256, 64, 32, 8, and 1 neuron; and the 'large neural network' 

also had five layers but with 512, 128, 64, 8, and 1 neuron. All used ReLU activation for hidden 

layers and sigmoid for the output layer. They were trained with the Adam optimizer (learning 

rate 1e-4) and binary cross-entropy loss, considering class weights of 1 and 20 to balance data 

distribution between landslide and non-landslide classes.  

 

Logistic Regression (LR) 

Logistic Regression (LR) (Cox 1958; Hastie et al., 2009), is a generalized linear model using 

the sigmoid function to predict event probabilities. Like neural networks, LR assigns weights 

to input features during training and calculates the probability of a binary outcome by applying 

the sigmoid function to the sum of weighted inputs. LR aims to optimally set weights to 

minimize prediction errors, following the formula: 

 𝑝(𝑦 = 1|𝑥) =  
1

(1 + 𝑒(−𝑤𝑇𝑥))
 [2.3] 

where p(y=1|x) is the probability of the outcome being 1 given input x, with w as the weight 

vector. 

In our study, LR was implemented for binary classification using Scikit-learn's 

LogisticRegression module with 'l2' Ridge regularization. We chose 'lbfgs' as solver 

to handle the optimization. To address class imbalance, we set class_weight to {0:1, 

1:18.7}, reflecting the prevalence of class 0 over class 1. The LR model's conceptual approach 

(Fig. 2.6b) was effectively employed in our analysis. 

 

Multiparametric Linear Discriminant Analysis (MLDA)  

Multiparametric Linear Discriminant Analysis (MLDA) extends the concept of LDA (Fisher, 

1936; Venables and Ripley, 2002). Unlike LDA, which considers only two predictor variables, 

MLDA accommodates multiple predictor variables, making it suitable for complex tasks like 

predicting rainfall-induced landslides.  

In our study, we implemented MLDA using Scikit-learn's 

LinearDiscriminantAnalysis module with the 'lsqr' solver, priors set to [0.4, 

0.6], and a shrinkage parameter of 0.4 for regularization. 
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Multiparametric Quadratic Discriminant Analysis (MQDA)  

Multiparametric Quadratic Discriminant Analysis (MQDA) extends MLDA for curved decision 

boundaries (Hastie et al., 2009), making it valuable for modeling nonlinear rainfall thresholds 

(Fig. 2.6c). In our study, we used Scikit-learn's QuadraticDiscriminantAnalysis 

module with customized settings, including priors [0.3, 0.7] for class probabilities and 

reg_param 0.7 for regularization control. 

 

Random Forest (RF) 

Random Forest (RF) is a machine learning algorithm that improves accuracy by combining 

predictions from multiple decision trees, each trained on different data subsets (bootstrapping) 

(Breiman, 2001). Decision trees, used for classification and regression, are flowchart-like 

structures (Breiman et al., 1984).  

In our study, we used Scikit-learn's RandomForestClassifier module with 

hyperparameter settings for optimization. For instance, n_estimators were set to 10 to limit 

the number of trees, criterion used entropy-based information gain, and hyperparameters like 

max_depth, min_samples_split, and min_samples_leaf was adjusted for tree 

control and preventing overfitting. To address class imbalance, class_weight was set to 

{0:1, 1:18.7} to assign higher weights to the minority class (Pedregosa et al., 2011). 

RF classifies data into 'landslide' or 'no-landslide' without providing a specific rainfall threshold 

for separating critical and non-critical events in the ID plane (Fig. 2.6d). 

 

XGBoost 

Extreme Gradient Boosting (XGBoost) is a powerful machine learning algorithm that improves 

accuracy by combining predictions from multiple decision trees through gradient boosting 

(Chen and Guestrin, 2016). Like Random Forest, XGBoost builds multiple decision trees, but 

it uses gradient boosting to enhance performance. This technique corrects errors from previous 

trees, leading to higher accuracy and better model performance (Friedman, 2001). XGBoost 

excels with large datasets and numerous input variables, making it a widely used algorithm for 

predictive modeling. 

In our analysis, we employed the XGBoost algorithm using the XGBClassifier module 

from the xgboost Python package. We optimized the model by adjusting hyperparameters 

such as booster (gbtree), max_depth (6), and scale_pos_weight (18.7) to enhance its 

ability to capture complex data relationships. 
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Figure 2.6. Differences in Outputs from Machine Learning algorithms for rainfall threshold 

evaluation. (a) Neural Network: this approach uses multiclass analysis for the individual 

classification of each rainfall event, lacking a distinct rainfall threshold. (b) Logistic 

Regression: the decision boundary can be depicted as a line in the 2D plot. Note that a critical 

rainfall event may appear below this line, influenced by other parameters not represented in this 

2D visualization. (c) Multiparametric Quadratic Discriminant Analysis (MQDA): the decision 

boundary can be shown as a curve in the 2D plot. Similar to Logistic Regression, the impact of 

additional parameters is not visible in this plot. (d) RF, XGBoost, and TPOT: these methods 

employ multiclass Decision Tree (DT) approaches, which do not have clearly defined 

boundaries in their outputs. 

 

Tree-Based Pipeline Optimization Tool (TPOT) 

TPOT (Tree-Based Pipeline Optimization Tool) is not a model but an automated machine 

learning library designed to optimize decision tree-based models (TPOTClassifier) (Olson et 

al., 2016). TPOT employs genetic programming for autonomous model optimization (Olson & 

Moore, 2019). It evolves through generations of randomly generated models, converging on an 

optimized decision tree-based pipeline. 
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In our study, TPOT was configured with specific parameters: 150 generations, a 

population_size of 150, custom F2 score, and early_stop after 15 generations. This 

involved evaluating 22,500 pipeline configurations. It's crucial to note that TPOT operates as 

an automated optimization tool, providing limited user control beyond initial parameter 

settings, distinguishing it from traditional machine learning algorithms. 

The optimal pipeline identified by TPOT is shown below: 

model = make_pipeline( 

 StackingEstimator(estimator=RandomForestClassifier(

 bootstrap=True, criterion="entropy",  max_features=0.1, 

 min_samples_leaf=15,  min_samples_split=3, n_estimators=100)), 

 StackingEstimator(estimator=MLPClassifier(alpha=0.1

 ,learning_rate_init=0.1)),  SelectFwe(score_func=f_classif, 

 alpha=0.032), 

 StackingEstimator(estimator=DecisionTreeClassifier(

 criterion="entropy", max_depth=1, min_samples_leaf=13, 

 min_samples_split=17)), GaussianNB()) 

 

Considerations on Bayesian Network 

Bayesian Network Machine Learning (BN-ML) techniques are powerful tools for modeling 

complex dependencies and providing insights into variable importance (Neapolitan, 2003). 

However, in this study, BN-ML was not included due to several reasons. Firstly, the complexity 

of determining the network structure and the computational cost of performing inference with 

large datasets make these techniques less practical for our analysis. Secondly, BN-ML 

techniques are less frequently represented in related literature, which limits their comparability 

with the more commonly used methods. Lastly, to maintain the focus and manageability of our 

study, we opted to use methods that are more straightforward to implement and have established 

performance metrics for our specific application. 

 

2.5.3 Experiments and performance evaluation 

In our analysis, the dataset was split into a training set and a test set in an 80/20 ratio (Alpaydin, 

2010). Since the dataset is highly imbalanced with a ratio of 18:1 for the target variable 

(landslide events), we used stratified sampling to ensure that the training and validation sets 

have the same proportion of critical and non-critical events. Stratified sampling randomly 

selects samples from each group in a way that maintains the overall class balance (Kohavi, 

1995).  
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Algorithms were then evaluated based on the four values of the confusion matrix (Bishop, 

2006).  

Among these, the Fβ -score, a generalized form of the F-score, was specifically chosen for its 

ability to weigh recall and precision according to our research priorities. The general formula 

for the Fβ-score is given by: 

 𝐹𝛽 = (1 + 𝛽2) ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙𝑙

(𝛽2∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑅𝑒𝑐𝑎𝑙𝑙
 [2.4] 

where: 

 Precision = 
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
; 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 ;  

For our specific application in landslide prediction, we prioritized recall over precision due to 

the critical nature of not missing actual landslide events. Thus, we chose a beta of 2, leading to 

the F2-score, which weighs recall higher than precision: 

 𝐹2 =  (1 + 22) ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑅𝑒𝑐𝑎𝑙𝑙

(22  ∙  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
 [2.5] 

Among the many available performance metrics, we chose F2-score because it assigns more 

weight to false negatives (FN), which represent missed landslide events. Having a low number 

of missed alarms is of particular importance in landslide prediction. A high F2 score reflects a 

model’s preference to issue false alarms (FP in this case) over missing alarms by significantly 

minimizing false negatives (FN). This scoring approach is particularly advantageous in 

situations where the costs of missing a true positive are much higher than those of handling 

false positives. The range of the F2 score is between 0 and 1, with a higher score indicating 

better performance. 

The ROC AUC (Area Under the Receiver Operating Characteristic Curve) (Fawcett, 2006) was 

used to have a graphical representation of the algorithms performance based on the comparison 

between True Positive Rate on the y-axis, 𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and False Positive Rate on 

the x-axis, 𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁). By plotting the ROC curve, we can visually assess the 

model performance. A model with superior performance will exhibit a ROC curve that is closer 

to the top-left corner of the graph, indicating higher TPR and lower FPR.  

Both metrics offer valuable insights into model performance, even in the presence of class 

imbalance. 
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The roc_curve and roc_auc_score functions from the scikit-learn Python library have 

been used to analyze the algorithms performance by means of the ROC curve. Traditional 

calibration and testing procedures were applied for conventional methods. For Machine 

Learning techniques, optimal performance was achieved through independent heuristic tuning 

of the algorithms’ hyperparameters. 

 

2.6 Results 

2.6.1 Rainfall-landslide correlations 

The landslide archive of the Emilia-Romagna region documents 6699 instances of landslides 

that occurred between 1939 and 2022 (Table 2.2, column 1). Out of these landslides, 4019 have 

a known triggering date with a daily precision or an uncertainty of fewer than seven days 

(column 4). The distribution of these landslides is not uniform across the eight alert areas, with 

around half of the occurrences happening in areas E1-E2. This unevenness is largely attributed 

to the unfavorable geological conditions in these regions, but it could also be due to more 

accurate detection of landslides made by local authorities. 

The triggering rainfall for each of the 4019 documented landslides was manually identified 

(section 2.5.1). As mentioned earlier, this process was challenging, time-consuming, and 

involved a considerable degree of subjectivity due to the complexity of rainfall time series. 

Columns 5-6-7 in Table 2.2 summarize the results of this expert evaluation, indicating the 

number of triggering rainfalls identified with low uncertainty (type 1), moderate uncertainty 

(type 2), and those that could not be identified with the necessary objectivity for various reasons 

(type 3). The events suitable for the analysis are 2718 (type 1 + type 2) and account respectively 

for 39% (1532 landslides) and 30% (1186 landslides) of the 4019 historical records (column 9). 

On the other hand, those unsuitable for the analysis (type 3) account for 31% (1186 landslides). 

The fact that roughly one-third of the historical data is unsuitable for analysis represents a 

significant limitation that will be discussed later. 

Critical rainfall only represents a small fraction of the overall rainfall events. During the 83 

years of analysis, an average of 2000 rainfall events with varying intensity and duration were 

identified in each alert area using the D3P5 algorithm (section 2.5.1). Only a subset of these, 

ranging from 50 to 200, triggered landslides (Tab. 2.3). The percentage of critical rainfall events 

varied widely across the eight alert areas, ranging from 1.9% in area A1 to a maximum of 8.4% 

in areas E1 and E2, indicating that the dataset is heavily unbalanced. Further examination of 

the data reveals that while the number of rainfall events Is roughly similar in all eight areas, 

there are significant differences in both precipitation amounts and the number of landslides 

(Fig. 2.7). For instance, area E1, which experiences the highest annual rainfall (1596 mm/year), 

also has the highest number of landslides (761), whereas A2, which has much lower 
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precipitation levels (664 mm/year), has relatively fewer landslides (158). However, area E2, 

which receives a similar annual rainfall to A2 (651 mm/year), has the second-highest number 

of historical landslides (625). These disparities underscore the complex relationship between 

rainfall and landslides in the Emilia-Romagna region. This complexity is further underscored 

by the intensity-duration plot (Figure 2.8), which displays no distinct boundary between critical 

and non-critical rainfall events, making it challenging for any algorithm to find a distinct 

separation boundary. 

To further understand the impact of various predictive features on landslide occurrence, we 

conducted a feature importance analysis using the machine learning models in this study. As 

illustrated in Figure 2.9, the analysis highlights that the total rainfall during the event is by far 

the most significant predictive feature. This was determined by calculating the feature 

importance based on the F2 score across 100 iterations for each method. The other parameters, 

while contributing positively, have relatively lower informative value, with their importance 

scores ranging between 0.0 and 0.1. This suggests that while total rainfall is a crucial factor in 

landslide prediction, other variables still play a role, albeit a smaller one. 

 

Table 2.2. Overview of the Emilia-Romagna landslide dataset archive from 1939 to 2022. The 

table summarizes the precision of the date of landslide occurrence and the type of triggering 

rainfall across the eight alert areas. Type 1=low uncertainty; Type 2=Moderate uncertainty; 

Type 3=High uncertainty. 
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Table 2.3. Overview of rainfall events detected by the automatic algorithm D3P5 during the 

83-year analysis period. The table illustrates the average number of identified rainfall events, 

their intensity, and duration in each alert area. Notably, only a subset of these events, resulted 

in triggered landslides. 

 

 

 

Figure 2.7. Variations in the total number of rainfall events (upper), mean annual precipitation 

(middle) and number of triggered landslides (lower) across the eight alert areas of the Emilia-

Romagna region in the period 1939-2022. 
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Figure 2.8. Log duration-log intensity charts showing the distribution of the total rainfall events 

occurred in the Emilia-Romagna region in the period 1939-2022 (left) and the critical rainfall 

that resulted in landslides (right). 

 

 

Figure 2.9. Feature importance analysis for machine learning models: This boxplot illustrates 

the feature importances for all the machine learning methods used in this study, calculated based 

on the F2 score across 100 iterations for each method. The parameters AP7, AP14, AP30, and 

AP60 refer to the antecedent precipitation over 7, 14, 30, and 60 days, respectively. 
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2.6.2 Comparative evaluation of rainfall thresholds algorithms 

In this section, we detail the results from the comparative analysis of algorithms discussed in 

section 2.5.2, focusing on their accuracy in forecasting landslides as presented in Table 2.4 and 

Figure 2.10, which include confusion matrices, F2 scores, precision scores, and ROC AUC 

scores, detailed in section 2.5.3. 

Based on the results presented in Table 2.4, Figure 2.10, and Figure 2.13, we make the following 

condensed observations: 

 

Conventional Methods (BART, Frequentist, Percentile, LDA) 

▪ BART demonstrates the highest accuracy among conventional methods with the highest 

F2 score (0.477) and ROC AUC score (0.806). It predicts a triggering rainfall event 

accurately once in every 5 positive predictions reflecting a low precision (0.182). 

▪ Frequentist and Percentile methods display lower efficiency mainly due to their higher 

rate of false positives.  

▪ LDA, while performing similarly to BART in terms of triggering event predictions, shows 

slightly better precision (0.188) with fewer false positives. 

 

Machine Learning Methods (MLDA, NN, LR, MQDA, RF, XGBoost, TPOT) 

▪ MLDA and MQDA slightly outperform the conventional LDA with higher F2 scores 

(0.504 for MLDA and 0.483 for MQDA) and ROC AUC scores, indicating the limited 

effectiveness of the other parameters. 

▪ Neural Networks (NN) and Random Forest (RF) exhibit similar F2 and ROC AUC scores, 

but with a significant difference in the number of false negatives handled. 

▪ Logistic Regression (LR) exhibits a good F2 performance (0.522) with the lowest number 

of false positives, reflecting its precision in event prediction. 

▪ XGBoost, the top-performing method, not only has the highest F2 score (0.531) and ROC 

AUC score (0.848) but also maintains good precision (0.223), accurately predicting a 

triggering rainfall event once in every four instances. 

▪ TPOT achieved good results with the highest F2 (0.531) and precision score (0.266) 

among the methods tested. However, for our purposes, its reliability is compromised due 

to the high number of false negatives (51). 

In summary, Machine Learning techniques generally outperform conventional methods as 

shown by their F2 scores, yet the high number of True Negatives in our unbalanced dataset 

skew ROC AUC scores, as illustrated in Fig. 2.11.  
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The observed low precision across models results directly from prioritizing F2 during training, 

which allows more false positives to reduce false negatives, reflecting our strategic focus on 

minimizing missed alarms. 

Figure 2.12 provides a comparative analysis of seven Machine Learning techniques using 2D 

plots, which depict the probability that a rainfall event is classified as critical by each model 

within the two-dimensional space defined by rainfall intensity and duration during the training 

process. Given the multidimensional nature of these ML models, the plots serve only as 

approximations of how these variables influence classifications. This simplification allows us 

to visualize complex interactions in a more comprehensible form, illustrating how ML 

algorithms align with established threshold trends of conventional methods, albeit in a 

simplified manner that may not fully capture the models’ capabilities. It’s notable how the best-

performing models, in terms of scores, exhibit distinct behaviors. TPOT, as shown in Figure 

2.12g, assigns a binary output and, according to its confusion matrix, adopts a higher tolerance 

threshold compared to conventional methods. This results in better performance but also 

introduces higher risk. Conversely, XGBoost (Figure 2.12f) seems to maintain a more 

conservative profile. Both models classify a significant number of events as non-landslide 

which are well above conventional tolerance levels. This demonstrates how additional 

parameters influence decisions, leading to a decision-making process that resembles the BART 

threshold for short durations and high intensities, yet aligns with lower-slope thresholds for 

long-duration events. 
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Table 2.4. Performance evaluation of conventional methods (Bayes, Frequentist, Percentile, 

LDA) and Machine Learning techniques (NN, LR, MLDA, MQDA, RF, XGBoost, TPOT). 
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Figure 2.10. Distribution of ROC AUC and F2 scores for different predictive models. The x-

axis represents the methods, and the y-axis displays the corresponding AUC, in blue bars, and 

F2, in red bars, scores. 

 

 

Figure 2.11. Comparison of ROC AUC optimal operating points for each method. 
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Figure 2.12. Comparison between conventional and Machine Learning methods in the rainfall 

Intensity-Duration plot. Rainfall events are denoted as points, with their color varying from 

white to red, indicating the probability of being classified as critical (on a scale from 0 to 1) by 

the different ML algorithms during their train process. Lines indicate the optimal rainfall 

thresholds obtained by the conventional methods. The equations for the optimal rainfall 

thresholds in the conventional methods are as follows: BART in black (I = -1⋅ log(D) + 1.7347), 

LDA in blue (I = -1.8602⋅ log(D) + 2.3542), Frequentist approach in light blue (I = -0.3159⋅ 

log(D) + 1.2504), and Percentile method in orange (I = -0.2341⋅ log(D) + 1.243). 
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Figure 2.13. Normalized Confusion Matrix Components (Excluding True Negatives) 

Comparison. This figure presents the normalized percentages of False Positives (FP), False 

Negatives (FN), and True Positives (TP) for the methods investigated in this study. The 

connecting lines illustrate the trends and comparative performance of the methods across the 

different components. 

 

2.7 Discussion 

2.7.1 Performance and usability of Machine Learning methods 

The results from our study demonstrate that machine learning methods, particularly XGBoost, 

have outperformed conventional methods such as BART, which is currently employed as a 

decision-support tool within the Civil Protection Agency of the Emilia-Romagna Region (Italy) 

(Berti et al., 2015). For instance, when comparing the performance of XGBoost with BART, a 

reduction in the number of false positives—from 631 in BART to 490 in XGBoost—is observed 

as detailed in Table 2.4. Moreover, the variables used in this study for the ML methods are 

readily available in real-time, making the integration feasible and potentially beneficial.  

To further operationalize these findings, a decision-support platform integrating the improved 

rainfall thresholds and machine learning predictions was developed as part of this research. This 

platform, described in detail in Chapter 6, is designed to assist emergency management agencies 
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in real-time decision-making by leveraging the predictive capabilities demonstrated in this 

study. 

In scenarios where warnings do not lead to costly actions, such as evacuations or road closures, 

as is the case with the Civil Protection Agency of the Emilia-Romagna Region, as outlined in 

the Regional Council Decree No. 1761 (dated November 30, 2020), a certain level of false 

positives may be considered acceptable. In some cases, indeed, tolerating a higher rate of False 

Positives might even be preferable, as it could alleviate the burden of responsibility on risk 

managers in the event of unforeseen events. Therefore, while our improvement in terms of 

reducing false positives may not be decisive, it remains an enhancement. 

Beyond mathematical scores, other aspects need consideration, particularly in terms of method 

communication and practicality. Conventional methods, with their threshold approach in a 2D 

plane, offer ease of use in practical settings through a simple, visual boundary line. In contrast, 

while Machine Learning techniques are potentially more powerful, they vary significantly in 

their levels of interpretability. While some ML algorithms, like neural networks and deep 

learning, often function as ‘black boxes’ with limited visibility into their decision-making 

processes, many others, such as decision trees, linear models, and Bayesian networks, are 

inherently more interpretable and provide greater insight into their workings. This variability 

in transparency can be a challenge as users may need to trust the model without direct control 

over the prediction mechanism. However, the level of this challenge depends on the specific 

ML technique employed. Although complexity and difficulty in usage might be acceptable with 

superior results, in our case, the performance improvement of Machine Learning methods over 

traditional techniques does not seem sufficiently clear-cut to universally justify these 

challenges. 

 

2.7.2 Efficacy of multiparametric methods 

Multiparametric models, including those based on Machine Learning, can capture the 

complexity of real-world problems, often surpassing simpler models in effectiveness. These 

methods, by integrating a broader range of variables, have the potential to deliver more precise 

and detailed predictions. They excel at identifying intricate patterns and relationships, as well 

as managing nonlinear interactions among variables – abilities that are particularly valuable in 

the complex domain of predicting rainfall-induced landslides. However, the observation that 

multiparametric methods do not significantly outperform simple two-parameter models in our 

study is somewhat unexpected. 

In our analysis, the seven Machine Learning methods were applied using seven additional 

parameters beyond the conventional metrics of rainfall duration and intensity, including factors 

like seasonality and antecedent rainfall. Despite incorporating these extra parameters, the 

improvement in predictive performance was modest. To further explore this, we also ran the 
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Machine Learning algorithms using only rainfall intensity and duration, paralleling the 

approach of traditional models. The results, as detailed in Table 2.5, reveal that Machine 

Learning algorithms, when constrained to this simpler framework, scored lower in both F2 and 

ROC AUC metrics compared to their multiparametric versions. 

This outcome underscores that the true strength of Machine Learning lies in its capacity to 

process and leverage complex, multi-variable datasets. Consequently, the limited effectiveness 

of ML in our study implies that the extra parameters included were not particularly impactful. 

This underscores a crucial, albeit intuitive, principle: the quality and relevance of input 

parameters are more crucial than the model’s complexity in enhancing the predictive accuracy 

of rainfall thresholds. In our specific instance, although the additional parameters used in the 

multiparametric methods were chosen with care, they did not significantly enhance the 

distinction between critical and non-critical rainfall events. On the other hand, slope stability is 

influenced by numerous factors beyond rainfall, such as stress history, soil moisture, subsurface 

flows, human activities, changes in vegetation, and others, making it a challenge to pinpoint the 

most relevant factors when working at regional scale. 

Machine Learning methods, however, now offer unprecedented capabilities to analyze large 

arrays of interrelated factors efficiently. This capability encourages the collection and analysis 

of a broader range of factors more comprehensively than ever before, potentially leading to 

more insightful and accurate models in complex scenarios like rainfall-induced landslide 

prediction. 
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Table 2.5. Influence of the number of parameters on the prediction capability. The table 

compares the F2 and AUC scores obtained by the conventional methods (gray cells) with those 

obtained by the Machine Learning methods executed with different number of input parameters. 

 

 

2.7.3 Enhancing the reliability of the rainfall threshold 

To improve the predictive capability of the rainfall threshold, it is essential to go beyond the 

mere computational power of the algorithm. While more advanced methodologies, such as 

Machine Learning, offer powerful tools for predictions, their effectiveness can be compromised 

by several significant sources of uncertainty. These uncertainties contribute to the overlap of 
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critical and non-critical rainfalls shown in Figure 2.8, emphasizing the complexity of the 

prediction task. Key sources of data uncertainty include: 

Initiation Date Ambiguity: The lack of precision in pinpointing the exact date of a landslide’s 

onset leads to variability in the dataset, primarily because it complicates the identification of 

the triggering rainfall event. This ambiguity often stems from the challenge of recognizing the 

true beginning of the landslide, as it is typically recorded in chronicles only upon being noticed. 

Variable Response to Rainfall: The way landslides react to similar rainfall events varies, 

influenced by their distinct geological, geomorphological, and hydrogeological attributes, along 

with their stress history and any human interventions. When defining rainfall thresholds at a 

regional scale, it’s impractical to isolate and analyze each of these factors separately, leading to 

an inherent increase in uncertainty. 

Definition of the Rainfall Event: The methodology employed in defining a rainfall event 

significantly influences its determined duration and mean intensity. Currently, the absence of 

established guidelines for selecting this criterion results in its definition being highly subjective. 

The choice of parameters, such as the specific start and end times of the rainfall, the threshold 

values for intensity, and the inclusion of antecedent moisture conditions, greatly affects the 

characterization of the event. This variability in definition can lead to diverse interpretations 

and assessments of the same rainfall data. 

In summary, enhancing the predictive capacity of the rainfall threshold necessitates an 

investment in data quality. This involves a more detailed characterization of the outcomes 

following a rainfall event. While historical data may be limited in this regard, future efforts 

could focus on improving data quality, allowing Machine Learning methods to fully deploy 

their potential. 

 

2.8. Conclusions 

This study leads to several key insights: 

▪ Identifying rainfall thresholds in regions with intricate geological features, such as the 

Emilia-Romagna Region in Italy, is notably challenging. This complexity primarily arises 

from the difficulty in differentiating between rainfall events that are critical for landslide 

initiation and those that are not. These events often overlap significantly on the rainfall 

duration-intensity chart, making clear differentiation a complex task. 

▪ In our analysis, we observed significant variations in the threshold equations obtained by 

different conventional methodologies, particularly when comparing early machine 

learning approaches (like BART and LDA) to traditional mathematical-statistical methods 

(such as Frequentist and Percentile approaches). 
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▪ Machine learning techniques, especially the eXtreme Gradient Boosting (XGBoost) 

algorithm, demonstrated superior performance over conventional two-parameter methods. 

Their enhanced effectiveness is reflected in both improved prediction scores and a 

significant reduction in False Alarms. 

▪ The boost in predictive accuracy provided by machine learning methods was however 

relatively modest, considering that these methods utilized eight additional rainfall 

parameters. 

▪ The marginal impact of these additional parameters implies that their informational value, 

particularly concerning antecedent rainfall over periods of 7 to 60 days, is somewhat 

limited when compared to more direct factors like rainfall intensity or cumulative 

duration. 

▪ Progress in predictive modeling for landslide risks in the future should focus on improving 

the quality and specificity of data. Developing a dataset that is more detailed and 

informative has the potential to create models that are both more accurate and reliable, 

offering greater benefits than the mere application of advanced methods. 

 

In summary, this study underscores the ongoing challenges faced in accurately predicting 

landslides caused by rainfall in complex geological conditions. It brings to light the continuous 

necessity for improvements in both the quality and volume of data, especially in the current 

context where advanced artificial intelligence techniques have become widely accessible. This 

emphasis on data refinement is crucial because the effectiveness of these powerful AI methods 

is highly dependent on the quality and depth of the dataset they utilize. Therefore, as we advance 

in employing sophisticated AI tools for environmental analysis and prediction, equal emphasis 

must be placed on enhancing the data that forms the foundation of these predictive models. 
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Chapter 3  

RER2023: the landslide inventory dataset of the May 2023 Emilia-Romagna event 

 

3.1 Preface 

 This chapter explores a significant event in hydrogeological risk management: the 

comprehensive mapping and analysis of the May 2023 landslide event in the Emilia-Romagna 

region. Following the extreme weather events of May 2023, this work became necessary to map 

and assess the landslides triggered by intense rainfall. The project was carried out in 

collaboration with the Emilia-Romagna regional authorities, the University of Modena and 

Reggio Emilia, and the Po River District Authority. 

 The dataset presented here, compiled through a coordinated effort involving manual mapping 

with high-resolution aerial imagery and advanced geospatial techniques, represents a key tool 

for both immediate recovery efforts and long-term hazard assessment. The resulting inventory, 

which includes over 80,000 landslides, provides an unprecedented level of detail and serves as 

a crucial resource for refining future landslide susceptibility models in the region. 

Although my role was focused on specific aspects of the research, this work is the result of a 

larger, multi-institutional collaboration. My contributions formed part of this coordinated effort, 

which has been instrumental in supporting ongoing research aimed at mitigating the impact of 

future hydrogeological events in the Emilia-Romagna region. 

 

The chapter is based on a paper currently under review in the journal Earth System Science 

Data (ESSD): 

Berti M.¹, Pizziolo M.², Scaroni M.², Generali M.², Critelli V.³, Mulas M.³, Tondo M.³, Lelli F.³, 

Fabbiani C.³, Ronchetti F.³, Ciccarese G.¹, Dal Seno N.¹, Ioriatti E.¹, Rani R.¹, Zuccarini A.¹, 

Simonelli T.⁴, Corsini A.². RER2023: the landslide inventory dataset of the May 2023 Emilia-

Romagna event [preprint], https://doi.org/10.5194/essd-2024-407, 2024. 

 

[1] Department of Biological, Geological, and Environmental Sciences, University of Bologna, 

 Bologna, Italy. 

[2] Regione Emilia-Romagna, Area Geologia, Suoli e Sismica, Bologna, Italy. 

[3] Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, 

 Modena, Italy. 

[4] Autorità di Bacino Distrettuale del Fiume Po, Parma, Italy. 
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3.2 Abstract 

Landslide inventories are crucial for evaluating susceptibility, hazards, and risks, and for 

devising resilience strategies in mountainous regions. This importance is amplified in the 

context of climate change, as existing inventories might not adequately reflect changing 

stability conditions. In May 2023, the Emilia-Romagna region of Italy was hit by two major 

rainfall events, leading to widespread flooding and the triggering of thousands of landslides. 

Predominantly, these were shallow debris slides and debris flows, occurring on slopes 

previously deemed stable based on historical data with no prior landslides recorded. Our team 

supported the Civil Protection Agency through field surveys and mapping efforts to pinpoint 

and record these landslides, prioritizing areas critical to immediate public safety and focusing 

on thorough mapping for future recovery planning. The outcome is a detailed map of all 

landslides induced by these events, manually identified using high-resolution aerial 

photography (0.2 m pixel resolution, RGB+NIR four bands) and categorized with the help of a 

3D viewer. This comprehensive landslide inventory, comprising 80997 polygons, has been 

made openly accessible to the scientific community. 

 

3.3 Introduction 

Landslide inventories are crucial for susceptibility, hazard, and risk assessments and 

management (Soaters & Van Westen, 1996; Fell et al., 2008; Galli et al., 2008; Corominas et 

al., 2014). In Europe, landslides inventories are compiled on a national to a regional basis (Van 

Den Eeckhaut and Hervás, 2012) and can be supported by advanced landslides recognition and 

monitoring techniques (Guzzetti et al., 2012; Jaboyedoff et al., 2012; Amatya, 2021; Catani, 

2021; Bhuyan et al., 2023). Landslides inventories should be as complete and spatially accurate 

as possible and, also, they should consistently distinguish and classify different landslides types. 

These factors are important for improving frequency-area analyses (Malamud et al., 2004) and 

for obtaining reliable statistically-based landslides susceptibility maps, thanks to complete input 

data (Steger et al., 2017; Gaidzik et al., 2021) and disjunct analysis of landslides types (Zêzere, 

2002). 

Generally, inventories of large-scale landslides are quite complete, since their geomorphic 

features that remain evident long after their occurrence and they can have slow movements 

detectable by remote sensing (Bertolini et al., 2017; Rosi et al., 2018; Luetzenburg et al., 2022; 

Ardizzone et al., 2023). On the contrary, regional or national inventories might not include a 

complete record of past shallow rainfall induced landslides, unless they have been mapped soon 

after occurrence, i.e. before becoming hardly recognizable due to vegetation growth, rill 

erosion, or land cultivation (Guzzetti et al., 2004; Crozier, 2005; Cardinali et al., 2006; Zieher 

et al., 2016; Hao et al., 2020, Santangelo et al., 2023). Therefore, it is important that existing 

national and regional landslides inventories are updated after each specific intense rainfall 
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event, so to collect data that are essential, also, for a more systematic usage of landslide 

susceptibility maps in land-use planning (Fell et al., 2008). This is a challenging and important 

task, as the incidence of shallow rainfall induced landslides is likely to increase in Europe due 

to climate change (Gariano and Guzzetti, 2016; Handwerger et al., 2022; Auflič et al., 2023).  

The Emilia-Romagna Region (Northern Italy), land-use planning and land-use restrictions are 

based on an inventory map of landslides at 1:10.000 scale (Bertolini et al., 2005) and on a 

catalogue of thousands of records referring to the activation or reactivation of landslides in the 

past (Piacentini et al., 2018). These documents are updated after every occurrence or 

reactivation of large-scale landslides and after multiple occurrences of rainfall-induced shallow 

landslides. In recent years, updates have been necessary to include hundreds of debris flows 

triggered during the rainstorm events that hit Parma province in September 2014 (Corsini et al., 

2017) and Piacenza province in October 2015 (Scorpio et al., 2018; Ciccarese et al., 2020). In 

May 2023, the entire southern sector of Emilia-Romagna (from Rimini to Reggio Emilia 

provinces) has been hit by two consecutive exceptional rainfall events that triggered thousands 

of first-failure landslides. A screening of these landslides has been rapidly provided by Ferrario 

et al. (2024) and Notti et al. (2024) by using supervised and unsupervised satellite-based 

identification methods. However, these datasets did not aim to, and did not reach, the level of 

completeness, consistency and accuracy required for updating the official landslide inventory 

that, in turn, determines significant practical consequences for the management of the mapped 

areas and their surroundings. 

In this paper, we present the landslide inventory dataset of the May 2023 Emilia-Romagna 

events which has been designated as reference map by the Emilia-Romagna Region and the Po 

River Authority for the “Special Plan for interventions against situations of hydrogeological 

instability” (approved in preliminary version in April 2024), to aid the Commission for 

Reconstruction in implementing the recovery phase. This spatial dataset is based on expert-

based identification, mapping and classification of landslides on high-resolution aerial images 

taken shortly after the second event (0.2 m resolution, RGB and near-infrared). Particular 

attention has been given to the consistency of landslides type classification, which required 

development and application of an algorithm for data harmonization across areas surveyed by 

different operators. 

 

3.4 The May 2023 Emilia-Romagna event 

The Emilia-Romagna region is located in northern Italy and stretches from the Apennine 

Mountains to the Po River Valley and eastward to the Adriatic Sea (Fig. 3.1a). It is one of Italy's 

most economically prosperous regions, with a strong industrial base in automotive, machinery, 

food processing, and ceramics. The Po River Valley plays a vital role in agriculture, while the 

eastern coastline is a hub for both domestic and international tourism. By contrast, the Apennine 
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Mountains present a more subdued economic landscape. Economic activity and population in 

these mountains have declined since the 1960s, and now focus on agrotourism, ecotourism, and 

niche markets. Regional initiatives are underway to foster economic growth in these 

mountainous areas. 

In May 2023, the Emilia-Romagna region was struck by two exceptional rainfall events. The 

first, from May 1-3, delivered approximately 200 mm of rain over a span of 48 hours. Only two 

weeks later, on May 16-17, a second event matched this intensity, with rainfall totals reaching 

200-250 mm within another 48-hour window. The recurrence interval for a single two-day event 

was estimated to exceed 100-300 years, but the combined effect of these two closely timed 

events far surpassed 500 years (Brath et al., 2023). Both events impacted roughly the same area 

in the eastern part of the region (Fig. 3.1).  

These rainfalls led to extensive flooding across the Po plain and triggered thousands of 

landslides in the Apennines. The total damages have been estimated to surpass 9 billion euros, 

affecting roads, railways, buildings, and cultural heritage sites, along with the destruction of 

bridges, power facilities, and communication lines. Additionally, agricultural fields, farming 

operations, and cultivated slopes saw significant disruption over an area of about 1000 km². 

Fifteen people lost their lives due to the flooding and two due to landslides. 

The Emilia-Romagna region and the Italian Government promptly responded to the event 

mobilizing all necessary resources. The primary focus was on the Po plain area, which is 

densely populated and houses the majority of industrial and agricultural activities. 

Consequently, the severe issues caused by landslides in the mountainous regions were initially 

overlooked. Over time, the significance of these issues became apparent, but even a year after 

the disaster the situation remains critical. The impact of landslides in the Apennines has been 

especially severe due to the local economy's vulnerability, the extensive damages to 

infrastructure, and the significant land loss, all of which have slowed and complicated the 

recovery process. 

We assisted local and national agencies and working groups in addressing the problems caused 

by landslides. The initial two weeks following the event were primarily focused on field surveys 

and rapidly assessment of the most critical situations that demanded immediate actions to 

ensure public safety. Subsequently, our efforts shifted towards landslide mapping. In a first 

stage, it was crucial to identify the roads and buildings affected by landslides to coordinate 

emergency interventions and perform an initial damage assessment. Afterward, we completed 

the landslide inventory to develop a comprehensive map detailing all landslides triggered by 

the event across the area. This map has been officially designated as the landslide map for the 

May 2023 event by the Po River Authority and the Emilia-Romagna region, and it is currently 

being used by the Commission for Reconstruction for implementing the recovery phase. 
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Fig. 3.1. a) Overview map of the Emilia-Romagna region (Italy), illustrating elevation and 

cumulative rainfall isohyets from May 1-17, 2023. b) Detailed view of the area most impacted 

by the event, featuring the geological units referenced in Table 3.1. 
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3.5 Methods 

This section describes the methodology used to develop the landslide inventory for the May 

2023 event. It covers the classification of lithological units, the identification and mapping of 

landslides, their classification, and the quality control and data harmonization procedures 

implemented. 

 

3.5.1 Litho-technical units classification 

In the study area, bedrock geology significantly influences the morphology of the slopes, the 

mechanical properties of the weathered soil layer, the vegetation cover and, consequently the 

proneness to slope instability. As a matter of fact, these factors played a crucial role in the 

behavior of the slopes during the May 2023 event, controlling the type and density of landslides. 

Consequently, bedrock geology is an essential base layer of our landslide inventory. 

The geological map of the Emilia-Romagna region, created by the regional Geological Survey, 

includes more than 600 geological formations. These formations are distinguished by unique 

features that signify variations in depositional environments, composition, or geological age. 

The variety and detail of these formations illustrate the region's complex geological history and 

the precision employed in the map's creation. 

For our inventory, we categorized all geological formations into eight distinct units, as depicted 

in Fig. 3.1b and detailed in Table 3.1. These units were delineated by merging lithological 

characteristics with their respective structural domains, recognizing that the same rock type can 

display varying structural and mechanical properties depending on its location within the 

orogenic sequence. For example, flysch rocks within the Ligurian domain (unit 5) are generally 

more fractured, less resistant, and prone to deep-seated landslides compared to those in the 

Tuscan-Umbrian domain (unit 7), due to the extensive tectonic stress they endured in the 

accretionary wedge. 

The eight units identified were further divided into two broad categories: fine-grained rock 

masses (units 1 to 3) and coarse-grained rocks (units 4 to 8). This categorization aids in the 

preliminary differentiation of the types of weathered soil covers these rocks produce, which 

experienced widespread landslides during May 2023. Coarse-grained rocks typically produce 

granular soils composed of sand, gravel, and cobbles, with smaller amounts of silt and clay, 

aligning with the "debris" category in the Cruden and Varnes (1996) classification. In contrast, 

fine-grained rocks lead to the formation of fine soils predominantly made up of silt and clay, 

fitting the "earth" classification. These two categories, "debris" and "earth," are utilized to 

classify landslides that occurred on soil-covered slopes. 
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Table 3.1. Classification of the geological formations in the Emilia-Romagna region into eight 

units, based on their lithological composition and geological structural domains. Units 1 to 3 

consist mainly of fine-grained rocks, while units 4 to 8 are primarily composed of coarse-

grained rocks. 

Unit ID Lithology Domain 
Structural 

position 
Geological Age 

1 Clays, silty clays, and marly clays 
Padano-

Adriatic 
Outer Foredeep 

Pliocene to 

Pleistocene 

2 Marls and marly clays Epiligurian Wedge-top basins 
Oligocene to 

Miocene 

3 
Clay shales, clay breccias, 

tectonized clays, olistostromes 
Ligurian Accretionary wedge 

Cretaceous to 

Eocene 

4 
Massive rocks: basalts, serpentines, 

limestones, arenites 

Ligurian, 

Epiligurian 

Accretionary wedge 

Wedge-top basins 

Cretaceous to 

Miocene 

5 

Flysch rocks made of rhythmic 

alternations of sandstones, 

limestones, pelites, and shales 

Ligurian, 

Epiligurian 

Accretionary wedge 

Wedge-top basins 

Cretaceous to 

Eocene 

6 
Weakly cemented sandstones and 

conglomerates 

Padano-

Adriatic 
Outer Foredeep 

Pliocene to 

Pleistocene 

7 

Flysch rocks made of rhythmic 

alternations of sandstones and 

pelites 

Tuscan-

Umbrian 
Inner Foredeep Miocene 

8 
Weakly cemented sandstones with 

interbedded pelitic layers 

Padano-

Adriatic 
Outer Foredeep 

Pliocene to 

Pleistocene 

 

3.5.2 Landslide identification and mapping 

Landslides identification and mapping was conducted manually using high-resolution aerial 

images. These images were captured using a Leica DMC III sensor aboard a Cessna 402C 

aircraft, flying at approximately 4700 meters above sea level. The images, taken shortly after 

the second rainfall on May 23, 2023, have a 0.2 m resolution and include four bands: RGB and 

near-infrared. 

The mapping process was organized as follows. The total area was segmented based on the 

administrative boundaries of the municipalities. These sections were then distributed among 

three institutions: the University of Bologna, the University of Modena-Reggio Emilia, and the 

Geological Survey of the Emilia-Romagna Region. Each institution assigned four mappers, 

with a total of twelve individuals involved in the effort. Landslide detection was conducted in 

GIS environment by comparing pre- (April-July 2020) and post-event images with an on-screen 

zoom of approximately 1:1000. Once a landslide was spotted, further inspection was conducted 

using a 3D viewer with the high-resolution images overlaid on a 10 m DEM. Viewing the slope 
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from different angles enhanced the delineation of the affected area and the interpretation of the 

type of movement. Following this analysis, each landslide was classified into the specified 

classes described in the next section. The digital mapping of the landslide polygon was then 

executed at scales ranging from 1:800 to 1:200, depending on the landslide's size, ensuring 

precise tracing of the affected perimeter. 

Identifying the landslides was relatively straightforward and objective, but delineating their 

boundaries was more subjective. Many landslides became fluidized upon failure, with the distal 

debris spreading among trees without removing vegetation, thus complicating the mapping of 

the deposit. Moreover, several slopes experienced complete removal of soil cover by adjoining 

shallow failures, blurring the distinction between individual slides. In these cases, we chose to 

interpret the landslide boundaries rather than just tracing the visible debris edges. For fluidized 

slides, the polygons were adjusted by connecting visible debris patches to include areas 

obscured by vegetation. For coalescent slides, we attempted to map each individual slide by 

identifying distinctive arcuate shapes along the detachment scarps that signified separate 

failures. Although this approach introduced some subjectivity into the manual mapping process, 

it was essential to create a dataset suitable for analyzing the morphometric features of the 

landslides. 

The manual mapping process was demanding and labor-intensive. Initially, we focused on 

mapping landslides in the areas most severely impacted by the event, particularly around roads 

and urban centers. This priority was set to align with the Civil Protection Agency's needs to 

identify damages during the emergency response. This initial phase of mapping, which 

produced several "damage maps" for the affected municipalities, spanned the first two months 

following the disaster. Subsequently, the landslide inventory was expanded to cover the entire 

area over the following months. The complete process took approximately six months to finish. 

 

3.5.3 Landslides classification 

Right from the start of our work, identifying and classifying the landslides triggered by the 

event was recognized as a critical task. The primary challenge we faced was distinguishing 

between various types of debris slides and debris flows, since standard classification systems 

do not clearly separate them. 

Figures 3.2 and 3.3 illustrate the problem. According to the Cruden and Varnes (1996) 

classification, all the six landslides depicted in the Fig. 3.3 can be classified as debris flows. 

Yet, clear differences are apparent between the upper (a1-3) and the lower three (b1-3). The 

latter are typical debris flows that start on a steep slope and stop as the slope decreases; the 

former, while starting similarly on steep slopes, demonstrate extensive propagation and 

complete fluidization of the deposit as they travel much further. None of these cases involve a 

well-defined channel, thus the classification proposed by Hungr et al. (2014) that distinguished 
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channelized debris flows from unchannelized debris avalanches does not apply here. A similar 

challenge presents with debris slides (Fig. 3.3). Current classifications fail to distinguish 

between slides of different degrees of mobility, a distinction that is clearly visible in the field. 

Some slides exhibited in fact high mobility, completely clearing the vegetation (upper pictures 

a1-3), while others show low mobility, indicated by minimal vegetation damage (lower pictures 

b1-3). Understanding the conditions that lead to these diverse behaviors is crucial for hazard 

assessment and necessitates differentiating these phenomena. 

An additional classification challenge involves rock-block slides. These landslides impacted 

the homoclinal slopes of the Marnoso Arenacea Formation (unit 7 in Fig. 3.1b) and manifested 

as massive, translational rock-slab slides along bedding planes. While classifying these 

landslides poses no issues, it was necessary to distinguish between rock slides based on their 

degree of evolution. Some experienced movements ranging from several meters to tens of 

meters, signaling paroxysmal failures (Fig. 3.4 a1-a3), whereas others shifted merely a few 

centimeters, indicative of incipient, undeveloped failures (Fig. 3.4 b1-b3). The latter represent 

highly dangerous zones prone to potential collapse and thus required special attention. 

These classification challenges were extensively discussed by our team. We ultimately decided 

to adopt the Cruden and Varnes (1996) classification system to define the primary types of 

landslides. These include debris slides (DS), debris flows (DF), and rock-block slides (RS) in 

the coarse-grained units (Fig. 3.1b), along with earth slides (ES) and earth flows (EF) in the 

fine-grained units. Then, we introduced the informal subclasses of: high-mobility debris slides 

(DS1), low-mobility debris slides (DS2), long-runout debris flows (DF1), limited-runout debris 

flows (DF2), fully-developed rock slides (RS1), and incipient rock slides (RS2) to capture the 

varied behaviors observed in the field. Subclasses were not assigned to earth slides (ES) and 

earth flows (EF) because landslides in areas with fine-grained soils were significantly less 

frequent and had milder impacts. This is because fine-grained soils have lower permeability 

and are more likely to fail during extended periods of rainfall rather than during brief events, 

where surface runoff and flooding are more prevalent. 
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Figure 3.2. Representative images of the two distinct types of debris flows caused by the May 

2023 event. 

 

 

Figure 3.3. Representative images of the two distinct types of debris slides caused by the May 

2023 event. 
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Fig. 3.4. Representative images of the two distinct types of rock-block slides caused by the 

May 2023 event. 

 

3.5.4 Quality control 

To ensure the consistency of the results, an experienced geologist specialized in geomorphology 

and landslide mapping conducted a comprehensive review of the entire area after the 

completion of the manual mapping. This critical review focused on several key aspects to verify 

that all mappers adopted the same standards of detail and accuracy. Guided by a 1x1 km grid, 

the reviewer assessed: i) any missed landslides; ii) the precision in outlining landslide 

boundaries; iii) the consistency in interpreting vegetated areas; iv) the adherence to the 

established classification criteria; v) the accurate segmentation of individual slide events.  

The findings from this review were summarized in a report sent to the twelve mappers. The 

report ranked the need for revisions in each municipality from "small" to "high" and included 

a detailed explanation of the necessary adjustments along with screenshots highlighting the 

errors detected. Each mapper was then tasked to revise their section of the manual inventory 

based on this feedback. This review and revision phase lasted approximately two months. 

Following these adjustments, the manual landslide map was significantly improved. Although 

some variations persisted in the resolution of digitization and in interpreting boundaries 

obscured by vegetation, the primary discrepancies were effectively addressed and resolved. The 
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only remaining issue was the variation in landslide classification among mappers, that was 

evident when comparing the inventory maps of different municipalities. To address this, we 

developed the automatic procedure detailed in the next section. 

 

3.5.5 Data harmonization 

As mentioned earlier, the criteria for landslide classification were extensively discussed among 

us. A substantial number of cases were collectively examined and analyzed to synchronize the 

mappers' perceptions and foster a unified approach to class attribution. These preparatory 

efforts resulted in a substantial homogeneity in the classification of rock-block slide 

phenomena. However, notable variations were still evident in the final map between different 

types of debris slides and flows, which were influenced by the subjectivity of the mappers. 

Some determined the classification based on the landslide's shape, others on the presence of 

flow-like features in the deposition area, and yet others on the texture of the debris within the 

landslide polygon. On the other hand, such distinction is inherently subjective due to the gradual 

transition between slides and flows, making it challenging to establish a clear-cut boundary or 

to define strict classification rules. The same issue arose with classifying landslides based on 

their degree of mobility. While it was evident that many landslides exhibited complete 

fluidization and high mobility, significant discrepancies persisted in how the mappers 

categorized these events. 

To address this issue, we implemented the automated procedure depicted in the flow chart of 

Fig. 3.5. This procedure utilizes standardized criteria to ensure uniform classification of 

landslides throughout the area and to correct inevitable errors in such a large dataset. The 

automated procedure was applied to all landslides except for rock-block slides, which have 

distinctive features that all mappers clearly and consistently recognized. Four key steps were 

identified to achieve a consistent classification of material type, movement type, degree of 

mobilization of debris slides and degree of fluidization of debris flows. 

 

Material type (debris or earth) 

The initial step was verifying the classification of material types. As previously mentioned, 

landslides on soil-covered slopes were divided into "debris" and "earth" categories according 

to the Cruden and Varnes (1996) classification. In our study area, this classification is clearly 

defined by the underlying bedrock geology; "debris" is derived from coarse-grained rock units, 

and "earth" from fine-grained units (Fig. 3.1b). 

All mappers employed this classification system, referencing the geological map of the Emilia-

Romagna region at a 1:10,000 scale, which provided an objective and standardized framework 

for classifying material types. However, manual mapping led to inconsistencies due to human 
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error and subjective judgments, particularly when categorizing landslides spanning multiple 

material types. To address these issues, we overlaid landslide polygons on the lithological map 

(Fig. 3.1b) and classified each landslide as either 'debris' or 'earth' based on its polygon's 

centroid location. This classification was achieved through a simple spatial join between the 

landslide data and the lithological map within the GIS environment. 

 

Figure 3.5. Flowchart depicting the process used to ensure data quality and standardize the 

classification of manually mapped landslides. 

 

Type of movement (slide or flow) 

To standardize the distinction between slides and flows, we employed a standard Convolutional 

Neural Network (CNN) specifically designed to recognizes the distinct shapes of slides and 

flows. The CNN was trained with data from the Casola Valsenio municipality. This area was 

chosen due to its highly accurate manual mapping and the thorough analyses carried out using 

multiple mapping techniques (Berti et al., 2024 - " Automated Mapping During an Emergency: 

Lessons Learned from the 2023 Landslide Event in Romagna, Italy", under review). Moreover, 

Casola Valsenio served as the initial training ground for the mappers and is the area where 

classification challenges were collaboratively discussed. 

The CNN features an input layer, two convolutional layers (each with batch normalization and 

ReLU activation), and subsequent max pooling layers to reduce image dimensions and enhance 
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feature extraction. The input layers processes 300x300 pixel black/white images of individual 

landslides, with landslide areas marked in white. These features are then categorized into 'slide' 

or 'flow' through a fully connected layer, followed by a softmax layer that determines the class 

probability. To enhance the model’s ability to generalize, we implemented various data 

augmentation techniques, including random horizontal reflections, rotations ranging from -90 

to 90 degrees, scaling from 80% to 120% of the original size, and translations up to 10 pixels. 

The network was trained using a randomly selected half of the 4156 debris slides and 1115 

debris flows identified in Casola Valsenio, while the other half was utilized to fine-tune the 

network's hyperparameters and to test and assess the model's performance. These evaluations 

showed that the CNN effectively replicates expert classifications of slides and flows. Utilizing 

the Adam optimizer with an initial learning rate of 0.001 over 100 epochs, the CNN reaches an 

F1-score of 0.80 on the testing dataset, indicating robust accuracy in terms of both precision 

and recall. Fig. 3.6 displays the confusion matrix obtained for the testing dataset, alongside a 

selection of landslide images that were correctly and incorrectly classified by the neural 

network. Of course, as clearly evident looking at the False Positives and False Negatives cases, 

the CNN cannot overcome the inherent ambiguity in classifying landslides that fall between 

slides and flows, particularly those that are only partially fluidized and whose polygon shapes 

are neither distinctly sub-circular nor clearly elongated. However, by implementing the network 

across all the polygons, we ensure that the classification criteria agreed in Casola Valsenio are 

consistently applied throughout the entire area. 
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Figure 3.6. Outcomes from the Convolutional Neural Network model applied to differentiate 

slides from flows using the shape of the polygons. The figure displays the confusion matrix for 

the testing dataset, which includes 50% of the landslides manually mapped in the Casola 

Valsenio municipality: TN=True Negative; FN=False Negative; FP=False Positive; TP=True 

Positive. The small polygons in each category represent example landslides that are correctly 

(TP, TN) or incorrectly (FP, FN) classified. 

 

Degree of mobility of debris slides 

Debris slides were classified by mappers into two categories based on their apparent mobility 

(Fig. 3.3). The class DS1, indicating high-mobility slides, was assigned to slides that showed 

extensive internal disruption and complete removal of vegetation. The class DS2, denoting low-

mobility slides, was assigned to slides with minimal internal deformation and little impact on 

vegetation. While mappers collectively agreed on these criteria for classifying debris slides, 

discrepancies arose due to variations in personal judgment. 

To standardize this assessment, we evaluated the mobility of debris slides by examining the 

remaining vegetation cover after movement. The Green Leaf Index (GLI) was used to quantify 

the amount of green vegetation within a landslide polygon: 

 𝐺𝐿𝐼 =
(2 ∙ 𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒)

(2 ∙ 𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒)
 [4.1] 
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Here, Green, Red, Blue denote the reflectance values from the respective color bands. The GLI 

ranges between -1 and 1, with higher values indicating a denser presence of green leaves.  

The choice of GLI over NDVI was primarily due to data availability. The NDVI requires a near-

infrared (NIR) band, which was not consistently available across the entire study area. In 

contrast, GLI relies solely on the visible spectrum (RGB bands), ensuring uniform applicability 

to all datasets. This made GLI a more practical and consistent choice for our analysis, while 

still providing reliable information about vegetation cover. 

To identify a suitable GLI threshold for distinguishing the two classes, we analyzed the 

frequency distribution of GLI values for DS1 and DS2 in the Casola Valsenio dataset. As shown 

in Figure 3.7, a distinct separation is observed in the higher categories: 99% of the 4144 high-

mobility debris slides (DS1) have GLI values under 0.08, indicating they are primarily bare 

soils with minimal or no vegetation. In contrast, 34% of the 125 low-mobility slides (DS2) 

exceed this threshold, suggesting the presence of vegetation. Such a threshold therefore allows 

for an effective classification of DS1, but it risks misclassification of DS2. 

The challenge in distinguishing the two classes stems from the inherent subjectivity involved, 

especially when vegetation is only partially removed. Like the difficulty in differentiating 

between slides and flows, no automated method can fully address this issue. However, in our 

case, the occurrence of DS2 is significantly less frequent than DS1. Consequently, we have 

chosen to set a GLI threshold of 0.08, acknowledging that this may lead to some 

misclassification errors with DS2. This approach classifies nearly intact vegetation slides as 

low-mobility (DS2) and those with partial vegetation as high-mobility (DS1). The resulting F1-

score is 0.86, and this threshold has proven stable whether computed on a randomly selected 

subsample or a specific segment of the Casola Valsenio area. 
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Figure 3.7. Comparison of the frequency distributions of the Green Leaf Index for high-

mobility debris slides (upper) and low-mobility debris slides (lower) manually mapped in 

Casola Valsenio municipality. The red line marks the optimal threshold distinguishing the two 

landslide types. 

 

Degree of fluidization of debris flows 

Debris flows were divided into two distinct classes to highlight differences in fluidization and 

runout (Fig. 3.2). The DF1 category was used for long-runout debris flows, marked by fluidized 

deposits spreading over relatively flat terrain. Conversely, DF2 was used for debris flows with 

more limited fluidization, typically confined to steep, forested slopes. Mappers used these 

criteria but also looked at factors such as the size of the debris flow, the presence of a channel, 

or the location of the initiation area. As a result, the manual classification of DF1 and DF2 was 

notably inconsistent. 

The classification problems are evident when attempting to define an automatic standardization 

procedure. Both DF1 and DF2 exhibit elongated shapes and absence of vegetation within the 

landslide areas. Consequently, previous methods that rely on polygon shape or vegetation cover 

are not applicable. One potential approach could involve using the mean slope of the landslide 

area, which is generally lower for DF1. However, this metric could introduce bias into the 

dataset, particularly when comparing the morphological characteristics of the different 

landslides. 

After experimenting with various factors and machine learning techniques, we decided on a 

simple, reproducible method. These experiments included the evaluation of different input 
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layers and various training combinations, as well as the application of multiple machine 

learning models to identify optimal classification thresholds. While these efforts provided 

valuable insights, they are discussed in greater detail in Chapter 5, where their broader 

implications and applications are further explored. Using the Casola Valsenio dataset again, we 

determined that a reliable indicator of debris mobility is the percentage of the landslide area 

that extends over Non-Forested Slopes (NFS). NFS encompasses all slopes lacking forest cover, 

that in most cases are shrub and/or grassy areas, areas with sparse or no vegetation, and 

agricultural lands. Mappers typically classified debris flows that overrun these areas as DF1. 

NFS is simply given by: 

 𝑁𝐹𝑆 =
𝐴𝑁𝐹

𝐴𝑇𝑜𝑡
∙ 100 [4.2] 

Here ANF is the landslide area on non-forested slopes and A is the total area the landslide. ANF 

was detected by overlapping the landslide polygon with the soil use coverage SU2014 provided 

by the Emilia-Romagna region. This coverage was derived from aerial images captured 

between May and September 2014, using four bands at a 0.5 m resolution, and classified 

according to the Corine Land Cover directive. All the slopes not categorized as 311 (Broad-

leaved forest), 312 (Coniferous forest), or 313 (Mixed forest) were identified as non-forested. 

In Casola Valsenio, a total of 1053 debris flows were documented. Among these, 471 were 

notably fluid and mobile (DF1), whereas the remaining 582 exhibited less mobility (DF2). The 

Non-Forested Slopes (NFS) values distinctly varied between the two classes, with DF1 

generally displaying higher NFS values (Fig. 3.7). An NFS threshold of 0.3 has proven to be 

effective in distinguish between DF1 and DF2: 83% of the DF1 category exceed this threshold, 

whereas 82% of DF2 falls below it. The corresponding F1-score is 0.82, reflecting a high degree 

of accuracy.  

The harmonization procedure described aboove resulted in significant modifications to the 

initial manual classifications. Approximately 50% of the debris slides with limited mobility 

(DS2) were reclassified as debris slides with high mobility (DS1) due to either heavy or partial 

clearing of vegetation cover by the movement. About 25% of debris flows (DF1 and DF2) were 

reclassified as debris slides (DS1 or DS2) due to the limited elongation of the deposit, and about 

60% of earth flows (EF) were reclassified as earth slides (ES) for the same reason. It is 

important to stress that the harmonization process should not be viewed as an automatic 

classification but rather as an effort to apply consistent classification criteria across the entire 

area. 
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Figure 3.8. Comparison of debris flows with high fluidity (upper) and low fluidity (lower) in 

the Casola Valsenio municipality, analyzed through the ratio of runout over non-forested slopes 

(NFS). The red line indicates the optimal threshold for distinguishing between the two types of 

landslides.  

 

3.6 The landslide inventory dataset 

The landslide inventory for the 2023 Emilia-Romagna event is available as a shapefile in the 

Zenodo repository. The shapefile includes 80997 polygons, each categorized according to the 

classification described in section 3.5.2. The inventory encompasses landslides triggered by the 

combined rainfall events of May 1-3 and May 15-16, 2023, without distinguishing between the 

two events. Differentiation between the events is feasible only in specific small areas where 

high-resolution images were available after the first rainfall; however, this distinction is not 

included in the current dataset. 

Figure 3.9 provides an overview of the inventory, showing landslide points (Fig. 3.9a) and a 

kernel density map (Fig. 3.9b). Notably there is a strong, though not perfect, correlation 

between cumulative rainfall and landslide density. In the eastern part of the region, known as 

Romagna, the 300 mm rainfall isohyet roughly outlines the area where landslide density 

exceeds 40 landslides per km². In contrast, the western part of the region, known as Emilia, has 

a landslide density below 40 landslides per km² despite receiving the same amount of rainfall. 

This difference can be attributed to the distinct geological settings of the two areas. As shown 
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in Fig. 3.1b, the Romagna region is primarily characterized by a Miocene flysch (Marnoso-

Arenacea Formation, unit 7), which results in steep slopes and coarse-grained weathered soil. 

Meanwhile, the Emilia region has a more complex geological setting, including extensive areas 

of fine-grained rocks that responded less intensely to these rainfall events. 

In the Romagna region, landslide density reached an impressive level of over 250 landslides 

per km². The zone most heavily affected, with more than 40 landslides per km², stretches across 

roughly 800 km² and covers the outer sector of the Marnoso-Arenacea Formation (red area in 

Fig. 3.10). About 64% of the landslides occurred within this zone. The landslide index, which 

is the ratio of landslide area to total area, reaches in this area the 20-25%. These figures are 

particularly significant considering they represent the percentage of the area destabilized during 

a single episode.  

A deeper examination of the harmonized inventory underscores the occurrence and main 

features of various landslide types, providing insights into their spatial distribution and 

contributing factors. Figures 3.11 and 3.12 display several statistical details about the count, 

dimensions, and slope angles of these landslides. The results from these diagrams are discussed 

below, enhanced with additional observations from manual mapping and field surveys. 
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Figure 3.9. a) Map showing the distribution of the 80997 landslides triggered by the May 2023 

event in the Emilia-Romagna region, manually mapped and represented as individual points. 

b) Density map calculated as the number of landslides per 1 km² cell. 
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Figure 3.10. Detail of the Romagna area showing two classes of landslide density (between 

10 and 40 landslide/km2 and more than 40 landslide/km2) with the eight lithological units in 

background. 

 

Debris slides (DS) represent 66% of all landslides by number and 49% by area, marking them 

as the most common type triggered by the event (Fig. 3.11). These landslides were generally 

small to very small (area less than 1000 m2, Fig. 3.12) and typically occurred on steep slopes 

with inclines exceeding 25°-30°. In the region, many of these slopes are covered with forests, 

as they are unsuitable for farming; hence, while root reinforcement and rainwater interception 

by the tree canopies exist, they were insufficient to prevent these failures. Approximately 94% 

of the slides were fast-moving and became liquefied after traveling a short distance (DS1). A 

minor fraction (6%) moved as a coherent mass, showing considerably less internal disruption 

(DS2). Slides with high mobility caused extensive damage to roads, buildings, and 

infrastructure and transported large amounts of debris and wood into rivers. Conversely, low-

mobility slides predominantly occurred on milder slopes and near roadways. These slides might 

indicate early-stage slides that had not fully developed, secondary failures behind landslide 

headscarps, or slides involving rotational movements. 
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Figure 3.11. Pie charts showing the percentage of landslide types by number (left) and by area 

(right). 

 

 

Figure 3.12. Frequency histograms depicting size of various landslide types. The classes 

labeled at the top of each chart (VSM=very small; SM=small; MED=medium) correspond to 

the size classification proposed by McColl and Cook (2024). 
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Debris flows (DF) are the second most frequent type of landslides, constituting 15% of the total 

count and 29% by area (Fig. 3.11). DF were consistently initiated by debris slides on slopes that 

are generally steeper than 25°-30°. Currently, it remains difficult to ascertain why some debris 

slides transformed into debris flows while others did not. However, it is evident that the 

predominant failure mechanism during the May 2023 event was shallow sliding of the 

weathered soil cover. Together, debris flows and slides represent 81% of the landslides 

cataloged in the inventory. After the initial failure, debris flows generally traveled without 

following predefined channels, and cleared the vegetation forming straight, elongated 

rectangular shapes. About 50% of these flows had relatively limited runouts halting along steep 

slopes (DF2), while the rest displayed significant higher mobility, spreading extensively across 

gentle slopes due to complete fluidization of the material (DF1). A notable feature of the debris 

flows triggered during the event, especially DF1, was their relatively low destructive power. In 

many cases, these flows approached buildings and roads without causing substantial damage 

and spread over grassy fields without harming the vegetation. The limited damage caused by 

these flows can be linked to their composition, primarily liquefied sand and silt without large 

cobbles or boulders. This composition enabled them to flow downslope as a dense slurry 

without a destructive bouldery front. The typical dimensions of debris flows range from "very 

small" to "medium" (Fig. 3.12). 

Rock-block slides (RS) constitute less than 2% by number and 5% by area of all landslides (Fig. 

3.11), but they left the most profound impression on the public and media. These landslides 

occurred on homoclinal slopes within the Marnoso-Arenacea Formation (lithological unit 7) 

and developed as planar slides along bedding planes that aligned with the slope. The thickness 

of the displaced rock mass varied from about 2 meters to over 30 meters, and several slides 

extended over areas larger than 10 hectares. Compared to debris flows and debris slides, rock-

block slides affected more gentle slopes, typically less than 15° and were bigger in size (class 

"medium" Fig. 3.12). Their large volume, high velocity, and the fact that they occurred on 

sloping lands that were heavily urbanized and farmed made these landslides a major concern 

during the event. All rock slides initially traveled as coherent rock blocks, moving 

translationally for several to tens of meters. However, some slides disintegrated during their 

motion, transforming into rapid flows of debris and fragmented rock. This disintegration 

typically occurred when the displaced blocks tumbled down an existing scarp or struck a lateral 

slope, causing the material to break apart. These fragmented rock-block slides were highly 

mobile and covered long distances. 

Earth slides and earth flows accounted for 12% and 5% of the total number of landslides, and 

7% and 10% of the total area affected, respectively (Fig. 3.11). These landslides predominantly 

occurred within fine-grained units, specifically the Pliocene clays (unit 1) and Cretaceous clay 

shales (unit 3), as illustrated in Figure 3.1b. These regions generally experienced fewer 

landslides, with less severe impacts compared to areas dominated by coarse-grained rocks in 
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the southern parts. The distinct patterns of landslides in areas with coarse- and fine-grained 

lithological units are clearly illustrated in the sample maps of Figure 3.13. While landslides are 

commonly found on steep slopes in both cases, the coarse-grained units also show that even 

gentle slopes are impacted by extensive long-runout debris flows (DF1 in Fig. 3.13a) and rock-

block slides (RS1). Conversely, in the fine-grained units (Fig. 3.13b), earth flows and earth 

slides are primarily concentrated in the badlands areas, with gentle slopes remaining largely 

unaffected. Moreover, in Emilia-Romagna, it is typical for earth slides and especially for earth 

flows to occur repeatedly at the same locations as reactivations of dormant landslides. This 

recurring pattern was evident during the May 2023 event, with most landslides appearing as 

reactivations of previously known landslides, which were already familiar to the local 

communities. In contrast, nearly all the landslides in the coarse-grained units—including debris 

slides, debris flows, and rock-block slides—represented first-time failures and occurred 

unexpectedly on slopes previously free of documented landslides. 

 

3.7 Limitations and future updates 

The landslide inventory was carried out with great care during the constraints imposed by the 

emergency situation and ongoing recovery efforts. Utilizing high-resolution 0.2 m imagery and 

an automated harmonization process has facilitated a detailed and consistent record across the 

region. However, as is typical with any expert-driven inventory, errors and inconsistencies are 

unavoidable. 

Missed landslides, or false negatives, are likely to occur in shadowed areas like river gorges or 

steep slopes, as well as in forested areas where landslides have occurred without clearing the 

vegetation. Additionally, landslides with minimal ground displacement, although clearly visible 

on-site, may not be discernible in aerial images and thus may remain undetected. False 

positives—areas mistakenly identified as landslides—are also possible but expected to be 

fewer. These may include anthropogenic debris accumulations, excavation activities, or plowed 

fields that alter the soil surface in a manner similar to landslides, or landslides that happened 

after the pre-event images from April-July 2020 but before the May 2023 event. Nevertheless, 

we estimate that the combined total of missed or incorrectly identified landslides might 

constitute less than 1% of the total inventory. 

The primary limitation of the inventory likely lies in the accuracy of the landslide boundaries. 

Not all mappers across the area had sufficient time to delineate the landslide polygons with 

high-resolution detail, resulting in some boundaries appearing jagged and imprecise upon closer 

inspection. The data quality procedures brought this issue to light, but redrawing all the rough-

edged polygons would be excessively time-consuming. Given that the locations of these 

landslides are accurate, we chose to publish the inventory in its current state and defer any 

refinements to future versions. 
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Besides refining polygons, future updates will also incorporate changes recommended by local 

authorities, which are currently underway. In April 2024, the Emilia-Romagna region shared 

the landslide inventory with all municipalities affected by the event, requesting feedback on 

any overlooked landslides. This information is now being gathered, and a first update is 

scheduled for completion by the end of the year. Initial feedback primarily concerns small 

landslides that caused damage to private or public properties but were not detected in aerial 

photographs due to minimal displacement. These new landslides will be included in Version 2 

of the inventory, which will be available in the same Zenodo repository. 

 

Figure 3.13. Example images from the landslide inventory showing two representative areas in 

coarse-grained units (a) and in fine-grained units (b). 
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3.8 Data availability 

The landslide inventory is freely accessible in the Zenodo repository (DOI: 

10.5281/zenodo.13742643, Pizziolo et al., 2024). The dataset is available as an ESRI 

(Environmental Systems Research Institute) shapefile and is compatible with GIS software. The 

shapefile encompasses several attributes: polygon ID (IDC), landslide type as manually 

classified by the operator (ClassMan), geological unit of the polygon's centroid (Lito), Green 

Leaf Index (GLI), percentage of deposit over Non-Forested Slopes (NFS), landslide type after 

applying the harmonization algorithm (ClassNew). 

 

3.9 Concluding remarks 

The dataset of the May 2023 Emilia-Romagna event encompasses more than 80.000 rainfall-

induced landslides (mostly first-failure) distributed over an area of more 6000 km², with density 

reaching as high as 200 landslides/km2. Despite some inherent limitations and potential areas 

for improvement of the dataset, we believe that our landslide inventory offers significant value 

to the scientific community and to the involved institutions for several reasons.  

Firstly, it documents the response of a large area to an exceptional meteorological event, likely 

linked to ongoing climate change. This can support the scientific community in proving that 

multiple occurrences of rainfall-related landslides are likely to become more frequent in the 

coming years, and can make decision makers more aware of the fact that even slopes that have 

been unaffected by landslides in the past, cannot be considered free of risk for the future.  

Secondly, the Emilia-Romagna relatively straightforward geological framework makes it ideal 

for conducting geospatial analyses of landslide susceptibility, and to prove that they can be 

adopted to support land-use planning in addition to landslides inventories. Actually, the Emilia-

Romagna region's geoportal provides free access to an extensive range of spatial data, including 

DEMs, lithology, land use, and rainfall data, all of which can be integrated with our landslide 

map to test both traditional and machine-learning-based predictive tools).  

Thirdly, the predominance of shallow planar failures in this event provides an excellent case for 

testing physically-based slope stability models, and to highlight the relevance of such type of 

landslides in the study area, so to promote a much more careful evaluation of the possible 

impact of such phenomena on existing infrastructures network and for designing new assets.  
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In conclusion, we warmly invite interested colleagues to contact us with any questions, specific 

needs, or to initiate a collaborative research effort that could transform a tragic event into an 

opportunity to enhance our understanding of landslide risk assessment. 
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Chapter 4  

Automated Mapping During an Emergency: Lessons Learned from the 2023 

Landslide Event in Romagna, Italy 

 

4.1 Preface 

The preceding chapter explored the challenges in defining reliable rainfall thresholds for 

landslide prediction in regions with complex geological characteristics. This study highlighted 

the importance of integrating advanced data analysis methods with a deep understanding of the 

local geological context. The next step in this PhD project focuses on the practical application 

of this knowledge in the context of hydrogeological risk management. 

This work required a phase of analysis of high-resolution remote sensing data, combined with 

field observations immediately following the catastrophic event of May 2023 in Emilia-

Romagna. This chapter summarizes the analyses that led to the development and evaluation of 

automated methods for rapid landslide mapping in emergency situations. 

 

The chapter is based on a paper currently under review on Landslides journal:  

Berti M.1, Pizziolo M.2, Scaroni M.2, Generali M.2, Olivucci S.3, Gozza G.3, Formicola P.3, 

Critelli V.4, Mulas M.4, Tondo M.4, Lelli F.4, Fabbiani C.4, Ronchetti F.4, Ciccarese G.1, Dal 

Seno N.1, Ioriatti E.1, Rani R.1, Zuccarini A.1, Simonelli T.5, Corsini A.2. Automated Mapping 

During an Emergency: Lessons Learned from the 2023 Landslide Event in Romagna, Italy. 
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4.2 Abstract 

Rapid and accurate mapping of landslides is essential for prompt response to emergencies 

triggered by rainfall or seismic events. This task can be done manually by an expert team, yet 

in scenarios involving large disaster areas it demands substantial time, may face difficulties in 

identifying minor landslides, and involves subjective judgement. Automated mapping is a 

promising alternative, offering the potential for quicker and more efficient map production, 

though concerns about its accuracy persist. This research examines the impact of the May 2023 

cyclonic events in Italy's Emilia-Romagna region, which caused significant landslides and 

flooding. It evaluates the effectiveness of automated mapping algorithms, specifically the 

traditional NDVI change and the advanced U-Net neural network, over an 84 km² area where 

over 5200 landslides occurred due to the disaster. Both methods were implemented by 

considering the usual limitations of emergency situations, emphasizing the critical nature of 

time and the potential scarcity of a comprehensive ground-truth dataset for model training. The 

results show that U-Net, utilizing high-resolution images, outperforms NDVI in terms of 

accuracy, achieving an F1-score greater than 0.6. This enhanced performance of U-Net is 

ascribed to its proficiency in detecting landslides not only by changes in vegetation but also by 

analyzing the landslide's physical shape. However, the research ultimately determines that in 

the case of the May 2023 disaster, automated mapping processes cannot eliminate the need for 

manual verification, especially due to the critical necessity for precise damage identifications. 

 

4.3 Introduction 

As for any given task, doing it timely and well is not exactly easy, and rapid and accurate 

landslide mapping over large areas is no exception to this rule. This is especially true if a large 

number of landslides must be mapped to support emergency management after regional-scale 

rainfall or earthquake events. In such cases, remote sensing can improve rapidity in mapping 

(Guzzetti et al. 2012; Behling et al. 2014; Tanoli et al. 2017; Gorelick et al. 2017; Ghorbanzadeh 

et al. 2020; Ferrario et al. 2024; Novellino et al. 2024). However, upmost care should be given 

to minimize the number of missed landslides as well as of false landslides, so not to undermine 

the utility of such maps. The ability to quickly and accurately identify landslides depends on 

several key factors, including: (1) immediate access to high-resolution, cloud-free satellite or 

airborne images; (2) the deployment of a skilled team capable of visually analyzing these 

images to establish actual conditions on the ground; (3) the effectiveness of image analysis 

software in automatically detecting and outlining landslides; (4) the challenge in identifying 

some landslides through manual or automated methods using satellite or airborne images, due 

to their small size, obscuration by tree cover, or minimal impact on the terrain and landcover, 

making them undetectable without on-site inspections. 
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In Europe, the Copernicus Emergency Management Service (CEMS) makes use mid- to high-

resolution pre- and post-event satellite imagery (such as Sentinel2 MSI at 10 m resolution in 

visible and NIR and Pléiades-1A/B at 0.5 m resolution) in order to provide Rapid Mapping of 

landslides and flooded areas using both visual and automatic methods (Joubert-Boitat et al. 

2020). Unfortunately, only a limited portion of the imagery Copernicus uses is accessible to 

third parties (such as Civil Protection Authorities or their scientific collaborators) for further 

examination or for running automated landslide detection algorithms. For instance, datasets 

from Sentinel 2 are freely distributed by the European Space Agency, ensuring their quick 

availability (Shahabi et al. 2022; Satriano et al. 2023). Instead, acquiring higher resolution 

datasets, like those from Pléiades 1A/B, requires specific orders and faces distribution 

restrictions by Copernicus due to commercial contracts with external satellite data suppliers. 

This limitation significantly complicates the timely access to these datasets. 

Similarly, in the United States, services of Rapid Response Landslide Inventory are provided 

by the USGS (Martinez et al., 2021) using visual interpretation of mid- to high-resolution pre- 

and post-event satellite imagery including Sentinel2, WorldView (0.3–0.5-m resolution), Planet 

(2.7–4.0-m). In Great Britain, Williams et al (2018) performed a satellite-based emergency 

mapping of landslides triggered by the 2015 Nepal earthquakes using visual interpretation of a 

wide range of mid- to high-resolution satellite imagery. They argued that highest-resolution 

data may not always be the most appropriate for wide-area mapping of landslides and that the 

time taken to produce outputs from their mapping campaign was most influenced by cloud-free 

image availability over the area of interest. 

Automated landslide recognition algorithms based on image analysis are a possible alternative 

to visual interpretation and manual digitization of landslides to increase mapping rapidity over 

large areas (Guzzetti et al. 2012; Behling and Roessner 2017; Jain et al. 2024). For instance, 

setting thresholds in the changes of the NDVI (Normalized Difference Vegetation Index; Yang 

and Chen 2010; Niyokwiringirwa et al. 2024) from pre- to post-event imagery, is a well-

established approach for semi-automated mapping of landslides that have significantly altered 

land-cover conditions (Mondini et al. 2011; Notti et al., 2023). Other prevalent techniques 

include pixel-scale unsupervised classification (Li et al., 2016; Zhong et al., 2020), Object-

Oriented Analysis (Wu et al., 2014; Dou et al., 2015; Keyport et al., 2018), and methods that 

integrate various approaches (Adriano et al., 2020; Amatya et al., 2021). Recently, the 

development of high-performing image-segmentation and classification algorithms based upon 

Machine Learning (ML) and Deep Learning, (DL) has boosted the production of research 

papers aimed to demonstrate the possibility of automated landslide mapping over large areas 

(Prakash et al. 2020; Su et al. 2021; Prakash and Manconi 2021), even by using open-source 

resources such as U-Net, a convolutional neural network (NN) developed for biomedical image 

segmentation (Ronneberger et al., 2015). These methods always rely on a dataset of ground 
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truths (i.e. manually mapped landslides) to calibrate NDVI changes thresholds or to train ML, 

DL or NN algorithms.  

In May 2023, the Emilia-Romagna Region in Italy (Fig. 4.1a) faced one of its most critical 

hydrogeological crises due to two cyclonic events of high intensity. These occurrences on May 

1st-3rd and May 16th-17th led to rainfall reaching up to 500 mm on the Romagna Apennines, a 

significant increase compared to the area’s average annual rainfall of approximately 1200 mm. 

The intense rainfall resulted in approximately 80,000 landslides across the slopes and 

widespread flooding in the cities of Imola, Forlì, Cesena, Ravenna, and vast portions of 

Romagna’s floodplain sector. The aftermath included damages worth several billion Euros and 

17 fatalities. Our involvement in the crisis began from the outset, assisting the Regional Agency 

for Civil Protection. A significant aspect of our efforts was dedicated to the surveying and 

mapping of the numerous landslides triggered by these events. We performed landslide 

mapping manually, utilizing ultra-high resolution images with a 0.2 m pixel resolution and a 

3D viewer to accurately determine the boundaries and types of landslides. This meticulous 

effort resulted in a detailed dataset of all the landslides that occurred throughout the Romagna 

area due to the event. 

This study aims to capitalize such ground-truth dataset to assess the potential benefits and 

drawbacks of using automated algorithms for mapping purposes, which should provide an 

efficient alternative to the laborious and slow process of manual mapping. Specifically, the 

paper explores the effectiveness of NDVI-change and U-Net methods in emergency scenarios, 

where the rapid and accurate detection of landslides is critical. In such situations, merely having 

a map of "potential landslide locations" is insufficient due to the high precision required for 

identifying damaged infrastructure, evacuating hazardous areas, and coordinating emergency 

responses. Automated mapping techniques are therefore expected to deliver robust results 

quickly without the need for extensive calibration. This application significantly differs from 

the typical focus in the literature, which is on developing new methods or refining existing ones 

under non-emergency conditions, free from the urgent time constraints and critical issues faced 

during emergencies. Our research aims to bridge the gap between theoretical studies and real-

world applications of automated landslide mapping, or at least to spark a discussion on this 

topic within our community. The study specifically examines several crucial factors observed 

during the May 2023 disaster: i) the need for minimal calibration data in automated methods; 

ii) the impact of image resolution and quality; iii) the ability of automated techniques to detect 

various types of landslides; iv) the use of these methods for identifying damages caused by 

landslides. Assessing these elements is essential to determine whether automated approaches 

can substantially improve upon traditional, manual mapping methods, particularly in managing 

widespread landslide emergencies effectively. 
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4.4 The Romagna 2023 disaster 

4.4.1 Triggering meteorological events 

A detailed description of the triggering meteorological events that have affected the Emilia-

Romagna Region during May 2023 has recently been published by Foraci et al. (2023) and in 

the technical reports referenced therein. Essentially, two primary events took place from May 

1st to 3rd and from May 16th to 17th, with intermittent rain showers affecting the same areas 

on multiple instances in the intervening period. The event from 1-3 May saw intense rainfall 

targeting the central-eastern hilly areas, where cumulative rainfall approached 200 mm over 48 

hours. The peak rainfall during this period was recorded at 274 mm in the Forlì mountains (Fig. 

4.1b). Over half of the rain gauges in this central-eastern hilly sector registered two-day 

cumulative rainfall figures that exceeded historical maximums, with the rainfall intensity over 

a 24-hour period surpassing the estimated return period of 100 years. The event on May 16-17 

impacted an even broader area of Emilia Romagna, with rainfall ranging from moderate to 

heavy intensity. Over 48 hours, cumulative rainfall exceeded the historical highs recorded at 

the start of May, with peaks between 212 mm and 261 mm in the mountains and hills of 

Ravenna, Forlì, and Cesena (Fig. 4.1c). In the intervals between these two significant events, 

additional rainfall episodes occurred across the region, notably between May 9-10 and May 12-

14. 

Overall, the total rainfall recorded from May 1 to May 17 amounted to a regional average of 

221 mm, marking the highest 17-day cumulative rainfall in Emilia-Romagna since 1961 when 

compared to the region's climatological records. In the Romagna area, 80% of the rain gauges 

set new historical rainfall records, with average amounts exceeding 300-400 mm over the 17-

day span and peaking at 610 mm. 
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Figure 4.1. Overview of the May 2023 disaster in the Emilia-Romagna region. A) Distribution 

of landslide density determined through manual mapping; b) cumulative precipitation map for 

the first rainfall event; c) cumulative precipitation map for the second. 

 

4.4.2 Effects on slopes stability 

The meteorological events of May 2023 had widespread and profound effects on slope stability, 

with the geological composition of the area playing a crucial role. Specifically, the Romagna 

area is distinguished by the extensive occurrence of the Marnoso-Arenacea Formation (FMA; 

Burdigalian-Tortonian, Miocene), as illustrated in Fig. 4.1a. This formation primarily consists 

of an arenaceous flysch, composed by layers of arenite that range from centimeters to meters 

in thickness (A), interspersed with layers of pelite (P) (Ricci Lucchi, Valmori 1980). The ratio 

of arenite to pelites layers (A/P) varies, ranging from greater than 1 to over 10. 
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In the area, the Marnoso-Arenacea Formation is primarily characterized by a monocline 

structure with a dip of approximately 10°-15° towards the North-East, covered by a thin layer 

of weathered sandy to silty debris (Fig. 4.2). This geological configuration creates distinctively 

asymmetrical slopes, with mild slopes where the bedding planes run parallel to the slope's 

surface, and steeper inclines where the strata dip into the slope (Fig. 4.2). During the event, dip 

slopes mainly experienced large-scale translational rock-block slides (RS), with depths 

exceeding 10 meters. In contrast, steep slopes with strata dipping into the slope predominantly 

saw a high occurrence of debris slides (DS) characterised by high-mobility. These slides, 

typically shallow, extensively removed vegetation across broad areas exposing the underlying 

bedrock. Many debris slides evolved into debris flows (DF), traveling several hundreds of 

meters down, either confined within existing gullies or steep forested slopes or spreading 

unconfined over the slopes. In this latter case, the morphological characteristics closely mirror 

those of debris avalanches reported in literature (Hungr et al., 2013). However, unlike the cases 

documented in these studies, the scouring and embedding of material along the propagation 

path was in most of our case limited.  

It is important to note that rock slides, debris slides, and debris flows, which accounted for the 

vast majority of the landslides in May 2023, were nearly all first-time failures (Pizziolo et al., 

2023). Even in instances where these landslides overlapped with previously mapped landslides, 

it was almost exclusively because the new landslides expanded across areas of pre-existing 

landslide deposits. An exception was observed with earth and mud flows (EF) occurring in the 

clay formations exposed in the northern sector of the Romagna Apennines (Fig. 4.1a) and in the 

far western regions. Here, the May 2023 landslides often represented either partial reactivations 

or further developments of previously dormant or active landslides.  

The landslides of May 2023 caused significant changes in the landscaper, exposing vast 

portions of slopes by removing the vegetation and soil cover. Many of these landslides featured 

rapid movement of the dislodged debris or rock masses. As a result, more than 1000 roads 

throughout the Romagna region were affected, with impacts occurring both in the initial 

detachment zones, along the flow track, or in the deposition zone. Due to their large volume 

and high speed, certain rock-block slides resulted in the total destruction of houses and led to 

fatalities. The sudden and rapid nature of these events created a widespread state of emergency, 

compelling many individuals to evacuate their homes and hampering access to villages or 

valleys due to the extensive damage to roads and infrastructure. 
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Figure 4.2. Representative landslides from the May 2023 Event. The top illustration provides 

a conceptual cross-sectional view of a slope within the Marnoso-Arenacea Formation (FMA), 

showing typical landslides occurring on flanks where bedding planes dip into the slope (left) 

and where bedding planes are parallel to the slope (right). Pictures illustrate various examples 

of landslide types. DS=debris slide; DF=debris flow; RS=rock-block slide. The upper-right 

picture shows the typical aspect of the Marnoso-Arenacea Formation exposed on a subvertical 

cliff. 

 

4.4.3 Activities during the emergency 

Immediately after the events of May 1-3 and 16-17, and during the subsequent recovery phase, 

the creation of a landslides inventory and the identification of damages proved to be a vital yet 

challenging task in emergency response. The Civil Protection Agency of the Emilia-Romagna 

region tasked us with creating a comprehensive inventory of the landslides caused by the event 

to coordinate emergency interventions and assess the damage to roads and buildings. The 

creation of the landslide inventory began immediately after the events, utilizing "landslide 
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notices" from the affected municipalities and media reports, alongside field surveys conducted 

by public institutions, universities, and professionals. However, given the extremely high 

number of landslides, it quickly became apparent that completing this task would require the 

interpretation of satellite or aerial imagery. 

Soon after the 1st-3rd May event, Rapid Mapping of the Copernicus Emergency Management 

Service was activated for seven Areas of Interest (AoI), including three within the Apennines 

(EMSR659 - Flood in Emilia-Romagna, Italy). However, the landslide maps produced, which 

were of the "grading level" detail using post-event Pléiades-1A/B imagery at 0.5 m resolution, 

did not achieve the necessary completeness and accuracy for civil protection efforts. Notably, 

several known landslides were not included (false negatives), and areas with vegetation changes 

from other causes were marked as potential landslides (false positives). Additionally, after the 

second rainfall event, the National Civil Protection issued a map of "possible landslides" using 

pre- and post-event Sentinel 2 data (10 m pixel size) and NDVI-change analysis, following the 

method by Notti et al. (2023). The map was necessarily based on thresholds not calibrated on 

ground truths of the specific event, resulting in significant omissions and inaccuracies. 

To create an accurate landslide map, a decision was made to compile a comprehensive inventory 

of landslides and associated damages through the analysis of satellite and aerial images (both 

visible and NIR spectra) by an expert team. This team carried out field surveys in the immediate 

aftermath of the event, thereby gaining direct knowledge of the landslide types to identify 

within the imagery. Initially, Sentinel2 data (with a 10 m resolution covering the entire affected 

region) and Planet data (with a 0.5 m resolution) were utilized. However, Sentinel 2's resolution 

was quickly deemed insufficient for detecting the multitude of small landslides that had 

disrupted roads in numerous locations, and Planet's coverage was incomplete for the area in 

question. Consequently, the Emilia-Romagna Region opted for the acquisition of aerial imagery 

(0.2 m pixel, visible and NIR) over the entire affected area, which were completed and delivered 

as orthorectified images and WMS services at the end of June (five weeks after the event). Ever 

since, landslide and damage inventory were carried out manually based on these high-resolution 

aerial imageries. 

The manual mapping process was both intensive and laborious. From June to July 2023, we 

focused our efforts on the regions most devastated by the event, particularly around roads and 

urban centers, in order to fulfill the Civil Protection Agency's urgent requirements for damage 

assessment during the emergency response. From August to November 2023, we extended our 

work to complete the landslide inventory for the entire affected area. 
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4.5 Methods 

4.5.1 Study area 

The assessment of automated mapping techniques took place in the Casola Valsenio 

municipality (Ravenna province), an area profoundly affected by the catastrophic events of May 

2023. Casola Valsenio covers an area of 84 km² and is predominantly composed of the Marnoso-

Arenacea Formation. This formation is stratigraphically divided into three members, 

differentiated by their varying ratios of sandstone to pelites, as depicted in Fig. 4.3. The 

structural setting of the area is consistent, characterized by a uniform homocline that gently dips 

toward the northeast. Under these conditions, the slopes within the Marnoso-Arenacea 

Formation exhibit a pronounced asymmetrical structure. This is clearly seen in the steep slope 

angles, which range from 30° to 70° where the rock layers angle towards the slope, compared 

to the gentler inclines of 10° to 20° found where the rock layers are parallel to the slope. Prior 

to the May 2023 event, the Geological Survey had documented 730 landslides within the area 

(Fig. 4.3). The majority of these were ancient, dormant rock-blocks slides on slopes parallel to 

the bedding planes. 

The area is cloaked in thick forests, with extensive tree coverage. Farming is conducted on the 

valley bottom and the milder inclines. Casola Valsenio has a community of 2,650 residents and 

serves as a vital link connecting the Po Plain in the north to Tuscany in the south. In the course 

of the disaster, a significant landslide obstructed the main thoroughfare for weeks, causing 

considerable disruption for the locals and cutting off the southern part of the area. The landslides 

affected over 60 homes and damaged 180 roadways, inflicting harm that has yet to be 

completely remedied. 



135 

 

 

Figure 4.3. Schematic geological map of the municipality of Casola Valsenio (Province of 

Ravenna, Italy). FMA=Marnoso-Arenacea Formation, categorized into three distinct members 

based on the prevailing Areneties/Pelites (A/P) ratio. 

 

4.5.2 Remote sensing images 

In this study, we utilize three distinct types of remote sensing imagery to identify and map the 

landslides that occurred following the May 2023 rainfall events. Table 4.1 provides a summary 

of these images along with their specific characteristics. 

Sentinel-2 images are provided by the European Space Agency and have a 10-meter resolution 

in the Blue, Green, Red, and near-infrared bands. The first post-event image with minimal cloud 

cover was captured on May 23, one week after the second rainfall event (dataset S3). Over the 

next month, eight more images with low cloud coverage were captured, forming an additional 

dataset (S4). Obtaining suitable pre-event images proved difficult due to persistent cloud cover 

throughout April 2023. Moreover, the last viable image from March 2023 did not accurately 

depict the vegetation condition during the event, as early Spring is typically marked by 

substantial vegetation growth and intense agricultural activities. To address this challenge, we 
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resorted to using two distinct pre-event datasets: S1, comprising multiple images from May and 

June 2022, and S2, consisting of one image taken exactly a year before the event. 

AGEA, the Italian Agency for Agricultural Payments, captured high-resolution aerial 

photographs from 2009 to 2021, featuring a pixel size of 0.2 meters. These images are 

composed of 4 bands (RGB+NIR) and are instrumental in Italy for in-depth land use, crop 

health, and agricultural analysis. We utilized the 2020 AGEA image (dataset A1) to depict pre-

event conditions at high resolution. This composite image, assembled from shots taken between 

April and July 2020, generally reflects the vegetation state during the event period, although 

there might be local variations owing to different agricultural practices. 

CGR images (dataset C1) are the high-resolution aerial photographs taken after the event, 

commissioned by the Emilia-Romagna Region. These images feature 4 bands and have a pixel 

size of 0.2 meters. The imagery was collected using a Leica DMC III sensor mounted on a 

Cessna 402C aircraft, which flew at an altitude of 4718 meters above sea level. CGR photos 

were taken on May 23. The raw, non-orthorectified images were quickly made available within 

a week of acquisition. The orthorectification process was completed later, with the final images 

delivered on June 21. 

Each dataset includes the near-infrared (NIR) spectral band, which proves particularly 

important for our analysis. Landslides often resulted in the removal of vegetation, and the NIR 

band is highly sensitive to such changes thanks to its ability to detect variations in chlorophyll 

and subsequent shifts in plant biomass. (Tucker 1979). Figure 4.4 highlights the importance of 

images resolutions (in both visible and NIR spectrums) for detecting landslides in our specific 

scenario. It is particularly noteworthy that the smallest landslides, those under approximately 

400 m², can be identified in the high-resolution CGR images (Fig. 4.4a-b), whereas in the 

Sentinel-2 images, they are represented by a mere 4x4 pixels or less (Fig. 4.4c-d). Considering 

that most of the landslides were small or very small, high-resolution images were indispensable 

for their manual identification. 

 

Table 4.1. Satellite and aerial imagery used for landslide mapping through manual and 

automated methods. 

Dataset Period Image 

Source 

Image 

Type 

Spectral 

Bands 

Pixel 

(m) 

Date Number of 

images 

S1 Pre-event Sentinel2 Satellite RGB+NIR 10 5 May-30 June 2022 9 

S2 Pre-event Sentinel2 Satellite RGB+NIR 10 13 May 2022 1 

S3 Post-event Sentinel2 Satellite RGB+NIR 10 23 May 2023 1 

S4 Post-event Sentinel2 Satellite RGB+NIR 10 23 May-30 July 2023 8 

A1 Pre-event AGEA Aerial RGB+NIR 0.2 April-July 2020 1 

C1 Post-event CGR Aerial RGB+NIR 0.2 23 May 2023 1 
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Figure 4.4. Examples of imagery from a small section of the study area illustrating various 

products. A) CGR aerial image with 0.2 m resolution in RGB; b) CGR aerial image with 0.2 m 

resolution in NIR false colors; c) Sentinel2 satellite image with 10 m resolution in RGB; d) 

Sentinel2 satellite image with 10 m resolution in NIR false colors. 

 

4.5.3 Landslides manual mapping 

A detailed inventory of landslides was manually compiled using high-resolution aerial imagery. 

We employed images from after the May 2023 event (0.2 m pixel dataset C1) and from before 

the event in 2020 (0.2 m pixel dataset A1). This task was performed by our team members who 

had conducted field inspections at the landslide sites soon after the event, particularly within 
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the first four weeks following May 16th. Their direct experience in the field was crucial for 

accurately identifying features of landslides in the aerial photographs. 

The process involved visual inspection and digitization within a GIS framework, utilizing on-

screen scales from 1:1000 to 1:200 for detailed examination. A 1x1 km reference grid was 

established to assist surveyors during inspections and to monitor the progress across the 

examined areas. Additionally, NDVI-change maps derived from Sentinel2 data served as a 

background layer to highlight potential land cover changes. Support for the surveyors also 

included NIR band imagery, hillshade renderings from a 5 m resolution DEM, and topographic 

maps to enrich the analysis and digitization process. Moreover, a 3D visualization tool was 

employed alongside the GIS setup to provide dynamic perspectives of the surveyed and mapped 

areas, enhancing the comprehensiveness of the landslide inventory. 

Within the GIS framework, the outlines of landslides (as polygonal layers) and their presumed 

initiation points (as point layers) were digitized. The focus was exclusively on landslides that 

occurred during May 2023; those that were already present in the 2020 imagery and remained 

substantially unchanged by 2023 were not included in the inventory. For debris flows with 

several source areas, multiple initiation points were documented. The placement of these points, 

determined at the discretion of the operator, typically occurred in the highest parts of the 

detachment zones. The attribute table for the landslide layer featured a coding system to 

differentiate various landslide types, such as debris slide (DS), debris flow (DF), rock slide 

(RS), earth slide (ES), and earth flow (EF) (Cruden and Varnes, 1996). Additionally, an 

inventory of landslide-induced damages (as a point layer) was compiled by marking the 

midpoint of affected road segments or the centroid of damaged or at-risk buildings. Attributes 

were assigned to distinguish between roads and buildings, and for buildings, whether they were 

located directly within or proximate to a specified buffer zone of 30 m surrounding the landslide 

outline. 

Most of the landslides occurred during May 2023 were first time failures, making them 

relatively straightforward to identify in aerial imagery. Debris flows (both channelized and non-

channelized) and debris slides led to noticeable changes in land cover by clearing vegetation in 

the source areas and along the track and accumulating bare soil in deposition zones. Similarly, 

translational rock-block slides brought about considerable landscape changes, including clearly 

visible detachment scarps and extensive areas filled with large, block-shaped debris. 

Nonetheless, challenges in capturing all landslides in the inventory included the small scale of 

some events (just a few tens of square meters) and instances where landslides extended beneath 

canopy cover, obscuring them from aerial view. Additionally, for rock block-slides, aerial image 

reviews might have missed slope cracks indicative of early-stage landslide activity. Despite 

these limitations, we believe the manually compiled landslide inventory is nearly 

comprehensive. It's important to note that the accuracy of the manual mapping was significantly 

improved due to the largely homogeneous geological conditions. Almost the entire area is 
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dominated by a single geological formation, with consistent structural settings. This uniformity 

resulted in highly consistent and repetitive slope morphologies and landslide types. Field checks 

were also particularly effective in these relatively straightforward geological settings. 

 

4.5.4 Automatic mapping techniques 

The automatic mapping of landslides was conducted using two established techniques: the 

conventional NDVI (Normalized Difference Vegetation Index) method and the more advanced 

U-Net algorithm. Both methods are well-known and extensively referenced in the literature. 

Considering our goal of implementing automated landslide detection during emergency 

scenarios, we chose NDVI for its simplicity and ease of interpretation, and U-Net for its robust 

machine-learning capabilities, which have proven highly effective across various geological 

settings. 

In the immediate aftermath of a disaster, there is no time to develop new methods or modify 

existing ones to achieve the highest possible statistical accuracy. Instead, the expectation is that 

established automated techniques will deliver reliable results quickly without the need for 

additional refinement. Therefore, both methods were applied in their standard forms without 

any significant modifications to the algorithms. 

 

NDVI 

The Normalized Difference Vegetation Index is a standard tool in remote sensing (Tucker 

1979). Its effectiveness in detecting landslides stems from its capability to distinguish vegetated 

from non-vegetated surfaces by their reflectance characteristics. NDVI is computed using the 

equation (Kriegler et al. 1969): 

 𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 [3.1] 

Here, NIR refers to spectral reflectance in the near-infrared band, and Red represents visible red 

light. NDVI values fall between -1 and +1, with higher figures indicating denser vegetation. In 

landslide detection scenarios, a reduction in NDVI values is typically observed in affected 

areas, reflecting vegetation loss. This change is measured as ∆NDVI, calculated as the post-

event NDVI minus the pre-event NDVI: 

 ∆𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡 − 𝑁𝐷𝑉𝐼𝑝𝑟𝑒 [3.2] 

A positive ∆NDVI suggests an enhancement in vegetation greenness or health, whereas a 

negative value points to a decline. Establishing a universal NDVI change threshold for landslide 

detection is unfeasible due to the diversity of regional vegetation types, varying climatic 
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conditions, differences in landslide characteristics, and the varying resolutions of satellite 

imagery. Consequently, such thresholds are usually set through local calibration and validation, 

using known landslide events and corresponding NDVI changes (Yang et al. 2019; Qu et al. 

2021). 

The NDVI method was applied using different combinations of pre- and post-event images as 

outlined in Table 4.2. Cases NDVI-1 and NDVI-2 both employed Sentinel2 images but differed 

in their index calculation techniques. In NDVI-1, the NDVI rasters for both pre-event and post-

event were generated by averaging NDVI values across numerous images over roughly two 

months to reduce noise and anomalies. In contrast, NDVI-2 calculated indices from just two 

distinct images, which improved the detection of vegetation changes caused by landslides. 

NDVI-3 used high-resolution aerial imagery with a resolution of 0.2 meters, providing much 

greater spatial detail that allows for the identification of smaller-scale vegetation changes not 

visible at 10-meter resolution. As described in section 4.5.6, the original 0.2-meter images were 

resampled to 1 meter to decrease the noise commonly found in high-resolution NDVI change 

maps. 

The NDVI change method for landslide identification could be refined by integrating additional 

parameters such as slope, aspect, and others (e.g. Notti et al. 2023). Although these 

modifications have proved to be effective in specific contexts, we decided to use the 

conventional approach. This decision was driven by the practical challenges of implementing 

significant refinements in emergency situations. Enhancements in fact necessitate a detailed 

analysis of landslide-influencing factors, that are often not viable within the constrained 

timeframes typical of emergency scenarios. 

 

Table 4.2. Summary of the cases considered in the automated landslide mapping. Dataset codes 

refer to Table 4.1. 
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Table 4.3. Results of May 2023 landslides manual mapping in the municipality of Casola 

Valsenio. 

Landslide type Number 

[count] 

Number 

[%] 

Area > 10000 

m2 

[count] 

Total 

Area 

[km2] 

L/W 

ratio  

Existing 

landslide 

area 

[%] 

Rock Slides (RS) 111 2.0 17 0.629 0.99 30.9 

Debris Slides (DS) 4224 76.7 0 1.733 1.07 7.1 

Debris Flows (DF) 1076 19.5 17 1.809 2.10 20.2 

Earth Flows (EF) 96 1.7 7 0.350 2.10 15.0 

Total 5507 100 41 4.521   

 

U-Net 

U-Net is a type of convolutional neural network (CNN) that was initially developed for 

biomedical image segmentation (Ronneberger et al. 2015). The network's architecture, 

resembling the letter "U," consists of a contracting (downsampling) path to capture the context 

of the input image and an expansive (upsampling) path for precise localization. This symmetry 

in the network, where layers in the downsampling path are mirrored in the upsampling path, 

helps in transferring information across different resolution scales. A crucial aspect of U-Net's 

design is its incorporation of "skip connections," which are direct links between layers of the 

same resolution in the downsampling and upsampling paths of the network. Skip connections 

enable the propagation of detailed local information, like textures or specific shapes, directly 

across the network. This information is crucial for precise segmentation, as it helps the network 

to accurately reconstruct the finer details of the image. 

U-Net can be applied to landslide mapping by utilizing its segmentation capabilities to 

differentiate landslide areas from their surroundings in remote sensing images (Soares et al., 

2020; Qi et al., 2020; Meena et al. 2022). The U-Net models are generally trained with images 

of various window dimensions (tiles) and sampled using different methods, including random 

and regular grid methods, with data augmentation techniques like random rotation and flips. 

Currently, in the application of U-Net for landslide mapping, there are no established general 

rules or standardized procedures regarding the number of tiles, their size, and other specific 

parameters. The optimal choices for these factors can vary significantly based on the specific 

characteristics of the study area, the resolution and type of the remote sensing data, and the 

specific objectives of the analysis. This lack of standardization reflects the ongoing 

development and adaptation of machine learning techniques like U-Net in the field of landslide 

mapping. 

In our study, we utilized MATLAB to implement U-Net for landslide classification. The U-Net 

architecture was generated using the function unetLayers([height, width, 

depth], numClasses). The parameters height and width define the size of the input 



142 

 

image, depth is the number of image channels, and numClasses specifies the number of 

classes for semantic segmentation. For the analysis we used both the Sentinel2 images (case 

UNET-1, Table 4.2) and the high-resolution CGR image (case UNET-2, Table 7). In both cases 

the depth is equal to 4, the number of spectral bands. We set numClasses to 2 for binary 

classification, distinguishing between landslide and non-landslide areas. 

To configure a neural network like U-Net, several parameters known as hyperparameters must 

be defined. Hyperparameters are external configurations to the model and are not learned from 

the data. They play a critical role in controlling the behavior of the training process and the 

performance of the network. Key hyperparameters (Ronneberger et al. 2015) are detailed below. 

▪ The EncoderDepth determines the number of encoder levels in the U-Net architecture. 

In our case, the network features a moderately deep encoder with 4 levels. This depth is a 

standard choice for various image segmentation tasks. Each encoder level is composed of 

two convolutional layers, followed by a ReLU activation function. This structure is 

consistent across all encoder levels, with max-pooling layers interspersed to diminish 

spatial dimensions and to deepen the feature channels. 

▪ NumFirstEncoderFilters is set at 32, indicating that the initial layer of the network 

uses 32 filters. This number strikes a balance between the capacity to learn intricate 

features and the limitations of computational power and memory. Generally, 32 filters are 

adequate for simpler tasks or when standard computational resources are available. 

▪ The InitialLearnRate sets initial size of steps in the optimization process. Setting 

this rate too high might prevent the network from converging or lead to a suboptimal 

solution, while too low a rate can result in excessively slow convergence. We 

experimented with different InitialLearnRate values, ranging from 0.0001 to 0.01. 

▪ SolverName identifies the optimization algorithm used for updating the weights of the 

network. The Adam solver, known for Adaptive Moment Estimation, is a favored choice 

due to its efficiency and effectiveness in a broad spectrum of machine learning tasks. 

▪ Lastly, MaxEpochs defines the number of complete passes through the training dataset 

by the network. The decision on the number of epochs was based on performance, 

concluding the training when the network ceased to show significant improvements in 

performance. 

To enhance the model's capacity to generalize, we implemented artificial augmentation of the 

training images. This was achieved using MATLAB's imageDataAugmenter object, which 

was configured to perform the following transformations: random reflection in the horizontal 

and vertical direction; random rotation by an angle between -10 and +10 degrees; random 

horizontal and vertical translation (shift) by a value between -10 and +10 pixels; random 

horizontal and vertical shear with an angle between -2 and +2; random scaling by a factor 
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between 0.8 and 1.2. These augmentations greatly increased the diversity of the training dataset, 

making model stronger and more general. 

 

4.5.5 Training and testing 

Each method used for automated landslide mapping relies on a ground-truth dataset, which is 

essential for both training and testing the models. Typically, this dataset originates from a 

landslide map manually created by specialists. The dataset is then split into two distinct 

portions: a larger part is used for training the model, which involves tasks such as establishing 

the NDVI threshold or adjusting the U-Net hyperparameters, and a smaller part is reserved for 

testing purposes. Randomly splitting the dataset into training and testing sections, often in 80%-

20% or 70%-30% ratios, is a common practice (Nava et al. 2022; Chandra et al. 2023). This 

strategy is effective under non-critical conditions, but it is unsuitable for emergency mapping 

scenarios. In emergencies, time is of the essence, and manually mapping landslides across 70%-

80% of the area is not viable. An automated method should instead provide reliable results with 

minimal training conducted on just a fraction of the area. Therefore, in emergency contexts, the 

balance between training and testing datasets needs reevaluation. 

To tackle this challenge, we adopted an unconventional approach. The study area was first 

segmented into 1x1 km grid tiles as shown in Fig. 3.5. Each 1 km² tile corresponds to an area 

of 100x100 pixels in the 10m Sentinel2 imagery, 500x500 pixels in the CGR imagery when 

resampled at 2m, and 1000x1000 pixels in the CGR imagery at 1m resolution. Generally, a 

single grid tile in these areas contains over 50 landslides, providing a reliable overview of 

landslide pattern. We then proceeded to train the NDVI and U-Net models using a limited 

number of tiles, specifically 1-2-4-6-8-10-12 tiles, aligning with the requirements for rapid 

mapping in emergency situations. Considering there are 86 tiles in Casola Valsenio, the extent 

of our training dataset ranged from a mere 1% (1 tile) to 14% (12 tiles) of the entire dataset. 

Testing was then carried out on the remaining tiles, leading to a varied training-to-testing ratio 

from 1%-99% to 16%-84%. 

Ideally, training tiles should be distributed across the entire study area to encompass diverse 

conditions such as various terrain types, vegetation, and landslide characteristics. However, in 

practical scenarios, it is common for images to cover only a limited part of the area, often 

represented by several contiguous tiles. To address these varied scenarios, our methodology 

incorporated two different strategies for tile selection: a random layout and a clustered layout. 

In the random layout, training tiles are randomly selected across the study area. This approach 

aims to capture a wide range of conditions, thereby enhancing the statistical robustness and 

generalizability of the results. In contrast, the clustered layout involves grouping training tiles 

that are geographically close to each other. This approach is designed to simulate scenarios 

where post-event imagery is only available for a limited area and manual mapping are possible 
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only for specific local conditions. These selection strategies led to the creation of 14 unique 

training scenarios, evenly divided with 7 using a clustered layout and 7 using a random layout, 

as depicted in Figure 4.5. 

The training process then varied for the two methods. In the NDVI method, training involves 

determining the ideal ∆NDVI value (∆NDVIthreshold) that effectively distinguishes between 

landslide and non-landslide pixels. To establish this threshold, we experimented with various 

∆NDVI values within the theoretical range of -2 to +2. The effectiveness of each value in 

aligning the automatic classification with the ground truth in the training tiles was assessed 

using the F1-score. The F1-score is the harmonic mean of precision and recall (Tharwat 2018) 

and it is particularly suitable for models applied to unbalanced datasets like ours, where 

landslide pixels typically represent less than 10%-15% of the total. To evaluate the method's 

validity, the threshold determined from the training tiles was finally applied to the test tiles, and 

results assessed using the same statistical method. The F1-score calculated for the testing 

dataset serves as an indicator of the method's effectiveness. 

 

 

Figure 4.5. Location of the tiles utilized for training the automated mapping models in both 

clustered and randomly selected training scenarios. The numbers show the sequential inclusion 

of tiles in the analysis. 

 

In the U-Net method, the training stage is fundamentally important. The neural network, during 

this phase, learns to recognize specific features, in our case the manually identified landslides, 

from the input imagery, which consists of a 4-band raster. This training is achieved through a 

process where batches of data are continuously fed into the network. The network makes 

predictions, and its weights are adjusted based on the calculated loss from these predictions. 

This cycle of prediction, adjustment, and feedback is repeated across multiple epochs, or 
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complete passes through the training dataset, until the network achieves satisfactory 

performance levels. Once trained, the U-Net model is then applied to test tiles to assess its 

effectiveness in real-world scenarios. Unlike the NDVI method, U-Net directly yields a binary 

classification output, categorizing each pixel as either a landslide (1) or a non-landslide (0). The 

accuracy and reliability of these predictions are evaluated again using the F1-score. 

 

4.5.6 Sensitivity analysis  

A detailed sensitivity analysis was performed on the previously described analysis process to 

evaluate the effects of input data on the results. The primary focus was on high-resolution 

images at 0.2 m (datasets A1 and C1 in Table 4.1). These images were crucial for manual 

mapping and allowed a precise detection and delineation of the landslides triggered by the 

event. However, incorporating such high-resolution images into automated mapping methods 

presents significant challenges. 

In NDVI analyses, the use of high-resolution imagery can often introduce additional noise, 

primarily from shadows and topographical variations (Burgess et al. 1995; Yang et al. 2022). 

High-resolution sensors capture shadows cast by terrain features, vegetation, and built 

structures, which can lead to apparent fluctuations in NDVI that do not correspond to actual 

changes in vegetation Additionally, minor natural variations such as the movement of leaves 

and branches, or slight shifts in the sensor's angle, can further contribute to this noise. Thus, 

while finer resolution offers detailed spatial information that helps identify small-scale changes 

in vegetation, it does not necessarily enhance the overall quality of the outcomes. Conversely, 

U-Net generally performs better with high-resolution images. The higher spatial resolution 

enables the detection of critical details at finer scales, providing a richer set of features that 

enhance the model's ability to learn more intricate and detailed representations. However, using 

high-resolution images also presents challenges, including increased computational demands, 

greater memory requirements, and a heightened risk of overfitting, particularly when the 

available training dataset is limited. 

To tackle these challenges, we carried out a sequence of analyses by modifying the pixel size 

of the high-resolution images. We resampled the original 0.2 m images to resolutions of 0.5, 1, 

2, 5, and 10 meters using bilinear interpolation. This resampling was performed on both pre-

event and post-event images to generate lower-resolution NDVI and RGB rasters. The 

resampling process was applied directly to the original spectral bands to maintain the integrity 

of the spectral data. We then conducted NDVI and U-Net analyses using the same tiles for both 

training and testing, but with varying image resolutions. For each combination, we compared 

the F1-score, computational time, and memory requirements. The raster resolutions specified 

in Table 4.2 (1 m for NDVI-3 and 2 m for UNET-2) were identified as the optimal balance and 

selected as reference cases for this study. 
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Specifically, for the NDVI method, a resolution of 1 m strikes an effective balance between 

accurately defining landslide boundaries and mitigating the salt-and-pepper effect observed in 

ultra-high resolution NDVI change maps. The full resolution of 0.2 m provides in fact precise 

delineation of areas where vegetation has been cleared, but it also leads to the creation of 

numerous small polygons in forested areas. These polygons, generated due to shadow noise, 

are mistakenly identified as landslides. 

The 2 m resolution adopted for U-Net analysis mostly derives from the challenges in memory 

allocation with high-resolution data. In our case, a 1 km² training tile corresponds to an array 

size of 500x500 pixels for a downsampled 2 m image, and 5000x5000 pixels for a full-

resolution 0.2 m image, requiring memory sizes of 4 MB and 400 MB respectively (assuming 

4 bands and a depth of 32 bits). When using deep learning models like U-Net, the memory 

consumption during training significantly exceeds the space needed merely to store the input 

images, due to additional requirements such as storing augmented image versions and managing 

the weights and gradients of various layers. As a result, a typical personal computer equipped 

with 12GB of VRAM struggles to handle even a single full-resolution tile, while it can easily 

train a model with 12 tiles at 2 m resolution. Moreover, the computational time increases in a 

non-linear manner as the input image size grows, which becomes a significant issue when 

timely results are needed. For instance, using a GeForce RTX 3030 GPU, training a 1 km² tile 

for 100 epochs takes about 1 minute at 2 m resolution, but it extends to 5 days at 0.2 m 

resolution. Given these constraints, running a U-Net model at full resolution has proven to be 

impractical with the time and resources available. 

 

4.6 Results 

4.6.1 Landslides manual mapping 

On a regional scale, manual mapping has cataloged over 80,000 landslides, encompassing an 

area greater than 1,000 square kilometers. Predominantly, these landslides consist of debris 

slides, which make up nearly 50% of the total, and debris flows, which account for over 20%. 

Rock-block slides, while less common (constituting less than 1%), are notably significant due 

to their substantial size and depth, which often result in severe damage when they intersect with 

roads and buildings. In the Romagna region, which stretches from Imola to Cesena and features 

the prevalent Marnoso-Arenacea Formation, landslides recorded in May 2023 have been 

documented with an extraordinary density exceeding 200 landslides per square kilometer (see 

Fig. 4.1a). A comprehensive description of this regional landslide inventory has recently been 

submitted for publication (Berti et al., 2024 " RER2023: the landslide inventory dataset of the 

May 2023 Emilia-Romagna event "). 

The municipality of Casola Valsenio (Senio valley, Imola, Province of Bologna) records one of 

the highest landslide densities (Fig. 4.6). This area alone is responsible for over 100 rock-block 
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slides (RS), constituting a significant portion of the total RS found throughout the entire 

Romagna region, which shares similar geological settings. Debris slides (DS) and debris flows 

(DF) constitute nearly 95% of the mapped events (Tab. 4.4), while the remainder consists of 

earth flows (EF). These latter types are primarily found in the northern sector of the area, where 

Pliocene clay formations are exposed. 

The elongation ratio distinctly varies among the types of landslides mapped, from 

approximately 1 for rock and debris slides (RS, DS) to over 2 for debris and earth flows (Tab. 

4.4). Only about 20% of the mapped landslides were previously recognized in the official Italian 

landslide inventory (i.e., the IFFI database). Moreover, in those instances, the majority should 

not be seen as reactivations of pre-existing landslides but rather as initial failures that 

propagated atop former landslide deposits. In Casola Valsenio, landslides notably disrupted 

roads and homes, marking it as a critical area during the May 2023 crisis: a total of 249 damage 

points related to landslides were recorded (Fig. 4.6). 

 

Table 4.4. Effectiveness of automated mapping models across scenarios outlined in Table 4.2. 

F1-score values represent the highest score achieved on the validation dataset. 'Threshold' 

denotes the optimal NDVI Change threshold identified. 

Case Training tiles 

distribution 

Parameter Number of training tiles 

1 2 4 6 8 10 12 

NDVI-1 

Clustered 

F1-score 0.49 0.51 0.51 0.52 0.51 0.52 0.52 

 Threshold -0.1 -0.12 -0.12 -0.12 -0.12 -0.14 -0.14 

NDVI-2 F1-score 0.4 0.42 0.45 0.45 0.46 0.45 0.45 

 Threshold -0.08 -0.1 -0.14 -0.16 -0.16 -0.16 -0.16 

NDVI-3 F1-score 0.46 0.45 0.46 0.46 0.45 0.45 0.45 

 Threshold -0.34 -0.32 -0.35 -0.34 -0.34 -0.35 -0.35 

NDVI-1 

Random 

F1-score 0.49 0.51 0.51 0.52 0.51 0.52 0.52 

 Threshold -0.1 -0.12 -0.16 -0.16 -0.16 -0.14 -0.14 

NDVI-2 F1-score 0.43 0.42 0.45 0.45 0.45 0.45 0.45 

 Threshold -0.2 -0.22 -0.18 -0.18 -0.17 -0.17 -0.17 

NDVI-3 F1-score 0.36 0.41 0.45 0.45 0.44 0.46 0.46 

 Threshold -0.47 -0.43 -0.37 -0.37 -0.41 -0.37 -0.37 

UNET-1 
Clustered 

F1-score 0.33 0.35 0.35 0.32 0.36 0.36 0.35 

UNET-2 F1-score 0.47 0.50 0.56 0.60 0.59 0.64 0.64 

UNET-1 
Random 

F1-score 0.20 0.26 0.36 0.32 0.37 0.37 0.37 

UNET-2 F1-score 0.46 0.51 0.58 0.60 0.58 0.62 0.58 
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Figure 4.6. Map displaying landslides identified through manual analysis of high-resolution 

aerial imagery (0.2 m resolution) from the May 2023 event. 

 

4.6.2 Landslides automatic mapping 

Figure 4.7 summarizes the outcomes of the two different automatic mapping techniques applied 

to our study area. The figure displays charts with the number of training tiles in the x-axis and 

the F1-scores of the testing tiles in the y-axis. These scores provide a statistical measure of how 

well the automated mapping compares to the manual mapping. This is done for both scenarios 

where training tiles are either clustered or randomly distributed. Detailed numerical data and 

the optimal ∆NDVI thresholds can be found in Table 4.4. 

 

From these results, we can observe the following points: 

▪ The U-Net method outperforms the NDVI approach when using high-resolution images 

(UNET-2, F1=0.64), with F1-scores up to 30% higher than those achieved by the best 

NDVI map (NDVI-1, F1=0.52). 
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▪ U-Net's effectiveness significantly drops with lower-resolution Sentinel2 images (UNET-

1, F1=0.35), bringing its performance below that of the NDVI approach. 

▪ NDVI's performance is more influenced by the choice of pre- and post-event images rather 

than image resolution. The best NDVI results are obtained using Sentinel2 images where 

pre- and post-event scenes are averaged over a span of about two months (NDVI-1). In 

contrast, employing a single pre- and post-event image (NDVI-2 and NDVI-3) leads to 

considerably lower NDVI scores (F1=0.45 in both cases). Unexpectedly, reducing the 

pixel size from 10m to 1m does not lead to an improvement in the F1-scores. 

▪ The optimal NDVI threshold varies with image resolution, showing values around -0.14 

to -0.12 for Sentinel 2 images (10 m resolution) and between -0.40 to -0.34 for high-

resolution images downsampled to 1 m (Table 4.4). 

▪ The arrangement of training tiles, whether clustered or randomly placed, seems to have a 

negligible impact on the accuracy. Notable differences in performance are only seen when 

U-Net is trained with a very limited number of tiles (less than 4). 

▪ A relatively small number of tiles, covering about 2-3% of the total study area, is sufficient 

to achieve the highest score for each method. 

A closer examination of the landslide maps produced by the two distinct techniques highlights 

differences that the F1-scores do not fully capture. Figure 3.8 illustrates these differences in a 

specific part of the Casola Valsenio study area, selected for its diverse landscape features such 

as farmlands, wild terrains, wooded slopes, and landslides varying in shapes and sizes. The 

prediction maps were generated using 12 training tiles (see circled symbols in Fig. 4.7). 

The NDVI method (NDVI-1/2/3) successfully detects most landslides, but it also leads to some 

false positives and false negatives. In particular, agricultural areas often result in false positives, 

especially when post-event imagery shows plowed fields or significantly less green vegetation 

compared to pre-event images (as shown for example in Fig. 4.8e under FP). Reducing these 

false positives remains challenging, even when attempting to use slope angle to exclude flatter 

regions, because many landslides started on steep slopes but propagated over flatter areas. False 

negatives occur less frequently, typically in situations where a landslide occurs on an already 

bare slope (FN in Fig. 4.8e), or when landslide debris spreads through a forest without markedly 

altering the vegetation. 

The spatial fragmentation of the NDVI results, evident in Fig. 4.8cdef and Fig. 4.9c, poses 

additional challenges for landslide classification and risk assessment. Fragmentation often 

results in isolated clusters of pixels being identified as potential landslides, instead of 

continuous and coherent landslide bodies. This can complicate the interpretation of results, as 

small, scattered clusters may represent minor debris or noise rather than meaningful landslide 
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features. For operational purposes, such fragmentation could lead to misestimation of affected 

areas, impacting subsequent risk analysis and emergency planning. 

 

 

Figure 4.7. F1-score values for different automated mapping methods as a function of the 

number of training tiles. a) Clustered distribution of the training tiles; b) Random distribution 

of the training tiles. The circled symbols mark the cases depicted in Fig. 4.8. 
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The U-Net method applied to high-resolution images (UNET-2) exhibits high accuracy with a 

low rate of misclassified pixels (Fig. 4.8g-h). However, understanding why these 

misclassifications occur is difficult. Unlike simpler methods like NDVI, the inner mechanisms 

of U-Net are not easily interpretable, and to comprehend why U-Net incorrectly classifies 

certain pixels, one should investigate the neural network's layers. This involves understanding 

how it processes and identifies features, which is not practically feasible. In our case, U-Net 

primarily exhibited a tendency towards false positives rather than false negatives. These false 

positives typically include areas experiencing soil erosion (FP in Fig. 4.8g), which are slopes 

impacted by rainfall but not landslides, as well as sections of roads covered partially by mud or 

dust, or moist areas in plowed agricultural fields that resemble landslides in shape. Another 

notable source of false positives are backyards and the roofs of houses. Indeed, some false 

positives are areas where manual classification was ambiguous, indicating that they might 

actually represent real landslides. 

Although U-Net results (e.g., Fig. 4.8g-h) exhibit less spatial fragmentation than NDVI, some 

degree of fragmentation is still present. Fragmented detection is more pronounced in areas with 

overlapping vegetation or complex topography, where the detachment zone and debris 

accumulation may be classified as distinct events. This is especially evident in the case of rock-

block slides (Fig. 4.9d), where the spatial separation of detachment and debris areas further 

complicates the classification process. Such fragmentation can undermine the ability to provide 

a cohesive representation of the landslide body, potentially leading to underestimation of its 

scale or misinterpretation of its impact during risk assessments. 

The bad results of U-Net when used with Sentinel2 images (UNET-1, Fig. 4.8f) is largely due 

to the limited resolution of these images, which hinders the detection of smaller landslides. 

Landslides that are less than approximately 400-500 m² in size, roughly equivalent to a 2x2 

pixel area, are challenging to discern even with the naked eye. The training method of U-Net, 

which relies on pattern recognition and contextual understanding similar to human cognitive 

processes, also encounters limitations under these conditions. Of course, this is not a universal 

limitation. U-Net has shown its effectiveness in working with Sentinel2 images when dealing 

with larger landslides that occupy a more substantial number of pixels (e.g. Chen et al. 2023). 

Regarding the ability to identify the various landslide types, both methods effectively detect 

debris slides (DS) and debris flows (DF), but struggle with mapping rock-block slides (RS). As 

expected, the first two types are easier to spot as they usually stripped away vegetation, in 

contrast to rock-block slides, which often leaved a substantial part of the sliding block with its 

vegetation intact. In such cases (see an example in Fig. 4.9), both NDVI and U-Net methods 

detect the detachment area and the fragmented debris at the toe as distinct landslide events, yet 

they fall short in identifying the full extent of the landslide body. 
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Figure 4.8. Evaluating the performance of various automated methods in a selected area of 

Casola Valsenio. a-b) Baseline data established through manual mapping; c) Landslide map 

generated using the NDVI change method with an average from multiple Sentinel2 images; d) 

Similar to (c) but with NDVI change calculated using a single image; e) Landslide map derived 

from NDVI change in high-resolution AGEA-CGR images; f) Landslide map produced using 

UNET on Sentinel2 images; g-h) Landslide maps created with UNET applied to CGR images, 

showing outcomes for both clustered (g) and randomly distributed (h) training tiles. FP=False 

Positive; FN=False Negative (see text). 



153 

 

 

Figure 4.9. Challenges in automatically mapping rock-block slides. a-b) High-resolution 

images before and after a typical rock-block slide in the study area; c-d) Automated landslide 

maps generated from high-resolution imagery using the NDVI change method (c) and the 

UNET algorithm (d). 

 

Figure 4.10 provides an additional comparison between the two methodologies. The figure 

represents the 1-kilometer tiles using a color scheme based on the F1-scores, computed for 

high-resolution images in the case of 12 clustered training tiles. The colors indicate four 

accuracy levels in the automated landslide maps, spanning from very high (F1>0.75) to very 

low (F1<0.25). Tiles utilized for training are distinctly marked with a thick black border. The 

data shows that the U-Net model, when trained using high-resolution images (UNET-2), 

achieves F1-scores above 0.5 in 75 of 86 tiles (approximately 87%). In contrast, the NDVI-3 

model achieves similar scores in only 32 of 86 tiles (about 37%). In the U-Net model, the tiles 

with the lowest F1-scores present a simultaneous combination of low True Positives and high 

False Positives. This pattern is often observed in tiles with a sparse presence of landslides, 

where the few positive pixels do not align well with the actual occurrences. Conversely, in the 

NDVI model, the lowest F1-scores are primarily due to a high rate of False Positives. These 

inaccuracies tend to be distributed randomly across the tiles and are often associated with 
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agricultural activities. As expected, the training tiles (marked with a thick black border in Fig. 

4.10) exhibit higher F1 values, particularly for U-Net, which is designed to identify complex 

data patterns. This effect is more subdued for NDVI, as this method mainly tracks changes in 

vegetation and is less sensitive to localized conditions. 

 

 

Figure 4.10. Performance comparison of the landslide map produced by NDVI change (upper) 

versus UNET (lower) across Casola Valsenio. Each 1km² tile is color-coded based on the F1-

score, as indicated by the colorbar. 
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4.7 Discussion 

4.7.1 Which method is best for automated mapping? 

When strictly assessed on a statistical basis, U-Net clearly outperforms NDVI. In our study 

area, U-Net consistently achieves higher F1-scores, with a clear distinction in accuracy when 

compared to actual data. A notable strength of U-Net is its ability to differentiate between 

landslides and plowed fields, something that NDVI often confuses. Additionally, U-Net is more 

effective at spotting landslides on bare slopes, which NDVI frequently overlooks. This 

enhanced accuracy is attributed to the capabilities of convolutional neural networks, which, 

unlike the NDVI method that depends solely on pixel characteristics, analyze both the shape 

and internal patterns of objects. Furthermore, U-Net is proficient at handling high-resolution 

images, resulting in high-quality prediction raster.  

The two methods, however, needs different skill levels, a crucial factor in emergency situations. 

NDVI is straightforward and simple, requiring no specialized hardware, with results that are 

easy to interpret and refine. For example, false positives in agricultural fields could be easily 

recognizable by their shape, and noisy pixel clusters could be filtered out to enhance map 

quality. U-Net, conversely, demands suitable computational resources and careful tuning of the 

model's hyperparameters to achieve optimal outcomes. This tuning process is complex and calls 

for an in-depth knowledge of the technique. Many technicians in civil protection agencies may 

lack the training for this task. Moreover, U-Net's outcomes tend to be more opaque or "black 

box" in nature, posing challenges in refining them without a thorough understanding of the 

method. 

In the Romagna 2023 event, U-Net emerged as the best choice primarily because of the poor 

performance of NDVI with high-resolution images. This was largely due to misclassifications 

arising from agricultural activities, along with noise from shadows and vegetation changes. 

Generally, NDVI performs better when assessed over a time period rather than from single-

event images (Martinez et al. 2021; Pu et al. 2022). Also our study revealed that using a series 

of Sentinel2 images (NDVI-1, F1=0.52) notably enhanced the NDVI's F1-score compared to 

single-image usage (NDVI-2, F1=0.45). However, this approach is often impractical with high-

resolution images, due to their limited availability before and after disasters. Consequently, 

NDVI might face difficulties in emergency situations, particularly when dealing with smaller 

landslides and high-resolutions images are necessary. 

 

4.7.2 Can automated mapping replace manual work? 

In emergency scenarios, landslide mapping primarily serves two key purposes: i) provide a first 

look at the disaster's magnitude, which includes counting landslides, detailing their spatial 

layout, and identifying the affected regions; ii) detect the vulnerable elements impacted by the 
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landslides and provide a first estimate of the economic costs involved. The first goal is crucial 

for informing media, influencing political decisions, and raising public awareness about the 

event. However, the second aim is of even greater importance to the communities directly 

affected by the disaster, as it is crucial for accelerating the recovery process. In both cases, the 

precision of the landslide map is of paramount importance. 

After the Romagna 2023 disaster, it was clear that manual mapping of landslides was necessary 

because automated NDVI maps were not detailed enough for important tasks like spotting 

infrastructure affected by landslides. As conditions improved two months later, we started 

exploring the application of U-Net technology. We are now in a position to assess whether 

advanced methods like U-Net can effectively enhance mapping efforts in emergency scenarios. 

This assessment involves (1) comparing the overlap of landslides identified manually to those 

identified by automated methods, and (2) measuring the accuracy of automated methods in 

identifying damaged buildings and roads by comparing these findings to manual inspections. 

Regarding the first evaluation, our findings indicate that U-Net trained on high-resolution 

images (UNET-2), and NDVI trained on Sentinel2 images (NDVI-1), both deliver satisfactory 

results. Notably, U-Net achieves a good F1-score of 0.64 with minimal training involving only 

12 tiles of 1 km² each. Automatic mapping methods, however, fall short in identifying damaged 

structures, as shown in Figure 4.11. This figure compares the counts of houses and roads 

affected by landslides, as determined through manual mapping, against the numbers detected 

automatically by overlaying NDVI and U-Net maps with layers indicating vulnerable elements. 

In Casola Valsenio, manual mapping identified 64 houses and 185 roads impacted by landslides. 

U-Net, utilizing high-resolution imagery and trained on 12 tiles, was able to detect a 

considerable portion of the damage to roads and buildings (65% and 72%, respectively). 

However, it also generated a significant number of false positives, particularly with buildings, 

often misclassifying roof tops as landslide areas. On the other hand, the NDVI mapping using 

Sentinel-2 images (NDVI-1) had fewer issues with false positives, but its accuracy in correctly 

identifying damaged buildings dropped to 49%. For both methods, precision (measured as the 

ratio of True Positives to the total Positives identified) is less than 0.52 for both roads and 

buildings. Additionally, while both methods tend to overestimate damages, they also generate 

several False Negatives. This suggests that their predictive accuracy is somewhat limited for 

this particular task. 

Based on these findings, we must conclude that in our case automated methods cannot fully 

replace manual mapping. The precision in detecting damages is in fact too low and does not 

meet our specific requirements. Nonetheless, there are two considerations that warrant further 

discussion on this conclusion. 

The first point to consider is the potential for improving our automated mapping. Enhancements 

to the NDVI and U-Net methodologies could be achieved through incorporating additional data 
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layers, applying post-processing filters, or tweaking the underlying algorithms. Many studies 

have documented the effectiveness of these approaches (Soares et al. 2020; Su et al. 2021; 

Bhuyan et al. 2023). As an example, consider how the results change when additional layers 

are incorporated into the U-Net model. Figure 4.11 presents two scenarios, UNET-A and UNET-

B, illustrating the enhanced damage detection capabilities of a modified U-Net version that 

includes a fifth band of NDVI data (sourced from CGR-AGEA and Sentinel2, respectively). 

Incorporating the NDVI data should assist the network in differentiating between actual 

landslides, bare soils, and areas of similar colors, such as rooftops, thereby decreasing the 

number of false positives. Indeed, with this addition, the networks achieve a remarkable F1-

scores of 0.68, and there is a reduction in false positives. The precision also improves compared 

to the 4-bands U-Net, attaining 0.46-0.55 for buildings and 0.65-0.69 for roads. While it is true 

that NDVI is calculated using R and NIR, which are already part of the input data, its inclusion 

as a fifth band provides a non-linear synthetic representation that can improve the model's 

ability to identify patterns in complex contexts. This observation is supported by the results 

shown in Chapter 5 (Table 5.2), where the inclusion of NDVI improves F1 and IoU scores for 

the Casola Valsenio municipality. These findings suggest that NDVI contributes 

complementary information, which positively impacts prediction performance, despite the 

potential overlap with R and NIR. Further optimization techniques were not pursued in our 

study because they are not practical in emergency contexts, where rapid response is crucial and 

there is often a lack of detailed ground-truth data. Nonetheless, it is conceivable that more 

advanced automation techniques could yield results closer to the ideal. This also applies to the 

use of full-resolution images. We had to downgrade the original images from 0.2 m to 2 m 

resolution to conduct the analysis within a reasonable timeframe and ensure a consistent 

sensitivity analysis. However, it is possible that with high-speed parallel computing, full-

resolution images could be processed to achieve better outcomes. 

The second point touches on a more "philosophical" question regarding the notion of ground 

truth. In our study, we treated the outcome of manual mapping as an accurate depiction of the 

actual landslides caused by the events, following common practice. However, it is important to 

acknowledge that manual mapping comes with its own level of subjectivity, casting some doubt 

on what we accept as ground truth. Research has indicated that variability among different 

mappers can introduce a significant subjectivity when delineating landslides from high-

resolution aerial photographs (Guzzetti et al. 2012). This inherent limitation also affects the 

accuracy of what we consider ground truth. In our efforts to map landslides, we frequently 

marked areas where debris had dispersed among trees to capture the full extent of the landslide. 

This process required interpretation and led to the inclusion of areas with vegetation within the 

landslide's boundaries. Moreover, differentiating between shallow landslides and soil erosion, 

or identifying landslides that moved debris over hard rock cliffs, presented difficulties in certain 

cases.  
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It is unrealistic to assume that automated techniques can replicate such expert judgments. While 

methods like U-Net are designed to identify patterns from provided data, they naturally fall 

short of mimicking the intricate insights of a seasoned human mapper. Refining these methods 

could serve to narrow the divide between human expertise and machine precision in mapping, 

yet it is essential to acknowledge that manual mapping is susceptible to mistakes and 

inaccuracies. Striking a careful equilibrium between these elements is difficult, especially in 

complex mapping situations. 

 

 

Figure 4.11. Landslide-induced damages within the Casola Valsenio area. The right-side map 

illustrates the positions of damaged buildings and roads identified through post-event aerial 

image analysis. On the left, histograms show the comparison between the actual number of 

damaged buildings (upper) and roads (lower) versus predictions made by various automated 

techniques. NDVI-1 represents the NDVI change from Sentinel2 images; UNET-2 denotes 

UNET application to CGR images; UNET-A/B are variations of UNET-2 incorporating an 

additional fifth band from NDVI changes using AGEA-CGR and Sentinel2 images respectively. 

 

4.7.3 Lessons learned 

Even the most skilled and experienced civil protection agencies, staffed with highly trained 

professionals, can encounter significant challenges during extraordinary rainfall events. This 

was exactly the case in our study. The Civil Protection Agency of the Emilia-Romagna Region, 

despite its extensive expertise and state of readiness, faced considerable difficulties in managing 

the scale and immediacy of the crisis. One of the most critical challenges immediately following 
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the disaster was the identification of impacted areas. Although there was support from the 

Copernicus Emergency Management Service and the National Civil Protection Agency (as 

mention in section 4.4.3), this crucial task was largely performed through manual efforts, 

requiring a great deal of work. 

The extensive testing carried out in this study points to a feasible strategy for improving crisis 

management in future events. A suggested protocol for operational actions could be: 

1) Quickly collect remote sensing imagery with high resolution immediately following the 

event. These images should ideally have pixel sizes ranging from 1-3 meters and 

encompass 4 bands (RGB+IR) to evaluate vegetation conditions more accurately. 

2) Perform field surveys in selected areas to understand the specific landslide types and the 

general instability processes. These direct observations are crucial for accurate landslide 

mapping from the remote sensing data. 

3) Manually map landslides in small, representative sections of the area (training tiles) that 

encompass the variety of landslide types and their geographical spread. Our findings 

indicate that mapping 2-3% of the total area could be enough for effectively training an 

automatic model during an emergency. 

4) Use an automatic method to map landslides across the remaining area. U-Net, in our 

experience, was more accurate than traditional NDVI methods, though it requires a more 

complex training and validation process. 

5) Overlay the landslide map with the vulnerable elements (roads, buildings, and 

infrastructures) to obtain a preliminary location of damages 

6) Carefully check automated mapping results. Manual verification of samples is critical to 

identify errors and refine the automatic techniques 

 

Key to this process is accessing high-resolution images after the event. While aerial 

photographs may not always be obtainable, satellite imagery of adequate resolution can be 

sourced or scheduled from platforms such as WorldView-3 and WorldView-4, GeoEye-1, and 

Pleiades-1A and Pleiades-1B. During the Romagna 2023 event, the mapping products rapidly 

generated from the Copernicus Emergency Service had limited utility since they were not 

tailored for the specific situation. Access to the original high-resolution satellite images 

(Pleiades-1A/B, with a 0.5 m resolution) that were used for analysis would have significantly 

aided in developing a dedicated mapping approach. We hope such images will be more readily 

available in future scenarios. 

A final point to consider is communication. Managing the flow of information efficiently is 

vital at all stages of the process, encompassing data gathering, organization, and dissemination 
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from the community to local authorities and up to the central civil protection system. In our 

case, a major challenge in data collection was due to local authorities' limited experience in 

handling and disseminating data in GIS format and their difficulties with managing spatial data 

on field devices or smartphones. This gap in digital proficiency hindered not only the 

coordination of rescue efforts and the validation of the landslide map with on-site data but also 

limited the map's practical use. A key lesson is that effectively managing a complex crisis 

demands a blend of sophisticated technical strategies and the participation of less-skilled staff 

who are actively involved in on-the-ground emergency response. The successful integration of 

these elements is crucial and necessitates thorough preparation in advance. 

 

4.8 Conclusions 

In this study, we evaluated two automated methods for rapid mapping to aid in the detection of 

landslides in emergency scenarios. Our evaluation took place in a selected area within the 

Emilia-Romagna Region (Italy), which was affected by the disaster in May 2023. The maps 

generated through automated processes were analyzed against a manually created map by 

expert geologists. From this analysis, we derived the following conclusions: 

1) In our testing area, UNET outperforms the NDVI change detection method in accurately 

identifying landslides. The convolutional neural network approach demonstrated a lower 

tendency for false positives compared to NDVI, which frequently misidentifies 

agricultural fields as landslides. UNET's enhanced accuracy is attributed to its capability 

to detect landslides based on not just changes in vegetation but also the physical shape of 

the object. 

2) All methods demonstrate their optimal performance even when trained on a limited 

dataset. Manually detecting landslides in roughly 2-3% of the area is enough for training 

the methods and achieving their highest F1-score. 

3) UNET yields satisfactory outcomes solely when utilized with high-resolution images, 

such as 4-band RGB+NIR aerial images at a 0.2 m resolution, resampled at 2 m. Utilizing 

low-resolution Sentinel-2 images with 10 m pixels does not yield adequate accuracy in 

identifying the small landslides triggered by the event. 

4) The NDVI change method exhibits better performance when evaluating the pre- and post-

event vegetation state over a period by averaging multiple satellite images rather than 

relying on a single image. However, this approach is only feasible with Sentinel-2 images, 

which are freely accessible and continuously captured. Conversely, it is not viable with 

high-resolution images typically obtained before and after a disaster, which pertain to 

specific time instances. 
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5) Once appropriately calibrated, advanced automated techniques such as UNET have the 

potential to aid in landslide mapping during emergencies, particularly in identifying the 

affected area and determining the number of landslides. However, accurately pinpointing 

the extent of landslide damage—specifically, the points of impact between landslides, 

buildings, and roads—presents greater difficulty, as it demands very high precision, 

especially when dealing with numerous small landslides. Consequently, in the case of the 

Romagna 2023 disaster, automated mapping was unable to entirely replace manual 

landslide identification by experts. 

6) Irrespective of whether an automated or manual approach is employed, the timely 

availability of high-resolution images following an event is crucial for effectively 

managing the crisis. Hence, existing policies governing access to high-resolution satellite 

data should account for the potential to share this data with public institutions engaged in 

emergency response efforts. 

 

Ongoing research efforts related to the Romagna 2023 disaster entail refining UNET for broader 

area application, analyzing landslide susceptibility, and crafting predictive models for landslide 

initiation and spread. The authors extend a warm invitation to colleagues for collaborative 

participation, aiming to extract valuable insights from this event. 
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Chapter 5  

Rapid Landslide Mapping During the 2023 Emilia-Romagna Disaster: Assessing 

Automated Approaches with Limited Training Data for Emergency Response 

 

5.1 Preface 

 This chapter addresses a critical challenge in disaster management: the rapid and accurate 

mapping of landslides following extreme weather events, such as the catastrophic rainfall that 

struck Emilia-Romagna in May 2023. The work represents a crucial phase of my doctoral 

research, aimed at enhancing real-time landslide detection through the application of advanced 

machine learning techniques. 

 The study explores the potential of two deep learning models—U-Net and SegFormer—for 

producing rapid, automated landslide maps with minimal training data, a necessity in 

emergency scenarios where time is of the essence. This research was conducted in collaboration 

with various institutions, and my role specifically focused on evaluating model performance 

and testing their applicability in complex geological conditions. 

 This chapter reflects both the technical challenges and the potential breakthroughs that 

automated approaches can offer in the context of disaster response. The insights gained here 

not only contribute to the development of more efficient mapping techniques but also lay the 

groundwork for future advancements in integrating machine learning models into emergency 

management systems. 

 

 The chapter is based on a current manuscript prepared for submission: 

 Dal Seno N.¹, Ciccarese G.¹, Evangelista D.², Piccolomini E.², Berti M.¹. Rapid Landslide 

Mapping During the 2023 Emilia-Romagna Disaster: Assessing Automated Approaches with 

Limited Training Data for Emergency Response. 

 

[1] Department of Biological, Geological, and Environmental Sciences (BiGeA), University of 

 Bologna, Bologna, Italy 

[2] Department of Informatics: Science and Engineering (DISI), University of Bologna, 

 Bologna, Italy 
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5.2 Abstract 

The catastrophic rainfall events of May 2023 in the Emilia-Romagna region, Italy, triggered 

thousands of landslides, posing a significant challenge for emergency response. This study 

investigates the potential of automated landslide mapping to aid in rapid disaster response by 

focusing on two deep learning models: U-Net and SegFormer. Unlike traditional approaches 

that require extensive training data, our methodology emphasizes the necessity for quick results, 

given the urgent need for timely, accurate mapping in emergency scenarios. 

The study was conducted in four severely affected municipalities: Casola Valsenio, Predappio, 

Modigliana, and Brisighella. By limiting the amount of training data to expedite the process, 

both U-Net and SegFormer were evaluated for their ability to deliver accurate mappings with 

reduced preparation time. While U-Net proved effective in identifying landslides based on 

changes in terrain and vegetation, SegFormer demonstrated enhanced performance in complex 

geological conditions, reducing false positives. 

This research highlights the feasibility of integrating automated mapping techniques into 

emergency workflows, significantly shortening response times while maintaining a high level 

of accuracy. Although manual verification remains necessary for refining results, particularly 

in complex situations, this study demonstrates that with minimal training data, automated 

mapping can play a crucial role in emergency management, improving the speed and efficiency 

of disaster response. 

 

5.3. Introduction 

Rapid and accurate landslide mapping over large areas is a challenging task, particularly in the 

context of emergency management following regional-scale rainfall or earthquake events 

(Holbling et al. 2017; Iverson et al. 2015; Casagli et al. 2016, Dal Seno et al. 2024). The ability 

to quickly and accurately identify landslides is crucial for effective disaster response and 

mitigation efforts. This is especially true when a large number of landslides must be mapped to 

support emergency management. In such cases, remote sensing and machine learning 

approaches can potentially improve rapidity in mapping (Ferrario et al. 2024; Guzzetti et al., 

2012; Sameen and Pradhan 2019, Chen et al. 2018, Ye et al. 2019, Tang et al. 2022, Ji 2020). 

The challenges in landslide mapping are multifaceted, depending on factors such as immediate 

access to high-resolution, cloud-free imagery, deployment of skilled analysts, effectiveness of 

image analysis software, and difficulties in identifying certain landslides due to various 

environmental factors like small size, tree cover, or minimal impact on terrain and land cover. 

Current solutions for emergency landslide mapping scenarios vary in their approaches and 

effectiveness. In Europe, the Copernicus Emergency Management Service (CEMS) utilizes 

mid- to high-resolution satellite imagery for rapid mapping of landslides and flooded areas 
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(Joubert-Boitat et al., 2020). However, these services often face limitations in accuracy and 

accessibility. Only a limited portion of the imagery Copernicus uses is accessible to third parties 

for further examination or for running automated landslide detection algorithms. While datasets 

from Sentinel-2 are freely distributed (Amatya et al., 2023), acquiring higher resolution 

datasets, like those from Pléiades 1A/B, requires specific orders and faces distribution 

restrictions. This limitation significantly complicates the timely access to these datasets, 

potentially rendering them insufficient for practical emergency response. 

Automated landslide recognition techniques using convolutional neural networks (CNN) 

algorithms are emerging as promising alternatives to manual methods (Holbling et al. 2017). 

Recent studies have demonstrated their effectiveness in real-world emergency scenarios. Meena 

et al. (2021) applied a deep learning approach for rapid landslide mapping in India following 

extreme monsoon rainfall, showcasing the potential of these techniques in post-disaster 

conditions. Prakash et al. (2021) introduced a new strategy using a generalized convolutional 

neural network, aiming to develop a more versatile method applicable across various 

geographical contexts. Building on this, Prakash and Manconi (2021) demonstrated the 

practical utility of these methods by rapidly mapping landslides triggered by a severe storm 

event. These studies collectively highlight the potential of automated methods to provide quick 

and accurate results in emergency situations, crucial for timely disaster response and 

management. The focus on real-world applicability in these works underscores the growing 

importance of such technologies in enhancing practical disaster management capabilities, 

particularly in scenarios requiring rapid response over large or complex terrains. 

The May 2023 events in the Emilia-Romagna Region of Italy provide a compelling context for 

this study. Two intense cyclonic events, occurring from May 1-3 and May 16-18, resulted in up 

to 500 mm of rainfall in the Romagna Apennines, triggering approximately 70,000 landslides 

and widespread flooding. The disaster caused extensive damage across the provinces of Forlì-

Cesena, Ravenna, Bologna, Modena, and Rimini. Public property saw over 4,000 incidents of 

damage, agricultural losses impacted 2,900 farms, and essential infrastructure, including roads 

and bridges, was severely affected, isolating many locations. The total area impacted by 

landslides exceeded 70 square kilometers, emphasizing the event's vast scale. The flooding 

alone inundated 540 square kilometers of land. The aftermath included damages worth several 

billion Euros and 17 fatalities, highlighting the crisis's severe human and economic toll. This 

disaster underscores the urgent need for efficient and accurate landslide mapping techniques to 

support rapid response and mitigation efforts in future emergencies (Berti et al 2024a – 

“Emergency mapping: lessons learned from 2023 landslide event in Romagna”, under review; 

Technical-Scientific Commission Report, 2023). 

This study leverages the ground-truth dataset collected during the Emilia-Romagna crisis to 

evaluate the benefits and limitations of automated mapping algorithms. Specifically, we assess 

the effectiveness of U-Net and SegFormer algorithms, focusing on their practical use in post-
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event emergencies. We examine the requirements for ground-truth data to achieve reliable 

outcomes and the impact of image resolution and quality on the results. By addressing these 

aspects, we seek to determine if automated approaches can offer significant benefits over 

conventional, manually supervised mapping, especially in rapidly responding to widespread 

landslide disasters. This research is crucial for developing more efficient and timely landslide 

mapping techniques that can support critical decision-making in future emergency situations, 

bridging the gap between academic advancements and practical, on-the-ground applications in 

crisis management. 

 

5.4. The Romagna May 2023 Rainfall Events 

5.4.1 Rainfall Events 

The Emilia-Romagna region experienced unprecedented meteorological events in May 2023, 

detailed extensively by Berti (Berti et al., 2024b - " Automated Mapping During an Emergency: 

Lessons Learned from the 2023 Landslide Event in Romagna, Italy", under review) and Foraci 

et al. (2023). Two major rainfall episodes, from May 1-3 and May 16-17, led to severe floods 

and landslides, surpassing the damage recorded during the historic floods of 1939 and 1966. 

During the first event (May 1-3), a stationary low-pressure system caused extraordinary rainfall, 

with cumulative rainfall peaking at 274.4 mm in Le Taverne (Modigliana, Forlì-Cesena). The 

second event, from May 16 to 17, was similarly severe. Another low-pressure system, combined 

with bora winds and moist air from the Mediterranean, resulted in even higher rainfall 

accumulations. These unprecedented amounts exceeded historical maxima, with return periods 

estimated to be over 500 years for the maximum areal rainfall in May 2023 for 4 out of the 7 

sample basins used in the Report of the Technical-Scientific Commission established by 

Regional Council Resolution No. 984/202 (Technical-Scientific Commission Report, 2023), 

aimed at analyzing the extreme meteorological events of May 2023. 

The cumulative precipitation from May 1 to 17 averaged 221.40 mm regionally, with some 

locations reporting up to 609.8 mm, such as Trebbio (Modigliana, Forlì-Cesena), Monte Albano 

(Casola Valsenio, Ravenna), San Cassiano (Brisighella, Ravenna), and Predappio (Forlì-

Cesena). These values represent one-third to one-half of the annual climatic precipitation, 

underlining the exceptional nature of this period. Figure 5.1b illustrates the cumulative 

precipitation distribution from May 1 to 17 across these communes. 
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Figure 5.1. Overview of the Effects of the Extreme Rainfall Event in Romagna, May 2023. a) 

Manually mapped landslide distribution across the study areas. b) Cumulative precipitation 

map from May 1 to May 17, 2023. 

 



172 

 

5.4.2 Types of Triggered Landslides  

5.4.2.1 Rapid Earth and Debris Slides  

A significant portion of the landslides were rapid earth (ES) and debris slides (DS) (Berti et al., 

2024b). These movements, occurring on steep, inclined slopes, especially near watercourses 

and road embankments, formed large, denuded surfaces by removing vegetation and depositing 

reworked material at the base of slopes. These slides, characterized by the movement of surface 

debris composed mainly of sand, silt, and the upper soil layer including vegetation, often 

evolved into flow-like movements if the topography allowed. Unlike classic slides, these 

materials did not move as a cohesive block but flowed along the slope, creating accumulations 

of completely reworked material. Such events were common on steep, forested slopes and often 

impacted mid-slope roads (Fig. 5.2b) (Technical-Scientific Commission Report, 2023). 

 

5.4.2.2 Earth and Debris Flows 

Additionally, numerous earth (EF) and debris flows (DF) occurred (Berti et al., 2024b). These 

flows, both channeled and unchanneled, were characterized by their ability to travel over planar 

slopes or within gullies, often originating from single points. On steeper slopes, they exhibited 

typical debris flow morphology with a source area, a narrow channel, and a lobate deposit zone. 

These flows could travel hundreds of meters, carrying mud, debris, and uprooted vegetation, 

causing extensive damage to communication routes and buildings (Fig. 5.2c, 5.2d). 

Unchanneled flows were characterized by straight, constant-width paths, whereas channeled 

flows had more irregular shapes and could form new channels through the mobilization of 

existing deposits. 

 

5.4.2.3 Rock Slides Along Bedding Planes 

Rock slides (SCST) along bedding planes were also significant (Berti et al., 2024b). These 

slides involved the rock mass sliding along stratification planes, marked by perimeter fractures. 

These types of landslides typically occurred on less steep, dip slopes and often involved large 

areas, sometimes exceeding 10 hectares. Although their overall affected area often required 

interpretative mapping, they contributed significantly to the widespread landscape changes 

observed (Fig. 5.2a). 

The May 2023 landslides caused extensive landscape alterations, stripping vast areas of 

vegetation and soil cover. The rapid movement of debris and rock masses damaged numerous 

roads across the Romagna region, affecting detachment zones, flow tracks, and deposition 

areas. The severity of these events led to the destruction of houses and fatalities, prompting a 

state of emergency. Many individuals were forced to evacuate, and access to several villages 
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and valleys was hindered due to the extensive road and infrastructure damage (Pizziolo et al., 

2024, Berti et al., 2024b). 

 

5.4.3 Motivation 

High-precision manual landslide mapping, while accurate, requires substantial time—a luxury 

often unavailable in emergency situations. The May 2023 event in Emilia-Romagna has 

underscored the need to develop more efficient approaches for future emergencies. This study 

is motivated by the critical question: How can we more effectively address landslide mapping 

in time-sensitive scenarios? 

Our research aims to simulate an emergency situation similar to the aftermath of the May 2023 

disaster. In such scenarios, a post-event imagery must be available, but comprehensive mapping 

of all affected areas is not immediately feasible. We explore whether mapping landslides 

manually in a single municipality—in this case, Casola Valsenio—can provide sufficient 

training data to automatically map landslides in other affected communities. 

The core motivation of this study is to determine if a model trained on data from one 

municipality can effectively map landslides in neighboring areas. We seek to understand the 

quality and accuracy of such automated mapping and to identify the geographical and 

geological limits of its applicability. 

To this end, we apply our trained model to the municipalities of Predappio, Modigliana, and 

Brisighella. These areas largely share similar lithology and landslide typology with Casola 

Valsenio, with the exception of a portion of Brisighella situated in Pliocene blue clays (FAA). 

This approach allows us to assess the model's performance across similar geological contexts 

while also testing its limits in slightly divergent conditions. 

By addressing these questions, we aim to develop insights that could significantly improve the 

efficiency and effectiveness of landslide mapping in future emergency situations, potentially 

saving crucial time in critical response periods. 
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Figure 5.2. Examples of Landslides in Romagna from May 2023 event.  

a) Rockslide (SCST) at Baccagnano, Brisighella, triggered during the night of May 2-3 

(WGS84: 44.207, 11.774).  

b) Shallow debris slide (DS) at Monte Albano, Casola Valsenio (WGS84: 44.236, 11.668).  

c) Channeled debris flow (DF) at Modigliana (WGS84: 44.148, 11.774).  

d) Unchanneled debris flow (DF) at Predappio (WGS84: 44.118, 11.968).  

Images sourced from the Geoportale 3D Regione Emilia-Romagna. 

 

5.5. Methods 

5.5.1 Manual landslide mapping 

A detailed inventory of landslides was manually compiled using high-resolution aerial imagery 

from May 2023 (0.2 m pixel) and 2020 (0.2 m pixel). Geologists, who had inspected the 

landslide sites shortly after the event, conducted this work, leveraging their field experience to 

https://mappe.regione.emilia-romagna.it/
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accurately identify landslide features in the photos (Berti et al., 2024b). This process included 

visual inspection and digitization within a GIS framework, using scales from 1:1000 to 1:200. 

A 1x1 km reference grid was utilized to aid surveyors and monitor progress. NDVI change 

maps from Sentinel-2 data, NIR band imagery, hillshade renderings from a 5 m resolution 

DEM, and topographic maps supported the analysis. Additionally, a 3D visualization tool was 

used for dynamic perspectives. 

Within the GIS, landslide outlines (polygonal layers) and initiation points (point layers) were 

digitized. Only landslides from May 2023 were included; those unchanged since 2020 were 

excluded. For debris flows with multiple source areas, several initiation points were recorded, 

typically in the highest parts of the detachment zones. The landslide layer's attribute table used 

codes to differentiate types such as rotational debris slide (RDS), translational debris slide (DS), 

debris flow (DF), rock slide (RS), earth slide (ES), and earth flow (EF). An inventory of 

landslide-induced damages was also created, marking affected roads and buildings, with 

attributes distinguishing their location and proximity to a 30 m buffer zone around the landslide 

outline (Berti et al., 2024b). 

Most May 2023 landslides were first-time failures, easily identifiable in aerial images. Debris 

flows and slides cleared vegetation, revealing bare soil in deposition zones, while translational 

rock block slides caused significant landscape changes. Some challenges included small-scale 

events and those obscured by canopy cover. Despite these challenges, the inventory is estimated 

to be over 90% complete. 

 

5.5.2 Study area 

5.5.2.1 Casola Valsenio 

The automated mapping techniques were evaluated in Casola Valsenio (Ravenna province), a 

region heavily impacted by the severe hydrogeological events of May 2023. Spanning 84 km², 

Casola Valsenio is dominated by the Marnoso-Arenacea Formation (FMA), which is stratified 

into four members based on the ratio of sandstone to pelites (Fig. 3a). The Senio River runs 

through the area, intersected by smaller tributaries at sharp angles. The landscape's asymmetry, 

with slopes ranging from 30° to 70°, is characteristic of the Marnoso-Arenacea Formation. Prior 

to May 2023, the Geological Survey had recorded 730 ancient, inactive landslides, mostly rock-

block slides on slopes aligned with bedding planes. After the disaster, this number surged to 

5.617 new landslides, transforming the terrain. With a population of 2.650, Casola Valsenio 

serves as a key connection between the Po Plain and Tuscany. The disaster disrupted local 

infrastructure, blocking the main road and isolating the southern region for weeks, with nearly 

70 homes and 200 roadways severely impacted. 
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5.5.2.2 Predappio 

In Predappio (Forlì-Cesena province), another focus area for the study, the effects of the May 

2023 disaster were profound. This municipality, covering 91 km², is largely composed of the 

Marnoso-Arenacea Formation and the Blue Clays Formation (FAA) in the higher regions (Fig. 

3b). The Rabbi River and its tributaries carve through the terrain, characterized by steep, 

asymmetrical slopes ranging from 25° to 65°. Prior to the catastrophic event, 840 landslides 

had been recorded, primarily involving rock-block slides and debris flows. Following the 

disaster, this number escalated to 6.840, altering the landscape significantly. Predappio, home 

to 6.300 residents, plays a critical role in linking the Po Plain with central Italy. The region 

experienced weeks of isolation due to a major landslide blocking the main road, impacting 19 

homes and damaging 138 roadways, with long-lasting consequences. 

 

5.5.2.3 Modigliana 

Modigliana, another municipality in the Forlì-Cesena province, was severely affected by the 

May 2023 hydrogeological disaster. This area spans 101 km² and is primarily composed of the 

Marnoso-Arenacea Formation, with a portion of Blue Clays in the northeast (Fig. 3c). The 

Tramazzo River flows through the region, with several tributaries joining it at right angles. The 

slopes in Modigliana feature steep inclinations between 35° and 70°, shaped by the orientation 

of the rock layers. Before the disaster, 795 landslides were documented, mostly complex and 

rock-block slides. After the May 2023 event, the number of landslides jumped to 6.862, 

drastically reshaping the landscape. With 4,500 residents, Modigliana serves as a crucial 

connector between the Po Plain and Tuscany. The disaster blocked the main access road for 

weeks, disrupting daily life and affecting 51 homes and 155 roadways, leaving the community 

to face long-term recovery challenges. 

 

5.5.2.4 Brisighella 

Brisighella, located in the Ravenna province, covers 194 km² and experienced significant 

disruption from the May 2023 disaster. The municipality is primarily composed of the Marnoso-

Arenacea Formation, while the northern section, covering about 75 km², is dominated by the 

Blue Clays Formation, separated by a small zone of gypsum (Fig. 3d). The Lamone River 

bisects the area, with numerous tributaries intersecting at right angles. The landscape features 

steep, asymmetrical slopes ranging from 30° to 70°. Prior to the event, the Geological Survey 

had recorded 2.100 landslides, mainly ancient, inactive rock-block and complex slides. Post-

disaster, an additional 6.274 landslides were recorded, exacerbating the region’s vulnerability. 

Brisighella, with a population of 7.600, faced severe disruptions, with landslides blocking key 
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access routes and affecting 66 homes and 261 roadways. The recovery process is ongoing as 

the community grapples with the extensive damage. 

 

Figure 5.3. Schematic geological map of the municipalities of Casola Valsenio (a), Predappio 

(b), Modigliana (c) and Brisighella (d). FMA = Marnoso Arenacea Formation, categorized into 

three distinct members based on the prevailing Arenites/Pelites (A/P) ratio. 

 

5.5.3 Dataset 

Our model training utilized a multi-layer input approach, combining various high-resolution 

imagery and derived products to capture the complex characteristics of landslides. All layers 

were resampled to a 2-meter resolution to ensure computational efficiency and pixel-to-pixel 

correspondence across datasets. Additionally, all layers were normalized to a float32 range of 
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0 to 1, as this normalization often improves the performance of machine learning models by 

ensuring consistency in the input data scale. 

The following layers were included: 

▪ CGR Imagery (Fig. 5.4b): High-resolution aerial photographs (0.2 m original resolution) 

commissioned by the Emilia Romagna Region, captured on May 23, 2023, shortly after 

the landslide events. These images comprise 4 bands (RGB + NIR) and provide detailed 

post-event landscape information. 

▪ Slope (Fig. 5.4d): Derived from the 5x5 m Digital Terrain Model (DTM) provided by the 

Emilia Romagna Region's geoportal. This DTM, originally based on 1:5000 scale 

Regional Technical Map and updated with 2009 LiDAR data, offers crucial topographic 

information for landslide susceptibility analysis. 

▪ AGEA Imagery (Fig. 5.4a): High-resolution (0.2 m) aerial photographs from 2020, 

captured by the Italian Agency for Agricultural Payments. These 4-band (RGB+NIR) 

images represent pre-event conditions and are valuable for land use and vegetation change 

analysis. 

▪ NDVI Change Sentinel-2 Map (Fig. 5.4f): Derived from Sentinel-2 satellite data (10 m 

resolution). Berti et al., 2024a (" Automated Mapping During an Emergency: Lessons 

Learned from the 2023 Landslide Event in Romagna, Italy", under review) utilized 

multiple datasets to capture both pre- and post-event conditions: 

- S1: Multiple images from May and June 2022 

- S2: One image taken exactly a year before the event 

- S3: First post-event image with minimal cloud cover (May 23, 2023) 

- S4: Eight additional low-cloud-coverage images captured over the following 

month. 

▪ NDVI Change CGR Map (Fig. 5.4e): Derived from high-resolution (0.2 m) aerial imagery. 

Berti et al., 2024a (" Automated Mapping During an Emergency: Lessons Learned from 

the 2023 Landslide Event in Romagna, Italy", under review), resampled the original 0.2-

meter resolution images to 1-meter resolution using bilinear interpolation, applying this 

process to the original spectral bands to preserve data integrity.  

▪ Landslides map (Fig. 5.4c): A binary raster derived from the manual landslide mapping 

process. This inventory was compiled by experienced geologists using high-resolution 

aerial imagery from May 2023 and 2020 as described in section 5.5.1. 

By integrating these diverse data layers, we aim to provide our models with a rich, multi-

dimensional representation of the landscape, enabling more accurate and robust landslide 

detection and delineation. 
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Figure 5.4. Example of layers included in tile no. 86. a) AGEA imagery 2020, pre-event in 

RBG b) CGR aerial image 2023, post event; c) Binary raster of manually mapped landslides d) 

Slope map; e) NDVI Change CGR Map f) NDVI Change Sentinel-2. 

 

5.5.4 Deep Learning Semantic Segmentation Models 

5.5.4.1 U-Net 

UNet is a convolutional neural network architecture originally designed for biomedical image 

segmentation by Ronneberger et al. (2015). It features an encoder-decoder structure where the 

encoder progressively reduces the spatial dimensions through convolutional and max-pooling 

layers, capturing contextual and high-level features. The decoder then upsamples the features 

using transposed convolutions and concatenates them with corresponding encoder features 

through skip connections, which help retain spatial information and improve localization 

accuracy. This combination of context and localization has proven highly effective for 

segmentation tasks across various domains. UNet's effectiveness in landslide mapping has been 

demonstrated in recent studies (Meena et al. 2021, 2022; Ghorbanzadeh et al. 2022, 2023; Nava 

et al. 2022). 

In our study, we implemented the UNet architecture manually in Python. The input shape of 

the images was defined according to the specific dimensions of the data used, ensuring the 

model could effectively process the input imagery. We set the number of scales to 2, which 

determines the number of downsampling steps in the encoder, and each scale included 2 
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convolutional layers, which helped capture intricate details and patterns within the data. The 

initial number of convolutional filters was set to 64. This parameter defines the number of filters 

applied in the first convolutional layer, which influences the model's ability to learn from the 

input data. As the network progresses through the layers, the number of filters increases, 

allowing the model to capture more complex features. 

Our model was designed to output 2 classes: landslide and non-landslide. This binary 

classification approach enabled us to effectively differentiate between affected and unaffected 

areas in the imagery. The model was compiled using the Adam optimizer (Kingma and Ba, 

2017), a learning rate of 0.0001 and a Dice loss function for 1000 epochs.  

To evaluate the performance of the model during training, we monitored the F1 score and 

Intersection over Union (IoU) metrics. The F1 score provides a balance between precision and 

recall, while IoU measures the overlap between predicted and actual landslide areas, giving a 

comprehensive evaluation of the model's segmentation accuracy. Additionally, we 

implemented an early stopping callback to halt training if the validation loss did not improve 

for 50 epochs (Prechelt, 1998). 

 

5.5.4.2 SegFormer 

We implemented SegFormer, a state-of-the-art architecture for semantic segmentation of 

multispectral landslide imagery, chosen for its efficiency, flexibility in handling variable-

resolution imagery, and robust performance on multispectral datasets. SegFormer, introduced 

by Xie et al. (2021), is designed to overcome limitations of previous vision Transformer models, 

offering both high efficiency and strong performance. While the original SegFormer 

architecture was designed for 3-channel RGB images, the SegformerForSemanticSegmentation 

implementation from Hugging Face Transformers library (Wolf et al., 2020) we used allows 

for flexible input channel configuration. We leveraged this feature to adapt SegFormer to our 

multi channels imagery.  

The SegFormer architecture consists of two main components: 

1. Hierarchical Transformer Encoder: This encoder employs a novel hierarchical structure 

with progressively larger stride and patch sizes, allowing the model to capture both fine 

and coarse features efficiently. It uses an efficient self-attention mechanism without 

positional encoding and incorporates a Mix-FFN block that includes a depth-wise 

convolution to enhance local spatial information aggregation. 

2. Lightweight All-MLP Decoder: Unlike complex decoder designs in previous models, 

SegFormer uses a simple multi-layer perceptron (MLP) decoder. This decoder fuses multi-

level features from the encoder through a unified set of MLP layers, achieving per-pixel 

prediction without the need for complex operations like FPN or dilated convolutions. 
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SegFormer's design eliminates the need for positional encoding, allowing it to handle variable 

input resolutions without interpolation. This feature is particularly beneficial for our landslide 

imagery, which can vary in resolution and scale. 

Our model was configured as the variant MiT-b0 (Xie et al., 2021) with the following 

parameters:  

▪ Hidden sizes: [32, 64, 160, 256]  

▪ Encoder depths: [2, 2, 2, 2]  

▪ Decoder hidden size: 256 

The model was trained using Cross-Entropy Loss as the criterion. We employed the Adam 

optimizer with a learning rate of 0.001 for 1000 epochs. 

All experiments were conducted using Python 3.8.10, PyTorch (Paszke et al., 2019) 1.9.0, and 

CUDA 11.1. 

 

5.5.5 Training-Testing Split 

While conventional practice often dictates a 70/30 or 80/20 ratio for training and testing datasets 

(Hastie et al., 2009), this study adopts an innovative approach to simulate real-world emergency 

mapping conditions, as exemplified by the May 2023 event. The model was exclusively trained 

on data from the Casola Valsenio municipality and subsequently applied and evaluated on three 

additional municipalities: Predappio, Modigliana, and Brisighella. This methodology emulates 

an emergency scenario where, following the mapping of one municipality, rapid and automated 

mapping of subsequent areas can be achieved, albeit with inherent limitations. 

To facilitate analysis, the study area was segmented into 1x1 km grid tiles, as illustrated in Fig. 

5.5. Each 1 km² tile corresponds to 496x496 pixels in the CGR imagery when resampled at 2m 

resolution. Generally, a single grid tile in these areas encompasses over 50 landslides, providing 

a robust representation of landslide patterns. 

For model training, a stratified random sampling approach was employed. From the total 97 

tiles in Casola Valsenio, 70% (68 tiles) were randomly selected for training, with the remaining 

30% (29 tiles) reserved for initial testing and validation. This approach ensures a representative 

sample while preserving the integrity of the testing data (Fig. 5.5).  
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Figure 5.5. Training and test tiles used for models’ construction in Casola Valsenio, illustrating 

the spatial split of the area. 

 

The U-Net and SegForm models were trained using various combinations of the dataset as 

illustrated in Table 11. Each combination was designed to correspond to different emergency 

scenarios, acknowledging that comprehensive data acquisition is not always feasible in post-

event situations. The cases are as follows: 

▪ Case 1 (U1 and S1): This represents the baseline scenario, simulating the most limited 

data availability typical of the immediate aftermath of an event. In this case, only the post-

event imagery and slope data are accessible. This scenario reflects the earliest stage of 

emergency response when rapid aerial imagery has been acquired, but pre-event 

comparison data is not yet available. 

▪ Case 2 (U2 and S2): This case builds upon the baseline by incorporating publicly available 

satellite data. In addition to the post-event imagery and slope data, it includes NDVI 

change information derived from Sentinel-2.  

▪ Case 3 (U3 and S3): This scenario introduces the availability of pre-event imagery. It 

includes pre- and post-event images along with slope data.  

▪ Case 4 (U4 and S4): This case represents a more comprehensive data set, incorporating 

NDVI change information. It includes pre- and post-event imagery, slope data, and NDVI 

change calculated from the high-resolution images 

▪ Case 5 (U5 and S5): This final case represents the ideal scenario with access to all possible 

data layers. It includes CGR pre- and post-event imagery, slope data, NDVI change from 

high resolution imagery, and NDVI change from Sentinel-2. This comprehensive dataset 

allows for the most thorough analysis, combining high-resolution aerial data with broader 

satellite-derived information. 
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This progression from Case 1 to Case 5 simulates the evolution of data availability in a post-

event scenario, ranging from the most limited to the most comprehensive. It enables the 

evaluation of U-Net and SegForm models under varying conditions of data accessibility, 

reflecting realistic situations that may occur during emergency management and response 

efforts.  

 

Table 5.1. Overview of the various input layer configurations used during the training 

processes. 'NDVI' refers to the ‘ΔNDVI-CGR’ Change map created using CGR imagery, while 

‘ΔNDVI-S2’ refers to the NDVI Change map created using Sentinel-2 imagery. 

 

 

5.5.6 Model Application 

Following the training phase, we applied the models to the entirety of Predappio, Modigliana, 

and two distinct geological zones within Brisighella (FMA and FAA). Crucially, while ground 

truth (Fig. 5.1a) data was available for these municipalities, we deliberately chose not to use it 
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for model training. Instead, this data was reserved exclusively for evaluating the performance 

of our models.  

A significant limitation arises from the predominance of the Marnoso-Arenacea Formation 

(FMA) in the training dataset from Casola Valsenio (Fig. 5.3a). To address this geological bias, 

we isolated the portion of the Brisighella municipality situated in the Pliocene Blue Clays 

Formation (FAA) (Fig. 5.3d).  

This area is predominantly characterized by earth flows (EF) (Berti et al., 2024a, 2024b), which 

exhibit fundamentally different dynamics due to the unique lithological, morphological, and 

vegetative factors compared to those present in other municipalities (Fig. 5.6ab). 

 

Figure 5.6. Comparison examples are shown between pre-event (a) and post-event (b) earth 

flow (EF) landslides in the Blue Clays Formation (FAA) and pre-event (c) and post-event (d) 

debris slide (DS) in the Marnoso-Arenacea Formation (FMA), both triggered by the May 2023 

disaster in Brisighella. 

 

5.5.7 Evaluation Metrics and Expert Judgment 

5.5.7.1 Metrics 

To assess the performance of our landslide detection models, we employed two widely used 

metrics in semantic segmentation tasks: the F1 score and the Intersection over Union (IoU). 

These metrics were calculated on the entirety of the test images, rather than averaging scores 

across individual cells, to provide a comprehensive evaluation of the models' performance. 
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The F1 score, also known as the Dice coefficient, is the harmonic mean of precision and recall 

(Tharwat, 2020). It is particularly useful in imbalanced classification problems, such as 

landslide detection, where the positive class (landslide) is typically much smaller than the 

negative class (non-landslide). The F1 score is calculated as: 

 F1 = 2 ⋅  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 [5.1] 

where Precision = TP / (TP + FP) and Recall = TP / (TP + FN), with TP, FP, and FN representing 

True Positives, False Positives, and False Negatives, respectively. 

The Intersection over Union (IoU), also known as the Jaccard index, is another crucial metric 

for assessing segmentation accuracy (Rezatofighi et al., 2019). It measures the overlap between 

the predicted segmentation mask and the ground truth mask. The IoU is calculated as: 

 IoU = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 [5.2] 

Both metrics range from 0 to 1, with 1 indicating perfect prediction. By using these metrics on 

the entire test images, we can evaluate how well our models perform in detecting and 

delineating landslides across varied landscapes and geological contexts. 

The choice to calculate these metrics on the entire test images, rather than averaging across 

cells, allows us to capture the models' performance on landslides that may span multiple grid 

cells and provides a more realistic assessment of the models' capabilities in practical 

applications.  

 

5.5.7.2 Expert Judgment  

In landslide mapping, particularly during emergency phases, a higher algorithmic score does 

not necessarily correspond to a higher quality map. Algorithms may find preferential paths to 

increase scores at the expense of the specific quality required for practical application. While 

this issue is typically addressed by selecting the most appropriate score based on which 

components of the Confusion Matrix we wish to emphasize, in emergency automated mapping, 

not all components of the confusion matrix carry equal importance. 

To address this challenge, two of the authors in this study provided their expert judgment on 

the quality of the automatically generated on Modigliana’s landslide maps. This evaluation was 

conducted without prior knowledge of the scores obtained by these maps or the training input 

layers used to generate them. Their subjective assessments primarily focused on: 

▪ Overall mapping quality. 

▪ False positives in agricultural fields, where changes in plowing conditions between pre- 

and post-event images can be misinterpreted as landslides. 
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▪ False positives on buildings and roads. 

▪ False positives along river margins, often mistaken for landslides due to flooding-induced 

color changes that may appear similar to the algorithm. 

▪ The shape and delineation of the created landslide polygons. 

This expert evaluation was conducted with the practical perspective of which mappings would 

be most useful in an emergency scenario. For instance, it is generally faster to delete an 

erroneously created landslide polygon than to identify and map a missed landslide. This 

approach aims to balance algorithmic performance with real-world applicability, ensuring that 

the automated mapping results are not only statistically sound but also practically valuable in 

emergency response situations. 

 

5.6 Results 

The machine learning models were trained using 68 tiles (1x1 km) within the Casola Valsenio 

municipality and applied to map landslides in Predappio, Modigliana, Brisighella MA, and 

Brisighella FAA. Fifty result maps were generated using different combinations of input layers 

(Table 5.1), with the resulting scores summarized in Table 5.2. 

Comparing the scores (F1 and IoU in Table 5.2) against expert evaluation revealed a strong 

correspondence between quantitative metrics and qualitative assessments. Maps with higher 

scores were generally evaluated more favorably by experts, validating the reliability of our 

quantitative metrics. Notably, the range of scores produced by SegForm was narrower than 

UNet, suggesting SegForm may be less influenced by input parameter variations. 

Both UNet and SegForm performed well in models utilizing multiple input layers (Table 5.2). 

Interestingly, SegForm showed good performance even with only three layers. This suggests 

that an advanced state-of-the-art model like SegForm might achieve satisfactory results using 

only pre- and post-event imagery, potentially without requiring NDVI change data. 

The importance of pre-event imagery was highlighted by the performance drop observed in 

model S2, which lacked this input. Our findings indicate that, in our case, the absence of pre-

event imagery cannot be adequately compensated by lower-resolution NDVI change data (e.g., 

from Sentinel). The coarser resolution appears insufficient to bridge this informational gap. 

Analysis of Table 5.2, where the best and worst scores are highlighted in green and red 

respectively, reveals varying performance between UNet and SegForm models. For instance, 

models U2 and S2, trained using post-event imagery, slope, and pre-event imagery (Table 11), 

yielded contrasting results. S2 achieved the highest F1 and IoU scores for Predappio, 

Brisighella MA, and FAA, while its U2 counterpart obtained lower scores. 
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Table 5.2. Quality of the automatic mapping, based on F1 and IoU scores, achieved by UNet 

and SegFormer algorithms with different combinations of input layers, detailed in Table 11. 

 

However, given the similarity of scores across different municipalities, small differences (e.g., 

0.01) in F1 score and/or IoU may not necessarily indicate significantly higher quality mapping. 

Examining the results of models U3 and S3, trained using pre- and post-event imagery, slope, 

and NDVI from CGR (Table 5.1), both models demonstrate good performance. Figure 5.7 

illustrates the mapping results of U3 and S3 models for various municipalities, showing good 

and similar mapping capabilities, particularly for areas extensively affected by Debris Slides 

(DS) that exhibit similar characteristics in shape and vegetation removal, resulting in a distinct 

change in coloration. 

Figure 5.8 highlights example situations where the same mappings (U3 and S3) encounter 

difficulties, leading to errors: 

▪ In Casola Valsenio, the S3 model, likely confused by the different shape of the rock slide 

on layer (SCST) compared to the more common Debris Slides (DS) on which it was 

trained, incorrectly maps this landslide by dividing it into multiple smaller portions, 

resulting in False Negatives. 
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▪ In Predappio, both U3 and S3 models miss a series of landslides located on a slope that 

was in shadow at the time of the post-event image capture. This difference in coloration 

misleads the model, which fails to map any landslides on this slope, resulting in False 

Negatives. 

▪ In Modigliana and Brisighella MA, both models tend to map smaller or larger portions of 

some cultivated fields that frequently change appearance due to plowing and cyclic 

vegetation regrowth, leading to False Positives. 

▪ In Brisighella FAA, a series of False Positives are mapped, primarily due to the 

challenging task of mapping a different type of landslide and lithology (Blue Clays) not 

present in the training dataset. 

These difficulties are relatively common across different municipalities and among various 

combinations of input layers used to train the models (Tab. 5.1). Regarding the differences 

between UNet and Segform, despite similarities in scores and mapping, Segform, being a more 

recent and advanced model, demonstrates a better ability to leverage input data, including those 

with evidently lower information content. In contrast, UNet tends to produce more 

homogeneous and continuous mapping, allowing it to achieve good scores. 
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Figure 5.7. Comparative analysis of landslide mapping results using U3 and S3 models across 

different municipalities. The figure illustrates the spatial distribution and extent of landslides 

as identified by the U3 (UNet-based) and S3 (Segform-based) models in Casola Valsenio, 

Predappio, Modigliana, Brisighella MA, and Brisighella FAA. Both models were trained using 

pre- and post-event imagery, slope data, and NDVI from CGR. The comparison highlights the 

similarities and differences in landslide detection capabilities between the two models, 

particularly in areas dominated by Debris Slides (DS). 
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Figure 5.8. Representative examples of challenging scenarios for landslide detection using U3 

and S3 models across different municipalities. This figure illustrates common situations where 

both models encounter difficulties in accurately mapping landslides, highlighting the 

limitations and potential areas for improvement in the machine learning approach. The 

examples are drawn from Casola Valsenio, Predappio, Modigliana, Brisighella MA, and 

Brisighella FAA, showcasing the diverse geological and environmental conditions that can 

impact model performance. 
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5.7 Discussion 

The evaluation of automated landslide mapping techniques in this study incorporated both 

quantitative metrics and expert qualitative assessment, providing a comprehensive 

understanding of the models' performance and practical utility. 

1. As outlined in section 3.7, expert evaluation played a crucial role in assessing the real-

world applicability of the automated mappings. Two experienced geologists 

independently reviewed the output maps for the Modigliana municipality, categorizing 

them into three classes: low, medium, and high quality. This classification was based on 

several key factors critical for emergency response scenarios, including overall mapping 

accuracy, false positive detections in agricultural fields and along river margins, 

misclassifications of buildings and roads, and the shape and delineation of landslide 

polygons. This expert-driven approach provided valuable insights into the practical 

usability of automated mappings, going beyond the capabilities of quantitative metrics 

alone. 

2. Comparing the quantitative metrics (F1 score and IoU) reported in Table 2 with the expert 

evaluations revealed a strong correlation between these two assessment methods. This 

alignment validates the reliability of our quantitative metrics and underscores their 

relevance in practical applications. Notably, the models U4 and S4, which were trained 

using all available input layers except the Sentinel-2 NDVI change data (as detailed in 

Table 1), received the highest expert ratings for Modigliana and also achieved the highest 

F1 and IoU scores. This consistency was also observed at the lower end of the performance 

spectrum, where models U1 and S2 (trained with RGB+Slope and RGB+Slope+pre-event 

imagery, respectively) were identified by experts as the poorest performers, aligning with 

their lower quantitative scores. 

3. It is worth noting that there was one discrepancy between expert evaluation and 

quantitative metrics. The S5 model, trained using all available input layers (Table 1), 

received a low expert score despite achieving a relatively high F1 score of 0.53. This 

discrepancy highlights the importance of combining quantitative metrics with expert 

judgment, as some aspects of mapping quality that are crucial for practical applications 

may not be fully captured by numerical scores alone. 

4. The utility of these automated mapping techniques in emergency scenarios is significant. 

The ability to rapidly produce landslide maps of comparable quality to expert-generated 

ones could substantially expedite the initial response phase. By eliminating a significant 

portion of the manual polygon creation work, these automated methods could save weeks 

of effort. This time-saving aspect is particularly crucial in emergency situations, where 

rapid response is essential. The automated maps could serve as a valuable starting point, 

allowing responders to focus their efforts on refining and verifying the results, rather than 
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starting from scratch. This approach could lead to the production of a final, high-quality 

map in a fraction of the time required for fully manual mapping. 

5. It's important to note that while the F1 scores achieved by our models may not appear 

exceptionally high when compared to some machine learning benchmarks, they represent 

a significant achievement in the context of landslide mapping. Unlike many image 

classification tasks, landslide mapping requires precise delineation of complex, irregular 

shapes across varied terrain. Our models aim to produce a "real" mapping of landslide 

extents, including subtle transitions and complex morphologies, rather than simplified or 

generalized representations. This level of detail and accuracy is challenging to achieve but 

is crucial for practical applications in disaster response and risk assessment. 

6. Finally, regarding the practical application of this methodology, the emergency 

commission identified buildings within the landslide boundaries and an additional 20-

meter buffer zone as potentially at risk. To assess the potential utility of our automated 

mapping products during emergency response, we compared the buildings identified by 

the automated mapping with those identified through manual mapping (as shown in Figure 

5.9). The F1 scores indicate that the "U4" case remains the most accurate mapping (as 

suggested by previous F1 scores and expert judgment), successfully identifying 227 out 

of 351 buildings at risk. While these results are not excellent, they demonstrate the model's 

capacity to accurately assess the scale of the problem. This is critical for estimating the 

required workforce on the ground and evaluating potential economic damages—an urgent 

need following the May 2023 disaster, as outlined in the European Commission's proposal 

for financial assistance through the European Union Solidarity Fund (European 

Commission, 2024). 
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Figure 5.9. Comparison of buildings identified as at risk (within landslide boundaries or 

within a 20-meter buffer) by automated mapping methods and manual mapping (ground 

truth), showing the confusion matrices for all five cases evaluated. 
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5.8 Conclusion 

Automated landslide mapping presents considerable advantages during emergencies. While it 

cannot fully replace manual mapping, it serves as a valuable tool for initial assessments. By 

automating the creation of landslide polygons, field operators can significantly reduce the time 

spent on this task and focus instead on refining and correcting model outputs. This approach 

streamlines the overall mapping process, which is critical during disaster response phases. 

Experts generally agreed with the F1 score results, identifying consistent patterns of false 

positives, especially in areas like agricultural fields or along riverbanks. These errors are easily 

corrected during manual review, making the model outputs highly useful as a starting point. 

Automated mapping accelerates the creation of these foundational maps, enabling quicker 

responses and resource allocation in disaster situations. 

In future disasters of similar scale, we have shown that machine learning models can be 

instrumental in expediting post-disaster assessments. Although these tools are not a substitute 

for thorough manual mapping, they can significantly shorten the time needed to produce 

accurate maps, which is vital for effective disaster management. This increased efficiency can 

also aid in more timely damage assessments, which are critical for securing financial support, 

such as the assistance provided by the European Union Solidarity Fund (European Commission, 

2024). 
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Chapter 6  

General conclusions 

This PhD research aimed to explore how machine learning (ML) techniques can improve 

landslide prediction and emergency management, with a focus on the Emilia-Romagna region. 

The goal was to address three fundamental research questions, examining the application of 

ML methods in complex geological conditions, their effectiveness in emergency mapping, and 

the integration of these methods into operational early warning systems. Below, we summarize 

the key findings from these chapters before addressing the specific research questions. 

 

6.1 Summary of Key Findings 

Comparative Performance of Different Methods 

Chapter 2 highlighted the potential of ML methods, particularly XGBoost, to enhance the 

prediction of rainfall-induced landslides. Compared to traditional statistical approaches like 

BART, XGBoost achieved notable improvements, such as reducing false positives and 

achieving higher overall accuracy. These results emphasize that ML methods depend heavily 

on the quality and specificity of input data, as the additional parameters tested had limited 

impact on performance. Challenges such as imprecise landslide initiation dates and varying 

local responses to rainfall further constrained the models' predictive capabilities. 

Despite these constraints, the findings demonstrated that ML methods, when applied to well-

curated datasets, offer advantages over conventional techniques by processing complex, multi-

variable relationships. However, achieving meaningful advancements requires prioritizing data 

quality over model complexity. Refining historical datasets and improving the temporal and 

spatial resolution of rainfall and landslide data are critical steps to realizing the full potential of 

ML methods. 

 

Machine Learning versus Manual Mapping 

The analysis in Chapter 3, 4, and Chapter 5 highlighted the advantages and limitations of using 

ML methods compared to manual mapping in emergency scenarios. ML approaches, 

particularly U-Net, demonstrate significant potential in automating landslide detection and 

reducing the time required for initial mapping efforts. In the May 2023 Emilia-Romagna 

disaster, U-Net applied to high-resolution imagery achieved an F1-score of 0.64, successfully 

identifying over 65% of damaged roads and buildings. 

However, ML methods often require manual refinement to address misclassifications, such as 

rooftops or agricultural fields mistakenly labeled as landslides. While high-resolution imagery 

helps mitigate these inaccuracies, it cannot entirely eliminate them. Sentinel-2, although 



200 

 

valuable for broad assessments, struggles to capture smaller landslides, highlighting the 

importance of data quality and resolution. 

Manual mapping, though time-intensive, remains indispensable for validating ML outputs, 

resolving ambiguities, and refining critical details. This hybrid approach—where ML provides 

a baseline map and experts refine it—has proven effective in accelerating mapping efforts and 

improving accuracy. Moving forward, combining ML's speed with the interpretative strength 

of human expertise offers the most promising pathway for landslide mapping in emergency 

contexts. 

 

Remaining Challenges for ML Applications in Emergency Contexts 

Despite their promise, ML methods face significant challenges when applied in emergency 

contexts, as highlighted in Chapter 3, 4 and Chapter 5. Their performance depends heavily on 

the quality and availability of input data. While high-resolution imagery is critical for reliable 

results, its timely acquisition remains a challenge in many emergencies. Freely available 

Sentinel-2 imagery, with its 10-meter resolution, is insufficient for detecting small landslides 

or accurately delineating boundaries. 

False positives and false negatives persist as key issues. Misclassifications, such as rooftops or 

agricultural fields erroneously identified as landslides, can overestimate damage, while 

undetected landslides obscured by vegetation may lead to critical oversights. These limitations 

emphasize the need for manual intervention to refine automated outputs, underscoring the 

current gaps in fully autonomous mapping. 

Additionally, the "black-box" nature of some ML models, such as U-Net, limits their 

interpretability and acceptance in operational workflows. This lack of transparency can hinder 

decision-making, especially in high-pressure scenarios where justifications for predictions are 

required. Harmonizing classification criteria and developing user-friendly interfaces are crucial 

to improving both the usability and reliability of ML methods. 

Finally, practical integration into emergency management systems remains challenging. 

Agencies often lack the computational resources and expertise needed to deploy ML models 

effectively. Addressing this gap through targeted training, enhanced interpretability, and 

streamlined workflows is essential for leveraging ML's potential in real-world applications. 

 

6.2 Addressing the Research Questions 

Question 1: How can we effectively apply ML methods in complex geological conditions? 

The first research question sought to determine whether ML techniques could overcome the 

challenges posed by complex geological conditions when predicting landslide events. Chapter 
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2 explored this issue by applying several ML methods, to define rainfall thresholds for 

landslides in the Emilia-Romagna region, a setting characterized by intricate geological 

structures and variable topography. The results demonstrated that ML models outperformed 

traditional statistical methods such as Frequentist and Percentile approaches. XGBoost, for 

example, showed improvements in predictive accuracy and a reduction in false positives. 

However, the study also revealed that these improvements were relatively modest, especially 

considering the additional parameters used, such as antecedent rainfall over periods of 7 to 60 

days, the day of the year, and the alert areas. This suggests that while ML methods hold promise, 

their effectiveness is closely tied to the accuracy and resolution of the input data. The main 

challenge remains in accurately predicting individual rainfall events that trigger landslides, 

especially in regions with overlapping events where the distinction between critical and non-

critical conditions is blurred. 

In conclusion, ML methods can indeed improve landslide prediction in complex geological 

settings, but their success is limited by the availability of detailed and clean datasets, especially 

when dealing with historical data. The key to "improving" these predictions lies not only in 

using more advanced models but mainly in refining the quality of the data used to train these 

models. Future research should prioritize systematic monitoring and collection of high-quality, 

ground-truth data. 

 

Question 2: Is it truly effective to use ML methods for mapping during emergency situations? 

The research in Chapter 3, 4 and Chapter 5 demonstrates that machine learning (ML) models, 

particularly U-Net, can be highly effective for landslide mapping during emergencies, 

especially in large-scale disasters. One key advantage is the significant reduction in time 

required for mapping large numbers of landslides, compared to traditional manual methods such 

as delineating individual polygons in GIS. Manual mapping is labor-intensive (Chapter 4), 

making it not always suitable in urgent situations where a rapid response is crucial. 

ML models like U-Net and SegFormer proved invaluable during large-scale events, such as the 

May 2023 Emilia-Romagna disaster, by enabling the rapid generation of comprehensive maps 

that would have taken months to create manually. While the accuracy of these models is highly 

dependent on input data resolution, high-resolution imagery (0.2 m) typically yields 

significantly superior results compared to lower resolutions (10 m, like Sentinel-2). Sentinel-2 

can effectively map large-scale landslides, it presents challenges for reliable mapping in 

emergency scenarios where precision is essential. Thus, prioritizing the acquisition of high-

resolution images during emergency responses is crucial for achieving accurate results.  

Despite achieving high accuracy scores, fully automated methods cannot be relied upon for 

critical decisions, as they may lack the precision needed for tasks such as delineating landslide 
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boundaries or assessing infrastructure damage. However, they offer a reliable starting point that 

allows experts to focus on fine-tuning, ensuring accuracy and reliability. This hybrid approach 

accelerates the initial mapping while enabling quick expert adjustments, ultimately delivering 

credible results in much less time than manual mapping alone. 

 

Question 3: How can ML models be integrated into operational early warning and emergency 

response systems? 

Integrating machine learning (ML) models into operational early warning and emergency 

response systems augments existing frameworks by providing deeper insights and improving 

decision-making processes. Rather than replacing conventional methods, our approach 

synergistically combines ML with traditional tools to create a more effective and holistic 

system. 

In the Emilia-Romagna Region, the Civil Protection Agency employs reference rainfall 

thresholds, numerical models for meteorological and hydrological forecasts, and real-time 

monitoring systems, as outlined in the Regional Council Decree No. 1761 (dated November 30, 

2020). These systems use a predefined color-coded alert mechanism to assess weather and 

landslide risks. To complement these established methods, a platform was designed and 

developed by the author of this thesis, integrating the best-performing ML models into a unified 

tool that offers real-time rainfall data, predictions, and ML-based risk assessments. This 

integration provides a fuller view of potential hazards and aids in emergency management 

decisions. 

The developed graphical interface incorporates ML predictions alongside existing tools, 

updating in real time (Fig. 6.1, 6.2). Operators can visualize ongoing rainfall events defined by 

the D3P5 criteria (see section 2.5.1) within selected macroareas (see Fig. 2.1). The interface 

displays Bayesian probabilities of rainfall-triggered landslides, as calculated by Berti et al. 

(2012, 2015), along with observed rainfall data (with a two-hour latency) and forecasts for the 

following day (respectively available at simc.arpae and dati.arpae.). Crucially, it integrates ML 

predictions trained on historical data (section 2.5.1), improving the operators' ability to assess 

risks comprehensively. Figures 6.1 and 6.2 demonstrate the functionality of our system interface 

in handling with example events. Figure 6.1 displays real-time data for today's event 

(07/10/2024), providing operators with up-to-date information to monitor the ongoing situation 

within the selected macroarea. Figure 6.2, on the other hand, presents data from a significant 

rainfall event that occurred on 08/11/2023, which was also monitored and displayed in real time 

during that period. This illustrates how the system projects probabilities of triggering landslides 

using various algorithms. 

ML models enrich the decision-making framework by adding a complementary layer of 

analysis to traditional methods. While operators trust established approaches like rainfall 

https://simc.arpae.it/dext3r/
https://dati.arpae.it/dataset/previsioni-meteorologiche-numeriche-emilia-romagna
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thresholds and Bayesian analysis due to their transparency and familiarity, integrating ML 

provides advanced analytics and alternative perspectives. This combination enables operators 

to cross-check results, increasing confidence when different models concur and prompting 

further investigation when discrepancies arise, ultimately leading to more nuanced risk 

assessments. 

Although our platform operates independently, the Civil Protection Agency’s operators could 

utilize this information to make informed decisions, which they then publish on the official 

weather alert website (allertameteo.regione.emilia-romagna) for public consultation. By 

enhancing internal decision-making tools, we support and align with the region's broader efforts 

in disaster preparedness and response. 

In conclusion, integrating ML models into early warning and emergency response systems 

strengthens existing practices by adding analytical depth without supplanting them. This 

synergy between conventional techniques and ML supports more informed, timely decisions, 

improving the effectiveness of disaster management. By combining traditional expertise with 

advanced technologies, we aim to build more resilient communities capable of responding 

effectively to natural hazards. 

 

https://allertameteo.regione.emilia-romagna.it/
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Figure 6.1. Illustrates the rainfall event that occurred from October 1st to October 7th, 2024, 

as represented in the developed graphical interface. This event is depicted using both Intensity-

Duration and Cumulative-Duration graphs to provide an accurate and detailed representation 

of its characteristics. The graphs allow operators to assess the intensity and accumulation of 

rainfall over the duration of the event, which are critical factors in evaluating landslide risk. At 

the center of the interface, three gauges display the probabilities calculated by the machine 

learning algorithms XGBoost, TPOT, and Random Forest. Each gauge indicates the likelihood 

that this specific rainfall event will trigger a landslide in the macroarea 'E1'. The probabilities 

derived from these algorithms offer operators additional insights by quantifying the risk based 

on historical data and learned patterns. By presenting these probabilities prominently, the 

interface enables operators to make informed decisions quickly, enhancing the effectiveness of 

the early warning system. 
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Figure 6.2. Depicts a particularly intense rainfall event from October 15th to November 8th, 

2023, as visualized in the developed graphical interface. In this case, all three models 

(XGBoost, TPOT, and Random Forest) indicate a probability higher than 0.7 or 70% that this 

event will trigger a landslide in the 'E1' macroarea.  
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