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Hofstadter’s Law:
It always takes longer than you expect,
even when you take into account Hofstadter’s Law

DOUGLAS HOFSTADTER

You look at where you’re going and where you are
and it never makes sense,
but then you look back at where you’ve been
and a pattern seems to emerge.

ROBERT M. PIRSIG





Abstract

Autonomous quadcopters are rapidly emerging as a mature technology poised to play a significant
role in shaping society in the near future, thanks to their increasing availability and diverse range of
applications. From agricultural operations to the transportation of goods and people, these vehicles
are set to become an integral part of our daily lives. Given this growing presence, it is crucial
to equip these autonomous systems with state-of-the-art algorithms for collision avoidance, which
will help prevent damage to people and property, while also ensuring the continued autonomy and
operational integrity of the vehicles. The central objective of this thesis is to address this critical
challenge.

The initial chapters of the thesis provide a comprehensive introduction to the subject matter,
including an overview of the relevant literature. We begin by exploring the dynamical model of
quadrotors, highlighting its key properties and the challenges these present when designing feasible
trajectories for navigating cluttered environments.

Following this, we delve into the fundamental concepts of Control Barrier Functions (CBFs) and
their application to collision avoidance scenarios. We examine how safety filters can be derived
from distance measurements and used to design robust control laws for safe navigation in unknown
environments.

Finally, driven by the limitations of the sensors commonly employed on autonomous quadro-
tors—such as monocular and stereo cameras—the concluding section of this work shifts focus towards
addressing these constraints. Specifically, we propose an approach based on the CBF framework that
accounts for the limited field of view inherent in visual sensors. Additionally, we present a control
law, rooted in Control Lyapunov Functions approach, designed to track reference trajectories using
feedback based on visual bearings.

Keywords: Autonomous Aerial Vehicles, Control Theory, Collision Avoidance, Gaussian Pro-
cesses, Lyapunov Methods, Nonlinear Systems, Path Planning, Safety-critical Control, State-space
Methods, Visual Servoing
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Notation

In the following N and R will denote, respectively, the set of naturals and reals numbers. N0 will
denote the set of naturals numbers without the elememnt 0, i.e. N \ 0. R+ and R++ will denote,
respectively, set of non negative real numbers and the set of positive real numbers.

Given a matrix A ∈ Rm×n, with m,n ∈ N0, we use A(i,j), i ∈ {1, . . . ,m}j ∈ {1, . . . , n}, to denote
the element on the ith row and jth column of A. The identity matrix of dimension d ∈ N0 will be
denoted as Id. The set of symmetric positive definite matrices of dimension d ∈ N0 will be denoted
as Sd+.

The set of rotation matrices of dimension d ∈ N0 will be denoted with SO(3), while the set of
skew-symmetric matrices of dimension dof dimension d will be denoted as so(3).

Given a unit vector v ∈ Rd, with d ∈ N0, we will denote with Pv ∈ Rd×d the projection matrix
of the vector v, which is defined as Pv = Id − vvT .

We denote with [·]× : R3 → so(3) the hat map which is defined as

[v]× =

 0 −v3 v2
v3 0 −v1

−v2 v1 0


where v1, v2, v2 ∈ R are the component of vector v ∈ R3. The inverse of the hat map, called the vee
map, will be denoted as ·∨ : so(3) → R3.

Given a smooth manifold M, we denote the tangent space of M at x ∈ M as TxM. In this
work we always equip each tangent space TpM with standard inner product ⟨·, ·⟩x : TpM × M → R
defined as

⟨v, w⟩x = vTw.

As an abuse of notation, we will drop the subscript x when it is clear from the context.
Given a function f : M → R, we will denote with ∇f : M → TxM the gradient of f , and with

Hessf [·] : TxM → TxM its Hessian.1
Given two matrices A ∈ Rm×n and B ∈ Rp×q, with m,n, p, q ∈ N0, the Kronecker product of A

and B, denoted as A⊗B, is defined as

A⊗B =


A(1,1)B A(1,2)B . . . A(1,n)B
A(2,1)B A(2,2)B . . . A(2,n)B

...
... . . . ...

A(m,1)B A(m,2)B . . . A(m,n)B


Given a finite of points S ∈ Rd, d ∈ N0, we denote the convex hull of S with conv (S).

1See [1] for a formal definition.
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Chapter 1

Introduction

Autonomous quadrotors represent a groundbreaking technology poised to redefine various aspects of
modern life. From precision agriculture to rapid goods delivery and even passenger transport, their
capabilities are transforming industries and inspiring innovative solutions across domains. However,
as their presence in our lives increases, so too does the need for reliable, robust algorithms to ensure
safe, collision-free navigation.

This thesis provides an in-depth exploration of the algorithms and techniques essential for achiev-
ing safe, autonomous flight in complex environments. Building on the latest advancements in control
theory, including path planning through Bézier curve frameworks, Gaussian Process-based safety fil-
ters, and vision-based control through Control Barrier and Control Lyapunov Functions, this work
aims to address the critical challenge of reliable collision avoidance. Together, these efforts repre-
sent a contribution toward a future where quadrotors can operate with an unprecedented degree of
autonomy and safety, paving the way for a new era of unmanned aerial applications.

1.1 Literature Review
The field of collision avoidance is as old as the field of mobile robotics itself, emerging as an essential
component in any autonomous system moving through a dynamic environment. From foundational
artificial potential fields to sophisticated control barrier functions, the development of collision avoid-
ance techniques has played a central role in ensuring safe robotic navigation.

One of the earliest demonstrations of autonomous movement was seen in Walter’s 1950 tortoise
robot, an early exploration in robotics that illustrated the potential for machines to navigate inde-
pendently [2]. Decades later, Khatib formally introduced the concept of artificial potential fields
(APFs) [3], proposing virtual repulsive forces to guide robots away from obstacles. APFs laid the
foundation for many future developments, though they were limited by local minima, which can
trap robots in undesired configurations. Navigation functions emerged to address these issues by
introducing global stability properties for obstacle-rich environments, providing robust navigation
in spaces with complex obstacle shapes [4, 5, 6, 7]. Further refinements by Loizou [8] mitigated
issues with local minima through diffeomorphisms, increasing the applicability of APFs to realistic
and more challenging environments. For quadrotors specifically, vector field control techniques [9]
have become valuable in supporting directionally controlled motion in complex obstacle settings,
enhancing safe navigation through dynamic fields.

Path planning has also been instrumental to collision avoidance, with foundational contributions
from sampling-based methods like Rapidly-exploring Random Trees (RRT) [10] and Probabilistic
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1 - Introduction

Road Maps (PRM) [11], which remain core techniques in robotics. These methods have proved
particularly suitable for high-dimensional spaces, an advantage essential for navigating the com-
plex 3D environments encountered by quadrotors. Further improvements by Karaman and Frazzoli
[12] refined RRT and PRM algorithms to enhance efficiency, thereby cementing them as standard
approaches in path planning for mobile and aerial robots.

The specific dynamics of quadrotors necessitate a range of control strategies that are tailored
to the intricacies of six degrees of freedom (6-DOF) flight. Lee et al. [13] laid foundational work
in geometric control for quadrotors, effectively utilizing geometric principles to achieve precise ori-
entation and trajectory management. Complementary to this approach, the concept of differential
flatness, introduced by Mellinger et al. [14, 15], has simplified trajectory generation by transforming
complex dynamics into simpler representations. These two approaches have together shaped a solid
framework for the control of quadrotors in both controlled and unpredictable environments.

Building upon these earlier control frameworks, Control Barrier Functions (CBFs) have become a
powerful approach for maintaining safe operation within defined constraints. Ames and collaborators
pioneered CBFs in adaptive cruise control applications [16, 17] and subsequently broadened their
application to various robotics domains [18]. By constraining control inputs to guarantee forward
invariance of safe states, CBFs provide an effective method for collision avoidance in safety-critical
scenarios. Exponential CBFs [19] and high-order CBFs [20] have been introduced to enable ap-
plications in systems with intricate dynamics. Singletary’s comparative analysis [21] of CBFs and
APFs highlighted the enhanced reliability of CBFs for collision avoidance, especially in dynamic
environments. Recent contributions by Krstic [22] proposed inverse optimal filters to extend the
versatility of CBFs, allowing greater flexibility in the design of safety filters across variable con-
ditions. For quadrotors in particular, geometric CBFs [23, 24] have been tailored to handle their
unique dynamics, further enhancing the efficacy of CBFs for these applications.

A complementary area of research in collision avoidance is polynomial path planning, especially
through the use of Bézier curves and B-splines. These methods are particularly advantageous for
generating smooth, feasible trajectories that respect the dynamics of quadrotors. Mueller et al. [25]
demonstrated how quadratic programming (QP) could be applied to compute real-time trajectories, a
crucial advantage for complex flight maneuvers. Lakshmanan [26] extended this QP-based approach
by employing Bézier polynomials, which enhance smoothness in trajectory continuity and transition.
Recent advancements have focused on Bézier curve-based planners specifically designed for cluttered
environments [27, 28, 29], providing refined control in intricate obstacle fields. Buffer-based Voronoi
cell methods [30, 31] and receding horizon techniques [32] further contribute to collision avoidance
by ensuring consistent safe distances from obstacles.

In complex 3D environments, B-spline-based trajectory optimization techniques such as those
presented by Zhou et al. [33] have shown considerable promise for path generation, as they allow
paths to conform to both quadrotor dynamics and the distribution of obstacles. More recently,
deep learning approaches [34] have been introduced to manage the intricate task of time allocation
and to adapt quadrotor trajectories to real-time conditions, enabling them to react flexibly to new
environmental conditions.

Together, these advancements in artificial potential fields, quadrotor control, path planning,
and control barrier functions underscore the evolution of techniques necessary for robust collision
avoidance in autonomous aerial vehicles. This thesis builds on these methodologies to contribute a
unified framework for safe and efficient quadrotor navigation, synthesizing concepts from polynomial
path planning, control barrier functions, and data-driven safety filters. The resulting navigation
strategies bring quadrotors closer to reliable operation in complex, real-world environments, pushing
forward the capabilities of autonomous aerial systems.
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1 - Introduction

1.2 Structure of the Thesis
This thesis is structured as follows. We start by presenting a dynamical model of a quadorotor in
Chapter 2 along with its properties, such as the differential flatness, and the more popular control
schemes used to hover and tracking trajectories. In Chapter 3 we describe in general the path
planning problem and then explain the nuances involved in designing trajectory that can be flyed
by a quadrotor. In this chapter we also present a framework to generate safe trajectory in cluttered
environments. In Chapter 4 we present recall the theory of Control Barrier Function, and we present
some numerical example to explain their use in the context of obstacle and collision avoidance. In
Chapter 5 we investigate how to learn safety filters from a set of collected data using Gaussian
Processes. We start by presenting a direct approach used in the literature and by highlighting its
weak points. Then we present a technique specialized on distance reconstruction that we will use to
construct a Control Barrier Function for safe navigation in unknown environments. And we end the
chapter with a technique aimed at learning the safety filter constraint of High Order Control Barrier
Functions. Chapter 6 focus is quite different from the rest of thesis. While all the other chapters
deal directly with the main topic of the thesis, i.e. collision avoidance, this chapter focused is dealing
with limited field of view of vision sensor and on the design of trajectory tracking algorithms that
are based on bearing measurements. In the end, in Chapter 7 we summarize the results of our work
and discuss about future research directions.
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Chapter 2

Dynamics and Control

This chapter introduces the standard mathematical model used to model the dynamics of a quadrotor
to design control and motion planning algorithms. We also recall the differential flatness properties
of the proposed model [14, 15], which permits to easily extract a reference state trajectory from the
desired motion of the center of gravity of the vehicle, and one of the most popular control law for
this kind of vehicles [13] to track the desired trajectory despite the presence of modelling errors.
The interested reader may find a more comprehensive discussion about the topics introduced in this
chapter may in [35], which also include references to other didactic and scientific material.

2.1 Dynamical Model

e1

e2

e3

b1

b2

b3

p

Fp1 ,Mp1

Fp2 ,Mp2

Fp3 ,Mp3

Fp4 ,Mp4

Figure 2.1: Sketch of the rigid body
model used to describe the quadrotor
dynamics.

As a first approximation, a quadrotor can be modeled as
an actuated rigid body, where each propeller applies a
force on the mounting point. So, let us consider an in-
ertial frame O with the orthonormal base e1, e2, e3 and
a moving reference frame B with the orthonormal base
b1, b2, b3 centered in the center of mass of the quadrotor
and attached to it, such as in figure 2.1. In the following,
we will denote with the superscript O the quantities ex-
pressed in the inertial reference frame, and the superscript
B the quantities expressed in the body frame.

We denote with pO ∈ R3 the position of the quadrotor
in the inertial frame, and with R ∈ SO(3) the orientation
of the quadrotor reference frame with respect to the iner-
tial one, which is given by components of the orthonormal
bae of B expressed in O, i.e. R =

[
bO

1 bO
2 bO

3
]
. We de-

note with vO ∈ TpR3 the linear velocity of the quadrotor in the inertial frame and with ωB ∈ TRSO(3)
the angular velocity of the quadrotor in the body frame. Likewise, we denote with aO ∈ TpR3 the
linear acceleration of the quadrotor in the inertial frame and with αB ∈ TpR3 the angular accelera-
tion of the quadrotor in the body frame. Moreover, we denote the quadrotor mass with m ∈ R++,
and with J ∈ S3

+ its inertia matrix in the body reference frame. Let also gO ∈ TpR3 denotes the
acceleration of gravity. By denoting with T ∈ R++ the total force applied to the body, and by

7



2 - Dynamics and Control

τB ∈ R3 the total torque, we can write the equations of motion as follows

ṗO = vO (2.1a)
mv̇O = mgO +RbB

3 T (2.1b)
Ṙ = R[ωB]× (2.1c)

Jω̇B = −[ωB]×JωB + τB (2.1d)

We collect the position, rotation, velocity, and angular velocity of the quadrotor in a single
variable x =

(
pO, R, vO, ωB) ∈ X ⊂ R3 × SO(3) × TpR3 × TRSO(3) that fully describe the state

of the dynamical model at each time instant. We collect the two acceleration in the variable u =
(T, τB) ∈ U ⊂ R++ × R3, which represent the control input of the dynamical system, i.e. the
parameter that we assume we can set to any arbitrary value to steer the evolution of state. The set
U encodes in its definition the actuation limits of the propellers, while the set X encodes workspace
limitation, e.g. walls and unreachable areas, and physical limitation on the maximum achievable
velocities.

2.1.1 Propeller Thrusts and Angular Velocities
Model (2.1) uses the total force and the total torque as control input. However, a quadrotor is
actuated by the trusts produced by its rotors, which in turn is related to the angular velocities of
the propellers. In this section we briefly recall how to model the relation between the aformentioned
quantities.

First, we notice that the total thrust T and torques τB applied on the quadrotor can be directly
related to the thrust of each single propeller by simple algebraic equations. By denoting with Fpi

∈ R
the thrust of the ith propeller, the total trust is given by

T =
4∑
i=0

Fpi

Moreover, if we denote the position of the ith propeller of the quadrotor with respect to vehicle
center of mass with rB

pi
∈ R3, and with Mpi ∈ R the magnitude of the torque produces by each

propeller around the b3 axis, we can compute the total torque applied on the quadrotor as

τB =
4∑
i=1

[rB
pi

]×bB
3 Fpi +Mpib

B
3

So, we can collect all of the previous equations in a compact matrix multiplication

[
T
τB

]
=
[

1 1 1 1 0 0 0 0
[rB
p1

]×bB
3 [rB

p2
]×bB

3 [rB
p3

]×bB
3 [rB

p4
]×bB

3 bB
3 bB

3 bB
3 bB

3

]


Fp1

Fp2

Fp3

Fp4

Mp1

Mp2

Mp3

Mp4


(2.2)
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2 - Dynamics and Control

Now that we are equipped with equation (2.2), we only need to find a relation between the
propellers rotation speed ωpi

and the propellers thrusts Fpi
and torques Mpi

. According to [15], the
relation can be approximated by the following algebraic equation:

Fpi
= KFω

2
pi

Mpi
= (−1)(i−1)

KMω
2
pi

where KF ,KM ∈ R++ are parameters that depends on the chosen propellers, while the −1
powers reflect the fact that propellers 1 and 3 rotate counter-clockwise while propeller 2 and 4
rotate clockwise.

2.1.2 Euler Angles
Before concluding this section, we take the opportunity to introduce some important quantities that
we will use in the next section.

As we already said, we represent the orientation of drone with respect to the inertial frame by
the rotation matrix R. Nonetheless, this is not the only possible choice to represent orientations
and rotations, and despite all of its properties, it is not the most intuitive representation. So, while
the orientation of a rigid body is more accurately described by a rotation matrix, the description
used by human designers to encode the desired rotations is that of the so called Euler Angles, which
are a triple of consecutve rotations around non parallel axis which are able to describe almost all
rotations.

In our discussion we will use the ZXY Euler Angles triple, which means that the relation between
the orientation of the drone R and the ϕ, θ, ψ is given by:

R =Ry(θ)Rx(ϕ)Rz(ψ) =

=

cosψ cos θ − sinϕ sinψ sin θ − cosϕ sinψ cosψ sin θ + cos θ sinψ sinϕ
sinψ cos θ − sinϕ cosψ sin θ cosϕ cosψ sinψ sin θ − cos θ cosψ sinϕ

− cosϕ sin θ sinϕ cosϕ cos θ


where Rx(ϕ), Ry(θ), Rz(ψ) are given, respectively, by

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .
With this representation choice, one can prove that the components of the angular velocity of the
quadrotor ωB = [ω1, ω2, ω3]T are related to the rate of change of ϕ, θ, ψ bycos θ 0 − cosϕ sin θ

0 1 sinϕ
sin θ 0 cosϕ cos θ

ϕ̇θ̇
ψ̇

 =

ω1
ω2
ω3

 (2.3)
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2 - Dynamics and Control

2.2 Differential Flatness
The control scheme we will review in section 2.3 needs a feasible state trajectory as reference, that
is a curve x∗(t) : R → X that corresponds to desired behaviour we want to impose on the system.
Obtaining such state space trajectory can be arbirarily challeging for a dynamical system, but it
has been shown in [14, 15] that quadrotor dynamic is differentially flat with respect to the position
of its center of mass pO and its yaw angle ψ, and this property permits us to obtain a state space
trajectory from the time evolution of this two quantities.

First of all, we can notice that pO is already part of the state, and that v = ṗO for equation
(2.1a). Rearraging the terms in equation (2.1b), we obtain

RbB
3 T = mp̈O +mgO

from which we derive

T = ∥mp̈O +mgO∥2

bO
3 = mp̈O +mgO

∥mp̈O +mgO∥2

which gives us one the control input and the third column of the rotation matrix R.
To fully determine the rotation matrix R we need to determine also bO

1 and bO
2 , and this can be

easily done from the yaw angle ψ now that we know bO
3 . First, we define the auxiliary unit vector

bO
1c =

cosψ
sinψ

0


which gives the orientation of the b1 axis of the body frame when only the first of the three Euler
Angles rotation is applied (i.e. the one around the b3 axis). Due to the structure of the chosen Euler
Angles triple, the orientation of the b2 axis do not change with the subsequent rotations, so we can
determine b2 and b1 as follows:

bO
2 = bO

3 × bO
1c

∥bO
3 × bO

1c∥2
, bO

1 = bO
2 × bO

3

and now we have all the components to determine the orientation of the quadrotor:

R =
[
bO

1 bO
2 bO

3
]

To find the angular velocity we need to derive equation (2.1b)

m
...
p O = ṘbB

3 T +RbB
3 Ṫ = R[ωB]×bB

3 T +RbB
3 Ṫ .

We notice that
〈
m

...
p O, RbB

3
〉

= RbB
3 Ṫ , which permits us to compute RbB

3 Ṫ from the knowledge
of ...

p O. Let us define the auxiliary quantity

hO
ω = R[ω]×bB

3 = m

T

( ...
p O −

〈
m

...
p O, RbB

3
〉
RbB

3
)

which has component only along b1 and b2. Expanding the computation, we obtain:

hO
ω = ω2b

O
1 − ω1b

O
2

10



2 - Dynamics and Control

which implies:

ω1 = −⟨hω, b2⟩, ω2 = ⟨hω, b1⟩

To find the third component, we can notice that, due to the order of Euler angles chosen for
represeting the rotation, the body angular velocity is related to the angular rates via:

ω =
[
bO

1c bO
2 eO

3
] ϕ̇θ̇
ψ̇

 (2.4)

from which we can solve for ω3.
We now have all the state components associated with the reference trajectory. By deriving

(2.1b) one more time we can find also the remaining control inputs by manipulating the resulting
equation:

m
....
p O = bB

3 T̈ +R[ωB]×[ωB]×bB
3 T +R[αB]×bB

3 T + 2R[ωB]×bB
3 Ṫ .

From the last equation we can easily compute the components of αB along b1 and b2 as we have
done for the angular acceleration. Let us define the auxiliary quantity hO

α = R[αB]×bB
3 , and notice

that

hO
α = m

....
p O − (T̈ b3 +R[ωB]×[ωB]×bB

3 T + 2R[ωB]×bB
3 Ṫ )

T

By projecting the above quantity onto the b1 and b2 axis, we get

ω̇1 = −⟨hα, b2⟩, ω̇2 = ⟨hα, b1⟩

To find ω̇3, one need to derive (2.4) and solve for ω̇3.
Equipped with the knowledge of ω̇1, ω̇2 and ω̇3, which are the components of αB, we can find τB

from equation (2.1d).

2.3 Control
Equipped with the reference state trajectory x∗(t) = (pO∗(t), vO∗(t), R∗(t), ωB∗(t)) and the desired
control input u∗(t) = (T ∗(t), τB∗(t)) obtained from Section () we are now ready to design the control
law for our quadrotor. In an ideal case, if the state of our quadrotor x(t) was exactly x∗(t) at the
initial time instant t0 ∈ R, i.e. x(t0) = x∗(t0), we could just apply the control input u∗(t) for
t ≥ t0 and the controlled quadrotor would follow the desired state. However, this is not the case
and one would see the controlled quadrotor deviating significantly from the prescribed trajectory
using the reference control law u∗(t). The reason lies in the discrepancy between our simplified
abstraction of the quadrotors dynamics, i.e. model , and the real world drone, which is far more
complex and subject to a diverse range of phenomena not modeled in (2.1), such as wind effects,
vibrations, elasticity, delay in the actuation, and so on. Moreover, the quality of our model depends
on our ability to accurately measure the parameters that appears in the laws of motion, such as,
in our case, the quadrotor mass m and inertia J , which affects not only the dynamics but also the
computation of the reference control law u∗(t). This means that to track as accurately as possible
the reference state trajectory, we need to design a control law able to compensate for all of these
mismatch between the simplified model and the real world system.

11



2 - Dynamics and Control

The control algorithm briefly recalled in this section is the one presented [13], which is a feed-
back state controller, which is a controller that computes the control inputs by elaborating the error
betwen the desired state and the actual state. For the following discussion, we define the following
quantities ep = pO − pO∗, eR = (R∗TR−RTR)∨, ev = vO − vO∗, and eω = ωB − ωB∗, which
represents, respectively, the position error, the orientation error, the velocity error, and the angular
velocity error. The control algorithm falls in the category PD control with feedforward terms, mean-
ing that we rely on u∗(t) to steer the system as good as possible on along the desired trajectory and
we add to it a correction term that is proportional to the current state error:

T =
〈
−kpep − kvev −mgO +mp̈O∗, bO

3
〉

τB = −kReR − kωeω + [ωB]×JωB − J([ωB]×RTR∗ωB∗ −RTR∗αB∗)

A more detailed explanation of this control law can be found if the original paper [13], along
with the Lyapunov analysis to prove its convergence guarantuees.
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Chapter 3

Path Planning with Bezier Curves

3.1 Path Planning
The aim of this section is to formalize several version of the path planning problem. First of all, we
need to define some variables that will be of aid in this task.

The first thing we need to define is the set P, which will denote the workspace in which an
autonomous agent lives and moves (e.g. a robot, a car), which we identify with either R2 when
the movement of the agent is restricted to a plane or R3 when the agent is able to move in a three
dimensional space.

The position in the workspace occupied by the agent is denoted by p ∈ P. As per our first
definition definition of the path planning problem we need two position in the workspace, p0, pF ∈ P,
which will be referred to as the initial position and goal position and represent, as the names suggest,
the position from which the agent start and the position it needs to reach. We also need two time
instant, t0, tF ∈ R+ with tF > t0, which are called respectively the initial time and the final time and
represent the time window to reach the goal position. We are now ready to give out first formulation
of the path planning problem.

Problem 3.1.1 (Path Planning). Given p0, pF ∈ P, t0, and tF , find a continuous curve p :
[t0, tF ] → P such that:

• p(t0) = p0 (Initial position)

• p(tF ) = pF (Final position)

let S ∈ P denotes the region of space occupied by static obstacle, let O ∈ N be a set of index,
each corresponding to different moving obstacle.

Problem 3.1.2 (Path Planning with Static and Moving Obstacles). Given p0, pF ∈ P, S, O, t0,
and tF find a continuous curve p : [t0, tF ] → P such that:

• p(t0) = p0 (Initial position)

• p(tF ) = pF (Final position)

• ∀t ∈ [t0, tF ], p(t) ̸∈ S (Avoid collision with static obstacles)

• ∀t ∈ [t0, tF ], ∀i ∈ O, ∥p(t) − oi(t)∥2 > rs (Avoid collision with moving obstacle)

13



3 - Path Planning with Bezier Curves

where oi(t) ∈ P represents the position of the ith obstacle at time t.

Despite the generality of its statements, trajectories that are solution to Problem 3.1.2 may still
lack a fundamental property needed for real world applications: physical feasibility. In fact, any
agent operating in the real world is subject to law of physics, and they may prevent the agent from
executing an arbitrary trajectory. If we recall the discussion about differential flatness in Section
2.2, there we show the existence of a mapping between 4 times continously differentiable trajectories
and the state trajectory of the center of mass of a quadrotor. So, we want to encode this constraint
in our path planning problem. To achieve our aim, let us define v, a, j ∈ R3 (v, a, j ∈ R2 for the
planar case) to be, respectively, the velocity, the acceleration and the jerk (i.e. the time derivative
of the acceleration of the agent); then our new path planning problem becomes the following.
Problem 3.1.3 (Path Planning with Dynamics). Given p0, pF ∈ P, S, O, t0, and tF , find a C3

curve p : [t0, tF ] → P such that:

• p(t0) = p0, v(t0) = 0, a(t0) = 0, j(t0) = 0 (Initial condition)

• p(tF ) = pF , v(tF ) = 0, a(tF ) = 0, j(tF ) = 0 (Final position)

• ∀t ∈ [t0, tF ], p(t) ̸∈ S (Avoid collision with static obstacles)

• ∀t ∈ [t0, tF ], ∀i ∈ O, ∥p(t) − oi(t)∥2 > rs (Avoid collision with moving obstacle)
where oi(t) ∈ P represents the position of the ith obstacle at time t.

3.2 Optimal Path and Curve Representation
A solution to Problem 3.1.3 can be found by solving the following optimization problem

min
p(t)∈C3

∫ tF

t0

J(p(t))dt (3.1)

subject to p(t0) = p0, p(tF ) = pF

v(t0) = 0, v(tF ) = 0
a(t0) = 0, a(tF ) = 0
j(t0) = 0, j(tF ) = 0
p(t) ̸∈ S, ∀t ∈ [t0, tF ]
∥p(t) − oi(t)∥2 > rs, ∀t ∈ [t0, tF ],∀i ∈ O

where J : C3 ([x0, xF ]) → R is a cost functional that can be used to specify other desired character-
istics of the solution.

To solve problem 3.1, which is an infinite dimensional optimization problem, we are going to
restrict the domain of the optimization problem from the entire C3 to a smaller subspace that
posses a finite base to make it tractable. The chosen subspace is that of the polynomial of degree
7, which will be denoted as P 7([t0, tF ]), which, as we will soon see, will permit us to easily write
and enforce the constraints of the optimization problem. To express the elements of P 7([t0, tF ])
we choose to use the Bernstein Polynomials basis (see Appendix A) which permits us to write any
polynomial curve p(t) : [t0, tF ] → P as

p(t) =
7∑
k=0

B7
k

(
t− t0
tF − t0

)
Pk,
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3 - Path Planning with Bezier Curves

where B7
k : [0, 1] → [0, 1] are the Bernstein Polynomial of order 7, and the Pk ∈ P are the control

points of the curve.
To allow a larger degree of flexibility in the design of the curve, we divide the interval [t0, tF ]

into N ∈ N0 intervals [ti, ti+1] ∈ [t0, tF ] such that
⋃N
i=1[ti−1, ti] = [t0, tF ] (notice that tN = tF ), and

on each of them we define the the curve

pi(t) =
7∑
k=0

B7
k

(
t− ti−1

ti − ti−1

)
P ik,

where P ik are the control points of the ith curve, so that we can express p(t) as

p(t) = pi(t), t ∈ [ti−1, ti]. (3.2)

For compactness, we stack all of the control points of the curves pi(t) into the vectors Pi =
[P iT0 , P iT1 , . . . , P iT7 ]T ∈ R8dim(P), and, exploiting the properties of Beziér Curves recalled in Ap-
pendix A, this permit us to write the following sub-optimal version of problem (3.1)

min
P1,...,PN∈PN

∫ tF

t0

J(p(t))dt (3.3)

subject to P 1
0 = p0, PN7 = pF

A1,1D̄
1
7P1 = 0, A2,1D̄

1
7PN = 0

A1,2D̄
2
7P1 = 0, A2,2D̄

2
7PN = 0

A1,3D̄
3
7P1 = 0, A2,3D̄

3
7PN = 0

A2,0Pi = A1,0Pi+1, ∀i ∈ {1, . . . , N − 1}
1

ti − ti−1
A2,1D̄

1
7Pi = 1

ti+1 − ti
A1,1D̄

1
7Pi+1, ∀i ∈ {1, . . . , N − 1}

1
(ti − ti−1)2A2,2D̄

2
7Pi = 1

(ti+1 − ti)2A1,2D̄
2
7Pi+1, ∀i ∈ {1, . . . , N − 1}

1
(ti − ti−1)3A2,3D̄

3
7Pi = 1

(ti+1 − ti)3A1,3D̄
3
7Pi+1, ∀i ∈ {1, . . . , N − 1}

p(t) ̸∈ S, ∀t ∈ [t0, tF ]
∥p(t) − oi(t)∥2 > rs, ∀t ∈ [t0, tF ],∀i ∈ O

where D̄j
7 ∈ R(8−j)dim(P)×8dim(P) is the derivation matrix defined in Theorem A.2.2.1, whileA1,j , A2,j ∈

Rdim(P)×(8−j)dim(P), j ∈ 0, 1, . . . , 4, are auxiliary matrices defined as follows

A1,j =
[
1, 0, . . . , 0

]︸ ︷︷ ︸
8−j

⊗Idim(P)

A2,j =
[
0, 0, . . . , 1

]︸ ︷︷ ︸
8−j

⊗Idim(P)

and are used to select, respectively, the first and last control point from of a Beziér curve of degree
7 − j when arranged in a vector.

Now that we have the backbone of the framework set up, we proceed to explain how to deal with
static and dynamic obstacles.
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3.2.1 Path Planning with Safe Corridors
Let us start by explaining how to plan a trajectory using (3.3) by exploting the properties of Beziér
curves. Since we know by Theorem A.2.3 that a Beziér curve are always contained inside the convex
hull of its control points, we can ensure the solution of (3.3) to be free of collision by constraining
the control point of each segment to be entirely contained into a convex polytope, which results in
additional linear constraints on the control points. In fact, a convex polytope E ∈ P with ns > 3
sides can be entirely described by the couple (E, e) ∈ Rns×dim(P) × Rns as

E = {p ∈ P | Ep ≤ e} .

So, given a sequence of polytopes1 {E1, . . . , EN} such that p0 ∈ E1, pF ∈ EN , and Ei ∩ Ei+1 ̸= ∅,∀i ∈
1, . . . , N − 1, we can write (3.3)2 as

min
P1,...,PN∈PN

∫ tF

t0

J(p(t))dt (3.4)

subject to P 1
0 = p0, PN7 = pF

A1,1D̄
1
7P1 = 0, A2,1D̄

1
7PN = 0

A1,2D̄
2
7P1 = 0, A2,2D̄

2
7PN = 0

A1,3D̄
3
7P1 = 0, A2,3D̄

3
7PN = 0

A2,0Pi = A1,0Pi+1, ∀i ∈ {1, . . . , N − 1}
1

ti − ti−1
A2,1D̄

1
7Pi = 1

ti+1 − ti
A1,1D̄

1
7Pi+1, ∀i ∈ {1, . . . , N − 1}

1
(ti − ti−1)2A2,2D̄

2
7Pi = 1

(ti+1 − ti)2A1,2D̄
2
7Pi+1, ∀i ∈ {1, . . . , N − 1}

1
(ti − ti−1)3A2,3D̄

3
7Pi = 1

(ti+1 − ti)3A1,3D̄
3
7Pi+1, ∀i ∈ {1, . . . , N − 1}

EiPi ≤ ei, ∀i ∈ {1, . . . , N − 1}

Quadratic Cost Functions

Since all the constraints of (3.4) are linear, we may want to choose a quadratic cost to take benefit
from the fast and efficient algorithms designed to solve Quadratic Programs. Since, as shown in
Chapter 2, the control inputs that the quadrotor need to generate to track a C3 trajectory are
proportional to the snap (fourth-order time derivative of the position), we propose, as in [14], the
following cost functional:

J(p(t)) = d4p(t)
dt4

(3.5)

which, in our case, makes the cumulative cost a function of only the control points [36, 26]∫ tF

t0

J(p(t))dt =
N∑
i=1

PT
i D̄

4T Q̄4D̄
4Pi

1One can find such a sequence, for example, by building a graph where each node represents a convex polytope
and each edge represents an intersection between two polytopes.

2Neglecting the moving obstacles constraints, for now.
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3 - Path Planning with Bezier Curves

(a) (b)

Figure 3.1: The figures shows the trajectory generated by 3.4 in a static environments divided in
polygonal safe corridors. Figure (a) shows the entire resulting trajectory as a solid red line, while
figure (b) shows each of the three Beziérs segments composing the curve, each of them entirely
contained in a empty convex polytope.

where the matrix Q̄4 ∈ R4dim(P)×4dim(P), r ∈ N, can be shown to be equal to

Q̄4 = Q4 ⊗ Idim(P)

Q4 ∈ R4×4, [Q4]i,j = 1
7

( 3
i−1
)( 3
j−1
)( 6

i+j−2
)

Numerical Results

Figure 3.1 shows the solution of problem (3.4) with the functional cost (3.5). The free space P \ S
has been divided into three polytope regions and three Beziér segments, one for each region, have
been used to generate the trajectory.

17





Chapter 4

Control Barrier Functions for
Obstacle Avoidance

The concept of Control Barrier Functions (CBFs) [18] emerged recently in the field of safety-critical
systems [17] to design controllers that are mathematically certified to meet safety requirements. The
main idea is to divide the state space into safe and unsafe regions. The controller is then constrained
by an inequality that ensures the set of safe states remains forward invariant over time.

Enforcing this inequality is generally a challenging task. However, when the system under control
can be modeled as an affine control system—such as the quadrotor dynamics and most robotic
systems—the inequality becomes linear with respect to the control input. This allows the use of
various synthesis techniques for controller design [22, 37, 18]. Among these techniques, Quadratic
Program (QP)-based safety filters [18] are the most commonly used, and they will be presented in
this chapter.

The aim of this chapter is to give a introduction to the theory of CBFs and to show its applicability
to navigations tasks and obstacles avoidance.

4.1 Definitions and Properties
To introduce the concept of CBFs and discuss their properties, we first need to introduce the concepts
of control affine systems, Lie Derivatives, and class K functions.
Definition 4.1.1 (Affine Control System). Let x ∈ X ⊂ Rn be the state of a controlled dynamical
system whose dynamics is described the differential equation

ẋ = f(x) + g(x)u (4.1)

where f : X → Rn and g : X → Rn×m are locally Lipschitz continuous functions, u ∈ U ⊂ Rm is
the control input.
Definition 4.1.2 (Lie Derivative). Let X ⊂ R. Given a continously differentiable function h : X →
R, the Lie Derivative Lfh : X → R of h along a vector field f : X → Rn is defined to be

Lfh(x) = ⟨∇h, f(x)⟩.

For function f : X → Rn×m the Lie Derivative Lfh : X → Rm is instead defined as

Lfh(x) = ∇hf(x).
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Remark 4.1.1. As for the gradient, the Lie Derivative Lfh : X → Rm over a multivalued vector
field is represented as a row vector for computational purposes.

If, with an abuse of notation, we denote with x : R → X the solution to the differential equation
(4.1) for a given controller u : X → U , then the time derivative of the function h along the trajectory
x(t) equals the Lie Derivative of h evaluated at x(t), i.e.

ḣ(x(t)) = ⟨∇h, ẋ(t)⟩ = ⟨∇h, f(x(t))⟩ + ∇hg(x(t))u(x(t))
= Lfh(x(t)) + Lgh(x(t))u(x(t))

Definition 4.1.3. A function α : R → R is said to be a class K function1 if it is strictly increasing
and α(0) = 0.

To define safety in this framework, we rely on division of the state space in a safe and unsafe set
based on the superlevel set of a continously differentiable function, which will become our candidate
CBF.

Definition 4.1.4 (Safe Set). Given a function h : X → R, we define the safe set Ch associated with
h as the superlevel set of h, that is

Ch = {x ∈ Ch | h(x) ≥ 0}
∂Ch = {x ∈ Ch | h(x) = 0}

Int Ch = {x ∈ Ch | h(x) > 0}

We are now ready to define the concept of CBF and discuss about its properties and applications.

Definition 4.1.5 (Control Barrier Function). A continuously differentiable function h : X → R is
called a Control Barrier Function for the system (4.1) if there exists a class K function α : R → R
and an open set D ⊇ Ch such that, for each x ∈ D

sup
u∈U

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0 (4.2)

Remark 4.1.2. Assuming the existence of a open set D containing Ch will be useful to prove some
robustness property of the CBFs.

Definition 4.1.6 (Safe Controllers). Let h be a CBF for the system (4.1) for a class K function
α. Let us the define the following set

Kh,α(x) =
{
u ∈ U | Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0

}
.

Then, a controller u : X → U is said to be a safe controller if

u(x) ∈ Kh,α(x),∀x ∈ D

Remark 4.1.3. Notice that Equation (4.2) guarantees that the set Kh,α(x) is not empty for each
x ∈ X .

The previous definition is justified by the following theorem, which is the main building block of
the CBF paradigm.

1Sometimes, the literature refers to them as extended class K functions, and restrict the definition of class K
functions to functions α : R+ → R
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Theorem 4.1.1. Given a control barrier function h for the affine system (4.1) any safe controller
u(x) renders the set Ch forward invariant.

Proof. Since u(x) ∈ Kh,α(x) for each x ∈ D, we have Lfh(x) + Lgh(x)u(x) ≥ −α(h(x)), ∀x ∈ Ch.
This implies that, for any x0 ∈ Ch, the time derivative of h along the solution x : R → X of (4.1)
with initial condition x(t0) = x0 satisfies,

ḣ(x(t)) = Lfh(x(t)) + Lgh(x(t))u(x(t)) ≥ −α(h(x(t))).

Now, since the solution h̄(x(t)) of the differential equation ˙̄h(x(t)) = −α(h̄(x(t))) with initial
condition h̄(x(t0)) = h(x(t0)) ≥ 0 satisfies both

h̄(x(t)) > 0, ∀t ≥ t0

and

lim
t→+∞

h̄(x(t)) = 0,

so, for the comparison lemma [38], we have that h(x(t)) ≥ h̄(x(t)) > 0, ∀t ≥ t0 which means
x(t) ∈ Ch, ∀t ≥ t0, i.e. Ch is forward invariant.

Before proceeding, we want to highlight the following important property of CBFs.

Theorem 4.1.2. Given a control barrier function h for the affine system (4.1) any safe controller
u(x) renders the set Ch asymptotically stable for each x ∈ D.

Theorem 4.1.2 basically implies that in the case the controlled system finds itself in an unsafe
state, the safe controller is able to quickly recover (exponentially fast, actually) and bring the state
back to a safe state. The proof of the theorem, based on a simple Lyapunov argument, can be found
in [39].

4.1.1 Quadratic Program Safety Filter
Thanks to Theorem 4.1.1 we know that any safe controller keeps the state in the safe set Ch for
a given CBF h. To find a controller u(x) ∈ Kh,α(x) the standard approach is to define a generic
control law u∗ : X → U , which can be used for example to stabilize (4.1) around an equilibrium
point or a trajectory, and then to solve the following quadratic program

min
u∈U

∥u− u∗(x)∥2
2 (4.3)

subject to Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0

4.1.2 CLFs
Definition 4.1.7 (Control Lyapunov Fuction). A continuously differentiable function V : X → R
is called a Control Lyapunov Function (CLF) for an equibrium point x∗ ∈ X of the system (4.1) if
there exist three class K functions γ, γ1, γ2 : R → R such that for every x ∈ X

• γ1

(
∥x− x∗∥2

2

)
≤ V (x) ≤ γ2

(
∥x− x∗∥2

2

)
• infu∈U LfV (x) + LgV (x) + γ(V (x)) ≤ 0,∀x ̸= x∗
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While CBF can be used as showed in equation (4.5) to render a set forward invariant in time,
CLF can be used in the same way to stabilize an affine control system like (4.1) to the corresponding
equilibrium point. That is, the control law resulting from the repetitive solution of

min
u∈U

∥u∥2
2

subject to LfV (x) + LgV (x)u+ γ (V (x)) ≤ 0

is a stabilizing control law for the equilibrium point of the system.
The CBF and CLF constraints can be combined in a single quadratic optimization problem to

obtain a stabilizing and safe control law in a so called CBF-CLF-QP control scheme as

min
u∈U

∥u∥2
2 (4.4)

subject to Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0
LfV (x) + LgV (x)u+ γ (V (x)) ≤ 0

However, the two constraints in (4.4) may conflict with each other which may cause the optimization
problem to be infeasible. To deal with this problem, in practical applications it is a common practice
to add two slack variables to the CBF and CLF constraints to allow for constraints violation, e.g.

min
u∈U

δV ,δh∈R

∥u∥2
2 + wV δ

2
V + whδ

2
h (4.5)

subject to Lfh(x) + Lgh(x)u+ α(h(x)) ≥ δh

LfV (x) + LgV (x)u+ γ (V (x)) ≤ δV

where wV , wh ∈ R+ are two tunable weights that can be used to prioritize either safety or stability
in the generation of the control law.

4.1.3 Multiple Constraints
In real world scenarios there may be multiple safety requirements that needs to be satisfied at once.
To address this issue, one may define a different CBF for each requirement and add a constraint
to problems (4.3) and (4.5) for each function. However, this approach has a problem: two safety
constraints may conflict with each other, leading to the infeasibility of the quadratic program.

A common solution to this problem is to add some slack variables to the constraints of the
quadratic program to guarantuee the feasibility of the optimization problem. Let us assume, for
example, to have N > 1 CBFs hi : X → R, i ∈ {1, . . . , N}, then we can modifiy problems (4.3) and
(4.5), respectively, as follows

min
u∈U

ρ1,...,ρN ∈R

∥u∥2
2 +

N∑
i=0

liρ
2
i (4.6)

subject to Lfhi(x) + Lghi(x)u+ α(hi(x)) ≥ ρi∀i ∈ {1, . . . , N}

min
u∈U,δ∈R
ρ1,...,ρN ∈R

∥u∥2
2 + wδ2 +

N∑
i=0

liρ
2
i (4.7)

subject to Lfhi(x) + Lghi(x)u+ α(hi(x)) ≥ ρi,∀i ∈ {1, . . . , N}
LfV (x) + LgV (x)u+ γ (V (x)) ≤ δ
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N° Constraints Computation Time
1 1.48 × 10−5 s
5 1.52 × 10−5 s
10 1.58 × 10−5 s
50 4.07 × 10−5 s
100 3.01 × 10−4 s
500 2.26 × 10−2 s
1000 1.65 × 10−1 s

Table 4.1: Average computation time of the quadprog routine to solve a quadratic program with
variable number of constraints.

where ρi are slack variables that ensure that a solution of the quadratic program always exists,
while li ∈ R++ are relative weights used to discourage large values of the slack variables, which may
lead to unsafe scenarios. The weights li may be chosen, a priori or following some logic during the
execution of the task, to give an order of priority to safety requirements.

Remark 4.1.4. Problem (4.6) and (4.7) can be solved very efficiently with off-the-shelf solvers
such as quadprog2, gurobi3, qpOASES4, and many others. Nonetheless, the designer must take into
consideration the time required by the selected solver when implementing the safety filter, which scales
with the number of constraints of the optimizazion problem. For example, Table 4.1 shows the mean
computation time of the quadprog solver on a test platform for a variable number of constraints.
We can see that the computation time is on the order of 10−5 s for less than 50 constraints, which
is compatible with the frequency of control of execution of control commands of common robotic
application. However, we can clearly see an exponential like growth of the computation time as
the number of constraints increases, which prevents a practical implementation of the control law
generated by (4.6) and (4.7) with an excessive number of contraints.

4.1.4 Application Example: Obstacle Avoidance
We now present a little example to show how the theory presented so far in this chapter could be
applied to a real world application. The scenario we want to present is that of a robot moving in
the plane from a point A to a point B that needs to avoid any collision with its environment. So let
us set up all the mathematical objects we need to describe the our scenario and we will then explain
how to practically implement a CBF safety filter to prevent any collision.

Let us consider an agent moving on the plane, whose position is denoted by p ∈ R2 and let us
assume that this agent can be modeled a massless point whose velocity can be directly controlled.
This means the state x of the agent is equal to p and that the differential equation describing the
evolution of the system is ẋ = u. Suppose moreover that there is an obstacle O ∈ R2 whose profile
can encapsuled by a circle centered at o =

[
1, 2
]T with radius r = 2, i.e. O ⊂ B2(o, r). In these

terms, a collision corresponds to the condition x ∈ O, which then implies that our desired safe set
corresponds to R2 \ O, which is the set of points in the plane that is not occupied by the obstacle.

Our goal now is to find a CBF h such that Ch ⊂ R2 \O, that means, the safe set corresponding to
the chosen continously differentiable function does not need to be the entire set of safe configurations,

2https://github.com/quadprog/quadprog
3https://www.gurobi.com/
4https://github.com/coin-or/qpOASES
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Figure 4.1: The figure shows an agent navigating around an obstacle using a safety filter based on
CBF. We can see how the vector field of the closed loop system wrap around the obstacle.

but it is sufficient that it is contained in it. A family of functions that are compliant with our
specification is

h(x) = ∥x− o∥2
2 − (r + rs)2

for a given rs > 0, which represent a safety radius that can be used to take into account the size of
the robot. The safe set Ch in this case is equivalent to the set {x ∈ R2 | ∥x− o∥2 ≥ r + rs}.

Now that we have a CBF candidate, we need to compute Lfh and Lgh. And, in our case, since
f(x) = 0 and g(x) = I(2) we have Lfh = 0 and Lghu = ⟨x− o, u⟩. So, we now have all the elements
to implement the quadratic program safety filter shown in equation (4.3).

Figure 4.1 shows an agent navigating with the proposed safety filter, with α(h) = 2h, around an
obstacle to reach the goal position x∗ = [6, 5]T ∈ R2, whose nominal control law is u∗ = −kp(x−x∗),
kp = 2, starting from different initial positions. The figure shows also the vector field ẋ resulting
from the application of the closed loop control law 4.1. We can see how the vector field wrap around
the obstacle, forcing the agent to navigate around it.

To use (4.5) instead of (4.3), we need to find a valid candidate CLF. In this case, it is easy to
show that V (x) = 1

2 ∥x− x∗∥T2 makes x∗ a stable equilibrium point for the closed loop system. By
noticing that LfV (x) = 0 and LgV (x) = x− x∗, we can easily implement (4.5).

Figure 4.2 shows an agent navigating using (4.5) as a control law, with α = 10, γ = 3 and
w = 10. The figure shows also the closed loop vector field ẋ that, as in previous case, wrap around
the obstacle forcing the agent to navigate around it. We can also see that the agent is able to recover
from unsafe state and safely navigate to the goal, as predicted by Theorem 4.1.2.

4.2 High Order Control Barrier Functions
Let us consider again the example presented in the previous section, but, this time, let us suppose
that our control authority is only on the acceleration of the robot, and not on its velocity. In this
case the state of the robot is composed by both its position p and its velocity v ∈ R2, i.e. x = [p, v]T ,

24



4 - Control Barrier Functions for Obstacle Avoidance

Figure 4.2: The figure shows an agent controlled with a combination of Control Barrier and Control
Lyapunov function navigating around an obstacle. We can see how the vector field of the closed
loop system wrap around the obstacle.

and its dynamics is described by the following differential equation:{
ṗ = v

v̇ = u
(4.8)

and u ∈ R2 is again our control input. If we use again the function h(x) = ∥x− o∥2
2 − (r + rs)2

as our canditate CBF, we immediately see that there is a problem: ḣ = 2⟨p− o, v⟩, which means
Lfh = 2⟨p− o, v⟩ and Lgh = 0. So this function is not a valid CBF according to defition 4.1.5,
despite it encodes the safety specification as intended.

One way to get around this problem is to directly design a valid CBF that depends on the entire
state of the system, so that the control input appear in the expression of its first derivative; and
this is the approach followed for example by the authors of [40], where they proposed an inter-
agent collision avoidance system based on the current velocity of the agents. However, in most
application scenario, designing this kink of ad-hoc full state dependent Control Barrier Fuction is
not a straightforward task, and it is not the affirmed approach used in practice.

The standard solution to this problem is an iterative procedure that extend Definition 4.1.5 and
Theorem 4.1.1 to higher order time derivative to make the effect of the input visible and take the
name of High Order Control Barrier Function. To get an intution of this technique before presenting
the abstract description, let us again discuss the previous example. According to the comparison
lemma cited in the proof of Theorem 4.1.1, for any t0 ∈ R, the conditions x(t0) = x0, h(x0) ≥ 0,
and ḣ(x(t)) + α(h(x(t))) ≥ 0 for all t ≥ t0 implies h(x(t)) ≥ t0 for all t ≥ t0. So, if we were able to
impose ḣ(x(t))+α(h(x(t))) = Lfh(x(t))+α(h(x(t))) ≥ 0 we could use again the comparison lemma
to guarantee safety. This suggests us to define the following auxiliary canditate CBF

ψ(x) = Lfh(x) + α(h(x))

The intuition here is that if we are able to find a controller u(x) ∈ Kh,β(x) for a given class K
function β : R → R, then by Theorem 4.1.1 we would have ψ(x(t)) ≥ 0 for each t ≥ t0, which in
turns will imply the safety h(x(t)) ≥ 0 by the comparison lemma. We can summarize our discussion
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with the implication

Cψ forward invariant =⇒ Ch forward invariant.

Moreover, since Lfψ = ⟨v, v⟩ + dα
dh ⟨p− o, v⟩ and Lgψu = ⟨p− o, u⟩, ψ(x) is a valid canditate CBF.

We will now better formalize the above discussion to deal with more general cases.

Definition 4.2.1 (Relative Degree). Given an affine system (4.1) and a function h : X → R, the
relative degree at x ∈ X is said to be r ∈ N if there exists an open set O that contain x such that

• h is continuously differentiable at least r times in O

• r is the smallest number such that

LgL
r−2
f h(x)u = 0 (4.9)

LgL
r−1
f h(x)u = 0 (4.10)

We say that a function h has an omogeneous relative degree over the set W ⊆ X if it has the
same relative degree for every x contained in W.

Definition 4.2.2 (High Order Control Barrier Functions). Let h : X → R be a function with
omogeneous relative degree r with respect to (4.1) over X . Let αi : R → R be r class K functions
and let us defined the following family of functions{

ψ0(x) = h(x)
ψi(x) = Lfψi−1(x) + αi(ψi−1(x)),∀i ∈ {1, . . . , r − 1}

We call h a Higher Order Control Barrier Function (HOCBF) if for each x ∈
⋂r−1
i=0 Cψi

sup
u∈U

Lfψr−1(x) + Lgψr−1(x)u+ αr(ψr−1(x))

or, equivalently,

sup
u∈U

Lrfh(x) + LgL
r−1
f h(x)u+O(x) + αr(ψr−1(x)) (4.11)

where O(x) =
∑r
i=1 L

i
fαr−i(ψr−i−1(x)).

Definition 4.2.3 (High Order Safe Controllers). Let h be an HOCBF with relative degree r ∈ N0 for
the system (4.1) for a collection of class K functions A = {αi}ri=0. Let us the define the following
set

Kh,A(x) =
{
u ∈ U | sup

u∈U
Lrfh(x) + LgL

r−1
f h(x)u+O(x) + αr(ψr−1(x)) ≥ 0

}
.

Then, a controller u : X → U is said to be a high order safe controller if

u(x) ∈ Kh,A(x),∀x ∈
r−1⋂
i=0

Cψi

Theorem 4.2.1. Given a HOCBF h for the affine system (4.1) any high order safe controller u(x)
renders the set Ch forward invariant.
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Figure 4.3: The figure shows an agent modeled as a double integrator navigating using a HOCBF
based safety filter to reach a goal position in the presence of obstacles in the workspaces.

Proof. Since u(x) ∈ Kh,A(x), by Theorem 4.1.1 the set Cψr−1 is forward invariant in time. Using
the comparison lemma, it can be proven that, for each i ∈ {0, . . . , r − 2},

Cψi+1 forward invariant =⇒ Cψi forward invariant.

So we can conclude that Cψ0 = Ch is forward invariant.

Armed with the presented theoretical tool, we are now able to adapt (4.3) and (4.5) to the case
of HOCBF. For concisiness we show only the adaptation of (4.3) which becomes

min
u∈U

∥u− u∗(x)∥2
2 (4.12)

subject to Lrfh(x) + LgL
r−1
f h(x)u+O(x) + αr(ψr−1)(x) ≥ 0

4.2.1 Application Example: Obstacle Avoidance
We now present a numerical simulation showcasing the use of HOCBF for obstacle avoidance. Figure
4.3 shows an agent, modeled as in equation (4.8) navigating from a several different initial conditions
to the goal state x∗ = [p∗, v∗]T , with p∗ = [6.5, 7]T and v∗ = [0, 0]T , using the nominal control law
u∗(x) = −kp(p − p∗) − kv(v − v∗), with kp = −10.5 and kv = 4, filtered by the safety filter (4.12),
with α1(h) = 5h and α2(h) = 3h. We can see that the agent successfully avoid all the obstacles. We
can also see that, depending on the initial condition, the agent may not converge to the goal state
but remains stuck at the edge of the safe set.

27





Chapter 5

Safe Navigation in Unknown
Environments

In this chapter we investigate the use of Control Barrier Function paradigm and Gaussian Processes
to design safe navigation strategies in unknown environments. We start by presenting a direct
approach to construct a Control Barrier Function from observed data using Gaussian Process re-
gression and we highlight some of its limitations. We then present a framework based on surface
reconstruction [41] that may solve some of the previously presented issues in the case of safe navi-
gation. Lastly, we summarize the work presented in [42] to fit High Order Control Barrier Function
constraints using the properties of Gaussian Processes and High Gain Observers.

5.1 Navigation with Gaussian Processes

In this section we show a simple approach to create an environment representation suitable for the
the Control Barrier Function [43, 44, 45] paradigm using Gaussian Process Regression as our learning
approach. Gaussian Process regression is a supervised learning technique that can be used both for
regression and classification tasks [46] and, with respect to other learning approaches, can provide
both probabilistic[47] and worst case errors bounds[48]. The main elements and concept behind the
theory of Gaussian Processes are recalled in Appendix B.

Before delving into the theory, let us introduce the main elements of the discussion. We will de-
note with P the workspace, where an agent with position p ∈ P lives, and we will identify P R3. The
velocity and the acceleration of the agent will be denoted, respectively, with v ∈ TpP = R3 and a ∈
TpP = R3. In our discussion we will consider the two following dynamical models to describe the dy-

namics of the agent:
ṗ = v (5.1)

{
ṗ = v

v̇ = a
. (5.2)

Notice that both of the above cases are control affine systems such as (4.1). In particular, in (5.1)
we have X = R3, x = p, and u = v, while in (5.2) we have X = R3 × R3, x = [p, v]T , and u = a

In the workspace are placed some obstacles and the set of the points occupied by the obstacles
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will be denoted with O ⊂ P, which we will assume to be compact. Let

dO(p) =
{

minq∈∂O ∥p− q∥2, p ̸∈ O
− minq∈∂O ∥p− q∥2, p ∈ O

denote the Signed Euclidean Distance from the obstacles in the workspace. Ideally, we would like to
use dO as our candidate Control Barrier Function, but, in our framework, we will assume dO to be
initially unknown but measurable trough some range sensor at every p ∈ P.

To construct an approximation of dO we will rely on the Gaussian Process Regression theory
(see Section B.2.2). Let D = {(pi, yi)}Ni=1 denote a set of N ∈ N0 tuples containing the position of
the agent along with the distance measurements given by

yi = dO(pi) + ξi (5.3)

where ξi is a zero mean white noise with variance σ2 > 0, as in Section B.2.2. Let X = p1, p2, . . . , pN
denote the set of sample points and Y = [y1, . . . , yN ]T denote the vector containing the distance
measurements. Let k : P × P → R be the square exponential kernel defined in equation (B.1)
and KX ∈ RN×N the corresponding Kernel matrix (see Definition B.1.2). Then the posterior mean
µ : P → R of the regressor function based on the dataset D, assuming a zero prior mean, is given
by:

µ(p) = kTX
(
KX + σ2IN

)−1
Y (5.4)

where kX = [k(p, p1), . . . , k(p, pN )]T .
We will now investigate the use of equation 5.4 for the construction of candidate Control Barrier

Functions for autonomous navigation.

5.1.1 Full Environment Knowledge
To understand the potential and possible drawback of using equation 5.4 as a proxy for the Signed
Euclidean Distance, let us first take a qualitative look at his behaviour in a scenario where we already
know the exact value of dO at every point in the workspace, shown in Figure 5.1.

Since during the navigation the agent is able to sample point only outside the obstacles, to
estimate the distance function we sampled the environment twice in the set R = [−2.0, 8.5] ×
[−2.08.5] ⊂ R2 \ O to create two dataset and compare two sample densities: D50 which contains the
samples taken at points p = (0.5i, 0.5j) ∈ R for i, j ∈ Z, and D25 which contains the samples taken
at points p = (0.25i, 0.25j) ∈ R for i, j ∈ Z. Figure 5.2 and Figure 5.3 shows the resulting posterior
mean µ on the two respective datasets along with the safe associated safe set Ch for h(x) = µ(p).
We can see that both regressors give, qualitatively, a good approximation of the distance function
dO, but in both cases the resulting safe set intersect the obstacle set, which may results in a collision
when used as Control Barrier Functions. A possible workaround is showed in Figure 5.4 where er
chose h(x) = µ(p) − 0.3 to restrict the dimension of the safe set, where the value subtracted to the
regresson have been chosen empirically.

5.1.2 Navigation in Unknown Environments
We now show some simulated scenario showing an agent starting from p = [0, 0] navigating toward
one or more goal points p∗ ∈ P in an unknown environment, while recontructing the distance
function dO by collecting a new sample each time the actual position is more than 0.25 m from all
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(a) (b)

Figure 5.1: The figures show the Signed Euclidean Distance Field of the workspace. Figure (a)
shows the tridimensional plot of the function dO(p), while figure (b) shows the safe set associated
with the function h(x) = dO(p) − 0.1.

(a) (b)

Figure 5.2: The figures shows the posterion mean function µ(p) obtained on the dataset D50. Figure
(a) shows the tridimensional plot of µ(p), while figure (b) shows the safe set associated with the
function h(x) = µ(p). We can see a superposition between the obstacle set O and the safe set Ch.
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(a) (b)

Figure 5.3: The figures shows the posterion mean function µ(p) obtained on the dataset D25. Figure
(a) shows the tridimensional plot of µ(p), while figure (b) shows the safe set associated with the
function h(x) = µ(p).We can see a superposition between the obstacle set O and the safe set Ch.

Figure 5.4: The figure shows the safe set Ch associated with the function h(x) = µ(p) − 0.3, where
µ is the posterion mean obtained on the dataset D50

32



5 - Safe Navigation in Unknown Environments

(a) (b)

Figure 5.5: The figures show an agent navigating to a goal in an unknown environment while
collecting samples of dO(p) to learn the Control Barrier Function. In figure (a) the agent is modeled
as a single integrator, while in figure (b) the agent is modeled as double integrator. In both cases
the agent get stuck after a few seconds trying to reach the goal on the other side of the workspace.

the other sampling points. The agent is modeled either following (5.1) or (5.2), and the candidate
Control Barrier Function is chosen to be h(x) = µ(p) − 0.3. In the first case, the nominal control
law of the agent is given by u∗(x) = −kp(p − p∗), with kp = 5, and the class K function for the
safety filter is the constant multiplier α = 2.5. In the second case, the nominal control law of the
agent is given by u∗(x) = −kp(p− p∗) − kvv, with kp = 5 and kv = 3, and the class K functions for
the safety filter are the constant multiplier α1 = 2.5 and α2 = 2.5.

In the first scenario, showed in Figure 5.5, the agent is tasked to reach a goal point on the other
side of the workspace located at p∗ = [6.5, 7.0]T . We can see that the agent is able to avoid the
collision with the obstacles, but it cannot reach the desired goal position and it quickly reaches
the boundary of its safe set. That suggests us that, for the agent to be able to navigate in its
environment, one first need to design an exploration strategy to sample as much as possible of the
workspace.

The second scenario, depicted in Figure 5.6, shows the agent navigating trough a series of hand
picked waypoints p∗

i ∈ P, i ∈ {1, . . . , nw} with nw ∈ N0, chosen far enough from the obstacles. The
figure shows, along with the followed trajectories and the waypoints, the reconstructed safe set at the
end of the task and we can clearly see that, due to the non complete coverage of all the workspace,
the safe set intersect with the obstacle and this is an critical safety issue. To show the potential
danger, we repeated the simulation by changing the location of the waypoints to include a target at
[6, 2]T after a waypoint at [6, 4]T . We can see the results in Figure 5.7 and 5.8 where it is clear that,
due to an initiall wrong estimate of the safe set, the agent end up crushing with an obstacle.

Despite its potentiality, we showed that this approach has some critical flaws that need to be
addressed. In the next section we will propose an approach, based again on Gaussian Process
regression, that aims at addressing the issues that have arisen in these simulations.

5.2 Navigation with log-GPIS
In this section we introduce an alternative technique to reconstruct dO using Gaussian Process
regression called log-Gaussian Process Implicit Surface (log-GPIS)[41, 49], and we propose its use
to construct Control Barrier Functions for safe autonomous navigation.
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(a) (b)

Figure 5.6: The figures show an agent navigating trough a set of carefully selected waypoints p∗
i

while collecting samples of dO(p). In figure (a) the agent is modeled as a single integrator, while in
figure (b) the agent is modeled as a double integrator. We can see clearly see that, due to the low
number of collected samples, we have O ∩ Ch, and this may lead to a collision.

(a) (b)

Figure 5.7: The figures show a failure case of the proposed approach. By overestimating the dimen-
sion of the safe set, the agent crashes on the obstacle and tries to navigate on it before collecting a
new sample and realizing the distance got negative.
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Figure 5.8: The figure shows the value of the barrier function h(x) = µ(p) over time and gives more
insight to explain why the agent crushed with the obstacle. We can see at at time t = 7.3s, after
collecting a new distance sample, the estimate got negative, implying the agent had already crushed.

To begin with, notice that the Euclidean distance function dO could be characterized [50] by the
following, non linear, differential equation with boundary contraints

∥∇ dO(p)∥2 = 1,∀p ∈ P
dO(p) = 0, p ∈ ∂O
∂dO
∂n̂ = 1, p ∈ ∂O

(5.5)

where n̂ ∈ TpP is the unit vector perpendicular to ∂O at p.
Finding an exact solution to (5.5), also known in the literature as the eikonal equation, is in gen-

eral an hard problem due to the non linearity of the ∥·∥2 operator, but one can find an approximate
solution using the Varadhan’s distance formula [51] which approximates the function dO using the
heat kernel on the set OC as briefly summarized in the following discussion.

The heat condution on the set O can be modeled by the heat kernel Υ : OC → R solution to the
following differential equation, known in the literature as the screened Poisson equation,{

Υ(p) − t∆Υ(p) =
( 1
t − Υ(p)

)
= 0,∀p ∈ Int OC

Υ(p) = 1,∀p ∈ ∂O
(5.6)

where ∆ =
∑
i
∂2

∂x2
i

is the Laplace operator and t ∈ R denotes time. Then, it is been proven in [51]
the distance function dO and the heat kernel Υ are related, for each p ∈ OC , by

dO(p) = lim
t→0

−
√
t ln Υ(p) (5.7)

This means that we can approximate dO everywhere in our free space using (5.7) if we can find a
solution to the linear differential equation (5.6).

To solve (5.6) we rely here on a numerical method based on Gaussian Process regression.1 In
1A precise treatment of this approach is behind the scope of this manuscript, but the interested reader may find

more details and references to standard textbooks in [46] and [48]
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particular, if Q ⊂ ∂O is a finite subset of ∂O then the differential equation{
Υ(p) − t∆Υ(p) =

( 1
t − Υ(p)

)
= 0,∀p ∈ Int OC

Υ(p) = 1,∀p ∈ Q

has a closed form solution given by the posterior mean µ of the Gaussian Process GP(0, k) with
prior mean m = 0 and covariance function k = k1,h for P = R2 or k = k1,h for P = R3, conditioned
on the dataset D = {(p, 1)}p∈Q.The parameter h ∈ R++ is nothing but 1

t and can be adjusted to
obtain closer approximation of the distance function.

Summing up the discusion so far, the logarithmic Gaussian Implicit Surface over the set Q is the
function

λ(p) = − lnµ(p)
h

(5.8)

and it is the function we will use as a candidate Control Barrier Function instead of dO.
Before going on, we highlight that in the original paper, i.e. [41], the authors showed emprirically

that the Matérn Kernel k 3
2 ,l

with l =
√

6
h can be used instead of the Matérn kernel k1,h for the two

dimensional case. One of the advantage of using k 3
2 ,l

as the prior covariance function is that its
expression does not involve the evaluation of a Bessel function, and so computing its gradient and
Hessian for the implementation of the safety filter is easier. So, in the following simulations, we will
adopt k 3

2 ,l
as the prior covariance function for the Gaussian Process regression.

Remark 5.2.1. According to [48], the Matérn kernels k1,h and k 1
2 ,h

are not continouosly differen-
tiable so, according to definition 4.1.5, 5.8 is not a valid candidate Control Barrier Function. From
a practical point of view, the only points of non-differentiabilities of the kernels are the sample points
of the training set, which in our case are the boundary points of the obstacle. However, p ∈ ∂O imply
a collision of the agent with the obstacle, so as long as the agent stay away from the obstacle we can
use 5.8 as a Control Barrier Function.

5.2.1 Numerical Simulations
Before showing the numerical simulation involving the safe navigation task, we show the qualitatively
behavior of (5.8), shown in Figure 5.9, that can be compared with the real distance distance function
in Figure 5.1 and the direct Gaussian Process regression in Figures 5.2 and 5.3. We can see how
(5.8) is able to estimate the distance function quite accurately with far fewer samples than the direct
Gaussian Process regression.

Figure 5.10 shows an agent navigating in an unknown enviroment, colleting samples from the
obstacles when they are less than one meter far from the agent. As we can see from the picture, the
control law resulting using (5.8) as a Control Barrier Function keeps the agent from colliding with
the obstacles and steer the agent to the goal position.

5.3 High Gain Observers for Safety Filters Learning
The content of this section is strongly inspired by the scenario presented in section 5.1. In that
section we used Gaussian Process regression to estimate an unknown, but measurable, candidate
Control Barrier Function, i.e. the distance from the obstacles, in this section we instead follow a
different approach and we investigate the possibility of estimating the terms appearing in equation
(4.11).

36



5 - Safe Navigation in Unknown Environments

(a) (b)

Figure 5.9: The figures shows the reconstruction of the distance function trough the use of the
log-Gaussian Process Implicit Surface regression, with h = 3.5 over a set of obstacle samples that
are 0.5 m apart from each other. Figure (a) shows the tridimensional plot of (5.8), while figure (b)
shows the corresponding safe set.

(a) (b)

Figure 5.10: The figures shows an agent navigating trough an unkwnown envinroment. In figure (a)
the agent is modeled as a single integrator, while Figure(b) it is modeled as a double integrator.
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Before introducing the technique we need to state some results about the relation between the
Gaussian Process posterior mean and covariance functions and the estimation error, and to recall
the definition and the properties of High Gain Observers.

Definition 5.3.1 (High Gain Observer). Let z ∈ Z ⊂ Rn be the state of an autonomous linear
system written in canonical observability form{

ż = Az + d(t)
y = Cz + v(t),

(5.9)

where y ∈ R is the measured output of the system, d ∈ Rn is a bounded disturbance, v ∈ R is the
measurement noise and A,C have the form

A =
[
0(n−1)×1 In−1

0 01×(n−1)

]
C =

[
1 01×(n−1)

]
.

An High Gain Observer for system (5.9) is given by the dynamical system

˙̂z = Aẑ +DlK(Cẑ − y), (5.10)

where ẑ ∈ Rn is the state of the observer, K =
[
k1 k2 · · · kn

]T is a vector of positive
parameters (ki > 0) chosen so that the matrix A + KC is Hurwitz and Dl = diag(l, l2, . . . , ln) is a
diagonal matrix parameterized by l > 0.

Lemma 5.3.1 ([52]). Given the system (5.9) with observer (5.10), if d and v are bounded, then
there exists l∗ ∈ R such that for every l > l∗ there exists c1, c2, c3, c4 > 0 such that for every t > 0
we have

|ẑi(t) − zi(t)| ≤ c1l
i−1e−c2lt|ẑi(0) − zi(0)|

+ c3

ln+1−i ∥d∥∞ + c4l
i−1∥v∥∞

Lemma 5.3.2 ([47, 53]). Let f : X → R be a Lipschitz continuous function with Lipschizt constant
Lf > 0. Consider a zero mean Gaussian process with a Lipschitz continuous kernel k : X × X → R,
with Lipschitz constant Lk > 0. Then the posterior mean µ and posterior variance κ conditioned
on the training data D =

{
(x1, y1), . . . , (xN , yN )

}
, N ∈ N0 are Lipschizt continuous with Lipschitz

constants Lµ and Lκ on X , respectively, satisfying

Lµ ≤ Lk
√
N
∥∥∥(KX + σ2IN

)−1
Y
∥∥∥ ,

Lκ ≤ 2ρLk
(

1 +N
∥∥∥(KX + σ2IN

)−1
∥∥∥ max
x,x′∈X

k(x, x′)
)
,

Moreover, pick δ ∈ (0, 1), ρ > 0 and set

β(ρ) = 2 log
(
M(ρ,X )

δ

)
,

α(ρ) = (L+ Lµ)ρ+
√
β(ρ)Lκρ,
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with M(ρ,X ) the ρ-covering number 2 related to the set X . Then, the bound

|f(x) − µ(x)| ≤
√
β(ρ)κ(x) + α(ρ), ∀x ∈ X

holds with probability at least 1 − δ.

In the following we will denote with Ef,S(x) : X → R the regressor fitted with the Gaussian
process to the data set D. In particular, our analysis is limited to case Ef,S(x) = µ(x).

We are now ready to present the proposed approach. Consider a nonlinear system of the form

ẋ = f(x) + g(x)u, y = h(x) + ε(t), (5.11)

where x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu, f : X → X and g : X → Rnx × nu, h : X → R, and ε(t) : R+ → R
is a measurement noise. Let us assume that f, g, h are smooth functions of the state. Let the initial
state x(0) = x0 and the control input u(t) be fixed and let Φ : R → X be the resulting solution of
(5.11). We introduce the set

Tδ,T1,T2 =

x ∈ Rnx : x ∈
⋃

t∈[T1,T2]

δ B(Φ(t))

 (5.12)

where T2 > T1 > 0 and δ > 0.
We suppose that both x(t) and y(t) are measurable for each t > 0. In this framework, we are

interested in obtaining estimates of h and its first r − 1 functional derivatives (i.e. h, L1
fh, . . . ,

Lr−1
f h), along the trajectory of (5.11), where r ∈ N, r < n, is given. The estimates are functions

ĥ(k) : X → R, k = 0, . . . , r−1, to be computed so that |ĥ(k)(x)−Lkfh(x)| is small in some sense. We
suppose the first r− 1 time derivatives are not affected by output, namely, we assume the following.

Assumption 5.3.1. LgLkfh(x) = 0 for each k < r.

Assumption 5.3.2. h is a realization of a Gaussian process

h ∼ GP(0, κ0 (·, ·)) .

Following [46], the previous assumption implies that also the higher derivatives of h are realiza-
tions of Gaussian processes with certain covariance κk, namely

Lkfh ∼ GP(0, κk (·, ·)), ∀k = 0, 1, . . . r − 1.

Let Skj =
{
tkj−(N−1), t

k
j−(N−2), . . . t

k
j

}
be a sliding time window of N ∈ N time instants tki ∈ R+,

where tj > tj−1. The strategy presented later tunes the Gaussian process linked to ĥ(k) with a data
set obtained by sampling the available measures x(t), y(t), and the state of the high gain observer
introduced later, at the time instances in Skj , j > 0. The window is updated when the value of the
state x(t) fulfills ∥x(t) − x(tkj )∥ > τ > 0, with τ > 0, taking tkj+1 = t.

Ideally, setting ĥ(k) = ELk
f
,Sk

j
would guarantee a probabilistic bound on the estimation error[47][53].

However, the values of Lkfh are not measurable; thus, we cannot construct the needed dataset for
training. A first option could be to set ĥ = Eh,S0

j
and to take ĥ(k) = Lkf ĥ as estimates for Lkfh.

2The minimum number such that there exists a finite set Xρ so that its cardinality is equal to M(ρ, X ) and
maxx∈X minx′∈Xρ

∥x − x′∥ ≤ ρ.
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This approach, however, has no theoretical guarantees and leads to an accumulation of errors in
the process [54]. Moreover, any uncertainty of the system dynamics f would also compromise the
quality of the estimate. In this work, we rather propose a technique to model ĥ(k) fulfilling∣∣∣ĥ(k)(x) − ELk

f
,Sk

j
(x)
∣∣∣ < ϵ ∀x ∈ X

where ϵ > 0 is a bound which depends on the noise of the available data and not relying on the
knowledge of the vector field f . Then, we use this property to compute a probabilistic bound of
convergence of this estimate to Lkfh.

The core of the proposed approach is to use a high gain observer to generate an approximation
of Lkfh. Following the structure of (5.10)

˙̂z1 = ẑ2 + lk1(ẑ1 − y(t))
˙̂z2 = ẑ3 + l2k2(ẑ1 − y(t))

...
˙̂zr = lrkr(ẑ1 − y(t)),

(5.13)

where ki, i = 1, . . . , r, are chosen as in 5.3.1.
By using the property that the state ẑk+1 of (5.13) practically converges to Lkfh, we compute

the estimate ĥ(k) as Eẑk+1,Sk
j
. The following theorem can then be proved.

Theorem 5.3.3. Let κ : X × X → R be a bounded and Lipschitz continuous function. Then there
exist t̄ > 0 and l∗ > 0 such that for each t > t̄ and l > l∗, there exist constants c1, c2, c3 > 0 such
that, for all x ∈ X ,

|ĥk(x) − ELk
f
h,Sk

j
(x)| ≤ c1N max{c2l

k∥ε(t)∥∞, c3l
k−r}.

Proof. Let Y =
[
ztj−(N−1) , · · · , ztj

]T and Ŷ =
[
ẑtj−(N−1) , · · · , ẑtj

]T then

|Eẑk+1,Sk
j
(x) − ELk

f
h,Sk

j
(x)| =

= |κ(x)T (KX + σ2
nIN )−1(Ŷ − Y )| ≤

≤ ∥κ(x)∥∥(KX + σ2
nIN )−1∥∥Ŷ − Y ∥ .

Since κ is bounded, we have ∥κ(x)∥ ≤ κmax > 0. It follows that there exists a K > 0 so that
∥(KX + σ2

nIN )−1∥ ≤ K. Let us set c1 = κmaxK, then

|Eẑk+1,Sk
j
(x) − ELk

f
h,Sk

j
(x)| ≤ c1∥Ŷ − Y ∥ ≤ c1

j∑
i=j−N+1

∥ẑk+1(ti) − zk+1(ti)∥

By means of 5.3.1, there exist a time instant t̄ > 0 so that, for all tj > t̄ the following holds

|Eẑk+1,Sk
j
(x) − ELk

f
h,Sk

j
(x)| ≤ c1N max{c2l

k∥ε(t)∥∞, c3l
k−r},∀x ∈ X

from which the result follows.
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Theorem 5.3.3 yields a bound on the difference between the ideal and the proposed estimate.
5.3.2, then, can be used to establish a probabilistic guarantee of convergence of ĥ(k) to Lkfh on the set
Tδ,tϵ,t, where tϵ is an arbitrarily small time and t is the current time, as formalized in the following
theorem.

Theorem 5.3.4. Pick η ∈ (0, 1) and ρ > 0. Let W j
k , Wµj

k
and Wσ2j

k
be the Lipschitz constants of,

respectively, Lkfh, of the mean µjk and variance σ2,j
k of the Gaussian process linked to Lkfh on the set

Tδ,tj−(N+1),tj . Furthermore, let

β(ρ) = 2 log
(
M(ρ, T0,tj−(N+1),tj )

η

)
α(ρ) = (W j

k +Wµj
k
)ρ+

√
β(ρ)Wσ2j

k
ρ

For all tϵ > 0 there exist l∗ > 0 such that for all l ≥ l∗ and for each j such that tj−(N+1) > tϵ
and tj ≤ t the following hold with probability 1 − η

|Eẑk+1,Sk
j
(x) − Lkfh(x)| ≤

√
β(ρ)σ2,j

k (x) + α(ρ) + c1N max{c2l
k∥ε(t)∥∞, c3l

k−r∥}

for all x ∈ Tδ,tj−(N+1),tj and ci, i = 1, 2, 3 are positive.

Proof.

∥Eẑk+1,Sk
j

(x) − Lf hk(x)∥ ≤

≤ ∥Eẑk+1,Sk
j

(x) − ELf hk,Sk
j

(x) + ELf hk,Sk
j

(x) − Lf hk(x)∥ ≤

≤ ∥Eẑk+1,Sk
j

(x) − ELf hk,Sk
j

(x)∥ + ∥ELf hk,Sk
j

(x) − Lf hk(x)∥,

then, applying Theorem 5.3.3 to the first term of the right side of the above equation, and 5.3.2 to the second
term, the initial statement can be recovered.
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Chapter 6

Navigation With Vision
Constraints

This chapter differs somewhat from the rest of the thesis, while maintaining its relevance to the
main topic. While in the previous chapters we assumed that the agent could always precisely know
its position in its environment, here our focus is on vision based navigation, which implies that the
agent under control must be able to navigate or to localize itself trough the use of cameras, such as
in the example showed in Figure 6.1 in which a quadrotor needs to race trough the gates of a track.

Our discussion will focus on the two major drawbacks of visual sensors, namely the unreliability
of distance estimation computed from them and their limited field of view. To deal with the first, we
will aim at designing control laws that are robust to distance estimation errors or that rely only on
bearing measurements, which can more reliably measured with the use of cameras; while to deal with
the second, we will study how to use Control Barrier Functions to impose field of view constraints.

We start in Section 6.1 by presenting a Control Barrier Function based control law that imposes
the field of view constraints while being robust to distance estimation errors [55], and in Section 6.3
we show some preliminary results on the use of Control Lyapunov Function to design bearing based
trajectory tracking control laws.

6.1 Control Barrier Functions for Visual Constraints
In the following, we will consider an autonomous agent moving in space modeled as a rigid body
whose pose with respect to an inertial reference frame is denoted as x = (p,R) ∈ R3 ×SO(3), where
p ∈ R3 denotes the position of the rigid body and R ∈ SO(3) its rotation transforming coordinates
from the body to the inertial frame.

The agent is equipped with a visual sensor whose field of view is modeled as an infinite half-
cone centered in p and with total aperture 2ψF , with ψF ∈

(
0, π2

)
(see Figure 6.1 for reference).

We denote with ec ∈ R3 the orientation of the optical axis of the visual sensor in the body frame.
Formally, we denote the field of view of the agent F(x) ⊂ R3 as:

F(x) =
{
q ∈ R2 | ∠(β(p), Rec) < ψF

}
.

We suppose that a reference controller u∗(x) : X → Rm is given, able for example to track
trajectories with the use of visual features. We let {qi}Ni=0 ⊂ R3 denote a set of N scene features
the agent needs to keep in sight during its operation, that may be useful either for localization or

43



6 - Navigation With Vision Constraints

ψF

ec

Figure 6.1: A quadrotor traversing a race circuit needs to keep the gates (depicted in red) as long
as possible in its field of view (the blue cone) to orient itself and race through the circuit.

navigation. We use di(p) = ∥qi − p∥2 to denote the distance of point i from the agent position p, and
βi(p) = qi−p

∥qi−p∥2
for its associated bearing. Let d̂i(p, t) : R × R → R be an estimate of the quantity

di(p) available to the agent; we then define the relative error as d̃(p, t) = d(p)
d̂(p,t) .

Problem 6.1.1. The goal of the agent is to compute a control input u that is as close as possible
to u∗ while keeping each point of interest inside its field of view, i.e., at every time instant t:

qi ∈ F(x), ∀i ∈ {1, . . . , N}. (6.1)

Remark 6.1.1. In the following discussion, we will prove that the proposed approach is robust to
bounded distance readings error, that is, if the multiplicative d̃(p, t) is contained in an interval (which
may be estimated from the sensor datasheet or by computing some bounds from the algorithm used
to calculate the distance).

Condition (6.1) for each feature point qi can be equivalently characterized by a function hi :
R3 × SO(3) → R defined as

hi(x) = ⟨βi(p), Rec⟩ − cosψF ; (6.2)

It can be verified that:

• hi(x) > 0, when qi ∈ intF

• hi(x) = 0 when qi ∈ ∂F

• hi(x) < 0, when qi ̸∈ intF

• hi(x) is smooth anywhere except when p = qi, where it is not defined.

and, as such, is a candidate Control Barrier Function. We can then define the safe sets Chi
⊂

R3 × SO(3) according to Definition 4.1.4.
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For the sake of exposition, in the following analysis, we will consider N = 1 and drop the
subscript accordingly. At the end of this section, we will explain how to handle the general case
N > 1. Furthermore, we will drop the dependence on the agent and feature positions when referring
to the bearing β and distance function d associated with the feature.

6.1.1 Velocity Control
We first analyze the case in which we have control authority over the linear and angular velocities
of the rigid body. By denoting the linear velocity of the body, expressed in the inertial frame, by
v ∈ TpR3 and its angular velocity, expressed in the body frame, by ω ∈ TRSO(3), the equations of
motion become

ṗ = v

Ṙ = R[ω]×

Comparing with (4.1), we then have x = x and u = (v, ω).
As is usual in the CBF literature, we aim to solve Problem 6.1.1 by solving the following opti-

mization problem at each time instant:

min
u∈R3

∥u− u∗∥2
2 (6.3a)

s.t. ⟨∇h, u⟩ + γ(h(x)) ≥ 0. (6.3b)

for a given class K function γ : R → R. The constraint in (6.3b) expands to

⟨∇ph, v⟩ + ⟨∇Rh, ω⟩ + γ(h(x)) ≥ 0,

which can be further expanded (see [55]) as

−1
d
eTc R

TPTβ v − βTR[ec]×ω + γ(h(x)) ≥ 0.

Notice that the term that multiplies v depends explicitly on the multiplicative factor 1
d , which,

in our assumptions, is only approximately known through the estimate d̂. To get around the issue
we propose to substitute the previous constraint with the following triple of constraints:

−1
d̂
eTc R

TPTβ v + c1γ(h(x)) ≥ 0,

−βTR[ec]×ω + c2γ(h(x)) ≥ 0,
c1 + c2 = γ0 > 0.

(6.4)

We will now present a theorem that shows that, under appropriate assumptions, there exist co-
efficients c1, c2 ∈ R such that enforcing (6.4) implies satisfaction of (6.3b); but first, we need to
introduce a technical lemma.

Lemma 6.1.1. Let consider x ∈ R and the first order differential equation

ẋ = −α(x, t) (6.5)

where α : R × R → R is continuously differentiable and locally Lipschitz in both arguments and,
for each t ∈ R, α(t, x) is a class K function of x. Then x = 0 is a globally uniformly asymptotically
stable equilibrium point for (6.5). Moreover, if x(0) ≥ 0 then x(t) ≥ 0 for all t > 0.
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Proof. Let consider the Lyapunov function V = 1
2x

2. The time derivative of V is

V̇ = −α(t, x)x.

Since α(t, x) is a class K function for any t, we have that V̇ = 0 if x = 0, and V̇ < 0 otherwise. The
first part of the claim directly follows from the Lyapunov theorem for nonlinear autonomous systems
[38]. For the second part of the claim, assume by way of contradiction that there exist t′ > 0 such
that x(t′) < 0; from the continuity of the solution to the differential equation, there then exist a t′′
such that x(t′′) = 0; however, this implies ẋ(t′′) = 0 (for any value of α), and x(t) = 0 for all t > t′′,
leading to a contradiction at t′.

Theorem 6.1.2. Let γ : R → R be a class K function. Given a nominal control law u∗(x) :
R3 × SO(3) → R3, and constants γ0, dm, dM > 0, such that dm < 1 < dM , the control law u
resulting from the solution of the following quadratic program

min
u∈R3

c1,c2∈R

∥u− u∗(x)∥2
2 (6.6a)

subject to − 1
d̂
eTc R

TPTβ v + c1γ(h(x)) ≥ 0 (6.6b)

− βTR[ec]×ω + c2γ(h(x)) ≥ 0 (6.6c)
c1 + c2 = γ0 (6.6d)
γ0

1 − dM
< c2 <

γ0

1 − dm
(6.6e)

renders the set Ch forward invariant whenever d̃ ∈ [dm, dM ].
Remark 6.1.2. At a high level, the idea of the proof is to show imposing the (6.6b) and (6.6c) is
equivalent to imposing the CBF constraint with a time-varying class K function γ̄ different from γ.
The constraint (6.6e) is then necessary to ensure that the CBF constraint from γ̄ is valid. Finally,
constraint (6.6d) can be interpreted as fixing the scale for γ̄.
Proof. Assume that the optimization problem is feasible, if not one can always adjust the parameters
to obtain a feasible optimization problem. Since d̃ > 0, we multiply (6.6b) by 1

d̃
to obtain

−1
d
eTc R

TPTβ v + c1

d̃
γ(h(x)) ≥ 0;

summing with (6.6c) we obtain

⟨∇h, u⟩ + γ0

(
c2 + c1

d̃

)
γ(h(x)) ≥ 0.

To ensure forward invariance, we need c2 + c1
d̃
> 0. We can rewrite this condition as a function

of c2 alone by using constraint (6.6e):

c2 + c1

d̃
= c2 + γ0 − c2

d̃
= c2(1 − d̃) + γ0

d̃
> 0.

For the above to hold, we need to study how the function changes for various values of d̃. One can
easily verify that the above condition can be rewritten as:

c2 ∈ R if d̃ = 1,
c2 <

γ0
1−d̃ if 0 < d̃ < 1,

c2 >
γ0

1−d̃ if d̃ > 1,
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which is equivalent to the constraint (6.6e).
We then have that if d̃ ∈ [dm, dM ] then γ̄(h, t) =

(
c2(t) + c1(t)

d̃(t)

)
γ(h) is a valid CBF function; from

Lemma 6.1.1 we then have that, if h(0) > 0, the solution of the differential equation ḣ = −γ̄(h, t)h
is strictly positive. From the comparison lemma [38], we then conclude that the set Ch is forward
invariant.

6.1.2 Acceleration Control
Let us now analyze the case in which a second-order dynamical system governs the pose of the
agent. Denoting the linear acceleration of the body in the inertial frame by a ∈ TpR3, and its
angular acceleration in the body frame by α ∈ TRSO(3), the equations of motion become

ṗ = v

v̇ = a

Ṙ = R[ω]×
ω̇ = α

Comparing with (4.1), we then have x = (p,R, v, ω) and u = (a, α). According to Definition
4.2.2, for given class C functions γ1, γ2 : R → R, the constraint we need to satisfy in this case is

L2
fh(x) + LgLfh(x)u+ γ′

1(h)Lfh(x) + γ2(Lfh+ γ1(h(x))) ≥ 0

which expands to

⟨∇ph, a⟩ + ⟨∇Rh, α⟩+
+⟨Hessph[v], v⟩ + ⟨HessRh)[ω], ω⟩+
+⟨Hessph[v], ω⟩ + ⟨HessRh[ω], v⟩+ (6.7)
+γ′

1(h)
(
⟨∇ph, v⟩ + ⟨∇Rh, ω⟩

)
+

+γ2(⟨∇ph, v⟩ + ⟨∇Rh, ω⟩ + γ1(h(x))) ≥ 0

Similarly to 6.1.2, we split (6.7) to obtain two constraints, one that collects all the terms that
contain d in the denominator, and one that collects all the terms that do not contain d. However,
the term ⟨Hessph[v], v⟩ contains d2 in the denominator, as it expands (see the Appendix) to

vT
2(eTc RTβ)I − 3(eTc RTβ)P (β) −Recβ

T − βeTc R
T

d2 v. (6.8)

As a consequence, this term cannot belong to either of the two constraints. To deal with this
problem, we decompose the velocity v along a component parallel to the bearing, v∥ = ⟨β, v⟩β, and
one perpendicular to it, v⊥ = Pβv, so that v = v∥ + v⊥. Moreover, since β̇ = − 1

dPβv, we have

v⊥ = −dβ̇. (6.9)

Now, due to the linearity of the Hessian and the metric, we can rewrite (6.8) as follows

⟨Hessph[v], v⟩ =
〈
Hessph[v⊥ + v∥], v⊥ + v∥

〉
=

= ⟨Hessph[v⊥], v⊥⟩ +
〈
Hessph[v⊥], v∥

〉
+
〈
Hessph[v∥], v⊥

〉
+
〈
Hessph[v∥], v∥

〉
. (6.10)
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Expanding the computations, we can see that
〈
Hessph[v∥], v∥

〉
= 0, and we can use (6.9) to simplify

a distance factor from the remaining terms containing d2 at the denominator.
As a consequence, under the assumption that β̇ is measurable (e.g., through numerical differen-

tiation or the use of an observer), we can compute the various terms in (6.10) without requiring the
square of the distance. This leads us to the following claim.

Theorem 6.1.3. Let γ1, γ2 : R → R be class K functions. Without loss of generality, assume
γ′

1(0) ≥ γ′
2(0) (otherwise swap the role of the two functions). Define K = 4γ′

1(0)γ′
2(0)

(γ′
1(0)+γ′

2(0))2 . Given a
nominal control law u∗(x) : R3 × SO(3) → R3 and constants γ0, dm, dM > 0, such that γ0 > K and
dm < 1 < dM , then there exists M > 0 such that the control law resulting from the solution of the
following quadratic program

min
u∈R3

c1,c2∈R

∥u− u∗(x)∥2
2 (6.11a)

s.t. d̃
(
⟨gradph, a⟩ + 2

〈
Hessp[v⊥], v∥

〉)
+ (6.11b)

c1 (γ′
1Lfh(x) + γ2(Lfh(x) + γ1(h(x))) ≥ 0

⟨gradRh, α⟩ + ⟨HessRh[ω], ω⟩+ (6.11c)
2⟨HessRh[ω], v⟩ + ⟨Hessph[v⊥], v⊥⟩+
c2 (γ′

1Lfh(x) + γ2(Lfh(x) + γ1(h(x))) ≥ M

c1 + c2 = γ0 (6.11d)
KdM − γ0

dM − 1 ≤ c2 ≤ Kdm − γ0

dm − 1 (6.11e)

renders the set Ch forward invariant whenever d̃ ∈ [dm, dM ].

The terms in (6.11) are given by (see the Appendix for the full derivation):

⟨Hessph[v⊥], v⊥⟩ = −
(
βTRec

) (
β̇T β̇

)
〈
Hessph[v⊥], v∥

〉
=
〈
Hessph[v∥], v⊥

〉
= (vTβ)β̇TP (β)Rec

d

∇ph(x) = −PβRec
d

∇Rh(x) = −βTR[ec]×

⟨HessRh[ω], v⟩ = ⟨Hessph[v], ω⟩ = vT
PβR[ec]×

d
ω

⟨HessRh[ω], ω⟩ = ωT [RTβ]×[ec]×ω.

Remark 6.1.3. At a high level, the proof follows the same reasoning of Theorem 6.1.2. However,
it also need to take into account the time-varying nature of γ1 when defining the HOCBF constraint
ψ2; this, in turn, depends on ˙̃d, which need to be bounded by M .

Before considering the proof of 6.1.3, we prove the following intermediate results:

Lemma 6.1.4. Let L = γ0

(
c2 + c1

d̃

)
. There exists two functions α1, α2 such that

α′
1(h)ḣ+ α2(ḣ+ α1(h)) = L

(
γ′

1(h)ḣ+ γ2(ḣ+ γ1(h))
)

(6.12)
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Proof. Since (6.12) must hold for each h and ḣ, it must be true also for the special cases where h = 0
or ḣ. Remembering that, from the properties of class-K functions, γ1(0) = α1(0) = 0, equation (6.12)
implies

h = 0 ⇒ L
(
γ′

1(0)ḣ+ γ2(ḣ)
)

= α′
1(0)ḣ+ α2(ḣ), (6.13)

ḣ = 0 ⇒ Lγ2(γ1(h)) = α2(α1(h)). (6.14)

From the above, the following must hold for any z ∈ R:

α1(z) = α−1
2 (γ2(γ1(z))) (6.15a)

α2(z) = L

(
dγ1

dh
(0)z + γ2(z)

)
− α′

1(0)z (6.15b)

This provides an expression of α1 as a function of α2, and of α2 as a function of the scalar α′
1(0).

To compute α′
1(0) (together with α′

2(0)), let us take the derivative of both of the equations in
(6.15) by their argument:

α′
1(z) = γ′

2(γ1(z))γ′
1(z)

α′
2(α−1

2 (γ2(γ1(z)))
(6.16a)

α′
2(z) = L(γ′

1(0) + γ′
2(z)) − α′

1(0) (6.16b)

Let us define G = γ′
1(0) + γ′

2(0). We then obtain:

α′
1,2(0) = LG∓

√
L2G2 − 4Lγ′

1(0)γ′
2(0)

2 (6.17)

Lemma 6.1.5. If L ≥ K and γ′
1(0) ≥ γ′

2(0), then the two functions α1, α2 from 6.1.4 are class K.

Proof. Using the condition L ≥ K in (6.17) implies the realness of α′
1(0), α′

2(0).
We also need to ask both α′

1(z) and α′
2(z) to be positive for each z ∈ R. First of all, by looking

at equations (6.16) we can notice that α′
1(z) has the same sign as α′

2(z), so we just need to ask
for α′

2(z) > 0 for each z. This is true if γ′
2(z) > α′

1(0)
L − γ1(0), so a sufficient condition to ask is

α′
1(0)
L − γ1(0) < 0. Now, taking the convention that α′

1(0) is obtained using the solution with the
minus sign and expanding equation (6.17), we can see that this last condition is true when

γ′
1(0) ≥ γ′

2(0) −
√
G2 − 4

L
γ′

1(0)γ′
2(0) (6.18)

which is trivially true if γ′
1(0) ≥ γ′

2(0).

Proof of Theorem 6.1.3. As in the proof of Theorem 6.1.2, the sum of the first two constraints
recovers a formula similar to the second-order barrier function constraint, namely:

ḧ+ γ0

(
c2 + c1

d̃

)(
γ′

1ḣ+ γ2(ḣ+ γ1(h(x))
)

−M ≥ 0.

To make use of the comparison lemma, we need to prove that there exists two, time-varying,
class K functions α1, α2 such that:

∂α1

∂t
+ α′

1(h)ḣ+ α2(ḣ+ α1(h)) ≥ L
(
γ′

1(h)ḣ+ γ2(ḣ+ γ1(h))
)

−M (6.19)
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Figure 6.2: The figure shows the relation between the allowable error ration d̃ and the resulting
range for c2 in Theorem 6.1.3. As we can see, a trade-off exists between the bounds on d̃ and the
resulting range for c2.

where the explicit time dependence has been omitted for conciseness, and M is a design parameter
that will be used to deal with the unknown ∂α1

∂t ; in fact, considering the results of Lemmata 6.1.4
and 6.1.5, equation (6.19) holds if L ≥ K and if ∂α1

∂t ≥ M .
Using (6.11d) to substitute c1 in L ≥ K, we get: c2 + γ0−c2

d̃
≥ K, which is equivalent to

c2(1 − d̃) ≥ Kd̃− γ0, since d̃ > 0. As in the case analyzed in Theorem 6.1.2, based on the value of
d̃ we get 

γ0 ≥ K, d̃ = 1
c2 ≥ Kd̃−γ0

d̃−1 , d̃ ≥ 1
c2 ≤ Kd̃−γ0

d̃−1 , d̃ ≤ 1
(6.20)

Now, under the assumption that γ0 > K, one can prove the function Kd−γ0
d−1 is monotonically

increasing over the intervals ] − ∞, 1[ and ]1,+∞[, and that it has the shape showed in Figure
6.2, which means Kd−γ0

d−1 > a over the interval ] − ∞, 1[ and Kd−γ0
d−1 < K over the interval ]1,+∞[.

This means that, given a relative error range [dm, dM ], we can impose constraint 6.20 as long as
dM > 1 > dm > 0.

We now need to prove that ∂α1
∂t ≥ −M for each t. This is equivalent to M ≥ maxt

∣∣∂α1
∂t

∣∣, which
can be imposed true whenever ∂d̃

∂t is bounded.
Now, as in Theorem 6.1.2, we can invoke Theorem 6.1.1 and the comparison lemma [38] to

conclude the proof.

50



6 - Navigation With Vision Constraints

(a) (b)
(c) (d)

Figure 6.3: Snapshot of the simulation scenario of the numerical experiments. We can see that
agent (represented by a blue cross) needs to turn to keep all the features (red points) in its field of
view (blue cone) to follow the reference trajectory (black line). (a) Front view. (b) Side view (c)
Top-down view. (d) Tilted view.

6.1.3 Multiple Features
When N > 1 features need to be tracked, we propose to extend the quadratic programming of
Theorems 6.1.2 and 6.1.3 by adding for each feature a couple of optimization variables ci1, ci2 and
the same set of constraints proposed for the case of the single features.

Remark 6.1.4. Having multiple constraints may lead to the infeasibility of the optimization problem.
To overcome these issues, and improve the numerical stability of the optimization, one may add some
slack variables δi1, δi2 > 0 to each couple of constraints to allow for constraints violation. The square
of the norm of these variables should be added to the cost function, weighted by some constant chosen
by the designer.

6.2 Numerical Simulation
To validate the proposed approach, in this section, we present two numerical simulations1 involv-
ing the control of a double integrator system, as presented in Section 6.1.2, and the control of a
quadrotor. In both simulations, the task of each agent is to follow the same trajectory pref (t) =
[cos(0.3t), 10 cos(0.2t), 2 cos(0.2t)]T (depicted in Figure 6.3). The features to keep in the field of
view, q1 = [7.0,−1.5, 1.5]T , q2 = [7.0, 1.5, 1.5]T , q3 = [6.0, 1.5,−1.5]T , and q4 = [6.0,−1.5,−1.5]T
form the corners of a rectangle. We use a conic field of view with half-aperture ψF = π

6 . The two
simulations show an extreme case where the agents cannot estimate the distance from the features
(i.e., d̂ = 1). The parameters mentioned in Theorem 6.1.3 are γ0 = 3, dM = 15, dm = 0.5 and
M = 0.

Figure 6.5(a) and 6.5(b) show, respectively, the tracking error of the proposed control scheme
and the minimum of the Control Barrier Functions hi(x) values in the quadrotor scenario. The
nominal control law of the agent is the one proposed in [13], with kp = 20.8, kv = 13.3., kR = 54.81,
and kω = 10.54.

We can see, in both cases, that the constraint of imposed by the Control Barrier Function
is always satisfied, i.e. the features never leave the field of view of the agent, and the reference
trajectory is tracked with a bounded tracking error.

1The code used to implement the simulation can be found at https://github.com/biagio-trimarchi/A-Control-
Barrier-Function-Candidate-for-Limited-Field-of-View-Sensors.git
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(a) (b)

Figure 6.4: Acceleration Control: Plot (a) shows the position tracking error of a rigid body actuated
both in linear and angular acceleration along the prescribed path. Plot (b) shows the minimum
value among the barrier functions associated with the features.

(a) (b)

Figure 6.5: Quadrotor: Plot (a) shows the position tracking error of a quadrotor actuated both in
trust and torques along the prescribed path. Plot (b) shows the minimum value among the barrier
functions associated with the features.
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6.3 Control Lyapunov Functions for Visual Servoing

Inspired by the approach presented above, in this section we propose a trajectory tracking CLF
robust to distance measurements errors. To start, let us consider the same scenario of Section 6.1.1
and let us suppose to have designed a trajectory p∗ : R+ → R3 from which we can compute the
desired bearings β∗

i (t) = qi−p∗(t)
∥qi−p∗(t)∥2

to a set of N ∈ N0 visual features with known position qi ∈ R3.
Let us define the folllowing candidate Control Lyapunov Function to track p∗(t):

V (x) =
N∑
i=1

1 − ⟨βi, β∗
i ⟩ (6.21)

which, clearly, at each t ∈ R has a minimum whenever, for all i ∈ N , βi = β∗
i .

Now, notice that equation 6.21 can be decomposed in n components Vi(x) = 1 − ⟨βi, β∗
i ⟩, one for

each visual feature, with gradient

∇Vi =
⟨Pβi

β∗
i , v⟩

di
+
〈
Pβ∗

i
βi, v

∗〉
d∗
i

To converge to the desired trajectory, we should constraint the control input to satisfy, for each
visual feature qi,

⟨Pβiβ
∗
i , v⟩

di
+
〈
Pβ∗

i
βi, v

∗〉
d∗
i

+ α (V (x)) ≤ 0 (6.22)

for a given class K function α : R → R. Since our we only have access to the noisy measurements d̂,
the constraint we can actually impose is

⟨Pβi
β∗
i , v⟩

d̂i
+
〈
Pβ∗

i
βi, v

∗〉
d∗
i

+ α (V (x)) ≤ 0 (6.23)

which is equivalent to

⟨Pβi
β∗
i , v⟩

d̃i
+
〈
Pβ∗

i
βi, v

∗〉
d∗
i d

+ α

d
(V (x)) ≤ 0 (6.24)

Remark 6.3.1. Equations 6.22 and 6.24 are not equivalent. By dividing 6.24 by di we get, first of
all, that the class K function of the new constraint is α

di
, which is a time varying class K function;

moreover, the term
〈
Pβ∗

i
βi,v

∗
〉

di
implies that each constraint is tracking a different desired velocity v∗

di
.

Armed with the above considerations, we propose the following CBF-CLF-QP control scheme to
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track p∗

min
u∈R3

c1,c2∈R

∥u∥2
2 +

N∑
i=1

(
w1,iδ

2
1,i + wi,2δ

2
2,i
)

(6.25a)

subject to d∗
i ⟨Pβiβ

∗
i , v⟩ +

〈
Pβ∗

i
βi, v

∗〉 + d∗
iαVi(x) ≤ 0 (6.25b)

− 1
d̂
eTc R

TPTβi
v + ci,1γ(hi(x)) ≥ δi,1 (6.25c)

− βTi R[ec]×ω + ci,2γ(hi(x)) ≥ δ2,i (6.25d)
ci,1 + ci,2 = γ0 (6.25e)
γ0

1 − dM
< ci,2 <

γ0

1 − dm
(6.25f)

∀i ∈ 1, . . . , N

In the above equation, δi,1, δi, 2,∈ R are slack variables that are to ensure the existence of a solution,
and wi,1, wi,2 ∈ R+ are adjustable weights to discourage high values of the slack variables.

6.3.1 Numerical Simulation
We now show a numerical simulation to validate the approach proposed in this section. An agent
starts from p0 = [−4.0, 0.0, 0.0]T and it is tasked to follow the trajectory p∗(t) = [−5.0, 0.0, 0.0]T +
4.0[sin(1.5t),− cos(1.5t), 0.0]T . In the workspace are presents four visual features located at q1 =
[3.0,−1.0, 0.0], q2 = [3.0, 1.0, 0.0], q3 = [5.0,−1.0, 0.0], q4 = [5.0, 1.0, 0.0] that the agent must keep
in its field of view and need to track the reference trajectory p∗. Figures 6.6 and 6.7 show the the
performance of the control law obtained by recursively solving 6.25 starting from p = p0 and R = I3,
with α = 7.5, γ = 1.5, γ0 = 1, dm = 0.5, dM = 20, and, for each i ∈ {1, 2, 3, 4}, wi,1 = wi,2 = 10.0;
morever we set d̂ = d∗ to simulate a bearing only scenario, in which we use the desired distance as a
proxy for the real distance. We can see how the tracking error remains bounded while the features
always remains in the field view.
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(a) (b)

Figure 6.6: Figure (a) shows the scenario of the simulation. p(T ) denotes the position of the agent
at T = 10 (s), and the yellow cone represents its field of view in that instant. Figure (b) shows the
position tracking error: px denotes the x component of the position vector, and py denotes the y
component.

(a) (b)

Figure 6.7: Figure (a) show the evolution in time of the various Lyapunov functions Vi. We can
see that each of them converge exponentially fast to 0. Figure (b) shows the minimum value of the
Control Barrier Functions; as predicted by the theory, it stays positive during the execution of the
task.
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Chapter 7

Conclusions

The primary objective of this thesis was to develop robust algorithms for safe navigation and colli-
sion avoidance to enable autonomous quadrotors to operate reliably without risk of harmful crashes.
To address this, we explored multiple strategies and approaches. We began by introducing a path-
planning framework based on Bézier curves, which generates optimal, feasible paths for quadrotors
navigating through cluttered environments. This method provides a foundation for efficiently avoid-
ing obstacles while minimizing path length and smoothness constraints.

We then delved into data-driven approaches for designing safety filters by leveraging Gaussian
Processes. This exploration led to several innovative methods aimed at creating adaptive safety
filters capable of handling dynamic environments and offering robust performance even when the
environment is only partially known. The versatility of Gaussian Processes allowed us to design
navigation strategies that adapt to uncertain surroundings, providing an essential step toward safer
quadrotor autonomy.

In the final section, we presented preliminary work utilizing Control Barrier Functions (CBFs)
and Control Lyapunov Functions (CLFs) to formulate vision-based control laws using bearing mea-
surements. This approach introduces the potential to bypass full reliance on precise localization data
by using only visual bearings, which is crucial for quadrotors operating in unknown environments
or when GPS signals are unavailable.

Despite these advancements, most of the approaches developed in this thesis rely on knowledge
of the entire environment or the exact position of the quadrotor for collision avoidance. A promising
direction for future research is to extend the work presented in the final chapter by designing Control
Barrier Functions that can be computed directly from visual measurements. This would allow for
real-time obstacle avoidance without requiring explicit localization, thus expanding the quadrotor’s
autonomy and applicability in a variety of real-world scenarios.

In summary, this thesis has contributed novel algorithms and methodologies for safer, more
autonomous quadrotor navigation. By combining optimal path planning, adaptive safety filters,
and vision-based control laws, we have laid a foundation for further advancements in the field of
autonomous aerial robotics. These contributions hold promise for a future where quadrotors operate
seamlessly and safely in complex, real-world environments.
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Appendix A

Bézier Curves

In this chapter we review the definition of Bézier curve and Bernstein polynomial, and we recall the
main properties of these mathematical objects used in our treatise. Let n, i ∈ N with n > i. The ith
Bernstein Polynomial of order n is the function bni (t) : [0, 1] → R defined as

bni (t) =
(
n

i

)
ti(1 − t)n−i

Given n ∈ N, d ∈ N0 and n + 1 points Pi ∈ Rd, for i ∈ {0, 1, . . . , n}, we call a Bézier Curve of
order n in Rd the curve

pt =
n∑
i=0

bni (t)Pi

defined for t ∈ [0, 1]. The points Pi are called the control points of the curve.

A.1 Relation to Monomial Basis
A Bézier Curve of order n is equivalent to a polynomial with real coefficients of the same order over
the interval [0, 1]. To make this more evident, let us expand the rewrite the expression of a generic
Bernstein Polynomial

bni (t) =
(
n

i

)
ti(1 − t)n−i =

(
n

i

)
ti
n−i∑
k=0

(
n− i

k

)
(−1)ktk =

=
n∑
j=i

(
n

i

)(
n− i

j − i

)
(−1)j−itj

Now, given a Bézier Curve p(t) of order n with control points Pi ∈ R, we can expand it as

p(t) =
n∑
i=0

bni (t)Pi =
n∑
i=0

Pi

n∑
j=i

(
n

i

)(
n− i

j − i

)
(−1)j−itj =

n∑
k=0

akt
k (A.1)

59



A - Bézier Curves

which is indeed a polynomial of order n written in the canonical monomial basis, with coefficients

ak =
k∑
i=0

(−1)k−i
(
n− i

k − i

)(
n

i

)
Pi (A.2)

If we stack all the Control Points in a vector1 P =
[
P0 P1 · · · Pn

]T , and all the monomial
coefficients in another vector a =

[
a0 a1 · · · an

]T we can construct the change of basis matrix
M ∈ Rn+1×n+1 that relates the coordinates of a polynomial in the Bézier Curve basis to the
monomial ones

a = MP
P = M−1a

where M is defined as

M(i,j) =
{∑i

j=0 (−1)i−j
(
n−j
i−j
)(
n
j

)
, j ≤ i

0, j > i

In the general cases of a Bézier Curve belonging to a d space, i.e. Pi ∈ Rd, equations (A.1) and
(A.2) still holds, and we can construct P and a by stacking the coefficients as previously mentioned,
which means P =

[
PT0 PT1 · · · PTn

]T and a =
[
aT0 aT1 · · · aTn

]T . In this case, the change of
basis matrix M̄ ∈ Rd(n+1)×d(n+1) can be obtained with a Kronecker product between the matrix M
and the identity matrix of dimension d

M̄ = M ⊗ Id

A.2 Remarkable Properties
Theorem A.2.1 ([36]). Let p(t) : [0, 1] → Rd be a Bézier Curve of order n. Then p(t) = P0 and
p(1) = Pn.
Proof. The statement is a direct consequence of the definition of the Bernstein Polynomials; by
substitution in their formula we have{

bn0 (0) = 1
bni (0) = 0, i ̸= 0

{
bnn(1) = 1
bni (1) = 0, i ̸= n

This means that

p(0) =
n∑
i=0

bni (0)Pi = P0

p(1) =
n∑
i=0

bni (1)Pi = Pn

1The set of polynomial of order n over the interval [0, 1] forms indeed a vector space and the Bernstein Polynomial
of order n forms one of its orthonormal bases, so the collection of control points are the coordinates of an element
of this polynomial vector space expressed with respect this basis. Also the monomials of degree 0 ≤ i < n forms an
ortonormal basis for this vector space, the canonical basis, so the collection of the multiplicative coefficients forms
another set of coordinates.
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Theorem A.2.2 ([36]). Let p(t) : [0, 1] → Rd be a Bézier Curve of order n. Then ṗ(t) is Bézier
Curve of order n− 1 and so that the ith, i ∈ {0, 1, . . . , n− 1}, control point is equal to n (Pi+1 − Pi).

Corollary A.2.2.1. Let p(t) : [0, 1] → Rd be a Bézier Curve of order n. Then drp
drt (t) is Bézier

Curve of order n− r, 0 ≥ r ≥ n. Moreover, if we define the matrices Dr
n ∈ Rn+1−r×n+1 as

D1
n =



−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . −1 1


Dr
n = Dr−1

r , n ≥ r ≥ 2

and we also define D̄r
n = Dr

n ⊗ Id, then the control points of drp
drt (t) are the elements of the vector

D̄r
nP.

(A.3)

Theorem A.2.3 ([36]). Let p(t) : [0, 1] → Rd be a Bézier Curve of order n. Then p(t) ∈
conv ({Pi}ni=0)
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Appendix B

Gaussian Processes

This chapter recalls some facts and definitions, taken from [48], about Gaussian Processes and
Gaussian Process Regression that are used in the manuscript; the interested reader may find a more
exhaustive introduction to the subject in [46].

Before delving into the subject, we want to highlight that Gaussian Processes have also an
interesting interpretation that stems from the Reproducing Kernel Hilbert Space (RKHS) theory, that
treats them as functional basis for regression and interpolation without invoking any probabilistic
arguments. Readers that wants to learn more can find in [48] a discussion about the connections of
the two subjects, and in [56] a complete introduction to the RKHS theory.

B.1 Gaussian Processes
Definition B.1.1 (Positive Definite Kernels). Let X be a nonempty set. A symmetric1 function
k : X × X → R is called a positive definite kernel, if for any n ∈ N, (c1, . . . , cN ) ⊂ R and
(x1, . . . , xN ) ⊂ X

N∑
i=1

N∑
j=1

cicjk(xi, xj) ≥ 0

Definition B.1.2 (Kernel Matrix). Let X be a nonempty set, let k : X × X → R be a positive
definite kernel, and let X = (x1, . . . , xn) ⊂ X be a finite set with N ∈ N elements. Then, we call
Kernel matrix, or Gram matrix, the matrix KX ∈ RN×N defined by KX(i,j) = k(xi, xj).

The following are two of the most used kernel families for regressions [46].

Definition B.1.3 (Matérn Kernels). Let X ∈ Rd. For constants α > 0 and h > 0, the Matérn
Kernel kα,h : X × X → R is defined by

kα,h(x, x′) = 1
2α−1Γ(α)

(√
2α∥x− x′∥2

h

)α
Kα

(√
2α∥x− x′∥2

h

)
where Γ is the Gamma Function[57, 58], and Kα is the modified Bessel Function of the second

kind of order α[57, 59].
1A function k : X → X → R is said to be symmetric if for any x1, x2 ∈ X we have k(x1, x2) = k(x2, x1)
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When α = m+ 1
2 with m ∈ N, then the above expression reduces to

kα,h(x,x′)=exp
(

−
√

2α∥x−x′∥2
h

)
Γ(m+1)

Γ(2m+1)

∑m

i=1
(m+1)!

i!(m−1)!

(√
8α∥x−x′∥2

h

)m−i

For instance, when α = 1
2 or α = 3

2 , we have

k 1
2 ,h

(x, x′) = exp
(

−
∥x− x′∥2

h

)
k 3

2 ,h
(x, x′) =

(
1 +

√
3∥x− x′∥2

h

)
exp

(
−

∥x− x′∥2
h

)
Definition B.1.4 (Square Exponential Kernel). Let X ∈ Rd. For constant σ > 0 the Square
Exponential Kernel kσ : X × X → R is defined by

kσ(x, x′) = exp
(

−
∥x− x′∥2

2
2σ2

)
(B.1)

We can now state the formal defition of Gaussian Process.

Definition B.1.5 (Gaussian Processes). Let X be a nonempty set, k : X × X → R be a positive
definite kernel and µ : X → Rbe any real-valued function. Then a random function f : X → R
is said to be Gaussian Process (GP) with mean function µ and covariance kernel k, denoted by
GP(µ, k), if for any finite set X = (x1, . . . , xN ) ⊂ X of any size N ∈ N, the random vector

fX =

 f(x1)
...

f(xN )

 ∈ RN

follows the multivariate normal distribution N (µX ,KX) with where kX is the kernel matrix of k
and µX =

[
µ(x1), . . . , µ(xN )

]T is the mean vector of the distribution.

B.2 Gaussian Process Regression
B.2.1 Regression
Let X be a nonempty set and f : X → R be a function. Assume that one is given a set of pairs
(xi, yi)Ni=1 ⊂ X × R for N ∈ N, which will be referred to as the training data, such that

yi = f(xi) + ξi

where ξi ∼ N
(
0, σ2) is a zero-mean random variable, with variance σ2 > 0, that models the noise

on the output measurements of the function. The regression problem is to estimate the unknown
function f based on the training data (xi, yi)Ni=1. The function f is called the regression function,
and is the conditional expectation of the output given an input

f(x, y) = E [y|x]

We will denote the set of input data points as X = {x1, . . . , xN} ∈ XN and the set of collected
outputs as the vector Y = [y1, . . . , yN ]T ∈ RN .
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B.2.2 Gaussian Process Regression
Gaussian Process Regression is a tecnique to solve the regression problem based on the Bayes Rules
for conditional probability. This techinique assume that the unknown regression function f can be
modeled as a Gaussian Process with prior mean m : X → R and covariance kernel k : X × X → R,
i.e. f ∼ GP (m, k), which can be used to encode prior knowledge about the regression function.
Due to the properties of Gaussian Processes (see [46, 48] for a more detailed explanation), the
posterior distribution of f given the dataset (xi, yi)Ni=1 is again a Gaussian Process with posterion
mean µ : X → R and covariance κ : X × X → R which are given by

µ(x) = m(x) + kX(x)T
(
KX + σ2IN

)−1(y −m(x))

κ(x, x′) = k(x, x′) − kX(x)T
(
KX + σ2IN

)−1
kX(x′),

where KX is the the Kernel Matrix of the collected samples and kX(x) = [k(x, x1), . . . , k(x, xN )]T .
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